
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-3939-00
Product Group 61

COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8540
INTEGRATION UNIT

SYSTEM USERS
MANUAL

OS/40 VERSION 1

Serial Number ______ _

First Printing NOV 1981
Revised JAN 1983

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or(c) used
by a party other than the Customer, except for: (i) emergency repair or overhaui
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the l.:Inited States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications ofthe portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The softwa re may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1981 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8540 System Users

@

ABOUT THIS MANUAL

This manual is your guide to using the 8540 Integration Unit and its operating system, 05/40.

This manual is not about programming techniques, specific microprocessors, or specific
applications. Instead, it presents the information that will enable you to use the 8540 for your
own tasks in hardware-software integration.

In this manual, you'll find detailed information on all standard 8540 features, including
emulation and intersystem communication. This manual also provides introductory information
on several hardware products you can use with your 8540. Those products are described in
detail in other user manuals.

For new users, a Learning Guide introduces you tothe 8540 and its system options, and includes
sample demonstration runs. There's also an Index to help you find your way around the manual,
and a Glossary that describes new terminology and terms that are used in a new way.

For users of DOS/50 (the operating system of the TEKTRONIX 8550 Microcomputer
Development Lab), the Technical Notes section contains a list of differences between DOS/50
and 05/40.

8540 System Users

CONTENTS

SECTION 1 LEARNING GUIDE Page

Introduction ... 1-1
Specification, Installation, Configuration, and Verification 1-1
Overview of the 8540 System .. 1-2
Getting Started .. 1-8

Starting Up the 8540 .. 1-8
Turning Off the 8540 ... 1-10
How to Enter OS/40 Commands ... 1-10
Establishing Communication with the Host 1-11
More About OS/40 Commands .. 1-13

8540/8560 Configurations .. 1-15
Emulator Demonstration Run .. 1-17
For Continued Learning ... 1-40
Overview of 8540 User Manuals ... 1-41

SECTION 2 OPERATING PROCEDURES

Communicating with an 8560 .. 2-1
Communicating with a Host Computer .. 2-3
Communicating with an 8550 .. 2-5
Downloading from an 8002A ... 2-7
Program Execution .. 2-8
Program Debugging ... 2-10
Debugging the Program in the Prototype ... 2-13
Using the Trigger Trace Analyzer .. 2-14
Memory Manipulation .. 2-19
System 1/0 .. 2-20

SECTION 3 COMMAND DICTIONARY

Command Index ... 3-1
Introduction ... 3-2
Other System Commands .. 3-2
Command Syntax .. '.' 3-2
Special Keys .. 3-6
Command Memory Areas .. 3-7
Commands .. 3-8

SECTION 4 INTERSYSTEM COMMUNICATION

Introduction ... 4-1
Terminology ... 4-1
8540/8560 TERM Interface .. 4-1
COM Interface .. 4-2
8540/8550 Interface .. 4-4
8540/8002A Interface ... 4-6
8540/Generai Host Interface ... 4-7

iii

Content5-8540 System Users

SECTION 5 EMULATION Page

Introduction .. " 5-1
The Emulator .. 5-1
Emulation Modes .. 5-1
Selecting the Target Processor ... 5-3
Basic Emulation Tasks ... 5-3
Considerations for Modes 1 and 2 .. 5-6
Symbolic Debug ... 5-7
The Memory Allocation Controller .. 5-9
The Trigger Trace Analyzer .. 5-13

SECTION 6 SERVICE CALLS

Introduction ... 6-1
Overview ... 6-1
Limitations of File Handling SVCs ... 6-4
1/0 Channels ... 6-4
SVC Applications .. 6-5
SVC Demonstration .. 6-6
SVC Functions ... 6-10

SECTION 7 EMULATOR SPECIFICS

SECTION 8 PROM PROGRAMMER SPECIFICS

SECTION 9 TECHNICAL NOTES

Note 1. Practical Limits of Emulation .. 9-1
Note 2. Comparison of OS/40 Version 1 with DOS/50 Version 2 9-1
Note 3. Comparison of the ITA and the RTPA .. 9-2

SECTION 10 ERROR MESSAGES

SECTION 11 TABLES

Conversion Tables .. 11-1
Tektronix Hexadecimal Format ... 11-4
Motorola Load Module Format ... 11-8
Intel Load Module Format .. 11-10

SECTION 12 GLOSSARY

SECTION 13 INDEX

iv @

8540 System Users

@

Section 1
LEARNING GUIDE

Page

Introduction 1-1

Specification, Installation, Configuration, and Verification 1-1

Overview of the 8540 System 1-2

Uses of the 8540 .. 1-2
8540 Parts and Functions .. 1-4
The Host Computer .. 1-7

Getting Started . .. 1-8

Starting Up the 8540 .. 1-8
Turning Off the 8540 ... 1-10
How to Enter 05/40 Commands .. 1-10
Establishing Communication with the Host .. 1-11
More about 05/40 Commands .. 1-13

8540/8560 Configurations 1-15

Emulator Demonstration Run .. 1-17

Introduction .. 1-17
Examine the Demonstration Program .. 1-19
Assemble and Load the Demonstration Program 1-22

Case 1: Assemble on the 8560; Download to the 8540 ~ 1-22
Case 2: Download from Your Host to the 8540 1-28
Case 3: Patch the Program into Memory ... 1-30

Run the Demonstration Program ... 1-32
Monitor Program Execution ... 1-35
Summary of Emulator Demonstration Run .. 1-39

For Continued Learning 1-40

Overview of 8540 User Manuals ... 1 -41

1-i

1-ii

Table
No.

1 -1

1-2

1-3

Fig.
No.

1 -1

1-2

1-3

1-4

1-5

1-6

8540 System Users

TABLES

Page

Jack Assignments and Device Names for 8540 Peripherals 1-8

COM Interface Checklist -... 1-9

Basic 8560 Editing Commands ... 1-25

ILLUSTRATIONS

Page

Role of 8540 in product design ... 1-3

8540 logical subsections ... 1-4

Demonstration program ... 1-16

Demonstration program: Extended Tekhex format 1-18

Demonstration program flowchart .. 1-21

Host computer commands for preparing demonstration program 1-28

@

8540 System Users

Section 1

LEARNING GUIDE

INTRODUCTION
This Learning Guide gives an overviewofthe features and functions of the 8540 Integration Unit
and its operating system, OS/40. It also presents a demonstration that gives you hands-on
experience with the 8540. This Learning Guide is divided into the following topics:

• Overview of the 8540 System. Explains the role of the 8540 in the development of
microprocessor-based products and describes the parts of a complete 8540 system.

• Getting Started. Provides instructions for starting up your 8540 and establishing
communication with a host computer.

• 8540/8560 Configurations. Explains three ways to connect an 8540, an 8560, and a
system terminal.

• Emulator Demonstration Run. Shows you how to assemble, ioad, execute, and monitor a
simple program.

• For Continued Learning. Helps you decide where to go next in this manual to accomplish
your own tasks.

• Overview of 8540 User Manuals. Describes the types of user manuals that support your
8540.

NOTE

Throughout this manual, the term "microprocessor" refers to both
microprocessors and microcomputers.

SPECIFICATION, INSTALLATION, CONFIGURATION, AND
VERIFICATION
For information on how to install and verify your 8540 hardware, and for product specifications,
refer to your 8540 Installation Guide.

1-1

Overview of 8540 Learning Guide-8540 System Users

1-2

OVERVIEW OF THE 8540 SYSTEM
Uses of the 8540
Three principal stages in the development of a microprocessor-based product are:

1. hardware development: design and construction of a hardware prototype ofthe product

2. software development: design and creation of the program(s) that will execute in the
microprocessor that controls the product

3. hardware/software integration: monitoring the software as it executes in the prototype
hardware, and modifying the software or hardware to correct problems.

The 8540 Integration Unit is an important tool in stages 2 and 3, software development and
hardware/software integration.

Software Development. While your prototype hardware is under development, the 8540 can
help you debug the programs that will execute in the prototype. After you have written your
program and compiled or assembled it on a separate computer (referred to as the host
computer), you can download the program to the 8540 to be executed. As your program
executes in the 8540, an emulator (also called an emulator processor) performs the functions
of the prototype microprocessor. You can use the memory and I/O facilities of the 8540 to
simulate the signals your prototype microprocessor will have to deal with.

Hardware/Software Integration. Once your prototype "hardware is built, you can test its
operation by temporarily replacing the prototype microprocessor with a prototype control
probe from the emulator. Under this arrangement, the 8540 acts as the prototype's central
processing unit, and you can monitor your program as it interacts with the prototype hardware.
By doing so, you can discover errors that may remain in the software or hardware.

Your 8540 can support a variety of microprocessors. To emulate a particular microprocessor,
you select the appropriate emulator hardware and support software. This design concept allows
you to use a single piece of equipment for the design support of many types of microprocessor
based products.

Figure 1-1 shows a general procedure for using the 8540 Integration Unit to develop a
microprocessor-based product.

Learning Guide-8540 System Users Overview of 8540

Design
and build
Hardware

Modify
hardware

Design and code
software

r- ----------,
r-----'------, Host I

files using editor omputer I
Create source C

I I
I I

I :
I YES I

Edit source code

L __ ~
r--- ~=====~""I"""~--'

8540

errors

Execute program
in prototype

under 8540 control

YES

software
errors

Fig. 1-1. Role of 8540 in product design.

Isolate errors
with 8540 debug

ging facilities

3939-'

You can use the 8540 to accomplish the tasks shown in the lower box. The host computer
performs the tasks shown in the upper box.

1-3

Overview of 8540 Learning Guide-8540 System Users

1-4

J103

System
Terminal -

J104

8540
Integration

Unit

HSI

or
RS232

Fig. 1-2. 8540 logical subsections.

This functional diagram shows the parts of a complete 8540 system. Shaded areas indicate
equipment that is not part of the minimum 8540 configuration.

8540 Parts and Functions
Figure 1-2 shows the components of a complete 8540 system.

Minimum 8540 System
A minimum 8540 system consists of an 8540 Integration Unit and a system terminal.

3939-2

Learning Guide-8540 System Users Overview of 8540

@

8540 Integration Unit. The 8540 mainframe houses the following components of the 8540
system:

1. OS/40, the ROM-based operating system ofthe 8540. OS/40 supervises all functions of
the 8540, which include:

a. general input and output
b. program execution, monitoring, and debugging
c. PROM programming
d. communication with the host computer.

2. Program memory resides in the 8540. Your 8540 may be configured with 32K, 64K, or
128K of program memory. As you develop your software and integrate it with your
hardware, you can use program memory as a substitute for the memory that will reside in
your prototype hardware.

3. Optional hardware devices (described later under the heading "System Options") are
attached to or installed in the 8540 mainframe.

System Terminal. The system terminal is a CRT or other RS-232-C-compatible 1/0 device
thiough which you communicate with the 8540. Uniess you specify otherwise, OS/40 accepts
commands from the system terminal keyboard and displays output on the screen or printer of the
system terminal. To specify the system terminal in an OS/40 command line, use the device
name CONI (CONsole Input) or CONO (CONsole Output).

System Options

COM Interface Package. The COM Interface package enables you to establish communication
with a host computer using the OS/40 COM command. This option consists of an RS-232-C
compatible communication cable and a ROM (containing the COM command software) that
inserts into the 8540's System ROM board. The 8540 does not need this option in order to
communicate with an 8560 Multi-User Software Development Unit.

Emulator. An emulator consists of one to three circuit boards that reside in the 8540
mainframe. The emulator generally contains a microprocessor of the same type as the one being
emulated, and also contains control circuitry that allows you to start, stop, and monitor program
execution, using OS/40 commands. Your 8540 can contain up to two single-board emulators or
one multiple-board emulator at a time.

Prototype Control Probe. The prototype control probe connects the prototype hardware to the
emulator and contains additional control circuitry.

Once your prototype and emulator are connected, you can begin transferring responsibility for
timing, 1/0, and memory functions from the 8540 to the prototype hardware. To indicate which
of these functions are handled by the 8540 and which are handled by the prototype, you use the
OS/40 EM command to specify the emulation mode. Mode 0 (system mode) uses only 8540
facilities, and is the only mode you can use until your prototype is connected. Mode 1 (partial
emulation mode) uses a mixture of 8540 and prototype facilities. Mode 2 (full emulation mode)
uses all of the prototype's facilities. In all three modes you control program execution through
the 8540. Refer to the Emulation section of this manual for a more detailed explanation of the
three emulation modes.

1-5

Overview of 8540 Learning Guide-8540 System Users

1-6

Trigger-Trace Analyzer (TTA). The TTA is a debugging tool that can capture and display bus
information, control execution of your program, signal external devices, and aid in performance
analysis. The TT A consists of two circuit boards that reside in the 8540 mainframe and data
acquisition hardware that is installed in the 8540 rear panel. If you are familiar with the
TEKTRONIX Real-Time Prototype Analyzer (RTPA) and would like to begin using the TTA, see the
Technical Notes section of this manual for a comparison of the two devices. For more detailed
explanations of the TT A, refer to the Emulation section of this manual and to the TT A Users
Manual, which is provided with your TT A hardware.

Memory Allocation Controller (MAC) Option. The MAC option is a circuit board that resides in
the 8540 mainframe. It is designed for use with emulators for the Z8001 , Z8002, 68000, and
other microprocessors that can access memory outside the range of 8540 program memory.
Using OS/40 commands that control the MAC option, you can map address blocks used byyour
program into program memory. For more information on the MAC option, refer to the Emulation
section of this manual.

PROM Programmer. The PROM Programmer consists of a circuit board that resides in the 8540
mainframe and a separate assembly that inserts into the 8540 front panel. You may use the
PROM Programmer to read data from a PROM into program or prototype memory, to burn a
PROM with data from program or prototype memory, or to compare the PROM's contents with
the contents of memory.

Tektronix offers a separate characteristic module for each family of PROM chips supported. To
use a particular family of PROMs, insert the appropriate characteristic module into the front
panel assembly. Refer to the PROM Programmer Specifics section of this manual for general
information about the 8540's PROM Programmer and for specific information about your
characteristic module.

WARNING I
Because of potential shock hazards, do not attempt to operate the PROM
Programmer before reading the introductory information in the PROM
Programmer Specifics section of this manual.

Line Printer. The line printer is a hardcopy output device that attaches to jack J1 03 on the 8540
rear panel. You can route almost any display produced by OS/40 to the line printer by specifying
LPT as the output device.

Paper Tape Reader/Punch. You can attach a paper tape reader/punch to jack J 103 on the
8540 rear panel. The paper tape reader/punch may be used as an input device (device name
PPTR) or as an output device (PPTP).

Learning Guide-8540 System Users Overview of 8540

@

The Host Computer
A program to be executed on the 8540 must be prepared on a separate computer, called the
host. Programming facilities that are usually provided by the host include file management, text
editing, compiling, assembling, and communication with the 8540.

The Operating Procedures section of this manual describes several procedures for intersystem
communication. The Intersystem Communication section of this manual treats the topic in
greater detail.

The 8560 as Host

The TEKTRONIX 8560 Multi-User Software Development Unit is a time-sharing computer that is
specially designed to serve as host to up to eight 8540s simultaneously. TNIX, the operating
system of the 8560, is derived from Bell Laboratories' UNIX™ operating system. TNIX
incorporates the many software development tools of UNIX™, plus additional features for
handling tasks that are unique to the development of microprocessor-based software. With your
8540 and 8560 operating together under an arrangement called TERM mode, you have access
to OS/40 and TNIX at the same time. TERM mode is discussed in more detail later in this
Learning Guide and in the 8560 System Users Manual. (UNIX is a registered trademark of Bell
Laboratories, Incorporated, Murray Hill, New Jersey.)

Other Hosts

If your host computer is not an 8560, you will probably want to have the optional COM Interface
package installed in your 8540. This option enables you to use the OS/40 COM command to set
up communication between the 8540 and your host computer. The parameters of the COM
command configure your 8540 so that it can use the same RS-232-C-compatible
communication protocol as a terminal attached to your host. Once communication is
established, special directives instruct the COM command to transfer data (such as your
program) to or from the host.

Your host computer must convert your program to Tektronix Hexadecimal Format (Tekhex)
before the COM command can download your program to the 8540. An example of Tekhex is
given in the Emulator Demonstration Run later in this Learning Guide. Tekhex and the COM
command are described in detail in the Intersystem Communication section.

NOTE

In order for an OSI40 command (other than COM) or a user program on the
8540 to access files on the host, the 8540 and the host must be operating in an
8560-style TERM interface. In this manual, it is assumed that the 8560 is the
only computer that can host such a TERM interface with the 8540. However, the
host side of the 854018560 communication protocol may be implemented on
computers other than the 8560; such computers could also host a TERM
interface with the 8540.

1-7

Getting Started Learning Guide-8540 System Users

, -8

GETIING STARTED
This subsection provides the basic information you need in order to begin using your 8540,
including how to turn the system on and off, how to enter commands, and how to establish
communication with a host computer.

It is assumed that your 8540 has been unpacked, installed, and checked out, and that your
system terminal and other peripherals have been configured to communicate with the 8540. If
any part of your system is not ready for use, refer to your 8540 Installation Guide for instructions.

Throughout this section, it is assumed that the system terminal you use to control the 8540 is
connected (via a cable) to the 8540. The next subsection, "8540/8560 Configurations,"
discusses three different ways to connect an 8540, an 8560, and a system terminal.

Starting Up the 8540
Make Sure Your 8540 Is Plugged In

To make sure that your system is properly plugged in, verify that each of the following steps has
been performed:

• Plug the system terminal into a power socket and connect it to the jack labeled TERMINAL
on the 8540 rear panel.

• Plug any other peripherals into power sockets and connect them to the 8540 rear panel.
Table 1-1 gives a complete list of jack assignments.

• If you want to operate your 8540 in TERM mode with an 8560, connect them with a line
capable of supporting HSI (RS-422) protocol. Plug the female end of the line into the HSI
jack on the 8540 rear panel, and plug the male end into an HSII/O jack on the 8560 rear
panel. (Check with your 8560 system engineer to verify that the HSII/O jack is configured
for HSI protocol.)

• If you want to operate your 8540 with a host other than the 8560, connect a terminal line
from your host to one of the REMOTE jacks (J1 01 or J1 02) on the 8540 rear panel. Use the
space in Table 1-2 to record the jack number and REMOTE port switch settings that are
appropriate for your host.

• Plug the 8540 into a standard wall socket.

Table 1-1
Jack Assignments and Device Names for 8540 Peripherals

Peripheral Device Jack Device Names

c:vc:t&:lrT'l t&:lrrT'lin::ll J104 CON! (input), CONO (output) ~7 ~-~ ••• -_ ••••••• _.

line printer J103 LPT

paper tape reader Ipunch J103 PPTR (reader), PPTP (punch)

external computer J101 REMI (input), REMO (output)

external computer J102 REMI (input), REMO (output)

@

Learning Guide-8540 System Users Getting Started

@

Table 1-2
COM Interface Checklista

Item For your host, use:

REMOTE jack number: J 101 (DTE) or
J102 (DCE)

MODE SELECT switch setting

REMOTE BAUD switch setting

COM command parameters to establish
communication

COM command parameters for downloads

COM command parameters for uploads

Log on to host computer

. - ~ ..
t"repare program In I eKnex TOrmat.

Download program to 8540.

Upload program from 8540.

Log off.

a Fill in the information that is appropriate for your host computer. This table is not applicable if your host is an
8560.

Start Up the 8540 and Its Peripherals

If this is the first time the system is being turned on, refer to the detailed power-up and system
verification procedure in the 8540 Installation Guide.

Turn on the 8540, system terminal, and peripherals in any order. The power switch for the 8540
is on the front panel. The 8540 performs an automatic self-test on power-up or restart. This test
is described in the 8540 Installation Guide.

Within a few seconds, the message
8540 BOOT Vx.x

should appear on your system terminal and the SELF TEST light on the 8540 front panel should
go out. Next, OS/40 checks its EEPROMs for a command string called STARTUP. OS/40
automatically executes the commands in STARTUP whenever you power up or restart your
system. The STARTUP string is discussed in more detail later in this section.

1-9

Getting Started Leaining Guide-8540 Sy'stem Users

1-10

After the commands in the STARTUP string have been executed, you should see the message

OS/40 Vx.x (xxxx-xx) xx/xx/xx Copyright (C) 1981 Tektronix, Inc.

followed by the OS/40 prompt character (». The numbers in parentheses (xxxx-xx) can be used
by your Tektronix service representative to determine whether your system is up to date.

If your system fails to respond as expected, check the following points:

• If you get no response within five seconds of starting up the 8540, toggle the RESTART
switch on the front panel. Startup should proceed normally .

• The "Copyright" message is displayed only if your 8540 is in LOCAL mode. Your STARTUP
string may contain a command that takes the 8540 out of LOCAL mode and establishes
communication with your host computer. Press the RETURN key once or twice; your host
computer may respond with a login prompt.

If your 8540 and your host computer are not on speaking terms yet, you need to be sure that your
8540 starts up in LOCAL mode. You can prevent execution of the STARTUP string by setting
switch position 1 (DIP switch number S 1100) on the 8540's System Controller board to 1 (open).
Refer to your 8540 Installation Guide for instructions on accessing this switch.

If your system has startup problems that cannot be remedied by either of these solutions, refer to
the verification procedures in your 8540 Installation Guide or contact your Tektronix service
representative.

Turning Off the 8540
You may turn off the 8540 and its peripherals in any order. (But don't do it now; you're just
getting started.)

How to Enter 08/40 Commands
This Learning Guide uses the following conventions in presenting information that is entered or
displayed on the system terminal:

• Prompt-The OS/40 prompt character> is shown at the beginning of each command line
to remind you to wait for the prompt before entering the command.

• Carriage return-In this Learning Guide, the symbol <CR> is shown at the end of each
command line to remind you to end each command with a carriage return. On most
keyboards, you enter a carriage return by preSSing the RETURN key.

• Underlined-Characters to be entered by you are underlined. Responses by 05/40 are not
underlined.

• Numbers-Addresses are in hexadecimal notation unless otherwise indicated. The suffix
letters H (hexadecima!) and T (decima!) may be used for c!aritywhen both hexadecimal and
decimal numbers are used in the same discussion. For example, 10H = 16T.

• CTRL-x-Several control characters have special meaning to OS/40. Each control
character is entered by pressing the CTRL key and another key simultaneously. To suspend
a display as it appears on the system terminal, for example, you enter CTRL-S by holding
down the CTRL key and pressing the S key. To resume the display (CTRL-O), hold down the
CTRL key and press O. To interrupt the command or program that OS/40 is executing,
enter CTRL-C.

Learning Guide-8540 System Users Getting Started

@

Correcting Mistakes in a Command Line

If you notice a mistake in your command line before you enter a carriage return, you have two
ways of correcting the line: delete the entire line and start again, or correct the characters one
by-one .

• To delete the entire lirl , type CTRL-U. You may then reenter the line .

• To delete characters one-by-one, press the BACKSPACE or RUBOUT key. Either key will
backspace the cursor and erase the deleted character.

Command Example

Let's assume that your 8540 is started up and waiting for you to enter a command. (You should
see the ">" prompt on your system terminal.) Enter the following command to calculate the sum
of the hexadecimal numbers 44 and 55:

> calc 44+55 <CR>
99H

OS/40 responds with the answer in hexadecimal, Now let's try something more exciting.

Establishing Communication with the Host
The ">" prompt indicates that the 8540 is in LOCAL mode, acting as a stand-alone computer.
The 8540 starts up in LOCAL mode and stays in that mode until it receives a "CONFIG TERM" or
"COM" command that sets up communication with the host. Once you have downloaded a
program from the host, you may return the 8540 to LOCAL mode to execute and debug your
program. This discussion explains how to establish communication with an 8560 (TERM
interface) or with some other host computer (COM interface), and how to return the 8540 to
LOCAL mode.

8560 TERM Interface

The sequence of commands you enter to establish communication with the 8560 depends on
how your 8540, 8560, and system terminal are configured. The three most likely configurations
are discussed in the next subsection, "8540/8560 Configurations." For now, let's assume that
your system terminal is connected to your 8540 and that the line that runs to the 8560 is plugged
into the HSI jack on the 8540 (as described earlier under "Starting Up the 8540").

Enter the following command to establish communication with the 8560:
> config term <CR>

Now the 8540 is in TERM mode: every character you type is sent directly to the 8560. Press the
RETURN key once or twice; the 8560 responds with its "Iogin:" prompt. Type in your 8560 user
name and password, as described in the Learning Guide of your 8560 System Users Manual.

1-11

Getting Started Learning Guide-8540 System Users

1-12

Now you're logged in to TNIX, the operating system of the 8560. The TNIX prompt is "$". Try
typing a TNIX command:

$ ~ <CR>

TNIX responds with the current date and time.

Try typing an OS/40 command:
$ calc 44+55 <CR>
99H

TNIX recognizes that CALC is an OS/40 command, so it sends the command back to the 8540 for
processing by OS/40. OS/40 sends its response back to the 8560, and the 8560 passes the
response to you.

Notice that TNIX expects you to enter commands in lowercase. If you type "CALC 44+55", TNIX
responds "CALC: not found."

In the Emulator Demonstration Run later in this Learning Guide, you'll see some practical
applications of the 8540/8560 TERM interface. For now, log out from the 8560 and return the
8540 to LOCAL mode:

$ config local; logout <CR>

The CONFIG command tells the 8540 to stop sending commands to the 8560, and the LOGOUT
command tells the 8560 to stop accepting commands. Notice that these two commands cannot
be entered in a different order or on different lines if they are to have the desired effect.

~
When your 8540 is in TERM mode, do not toggle the RESTART switch on the 8540
front panel. If you need to interrupt system operation, type CTRL-C.

If you restart the 8540 while it is in TERM mode, the 8540 and 8560 may not be able to
resume communication if any OS/40 commands are still active on the 8560. If your
system seems to hang after you restart the 8540, you or your 8560 superuser must kill
the OS/40 commands from a different terminal. (Use the TNIX command "ps -ax" to
list all active processes and use "kill -9" to kill those processes associated with your
terminal.)

COM Interface
Table 1-2 (earlier in this section) has space for recording the parameters of the COM command
you enter to establish communication with your host computer. Here are some general rules
that may apply to your host:

• The default COM parameters are satisfactory for some computers. Try entering the COM
command without any parameters.

• For most computers, the COM parameters E, L, and M are sufficient to specify your host's
communication protocol.

• The COM parameters P, T, C, F, and HS affect data transfer protocols, and can be ignored
until you are ready to test your host computer's upload and download software.

REV JAN 1983

Learning Guide-8540 System Users Getting Started

• For more information on the COM command and how to configure your 8540
communication hardware, refer to the Intersystem Communication section ofthis manual.

When you enter the COM command with the appropriate parameters, the 8540 responds "COM
Vx.x." Now any characters you type are sent directly to the host. Try logging on to your host and
entering a few commands. The host should respond just as it would if the terminal were
attached directly to the host.

Try entering an OS/40 command:
calc 44+55 <CR>

Unless your host has its own CALC command, you will probably receive an error message. When
the COM command is executing on the 8540, OS/40 cannot accept other commands.

The null character (ASCII code 00) has a special meaning to the COM command. On most
terminals, the null character is entered as CTRL-@ (hold down the CTRL key and press the keys
that produce the "@" character). When you enter the null character, COM intercepts the
characters you type next and interprets them as a directive to transfer data, display status
information, or terminate communication.

For now, log out of your host, and then terminate communication by entering the null character
and pressing the ESC key on your terminal:

(Log out.)
(null)(esc)

The 8540 should be in LOCAL mode once again.

More about 08/40 Commands
Type-Ahead

OS/40 has a feature called type-ahead that allows you to enter additional commands even
before the current command has finished executing. When OS/40 finishes a command, it
issues the> prompt and goes on to the next command entered, if any. If you are in the process of
entering a command when the prompt appears, just keeptyping; the prompt has no effect on the
line being entered, other than to disrupt it visually.

Command lines that have been entered but have not yet begun execution are stored in the type
ahead buffer. This buffer also holds the command line currently being typed and has a capacity
of 128 characters, including carriage returns. To display the contents of the type-ahead buffer,
enter CTRL-.R. To delete all text in the type-ahead buffer, type CTRL-U or CTRL-C.

For the sake of clarity in this manual, type-ahead wi" not be demonstrated; it will be assumed
that you will wait for the> prompt before entering your next command.

Multiple Commands
You may enter more than one command on a line if you separate the commands with
semicolons. Be sure that the command line does not exceed 80 characters.

1-13

Getting Started Learning Guide-8540 System Users

1-14

Strings

To save typing, you can assign names to frequently used strings of characters. For example,
suppose the command line that establishes communication with your host computer is:

> COM P=4F4B EOL=ODOA T=02 M=6 <CR>

The line
> HELLO='COM P=4F4B EOL=ODOA T=02 M=6' <CR>

defines a string named HELLO. Once this string is defined, every time you enter the command
> $HELLO <CR>

the string 'COM P=4F48 EOL=ODOA T=02 M=6' is substituted, and the 8540 establishes
communication with your host. (Notice that the dollar sign is omitted when you define the string,
but present when you use the string.)

You can use the OS/40 PERMSTR command to save strings in the 8540's EEPROMs, so that
they are available for future use. Strings that are not saved in EEPROM are lost when you restart
the 8540 or turn it off. For example, to save the HELLO string, type

> PERMSTR HELLO <CR>

You can also use the PERMSTR command to delete or display strings from EEPROM. If a string
already exists in EEPROM, you must delete the old version of the string before you can save a
new version.

If you have a sequence of commands to be executed every time you start up the 8540, store them
in the STARTUP string. For example, if you want to select the Z80A emulator and establish
communication with an 8560 every tim~ you start up the 8540, type:

> STARTUP='CONFIG TERM; SEL Z80' <CR>
> PERMSTR -D STARTUP <CR>
> PERMSTR STARTUP <CR>

The first PERMSTR command deletes the old EEPROM version of STARTUP, if any. The second
PERMSTR command saves the new version.

If your STARTUP string contains a CONFIG TERM command, that command must be the first
command in the string.

The name of a string can be 1 to 8 letters or digits; the first character must be a letter. In a string
name, a lowercase letter does not match the corresponding uppercase letter.

TERM Mode Considerations. On the 8560, strings are defined and used according to the same
general rules as described here for the 8540. When your 8540 is operating in TERM most with
an 8560, a string definition (stringname=string) or string substitution ($stringname) always
refers to an 8560 string unless you explicitly specify that the string belongs to the 8540. To
define an 8540 string, precede the string definition with the word "8540" (8540
stringname=string). To use an 8540 string, precede the dollar sign with a backslash
(\$stringname).

For most TERM mode applications, it is easiest to use only 8560 strings. You may use 8560
strings in 8540 commands. However, the 8560 does not recognize strings on the 8540, and the
OS/40 PERMSTR command does not recognize 8560 strings.

REV JAN 1983

Learning Guide-8540 System Users 8540/8560 Configurations

Uppercase and Lowercase
OS/40 commands can be entered in uppercase, lowercase, or a mixture of the two. Uppercase
and lowercase letters are interchangeable except in the name of a string, an emulator (for
example, Z80), or a standard 8540 device (CONI, CONO, LPT, PPTR, PPTP, REMI, and REMO
must be capitalized).

Command examples in this manual may be shown in either uppercase or lowercase. Except as
noted, any parameter shown in lowercase can also be entered in uppercase.

NOTE

If your 8540 is operating in TERM mode with an 8560, al/ OS/40 command
names must be entered in lowercase.

8540/8560 CONFIGURATIONS
This subsection describes the three common ways to connect an 8540, an 8560, and a system
terminal, and explains how to establish communication between the 8540 and the 8560 in each
configuration.

A. Terminal-8540-HSI-8560

In this configuration, the 8540 has its own system terminal, and so can operate in either LOCAL
mode or TERM mode.

Cable Connections. The terminal connects to the TERMINAL jack (J1 04) on the 8540 rear
panel. The 8540 and 8560 communicate via a line that runs from the HSI jack on the 8540 to the
HSI I/O jack on the 8560. The HSI I/O jack must be configured for HSI (RS-422) protocol.

Establishing Communication. Start up the 8540. Enter the OS/40 command config term to
enter TERM mode. Log in to the 8560.

B. Terminal-8540-RS232-8560

You may use this configuration in place of configuration A if your 8540 and 8560 are atseparate
sites and so must communicate via a modem.

Cable Connections. The terminal connects to the TERMINAL jack (J 104) on the 8540 rear
panel. The 8540 and 8560 communicate via a link that runs from the DTE jack (J1 01) on the
8540 (possibly through a modem) to an HSI I/O jack on the 8560. The HSI I/O jack must be
configured for RS-232-C protocol. The MODE SELECT switch on the 8540 rear panel should be
set to OTE1.

Establishing Communication. Start up the 8540. Enter the OS/40 command
> config term i =r t =7 <CR>

to enter TERM mode. Log in to the 8560.

REV JAN 1983 1-15

8540/8560 Configurations Learning Guide-8540 System Users

1-16

If you cannot establish communication, your 8560 I/O port may be configured incorrectly. Log in
to the 8560 on a different terminal and enter the following command:

$ stty IU >/dev/ttyn <CR>

where n is the number of the HSI I/O jack to which the 8540 is attached. Then restart the 8540
and try the config command again.

C. Terminal-8560-HSI-8540

In this configuration, the 8540 can be operated from any terminal that is attached to the 8560.
Since the 8540 cannot operate in LOCAL mode in this configuration, its STARTUP string must
contain a config term command. To establish this STARTUP string, perform the following steps:

1. Attach a terminal to the 8540 (as in configurations A and B) and start up the 8540 in
LOCAL mode.

2. Enter the following -lines to create the STARTUP string and store it in EEPROM:

> STARTUP='config term' <CR>
> PERMSTR -D STARTUP <CR>
> PERMSTR STARTUP <CR>

MVI
XRA

LOOP ADD
INX
DCR
JNZ
OUT

;START PROGRAM CODE AT ADDRESS
;SET TABLE POINTER
;SET PASS COUNTER
;CLEAR ACCUMULATOR
;ADD BYTE FROM TABLE
;POINT TO NEXT BYTE
;DECREMENT PASS COUNTER
;LOOP IF NOT FIVE PASSES YET
;OTHERWISE CALL EXIT SVC

TO END PROGRAM EXECUTION

100

--....-.~~ "-..... -___,.v----"",.J""--..... -------~v~------"",;"
~ I ~L source' code com!'ents

object code

address

'-------source code line number

Fig. 1-3. Demonstration program.

3939-5

REV JAN 1983

Learning Guide-8540 System Users Demo-I ntroduction

Cable Connections. The terminal connects to an HSI liD jack on the 8560. This HSI liD jack
must be configured for RS-232-C protocol. The 8540 and 8560 communicate via a line that runs
from the HSI jack on the 8540 to another HSI liD jack on the 8560. This HSI liD jack must be
configured for HSI (RS-422) protocol.

Establishing Communication. Log in to the 8560. To indicate which 8540 you want to use,
enter the line IU=n;export IU, where n is the number of the HSI liD jack to which the 8540 is
attached. Start up the 8540. The STARTUP string puts the 8540 into TERM mode automatically.

EMULATOR DEMONSTRATION RUN
Introduction
This demonstration run shows you how to load, execute, and monitor a simple 8085A assembly
language program on your 8540. If you have an emulator other than the 8085A, refer to the
appropriate Emulator Specifics supplement in this manual for a demonstration that is parallel to
this one.

In order to perform this demonstration, your 8085A emulator board and emulator control
software ROM must be installed in your 8540.

Figure 1-3 shows the source and object code for the demonstration program.

If you have an 8560, and your 8560
has an 8080A/8085A assembler
installed, you can create and assem
ble the program on the 8560 and
then download it to the 8540. This
demonstration shows how.

If you have an 8540that is connected
to a host computer other than an
8560, we can't give you a specific list
of commands for creating and assem
bling the program on your host (since
we don't know what host you're
using). However, Fig. 1-4 gives the
object code for the program in
Extended Tekhex format. You can
create the Tekhex file using your
host's assembler or text editor, then
download the file to the 8540 via the
8540's optional COM interface.

If neither of these cases appl ies to
you, you can patch the program into
memory using the P command. This
demonstration shows how.

Case 1:

Case 2:

Case 3:

?
•

8540 + other host

any other configuration
3964-5

Once the program is loaded or patched into memory, you can execute the program on your
emulator.

REV JAN 1983 1-17

Demo-introduction Leaming Guide-8540 System USers

1-18

(A)

%2769231002100050605AF862305C20601D3F700
%OE62B24000421A
%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15
%098153100

(B)

FIRST DATA BLOCK: object code for addresses 100-10E

header
~ load rdreSS Objec. code

~ _____ ~~ .. ____________ ~A~ ____________ "

%2769231002100050605AF862305C20601D3F700

SECOND DATA BLOCK: object code for addresses 40-42

header I load object t addrTs clde

~-----~
%OE62B24000421A

SYM BOL BLOCK

header section

~
section definition

symbol definition fields __ ~C :ieldt "~ ______________ ""t~ _________ ,,
%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15

TERMINATION BLOCK

header

~
transfer
address ,

~-----%098153100

Fig. 1-4. Demonstration program: Extended Tekhex format.

Figure 1-4A shows an Extended Tekhex load module that contains the object code and
program symbols for the demonstration program. Figure 1-48 gives the meanings of the
different fields in the message blocks. If you have a host computer other than an 8560, you
can create this load module and download it to your 8540.

3939-6

@

Learning Guide-8540 System Users Demo-Examine Program

@

Examine the Demonstration Program
Explanation of Demonstration Run Program Source Code

The demonstration run program adds five numbers from a table stored in locations 500-504 in
program memory and leaves the sum in the accumulator. You will place values in the table later
in this demonstration.

The source file contains two kinds of statements: Tektronix assembler directives and 8085A
assembly language instructions. (Text following a semicolon (;) in a source line is treated as a
comment by Tektronix assemblers.) The 8085A assembly language instructions represent the
operations performed by the program; these instructions are discussed under the heading "How
the Demonstration Run Program Works," later in this subsection. The assembler directives
provide additional information needed to create the correct object code. The following
paragraphs outline the functions of the assembler directives.

SECTION DEMO. Every program consists of one or more sections. This directive declares a
program section called DEMO. All object code for the demonstration program will reside in this
section. (When you get into more practical programming applications, you may divide your
program into different sections to reduce memory consumption or to make it easier to organize
your program into RAM and ROM areas. Your Assembler Users Manual discusses the concept of
sections in detail.)

ORG 1 OOH. This directive tells the assembler where in memory to locate the object code for the
next instruction. In this case, the object code for the 8085A instruction LXI H,TABLE will be
stored at memory location 100.

ORG 40H. This directive specifies that the information for the Exit service call is to be stored at
address 40. A service call (SVC) is a request for OS/40 to perform a special service for an
executing program. An Exit SVC ends program execution and returns control to the operating
system.

An SVC always has at least three parts:

• an 1/0 instruction that initiates the SVC

• a service request block (SRB) that contains the parameters of the SVC to be performed

• an SRB pointer that tells where in memory the SRB is located.

SVCs are explained in the Service Calls section of this manual.

In this program, the instruction OUT OF7H directs OS/40 to perform the SVC whose parameters
are pointed to by the address in locations 40 and 41.

BYTE OO,42H. This directive specifies that the SRB pointer (the address of the SRB for the Exit
SVC) is 0042.

1 -19

Demo-Examine Program Learning Guide~--~ 8540 System Users

1-20

BYTE 1 AH. This SRB contains only one parameter: the SVC function code (1 A = Exit). No other
parameters are needed.

TSIZE EaU 5. This directive assigns the value 5 to the symbol TSIZE. Other statements in the
program use the symbol TSIZE when referring to the size of the table of numbers to be added.

ORG 500H. This directive specifies that the table will start at address 500.

BLOCK TSIZE. This directive allocates 5 (TSIZE) bytes to the table. The contents of the table are
undefined; you will put values into the table later in this demonstration. The symbol TABLE,
which represents the address of the table (500), is used by the LXI instruction.

LIST DBG. The LIST directive controls various assembler options. LIST DBG specifies that the
symbols in your source code (START, LOOP, TSIZE, and TABLE) will be placed in the object file.
Later in this demonstration, these symbols will be used in OS/40 commands and displays.

END START. The END directive signals the end ofthe source code and specifies that START is
the transfer address: the address of the first instruction to be executed when you start the
program with the G (Go) command. Since START is the label of the LXI instruction, that
instruction will be executed first.

How the Demonstration Program Works

The steps of the program are illustrated in the flowchart in Fig. 1-5.

Set Table Pointer. The first instruction in the program, LXI H,TABLE, loads the address of the
table (500) into the H-L register pair. As a result, the H-L register pair points to the first element
of the table. The label START represents the address of this instruction. START is used by the
END directive to specify that the LXI instruction is the first to be executed.

Set Pass Counter. Register B is used as the pass counter. The MVI B,TSIZE instruction moves
the value 5 into register B. This step sets the number of passes to 5. Each time a number is taken
from the table and added into the accumulator, register B is decremented.

Clear Accumulator. The XRA A instruction sets the accumulator to zero. We want the
accumulator to be cleared when we start adding numbers from the table.

Add Byte from Table. The ADD M instruction adds the data addressed by the H-L register pair
into the accumulator. The label LOOP represents the address of this instruction; this label is
used by the JNZ instruction.

@

Learning Guide-8540 System Users Demo-Examine Program

@

Initialize table pointer

Set pass counter

Clear accumulator

Add byte from table

Point to new byte

Reduce pass counter

No

Fig. 1-5. Demonstration program flowchart.

This flowchart presents the algorithm for the program used in this demonstration run. The
program adds the elements of a table in memory and leaves the sum in the accumulator. The
demonstration run shows how to download the program into memory, execute the program,
and monitor its execution.

3939-3

1-21

Demo-Load Program Learning Guide-8540 System USers

1-22

Point to Next Byte. The INX H instruction increments the address in the H-L register pair; the H
L register pair then points to the next byte in the table. For example, the H-L register pair is
initialized to contain the address 500. After the INX H instruction is first executed, the H-L
register pair will contain 501, the address of the second element in the table.

Decrement Pass Counter. The DCR B instruction decrements register B, the pass counter. In
this program, because the DCR B instruction follows the ADD M instruction, the pass counter is
decremented each time a number is added to the accumulator.

Loop If Not Five Passes Yet. The JNZ instruction effectively checks the contents of register B
and jumps to the LOOP label if the register does not contain zero. If register B contains zero, the
program proceeds to the OUT OF7H instruction.

Exit. The OUT OF7H instruction followed by the NOP is a call to the Exit SVC. This SVC invokes
the operating system to handle termination of the program. A NOP always follows an SVC
invocation to allow the system time to execute the SVC.

Assemble and Load the Demonstration Program
Now it's time to create the program so you can run it on your emulator. One of the following
discussions describes the set of steps that is appropriate for your hardware configuration:

• For 8560 users: Case 1: Assemble on the 8560; Download to the 8540

• For users with host computers other than the 8560: Case 2: Download from Your Host to
the 8540

• For other hardware configurations: Case 3: Patch the Program into Memory.

Go ahead and work through the discussion that's appropriate for you. Once you've put the
program into program memory, turn to the heading "Run the Demonstration Program," later in
this section.

Case 1: Assemble on the 8560; Download to the 8540
This discussion shows you how to create the demonstration program source code and assemble
it on the 8560, then download it to 8540 program memory. If your 8560 does not have an
8080A/8085A assembler, you cannot complete this part of the demonstration, so skip ahead to
the heading "Case 3: Patch the Program into Memory" for instructions.

Start Up and Log In

Start up your 8540, make sure it's in TERM mode, and log in to the 8560 operating system, as
described earlier in this Learning Guide.

@

Learning Guide-8540 System Users Demo-Load Program

Since you're logged in to TNIX, your system prompt is "$". (Later in the demonstration, we'll
show the system prompt as ">", in deference to people using 8540s in LOCAL mode.) Every
command you enter is processed by TNIX. If you enter an OS/40command, TNIX passes ittothe
8540.

Enter the following line to select the 8080A/808SA assembler on the 8560:
$ uP =8085; export uP <CR>

Now select the 808SA emulator on the 8540:
$ 5el 8085 <CR>

The sel command automatically sets the emulation mode to O.

Create the Demonstration Program

Enter the following TNIX command lines to create an empty directory called demo and make
demo the working directory. You'll create your source file and related files in this demo
rI;,..n,..,+" ... "
UII v,",LVI y.

$ mkdir demo <CR>
$ cd demo <CR>

Now use the TNIX editor, ed, to create the demonstration program source file. The following
command line invokes the editor and specifies that you want to create a file called asm:

$ ed asm <CR>
?asm

The editor responds "?asm" to remind you that asm does not already exist. Notice that the editor
does not give a prompt to let you know it's ready for input.

REV JAN 1983 1-23

Demo-load Program Learning Guide-8540 System Users

, -24

Enter the Text. Now enter the editor command a (add text) and type in the program. Use the
BACKSPACE key to erase typing mistakes.
~ <CR>

colwnn
8

colwnn
16

colwnn
24 , ,
• ;8085 DEMONSTRATION RUN PROGRAM <CR>

SECTION DEMO <CR>
ORG 100H ;START PROGRAM CODE AT ADDRESS 100 <CR>

START LXI H,TABLE ;SET TABLE POINTER <CR>
MVI B,TSIZE ;SET PASS COUNTER <CR>
XRA A ;CLEAR ACCUMULATOR <CR>

LOOP ADD M ;ADD BYTE FROM TABLE <CR>
INX H ;POINT TO NEXT BYTE <CR>
DCR B ;DECREMENT PASS COUNTER <CR>
JNZ LOOP ;LOOP IF NOT FIVE PASSES YET <CR>
OUT OF7H ;OTHERWISE CALL EXIT SVC <CR>
NOP TO END PROGRAM EXECUTION <CR>

;SRB POINTER <CR>
ORG 40H ;STORE SRB POINTER AT ADDRESS 40 <CR>
BYTE 00,42H ;POINT TO SRB FOR EXIT SVC <CR>

;SRB FOR EXIT SVC <CR>
BYTE lAH jlAH = FUNCTION CODE FOR EXIT SVC <CR>

;TABLE OF NUMBERS TO BE ADDED <CR>
TSIZE EQU 5 ;TABLE SIZE = 5 <CR>

ORG 500H ;SET UP TABLE AT ADDRESS 500 <CR>
TABLE BLOCK TSIZE <CR>

LIST DBG <CR>
END START <CR>

. <CR>

At the end of your text, enter a period on a line by itself. The editor will go back to accepting
commands.

Check for Errors. Enter the following editor command to display the text you have entered.
Check for typing mistakes.

l,$p <CR> r print command: displays the lines
in the designated range

designates last line in file

'"---designates first line in file

If you made any mistakes, go ahead and fix them. In case you're not familiar with ed, Table 1-3
lists the commands you need in order to add, delete, or replace any line. For more information on
ed, refer to your 8560 System Users Manual.

@

Le?rning Guide-8540 System Users Demo-Load Program

Command

mm,nnp <CR>

nn <CR>

d <CR>

a <CR>
<Iine(s) of text>
. <CR>

c <CR>
<Iine(s) of text>
. <CR>

Table 1-3
Basic 8560 Editing Commands

Function

Displays lines mm through nn

Makes line nn the current line

Deletes the current line

Adds text after the current line

Replaces the current line with the text you type in

Once your text is correct, enter the ~ command to write the text to the source file, !!!!1
!L <CR>
896

The editor responds with the number of characters it wrote to the file.

Finally, enter the q command to quit the editor and return to TN IX:
q <CR>
$" ~ TNIX· prompt

Assemble the Source Code. The TNIX asm (assemble) command translates assembly language
(source code) into binary machine language (object code). The asm command also creates an
assembler listing which can be used to correlate the object code with the source code. Enter the
following command line to assemble the source code in the file asm and create the listing and
object files 8sml and obj:

$ asm obj asml asm <CR>

t L source file

~.ssembler listing file

'------object file
Tektronix ASM 8080/8085
Vxx.xx-xx (8560)
*****Pass 2

23 Lines Read
23 Lines Processed
o Errors

Enter the following command to print the assembler listing on the 8560's line printer:
$ IpIr asml <CR>

REV JAN 1983 1-25

Demo-Load Program Learning Guide-8540 System Users

1-26

Check page 1 of your listing. Did the assembler issue any error messages? There should be none.
If your source code contains errors, take the following steps:

1. Refer to your Assembler Users Manual to find out what the error messages mean.

2. Enter the command ed asm to get back into the editor and fix the mistakes in your source
code. Exit the editor with the wand q commands, as before.

3. Enter the command asm obj asml asm to re-assemble your source code.

Link the Object Code

The linker creates an executable load file from one or more object files. Enter the following
command to create a load file called load from your object file, obj. Be sure to capitalize all
parameters as shown.

$ link -d -0 obj -0 load <CR>

The -d option causes the linker to pass the program symbols from the object file to the load file,
for use in programming debugging.

The files generated by the asm and link commands should now be in your working directory,
demo. Enter the following command to list the files in your working directory:

$ Is <CR>
asm
asml
load
obj

Notice that there are now four files listed in your directory. obj and asml were created by the
assembler, and load was created by the linker.

Download the Program to the 8540

Now it's time to download the object code produced by the 8560's linker into 8540 program
memory.

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) command to fill 8540
program memory with zeros. Later, when you examine memory, the zeros make it easy to
identify the beginning and end of your code. (Zeroing out memory has no effect on how the
program is loaded.) Enter the following command line to fill memory from address 40 through
address 11 F with zeros:

$ f 40 Ilf 00 <CR>

Learning Guide-8540 System Users Demo-Load Program

@

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D
(Dump) command. The D command's display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11 F
with the following command line:

$ d 40 Ilf <CR>
a 1 2 3 4 5 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Download the Object Code. Enter the following command line to download the object code
from the 8560 file load to 8540 program memory:

$ 10 <load <CR>

T
load file

Download the Program Symbols. Recall that the source code for the demonstration program
contains the directive LIST DBG. Because of this directive, the object file contains a list of the
symbols that appear in the source code, and the values associated with those symbols. Because
you included the -d option in the link command line, those symbols were passed to the load file.
Use the OS/40 SYMLO command to download those symbols into the symbol table in 8540
system memory.

$ symlo -8 <load <CR>

The -S option means that both addresses and scalars are downloaded. If you omit the -S, only
addresses are downloaded. (A scalar is a number that is not an address-for example, TSIZE, the
length of the table.)

Later in this demonstration, whenever you use a symbol in an OS/40 command line, OS/40
refers to th.e symbol table to find the value that the symbol stands for.

You've assembled and linked the demonstration program and downloaded it into memory. Now
skip ahead to the heading "Run the Demonstration Program."

1-27

Demo-I ntrod uction Learning Guide-8540 System Users

1-28

Case 2: Download from Your Host to the 8540
This discussion gives some general instructions for downloading the demonstration program
from an unspecified host computer to 8540 program memory. If your 8540 is not equipped with
the optional COM Interface Package, you cannot complete this part ofthe demonstration, so skip
ahead to the heading "Case 3: Patch the Program into Memory" for instructions.

Since we don't know what host computer you're using, we can only provide a general outlinefor
creating the demonstration program and downloading it to the 8540. Once you have determined
the command sequence that is appropriate for your host, record this information in the space
provided in 1-6.

Create the Extended Tekhex Load Module

Prepare the 8540

(Start up the 8540.)
> SEL 8085 <CR>
> F 40 IlF 00 <CR>
> D 40 IlF <CR>

Establish Communication

Download the Load Module

Terminate Communication

Fig. 1-6. Host computer commands for preparing demonstration program.

@

Learning Guide-8540 System Users Demo-Load Program

@

Create the Extended Tekhex Load Module

In order for the object code to be downloaded to the 8540, it must be in Extended Tekhex format,
as shown in Fig. 1-4, earlier in this demonstration. You can create the load module in one of two
ways:

1. Use your host computer's text editor, and key the load module in by hand.

2. Use your host computer's 8085A assembler:
a. Translate the demonstration program into the language of your host's 8085A

assembler.
b. Create and assemble the source file.
c. Link the object code, if necessary.

d. Translate the object code produced by the assembler or linker into Extended Tekhex
format. The Intersystem Communication section of this manual provides a general
algorithm for conversion to Extended Tekhex format.

Prepare the 8540

Start up your 8540 and enter the following command to select the 8085A emulator:
> SEL 8085 <CR>

The SEL command automatically sets the emulation mode to O.

Zero Out Memory. Before you download any code, use the 05/40 F (Fill) command to fill 8540
program memory with zeros. Later, when you examine memory, the zeros make it easy to
identify the beginning and end of your code. (Zeroing out memory has no effect on how the
program is loaded.) Enter the following command line to fill memory from address 40 through
address 11 F with zeros:

> F 40 11F 00 <CR>

Check That Memory Was Filled with Zeros. Check the contents of memory with the 05/40 D
(Dump) command. The D command's display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11 F
with the following command line:

> D 40 11F <CR>
o 1 2 3 4 5 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1-29

Demo-Load Program Learning Guide-8540 System Users

1-30

Download the Load Module to the 8540

Be sure that your 8540 and your host computer are connected via an RS-232-C-compatible
communications link. Then perform the following steps to download the Tekhex load module to
8540 program memory. (Refer to the Intersystem Communication section of this manual to
determine the commands and parameters that are appropriate for your host computer.)

a. Enter the 8540 COM command to establish communication. (The parameters of the
COM command are host-specific.) Log on to your host and execute any necessary
host initialization commands.

b. Enter the command line that downloads the Tekhex load module to the 8540. This
command line consists of a host computer command that performs the download,
followed by a null character (CTRL-@ on most terminals) and a carriage return. COM
places the object code in 8540 program memory, and puts the program symbols into
the symbol table in 8540 system memory.

c. Log off from your host, and then terminate COM command execution by entering the
null character, then pressing the ESC key.

Once you've downloaded the program to the 8540, skip ahead to the heading "Run the
Demonstration Program."

Case 3: Patch the Program into Memory
This discussion shows you how to patch the demonstration program into 8540 program memory
using the P command, and then add the program symbols into the symbol table using the ADDS
command.

Ordinarily, you would download the object code and symbols from a binary or hexadecimal load
file on a host computer, as illustrated for Cases 1 and 2. The procedure presented here is not
normally used for preparing a program for execution. Use this procedure only if you have no
standard means for preparing the program, but would still like to tryout your emulator.

Start Up the 8540

Start up your 8540 and enter the following command to select the 8085A emulator:
> SEL 8085 <CR>

The SEL command automatically sets the emulation mode to O.

Zero Out Memory

Before you patch in any code, use the OS/40 F (Fill) command tofill8540 program memory with
zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and
end of your code. Enter the following command line to fill memory from address 40 through
address 11 F with zeros:

> F 40 IlF 00 <CR>

Learning Guide-8540 System Users Demo-Introduction

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D
(Dump) command. The D command's display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11 F
with the following command line:

> D 40 IlF <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .;;

Patch the 0 bject Code into Memory

The OS/40 P (Patch) command stores a sequence of bytes into memory, replacing the previous
memory contents. Enter the following command to store the object code for the first three
instructions in the program (LXI, MVI, and XRA) starting at location 100:

> P 100 210005 0605 AF <CR>

T TIAA
MVI B,TSIZE

LXI H,TABLE

patch address

Now patch in the next four instructions (ADD, INX, DCR, and JNZ) ...
> P 106 86 23 05 C20601 <CR>

... and now the last two instructions (OUT and NOP):
> P 10C D3F7 00 <CR>

Finally, patch in the Exit SVC information at address 40:
> P 40 00421A <CR>

You'll check the contents of memory later in this demonstration.

1-31

Demo-Run Program Learning Guide-8540 System Users

, -32

Put Symbols into the Symbol Table

Later in this demonstration, you will use symbols from the demonstration program (START,
LOOP, TSIZE, and TABLE) when communicating with OS/40. Whenever you use a symbol in a
command line, OS/40 consults a symbol table in 8540 system memory to find the values that
the symbol stands for. Enter the following command line to add the program symbols to the
symbol table, along with their values:

> ADDS START=lOO LOOP=106 -S TSIZE=5 TABLE=500 <CR>

The -S parameter indicates that TSIZE is a scalar, not an address.

The ADDS command cannot provide all the symbol-related information that is provided by the
SYMLO command (as in Case 1) or the COM command (as in Case 2). Because this information is
missing, some of the symbolic displays you produce later in this demonstration will not match
the displays shown in this manual. For more information on the ADDS command, refer to the
Command Dictionary of this manual.

You've patched the demonstration program into program memory and placed the program
symbols in the symbol table. Now it's time to run the program.

R un the Demonstration Program
From now until the end of the demonstration, the commands you are to enter are shown in
lowercase. If you are not logged in to an 8560, you may enter commands in either lowercase or
uppercase. If you are using an 8560, you must enter the name of every command in lowercase
(and your system prompt is "$", not ">").

Now that you've loaded the program into memory, you need to:

1. verify that the program was loaded correctly

2. put values into the table in memory, for the program to add.

Check Memory Contents Again. Before you loaded the program, you filled memory locations
40-11 F with zeros. Look at the same memory area again with the following command line:

> d 40 lIt <CR>
o 1 2 3 4 5 6 7 8 9 ABC D E F

000040 00 42 1A 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

.B

! #

@

Learning Guide-8540 System Users Demo-Run Program

The object code is loaded in two different blocks:

• The 8085A machine instructions are loaded at address 100 (specified by the first ORG
directive in the source code) .

• The information for the Exit SVC is loaded at address 40 (specified by the second ORG
directive).

The contents of the table at address 500 are still undefined, but you'll put some values into the
table in just a few minutes.

Turn On Symbolic Display. Enter the following command to tell 08/40 to modify its displays by
replacing hexadecimal numbers with symbols from your program, where appropriate:

> symd on <CR>

Disassemble the Object Code. The DI (Disassemble) command displays memory contents both
in hexadecimal notation and in assembly language mnemonics. You can use the DI command to
verify that the object code in memory corresponds to your source code. Enter the following
command to disassemble the area of memory occupied by the executable part of your program:

> di 100 10e <CR>

LOC INST MNEM OPER
SECTION (DEMO)
START 210005 LXI H,0500
+000103 0605 MYI B,05
+000105 AF XRA A
LOOP 86 ADD M
+000107 23 INX H
+000108 05 DCR B
+000109 C20601 JNZ 0106
+O0010C D3F7 OUT F7
+O0010E 00 NOP

Compare the DI display with the assembler listing you generated earlier, or refer back to Fig. 1-3.

The line "SECTION (DEMO)" in the DI display indicates that the object code being disassembled
comes from the program section called DEMO. In fact, the entire memory area used by your
program (location 0 through the end of the table-location 504) belongs to section DEMO. This
section was declared by the SECTION directive in the source code. (If you used the ADDS
command to create your symbols, as in Case 3, the section name shown in the DI display is
NO.SECTION.)

The LOC (location) column of the DI display contains information that enables you to correlate
the display with your assembler listing. The symbols START and LOOP in the DI display
correspond to the labels START and LOOP in the source code. For those lines of the display
where the location does not correspond to a label in the symbol table, DI substitutes the address
of the instruction relative to the beginning of the section, as shown in the address field of your
assembler listing. If you don't load the pertinent symbols and related information into the symbol
table (using a command such as SYMLO), the DI command supplies absolute (actual) addresses
in the LOC column. (Since section DEMO begins at address 0, the relative address, or offset, is
the same as the absolute address in this display. This offset feature is much more useful for
sections that don't start at address 0.)

REV JAN 1983 1-33

Demo-Run Program Learning Guide-8540 System Users

1-34

Now you've seen that 05/40 can use the symbol table to translate numbers into symbols to
make a display easier to read. 05/40 can also translate a symbol in a command line into an
address. For example, since 05/40 knows that the symbol START is equivalent to the address
100, you could have entered the DI command in any of the following ways:

di 100 10E
di START 10E
di start start+Oe
di 100 START+OE

Notice that a symbol can be entered in either lowercase or uppercase.

The feature that enables 05/40 to correlate symbols from your program with the numbers they
represent is termed symbolic debug.

Put Values into the Table in Memory. The demonstration program sums five numbers from a
table in memory. Use the P (Patch) command to store the numbers 1,2,3,4, and 5 into the table.
Do you remember what the address of the table is? It doesn't matter, as long as you remember
that the symbol TABLE represents that address.

> p table 0102030405 <CR> -
~

address of
table: 500

'-.,-' .,
string of bytes to be stored
at addresses 500-504

Check the Contents of the Table. Use the D command to display the contents of the table.
(When you don't specify an upper boundary for the area to be dumped, the D command dumps 16
bytes.)

rr
lower address: 500

(defaults to lower address + OF) r upper address: omitted

> d ~ <CR>
o 1 2 3 4 5 6 7 8 9 ABC D E F

000500 01 02 03 04 05 CD 4E 04 3A C7 16 FE 00 CA 35 05 N. : 5.

Notice that bytes 500-504 (the table) contain the values you patched in. Bytes 505-50F contain
random data left over from previous system operations.

The following command dumps only the contents of the table:
> d table table+tsize-l <CR>

012 3 4 5 6 7 8 9 ABC D E F
000500 01 02 03 04 05

Learning Guide-8540 System Users Demo-Run Program

Start Program Execution

Enter the G (Go) command to start program execution at location 100, the transfer address
specified by the END directive in the source code. (If you followed "Case 3: Patch the Program
into Memory," you must enter "g start" instead.)

> .f <CR>

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
+OOOIOF 00 NOP 0000 54 OF 00 00 00 00 05 05 00 0
+OOOIOF <BREAK >

~'-..-' --f t table
accumulator pass pointer

counter

The program executes, and when the Exit SVC occurs, the program breaks (stops), and the
contents of the emulator registers are displayed. The accumulator contains the sum of the
numbers in the memory table: 1 +2+3+4+5=OF.

Monitor Program Execution
You have assembled, loaded, and executed the demonstration program. The rest of this
demonstration shows you some commands for monitoring program execution. You can watch
the changes in the emulator's registers and observe the effect of each instruction as the
program proceeds.

Trace All Instructions. The TRA (TRAce) command lets you observe the changes in the 8085A
registers as the program proceeds. When you enter a TRA command and then start execution
with the G command, display lines are sent to the system terminal. As each instruction
executes, the display line shows the instruction (as in the Disassemble display) and the contents
of the registers after that instruction has executed. Enter the following command to trace all of
the program's instructions:

> tra all <CR>

Enter the command G START (or G 100) to resume program execution back at the beginning of
the program:

> g start <CR>

REV JAN 1983 , -35

Demo-Monitor Program Learning Guide-8540 System Users

1-36

As the program executes, the following trace is displayed. Remember that you can type CTRL-S
to suspend the display and CTRL-Q to resume the display.

LOC INST MNEM OPER
SECTION (DEMO)
START 210005 LXI H,0500
+000103 0605 MVI B,05
+000105 AF
LOOP 86
+000107 23
+000108 05

XRA A
ADD
INX
DCR

M
H
B

+000109 C20601 JNZ 0106
LOOP 86 ADD M
+000107 23 INX
+000108 05 DCR
+000109 C20601 JNZ
LOOP 86 ADD
+000107 23 INX
+000108 05 DCR
+000109 C20601 JNZ
LOOP 86 ADD
+000107 23 INX
+000108 05 DCR
+000109 C20601 JNZ
LOOP 86 ADD

H
B
0106
M
H
B
0106
M
H
B
0106
M

+000107 23
+000108 05

INX H
DCR B

LOC INST MNEM OPER
SECTION (DEMO)
+000109 C20601 JNZ 0106
+O0010C D3F7 OUT F7
+O0010C <BREAK TRACE>

SP F ABC D E H L 1M SOD

0000 54 OF 00 00 00 00 05 00 00 0
0000 54 OF 05 00 00 00 05 00 00 0
0000 44 00 05 00 00 00 05 00 00 0
0000 00 01 05 00 00 00 05 00 00 0
0000 00 01 05 00 00 00 05 01 00 0
0000 10 01 04 00 00 00 05 01 00 0
0000 10 01 04 00 00 00 05 01 00 0
0000 04 03 04 00 00 00 05 01 00 0
0000 04 03 04 00 00 00 05 02 00 0
0000 14 03 03 00 00 00 05 02 00 0
0000 14 03 03 00 00 00 05 02 00 0
0000 04 06 03 00 00 00 05 02 00 0
0000 04 06 03 00 00 00 05 03 00 0
0000 10 06 02 00 00 00 05 03 00 0
0000 10 06 02 00 00 00 05 03 00 0
0000 04 OA 02 00 00 00 05 03 00 0
0000 04 OA 02 00 00 00 05 04 00 0
0000 10 OA 01 00 00 00 05 04 00 0
0000 10 OA 01 00 00 00 05 04 00 0
0000 04 OF 01 00 00 00 05 04 00 0
0000 04 OF 01 00 00 00 05 05 00 0
0000 54 OF 00 00 00 00 05 05 00 0

SP F ABC D E H L 1M SOD

0000 54 OF 00 00 00 00 05 05 00 0
0000 54 OF 00 00 00 00 05 05 00 0

After the accumulator is cleared, it begins to store the sum of the numbers being added. The
ADO M instruction adds a number from the table into the accumulator. At the end of the
program, the accumulator contains the sum of the numbers you put into the table.

Register B, the pass counter, is set to contain 5 (TSIZE) at the beginning of the program. It
decreases by one (because of the OCR B instruction) each time a number is added into the
accumulator. The program ends after register B reaches zero.

The H-L register pair, set to contain 500 (TABLE) at the start of the program, increases by one
(because of the INX H instruction) each time a number is added to the accumulator. At the end of
the program, the register pair has been incremented five times and contains 505.

Trace to the Line Printer. By adding the parameter >LPT to a command, you can direct that
command's output to the line printer instead of to the system terminal. First, verify that your line
printer is properly connected and powered up. Then enter the following command to execute the
program with trace output directed to the line printer:

@

Learning Guide-8540 System Users Demo-Monitor Program

NOTE

If you are operating in TERM mode with an 8560, use one of the following commands
in place of the command shown:

• 9 start IIp1r sends the display to the 8560's line printer.

• 9 start \>LPT sends the display to the 8540's line printer.

> g start >LPT <CR>

Trace Jump Instructions Only. Another way to monitor the program's execution is to look only
afthe jump instructions. By tracing the jump instructions, you can still observe the changes in
the registers, but you save time and space by not tracing the instructions within the loop. Enter
the following command to trace only the jump instructions when the loop is being executed:

> tra jmp loop 109 <CR>
~ --
~ upper address} Withi~ this. range, .

only Jump instructions
lower address are traced.
(106) ,

Check the Status of the Trace. The TRA command without any parameters displays the trace
conditions that are currently set. Because you can have up to three trace selections in effect at
the same time, it can be useful to be able to see which selections are active. Check your trace
status with the following command line:

> .w <CR>
TRACE ALL,OOOOOO,OOFFFF
TRACE JMP,LOOP, 000109

As you've specified, TRA ALL is in effect for addresses 0-105, TRAJMP is in effect for addresses
106-109, and TRA ALL is again in effect for addresses 10A-FFFF.

Again, start your program with the G command. The following trace is displayed:
> g start <CR>

LOC INST MNEM OPER
SECTION (DEMO)
START 210005 LXI
+000103 0605 MVI
+000105 AF XRA
+000109 C20601 JNZ
+000109 C20601 JNZ
+000109 C20601 JNZ
+000109 C20601 JNZ
+O0010C D3F7 OUT
+O0010C <BREAK

H,0500
B,05
A
0106
0106
0106
0106
F7

TRACE>

SP F ABC D E H L 1M SOD

0000 54 OF 00 00 00 00 05 00 00 0
0000 54 OF 05 00 00 00 05 00 00 0
0000 44 00 05 00 00 00 05 00 00 0
0000 10 01 04 00 00 00 05 01 00 0
0000 14 03 03 00 00 00 05 02 00 0
0000 10 06 02 00 00 00 05 03 00 0
0000 10 OA 01 00 00 00 05 04 00 0
0000 54 OF 00 00 00 00 05 05 00 0

As with the TRA ALL display, observe that register B (the pass counter) is decremented; the H-L
register pair (the table pointer) is incremented; and the accumulator stores the sum of the
numbers from the table. With the TRA JMP selection in effect, the instructions within the loop
are not displayed. -

REV JAN 1983 1-37

Demo-Monitor Program Learning Guide-8540 System Users

1-38

Set a Breakpoint. Now that you've seen how the program adds the numbers together, here's a
new task: to add only the third and fourth numbers from the table. To perform this task, you want
the pass counter to contain 2, and the table pointer to contain 502 (the address of the third
number in the table). You can accomplish these changes without altering the object code in
memory. First, stop program execution after the pass counter and the table pointer have been
set. Next, while the program is stopped, enter new values for the pass counter and table pointer.
When execution resumes, the program will treat the new values as if they were the original
programmed values.

Enter the following command line to trace all of the instructions as the program executes:
> tra all <CR>

Check the status of the trace with the following command line:
> tra <CR>
TRACE ALL,OOOOOO,OOFFFF

The trace selections you set earlier are made obsolete by the TRA ALL command just entered.

Now you set a breakpoint so that the program stops after the table pointer and pass counter have
been set. The following command will cause the program to stop after it executes the MVI
instruction at address 103:

> bk 1 103 <CR> ! T breakpoint address

breakpoint number
(can be 1 or 2)

Use the G command to start program execution:
> g start <CR>

LOC INST MNEM OPER SP F ABC D E H L 1M SOD
SECTION (DEMO)
START 210005 LXI H,0500 0000 54 OF 00 00 00 00 05 00 00 0
+000103 0605 MVI B,05 0000 54 OF 05 00 00 00 05 00 00 0
+000103 <BREAK TRACE, BKPTl>

The TRA ALL command enabled display of all instructions up to and including the instruction at
the breakpoint.

Set New Values in Pass Counter and Table Pointer; Check Results. Now that you've reached
the breakpoint, you can change the contents of the registers while execution is stopped. The
break dispiay shows that register B (the pass counter) contains 5, and the H-L register pair (the
table pointer) contains the address 500. Use the 5 (Set) command to set the numbe'r of passes to
two and set the table pointer to 502.

> s B=2 L=2 <CR> -- --

Lcontents of low byte
of H -l register pair

contents of register B

Learning Guide-8540 System Users Demo-Summary

The S command does not produce a display, but you can use the DS (Display Status) command to
check the values in the registers you changed. DS displays the contents of each emulator
register and status flag. Check the result of the previous S command with the following
command line:

> ds <CR>
PC=0105 SP=OOOO F=54 A=OF B=02 C=OO D=OO E=OO H=05 L=02
SOD=O SID=O 17=0 16=0 15=0 IE=O M7=1 M6=1 M5=1

The DS display shows that the pass counter and table pointer now contain the new values.

Resume Program Execution. If you enter the G command with no parameters, program
execution starts where it left off. Resume program execution after the breakpoint with the
following command:

> g <CR>

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
+000105 AF XRA A 0000 44 00 02 00 00 00 05 02 00 0
LOOP 86 ADD M 0000 04 03 02 00 00 00 05 02 00 0
+000107 23 INX H 0000 04 03 02 00 00 00 05 03 00 0
+000108 05 DCR B 0000 10 03 01 00 00 00 05 03 00 0
+000109 C20601 JNZ 0106 0000 10 03 01 00 00 00 05 03 00 0
LOOP 86 ADD M 0000 00 07 01 00 00 00 05 03 00 0
+000107 23 INX H 0000 00 07 01 00 00 00 05 04 00 0
+000108 05 DCR B 0000 54 07 00 00 00 00 05 04 00 0
+000109 C20601 JNZ 0106 0000 54 07 00 00 00 00 05 04 00 0
+O0010C D3F7 OUT F7 0000 54 07 00 00 00 00 05 04 00 0
+O0010C <BREAK TRACE>

Notice that the program performed two passes through the loop, and that the program added the
third and fourth numbers in the table: 3+4=7.

Summary of Emulator Demonstration Run
You have assembled, loaded, executed, and monitored the demonstration run program. Review
the commands you used:

• SEL-selects the 8085A assembler and emulator

• ASM (TNIX command)-creates object code from an assembly language program

• LINK (TNIX command)-links object code into a load module

• F-fills an area of memory with a specified value

• D-displays memory contents in ASCII and hexadecimal format

• La or COM-downloads object code into memory

• SYMLO or COM-downloads program symbols for use in symbolic debug

• DI-translates memory contents into assembly language mnemonics

• P-patches a string of bytes into memory

• G-begins or resumes program execution

• TRA-selects instructions to be traced during program execution

1-39

For Continued Learning Learning Guide-8540 System Users

, -40

• BK-sets a breakpoint

• S-modifies emulator registers

• OS-displays emulator registers

Delete the Demonstration Run Files

Now that you've finished the demonstration run, you can delete the files you created on the host.
If your files are on the 8560, you can use the following procedure to delete them.

Enter the following command to remove all the files in the working directory:
$ rm * <CR>

Now move from the demo directory back into the parent directory and remove the demo
directory itself:

$ ~ <CR>
$ rmdir demo <CR>

To log out from your 8560 and return your 8540 to LOCAL mode, type:
$ config local; logout <CR>

You can turn off the 8540 and its peripherals in any order.

FOR CONTINUED LEARNING
This Learning Guide introduced the basic concepts needed to use your 8540. It gave you an
overview of the 8540 and related products, and showed you how to prepare, download, execute,
and monitor a program. To obtain more detailed explanations of various 8540 operations, refer
to the following sections:

Section 2, Operating Procedures. Describes a series of tasks and lists the commands needed
to perform these tasks.

Section 3, Command Dictionary. Provides a description and examples of each OS/40
command. The Command Dictionary is arranged alphabetically by command name. It is
preceded by a classified list of commands to help you choose a command by its function if you
don't remember its name.

Section 4. Intersystem Communication. Gives the technical information needed to set up
communication between the 8540 and another computer system.

Section 5, Emulation. Summarizes the emulation features of the 8540. The emulator
demonstration run in this Learning Guide demonstrated program execution in emulation mode
O. Section 5 discusses modes 1 and 2 as well, and gives detailed explanations of symbolic debug,
the Memory Allocation Controller (MAC) option, and the Trigger-Trace Analyzer (TTA).

Learning Guide-8540 System Users Overview of 8540 User Manuals

@

Section 6, Service Calls. Explains what service calls are and how you use them in your program
to access 1/0 devices on the 8540 and files on the 8560.

Section 7, Emulator Specifics. Provides a place to insert your Emulator Specifics supplements.
Each supplement gives reference information that is specific to a particular emulator, and also
contains a demonstration run and installation instructions for that emulator.

Section 8, PROM Programmer Specifics. Describes the general features and operation ofthe
PROM Programmer. Add your PROM Programmer Specifics supplements to this section. Each
supplement provides reference information that is specific to a particular PROM Programmer
characteristic module.

Section 9, Technical Notes. Provides miscellaneous technical information. Technical Note 1
discusses the practical limits of emulation. Technical Note 2 summarizes the differences
between OS/40 Version 1 and DOS/50 Version 2, the operating system of the 8550
Microcomputer Development Lab. Technical Note 3 summarizes the differences between the
RTPA and the ITA.

Section 10, Error Messages. Explains each OS/40 error message, giving a description of the
problem and possible solutions.

Section 11, Tables. Summarizes reference information in tabular form.

Section 12, Glossary. Defines special terms used in this manual.

Section 13, Index. Gives you a place to start when you don't know where else to look.

OVERVIEW OF 8540 USER MANUALS
This subsection describes the types of user manuals you will receive as you add options to your
8540 system, and explains how each manual relates to the product it documents.

Core Manuals and Specifics Supplements
Many software products produced by Tektronix have a microprocessor-independent part and a
microprocessor-specific part. The microprocessor-independent part is common to every
product of the same type, and minimizes your effort in using your 8540 with a new
microprocessor. The microprocessor-specific part allows you to exploit the features of the
microprocessor you have chosen.

For example, on the 8560, all B Series assemblers have the same standard directives, error
messages, and special features, but each assembler supports the instruction set, addressing
modes, and other features of a different microprocessor.

1-41

Overview of 8540 User Manuals Learning Guide-8540 System Users

1-42

To document software that has both microprocessor-independent and microprocessor-specific
features, Tektronix provides core manuals and specifics supplements.

Core Manuals

A core manual is a looseleaf book that documents the microprocessor-independent features of a
product. A core manual has at least one empty section into which specifics supplements are
inserted.

Examples of core manuals include:

• the 8540 System Users Manual (this manual), which describes the standard features of
OS/40 and introduces you to many system options. This manual has an Emulator Specifics
section and a PROM -Programmer Specifics section.

• the 8500 Modular MOL Series Assembler Core Users Manual for B Series Assemblers,
which tells you how to use the B Series Linker and Library Generator and describes the
microprocessor-independent features of the B Series Assembler. This Assembler Users
Manual has an Assembler Specifics section. (It also contains a Host Specifics section,
since B Series assemblers are available on the 8550 as well as the 8560.)

Specifics Supplements

A specifics supplement is a relatively short document that is designed to be inserted into the
Specifics section of a core manual. A specifics supplement explains the microprocessor-specific
features of a software product. It usually tells how to install the software into the operating
system and provides a microprocessor-specific demonstration run.

Examples of specifics supplements include:

• Emulator Specifics and PROM Programmer Specifics supplements to this manual

• Assembler Specifics supplements to the Assembler Users Manual

Stand-Alone Manuals
Some products are either fully microprocessor-independent or fully microprocessor-specific.
Such a product is documented in a single complete manual.

An example of a stand-alone manual is the Trigger-Trace Analyzer Users Manual, which
describes the ITA in detail and explains its various applications.

Reference Booklets and Cards
Most software products are also accompanied by a reference booklet or reference card that
summarizes the most commonly used information from the user manual.

(ij:

8540 System Users

Section 2
OPERATING PROCEDURES

Page

Introduction 2-1

Communicating With an 8560 2-1
Establishing Communication With the 8560 .. " 2-1
Downloading a Program from the 8560
to 8540 Program Memory 2-2

Uploading a Program from 8540
Program Memory to the 8560 2-2

Downloading Program Symbols from the 8560 2-2
Terminating Communication with an 8560 2-2

Communicating with a Host Computer 2-3
Establishing Communication with the
Host Computer 2-3

Downloading a Program from the Host Computer
to 8540 Program Memory 2-4

Uploading a Program from 8540 Program
Memory to the Host Computer 2-5

Terminating Communication with the Host 2-5

Communicating with an 8550 2-5
Establishing Communication with an 8550 2-5
Downloading a Program from the 8550 to
8540 Program Memory 2-6

Uploading a Program from 8540 Program
Memory to the 8550. ; 2-7

Terminating Communication With an 8550 2-7

Downloading from an 8002A 2-7

Program Execution 2-8
Selecting the Target Processor 2-8
Selecting the Emulation Mode 2-8
Executing the Program 2-8
Displaying the Emulator Registers 2-9
Setting the Emulator Registers ' 2-9
Creating and Defining a Symbol 2-9
Creating a Virtual Memory Map 2-9
Logging Commands to the Line Printer 2-10

Program Debugging 2-10
Turning Symbolic Output On and Off 2-10
Tracing All of the Program 2-10
Tracing Part of the Program 2-11
Tracing Program Branches 2-11
Stepping Through the Program 2-12
Setting a Breakpoint 2-12
Clearing a Breakpoint 2-13
Displaying Breakpoints 2-13
Executing a Segment of Code Repeatedly 2-13

Debugging the Program in the Prototype 2-13
Selecting SVCs '" .. 2-13
Selecting Prototype I/O 2-14
Displaying Memory Map Assignments 2-14

@

Page

Using the Trigger Trace Analyzer 2-14
Breaking on a Designated Instruction 2-14
Breaking on a Specified Pass Through a Loop 2-15
Breaking When Execution Proceeds Outside
a Designated Range 2-15

Breaking When the Program Writes in
a Designated Memory Area 2-15

Saving an Execution Trace Record Without
Interrupting the Program 2-16

Recording Instructions Before and After
a Designated Instruction 2-16

Recording Instructions Executed After
a Designated Instruction 2-17

Determining the Execution Time of a
Program Segment 2-17

Counting the Occurrences of an Event 2-17
Measuring the Interval Between Probe Events, , , , , 2-18
Breaking on a Probe Event 2-18

Memory Manipulation 2-19
Displaying the Contents of Memory 2-19
Changing the Contents of a Section of Memory 2-19
initializing a Block of Memory 2-20
Breaking When the Program Writes in
a Designated Memory Block 2-20

Disassembling the Contents of Memory 2-20

System I/O 2-20
Displaying the Current Channel Assignments 2-20
Assigning a Channel 2-21
Closing a Channel 2-21

Fig.
No.

ILLUSTRATIONS

2-1 Hardware configuration for 8540/8560
interface 2-1

2-2 Establish communication with the
host computer 2-4

2-3 Virtual memory map assignments 2-10

2-i

8540 System Users

Section 2

OPERATING PROCEDURES

Section 1, the Learning Guide, presented a general
overview of the 8540's operating system and a simple
demonstration program. This section presents some
common procedures using OS/40 commands with your
8540 Integration Unit. Each procedure identifies para
meters that you supply when performing the procedure.

The procedures in this section are given in the following
format:

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

A summary of the action(s) performed by
the procedure.

The information entered or displayed at
the system terminal.

The following conventions are used in
the procedure description:

Underlined: A character sequence entered
by the user.

No underline: A character sequence
displayed by OS/40.

Bold: An exact character sequence; if
these characters are underlined, enter
them exactly as shown.

Not bold: A parameter that you supply
when performing the procedure.

A description of the values to be supplied
by you.

The operating limits and options for this
procedure.

One or more demonstrations of correct
entry format.

Cross-references to related procedures.

COMMUNICATING WITH AN
8560

Establishing Communication with the 8560
Description:

@

This procedure establishes a TERM
interface with an 8560. With your 8540
and 8560 operating in TERM mode, you

Procedure:

Comments:

have access to all resources of both
systems simultaneously.

The 8540 is connected to the 8560 by an
HSI cable. The system terminal is
connected to the 8540 by an RS-232-C
cable. Figure 2-1 shows how the various
units are connected together.

(Connect the cables as shown in Fig. 2-1.)
(Start up the 8540.)

>config term <cr>
<cr>

Login:
(Log in to the 8560.)

Refer to your 8560 System Users Manual
for more information concerning this
procedure.

8560

HSII/O

I

HSI RS-232-C
TERMINAL -

, ,
TERMINAL HSI

J104

8540

3939-4

Fig. 2-1. Hardware configuration for 8540/8560 interface.

To communicate with an 8560, connect the cables as
shown in this figure.

2-1

Communicating with an 8560

Downloading a Program From the 8560
to 8540 Program Memory

Description:

Procedure:

Parameters:

Comments:

This procedure downloads a file from the
8560 to 8540 program memory.

$ 10 <8560file

8560file-The name of the 8560 file to
load into 8540 program memory.

To load an 8560 file into prototype
memory, first select emulation mode 2,
then follow the above procedure.

NOTE

The file must be in Tektronix A Series or 8 Series load
module format, as produced by a Tektronix assembler
or linker.

See also: • Uploading a program from 8540
program memory to the 8560

Uploading a Program from 8540
Program Memory to the 8560

Description:

Procedure:

Parameters:

Comments:

2-2

This procedure saves a program from
8540 program memory onto a file on the
8560.

$ sav >8560file loadd hiadd transadd

8560file-The 8560 file that is to receive
the program from 8540 program memory.

loadd-The lower limit of the data block
to be saved.

hiadd-The upper limit of the data block
to be saved.

transadd-The transfer address of the
program.

The file is created in Tektronix A Series or
8 Series load module format, as produced
by a Tektronix assembler or linker.

See also:

Operating Procedures-8540 System Users

• Downloading a program from the
8560 to 8540 program memory

Downloading Program Symbols from the
8560
Description:

Procedure:

Parameters:

This procedure loads the symbols from an
8560 load file into the symbol table in
8540 system memory.

$ symlo <8560file -a -s

8560file-The name of the 8560 load
file containing the symbol definitions you
want to load.

NOTE

The file must be in A Series or 8 Series load module
format, as produced by a Tektronix linker.

Comments:

See also:

The -a option causes the command to
append the symbols to those already in
the table. If you omit the -a, the existing
symbols are overwritten. If you omit the
-s, scalars are not loaded.

• Creating and defining a symbol

Terminating Communication with an 8560

Description:

Procedure:

Comments:

See also:

This procedure terminates communica
tion between the 8540 and the 8560.

$ config local; logout

This command line breaks the communi
cation link between the 8540 and the
8560. 80th the 8540 and the 8560 are
returned to normal operations. The
CON FIG command tells the 8540 to stop
passing commands to the 8560. The
LOGOUT command tells TNIX (the 8560
operating system) to stop accepting
commands.

• Establishing communication with the
8560

Operating Procedures-8540 System Users

COMMUNICATING WITH A HOST
COMPUTER

Establishing Communication with the Host
Computer

Description: This procedure prepares the 8540 to
operate as an "intelligent" terminal to a
host computer. Six types of data transfer
are available while communicating with
a host computer. The two most commonly
used data transfers are:

@

1
I.

2.

A formatted download, which
transfers an object file in Tekhex
format from the host computer to
8540 program memory.

A formatted upload, which trans
fers object code in Tekhex format
from 8540 program memory to a
file on the host computer.

Before establishing communication, you
must first have attached your communi
cation link (a cable or modem) to the
proper jack (usually J1 01) on the 8540
rear panel.

NOTE

The following procedures are deliberately simplified
because of the differences in host computer
requirements. Refer to the Intersystem Communica
tion section of this manual, and to your system

Communicating with a Host Computer

engineer, for the host-computer-specific commands
and COM parameters that you will use in these
procedures.

Procedure:

Parameters:

Comments:

(Establish data transmission between the

host computer and the 8540. See Fig. 2-2.)

> com setup

(Initialize your terminal session, as required

by the host computer.)

setup-A sequence of parameters that
informs the 8540 of the host computer
dependent features. Refer to the Inter
system Communication section of this
manual to determine this sequence.

After you have determined the specific
procedure for establishing communica
tion with your host computer, record this
information in the space provided in Fig.
2-2.

To terminate communication, enter the
null character (ASCII 00) and press the
ESC key on your terminal. On the
TEKTRONIX 4024/4025 and CT8500
terminals, the null character is generated
by entering CTRL-@ (pressing the @ key
while holding down the CTRL key).

Other terminals may generate the null
character differently. Refer to your
terminal users manual for specific
information.

2-3

Communicating with a Host Computer

Prepare the 8540:

Enter the COM command:

Host computer commands:

Operating Procedures-8540 System Users

(Record here the steps to be

taken when preparing your 8540

for communication with the

host computer. See the Intersystem

Communication section of this manual

for more information.)

(Record here the appropriate
COM command parameters. as
designated in the Intersystem
Communication section of this
manual.)

(Record here the host computer
commands to initialize your
terminal session.) 3939-8

Fig. 2-2. Establishing communication with the host computer.

After you have determined the specific procedure for establishing communication with your host computer. record this information in
the space provided in Fig. 2-2. for ease in future reference. Refer to the Intersystem Communication section of this manual for further
information.

Downloading a Program From the Host
Computer to 8540 Program Memory
Description:

2-4

This procedure transfers a load file in
T ekhex format from the host computer to
8540 program memory (a formatted
download).

A program must be available on the host
computer to send T ekhex blocks to the
8540 and interpret the 8540'5 responses.
Refer to the Intersystem Communication
section of this manual for the require
ments of this program.

Operating Procedures-8540 System Users

Procedure:

Parameters:

See also:

(Establish communication with the host
computer.)

command(null)

(This command transfers a Tekhex format

ted file from the host computer to the 8540.

The object code is loaded into program

memory at the locations specified in the

Tekhex data blocks. When transfer is

complete, DNLOAD: is displayed and OS/40
is ready to accept another upload or

download command.)

command-A host computer command
which invokes a program that downloads
a Tekhex load module to the 8540.

(null)-A character generated on most
terminals by entering CTRL-@.

• Establishing communication with the
host computer

Uploading a Program from 8540 Program
Memory to the Host Computer
Description:

Procedure:

Parameters:

@

This procedure transfers the contents of
8540 program memory to the host
computer in Standard or Extended
Tekhex format (a formatted upload). You
can use the F parameter of the COM
command to distinguish between Standard
Tekhex and Extended Tekhex. For more
information about the COM command,
refer to the Intersystem Communication
section of this manual.

A program must be avajlable on the host
computer to receive T ekhex blocks from
the 8540. Refer to the Intersystem
Communication section for the require
ments of this program.

(Establish communication with the host
computer.)

(Load into 8540 program memory the

program that you want to upload.)

command(null)loadd hiadd transadd

(When the transfer is completed, UPLOAD:

is displayed on the terminal. At this point,

OS/40 is ready to accept another upload or

download command.)

command-A host computer command
which invokes a program that uploads a

See also:

Communicating with an 8550

Tekhex load module from 8540 program
memory.

(null)-A character generated on most
terminals by entering CTRL-@.

loadd-The lower boundary of the block
of memory to be transferred.

hiadd-The upper boundary of the block
of memory to be transferred.

transadd-The transfer address.

• Establishing communication with the
host computer

Terminating Communication with the Host

Description:

Procedure:

Comments:

See also:

This procedure terminates the communi
cation link between the 8540 and the
host computer, returning the system to
normal operation.

(Log out from the host computer.)

(Enter a null character and press the ESC
key:)

(null)(ESC)

Enter the null character by entering
CTRL-@ (typing @ while holding down
the CTRL key).

• Establishing communication with the
host computer

COMMUNICATING WITH AN
8550

Establishing Communication with an 8550
Description: This procedure prepares the 8540 for

communication with an 8550 used as the
host computer. Six types of data transfer
are available while communicating with
the 8550; the two most common are:

1.

2.

A formatted download, which
transfers a file in Tekhex format
from the 8550 to 8540 program
memory.

A formatted upload, which trans
fers the contents of 8540 program
memory in Tekhex format to a file
on the 8550.

2-6

Communicating with an 8550

Procedure:

Comments:

(Connect the RS-232-C cable. as described

in the "Comments" part of this procedure.)

(Enter the following command on the 8540
terminal:)

> com p=7E7E

COM VX.x

(Enter the following command on the 8550:)

> host

HOST VX.x

(The 8550 is ready to be used as the host

computer. Subsequent displays and com

mands are at the 8540 system terminal.

005/50 prompts you for a command which

informs the 8550 of the type of transfer.)

Enter U or D; A. B. or H; and 8550
filespec:

The 8550 must be connected to the 8540
with an RS-232-C cable. The female end
of the cable connects to the J 1 01 jack on
the 8540 mainframe. The male end
connects to the DCE jack (J 102) on the
8301. The MODE SELECT switches on
both systems should be in the CNTL (L)
position. To terminate communication
enter (null)(esc) on the 8540. Then enter
(CTRl-C) followed by the command a-a
on the 8550.

NOTE

When the HOST command successfully completes a
data transfer, the error code FF (end-of-file) is
returned to the 8550 system terminal. This does not
signify an error condition; it is merely an informa
tional message.

Certain limitations exist in the data transfer rate. See
the Intersystem Communication section of this
manual for information concerning the baud rate.

The HOST command waits about 30 seconds after
each file transfer before issuing the next prompt.

See also: • Downloading a program from the
8550 to 8540 program memory

• Uploading a program from 8540
program memory to the 8550

Procedure:

Operating Procedures-8540 System Users

8550 to 8540 program memory (a
formatted download). All commands are
entered on the 8540 system terminal. For
more information about Tekhex format.
refer to the Tables section ofthis manual.

(Establish communication between the

8550 and the 8540.)

Enter U or D; A, B, or H; and 8550
filespec:

DHfilespec

Enter transfer sequence. beginning with
null character:

(null)

Parameters: filespec-The 8550 file contammg the
object program that you want to down
load to 8540 program memory.

Comments:

(null)-A character generated on most
terminals by entering CTRL-@.

The memory location and transfer ad
dress are specified by the contents of the
object file.

Example: (Establish communication between the

8550 and the 8540.)

Enter U or D; A, B, or H; and 8550 filespec:

DH/VOL/MYVOL/PROGI/LOAD
Enter transfer sequence, beginning

with null character:
(null)

*0000 IE (First block sent to
addresses OOOO-OOlD.)

*OOIE IE (Second block sent to
addresses 001E-003B.)

*0200 0000 (Termination block
transfer address-0200.)

DNLOAD:

The Tekhex formatted file, IVOLI
MYVOL/PROG 1 ILOAD is downloaded
to 8540 program memory. The memory
locations and trarysfer address are speci
fied by the contents of the file.

Downloading a Program from the 8550 See also: • Establishing communication with an
8550 to 8540 Program Memory

Description:

2-6

This procedure transfers an executable
object file in Tekhex format from the

• Uploading a program from 8540
program memory to the 8550

Operating Procedures-8540 System Users

Uploading a Program from 8540
Program Memory to the 8550
Description: This procedure transfers the contents of

program memory in the 8540 to an 8550
Tekhex formatted file (a formatted up
load). All commands are entered on the
8540 system terminal. For more informa
tion about Tekhex format, refer to the
Tables section of this manual.

Procedure: (Establish communication between the
8550 and the 8540.)

Enter U or D; A, S, or H; and 8550
filespec:

UHfilespec

Enter transfer sequence, beginning with
null character:

(null)loadd hiadd transadd

Parameters: filespec-The 8550 fi Ie that is to receive
the data from the 8540.

(null)-A character generated on most
terminals by entering CTRL-@.

loadd-The lower boundary of the block
of memory to be transferred.

hiadd-The upper boundary of the block
of memory to be transferred.

transadd-The transfer address.

Example: (Establish communication between the
8540 and the 8550.)

@

Enter U or D; A, B, or H; and 8550 filespec:
UH/VOL/MYVOL/PROGI/LOAD

Enter transfer sequence, beginning
with null character:

(null)OFOOO OF3FF OF200
BLOCK SENT AT: FOOO
BLOCK SENT AT: FOIE

BLOCK SENT AT: F3FC
BLOCK SENT AT: F200

(Termination block.)
UPLOAD:

In this exampie, bytes FOOO-F3FF of
program memory are uploaded to the
8550 file IVOL/MYVOL/PROG1 ILOAD
in Tekhex format. F200 is the transfer
address.

See also:

Downloading from an S002A

• Establishing communication with an
8550

• Downloading a program from the
8550 to 8540 program memory

Terminating Communication With an 8550

Description:

Procedure:

Comments:

See also:

This procedure terminates the communi
cation link between the 8540 and the
8550.

(Enter (null)(ESC) on the 8540 terminal by
typing CTRL-@ and pressing the ESC key.
Then enter the following commands on the
8550 terminal.)

(CTRL-C)
»a -a

These commands terminate the com
munication programs that are running
and return the systems to normal
operation.

• Establishing communication with an
8550

DOWNLOADING FROM AN
8002A

Downloading from an 8002A
Description:

Procedure:

This procedure transfers an executable
object file in Tekhex format from the
8002A to 8540 program memory.

(Establish communication between the
8540 and the 8002A.)

(Connect the RS-232-C cable, as described
in the "Comments" part of this procedure.)

(Enter the following command on the 8540
system terminal:)

> COM P=3F E=L L=I

(Enter the following command on the
8002A system terminal:)

>~
(Enter the following command on the 8540
system terminal:)

filename(null)

(When the download is complete, the 8540
terminal displays the message DNLOAD:

(To terminate communication, enter (null)
(ESC) on the 8540 terminal by typing CTRL
@ and pressing the ESC key.)

2-7

Program Execution

Parameters:

Comments:

filename-The name of the Tekhex file
on the 8002A.

(null)-A character generated on most
terminals by entering CTRL-@.

The 8540 is connected to the 8002A via
an RS-232-C cable. The cable connects
to jack J 102 (DTE) on the 8540 rear panel
and jack J1 01 on the 8002A rear panel.
The MODE SELECT switch on the 8540
should be set to CNTL (L), and the
REMOTE BAUD switch to 2400. On the
8002A System Communication board,
verify that the Jl jumper is in the lower
position, and that the PORT1 baud rate is
set to 2400.

Each system must have its own system
terminal.

The SEND command does not issue a
prompt.

PROGRAM EXECUTION
Selecting the Target Processor
Description:

Procedure:

Parameters:

Comments:

Example:

2-8

This procedure selects the proper emula
tor' control software for the micropro
cessor you are programming.

> sel microprocessor

microprocessor-The OS/40 name of
the target processor. See the Emulator
Specifics section of this manual for the
OS/40 name of your microprocessor.

OS/40 automatically performs several
commands internally to initialize the
emulator when you select the target
processor. Refer to the discussion of the
SEL command in the Command Dictionary
section of this manual for further
information.

> sel 8085

This command line selects the 8085A
emulator on the 8540. (The command
also selects 8080A/8085A assembler
and compiler software on the 8560, if you
are in TERM mode.)

Operating Procedures-8540 System Users

Selecting the Emulation Mode
Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure selects the emulation
mode in which the the system operates.

> em mode

mode-O, 1, or 2.

Mode 0 is system mode. Execution in this
mode uses program memory, 8540
system 1/0 (through SVCs), and the
emulator clock. The system is placed in
emulation mode 0 whenever the target
processor is selected.

Mode 1 is partial emulation mode.
Execution in this mode uses program
memory andlor prototype memory (de
pending on the memory map assign
ments), SVCs andlor prototype 1/0, and
the prototype's clock.

Mode 2 is full emulation mode. Execution
in this mode uses the prototype's
memory, liD, and clock, and may also
use SVCs.

The emulation mode is set to mode 0
when you enter the SEL command. When
executing programs in emulation modes
1 and 2, your prototype must be
connected to the system via the prototype
control probe.

> em 1

This example selects emulation mode 1
(partial emulation mode).

• Selecting the target processor

Executing the Program
Description:

Procedure:

Parameters:

This procedure begins program execution
at the specified address. The program
must already reside in memory.

> 9 addr

addr-The address of the next instruc
tion to be executed. If this parameter is
omitted, execution continues at the
address in the emulator's program
counter.

Operating Procedures-8540 System Users

Example:

See also:

> g 300

This example starts program execution at
address 300.

• Downloading a program from the
8560

• Downloading a program from the host
computer

• Downloading a program from the
8550

• Downloading a program from the
8002A

Displaying the Emulator Registers

Description:

Procedure:

Comments:

Examp!e:

This procedure displays the contents of
the emulator registers.

> ds

For more information on the DS com
mand, seethe Emulator Specifics supple
ment for your microprocessor.

> sel 8085
> ds

pc=OOOO SP=OOOO F=OO A=OO B=OO C=OO D=OO E=OO H=OO L=OO
SOD=O SID=O 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

See also: • Setting the emulator registers

Setting the Emulator Registers
Description:

Procedure:

Parameters:

@

This procedure changes values in indi
vidual emulator registers.

> s r1 =value1 r2=value2 ...

r1-The name of an emulator register
you want to set.

value1-The value you want to store in
the register.

r2-The name of another emulator
register you want to set.

value2-The value you want to store in
the register.

Example:

See also:

Program Execution

> s A=OEI B=OO

This example sets the emulator registers
A and B to E1 and 00, respectively.

• Displaying the emulator registers

Creating and Defining a Symbol

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure adds a symbol to the
symbol table and assigns it a value.

> adds symbol=value

symbol-The name of the symbol that you
are creating.

value-The value of the new symbol.

You can enter more than one symbol
definition on the same line. If a symbol
represents a scalar (not an address),
precede it with a -So

> adds start=lOO -s tablesize=50t

This example defines two symbols: start
and tablesize with the values 100
(hexadecimal) and 50 (decimal) respec
tively.

• Downloading symbols from the 8560

Creating a Virtual Memory Map
Description: This procedure allows your program to

access a block of memory locations at
virtual addresses rather than at their
actual physical addresses in program
memory. This procedure is useful if your
program accesses addresses beyond the
limits of physical program memory.

NOTE

If you are using the Memory Allocation Controller
(MAC) option or the 808618088 emulator, the AL
command has a different syntax and use, so do not
use this procedure. Refer to the Emulation section of
this manual for an explanation of the MAC option.

Procedure: > ai actual blocks virtual

2-9

Program Debugging

Parameters:

Example:

actual-The physical address of the first
memory location that you want to
allocate to a different area.

blocks-The number of 4K-byte blocks to
be reallocated.

virtual-The address that your program
uses to refer to the beginning of the
reallocated memory area. The addresses
actual and virtual should be mUltiples of
1000H.

> al 2000 3 OAOOO

This example makes the three 4K-byte
blocks of memory starting at location
2000 appear to be addressable starting at
location AOOO. See Fig. 2-3.

Logging Commands to the Line Printer

Description:

Procedure:

Comments:

0000

2000

4FFF

7FFF (32K)

AOOO

CFFF

This procedure sends a copy of your
terminal input! output to the line printer.

> 109 LPT

This cOll)mand line sends all terminal
input/output to both the terminal and the
line printer.

Physical address
(Actually located here)

Virtual address
(Appears to be
located here)

I
FFFF (64K) ,-I _____

3457-191

Fig. 2-3. Virtual memory map assignments.

2-10

Example:

Operating Procedures-8540 System Users

> log LPT

(OS/40 commands)

> log CONO

(Log eONO turns off the display

to the line printer.)

PROGRAM DEBUGGING
Turning Symbolic Output On and Off

Description:

Procedure:

Comments:

See also:

This procedure turns symbolic display on
or off.

> symd on
or
> symd off

This command only affects the way in
which commands like TRA and 01 display
their output. If SYMD is on, symbols are
substituted for address. You can still use
symbols in expressions and use com
mands like SYMB and ADDS even if
SYMD is off. For information regarding
symbolic debug, refer to the Emulation
section of this manual.

• Tracing all of the program

• Executing the program

Tracing All of the Program

Description:

Procedure:

Parameters:

This procedure displays each instruction
as it is executed. Tracing continues until
the end of the program is reached or until
a break occurs.

> tra all
> 9 strt

strt-The memory address at which
program executi6n is to begin. If this
parameter is omitted, execution begins at
the transfer address of the program.

Operating Procedures-8540 System Users

Example:

See also:

The example in Display 2-1 loads PROG 1
from the 8560 and displays each
instruction as it is executed.

• Tracing part of the program

• Tracing program branches

Tracing Part of the Program
Description:

Comments:

Example:

See also:

Program Debugging

The first command line (TRA OFF)
cancels any previous trace selections.
TRA OFF may be omitted if no other trace
selections have been entered .

See Display 2-2.

• Tracing all of the program

• Tracing program branches

This procedure displays the trace of a
specified portion of the program. Instruc
tions outside the specified range are not
included in the display. Tracing Program Branches

Procedure:

Parameters:

> 10 <PROGl
> tra all
> g 100

LOC INST

> tra off
> tra all loadd hiadd
> g strt

loadd-The lowest address to be traced.

hiadd-The highest address to be traced.

strt-The memory address at which
program execution is to begin.

MNEM OPER SP F A B C D E

Description:

Procedure:

Parameters:

H L 1M SOD

000100 210005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 0

000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 0

000105 AF XRA A 0000 44 00 05 00 00 00 05 00 07 0

000106 86 ADD M 0000 00 01 05 00 00 00 05 00 07 0

000107 23 INX H 0000 00 01 05 00 00 00 05 01 07 0

Display 2-1.

> tra off
> tra all 103 106
> g 100

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 0
000105 AF XRA A 0000 44 00 05 00 00 00 05 00 07 0
000106 86 ADD M 0000 00 01 05 00 00 00 05 00 07 0
000106 86 ADD M 0000 04 03 04 00 00 00 05 01 07 0
000106 86 ADD M 0000 04 OF 01 00 00 00 05 04 07 0

Display 2-2.

This procedure traces only those instruc
tions that change the normal execution
flow of the program (branches, subrou
tine calls, etc.).

> tra jmp
> g strt

strt-I ne memory address at which
program execution is to begin.

2-11

Program Debugging

Example:

See also:

The example in Display 2-3 loads PROG 1
from the 8560 and executes it while
tracing all branch instructions.

• Tracing all of the program

• Tracing part of the program

Operating Procedures-8540 System Users

See also: • Tracing all of the program

• Tracing part of the program

Setting a Breakpoint

Stepping Through the Program
Description:

Procedure:

Parameters:

Example:

10 <PROG1
> tra jrnp
> g 100

LOC INST
000109 C20601

000109 C20601
000109 C20601

000109 C20601

This procedure stops program execution
after each trace line is displayed. To
execute the next instruction, enter the G
command.

> tra -s all
> 9 strt

strt-The memory ·address at which
program execution is to begin.

The example in Display 2-4 loads and
executes PROG 1, stopping after each
instruction.

MNEM OPER SP F A B C D E
JNZ 0106 0000 10 01 04 00 00 00

H L
05 01

JNZ 0106 0000 14 03 03 00 00 00 05 02
JNZ 0106 0000 10 06 02 00 00 00 05 03
JNZ 0106 0000 10 OA 01 00 00 00 05 04

Description:

Procedure:

Parameters:

1M SOD
07 0
07 0
07 0
07 0

Display 2-3.

10 <PROGl

tra -s all
> g 100

LOC INST MNEM OPER SP F A B C D E H L 1M SOD

000100 210005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 0

000100 <BREAK TRACE>

> g
I -

LOC INST MNEM OPER SP F A B C D E H L 1M SOD

000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 0

000103 <BREAK TRACE>

Display 2-4.

2-12

This procedure sets a program breakpoint.
The breakpoint stops execution if the
specified memory address is accessed for
an instruction fetch or for any other
memory read or write. For most emulators,
up to two breakpoints may be specified at
a time.

> bk n address

n-The number of the breakpoint. 1 or 2
for most emulators.

address-The memory address where
program execution is to be interrupted.

Operating Procedures-8540 System Users

E" xample: The example In OI::'lJlclY L-t) 100US and
executes PROG 1. Execution is inter
rupted when the program accesses
address 504.

Debugging the Program in the Prototype

See also: • Setting a breakpoint

• Clearing a breakpoint

See also: • Clearing a breakpoint Executing a Segment of Code Repeatedly
• Displaying breakpoints

Clearing a Breakpoint

Description:

Procedure:

Parameters:

Examples:

See also:

This procedure cancels a breakpoint set
by a previous BK command.

> bk n clr

n-The number of the breakpoint that
you want to cancel. For most emulators,
valid entries for this parameter are 1, 2,
or all.

> bk 1 clr

This example cancels breakpoint 1.

> bk all clr

This command clears all breakpoints.

• Setting a breakpoint

Displaying Breakpoints

Description: This procedure displays all breakpoints.

Procedure: > bk

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure executes a segment of
code repeatedly until you press CTRL-C.

> bk 1 addr
> g -r start

addr-The address of the end of the
segment of code that you want to repeat.

start-The start address of the segment
of code that you want to repeat.

The segment of code is repeatedly
executed until you enter a CTRL-C. Refer
to the Command Dictionary of this
manual for more information about the g
-r commando

> bk 1 8FI0

> g -r 100

This example executes the code between
addresses 100 and 8F1 0 repeatedly until
you enter CTRL-C.

• Executing the program

• Tracing part of the program

Example:

> bk 1 58 wt

> bk 2 47F

DEBUGGING THE PROGRAM IN
THE PROTOTYPE

> bk Selecting SVCs
BK 1 000058 WT (Breaks when your program

writes at address 0058.)
Description:

BK 2 00047F RD WT (Breaks when your program

reads or writes at 047F.) Procedure:

> bk 1 504
> g

LOC 1NST MNEM OPER
000106 86 ADD M
000106 <BREAK BK1>

SP F ABC D E H L 1M SOD
0000 04 OF 01 00 00 00 05 04 07 0

ADD M adds the bytes
at address 504 into
the accumulator.

Display 2-5.

This procedure enables the system
service call (SVC) features.

> svc on

2-13

Using the Trigger Trace Analyzer

Comments:

Example:

See also:

When this feature is ON, OS/40
executes SVCs in all emulation modes. If
an I/O operation is found that can be
translated into an SVC, it is treated as an
SVC. Changing to emulation mode 1 or 2
disables the SVC feature, but it can be
enabled by performing this procedure.

> em 1

> svc on

These command lines select emulation
mode 1 and then enables the use of
SVCs.

• Selecting prototype I/O

• Selecting the emulation mode

Selecting Prototype 1/0
Description: This procedure turns the SVC feature

OFF. When SVCs are OFF, all SVC
invocations are treated as normal I/O
instructions. If your program uses SVCs,
do not execute it while the SVC feature is
OFF unless the extraneous I/O instruc
tions are taken into consideration.

NOTE

Prototype I/O is available only in modes 1 and 2.

Procedure: > svc off

See also: • Selecting the emulation mode

Displaying Memory Map Assignments
Description:

Procedure:

Comments:

2-14

This procedure displays the current
memory map assignments.

> map

Each line of the display consists of a
memory address range and one of the
following parameters:

• PRW - Program memory, read and
write access.

• PRO - Program memory, read-only
access.

Operating Procedures-8540 System Users

• URW - Prototype memory, read and
write access.

• URO - Prototype memory, read-only
access.

The program/prototype designation ap
plies only in mode 1; the read-only
designation applies only to program
memory.

NOTE

Refer to the Emulator Specifics section of this
manual for specific information about the MAP
command for your microprocessor.

Example:

See also:

> map

0000-007F URW
OOSO-OOFF PRO
OlOO-017F URW
OlSO-OlFF PRW

F9S0-F9FF URW

• Creating a virtual memory map

• Displaying the contents of memory

USING THE TRIGGER TRACE
ANALYZER

NOTE

To perform the procedures in this subsection, you
must have the Trigger Trace Analyzer (TTA) option
installed in your 8540 Integration Unit. TTA
commands are available only after you have used the
SEL command to select the emulator software.

Breaking on a Designated Instruction
Description:

Procedure:

This procedure uses the ITA to produce a
breakpoint. The program continues to run
until the designated instruction is exe
cuted. At that time, a break occurs and
OS/40 returns control of the system to
\/nll yvu.

> eve -s 1 clr a=addr b=f

Operating Procedures-8540 System Users

Parameters:

Comments:

Example:

See also:

strt-The starting point for program
execution.

addr-The address of the designated
instruction.

The EVE command line establishes the
conditions of event 1. The CLR parameter
erases any previous conditions design
ated for event 1. The parameters a=addr
and b=f set event 1 to trigger on any
instruction fetch from addr. The -s
parameter sets a breakpoint at event 1.

> eve -8 1 aIr a=30E8 b=f

In this example, a break occurs when an
instruction fetch from 30E8 is performed.

• Setting a breakpoint

• Breaking on a specified pass through a
loop

Breaking on a Specified Pass Through
a Loop
Description:

Procedure:

Parameters:

Comments:

@

This procedure uses the TIA to stop
execution of a program when the
designated instruction is executed the
specified number of times.

> eve 2 a=addr b=f
> COU -5 2 clr s=ev2 o=delay v=pass
> g strt

addr-The address of the designated
instruction.

pass-The number of times to execute
the instruction before stopping: can be
any expression that evaluates to a
number in that range.

The s=ev2 parameter counts the number
of times that event 2 occurs. The o=delay
parameter counts down from the value of
pass and enables a breakpoint when it
reaches O. The v=pass parameter starts
the counter at pass.

If the instruction at address addr is
executed fewer than pass times, no break
occurs. In that case, the program
continues either until termination, or
until you type CTRL-C to regain control of

Example:

See also:

Using the Trigger Trace Analyzer

the system. Refer to the Trigger Trace
Analyzer Users Manual for more infor
mation.

> eve 2 a=2F04 b=f
> aall -8 2 aIr 8=ev2 a=delay v=3
> g

In this example, the instruction at 2F04 is
executed 3 times before a breakpoint
occurs.

• Breaking on a designated instruction

Breaking When Execution Proceeds
Outside a Designated Range
Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure uses the TIA to stop
execution of a program when the
instruction to be executed lies outside the
designated address range.

> eve 1 -5 clr an=loadd hiadd b=f
> g strt

strt-The starting point for program
execution.

loadd-The lowest address that can be
executed without causing a break.

hiadd-The highest address that can be
executed without causing a break.

The loadd address must be less than the
hiadd address. Also, for meaningful
results, the starting address of the
program must lie between loadd and
hiadd.

> eve 1 -8 aIr an=3100 4100 b=f

In this example, program execution halts
when the program proceeds outside of
the ra nge 3100-4100.

• Breaking when the program writes in
a designated memory area

Breaking When the Program Writes
in a Designated Memory Area
Description:

Procedure:

This procedure uses the TIA to stop
execution when an attempt is made to
alter the contents of a designated
memory area.

> eve -5 1 clr a=loadd hiadd b=m wt
> gstrt

2-15

Using the Trigger Trace Analyzer

Parameters:

Comments:

Example:

See also:

strt-The starting point for program
execution.

loadd-The lowest address of the desig
nated memory area.

hiadd-The highest address of the
designated memory area.

The EVE command line restricts the
break to only those situations where a
memory write (M WT) is attempted into a
memory location inside the designated
range. The value of loadd must not
exceed that of hiadd.

You can also use the MAP command to
designate an area of program memory as
read-only. The first write to that area
causes a break to occur. Refer to the
Command Dictionary for information on
the MAP command.

> eve -s 1 elr a=OC800 OE800 b=m wt

This example halts program execution
when the program writes to memory in
the range C800-E800.

• Breaking when execution proceeds
outside a designated range

Saving an Execution Trace Record
Without Interrupting the Program
Description:

Procedure:

Parameters:

2-16

This procedure uses the ITA to record
and display 255 instruction cycles exe
cuted before a designated instruction.
The program does not terminate when
the designated instruction is executed,
but proceeds until reaching the break
point address.

> eve 4 elr a=addr b=f
> aeq all for 1 eye aftertrig4
> eve -s 1 elr a=quit b=f
> g strt
(Wait for program execution to terminate.)

> disp

strt-The starting point for program
execution.

addr-The address of the instruction
where you want to stop recording.

Comments:

Example:

See also:

Operating Procedures-8540 System Users

quit-The address at which a break
occurs. If you want exeCution to continue
until the program is completed, omit the
EVE -S command line, as in the following
procedure.

The EVE command lines describe the
conditions that generate events 1 and 4.
The DISP command line displays the
contents of the Acquisition Memory on
the system terminal.

> eve 4 elr a=4F64 b=f
> aeq all for 1 eye aftertrig4
> eve -5 1 elr a=OFFFF b=f

> g 4000

> disp

This example saves a record of the 255
instruction cycles executed before the
instruction at 4F64 is executed.

• Recording instructions executed be
fore and after a designated instruction

• Recording instructions executed after
a designated instruction

Recording Instructions Executed Before
and After a Designated Instruction
Description:

Procedure:

Parameters:

Example:

This procedure uses the ITA to record
and display 127 instruction cycles exe
cuted before and 127 instruction cycles
after the execution of a designated
instruction.

> eve 4 elr a=addr b=f
> aeq all for 127 eye aftertrig4
> g strt

strt-The starting point for program
execution.

addr-The address of the designated
instruction.

> eve 4 elr a=3A24 b=f
> aeq all for 127 eye aftertrig4

This example saves a trace record of 127
instruction cycles before and 127 in
struction cycles after the instruction at
address 3A24.

Operating Procedures-8540 System Users

See also: • Saving an execution trace record
without interrupting the program

• Recording instructions executed after
a designated instruction

Recording Instructions Executed
After a Designated Instruction
Description:

Procedure:

Parameters:

Example:

See also:

This procedure uses the ITA to record
and display up to 255 instruction cycles
that were executed after the designated
instruction.

> eve 4 elr a=addr b=f
> aeq all for 255 eye aftertrig4
> 9 strt

strt-The starting point for program
execution.

addr-The address of the designated
instruction.

> eve 4 elr a=OB024 b=f

> aeq all for 255 eye aftertrig4

This example saves a trace record of 255
instruction cycles after the instruction
executed from address 8024.

• Saving an execution trace record
without interrupting the program

• Recording instructions executed be
fore and after an instruction

Determining the Execution Time
of a Program Segment
Description:

Procedure:

Parameters:

This procedure uses the ITA to calculate
the time elapsed between the execution
of two designated instructions. Program
execution terminates when the second
instruction is executed. Time can be
calculated in any time units allowed by
the COU command.

> eve 1 elr a=addr1 b=f
> eou 2 elr s=units o=arm g=seqh v=O
> eve -5 2 elr a=addr2 b=f
> 9
(Wait for program execution to terminate.)

> ts -e 2

units-Any valid COU unit. Refer to the
Emulation section of this manual for
information about the COU command.

Comments:

["" .. _-_._.
t:Jli.dlllfJlt:::.

See also:

Using the Trigger Traee Analyzer

addr1-The address at which you want
to start timing.

addr2-The address at which you want
to stop timing.

The CLR parameter of the EVE commands
clears any previously set EVE conditions
on triggers 1 and 2. The CLR parameter of
the COU command clears any previously
set conditions on counter 2. The s=units
parameter sets the time units to count.
The o=arm parameter causes the counter
to count in ascending order. The v=O
parameter starts the counter at O. The
g=seqh parameter tells the counter to
start counting when trigger 1 occurs. The
EVE 2 command line stops the counter
when the instruction at the specified
address is fetched. The TS command
displays the value in the counter.

> eve I eIr a=3320 b=f
> eou 2 elr s=eye o=arm g=seqh v=O
> eve -s 2 elr a=5F40 b=f
> g

> ts -e 2

This example displays the number of bus
cycles that occurred during the execution
of the program segment in the address
range 3320-5F40.

• Measuring the interval between probe
events

• Counting the occurrences of an event

Counting the Occurrences of an Event
Description:

Procedure:

Parameters:

This procedure counts the number of
times that a specified event occurs.

> eve 1 elr event
> eou 2 elr s=ev1 o=arm v=O
> 9
(Wait for program execution to terminate.)

> ts -e 2

event-The sequence of parameters that
define the event.

2-17

Using the Trigger Trace Analyzer

Comments:

Example:

See also:

The parameter s=ev1 increments the
counter when event 1 occurs. The o=arm
parameter tells the counter to count in
ascending order. The v=O parameter
starts the counter at O. After the program
executes, the TS command line displays
the value in counter 2.

> eve 1 clr a=1030 b=f

> Call 2 clr s=evl o=arm v=O

> ~

> ts -c 2

This procedure counts the number of
times the program fe.tches an instruction
from address 1030.

• Breaking on a specified pass through a
loop

• Measuring the interval between probe
events

Measuring the Interval Between Probe
Events
Descript ion:

Procedure:

Parameters:

2-18

This procedure uses the ITA test clips to
measure the time interval between two
external events. The program terminates
when the conditions of the second probe
event are satisfied.

(Attach the TTA test clips to the desired

signal lines in your prototype.)

> eve 1 clr p=begn
> cou 2 clr s=units o=arm g=seqh v=O
> eve -s 2 p=end
> g strt

strt-The starting point for program
execution.

units-Any valid COU unit. Refer to the
Emulation section of this manual for
information about the COU command.

begn-Eight characters representing the
states of the eight test clips when the
measurement is to begin. Each character
can be 0 (logic low), 1 (logic high), or X
(don't care). If the first character is "X",
put a zero in front of it.

end-Eight characters (0, 1, or X)
representing the states of the eight test
clips when measurement (and program
execution) is to end.

Comments:

Example:

See also:

Operating Procedures-8540 System Users

This procedure is similar to that used for
determining the execution time of a
program segment. Here, however, the
conditions for starting and stopping the
counter are defined in terms of the test
clip values instead of the designated
instruction fetches. The clock and ground
lines of the TTA test probe must be
attached for the ITA to function properly.

(Attach the TT A test clips to the desired

signal lines in your prototype.)

> eve 1 clr p=Oxxxxxxxl
> Call 2 clr s=cyc o=arm g=seqh v=o

> eve -s 2 p=llllxxxx

This example measures the number of
bus cycles between the time probe clip 0
goes high and the time clips 4-7 become
high simultaneously.

• Breaking on a probe event

• Determining the execution time of a
program segment

Breaking on a Probe Event
Description:

Procedure:

Parameters:

Comments:

Example:

This procedure uses the ITA to stop
program execution when the conditions
of the probe event are satisfied.

(Attach the probe test clips to the desired

signal lines in your prototype.)

> eve -s 1 p=beg n
> g strt

begn-Eight characters representing the
states of the eight test clips when the
measurement is to begin. Each character
can be 0 (logic low), 1 (logic high), or X
(don't care).

strt-The starting point for program
execution.

The EVE command line defines event 1 in
terms of a probe test clip value. The clock
and ground lines of the test clips must be
attached for the ITA to fu nction properly.

> eve -s 1 p=lxxxxxOl

This example halts program execution
when the 0 and 7 clips go high and the 1
clip goes low.

Operating Procedures-8540 System Users

See also: • Measuring the interval between probe
events

MEMORY MANIPULATION
Displaying the Contents of Memory
Description:

Procedure:

Parameters:

Example:

See also:

This procedure displays the contents of a
selected area of memory.

> d loadd hiadd

loadd-The lower limit of the memory
area to be displayed.

hiadd-The upper limit of the memory
area to be displayed.

In Display 2-6, the system terminal
displays 16-byte data blocks from pro
gram or prototype memory. The display
starts with memory address 0000 and
continues to 002F.

• Changing the contents of a section of
memory

• Initializing a block of memory

o 1 2 3 4 5 6 7 8 9 ABC D E F
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 21
000010 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 00
000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Memory Manipulation

Changing the Contents of a
Section of Memory
Description:

Procedure:

Parameters:

Example:

See also:

...... #

This procedure modifies consecutive
memory locations.

> p addr hexstring

addr-The starting address of the data in
program or prototype memory that you
want to change.

hexstring-A sequence of hexadecimal
digits. The hexstring directly replaces the
values in memory starting at the desig
nated address on a byte-by-byte basis.
Each pair of digits represents one byte;
thus the string must contain an even
number of digits. For word-oriented
microprocessors, the number of digits in
the string must be divisible by 4.

In Display 2-7, the contents of memory
locations 400 through 40C are replaced
with the specified hexadecimal string.

• Displaying the contents of memory

• Initializing a block of memory

Display 2-6.

o 1 2 3 4 5 6 7 8 9 ABC D E F
000400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

> P 400 00050605AF862305C20601D3F7

> d 400

o 1 2 3 4 5 6 7 8 9 ABC D E F
000400 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 00

Display 2-7.

2-19

Initializing a Block of Memory
Description:

Procedure:

Parameters:

Example:

See also:

This procedure initializes memory loca
tions with a specified value.

> f loadd hiadd hexstring

loadd-The lowest memory address to be
initialized.

hiadd-The highest memory address to
be initialized. Must be greater than or
equal to that of loadd .

hexstring-The value that is to fill the
designated memory area. If the target
processor is word-oriented, this string
must contain a multiple of 4 hexadecimal
digits. Otherwise, an even number of
digits are required.

> f 0 OFF 0000

This command line fills memory locations
OOOO-OOFF with the value O.

• Displaying the contents of memory

• Changing the contents of a section of
memory

Breaking When the Program Writes
in a Designated Memory Block
Description:

Procedure:

Parameters:

Comments:

Example:

2-20

This procedure causes program execution
to halt when the program attempts to
write to a specified block of program
memory.

> map pro loadd hiadd

loadd-The starting address of the
memory range.

hiadd-The ending address of the memory
range.

The value of loadd should be less than
that of hiadd. More than one range of
addresses can be specified on the MAP
command line.

> 10 <progl

> map pro 3AOO 4FFF
> g 100

If during execution, prog1 attempts to
write into a memory location within the
range 3AOO-4FFF, a break is generated.

See also:

Operating Procedures-8540 System Users

• Breaking when the program writes in
a designated memory area

Disassembling the Contents of Memory
Description:

Procedure:

Parameters:

Example:

See also:

This procedure translates the object code
in the specified address range to its
corresponding mnemonics and operands,
and displays this information.

> di loadd hiadd

loadd-The memory address where
disassembly is to begin.

hiadd-The memory address where
disassembly is to stop.

> di 100 10E

LOC INST MNEM OPER
000100 210005 LXI H,0500
000103 0605 MYI B,05
000105 AF XRA A
000106 86 ADD M

000107 23 INX H
000108 05 DCR B
000109 C20601 JNZ 0106
00010C D3F7 OUT F7
00010E 00 NOP

The contents of memory locations 0100-
010E are translated into mnemonics and
operands and are displayed on the
system terminal.

• Displaying the contents of memory

• Changing the contents of a section of
memory

SYSTEM 1/0
Displaying the Current Channel
Assignments
Description:

Procedure:

Comments:

This procedure displays the current liD
channel assignments.

> stat

This command displays the following
information:

• The OS/40 name of the currently
selected target processor.

• The present assignments of channels
0-7.

Operating Procedures-8540 System Users

Example: > stat

8085 is the selected processor

Channel 6 is assigned to LPT

See also: • Assigning a channel

• Closing a channel

Assigning a Channel

Description:

Procedure:

Parameters:

Comments:

@

This procedure associates a physical
device or file with an liD channel
number.

> as n filespec

n-A logical liD channel number. This
number must be bet\,AJeen 0 and 7,
inclusive.

filespec-The device or 8560 file to be
assigned to the channel number.

liD channels allow your programs to
read or write to files or devices via service
calls (SVCs).

Example:

See also:

System 1/0

> as 3 tablel 5 LPT

This example assigns the 8560 file table1
to channel 3 and the line printer to
channel 5.

• Displaying the channel assignments

• Closing a channel

Closing a Channel
Description:

Procedure:

Parameters:

Example:

See also:

This procedure disconnects a file or
device from an liD channel previously
opened with the AS command.

> cl n

n-The number of the liD channel
number that you want to close. This
number must be between 0 and 7,
inclusive.

> cl 4

This command line disconnects channel
4 from the file or device to which it was
assigned.

• Assigning a channel

• Displaying the channel assignments

2-21

8540 System Users

Section 3
COMMAND DICTIONARY

Page

Command Index .. 3-1

Introduction .. 3-2

Other System Commands ... 3-2

.Command Syntax ... 3-2
Notation Conventions .. 3-2
Command Line .. 3-2
Strings ... 3-4
Legal Address Expressions ... 3-5

Special Keys .. 3-6

Command Memory Areas ... 3-7

Commands ... 3-8

Table
No.

TABLES

3-1 System Devices .. 3-12

3-2 Types of Data Transfer .. 3-21

3-3 EX Command Options .. 3-29

Fig.
No.

ILLUSTRATIONS

3-1 Sample syntax block ... 3-2

3-2 Syntax for string definition ... 3-4

3-3 AL command example .. 3-11

@ 3-i

Command Dictionary-8540 System Users

Section 3

COMMAND DICTIONARY

COMMAND INDEX

Page

Memory Management Commands

AL-Allocates memory to logical address map 3-10

COM-Sets up communications with host

computer 3-19

D-Displays memory contents 3-24

DEAL-Deallocates memory from logical address

map ... 3-25

EX-Displays or alters memory contents 3-29

F-Fills program/prototype memory with data 3-30

LO-Loads program into memory 3-34

MAP-Sets or displays memory map assignments . 3-35

MEM-Specifies memory to be available to

emulator 3-38

MEMSP-Defines memory space to be used by

memory commands 3-39

MOV-Moves data between program and

prototype memory 3-40

NOMEN-Specifies memory unavailable to

emulator 3-41

P-Alters memory contents 3-42

RH-Reads hexadecimal code into memory 3-48

SAY-Saves memory contents in file 3-52

SEA-Searches memory for value or string 3-52

WH-Saves memory contents in hexadecimal

format .. 3-64

X-Loads and executes program 3-65

Debugging and Emulation
Commands
ADDS-Adds symbol to symbol table 3-9
AS-Assigns channel to device or file 3-12

@

Page

BK-Sets or displays breakpoint condition 3-13
CL-Disconnects channel from device or file 3-16
CLOCK-Controls program clock 3-17
DI-Translates object code to mnemonics 3-26
DS-Displays contents of emulator registers 3-24
EM-Selects emulation mode 3-28
G-Begins program execution 3-32
RD-Reads from emulator port 3-45
REMS-Removes symbol from symbol table 3-46
RESET -Reinitializes emulator 3-47
S-Assigns value to register or symbol 3-51
SVC-Controis execution of service calls from

user program 3-57

SYMB-Returns symbolic equivalent of value 3-58
SYMD-Controls symbolic display output 3-59
SYMLO-Loads symbols into symbol table 3-61
TRA-Controls display of executed instructions 3-62
WRT -Writes to emulator I/O port. 3-65

Miscellaneous System Commands
A-Aborts user program or command execution .. " 3-8
CALC-Evaluates arithmetic expression 3-15
CO-Resumes execution of suspended command .. 3-18
CONFIG-Defines system configuration and host

interface 3-22

LOG-Logs terminal input/output to device 3-34

PERMSTR-Stores user-defined string in

EEPROM 3-43
ROMPATCH-Updates operating system 3-49
SEL-Selects target processor chip 3-54
STAT-Displays system status 3-55
STR-Displays or deletes temporary user strings ... 3-55
SUSP-Suspends command 3-56

3-1

INTRODUCTION
This Command Dictionary describes most OS/40 com
mands. The Command Index on the preceding page lists all
commands described in this section according to their
functions. The "Commands" subsection lists the commands
alphabetically.

This section is divided into the following subsections:

• Other System Commands. Tells where to look for
documentation of subsystem commands.

• Command Syntax. Describes the notation conventions
used in syntax blocks; command lines; and legal address
expressions.

• Special Keys. Describes the special function keys that
the operating system recognizes.

• Commands. Describes commands in detail. Each
command description consists of the following parts: a
syntax block, parameter definitions, an explanation of
the function and use of the command, and one or more
examples.

OTHER SYSTEM COMMANDS
Commands that invoke or use major subsystems are fully
documented in other manuals, and are not described in this
Command Dictionary. The following list shows the
manuals that fully describe each subsystem command.

• PROM Programmer commands (CPR, PSTAT, PTYPE,
RPR, WPR)-PROM Programmer Specifics supplement

• TTA commands (ACQ, AD, BRE, BUS, CONS, COU, CTR,
DATA DISP, EVE, PRO, QUA, TCLR, TS)-Trigger Trace
Analyzer Users Manual

COMMAND SYNTAX
Each command description includes a syntax block that
illustrates the format for a command. This subsection
describes the notation conventions used in the syntax
blocks; command line format. strings, and legal address
expressions.

Notation Conventions
The syntax biock for each command illustrates the
command entry: the command name, whether or not each
part of the command entry must be included, and the order
in which to enter parts of the command entry. Figure 3-1
illustrates a sample syntax block.

3-2

Command Dictionary-8540 System Users

SYNTAX

[
PA] {address}

sample [-mj file1 [file2] PB string ...
3939-9A

. Fig. 3-1. Sample syntax block.

This figure illustrates a syntax block for a fictional operating
system command: sample is the command name; -m is a
command modifier; and file1 , file2, PA, PB, address, and
string are command parameters. The braces, brackets, and
trailing dots are for syntactical representation only.

Command Line
A command line consists of one of more commands and/or
string definitions separated by semicolons (;). The
maximum length of a command line is 80 characters,
including spaces and the terminating carriage return.

If you enter a command line that contains more than 80
characters, a command buffer overflow error will occur.
The excess characters wi" be stored in the type-ahead
buffer and used as the beginning ofthe next command line.
You must type CTRL-U or CTRL-C to delete the excess
characters before entering another command. (The long
command line will not be executed.)

Braces { } in a syntax block surround required parts of the
command line. Brackets [] in a syntax block surround
optional parts of the command line. When parts are
stacked, you choose one part from the ones in the stack.
Braces and brackets serve only to represent the syntax, and
should not be entered as part of the command line.

Boldface letters and other characters in the syntax block
are required in the command line, and should be entered
exactly as they appear in the syntax block.

Three trailing dots in a syntax block show that the
preceding element of the command line may be repeated as
many times as needed, up to the maximum line length of 80
characters.

Underlined letters within a required parameter represent
the acceptable short form of the parameter.

For most parts of a command line, you may use either
uppercase or lowercase letters. The exceptions are as
follows: String names must appear as they did when
created. Command names must be entered in lowercase if
you are in TERM mode with an 8560.

REV JAN 1983

Command Dictionary-8540 System Users

Command Name

A command name is a word that represents an operating
system command. Every command must begin with a
command name.

Delimiters

A delimiter separates parts of the command from each
other. Allowed delimiters are spaces. commas. or tabs.
with one comma being equivalent to one or more spaces or
tabs.

Command Modifiers
A command modifier (a special type of parameter) consists
of a dash (-) followed by a letter. Figure 3-1 contains the
command modifier -m.

Multiple command modifiers (when used) can be strung
together: -A -B -C can be entered as -ABC. A command
modifier. if specified. can USUally occur anywhere in, the
command line; its position in the line is not significant
except in the following instance.

When a dash modifier is used to modify a parameter
instead of the command. the dash modifier must
immediately precede the appropriate parameter. For
example. in the command line SEA 0 100 -A HELLO the
third parameter is -A HELLO. signifying the ASCII string
"HELLO".

Using a modifier affects only one invocation of a command.

Certain commands may produce unexpected results if you
specify command modifiers that are invalid or contradictory.

Parameters

Parameters specify how the command is executed.

Parameters in boldface must be entered exactly as they
appear in the syntax block. when used.

Parameters which are not in boldface describe the type of
parameter. Acceptable entries for parameter types are
described in the PARAMETERS explanation for each
command.

Parameters may be required or optional. as described in the
following paragraphs.

Required Parameters. Required single parameters appear
in the command line without braces or brackets. In Fig. 3-1.
file1 is a required parameter.

Optional Parameters. Optional parameters are enclosed
in brackets [] in the syntax block. In Fig. 3-1. file2 is an
optional parameter.

REV JAN 1983

Omitting Parameters. To omit an optional parameter.
enter two commas in its place. For example. to omit file2
from the command line. enter:

> SAMPLE -M MYFlLE"PA 100

Use three commas when you omit two consecutive
parameters. For example. to omit file2. and PA or PB from
the command line. enter:

> SAMPLE -M MYFlLE",lOO

Do not enter commas to omit a command modifier or the
final parameter(s) in a command line. For example. to omit
-M from the command line. you can enter:

> SAMPLE MYFlLE YOURFlLE PA 100

Choice of Parameters. Parameters are stacked one above
another when there is a choice between two or more
parameters. If the parameters are stacked within braces { l.
one of the parameters must be used. In Fig. 3-1. either
address or string must be chosen. If the parameters are
stacked within brackets [], the selection is optional. In Fig.
3-1. you may select either PA or PB or neither.

Repeated Parameters. When three dots follow a
parameter (or a group of parameters enclosed in brackets
or braces). the parameter may be repeated any number of
times up to the end of the command line. In Fig. 3-1. the
choice of address or string may be repeated as many times
as the line length permits.

Examples

Here are some examples of how the fictitious SAMPLE
command (shown in Fig. 3-1) could be used:

> SAMPLE MYFlLE","some text"

> SAMPLE -M YFL MFL PB "txta" 10 OF "txtb"

> SAMPLE -M HISFILE"PB 80 90 OAO aBO

Redirecting Standard Input and Output

In general. the operating system commands take input
from standard input and send output to standard output.
The system terminal usually serves as both standard input
and standard output.

However. you can redirect command input and output. A
left arrow «) redirects input. so the command can read
from a file or device other than the system terminal. A right
arrow (» redirects output. so the command can send
results to a file or device other than the system terminal.

The 1/0 redirection arrow can be inserted in a command
line anywhere after the command name. and can be
applied to any command.

3-3

Using more than one input arrow «) or more than one
output arrow (» in one command entry causes an error.

Examples of I/O Redirection. Execute the LO command,
and have the LO command download from the 8560 file
MYLOFILE, with the following command line:

> 10 <MYLOFILE

Execute the LO command, and have the LO command load
from the paper tape reader with the following command
line:

> LO <PPTR

Disassemble address range 100-20A, and send the
disassembly to the line printer with the following command
line:

> DI 100 20A >LPT

r;;;;;;;l
~~

Using the wrong redirection symbol may cause your
file to be overwritten. For example, if you wanted to
load from file LOADFILE but mistakenly entered 10
>LOADFILE, then the LO command would attempt to
read the load module from the terminal (standard
input) and would send its output to LOADFILE,
overwriting the current contents.

Multiple Commands
You may enter more than one command on an 80-
character line, if you separate the commands with
semicolons. For example, the first four commands in
Display 3-1 are equivalent to the last command:

> BK 1 504 RD
> BK 2 lOA
> TRA A LOOPST LOOPEND
> G 100

> BK 1 504 RD;BK 2 10A;TRA A LOOPST LOOPEND;G 100

Display 3-1 .

The commands in a multiple-command line are executed in
the order in which they're entered, not in parallel.
Command errors occurring along the way will not stop
subsequent commands from executing.

If you suspend a command in a mUltiple-command line
using CTRL-C, the subsequent commands are lost.

If you enter a mUltiple-command line that is more than 80
characters long, the system issues an error message and
does not execute any of the command line. Also, if any
string substitutions are done on the multiple-command
line so as to expand the line beyond 80 characters, the
system issues an error message and does not execute any
of the remaining commands in the long line.

3-4

Command Dictionary-8540 System Users

Escape Character
The backslash (\) is used to "escape from" or "turn off" any
special significance of the character it precedes. For
example, OS/40 recognizes the dollar sign ($) as the first
character of a string specification. To include a special
character in a command parameter, precede it with a
backslash (for example, \$) to disable the special
significance.

A character preceded by a backslash is treated "as is". For
example, the operating system recognizes MY\"FILE as
MY"FILE, MY\FILE as MYFILE, and MY\ \FILE as MY\FILE.

To include a single or double quote (' or ") within an ASCII
string, precede it with a backslash. The operating system
recognizes the string "1 said, \"OK\"" as the string: "1 said,
"OK"".

You can't turn off the special significance of a carriage
return with the backslash.

Strings
You may assign names to strings of characters, and then
refer to the strings by name. You can use strings as part of a
command line, or a string can be a sequence of commands.

NOTE

Strings are volatile and will be lost if the 8540 is
restarted or turned off If you wish to save strings in
the permanent string storage area in EEPROM, use
the PERMSTR command.

Defining Strings
A name is assigned to a string by entering the string name,
an equals sign, then the string. To define a string, use the
syntax shown in Fig. 3-2.

stringname=[']string[']

Fig. 3-2. Syntax for string definition.
3939-10

PARAMETERS

stringname The name you want to assign to the string of
characters. May include up to 8 letters or
digits, and the first character must be a
letter. Uppercase and lowercase letters are
considered distinct.

@

Command Dictionary-8540 System Users

string The value of the string you want to name.
The value must be enclosed in single or
double quotes if it contains a delimiter such
as a comma or space, but the quotes are not
part of the string value. The value of the
string must be enclosed in single quotes if it
contains a backslash, a double quote, or a
dollar sign.

In any of these cases, you may avoid using
quotes if you "escape" the special character.
For information on how to do this and on
how to include single quotes within your
string, refer to the "Escape Character"
discussion in this section.

Using Strings
You may reference the string anywhere in a command line
by entering a dollar sign ($) followed by the string name.

A string name may be made of stringnames. A string name
may also expand into a dash modifier. If a string name is
referenced, but no string with that name has been defined,
a null value will be substituted.

String substitution is repeated until no more substitutions
are possible. For example, if a = "ab" and c = "100" and
ab1 00 = "1234", $$a$c first changes to $ab1 00 and finally
to 1234.

String substitutions are done sequentially, not in parallel.
For example, in the following sequence of commands, the
second value of string abc ("efg") is the one that is found by
the SEA command.

> abc="xyz"
> abc="efg" SEA $abc

Using Quotes in Strings
Double quotes (") are used to enclose a string that contains
delimiters such as commas or spaces. All characters within
the double quotes are treated as a single unit.

Single quotes (') are used to enclose a string of characters
that are to be treated"as is", and the single quotes escape
(turn off) the special significance of any characters within
the single quotes, such as the backslash and dollar sign.
For example, if string xyz equals 100, then the string "abc
$xyz def" becomes abc 1 00 def. However, the string 'abc
$xyz def' remains abc $xyz def.

@

Examples
Define strings REGSET, RANGE 1, and RANGE2 with the
following command lines:

> REGSET="S Rl=O R2=2 R3=3"

> RANGEl="1000,1300"

> RANGE2="2010,3000"

Enter the string REGSET (equivalent to entering the S
command) with the following command line:

> $REGSET

Disassemble address range 1000-1300 with the following
command line:

> DI $RANGEI

Fill address range 2010-3000 with zeros with the
following command line:

> F $RANGE2 00

Legal Address Expressions
Any address parameter in a command line can be
represented by an expression: a formula that contains
numbers, register names, symbols, and memory space
designators, related by the operators + and -. An expression
must not contain any spaces.

The following paragraphs describe each of these
expression elements.

Numbers. Each number is suffixed with the standard
character that selects its radix:

H hexadecimal (default if no suffix is specified)

T decimal

Q or 0 octal

Y binary

A hexadecimal number cannot begin with a letter. For
example, the hexadecimal number A must be entered as
OA.

NOTE

Do not specify a negative value for an address
parameter. Negative addresses may produce unex
pected results.

3-5

NOTE

Care must be taken if the expression parameter
begins with a minus sign. It will be considered a dash
modifier unless you precede it with a zero. For
example, O-BIAS.

Don't-Cares. An "x" within an expression can signify a
"don't-care" value. Don't-care values are not allowed in
decimal expressions (radix selector T); an error will be
returned if you try to do so.

An expression beginning with a don't-care X will be
mistaken for a program symbol. Precede the X with a zero to
begin an expression with a don't-care.

Don't-care values are used mainly in Trigger Trace
Analyzer commands.

Register Names. Register names are used in expressions
to represent the contents of the emulator registers. For
example, the command CALC A+B displays the sum ofthe
numbers in registers A and B. Refer to your Emulator
Specifics supplement for the register names of your
emulator.

Operators. The two operators + and - are used in
expressions to represent addition (+) and subtraction (-).

Symbols. Expressions may also include symbols. Symbols
are names that represent values in your program. For
example, two types of values that may be represented by
symbols are addresses (unsigned numeric values), and
scalars (signed numeric values). The primary source of
symbols is your assembly language program. After you
assemble and link your program, the load file contains the
symbols from your source code, and you can use the
SYMLO or COM command to download the symbols and
their values into the symbol table in system memory.

A secondary source of symbols is the ADDS command,
which adds symbols and their values to the symbol table.

You can use the S command to assign a new value to an
existing symbol.

A symbol consists of one or more characters beginning
with a letter and containing only letters, digits, periods,
underscores, or dollar signs. ADDS and REMS issue an
error message if the symbol has more than 16 characters.
Elsewhere, any characters after the 16th are ignored.

Symbols may be entered in command line expressions in
either of their two forms: as "symbol" or "symbolspec".
When "symbol" is entered in the command line it is simply
the name of the symbol. A "symbolspec" is either: the
name of the section in which the symbol is found, followed
by a colon and then the symbol; or, simply the symbol. The
term "symbolspec" in a syntax block stands for either. For

3-6

Command Dictionary-8540 System Users

example, if the symbol ELECTION, representing an
address, appears in the label field of the program section
CAMPAIGN, then ELECTION is the "symbol" and either
CAMPAIGN:ELECTION or just ELECTION is the "symbolspec".
Since scalars are not considered to be assigned to a particular
section, the "symbolspec" for scalar symbols should not
include a section name.

Refer to your Assembler Users Manual for more details
about symbols.

Memory Space Designators. A number may be prefixed
with a memory space designator, which is a pair of letters,
followed by a colon. For example, in the Za001/Za002
emulator, the term SC: 1 000 specifies address 1000 in the
System Code memory space. Refer to the Emulator
Specifics section of this manual to find out if your emulator
uses memory space designators.

Examples. The following expressions are legal:

o
OFF
W+5
X+Y-Z
SC: 1000
OAH+5T-70
JUMPSTART
FH (Unacceptable as a hexadecimal number: must

not start with a letter. Acceptable as symbol FH:
e.g., in ADDS command.)

The following expressions are illegal:

(W+5) (An expression may not contain paren
theses.)

x*y/Z

OAH + 5T

(An expression may not contain asterisks
or slashes.)
(An expression may not contain spaces.)

SPECIAL KEYS
The following special function keys and control characters
are recognized by the operating system:

• CTRL-C-interrupts command or program execution

• CTRL-O-continues display after CTRL-S has been used

• CTRL-R-displays all text in type-ahead buffer

• CTRL-S-halts display

• CTRL-U-discards all text in type-ahead buffer

• CTRL-Z-end of file

• BACKSPACE-deletes character

• RUBOUT -deletes character

To enter a control character (CTRL-x), hold down the CTRL
key while you press the appropriate key.

Command Dictionary-8540 System Users

CTRL-C
One CTRL-C alerts the system to accept an additional
command. Two CTRL-Cs in a row suspend all suspendable
commands.

Entering CTRL-C can cause one of the following effects:

• One CTRl-C during command line entry deletes the
contents of the type-ahead buffer, and displays a single
or double prompt (> or ») on the following line. A double
prompt will be displayed only if one or more commands
are currently running. The system then waits for you to
enter another command line.

• One CTRl-C during command execution causes a
single or double prompt (> or ») to be displayed and
allows you to enter an additional command (usually an A
command to abortthe command already executing). Any
active command continues to execute until it needs to
access the terminal.

• One CTRl-C while your program is running suspends
the program and displays a trace line indicating where
the break occurred. To resume program execution, use
the G command.

• Two CTRl-Cs during command execution cause all
suspendable commands to be suspended. To abort a
process after suspending, use the A command. To
continue execution after suspending, use the CO
command.

If you enter CTRL-C while a multi-command line is
executing, all commands after the one currently executing
are lost.

CTRL-C does not send a visible character to standard
output.

If the 8540 is in TERM mode with an 8560, CTRL-C sus
pends your program, if any, and aborts any commands that
are executing.

CTRL-Q
CTRL-Q continues the display on standard output after it
has been suspended by CTRL-S. Any character other than
CTRL-Q is used as input and also resumes the display.

CTRL-Q does not send a visible character to standard
output.

CTRL-R
CTRL-R causes all characters in the type-ahead buffer to be
displayed on the terminal. If you have typed ahead more
than one line, all lines typed in will be displayed. Refer to
the Learning Guide section of this manual for a description
of the type-ahead buffer.

REV JAN 1983

CTRL-R sends the characters AR to standard output.

CTRL-S
CTRL-S suspends the console display. Enter any character
to continue the display. CTRL-Q is the only character that
will resume the display without also being used as input.
All other characters are used as input in addition to
resuming the display. You may halt and continue the
console display as many times as you desire.

CTRL-S does not send a visible character to standard
output.

CTRL-U
CTRL-U causes all characters in the type-ahead buffer to be
discarded. If you have typed ahead more than one line, all
lines will be discarded. Refer to the Learning Guide section
of this manual for a description of the type-ahead buffer.

CTRL-U sends the characters AU to standard output.

CTRL-Z
CTRL-Z is an end-of-file indication for ASCII input data. It
does not send a visible character to the terminal.

BACKSPACE
The BACKSPACE key on a CRT terminal deletes the most
recently typed character in the type-ahead buffer, erases it
from the screen, and moves the cursor one space to the left.
Refer to the Learning Guide section of this manual for a
description of the type-ahead buffer.

RUBOUT
The RUBOUT key performs the same actions as the
BACKSPACE key.

COMMAND MEMORY AREAS
Two commands can execute concurrently ifthey do not run
in the same memory area. The OS/40 commands reside in
two areas of memory. Six of the commands (A, CO, G, La,
SUSP, and X) are resident; the rest share the system
memory overlay area. If you press CTRL-C once while one
of the commands in the system memory overlay area is
executing, the system prompt becomes a double right
arrow (»), and you can execute one of the resident
commands.

3-7

A
Aborts USei program or command execution

a

command

-a

-u

SYNTAX

PARAMETERS

The name of a command: any command
listed in this Command Dictionary.

All active commands or programs.

The program executing in program memory.

EXPLANATION

The A command terminates execution of the specified
command or program. The A command also closes all
channels assigned to the aborted process. After execution
of the specified process is aborted, control returns to the
operating system, and you may enter commands as usual.

You can only enter the A command when the system
prompt is displayed. When previously entered commands
or programs are running, you must first return control to
the keyboard with CTRL-C.

Entering one CTRL-C alerts the system to accept another
command; commands currently running are not disturbed
until they need access to the terminal. Entering two
successive CTRL-Cs alerts the system to accept another
command, and suspends all currently running commands
or programs. Refer to the "Special Keys" heading in this
section for details on the CTRL-C character. The system
prompt will be displayed after you enter one or two CTRL
Cs.

When the system prompt is displayed, you can enter the A
command to terminate execution. The system then issues
an "Error FE-Process aborted" message, along with the
name of the affected command.

3-8

Command Dictionary-8540 System Users

To terminate a particular command, enter the A command
with the name of the command to be terminated. To
terminate all active processes, enter A -A. To close the
channels of the program executing in program memory,
enter A -U.

NOTE

If you abort a displaying command such as the D
command, an extra line of text is displayed after the A
command is invoked

The following commands may NOT be aborted or
suspended:

A
COM
CO

G
La
SEL

SUSP
x

Refer to the SUSP command for information on
suspending, rather than aborting, command execution.

EXAMPLES

Abort a Command
Start dumping a large listing on the line printer with the
following command entry:

> D 0 OFFFF >LPT

Enter CTRL-C to receive the system prompt, then enter the
following command to abort execution of the D command:

>~

Abort the User Program
Run your program by entering the G command:

> Q.

Enter CTRL-C to suspend your program. A trace line is
displayed, then a BREAK message, then the system
prompt. Enter the following command line to close the
channels opened by your program:

>~

Command Dictionary-8540 System Users

SYNTAX

adds I
[sectionname:] addresssymb=value 1
-s scalarsymb=value

-s

PARAMETERS

Signifies that the following symbol
represents a scalar value.

addresssymb A user-defined symbol to be used to
represent the address.

sectionname The name of the section with which
addresssymbol is to be associated. This
parameter is required if the symbol does
not lie within the bounds ofthe section to
which it is associated, or when a symbol
is added to an absolute section. If
sectionname is not indicated, the system
will automatically associate the symbol
with the section which contains it.

scalarsymb A user-defined symbol to be used to
represent a scalar value. The symbol may
not contain a section name.

value An expression whose value is assigned to
the symbol.

EXPLANATION

The ADDS command inserts a user-defined symbol, with
its associated val ue, into the user symbol table. The symbol
can then be used in place of the value in any command line
during the debug session.

When you reboot or SELect, symbolic debug automatically
puts a dummy section entry called "NO.SECTION" in the
symbol table. This section encompasses all of memory, and
allows you to put address symbols in the symbol table using
ADDS without doing a SYMLO.

Refer to the Emulation section of this manual for an
overview of symbolic debug.

@

NOTE

If you define an address symbol with the ADDS
command, the address must lie within a currently
defined section unless "sectionname:" is included in
the command Section definition information is
provided in the load module. You cannot use the
ADDS command to define a section.

ADDS
Adds symbol to symbol table

NOTE

Like other symbols in the symbol table, symbols
created with the ADDS command reside in system
memory, and will be lost when the 8540 is restarted
or turned off.

EXAMPLES

Use a Symbol to Monitor a Memory
Address
Assuming that there is a section containing the address
500H, enter the following command line to create a symbol
called COUNTER and assign it a value of 500H:

> ADDS COUNTER=500H

Enter the following command line to define breakpoint
number 1, which suspends execution when a write is made
to the address represented by COUNTER:

> BK 1 COUNTER WT

Use Symbols to Monitor a Loop
Enter the following command line to create symbols
LOOPST and LOOPEND, and assign them the values of the
addresses of the beginning and ending of the loop:

> ADDS LOOPST=Ol06H LOOPEND=Ol09H

Enter the following command line to trace all the
instructions within the loop as it executes:

> TRA A LOOPST LOOPEND

Add a Symbol Outside Existing Sections
If you have only one section called "SECTIONA" in memory
locations 1 00-200, and you attempt to add the symbol
"SYMBOL" at location 300, as follows:

> ADDS SYMBOL=300

you will get this error message:

Error 8D No section contains specified address

Instead, use the section name, too:

> ADDS SECTIONA:SYMBOL=300

3-9

AL
Allocates memory to logical andress m<lP

SYNTAX

al [actual] [blocks] [logical]

actual

blocks

logical

PARAMETERS

An expression representing the beginning
address of the program memory region that
you want to allocate to logical (virtual)
addresses. Must be between 0 and the
highest address in existing program memory.
Defaults to O.

An expression representing the number of
contiguous 4K-byte blocks of program
memory you want to allocate. Must be
between 1 and 1 OH. Defaults to the number
of blocks from the actual memory address to
the end of installed program memory.

An expression representing the beginning
address of the first logical (relocated) block.
Must be between 0 and FFFF. Defaults to the
actual memory address.

The Allocate command entered without parameters
displays the memory allocation status.

3-10

Command Dictionary-8540 System Users

EXPLANATION

NOTE

There are two different versions of the AL command.
The version described here is supported by the 8540
itself The Memory Allocation Controller (MAC)
option also supports an AL command which has the
syntax:

al loaddr [hiaddr]

The MAC version of the AL command is described in
the Emulation section of this manual.

Some emulators (e.g. the 808618088) support the
MA C version of the Ai command even though they
do not use the MAC option. Refer to your Emulator
Specifics supplement.

NOTE

You must have SELected the target processor before
executing the AL command. The SEL command
reinitializes logical address assignments to be the
same as the physical addresses.

The AL command allows your program to access a block of
program memory at logical addresses instead of their
physical addresses.

If you· only have 32K of program memory (addresses
0000-7FFF). but your program accesses addresses in the

@

Command Dictionary-8540 System Users

range 8000-FFFF, you can use the AL command to
temporarily reassign a section of program memory from the
0000-7FFF address range to the 8000-FFFF address
range.

Initial settings may be restored by entering the following
command line:

> AL 0 10 0

0000

2FFF
3000

AL
Allocates memory to logical address map

NOTE
3FFF
4000

Used for logical memory -
The AL command affects only program memory, not
prototype memory. Memory allocation has no effect
in emulation mode 2, and does not affect prototype
memory locations in mode 1.

EXAMPLE

Assume your program has a subroutine in the address
range FOOO-FFFF, but you only have 32K of program
memory (up to address 7FFF). Also assume your program
does not use any addresses in the range 3000-3FFF. Enter
the following command to allocate the unused memory to
the needed memory:

> AL 3000 1 OFOOO

T t • logical memory address

I 1- 14K-byte block

~actual memory address

To display the memory allocation status, enter the AL
command. See Display 3-2.

7FFF
8000

EFFF
FOOO
FFFF

No Memory

I

ThiS logical block
of program memory
physically resides
at 3000-3FFF

3457-22

Fig. 3-3. AL command example.

Figure 3-3 shows how your memory map now looks.

@

> AL
Virtual
OOOO-OFFF
1000-lFFF
2000-2FFF
3000-3FFF
4000-4FFF
5000-5FFF
6000-6FFF
7000-7FFF
8000-8FFF
9000-9FFF
AOOO-AFFF
BOOO-BFFF
COOO-CFFF
DOOO-DFFF
EOOO-EFFF
FOOO-FFFF

= Physical address
= OOOO-OFFF
= 1000-lFFF
= 2000-2FFF

3000-3FFF
4000-4FFF
5000-5FFF
6000-6FFF
7000-7FFF
8000-8FFF
9000-9FFF

= AOOO-AFFF
= BOOO-BFFF
= COOO-CFFF
= DOOO-DFFF

EOOO-EFFF
3000-3FFF- When the program references addresses

between FOOO and FFFF. the emulator will
access physical memory at 3000 to 3FFF.

Display 3-2.

3-11

AS
Assigns channel to device or file

SYNTAX

as Ichannel filespecl ...

channel

filespec

PARAMETERS

An I/O channel number between 0 and 7.

The name of the file or device to be assigned
to the channel number.

EXPLANATION

The AS command assigns the specified device or host file to
the specified I/O channel. Channel assignments allow
your programs to read from or write to devices or files on
the host using service calls. Refer to the Service Calls
section of this manual for further details.

Channels are numbered 0 through 9. Channels 8 and 9 are
initially assigned to the system for standard input and
standard output respectively.

Console input (CONI) and console output (CONO) may be
assigned to any number of channels at the same time. All
other devices are limited to one channel assignment at a
time.

Table 3-1 lists the allowable system device names, their
meanings, and the connector numbers to which the
devices must be attached.

Device
Name

CONO

CONI

LPT

PPTP

PPTR

REM!

REMO

3-12

Table 3-1
System Devices

Meaning

Console output Jl04

Console input Jl04

Line printer J103

Paper-tape punch Jl03

Paper-tape reader Jl03

Connector
Number

Rpmntp innllt

i ~:~: :~~::: ~: ~~:~~:: .. _ ... _-- '''r---

Remote output

Command Dictionary-8540 System Users

To display the channel-to-device assignments and the
emulator processor status, enter the STAT command. To
disconnect a channel from a device, use the CL command.

The AS command creates a new file if the specified file
does not exist.

NOTE

You must have SELected the target processor before
executing the AS command.

Your 8540 must be in TERM mode in order to assign
files on the host.

The 8560 also has an AS command, which invokes
the TNIX assembler. If your 8540 is operating in
TERM mode with an 8560, the 8540 AS command
must be preceded by the word "8540," as in the fol
lowing examples.

EXAMPLES

Assign Channels

Connect channel 0 to the host file named DATAFILE and
channel 1 to the local line printer (LPT) with the following
command line:

> 8540 as 0 DATAFI1E 1 1PT

Enter the STAT command to display channel assignments
and emulator status. See Display 3-3.

ReaSSign Channel

Here's an example of reassigning a channel that's already
been assigned once. Try to assign channel 1, which is al
ready assigned to the line printer, to the file OUTFILE with
the following command line:

> 8540 as 1 OUTFILE

> AS: Error 18 (Channel already open)

An error occurs. You must disconnect the assigned channel
from the line printer before you can connect that channel to
another file or device. Enter the following command line to
reassign channel 1:

> cl 1

> 8540 as 1 OUTFILE

Now enter the STAT command again. See Display 3-4.

REV JAN 1983

Command Dictionary-8540 System Users

> stat

8085 is the selected processor

User program was last loaded into program memory

Channel 0 is assigned to DATAFILE
Channel 1 is assigned to LPT

Display 3-3.

SYNTAX

bk [UtJ

2

all

clr

-c

PARAMETERS

Specifies breakpoint number 1.

Specifies breakpoint number 2.

Specifies all currently defined breakpoints.

Clears the specified breakpoint.

Continues execution after each breakpoint
occurs. If -C is not specified (default
condition), the BK command stops execution
after a breakpoint occurs. To resume
program execution, enter the G command
without parameters.

expression An expression representing the address
where program execution is to be inter
rupted.

rd

wt

Designates that a breakpoint occurs when a
memory read operation occurs at the
specified address. Defaults to any access
(read or write).

Designates that a breakpoint occurs when a
memory write operation occurs at the
specified address. Defaults to any access
(read or write).

NOTE

The syntax for the BK command may be different for
some emulators. Refer to your Emulator Specifics
supplement for details.

REV JAN 1983

AS
Assigns channel to device or file

BK
Sets or displays breakpoint condition

> stat

8085 is the selected processor

User program was last loaded into program memory

Channel 0 is assigned to DATAFILE
Channel 1 is assigned to OUTFlLE

Display 3-4.

When you enter the BK command without parameters, the
currently set breakpoints are displayed. The breakpoint
display will contain symbols if breakpoints are set at
addresses of loaded symbols.

EXPLANATION

The BK (BreaKpoint) command sets a breakpoint that will
suspend program execution when the specified address is
read from or written to. Up to two breakpoints may be active
at one time.

When a breakpoint is encountered during execution, a
trace line is displayed followed by the message "BKPT1" or
"BKPT2", depending on which breakpoint occurred. Some
emulators offer additional features with the BK command,
such as the ability to set up to 3 breakpoints concurrently.
See the Emulator Specifics supplement for your emulator
for details.

If the optional RD/WT parameter is omitted, the breakpoint
will occur whenever the address is read from or written to.

To clear existing breakpoints, use the CLR parameter.

NOTE

You must have SELected the target processor before
executing the BK command

If you set a breakpoint at an 110 instruction that
invokes an SVC, the SVC executes before the break
occurs. For some emulators, execution of the SVC
may prevent the operating system from breaking at
the desired instruction.

EXAMPLES

Set and Use a Breakpoint
Display the currently set breakpoints with the following
command line:

> bk

BK 1 CLR

BK 2 CLR

3-13

BK
Sets or dispiays breakpoint conditIOn

No breakpoint has been set. To set a breakpoint that
executes only if your program reads an instruction or other
data from address 504, enter the following command line:

> bk 1 504 rd

Now select emulation mode 0, download the 8560 file OBJ
into program memory, and start execution at location 100
with the command sequence shown in Display 3-5.

A breakpoint is encountered when the instruction at
location 106 reads data from address 504. A trace line is
displayed, followed by the BREAK message.

To display the cUiiently set bieakpoints, enter the foiiowing
command line:

>~

BK 1 000504 RD
BK 2 CLR

Set a Breakpoint Using a Symbol
Assume that address 504 is the end of a data list which
your program uses. The following sequence of commands

Command Dictionary-8540 System Users

assigns the symbol ENDLIST to address 504, and sets a
breakpoint to occur at the symbol (address 504) during
program execution.

Clear any existing breakpoints with the following command
line:

> BK All.. CLR

Assign symbol ENDLIST to address 504 with the following
command line:

> ADDS ENDL1ST=504

Set a breakpoint to break on a read from symbol ENDLIST
(address 504) with the following command line:

> BK 1 ENDL1ST RD

With SYMD ON, enter the following command line to
display the breakpoint conditions:

> BK
BK 1 ENDL1ST RD
BK 2 CLR

LOC 1NST
000106 86

MNEM OPER
ADD M

SP F ABC D E H L 1M SOD
0000 04 OF 01 00 00 00 05 04 07 0

000106 <BREAK BKPT1>
Display 3-5.

3-14 REV JAN 1983

Command Dictionary-8540 System Users

SYNTAX

calc [-radix] expression

radix

PARAMETERS

A letter that selects the number base (radix)
for the result of the calculation. The
allowable radix selector letters are:

H hexadecimal (default value)

T or D decimal (base 10)

o or 0 octal (base 8)

Y or 8 binary (base 2)

expression Any valid expression as defined under the
"Legal Address Expressions" heading earlier
in this section.

EXPLANATION

The CALC command evaluates an arithmetic expression
and displays the result on standard output (usually the
system terminal). The result is displayed in the selected
radix, as shown by suffix H, T, 0, or Y. A negative result is
output in two's-complement notation, except for decimal
numbers, where a minus sign is used instead.

A hexadecimal number cannot begin with a letter. For
example, the hexadecimal number A must be entered as
OA.

EXAMPLES

Add Numbers
Calculate the sum of the hexadecimal numbers A, 8, and C
and display the result in hexadecimal with the following
command line:

> CALC OA +OB +OC
21H

> DS
PC=OOII SP=5500 F=65 A=04 B=OF C=OI D=66 E=OO H=OI L=11
SOD=1 S1D=O 17=1 16=1 15=1 1E=1 M7=O M6=O M5=O

CALC
Evaluates arithmetic expression

Calculate the sum of the hexadecimal numbersA, 8, and C,
but display the result in decimal with the following
command line:

> CALC -T OA+OB+OC
33T

Add Contents of Registers
Display the contents of the emulator registers with the DS
command (the selected emulator is the 8085A). See
Display 3-6.

When a leading zero is omitted in an expression, the CALC
command recognizes the character as a symbol. To
calculate the sum of the contents of registers A, 8, and C,
enter:

> CALC A+B+C
14H

(04+0F+01 =14H)

Subtract Numbers
To subtract decimal number 6 from decimal number 5 and
display the result in hexadecimal, enter:

> CALC 5T-6T
FFFFFFFFH

Notice that the result is output in two's-complement
notation.

To subtract the decimal number 6 from decimal number 5
and display the result in decimal, enter:

> CALC -T 5T-6T
-IT

Notice that the negative result is displayed in decimal with
a minus sign.

Display 3-6.

@ 3-15

CL
Disconnects channel from device or file

I cl channel.

SYNTAX

PARAMETERS

channel An I/O channel number between 0 and 7.

Command Olctlonary-8540 System Users

EXAMPLE

Display the current system status with the STAT command.
See Display 3- 7.

>~

8085 is the selected processor

User program was last loaded into program memory

Channel 0 is assigned to LPT
Channel 1 is assigned to MYFILE

EXPLANATION Display 3-7.

The CL command disconnects the specified I/O channel(s)
from the device or host file previously associated with the
channel.

To check the status of I/O channels and the files or devices
associated with them, enter the STAT command.

NOTE

You must have SELected the target processor before
executing the CL command.

When you use the CL command, your 8540 must be
in TERM mode in order to access files on the host.

Refer to the AS command for information on assigning,
rather than closing, channels.

3-16

Disconnect channels 0 and 1 from LPT and MYFILE,
respectively, with the following command line:

>~

Display the system status again. See Display 3-8.

>~

8085 is the selected processor

User program was last loaded into program memory

Display 3-8.

Note that no channel assignments are displayed.

Command Dictionary-8540 System Users

SYNTAX

[
on]
off

clock value

on

off

value

PARAMETERS

Enables the 1 ~O-millisecond program clock.

Disables the 1 DO-millisecond program clock.

A decimal number between 0 and 65535.
Sets the 1 ~O-millisecond program clock to
the given value.

When you enter the CLOCK command without parameters,
the current value of the clock and the elapsed time are
displayed.

EXPLANATION

The CLOCK command zeros, enables, or disables the
program clock. When this clock is ON, it will be
incremented every 100 milliseconds only during emulator
program execution. The program clock defaults to OFF after
system power-up or restart.

While the clock is ON, the emulator runs approximately one
percent slower than otherwise.

The Trigger Trace Analyzer provides more precise and
versatile timing features. This option is described in the
Emulation section of this manual.

NOTE

You must have SELected the target processor before
executing the CLOCK command

> (LlQQ.

EXAMPLES

Display Current Clock Values

CLOCK
Controls program clock

Display the current clock counter and elapsed time by
entering the CLOCK command without a parameter:

> CLOCK
Clock counter is 78
Elapsed time is 47

Time Execution of Program Segment

Enter the following command to zero the program clock:

> CLOCK a

Now enable the program clock with the following
command:

> CLOCK ON

Start execution by entering the G command. See Display
3-9.

Display the program clock and elapsed time again:

> CLOCK
Clock counter is 64
Elapsed time is 64

The program took 6.4 seconds (6400 milliseconds) to
execute the code between address 100 and the fiiSt

breakpoint. Now resume program execution at the
instruction following the breakpoint. See Display 3-10.

Display the program clock again:

> CLOCK
Clock counter is 69
Elapsed time is 5

One-half second (500 milliseconds) elapsed before the
second break. A total of 6.9 seconds of execution time have
elapsed since program execution began at address 100.

LOC INST
000306 86

MNEM OPER
ADD M

SP F ABC D E H L 1M SOD
0000 04 OF 01 01 00 00 05 04 07 0

000306 <BREAK BKPT1>

> Q
LOC 1NST
0200 86

MNEM OPER
ADD M

0200 <BREAK BKPT2>

Display 3-9.

SP F ABC D E H L 1M SOD
0000 04 IF 01 00 00 00 06 OA 07 0

Display 3-10.

3-17

co
Resumes execution of susPended command

SYNTAX

co
{~~mmand }

command

-a

3-18

PARAMETERS

The name of a command: any command
listed in this Command Dictionary or an
allowed short form.

Designates all suspended commands.

Command Dictionaiy-8540 System Useis

EXPLANATION

The CO (COntinue) command continues execution of a
suspended command. Execution resumes at the point
where the process was suspended.

A command may be suspended in either of two ways:

1. by entering CTRL-C twice (suspends all processes), or

2. by entering CTRL-C once and then entering the SUSP
command.

Command Dictionary-8540 System Users

SYNTAX

com [e={;}] [I={~}] [p=promptl [t=delayl [m=parityl [c={:}]

[f=tl [eol=hexstringl [hs=offl [sub ch1 =ch2l!ch1 =ch21...l

[b = bytecountl

e=

1=

o

p=

prompt

t=

delay

m=

parity

REV JAN 1983

PARAMETERS

Echo parameter.

Selects remote echoing of characters
entered from the system terminal. (Host
echoes character.) Default value.

Selects local echoing of characters entered
from the system terminal. (8540 echoes
character.)

Linefeed parameter.

Specifies that the 8540 does not output a
linefeed with a carriage return. (Host
provides linefeed.) Default value.

Specifies that the 8540 outputs a linefeed
with each carriage return.

Prompt parameter. Specifies the prompt
sequence of the host computer communi
cating with the 8540.

Prompt sequence. The characters that the
host computer outputs when it is ready to
receive data. The prompt sequence consists
of up to 32 hexadecimal digits, representing
up to 16 ASCII characters. Defaults to no
prompt sequence.

Turnaround delay parameter. Specifies the
preparation time required by the host
computer between sending a message or
prompt sequence to the 8540 and receiving
a message from the 8540 during data
transfers.

Delay time. A two-digit hexadecimal number
representing the delay time in 100-millisec
ond units. Defaults to 00. (For COM Version
4.1 and later versions, the delay time is spec
ified in 10-millisecond units.)

Parity parameter. Selects the parity option
required by the host computer when it
receives or sends data.

Includes character transmission length and
number of stop bits. Refer to a table of the
Intersystem Communication section for the

c=

COM
Sets up communications with host computer

possible values of this parameter and what
those values represent.

Error check parameter.

Specifies that COM execution stops if a
communication error (lost carrier, parity
error, or framing error) occurs on the remote
communication port. Default value.

Ignores communication error and continues
COM execution.

f= Load Module Format parameter. This
parameter specifies the message block
format to be used in formatted uploads. If
this parameter is omitted, blocks are
transmitted in Extended Tekhex format.

Specifies Standard Tekhex format. COM
accepts message blocks in either Standard
or Extended Tekhex format, regardless of
the F parameter setting.

eol= End-of-line parameter. This parameter spec
ifies the character sequence used by the
host to mark the end of a line of text, such as
a host command or a Tekhex message block.

hexstring A maximum of 32 hexadecimal digits
representing a character string. Defaults to
an ASCII carriage return (OD hexadecimal).

hs=off Handshaking parameter. The parameter
HS=OFF eliminates the ACK/NAK response
from the protocol of a formatted transfer. In
a download, COM normally responds with
an ACK or NAK each time it receives a
message block from the host. When
handshaking is OFF, COM gives no response.
However, checksums are still computed and
checked, and if any are found to be incorrect,
COM issues an error message when the
transfer is complete. In an upload, COM
expects no ACK or NAK response from the
host. Checksum calculating is also turned
OFF.

Turning handshaking off has no effect on
the P (prompt sequence) and T (turnaround
delay) parameters. COM still looks for the
host's prompt sequence (if any) and waits
the indicated turnaround delay time (if any)
before continuing.

sub Substitution parameter. This parameter
specifies one or more character substi
tutions to be performed by COM on ASCII
data transmitted to or from the host. Each

3-19

COM
Sets up communications with host computer

ch1

ch2

b=

bytecount

substitution construct consists of a pair of
character codes (represented as two-digit
hexadecimal numbers) separated by an
equals sign. When the first character is
received from the host COM substitutes the
second character. When the second char
acter is to be sent to the host. COM
substitutes the first.

Multiple substitution constructs can be
strung together, separated by slashes. For
example, the parameter entry SUB
aa=bb/cc=dd/ee=ff will cause the host
character aa to be changed to bb; the host
character cc to be changed to dd; and the
host character ee to be changed to ft, when
ever COM receives the characters aa, cc, or
ee from the host.

ASCII character encoded as two hexadeci
mal digits.

ASCII character encoded as two hexadeci
mal digits.

Byte count parameter. Specifies the number
of bytes of object code that COM will place
in each data block during formatted uploads.
(Each byte is encoded as two hexadecimal
digits.) This parameter is supported only for
COM Version 4.1 and later versions. This
parameter is ignored if you specify F = T.

A two-digit hexadecimal number in the range
01-76. Defaults to 20 (32 decimal). Any num
ber outside the range 01-76 yields a byte
count of 76 (118 decimal).

Any or all of the COM parameters may be entered in the
command line, in any order. If the same parameter is en
tered in the command line more than once, the most recent
entry overrides any previous entry.

When you enter the COM command without parameters,
communication is started using the default values, which is
the same as entering:
> COM E =R L =0 T =00 M =4 C =T EOL =OD B =20

3-20

Command Dictionary-8540 System Users

The COM (COMmunication) command initiates communi
cation between the 8540 and a host computer. After you
execute the COM command, you can enter host computer
commands on the system terminal.

Transferring Data. COM is used for transferring data
between files on the host computer and program/proto
type memory or I/O ports on the 8540.

Refer to the Intersystem Communication of this manual for
a complete description of COM command parameters, and
for a detailed explanation of each type of transfer. Refer to
the Operating Procedures of this manual for examples of
each type of transfer.

A transfer is accomplished by the following procedure:

a. Enter the host computer command that transfers
the data between the terminal and the appropriate
file on the host system. (Do not enter a carriage
return.)

b. Enter the sequence of keystrokes (transfer
sequence) that tells the 8540 what to send or
where to store what it receives. The transfer
sequence begins with a null character.

Appropriate transfer sequences are listed in Table 3-2.

Obtaining COM Status. Status information about the
connection between the 8540 and the host computer is
maintained in the 8-bit Remote Port Status Register. To
display the contents of the Remote Port Status Register,
enter the null character, then press the S key and enter a
carriage return. The system terminal displays the register
contents as two hexadecimal digits. Refer to the
Intersystem Communication section for details about the
Remote Port Status Register.

Aborting a Data Transfer. To abort a data transfer, press
the BREAK key. You may then attempt another data trans
fer, enter another host command, or exit from COM.

Exiting from COM. To exit from COM, enter the null
character and then press the ESC key.

REV JAN 1983

Command Dictionary-8540 System Users

Table 3-2
Types of Data Transfer

Type of Type of
Name Data Transfer

Formatted Object Code Tekhex
Download to Binary

Formatted Object Code Binary
Upload to Tekhex

Unformatted ASCII Copy
ASCII
Download

Unformatted Binary Copy
Binary
Download

Unformatted ASCII Copy
ASCII
Upload

Unformatted I Binary Copy
Binary

I Upload

a (null)-null character (ASCII 00, usually CTRL-@)
(cr)-carriage return

Source

Host File

8540
Program Memory

Host File

Host File

8540 Device

I 8540 Device

I

COM
Sets up communications with host computer

Transfer
Destination Sequencea

8540 (null)(cr)
Program Memory

Host File (null)
addressesb (cr)

8540 Device (null)
>devicec (cr)

8540 Device (null)
=device c (cr)

Host File (null)
<devicec (cr)

Host File (null)
+device c (cr)

b addresses-the starting and ending addresses of one or more blocks of program memory to be uploaded. The last pair of addresses
may optionally be followed by the transfer address of the object code.

C device-the 8540 liD device that is to provide or receive the data.

@ 3-21

CONFIG
Defines system configuration and host interface

config local
or

SYNTAX

config term [e=H}]L= {~}][m=parity] ~={~}J [t=hexstring]

local

term

e=

1=

o

m=

parity

i=

h

3-22

PARAMETERS

Places the 8540 in LOCAL mode.

Places the 8540 in terminal (TERM) mode.

Echo parameter. Applicable in TERM mode.

Remote echoing. Characters entered at the
terminal are echoed by the host computer.
Default value.

Local echoing. Characters entered at the
terminal are echoed by the 8540.

Linefeed parameter. Applicable in TERM
mode.

Specifies that the 8540 will not output a
linefeed with a carriage return. Default
value.

Specifies that the 8540 will output a
linefeed with a carriage return.

Parity parameter. Selects the parity option
required by the host computer when it
receives or sends data. Applicable when i=r
(RS-232-C).

Includes character transmission length and
number of stop bits. Refer to a table of the
Intersystem Communication section for the
possible values of this parameter and what
those values represent. Defaults to 6.

Interface parameter. Applicable in TERM
mode.

Specifies that the 8540-host interface is the
01:1\ ... /01:1\ ..,-, ~~_+
I\L-IVII/ 1lL-IVIV ""VI L.

Specifies that the 8540-host interface is the
HSI port. This is the default.

Command Dictionary-8540 System Users

t= Timeout parameter. This is a multiplier that
affects TERM interface protocol timeouts.
For example, if t=5, then all the timeouts will
be five times as long as their default
durations.

hexstring The multiplier. Can range from 1 to FF; the
default is 1. If the multiplier starts with a
letter (A-F) it must be preceded by a O.

EXPLANATION

The CON FIG (CONFIGuration) command puts the 8540 in
one of two possible system configurations when the 8540
is connected to a host computer. In one configuration,
TERM mode, the system acts just as if the terminal were
connected directly to the host computer. In the other
configuration, LOCAL mode, the system acts as if the
terminal were connected only to the 8540.

TERM and LOCAL Modes
In TERM mode, all characters entered at the system
terminal are sent directly to the host computer. This mode
is particularly powerful when the host computer is an 8560
Multi-User Software Development Unit. Refer to the
Intersystem Communication section of this manual for
more information on the use of TERM mode when the 8540
is connected to an 8560. Refer also to the 8560 System
Users Manual for details about using an 8540 connected to
an 8560.

In LOCAL mode, all characters entered at the system
terminal are sent directly to the 8540 to be processed as
OS/40 commands. The CON FIG LOCAL command
produces the same effect as when the 8540 isn't
connected to a host at all.

Unless your host is an 8560, you should use the COM
command (rather than CONFIG) to transfer data between
the host and the 8540.

Startup Configurations
When you power up the 8540, you are in LOCAL mode. You
may also achieve the effects of booting in TERM mode,
using the startup command string. This feature is
controlled by switch position number 1 (switch number
S 1100) on the 8540 System Controller board.

REV JAN 1983

Command Dictionary-8540 System Users

If the switch is closed (0), the 8540 executes the startup
command string named $STARTUP, residing in EEPROM.

If the switch is open (1), $STARTUP is not executed.

If you want the 8540 to boot up in TERM mode, close the
switch and include a CONFIG TERM command, with
appropriate parameters, as the first command in the
$STARTUP string.

CONFIG
Defines system configuration and host configuration

Changing Configurations
The following list shows how to change the 8540/host
computer system configuration:

1. From TERM mode to LOCAL mode: Enter the "config
local" command (8560) or re-boot the 8540.

2. From LOCAL mode to TERM mode: Enter a CONFIG
command, including TERM and other appropriate
parameters.

3-23

D
Dispiays memory contents Cumrnand Dictionary-8540 System Users

EXPLANATION
SYNTAX

d [=~J loaddr [hiaddr]

The D (Dump) command sends the contents of program or
prototype memory to standard output (usually directed to
the system terminal).

-b

-w

(default)

loaddr

hiaddr

>~

3 4

PARAMETERS

Selects byte-oriented output.

Selects word-oriented output.

The default byte/word output format
depends on the currently selected emulator.
Refer to the Byte/Word Parameter dis
cussion in the Emulator Specifics supple
ment for your emulator processor.

An expression representing the address of
the first byte in program/prototype memory
to be displayed.

An expression representing the address of
the last byte in program/prototype memory
to be displayed. Defaults to (loaddr+OFH) or
the top of memory, whichever is less.

5 6 7 8 9 ABC D E F a 1 2

D displays the hexadecimal representation of the data
alongside the ASCII representation. In the ASCII repre
sentation, periods represent data bytes with hexadecimal
values less than 20 or greater than 7E.

The emulation mode and memory map assignments
determine whether program or prototype memory data is
displayed. Refer to the EM and MAP command discussions.

EXAMPLES

For 8-bit processors, or if -B is specified, the D command
output is in the format shown in Display 3-11.

For 16-bit processors, or if -W is specified (where each
address represents one byte). the D output is in the format
shown in Display 3-12.

For 16-bit processors with external word addressing
(where each address represents one word), the D output is
in the format shown in Display 3-13.

000003 32 31 00 00 00 00 00 00 41 42 43 00 00 00 00 00 21. . ABC .

000013 00 30 31 32 .012
-.,.-

r
'---.............. ~v~------------------~~ ~-----'v~----~~

address of
first byte
in block

> D 4 18
4 6

000004 3100 0000
000014 3031 3233

> fLi....Qf.
4/C 5/D

000004 3100 0000
OOOOOC 3031 3233

3-24

t
hexadecimal representation

of bytes in block

8 A C E 0 2

0000 0041 4243 0000 0000 0000

0000

6E 7/F 8/0 911 A/2 B!3

0000 0041 4243 0000 0000 0000

0000

t
ASCII representation
of bytes in block

Display 3-11 .

1.ABC ..
0123 ..

Display 3-12.

1. .. . ABC [words 4--BJ
0123 .. [words C--EJ

Display 3-13.

Command Dictionary-8540 System Users

SYNTAX

PARAMETERS

-a Deallocate all program memory blocks.

loaddr An expression representing the beginning
address of the logical address block to be
deallocated. If no memory space designator
is used, all memory spaces in the given
range will be deallocated.

hiaddr An expression representing the ending
address of the logical address block to be
deallocated. Defaults to the ending address
of the 4K-byte block specified by the loaddr
parameter.

@

EXPLANATION

NOTE

This command deal/ocates memory assignments
made using the Memory Allocation Controller (MAC)
version of the AL command, which is described in the
Emulation section of this manual. If memory
allocation was done using the version of the AL
command descflbed in this section, refer to the AL
command for methods of restoring initial memory
allocation settings. Refer to your Emulator Specifics
supplement for further information.

DEAL
Deallocates memory from logical address map

The DEAL (DEAllocate) command deallocates logical
memory assignments. If memory had been allocated, DEAL
causes physical memory to be made available for allocation
to any logical address.

An attempt to access a non-allocated program memory
address will cause an error to occur.

EXAMPLES

> DEAL -A

Deallocates all program memory. Makes all of program
memory unavailable to your program.

> DEAL 1000 IFFF
Deallocates addresses 1000-1 FFF.

> DEAL 1000
Deallocates all program memory from address 1000 to the
end of the block. Effectively the same as the previous
example.

> DEAL PROMEMLO PROMEMHI
Deallocates memory from the beginning of the block
containing the address PROMEMLO to the end of the block
containing the address PROMEMHI.

3-25

01
Translates object code to mnemonics

SYNTAX

di [Ioaddr] [hiaddr] [lines]

loaddr

hiaddr

lines

PARAMETERS

An expression representing the program/
prototype memory address where disas
sembly begins. Defaults to 0000.

An expression representing the program/
prototype memory address where disas
sembly ends. Defaults to the end of memory.

The number of lines to be disassembled.
If this parameter and hiaddr are omitted,
disassembly continues until the end of
memory is reached or until you enter
CTRL-C.

When you enter the DI command without parameters,
disassembly starts at address 0000, and continues until
the end of memory is reached or until you enter CTRL-C.

EXPLANATION

The DI (Disassemble) command translates the object code
in the specified memory area back into its corresponding
assembly language mnemonics and operands, and sends
this information to standard output. usually the system
terminal.

If you enter only a single address parameter, disassembly
proceeds from that address to the end of memory, or until
you enter CTRL-C. If you have only 32K of program
memory, addresses 8000 through the end of memory are
considered to be all zeros.

The disassembly is erroneous if the specified loaddr does
not contain the first byte of an instruction. The disassembly
terminates when either the hiaddr is reached or the lines
parameter is satisfied.

The memory map assignments and emulation mode
,.J,,+ -...; _ 1t. •• &...._+ _ .. _. __ .. ___ __ ... _ ... _ .. _ ______ =_
u""""" ""'" VV""'"'''', tJl V~I 0111 VI U"CI tJl VLVLytJC IIICIIIVI Y '"

3-26

Command Dictionary-8540 System Users

disassembled. Refer to the MAP and EM command
discussions.

NOTE

You must have SELected the target processor before
executing the DI command.

EXAMPLES

Disassemble Between Addresses
To disassemble addresses 100-102, enter:

> DI 100 102

LOC INST MNEM OPER
000100 210005 LXI H,0500

Disassemble a Number of Lines
Enter the following command line:

> DI 100 10E 4

LOC INST MNEM OPER
000100 210005 LXI H,0500
000103 0605 MVI B,05
000105 AF XRA A

000106 86 ADD M

DI disassembles only to address 106: Only the first four
lines are disassembled. This example is the same as
entering DI 100,,4.

Disassemble to an Ending Address
Enter the following command:

> DI 100 10E 30

LOC INST MNEM OPER
000100 210005 LXI H,0500
000103 0605 MVI B,05
000105 AF XRA A

000106 86 ADD M

000107 23 INX H
000108 05 DCR B
000109 C20601 JNZ 0106
00010C D3F7 OUT F7

Only 9 lines are disassembled, because the hiaddr
parameter is reached. This example is the same as entering
,...... 1nn .. n.,....
UI IUU IUt:.

Command Dictionary-8540 System Users

[ds [-II

-I

(default)

SYNTAX

PARAMETERS

Long display. Displays all the emulator
registers.

If -L is not specified, the DS command
displays only the most frequently used
emulator registers. Default and long dis
plays are the same for some emulators.

EXPLANATION

The DS (Display Status) command displays the current
status of the emulator. The display line varies for each

> SEL 8085
> DS.

os
Displays contents of emulator registers

emulator; however, each display line includes the
following information:

• the address of the next instruction to be executed by the
emulator.

• the emulator register contents.

Refer to the Emulator Specifics supplement for the DS
display format for your emulator.

NOTE

You must have SELected the target processor before
executing the DS command.

EXAMPLES

Select the 8085A emulator and display the current status
of the emulator registers with the command sequence
shown in Display 3-14.

program counter shows address of next instruction to be I executed: initialized to 0000 when emulator is selected

---pC=OOOO SP=OOOO F=OO A=OO B=OO C=OO D=OO E=OO H=OO L=OO
SOD=O S1D=O 17=0 16=0 15=0 1E=O M7=1 M6=1 M5=1

Display 3-14.

@ 3-27

EM
Selects emulation mode

I em [mode]

mode

SYNTAX

PARAMETERS

One of the following modes:

o System mode. Execution in this mode
uses program memory and the emula
tor clock and uses SVCs for 1/0. Mode
o is set when an emulator is initially
selected.

2

Partial emulation mode. Execution in
this mode uses program memory
andlor user prototype memory,
according to the map assignments.
(Refer to the MAP command). Execu
tion also uses the prototype's clock
and may use either prototype 1/0 or (if
available) SVCs.

Full emulation mode. Execution in this
mode uses the prototype's memory,
clock, and 1/0. Mode 2 SVCs are
available for some emulators.

When you enter the EM command without parameters, the
current emulation mode is displayed.

3-28

Command Dictionary-8540 System Users

EXPLANATION

The EM (EMulate) command selects the emulation mode.
In emulation mode 1 or 2, your prototype must be
connected to the 8540 via the prototype control probe.

NOTE

You must have SELected the target processor before
executing the EM command

E3
Be careful when writing to program memory in
emulation mode 1: Memory write operations
performed in program memory are also performed in
user prototype memory, for most emulators.

EXAMPLES

Choose Emulator and Emulation Mode
Select the 8085A emulator and emulation mode 2 with the
following command lines:

> SEL 8085
> EM 2

Display Current Mode
To display the current emulation mode, enter:

> EM

8085 is in emulation mode 2

Command Dictionary-8540 System Users

SYNTAX

ex [=~J [-n] address

-b

-w

(default)

-n

address

PARAMETERS

Selects a byte-oriented input and output
format.

Selects a word-oriented input and output
format.

The default byte/word input/output format
depends on the currently selected emulator.
Refer to the Byte/Word Parameter discus
sion in the Emulator Specifics supplement
for your emulator.

Suppresses the read-back check for the
command,

An expression representing the address of
the data in program/prototype memory that
you wish to display or alter. Must be an even
value if the -W option is used.

EXPLANATION

The EX (EXamine) command permits you to display and
(optionally) alter the contents of the specified address, as
well as the contents of the subsequent addresses, on the
system terminal.

The EX command displays the specified address, an equal
sign, the contents ofthe address, and a space. The contents
of each address appear as two hexadecimal digits for byte
processors, or four digits for word processors. Table 3-3
lists your options when this information is displayed.

The read-back check compares prototype memory contents
after the command is finished to see if the memory was

> EX 500

000500-09 spacebar

000501=21 backspace

000500=09 linefeed

000500=09 01

Displays the next address and
contents on next line.
Displays the previous address and
its contents on next line.
Displays the current address and
its contents on next line.
Replaces current data and displays

Entry

Space Bar

BACKSPACE

LlNEFEED or
RUBOUT

RETURN or
CTRL-C

A hexadecimal
data string
(2 or 4 digits)

EX
Displays or alters memory contents

Table 3-3
EX Command Options

Function

Displays the next address and its
contents.

Displays the previous address and
contents.

Displays the current address and
contents.

Terminates the command. Memory loca
tions altered before entering CTRL-C or
pressing the RETURN key remain altered.

Replaces the current data. The next
data byte or word then appears on
a new line.

properly altered. If there is a difference between memory
contents and what was sent to memory, an error is
returned. You may want to suppress the read-back check
when you know it's going to fail anyway, for example after
you've written to prototype I/O. No read-back check is
performed on writes to program memory.

The emulation mode and memory map assignments
determine whether program or prototype memory is
selected. Refer to the EM and MAP command discussions.

Alternative Commands
To display blocks of memory contents, use the D command.
To modify a sequence of bytes without checking their
current contents, use the P command.

EXAMPLES

The example shown in Display 3-15 illustrates the various
EX command actions that you can take.

000501=21 backspace
next address and its contents on next line.
Displays the previous address and
its contents on next line.

000500=01 return Terminates the EX command.

Display 3-15.

@ 3-29

F
Fills program/prototype memory with data

SYNTAX

[
-b] I hexstring I

f -w [-n] loaddr hiaddr -a string

-b

-w

(default)

-n

loaddr

hiaddr

hexstring

-a

string

PARAMETERS

Selects byte-oriented filling of memory.

Selects word-oriented filling of memory.

The default byte/word format depends on
the currently selected emulator. Refertothe
Byte/Word Parameter discussion in the
Emulator Specifics supplement for your
emulator processor.

Suppresses the read-back check for the
command.

An expression representing the lower
bound of the address range filled with the
hexstring or string. Loaddr must represent
an even value if the -W mode is used.

An expression representing the upper
bound of the address range filled with the
hexstring or string. Hiaddr must be greater
than or equal to loaddr, and must represent
an odd value if the -W mode is used.

An even number of hexadecimal digits that
represent a value to be stored in the
specified memory area. If the current
emulator is a 16-bit processor or the -W
parameter is selected, there must be a
multiple of four hexadecimal digits; other
wise, there must be a multiple of two
hexadecimal digits.

Specifies that the next string in the
command line is to be an ASCII string.

An ASCII string to be stored in the specified
memory area. If the current emulator is a
16-bit processor or the -W parameter is
selected, there must be an even number of
ASCII characters.

EXPLANATION

NOTE

In this discussion, the term "byte string" refers to the
sequence of bytes or words that is the "filler" for the
duration of the F command. The byte string is created
by concatenating all hexstrings and ASCII strings in
the command invocation into a single string.

3-30

Command Dictionary-8540 System Users

The F (Fill) command fills the specified memory area with
the specified byte string. The lower memory address
receives the first byte or word of the byte string, the next
address receives the next byte or word, and so on until the
memory area is filled.

If the end of the byte string is reached before the upper limit
of the address range is reached, filling continues with the
beginning ofthe byte string. This process continues until all
addresses within the specified range have been filled.

When the memory area to be filled is not an exact multiple
of the byte string length, filling stops at the specified upper
address and a message indicating a truncation error
appears on the system terminal. All previous addresses,
however, retain their contents (already filled with the byte
string).

The read-back check compares prototype memory contents
after the command is finished to see if memory was
properly altered. If there is a difference between memory
contents and what was sent to memory, an error is
returned. No read-back check is performed on writes to
program memory. You may want to suppress the read-back
check when you know it will fail anyway, for example after
you've written to prototype I/O.

For 8-bit processors, you must enter each hexstring as a
series of hexadecimal pairs. For 16-bit processors, the
hexstring must contain a multiple of four hexadecimal
digits. For example, you would enter the value B as DB for
an 8-bit processor, and OOOB for a 16-bit processor.

The memory area filled with the specified byte string may
lie in program memory, user prototype memory, or both,
depending on the memory map assignments and the
emulation mode. Refer to the MAP and EM command
discussions.

EXAMPLES

Fill with Zeros
Enter the following command linetofill addressesO-Fwith
zeros:

> F 0 F 0

F: Error 53 - Symbol not found

An error occurs because the hexadecimal number was
inteipieted as a symbol, F, which does not exist. Try again:

> F 0 OF 0

F: Error 37 - Invalid hexadecimal string

Another error. A hexstring must contain an even number of
hexadecimal digits.

> F 0 OF 00

This time, no errors. Now check the contents of addresses
O-F with the DUMP command line, as shown in Display
3-16.

Command Dictionary-8540 System Users

Fill with a Hexstring
To fill memory locations 00-03 with the hexstring ABCD
and display the contents, enter the command sequence
shown in Display 3-17.

Fill with an ASCII String
Fill memory locations 00 to 03 with the string "ABCD", and
display the contents, with the command sequence shown
in Display 3-18.

Notice that the memory values of the ASCII string are not
the same as those of the hexstring.

> D 0

o 1 2 3 456 7 8 9 ABC D E F
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

F
Fills program/prototype memory with data

Fill with a Long String
Fill memory locations 00 to 03 with the hexstring
1234567890 and display the contents with the command
sequence shown in Display 3-19.

Notice that although the hexstring is truncated, all previous
addresses retain their filled contents.

Fill with Both Hex and ASCII String
Fill memory locations 00 to OA with the combination of
hexstring ABCD and ASCII string 'AB CD $EF' and display
the contents with the command sequence shown in
Display 3-20.

Display 3-16.

> F 0 3 ABCD-.--- a hexstring may start with a letter
> D 0

o 1 2 3 4 5 6 7 8 9 ABC D E F
000000 AB CD AB CD 00 00 00 00 00 00 00 00 00 00 00 00

> F 0 3 -A ABCD
> Q..J2.

Display 3-17.

012345678 9 ABC D E F
000000 41 42 43 44 00 00 00 00 00 00 00 00 00 00 00 00 ABCD

> F 0 3 1234567890
F: Error 56 - Truncation error
:> D 0

Display 3-18.

o 123 456 7 8 9 ABC D E F
000000 12 34 56 78 00 00 00 00 00 00 00 00 00 00 00 00 .4Vx

> F 0 OA ABeD -A 'AB CD SEF'
> 1L.Q

Display 3-19.

o 1 2 3 4 5 6 7 8 9 ABC D E F
000000 AB CD 41 42 20 43 44 20 24 45 46 00 00 00 00 00 .. AB CD SEF t ~---..y

hexstring ABCD ASCII string
AB CD $EF

Display 3·20.

3-31

G
Begins program execution

SYNTAX

9 [=~J [address]

-r

-I

(default)

address

3-32

PARAMETERS

Causes this G command to be reinvoked
each time a breakpoint is encountered. A
break message is displayed at each break.
This continues indefiniteiy untii you enter
CTRL-C.

Same as -R, except trace and break lines are
suppressed.

If neither -R nor -L is specified, the G
command stops execution after the first
break.

An expression representing the address
where program execution begins. Defaults
to the current value of the program counter,
which is:

1. The address following the last instruc
tion executed, if any; or

2. The transfer address, if it exists and the
program has not already been started;
or

3. Address 0000, if there is no transfer
address and the program has not
already been started.

Command Dlctlonary-8540 System Users

Entering the G command without parameters starts the
program at the default address, as described above.
Execution stops at the first breakpoint.

EXPLANATION

The G (Go) command starts program execution, using the
currently selected emulator.

To interrupt program execution when your program reads
from or writes to specified addresses, set breakpoints with
the BK command. To suspend program execution, enter
CTRL-C.

If -R or -L is used, the G command repeats itself when the
breakpoint is encountered. However, each time execution
begins again, the emulator registers are not reset to the
values they held when the G command was originally
entered.

For example, with the Za001 /Za002 emulator, you may
begin execution at an address in the System Code memory
space. During the execution of the program and before the
breakpoint is reached, the memory space being used may
switch from System Code to another one, such as Normal
Code. The emulator's register contents will have changed
to reflect the change in memory space being used, so when
the G command repeats according to the -R or -L modifier,
execution begins in the wrong memory space (Normal Code
instead of System Code.)

NOTE

If you have used the BK -C command to specify that
execution is to continue after a breakpoint, then the
-R or -L modifiers of the G command have no effect.
That is, BK -C has precedence over G -R and G -L.

G
Command Dictionary-8540 System Users Begins program execution

EXAMPLES

Select the 8085A emulator and emulation mode 0 with the
following command:

A break occurs when the instruction at location 106 reads
data from address 504.

> SEL 8085
If you specify the -R modifier in the G command line, the G
command will be executed repeatedly. See Display 3-22.

Set a breakpoint at a read from address 504 and start
program execution at address 100 with the command
sequence shown in Display 3-21.

> BK 1 504 RD
> G 100

LOC INST
000106 86

MNEM OPER
ADD M

000106 <BREAK BKPTl>

> G -R 100

LOC INST MNEM OPER

000106 86 ADD M
000106 <BREA.l{ BKPT1>

000106 86 ADD M
000106 <BREAK BKPTl>

000106 86 ADD M

000106 <BREAK BKPTl>

@

SP F ABC D E H L 1M SOD
0000 BO EO 01 00 00 00 05 04 07 0

Display 3-21.

SP F A B C D E H L 1M SOD
0000 BO EO 01 00 00 00 05 04 07 0

0000 BO EO 01 00 00 00 05 04 07 0

0000 BO EO 01 00 00 00 05 04 07 0

(Enter CTRL-C to stop the
repetition of G command execution.)

Display 3-22.

3-33

LO
Loads program into memory

LOG
Logs terminal input/output to device

10 [parameters]
or

SYNTAX

10 -0 offset [parameters]

PARAMETERS

parameters One or more values to pass to the program
being loaded. The program executes the Get
Execution Line Parameter SVC (function
code 1 C) to obtain these parameters one at a
time. Refer to the Service Calls section for a
description of the Get Execution Line
Parameter SVC.

-0 Specifies load with offset.

offset The amount to offset each block of object
code from its designated memory location.
Also adds an offset to the transfer address, if
one is present.

EXPLANATION

The LO (LOad) command loads a load module from
standard input into program/prototype memory. The input
should be of the type created by an A-Series or B-Series
assembler or linker.

Each block of object code in the file is loaded into
program/prototype memory starting at the location

1109 filespec

filespec

SYNTAX

PARAMETERS

The 8540 device that is to receive a copy of
terminal input/output.

EXPLANATION

The log command causes a copy of most terminal
input/output to be sent to the specified device or file. The
LOG command is not intended for use in TERM mode.

3-34

Command Dictionary-8540 System Users

specified in the object code (plus any specified offset). The
transfer address (if any) is loaded to the emulator's program
counter. If there is no transfer address in the input, the
emulator's program counter will be set to zero.

The standard redirection symbol «) is used to indicate the
load file on the host, which can be an object file created by
an assembler, or a load file created by the SAV command or
by a linker.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are affected. Refer to the EM and MAP command
discussions.

NOTE

When you use the LO command your 8540 must be
in TERM mode in order to access files on the host.

EXAMPLES

$ 10 <CALORIES PIZZA BEER

Downloads the contents of the 8560 load file CALORIES
into memory. The parameters PIZZA and BEER can be
accessed through the Get Execution Line Parameter SVC in
the program.

$ 10 -0 <PROBLEMS 100 YES NO

Downloads the contents of the 8560 load file PROBLEMS
into memory. Each block is loaded at the address equal to
the location specified in the object code plus 100. The
parameters YES and NO can be accessed through the Get
Execution Line Parameter SVC in the program.

To turn off display to the logging device, enter the LOG
CONO command.

EXAMPLES

> LOG LPT
(sends all terminal inputloutput to
both the terminal and the line printer)

(OS/40 commands)

> LOG eONO
(turns off display to the line printer)

REV JAN 1983

Command Dictionary-8540 System Users

map [-m]
or

SYNTAX

map option lloaddr [hiaddrJI ...

-m

(default)

option

@

PARAMETERS

Displays the current memory map assign
ments in matrix form.

If -M is not specified, the MAP command
displays the current memory map assign
ments in vertical tabular form.

One of the following options:

P Assigns the specified memory area
to program memory. This option
does not affect the memory protect
status of these biocks.

U Assigns the specified memory area
to user prototype memory. This
option does not affect the memory
protect status of these blocks.

PRW Assigns the specified memory area
to program memory and sets the
memory protect status to read and
write.

PRO Assigns the specified memory area
to program memory and sets the
memory protect status to read only.

URW Assigns the specif.ied memory area
to prototype memory and sets the
memory protect status to read and
write.

URO Same as URW in emulation modes
1 and 2; same as PRO in emulation
mode O. OS/40 does not support
write protection for prototype
memory.

RO Assigns the specified memory area
to be read only (ROM simulation)
when mapped to program memory.
Th is option does not affect the
program/prototype assignments of
this area.

RW Assigns the specified memory area
to be read/write memory when
mapped to program memory. This
option does not affect the program/
prototype assignments ofthis area.

loaddr

hiaddr

MAP
Sets or displays memory map assignments

An expression representing the lower
bound of the address range (starting at the
specified address rounded down to a 128-
byte multiple) assigned to program or user
prototype memory.

An expression representing the upper
bound of the address range (starting at the
specified address rounded up to a 128-byte
multiple) assigned to program or user
prototype memory. Hiaddr must be greater
than or equal to loaddr. Defaults to the end
of the 128-byte block that contains the lower
address.

When you enter the MAP command without parameters,
the current memory map assignments are displayed in
tabular form.

EXPLANATION

NOTE

The syntax and use of the MAP command may be
different for some emulators (e.g. the 16-bit
emulators). Refer to your Emulator Specifics
supplement for details.

The MAP command sets memory map assignments or
displays the current memory map status. The memory map
is an internal table maintained by OS/40 that indicates
which portions of memory used by the emulator are in
program memory and which are in user prototype memory.
When you SELect an emulator, the map is initialized sothat
all memory is mapped to program memory (PRW option).

The addressable memory space for most emulators is made
up of 512 blocks of 128 bytes each. Refer to the Emulator
Specifics supplement for the block size for your emulator.
Each block may be assigned to either program or user
prototype memory. Each block also has a memory protect
status that either allows read and write operations or
restricts access to read only. This memory protection
feature is implemented only for program memory.

The program/prototype assignments and memory protect
status are independent. Therefore, in emulation mode 0
(program memory only), options U, URW, and URO are
interpreted as P, PRW, and PRO, respectively. In emulation
mode 2 (prototype memory only), options P, PRW, and PRO
are interpreted as U, URW, and URW, respectively. Notice
that URO is the same as URW in emulation modes 1 and 2.
Refer to the EM command for descriptions of the three
emulation modes.

If a write access occurs in a block of program memory that
you have specified as read-only, an execution break will
occur and no write operations will be performed.

3-35

MAP
Sets or displays memory map assignments

You may specify either a single address or an address
range. When you enter a single address, one block is
mapped. When you specify any portion of a block, the whole
block is affected. Refer to the examples.

The MAP command allows you to display the current
memory map status (program/prototype memory assign
ment and memory protect status) in either of two forms.
When you include the -M parameter in the command, the
display is in matrix form: Each element represents one
block of user prototype or program memory. The MAP
command entered without parameters displays a vertical
table that includes addresses or address ranges.

Before setting memory map assignments, type EM 1 to
enter emulation mode 1. Otherwise, the system terminal
displays the message, WARNING-NOT IN EMULATOR
MODE 1. (The settings still take effect, however.)

NOTE

You must have SELected the target processor before
executing the MAP command.

In emulation mode 1, memory write operations
performed in program memory are also performed in
the corresponding bytes of user prototype memory
for most emulators.

EXAMPLES

Display Mapped Memory
When you SELect an emulator, the memory map is
initialized so that all memory is mapped PRW. Enter the
following command to display the memory map assign
ments:

>~

OOOO-FFFF PRW

3-36

Command Dlctionary-8540 System Users

Set Memory Map Assignments
Select emulation mode 1 before setting memory map
assignments with the following command line:

> EM 1

Now you may set the memory map assignments. Notice
that when you specify any portion of a block, the whole
block is affected.

> MAP U 735 17AO 80 100
-.-

0700 0080
to to

17FF 017F

The preceding command line assigns memory within
address ranges 0700-17FF and 0080-017F to user
prototype memory.

> MAP PRO 0 55 5000,,5200 617F

The preceding command line assigns memory within
address ranges 0000-007F, 5000-507F, and 5200-617F
to program memory, and sets the memory protect status to
read only.

> MAP URO OAOOO OBFFF

The preceding command line assigns memory within
address range AOOO-BFFF to user prototype memory, and
sets the memory protect status to read-only.

Since OS/40 does not support write protection for
prototype memory, this address range is write-protected
only in emulation mode 0, when all memory is
automatically mapped to program memory.

Display Map Assignments
Display the resulting memory map assignments in a
vertical table, as shown in Display 3-23.

Display the same memory map assignments in matrix form,
as shown in Display 3-24.

MAP
Command Dictionary-8540 System Users Specifies memory available to emulator

> MAP

0000-007F PRO
00SO-017F URW
01S0-06FF PRW
0700-17FF URW
lS00-4FFF PRW
5000-507F PRO
50S0-51FF PRW
5200-617F PRO
61S0-9FFF PRW
AOOO-BFFF URO
COOO-FFFF PRW

Display 3-23.

> MAP -M
PRW (-), PRO (=), URW (*), URO (.)

o 1 2 3 456 7 S 9 ABC D E F

0000 ='" '" ** ** ** ** ** **
1000 ** ** ** ** **
2000
3000
4000
5000
6000
7000
SOOO
9000
AOOO
BOOO
COOO
DOOO
EOOO
FOOO

Display 3-24.

@ 3-37

MEM
Specifies memory avai!ab!e to emulator

SYNTAX

mem [Ioaddr [hiaddr]]

loaddr

hiaddr

PARAMETERS

An expression representing the beginning
of the block of memory the emulator is
allowed to access.

An expression representing the end of a
block of memory the emulator is allowed to
access.

When you enter the MEM command with no parameters,
the current MEM status is displayed. If your emulator has
separate memory spaces, there will be a separate display
for each address space.

EXPLANATION

NOTE

Most emulators do not support the MEM command
Most emulators that do support the MEM command
require the MAC option. Refer to your Emulator
Specifics supplement for this information.

3-38

Command D;ctionary-8540 System Users

The MEM (MEMory) command is used to reverse the
effects of a previous NOM EM command. The NOMEM
command designates prototype memory as nonexistent.
The MEM command designates prototype memory as
existent. The default condition is for the entire range of
prototype memory to exist.

If your program tries to access memory that you have
declared nonexistent, the system issues a break.

EXAMPLES

Designate Existent Memory
> MEM 2000 2FFF

This command designates user prototype memory
addresses 2000-2FFF to be available to the emulator.

> MEM SC:2000

This command designates la001/la002 System Code
addresses 2000 to the end of the block to be available to the
emulator.

> MEM NS:2400

This command designates la001/la002 Normal Stack
addresses 2400 to the end of the block to be available to the
emulator.

@

Command Dictionary-8540 System Users

s

m

SYNTAX

[
s memspace]

memsp m memspace ...

PARAMETERS

Specifies the default memory space for
single-memory-space commands (see
list below).

Specifies the default memory spaces for
multiple-memory-space commands (see
list below).

memoryspace A two-character symbol that represents a
specific memory space. Your Emulator
Specifics supplement lists the correct
memory space symbols for your emulator,
if applicable. Default address space
symbols are emulator-dependent.

Entering the MEMSP command without parameters
displays the currently set default memory spaces.

EXPLANATION

NOTE

For most emulators, the MEMSP command is not
applicable. In addition, you may need the MAC option
if you wish to use memory space designators when
referring to program memory. Refer to your Emulator
Specifics supplement.

The MEMSP (MEMory SPace) command specifies which
memory space will be used when no memory space is
specified in a command line. After the default spaces have
been defined, you can enter commands without having to
specify an address space with each address expression.
The MEMSP command is only applicable for those
emulators with memory spaces.

@

MEMSP
Defines memory space to be used by memory commands

Commands that accept a single memory space in the
address expression use the default set by the MEMSP S
command. The following commands are influenced by the
MEMSP S command:

COM
CPR
D

DI
EX
F

MOV
P
RD

RH
RPR
SAV

SEA
SVC
WH

WPR
WRT

Commands that accept mUltiple memory spaces in the
address expression(s) use the default set by the MEMSP M
command. The following commands are influenced by the
MEMSP M command:

AL
BK
MAP

MEM
NOMEN

The MEMSP default setting may be overridden if a
command would otherwise perform a meaningless
operation on the memory space; for example, trying to
disassemble a stack (DI command).

> MEMSP S UD
> D 400 4FF

EXAMPLES

The MEMSP command selects User Data as the default
68000 memory space for single-memory-space com
mands. The D command dumps the contents of User Data
addresses 400-4FF.

> MEMSP M ND NS NC
> BK 1 2000

The MEMSP command selects Normal Data, Normal Stack,
and Normal Code memory spaces for multiple-memory
space commands for the l8001 /l8002 emulator. The BK
command sets a breakpoint for any access to location 2000
in the Normal Data, Normal Stack, or Normal Code memory
spaces.

> MEMSP
Default single memory space ND
Default multiple memory spaces ... ND NS NC

Displays current memory space defaults.

3-39

MOV
~Y10VeS data b€tvveen program and Piototype iTleiTluPI Command Diciionary-8540 System Users

SYNTAX
EXPLANATION

mov (~~ \Ioaddr hiaddr destaddr

The MOV command copies the specified data block from
either program or user prototype memory to a new location
in either memory.

If an error occurs when you try to move data to RAM which
exists in user prototype memory, your prototype control
probe may be malfunctioning.

uu

up

pu

pp

loaddr

hiaddr

destaddr

> D 100 10E
0 1

000100 21 00

'> MOV PP 100
> D 300 30E

0 1
000300 21 00

I : MOV PP 300
D 2FO 30E

0 1
0002FO 00 00
000300 00 05

3-40

PARAMETERS

Both data source and data destination are
user prototype memory.

Data source is user prototype memory. Data
destination is program memory.

Data source is program memory. Data
destination is user prototype memory.

Both data source and data destination are
program memory.

An expression representing the lower
address of the data block copied.

An expression representing the upper
address of the data block copied. Hiaddr
must be greater than or equal to loaddr.

An expression representing the lower
address of the memory area to which the
data block is copied.

2 3 4 5 6 7 8 9 A B C D E F
05 06 05 AF 86 23 05 C2 06 01 D3 F7 00

The MOV command is not affected by the current
emulation mode, memory map assignments, and write
protection settings.

EXAMPLES

Display the contents of program memory addresses
100-10E as shown in Display 3-25.

Copy the contents of program memory locations 100-1 OE
to program memory addresses 300-30E. Then display the
contents of memory addresses 300 through 30E. Refer to
Display 3-26.

The contents of memory addresses 100-1 OE remain
unchanged.

It is possible to copy the specified data block to memory
locations within that same block. Refer to Display 3-27.

The contents of program memory 2FF-303 are overwritten
by the old contents of program memory 300-304.

..... # ...

Display 3-25.

10E 300

2 3 4 5 6 7 8 9 A B C D E F
05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 ~ #

Display 3-26.

304 2FF

2 3 4 5 6 7 8 9 A B C D E F

00 00 00 00 00 00 00 00 00 00 00 00 00 21 '" .
06 05 05 AF 86 23 05 C2 06 01 D3 F7 00 #

Display 3-27.

@

Command Dictionary-8540 System Users

SYNTAX

nomem [Ioaddr [hiaddr]]

loaddr

hiaddr

PARAMETERS

An expression representing the beginning
of a block of memory the emulator is not
allowed to access. May include memory
space designators.

An expression representing the end of a
block of memory the emulator is not allowed
to access.

Entering the NOMEM command with no parameters
displays the list of memory blocks which are currently not
available. There is a separate display for each memory
space.

EXPLANATiON

NOTE

Most emulators do not support the NOMEM
command. Most emulators that do support the
NOMEM command require the MAC option. Refer to
your Emulator Specifics supplement for this infor
mation.

NOMEM
Specifies memory unavailable to emulator

The NOMEM (NO MEMory) command designates 4K-byte
blocks of prototype memory as nonexistent. The default
condition is for all prototype memory to exist.

If the emulator tries to access nonexistent memory, the
system generates a break.

The MEM command is used to reverse the effects of the
NOMEM command.

EXAMPLES

> NOMEM 2000 2FFF

Designates user prototype memory addresses 2000-2FFF
as nonexistent.

> NOMEM SC:2000

Designates Z8001 /Z8002 system code memory address
2000 to the end of the block as nonexistent.

> NOMEM NS:O

Designates Z800l /Z8002 normai stack memory address 0
to the end of that block as nonexistent.

3-41

p
Alteis memo.·y contents

SYNTAX

[
-b l !hexstringl

p -wJ [-n] address -a string ...

-b

-w

(default)

-n

address

hexstring

-a

string

> 1LQ

PARAMETERS

Selects byte-oriented processing.

Selects word-oriented processing.

The default byte/word format depends on
the currently selected emulator. Refer to the
Byte/Word Parameter discussion in the
Emulator Specifics supplement for your
emulator.

Suppresses the read-back check for the
command.

An expression representing the address
where code alteration begins. If word mode
is chosen (-W), the address must represent
an even value.

An even number of hexadecimal digits: the
sequence of bytes to be patched into
memory. If -W is selected, or the current
emulator is a 16-bit processor, the hex
string must be a multiple of 4 hexadecimal
digits; otherwise, it must be a mUltiple of 2
hexadecimal digits.

Specifies that the next string in the
command line is to be an ASCII string.

A string of ASCII characters that is patched
into memory. If - W is selected, or the cur
rent emulator is a 16-bit processor, there
must be an even number of ASCII
characters.

a 1 2 3 4 5 6 7 8 9 ABC D E F

Command Dictionary-8540 System Users

EXPLANATION

The P (Patch) command replaces the memory contents
beginning at the specified address with the byte sequence
represented by the ASCII string(s) and/or hexstring(s).

For byte-oriented processing, a hexstring must contain an
even number of bytes. For word-oriented processing, the
number of bytes in a hexstring must be a multiple of 4, and
an ASCII string must have an even number of characters.

You may enter a combination of hexstrings and ASCII
strings in one P command entry.

The read-back check compares prototype memory contents
after the command is finished to see if memory was
properly altered. If there is a difference between memory
contents and what was sent to memory, an error is
returned. You may want to suppress the read-back check
when you know it will fail anyway, for example after you've
written to prototype I/O. No read-back check is performed
on writes to program memory.

The previously set memory map assignments and
emulation mode determine whether program memory or
prototype memory contents are affected. Refer to the MAP
and EM command discussions.

EXAMPLES

Patch with Hexstring and ASCII string
Enter the following command line to replace the data
starting at address 0 with the hexstring OA and ASCII string
AB:

> P -B a OA -A AB

t
--t __ --_4I,;..._ -_ -_ -_ -_-_-_-:_-_-_ ASCII string

_ hex string
L..-_________ starting address

Display the contents of addresses O-OF, as shown in
Display 3-28.

000000 OA 41 42 00 00 00 00 00 00 00 00 00 00 00 00 00 .AB ----t A!CII string AB

hexstring OA

3-42

Display 3-28.

REV JAN 1983

Command Dictionary-8540 System Users

. permstr -I
or

SYNTAX

permstr -d [stringname ...]
or
permstr stringname ...

PARAMETERS

-I Lists the currently defined permanent user
strings.

-d Deletes the specified permanent string(s). If
no stringname is given, all currently defined
permanent strings will be deleted.

stringname The user-assigned name for the string.

EXPLANATION

The PERMSTR command allows you to store strings (which
have been previously defined) in EEPROM, to display the
strings stored in EEPROM, and to delete one or more of
these strings. For information on how to declare and use
strings, refer to the discussion on "Strings" near the
beginning of this Command Dictionary.

An error occurs if any attempt to create more permanent
strings when sufficient space is not available on EEPROM.
Use the PERMSTR -D command to delete unwanted
strings. A permanent string must be deleted before its
value can be redefined.

@

PERMSTR
Stores user-defined string in EEPROM

Permanent strings may compete for space in EEPROM with
operating system patches created using the ROMPATCH
command. Both EEPROM chips must be installed in order
to use the PERMSTR command.

EXAMPLES

First, declare two temporary strings:

> reg set="S Rl=O R2=2 R3=5"
> rangel="1000,2000"

You can then list these temporary strings with the STR
command:

> STR -L

reg set S Rl=O RS=2 R3=5
range 1 1000,2000

Now store the strings in EEPROM with PERMSTR, and list
them:

> PERMSTR reg set rangel
> PERMSTR -L

regset S Rl=O R2=2 R3=5
range 1 1000,2000

Delete one of the permanent strings, and list them again:

> PERMSTR -D reg set
> PERMSTR -L
range 1 1000,2000

Your temporary string definitions still exist, though, until
you delete them with the STR -0 command, or turn off the
power to the 8540:

> STR -L

regset
range 1

S Rl=O R2=2 R3=5
1000,2000

3-43

QUERY
Turns query mode on and oft

SYNTAX

query [~~f]

PARAMETERS

on Turns query mode on.

off Turns query mode off.

When you enter the QUERY command without parameters,
the current system-wide query status is displayed.

EXPLANATION

The QUERY command turns query mode on or off. When
query mode is on, commands that have a -Q option will
query. When the mode is off, those commands will query
only if the -Q option is invoked. Query mode is initially on
when you reboot or start up the system.

3-44

Command Dictionary-8540 System Users

EXAMPLES

After starting up the system, check the query mode setting
by entering the command without parameters:

> QUERY

ON

Now remove the symbol SYMBOL 1 using the REMS
command:

> REMS SYMBOLl
Remove (scalar):SYMBOLl ?Y

The REMS command asks for confirmation before
removing the symbol. You type "Y" for yes. To turn query
mode off, enter:

> QUERY OFF

Now use the REMS command again to remove SYMBOL2.
It will remove the symbol without asking for confirmation.

> REMS SYMBOLZ

To turn query mode back on, enter:

> QUERY ON

@

Command Dictionary-8540 System Users

-s

-m

-b

-w

portnum

@

SYNTAX

PARAMETERS

Specifies special read as opposed to normal
read. Not valid with -M modifier. Refer to
your Emulator Specifics supplement to see
whether your emulator can use this
modifier.

Specifies that the value of portnum is a
memory address (meaningful for memory
mapped liD). This is the default for
emulators that only have memory-mapped
liD. Refer to your Emulator Specifics
supplement to see whether you can use the
-ivi modifier.

If this modifier is omitted, the portnurn
parameter is assumed to be a fixed port. The
emulators that support both memory
mapped 1/0 and fixed-port I/O default to a
fixed-port read.

Specifies byte-oriented reading. Default
value.

Specifies word-oriented reading.

If -M is not used: an expression designating
a fixed liD port. Refer to your Emulator
Specifics supplement for the correct port
nurn values for your emulator.

RD
Reads from emulator port

If -M is used: an expression designating a
memory location. The expression may
include only one memory space designator.

EXPLANATION

The RD (ReaD) command reads a byte or a word from an liD
port on the emulator. This command is not available for
most emulators. Refer to your Emulator Specifics
supplement for details.

If more than one portnurn value is entered, reads will be
performed and results displayed in the order the portnurn
parameters were entered.

EXAMPLES

To read from l8001 Il8002 emulator ports 70,73, and 7A,
and display the values, enter the following command:

> RD 70 73 7A
0070=23
0073=00
007A=lF

To perform a special byte-oriented read from l8001 I
l8002 port symbolized by the symbol TERMACIA, and
display the value, enter the following command:

> RD -s TERMACIA
00FO=23

To read from the l8001/l8002 memory address
symbolized by TERMACIA in normal data memory space,
enter the following command:

> RD -MW ND: TERMACIA
ND:0000FO=0023

3-45

REMS
Removes symboi from symboi tabie

SYNTAX

[
-n] {Sectionname:*}

rems -q symbolspec ...

-q

-n

PARAMETERS

Turns query mode on for the duration of
this command.

Turns query mode off for the duration of
this command.

(default) The default query mode depends on the
current system-wide query status. Refer
to the QUERY command.

sectionname:* Represents all the symbols within the
specified section.

symbolspec The symbol to be removed from the
symbol table. The symbolspec may
include the sectionname if the symbol
represents an address.

EXPLANATION

The REMS (REMove Symbol) command removes the
specified symbol(s) from the symbol table.

3-46

Command Dictionary-8540 System Users

If only the second part of the symbol is included in the
symbolspec parameter (no section name). the REMS
command searches for the symbol first in the current
section, then in the entire symbol table, and removes only
the first occurrence of that symbol. Refer to the Emulation
section of this manual for more information on symbolic
debug.

When query mode is on, the REMS command queries you
before removing the symbol.

EXAMPLES

> REMS ENDLIST

This command line removes symbol ENDLIST from the
symbol table. No section name is specified.

The following command removes symbols APPLAUSE and
KISSBABY, associated with sections SPEECH and ELEC
TION, respectively, from the symbol table. Both symbol
specs include both a section (the name before the colon)
and a symbol which represents the address value (the
name after the colon).

> HEMS SPEECH:APPLAUSE ELECTION:KISSBABY

The following command removes ail the symbols from the
section WRITERS.

> HEMS WRlTEBS:*

Command Dictionary-8540 System Users

SYNTAX

reset

EXPLANATION

The RESET command simulates a hardware reset by
reinitializing the values of the emulator registers.

The RESET command is emulator-dependent. Refer to the
Emulator Specifics section for details on how the RESET
command affects specific registers in your processor.

PC=Olll SP=5500 F=65 A=04 B=49 C=88 D=66 E=87 H=Ol 1=22
SOD=l S1D=O 17=1 16=1 15=1 1E=1 M7=O M6=O M5=O

> RESET

> DS

~
PC=OOOO SP=5500 F=65 A=04 B=49 C=88 D=66 E=87 H=Ol 1=22

(The arrows show the changed registers.)

RESET
Reinitializes emulator

NOTE

You must have SELected the target processor before
executing the RESET command

EXAMPLES

Check the register contents of an 8085A, enter the RESET
command, and check the registers again, as shown in
Display 3-29.

Display 3-29.

@ 3-47

RH
Reads hexadecimal code into memory

-i

-m

-t

(default)

offset

SYNTAX

PARAMETERS

Input is Intel-formatted hexadecimal object
code.

Input is Motorola-formatted hexadecimal
object code.

Input is Standard Tekhex format.

If no modifier is specified, input is Extended
Tekhex format.

An expression representing the amount to
offset the load address of each data block.
Defaults to O.

When you enter the RH command without parameters,
Extended-Tekhex-formatted object code is read from the
standard input into program/prototype memory without an
offset.

EXPLANATION

The RH (Read Hexadecimal code) command reads
hexadecimal object code from standard input. converts the
code to binary, and loads the binary code into program or
prototype memory.

Each message block read by the RH command must be in
the specified load format. Refer to the Tables section for a
discussion of the Tekhex, Intel, and Motorola formats.

3-48

Command Dictionary-8540 System Users

The RH command will not read or load any program
symbols. Refer to the ADDS, SYMLO and COM commands
for information on loading symbols into the symbol table.

Each block of code is loaded into memory starting at the
message block load address. Any offset amount is added to
the load address for each data block transferred.

The emulation mode and the memory map assignments
determine whether program memory or prototype memory
contents are affected. Refer to the EM and MAP command
discussions.

To write rather than read hexadecimal object code, use the
WH command.

NOTE

When you use the RH command your 8540 must be
in TERM mode in order to access files on the host.

EXAMPLES

> rh <PROG.THEX

Reads Extended Tekhex formatted object code from the
8560 file PROG.THEX, converts it to binary, and writes the
object code into memory.

> rh -i <PROG.IHEX 100

Reads the Intel-formatted hexadecimal object code from
the 8560 file PROG.IHEX and converts it to binary. Adds an
offset amount of 100 to each load address. For example,
when the load address specified by the message block is
100, the data block is loaded at location 200. Specifying the
offset parameter does not affect the transfer address, if one
is given.

Command Dictionary-8540 System Users

SYNTAX

rompatch checksum patchid patchaddress filespec hexstring

or
rom patch -d checksum patchid
or
rompatch -I

-d

-I

~
The ROMPATCH command is intended to be used to
update your operating system. Do not use this com
mand unless directed to do so by Tektronix. Errone
ous entries may invalidate your system. Certain
options of the ROMPA TCH command are not de
scribed in this manual.

PARAMETERS

Deletes the last defined patch.

Lists all the patches in EEPROM.

checksum Helps insure that the patch has been
entered correctly. The ROMPATCH com
mand calculates a checksum value for the
characters of all parameters in the ROM
PATCH command line except the checksum
parameter. The resulting value is then
compared with the checksum parameter. If
they are not the same, an error occurs and
the command aborts.

patchid The sequence number of. the patch being
entered or deleted. This parameter is
compared to the last patchid number saved
in EEPROM. If it is not one greater than the
stored value, then an error occurs and the
command aborts.

patchaddress The address where the patch will be made
relative to the load address of the file named.

REV JAN 1983

filespec

hexstring

ROMPATCH
Updates operating system

The name of the ROM file (or command) to
be patched. The filespec must contain the
ROM file level as well as the filename. (For
example, in "/DEFLT lEX", "/DEFLT" is the
ROM file level and" lEX" is the filename.) If
the ROM file is not found, an error occurs
and the command aborts.

The data to be patched into memory: an even
number of hex digits.

EXPLANATION

The 8540 contains two EEPROM chips on which updates to
the operating system can be stored using the ROMPATCH
command. These updates are then inserted in the
command modules when they are loaded. Normally, the
user will not invoke this command except when directed to
do so by Tektronix. Usually this will be done via explicit
written instructions.

The ROMPATCH command performs several checks on
your input to guard against accidental or intentional
erroneous entries.

ROM patches may compete for space in EEPROM with
permanent strings created using the PERMSTR command.
It may be necessary to delete some strings in order to enter
a new ROM patch.

EXAMPLES

Adding a Patch
The following command line causes the hexstring 3FC24A
to be entered as the 26th patch in the EEPROM. It patches
the module IDEFLT lEX at address 1124 relative to the load
address of the module.

> ROMPATCH 31 26 1124 /DEFLT/EX 3FC24A

Deleting a Patch

This command line deletes the 157th patch (which must be
the last entered) from EEPROM.

> ROMPATCH -D 3C 158

3-49

ROMPATCH
Updates operating system Cornrnand Diciiunary-8540 System Users

Listing Patches
You can use the -L modifier to list all the patches currently
in EEPROM. In the example shown in Display 3-30,

• PART NUMBER is the Tektronix part number excluding
the 020 prefix,

• ADDRESS corresponds to "patch address", and

• PATCH ID corresponds to "patchid" in the syntax block, • PATCH corresponds to "hexstring" .

• ROM FILE NAME corresponds to "filespec",

> ROMPATCH -L
PATCH ID ROM FILE NAME PART NUMBER ADDRESS PATCH

1 /KERNL/K1 238501 45A8 878DAEDF9FB50F98C1BD
2 /DEFLT/ROMPATCH 239700 C240 404040B3B405D2EF217A7B204376

3
4

3-50

/8085 /DS
/Z8001/BK

253200
318402

234BD7C7
0024 6C725A7183
28C4 9C02DEF6A8BD2A4C2CC03065

Display 3-30.

@

Command Dictionary-8540 System Users

SYNTAX

5 symbolspec=expression ...

PARAMETERS

symbolspec The name of the symbol or register that
receives a new value. May be a standard
register name or a user-created symbol that
is already in the symbol table.

expression Any valid expression as defined in the
"Legal Address Expressions" discussion in
this section.

EXPLANATION

The S (Set) command assigns a new value to each register
or symbol specified. Referto the Emulator Specifics section
of this manual for the specific registers associated with
your emulator.

> SEL 8085
> OS
PC=OOOO SP=OOOO F=OO A=OO B=OO C=OO 0=00 E=OO H=OO L=OO
SOD=O SID=O 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

s
Assigns value to register or symbol

EXAMPLES

Assign Value to Register

Select the 8085A emulator and display the contents of the
emulator registers, as shown in Display 3-31.

Reassign values to registers SP, F, and A with the following
command:

> S SP=OFFFF F=ll A=B+5

Display the contents of the 8085A emulator registers
again. See Display 3-32.

Assign Value to Symbol

Symbolic debug allows you to declare a symbol for a value
using the ADDS command. This name can then be used in
the S command:

> ADOS SUM=1224H

> S SUM=5

Display the value of SUM with the following command:
> CALC SUM
5H

Display 3-31.

t t t
PC=OOOO SP=FFFF F=ll A=05 B=OO C=OO 0=00 E=OO H=OO L=OO
SOD=O S10=0 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

(The arrows show the changed registers.)

Display 3-32.

@ 3-51

SAV
Saves memory contents in file

SYNTAX

sav [=~J Iloaddr hiaddrl ... [transfer]

-s

-I

(default)

loaddr

hiaddr

> D 100 10E

PARAMETERS

Specifies A-series (small address space)
format.

Specifies B-series (large address space)
format.

Defaults to B-series format if the selected
target processor can address more than 64K
of memory; otherwise, defaults to A-series
format.

An expression representing the lower
address of a block of program/prototype
memory to be transferred to the file.

An expression representing the upper
address of a block of program/prototype
memory to be transferred to the file. Hiaddr
must be greater than or equal to loaddr.

012 3 4 5 6 7 8 9 ABC D E F

transfer

Command Diciionary-8540 Sysiem Users

An expression representing the address of
the first instruction to be executed in the
program. Defaults to the first loaddr.

EXPLANATION

The SAV command directs the specified contents of
program/prototype memory to standard output in A Series
or 8 Series load module format, suitable for loading with
the LO or X commands.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are affected. Refer to the MAP and EM command
discussions.

NOTE

Your 8540 must be in TERM mode in order to create
files on the host.

EXAMPLE

Display the contents of addresses 100-1 OE on the system
terminal. See Display 3-33.

Enter the following command to upload the contents of
addresses 100-1 OE into the 8560 load file named LOAD.

> say -1 >LOAD 100 10E

000100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 ~ #

Display 3-33.

3-52

SEA
Command Dictionary-8540 System Users Searches memory for value or string

-b

-w

(default)

-r

(default)

loaddr

hiaddr

value

SYNTAX

{
value [preCiSiOn]}

[-r] loaddr [hiaddr] -a string

PARAMETERS

Selects a byte-oriented search.

Selects a word-oriented search, and requires
an even starting address, and an odd ending
address.

The default byte/word format depends on
the currently selected emulator. Refertothe
Byte/Word Parameter discussion in the
Emulator Specifics supplement for your
emulator.

Specifies to search for repeated occur
rences of the specified string.

If -R is not specified, the SEA command
stops searching after one match is found.

An expression representing the address in
program/prototype memory where search
ing is to start. Must be even ifthe -W mode is
used.

An expression representing the address in
program/prototype memory where search
ing is to stop. Hiaddr must be greater than
loaddr, and odd if the -W mode is used.
Defaults to the highest address accessible
by the target processor.

An expression that represents a value for
which you want to search. Up to four bytes of
precision are possible.

precision

-a

string

The number of bytes required to match the
specified search value. This number must
be between 1 and 4. Defaults to 1 for byte
mode, 2 for word. mode.

Specifies a search for an ASCII string. Must
be followed by the target string.

The ASCII string for which you are
searching. The maximum length of the
string is limited only by the maximum length
of the command line.

EXPLANATION

The SEA command searches the specified memory area for
the given value or string. SEA will display the starting
address of the first occurrence of the value or string; or of
every occurrence if the repetitive search modifier (-R) is
chosen.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are affected. Refer to the MAP and EM command
discussions.

EXAMPLES

Assume that addresses O-OF contain the data shown in
Display 3-34.

Display 3-35 shows some examples of searching for the
value 34 with different precision parameters:

Search for the ASCII string "45" with the following
command:

> SEA 0 OF -A 45
OOODH

The starting address of the first occurrence of ASCII 45
(hexadecimal 3435) is 0000.

012 345 6 7 8 9 ABC D E F

@

000000 34 00 34 00 00 34 00 00 00 34 00 00 00 34 35 00 4.4 .. 4 ... 4 ... 45.

> SEA 0 OF
OOOOH
> SEA 0 OF
OOOlH
> SEA 0 OF
0003H
> SEA 0 OF
0006H

34

34 2

34 3

34 4

Display 3-34.

(Default number of bytes of precision is 1)
(First occurrence of 34 is at OOOOH)
(Search for the 2-byte value 0034)

(3 bytes of precision:000034)

(4 bytes of precision: 00000034)

Display 3-35.

3-53

SEL
Selects target processor chip

I sel [chip]

SYNTAX

PARAMETERS

chip The name of the target processor.

When you enter the SEL command without parameters,
the currently selected processor name is displayed.

EXPLANATION

The SEL command specifies the command set for your
processor. After you select a processor, all emulator
commands will be appropriate for that specific processor.
When the 8560 is host, SEL also causes the 8560 to select
the appropriate assembler and high level language
commands for the desired microprocessor.

Entering a SEL command with a chip parameter closes any
channels assigned to your program. Also, when you enter
the SEL command with a chip parameter, the symbol table
is cleared.

The SEL command selects the target processor. The system
then acts as if the following commands had been executed:

AL 0 10 0

BK ALL CLR

CLOCK OFF

EM 0
MAP PRW 0000 FFFF

RESET
SVC ON 40 OFO

SYMD -LS ON; SYMD OFF

TCLR -x
TRA OFF

3-54

(for most emulators)

(for most emulatorsl

(for most emulators)

Command Dictionary-8540 System Users

You should use the SEL command to select a target
processor before you execute any of the following
commands:

ACQ CONS MAP
AD COU PRO
AL CTR QUA
AS DATA RESET
BK DI SVC
BRE DISP TCLR
BUS DS TRA
CL EM TS
CLOCK EVE

At system start up, the command set is seiected from the
command group called DEFLT.

EXAMPLES

Display the currently selected processor with the following
command:

>~

no emulator

Now, select the processor:

> SEL 8085

Display the currently selected processor again:

> SEL
8085

REV JAN 1983

Command Dictionary-8540 System Users

SYNTAX

EXPLANATION

The STAT command displays the status of the emulator on
standard output. The status information displayed in
cludes:

• name of the selected processor

• name of the last program loaded into program memory

• liD channel assignments

str-I
or

SYNTAX

str -d stringname '"

-I

PARAMETERS

Lists the currently defined temporary user
strings.

-d Deletes the specified string(s). If no string
name is specified, all currently defined
temporary strings will be deleted.

stringname The user-assigned name for the string.

EXPLANATION

The STR command allows you to display all the currently
defined temporary user strings or to delete one or more of

@

STAT
Displays system status

STR
Displays or deletes temporary user strings

EXAMPLES

Display 3-36 is an example of STAT command output.

>~

8085 is the selected processor

User program was last loaded into program memory

Channel 0 is assigned to DATAFILE

Display 3-36.

these strings. For information on how to declare and use
strings, see the discussion of "Strings" near the beginning
of this Command Dictionary.

EXAMPLES

First, declare two strings:

> regset="S Rl=O RZ=2 R3=5"
> rangel="1000,2000"

List your currently defined strings with the following
command:

>~

regset S Rl=O RZ=2 R3=5
range 1 1000,2000

Now delete the first string, and list the strings again with
the following sequence of commands:

> STR -D reg set
> STR -L
range 1 1000,2000

3-55

SUSP
Suspends command~

susp

command

-a

3-56

SYNTAX

{~~mmand }

PARAMETERS

The name of a OS/40 command: any
command listed in this Command Dic
tionary.

All active commands.

Command Dictionaiy-8540 System USeiS

EXPLANATION

The SUSP command suspends execution of the specified
command. To suspend a particular command, first press
CTRL-C and then enter the SUSP command with the name
of the command. The command remains suspended until
you abort it with the A command, or continue it with the CO
command. To suspend all active processes, enter SUSP-A.

Refer to the A command explanation for a list of commands
that may not be suspended.

@

Command Dictionary-8540 System Users

SYNTAX

svc [~;fJ [address] [port]

on

off

(default)

address

port

PARAMETERS

Turns on user SVCs.

Turns off user SVCs.

If neither ON nor OFF is entered, the current
SVC ONIOFF status remains unchanged.

An expression specifying where in memory
the SRB vector will begin. The default value
(usually 40H) is emulator-dependent: Refer
to your Emulator Specifics supplement for

If the address parameter is omitted, the
location of the SRB vector remains un
changed.

An expression representing the lowest I/O
port address to be used by your program to
initiate service calls, The liD port range
defaults to FO-F7. The port parameter
should be a multiple of 1 OH, thus specifying
a range of the form nO-n7, where n is a
hexadecimal number between Oand F.lfthe
port parameter is omitted, the liD port
range remains unchanged.

When you enter the SVC command without parameters,
the current SVC capability (ON or OFF), SRB vector address,
and SVC liD port range are displayed.

@

EXPLANATION

NOTE

SVC command default values may be different for
some emulators. Refer to your Emulator Specifics
supplement for details.

svc
Controls execution of service calls from user program

The SVC (SerVice Calls) command turns the SVC capability
on and off in all three emulation modes. Refer to the
Service Calls section of this manual for an explanation of
SVCs.

Entering emulation mode 0 automatically turns SVCs on.
Entering emulation modes 1 or 2 automatically turns SVCs
off.

If SVCs are ON, any liD instruction in your program that
can be interpreted as an SVC request will initiate the
appropriate SVC. If SVCs are OFF, such liD instructions
will be treated as normal code by the emulator, and no SVC
request will be generated.

You may also use the SVC command to specify where the
SRB vector will begin and which liD ports can be used to
initiate SVCs.

Initial SVC settings may be restored at any time by
executing the following command:

> SVC ON 40 OFO
NOTE

You must have SELected the target processor before
executing the SVC command.

Certain SVC features, such as the parameters of the
SVC command and the capacity for SVCs in modes 1
and 2, are emulator-dependent. Refer to the
Emulator Specifics section of this manual for this
information.

EXAMPLES

Enter the following command to display the current SVC
settings:

> SVC
User SVCs are ON .
The SRB vector is 0040.
The I/O address is FO.

Change the location of the SRB vector to 200 and the SVC
liD port range to 0-7 with the following command:

> SVC,,200 0

Display the SVC setting again:

> SVC
User SVCs are ON .
The SRB vector is 0200.
The I/O address is 00.

3-57

SYMB
Returns symbolic name for address

I symb expression

SYNTAX

expression

PARAMETERS

An expression whose symbolic equivalent
you want to display, if one exists.

EXPLANATION

Given an expression, SYMB returns an equivalent symbolic
expression of the form "addresssymb" or "section + offset",
where "offset" is the displacement of the address relative
to the start of the section. Symbols representing scalar
values will not appear in the returned symbolic expression.

To do the opposite, that is, to find the value associated with
a symbol, use the CALC command.

3-58

Command DictionarSy-8540 SystSiTl Useis

The format of the returned expression is influenced by the
-S and -L options previously specified with the SYMD
command. SYMB temporarily turns SYMD ON when
returning the expression.

EXAMPLES

If there is an symbol which represents an address and
matches the specified expression, and the SYMD -SL
options are enabled, the SYMB command will display the
symbol as shown in the following command line:

> SYMB 1234H
1234H=LABELOOI

If no address symbol corresponds to the specified
expression, the system responds with the section name
and byte offset of the given value:

> SYMB 132AH
132AH=SECTION3+00AH

@

Command Dictionary-8540 System Users

symd off

or

SYNTAX

symd [-s] [-I] on

off

on

-I

-s

-sl

PARAMETERS

Turns off symbolic debug output.

Turns on symbolic debug output.

Enables address symbol (label) substitutions
only. Turns off offset substitution.

Enables the substitution (for each hexa
decimal address) of its offset relative to the
start of its section (shown in the location
counter field of your assembler listing).
Turns off address symbol substitution.

Enables the substitution of both symbols
representing addresses and section names
with offset.

If SYMD ON is entered without modifiers, SYMD is enabled
with the most recently selected features.

EXPLANATION

The SYMD command affects the output of commands such
as SYMB, TRA and DI. If SYMD is on, symbols are

LaC INST MNEM R OPER X/PC EADD RA RB

SECTION: ALPHA
+000 CE0010 LDX 0010 00 00
+003 5F CLR B 00 00
LABEL001 A600 LDA A 00 +0010=0010 00 00
+006 ABOl ADD A 01 +0010=0011 00 00
LABEL002 C900 ADC B 00 00 00
+OOA AB02 ADD A 02 +0010=0012 00 00
+OOC 7E1055 JMP 1055 1055 00 00

SECTION: BETA

LABEL003 C900 ADC B 00 00 00
+007 AB03 ADD A 03 +0010=0013 00 00

SYMD
Controls symbolic display output

substituted for the appropriate addresses in the command
output.

SYMD does not effect your ability to use symbols in
expressions, or to use the ADDS command.

SYMD is automatically turned Off whenever you SELect an
emulator.

No "sectionname + offset" will appear for absolute
sections.

For more information about symbolic debug, refer to the
Emulation section of this manual.

EXAMPLES

Display 3-37 illustrates output produced by the TRA
command when SYMD is ON and options -S and -L are
both enabled. (Exact displays are emulator-dependent.)

The address symbols, such as LABEL001, are symbols from
the label field in your assembly language source code. The
byte offset addresses (+000, +003, etc.) correspond to those
in the location counter field of your assembler listing. Thus,
symbols in your trace output can make it easier to find
trouble spots in your source code.

For comparison, Display 3-38 shows output produced by
the TRA command when SYMD is OFF. (Again, exact
displays are emulator-dependent.)

XREG SP CC

0010 0001 DO

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

Display 3-37.

REV JAN 1983 3-59

SYMD
Controis symboilc dispiay output Command Dictionary-8540 System Users

> TRA ALL
> TRA JMP 0106 0110
> G 100

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
000100 210005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 0
000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 0
000105 AF XRA A 0000 44 00 05 00 00 00 05 00 07 0
000109 C20601 JNZ 0106 0000 10 01 04 00 00 00 05 01 07 0
000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02 07 0
000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03 07 0
000109 C20601 JNZ 0106 0000 10 OA 01 00 00 00 05 04 07 0
000106 86 ADD M 0000 04 OF 01 00 00 00 05 04 07 0

Dispiay 3-38.

3-60 @

Command Dictionary-8540 System Users

SYNTAX

5ymlo [-a] [-g] [-5] [section name] .

-a

-g

-s

PARAMETERS

Appends new symbols to the table. If -a is
omitted, symbols currently in the table will
be overwritten. Do not use -a in the first
SYMLO after a SELect or reboot since you
must overwrite the dummy section "NO.
SECTION" with which the system is
initialized.

Loads global symbols only. Works with B
Series linker output only. (Global symbols
are explained in your Assembler Core Users
Manual.)

Loads symbols representing scalars as well
as those representing addresses.

sectionname Name of a section of object code from which
the symbols will be loaded. If no section
names are specified, symbols from all
sections are loaded.

@

SYMLO
Loads symbols into symbol table

EXPLANATION

SYMLO (SYMbol LOad) loads symbols from standard input
into the symbol table for use in symbolic debug. The input
should be of the type produced by an A-Series or B-Series
linker. Refer to the Emulation section of this manual for
more information about symbolic debug.

NOTE

When you use the SYMLO command your 8540
must be in TERM mode in order to access files on the
host.

EXAMPLE

To load all the symbols in the load file BOL23 into the
symbol table, including global symbols and scalar symbols,
enter:

> symlo -s <BOL23

3-61

TRA
Controls display of executed instructions

SYNTAX

tra G~J
or

{
all }

-n jmp
tra [-s] [-I] off [Ioaddr] [hiaddr]

-5

-I

-n

(default)

all

jmp

3-62

PARAMETERS

Stops execution after each trace line is
displayed. If -S is not specified, the program
continues execution after each trace line is
displayed.

Selects long display. Shows all registers on
subsequent trace output.

Selects normal display. The contents of only
the most important registers are reported. If
the microprocessor has few registers, all
registers are shown whether or not -L is
specified.

If -L and -N are omitted, the most recent
selection remains in effect.

Every instruction is displayed after its
execution.

Displays only jump instructions: uncon
ditional jumps, subroutine calls, and condi
tional branches where the specified condi
tio is satisfied.

off

loaddr

hiaddr

Command Dictionary-8540 System Users

Disables trace display.

An expression representing the lower
bound of the address range to which ALL,
JMP, or OFF applies. Defaults to O.

An expression representing the upper
bound of the address range to which ALL,
JMP, or OFF applies. Defaults to the top of
memory. Hiaddr must be greater than
loaddr. If both loaddr and hiaddr are
specified and loaddr does not contain the
first byte of an instruction, tracing starts at
the next instruction after loaddr.

When you enter the TRA command without parameters,
the current trace conditions are displayed.

EXPLANATION

The TRA command establishes the conditions for
displaying trace lines during program execution. Each trace
line contains the address of the instruction, the instruction
itself in hexadecimal, the mnemonic for the instruction, the
operand, and certain processor register contents. The trace
line display format varies for each microprocessor type.
Refer to the Emulator Specifics section for the TRA
command description that corresponds to your emulator.

Up to three TRA selections may be active at a time. The
most recently entered selection takes precedence over any
previously entered commands. A TRA ALL or TRA JMP
command entered without address parameters replaces all
existing selections. If you enter a TRA OFF command
without address parameters, all previously entered TRA
selections are deleted.

Command Dictionary-8540 System Users

You may enter TRA -L orTRA -N at any time, no matter how
many other selections are currently active. The -L and -N
forms apply to the entire memory space regardless of the
ranges specified in any previous TRA command lines.

NOTE

You must have SELected the target processor before
executing the TRA command

When any TRA selections are in effect, your program
executes at less than normal speed even in those
parts of the program that are not traced

>~

> TRA JMP 0106 0110

> G 100

LOC 1NST MNEM OPER SP F A B C D E H L

000100 210005 LXI H,0500 0000 1'1/1 OF 01 00 00 00 05 00 V"%

000103 0605 MV1 B,05 0000 04 OF 05 00 00 00 05 00

000105 AF XRA A 0000 44 00 05 00 00 00 05 00

000109 C20601 JNZ 0106 0000 10 01 04 00 00 00 05 01

000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02

000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03

000109 C20601 JNZ 0106 0000 10 OA 01 00 00 00 05 04

000106 86 ADD M 0000 04 OF 01 00 00 00 05 04

TRA
Controls display of executed instructions

EXAMPLES

Display 3-39 is an example of 8085A TRA command
output.

When you enter the TRA command without parameters,
the current trace conditions are displayed on standard
output, as in the following example:

> TRA

TRA

TRA

ALL,OOOOOO,OOFFFF

JMP,000106,000110

In this example, TRA ALL conditions are set for addresses
0000 to 0105, TRA JMP conditions are in effect from 0106
to 0110, and TRA ALL conditions are again in effect from
0111 to FFFF.

1M SOD

07 1'1\ TD/\ /\ I I

~ J i'~' ~ff~;t~ 07

07

07 O} 07 o TRA JMP
07 ~ in effect
07

07 0 TRA ALL
in effect

Display 3-39.

@ 3-63

WH
Saves memo.v contents in hexadecimal fOimat

SYNTAX

wh [=~] iloaddr hiaddri .. [transfer]

-i

-m

-t

(default)

loaddr

hiaddr

transfer

PARAMETERS

Output is Intel-formatted hexadecimal ob
ject code.

Output is Motorola-formatted hexadecimal
object code.

Output is in Standard Tekhex format.

If none of the output options (-i, -m, or -t) is
specified, output is in Extended Tekhex
format.

An expression representing the lower
address of a data block in program/proto
type memory to be converted and trans
ferred to the file or device.

An expression representing the upper
address of a data block in program/proto
type memory to be converted and trans
ferred to the file or device.

An expression representing the starting
address of the program. Defaults to O.

EXPLANATION

The WH (Write Hexadecimal code) command converts the
specified data blocks within program or prototype memory
from binary to hexadecimal format. The converted data is

> D 40 10F
0 1 2 3 4 5 6 7 8 9 A E C D E F

000040 00 42 1A 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00

Command Dictionary-8540 System Users

then transferred to standard output. You may specify a file
or device using the redirectional arrow (».

For examples of WH command output in Tekhex, Intel, and
Motorola formats, see the Tables section.

The WH command does not write out the symbols from the
symbol table.

The contents of memory are not affected by the WH
command.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are written. Refer to the EM and MAP command
discussions.

To read hexadecimal object code from a file or device,
rather than to write it, use the RH command.

NOTE

When you use the WH command, your 8540 must be
in TERM mode in order to access files on the host.

EXAMPLES

Check the contents of memory 40-10F with the D
command. See Display 3-40.

Convert the data in program memory locations 40-42 and
1oo-10E to Standard Tekhex format, and upload the
converted code to the 8560 file named DEMO.THEX with
the following command:

> wh -t >DEMO.THEX 40 42 100 10E 100

When the data is again read into program memory, the
emulator program counter will be set to the transfer
address (100).

.E

................

................

................

................

................
~ # , , , , , , . ,

Display 3-40.

3-64

Command Dictionary-8540 System Users

SYNTAX

[
-S][-Wl

wrt -rn -b Jportnum value

-s

-m

-b

-w

(default)

PARAMETERS

Specifies special write as opposed to normal
write. Not valid with -M modifier. Refer to
your Emulator Specifics supplement to see if
your emulator can use this modifier.

Specifies that the value of portnurn is a
memory address (valid for memory-mapped
liD.) -M is the default for emulators with
only memory-mapped liD. Refer to your
Emulator Specifics supplement to see if you
can use the -M modifier.

If this modifier is omitted, the portnurn
parameter is assumed to be a fixed port. The
emulators which support both memory
mapped liD and fixed-port liD default to a
fixed-port write.

Specifies byte-oriented writing.

Specifies word-oriented writing.

If neither -B nor -W is specified, the default
is byte-oriented writing.

SYNTAX

[parameters]

PARAMETERS

parameters One or more values to pass to the program.
The program executes a Get Execution Line
Parameter SVC (function code 1 C) for each
of these parameters. Refer to the Service
Calls section for a description of the Get
Execution Line Parameter SVC.

EXPLANATION

The X (eXecute) command performs the same function as
entering the LO and G commands sequentially.

The standard redirection symbol «) is used to indicate the
load file on the host, which can be an object file created by
an assembler, or a load file created by the SAV command or
by a linker.

@

portnum

value

WRT
Writes to emulator I/O port

x
Loads and executes program

If -M is not used: an expression designating
a fixed liD port. Refer to your Emulator
Specifics supplement for the correct port
nurn values for your emulator.

If -M is used: an expression designating a
memory location. The expression may
include only one memory space designator.

A valid expression. Its value must not exceed
the maximum possible value ofthe indicated
word or byte.

EXPLANATION

The WRT (WRiTe) command writes a byte or a word to an
liD port on the emulator. This command is not available for
most emulators: Refer to your Emulator Specifics
supplement for details.

EXAMPLES

> WRT 70 00

Writes the value 00 to emulator port 70.

> WRT -S TERMACIA 88

Performs a special byte-oriented write to the Z8001 I
Z8002 port represented by the symbol TERMACIA.

NOTE

When using the X command your 8540 must be in
TERM mode in order to access files on the host.

EXAMPLES

Before initiating program execution, you must select the
desired processor and the emulation mode.

> Bel 8085
>~

Now you can execute the program in the 8560 load file
CHECKBOOK by entering:

> x <CHECKBOOK DEPOSIT 200

This command loads CHECKBOOK into program memory
and begins program execution. The parameters DEPOSIT
and 200 can be accessed through Get Execution Line
Parameter SVCs in the program.

3-65

8540 System Users

Section 4
INTERSYSTEM COMMUNICATION

Page

Introduction 4-1

Terminology. .. 4-1

8540/8560 TERM Interface 4-1

Setup .. 4-1
Command Execution 4-2
Precautions 4-2
Summary .. 4-2

COM Interface 4-2

Types of Transfers 4-3
Performing a Data Transfer 4-4
The Null Character 4-4

8540/8550 interface 4-4

8540/8002A Interface 4-6

8540/Generai Host Interface 4-7

Unformatted Transfers 4-7
Formatted Transfers 4-9

Tektronix Hexadecimal Format (Tekhex) 4-9
Standard Tekhex 4-10
Extended Tekhex 4-11
Protocols for Formatted Transfers 4-15
Host Software Requirements for

Formatted Transfers 4-16
The COM Command 4-22
Hardware Requirements 4-23
Establishing Communication 4-25
Exiting from COM 4-25
Data Transfers 4-25
Troubleshooting 4-27
Commands for Intersystem Communication 4-29

@

Table
No.

4-1
4-2
4-3
4-4

4-5

4-6
4-7

4-8

TABLES

Page

Data Transfer Types " 4-3
Characteristics of Unformatted Transfers. " 4-8
Standard Tekhex Data Block Format 4-10
Standard Tekhex Termination

Block Format 4-11
Standard Tekhex Abort Block Format. 4-11

Extended Tekhex Header Field 4-12

Character Values for Checksum
Computation 4-1 2

Extended Tekhex Data Block Format 4-12
4-9 Extended Tekhex Termination Block

Format 4-1 2
4-10 Extended Tekhex Symbol Block Format 4-14

4-11 Extended Tekhex Symbol Block:
Section Definition Field 4-14

4-12 Extended Tekhex Symbol Block:
Symbol Definition Field 4-14

4-13 Character Transmission Formats
Corresponding to Vaiues for M 4-22

4-14 Signals at 8540 Remote Port 4-24
4-15 Remote Port Status Register Bits 4-25

Fig.
No.

ILLUSTRATIONS

4-1 Command execution in TERM mode 4-2

4-2 Protocol for unformatted ASCII uploads .. " 4-8
4-3 Protocol for unformatted binary uploads .. " 4-8
4-4 Protocol for unformatted downloads 4-9
4-5 Protocol for formatted uploads 4-15
4-6 Protocol for formatted downloads 4-16
4-7 Algorithm for Tekhex transmit program ... 4-17
4-8 Algorithm for Tekhex receive program 4-18
4-9 Algorithm for Standard Tekhex

conversion program 4-19
4-10 Algorithm for Extended Tekhex

conversion program 4-20

4-i

8540 System Users

Section 4

INTERSYSTEM COMMUNICATION

INTRODUCTION
This section is designed to help you establish communication
between the 8540 and an external computer system.

In this section, the term "intersystem communication"
refers to the general process of communication between
an 8540 and an external computer. A method for
intersystem communication is necessary whenever you
have information on one computer system that must be
speedily and accurately transferred to another computer
system.

This section includes basic definitions and examples,
algorithms for use in writing required software, and
troubleshooting techniques. This section is organized as
follows:

• Terminology. Defines the terms used in the section.

• 8540/8560 TERM Interface. Briefly describes the
special interface between an 8540 and an 8560 Multi
User Software Development Unit.

• COM Interface. Summarizes the types of data transfers
possible between an 8540 and a computer otherthan an
8560.

• 8540/8550 Interface. Describes how an 8550
Microcomputer Development Lab operates as a host
computer to an 8540.

• 8540/8002A Interface. Describes how an 8002A
pProcessor Lab operates as a host computer to an 8540.

• 8540/Generai Host Interface. Describes how the
8540 communicates with a computer that is not an
8560, 8550, or 8002A. Includes communication
protocols, Standard and Extended Tekhex load module
formats, COM command parameters, and hardware and
software requirements for the host computer.

TERMINOLOGY
The terms "host" and "host computer" refer to a computer
system that directs or presides over one or more 8540s.
Programs are created on the host, then downloaded to the
8540 to be executed and debugged.

"Upload" refers to the transfer of data from an 8540 to a
host computer. "Download" refers to the transfer of data
from a host computer to an 8540.

@

A "TERM interface" is a special arrangement between an
8540 and a host 8560 in which you have access to all the
resources of the 8540 and the 8560 simultaneously. (You
initiate a TERM interface by entering the OS/40 command
CONFIG TERM.)

A "COM interface" is a setup that is used principally for the
transfer of object code between an unspecified host
computer and an 8540. (You initiate a COM interface by
entering the COM command on the 8540.)

8540/8560 TERM INTERFACE
The 8560 System Users Manual contains a detailed
discussion of the 8560's TERM interface with an 8540 or
8550. This subsection is a brief summary of that
discussion.

Setup
When operating in TERM mode, the 8540 and 8560
communicate using a high-speed interface (HSI) over a line
that runs from an HSII/O connector on the 8560 to the HSI
connector on the 8540. (The 8540 and 8560 can also
communicate using RS-232-C protocol, as through a
modem. In this case, the communications line connects to
the DTE jack (J1 01) on the 8540.) Your system terminal
may be connected to another HSI 1/0 connector on the
8560, or to the 8540 (as in the stand-alone configuration
for the 8540). For the purposes of this discussion, we will
assume that the terminal is attached to the 8540, and that
the 8540 and 8560 are connected via an HSI line.

You establish communication by placing the 8540 in TERM
mode with the OS/40 command CONFIG TERM. In TERM
mode, the 8540 passes every character you type directly to
the 8560, and passes 8560 responses directly to the
terminal. Once you log in to TNIX (the 8560 operating
system), you can intermix OS/40 commands and TNIX
commands, execute OS/40 commands from TN IX shell
files, and download and upload programs between the
8540 and the 8560. In order for SVCs in your program to
access files on the 8560, the 8540 must be in TERM mode.

4-1

8540/8560 TERM interface

Command Execution
Every command line you enter is processed first by the
8560. If it is an OS/40 command, the 8560 passes the
command back to the 8540. The 8540 executes the
command, perhaps accessing 8560 files in the process,
and then sends its response to you back through the 8560.
This process is illustrated in Fig. 4-1.

Precautions
Because TNIX processes every line you enter in TERM
mode, an OS/40 command line that is acceptable to an
8540 in LOCAL mode will not necessarily be processed
correctly in TERM mode. In TERM mode, for example,
OS/40 command names must be entered in lowercase; the
use of commas as delimiters is restricted; and certain
characters that have special meaning to the TNIX shell
must be "escaped" (made to appear non-special) so that the
shell does not perform unwanted transformations on the
command line.

Summary
An 8540/8560 TERM interface gives you simultaneous
access to the 8540 and the 8560, and provides a
convenient means for combining the resources of the two
systems. For more information on the hardware configura
tions and software considerations of this interface, refer to
the 8560 System Users Manual.

command I

system 8540
terminal

I I

~
response I

I

Intersystem Communication-8540 System Users

COM INTERFACE
The OS/40 COM command sets up communication
between the 8540 and a host computer. To keep the
interface as simple as possible, the 8540 uses the same
RS-232-C-compatible communication protocol as a term
ianl attached to the host. You use the parameters of the
COM command to specify the protocol that is appropriate
for your host. A communications interface established via
the COM command is referred to as a COM interface.

NOTE

Your 8540 must have the optional COM Interface
Package installed in order to support a COM interface
with any computer. Throughout the rest of this sec
tion, it is assumed that this COM option is installed in
your 8540.

The 8540 cannot execute the COM command while in
TERM mode.

Once you establish communication via the COM command,
you can:

• execute host commands from the 8540 system terminal
just as if the 8540 weren't there; and

• transfer data between the host and the 8540.

The 8550 Microcomputer Development Lab and 8002A
JiProcessor Lab can also host COM interfaces with the
8540. These special interfaces are discussed later in this
section.

I
i>

8540 command
8560

file I/O (if needed)

k:! ~
8540 response

I
I

(3936-22)3939-11

Fig. 4-1. Command execution in TERM mode.

4-2 REV JAN 1983

Intersystem Communication-8540 System Users

Types of Transfers
Two categories of data transfers are possible with a COM
interface: formatted and unformatted. Table 4-1 summarizes
the types of formatted and unformatted transfers.

Formatted (Object Code) Transfers

A formatted transfer copies blocks of object code in
Tektronix Hexadecimal (Tekhex) format between a file on
the host and program/prototype memory on the 8540.
Checksums in the Tekhex format permit verification of each
block of data as it is received. When you want to execute a
program that you have created on the host, you use a
formatted download to load the program into 8540
program memory.

There are two forms of Tekhex: Standard Tekhex, which is
appropriate for microprocessors that address 64K of
memory or less; and Extended Tekhex, which provides for

COM Interface

the transfer of program symbols (for use in symbolic debug)
and addresses of up to 64 bits. Both Tekhex formats are
explained in detail in the subsection "8540/General Host
Interface" later in this section.

Unformatted (File) Transfers

An unformatted transfer copies data between a file on the
host and an I/O device (such as a line printer or paper tape
reader/punch) on the 8540. The data is transmitted and
received with no error checking other than parity.

A file may be transferred in ASCII mode or in binary mode.
You use ASCII mode to transfer text files, and binary mode
to transfer files of binary data.

At this time, unformatted transfers are of limited use on the
8540.

Table 4-1
Data Transfer Types

Host'sa 8540's
Type of Type of Transfer Transfer

Name Data Transfer Source Destinat;on Command Sequence

Formatted Object Tekhex Host File 8540 (null) (cr)
Download Code to Program

Binary Memory

Formatted Object Binary 8540 Host File (null)
Upload Code to Program addresses

Tekhex Memory (cr)b

Unformatted ASCII Copy Host File 8540 (null)
ASCII Device >devlce
Download (cr)

Unformatted Binary Copy Host File 8540 (null)
Binary Device =devlce
Download (cr)

Unformatted ASCII Copy 8540 Host File (null)
ASCII Device <device
Upload (cr)

Unformatted Binary Copy 8540 Host File (null)
Binary Device +devlce
Upload (cr)

a Fill in the commands that you use with your host.

b addresses-the starting and ending addresses of one or more blocks of program/prototype memory to be uploaded. The last pair of
addresses may be followed by the transfer address of the program.

@ 4-3

COM Intsifacs

Performing a Data Transfer
You initiate a data transfer by entering a command line that
contains the following items:

1. a host-specific command that tells the hostto transmit
or receive the desired data (no carriage return here);
and

2. a sequence of characters that tells the 8540 what to
transmit or where to put what it receives. This 8540
transfer sequence begins with a null character and
ends with a carriage return. The last column of Table 4-
1 gives the 8540 transfer sequence for each type of
data transfer.

Detailed descriptions of all six types of data transfers are
given later in this section.

The Null Character
The null character (ASCII 00) is a special command line
delimiter to an 8540 operating in a COM interface. The null
character signifies that everything preceding it is a
command to the host computer, and that everything
following it (including the null itself) is a command to the
8540.

Characters entered at the terminal are transmitted directly
to the host computer until the null is encountered. When a
carriage return is entered at the end of a command line that
contains the null character, the 8540 processes its portion
of the command line, prepares to receive or send data, and
then transmits the carriage return to the host. The host
computer then processes the portion of the command line
that was sent to it, and the data transfer takes place. (If you
specified a special end-of-line character sequence with the
EOl parameter of the COM command, that end-of-line is
sent to the host in place of each carriage return.)

On most terminals, the null character can be generated as
a CTRL-@, that is, by pressing the CTRl key at the same
time you press the keys needed to generate the @ symbol.
In this section the null character is represented by (null).
The null character is not displayed on the terminal.

A null character can be sent from the 8540 terminal to the
host by entering two consecutive nulls on the 8540
terminal.

8540/8550 INTERFACE
This subsection explains how to use an 8550 to host
formatted (Tekhex) transfers with an 8540. (For informa
tion on how the 8550 hosts both formatted and
unformatted transfers, refer to your 8550 System Users
Manual.) When the 8550 is host, all communication
procedures and data formats are handled automatically, so
you do not need any special knowledge ofTekhex, the COM

4-4

intersysteiTl ComiT,unication-8540 System Users

command, or communication protocols. For details on this
type of information, refer to the "8540/General Host
Interface" discussion later in this section.

Setup
To set up intersystem communication between an 8550
and an 8540, you must connect an RS-232-C cable to the
remote communication ports on the 8301 (jack J1 02) and
the 8540 (jack J1 01). Set the MODE SELECT switches on
the two systems to CNTl (L). Set the REMOTE BAUD
switches to 2400.

Establishing Communication
When the physical connection has been established, you
can initiate communication between the systems by first
entering the COM command on the 8540 and then entering
the HOST command on the host 8550. If you are
performing one or more formatted uploads, and you want
the object code to be stored in StandardTekhex ratherthan
Extended Tekhex format enter:

> COM P=7E7E F=T <CR>

Otherwise, enter:

> COM P=7E7E <CR>

The HOST command has no parameters.

HOST Command Operation
After you have entered the COM command on the 8540
and the HOST command on the 8550, a message appears
on the 8550 terminal that says

HOST Vx.x

and a message appears on the 8540 terminal that says

Enter U or D; A, B, or H; and 8550 filespec:

At this point you are ready to initiate a data transfer. The
discussion under "Data Transfers" describes how to
perform both types of formatted transfers. While the HOST
command is active, you cannot execute other DOS/50
commands, and all input to both the 8540 and the 8550 is
through the 8540's terminal.

Exiting from HOST
To exit from HOST, perform the following steps:

1. Press the 8540 terminal's BREAK key to abort any data
transfer that is taking place.

2. Enter a null character and press the ESC key on the
8540 to exit from the COM command.

3. Type CTRL-C on the 8550 terminal to obtain the
DOS/50 prompt.

REV JAN 1983

Intersystem Communication-8540 System Users

4. Enter the command "A -A" (Abort All) on the 8550
terminal.

(CTRL-C)
»A -A <CR>

Data Transfers
The commands to initiate data transfers are entered on the
8540 terminal in response to the prompts sent to the 8540
terminal from the 8550. Two prompts are displayed. The
first prompt is:

Enter U or D; A, B, or H; and 8550 filespec:

This prompt requests information for the 8550 about the
type and direction of the desired transfer: U (upload) or D
(download); A (unformatted ASCII transfer), B (unformatted
binary transfer), or H (Tekhex formatted transfer). The 8550
filespec specifies the 8550 file to or from which the transfer
is to take place. No embedded spaces are allowed between
the parameters.

After you have entered the requested information, the
following prompt appears on the 8540's terminal:

Enter transfer sequence, beginning
with null character:

This prompt requests information for the 8540. The null
character indicates to the 8540 that the rest of the
command line is a command to the 8540.

The transfer command to the 8550 must match the transfer
command to the 8540.

NOTE

Check the 8550 system terminal for error messages
after you initiate each transfer. The informational
message "Error FF - End of file" appears after each
successful transfer. .

After a transfer has been completed, there may be a delay
of up to 30 seconds before the next prompt appears and the
8550 is ready for another transfer.

Formatted Download
The following command sequence downloads a Tekhex
load module to the 8540. The object code is placed in 8540
program/prototype memory, and the program symbols, if
any, are placed in the symbol table in 8540 system
memory.

Enter U or D; A, B, or H; and 8550 filespec:
DHfilespec <CR>

o indicates to the 8550 that the transfer is a download.
H indicates to the 8550 that the transfer is a formatted
Tekhex transfer.

REV JAN 1983

8540/8550 Interface

filespec is the 8550's Tekhex file from which the data is to
be transmitted.

After you've entered this command line, you tell the 8540
the type of transfer.

Enter transfer sequence, beginning
with null character:

(null) <CR>

(null) indicates that the rest of the command line is a
command to the 8540. Since there are no commands
following the null character, the 8540 recognizes that the
transfer is a formatted download into program memory.

Each time the 8550 sends a message block, an asterisk is
displayed on the 8540's terminal. If the block is transferred
correctly, the starting address and length of the block are
displayed on the 8540 terminal. If the 8540 detects an error
and issues a negative acknowledgement (NAK), the 8550
resends the block and another asterisk is displayed on the
8540 terminal. (If the 8540 has COM Version 4.1 or a later
version, the 8540 dispiays an asterisk for each successfuiiy
transferred block and an underscore for each NAK.)

When the transfer is complete, the 8540 terminal displays
the initial prompt requesting information for the host
computer:

Enter U or D; A, B, or H; and 8550 filespec:

and the 8550 terminal displays

HOST: Error FF - End of file

Formatted Upload
The following command sequence uploads blocks of object
code from 8540 program/prototype memory to a file on the
8550. No program symbols are uploaded.

Enter U or D; A, B, or H; and 8550 filespec:
UHfilespec <CR>

U indicates to the 8550 that the transfer is an upload.
H indicates to the 8550 that the transfer is a formatted
Tekhex transfer.
filespec is the 8550 file to which the data is to be
transferred.

After you've entered this command line, you tell the 8540
the type of transfer.

Enter transfer sequence, beginning
with null character:

(null)lowaddl hiaddl lowaddZ
hiaddZ ... transadd <CR>

4-5

8540/S002A liiteifaCe

(null) indicates that the rest of the command line is, a
command to the 8540.
lowadd1 is the low address of a block of 8540 program
memory to be transferred.
hiadd1 is the high address of a block of 8540 program
memory to be transferred.
lowadd2 is the low address of another block of 8540
program memory to be transferred.
hiadd2 is the high address of another block of 8540
program memory to be transferred.
transadd is the beginning execution address for the code in
the transferred blocks.

Each time the 8540 sends a block, the 8540 terminal
displays

*BLOCK SENT AT: address

An asterisk is displayed each time a block is sent. If more
than one asterisk appears, the 8550 has detected an error
and issued a negative acknowledgement (NAK), and the
block has been resent.

When the transfer is complete, the 8540 terminal displays
the initial prompt requesting information for the 8550:

Enter U or D; A, B, or H; and 8550 filespec:

and the 8550 terminal displays

HOST: Error FF - End of file

Troubleshooting
Symptom

Check

Symptom

Check

4-6

Cannot establish initial communication.

1. Verify that the optional COM interface
software has been installed in your 8540.
2. Verify that the transmit and receive
baud rates of the 8550 and the 8540
correspond.
3. Verify that the RS-232-C cable is
plugged into the correct jacks on the
8550 and on the 8540.
4. Verify that the switches controlling the
REMOTE jacks on the 8301 and 8540 are
positioned correctly.

No reaction after typing transfer request.

1. Verify that your commands to the 8550
and 8540 are appropriate, and that you
are using the correct file name.
2. Verify that when you entered the COM
command on the 8540, you specified the
appropriate prompt sequence (P=7E7E).
3. On a formatted download, verify that
the Tekhex file on the 8550 is in proper
format.

intersystem Communication-8540 System Users

8540/S002AINTERFACE
This subsection explains how to use the TEKDOS SEND
command to download a program from an 8002A
tJProcessor Lab to 8540 program/prototype memory. The
program must be in Standard Tekhex format. as produced
by the TEKDOS WHEX command.

For details about Tekhex, the COM command, and
communications protocols, refer to the "8540lGeneral
Host Interface" discussion later in this section.

Setup
The 8002A and 8540 are connected via an RS-232-C line
that runs from jack J1 01 on the 8002A rear panel to jack
J 102 (DTE) on the 8540 rear panel. On the 8540, be sure
that the REMOTE BAUD switch is set to 2400 and that the
MODE SELECT switch is set to CNTL (L). On the 8002A
System Communication board, verify that the J1 jumper is
set to the lower position, and that the PORT1 baud rate
jumper is set to 2400.

Each system must have its own system terminal.

Establishing Communication
To establish communication between the 8540 and the
8002A, enter the following COM command on the 8540
system terminal:

> COM P=3F E=L L=I <CR>

Then enter the SEND command on the 8002A system
terminal:

> SEND <CR>

The SEND command does not issue any prompt.

Performing a Download
To download a program from a Tekhex file on the 8002A.
type the name of the file, a null character, and a carriage
return on the 8540 terminal:

filename(null) <CR>

Each time the 8002A sends a message block to the 8540,
an asterisk is displayed on the 8540 terminal. If the block is
transferred correctly, the starting address and length of the
block are displayed on the 8540 terminal. If the 8540 detects
an error and issues a negative acknowledgement (NAK), the
8002A resends the block and another asterisk is displayed.
(If the 8540 has COM Version 4.1 or a later version, the
8540 displays an asterisk for each successfully transferred
block and an underscore for each NAK.) When the
download is complete, the 8540 terminal displays the mes
sage "DNLOAD:".

REV JAN 1983

Intersystem Communication-8540 System Users

Terminating Communication
To terminate communication between the 8540 and the
8002A, perform the following steps:

1. If a download is in progress, press the BREAK key twice
on the 8540 terminal.

2. Enter a null character and press the ESC key on the
8540 terminal.

Troubleshooting
Symptom

Check

Symptom

Check

Cannot establish initial communication.

1. Verify that the QPtional COM interface
software has been installed in your 8540.
2. Verify that the RS-232-C cable is
plugged into the correct jacks on the
8540 and the 8002A.
3. Verify that the REMOTE BAUD and
MODE SELECT switches on the 8540
ieai panel are positioned correctly.
4. Verify that the J1 jumper and PORT1
baud rate jumper are positioned correctly
on the 8002A System Communication
board.

Unexpected reaction to download request.

1. Verify that you entered the correct
parameters for the COM command.
2. Verify that the 8002A file you specified
is in Standard Tekhex format.

8540/GENERALHOST
INTERFACE

This subsection provides the detailed information required
to establish communication between an 8540 and a host
computer that is not an 8560, 8550, or 8002A. Refer to the
"COM Interface" discussion earlier in this section for a
summary of the types of data transfers possible between
the 8540 and a host.

If you are sufficiently familiar with the way your host
computer communicates with a terminal, you can use the
information in this subsection to:

• establish the appropriate RS-232-C connections and
switch settings on the 8540 and the host

• determine the parameters of the COM command line
you will use to initiate communication with the host

• determine the host command line that is appropriate for
each type of data transfer

• write programs for the host that create, transmit, or
receive files in Tekhex format.

@

8540/Generai Host Interface

It is recommended that you make this host-specific
information available to other users of your 8540, using the
spaces provided at the end of this section and in the
Operating Procedures section of this manual.

This subsection is divided into the following topics:

• Unformatted Transfers. Explains the protocols for
unformatted transfers and identifies the types of host
computer commands you can use to perform these
transfers.

• Formatted Transfers. Describes Standard and Extended
Tekhex formats, explains the protocols for formatted
transfers, and gives algorithms for programs to create,
transmit, and receive Tekhex files.

• The COM Command. Explains the parameters of the
COM command.

• Hardware Requirements. Describes the intersystem
communication hardware on the 8540.

• Establishing Communication. Tells howtoconnectthe
8540 to the host and establish communication.

• Exiting from COM. Tells howtoterminate communica
tion.

• Data Transfers. Describes in detail howto perform each
type of data transfer.

• Troubleshooting. Describes possible communication
problems and ways to solve them.

Unformatted Transfers
An unformatted transfer conveys data between a file on the
host and an 1/0 device on the 8540. You cannot use an
unformatted transfer for direct loading or dumping of 8540
program memory.

This discussion covers the utilities required on the host
computer to accomplish unformatted transfers, the kinds of
unformatted transfers, and protocols for unformatted
transfers.

Unformatted transfers are simpler than formatted transfers.
In most cases, no special host computer software is
required and standard host computer operating system
utilities are used.

Host Utility Requirements for Unformatted
Transfers

Two host computer utilities are required for unformatted
transfers. These utilities must accomplish the following
tasks:

1. For a download, the utility must be able to copy
information from a file on the host computer to a
terminal.

2. For an upload, the utility must be able to copy
information from a terminal to a file on the host
computer.

4-7

Unformatted Transfers

Simple copy commands, text editors. and rapid text entry
modes are examples of utilities that might be used.

Kinds of Unformatted Transfers

Four kinds of unformatted transfers are possible with the
8540: ASCII uploads. ASCII downloads, binary uploads,
and binary downloads. Table 4-2 shows the characteristics
of each type of unformatted transfer.

Table 4-2
Characteristics of Unformatted Transfers

, ,

Maximum Significant
Transfer Recommended Unit of Bits Per

Type Baud Ratea Transfer Data Byte

ASCII 2400 ASCII line 7b

Upload

ASCII 2400 Entire file 7b

Download

Binary 2400 Entire file 8
Upload

Binary 2400 Entire file 8
Download

a Unformatted transfers may also proceed successfully at 4800
or 9600 baud for some hosts.

b The high-order bit of each data byte is cleared by the 8540.

Protocols for Unformatted Transfers
With unformatted transfers. the transmitting computer
does not receive confirmation that data was correctly
received by the receiving computer. Instead, a prompt
sequence (defined by the P parameter of the COM
command) signals the 8540 that the host is ready for input
(either more data or a new command).

Upload Protocol. An unformatted upload transfers data
from a device on the 8540 (such as the paper tape reader) to
a file on the host, either line by line (ASCII upload) or as an
uninterrupted stream of bytes (binary upload).

When the upload is complete, the 8540 prints the message

RIOT:

on the terminal, but does not tiansmit any end-of-file
indicator. You must enter the appropriate end-of-file
sequence when you see the RIOT: message. or the host
must keep track of the time elapsed after each byte is sent
and terminate the transfer when the 8540 appears to have
stopped transmitting.

ASCII Upload Protocol. In an unformatted ASCII upload, the
host sends the prompt to the 8540 when the ~ost is ready to
receive a line of data. The 8540 then waits the amount of

4-8

intersystem Communication-8540 System Users

time indicated by the T parameter of the COM command
and then sends the next line of data. Omit the P (prompt)
parameter unless the host actually issues a prompt every
time it is ready to receive a line.

On the 8540, every carriage return (ASCII 00) in the data is
assumed to be the end of a line. If you specify an end-of-line
sequence with the EOl parameter of the COM command,
the 8540 sends that sequence in place of each carriage
return.

The protocol for an unformatted ASCII upload is given in
Fig. 4-2.

Binary Upload Protocol. in an unformatted binary upload.
the host sends the prompt (if any) to the 8540 when the
host is ready to receive the data. The 8540 then waits the
amount of time indicated by the T parameter of the COM
command. and then sends the data to the host as an
uninterrupted stream of bytes.

The protocol for an unformatted binary upload is given in
Fig. 4-3.

Download Protocol. In an unformatted download. a file on
the host is copied to an 1/0 device on the 8540 (such as the
line printer). The host transmits the entire file without
interruption, then sends the prompt to indicate that the end
of the file has been transmitted and that the host can accept
input from the 8540.

8540

Line 1

Line 2

Line n

Terminate
Transfer

Host

Prompt sequence

Prompt sequence

Prompt sequence

Terminate
Transfer

T

M

E

3936-23

Fig. 4-2. Protocol for unformatted ASCII uploads.

8540

File Contents

Terminate
Transfer

Host

Prompt Sequence

Terminate
Transfer

T
I

M

E

Fig. 4-3. Protocol for unformatted binary uploads. 3936-24

REV JAN 1983

Intersystem Communication-8540 System Users

For unformatted downloads, it is usually appropriate for the
P (prompt) parameter of the COM command to match the
host's system prompt. However, be sure that the prompt
sequence you specify does not appear anywhere in the file
to be downloaded, since the prompt marks the end of the
data to be downloaded.

The protocol for an unformatted download is given in Fig.
4-4.

8540

Terminate
Transfer

Host

File contents

Prompt sequence

Terminate
Transfer

j ~
Fig. 4-4. Protocol for unformatted downloads. 3936·25

Formatted Transfers
A formatted transfer conveys object code between a file on
the host and program/prototype memory on the 8540. The
file may also contain program symbols to be placed in the
8540's system memory for use in symbolic debug.
Formatted transfers are more complex than unformatted
transfers because the data must be put into predefined
message blocks before it is transferred. The message
blocks are structured according to the rules defining
Tektronix Hexadecimal Format (Tekhex).

This discussion covers the two types of Tekhex format,
protocols for formatted transfers, and algorithms for
software required on the host computer.

Tektronix Hexadecimal Format (Tekhex)

Standard Tekhex and Extended Tekhex are two ways of
encoding a load module as lines of printable ASCII
characters. A load module contains the following
information:

@

1. blocks of object code to be loaded into memory;

2. a load address for each block of object code that tells
where in memory to load that block;

Formatted Transfers

3. a transfer address, which is the address where
program execution should begin; and

4. for use in symbolic debug, program symbols and their
values.

Extended Tekhex format can convey all four types of
information, while Standard Tekhex conveys only the first
three types. Both Tekhex formats also contain additional
information, such as headers and checksums, which are
used by the program that loads the object code.

An 8540 or 8550 can accept a module that is encoded in
either format. or in a mixture of the two. An 8002A (or an
8550 running DOS/50 Version 1) supports only Standard
Tekhex.

You need to use Extended Tekhex instead of Standard
Tekhex if any of the following conditions are true:

• you need to specify a load address larger than FFFF; or

• you need to convey symbols and symbol values for
symbolic debug; or

• you want to transmit more than thirty bytes of object
code per block.

Message Block Delimiters. A line ofTekhex information is
referred to as a message block. Each message block begins
with a slash (I-for Standard Tekhex) or a percent sign
(%-for Extended Tekhex) and ends with an end-of-line
character sequence. Tektronix development systems use a
single carriage return as an end-of-line. If your host
computer uses a different end-of-line, it must be specified
with the EOL parameter of the COM command, which is
discussed later in this section.

Hexadecimal Digits. The letters A through F, when used
as hexadecimal digits in Tekhex message blocks, must be
uppercase.

4-9

Formatted Transfers Intersystem CommUnicatlon-8540 System Users

Standard Tekhex
Standard Tekhex uses three types of message blocks:

1. A data block contains object code.

Data Blocks. A data block contains the load address for the
object code in the block, a byte count, 30 or fewer bytes of
object code, and checksum information. The format for a
data block is given in Table 4-3.

2. A termination block contains the transfer address and
marks the end of the load module.

3. An abort block is usedtoterminatetransmission when
an unrecoverable error occurs.

Table 4-3

Display 4-1 is an example of a data block.

Standard Tekhex Data Block Format

I Number of I - ---------------------

ASCII
Field Characters Description

/ 1 The slash specifies that the block is in Standard Tekhex format.
-- --

Load
I

4 The address where the object code is to be loaded (high-byte, low-byte format).
Address

--_ ... _---
I

Byte Count i 2 Number of data bytes in the data field of the block.
-- -

First 2 The sum, mod 256, of the six hex digits of the load address and byte count.
Checksum

Data 2n (2 to 60) n data bytes, each represented as two hex digits. Maximum of 30 data bytes.

Second 2 Sum, mod 256, of the 2n hex digits of the data field.
Checksum

r
Load address

fFi,st CheCkSFsecond checksum

/Ol0006070202020202020C

llBJ;t.
LHeader

Display 4-1.

4-10 @

Intersystem Communication-8540 System Users

Termination Blocks. A termination block contains only a
transfer address (instead of a load address), a byte count of
zero, and a checksum of the address and byte count.
Because there is no data in the block, there is no second
checksum. The format for a termination block is given in
Table 4-4.

Table 4-4
Standard Tekhex Termination Block Format

Number of
ASCII

Field Characters Description

/ 1 The slash specifies that the
block is in Standard Tekhex
format.

Transfer 4 Starting execution address
Address (high-byte, low-byte format)

of the code transmitted in the
data blocks.

Byte 2 Always 00 in a termination
I block.

Checksum 2 Sum, mod 256, of the six hex
digits of the transfer address
and byte count.

Display 4-2 is an example of a termination block.

Abort Blocks. An abort block contains two slashes
followed by a message. This block tells the 8540 that an
unrecoverable transmission error has occurred and to

r Transfer address

rCheCksum

/10000001

l L Byte count
Header

Formatted Transfers

terminate the transmission. When this block is received,
the message in the block is displayed on the 8540's
terminal. The format for an abort block is given in Table4-5.

Table 4-5
Standard Tekhex Abort Block Format

Field

/

/

Message

Number ofl
ASCII

Characters Description

1 to 69

i The slash specifies that the
: block is in Standard Tekhex
format.

Another slash to identify the
abort block.

A message to be displayed
when the transfer is aborted.

Display 4-3 is an example of an abort block.

Extended T ekhex
Extended Tekhex uses three types of message blocks:

1. A data block contains object code.

2. A symbol block contains information about a program
section and the symbols associated with it. This
information is needed only for symbolic debug.

3. A termination block contains the transfer address and
marks the end of the load module.

Display 4-2.

Header

J

Message

r~ ____________ ~A~ ____________ ~,

1/5 CONSECUTIVE FAILURES. TRANSMISSION ABORTED

Display 4-3.

@ 4-11

Formatted Transfers

NOTE

Extended Tekhex has no specially defined abort
block. To abort a formatted transfer, use a Standard
Tekhex abort block, as defined earlier in this section.

Each block begins with a six-character header field and
ends with an end-of-line character sequence (on the 8540,
a carriage return). A block can be up to 255 characters long,
not counting the end-of-line. A header field has the format
shown in Table 4-6.

Item

Table 4-6
Extended Tekhex Header Field

Number of
ASCII

Characters Description

A percent sign specifies that
the block is in Extended
Tekhex format.

Block 2 The number of characters in
the block: a two-digit hex
number. This count does not
include the leading % or the
end-of-line.

Length

Biock Type

Checksum 2

____ .. ____ L-_______ _

6 ::- data block
3 = symbol block
8 = termination block

A two-digit hex number re
presenting the sum, mod
256, of the values of all the
characters in the block, except
the leading %, the checksum
digits, and the end-of-line.
Table 4-7gives the values for
all characters that may appear
in Extended Tekhex message
blocks.

--- - -- ---- --_._------

Table 4-7
Character Values for Checksum Computation

Characters

0 .. 9
A.Z

$ I
% I

. (period) I
_ (underscore) I

Values (Decimal)

0 .. 9
10.35
36
37
38
39

__________ ~ ___ J ___ _ 40 .. 65

4-12

:ntersystem Communication-8540 Sysiem Users

Variable-length Fields. In Extended Tekhex, certain fields
may vary in length from 2 to 17 characters. This practice
enables you to compress your data by eliminating leading
zeros from numbers and trailing spaces from symbols. The
first character of a variable-length field is a hexadecimal
digit that indicates the length of the rest of the field. The
digit 0 indicates a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGE
STARTSHERE are represented as 5START, 4LOOP, and
OKLUDGESTARTSHERE. The values 0, 100H, and FFOOOOH
are represented as 10, 3100, and 6FFOOOO.

Data and Termination Blocks. If you do not intend to
transfer program symbols with your object code, you can do
without symbol blocks. Your load module can consist of one
or more data blocks, followed by a termination block. Table
4-8 gives the format of a data block, and Table 4-9 gives the
format of a termination block.

Field

Header

Load
Address

Object
Code

Table 4-8
Extended Tekhex Data Block Format

Number of I
ASCII ,

Characters I Description

6 Standard header field. Block
type = 6.

2 to 17 The address where the object
code is to be loaded: a
variable-length number.

2n n bytes, each represented as
two hex digits.

Table 4-9
Extended Tekhex Termination Block Format

Field

Header

Transfer
Address

Number of
ASCII

Characters

6

2 to 17

Description

Standard header field. Block
type = 8.

I
I The i'lddress where program
execution is to begin: a
variable-length number .

Display 4-4 is an example of a data block.

Display 4-5 is an example of a termination block.

@

Intersystem Communication-8540 System Users Formatted Transfers

rr=
Block length: 15H = 21

I Checksum: 1 CH = 28 = 1 +5+6+3+1 +0+0+0+2+0+2+ ...

t r Object code: 6 bytes

..---.-.
%1561C3100020202020202

t lload address: 100H

Block type: 6

'----- Header character

Display 4-4.

I Block length: 8

+ r Checksum: 1 AH = 26 = 0+8+8+2+8+0

%0881A280

ttL Transfer address:

I
L= Block type: B

Header character

80H

Display 4-5.

Symbol Blocks. A symbol used in symbolic debug has the
following attributes:

1. the symbol itself: 1 to 16 letters, digits, dollar signs,
periods, or underscores. The first character of the
symbol can be a letter or (if the symbol is a section
name) a percent sign.

2. a value: up to 64 bits (16 hexadecimal digits).

3. a type: address or scalar. (A scalar is any number that is
not an address.) An address may be further classified
as a code address (the address of an instruction) or a
data address (the address of a data item). Symbolic
debug does not currently use the code/data distinction,
so the address/scalar distinction is sufficient for
standard applications of Extended Tekhex.

4. a global/local designation. This designation is of
limited use in a load module, and is provided for future
development. The concept of global symbols is
discussed in the Assembler Core Manuals for
TEKTRONIX A Series and B Series assemblers. If the
global/local distinction is not important for your
purposes, simply call all your symbols global.

REV JAN 1983

5. section membership. A section may be thought of as a
named area of memory. Each address in your program
belongs to exactly one section. A scalar belongs to no
section. The concept of sections is discussed in detail
in the Assembler Core Manuals for both A Series and B
Series assemblers. The significance of sections with
regard to symbolic debug is illustrated in the Learning
Guide of this manual.

The symbols in your program are conveyed in symbol
blocks. Each symbol block contains the name of a section
and a list of the symbols that belong to that section. (You
may include scalars with any section you like.) More than
one block may contain symbols for the same section. For
each section, exactly one symbol block should contain a
section definition field, which defines the starting address
and length of the section.

If your object code has been generated by an assembler or
compiler that does not deal with sections, simply define
one section called (for example) MEMORY, with a starting
address of 0 and a length greater than the highest address
used by your program; and put all your symbols in that
section.

4-13

Formatted Transfeis

Table 4-10 gives the format of a symbol block. Tables 4-11
and 4-12 give the formats for section definition fields and
symbol definition fields, which are parts of a symbol block.

Table 4-10
Extended Tekhex Symbol Block Format

Field

Number of
ASCII

characters Description
=.::::. .. -.-.~=f--=:-::::-:-:.:-=--:-:: .. =====f=========:-===

Header 6 Standard header field. Block
type = 3. -_._---_. -------- --_ .. _----------

Section
Name

Section
Definition

2 to 17 The name of the section that
contains the symbols defined
in this block: a variable
length symbol.

5 to 35 This field must be present in
exactly one symbol block for
each section. This field may
be preceded or followed by
any number of symbol defini
tion fields. Table 4-11 gives
the format for this field.

5 to 35 each Zero or more symbol defini
tion fields, as described in
I Table 4-12.

Table 4-11
Extended Tekhex Symbol Block:

Section Definition Field

Number of
ASCII

Item Characters Description

0 1 A zero signals a section
definition field.

Base 2 to 17 The starting address of the
Address section: a variable-length

number.

Length 2 to 17 The length of the section: a
variable-length number, com-

-I ~~~~d_ ~~I.~ _~\(hlgh address
-

I Od:::;e duure:::;:::;/.

4-14

intersystem Communication-8540 System Users

Table 4-12
Extended Tekhex Symbol Block:

Symbol Definition Field

Number of
ASCII

Item Characters Description

Type 1 A hex digit that indicates the
global/local designation of
the symbol, and the type of
value the symbol represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address
6 = local scalar
7 = local code address
8 = local data address

Symbol 2 to 17 A variable-length symbol.

Value 2 to 17 The value associated with the
symbol: a variable-length
number.

Symbol Block Example. Suppose a section called
SVCSTUFF occupies memory locations 40H-105H and
contains the symbols shown in the following table, and that
you don't care about global/local and code/data
distinctions.

Symbol
Symbol Value Type Definition Field

CR ODH scalar 22CR1D
OPEN 50H address 140PEN250
READ 58H address 14READ258
WRITE 60H address 15WRITE260
CLOSE 68H address 15CLOSE268
EXIT 70H address 14EXIT270
BUFLENGTH 80H scalar 29BUFLENGTH280
BUF 78H address 13BUF278

Display 4-6 shows how this information might be encoded
in Extended Tekhex symbol blocks. (All this information
could be encoded in a single 96-character block. It is
divided into two blocks for purposes of illustration.)

@

Intersystem Communication-8540 System Users

.....-------- Block length: 37H = 55

1
Checksum: 60H = (3+7+3+8+28+31 +12+28+29+ ...) mod 256

r Section definition field:
, base address = 40H; length = C6H

%373608SVCSTUFF02402C622CRlD140PEN250l4READ258l5WRITE260
%373C88SVCSTUFF15CLOSE268l4EXIT27029BUFLENGTH280l3BUF278

t ~ Section name

I Block type: 3

Header character

Display 4-6.

Protocols for Formatted Transfers

Formatted transfers require a formal communications
protocol. ASCII characters are used to positively acknow
ledge or negatively acknowledge the receipt of Tekhex
message blocks. The character "0" (ASCII 30H) is used as a
positive acknowledgment (ACK) and the character "7"
(ASCII 37H) is used as a negative acknowledgment (NAK).
Each ACK or NAK is followed by an end-of-line.

Upload Protocol. After the 8540 transmits a message
block to the host, the host computer performs whatever
error checking is desired. If no transmission error occurs,
the host sends an ACK followed by a prompt to the
transmitting 8540. The transmitting 8540 then continues
with the formatted transfer by sending the next message
block. If the host detects a transmission error, it responds
by sending a NAK followed by a prompt to the transmitting
8540. When the transmitting 8540 receives a NAK, it re
sends the message block that was incorrectly received.
Figure 4-5 illustrates the protocol for a formatted upload.

8540

Message block 1

Message block 2

Message block n

Termination block

Terminate
Transfer

Formatted Transfers

Host Computer

Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

Terminate
Transfer

T

M

E

3936-26

Fig. 4-5. Protocol for formatted uploads.

@ 4-15

Formatted Transfers

Download Protocol. After the host sends a message block
followed by a prompt sequence to the receiving 8540, the
receiving 8540 performs the appropriate error checking. If
no transmission error occurs, the receiving 8540 responds
by sending an ACK to the transmitting host. The host then
continues with the transfer by sending the next message
block. If the receiving 8540 detects a transmission error, it
responds by sending a NAK to the host. When the
transmitting host receives a NAK, it re-sends the message
block that was incorrectly received. Fig. 4-6 illustrates the
protocol for a formatted download.

Suppressing Handshaking. The COM command param
eter H S = OFF eliminates the ACK/NAK response
("handshaking") from the protocol of a formatted transfer.
Eliminating handshaking simplifies a data transfer at the risk
of undetected errors. In an upload, when the host receives a
block, its response must consist only of the prompt se
quence if handshaking is off. In a download, the 8540 does
not respond at all when it receives a block. However, the
8540 still verifies each checksum, and if any are found to be
incorrect, the 8540 issues an error message when the trans
fer is complete. In Version 4.1 and later versions, COM dis
plays an asterisk (signifying a good block) or an underscore
(bad block) on the system terminal each time it receives a
block, regardless of the HS parameter.

Host Software Requirements for Formatted
Transfers

Because formatted transfers require a formal protocol, a
host computer used with the 8540 must be capable of

8540 Host Computer

ACK or NAK
End-of-line

ACK or NAK
End-of-line

ACK or NAK
End-of -line

ACK or NAK
End-of-line

Terminate
Transfer

Message block 1
Prompt sequence

Message block 2
Prompt sequence

Message block n
Prompt sequence

Termination block
Prompt sequence

Terminate
Transfer

T
I

M
E

I

!

Fig. 4-6. Protocol for formatted downloads.

4-16

3936-27

fn!ersystem Commun!cat!cn-8540 System Users

satisfying that protocol. In particular, the following
programs are required on the host computer:

1. A transmit program that will transfer Tekhex blocks to
the 8540.

2. A receive program that will accept Tekhex blocks from
the 8540.

3. If you have object files in non-Tekhex format that you
would like to transfer and use on the 8540, you must
have a conversion program that will translate the
object files into Tekhex format.

Notice that without handshaking, the protocol for a
formatted transfer is the same as for an unformatted ASCII
transfer, as described eariier in this subsection. Therefore,
a simple copy command could serve as a transmit or
receive program. However, the 8540 generally takes longer
to process a message block than the host requires to send
the next one, so the transmit program must pause enough
between lines that no data is lost.

One way for the host to achieve the necessary delay is to
transmit "fill" characters at the beginning of each message
block. COM finishes processing one message block while it
receives (and ignores) the fill characters at the beginning of
the next block. You may use any characters you want for fill,
so long as they differ from the host's end-of-line
characters(s) and from the leading character of the message
block. For transfers at 2400 baud, four to six fill characters
should be sufficient; the actual number required depends on
your host and baud rate.

Transmit Program. This program downloads Tekhex
formatted files to the 8540, using the download protocol
described earlier in this section. The general algorithm is as
follows:

1. Read a Tekhex block from a file (error checking for valid
format is optional).

2. Transmit the block followed by the predefined prompt
sequence, and wait for an acknowledgement. The
prompt sequence is defined in the COM command line,
and the 8540 will not respond until it receives the
prompt.

3. If the reply is a negative acknowledgement (NAK):

a. Increment the negative acknowledgement counter
(this counter keeps track of how many successive
transmission failures have occurred).

b. If the negative acknowledgement counter exceeds
a maximum value that you have defined, terminate
the transfer by sending an abort block.

c. Prepare to re-transmit the block that was
incorrectly received and go to step 2.

4. If the reply is a positive acknowledgement (ACK):

a. If the block sent was a termination block, terminate
the transfer.

b. Otherwise, go to step 1.

REV JAN 1983

Intersystem Communication-8540 System Users

This algorithm is presented in pseudo-code in Fig. 4-7.

Receive Program. This program receives Tekhex files from
the 8540, using the upload protocol described earlier in this
section. The general algorithm is as follows:

1. Read a Tekhex block from the 8540.

2. Verify proper format. A Standard Tekhex block must
begin with a slash and must not exceed 71 characters
in length (not counting the end-of-line). An Extended
Tekhex block must begin with a percent sign and must
not exceed 255 characters in length (not counting the
end-of-line).

3. If the block is a termination block,

a. Verify the checksum.

b. If an error is encountered, send a NAK followed by
the pre-defined prompt sequence, and increment
the NAK counter.

END-OF-FILE = FALSE
WHILE NOT END-OF-FILE

READ TEKHEX BLOCK FROM FILE

Formatted Transfers

c. If no error is encountered, write the block to a file,
transmit an ACK followed by the predefined prompt
sequence, and exit the receive program.

4. If the block is not a termination block,

a. Verify the byte count.

b. Verify the checksum(s).

c. If an error is encountered, increment the NAK
counter and test to see if it exceeds a maximum
value that you've selected. If it exceeds that value,
terminate the transmission with an abort block;
otherwise, send a NAK followed by the predefined
prompt sequence to the 8540. The prompt
sequence is defined in the COM command line,
and is used by the 8540 to determine when the
host computer is ready for input.

d. If no error is encountered, write the block to a file
and send an ACK followed by the predefined
prompt-sequence to the 8540.

IF TEKHEX BLOCK IS A TERMINATION BLOCK THEN END-OF-FILE = TRUE
NUMBER-OF-NAKS = 0
GOODTX = FALSE
REPEAT

TRANSMIT BLOCK
TRANSMIT PROMPT SEQUENCE
GET REPLY
IF REPLY IS AN ACK
THEN GOODTX = TRUE
ELSE

NUMBER-OF-NAKS = NUMBER-OF-NAKS + 1
IF NUMBER-OF-NAKS >= 5

END

THEN

END

TRANSMIT ABORT BLOCK
GOODTX = TRUE
END-OF-FILE = TRUE

UNTIL GOODTX = TRUE
END
EXIT

@

Fig. 4-7. Algorithm for Tekhex transmit program.

3936-28

4-17

FOimattad Transfers

This general algorithm is presented in pseudo-code in Fig.
4-8.

Conversion Programs. This discussion gives two algorith
ms for converting a file of object code into Tekhex format.
The first algorithm is for conversion to Standard Tekhex,

NAK-COUNTER = 0
END-OF-TRANSMISSION = FALSE
WHILE NOT END-OF-TRANSMISSION

CLEAR ERROR FLAG
READ A TEKHEX BLOCK FROM THE RECEIVE LINE
IF TriE BLOCK STARTS WITH A n / n AND BLOCK-LENGTH <= (.1

OR THE BLOCK STARTS WITH A "%" AND BLOCK-LENGTH <= 255
THEN

IF BLOCK IS A TERMINATION BLOCK
THEN

VERIFY CHECKSUM
IF ERROR
THEN SET ERROR FLAG

intersystem Communication-8540 System Users

and the second is for conversion to Extended Tekhex.
Because of the wide variation in object file formats from
assembler to assembler, it is possible to give only very
general algorithms.

ELSE **NO ERROR IN TERMINATION BLOCK**

END

END

WRITE BLOCK TO FILE
END-OF-TRANSMISSION = TRUE
TRANSMIT ACK, END-OF-LINE
TRANSMIT PROMPT SEQUENCE

IF BLOCK IS A NOT A TERMINATION BLOCK
THEN

VERIFY BYTE COUNT
VERIFY CHECKSUM(S)
IF ERROR
THEN SET ERROR FLAG
ELSE **NO ERROR IN DATA OR SYMBOL BLOCK**

WRITE BLOCK TO FILE
TRANSMIT ACK, END-OF-LINE
TRANSMIT PROMPT SEQUENCE
NAK-COUNTER = 0

END
END

END
ELSE **BLOCK FORMAT IS BAD**

SET ERROR FLAG
END
IF ERROR FLAG SET
THEN

NAK-COUNTER = NAK-COUNTER + 1

END
END
EXIT

4-18

IF NAK-COUNTER >= NAK-LIMIT
THEN **IF NUMBER OF NAKS EXCEEDS NAK-LIMIT,

TRANSMIT ABORT BLOCK ABORT THE TRANSMISSION**
END-OF-TF_~NSMISSION TRl~

END
ELSE

END

TRANSMIT NAK, END-OF-LINE
TRANSMIT PROMPT SEQUENCE

Fig. 4-8. Algorithm for Tekhex receive program.

3936-29

@

Intersystem Communication-8540 System Users

Standard Tekhex Conversion Program.

1. Discard any header information and scan for the first
block of code.

2. Read the block of code.

3. If there are no more blocks:

a. Generate a termination block.

b. Stop execution.

4. Strip off any non-object code information from the
block.

5. Check the block for valid input format.

6. Start the output block with a slash.

7. Immediately after the slash, append the 4-digit load
address for the block.

8. Determine the byte count n, where n is the number of
bytes of object code in the block. Place the byte count in
the output block immediately following the load
address.

DISCARD HEADER INFORMATION
END-OF-FILE = FALSE
WHILE NOT END-OF-FILE

READ BLOCK FROM INPUT FILE
IF NO MORE BLOCKS
THEN END-OF-FILE = TRUE
ELSE

IF BLOCK IS A TERMINATION BLOCK
THEN

Formatted Transfers

9. Calculate the first checksum as the sum of the
individual hexadecimal digits of the load address and
the byte count. Append this value immediately
following the byte count.

10. Put the n bytes of object code into the block,
immediately following the first checksum. While
performing this step, calculate the second checksum
as the sum, mod 256, of the 2n hexadecimal digits in
the object code.

11. Write the block to the output file.

12. Go to step 2.

This general algorithm is presented in pseudo-code in Fig.
4-9.

SAVE TRANSFER ADDRESS FOR TEKHEX TERMINATION BLOCK
END-OF-FILE = TRUE

END
END

END
ELSE

END

SAVE LOAD ADDRESS
STRIP NON OBJECT CODE INFORMATION FROM BLOCK
CHECK FOR VALID FORMAT
IF ERROR
THEN

OUTPUT ERROR MESSAGE
END-OF-FILE = TRUE

END
ELSE

END

OUTPUT-BLOCK [01 = "1"
DETERMINE LOAD ADDRESS
OUTPUT-BLOCK [1 .. 4] = 4-DIGIT LOAD ADDRESS
DETERMINE BYTE COUNT
OUTPUT-BLOCK [5 .. 6] = 2-DIGIT BYTE COUNT
CALCULATE FIRST CHECKSUM
OUTPUT-BLOCK [7 .. 8] = 2-DIGIT CHECKSUM
OUTPUT-BLOCK [9 .. 2n+8] = OBJECT CODE
CALCULATE SECOND CHECKSUM
OUTPUT-BLOCK [2n+9 .. 2n+10] = 2-DIGIT CHECKSUM
WRITE OUTPUT-BLOCK TO FILE

GENERATE TEKHEX TERMINATION BLOCK
EXIT

Fig. 4-9. Algorithm for Standard Tekhex conversion program.

REV JAN 1983

3936-30A

4-19

Formatted Transfers

Extended Tekhex Conversion Program. This algorithm
makes the following assumptions:

• The object file may contain program symbols and
section information as well as executable object code.

• All the usable information in each block is output to the
Tekhex file before the next block is read from the object
file. (You may find it more useful to save the program
symbols in a table as you proceed through the object file,
and generate your symbol blocks from the symbol table
at the end of the program.)

• At most one data block and/or one symbol block is
generated for each block read from the object file: there
are no checks to verify that the maximum block length
(255) has not been exceeded.

• The variable n is used to represent the number of digits
in a variable-length number. The value of n may be
constant throughout the program, or it may be different
for each number you encode (for example, if you choose
to eliminate leading zeros). Similarly, the variable 5

represents the number of characters in a variable
length symbol.

Here is the algorithm:

1. Discard any header information and scan for the first
block of code or symbols.

2. Read the block.

3. If there are no more blocks:

a. For every undefined section, generate a symbol
block with a section definition field.

b. Generate a termination block.

c. Stop execution.

DISCARD HEADER INFORMATION
END-OF-FILE = FALSE
WHILE NOT END-OF-FILE

READ BLOCK FROM INPUT FILE
IF NO MORE BLOCKS
THEN END-OF-FILE = TRUE
ELSE

IF BLOCK IS A TERMINATION BLOCK
THEN

Intersystem Communication-8540 System Users

4. Strip off any extraneous information.

5. Check the block for valid input format.

6. If the block contains executable object code:

a. Start the output block with a percent sign.

b. Set the block type to 6 (data block).

c. Place the load address in the block.

d. Place the object code in the block.

e. Determine the block length and checksum and put
them in the block header.

f. Write the block to the output file.

7. If the block contains program symbols or section
information:

a. Start the output block with a percent sign.

b. Set the block type to 3 (symbol block).

c. Place the name of the section that contains these
symbols in the block.

d. If the base address and length of the section are
available and have not been output previously,
create a section definition field after the header
field.

e. For each symbol in the block, create a symbol
definition field containing the symbol, its type, and
its value.

f. Determine the block length and checksum and
place them in the block header.

g. Write the block to the output file.

8. Go to step 2.

This algorithm is presented in pseudo-code in Fig. 4-10.

SAVE TRANSFER ADDRESS FOR TEKHEX TERMINATION BLOCK
END-OF-FILE = TRUE

4-20

END
ELSE

CHECK FOR VALID FORMAT
IF ERROR
THEN

END

OUTPUT ERROR MESSAGE
END-OF-FILE = TRUE

Fig. 4-10. Algorithm for Extended Tekhex conversion program. (part 1 of 2)

3936-31

@

Intersystem Communication-8540 System Users

END
END

ELSE

END
END

IF BLOCK CONTAINS EXECUTABLE CODE
THEN **GENERATE DATA BLOCK**

OUTPUT-BLOCK [oJ = "%"
OUTPUT-BLOCK [3J = "6"
OUTPUT-BLOCK [6J = n
OUTPUT-BLOCK [7 .. 6+nJ = n-DIGIT LOAD ADDRESS
OUTPUT-BLOCK [7+n .. 6+n+2mJ = m BYTES OF OBJECT CODE
OUTPUT-BLOCK [1 .. 2J = 6+n+2m **2-DIGIT BLOCK LENGTH**
OUTPUT-BLOCK [4 .. 5J = 2-DIGIT CHECKSUM
WRITE OUTPUT-BLOCK TO FILE

END
IF BLOCK CONTAINS SYMBOLS OR SECTION INFO~~TION

THEN **GENERATE SYMBOL BLOCK**

END

OUTPUT-BLOCK [oJ "%"
OUTPUT-BLOCK [3J = "3"

OUTPUT-BLOCK [6J = s
OUTPUT-BLOCK [7 .. 6+sJ = s-CHARACTER SECTION NAME
P = 7+s **p POINTS TO NEXT AVAILABLE SPOT IN OUTPUT-BLOCK**
IF SECTION NOT ALREADY DEFINED

THEN IF BASE ADDRESS AND LENGTH ARE AVAILABLE
THEN **GENERATE SECTION DEFINITION FIELD**

END

OUTPUT-BLOCK [PJ = "0"
OUTPUT-BLOCK [p+lJ = n
OUTPUT-BLOCK [p+2 .. p+l+nJ = n-DIGIT BASE ADDRESS
P = p+n+2
OUTPUT - BLOCK [p J = n
OUTPUT-BLOCK [p+l .. p+nJ = n-DIGIT SECTION LENGTH
P = p+n+l
MARK SECTION AS DEFINED

ELSE MARK SECTION AS UNDEFINED
GENERATE SYMBOL DEFINITION FIELDS
FOR EACH SYMBOL

END

OUTPUT-BLOCK [PJ = SYMBOL TYPE
OUTPUT-BLOCK [p+lJ = s
OUTPUT-BLOCK [p+2 .. p+l+sJ = s-CHARACTER SYMBOL
P = p+s+2
OUTPUT-BLOCK [PJ = n
OUTPUT-BLOCK [p+l .. p+nJ = n-DIGIT VALUE
p=p+n+l

OUTPUT-BLOCK [1 .. 2J = p-l **2-DIGIT BLOCK LENGTH**
OUTPUT-BLOCK [4 .. 5J = 2-DIGIT CHECKSUM
WRITE OUTPUT-BLOCK TO FILE

FOR EACH UNDEFINED SECTION

@

GENERATE SYMBOL BLOCK WITH SECTION DEFINITION FIELD
GENERATE TEKHEX TERMINATION BLOCK
EXIT

Fig. 4-10. Algorithm for Extended Tekhex conversion program. (part 2 of 2)

Formatted Transfers

3939·31

4-21

The COM Command

The COM Command
The COM command specifies the details of the
communication protocol that the 8540 is to use with your
host computer. This discussion explains the parameters of
the COM command.

All COM parameters are optional and may be entered in
any order and in any combination that will tailor the
response of the 8540 to the host computer.

Echo Parameter (E=)

This parameter selects remote or local echoing of
characters entered from the 8540 system terminal. E=R
(remote echo) indicates that the host computer echoes the
characters entered from the 8540 system terminal. E=L
(local echo) indicates that the host computer does not echo
characters entered from the 8540 system terminal, and
thus the echo must be provided locally (by the 8540). The
default value is E=R.

Linefeed Parameter (L=)

This parameter allows the 8540 system terminal to include
or omit a linefeed on the system terminal after a carriage
return is sent to the terminal. L=I (include linefeed)
indicates that the host computer does not output a linefeed
to the terminal after a carriage return is entered, so the
8540 supplies the linefeed. L=O (omit linefeed) indicates
that the host computer sends a linefeed to the terminal
after a carriage return is entered. The default value is L=O.

Prompt Parameter (P=)

This parameter specifies the prompt sequence used by the
host computer communicating with the 8540. The prompt
sequence represents the characters that the host computer

Intersystem Commuiiicatioii-8540 System Users

sends when it is ready to receive data. This is not
necessarily the system prompt of the host computer. The
default value for this parameter is no prompt sequence. If
you omit the prompt parameter, the 8540 does not wait to
receive a prompt sequence from the host computer before
sending data.

The prompt sequence consists of an even number of up to
32 hexadecimal digits, representing up to 16 ASCII
characters. You may not enter spaces between the digits.

The 8540 ignores the prompt sequence except during data
transfers.

Turnaround Delay Parameter (T=)

Some computers require a delay between displaying their
prompt sequence and accepting input. The turnaround
delay parameter allows you to ensure that, after receiving
the prompt sequence from the host, the 8540 will wait for
the appropriate amount of time before it sends a reply.

The T parameter has a range of 00 to FF (hexadecimal),
where each unit has a value of 100 milliseconds. For exam
ple, T = 04 sets the turnaround delay to 400 milliseconds.
The default value for this parameter is T=OO. (For COM
Version 4.1 and later versions, the delay is specified in 10-
millisecond units, so T =04 represents 40 milliseconds.)

Character Transmission Format (M=)

This parameter specifies the character transmission
format required by the host computer when it receives or
transmits data. Table 4-13 lists the transmission
characteristics corresponding to values for M. The default
value for this parameter is M=4.

Table 4-13
Character Transmission Formats Corresponding to Values for M

Total
Start Stop Data Significant Parity Transmitted

M Bits Bits Bits Bits Parity Bits Bits

o 2 7 7 even 11
1 1 2 7 7 odd 1 11
2 1 1 7 7 even 1 10
3 1 1 7 7 odd 1 10
4 I 1 2 8 I 7 or 8a none 0 11
5 1 1 8 7 or 8a none 0 10
6 1 1 8 7 or 8a even 1 11
7 1 1 8 7 or 8a odd 1 11

... ---- ----

a High-order bit is set to 0 by the 8540 in ASCII transfers.

4-22 REV JAN 1983

Intersystem Communication-8540 System Users

Error Check Parameter (C=)
This parameter allows you to override the COM error
checking facilities on the remote communication port. If
you specify C=I (ignore errors), the 8540 ignores any
condition that causes a communication error, and
continues execution. If you enter C=T (terminate on error),
control leaves COM and passes to OS/40 if any
communication error occurs. The default value for this
parameter is C=T.

Load Module Format (F=)

This parameter specifies the message block format to be
used in formatted uploads. If this parameter is omitted,
blocks are transmitted in Extended Tekhex format. F=T
specifies Standard Tekhex format. COM accepts message
blocks in either Tekhex format, regardless of the F
parameter.

End-of-Line Parameter (EOL=)

This parameter specifies the character sequence used by
the host to mark the end of a line of text, such as a host
command, a line of ASCII data, or a Tekhex message block.

The character sequence is specified as an even number of
up to 32 hexadecimal digits, representing 16 characters.
The default end-of-line parameter is EOL=OD (a carriage
return).

Handshaking Parameter (HS=)

The parameter HS=OFF eliminates the ACK/NAK
response from the protocol of a formatted transfer. In a
download, COM normally responds with an ACK or NAK
each time it receives a message block from the host. When
handshaking is OFF, COM gives no response. However,
checksums are still computed and checked, and if any are
found to be incorrect, COM issues an error message when
the transfer is complete. In an upload, COM expects no
ACK/NAK response from the host.

Turning off handshaking has no effect on the P (prompt
sequence) and T (turnaround delay) parameters. COM still
looks for the host's prompt sequence (if any) and waits the
indicated turnaround delay (if any) before continuing.

REV JAN 1983

The COM Command

Character Substitution Parameter (SUB
xx=yy)

This parameter specifies one or more character substitu
tions to be performed by COM on data transmitted to or
from the host. Each substitution construct consists of a pair
of character codes (represented as two-digit hexadecimal
numbers) separated by an equal sign. When the first charac
ter is received from the host, COM substitutes the second
character. When the second character is to be sent to the
host, COM substitutes the first. Multiple substitution con
structs can be strung together, separated by slashes -
SUB 74=24/75=25/78=30, for example.

Byte Count Parameter (B =)

This parameter specifies the number of bytes of object code
that COM will place in each data block during formatted
uploads. (Each byte is encoded as two hexadecimal digits.)
This parameter is supported only for COM Version 4.1 and
later versions. This parameter is ignored if you specify F=T.
The byte count is specified as a two-digit hexadecimal num
ber in the range 01-76. The default count is 20 (32 decimal).
Any number outside the range 01-76 yields a byte count of
76 (118 decimal).

Hardware Requirements

General Information
The 8540 1/0 device for intersystem communication is an
ACIA (Motorola 6850 Asynchronous Communication
Interface Adapter) connected to REMOTE jacks J1 01 and
J102 on the back of the 8540. Both jacks are RS-232-C
compatible; these are the only jacks for which COM
interface procedures are implemented.

Jack J101 is a 25-pin male plug designed as an interface
for data terminal equipment (DTE). Jack J1 02 is a 25-pin
female plug designed as an interface for data communica
tion equipment (DCE). The jack you select and the setting of
the MODE SELECT switch on the 8540 rear panel
determine how the 8540 uses the various RS-232-C
signals. See Table 4-14.

4-23

Hardv'Jsre Requirements Intersystem Communicatior1-8540 System Users

Table 4-14
Signals at 8540 Remote Port

Signal
Description

Pin 1-GRD

Pin2-TX

Pin 3-RX

Pin 4-RTS

Pin 5-CTS

Pin 6-DSR

Pin 7-GRD

Pin 8-DCD

Pin 20-DTR

IDTE1

i Protective Ground

Output: Data
from 8540

I Input: Data
from external
computer

Output: Goes
high when 8540
has data to send

Input: Must be
high before 8540
sends data

I

Input: Ignored:

I Signal Ground

Input: Must be
high before 8540
accepts data

Output: Always
high

Jack J1 01 (DTE)
MODE SELECT
Switch Setting

DTE2

Output: Data
from 8540

Input, Data
from external
computer

Output: Goes
high when 8540
has data to send

Input: Ignored:

Input: Must be
high before 8540
sends data

Input: Must be
high before 8540
accepts data

Output: Always
high

The type of equipment you have determines which jack you
will use. In general, if the external computer's RS-232-C
1/0 port has a female plug, you'll use jackJl 01 on the 8540
and set the MODE SELECT switch to DTE1 or DTE2. If the
external computer's 1/0 jack has a male plug, you'll use
jack Jl 02 on the 8540 and set the MODE SELECT switch to
CNTL (L) or DCE.

Baud Rate

The baud rate at which the REMOTE jacks operate is switch
selectable from 110 baud to 9600 baud. The baud switch is
located immediately to the right of jack J 102 on the 8540
rear panel.

The maximum recommended transfer rate for an unformat
ted transfer is 2400 baud. Formatted transfers should pro
ceed successfully at up to 9600 baud, depending on the
limitations of the host.

4-24

CNTL (L)

Output: Data
from 8540

Input, Data
from external
computer

Output: Always
high

Input: Ignored

I nput: Ignored

I nput: Ignored

Output: Always
high

Jack J1 02 (DCE)
MODE SELECT
Switch Setting

DCE CNTL (L)

Input: Data Input: Data
from external from external
computer computer

Output: Data Output: Data
from 8540 from 8540

Input: Must be Input: Ignored
high before 8540
accepts data

Output: Goes Output: Always
low when 8540 high
sends data

Output: Always Output: Always
high high

Output: Always Output: Always
high high

Input: Must be Input: Ignored
high before 8540
sends data

Modem Considerations

When using a modem to connect the 8540 with an external
computer, be sure that the modem is operating in full
duplex mode,

Remote Port Status Register

An 8-bit status register is associated with the ACIA device.
\,I'Jhen you are not transferring files, you can display the
contents of the status register by entering the command
line

(null)S <CR>

The 8540 will respond with a 2-digit hexadecimal number
representing the status of the ACIA. Table 4-15 describes
what each of the bits in the status register represents.

REV JAN 1983

Intersystem Communication-8540 System Users

Table 4-15
Remote Port Status Register Bits

Bit
No. a Set by Cleared by Use

0 Byte received Reading Determine
by ACIA. received byte whether byte

in ACIA. received.
-----_._._ _---

1 Byte moved Writing byte Determine
to ACIA into transmit whether
shift-out data register. transmit data

I register. register
ready for
next byte.

---- .

2 Data carrier Carrier signal Test of com-
signal lost. detected at munications
No connection ACIA. connection.
at REMOTE
port.

3 Incoming Incoming Determine
CTS signal CTS signal whether
Ir"A' h;"h

I ~~~~~~ai~ I'vvv, III~I"

ready to
receive data.

4 Byte in ACIA Reading byte Test for
has error in or receiving valid data
stop bits next byte byte.
(framing from remote
error). communica-

tion port.

5 Byte received Reading Test for
from external received data I-ost data.
device af'ld byte
previous byte
not yet read.
Previous byte
is overwritten.

6 Parity error Reading Test for a valid
in received cu rrent byte data byte.
byte. or receiving

next byte.

7 Transmit data For a transmit Test for
register interrupt, occurrence of
empty or writing the interrupts.
receipt of byte next byte
byte into clears the
ACIA and interrupt. For
interrupt a receive
enabled. interrupt,

reading
the received

I byte clears

I l the interrupt.

a Bit number 7 is the most significant bit.

@

Establishing Communication

Establishing Communication
To prepare the 8540 for operation with a host computer,
you must first establish a physical connection between the
two computers. To do this, plug one end of an RS-232-C
cable into a host computer RS-232-C compatible terminal
port. Connect the other end of the RS-232-C cable to the
REMOTE port on the 8540 rear panel. (Refer to the
"Hardware Requirements" discussion earlier in this
subsection to determine which jack and MODE SELECT
switch setting are appropriate.)

Now use the COM command to establish communication
with the host. After you have established initial
communication, the 8540 acts as a terminal to the host.
You can now transfer data to and from the 8540: see the
following discussion of "Data Transfers."

Exiting from COM
When the 8540 is acting as a terminal to the host, you may
exit the CO!\l! subsystem at any time by entering the
command

(null) (escape)

where (escape) is the ESC key on your terminal.

If you are performing a transfer and want to exit the COM
subsystem, you must first abort the transfer by pressing the
BREAK key. This will cause the 8540 to resume acting as a
terminal to the host. You can then exit COM by entering
(null)(escape).

Data Transfers
Once your 8540 is acting as a terminal to the host
computer, you can initiate the transfer of data between the
two computers. The general format for uploading and
downloading data is given in the following paragraphs. You
can abort a data transfer at anytime by pressing the BREAK
key on the 8540 system terminal.

Formatted Transfers
The following procedures transfer data between Tekhex
files on the host and program/prototype memory in the
8540.

Formatted Download. The following command line
downloads a Tekhex load module to 8540 program/
prototype memory. Program symbols in the load module
are placed in the 8540's symbol table, for use in symbolic
debug.

host-command(null) <CR>

4-25

Data Transfers

host-command is the host computer command to initiate
the execution of your host computer program forformatted
downloads.
(null) indicates that the rest of the command line is a
command to the 8540. Since there is no command
following the null character. the 8540 recognizes that the
transfer is a formatted download.

With COM Version 4.1 and later versions, COM displays an
asterisk on the system terminal and sends an ACK to the
host each time a block is received successfully. If the block
contains errors, COM displays an underscore and sends a
NAK to the host.

In earlier versions, COM displays an asterisk each time it
receives a block. If the block contains errors, COM sends a
NAK to the host; otherwise COM sends an ACK and dis
plays the load address and byte count of the block.

When COM receives a symbol block successfully, it reports
the section name to the system terminal. If the block con
tains errors, COM may store erroneous symbols or values in
the symbol table before detecting the error. If you see COM
NAK in a symbol block, beware of errors in the symbol table.
You may need to reSELect the emulator (to clear the symbol
table) and download the file again.

When the transfer is complete. the following message
appears on the 8540 system terminal:

DNLOAD:

Formatted Upload. The following command line uploads
selected blocks of 8540 program/prototype memory to the
host in Tekhex format.

host-command(null)lowaddl hiaddl
lowaddZ hiaddZ ... transadd <CR>

host-command is the host computer command that
initiates the execution of your host computer program for
formatted uploads.
(null) indicates that the rest of the command line is a
command to the 8540.
lowadd1 is the low address of a block of 8540 program
memory to be transferred.
hiadd1 is the high address of a block of 8540 program
memory to be transferred.
lowadd2 is the low address of another block of 8540
program memory to be transferred.
hiadd2 is the high address of another block of 8540
program memory to be transferred.
transadd is the beginning execution address for the code in
the transferred blocks.

No program symbols are uploaded from the 8540.

When the transfer is complete. the following message
appears on the 8540 system terminal:

UPLOAD:

4-26

Intersystem Communication-8540 System Users

Unformatted Transfers
The following procedures copy data between files on the
host and I/O devices connected to the 8540.

Unformatted ASCII Download. Here is the command
syntax for an unformatted ASCII download:

host-command(null»device <CR>

host-command is the host computer command to display a
text file on the terminal.
(null) indicates that the rest of the command line is a
command to the 8540.
> indicates that the transfer is an unformatted ASCII
downioad.
device is the 8540 device (for example. LPT) to which the
downloaded data is to be written.

When the transfer is complete. the following message
appears on the 8540 system terminal:

RIOT:

Unformatted Binary Download. Here is the command
syntax for an unformatted binary download:

host-command(null)=device <CR>

host-command is the host computer command to dump a
binary file to the terminal.
(null) indicates that the rest of the command line is a
command to the 8540.
= indicates that the transfer is an unformatted binary
download.
device is the 8540 device (for example. PPTP) to which the
binary data is to be written.

When the transfer is complete. the following message
appears on the 8540 system terminal:

RIOT:

Unformatted ASCII Upload. Here is the format for an
unformatted ASCII upload from the 8540 to the host
computer:

host-command(null)<device <CR>

host-command is the host computer command that reads
text from the terminal and transfers the input to a file on the
host.
(null) indicates that the rest of the command line is a
command to the 8540.
< indicates that the transfer is an unformatted ASCII
upload.
device is the name of the 8540 device (for example. PPTR)
that provides the data to be transferred to the host
computer.

When the transfer is complete. the following message
appears on the 8540 system terminal:

RIOT:

REV JAN 1983

Intersystem Communication-8540 System Users

The 8540 does not send an end-of-file message to the host.
When you see the RIOT: message, enter your host's end-of
file character at the system terminal.

Unformatted Binary Upload. Here is the format for an
unformatted binary upload from the 8540 to the host
computer:

host-command(null)+device <CR>

host-command is the host computer command that reads
binary data from the terminal and transfers the input to a
file on the host.
(null) indicates that the rest of the command line is a
command to the 8540.
+ indicates that the transfer is an unformatted binary
upload.
device is the name of the 8540 device (for example, PPTR)
that provides the data to be transferred to the host
computer.

When the transfer is complete, the following message
appears on the 8540 system terminal:

RIOT:

The 8540 does not send an end-of-file message to the host.
When you seethe RIOT: message, enteryour host's end-of
file character at the system terminal.

Troubleshooting
Establishing Initial Communication

Symptom

Check

Symptom

Check

REV JAN 1983

Cannot establish initial communication.

1. Verify that the optional COM interface
software has been installed in your 8540.
2. Check the COM command line for
correct syntax. Be sure that the para
meters were specified correctly.

Cannot log on or communicate with host
computer.

1. Check the REMOTE port baud rate
switch on the 8540 rear panel. The rate
selected must match that of the modem
or output port of the host computer.
2. Verify that the MODE SELECT switch is
set properly for operation with your
equipment.

3. Check all RS-232-C control signalsl
lines in the interface.
4. Verify the connection to the correct
8540 rear panel REMOTE port, J1 01 or
J102.
5. Be sure that the M parameter in the
COM command corresponds to the host
computer's data transmission format.
6. Exit from COM and return to OS/40 by

Symptom

Check

Troubleshooting

entering (null)(escape) on the 8540's
terminal. Then restart the system.

Random characters displayed on the
terminal, or improper display when
attempting to log on to the host computer.

1. Check for proper baud rate selection on
the 8540 rear panel REMOTE port.
2. Be sure that the M parameter in the
COM command corresponds to the host
computer's data transmission format.

Attempting a Formatted Download to the
8540

Symptom

Check

Symptom

Check

Symptom

No reaction after typing download trans
fer request.

1. Check the download transfer request
for compatability with the required host
computer command.
2. If E=R was specified in the COM
command, check to see if the host
computer is echoing all carriage returns
sent to it. If the host computer does not
echo the carriage returns. at the end of
the download tra nsfer request command,
the 8540's download routine will not
execute properly.

Host computer's download program is
inoperative.

1. Check the download program 1/0
assignments. If the program output is not
assigned to the terminal corresponding
to the line to the 8540, the 8540 will not
receive the output.
2. Verify that the download command
line ended with a null character.
3. Verify that the download program in
the host computer is actually starting
execution.
4. Verify that the file being downloaded is
in Tekhex format.
5. Verify that the host computer is
sending an end-of-line sequence (as
specified by the EOl parameter of the
COM command) at the end of each
T ekhex block.

Download program transmits one or
more blocks and then hangs up.

4-27

Troubleshooting

Check

Symptom

Check

1. Verify that the prompt sequence was
correctly specified in the COM command.
2. Test the download program by omitting
the null character from the command line
used to start the download. The output
from the host computer should now be
displayed on the terminal. Enter positive
and negative acknowledgments manu
ally and step the program through the
download sequence.
3. Verify that the turnaround delay
parameter, T, is correctly specified in the
COM command.

The 8540 repeatedly sends negative
acknowledgments for the first block and
causes the download program to abort.

1. Verify that the Tekhex block contains
the correct checksum(s).

Attempting a Formatted Upload from the
8540
Symptom

Check

Symptom

Check

Symptom

Check

4-28

No reaction after typing transfer request.

1. Verify that the transfer request
command was entered correctly.
2. If E=R was specified in the COM
command, check to see if the host
computer is echoing all carriage returns
sent to it. If the host computer does not
echo the carriage returns at the end of
the download transfer request command,
the 8540's upload routine will not
execute properly.

Host computer's upload program is
inoperative.

1. Verify that the prompt sequence was
correctly specified in the COM command.
2. Verify that the upload program on the
host computer is sending a positive or
negative acknowledgement after the first
message block is received-

The upload program on the host computer
repeatedly sends negative acknowledge
ments, and eventually aborts.

1. Verify that the protocol in the host
computer upload program is correct.

intersystem Communicaiion-8540 System Users

2. Verify that the byte count logic in the
host computer upload program is correct.
3. Verify that the checksum logic in the
host computer upload program is correct.
4. Verify that the input buffer in the host
upload program is of sufficient length.

Attempting an Unformatted ASCII or
Binary Download to the 8540
Symptom

Check

Symptom

Check

No reaction after typing download transfer
request.

1. Verify that the host computer's portion
of the command is a valid host-computer
to-terminal copying command.
2. Verify that the 8540's portion of the
command has no embedded spaces and
is of the form

(null) >device <CR> (ASCII)

or
(null) =<levi ce <CR> (binary)

3. If using a modem, check to see if any
data is being received by the modem.
4. All of the data may have been
transmitted, but the 8540 may not have
received the the end-of-transmission
prompt. Recall that a unique prompt
sequence must be transmitted after the
file has been transmitted. That prompt
sequence must match the prompt se
quence that you defined when you
entered the the COM command. If the
8540 is waiting for the end-of-transmission
prompt, you can manually exit the transfer
process by pressing the BREAK key.

Download begins, but at some point the
file starts appearing on the 8540 system
terminal.

1. Verify that the prompt sequence that
you defined when you entered the COM
command appears only at the end of the
file to be downloaded. If the prompt
sequence appears anywhere within the
body of the file to be transferred, the
8540 will stop writing information to the
selected device and start writing infor
mation to the system terminal.

REV JAN 1983

Intersystem Communication-8540 System Users

Attempting an Unformatted ASCII or
Binary Upload from the 8540

Symptom

Check

or

Symptom

Check

@

No reaction after typing upload transfer
request.

1. Verify that the host computer's portion
of the command is a valid terminal-to
host-computer transfer command.
2. Verify that the 8540's portion of the
command has no embedded spaces and
is of the form

(null) <device <CR> (ASCII)

or
(null) +device <CR> (binary)

3. Verify that the prompt sequence
specified in the COM command is
correct. If you specify a prompt sequence
on an ASCII upload, the host must
respond with that prompt every time it
receives a line from the 8540.
4. Verify that a vaiid 8540 device was
specified as the source of the upload.
5. Restart the 8540.

Partial data transfer with the loss of the
first part of the data. Also, large gaps in
the received file.

1. Verify that the turnaround delay
parameter, T, is big enough. If the T
parameter was not specified, it may have
to be specified to prevent loss of the
beginning of the data. Insufficient turn
around delay causes the loss of an initial
portion of each transmission made.
2. Verify that the proper P (prompt
sequence) parameter was specified in
the COM command line. If no prompt
sequence is specified, the 8540 may be
transmitting information before the host
computer is ready to accept input.

T rou bleshooting

Commands for Intersystem
Communication
These spaces are provided for you to write the command
sequences that you will use with your 8540 and your host
computer.

Establishing Initial Communication

Formatted Download

Formatted Upload

Unformatted ASCII Download

Unformatted Binary Download

Unformatted ASCII Upload

Unformatted Binary Upload

4-29

8540 System Users

Section 5
EMULATION

Page

Introduction 5-1

The Emulator 5-1

Emulation Modes 5-1

Selecting the Target Processor 5-3

Basic Emulation Tasks. .. 5-3

Memory ... 5-3
Executing the Program 5-4
Monitoring the Program 5-4
Modifying the Program 5-5
Timing ... 5-5
SVCs .. 5-6
Interrupts .. 5-6

Considerations for Modes 1 and 2 5-6

Memory ... 5-7
Executing the Program 5- 7
SVCs .. 5-7
Interrupts .. 5-7

Symbolic Debug 5-7

Using Symbolic Debug 5-9
Other Symbolic Debug Commands " 5-9

The Memory Allocation Controller 5-9

Memory Spaces 5-11
Memory Allocation 5-11
MAC Commands 5-11

@

Page

The Trigger Trace Analyzer 5-1 3

Overview 5-1 3
Events and Triggers 5-14
Breakpoints 5-16
General Purpose Counters 5-16
Acquisition Memory 5-17
ITA Summary 5-19

Table
No.

TABLES

5-1 Emulation Modes 5-3
5-2 Counter Output Options 5-17

Fig.
No.

ILLUSTRATIONS

5-1 Emulation modes 0, 1, and 2 5-2
5-2 Trace display without symbolic debug 5-8
5-3 Trace display with symbolic debug 5-8
5-4 The top plane bus 5-10
5-5 68000 and l8001 /l8002 memory spaces .. 5-10
5-6 Generating a trigger signal 5-14
5-7 Acquisition Memory 5-18

5-i

8540 System Users

Section 5

EMULATION

INTRODUCTION
The 8085A emulator demonstration run in the Learning
Guide of this manual showed you howto load, execute, and
monitor a program in emulation mode O. This section,
Emulation, discusses the following topics:

• the three emulation modes

• the basic emulation tasks, many of which were
presented in the Learning Guide

• additional considerations for emulation modes 1 and 2

• use of symbolic debug

• the Memory Allocation Controller (MAC) option

• the Trigger Trace Analyzer (ITA) option

This section describes the common uses of many 05/40
commands. For information on the syntax and limitations
of these commands, and for examples of their use, refer to
the Command Dictionary of this manual. For a more
detailed description of the ITA, refer to the Trigger Trace
Analyzer Users Manual.

THE EMULATOR
The emulator (or emulator processor). is one or more
circuit boards that reside in the 8540. The emulator

@

contains an emulating microprocessor on which your
program executes, plus control circuitry that allows you to
start, stop, and m·onitor program execution using 05/40
commands. For most emulators, the emulating micro
processor is of the same type as the microprocessor being
emulated.

The term emulator registers refers to the registers of the
emulating microprocessor. The emulator is said to be
"halted" whenever the emulating microprocessor is not

'executing your program.

As your program executes, the emulator monitors the
emulating microprocessor and intervenes when a break or
service call (5VC) occurs.

EMULATION MODES
In order to execute a microprocessor-based program, you
normally need the following pieces of hardware:

• a microprocessor on which to execute the program

• a clock to drive the microprocessor

• memory for the program to reside in

• 1/0 facilities: external circuitry to control or respond to
the microprocessor.

5-1

Emuiation Modes

A. Emulation Mode 0

System
Resources

B. Emulation Mode 1

System
Resources

C. Emulation Mode 2

System
Resources

Emulator
Processor

Program
Memory

Emulator
Processor

Prototype
Control
Probe

Prototype
Control
Probe

User
Prototype

User
Prototype

Emulation-8540 System Users

Clock

Clock

3936-12

Fig. 5-1. Emulation Modes O. 1. and 2.

This figure illustrates the differences between the three emulation modes. Mode 0 uses the
emulator clock, program memory, and SVCs (which are part of the system resources). Mode 1
uses the prototype clock, either program or prototype memory, and either SVCs or prototype
1/0. Mode 2 uses the prototype clock, prototype memory, and either SVCs or prototype 1/0.

So that you may execute your program even before your
prototype hardware is available, the 8540 provides or
simulates all of the necessary hardware. Once your
prototype is built, you can begin transferring the necessary
hardware functions from the 8540 to your prototype. You

5-2

indicate which of these functions are handled by the 8540
and which are handled by the prototype by specifying the
emulation mode. Refer to Fig. 5-1 during the following
discussion.

@

Emulation-8540 System Users

The three emulation modes are:

• Mode 0 (system mode). Mode 0 uses the emulator clock
and program memory. Program liD is handled through
service calls (SVCs). Until your prototype is connected to
the emulator, your program can execute only in modeO.

• Mode 1 (partial emulation mode). Mode 1 uses the
prototype's clock, and is the only mode in which the
program may access both program memory and
prototype memory. An internal memory map determines
whether a particular address refers to program memory
or prototype memory. Program liD is handled with
prototype liD facilities, SVCs, or both.

• Mode 2 (full emulation mode). Mode 2 uses the
prototype's clock, memory, and liD facilities. Some
emulators support the use of SVCs in mode 2.

In all three emulation modes, the emulator takes the place
of the microprocessor that will eventually reside in the
working prototype. In modes 1 and 2, a prototype control
probe must connect the prototype to the emulator.

NOTE

Some emulators do not support SVCs in emulation
modes 1 or 2. Refer to the Emulator Specifics section
of this manual to determine whether your emulator
supports the use of SVCs in modes 1 and 2.

Table 5-1 summarizes the three emulation modes.

The "Basic Emulation Tasks" subsection describes
features that are common to all three emulation modes.
Special considerations for modes 1 and 2 are presented
later in the section.

SELECTING THE TARGET
PROCESSOR'

Because your 8540 System ROM Board may contain
software for more than one microprocessor, you must
specify which microprocessor your program is written for
before you attempt to execute a program.

Basic Emulation Tasks

The SEL command selects the system software that is
appropriate for your microprocessor. For example, the
command SEL 8085 specifies that subsequent micro
processor-dependent commands refer to the 8085A
emulator. Certain emulator-related OS/40 commands
cannot be executed until an emulator has been selected.
Those commands are listed in the discussion of the SEL
command, in the Command Dictionary of this manual.

BASIC EMULATION TASKS
This subsection discusses the following aspects of
emulation:

• memory

• executing the program

• monitoring the program

• modifying the program

• timing

• SVCs

• interrupts

Except where otherwise stated, this information applies to
all three emulation modes. Special considerations for
modes 1 and 2 are presented later in this section.

To select emulation mode 0 (system mode), enter the
following command:

> EM 0

In mode 0, your program executes in program memory
independently of the prototype hardware. Through SVCs in
your program, you can use the liD facilities of the 8540 to
simulate the real-world interfaces of the prototype
microprocessor.

Memory
In emulation mode 0, the 8540's program memory takes
the place of the memory in your prototype.

Table 5-1
Emulation Modes

Emulation Mode Memory 1/0 Facilities Clock Required Hardware

0 Program SVCs Emulator Emulator

1 Program andlor Prototype and Prototype Emulator,
Prototype, (if supported) Prototype
dependi ng on SVCs Control Probe
memory map

2 Prototype Prototype and Prototype Emulator,
(if supported) Prototype
SVCs Control Probe

@ 5-3

Basic Emulation Tasks

In order to simulate ROM modules, you can use the RO
parameter of the MAP command to designate blocks of
program memory as read-only. If your program tries to
store data into a read-only area, OS/40 generates a break
and the protected area remains unchanged.

If your 8540 has only 32K bytes of program memory, your
program can still access addresses in the range
8000-FFFF. You can use the AL command to make blocks
of existing program memory represent addresses in the
8000-FFFF range.

If you have a l8001 IZ8002 emulator or 68000 emulator,
you should have the Memory Allocation Controller
(MAC) option installed in your system in order to use
addresses outside the range of existing program memory.
The MAC option is discussed later in this section.

Executing the Program
The demonstration run in your Emulator Specifics
supplement contains instructions for assembling a source
program on an 8560 or other host computer. Use your host
computer to prepare binary object code from your source
program, then download the object code to your 8540. Use
the G command to begin program execution. You can use
any of several methods to stop program execution:

• Insert a HALT instruction (or the corresponding
instruction, if any, for your microprocessor) into your
program.

• Insert an SVC such as Exit Program (function 1 A) or
Abort Program (function 1 F) into your program.

• Set a breakpoint, using the OS/40 BK command. (If you
have the ITA option installed, you may use the ITA
events and breakpoints.)

• Type CTRL-C while the program is executing.

After the program has been stopped by one of these
methods, use the G command to resume execution.

If you need to execute a program segment repeatedly to
detect an intermittent bug, use the -R or -L parameter of
the G command.

Monitoring the Program
In case your program does not execute as expected, OS/40
provides several ways to locate the problem. The following
paragraphs describe some methods of monitoring the
program.

5-4

Emulation-8540 System Users

The TRA Command
You can use the TRA (TRAce) command to produce a
running display of the principal registers as the program
executes. Each time your program executes an instruction,
OS/40 displays a trace line that lists the instruction and
the resulting contents of the registers.

Once you have narrowed the problem down to one area of
the program, you can specify that only that area be traced.
By using the -S option of the TRA command, you can step
through critical areas one instruction at a time: you type G
when you are ready to execute the next instruction.

You can obtain an abbreviated trace that shows the logical
flow of your program. The TRA JMP option lets you trace
only jump instructions (unconditional jumps, subroutine
calls, and conditional jumps when the conditions are
satisfied).

NOTE

When any TRAce selections are in effect, your
program executes at less than normal speed, even in
those parts of the program that are not traced.

The BK Command
You can use the BK (BreaK) command to cause your
program to break when a particular address is accessed. By
setting a breakpoint at the end of a program segment, you
can suspend execution to verify that the segment has
executed correctly. If you suspect that your program is
straying outside a particular block of data or instructions,
you can find out by setting breakpoints at the boundaries of
the block. To clear a breakpoint, use the CLR parameter of
the BK command.

TTA Option
If you have a Trigger Trace Analyzer, you have many more
tracing and breakpoint options available to you.

The ITA automatically maintains a trace of the processor's
address bus, data bus, and control signals. The ITA can
monitor up to 64 signals at a time. You can viewthis trace at
any time by using the DISP command.

You can also define breakpoints and other actions based on
criteria that would be too complicated to define if you used
only the BK command. For more information on the ITA,
refer to the "Trigger Trace Analyzer" discussion later in this
section.

@

Emulation-8540 System Users

Diagnostic Messages
You can insert high-level language statements or assembly
language SVCs (such as Write ASCII and Wait) into your
source code, so that your program issues its own diagnostic
messages as it executes.

Other Commands
We've looked at several methods of monitoring the
program. Here are some addition commands you can use:

• The DS (Display Status) command displays the full set of
registers. (For some emulators, this information is part
of the standard trace display. For others, you can obtain
this information by specifying the -L option with the TRA
command.)

• The D (Dump) command displays the contents of a
specified section of memory in both hexadecimal and
ASCII formats.

• The DI (Disassemble) command translates object code in
memoiY back into assembly language mnemonics. Dl is
used to display blocks of instructions; D is used to
display blocks of data.

Modifying the Program
Once you have located a problem in your program, you have
several ways to fix it. One way is to correct the source code
and compile, assemble, link, and down load the program
over again. Often, however, you can first verify the effect of
the change by modifying the object code or registers
directly.

To change the object code or other information in memory,
you can use one of the following commands:

• The P (Patch) command stores a string of bytes or words
at a specified location in memory.

• The EX (EXam) command lets you modify an area of
memory byte by byte or word by word. Use EX instead of
P if you want to change only selected bytes, or if you
want to see the previous contents of each byte before
you change it.

• The F (Fill) command fills an area of memory with a
specified value or string of values. One common use of F
is to zero out a block of memory.

To change register contents, use the S (Set) or RESET
commands. S changes only the registers you select; RESET
simulates a reset signal to your microprocessor.

You can obtain a working program by modifying your object
code, then using the SAVor COM command to upload the
modified code into a load file. Be sure to update your source

@

Basic Emulation Tasks

code to match your object code. One way to keep track of
the modifications to your object code is to use the LOG
command to create a log of your debugging session.

Timing
In emulation mode 0, the clock signal to the emulating
microprocessor is provided by the emulator. For most
emulators, the clock frequency in mode 0 is the same as the
maximum frequency allowed for the prototype clock in
modes 1 and 2. Refer to your Emulator Specifics
supplement for this clock information.

Timing a Program Segment

In order to optimize the execution time of your program, it is
useful to be able to measure the execution times of
program segments. You can obtain an accurate approxi
mation of a program segment's execution time even before
the prototype is available. Simplytimethe segment in mode
o and adjust for the difference between the emulator clock
rate and the prototype clock rate.

To time a segment, use the 8540's program clock or the
ITA's general purpose counters.

• The program clock increments every 100 milliseconds
during program execution. The CLOCK command turns
this clock on and off and displays the clock value. The
clock value can also be accessed through the Read
Program Clock SVC (function 11).

• The general purpose counters, which are explained later
in this section, provide more precision and versatility
than the program clock.

NOTE

When the program clock is running, your program
executes at slightly less than normal speeds.

Factors That Affect Timing

The following activities cause the emulating micro
processor to wait or halt, and so may disrupt the timing of a
program segment:

• Executing an SVC halts the emulating microprocessor
until the SVC is completed.

• Tracing with the TRA command causes the emulator to
execute your program one instruction at a time. After
each instruction, the emulating microprocessor pauses
while OS/40 determines whether a trace line is to be
displayed.

• A keystroke on the terminal momemtarily pauses the
emulator.

5-5

Considerations for Modes 1 and 2

If you must time a program segment that contains such
interruptions, use a general purpose counter of the ITA
and specify a very small time unit, such as clock cycles. The
general purpose counter will not count during the SVC or
trace pause.

SVCs
Service calls (SVCs) allow your program to read and write
text and binary data, and perform many other OS/40
functions. Depending on your application, you may be able
to use SVCs to help simulate the prototype circuitry your
program will have to deal with.

The Service Calls section of this manual describes each
type of SVC function in detail, and also describes the four
parts of an SVC request. These parts are:

• an 1/0 instruction that invokes the SVC;

• a pointer in the Service Request Block (SRB) vector,
which provides a logical link from each SVC invocation
to the appropriate SRB;

• a Service Request Block (SRB) that specifies the
function to be performed; and

• an 1/0 buffer, if needed.

The Service Request Block (SRB) vector is a table of
addresses thatpointtothe beginning of each SRB. For most
emulators, the SRB vector is assumed to begin at byte 40 of
program memory. If your program needs that memory area
for other uses, you can choose a different area for the SRB
vector. Use the SVC command to notify OS/40 of the new
location.

Similarly, the I/O instruction that initiates the SVC usually
must specify a port in the range FO-F7, but you can use the
SVC command to allocate a different range of ports for this
purpose.

Phasing Out SVCS
Another use of the SVC command is to turn SVCs ON and
OFF. Since your prototype should handle its own 1/0, you
will eventually want to eliminate the SVCs from your
program. The command SVC OFF suppresses execution of
SVCs: SVC invocations are simply executed as I/O
instructions.

The SVC OFF feature is most useful for programs that use
SVCs for purely diagnostic purposes. If the SVCs perform
some vital function for the program, such as obtaining
required input, you must develop an alternate form of the
program in which the SVC functions are taken over by the
prototype.

5-6

Emulation-8540 System Users

NOTE

When you set a breakpoint at an instruction that
invokes an SVC, the break occurs after the SVC is
executed.

For some emulators, execution of the SVC may
prevent OSI40 from breaking at the desired
instruction.

Interrupts
In mode 0, you have no way of triggering an interrupt line
during program execution. However, here is one way to
simuiate a randomiy timed interrupt:

1. Start the program.

2. Type CTRL-C to break the program at a random
location.

3. You will want your program to return to this location
when it has finished processing the interrupt. Obtain
the value of the program counter from the break
display line; use a command such as P to store this
value where your program can retrieve it (on the stack,
for example).

4. Use the G command to jump to a section of the
program that simulates the interrupt. Afterward, your
progr:am retrieves the old program counter value and
continues from where you typed CTRL-C.

Notice that the emulator is always halted when such an
"interrupt" occurs.

CONSIDERATIONS FOR
MODES 1 AND 2

In emulation modes 1 and 2, your program executes in the
prototype under 8540 control. The prototype must be
connected to the emulator via the prototype control probe.

~
Before you begin emulation in modes 1 and 2, refer to
your Emulator Processor Installation Manual for the
following information:

a. electrical specifications for the probe
prototype interface: power, impedance,
drive, etc.; and

b. instructions on how to connect the proto
type control probe to the emulator andto the
prototype.

Also refer to the Emulator Specifics section of this
manual for possible timing discrepancies between
the prototype control probe and the microprocessor
that it replaces.

@

Emulation-8540 System Users

Once your prototype is connected to the emulator, and the
prototype and 8540 are turned on, verify that your program
still executes correctly in mode 0 under this arran§ement.lf
it does not, the prototype may be causing the problem, or
the prototype control probe may be damaged. If you suspect
damage, refer to your Emulator Processor Installation
Manual for verification procedures.

Next, use mode 1 toverifythatthe memory modules in your
prototype are working correctly. When the prototype's
memory and I/O are working correctly, you can proceed to
mode 2 to solve the more subtle problems.

Memory
OS/40 maintains an internal table, called the memory
map, that indicates which address blocks refer to program
memory and which blocks refer to prototype memory. You
use the MAP command to control this memory map. For
most emulators, memory is mapped in 128-byte blocks.

OS/40 consults the program/prototype memory assign
ment of the memory map only in emulation mode 1. In
mode 0, only program memory is used; in mode 2, only
prototype memory is used. However, changing the
emulation mode does not change the memory map or
memory contents.

The program/prototype memory assignment (defined by
the emulation mode and memory map) is observed by
OS/40 when it executes your program, and also when it
executes any command that accesses memory (for
example, LO, P, or D).

When you change the memory map, be sure to move the
corresponding blocks of object code between program and
prototype memory. You can use the LO or COM command
to reload your entire program, or you can use MOV to copy
selected areas of memory.

E3
In emulation mode 1, memory-write operations
performed in program memory are also performed in
the corresponding bytes of user prototype memory,
for most emulators.

Memory Protection
Unlike program memory, prototype memory cannot be
write-protected by the MAP command, for most emulators.
The procedure "Breaking When the Program Writes in a
Designated Memory Area," in the Operating Procedures
section of this manual, shows you how to use the ITA to
detect a write to a read-only area of prototype memory.

@

Symbolic Debug

Executing the Program
In modes 1 and 2, no break occurs when your program
executes a HALT instruction (or the corresponding
instruction, if any, for your microprocessor), even if you set
a breakpoint at that instruction.

SVCs
Refer to the Emulator Specifics section of this manual to
determine whether your emulator supports SVCs in modes
1 or 2.

In mode 1, the instruction sequence that invokes the SVC
can reside in either program memory or prototype memory.
The Service Request Block (SRB) vector, Service Request
Block (SRB), and optional I/O buffer(s) must reside in
program memory.

In mode 2, all parts of the SVC must be located in prototype
memory.

In modes 0 and 1, the I/O instruction that invokes the SVC
must be followed by one NOP instruction. In mode 2, the
I/O instruction that invokes the SVC must be followed by
two NOP instructions.

Interrupts
Your prototype may attempt to interrupt the emulating
microprocessor when it is stopped during a break, SVC, or
TRAce activity. Most emulators do not detect such
interrupts.

SYMBOLIC DEBUG
NOTE

Some emulators do not support symbolic debug.
Refer to your Emulator Specifics supplement for this
information.

Symbolic debug allows you to use the symbols from your
assembly language program in place of hexadecimal
numbers when you are debugging. You can use your
symbols as parameters in all OS/40 commands that accept
expressions as parameters. For example, let's assume you
have a segment of assembly language code having label
START at its starting address (1 OOH) and label FINISH at its
ending address (220H). Then the following two forms of the
TRA command are equivalent:

> TRA ALL 100 220

> TRA ALL START FINISH

5-7

Symbolic Debug

The command line may also include the name of the
assembler section in which the symbol is found. This is
useful if the same symbol is used in more than one section
and it is not defined as a global symbol. (Refer to your
Assembler Users Manual for information about sections
and global symbols.) For example, if START is in section
TEST1 and FINISH is in section TEST2, the TRA command
could be entered:

> TRA ALL TESTl:START TEST2:FINISH

In the output display, symbolic debug replaces each
hexadecimal address with either a symbol (taken from the
label field of your program), or its position relative to the

LOC INST MNEM R OPER x/pc EADD RA

001000 CEOOI0 LDX 0010 00
001003 5F CLR B 00
001004 A600 LDA A 00 +0010=0010 00
001006 ABOI ADD A 01 +0010=0011 00
001008 C900 ADC B 00 00
00100A AB02 ADD A 02 +0010=0012 00
00100C 7EI055 JMP 1055 1055 00
001055 C900 ADC B 00 00
001057 AB03 ADD A 03 +0010=0013 00

RB

00
00
00
00
00
00
00
00
00

Emuiation-8540 System Users

start of the current section (as shown in the location
counter field of your assembler listing.) Figure 5-2 contains
an example of a trace display without symbolic debug.
Figure 5-3 contains an example of a trace display with
symbolic debug.

The "section + offset" feature is not implemented for
absolute sections. (Refer to your Assembler Core Users
Manual for information about absolute sections.)

For most 8-bit emulators, symbols are truncated to eight
characters when displayed.

XREG SP CC

0010 0001 DO
0010 0001 D4
0010 0001 D4
0010 0001 D4
0010 0001 D4
0010 0001 D4
0010 0001 D4
0010 0001 D4
0010 0001 D4 3936-13

Fig. 5-2. Trace display without symbolic debug.

This is an example of a trace display without symbolic debug.

LOC INST MNEM R OPER X/PC EADD RA RB XREG SP CC

SECTION: (Sectionl)
+000 CEOOI0 LDX 0010 00 00 0010 0001 DO
+003 5F CLR B 00 00 0010 0001 D4
LABELOOI A600 LDA A 00 +0010=0010 00 00 0010 0001 D4
+006 ABOI ADD A 01 +0010=0011 00 00 0010 0001 D4
LABEL002 C900 ADC B 00 00 00 0010 0001 D4
+OOA AB02 ADD A 02 +0010=0012 00 00 0010 0001 D4
+OOC 7EI055 JMP 1055 1055 00 00 0010 0001 D4

SECTION: (Section2)
LABEL003 C900 ADC B 00 00 00 0010 0001 D4
+007 AB03 ADD A 03 +0010=0013 00 00 0010 0001 D4 3936-14

Fig. 5-3. Trace display with symbolic debug.

With symbolic debug. each hexadecimal address is replaced with either a label or its offset
from the beginning of a section. In this example, Section1 begins at 1000H and section2
begins ut 1050H.

5-8 REV JAN 1983

Emulation-8540 System Users

Using Symbolic Debug
To make your program symbols available for use in
symbolic debug, you must perform the following steps:

1. If you are using a Tektronix assembler:

a. All assembly source files that have symbols to be
referenced by symbolic debug must include the
assembler directive LIST DBG. This directive
causes the assembler to output the symbols to the
object module, which is used by the linker.

b. Include the DEBUG or -d command option when
invoking the linker. For the A Series linker, enter:

> LINK

* LOAD loadfile

* DEBUG

For the B Series linker, enter:

$ link -0 loadfile -d . . .

This directive causes the symbols and their values
to be stored in the load module.

c. Enter the SYMLO command, which downloads
the symbols and their values from the load module
to the symbol table in 8540 system memory.
SYMLO accepts files produced by B Series as
semblers, the B Series linker, or the A Series
linker, but does not accept unlinked files produced
by A Series assemblers.

2. If you are not using a Tektronix assembler, your
program symbols and their values must be placed in
Extended Tekhex symbol blocks and downloaded with
the rest of your load modules,. using the COM
command.

Enabling Symbolic Debug
The SYMD command enables and disables symbolic debug
in the displays of commands such as TRA and 01. Refer to
the Command Dictionary for syntax and parameters of the
SYMD command.

Other Symbolic Debug Commands
The following paragraphs describe the other commands
used with symbolic debug:

• The SYMLO command extracts your symbols from the
load module and loads them into the symbol table. (The
symbol table holds approximately 1000 symbols.) You
can specify that the symbols be loaded from selected
sections only.

REV JAN 1983

The Memory Allocation Controller

• The ADDS command enables you to add symbols to the
table during a debugging session. You may not add
section names with this command. If you have not
already loaded your symbols from the load module using
SYMLO or COM, any symbols you add with ADDS are
placed in a default section called NO.SECTION. If you
later use SYMLO, the values in NO.SECTION are lost.

• The REMS command deletes symbols from the symbol
table.

• The SYMB command gives the symbolic equivalent of a
hexadecimal address. For example, using values from
Fig. 5-3:
> SYMB l055H <CR>

l055H=LABEL003

> SYMB l057H <CR>

l057H=SECTION2+007

• The CALC command finds the value associated with a
symbol. For example:

> CALC symbol

symbol=30FFH

Refer to the Command Dictionary for details of the
parameters and syntax of symbolic debug commands.

THE MEMORY ALLOCATION
CONTROLLER

The Memory Allocation Controller (MAC) is a hardware
option that permits the expanded addressing capabilities of
emulators such as the Z8001 /Z8002 and 68000 to operate
within the confines of 8540 program memory. (The 8086
emulator performs this function internally and does not
need the MAC board to execute the memory allocation
commands.)

The MAC option consists of:

• the MAC circuit board that inserts into the 8540
mainframe

• the top plane bus that connects the MAC board to the
emulator and the Trigger Trace Analyzer (ITA) option

Figure 5-4 illustrates the position of the top plane bus.

5-9

The Memory Aiiocation Controiier Emulation-8540 System Users

5-10

Prototype
Control
Probe

(
Emulator)

Resources

I I

Program
Memory

Trigger
Trace

Analyzer

Memory
Allocation
Controller

Backplane Bus

Fig. 5-4. The top plane bus.

LAS
Emulator

The top plane bus carries signals used by Large Address Space emulators, the Memory
Allocation Controller, and the Trigger Trace Analyzer circuit boards.

All Memory All Memory

/ \ / ~
Supervisor User System Normal

/ \ / '" / I "- / I "-
Program Data Program Data Code Data Stack Code Data Stack

I I I I I I I I I
(SP) (SO) (UP) (UO) (SC) (SO) (55) (NC) (NO) (NS)

68000 Memory Spaces Z8001/Z8002 Memory Spaces

Fig. 5-5. 68000 and Z8001 /Z8002 Memory Spaces.

This figure illustrates the memory spaces available with the 68000 and Z8001/Z8002
microprocessors. You can specify up to four memory spaces for the 68000, and up to six
memory spaces for the Z8001 /Z8002.

3936-15

3936-16

@

Emulation-8540 System Users

Memory Spaces
Both the 68000 and l8001 Il8002 emulators allow you to
designate memory areas for system (supervisor) use only or
for user (normal) use only. You can further specify that
these system or user areas be reserved for data, program
code, or (for the l8001 Il8002), the stack. These divisions
are called memory spaces. Figure 5-5 illustrates how the
memory spaces are divided and named for the 68000 and
l8001/l8002 emulators. Figure 5-5 also includes the
abbreviations used in the memory allocation commands.
Refer to your 68000 or l8001 Il8002 Emulator Specifics
supplement for more information on memory spaces.

The memory spaces are differentiated by control signals
from the microprocessor. For this reason, two or more
blocks of memory assigned to different memory spaces can
have the same addresses.

Memory Allocation
Program memory is allocated in 4K-byte blocks. Each 32K
of program memory in your system consists of eight blocks.
The MAC board maintains an internal allocation map to
translate logical addresses from the emulator into
physical addresses in program memory.

MAC Commands
The following paragraphs describe the commands
associated with memory allocation. AL and DEAL affect
program memory; MEM and NOM EM affect prototype
memory.

You can set a default memory space value with the MEMSP
command. If you enter one of the memory allocation

> AL SP:SD:4000 4FFF

1 BLOCK(S) ALLOCATED 004000 004FFF

> AL UD:UP:4000 4FFF

1 BLOCK(S) ALLOCATED 004000 004FFF

> AL

SP SD
UP UD

The Memory Allocation Controller

commands without a memory space qualifier, the
command defaults to the MEMSP value.

The AL (Allocate) command assigns logical addresses to
4K-byte blocks of program memory. The command line can
specify one or more memory space qualifiers, or none. The
following examples use a 68000 emulator in a system
configured with 64K of program memory.

> AL 38000

1 BLOCK(S) ALLOCATED 038000 038FFF

This command allocates one 4K-byte block of program
memory to logical addresses beginning at 38000H. OS/40
returns the number of blocks allocated, and the block
boundaries.

Entering AL without parameters displays a list of the
allocated memory, including the memory space assign
ments: SP and SD are supervisor program and supervisor
data, respectively. UP and UD are user program and user
data, respectively. In these examples, the default allocation
includes all memory spaces.

>AL

038000 038FFF SP SD UP un

1 BLOCK(S) ALLOCATED' 15 BLOCK(S) FREE

The display includes the number of blocks allocated and the
number of blocks still available.

Allocations are cumulative. The command sequence in
Display 5-1 allocates one 4K-byte block to supervisor
program and supervisor data, and a different 4K-byte block
to user program and user data. The display from the AL
command includes the allocation from the previous
example.

004000
004000
038000

004FFF
004FFF
038FFF SP SD UP UD } II---- previously allocated

3 BLOCK(S) ALLOCATED 13 BLOCK(S) FREE

Display 5-1

@ 5-11

The Memory Allocation Controlier

The command sequence shown in Display 5-2 allocates
one block of memory to each memory space, though each
memory space has the same addresses: 1000 to 1 FFF.

When you allocate more than one block of memory in one
command, AL displays the allocation block by block, In the
example in Display 5-3, assume that you have no other
memory allocated.

I > AL SP: 1000

1 BLOCK(S) ALLOCATED

> AL SD:lOOO

1 BLOCK(S) ALLOCATED

> AL UP:lOOO

1 BLOCK(S) ALLOCATED

> AL UD:lOOO

1 BLOCK(S) ALLOCATED

> AL

001000
001000
001000
001000
004000
004000
038000

OOlFFF
OOlFFF
OOlFFF
001FFF
004FFF
004FFF
038FFF

7 BLOCK(S) ALLOCATED

001000 001FFF

001000 001FFF

001000 OOlFFF

001000 001FFF

SP
SD

UP
UD

SP SD

} UP UD III

SP SD UP UD

9 BLOCK(S) FREE

Emuiation-8540 System Users

If you attempt to allocate more memory than you have
available, the following error message is displayed:

No more Program memory available

You must use the DEAL command to deallocate one or
more blocks before you try to allocate again.

The DEAL (Deallocate) command removes a previous
allocation, and makes one or more 4K blocks available to be

previously allocated

Display 5-2

> AL SP:UP:O 2FFF

3 BLOCK(S) ALLOCATED

> AL SD:UD:O 2FFF

3 BLOCK(S) ALLOCATED

> AL

000000
000000
001000
001000
002000
002000

OOOFFF
OOOFFF
001FFF
001FFF
002FFF
002FFF

6 BLOCK(S) ALLOCATED

5-12

SP

SP

SP

10

000000 002FFF

000000 002FFF

UP
SD UD

UP
SD UD

UP
SD UD

BLOCK(S) FREE

Display 5-3

@

Emulation-8540 System Users

reallocated. You can remove all previous allocations with
the -A parameter, or you can specify the address range to
be deallocated.

NOTE
DEAL does not use the default memory space values
from the MEMSP command' if no memory spaces are
specified with an address, DEAL deallocates all
memory spaces.

The default condition for AL and DEAL is that no
memory is allocated

The NOMEM (No Memory) command informs the
emulator that no memory exists in the prototype for a given
block of addresses. Like the AL command, the NOM EM
command accepts memory space qualifiers, and designates
memory in 4K-byte blocks. Entering NOMEM without
parameters displays the current state of non-existent
memory. Both NOMEM and MEM display the status in
terms of memory spaces. For example:

> NOMEM 201000
> NOMEM

INVALID USER MEMORY ADDRESSES
UD:

UP:

SD:
SP:

201000
201000
201000
201000

201FFF
201FFF
201FFF
201FFF

If your program attempts to access non-existent memory, a
break is generated and the trace line includes the message:
"NO-PMEM" or "NO-UMEM" .

The MEM (Memory) command informs the emulator that
the prototype does contain memory at a given block of
addresses. The MEM command is used to reverse a
previous NOMEM command. You can use address
parameters and memory space qualifiers with the MEM
command. Entering MEM without parameters displays the
current state of existent memory.

NOTE

The default condition for MEM and NOMEM is that all
prototype memory exists.

THE TRIGGER TRACE
ANALYZER

This subsection summarizes the use of the Trigger Trace
Analyzer (ITA). For more detailed information and some
examples of how the ITA is used, refer to the TriggerTrace
Analyzer Users Manual.

@

The ITA

The ITA is an optional hardware product that enhances the
emulation capabilities of your 8540. The ITA consists of
the following modules:

• two ITA circuit boards that insert into the 8540
mainframe

• two ITA interconnect cables that physically connect the
two boards

• a Data Acquisition Interface unit that mounts into the
8540 rear panel

• a Data Acquisition Probe that connects the Data
Acquisition Interface to user-selected circuits in the
prototype

• the optional top plane bus that connects the ITA to the
MAC board and certain emulators. (Refer back to Fig.
5-4, which illustrates the top plane bus.)

The Trigger Trace Analyzer Installation Guide explains how
to install the ITA circuit boards and Data Acquisition
Interface unit. The Trigger Trace Analyzer Users Manual
explains how to connect the test clips of the Data
Acquisition Probe to your prototype.

Overview
The following paragraphs are an overview of the ITA
option. The ITA features are discussed in detail later in this
subsection.

The ITA is a real-time debugging tool. Your program
executes at normal speed while the ITA monitors the
buses and certain control signals. The ITA allows you great
control in specifying which combinations of signals
constitute an event, and what actions follow when an
event occurs. The ITA can store up to 255 bus transactions
in its Acquisition Memory, allowing you to capture a
window of data during program execution. The ITA is
capable of precise timing with a variety of source signals.

The ITA includes the following features:

• the ability to define four events based on combinations
of input data from the buses and signals monitored;

• four triggers that can break program execution, start or
stop counters, or signal other instruments;

• four general purpose counters; and

• an Acquisition Memory that can store up to 255 bus
transactions.

We'll discuss each of these features in turn.

5-13

The TTA

In this subsection, the term "input data" refers collectively
to the following 64 bits of information monitored by the
ITA:

• the address bus (up to 24 bits)

• the data bus (8 or 1 6 bits)

• the 8 test clips on the Data Acquisition Probe (up to 8
bits)

• the emulator-dependent bus signal interface (up to 11
bits from the emulator)

• the external event qualifier, via a BNC input on the Data
Acquisition Interface (1 bit)

• counter output signais (4 bits)

Events and Triggers
Many actions performed by the ITA are based on events
and triggers. An event is the simultaneous occurrence of
one or more specified conditions in the input data. The EVE
command and several related commands are used to
define up to four events.

Each trigger has an associated event comparator and
general purpose counter, which share the trigger channel
number. A trigger is enabled by the output of its event

Address --
Data -
Bus Signals -

Emulation-8540 System Users

comparator ANDed with the output of its general purpose
counter. Figure 5-6 illustrates the relationships between
an event, the counter, and the trigger. Each trigger can
cause a breakpoint, increment a counter, or signal an
external device (such as a logic analyzer) via a BNC output
on the Data Acquisition Interface panel.

Defining An Event
You can select any of several event control commands to
specify which input data constitutes an event. These event
control commands correspond to the parameters of the
EVE command. Once you are experienced with the ITA,
you can use the EVE command to specify all the input data
on one command line. For the full syntax of IT A commands,
refer to the Command Dictionary in the Trigger Trace
Analyzer Users Manual.

Event Control Commands

Each of the following commands can use any or all of the
four trigger channels. All of the commands can use the-5
and -C breakpoint flags. (Breakpoints are discussed later in
this subsection.)

EVENT
input Probe -- COMPARATOR
data

I

5-14

Event Qualifier

Counter Outputs -
TRIGGER

SIGNAL

Source ·1 GENERAL I PURPOSE
COUNTER I I

Fig. 5-6. Generating a trigger signal.

The output of the event comparator is AN Oed with the output of the general purpose counter
to produce the trigger signal.

3936-17

@

Emulation-8540 System Users

The AD command is used to define a specific address or
range of addresses as an event.

> AD 1 105E

> AD 2 500 530

These commands specify that event 1 occurs whenever the
program accesses address 105E, and that event 2 occurs
whenever the program accesses an address within the
range 500 to 530, inclusive.

The AD command can include a -N command modifier that
defines the event as anything other than the value(s)
specified.

> AD -N 4 1000 10FF

This command defines event 4 as any address outside the
range 1000 to 10FF.

The BUS command allows you to select which bus signals
are recognized as an event. The signals are emulator
specfic. All of the signals selected are ANDed together
watch out for impossible combinations such as F I (fetch
AND i/O operation simuitaneousiy).

> BUS 3 NF

This command defines event 3 as any non-fetch bus
tra nsaction.

The eTR command defines an event as a pattern of the
output of the four counters. The pattern can include 1's, O's
or X's (don't-cares). For example, the command

> CTR 1 10XO

causes event 1 to occur when counter 1 is high, and
counters 2 and 4 are low.

The DATA command defines an event as the occurrence
on the data bus of a value or one of a range of values. Like
the AD command, it can include a -N command modifier
that defines the event as anything other than the value(s)
specified.

> DATA 3 OF3
> DATA -N 2 10 3FF

In the first command, event 3 occurs whenever the data
bus contains the value F3. In the second command, event 2
occurs whenever the data bus contains a value outside the
range 10-3FF.

The PRO command refers to the probe inputs via the Data
Acquisition Probe and the Data Acquisition Interface Panel.
The argument can be a two-digit hexadecimal number, or
eight individual bits. You may include "don't-care" digits or
bits (X) in hexadecimal or binary values, respectively.
Entering PRO CLR makes all bits "don't-cares."Thedefault
radix for the PRO command is binary.

> PRO 3 5XH

> PRO 1 OXlXXOXI0

@

The ITA

NOTE

Any number that does not begin with a digit in the
range 0-9 must include a leading 0; otherwise
OS/40 will attempt to evaluate the expression as a
symbol and an error will be generated.

The QUA command detects an input from the Event
Qualifier BNC on the Data Acquisition Interface Panel. This
input is user-controlled. The parameter for this command is
a 0 or 1, or any expresson that evaluates to a 0 or 1.

The EVE Command
The EVE command lets you specify all event control
conditions on one command line. Each EVE command
parameter corresponds to one of the event control
commands we've discussed. The EVE command may
include the following parameters:

• A = Address-Corresponds to the AD command

• AN = Address Not-Corresponds to the AD -N command

• B = Bus-Corresponds to the BUS command

• C = Counter Output-Corresponds to the CTR command

• D = Data-Corresponds to the DATA command

• DN = Data Not-Corresponds to the DATA -N command

• P = Probe-Corresponds to the PRO command

• Q = Qualifier-Corresponds to the QUA command

The parameters of an event are cumulative. When a
parameter is set, either with the EVE command or one of
the event control commands, it remains in effect until
cleared. The command

> EVE 1 B=M WT

changes only the B (Bus) parameter. All other parameters
remain unchanged. The command

> EVE 1 CLR B=M WT

clears all previously specified conditions for event 1 and
defines event 1 as any memory-write bus signal.

Displaying Trigger Status
The TS (Trigger Status) command displays the current
programming of the triggers and their associated events
and counters. The -E parameter causes only the event
portion of the trigger(s) to be displayed. The -C parameter
causes only the counter portion of the trigger(s) to be
displayed. You can select the triggers to be displayed. TS
entered with no parameters displays the status of all the
triggers. Refer to your Trigger Trace Analyzer Users
Manual for TS command examples.

5-15

The TTA

Clearing All Trigger Conditions
The TCLR (Trigger CLeaR) Command returns to the
default condition the EVE, COU, and BRE commands
associated with a given trigger channel. For example, the
command TeLR 1 is equivalent to entering

> EVE 1 CLR; COU 1 CLR; BRE 1 CLR

The command line may specify more than one trigger
channel to be cleared, or that ALL be cleared.

The -X option resets the entire ITA. The command TCLR
-X is equivalent to entering

> EVE ALL CLR; COU ALL CLR; BRE ALL CLR;

> CONS CLR; ACQ ALL

The contents of the Acquisition Memory are not altered by
this command.

Consecutive Events
In addition to triggering on individual events, it is possible
to trigger on the consecutive occurrence of different
events. By using the CONS command, events can be linked
together so that the occurrence of an event arms the
comparator of the following event. If the following event(s)
do not occur on the specified bus cycle, then all events are
reset and detection resumes with the first event in the
sequence. The trigger is generated on the occurrence of the
last event in the sequence.

The CONS command requires you to select one bus mode
in which all the events are considered. The bus modes are:

• CYC-all bus cycles are allowed;

• FET -only fetch cycles are considered;

• EMU-only emulator-dependent bus cycles are con
sidered.

NOTE

FET and EMU mode are not implemented on all
emulators. Refer to your Emulator Specifics supple
ment to determine whether these functions are
available on your emulator.

As an example, the following command sequence detects a
low-to-high transition in the prototype, following an
instruction fetch:

> EVE 1 CLR B=F P=OXXXXXOXX
> EVE 2 CLR P=OXXXXX1XX -S

> CONS CYC 12

The first command defines EVE 1 as a fetch AND a logic low
on probe input 2. EVE 2 is defined as a logic high on probe
input 2. The CONS command says that EVE 2 will trigger a

5-16

Emu~ation-8540 SysteiT, Useis

break (the -S parameter) only if EVE 2 occurs on the cycle
following EVE 1.

You can direct the ITA to trigger on any of the following
event sequences:

12 123
23 234
34 341
41 412

1234
2341
3412
4123

You may specify two sequences concurrently, such as 23
and 41. The sequences are independent of each other;
however both must use the same bus mode.

Breakpoints
You can set breakpoints with the BRE command or with the
-S or -C options of the various event control commands.
The -S option produces a standard break, which stops
execution of your program. The -C option prints a trace line
and your program continues execution.

To remove breakpoints, you must use the CLR parameter of
the BRE command, in conjunction with a trigger number.
You can clear all the breakpoints by entering:

> BRE ALL CLR

To view the status of the breakpoints, enter the BRE
command without parameters.

The General Purpose Counters
Each of the four triggers has a general purpose counter
associated with it. The counters are controlled by the COU
command. Each counter has a value which you display
using the TS command, and an output which must be high
in order for the associated trigger to be generated.

The COU Command
The COU command has five parameters. They are:

• V = Value

• S = Source

• 0 = Output

• G = Gate

• R = Restart

Value (V) is used to initialize the counter to the designated
value. V can be any expression that evaluates to the range 0
to 65535 if incrementing, or 1 to 65535 if decrementing.
The default radix for V is decimal.

Emulation-8540 System Users

Source (5) is what the counter counts. You may select any
one of the following sources for each counter:

• time intervals: 200 nsec, 2 f.1sec, 20 f.1SeC, 200 f.1sec, 2
msec

• occurrences of: EV1, EV2, EV3, or EV4

• occurrences of: TRIG 1, TRIG2, TRIG3, or TRIG4

• ACQ: any transaction stored in Acquisition Memory

In addition, there are 3 auxiliary counter sources to which
special restrictions apply: Only one of these auxiliary
sources can be selected at one time, though more than one
counter can use the selected auxiliary source. When you
select a second auxiliary source, it replaces the one
previously selected. The auxiliary counter sources are:

• CYC: all bus cycles

• EMUCLK: clock on the emulator

• QUA: low-to-high transitions on the Event Qualifier
BNC input

The ACQ command uses these counter sources with its
FOR parameter.

Output (0) controls when the counter output will be high.
A trigger is generated when an event occurs and the
counter output is high. See Table 5-2.

OPTIONS

O=Arm
O=Disarm
O=Pulse
O=Delay
O-Timeout

Table 5-2
Counter Output Options

Counter Outputs
Ata

While Terminal After
COUNTS Counting Value Counting

Up 1 1 1
Up 0 O. 0
Down 0 1 0
Down 0 0 1
Down 1 1 0

a For ARM and DISARM, the terminal value is 65535. For
PULSE, DELAY, and TIMEOUT, the terminal value is O.

ARM and DISARM increment the counter from the initial
value which is set with the V parameter. PULSE, DELAY,
and TIMEOUT decrement the counter from the initial value.
After the counter reaches its terminal value (of 65535 or
0000, depending on the output option), it stops counting
until you reprogram it, either with the COU command or by
entering G with an address.

@

The ITA

NOTE

The G command entered with an address reinitializes
all the counters, including the one associated with the
Acquisition Memory. G entered without an address
leaves all the counters in their current states.

Gate (G) controls when a counter can count its
programmed source. It is only available with counters 2,3,
or 4. The G options are:

G=OFF

G=CTR

G=TRIGH

G=TRIGL

G=SEQH

G=SEQL

G=SELF

Removes any previous gate restrictions

Counter N counts only when counter N-1
remains high

Counter N counts only when trigger N-1
remains high

Counter N counts only when trigger N-1
remains low

Counter N begins counting when trigger N-1
first goes high

Counter N begins counting when trigger N-1
first goes low

Counter N counts only when trigger N
remains high

Restart (R) is allowed only if the gate parameter has been
specified. The R options are ON and OFF. R=ON causes the
counter to reinitialize to the value specified by the V
parameter, and begin counting again each time the gate
function becomes true. R=OFF turns this feature off.

The COU command, like the EVE command, is cumulative.
Use the CLR parameter to remove previous conditions. For
example, the command sequence

> COU 3 CLR V=lOO S=ACQ O=DELAY

counts 100 acquisitions of Acquisition Memory and then
outputs a high to Trigger 3.

Acquisition Memory
The TTA maintains a record of input data in a 255-by-62-bit
buffer called the AcquiSition Memory. The ACQ command
selects which bus transactions are to be stored. AcquiSition
Memory contains the 255 most recent samples of input
data. (The Acquisition Memory stores slightly different
input data from that monitored by the event comparators.)
The Acquisition Memory is similar to the buffer memory of
a logic analyzer. Figure 5-7 shows how information is
stored in the TTA Acquisition Memory.

5-17

The TTA

samples 1 -10
lost SAMPLE 11

ADDRESS BUS
(Up to 24 BITS)

11
DATA BUS

((8 or 16 bits)

1:1
TEST CLIPS

(8 bits)

Emuiation-8540 System Users

BUS OPERATION TYPE
(Up To 14 BITS)

(oldest sample) 1--------...... --------...... ---------+---------1

SAMPLE 264

SAMPLE 265
(newestsample)L-___ ~---~----~----~-----__ -----L-----_,~----~

input
data

3457-35

Fig. 5-7. Acquisition Memory.

This figure shows the contents of the Acquisition Memory after 265 samples of input data
have been taken. Only the most recent 255 samples are stored. The DISP command is used to
display the contents of the Acquisition Memory.

The ACQ command selects which bus transactions are to
be stored in Acquisition Memory. The parameters are:

• ACe ALL-all bus transactions are stored

• ACe EV4-only the transactions defined as Event 4 are
stored

The Acquisition Memory begins storing when program
execution begins and stops storing when the emulator
halts. You may want to halt storage in the buffer before the
program has finished execution. There are two ways to do
so:

> ACQ ALL FOR {value} {source}

> ACQ EV4 FOR {value} {source} AFTERTRIG4

You select one of the sources avaiiabie with the COU
command, and a value that equals the number of
transactions you want to capture. For example,

> ACQ EV4 FOR 10 EVI

stores the transactions defined as event 4 until the tenth
occurrence of event 1.

5-18

> ACQ ALL FOR 120 CYC AFTERTRIG4

"AFTERTRIG4" delays the start of counting until the
conditions of TRIG4 have been met. In this example,
acquisition stops 120 cycles after TRIG4 occurs .

Entering the ACe command without parameters returns
the parameters currently selected. If the FOR clause is
included, the number of counts remaining to be acquired is
also given.

> ACQ

Acquire EV4 for 00020T MSEC
Counts remaining: 00018T

The OISP command displays the contents of the
AcquiSition Memory. Entering DISP ALL displays the entire
buffer, beginning with the oldest buffer contents. You may
also use DISP to display a specified number of most recent
transactions. DISP without parameters displays the
transactions that have occurred since the emulator was
last halted.

Emulation-8540 System Users

TTA Summary
The following OS/40 commands control your ITA:

• ACQ-selects the type of operation to be stored in the
Acquisition Memory

• AD-selects the address portion of an event

• BRE-defines a breakpoint in terms of ITA events

• BUS-selects the emulator-specific bus transactions
that define an event

• CONS-causes a trigger after a sequence of events has
occurred on consecutive bus cycles.

• COU-selects the counting units and output modes for
the general purpose counters

• CTR-defines an event as a pattern of the four counter
outputs

@

The ITA

• DATA-selects the data portion of an event

• DISP-displays the contents of the Acquisition Memory

• EVE-defines an event in terms of the input data

• PRO-selects signals from the Data Acquisition Probe

• QUA-selects and defines an input from the Event
Qualifier

• TCLR-clears the EVE, COU, and BRE conditions
associated with a given channel

• TS-displays the status of the ITA or of selected triggers

For more detailed explanations of these commands, refer to
the Trigger Trace Analyzer Users Manual. For descriptions
of common procedures that use these commands, refer to
the subsection "Using the ITA" in the Operating
Procedures section of this manual.

5-19

8540 System Users

Section 6
SERVICE CALLS

Page

Introduction 6-1

Overview. .. 6-1

When Should You Use SVCs? 6-1
What is an SVC? 6-1

Program Instructions 6-3
Service Request Block (SRB) Vector 6-3
Service Request Block (SRB) 6-4
1/0 Buffer 6-4

Limitations of File Handling SVCs 6-4

1/0 Channels 6-4

SVC Applications 6-5

Assign a Device or File to a Channel 6-5
Read a Line from the System Terminal or a File 6-5
Write a Line to the System Terminal or a File 6-5
Time a Program Segment 6-5
Read Binary Data from a File 6-6
Write Binary Data to a File 6-6
Read a Single Byte from the System Terminal 6-6
Write a Single Byte to the System Terminal 6-6

SVC Demonstration 6-6

Program Description 6-S
Data Declaration 6-S
Executable Code 6-S

SVC Functions 6-10

Terminology 6-10

SVC FUNCTION INDEX

Function 01-Read ASCII and Wait 6-14
Function 02-Write ASCII and Wait 6-17
Function 03-Close Channel 6-11
Function 04-Rewind File 6-15
Function 07-Special Function 6-16
Function OS-Log Error Message 6-13
Function 10-Assign Channel 6-11
Function 11-Read Program Clock 6-15
Function 13-Get Command Line Parameter 6-12

REV JAN 1983

Page

Function 14-Get Device Type 6-12
Function 16-Get Last CONI Character 6-12
Function 17-Load Overlay 6-13
Function 1S-Suspend Program 6-16
Function 1 A-Exit Program 6-12
Function 1 C-Get Execution Line Parameter 6-12
Function 1 F-Abort Program 6-11
Function 22-0verwrite ASCII and Wait. 6-14
Function 24-Seek Relative to Byte In File 6-15
Function 30-0pen for Read 6-14
Function 41-Read Binary and Wait 6-15
Function 42-Write Binary and Wait 6-17
Function 44-Seek to Byte in File 6-16

Function 50-Open for Write 6-14
Function 57-Load Overlay with Bias 6-13
Function 62-0verwrite Binary and Wait 6-14
Function 64-Seek to Byte in File Relative to EOF . 6-16
Function 70-0pen for Read or Write 6-14
Function 81-Read ASCII and Proceed 6-14
Function 82-Write ASCII and Proceed 6-17
Function SO-Create File 6-11
Function A2-0verwrite ASCII and Proceed 6-14
Function C1-Read Binary and Proceed 6-15
Function C2-Write Binary and Proceed 6-17
Function E2-0verwrite Binary and Proceed 6-14

Table
No.

6-1
6-2

Fig.
No.

TABLES

Summary of SAS and LAS formats 6-2
Device Identification and Type 6-13

ILLUSTRATIONS

6-1 SVC memory layout. Small Address Space
(SAS) format 6-2

6-2 SVC memory layout, Large Address Space
(LAS) format 6-3

6-3 SVC demonstration program flowchart 6-7
6-4 8080A/8085A SVC demonstration program

listing 6-8

6-i

8540 System Users

Section 6

SERVICE CALLS

INTRODUCTION
Service calls (SVCs) allow your program to perform various
system operations. This section is divided into the following
subsections:

• SVC Overview-Describes the general features of
SVCs.

• Limitations of File-Handling SVCs-Describes the
conditions under which SVCs can access files on the
host.

• 1/0 Channels-Describes the liD channels used by
some SVCs.

• SVC Applications-Illustrates some useful SVC ap
plications. A brief description accompanies each
application.

• SVC Demonstration-!ncludes an 8080A/S085A
assembly language program that incorporates several
SVCs. A similar program is provided in the Emulator
Specifics supplement for each emulator supported by
the 8540.

• SVC Functions-G ives the function code and format for
each SVC. The functions are listed alphabetically in the
text; the Table of Contents contains a numerical index.

OVERVIEW
OS/40 supports a number of service calls (SVCs). Some
SVCs handle the transfer of data between your program

@

and OS/40 peripherals (such as the system terminal or line
printer), or files on the 8560. SVCs also instruct OS/40 to
perform system operations, such as aborting the program
or reading the system clock.

When Should You Use SVCs?
SVCs are especially useful during the initial stages of
software development. While developing software, you
may use SVCs to transfer data between your program and
the 8540 system peripherals or files on the 8560. The SVCs
permit your program to accept and display data.

Once you are certain that your program functions correctly,
you may replace the SVCs with liD instructions in your
microprocessor's assembly language. This allows you to
check out your program using prototype memory, clock,
and liD.

What is an ~YC?
An SVC consists of four parts: (1) the program instructions
that generate the call; (2) a pointer within the Service
Request Block vector; (3) a Service Request Block (SRB);
and (4) an liD buffer (for some SVCs).

6-1

Overview

The format ofthe SRB vector and the Service Request Block
(SRB) is determined by the type of microprocessor you are
emulating. In general, microprocessors that can address a
maximum of 64K bytes use Small Address Space (SAS)
format. while microprocessors that can address more than
64K require Large Address Space (LAS) format. Refer to the
Emulator Specifics section to determine which format your
microprocessor uses. Table 6-1 summarizes the difference
in SRB formats. Figure 6-1 illustrates the SAS memory
layout. Figure 6-2 illustrates the LAS memory layout.

All emulators support the use of SVCs in mode 0; some
emulators support the use of SVCs in modes 1 and 2. In
mode 1, the program instructions may be located in either
program or prototype memory; the other parts of the SVC
must reside in program memory. In mode 2, the SVC is
located entirely in prototype memory. Refer to the Emulator
Specifics section to determine whether your emulator
supports SVCs in modes 1 and 2.

Service Caiis-8540 System Users

Table 6-1
Summary of SAS and LAS Formats

Bytes Used
Small Address Large Address

SRB Field Space Format Space Format
Name (SAS) (LAS)

==~ ==~=~==========*===========
Function
Channel
Status
Fourth Byte
Byte Count
Buffer Length
Buffer POinter

SRB

1
2
3
4
5
6

7-8

1
2
3
4

5-6
7-8

9-12

SRB
Vector (Service Request Block)

6-2

40-41 SVC1
I

42-43 SVC2 ~

44-45 SVC3 ~

4S-47 SVC4 ~

48-49 SVC5 ~

4A-4B SVCS ~

4C-4D SVC7 ~

4E-4F SVC8 ~

-----...--

default
memory

high I low

pointers

location

- function I

channel

status

fourth byte

byte count

buffer length

buffer - -
pointer }

Buffer

I

optional extra ~
SRB bytes

,

Fig. 6-1. SVC memory layout, Small Address Space iSASj fOimat.

(3457·37)3936·18

An instruction sequence within your program determines which of the eight SRB pointers is used. The SRB addressed by the
selected pointer contains the parameters needed to perform the SVC. Depending on the function specified in the first field of
the SRB, an I/O buffer may be needed; in that case, the buffer length and buffer pointer fields indicate the length and location of
the buffer

Service Calls-8540 System Users Overview

SRB SRB
Vector (Service Request Block)

40-43 SVC1

44-47 SVC2

48-4B SVC3

4C-4F SVC4

50-53 SVC5

54-57 SVC6

58-5B SVC7

5C-5F SVC8

-...- ---...--
high I low

pointers

defauit
memory location

optional extra

SRB bytes

function

channel

status

fourth byte

byte

count

buffer

length

buffer

pointer

(3457-37)3936-19

Fig. 6-2. SVC memory layout, Large Address Space (LAS) format.

An instruction sequence within your program determines which of the eight SRB pointers is used. The SRB addressed by the
selected pointer contains the parameters needed to perform the SVC. Depending on the function specified in the first field of
the SRB, an I/O buffer may be needed; in that case, the buffer length and buffer pointer fields indicate the length and location of
the buffer.

Program Instructions
The service call is triggered by a microprocessor
dependent instruction sequence. In modes 0 and 1, this
sequence usually consists of an liD instruction followed by
one no-operation instruction. (In mode 2, the sequence is
an liD instruction followed by two no-operation instruc
tions.) When the SVC instruction sequence is executed, the
8540 hardware interrupts the system so that OS/40 may
take the appropriate action.

Execution of the SVC does not affect the emulator regis
ters. However, the instruction sequence that triggers the
SVC may contain an instruction (such as IN) that modifies
one or more registers.

Eight instruction sequences are defined for each emulator.
These instruction sequences are labeled SVC1 through
SVC8. Refer to the Emulator Specifics section for the
specific instruction sequence used by your emulator.

The liD addresses used in the microprocessor liD
instruction are in the range FO to F7 for most emulators. F7
corresponds to SVC1, F6 to SVC2, and so on. You can use

REV JAN 1983

the OS/40 SVC command to change the liD address range
to any group of eight consecutive liD addresses with least
significant digits in the range of 0 to 7.

Service Request Block (SRB) Vector

The Service Request Block (SRB) vector is a table of eight
addresses beginning at address 40. Each address points to
a different SRB. Although there are only eight SRB
pointers, your program may use more than eight SVCs by
changing the addresses in the SRB vector to point to
additional SRBs.

When the SVC instruction sequence is executed, OS/40
examines the SRB pointer to determine the location of the
SRB to be used. For example, if the instruction sequence for
SVC1 is executed by an emulator that uses SAS format,
OS/40 examines memory locations 40 and 41 to
determine the location of the SRB for that call. Memory
address 40 contains the high byte of the SRB address, and
memory address 41 contains the low byte. If the instruction
sequence for SVC1 is executed by an emulator that uses
LAS format, OS/40 examines memory locations 40
through 43 to determine the location of the SRB for that

6-3

Overview

call. The high-order byte is in location 40; the low-order
byte is in location 43.

To prevent conflict with fixed memory locations required by
your program, you may change the location of the SRB
vector. The OS/40 SVC command allows you to place the
SRB vector nearly anywhere in memory. If you do not use
the default SRB vector location, you must reenter this SVC
command each time you reselect the emulator.

Service Request Block (SRB)

The Service Request Block (SRB) contains the information
that OS/40 needs to perform the service call. The SRB also
reserves areas for OS/40 to return control information and
data after the call is completed. The SRB may be located
anywhere in memory. Refer to Table 6-1 as you read the
following paragraphs.

The function field of the SRB identifies the function of the
call. This byte controls how OS/40 interprets the rest of the
SRB. SVC functions are described individually later in this
section. SVC functions not listed in this section are unsup
ported and may yield unpredictable results.

The channel field usually contains an OS/40 channel
number. Channels are discussed in the "1/0 Channels"
subsection, following this overview.

OS/40 uses the third byte to return status. This status field
contains 00 if the operation was successfully completed. A
non-zero value returned in this byte indicates an abnormal
condition, which mayor may not be an error: status values
06, 07, 29, 76, 7F, and FF are often not considered errors.
These status conditions are listed by status code in the
Error Messages section of this manual.

The status field can also be used to return non-status
information. Such uses are discussed in the description of
the appropriate SVC function.

The fourth byte is used by some functions in SAS format.
The specific use of this byte is covered in the individual
function description. The fourth byte is reserved for system
use in LAS format.

The byte count field indicates the number of bytes
transferred during an 1/0 operation. This field is also used
by SVCs that do not perform data transfer. Refer to the
specific SVC function description for details.

The remaining bytes in the SRB describe an 110 buffer. This
buffer is explained under the next heading.

Some SVCs use additional bytes to form an extended SRB.
The use of these bytes is described with the particular
function that uses them.

In an SRB, any byte that is not specifically designated to
return data may contain unspecified values (garbage) when
the SVC is completed.

6-4

Service Calls-8540 System Users

1/0 Buffer
The 1/0 buffer is used when an 1/0 transfer is performed.
Information that is read from a device or host file is placed
in the buffer after the SVC is called. I nformation to be
written to an external device or host file is placed in the
buffer before the call is made. 1/0 buffers may also hold
ASCII strings (such as filespecs) used by some SVCs.

The buffer length may be 1 to 256 bytes. In SAS format, the
value OOH is used to indicate a length of 256 bytes, because
the buffer length field is only one byte long. In LAS format,
the value 100H indicates a buffer length of 256 bytes.

The buffer pointer fieid contains the address of the first
byte of the buffer, with the high-order byte or word given
first.

The buffer length and buffer pointer fields are used by some
functions that do not perform 1/0 operations. The use of
these bytes is discussed in the function description.

LIMITATIONS OF FILE
HANDLING SVCs

The 8540 supports file handling SVCs (such as Create
File-function 90) when the 8540 is operating in TERM
mode with an 8560. If you are not in TERM mode, SVCs
such as Assign, Read, Write, Open, and Close can only
access 8540 peripherals.

The following filespecs denote 8540 peripherals: CONI,
CONO, REM I, REMO, LPT, PPTR, PPTP. Other filespecs are
assumed to denote host files.

I/O CHANNELS
A channel is an independent data path for 110 operations.
A channel may only be aSSigned to one device or file at a
time. A channel can be disassociated ("closed") from the
device or file and then reaSSigned. OS/40 provides 10
channels: channels 0 through 7 may be aSSigned and
closed by your programs. Channels 8 and 9 are assigned by
the system to standard input and output, respectively, and
may also be used in your programs. OS/40 closes and
reopens channels 8 and 9 each time the G or X command is
used.

In TERM mode, channels assigned to CONI and CONO are
mapped into standard input and standard output,
respectively.

NOTE

No more than five channels at a time may be open to
files.

It is possible to assign so many channels that 08/40
cannot continue to operate. In that case, error code
5C will be issued; the only way to recover from this
condition is to enter the command A - A.

REV JAN 1983

Service Calls-8540 System Users

To avoid this condition, be sure to close a channel
when you are finished with the file to which the chan
nel is assigned. To close one or more selected chan
nels, use the 08/40 CL command or the Close
Channel8VC. To close all channels, use the OA/40 A
command or the Abort Program 8 Vc.

08/40 may allow you to read from a write-only chan
nel, such as standard output, but the results of such a
read are undefined.

SVC APPLICATIONS
This subsection describes some common tasks that use
service calls. Each SVC application describes the steps
required to accomplish the task. The following applications
are included here:

• Assign a device or file to a channel.

• Read a line from the system terminal or a file.

• Write a line to the system terminal or a file.

• Time a program segment.

• Read binary data from a file ..

• Write binary data to a file.

• Read a single byte from the system terminal.

• Write a single byte to the system terminal.

Assign a Device or File to a
Channel
This SVC application is used to associate a device or file
with a channel. The device or file may then be used for data
entry or display.

1. Create a buffer in memory containing the name of the
device or file that you want to assig~. The name must
be terminated with a RETURN character.

2. Establish an SRB containing the following information:

a. Function: 10 (Assign).

b. Channel: a number between 0 and 7, inclusive.

c. Buffer Pointer: pointing to the location containing
the first character of the device or file name.

3. Establish a pointer in the SRB vector and execute the
corresponding SVC.

4. Examine the status byte to verify that the SVC operated
properly.

Read a Line from the System
Terminal or a File
This SVC application reads a line from the system terminal
or a file, and stores the characters in memory.

1. Assign CONI (system terminal input) or the desired
filespec to an available channel.

2. Create a buffer in memory. Make sure that the buffer is

REV JAN 1983

SVC Applications

as long as any line you expect to read, including the
RETURN character.

3. Establish an SRB containing the following information:

a. Function: 01 (Read ASCII and Wait).

b. Channel: the channel to which CONI orthefilewas
assigned.

c. Buffer Length: the length of the buffer that you
created.

d. Buffer Pointer: pointing to the first byte of your
buffer.

4. Establish a pointer in the SRB vector and execute the
corresponding SVC.

5. Examine the status byte to verify that the SVC operated
properly.

Write a Line to the System
Terminal or a File
This SVC application displays a line on the system terminal,
or writes the line to a file. The line must be stored as a
sequence of ASCII characters terminated by a RETURN
character.

1. Assign CONO (system terminal output) or the desired
file to an available channel.

2. Create a buffer in memory that contains the line of
characters to be written, terminated with a RETURN
character.

3. Establish an SRB containing the following information:

a. Function: 02 (Write ASCII and Wait).

b. Channel: the channel to which CONO or the file
was assigned.

c. Buffer Length: the number of characters to be
transferred, including the RETURN character.

d. Buffer Pointer: pointing to the first character of the
line.

4. Establish a pointer in the SRB vector, and execute the
corresponding SVC.

5. Examine the status byte to verify that the SVC operated
properly.

Time a Program Segment
This SVC application allows you to determine the execution
time of a program segment. You must first enable the
program clock with the OS/40 CLOCK ON command. Once
you have done so, perform the following steps:

1. Establish an SRB with the following information:

a. Function: 11 (Read Program Clock).

2. Set up the appropriate pointer in the SRB vector and
execute the corresponding SVC.

3. In SAS format, save the contents of bytes 4 and 5 as a
16-bit integer; byte 4 contains the high byte of the
program clock. In LAS format, bytes 5 and 6 contain the
program clock.

6-5

SVC Applications

4. Execute the program segment to be timed.

5. Execute the SVC again, as described in steps 2 and 3.

6. Subtract the old 16-bit value from the new 16-bit value
to obtain the execution time in 1 OO-millisecond units.

Read Binary Data from a File
This SVC application is used to read binary data from a file.

1. Assign the file to an available channel.

2. Create a buffer in memory. Make sure that the buffer is
as long as any block of data you plan to read.

3. Establish an SRB with the following information:

a. Function: 41 (Read Binary and Vvait;.

b. Channel: the channel assigned to the file.

c. Buffer Length: the number of bytes to be read from
the file.

d. Buffer Pointer: pointing to the address where the
first byte will be placed.

4. Establish a pointer in the SRB vector, and execute the
corresponding SVC.

5. Examine the status byte to verify that the SVC operated
properly.

Write Binary Data to a File
This SVC application is used to write binary data to a file.

1. Assign the file to an available channel.

2. Create a buffer in memory that contains the data to be
written.

3. Establish an SRB with the following information:

a. Function: 42 (Write Binary and Wait).

b. Channel: the channel assigned to the file.

c. Buffer Length: the number of bytes to write to the
file.

d. Buffer Pointer: pointing to the first byte to be
written.

4. Establish a pointer in the SRB vector, and execute the
corresponding SVC.

5. Examine the status bytetoverifythatthe SVC operated
properly.

Read a Single Byte from the
System Terminal
On ASCII reads, OS/40 waits to receive a RETURN
character before returning control to your program.
However, in some instances, you may want to regain
control after each character is typed. This SVC application
allows you to read a single byte from the system terminal
then regain control.

6-6

Service Caiis-8540 Sysiem Users

NOTE

On a binary read, the character typed is not echoed,'
this is the responsibility of your program. Note also
that all of the normal editing functions, such as
BACKSPACE, are ignored for a binary read,' again, it
is the responsibility of your program to perform these
operations on a binary read

1. Assign CONI (system terminal input) to an available
channel.

2. Establish an SRB with the following information:

a. Function: 41 (Read Binary and Wait),

b. Channel: the channel to which CONI is assigned.

c. Buffer Length: 01 (this designates a single
character to be read).

d. Buffer Pointer: pointing to the location that the
character is to be placed after it is read.

3. Establish a pointer in the SRB vector, and execute the
corresponding SVC.

4. Examine the status byte to verify that the SVC operated
properly.

Write a Single Byte to the System
Terminal
This SVC application is used to write a single byte to the
system terminal. On ASCII writes, OS/40 waits until it has
written a RETURN character before returning control to
your program. However, in some instances, you may want
to regain control after each character is written. To write
one character to the system terminal, perform the
following steps:

1. Assign CONO (system terminal output) to an available
channel.

2. Create an SRB containing the following information:

a. Function: 42 (Write Binary and Wait).

b. Channel: the channel assigned to CONO.

C. Buffer Length: 01 (for a single character).

d. Buffer Pointer: pointing to the character to be
displayed.

3. Establish a pointer in the SRB vector, and execute the
corresponding SVC.

4. Examine the status byte to verify that the SVC operated
properlv.

SVC DEMONSTRATION
This subsection contains a demonstration program that
illustrates some of the techniques for using SVCs. The
program demonstrates the use of SRB pointers, SRBs,
buffers, and four SVCs: Assign Channel, ReadASCII, Write
ASCII, and Abort. Figure 6-3 is a flowchart of the
demonstration program.

@

Service Calls-8540 System Users SVC Demonstration

@

Execute SVC 1 to
Assign System Terminal
to Channel 0

OK

Execute SVC 2 to
Assign Line Printer
to Channel 1

Execute SVC 3 to
Read Line from
System Terminal

Execute SVC 4 to
Write Line to
Line Printer

Error

Error

or End-of-File

SVC Definitions
SVC 1: Function 10, Assign channel
SVC 2: Function 10, Assign channel
SVC 3: Function 01, Read ASCII
SVC 4: Function 02, Write ASCII
SVC 5: Function 1F, Abort

Execute SVC 5 to Exit

End

3457-38

Fig. 6-3. SVC demonstration program flowchart.

This flowchart represents the algorithm for the SVC demonstration program. The instructions for the 8080A/8085A version of
this program are given in Fig. 6-4. SVC1 and SVC2 assign the system terminal and the line printer to channels 0 and 1,
respectively. SVC3 reads a line and SVC4 copies it to the line printer. To stop the program, enter a CTRL-Z when the terminal is
awaiting input.

6-7

SVC Demonstration

The demonstration program is presented here in
8080A/8085A assembly language. A similar program is
provided in the Emulator Specifics supplement for each

SSSSS v v CCCCC
S v v C
SSSSS v v C DEMONSTRATION. 8080A/8085A EMULATOR

S

SSSSS

SRBIFN

SRBIST

SRB2FN

SRB2ST

SRB3FN

SRB3ST

v v C
v CCCC9

ORG 40R ; BEGINNING OF SRB VECTOR
BYTE RI(SRBIFN),LO(SRBIFN)
BYTE RI(SRB2FN),LO(SRB2FN)
BYTE HI(SRB3FN),LO(SRB3n~)

BYTE RI(SRB4FN),LO(SRB4FN)
BYTE RI(SRB5FN),LO(SRB5FN)
END OF SRB VECTOR

ORG IOOR ; SET UP SRB AREAS
SRBI = ASSIGN 'CONI' TO CHANNEL 0
BYTE lOR ASSIGN
BYTE OOR TO CHANNEL 0
BLOCK OIR STATUS RETURNED HERE
BLOCK 02R BYTES 4 AND 5 NOT USED
BYTE 05R LENGTH OF 'CONI'+<CR>
BYTE RI(CONI) POINTER TO
BYTE LO(CONI) 'CONI'+<CR>
END OF SRBI
SRB2 = ASSIGN 'LPT' TO CHANNEL I

ASSIGN BYTE lOR
BYTE OIR
BLOCK OIR
BLOCK 02R
BYTE 04R
BYTE RI(LPT)
BYTE LO(LPT)
END OF SRB2
SRB3 = READ ASCII
BYTE OlR
BYTE OOR
BLOCK OIR
BLOCK OIR

TO CHANNEL I
STATUS RETURNED HERE
BYTES 4 AND 5 NOT USED
LENGTH OF 'LPT'+<CR>
POINTER TO
'LPT'+<CR>

LINE FROM CONI (CHANNEL 0)
READ ASCII
FROM CHANNEL 0
STATUS RETURNED HERE
BYTE 4 NOT USED

Service Calls-8540 System Users

emulator supported by the 8540. Figure 6-4 is an
8080/8085A listing of the demonstration program.

BLOCK OIR BYTE COUNT RETURNED HERE
BYTE OOR 256 BYTES IN OUR BUFFER
BYTE RI(BUFFER) POINTER TO
BYTE LO(BUFFER) OUR BUFFER
END OF SRB3
SRB4 = WRITE ASCII LINE TO LPT (CHANNEL I)

SRB4FN BYTE 02R WRITE ASCII
BYTE OIR TO CHANNEL I

SRB4ST BLOCK OIR STATUS RETURNED HERE
BLOCK OlH BYTE 4 NOT USED
BLOCK OIR BYTE COUNT RETURNED HERE
BYTE OOR 256 BYTES IN OUR BUFFER
BYTE RI(BUFFER) POINTER TO
BYTE LO(BUFFER) OUR BUFFER
END OF SRB4

3939-12

Fig. 6-4. SOSOA/SOS5A SVC demonstration program listing (part 1 of 2).

6-8 @

Service Calls-8540 System Users

SRB5 = ABORT (CLOSE ALL CHANNELS AND TERMINATE)
SRB5FN BYTE IFH

BLOCK 07H

END OF SRB5

BUFFER BLOCK
CONI ASCII

IOOH
'CONI'

BYTE ODH
LPT ASCII 'LPT'

BYTE ODH
END OF DATA DEFINITIONS

ABORT
; BYTES 2 THROUGH 8 NOT USED

OUR I/O AREA
ASCII OF 'CONI'
+ <CR>
ASCII OF 'LPT'
+ <CR>

BEGINNING OF EXECUTABLE CODE
ORG

START OUT

LOOP

NOP
LDA
CPI
JNZ
OUT
NOP
LDA
CPI
JNZ

OUT
NOP
LDA
CPI
JNZ

OUT
NOP
LDA
CPI
JZ

ABORT OUT
NOP
HLT

END

IOOOH
OF7H

SRBIST
OOH
ABORT
OF6H

SRB2ST
OOH
ABORT
OF5H

SRB3ST
OOH
ABORT
OF4H

SRB4ST
OOH
LOOP

OF3H

START

ENTRY POINT INTO PROGRAM
CALL SVCI
TO ASSIGN 'CONI'
CHECK THE STATUS TO SEE
IF ALL WENT WELL

NO? STOP EVERYTHING
YES? CALL SVC2
TO ASSIGN 'LPT'
CHECK THE STATUS TO SEE
IF ALL WENT WELL
NO? STOP EVERYTHING
CALL SVC3
TO READ A 'CONI' LINE
INTO ' BUFFER '
ALL OK?
NO? STOP EVERYTHING
CALL SVC4
TO WRITE 'LPT'
CHECK TO SEE IF
ALL IS O.K.
YES? BACK TO READ ANOTHER LINE
NO? FALL THROUGH TO TERMINATION
CALL SVC5
TO DO THE ABORT
SHOULD NEVER REACH HERE

Fig. 6-4. SOSOA/SOS5A SVC demonstration program listing (part 2 of 2).

SVC Demonstration

3939-13

Program Description
The demonstration program consists of two major parts:
the data declarations and the executable code.

After the SRBs are defined, the I/O buffer space is
allocated. The device names (used for channel assignment)
are also defined.

Data Declaration
This part of the program begins by defining the five entries
in the SRB vector. Each entry points to a function byte of an
SRB. These entries are examined by OS/40 when an SVC
is invoked. In this demonstration program, only one SRB is
used for each SVC, so the SRB contains the number of the
SVC as part of its labels.

@

Executable Code
This part of the program begins by invoking SVC1. This SVC
invocation instructs OS/40 to examine the address stored
in memory locations 40 and 41 of the SRB vector. These
addresses point to the beginning of SRB1. SVC1 assigns
channel 0 to CONI (system terminal input).

6-9

SVC Functions

After SVC1 is executed, the program checks the status
byte. OS/40 sets this byte to indicate whether the
operation was completely and properly performed. If this
byte is non-zero, some unwanted result has occurred, and
the program branches to an exit routine.

Next. the program executes SVC2 to assign the line printer
(LPT) to channel 1. The program then tests the status byte
as before, branching to the exit routine upon any error.

The program then initiates a read from channel O. Because
the system terminal input (CONI) was assigned to this
channel, SVC3 causes the program to be delayed until a
line has been typed in at the terminal. When the RETURN
character has been entered, OS/40 resumes the program.
The line is read into the buffer designated in the SRB for
SVC3.

The program then tests the status byte for a possible
termination condition. This termination condition is
indicated by a non-zero value in the status byte of SRB3.
The program is exited when either of the following
conditions occurs:

• An error occurs during the liD transfer; this generates
the appropriate liD error value in the status byte, or

• A CTRL-Z is typed in at the terminal; this generates an
end-of-file condition, and returns FF, the end-of-file
status value.

If neither termination condition has occurred, SVC4
outputs the line to channel 1 (which was assigned to LPT.)
The line itself does not need to be moved, because the same
buffer is used for input and output. The status is checked
again after SVC4 is completed. If OSI 40 indicates no error,
the program loops back to read another line.

When any error occurs, or CTRL-Z is entered at the
terminal, the program branches to the exit routine. This
routine executes SVC5, which is defined by SRB5 to
perform an abort (stop program execution, close all open
channels).

NOTE

The program in Figure 6-4 is written for a 8 Series
assembler (as provided for an 8560). To modify this
program for an A S er ies assembler (as provided for an
8550), change each single quote (') to a double quote
(").

6-10

Service Caiis-8540 System Users

SVC FUNCTIONS
The remainder of this section describes each of the SVC
functions individually. The first byte of an SRB indicates the
function of the service call. Each function is described in
the following format:

Identification

Description

Parameters Passed

Information
Returned

The name of the function being
described, and its function number.
The function number is in byte 1 of
the SRB at the time of the call.

One or more paragraphs discus
sing the operation of the function
and its limits or extensions.

A list of values that you must put
into the SRB or buffer before the
call is made. Because the function
byte must always be loaded before
any call, it is not included in this
parameter list.

A list of all items that OS/40 will
return in the various parts of the
SRB and buffer. Because the status
byte is always returned, it is not
included in the list unless it has a
special significance.

The functions are described in alphabetic order. Refer to
the Section 6 Table of Contents for a numeric index of the
functions. The following paragraphs briefly define the
terms used in these descriptions.

Terminology
ASCII and binary are two types of data transfers. An ASCII
transfer consists of a single line of text containing zero to
255 characters, followed by a RETURN character. The most
significant bit of each character is cleared on any ASCII
transfer.

A binary transfer consists of 1 to 256 bytes; the length of
the data item is determined only by the buffer size. The
most significant bit of each byte is not affected during a
binary transfer.

Under OS/40, proceed SVCs are equivalent to wait SVCs:
both complete the liD operation before your program is
allowed to continue.

@

Service Calls-8540 System Users

SRB Field
Name

Bytes Used

Small Address
Space Format

(SAS)

Large Address
Space Format

(LAS)

Function
Channel
Status

1
2
3
4
5
6

2
3
4 Fourth Byte

Byte Count
Buffer Length
Buffer Poi nter 7-8

5-6
7-8

9-12

Under OS/40, overwrite SVCs are equivalent to write
SVCs: both operations set an end-of-file mark that destroys
any information past that point in the file.

The file pointer is a logical position in the file. All reads
from the file and writes to the file are performed beginning
at the current file pointer. The file pointer is updated to the
end of the data item read or written. Seek SVCs reposition
the file pointer. An independent file pointer is maintained
for each channel.

NOTE

When the Byte Count, Buffer Length, and Buffer
Pointer fields are used for non-I/O operations, they
are discussed by byte number.

Differences between SAS and LAS formats are noted
in the function descriptions.

On all two-byte and four-byte values used by SVCs,
the high byte is given first.

Abort Program-Function 1 F
This function terminates the currently running program.
All open channels are automatically closed.

NOTE

If this SVC is executed when TRAce is off, the
program counter will contain the address where
execution began on the most recent G command

Any errors that result from closing the open channels
are displayed on the system terminal.

Parameters Passed

None.

Information Returned

None.

@

SVC Function-Create File

Assign Channel-Function 10
This function assigns a file or device to the designated
channel. Store the filespec (terminated by a RETURN
character) in the buffer before invoking this SVC. If you
designate a file that does not already exist, the file is
created.

Parameters Passed

Buffer. Contains the filespec, terminated by a RETURN
character.
Channel. The channel number assigned to the file or
device designated by the filespec.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned

None.

Close Channel-Function 03
This function closes a previously opened channel.

Parameters Passed

Channel. The channel to be closed.

Information Returned

None.

Create File-Function 90
This function creates an empty file with the specified
filespec, and assigns a channel to the new file. If the
specified file already exists, its previous contents are lost.

Parameters Passed

Buffer. The filespec of the file to be created, terminated by
a RETURN character.
Channel. The channel number to which the file will be
assigned.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned

None.

6-11

SVC Function-Delete File

Bytes Used

SRB Field
Name

Function
Channel
Status
Fourth Byte
Byte Count
Buffer Length
Buffer Pointer

Small Address
Space Format

(SAS)

2
3
4
5
6

7-8

Large Address
Space Format

(LAS)

1
2
3
4

5-6
7-8

9-12

Exit Program-Function 1 A
This function stops the execution of your program. OS/40
will respond with a prompt for another command. Use the
G command to resume execution. (Do not use the CO
command in this situation.) Any channels currently open
remain open. This function is identical to the Suspend
Program SVC (function 19).

Parameters Passed

None.

Information Returned

None.

Get Command Line Parameter
Function 13
This function (identical to the Get Execution Line
Parameter SVC, function 1 C) returns a parameter of the
command line used to load or execute the current program.
The parameters are numbered with consecutive non
negative integers, beginning with 01. For example, for the
OS/40 command line "X <MYFILE VW X+3", parameter 01
is V and parameter 03 is X+3. The selected parameter is
returned in the buffer. If the parameter number is greater
than the number of parameters in the command lin~, the
value FF is returned in the buffer in place of a parameter.

Parameters Passed

SAS Byte 4. LAS Bytes 5-6. The number ofthe requested
parameter.
Buffer Length. The maximum number of characters in the
parameter.
Buffer Pointer. The location of the first byte of the buffer.

6-12

Service Calls-8540 System Users

Information Returned
Buffer. The parameter, terminated by a RETURN character.
SAS Byte 5 The length of the parameter, including the
RETURN character. This information is not returned in LAS
format.

Get Device Type-Function 14
This function returns two device-dependent values that
define the type and general capabilities of the device or file
assigned to the designated channel. Table 6-2 lists the
values that are associated with each device.

In TERM mode, CONI and CONO are treated as files (device
identification FF, type code 43).

Parameters Passed

Channel. The channel number to which the device or file is
currently assigned.

Information Returned

SAS Byte 4. LAS Byte 7. Thedevice identification number
(as defined in Table 6-2).
SAS Byte 5, LAS Byte 8. The device type code (as defined
in Table 6-2).

Get Execution Line Parameter
Function 1 C
This function is identical to the Get Command Line
Parameter SVC, function 13.

Get Last CONI Character
Function 16
This function returns the ASCII value of the last character
entered at the system terminal.

Parameters Passed

None.

REV JAN 1983

Service Calls-8540 System Users

Bytes Used

SRB Field
Name

Small Address
Space Format

(SAS)

Large Address
Space Format

(LAS)

Function
Channel
Status
Fourth Byte
Byte Count
Buffer Length
Buffer Pointer

1
2
3
4
5
6

7-8

Information Returned

1
2
3
4

5-6
7-8

9-12

SAS Byte 4, LAS Byte 6. The last character entered at the
system terminal.

Load Overlay-Function 17
This function loads a load file (in A Series or B Series Load
Module format) into program or prototype memory. The
buffer must contain the name of the file when the SVC is
invoked.

Parameters Passed
Buffer. The filespec, terminated by a RETURN character.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned
SAS Bytes 4-5, LAS Bytes 5-8. The transfer address of
the load file: the high-order byte is given first.

Load Overlay with Bias-'
Function 57
This function loads a load file (in A Series or B Series Load
Module format) into program or prototype memory. The file

SVC Function-Log Error Message

is loaded with a specified bias (offset) from each of its
addresses. The bias is specified in the bytes following the
buffer pointer, and is added to the starting address of each
block in the load file.

Parameters Passed
Buffer. The filespec, terminated by a RETURN character.
Buffer Pointer. The location of the first byte of the buffer.
SAS Bytes 9-10, LAS Bytes 13-16. The bias (high byte
first) to be added to the starting address of each block in the
load file.

Information Returned
SAS Bytes 4-5, LAS Bytes 5-8. The transfer address of
the load file: the high-order byte is given first.

Log Error Message-Function 09
This function displays an error message on the system
terminal. (All system error messages are listed in the Error
Messages section of this manuaL) The message includes
the name of the last program loaded; this identifies that the
message was generated by a user program.

Use this SVC when your program is not prepared to handle
the error. You can use the same SRB that returned the error
code by changing the function byte.

Parameters Passed
Status. The error message number returned by the
previous call for this SRB.

Information Returned

None.

Table 6-2
Device Identification and Type

Device

Name Description Identification Type Code Type Description

CONI Console input 01 01 ASCII read

CONO Console output 02 02 ASCII write

LPT Line printer 03 02 ASCII write

PPTR Paper tape reader 08 01 ASCII read

PPTP Paper tape punch 09 02 ASCII write

REMI Remote input OA 01 ASCII read

REMO Remote output OB 02 ASCII write

(file) File FF 43 Binary read/write

@ 6-13

SVC function-Open fOi Read

Bytes Used

SRB Field
Name

Function
Channel
Status
Fourth Byte
Byte Count
Buffer Length
Buffer Pointer

Small Address
Space Format

(SAS)

1
2
3
4
5
6

7-8

Large Address
Space Format

(LAS)

1
2
3
4

5-6
7-8

9-12

Open for Read-Function 30
This function assigns an existing file or device to the
designated channel. An error is generated if the file or
device does not exist. or if a write to the channel is
attempted later.

Parameters Passed
Buffer. The filespec, terminated by a RETURN character.
Channel. The channel number to which the file is
assigned.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned

None.

Open for Read or Write
Function 70
This function assigns an existing file or device to the
designated channel. An error is generated if the file or
device does not exist.

Parameters Passed
Buffer. The filespec, terminated by a RETURN character.
Channel. The channel number to which the file is
assigned.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned
None.

Open for Write-Function 50
This function assigns an existing file or device to the
designated channel. An error is generated if the file or
device does not exist, or if a read from the channel is
attempted later.

6-14

Service Caiis-8540 System Users

Parameters Passed

Buffer. The filespec, terminated by a RETURN character.
Channel. The channel number to which the filespec is
assigned.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned
None.

Overwrite ASCII and Proceed
Function A2
This function is identical to the Write ASCII and Wait SVC,
function 02.

Overwrite ASCII and Wait
Function 22
This function is identical to the Write ASCII and Wait SVC,
function 02.

Overwrite Binary and Proceed
Function E2
This function is identical to the Write Binary and Wait SVC,
function 42.

Overwrite Binary and Wait
Function 62
This function is identical to the Write Binary and Wait SVC,
function 42.

Read ASCII and Proceed
Function 81
This function is identical to the Read ASCII and Wait SVC,
function 01.

Read ASCII and Wait
Function 01
This function reads one ASCII line from the designated
channel into the buffer.

Parameters Passed

Channel. The channel assigned to the device or file from
which the line is read.

@

Service Calls-8540 System Users

Bytes Used

Small Address large Address
SRB Field

Name
Space Format Space Format

Function
Channel
Status
Fourth Byte
Byte Count
Buffer length
Buffer Pointer

(SAS)

2
3
4
5
6

7-8

(lAS)

1
2
3
4

5-6
7-8

9-12

Buffer length. The maximum number of characters to
read, including the RETURN character.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned

Byte Count. The number of characters read, including the
RETURN character.

Buffer. The ASCII line read, including the RETURN
character.

Read Binary and Proceed
Function C1
This function is identical to the Read Binary and Wait SVC,
function 41.

Read Binary and Wait
Function 41
This function reads binary data fro~ the designated
channel into the buffer.

Parameters Passed

Channel. The channel assigned to the file or device from
which the buffer is read.
Buffer length. The number of bytes to read.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned

Byte Count. The number of bytes actually read; the same
as buffer length, unless the end-of-file was reached.
Buffer. The bytes read.

Read Program Clock-Function 11
This function reads the OS/40 program clock, which is a
16-bit counter controlled by the OS/40 CLOCK command.

@

SVC Function-Seek Relative to Byte in File

Parameters Passed
None.

Information Returned

SAS Bytes 4-5, lAS Bytes 5-6. The 16-bit program clock;
the high-order byte is given first. '

Rewind File-Function 04
This function moves the file pointer to the beginning of the
file assigned to the designated channel.

Parameters Passed

Channel. The channel number of the file to rewind.

Information Returned
None.

Seek Relative to Byte In File
Function 24
This function seeks to a byte in the file assigned to the
designated channel. The byte number is given as a signed
4-byte value. The first byte of the file is byte number 0;
successive bytes are numbered in ascending order.

An offset from the current file pointer is given as a signed4-
byte value. This offset is added to the current file pointer to
produce the new file pointer.

The new file pointer is returned to verify that it has indeed
been located at the requested position; the new position
cannot be beyond the current end-of-file, nor before the
beginning of the file. To obtain the value of the current file
pointer, pass an offset of 00000000 to this SVC.

Parameters Passed
Channel. The channel assigned to the file on which the
seek is performed.
SAS Bytes 5-8, LAS Bytes 9-12. A signed 4-byte value
(most significant byte first) containing the offset to add to
the current file pointer.

Information Returned

SAS Bytes 5-8, lAS Bytes 9-12. The new position ofthe
file pointer.

6-15

SVC Function-Seek to Byte in File

Bytes Used

SRB Field
Name

Function
Channel
Status
Fourth Byte
Byte Count
Buffer Length
Buffer Pointer

Small Address
Space Format

(SAS)

2
3
4
5
6

7-8

Large Address
Space Format

(LAS)

1
2
3
4

5-6
7-8

9-12

Seek to Byte in File-Function 44
This function seeks to a byte in the file assigned to the
designated channel. The byte number is given as a signed
4-byte value. The first byte of the file is byte number 0;
successive bytes are numbered in ascending order.

The new file pointer is returned to verify that it has indeed
been located at the requested position. The new position
cannot be beyond the current end-of-file, or before the
beginning of the file.

A seek to byte 0 is equivalent to the Rewind SVC, function
04.

Parameters Passed
Channel. The channel assigned to the file on which the
seek is performed.
SAS Bytes 5-8. LAS Bytes 9-12. A signed 4-byte value
(most significant byte first) containing the byte position to
seek to.

Information Returned
SAS Bytes 5-8, LAS Bytes 9-12. The new position ofthe
file pointer; should be the same as the position passed,
unless a seek is attempted past the beginning or the end of
the file.

Seek to Byte in File Relative to
EOF-Function 64
T :_ I. • • __ +;_ __ "t,.,.. +_ """ h. .. ,+.n ; +hn ":il.o. ~~C"in o,.. +" +ho
III." lUI I\""IVI I ~t;:;t;;;".:::J LV a uY"C .1' Lilt:; I'.~ U.:3~I~II\J\.A LV LI''''

designated channel. An offset from the current end-of-file
is given as a signed 4-byte value (usually zero or negative).

6-16

Service Caiis-8540 System Users

You may position the file pointer at the end-of-file without
knowing the file's length; to do so, pass a value of
00000000 to this SVC. After this seek operation, you may
append additional information to the file.

The new file pointer is returned to verify that it has indeed
been located at the requested position; the new position
cannot be beyond the current end-of-file, or before the
beginning of the file.

Parameters Passed
Channel. The channel assigned to the file on which the
seek is performed.
SAS Bytes 5-8, LAS Bytes 9-12. A signed 4-byte value
(most significant byte first) containing the offset. This offset
is added to the number of bytes in the file to obtain the new
value of the file pointer.

Information Returned
SAS Bytes 5-8, LAS Bytes 9-12. The new position ofthe
file pointer.

Special Function-Function 07
This function performs a special device-dependent
operation on the device or fi Ie currently assigned to the
designated channel. At the time of this writing, only one
special function code (14) is defined. Its action is identical
to the Get Device Type SVC (function 14). Other special
functions may be defined at some future date.

Parameters Passed

Channel. The channel number assigned to perform the spe
cial function.

SAS Byte 5, LAS Bytes 5-6. The special function code (cur
rently defined only for 14).

Information Returned
(Dependent on special function.)

Suspend Program-Function 19
This function is identical to the Exit Program SVC, function
1A.

REV JAN 1983

Service Calls-8540 System Users

Bytes Used

SRB Field
Name

Function
Channel
Status
Fourth Byte
Byte Count
Buffer Length
Buffer Pointer

Small Address
Space Format

(SAS)

2
3
4
5
6

7-8

Large Address
Space Format

(LAS)

2
3
4

5-6
7-8

9-12

Write ASCII and Proceed
Function 82
This function is identical to the Write ASCII and Wait SVC,
function 02.

Write ASCII and Wait
Function 02
This function writes one ASCII line from the buffer to the
designated channel.

Buffer length. The maximum number of characters to be
written; this count includes the RETURN character.
Buffer Pointer. The location of the first byte of the buffer.

REV JAN 1983

SVC Function-Write Binary and Wait

Information Returned
Byte Count. The number of characters written.

Write Binary and Proceed
Function C2
This function is identical to the Write Binary and Wait SVC,
function 42.

Write Binary and Wait
Function 42
This function writes binary data from the buffer to the
designated channel.

Parameters Passed
Buffer. The binary data to be written to the channel.
Channel. The channel assigned to the file or device to
which the buffer is written.
Buffer Length. The number of bytes to be written.
Buffer Pointer. The location of the first byte of the buffer.

Information Returned

Byte Count. The number of bytes actually written; should
be the same as buffer length.

6-17

8540 System Users

Section 7

EMULATOR SPECIFICS

Processor-specific information is contained in the Emulator
Specifics supplement that accompanies each emulator. Each
supplement is designed to be inserted into this manual.

These Emulator Specifics supplements are numbered as if
they were separate sections of this manual. For example,
the 8080A supplement is labeled "Section 7A" and the
first illustration is numbered "Fig. 7A-1." Similarly, other
supplements are labeled Sections 7B, 7C, etc. Figures,
pages, and tables are numbered accordingly.

Each supplement presents the following information:

• A general summary of the emulator's capabilities .

• OS/40 commands, parameters, and displays that are
specific to that emulator.

• Service call (SVC) information for that emulator,
including a sample program parallel to the 8080AI
8085A program presented in the Service Calls section of
this manual.

• Any special considerations that should be noted.

• Timing discrepancies between the prototype control
probe and the microprocessor that it replaces.

• A demonstration run that parallels the one in the
Learning Guide of this manual.

Each supplement has its own table of contents .

7-1

8540 System Users

Section 8

PROM PROGRAMMER SPECIFICS

This section describes the general use of the PROM
Programmer, and provides a place to insert your PROM
Programmer Specifics supplements.

USING THE PROM
PROGRAMMER

The 8500 MOL Series PROM Programmer consists of three
assembl ies:

1. The controller is a circuit board that is installed in the
8540 mainframe.

2. The front panel assembly is installed in the 8540 front
panel.

3. The characteristic module is a circuit card that you
insert into the front panel assembly in order to
configure your PROM Programmer for a particular set
of PROM devices.

Following are step-by-step procedures for inserting and
using a characteristic module. It is assumed that the PROM
Programmer Controller, front panel assembly, and
operating system ROM have been installed according to
the procedures in the PROM Programmer Controller
Installation Manual. The steps within each procedure must
be performed in the specified order.

@

Do not start up or turn off the 8540 when you have a
PROM device inserted in the zero-insert ion-force
(ZIF) socket of the characteristic module. Voltage
transients may damage your PROM.

NOTE

If you are using a multi-board emulator, refer to your
Emulator Specifics supplement for more information
on using your PROM Programmer.

Inserting a Characteristic Module

Slide the characteristic module upward into the front panel
assembly until the front panel of the characteristic module
fits snugly against the front panel assembly. See Fig. 8-1
for the correct angle of insertion. When the characteristic
module is properly inserted, the ZIF socket on the
characteristic module protrudes from the front panel
assembly.

3936-21

Fig. 8-1. Inserting a characteristic module.

8-1

Using the PROM Programmer

Starting Up the 8540
1. First, be certain that you do not have a PROM device in

the ZIF socket of the characteristic module. Then, start
up the 8540. (For start-up instructions, refer to the
Learning Guide section of this manual.) The SELF
TEST indicator on the front panel assembly of the
PROM Programmer should light briefly (5 seconds
maximum), and then go out.

2. Turn on the PROM POWER switch, located on the
PROM Programmer front panel assembly. The READY
indicator will light if a characteristic module is present
in the front panel assembly and the PROM
Programmer has powered up correctly.

If the SELF TEST indicator stays on, or if the READY
indicator does not light, enter the PSTAT command on
your system terminal. The PSTAT display should
indicate the problem. For PSTAT display examples and
error message explanations, see the PROM Pro
grammer Specifics supplement for the characteristic
module you are using. If the problem persists, refer to
the PROM Programmer Controller Installation Manual.

Inserting a PROM into the Characteristic
Module

~J')

, CAUTION <
~<

To prevent potential damage to your PROM device, do
not insert or remove a PROM when the SELF TEST
light on the front panel assembly is ON.

You can insert or remove a PROM when any of the
following conditions are true:

• the characteristic module has not been inserted into the
front panel assembly, or

• the 8540 is not powered up, or

• the PROM POWER switch is OFF, or

• the READY light on the front panel assembly is ON.

At the time of this writing, all supported PROMs are
inserted according to the following procedure:

1. Raise the lever on the Z!F socket of the characteristic
module.

2. Insert the PROM into the ZIF socket so that pin 1 ofthe
PROM is next to the lever.

3. Depress the lever so that the socket grips the pins of
the PROM.

8-2

PROM Programmer Specifics-8540 System Users

Be certain that pin 1 of the PROM is at the end of the
ZIF socket next to the lever. The PROM Programmer
cannot always detect an incorrectly socketed device;
damage to the PROM can result from an attempt to
program an incorrectly socketed PROM.

Most PROM devices have an indentation near pin 1;
other PROMs may have a small dot painted on that
end. Refer to the manufacturer's specifications if you
are in doubt.

PROM Programmer Commands
The system commands that control the PROM Programmer
are described in detail in each PROM Programmer
Specifics supplement.

Turning Off the 8540
Before you turn off the 8540, be certain to remove the
PROM from the characteristic module.

PROM PROGRAMMER
SPECIFICS SUPPLEMENTS

Each characteristic module is accompanied by a PROM
Programmer Specifics supplement that provides information
specific to the characteristic module. Each supplement is
designed to be inserted into this manual.

These PROM Programmer Specifics supplements are
numbered as if they were separate sections ofthis manual.
For example, the supplement that documents the
2716/2732 PROM Programmer Module is labeled
"Section 8A," and the first illustration in that supplement is
numbered "Fig. 8A-1." Similarly, other supplements are
labeled Sections 8B, 8C, etc. Figures, pages, and tables are
numbered accordingly.

Each supplement presents the following information:

• A list of PROMs supported by the characteristic module.

• System commands, parameters, and displays that are
specific to the characteristic module.

• One or more examples of each command supported by
the characteristic module.

• Any irregularities that should be noted.

• Features designed to support PROMs with special
programming needs.

8540 System Users

@

Section 9

TECHNICAL NOTES

NOTE 1. PRACTICAL LIMITS OF EMULATION
No available emulator exactly emulates the target microprocessor. Connecting test circuitry to a
device always has some loading effect on the device you are testing. Engineers have accepted
this fact with regard to voltmeters, oscilloscopes, and other test instruments. Similarly, when
you connect a control probe to a prototype circuit, you are adding circuitry that allows you to
monitor and control the prototype. This added circuitry has an effect, if only a slight one, on the
performance of the prototype. Here are some considerations to bear in mind when using an
emulator:

• Load and Drive Parameters. We have chosen to use LSTIL buffers between the user's
prototype and the emulating microprocessor. The consequence is that, where most
microprocessors have MOS-type inputs and outputs, our emulator has LSTIL inputs and
outputs. The designer of the target system must keep this in mind when dealing with load
and drive considerations.

• Noise. Another parameter that is directly affected by emulation is noise. Since the user's
circuitry is being driven via a cable from the prototype control probe, the signals will
necessarily be noisier than when the microprocessor is in the circuit. Further, existing
noise in the prototype circuit may be aggravated by the cable.

• Timing. Finally, because of propagation delays through cables and buffers, the timing of
certain signals at the probe plug may differ slightly from those measured at the
microprocessor itself.

In all cases, the variations mentioned are within the worst case specifications of the
microprocessor being emulated. You should remember, though, that these variations do exist. If
you encounter problems under emulation and not with the microprocessor plugged in, or vice
versa, check your design for possible marginal timing, loading, or noise conditions.

NOTE 2. COMPARISON OF 05/40 VERSION 1
WITH 005/50 VERSION 2
This Technical Note compares the 8540 operating system (OS/40 Version 1) and the 8550
operating system (DOS/50 Version 2). The two operating systems are similar except for a few
commands, functions related to file handling, and RTPA support.

Commands

• All 8540 commands except PERMSTR and ROMPATCH are also valid on the 8550.

• All commands that are shared by the 8540 and the 8550 are identical except for the
CON FIG command.

9-1

Comparison of 05/40 Vi with 005/50 V2 Technicai Notes-8540 System Users

9-2

File Handling Considerations

The 8540 relies upon its host computer to do file handling tasks, unlike the 8550, which handles
its own files. As a result, the 8540 performs differently in the following areas:

• Command set. The following 8550 commands are not supported by the 8540:

ACE COP FD L SYS
ASM CRC FL LINK SYSPATCH
ATT CREATE FORMAT LlBGEN T
BR DAT HELP MDL USER
CMPF DEL HOST PRINT VERIFY
1"'1"'\1\.1 nllr"l v REN '"'VI" uur ""

• SVCs. All files used by 8540 SVCs must reside on the host (for example, the 8560). All files
used by 8550 SVCs must reside on the 8550.

The 8540 does not support SVCs 06, 18, 21, 48-4C, 4E, 58, and 59.

On the 8540, Overwrite SVCs are implemented as Write SVCs, and I/O-and-Proceed SVCs
are implemented as I/O-and-Wait SVCs.

• Intersystem Communication. The 8540 cannot be a host computer.

• Software Installation. On the 8540, software is installed via ROM. On the 8550, software
is installed via disk.

Support of ITA, RTPA
The 8540 supports only the Trigger Trace Analyzer (TTA). The 8550 supports both the TTA and
the Real-Time Trace Analyzer (RTPA).

NOTE 3-COMPARISON OF THE TTA AND THE RTPA
This technical note compares the Trigger Trace Analyzer and the Real-Time Prototype Analyzer.
Refer to your TTA Users Manual, the Operating Procedures Section of this manual, and the
Emulation Section of this manual for more information about the TT A.

@

Technical Notes-8540 System Users Comparison of ITA and RTPA

@

Differences

a. The TTA can monitor up to 24 address lines. The RTPA can monitor up to 16 address
lines.

b. The smallest time unit that the TTA can count is 200 ns. The smallest time unit the
RTPA can count is 1 us.

c. The TTA's Acquisition Memory can hold 255 operations. The RTPA's Real-Time Trace
buffer can hold 128 operations.

d. The TTA has 4 event/counter/trigger sets. The RTPA has 2 event/counter/trigger
sets.

e. The event/counter/trigger relationships of the TTA are much more flexible than those
of the RTPA's. As a result, the TTA's TS command has no counterpart in the RTPA.

f. Each TT A trigger can key on a range of addresses or data. The RTPA can key on a single
range but requires both event/counter/triggers to do it. milarities

Similarities

a. The following functions are similar on both instruments: tracing, counting, triggers,
and breakpoints.

b. Both the TTA and the RTPA can use the following input data: address bus, data bus,
control lines, and data acquisition probe clips.

c. The TTA's EVE command performs many of the same functions as the RTPA's EVT
command.

d. The TTA's AD, BUS, DATA, and PRO commands are analogous to the parameters A, B,
0, and T of the RTPA's EVT command.

e. The TTA's ACQ command performs the functions of the RTPA's RT command and has
additional features.

f. The TTA's DISP command is similar to the RTPA's DRT command.

9-3

8540 System Users

Section 10

ERROR MESSAGES

NOTE This section describes error messages which are
generated by OS/40 or issued by the 8540 upon request
from the host. Other Tektronix software products that run
on the 8560 or 8550 can generate error messages which
are documented in other manuals. Table 10-1 describes
the general format of each type of error message, and
indicates the appropriate reference document.

Any of these codes may be returned as an SRB status
code after an SVC. Refer to the Service Calls section
of this manual for information regarding SRB status
codes.

Table 10-1
Summary of Error Message Types

Source Order Case Format Reference Document

8540/8550 numeric, lower CMD: Error nn Message 8540 or 8550 System Users Manual
hexadecimal Error Messages section

8560 alphabetic lower cmd: Message 8560 System Users Manual

by command cmd: Message-Detail Message: refer to the generating command

Detail: see Error Messages section

A Series Assembler numeric lower *****ERROR nnn:Message 8550 Assembler Core Users Manual (A Series)

nnn = 000-199, Error Messages section

nnn = 200-255, Assembler Specifics

A Series Linker alphabetic upper MESSAGE 8550 Assembler Core Users Manual (A Series)

The Linker section

A Series Library alphabetic upper MESSAGE 8550 Assembler Core Users Manual (A Series)

Generator The Library Generator section

B Series Assembler numeric lower ASM: nnn (s) Message 8550 Assembler Core Users Manual (B Series)

*** ASM: nnn (s) Message nnn = 000-199, Error Messages section

nnn = 200-255, Assembler Specifics

B Series Linker numeric lower LlNK:nnn (s) Message 8550 Assembler Core Users Manual (B Series)

***LlNK:nnn (s) Message Error Messages section

nnn = 000-099, command processing errors

nnn = 100-199, errors during link

B Series Library numeric lower LlBGEN:nnn (s) Message 8550 Assembler Core Users Manual (B Series)
Generator *** LlBGEN:nnn (s) Message nnn = 000-199, Error Messages section

nnn = 200-255, Assembler Specifics

8550 DOS/50 Editor alphabetic upper MESSAGE 8550 Editor Users Manual

Error Messages section

ACE alphabetic upper MESSAGE 8500 Advanced CRT-Oriented Editor Users Manual

MDL/Ji alphabetic lower Message 8550 MDL/Ji Compiler Users Manual

Error Messages section

PROM Programmer alphabetic upper PP ERROR-MESSAGE PROM Programmer Specifics supplement

by function FATAL PP ERROR-MESSAGE for the characteristic module;

group see the heading, Error Conditions

@ 10-1

02-lIIegal channel number. The channel number used
was outside the range 0-9.

03-1/0 channel not open. An 1/0 operation has been
attempted on a channel that has not been assigned to a file
or device.

05-lIIegal function for device. An attempt has been made
to perform an illegal function, such as reading from the line
printer or writing to the paper tape reader.

06-Short or unterminated read. The number of bytes
read was less than the number of bytes requested, or a
carriage return was not detected. This is the normal status
when the iast (short; biock of a fiie is read.

07-Short or unterminated write. A carriage return was
not detected in the specified number of characters to be
written.

OA-Device not operational. Power to the device is on, but
for some reason it cannot function properly. For example,
the line printer may be out of paper.

OC-Device not ready. The 8540 cannot communicate
with the device you want to access (for example, the host
computer). 8e sure that the device is powered up and con
nected to the 8540.

OD-Device in use. An attempt has been made to assign a
non-shareable device on a second channel. Only CONI and
CONO are shareable.

1 O-Error reading disk bit map. An error in reading a disk
bit map has been detected. Host-dependent SVC error.

11-1/0 error or access violation on read. An error on
REMI, CONI, or PPTR has been detected, or you do not have
read access to the directory or file on the host.

12-1/0 error or access violation on write. An error on
REMO, CONO, or PPTP has been detected, or you do not
have write access to the directory or file on the host.

13-Command not found. OS/40 does not recognize the
command name. Be sure that the proper emulator software
has been installed and selected.

16-lIIegal file specification. A filespec may be an
incorrect length or contain illegal characters. May be host
dependent.

17-lIIegal SVC function code. An SVC code has been
specified that does not exist or is not available to the user.

18-Channel already open. Self-explanatory.

19-Volume or disk not found. A file has been specified on
a volume that is not mounted on the host. Host-dependent
SVC error.

10-2

Error Messages-8540 System Users

1 B-Checksum error. A checksum error in a load file has
been detected by the LO or RH command.

1 C-Command area in use. Commands may not be
executed simultaneously.

1 D-File not found. An attempt has been made to open a
file for reading or writing, but the file either does not exist,
or exists in a protected directory. Host-dependent SVC
error.

1 E-Invalid parameter. OS/40 does not recognize one of
the parameters entered in a command line. Check the
required format and parameters in the Command
Dictionary.

1 F-No header on load file. An attempt has been made to
load a file that is not in load module format.

20-lnvalid input parameter. An invalid input parameter
has been entered. Refer to the Command Dictionary for the
correct syntax.

21-lnvalid output parameter. An invalid output para
meter has been entered. Refer to the Command Dictionary
for the correct syntax.

22-No transfer address. This status code is returned
when you use SVC 17 or 57 to load a program that does not
have a transfer address.

23-Command buffer overflow. The command line
entered (or the resulting line after all string and parameter
substitution) must be less than or equal to 80 characters.
including the carriage return.

24-Symbol table full. An attempt has been made to load
more symbols into the symbol table (with COM, SYMLO, or
ADDS) than allowed. The number of symbols possible is
about 1000, depending on symbol length. Use REMS to
remove symbols.

25-Data format error. The input data is not in the format
expected by the command.

26-No emulator in system. The emulator hardware is not
installed, or the emulator software is not SELected.

27-Numeric parameter out of range. Either the clock
count or the number of lines to be printed has been set to a
value that is outside the range 0-64K.

28-System interface error. Serious problems have been
detected in the host interface. Check your 8560 or host
cable connections and interface baud rate. If this problem
continues, contact your Tektronix service representative.

29-Seek error on file 1/0. Host-dependent file error.

REV JAN 1983

Error Messages-8540 System Users

2A-Parameter required. A command line has been
entered that requires another parameter. Check the
required parameters in the Command Dictionary.

28-Too many parameters. A command line has been
entered that contains more parameters than required.
Check the required format in the Command Dictionary.

2C-lnvalid address parameter. An address parameter
may contain numbers, register names, symbols, memory
space designators, don't-care values, and the operators +
and -. Refer to the Command Dictionary for more
information regarding valid address expressions.

2E-System must be idle to SELect. The system must not
have any active commands or programs. SEL destroys the
current program debugging status.

2F-Buffer overflow on HSI operation. This error
indicates serious hardware or software problems. The
8540 Installation Guide contains verification procedures.

30-lnvalid address range. An invalid address range has
been entered. The high address must be greater than or
equal to the low address.

32-Too many trace ranges. An attempt has been made to
set a fourth TRA command. Only three TRA commands may
be active at one time. Check the Command Dictionary for
correct parameters.

34-Command not active. An attempt has been made to
abort or suspend an inactive command.

35-Command not suspended. An attempt has been
made to continue a command that is executing or that has
finished executing.

37-lnvalid hexadecimal string. The commands EX, F, and
P accept a hexadecimal string. Refer to the Command
Dictionary for the requirements of a hexadecimal string.

38-Missing close quotation mark. A quoted string must
have opening and closing quotation marks.

39-No emulator selected. An attempt has been made to
execute an emulator.;.specific command before an emulator
has been selected.

3A-Bad acknowledge. The valid acknowledgments are
"0" (ASCII 30H) for ACK and "7" (ASCII 37H) for NAK.

38-Transfer aborted. A data transfer between the 8540
and the host was incomplete, so the transfer was aborted.
Check cable connections, and power switches and
connections. If the problem persists, run the system
verification described in the 8540 Installation Guide
and/or have a qualified service representative run
diagnosics on the systems communications hardware as
described in the 8540 Service Manual.

REV JAN 1983

3C-Memory write error. Data written to memory could
not be read back. The memory may be ROM, or there may
be no RAM for the addresses specified.

3E-lnvalid memory space designator. A memory space
designator (such as SC:) has been incorrectly entered.

3F-lIIegal use of don't-care expression. A don't-care
expression has been used where a unique value is
required.

40-Memory space designator illegal in expr. A memory
space designator has been used in a parameter that does
not allow memory space designators. For example, in a pair
of parameters that represent an address range, only the
first may contain a memory space designator.

41-Word not filled. The string entered with the F or P
command did not fill an even number of bytes.

42-lnvalid use of multiple memory spaces. Multiple
memory spaces can only be used with the commands listed
under MEMSP in the Command Dictionary.

43-No Trigger Trace Analyzer in system. The ITA
hardware has not been installed.

44-Emulator clock missing. Make sure the prototype
power switch is on and that the prototype clock is
functioning correctly.

45-Emulator faulted. The emulator is malfunctioning.
Error code 5F may also occur under this condition. Have a
qualified service representative check the hardware and
fuses, and clean the board contacts. Make sure that the
prototype power switch is on, that the prototype clock is
functioning properly, that the entered commands are valid,
and that the instructions being executed are legal.

46-0dd word address. An attempt has been made to
modify an area of memory that does not begin on a word
boundary.

47-Byte not filled. An uneven number of hexadecimal
digits has been entered in an attempt to modify memory
with the F or P command. You cannot modify a half byte.

48-Port has no carrier signal. No carrier signal has been
detected at the REMI/REMO port.

49-Port parity error. A parity error has been detected at
the REMI/REMO port.

4A-Port framing error. A framing error has been detected
at the REMI/REMO port. That is, the number of start, stop,
and data bits received was not what was expected. The
COM -M command can be used to set the desired framing.

48-AII job streams active. The system is busy.
Commands cannot be entered until one of the currently
executing commands is finished.

10-3

4C-lnvalid section name. The section does not exist, or
the section name contains an illegal character or is too
long.

4D-PROM power failure. The power to the PROM
Programmer has failed.

52-Command busy. An attempt was made to enter a
command again when it was already executing.

53-Symbol not found. An attempt has been made to
access a symbol that does not exist or has been entered
incorrectly. Valid symbols include register names and any
program symbols you have placed in the symbol table. Be
sure to include a leading zero on any hexadecimal number
that starts with a letter, and on any number that begins
with an X (don't-care).

54-Invalid symbol. An invalid character has been
detected in a symbol, or the symbol is too long.

55-Symbol value not alterable. The symbol to which you
are attempting to assign a value with the S command is not
alterable.

56-Truncation error. An attempt has been made to assign
too large a value to a symbol or register, or the hex string
specified in the F (Fill) command does not evenly fill the
specified memory area.

57-Invalid arithmetic operator. The only valid arithmetic
operators are + and - .

58-Invalid term in expression. An invalid character or
character string has been detected in an expression.

59-Overflow in expression. The resulting value of an
expression (or some intermediate value obtained in
evaluating it) is too large. Expressions are evaluated using
32-bit arithmetic.

5A-lnvalid dash modifier. Dash modifiers must be letters
only. Refer to the Command Dictionary for the dash
modifiers accepted by each command.

5C-Too many files open. No more than eight channels to
files can be simultaneously open by commands and user
programs. Enter the command A -A to close all channels.

5D-Bad character in number. The valid digits are 0-9,
A-F, and the standard suffixes: H (hexadecimal), T
(decimal), 0 or Q (octal), and Y (binary).

5F-Emulator halted. The emulator halted while a
program was executing. Error code 45 (Emulator faulted)
may also occur under this condition. Make sure that the
appropriate emulator board is installed and the instructions
entered are valid.

10-4

Error Messages-8S40 System Users

60-Emulator SVC synchronization error. A serious
emulator software error has been detected. Reboot and
reselect the emulator. If the problem persists, contact your
Tektronix service representative.

61-Disk protected against writing. A disk on the host is
write-protected. Host-dependent SVC error.

63-Disk not formatted. Host-dependent SVC error.

64-Disk CRC error. A bad block (parity error) has been
detected on a disk on the host. Host-dependent SVC error.

65-Disk full. There are no blocks available for allocation
on this host disk, or there are no free files. Host-dependent
SVC error.

66-System synchronization error. The 8540 and the
host have serious interface problems. Reboot your system
and try again. Contact your Tektronix service representative
if problems continue.

67-Exclusive access conflict. An attempt has been made
to open a host file or device that is already being used
exclusively by another process. Host-dependent SVC error.

69-Too many channels open. Serious hardware and/or
software problems have been detected. Reboot your
system and try again. Contact your Tektronix service
representative if problems continue.

6A-Disk structure corrupt. Serious problems have been
detected in the file structure of your host's disk. Host
dependent SVC error.

6B-Current user is not file owner. An attempt has been
made to access a file on the host to which you do not have
access privileges. Host-dependent SVC error.

6E-Directory alteration invalid. An attempt has been
made to create, delete, or rename a file on the host in a
directory to which you do not have write access, or to create
a duplicate name within a directory. Host-dependent SVC
error.

6F-lnvalid file linkage attempt. Host-dependent SVC
error.

70-File full. The file structure of a volume on the host is
full. Host-dependent SVC error.

71-String already exists. Using the PERMSTR command,
an attempt has been made to store a permanent string in
EEPROM when a string by that name is already stored.

74-Program memory jumpered incorrectly. Using the
68000 or Z8001, the SELect command cannot set up the
MAC board properly since program memory has been
strapped so that addresses do not have a unique location.

@

Error Messages-8540 System Users

76-ASCII read to CONI terminated by CTRL-C. CTRL-C
was typed while OS/40 was performing a read operation.
The data read is not valid.

77-Emulator SVC request outstanding. A prior SVC is
still in progress. Your current request will be filled when
the first SVC has finished.

78-No more program memory available. An attempt has
been made to Allocate program memory when there is
none available. Use DEAL to deallocate memory.

79-Program memory address not allocated. In order for
you to access the specified address range, memory must be
allocated to it using the AL command.

7 A-Program memory address already allocated. An
attempt has been made to Allocate an address that has
already been allocated.

7B-String not found. OS/40 does not recognize the
string name entered. Check that you have spelled the name
correctly. Use the STR -L command to list temporary
strings and/or the PERMSTR -L command to list
permanent strings.

7C-String area full. The capacity of either the temporary
or the permanent string area has been exceeded. Use the
STR or the PERMSTR command to delete unused strings.

7D-System memory parity error. Reboot the system. If
the problem persists, contact your Tektronix service
representative.

7E-Error in command execution. A command has been
executed that detected errors but continued.

80-PROM type not supported. The characteristic
module currently installed does not support the PROM type
entered.

81-Maximum PROM address exceeded. The address
given is negative, or exceeds the maximum for the PROM
type.

82-PROM Programmer PTYPE data error. System error.
The PROM type specified in a RPR, WPR, or CPR command
is not supported by the characteristic module currently
installed.

83-Modifier required. The command entered needs a
dash modifier.

84-PROM Programmer hardware I/O error. System
hardware error. Contact your Tektronix service representa
tive if the error persists.

@

85-Allocation hardware disabled. Program memory
allocation hardware error. Contact your Tektronix service
representative if the problem continues.

87-lnvalid trigger number. There are four ITA triggers,
numbered 1-4.

88-Signals cannot occur simultaneously. Using either
the ITA, or a Z8001 /Z8002, 8086, or 68000 emulator, an
attempt has been made to set an event or breakpoint on bus
signals that are mutually exclusive (such as a read and a
write on the same line).

8A-lnvalid event linkage (wraparound). Using CONS, an
attempt has been made to completely link together all
events. Thus, no trigger can occur.

8B-Restart requires gate option. In the COU command,
the restart option must be used in conjunction with a gate
option.

8C-Restart/ gate not available on trigger 1 . The trigger 1
hardware has no prior trigger channel from which to gate.

8D-No section contains specified address. The ADDS
command requires that any address you add be contained
within a previously defined program section. Use the COM
or SYMLO command to download the section definition
information into the symbol table from your load file.

8E-Segmentation trap pending. Either your program or a
system program has attempted to access memory which is
invalid according to the Z8000 Memory Management Unit.
Refer to the Z8001 /Z8002 Emulator Specifics supplement
for further information.

8F-User memory declared non-existent. An attempt has
been made to access memory which was declared non
existent with the NOM EM command. Check memory
declarations with the MEM or NOMEM command. If the
problem persists after checking your program, check your
MAC board.

90-lnvalid arming mode. The -A arming modifier needs
two programmed breakpoints, but only one is currently
programmed. This error occurs only when using an
emulator such as the Z8001 /Z8002, 8086, or 68000.

91-lnvalid initial value for counter. Zero is an invalid
initial value for decrementing counter modes.

92-No such label or scalar. An attempt has been made to
remove a symbol which is non-existent or is a section
name.

10-5

93-lnvalid symbol specification. In a symbol specifica
tion of the form section:label, either the section name is too
long, the label name is too long, or the specification
contains an illegal character.

94-No prototype control probe attached. An attempt
was made to change from emulation mode Oto mode 1 or 2,
but the prototype control probe is not connected to the
emulator and the prototype. This error occurs only when
using the 8086 emulator.

95-Prototype not ready. When the emulating micro
processor attempted to access prototype memory, the
prototype held the READY line "not ready" for too many
wait states. Check the prototype. This error occurs only
when using the 8086 emulator. The number of wait states
allowed is jumper-selected.

96-Prototype bus hang. The prototype has held the bus
for an inordinate length of time. This is considered a
"hung" condition; detection of this condition is jumper
selectable. The timeout is on the order of one-half second.
You may hold the bus for any length of time if the jumper is
not used. Check the prototype. This error occurs only when
using the 8086 emulator.

D4-lnternal parse error. Serious software errors have
been detected. Contact your Tektronix service representa
tive if this problem continues.

10-6

Error Messages-8540 System Users

D7-lnternal term error. Serious software errors have
been detected. Contact your Tektronix service representa
tive if this problem continues.

E1-Emulator double fault or odd stack pointer. On the
68000, the emulator has halted during a user job. Possible
causes are a double address or bus error, or an odd system
stack pointer. Reset the registers and check the program
and prototype.

E2-Processor registers changed. Following a 68000
processor halt, the emulator had to reset the PC, SSP, and
SR registers before all the registers were saved.

E4-Emulator system error. Unknown emulator error.
Reboot and reselect. Contact your Tektronix service
representative if this problem continues.

E6-No MAC board in system. No Memory Allocation
Controller board has been installed.

E7-System error on MAC board. Unknown system error.
Reboot and reselect. If the problem persists, contact your
Tektronix service representative.

FE-Process aborted. This message is returned when the
A command is used.

FF-End of file. Returned on a Read SVC if the file was at
end of file before the read occurred. May be host
dependent.

@

8540 System Users

Section 11
TABLES

Page

Conversion Tables .. , 11-1

Tektronix Hexadecimal Format (Tekhex) ... 11-4

Sta ndard T ekhex Format ... , 11-4
Extended Tekhex Format ... , 11-6

Motorola Load Module Format .. , 11-8

Intel Load Module Format .. 11-10

Table
No.

11 -1
11-2
11 -3
11-4
11 -5
11-6
11-7
11-8
11-9
11-10
11 -11
11-12
11 -1 3
11-14
11 -1 5

Tables

ASCII-Binary-Hexadecimal-Decimal Conversion .. , 11-1
Hexadecimal Multiplication ... 11-2
Decimal-Hexadecimal-Binary Equivalents .. 11-3
Standard Tekhex Data Block Format ... 11-4
Standard Tekhex Termination Block Format ... , 11-5
Standard Tekhex Abort Block Format .. 11-5
Extended Tekhex Header Field .. 11-6
Character Values for Checksum Computation .. 11-6
Extended Tekhex Data Block Format ... 11-6
Extended Tekhex Termination Block Format ... , 11-7
Extended Tekhex Symbol Block Format .. 11-7
Extended Tekhex Symbol Block: Section Definition Field .. , 11-7
Extended Tekhex Symbol Block: Symbol Definition Field ... 11-7
Motorola Load Module Format .. 11-8
Intel Load Module Format ' ... 11-10

11-i

8540 System Users

B

T
s

Section 11

TABLES

CONVERSION TABLES

Table 11-1
ASCII-Binary-Hexadecimal-Decimal Conversion

81 11 11 " " 86 " 11 1 1 e II
85 11 1

" 1
e

82 8'
CONTROL SYMBOLS UPPE RCASE

"
LOWE RCASE

o • 10 ,. 20 32 30 41 40 104 50 If 60 .. 70 112

" " II NUL OLE SP S @ P p

, 11 11 21 33 31 .. 41 15 51 " 61 '7 71 113

fI 11 II 1 SOH OC1 A Q a q

II 52 12 62 .. 72

" "
1 I" 2 STX 2 I L OC2 11 22

$0 42

B R b
,,.

3 3 13 19 23 35 33 5' 43 ,,53 13 63 "73 115

" II 1 1 ETX OC3 # 3 C S C 5

11 "I" 4 EOT • 14~C4 2. 24 $
31 34

4
52 44

o
II 54

T
104 64

d
'. 74 '"

5 15 2' 25 31 35 53 45 n 55 15 65 ,., 75

" 1 " 1 ENQ NAK % 5 E U e u

6 6 1 6 22 26 31 36 5. 46 7' 56 .. 66 "2 6 7 111

11 1 1 e ACK SYN & 6 F V f y

7 17 23 27 39 37 55 47 71 57 17 67 "3 77 119

II 1 1 1 BEL ETB 7 G w 9 w
8ELl

8 8 18 2. 28 .0 38 ,6 48 12 58 II 68 '14 78 '2'
1 II e s BS CAN 8 H x h x

BACK SPACE

9 9 19 25 29 ., 39 51 49 1) 59 19 69 "5 79 '2'
1 II II 1 HT EM 9 y y

A " 1A 26 2A .2 3A 51 4A ,. 5A 91 6A '16 lA '22

1 e 1 II LF SUB * J z z

8 11 18 21 28 .) 38 59 48 15 58 9' 68 ,,, 78 '2)

VT ESC + K [k {

c 12 1 (28 2(.. 3(60 4C 92 fir: 'IS 7(:

B FF FS < L

1
1 I 1 e

I

05 3D 6' ~D

M
" 5D 9) fiD "9 lD

m
'25

}
D 1) 11 D 29 2D

CR I GS -
RETURN

,. 1E JI 2 r <6 3f 62 4F
"' 7f

1 1 1 e SO RS > N n

'5 1 F)' 2F 01 3F 63 4F 19 SF 9S fiF 1" IF 1]7

SI US ? o o DEL

Example: ASCII Binary
011 1100

Hexadecimal
3C

Decimal
60 <

11-1

Conversion Tabies

1 2 3
1 1 2 3
2 2 4 6
3 3 6 9
4 4 8 C
5 5 A F
6 6 C 12
7 7 E 15
8 8 10 18
9 9 12 18 ..
A A 14 1E
8 8 16 21
C C 18 24
0 0 1A 27
E E 1C 2A
F F 1E 20

Example

I HEX 9x8 48

. HEX 40 = 64
HEX 8 = 8
HEX 48 = 72

11-2

Table 11-2
Hexadecimal Multiplication

4 5 6 7 8 9 A
4 5 6 7 8 9 A
8 A C E 10: 12 14
C F 12 15 t8 18 1E
10 14 18 1C aQ 24 28
14 19 1E 23 28 20 32
18 1E 24 2A 30 36 3C
1C 23 2A 31 38 3F 46
20 28 30 38 ·40 48 50
24 2tL .~ .. ,~r .. · 48J 51 SA
28 32 3C 46 50 SA 64
2C 37 42 40 58 63 6E
30 3C 48 54 60 6C 78
34 41 4E 58 68 75 82
38 46 54 62 70 7E 8C
3C 48 SA 69 78 87 96

HEX

DEC

DEC
DEC

Tabies-8540 System Users

8 C 0 E F
8 C 0 E F
16 18 1A 1C 1E
21 24 27 2A 20
2C 30 34 38 3C
37 3C 41 46 48
42 48 4E 54 SA
40 54 58 62 69
58 60 68 70 78
63 6C 75 7E 87
6E 78 82 8C 96
79 84 8F 9A AS
84 90 9C A8 84
8F 9C A9 86 C3
9A A8 86 C4 02
AS 84 C3 02 E1

(ev

Tables-8540 System Users

Hexa- Binary
Oeci- deci- 8-bit
mal mal Code

a 00 0000 0000
1 01 0000 0001
2 02 0000 0010
3 03 0000 0011
4 04 0000 0100
5 as 0000 0101
6 06 0000 0110
7 07 0000 0111
8 08 0000 1000
9 09 0000 1001
10 OA 0000 1010
11 OB 0000 1011
12 OC 0000 1100
13 00 0000 1101
14 OE 0000 1110
15 OF 0000 1111
16 10 0001 0000
17 11 0001 0001
18 12 0001 0010
19 13 0001 0011
20 14 0001 0100
21 15 0001 0101
22

I
16 10001 0110

23 17 00010111
24 18 0001 1000
25 19 0001 1001
26 lA 0001 1010
27 lB 0001 1011
28 lC 0001 1100
29 10 0001 1101
30 lE 0001 1110
31 IF 0001 1111
32 20 0010 0000
33 21 0010 0001
34 22 0010 0010
35 23 0010 0011
36 24 0010 0100
37 25 0010 0101
38 26 0010 0110
39 27 0010 0111
40 28 0010 1000
41 29 0010 1001
42 2A 0010 1010
43 2B 0010 1011
44 2C 0010 1100
45 20 0010 1101
46 2E 0010 1110
47 2F 0010 1111
48 30 0011 0000
49 31 0011 0001
50 32 0011 0010
51 33 0011 0011
52 34 0011 0100
53 35 0011 0101
54 36 0011 0110
55 37 0011 0111
56 38 0011 1000
57 39 0011 1001
58 3A 0011 1010
59 3B 0011 1011
60 3C 0011 1100
61 3D 0011 1101
62 3E 0011 1110
63 3F 0011 1111

Table 11-3
Decimal-Hexadecimal-Binary Equivalents

Hexa- Binary Hexa- Binary
Oeci- deci- 8-bit Oeci- deci- 8-bit
mal mal Code mal mal Code

64 40 0100 0000 128 80 1000 0000
65 41 0100 0001 129 81 1000 0001
66 42 0100 0010 130 82 1000 0010
67 43 0100 0011 131 83 1000 0011
68 44 0100 0100 132 84 1000 0100
69 45 0100 0101 133 85 1000 0101
70 46 0100 0110 134 86 1000 0110
71 47 0100 0111 135 87 1000 0111
72 48 0100 1000 136 88 1000 1000
73 49 0100 1001 137 89 1000 1001
74 4A 0100 1010 138 8A 1000 1010
75 4B 01001011 139 8B 1000 1011
76 4C 0100 1100 140 8C 1000 1100
77 40 01001101 141 80 1000 1101
78 4E 0100 1110 142 8E 1000 1110
79 4F 0100 1111 143 8F 10001111
80 50 0101 0000 144 90 1001 0000
81 51 0101 0001 145 91 1001 0001
82 52 0101 0010 146 92 1001 0010
83 53 0101 0011 147 93 1001 0011
84 54 0101 0100 148 94 1001 0100
85 55 0101 0101 149 95 1001 0101
86 56 10101 0110 150 96 11001 0110
87 57 0101 0111 151 97 11001 0111
88 58 0101 1000 152 98 1001 1000
89 59 0101 1001 153 99 11001 1001
90 SA 0101 1010 154 9A 1001 1010
91 5B 0101 1011 155 9B 1001 1011
92 5C 0101 1100 156 9C 1001 1100
93 50 0101 1101 157 90 1001 1101
94 5E 10101 1110 158 9E 1001 1110
95 SF 10101 1111 159 9F 1001 1111
96 60 I 0110 0000 160 AO 1010 0000
97 61 0110 0001 161 Al 1010 0001
98 62 0110 0010 162 A2 1010 0010
99 63 0110 0011 163 A3 1010 0011
100 64 0110 0100 164 A4 1010 0100
101 65 0110 0101 165 AS 1010 0101
102 66 0110 0110 166 A6 1010 0110
103 67 0110 0111 167 A7 1010 0111
104 68 0110 1000 168 A8 1010 1000
lQ5 69 0110 1001 169 A9 1010 1001
106 6A 0110 1010 170 AA 1010 1010
107 6B 0110 1011 171 AB 1010 1011
108 6C 0110 1100 172 AC 1010 1100
109 60 0110 1101 173 AD 1010 1101
110 6E 0110 1110 174 AE 1010 1110
111 6F 0110 1111 175 AF 1010 1111
112 70 0111 0000 176 BO 1011 0000
113 71 0111 0001 177 Bl 1011 0001
114 72 0111 0010 178 B2 1011 0010
115 73 0111 0011 179 B3 1011 0011
116 74 0111 0100 180 B4 1011 0100
117 75 0111 0101 181 B5 1011 0101
118 76 0111 0110 182 B6 10110110
119 77 0111 0111 183 B7 10110111
120 78 01111000 184 B8 1011 1000
121 79 0111 1001 185 B9 1011 1001
122 7A 0111 1010 186 BA 1011 1010
123 7B 0111 1011 187 BB 1011 1011
124 7C I 0111 1100 188 BC 1011 1100
125 70 10111 1101 189 BO 1011 1101
126 7E 0111 1110 190 BE 1011 1110
127 7F 0111 1111 191 BF 1011 1111

Conversion Tables

Hexa- Binary
Oeci- deci- 8-bit
mal mal Code

192 CO 1100 0000
193 Cl 1100 0001
194 C2 1100 0010
195 C3 1100 0011
196 C4 1100 0100
197 C5 1100 0101
198 C6 1100 0110
199 C7 1100 0111
200 C8 1100 1000
201 C9 1100 1001
202 CA 1100 1010
203 CB 1100 1011
204 CC 1100 1100
205 CO 11001101
206 CE 1100 1110
207 CF 1100 1111
208 DO 1101 0000
209 01 1101 0001
210 02 11010010
211 03 1101 0011
212 04 1101 0100
213 05 1101 0101
214 06 11101 0110
215 07 1101 0111
216 08 1101 1000
217 09 1101 1001
218 OA 1101 1010
219 DB 1101 1011
220 DC 1101 1100
221 DO 1101 1101
222 DE 1101 1110
223 OF 1101 1111
224 EO 1110 0000
225 El 1110 0001
226 E2 1110 0010
227 E3 1110 0011
228 E4 1110 0100
229 E5 1110 0101
230 E6 1110 0110
231 E7 1110 0111
232 E8 1110 1000
233 E9 1110 1001
234 EA 1110 1010
235 EB 1110 1011
236 EC 1110 1100
237 ED 1110 1101
238 EE 1110 1110
239 EF 1110 1111
240 Fa 11110000
241 Fl 1111 0001
242 F2 1111 0010
243 F3 1111 0011
244 F4 1111 0100
245 F5 1111 0101
246 F6 11110110
247 F7 11110111
248 F8 1111 1000
249 F9 1111 1001
250 FA 1111 1010
251 FB 1111 1011
252 FC 1111 1100
253 FO 1111 1101
254 FE 1111 1110
255 FF 1111 1111

11-3

Standard Tekhex

TEKTRONIX HEXADECIMAL
FORMAT (TEKHEX)

Standard Tekhex Format
Table 11-4

Standard Tekhex Data Block Format

Number of
ASCII

Field Characters Description

/ 1 The slash specifies that the block is in Standard Tekhex format.

Tables-8540 System User~

I __ ,J
/I The address INhere the object code is to be loaded (high-byte, low-byte format). Luau

Address

Byte Count 2 Number of data bytes in the data field of the block.

First 2 The sum, mod 256, of the six hex digits of the load address and byte count.
Checksum

Data 2n (2 to 60) n data bytes, each represented as two hex digits. Maximum of 30 data bytes.

Second 2 Sum, mod 256, of the 2n hex digits of the data field.
Checksum

Here is an example of a Standard Tekhex data block:

11-4

+- - Load address
+--First checksum

v

I +--Second checksum
I

v v

IOl0006070202020202020C

+--Data

+--Byte count

+--Header

Tables-8540 System Users

Table 11-5
Standard Tekhex Termination Block Format

Number of
ASCII

Field Characters Description

/ 1 The slash specifies that the
block is in Standard Tekhex
format.

Transfer 4 Starting execution address
Address (high-byte, low-byte format)

of the code transmiued in the
data blocks.

Byte 2 Always 00 in a termination
block

Checksum 2 Sum, mod 256, of the six hex
digits of the transfer address
and byte count.

Here is an example of a Standard Tekhex termination block:

+--Transfer address
i +--Checksum
I I
I I
V V

/10000001

1\ 1\

I I
I

+--Byte count
+--Header

Here is an example of a Standard Tekhex abort block:

Header
I

Message
I

V V

//5 CONSECUTIVE FAILURES. TRANSMISSION ABORTED

@

Standard Tekhex

Table 11-6
Standard Tekhex Abort Block Format

Number of
ASCII

Field Characters Description

/ 1 The slash specifies that the
block is in Standard Tekhex
format.

/ 1 Another slash to identify the
abort block.

Message 1 to 69 A message to be displayed
when the transfer is aborted.

11-5

Extended Tekhex

Extended Tekhex Format
Each Extended Tekhex block begins with a six-character
header field.

Extended Tekhex has no specially defined abort block. To
abort a formatted transfer, use a Standard Tekhex abort
block.

Table 11-7
Extended Tekhex Header Field

Number of I
_. ASCII I

==it=e=m===!==(;=h=a=racte4 Descriptio~

% 1 i A percent sign specifies that

Block
Length

I
-t-

Block Type I

i
-------.--t
Checksum

I

~

2

2

'I 'the block is in Extended
Tekhex format.

I
I The number of characters in
I the block: a two-digit hex
! number. This count does not

I

I include the leading % or the
, end-of-line.

--t
I 6 = data block
! 3 = symbol block
18 = termination block

'--1'-'-- ---- _.-... -- ----------.----
A two-dIgIt hex number repre
senting the sum, mod 256, of
the values of a" the charac
ters in the block, except the
leading %, the checksum
digits, and the end-of-line.
Table 11-8 gives the values
for all characters that may
appear in Extended Tekhex
message blocks.

---------_._.- -- -- -----

Here is an example of an Extended Tekhex data block:

+------------ Block length: 15H = 21

Tab!es ---8540 System Users

Table 11-8
Character Values for Checksum Computation

Characters Values (Decimal)

0 .. 9
A..Z

$

%
(period)

_ (underscore)
a .. z

0 .. 9
10 .. 35
36
37
38
39
40 .. 65

--------------+------------

Field

Header

Table 11-9
Extended Tekhex Data Block Format

Number of
ASCII

Characters Description

6 Standard header field. Block
type = 6.

Load 2 to 17 The address where the object
. code is to be loaded: a
variable-length number.

Address

n bytes, each represented as
two hex digits.

Obiectj-- 2n

---~-------------

+--------- Checksum: 1 CH = 28 = 1 +5+6+3+1 +0+0+0+2+0+2+ ...

+-- Object code: 6 bytes

I %1561C3100020202020202

+-- Load address: 100H

+------ Block type: 6

+--------- Header character

11-6

Tables-8540 System Users

Table 11-10
Extended Tekhex Termination Block Format

---~-- .. - .. - .. -.-.-.- ... - _._ .•. _._• _-----------

Field

Header

Number of
ASCII

Characters Description

6 Standard header field. Block
type = 8.

---.--I--------~-------------

Transfer
Address

2 to 17 The address where program
execution is to begin: a
variable-length number.

I

Table 11-11
Extended Tekhex Symbol Block Formata

Number of
ASCII

characters Description
----.. -.-.... _-_._----_. =-====================

6 Standard header field. Block
tvnp = ~

-2 to ;;-'--1;;: na~e of the sectio~ that
contains the symbols defined
in this block: a variable

I length symbol.

-. -5 to 3~· -lThiS field must be present in
exactly one symbol block for
each section. This field may
be preceded or followed by
any number of symbol defini
tion fields. Table 11-12 gives
the format for this field.

-.----~.-.. +-----

Symbol
Defini
tion(s)

5 to 35 each Zero or more symbol defini
tion fields, as described in
Table 11-13 ..

a For an example of Extended Tekhex symbol block format,
refer to Section 4 of this manual, Intersystem
Communication.

Here is an example of an Extended Tekhex termination
block:

+------ Block length: 8

+--- Checksum: 1 AH = 26 = 0+8+8+2+8+0

%0881A280

+--- Transfer address: 80H

+------- Block type: 8

+---------- Header character

@

Item

0

Base
Address

Length

Item

Type

Symbol

Value

Extended Tekhex

Table 11-12
Extended Tekhex Symbol Block:

Section Definition Field

Number of
ASCII

Characters Description

1 A zero signals a section
definition field.

2 to 17 The starting address of the
. section: a variable-length

number.

2 to 17 The length of the section: a
variable-length number, com-
puted as 1 + (high address -
base address).

Table 11-13
Extended Tekhex Symbol Block:

Symbol Definition Field

Number of
ASCII

Characters Description

1 A hex digit that indicates the
global/local designation of
the symbol, and the type of
value the symbol represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address
6 = local scalar
7 = local code address
8 = local data address

2 to 17 A variable-length symbol.

2 to 17 The value associated with the
symbol: a variable-length
number.

11-7

MotoiVla Load Module Format

General Format

Start of

Record

Name

Start of Record

Type of Record

Byte Count

i Address
I

: Data

Checksum

11-8

Tab~es-8540 Sy'stem Users

MOTOROLA LOAD MODULE
FORMAT

Type of

Record

Byte

Count Address

Table 11-14
Motorola Load Module Format

Data Checksum

No. of ASCII
Characters

1

1

I
2 I

4

2"N

2

Content Description

Always an'S'.

o = header record
1 = data record
9 = end of fi Ie record

A two-digit hexadecimal number representing the
number of data bytes In the block plus three.

Four hexadecimal digits representing the address
of the memory location where this record is stored.

N data bytes, each represented as two hexadecimal '
digits.

Two-digit hexadecimal number representing the
one's complement of the sum, modulo 100H, of the
data bytes, address, and byte count

Tables-8540 System Users Motorola Load Module Format

Example

@

S 0 F a a 4 a a 9 a a a 1 a a a 5 a a a a a E a a a a OF 1 A 6A

LAddress
'---- Byte Count

~-- Type of Record

'---- Start of Record

Data-=r

Type of Record 1. Specifies the data record.

Checksum

Byte Count OF. indicates that there are OF pairs of hexadecimal digits in the block following
the byte count.

Address 0040. Specifies that the first data byte (09) is stored at address 0040. The next bytes
(00,01,00, ...) are stored at the next contiguous memory locations (0041, 0042, etc.).

Data Bytes. Pairs of hexadecimal digits representing data bytes stored on the record.

Checksum GA. The one's complement of the number 95, the sum of the data bytes, address,
and byte count:

OF+00+40+09+00+01 +00+05+00+00+0E+00+00+OF+1 A = 95H

11-9

Intel Load Module Format Tables-8540 System Users

INTEL LOAD MODULE FORMAT

General Format

Header Record Starting Type of

Character Length Address Record Data Checksum

Table 11-15
Intel Load Module Format

No. of ASCII
Name Characters Content Description

Header Character 1 Always a colon.

Record Length 2 Two-digit hexadecimal value representing the
I number of data bytes. A record length of 0 indicates

I the last record of a file

Starting Address I 4 Four hexadecimal digits representing the program

I I memory address of the first data byte in the record.

I Type of Record ! 2 00 = normal data record. I 1

I I 01 = last record of a file. J
Data 2*N N data bytes, each represented as two hexadecimal

digits.

Checksum 2 Two-digit hexadecimal number representing the
two's complement of the sum, modulo 100H, of the
preceding data bytes, record type, address, and
record length.

11-10

Tables-8540 System Users Intel load Module Format

Example

@

09 0 0 0 4 0 0 01 00 00 05 06 00 00 AE OF 2A ,

Data

~--Type

~-- Starting Address
1..-__ Record Length

1..-__ Header

T Checksum

Record Length 09. Indicates that there are nine data bytes in the record.

Starting Address 0004. Specifies that the first data byte (01) is stored at program memory
address 0004. The next bytes (00,00,05 ...) are stored at the next contiguous memory
locations (0005, 0006, etc.).

Type of Record 00. Indicates a norma! data record.

Data Bytes. Pairs of hexadecimal digits representing data bytes stored on the record.

Checksum 2A. The two's complement of 06, the sum of the data bytes, record type, address,
and record length.

09+00+04+00+01 +00+00+05+06+00+00+AE+OF = 06

11-11

8540 System Users

Section 12

GLOSSARY

Acquisition Memory. The buffer in the ITA that holds the
255 bus transactions most recently captured during
program execution. This buffer stores up to 62 bits of
information from each bus transaction.

Address. A number or symbol that specifies a byte in
memory.

Assembler. A host system program that translates
assembly language programs into machine language.

Assembly Language. A microprocessor-specific pro
gramming language that allows the symbolic representa
tion of any microprocessor operation. Each operation is
coded as one assembly language statement.

Assign. To associate a channel with a device or host file.

Break. A suspension of program execution by OS/40,
accompanied by a display of the status of the emulator. A
break may be set using an OS/40 BK command or one of
several ITA commands. A break may also result from a
special action, such as attempting to write to protected
memory or typing CTRL-C.

Breakpoint. A program instruction at which a break is set.
You can set breakpoints by using the ITA or the OS/40 BK
(Breakpoint) command. The TRA -S command causes a
break to occur each time a trace line is displayed.

Buffer. An area of memory where a block of data may be
stored.

Bus Operation. A transfer of information between a
microprocessor and a memory or 1/0 device. The four basic
types of bus operations are memory read, memory write,
1/0 read, and 1/0 write. Some emulators recognize other
types of bus operations.

Channel. The logical link between a device or host file and
the operating system. Channels are numbered 0-9.
Channels 0-7 are user-defined; channels 8 and 9 are
assigned to standard input and standard output, respec
tively. The AS (Assign) command assigns a channel for use
by a device or host file.

Characteristic Module. A circuit card that configures the
PROM Programmer for a particular set of PROM devices.

Checksum. A value obtained by summing together data
bytes as ihey are received. if the checksum calculated by
the receiving device differs from the checksum transmitted
with the data, the data may have been transferred
incorrectly.

COM Interface. A communications interface between an
8540 and a host computer, established via the OS/40 COM
command. Object code can be transferred between the
host and the 8540, and host commands are executed from
the 8540 system terminal as if the 8540 were not present.

Close. To disassociate a channel from a device or host file.

Control Character. A character whose ASCII code is in the
range 00 to 1 F hexadecimal. RUBOUT (ASCII code 7F) is
also a control character. Some control characters are
entered using special keys, such as TAB or RETURN.
Others are entered by pressing the CTRL key and some
other key at the same time.

Counter. See General Purpose Counter.

Device. An instrument attached to the 8540 that is used for
1/0. See the Learning Guide section of this manual for a
table of standard device names used by OS/40.

Disassemble. To translate machine language back into
assembly language mnemonics. The DI command performs
disassembly.

Download. To transfer data from a host to the 8540.

Editor. A host system program that allows you to create
and modify text files conveniently.

EEPROM. Electronically erasable PROMs. EEPROMS on
the 8540 contain user-defined strings saved with the
PERMSTR command, and system patch information
created by the ROMPATCH command.

Emulating Microprocessor. The microprocessor on which
your program executes during emulation. The emulating
microprocessor resides on the emulator board or in the
prototype control probe, and is usually the same type of
microprocessor as the one being emulated.

12-1

Emulation. Performing the functions of a microprocessor,
at or near the microprocessor's execution speed, with
controllable hardware that facilitates debugging and
testing of the microprocessor software in the prototype
hardware. Emulation features of the 8540 include
breakpoints, tracing, and event timing.

Emulation Mode. An 8540 operating mode in which the
8540 can provide some of the hardware functions needed
by the microprocessor-based program. The hardware
functions that can be provided are memory, a clock, and I/O
facilities. The three modes are:

• Mode 0: System mode. Your program uses program
memory and the emulator clock and uses SVCs for I/O.
Until the prototype is built and connected to the
emulator hardware, the program may execute only in
mode O.

• Mode 1: Partial emulation mode. Your program uses the
prototype's clock and may access both program and
prototype memory: the memory map determines
whether a particular address refers to program or
prototype memory. Some emulators may also use SVCs.

• Mode 2: Full emulation mode. Your program uses the
prototype's memory, clock, and I/O facilities. Some
emulators may also use SVCs.

Emulator (or Emulator Processor). A circuit board in the
8540 that emulates the microprocessor that will drive your
prototype hardware. You may use the emulation and
debugging features of the emulator to test the software
that will run on the prototype and to integrate the software
and hardware components of the prototype.

Event. The simultaneous occurrence of one or more
specified conditions that can be detected by the ITA. An
event is defined in terms of values on the address bus, data
bus, and certain other lines connected to the emulating
microprocessor or prototype.

Expression. A formula that contains numbers, register
names, or user-defined symbols related by operators.
Evaluation of the expression yields an integer value. Many
OS/40 command parameters may be entered as
expressions. Refer to the Command Dictionary for more
information on expressions.

Extended Tekhex. See Tekhex.

File Pointer. A !ogica! position in a file, maintained by
OS/40 for use in processing SVCs. All reads from the file
and writes to the file are performed beginning at the
current file pointer. The file pointer is updated to the end of
the data item read or written. The file pointer may also be
moved using Seek SVCs. An independent file pointer is
maintained for each channel.

12-2

Giossary-8540 System Users

Filespec. A string of characters that specifies a file on the
host computer. The term "filespec" in a Command
Dictionary syntax block may also refer to a standard device
name such as CONI or REMO.

Full Emulation Mode. See Emulation Mode.

General Purpose Counter. One of four registers in the ITA
that increments or decrements while the emulator is
running. You may use these counters to measure the
execution time of a program segment, to measure the time
between two specified events, or to count the occurences
of an event.

Hlgn-Level Language. A language such as MDL/Ji or
Pascal that reflects algorithms more easily than assembly
language. A program written in a high level language is
essentially processor independent, relying on a processor
specific compiler or interpreter to convert the program into
object code.

Host. A separate computer system that is used to prepare
and maintain programs that are tested and debugged on
the 8540.

Instruction. A machine instruction is a sequence of bytes
that directs a microprocessor to perform an elementary
operation such as load, store, add, or branch. An assembly
language instruction is an alphanumeric representation of
a machine instruction. The assembler translates an
assembly language instruction into the corresponding
machine instruction.

Instruction Fetch. A bus operation during which the first
byte of the next instruction to be executed appears on the
data bus.

Interrupt. A suspension of normal processing to handle a
special request. In general, when a microprocessor is
interrupted by a peripheral device, the microprocessor
finishes the instruction it is executing, then jumps to the
routine that services the indicated peripheral, and finally
returns to the stream of instructions it was executing
before the interrupt occurred.

Intersystem Communication. A process by which the
8540 exchanges information with another computer
system, via cable or phone line.

K. 1024 bytes (400 hexadecimal).

Label. A symbol that represents an address, variable, or
constant in an assembly language program.

linker. A host system program that combines object
modules into a single executable load module.

(a:

Glossary-8540 System Users

Load Module. A collection of executable object code
suitable for loading into program memory. A load module
may be in binary format, as produced by a linkerortheSAV
command, or it may be in a hexadecimal format. Refer to
the Tables section of this manual for information on
hexadecimal formats recognized by OS/40.

LOCAL Mode. Stand-alone mode for an 8540, in which
each command entered is interpreted by the 8540 itself.
See also TERM Interface.

MAC. See Memory A"ocation Controller.

Machine Language. The binary language of a micro
processor. A high-level or assembly language program
must be translated to machine instructions before the
microprocessor can execute the program.

Memory Allocation Controller. A hardware option that
permits the expanded addressing capabilities of emulators
such as the Z8001 /Z8002 and 68000 to operate within the
confines of 8540 program memory. For such emulators,
you must have the MAC option installed in order to use the
DEAL (DEAllocate), MEM (MEMory), and NOMEM
(NOM EMory) commands.

Memory Map. An internal table maintained by OS/40that
indicates which portions of memory used by the emulator
are in program memory and which are in prototype
memory. The memory map also indicates which parts of
program memory are protected from write operations
during program execution. Memory may be mapped in
blocks as small as 128 bytes. Use the MAP command to
change or display the memory map.

Mnemonic. A symbol that represents a machine
instruction. Usually the symbol is an abbreviation that
suggests the machine operation to b~ performed. For
example, the 8085A mnemonic MOV represents a
machine instruction that moves a value into a register.

Module. A program unit that is complete for purposes of
compiling, assembling, linking, or loading. It may be
combined with other modules to produce a complete
program. See also Load Module; Object Cod.e; Source
Code.

Object Code. Machine language produced by an
assembler or compiler from source statements. An object
module contains one or more sections of object code, plus
special information used by the linker, library generator, or
LO command. Each time the assembler executes, it
produces one object module. An object file is a file that
contains an object module.

Operand. A number on which an operation is performed.
The expression X+3 represents an add operation on the
operands X and 3. The assembly language statement LDA
NUM1 performs a load operation on the byte addressed by
the operand NUM1.

@

Operator. A character or sequence of characters that
represents an operation to be performed on one or more
operands. The only operators allowed in OS/40 command
lines are + and -.

05/40. The ROM-based Operating System of the 8540
Integration Unit.

Partial Emulation Mode. See Emulation Mode.

Patch. To alter a program by changing the executable
object code rather than the source code.

Program Clock. A counter in the 8540 that increments
every 100 milliseconds while the emulator is running. You
may use the CLOCK command to initialize or display the
value in the program clock. This value is also accessible
through the "Read Program Clock" SVC.

Program Counter. A register that contains the address of
the next instruction to be executed.

Program Memory. Memory in the 8540 that is used as a
substitute for prototype memory in the early stages of
prototype development (emulation modes 0 and 1).

Program/Prototype Memory. This term refers either to
program memory or to prototype memory, depending on
the current emulation mode and memory map. In mode 0,
this term always refers to program memory. In mode 2, this
term always refers to prototype memory. In mode 1, the
memory map dictates which address ranges are in program
memory and which are in prototype memory.

PROM. Programmable Read-Only Memory. Nonvolatile
read-only memory that is blank when it is manufactured
and stores whatever information is written to it by a PROM
Programmer.

PROM Programmer. An optional device that writes data
from memory to a PROM chip or reads data from a PROM
chip into memory. You must have a PROM Programmer in
order to use the following commands: CPR, RPR, WPR,
PSTAT, and PTYPE.

Prototype. The microprocessor-based device that you are
developing using the 8540.

Prototype Control Probe. A probe that takes the place of
the prototype microprocessor and connects the prototype
to the appropriate emulator hardware in the 8540.

Prototype Memory. Memory that resides in the prototype
being developed.

RAM. Random Access Memory. Memory that may be read
from or written to.

Rewind. To position a file pointer to the beginning of a file,
so that information in the file can be re-processed. See also
Seek.

12-3

ROM. Read-Only Memory: memory that is manufactured
with predetermined contents and cannot be written to.

Seek. To position a file pointer to a given location in a file.
Your program can use Seek SVCs to select any position in
the file at which to read or write data. See also Rewind.

Service Call (SVC). A request for OS/40 to perform a
specified 110 or maintenance function for an executing
program. System programs use SVCs, as do most user
programs that do not rely entirely on prototype 1/0. The
Service Calls section of this manual explains how to set up
and initiate a service call, and describes each type of
service call.

Source Code. Program statements written in high-level or
assembly language. A source module is a set of
statements that are compiled or assembled as a unit. A
source file is a file that contains all or part of a source
module.

Stack. A last-in, first-out (LIFO) data structure. Only the
last item pushed onto the stack is immediately available.
When that item is popped off the stack, the item stored
before it becomes available. Many microprocessor
applications use a stack in memory for temporary storage
or for passing parameters between subroutines.

Stack Pointer. A register that contains the address of the
top of the stack.

Standard Input. The file or device from which a command
takes its input. Defaults to the system terminal unless you
redirect input by using a <filespec parameter in the
command line.

Standard Output. The file or device to which a command
directs its output. Defaults to the system terminal unless
you redirect output by using a >filespec parameter in the
command line.

Standard Tekhex. See Tekhex.

String. A sequence of ASCII characters. OS/40 allows you
to assign a name to a string and then refer to the string by
name in a command line. If a string contains a delimiter
such as a space, comma, or semicolon, the string should be
enclosed in single or double quotes. If it contains a dollar
sign, backslash, or double quote, the string should be
enclosed in single quotes.

Permanent strings, created with the OS/40 PERMSTR
command, are stored in the 8540's EEPROM storage area
and thus are available whenever the system is powered up
or restarted.

SVC. See Service Call.

12-4

Glossary-8540 System Users

Symbol. A string of up to 16 characters that begins with a
letter and contains only letters, digits, periods, underscores,
or dollar signs. In an assembly language program,
predefined symbols include assembler directives and
functions, mnemonics, and register names; user-defined
symbols represent addresses, data items, variables,
macros, sections, or modules.

Symbol Table. A table in system memory that contains
program symbols and their values. This table is used in
symbolic debug. Use the SYMLO or COM commands to
place symbols from a load file in the symbol table. Use the
ADDS command to create other symbols.

Symbolic Debug. The use of symbols in place of
expressions or hexadecimal numbers during debugging.
You can use symbols as parameters in any OS/40
command that accepts expressions as parameters. During
output, each hexadecimal address is replaced with either a
symbol or an offset relative to the start of a program
section. Some emulators do not support symbolic debug:
refer to your Emulator Specifics supplement for this
information.

System Memory. Memory in the 8540 that is not
accessible to the user. Most OS/40 commands execute in
system memory.

System Mode. See Emulation Mode.

System Terminal. The CRT terminal or other RS-232-C
compatible 1/0 device through which you communicate
with the 8540. Device names for input and output through
the system terminal are CONI and CONO, respectively.

Target Processor. The microprocessor that the 8540 is to
emulate.

Tekhex. Tektronix Hexadecimal Format: a format for
representing the contents of a block of memory as an ASCII
sequence of hexadecimal digits. Checksums in the Tekhex
format permit verification of Tekhex data transmitted from
one computer to another. The WH command can be used to
write memory contents to a file or device in Tekhex format;
similarly, RH can be used to read Tekhex data from a file or
device into memory. There are two forms of Tekhex:
Standard Tekhex and Extended Tekhex. Both forms of
Tekhex are described in the Intersystem Communication
section of this manual.

TERM Interface. A mode of communication between an
8560 Multi-User Software Development Unit and an 8540.
A TERM interface allows you to intermix OSI 40 commands
and TNIX commands, execute OS/40 commands from
TNIX command files, and transmit data between the 8540
and 8560.

Glossary-8540 System Users

TNIX. The operating system ofthe TEKTRONIX 8560 Multi
User Software Development Unit.

Trace. To monitor the execution of a program by displaying
the processor status each time a specified type of
instruction is executed. The TRA command specifies the
type and/or range of instructions to be displayed.

Transfer Address. The address of the first machine
instruction to be executed in a program.

Trigger Trace Analyzer (TT A). An optional hardware
device that enhances the 8540's debugging capabilities.
The ITA allows you to capture and store up to 255 bus

@

transactions that precede or follow a selected event in the
executing program. The ITA includes four general purpose
counters and four triggers that can break program
execution, start or stop counters, or signal other
i nstru ments.

You must have a ITA installed in your 8540 in order to use
any of the following commands: ACQ, AD, BRE, BUS,
CONS, COU, CTR, DATA, DISP, EVE, PRO, QUA, TCLR, TS.

Upload. To transfer data from the 8540 to a host.

12-5

8540 System Users

A

A command, 3-8

abort
command, 3-8
SVC, 6-11

abortable commands, 3-8

ACIA, 4-23, 4-25

ACK character, 4-15

ACQ command, 5-18
examples, 2-16-2-17

Acquisition Memory, 5-16-5-17, 12-1

AD command, 5-18

add:
contents of registers, 3-15
numbers, 3-15
symbol to symbol table, 3-9

address expressions, 3-5

address map:
allocate memory to, 3-10
deallocate memory from, 3-25

ADDS command, 3-9, 5-9
examples, 2-9

AL command, 3-10, 5-11
examples, 2-9

apostrophe. See Single quote

arithmetic expression, 3-5

arrows, input and output redirection, « », 3-3

AS command, 3-12

ASCII codes (table), 11-1

ASCII transfer, 4-8, 6-10
See also Intersystem communication

asm (8560 command), 1-25

assembler, 1-25, 12-1

assign

B

channel to device or file, 3-12
value to register or symbol, 3-51

backs lash (\), 3-4

BACKSPACE key, 3-7

baud rate for data transfers, 4-24

binary-decimal-hexadecimal equivalents, 11-3

binary transfer, 4-8, 6-10
See also Intersystem communication

BK command, 3-13, 5-4

boldface in syntax blocks, 3-2

braces ({ }j, 3-2

brackets ([]), 3-2

BRE command, 5-16

break, 12-1

breakpoint, 12-1
clearing, 2-13, 3-14
displaying, 2-13, 3-13
setting, 2-12, 3-13, 5-4
See also BK command

buffer (for an SVC), 6-4

BUS command, 5-15

@

Section 13

INDEX
c
CALC command, 3-15, 5-9

capitalization, 1-15

carriage return, 1-10

channels. See I/O channels

characteristic module, Section 8, 12-1

characters, control, 3- 7

characters, special:
ACK (0), 4-15
apostrophe. See Single quote
arrows « », 3-3
backslash (\), 3-4
braces ({ }j, 3-2
brackets ([)), 3-2
carriage return «CR», 1-10
dash (-), 3-3
dollar sign ($), 1-14, 3-5
double quote (0), 3-5, 6-10
escape character (\), 3-4
NAK (7), 4-15
null, 3-21, 4-4
periods (...), 3-2
semicolon (;), 1-13, 3-2
single quote ('). 3-5, 6-10
slash (/), 4-1
See also Control characters

checksum, 12-1

CL command, 3-16

clear breakpoint, 3-14

CLOCK command, 3-17, 5-5

close
channel, 3-16
SVC, 6-11

CO command, 3-18

code address (symbol type), 4-13

COM command, 3-19, 4-22
examples, 2-3-2-5

COM interface, 1-12, 4-2

COM Interface Package, 1-5

command strings, 1-13
STARTUP, 1-9, 1-14

command line:
capitalization, 3-2
format, 3-2
notational conventions, 3-2

commands, Section 3
abortable, 3-8
affected by MEMSP, 3-39
dash modifiers, 3-3
delimiters, 3-3
memory areas, 3-7
multiple, 3-4
names, 3-3
parameters, 3-3
reference manuals for other commands, 3-2
suspendable, 3-8
syntax notation conventions, 3-2

CONFIG command, 2-1-2-2, 3-22

configuring the 8540, 1-1, 3-22, 3-23
with an 8560, 1 -15

CONI, 1-5

CONO, 1-5

CONS command, 5-16

13-1

continuing execution of suspended command, 3-18

control characters, 1-10, 3-7, 12-1
null,4-4

conversion tables, 11-2

correcting a typing mistake, 1-11

COU command, 5-16-5-17
examples, 2-15, 2-17-2-18

CPR command, Section 8

<CR>,1-10

CTR command, 5-15

CTRL (control) characters. See Control characters

D

o command, 3-24
examples, 1-32, 1-34, 2-19

dash (-), 3-3

dash modifiers, 3-3

data address (symbol type), 4-13

DATA command, 5-15

Data Transfer Types table (COM Interface), 4-3

data transfers. See Intersystem Communication

oCE,4-23

DEAL command, 3-25, 5-12-5-13

deallocate memory from logical address map, 3-25

decimal-hexadecimal-binary equivalents, 11-3

deleting:
permanent strings, 3-43
temporary strings, 3-4
text being entered, 1 -11

delimiters, command, 3-3

demonstration run, 1-17-1-40

demonstrations of:
emulation, 1-17-1-40
SVCs, 6-6-6-9

designators (memory space), 3-6

devices. See I/O devices

01 command, 3-26
examples, 2-20

disassemble object code into mnemonics, 3-26

olSP command, 2-16, 3-27, 5-18

display:
breakpoint conditions, 3-13
contents of emulator registers, 3-27
olSP command, 3-27
executed instructions, 3-62
memory contents, 3-24, 3-29
memory map, 3-36
memory map assignments, 3-35
strings:

permanent, 3-43
temporary, 3-55

symbolic, 3-59
system status, 3-55

dollar sign ($), 1-14, 3-5

don't-care expressions, 3-6

~OS/50:
compared with OS/40, 9-1
HOST command, 4-4

double quote ("), 3-5

download, 3-21,4-1
See also Intersystem communication

OS command, 3-27
examples, 2-9, 5-5

13-2

Index-8540 System Users

oTE,4-23

dump memory contents, 3-24

E

EEPROM:
patching, 3-49
storing permanent strings in, 3-43

electrical considerations, 1-1
for prototype control probe, Section 7

EM command, 2-8, 3-28

emulating microprocessor, 5-1

emulation, Section 5
limits of, 9-1
mode 0,5-1
modes 1 and 2, 5-6-5-7

emulation modes, 3-28, 5-1, 12-1
emulator, 5-1

display registers, 3-27
read from emulator port, 3-45
reinitialize, 3-47
starting, 5-4
stopping, 5-4
write to emulator port, 3-65

emulator processor. See Emulator

emulator-specific information, Section 7
escape character:

CTRL-C, 3-7
(\),3-4

EVE command, 5-15
examples, 2-14-2-18

evaluate arithmetic expression, 3-15
event, 5-13-5-16, 12-2

consecutive, 5-16

EX command, 3-29

examine or alter memory contents, 3-29, 5-5
execution:

abort command or program execution, 3-8
begin program execution, 3-32
load and execute program, 3-65
resume execution of suspended command, 3-18
SVC execution, 3-57
time execution of program s~gment, 3-17

exit (from program), 6-12

express ions:
address, 3-5
arithmetic expression evaluation, 3-15
don't-care, 3-6
operators in expressions, 3-6

Extended T ekhex, 4-11
sample load module, 1-18

F

F command, 3-30
examples, 2-20, 5-5

file pointer, 6-11

files:
assign channel to file, 3-12, 6-11
close channel to file, 3-16, 6-11
limitations of file handling SVCs, 6-4
save memory contents in file, 3-52

fill program/prototype memory with data, 3-30

formatted transfers, 4-9-4-21
See also Intersystem communication

@

Index-8540 System Users

G

G command, 2-8, 3-32

general purpose counter, 5-16-5-17, 12-2
examples, 2-15, 2-17-2-18

global symbol, 4-13

go (begin program execution), 3-32

H

halting program execution, 5-4, 5-7

handshaking (in formatted data transfers), 4-16

hardware requirements for host computer, 4-23

hardware specification, installation,

configuration, and verification, 1-1

hexadecimal:
formats. See Load module
read,3-48
write, 3-64

hexadecimal-decimal-binary equivalents, 11-3

hexadecimal multiplication, 11-2

HOST (DOS/50 command), 4-4
examples, 2-6

host computer, 1-7
See also Intersystem communication

input/output. See I/O

installation of 8540 hardware and software, 1-1

instruction, 12-2
Intel hexadecimal load module format, 11-10

interface, define host 3-22

interrupts, 12-2
in emulation mode 0, 5-6
in emulation modes 1 and 2, 5-7

intersystem communication:

I/O:

J

COM command parameters, 4-22
communication with an 8002A 2-7, 4-6
communication with an 8550, 2-5-2-7, 4-4
communication with an 8560, 1-11, 2-1-2-2, 4-1
communication with other host computers, 1-12,
2-3-2-5, 4-7

data transfers, 4-25
establishing communication, 4-25
exiting from COM, 4-25

formatted transfers, 4-9-4-21
hardware requirements, 4-23
host computer programs:

convert to T ekhex, 4- 18-4-21
receive Tekhex, 4-17
transmit Tekhex, 4-16

protocols for data transfers:
formatted, 4-15
unformatted, 4-8

Types of Data Transfer table, 4-3
unformatted transfers, 4-7-4-9

buffer (for an SVC), 6-4
channels, 6-4, 6-11

assigning, 2-21
closing, 2-21
displaying assignments, 2-20

devices:
identification and type codes, 6-13
jack numbers, 1-8

log terminal I/O to device, 3-34
redirection of standard I/O, 3-3-3-4

jack numbers, 1-8

@

K

keys, special:

L

BACKSPACE, 3-7
CTRL, 1-10,3-7
escape (CTRL-C), 3-7
RETURN (carriage return). 1-10
RUBOUT,3-7

LAS format for SRB, 6-3

line printer, 1-6
accessing the line printer in TERM mode, 1-37

LIST DBG (assembler directive), 1-20

LO command, 3-34

load:
module, 12-3

Tektronix Hexadecimal Format (Tekhex), 4-9-4-21
See also Intersystem communication

program, 3-34, 3-48, 3-65
symbols into symbol table, 3-61

LOCAL mode, 1-11, 3-22, 12-3
LOG command, 2-10, 3-34

logging in to 8560, 1-11

logging in to other hosts, 1-12

logical address map:
allocating memory to, 3-10, 5-7
deallocating memory from, 3-25

lowercase. See Capitalization

LPT, 1-6

M

M parameter (of COM and CON FIG commands), 4-22

MAC. See Memory Allocation Controller

manuals:
overview of related user manuals, 1-41, 3-2
overview of this manual, 1-40

MAP command, 2-14, 2-20, 3-35

MEM command, 3-38, 5-13
memory:

allocation, 2-9, 3-10, 5-4, 5-9-5-13
alter contents, 3-29, 3-42
available to emulator, 3-38, 3-41
command memory areas, 3-7
deallocation, 3-25
display contents, 3-24, 3-29
display memory map, 3-36
fill program/prototype memory with data, 3-30
layout for SVCs, 6-2, 6-3
memory map, 3-35-3-36, 5-7
memory spaces, 3-6, 3-39, 5-11
program memory, 1-5

changing contents, 5-5
displaying contents, 5-4-5-6
reallocating address blocks in a 32K 8540 system, 5-4

program/prototype memory, 12-3
copying data between program and prototype memory
3-40 '

prototype memory, 12-3
read-only memory (ROM), 12-4

detecting a write to ROM, 5-4, 5-7
MAP command, 2-20, 3-35
TIA 2-15

save contents, 3-52, 3-64
search for value or string, 3-53
system memory, 12-4
write protection of prototype memory, 3-35

13-3

Memory Allocation Controller, 5-9
commands, 5-11-5-13
memory spaces, 3-6, 3-39, 5-11

MEMSP command, 3-39

mode. See Emulation modes

MODE SELECT switch, 4-24

modifiers, command (dash), 3-3

Motorola hexadecimal load module format, 11-4-11-7

MOV command, 3-40

multiple commands, 3-4

N

NAK character, 4-15

names
command, 3-1, 3-3
register, 3-6

NOMEM command, 3-41, 5-13

notational conventions in a command line, 3-2

null character, 3-21, 4-4

o
object code, 12-3

operators in expressions, 3-6

optional products compatible with 8540, 1-5

OS/40,12-3
compared with DOS/50, 9-1

output. See 110
overview of related user manuals, 1-41

overview of this manual, 1-40

overwrite, 6-11

p

P command, 3-42
examples, 2-19, 5-4

paper tape reader Ipunch, 1-6

parameters, 3-3

patch (alter) memory contents, 3-42

periods (...) in syntax blocks, 3-2

peripherals. See 1/0 devices

permanent strings, 3-43

PERMSTR command, 3-43
examples, 1-14

plugging in the 8540, 1-8

PPTP, 1-6

PPTR, 1-6

PRO command, 5-15

proceed (in SVCs), 6-10

program (user's):
aborting, 3-8
breaking, 2-12, 2-14-2-15, 2-18, 3-13, 5-4, 5-16
executing, 5-4
executing repeatedly, 5-4
halting execution, 3-8, 3-56, 5-4, 6-12
loading, 3-34
modifying, 2-10-2-12
monitoring, 5-4
timing a segment, 2-17, 2-18, 3-17, 5-16-5-17

program clock, 3-17, 5-5, 12-3

program memory. See Memory

13-4

Index-8540 System Users

program section. See Section

PROM Programmer, 1-6, Section 8

protocols. See Intersystem communication

prototype, 12-3
hardware considerations, 5-6, Section 7
1/0, 5-2-5-3

prototype control probe, 12-3
timing considerations, Section 7

prototype memory. See Memory

PSTAT command, Section 8

PTYPE command, Section 8

Q

QUA command, 5-15

QUERY command, 3-44

quote, double (H) and single (,), 3-5

R

radix selector letters, 3-5

RD command, 3-45

reading:
from emulator port, 3-45
hexadecimal code into memory, 3-48

read-only memory (ROM). See Memory

redirecting 110, 3-3-3-4

registers:
add contents of. 3-1 5
changing contents of, 3-51
displaying contents of. 5-5
names, 3-6

reinitializing emulator, 3-47

REML 1-8

REMO, 1-8

REMOTE port status register, 4-25

remove symbol from symbol table, 3-46

REMS command, 3-46, 5-9

RESET command, 3-47

resident commands, 3-7

resuming display, 3-6-3-7

RETURN key (carriage return), 1-1 °
rewind, 6-15

RH command, 3-48

ROM. See Memory

ROMPATCH command, 3-49

RPR command, Section 8

RUBOUT key, 3-7

5

S command, 2-9, 3-51

SAS format for SRB, 6-2

SAV command, 2-2, 3-52

save memory contents:
in file, 3-52
in hexadecimal format, 3-64

SEA command, 3-53

search memory for value or string, 3-53

@

Index-8540 System Users

section (of a program), 1-19
in symbolic debug, 1-33
in Tekhex symbol blocks, 4-13

seek (in SVCs), 6-11, 6-15-6-16

SEl command, 3-54

select
emulation mode, 3-28
target processor, 3-54

SELF TEST light:
on 8301 front panel, 1-9
on PROM Programmer front panel module, 8-2

semicolon (;), 1-13, 3-2

SEND (TEKDOS command), 4-6

service calls. See SVCs

service request block. See SRB

set:
breakpoint, 3-13-3-14
memory map assignments, 3-35-3-36
register or symbol to value, 3-51

single quote ('), 3-5

special characters. See Characters, special

special keys. See Keys, special

SRB,6-4
examples, 6-9
status codes, 6-4

SRB vector, 6-3
examples, 6-9

standard input and output, 12-4
redirecting, 3-4

Standard Tekhex, 4-1 °
starting up the 8540, 1-8

STARTUP string, 1-9, 1-14

STAT command, 2-20, 3-55

status of SVC, 6-4

STR command, 3-55

strings, 1-13, 3-5
permanent, 3-43
STARTUP, 1-9, 1-14, 3-23
temporary, 3-55

SUSP command, 3-56

suspendable (abortable) commands, 3-8
suspending display, 3-6-3-7

SVC command, 3-57, 6-3, 6-4
examples, 2-13-2-14

SVCs, Section 6
8540 compared with 8550, 9-2
accessing host files, 6-4
applications, 6-5-6-6
breaking on an SVC, 5-6
demonstration, 6-6-6-9
1/0 instruction, 6-3, Section 7
LAS memory layout, 6-3
phasing SVCs out of a program, 5-6
SAS memory layout, 6-2

SYMB command, 3-58, S-9

symbolic debug, 1-33-1-34, 5-7-5-9
Tekhex symbol block, 4-13

symbols, 3-6
adding, 3-9
displaying, 3-59
loading, 3-61
removing, 3-46
returning symbolic equivalent of value, 3-58

SYMD command, 3-59

SYMlO command, 2-2, 3-61, 5-9
syntax block, 3-2

@

syntax notation conventions, 3-2

system 1/0, 2-20
system terminal, 1-5

T

target processor, 12-4
selecting the target processor, 3-54, 5-3

TClR command, 5-16

TEKDOS SEND command, 2-7-2-8, 4-6

Tekhex (Tektronix Hexadecimal Format), 3-21,

4-9-4-21,11-4
conversion program, 4-18-4-21
receive program, 4-17
transmit program, 4-16

Tektronix Hexadecimal Format. See Tekhex

temporary strings, 3-4-3-5, 3-55

TERM mode, 1-7, 1-11,3-22,4-1

terminal 1/0, logging to device or file, 3-34

test clips, 5-14

timing, 5-5
considerations for prototype control probe, Section 7
factors that affect timing, 5-5

timing a program segment:
using CLOCK, 3-17
using SVCs, 6-5
using the ITA, 2-17, 2-18, 5-16-5-17

TNIX, 1-7

TRA command, 3-62
examples, 1-35-1-37, 2-10-2-12

tracing:
using the TRA command, 2-10-2-12, 3-62-3-63, 5-4
using the ITA, 2-16-2-18, 5-18

transfer, data, 3-21

transfer address, 12-5

trigger, 5-13

Trigger Trace Analyzer. See ITA

TS command, 3-2

ITA:
Acquisition Memory, 5-16-5-17, 12-1
breakpoints, 5-16
clearing, 5-16
commands, 5-19
compared with RTPA, 9-2
event, 5-14-5-16

consecutive, 5- 1 6
examples of use, 2-14-2-18
general purpose counters, 5-16-5-17
information monitored by, 5-14
trigger, 5-13-5-18

turning off the 8540, 1-1 °
turning on the 8540, 1-8

type-ahead, 1-13

u
underlined characters:

in examples, 1-1 °
in syntax blocks, 3-2

unformatted transfers, 4-7
See also Intersystem communication

UNIX. See TNIX

upload, 12-5
See also Intersystem communication

uppercase. See Capitalization

user prototype. See Prototype

13-5

v
variable-length numbers and symbols, 4-12

verification of 8540 hardware, 1-1

virtual memory, 2-9

w
wait (in SVCs), 6-10

WH command, 3-64

WPR command, Section 8

write
hexadecimal, 3-64
protection:

of program memory, 5-4
of prototype memory, 3-35, 5-7

to emulator 1/0 port, 3-65

WRT command, 3-65

13-6

x
X command, 3-65

Z

zero-insertion-force (ZIF) socket, 8-1

zeroing out memory, 1-26

Index-8540 System Users

@

	0001
	0002
	001
	002
	003
	004
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-01
	07-02
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06

