
MILLENNIUM INFORMATION SYSTEMS ,INC.
UNIVERSAL ONE

Microco~er
Development System

Operator's Guide

UNIVERSAL ONE

Microco~er
Development System

Operators Gllide
Document No. U01-0000-21

Issued Nov. 1976

MILLENNIUM INFORMATION SYSTEMS ,INC.
420 MATHEW STREET, SANTA CLARA, CALI FORNIA 95050, 408-243-6652

ii

DOCUMENT NO. U01-0000-21

PRICE - $35.00

Copyright 1976, Millennium I nformation Systems, I nco All rights reserved.

Mi Ilennium I nformation Systems, I nco claims trademark rights to the names
UNIVERSAL ONE and UNIVERSAL EMULATOR

Table of Contents

Paragraph

CHAPTER INTRODUCTION

1 .1
1.2
1.3

Objectives of a Microcomputer Development System
Universal One Overview
About Th is Book.

CHAPTER 2 SYSTEM DESCRIPTION

2.1 Introduction.....
2.2 Hardware.......
2.2.1 Development Computer
2.2.2 Emulation Hardware .
2.2.3 Dual Floppy Disk Subsystem
2.2.4 Peripherals......
2.2.5 User-Supplied Peripherals .
2.3 Software.........
2.3.1 UDOS (Universal Disk Operating System)
2.3.2 The Debugger . . .
2.3.3 PROM Programming
2.3.4 The Editor
2.3.5 The Assemb ler. . .
2.3.6 Systems Readiness Test

CHAPTER 3 SYSTEM INSTALLATION AND OPERATION

3.1 Introduction.................. .
3.2 Unpacking..................
3.2.1 Unpacking the Universal One Development Computer.
3.2.2 Unpacking the CRT Terminal . .
3.2.3 Unpacking the Floppy Disk Unit.
3.2.4 Unpacking the Line Printer. .
3.2.5 Installing the Emulation Cable. .
3.3 Physical Installation.
3.3.1 Power and Cable Interconnections
3.3.2 Controls and Indicators
3.3.3 Development Computer

Page

1-1
1-1
1-4

2-1
2-1
2-1
2-4
2-4
2-5
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-8

3-1
3-1
3-1
3-1
3-2
3-2
3-4
3-4
3-4
3-7
3-7

iii

Table of Contents (Cant.)

Paragraph

3.3.4
3.3.5
3;3.6
3.4
3.4.1
3.4.2
3.4.3

Dual Floppy Disk Unit
CRT Terminal
Line Printer.

Operation
Formatting and Verifying New Diskettes.
System Startup Procedure
Manual Reset

CHAPTER 4 UNIVERSAL DISK OPERATING SYSTEM

4.1
4.2
4.2.1
4.2.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9

iv

Introduction
UDOS Overview

Resident U DOS Modu les .
UDOS Overlays

Files, Devices, and Channels
Entering UDOS Commands.
Special Keys

Delete Key
Escape Key
Space Bar.
CTR L-Z Command

The U DOS Commands.
The UDOS Command Structure
U DOS Command Completion
System Control Commands.
System Option Commands .
System Utilities Commands.
Object Program Uti I ity Commands
Command Files . . .
Command File Utilities
U DOS Error Messages .

Page

3-8
3-9
3-9
3-10
3-10
3-11
3-12

4-1
4-1
4-2
4-2
4-3
4-5
4-6
4-6
4-7
4-7
4-7
4-8
4-8
4-9
4-10
4-15
4-17
4-25
4-29
4-30
4-32

Table of Contents (Cont.)

Paragraph

CHAPTER 5 THE DEBUGGER

5.1
5.2
5.3
5.4
5.5

Introduction
The Debug Program. . . .
Invoking the Debugger. . .
Sample Debug Session (Using a 2650 Slave)
Debug Commands

CHAPTER 6 THE EDITOR

6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.6

Introduction
Editor Overview . . .
U DOS Command Edit.
Edit Example
Editor Command Descriptions

Editor Command Line
Editor Command Description Conventions .
I nsertion Commands .
Deletion Commands
Alteration Commands .
Search Commands . .
I/O Commands
Buffer Line Pointer Commands
Utilities . .
MARCROS .

Editor Messages

CHAPTER 7 THE ASSEMBLER

7.1
7.2
7.3
7.4
7.5

Introduction
Assembler Overview.
Using the Assembler
Loading An Assembled Program
Sample Assembly Listing. . .

Page

5-1
5-1
5-2
5-3
5-7

6-1
6-1
6-2
6-3
6-10
6-10
6-10
6-13
6-14
6-15
6-17
6-18
6-21
6-21
6-26
6-27

7-1
7-1
7-1
7-2
7-3

v

Table of Contents (Cont.)

Paragraph

CHAPTER 8 PROM PROGRAMMER

8.1
8.2
8.3
8.4

Introduction
PROM Programming Hardware and Software
Using the PROM Programmer .
PROM Programmer Commands . . . -. .

CHAPTER 9 SUPERVISOR CALL INTERFACE

9.1 Introduction..........
9.2 General Description of Supervisor Calls
9.3 Service Request Block (SRB) .
9.3.1 SRB Bytes
9.3.2 SVC Function Descriptions.

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H

vi

UDOS COMMAND SUMMARY
DEBUGGER COMMAND SUMMARY
EDITOR COMMAND SUMMARY
SVC FUNCTION CODES
SRB STATUS CODES
SMS TAPE FORMAT
SYSTEM READINESS TEST
SYSTEM UTILITY COMMAND FILES

Page

8-1
8-1
8-1
8-2

9-1
9-1
9-2
9-2
9-3

list of Ilustrations

Figure Page

1-1 The UNIVERSAL ONE Microcomputer Development System 1-0
1-2 General Block Diagram of a Microprocessor-based Product. 1-3
2-1 Overall Block Diagram of the UNIVERSAL ONE . . 2-2
2-2 Data Organization on a Diskette 2-6
3-1 Development Computer Printed Circuit Board Layout 3-2
3-2 Development Computer (Top View) 3-3
3-3 Envelope Dimensions of System Units. 3-5
3-4 Typical Cabling Diagram of UNIVERSAL ONE System Installation 3-6
3-5 Front Panel of the Development Computer. 3-8
3-6 Rear Panel of the Development Computer 3-9
3-7 Rear Panel of the Floppy Disk Drive . . . 3-10
3-8 Inserting a Diskette. 3-11
5-1 Displays During Sample Debugging Session . 5-4
5-2 Typical Displays During Various Debugging Modes. 5-8
6-1 A Sample Source Program 6-3
6-2 Entering Text and Display the Buffer 6-5
6-3 Use of FIND, SUBSTITUTE and REPLACE Commands. 6-6
6-4 Displaying the Buffer and Filing 6-6
6-5 Sample Double Precision Add and Subtract Programs. 6-7
6-6 Adding Data to an Existing File 6-9
6-7 Inserting Lines Into the Buffer 6-11
7-1 Sample 2650 Slave Program Listing Ready for Assembly. 7-4
7-2 Sample 2650 Slave Assembly Listing 7-5

vii

Chapter

Introduction

1.1 OBJECTIVES OF A MICROCOMPUTER DEVELOPMENT SYSTEM.

In the development of any product that includes a microprocessor, there are aspects
which have no parallel either in random logic design or in computer program develop­
ment (the two predecessors of microprocessor product development).

There is no clear cut demarcation between logic which should be implemented
using random logic hardware, or logic which should be implemented with programmed
instructions; that is what makes microprocessor product development unique. A
successful microcomputer development system, such as UNIVERSAL ONE, must
therefore support digital logic development and program creation with equal ease.

If in addition, the product or series of products can benefit from the use of different
microprocessors, a single universal hardware and software development system, of
the configuration of UNIVERSAL ONE, has several easily recognizable advantages:

1. It eliminates the cost of another development system each time a new micro­
processor is to be implemented.

2. It providesa common system for all development, thus eliminating heavy
investments in personnel training and software for multiple systems.

3. It frees the designer to consider any microprocessor-solely on the basis of
its capabilities and cost-effectiveness, rather than because the designer is
locked into a microprocessor from a previous product commitment.

1.2 UNIVERSAL ONE OVERVIEW.

1.2.1 Master/Slave Concept. UNIVERSAL ONE, achieves the required uni­
versality by dividing its operations into two functional areas. Those tasks that are
related to the development system itself are assigned to a master central processing
unit, and those that are prototype-related are assigned to a second, slave CPU. As
many as four different slaves may be installed simultaneously and individually invoked
with a corresponding slave diskette. This mUltiple architecture enables the hardware
to support a particular microprocessor with the addition of a printed circuit card
containing the corresponding slave CPU. Since the master processor need not be
changed to accommodate new slave units, all of the operating system software remain
the same.

1-1

The master CPU is responsible for all system services that are not prototype­
dependent, such as:

• File management - the storage and retrieval of data and programs.

• Text editor - maintains text files in the floppy disk.

• System input/output - the normal I/O activities between the standard
system peripherals, such as the floppy disk, line printer, and system control
console.

• System utilities, including programming of PROMs for the final version of
the prototype.

• Debug functions - the master executes the debug software and controls the
slave through a separate debugging hardware module.

The slave CPU's functions include:

• Program assembly - each slave may be used as a resident assembler of proto­
type programs.

• Prototype program execution - the prototype program is loaded into the
slave memory and executed by the slave.

• Prototype I/O - any special input/output required in the prototype can be
performed by the slave, without involving the master CPU.

• I n-circuit emulation - a cable extends from the slave to the CPU socket in the
prototype.

1.2.2 System Functions. UNIVERSAL ONE may at first look like any other
general purpose minicomputer system; because there is a terminal which communicates
with a box that resembles a minicomputer, results may be created on a line printer,
and intermediate data or programs may be stored on diskettes.

Indeed, UNIVERSAL ONE offers many of the program creation and execution
facilities that any general purpose minicomputer system will offer. Source programs,
written in assembly language, may be entered via the terminal and stored on diskette.
Subsequently, source programs may be retrieved from diskette, edited and stored
back. An Assembler converts source programs into executable object code and a
Debugger allows the object code to be conditionally executed for the purpose of
detecting conceptual errors -- that is, instruction sequences which, though they are
syntactically correct, do not accurately represent the intended logic or data flow.

So complete is this parallel between UNIVERSAL ONE and a general purpose mini­
computer, that there is nothing preventing UNIVERSAL ONE from being used like
a minicomputer -- as a text editor or even a business machine. User-written programs
may access diskettes via the disk operating system; indeed the disk operating system
can be included as a utility within a large user-written program. A disk operating
system is provided to automate the process of accessing diskette files by identifying
fi Ie labels rather than diskette track and sector addresses.

1-2

Introduction

But UNIVERSAL ONE is much more than a general purpose minicomputer. The
typical microprocessor user program created on UNIVERSAL ONE is subsequently
going to becomean object program, implemented in PROM or ROM. A microprocessor
object program is therefore ultimately to become a package, driving microprocessor­
based logic, in a configuration that may not even remotely resemble a computer.
The only constant that may be ascribed to these products is that they will contain a
microprocessor, driven by one or more object program packages; additional logic
must be present to handle the flow of data or signals to or from the microprocessor.
Figure 1-2 therefore generally identifies the ultimate configuration which any micro­
processor-based product will have.

1.2.3 System Capabilities. Every part of the end product illustrated in Figure
1-2 may be developed using UNIVERSAL ONE.

The process of creating an executable object program was discussed first, since
this is the most obvious capability of a system th~t looks like a general purpose mini­
computer. But the similarities between UNIVERSAL ONE and a general purpose

,----------------,
I I

OBJECT PROGRAMS I I IN ROM, RAM, OR PROM

I I
I I
I I I MICROPROCESSOR I

I I
I I

INTERFACE LOGIC FOR I I SIGNALS AND DATA EXCHANGE I TO OUTSIDE WORLD I
L________ ___ _ __ J

INPUT/OUTPUT SIGNALS

Figure 1-2. General Block Diagram of a Microprocessor-based Product

1-3

minicompute~ end at this superficial level. Consider some of the additional features
which UNIVERSAL ONE provides to serve as a total microprocesosr-based product
development aid.

To begin with the UN IVERSAL ONE provides at least two CPUs. The master CPU
performs monitoring and disk operating system functions; functions required by
UNIVERSAL ONE, but absent in the product being developed. The slave micro­
processor takes the place of the device which must be present in the end product.

Memory is also provided in duplicate. The master CPU has its own memory, out of
which it can execute·.monitoring and disk operating system programs. The slave
CPU has a separate memory which remains· available to simulate· prototype memory,
for user application programs. When appropriate, the master CPU accesses slave
processor memory. The master and slave memories can be initially viewed as separated
for system use and for application or user use.

Because object programs are likely to be stored in PROM or ROM devices. UN 1-
VERSAL ONE allows you to create the PROM, or to define the ROM mask.

Simulation of the I/O logic shown in Figure 1 ~2 remains to be described. The
problem with this additional logic is that it is completely undefinable. Not only is
it impossible to say how far such logic migrates into an end product, it is equally
hard to determine, in advance, those functions which will end up as program steps in
mel'Dory, as opposed to random logic. UN IV E RSAL ON E resolves the open-ended ness
of this additional logic by providing the emulation cable. Any external logic may
communicate with the slave microprocessor and its slave memory via this cable.
Moreover, external logic beyond the emulation cable may, itself, contain program
memory.

Thus, UNIVERSAL ONE becomes a total microprocessor-based product development
system. Every aspect of a microprocessor-based product may be simulated and
designed using UNIVERSAL ONE. Object programs which, while being created, are
executed by a microprocessor which is identical to the end product microprocessor.
While object programs were executed by UNIVERSAL ONE, during their creation,
they interacted via the emulation cable with additional logic which, package-for­
package, will be identical to the eventual end product. Therefore, when going from
emulation to end product, the only changes wi II be in physical fabrication.

1.3 ABOUT THIS BOOK.

This book is a UNIVERSAL ONE Operator's Guide. As such, it describes all aspects
of UN IVERSAL ONE system operation, from unpacking, through switches and
indicators, to the use of the various system development programs.

Additionally, there is a UNIVERSAL ONE System Reference Manual, document
number U01-0000-ll which provides a detailed description of the UNIVERSAL
ON E system hardware and its various components.

Introduction

Each microprocessor supported on UNIVERSAL ONE system is provided with a
manual supplement describing the software and hardware peculiar to that micro­
processor.

Chapter 2 of this manual describes system hardware in general terms, and gives an
overview of system software. Chapter 3 describes unpacking, installation, and initial
operation; Chapter 4 gives details about the Universal Disk Operating System and
describes procedures for using it; Chapter 5 describes the emulation and the debug
capabilities of the UN IVERSAL ONE system and explains all Debugger commands;
Chapter 6 describes the Text Editor and gives procedures for using the Editor to
create and modify files; Chapter 7 describes how the Assembler is used to create
object programs from assembly language programs; Chapter 8 gives procedures for
programming type 1702A and type 82S115 PROMs from assembled user programs;
and Chapter 9 describes Supervisor Calls (SVCs), with which any slave CPU program
can communicate with system peripherals.

1-5/1-6

Chapter

2.1 INTRODUCTION.

System
Description

This chapter outlines system configuration, peripherals, and software provided with
the system.

2.2 HARDWARE.

The UN IVERSAL ONE is a complete microcomputer development system. This
system is used to create and edit assembly language source programs, to assemble
source programs into object code, and" to·execute object programs. User's object
programs may be executed out of UNIVERSAL ONE memory, or by using the
emulation interconnecting cable assembly, object programs may be executed out of
external memory that is part of an end product. Thus UNIVERSAL ONE can
simulate an end product, or interface directly to it, and has the ability to support
every phase of product development. A UN I VE RSAL ON E system consists of a
development computer with 16 K bytes of master memory and 16 K to 65 K bytes of
slave (or common master/slave) memory, and a dual drive floppy disk unit; peripherals
include a terminal and a line printer. Options available include additional floppy disk
units, additional memory, PROM programmers, and general purpose I/O cards. The
computer, disk unit, terminal., and line printer are all desk-top units and are self­
contained.

2.2.1 Development Computer.

The development computer consists of a mainframe enclosure and printed circuit
boards. I n addition to the basic CPU and memory boards, optional boards can be
added to implement a particular development function. The following paragraphs
describe major functions of the development computer hardware and Figure 2-1
shows a block diagram of it.

Master and Slave CPUs. The UNIVERSAL ONE operating system (UDOS) and the
Text Editor run under the master CPU. The Assembler, other system programs, and
user programs all run on the slave CPU.

At any point in time, only one CPU within the system can be active and executing
instructions. The master CPU is responsible for determining which CPU is active.
The master CPU determines the state of the slave CPU via a series of control lines, to
the debug logic.

2-1

I

2-2

USER PRClTOTYPE I
TEST , I MICROPROCESSOR
CLIPS SOCKET

FLOPPY DISK
STORAGE

SUBSYSTEM I CONSOLE '1- ~
(CRT OR TTY) I n

~--------~ ~--------~

I FRONT PANEL I
STD, OR OPT,
SW-DISPLAY

SLAVE

CONTROL/INTERRUPT

I 16K-65K I
SLAVE MEMORY

MASTER

CONTROL/INTERRUPT

16 K MASTER
MEMORY

I PROM SrCKETS

Figure 2-1. Overall Block Diagram of the UNIVERSAL ONE

I

I OPTIONAL SYSTEM I
PERIPHERALS

System Description

Partitioned I/O. The master CPU handles all I/O communication with system peri­
pherals. Programs executed by the slave CPU communicate with system peripherals
via the master CPU by issuing requests to the master CPU for their system I/O.
This is done through supervisor calls (SVCs) from the slave to the master. SVCs are
discussed in Chapter 9.

There is separate interface logic available only to the slave CPU. Using this logic, the
user can add interface boards for development-oriented peripherals, allowing the
slave CPU to communicate with its own peripheral units directly. Thus, programs
under development can be executed in hardware environment making full use of the
users prototype resources, including I/O logic, power supplies, etc.

Dual Memories. The system includes two separate memories: one is the slave memory
of up to 65K bytes. This memory is accessible by both master and slave CPUs. Two
system programs, the Assembler, plus a small Debug trace package, are executed out
of the slave memory by the slave CPU. User development programs are also run by
the slave CPU from this memory. (The Editor is run out of slave memory by master
CPU.)

The other memory is the master memory from which the operating system and the
Debug monitor are run by the master CPU. This memory is protected completely
from the slave CPU and its application programs. The protected portion has an
address range from 0000 through 16383. The master CPU also has the ability to
map anyone 16K section of the slave memory into an additional address space
available only to the master. This allows the master CPU access to user buffers and
pointers used for supervisor calls (SVCs).

Having separate master and slave memories ensures that the operating system need
not interfere with user programs. This also protects the integrity of the operating
system in the master memory so that it cannot be inadvertently affected by develop­
ment programs.

PROM Programming. The development computer contains two optional PROM
programming boards and three front-panel PROM sockets. Unique programming
boards are used for the 82S115 bipolar PROM and the 1702A MOS PROM.
Programm ing of the PROMs is accompl ished under program control, after the user
has a completely assembled and debugged program. A front panel switch turns off
PROM programmer power, so that devices cannot be damaged during insertion and
removal.

Control and Debug Logic. The Debug circuitry is an interrupt-driven interface be­
tween the master CPU and the active slave CPU. The master CPU can force an
interrupt, a reset, or a branch. The slave can also be run in single-step modeThere
are two hardware comparator registers available for address breakpoints. The debug
interrupt logic also functions to handle all I/O service requests from the slave CPU.

2-3

2.2~2 Emulation Hardware.

The emulation hardware consists of a cable and driver/receiver circuits that allow in­
circuit emulation of user programs in user developed hardware. The user's micro­
processor is removed and replaced by a cable plugged directly into the socket. The
other end of the cable is attached to the UNIVERSAL ONE slave CPU circuit
board, which contains multiplexing and other logic to support and discriminate
between the UNIVERSAL ONE operating modes. The slave CPU thus can become
the CPU for the user system.

Presently there are three modes of operation:

1) The slave CPU runs the program residing in slave memory using the I/O
circuits contained in the UNIVERSAL ONE system. This is the normal non­
emulation mode.

2) The slave CPU runs the program resident in slave memory, but all I/O signals
and data are derived from external user developed hardware.

3) The slave CPU runs user programs resident in external user development
memory. All I/O signals and data are derived from the user developed hard­
ware.

The emulation cable contains an in-line printed circuit assembly (interface assembly)
which provides isolation for the UN IVERSAL ONE system from the user system.
The cable is approximately 10 feet long and has two connectors on one end (this
end is attached to the slave CPU board) and a 40-pin plug on the other end (which
is inserted into the user system). Refer to Chapter 3 for detailed installation instruc­
tions.

The cable may remain installed even though not in use as long as care is taken not to
short out the 40-pin plug. A 1 amp fuse on the slave CPU board protects the +5V
power to the emulation cable.

The SLAVE command controls what signals are passed over the emulation cable to
the user's prototype system.

2.2.3 Dual Floppy Disk Subsystem.

The floppy disk subsystem is the mass storage medium for the system. The disk
subsystem consists of two disk drives, a microprocessor controller, power supplies,
and cabinet. The two disk drives are designated as drive 0 and drive 1, and the disk
subsystem communicates directly with the master CPU card in the development
computer through an interconnecting cable.

Drive 0 is usually the system drive. That is, the diskette with the system programs is
normally placed in this drive. The system drive is automatically accessed when a drive
number is not specified with a file name. The diskette loaded on the system drive is
known as the system diskette and normally contains all system programs, including
UDOS, Editor and the Debugger peculiar to a specific slave on the four outside
tracks. (The system diskette can be write protected to ensure that the system programs

2-4

System Description

are not altered.} Alternatively, any drive can be designated as the system drive by
U DOS commands.

Drive 1 usually contains a second diskette utilized primarily for storing user files, for
modifying user files, or as a scratch data area, and mayor may not contain the system
programs. (If it does, the programs usually are duplicate of those on the system
diskette.) This diskette, since it may be used as a scratch area, is not write protected.

Controller. The floppy disk controller utilizes a 128-byte sector buffer to allow
asynchronous data transfer. Other important features include sector interleaving,
automatic data blocking, automatic system boot on power-up, automatic retry on
read or write failures, and the ability to expand to an eight drive system.

Diskette. The organization of data on a diskette is pictured in Figures 2-2a and 2-2b.
On each diskette, there are 77 concentric tracks (Figure 2-2a), which can contain
data. I n Figure 2-2b, a typical track is divided into its component parts. Each
quarter track ;s referred to as a block. Each block is split into eight sectors. A sector
is the basic unit of disk data. Each sector can contain 128 eight-bit bytes. Due to
directory limitations, a maximum of 78 files can be contained on one diskette. The
disc operating system reserves track 0 for the disc directory, and tracks one through
four are normally automatically reserved for system programs.

I n order for the disk drive to be able to read or write a diskette, the diskette must have
certain initial information on it. The process of placing this information on the
diskette is called formatting. Diskettes must be formatted before use. (See paragraph
3-16).

2.2.4 Peripherals.

Optional peripherals compatible with the system include a CRT terminal with a full
ASCII keyboard, a line printer, and a paper tape reader. In addition, an optional
general purpose I/O card supports any RS-232-C compatible device and contains four
8-bit parallel I/O ports which allow the user to interface TTL compatible peripherals
to the UNIVERSAL ONE.

CRT Terminal. The CRT terminal is the primary I/O device for the operator. The
terminal consists of a CRT display and an operator keyboard. The keyboard is a
standard typewriter-style unit with additional mode keys.

ASR-33 Teletypewriter. A standard ASR-33 with a 20 mA current loop or RS-232-C
interface can be used as an alternate console I/O device. I n addition, the TTY can be
used to provide hard copy and to punch paper tapes for file storage off line. (Note:
because of its wide availability, Millennium Information Systems does not offer the
TTY as an option, it should also be noted that the system will also drive a Silent 700
terminal).

Line Printer. A Centronics 306C line printer is available as an option for hard copy
output. The line printer is connected through a cable to the floppy disk subsystem,

2-5

t-----_~77 TRACKS

o
2-2a Track Layout

2-2b Layout of a Typical Data Track

Figure 2-2. Data Organization on a Diskette

2-6

System Description

and is capable of printing 100 characters per second with an 80 character column
width, or 165 characters per second with a 132 character column width.

2.2.5 User-Supplied Peripherals.

Any RS-232-C compatible peripheral can be connected to the serial I/O port of the
General Purpose I/O card, or any 8-bit parallel device to one of the four parallel
ports on the General Purpose I/O card. If these peripherals are to interface to the
operating system, the addition of a software driver to control the device is required.
This driver is added to the UNIVERSAL ONE software using the method described
in the UNIVERSAL ONE System Reference Manual.

2.3 SOFTWARE.

The UNIVERSAL ONE development system software consists of an overall operating
system, called UDOS (Universal Disk Operating System), and several more or less
independent subordinate programs for specific functions: the Debugger, the Editor,
the Assembler, the optional PROM Programmer, and a Systems Readiness Test
program. Together, these are referred to as the system programs (as opposed to
user or application programs generated by the user, stored in the slave memory and
run entirely by the slave CPU, without involving the master CPU).

During operation U DOS resides in the master memory, but other programs reside in
the slave memory (except a portion of the Debugger is in the master memory). The
subordinate system programs are invoked by UDOS commands.

2.3.1 UDOS (Universal Disk Operating System).

U DOS provides the user with a variety of commands that allow the user to exercise
the flexibility of the UNIVERSAL ONE system. UDOS provides commands that:

*
*
*
*
*
*

Perform disk and file maintenance
Set the mode for I/O channels
Perform system uti I ity functions
Allow the user to control execution of programs
Display important system status
Manipulate and modify object code

These commands are described in more detail in Chapter 4.

There are two other features of UDOS that deserve mention. These are the Debug
Monitor and the PROM programming capability. These are described in Chapter 5
and 8, respectively.

2.3.2 The Debugger.

The Assembler can only detect syntax errors in a source program. There usually
remain a number of logic errors in an object program which cannot be detected by
the Assembler. An object program is therefore executed in conjunction with the
Debugger in order to detect logic errors. The Debugger is able to control the execution

2-7

of object programs while examining, changing or tracing the contents of memory,
registers or system status.

All Debugger I/O functions are performed by UDOS. Due to the fact that the master
CPU may not access the slave CPU registers directly, a small section of the Debugger
is placed in slave memory to make slave CPU registers available to the Debugger for
examination and modification. The Debug monitor executes in master memory.

2.3.3 PROM Programming.

UDOS provi'des a series of commands that allow PROMs to be read, written and
compared with slave memory. All these commands apply to the PROM sockets
located in the front panel.

2.3.4 The Editor.

After a source program is conceived and designed, it is input to the UN IVERSAL ONE
system through the use of a program called the Editor, which will store a key-entered
source program on the floppy disk. The Editor is also used to modify source programs
that already exist on mass storage.
The Editor runs in slave memory using the master CPU. The 16 K segment of slave
memory in which the Editor is located is also available as a text buffer for the data
being operated on by the Editor (all 16K is available, less space occupied by Editor
program). UDOS performs all the Editor's I/O requests.

2.3.5 The Assembler.

After a source program has been entered and stored on disk, it must be translated
into a machine-executable object program. This function is performed by the
Assembler, which stores the object code it has assembled from the source program
on mass storage.

The Assembler runs in slave memory using the slave CPU. The Assembler uses the
available part of slave memory for I/O buffers and to create its symbol tables. UDOS
handles all the Assembler's I/O requests.

2.3.6 Systems Readiness Test.

The systems Readiness Test allows the user to insure that the UNIVERSAL ONE
system is operational. This test is described in Appendix G.

2-8

System Description
Table 2-1. Performance Specifications and Leading Particulars

CHARACTERISTIC

DEVELOPMENT COMPUTER

MASTER CPU

SLAVE CPUs

I/O INTERFACES

Co'ntrol Console

Others

SPARE CIRCUIT CARD

POSITIONS

MASTER MEMORY

SLAVE (COMMON)

MEMORY

POWER REQUIREMENTS

SIZE

WEIGHT

OPERATING

TEMPERATURE

HUMIDITY

DUAL FLOPPY DISK

CAPACITY

Per diskette

Per track

Per sector

ACESS TIME

POWER REQUIREMENTS

SIZE

WEIGHT

OPERATING

TEMPERATURE

HUMIDITY

VALUE

Type 2650

Up to four - types SOSOA, 2650,6800

Combined TTY and limited RS-232C interface, with EIA XMIT and EIA RCV pin

positions interchanged for direct connection to a terminal.

High speed paper tape reader, card reader - requires General Purpose I/O card.

15 spare positions can be used selectively for PROM programmers, General Purpose

I/O cards, slave memory expansion, and slave CPU expansion.

16,3S4xS bits RAM and 256xS bits PROM

163S4xS bits RAM (can be expanded to 65,536xS bits or 32,76Sx16 bits)

3.5 amps at 115 V, ± 10%,60 Hz; 2.0 amps at 230 V, ± 10%,50 Hz

44 cm W x 22 cm H x.59 cm L (17.5 x S.75 x 23.23 inches)

661bs.

to 90% relative, non-condensing

BITS

77x32x 12SxS bits = 2,523,136

32x12SxS bits = 32,76S

12SxS bits 1,024

10 msec/track

BYTES

315,392

4,096

12S

3.0 amps at 115 V, ± 10%,60 Hz; 1.5 amps at 230 V, ± 10%,50 Hz

44 cm W x 27 cm H x 60 cm L (17.5 x 10.5 x 23.62 inches)

S5lbs.

100 -3So C (500 -1000 F)

20 - SO% relative, non-condensing

2-9/2-10

Chapter

3.1 INTRODUCTION.

System Installation
~ and Operation

This chapter describes unpacking, installation, interconnection, and initial operation
of the system. Refer to the individual peripheral manuals provided for specific
installation procedures for these units.

3.2 UNPACKING.

The system is shipped with each major unit in a separate carton. Before unpacking the
units, inspect each carton for signs of external damage. If any damage is detected,
make a note on the shipper's receipt.

3.2.1 Unpacking the Universal One Development Computer.

To unpack the development computer, open the carton and remove the unit from its
packing supports. Place the computer on a bench top and remove the top cover.
Remove the packing material from the printed circuit boards and install them in the
proper card slots. The suggested position for each board is shown in Figure 3-1. The
board connectors are offset to prevent them from being installed backwards. Push
each board firmly into its motherboard socket. Untape and remove the power-on
switch keys from the chassis and place in the key switch.

Connect the ribbon cable from the front panel to P3 on the debug logic card, the
ribbon cable from J108 on the rear panel to P2 on the master CPU card, the ribbon
cable from the left-most PROM socket on the front panel to P2 on the 1702A
programmer card (if included in the system), and the ribbon cable from the center
socket on the front panel to P2 on the 82S115 programmer card (if included in the
system). Note that the red wire on each cable indicates the end of the cable to be
connected to pin 1 of its mating connector. A top view of the computer unit with
cards and cables properly installed is shown in Figure 3-2. Do not replace the top
cover at this time.

3.2~2 Unpacking the CRT Terminal.

Open the carton and remove the packing material from the top of the unit. Lift the
terminal and the keyboard out of the carton and set it on a bench top. No further
action is required until the system is ready for interconnection and operation.

3-1

UJ ~ > u
::i UJ
(/J >
I ::i

:2: ~
UJ UJ UJ UJ

<{
UJ UJ UJ UJ UJ UJ

a: a: a: a: a: a: a: a: a: a: a:
;;.: ;;.: ;;.: ;;.: ~ ;;.: ~ ;;.: ;;.: ;;.: ~ (/J (/J (/J (/J ~ (/J (/J (/J (/J

I

M '" ~ '" E ~ '" ~
....

~ ~ ~ ::; £;, :;, ~, $l Ql,,

)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

~ ~ L~~g~J L-MSTR SECTlON--.J OBUG I SLV SECTION I

FRONT PANEL

Figure 3-1. Development Computer Printed Circuit Board Layout

3.2.3 Unpacking the Floppy Disk Unit.

To unpack the floppy disk unit, open the carton and remove the packing supports.
Lift the unit out of the carton and place on the bench top. Remove the top cover and
remove the packing material from around the controller printed circuit board. Make
sure the board is secured in its card guides. Unwind the floppy disk and printer inter­
connect cables and feed them through the channel provided in the rear panel. Insure
that the ribbon cables are firmly installed in their sockets. Replace the top cover and
open the two diskette loading doors.

3.2.4 Unpacking the Line Printer.

To unpack the line printer you must have the following tools available: 1) 17 mm and
19 mm socket wrenches, or 2) an adjustable wrench. Remove the tape or straps hold­
ing the outer cardboard carton to the wooden pallet. Lift the carton off the pallet.
Remove the plastic covering the printer. To complete the unpacking, refer to the

3-2

detailed instructions packed with the printer. These instructions also provide the
necessary information on paper installation procedures.

3.2.5 Installing the Emulation Cable.

It is recommended that the emulation cable be set aside until required for prototype
system checkout. At such time, install the cable as follows. Remove the top cover
from the computer unit. Unwind the cables from the emulator interface assembly.
Feed the ribbon cables marked P2 and P3 through an access slot in the rear panel and
connect them to their corresponding connectors P2 and P3 on the slave CPU card.
Replace the top cover. Turn off the power on the user prototype system. Connect the
40-pin emulation cable connector to the socket on the user prototype system,
making sure that pin 1 aligns correctly. The UNIVERSAL ONE system is now ready
for emu lation operation.

3.3 PHYSICAL INSTALLATION.

The units should be placed on a convenient flat surface, close 'enough to each other
for the interconnecting cables to reach. (Figure 3-3 shows the envelope dimensions
of each unit of the UN IVERSAL ONE system.)

Since the CRT terminal and the UN IVERSAL ONE development computer draw
cooling air through openings in the bottom of their cabinets, these units should be
located where it is unlikely that paper, plastic, carpeting or other materials will be
drawn into the air intake and cause overheating. The other units draw cooling air
from openings in the rear panel.

3.3.1 Power and Cable Interconnections.

Before connecting any units to the primary power source, turn all power switches to
the off position. Rotate the development computer key switch fully counterclock­
wise. Ensure that all units are wired for the primary input voltage used. Each system
unit has a separate power cord and requires a separate outlet for primary power.
Current requirements are as listed in Table 2-1.

Refer to Figure 3-4 and make the system interconnections as follows:

1. Connect the dual floppy disk unit to the development computer by routing
the 40 lead ribbon cable (90014221) from the rear of the disk unit through
the center cableway on the rear of the computer to P3 of the Master CPU
card. Ensure that pin 1 of the cable (red stripe) is mated to pin 1 of P3.
Replace the top cover on the computer unit.

2. If a line printer is used, connect the ribbon cable (90014172) from the rear
of the floppy dfsk unit to the connector on the rear panel of the printer.
Lock the cable in place.

3. Connect the CRT terminal to the development computer by installing the
cable (90014191) between J 108 on the computer rear panel and the I/O
connector on the rear panel of the terminal. The ends of the cable are
identical.

3-4

3/4 in

23-1/4 in

L
t

1 in

System I nstallation and Operation

1/2 in

1-3/8 in

11-_ ---17-1/8 in-----I'I

23 in

I ------17-112 in------<·~I DI I (i)
8-3/4 in 11 in

o

8 EI 8 -_t
1/2 in 1/2 in

Figure 3-3. Envelope Dimensions of System Units

3-5

I LINE PRINTER
(optional)

,.....-,
'-r-'

PIN 90014221

SYSTEM CONTROL.~2 (ON CRT)
CONSOLE

(CRT OR TTY) ~

J\o;-(H ~ PIN 90014191'

USER'S
PERIPHERALS

(FOR SLAVE OR
MASTER CPU) ----

L-rt,08

I 0

I:::
P1 6

u

PIN 90014021

FLOPPY
DISK

DRIVE

~2
~ f-

~ ir
u

,.----- .,
I HA:.!'~A~~6SEO:T- I
I DEVELOPMENT I
L__ _..J

40-PIN DIP
CONNECTOR

f
EMULATIONl
INTERFACE
ASSEMBL Y

l,,{
ir
u

EMULATION TYPt" PIN

CABLE 8080 90013021
ASSEMBL Y 2650 90013022

6800 90013023

a: .vote 3 w
w
t;;

~
«
:;;;

(

~
~2 ~2 h

P2~

lJp5

PROM 1 r""1 r'"l PROM 2

Notes:
1. If a control console other than the CRT

Terminal supplied by Millennium Information Systems
is used, this cable must be supplied by the user. See
Table 3-1 for pin assignments of connector JI08 and
P3 on master CPU.

2. All units shown (except emulation interface
assembly / are individually connected to primary

> «
~

y

FRONT PANEl

power source (115 or 230 VAc). Power cables not

shown.

3. P2 to front panel cable used only when the
optional full display front panel is used on the develop,
ment computer.

Figure 3-4. Typical Cabling Diagram of UNIVERSAL ONE System Installation

3-6

· System I nstallation and Operation

NOTE

If the operator's control console used is a user supplied
device (instead of the CRT terminal from Millennium
I nformation Systems), the user must also supply the
interconnecting cable. See Note in Figure 3-4 for
J108 interfacing information.

4. If multiple disk units are included in the system, refer to the special instruc­
tions packed with the system for installation of the additional units.

5. Connect all power cords to the line power source.

3.3.2 Controls and Indicators.

The operator controls and indicators on the system units, including peripherals, are
described below.

3.3.3 Development Computer.

Referring to Figure 3-5, the following controls are located on the computer front
panel:

1. The key-operated switch controls primary power to the unit. When the key
is rotated fully clockwise, power is applied; when the key is rotated fully
counterclockwise, power is off and the key may be removed.

2. The backlighted display has the following legends:

PWR lights when primary power is applied.
MSTR I ights when the master CPU has control.
SLV I ights when the slave CPU has control.
RUN lights when the system is running.

3. The DIAG I NT switch initiates a reload of UDOS when the system is in the
run state. Control is returned to the master CPU. This switch is used with the
maintenance diagnostic software.

4. The RESET switch terminates any program in progress. The hardware is
initialized, and the operating system is reloaded.

5. The PRO~ POWER switch enables or disables PROM programming power at
the front panel PROM sockets. When enabled, the PPWR indicator above the
switch is lighted. PROM PWR should be off whenever devices are inserted or
rmeoved from the sockets.

6. PROM PROGRAM sockets. The left most socket (PROM 1) is used for
programming type 1702A MaS PROMs. The center socket (PROM 2) is
used for programming type 82S115 bipolar PROMs. The rightmost socket
(PROM 3) is reserved for future use. All three sockets are zero insertion
force sockets.

Referring to Figure 3-6, the following items are located on the rear panel.

3-7

4) Insert the system diskette into drive O. The correct method for inserting a
diskette is shown in Figure 3-8. Ensure that the label side is toward the
POWER switch and that the label is the last part of the diskette inserted into
the drive. Close disk drive door.

5) Apply power to the line printer.

6) Apply power to the development computer. This will cause an automatic read
from drive 0, which will load UDOS into master memory. When UODS has
been loaded, a welcoming message will be displayed on the terminal:

> unos VER 1.0 TYPE
Where TYPE will be type of slave CPU enabled, such as 8080, 6800,2650,
etc., and the> is the UDOS prompt character which informs the user that
UDOS is ready to accept commands.

7) If the welcoming message does not appear within 15 seconds, depress the
RESET switch. If the system again does not respond correctly, an improper
diskette or a faulty drive may be the problem. Try again with a new system
diskette and/or using drive 1. If trouble presists, request service assistance
from Millennium.

NOTE

The computer will automatically switch the initializa­
tion process to drive 1 if only drive 1 contains a
diskette.

8) If the welcoming message is incorrect, the baud rate-setting of the CRT may
not correspond to the rate selected on the Master CPU card. Select the correct
baud rate on the CRT terminal rear panel. Refer to the UNIVERSAL ONE
System Reference Manual for information on changing the baud rate on the
Master CPU card.

3.4.3 Manual Reset.

If a reinitialization of the system is desired during operation, the user may reload
UDOS by pressing the RESET switch on the front panel. The welcoming message and
the prompt character will be issued after UDOS has been loaded. (Do not use the
manual RESET when using the Editor - data files being created may be lost.)

3-12

P2 J108
PIN PIN

1 1
2 14
3 2
4 15
5 3
6 16
7 4
8 17

9 5
10 18

11 6
12 19
13 7
14 20

15 8
16 21
17 9
18 22
19 10
20 23
21 11
22 24
23 12
24 25

25 13

26

System I nstallation and Operation

Table 3-1. Pin Assignments of Connectors J 108 and P2.
(Development Computer Back Panel and Master CPU)

SIGNAL DESCRIPTION COMMENTS

CHS GND (Not Used)
TTX TTY Current Loop Input - RCVR IN
EIA RCV DATA EIA Serial Input RCRVIN
TTRDR + Tape Reader Control Out 470hmto+12
EIA XMIT DATA EIA Serial Output EIA Driver
TTRDR - Tape Reader Control Out Open Collector Driver
REQ TO SND Request to Sned 2.2 K Pull-up
TTRCV + TTY Current Loop 620 ohm to +12V

Output +
CLR TO SND Clear to Send 2.2K Pull-up
TTRCV - TTY Cu rrent Loop Open Collector Driver

Output
DATASET ROY Data Set Ready 2.2K Pull-up

-

SIG GND EIA Ground
DATA TERM Data Terminal Ready 2.2K Pull-up

ROY
CARR DET (Not Used)

-

-

RING IND (Not Used)
-

-

ORIG (Not Used)
-

LOCAL (Not Used)
SND (Not Used)

RESTRAINT
TTX + TTY Current Loop 620 ohm to +12V

Input +

3-13/3-14

Chapter

4.1 INTRODUCTION.

Universal Disk
Operating System

This chapter describes the Universal Disk Operating System (UDOS) for the UNI­
VERSAL ONE system. General topics include the use of the keyboard to enter
commands or request control of the system, an overview of the UDOS file structure,
a catalog of the UDOS commands and their functions, and a study of the command
file capability and overlay areas. In addition, summaries of the UDOS commands
and UDOS error messages are provided at the end of the chapter.

4.2 UDOS OVERVIEW.

The Universal Disk Operating System (UDOS) executes in master memory and
consists of two sections: resident UDOS which is always present in the master
memory, and the UDOS overlays, which are loaded into the master memory auto­
matically from the system diskette, whenever certain UDOS commands are invoked.
The resident UDOS section, in turn, consists of a PROM portion and a RAM portion.

The PROM resident portion is the UDOS BOOT, which initially loads the resident
portion of UDOS from disk into RAM master memory, when the RESET switch
is depressed.

The RAM resident portion of UDOS is comprised of the following modules:

• Command Line Processor
• SVC Processor
• Job Dispatcher
• File Manager
• Device Drivers

These modules are described in the following paragraph 4.2.1. In addition, peripheral
device I/O buffers are also located in the RAM resident portion.

The section of UDOS located in the disk consists entirely of the overlays, which
process most of the UDOS commands; the only commands always resident in RAM
are GO, SYSTEM, LOAD and XEQ.

4-1

The EDIT and ASM commands are also a part of the UDOS command set, but
because the Editor and Assembler programs both are executed out of the slave
memory these commands need not be either resident or in an overlay. Instead, they
cause the Command Line Processor to load the corresponding program into the slave
memory and need notbe processed further by the UDOS program modules.

4.2.1 Resident UDOS Modules.

The Command Line Processor operates on commands input from the CRT terminal
(i.e. the system control console) or from a command file stored in the disk. It in­
terprets the command(s), prepares a parameter list, and then causes the function to
be performed, by transfering control to the appropriate resident procedure, or by
loading and executing an overlay.

The SVC Processor operates on internal requests for I/O or a UDOS service function.
All of the I/O communication with system peripherals, for system programs running
under the slave CPU, are performed by the SVC Processor.

The Job Dispatcher controls execution of the active jobs in the system. It transfers
control to the highest priority job whose I/O operation has been completed, or to
the job which, otherwise, is'ready to run.

The floppy disk File Manager and other Device Drivers control operation of the
peripheral devices in the system, all of which are interrupt driven.

4.2.2 UDOS Overlays.

The UDOS overlays consist of all UDOS commands except the four memory-resident
commands.

Master memory contains two overlay areas into which the UDOS overlay commands
are loaded prior to execution. The overlay areas are referred to as overlay area 1 and
overlay area 2. Some UDOS overlay commands are executed in overlay area 1, some
are executed in overlay area 2, and some occupy both overlay areas during execution.

The UDOS commands are categorized in the following list by the overlay area in
which they are executed:

Overlay Area 1 Overlay Area 2 Overlay Area 1 & 2

COpy RHEX ABORT DELETE DSTAT LDIR
DEBUG RSMS ASSIGN DEVICE SET MODULE
DUP VERIFY BKPT DUMP SLAVE
FORMAT WHEX CLBP EXAM SUSPEND
PRINT WSMS CLOSE PATCH TRACE
RPROM WPROM CONT RENAME TYPE
CPROM KILL RESET STATUS

4-2

Universal Disk Operating System

UDOS commands can be executed concurrently as long as they do not occupy the
same overlay area. I n addition, the concurrent execution must be consistent with
the current state of the peri pheral devices and must not cause any system confl icts.

For example, suppose a paper tape was being read into slave memory. This would be
accompl ished using the R HEX command (described in paragraph 4.6.6):

:> F.'

While the tape is being processed, file maintenance could be performed. Pressing the
ESCAPE key wou Id suspend RHEX execution and display the UDOS prompt
character ». The DE LETE command (paragraph 4.5.1) could then be entered:

»DEL FILE1 l DATA 1 :S:DUPCE 10

When the0 (RETURN key) was entered, the RHEX command was continued and
the DEL command started. Note that RHEX executes in overlay area 1, while
DE LETE operates in overlay area 2, which allows the concurrent execution of
these progra ms.

4.3 FILES, DEVICES, AND CHANNELS

UDOS is a file-oriented system. The understanding of a file-oriented system is greatly
enhanced by understanding the concepts of a file, a device, and a channel.

A file is a set of data. The set has a logical beginning and a logical end. For example,
the government's file on a person's tax return might begin with the first return filed
by the person and end with the last return fi led. I n between the first return and the
last return there could be other returns, audits, etc. All the information beginning
with the first return and ending with the last return is the file. In the UN IVERSAL
ONE system, files are stored on diskettes. Disk files can be accessed through their
logical beginning address, a map that indicates where the data in the file is located
on the disk, and a logical ending address.

Devices are physical peripherals that provide input and output services for UDOS.
The five standard devices are the console input device, the console output device,
the line printer, the high speed paper tape reader and the teletype reader. These
devices all have reserved names through which the user can access them. These names
appear in Table 4-1.

Table 4-1. List of UDOS Device Names.

DEVICE NAME DEVICE

CONI CONSOLE INPUT
eONO CONSOLE OUTPUT
LPT1 LINE PRINTER1
LPT2 LINE PRINTER 2
HSPT HIGH SPEED PAPER TAPE READER
TTYR TELETYPE READER

4-3

For example, the command:

:> COP'· .. ' TTYP LPT 1

would copy the information from the teletype-paper tape reader to the line printer.

NOTE

Although UDOS software supports a high speed paper tape
reader, this peripheral is available only on request.

Files may also be viewed as devices. Fi les can be specified as input or output devices.
To refer to a file as a device, the operator must refer to the file name for that file. In
addition, if the file is not located on the diskette installed in the system drive, it may
be necessary to specify the drive on which the file is located. UDOS can automati­
cally create the necessary new fi les or search other diskette directories.

A filename must have the following properties:

1) The filename must contain at least one but not more than eight characters.

2) The characters in the name must come from the following set:

The alphabetic characters (A - Z)
The numeric characters (0 - 9)
These special characters: !, ", #, %, &, " (,), *, ;, =, and ?

3) The filename may not begin with a numeric character.

4) The filename must not be one of the reserved names which identify physical
devices: CONO, CONI, LPTl, LPT2, HSPT or TTYR.

5) The filename must be unique to the diskette containing the file.

Every diskette has a system area, called the directory, where system information is
kept on all the files on the diskette. This information includes the filename, disk
sectors used, beginning and ending disk addresses, etc. The directory also includes
system information which prevents bad disk sectors from being allocated for
file usage.

UDOS is only aware of diskettes that are loaded in the available disk drives. For this
reason, diskettes are not referred to by diskette name; rather, they are referred to by
drive number. As an example, suppose you had diskettes loaded in drives 0 and 1.
Drive 0 is the system drive. There is a file named DATA 1 on drive 0 and a file named
OAT A 1 on drfve1. If it was necessary to copy the second DATA 1 to the I ine printer,
how would this be accomplished? The action is performed by specifying a drive
number to indicate which DATA 1 is to be copied. To specify the drive, append the
drive number to the file name. This is done by following the filename with a 'I' to
separate the filename and drive and then inserting the drive number. To copy DATA 1
on drive 1 to the line printer, the following command would be performed:

4-4

Universal Disk Operating System

> COpy DATA1/1 LPTl

If no drive number is appended to a filename, UDOS normally assumes that the file
resides on the system drive, and will search the system drive directory for the fi Ie.
See the SEARCH command for an alternative mode.

Channels are used by the program running on the slave CPU. The user can assign a
channel to a device using the ASSIGN command. When this is accomplished, the
slave is able to perform input or output to the device through the channel. The
devices specified in the assignment may be physical devices or files.

4.4 ENTERING UDOS COMMANDS.

When the prompt character> is displayed, the user is allowed to enter commands
to UDOS. These commands will all have a similar format. The format is:

> COMMAND PARAMETERS 0
where:

COMMAND is the name of the command to be executed;

PARAMETER is all of the required or optional list of parameters for the
specified command; and

o is the RETURN key

The command is always separated from its parameters by one or more spaces or by
a comma.

For example, if the user entered the portion of the following line (after the prompt
character) :

> LDIF.' 00
LDI R would be the command to be executed and 0 would be the parameter for
LDI R. When one presses the RETURN key, UDOS is told that a command is waiting
to be interpreted. UDOS identifies the command, loads the appropriate program
into master memory, and control is passed to the loaded program to perform the
requested function. In the LDIR 0 example, the command LDIR, (the List Directory
command) is identified by UDOS, and results in the List Directory program being
loaded and executed. The parameter, 0, specifies the drive whose directory will be
listed. The listing will be displayed on the console.

If one desires a listing that included the system files, the following entry should
be made:

'> LDlf;;~ 0 • 0

4-5

where:

LD I R is the command, and

o and. (which requests that system files be included in the directory listing)
are the parameters.

Note that a space separates or delimits the two parameters. When two or more para­
meters are present in a command I ine, they must be separated by spaces, or by a
comma (,). Since the comma is also a delimiting character, the following command
line is interpreted by UDOS in the same way as the above example:

> LDIF.~!' O!'. 0
The space and comma can be used as delimiters in the same command line.

4.5 SPECIAL KEYS.

UDOS pays special attention to certain keys in order to facilitate the entry of
command lines and operator control of the system. These keys are DE LETE (or
RUBOUT), ESCAPE, and the space bar. UDOS also recognizes CTR L-Z as a special
character.

4.5. 1 D~lete Key.

Suppose the operator was entering the command LDIR 0,. discussed in the previous
section, miskeyed, and instead entered:

> LDI<

To remove the incorrect character K from the buffer, the DELETE key is used. One
depression of the DELETE key deletes the last character in the buffer, and echoes
that character to the console. While the console displays:

> LDKI<

the buffer contains LD. The entry of the command I ine can then be completed as if
the K was never entered.

Suppose the error in the entry was of this nature:

:> ; DIP 0

and as the operator prepares to enter the delimiting character, notices that ";" was
entered instead of L.. Rather than pressing DELETE six times to reach the incorrect
character, the operator may delete the entire line through the use of the ESCAPE
key.

4-6

Universal Disk Operating System

4.5.2 Escape Key.

Pressing the ESCAPE key during entry of a command line can result in different
UDOS responses depending on the current system mode. The possible system input
modes are:

1) Input is being performed for a UDOS command;

2) Input is being performed for the Editor;

3) Input is being performed for a user application program.

No matter which of these modes the system is operating in, the current input line
will be deleted.

If command input for UDOS is being performed, which is the case in the ;DI R 0
example, the system will delete the current command line and then respond with a
double prompt ». An exception to this rule occurs when the EXAM command is
being performed. If the ESCAPE key is pressed while EXAM is being performed, the
memory locations which were altered prior to the key depression will remain altered.

If the Editor is running, the response will be the Editor prompt character (*),
except if the Editor is in the INPUT mode, in which case no prompt character will
be displayed.

The system response, when a user application program is running, will depend on
what the user has programmed as a response.

The system response to a depression of the ESCAPE key when a UDOS or user pro­
gram is executing, as distinguished from console input being performed, is discussed
in paragraph 4.6.3, System Control Commands.

4.5.3 Space Bar.

The space bar (key) allows the user to control system output to the console. Suppose
the user has completed entering the LDI R 0,.0 command and the system is
listing the directory on the console. Depressing the space bar once will temporarily
pause output to the console and allow the user to examine the directory before it
scrolls off the top of the CRT. Depress the space bar once again and the listing
wi II resu me.

4.5.4 CTRL-Z Command.

CTR L-Z, which is formed by holding the CTR L (control) key down while pressing
Z, is treated as an end-of-file character when an ASCII read is being performed from
the console or other system input device.

4-7

4.6 THE UDOS COMMANDS.

This section provides a description of all UDOS commands with the following
exceptions:

*

*

*

*
*

4.6.1

Commands that are primarily used in conjunction with the command file
facility are described in paragraph 4.6.8.

Commands that are associated with the Debug function are described in
Chapter 5.

The ED IT command is described in Chapter 6.

The ASM command is described in Chapter 7.

Commands that are used for PROM programming and verification are de­
scribed in Chapter 8.

The UDOS Command Structure.

All UDOS commands are structured as follows:

I COMMAND PARAMETER

The command definitions are followed with a description of their function. Most
descriptions proceed as follows:

1) The command is presented. Parameters that are optional are enclosed in
parentheses. Three periods (. ..) indicate that the preceding parameter may be
repeated as many times as the limitations of the command allow. The
minimum characters required to initiate the command are underlined.
For example:

I ~y INPUT (... INPUT) OUTPUT

COP INPUT OUTPUT, where INPUT and OUTPUT are two filenames, is the
minimum COpy command that will be executed. Additional INPUT files
may be specified as in COP INPUT1 INPUT2 INPUT3 OUTPUT.

2) The first sentence provides a brief descri ption of the command's function.

3) The parameters associated with the command are discussed. The effect of
parameters on execution and their default values, if any, are described.

4) If further discussion of the command is necessary, the reasoning behind the
command, its logic flow, or possible problems are analyzed in the next
paragraph.

5) The error messages that the command might evoke are listed. The format and
a list of UDOS error messages is presented in paragraph 4.6.9 and Table 4-2.

4-8

Universal Disk Operating System

In the command line specification, several terms and conventions are used. The
terms and conventions involved are NAME, CH, DEVICE, ADDRESS or Ai,
FILENAME, 0 and L.

NAME

CH

DEVICE

ADDRESS

refers to a program name. For example, ABORT NAME requests that
the program NAME be aborted. If the program VAl L was to be aborted,
ABORT VAIL would be used.

refers to a channel number. Channel numbers may be in the range 0 - 7.
For example, if channel 2 were to be assigned to the line printer, 2
would replace CH and LPT1 would replace DEVICE in the ASSIGN
CH DEVICE command. This would result in ASSIGN 2 LPT1 being
executed.

refers to any of the system devices or to any disk files. For example, if
channel 3 were to be assigned to the disk file SRCCD/1, 3 would re­
place CH and SRCCD/1 would replace DEVICE in the ASSIGN CH
DEVICE command. This would result in ASSIGN 3 SRCCD/1 being
executed.

or Ai refers to a hexadecimal address constant between 0 and FFFF. For
example, MODULE FILENAME, A1, A2, A3 could be replaced with
MODU LE LDFLE, 100, 2FFF, 80.

FI LENAME refers to a disk file. To edit the file DT A 1/1 using the Editor, the user
would issue the command EDIT DTA1/1 where DTA1/1 is a specific
instance of the general parameter FI LENAME. Note that in most com­
mands it is required that the name of the file be followed by /0, where
o is the floppy disk drive number.

o refers to the disk drive number. To duplicate the diskette on drive 0 on
to the diskette on drive 1, 0 would be used for 01 and 1 would be, used
for 02 in the OUP 01 02 command. This would yield a DUP 0 1
command.

L refers to a line number. To list the 8th through 14th lines of a file name
OTA/1 on the line' printer, the user would replace PR I NT FILENAME
(L 1 L2) wi th P R I NT 0 T A 1/1 8 14.

4.6.2 UDOS Command Completion.

Most UDOS commands indicate that they have completed their function by display­
ing an End-of-Job message. The form of this message is *id'* EOJ where 'id' is the
UDOS system program identifier (see Table 4-3) and EOJ is the end of job message.
Completion of any user-entered command causes the UOOS prompt character>
to be displayed.

4-9

4.6.3 System Control Commands.

The user may control the execution of system or slave programs through these
special keys:

ESC
SPACE BAR

The ESC ESC sequence is used to suspend system or slave programs and to return
control to UDOS. The space bar key is used to control UDOS displays.

The user may also control the execution of system or slave programs and control the
slave channels with these commands:

SUSPEND
CaNT
ABORT
ASSIGN
CLOSE

SUSPEND halts program execution. CaNT restarts suspended programs. ABORT
terminates program or command execution. ASS IGN forms a connection between a
slave channel and a device. CLOSE terminates the logical connection formed by an
ASSIGN command.

4-10

ESC
or

ESC
Space Bar

ESC ESC

A single depression of the ESCAPE key has two possible interpretations:

a) If input was being performed to UDOS, the Editor, or an application
program, refer to paragraph 4.5.2 for a discussion of the actions taken.

b) If an UDOS or user program is executing, a single depression of the ESCAPE
key will result in that program being temporarily suspended, unless the
program is one of the following fou r U DOS programs:

LDIR
TRACE
STATUS
DUMP

If one of these four programs is executing, a depression of the ESCAPE key
will terminate its execution. To restart any of the other UDOS programs or
the user program after it has been temporarily suspended by ESCAPE, either
press RETURN or enter a valid UDOS command.

When the ESCAPE key is depressed, UDOS will respond with a double
prompt to record the fact, unless a command line is being input to the
Editor or to a user application program.

Two consecutive depressions of the ESCAPE key will result in all active programs in
the system being suspended. No program suspended by this double depression of
the ESCAPE key will resume execution unless the user issues a CONT (Continue
Execution) command.

SPACE BAR

The space bar is discussed in paragraph 4.5.3.

4-11

Suspend
Cont

SUSPEND NAME
or
SUSPEND-~

or
SUSPEND I

This command suspends the execution of active programs. The Debug program may
not be suspended.

SUSPEND NAME suspends the specified program. SUSPEND * suspends all active
programs. SUSPEND I suspends the slave program.

The primary use for this command is in conjunction with the command file capa­
bility discussed in paragraph 4.6.7. Inserting this command in a command file will
suspend system operation to allow some required user action, such as inserting a
special diskette into one of the drives.

SUS Error Responses:

24 - Job not active
26 - Job already. suspended
31 - Parameter requ ired

.cONT NAME
or
.cONT *
or
.cONTI

This command continues the execution of a suspended program.

CONT NAME causes the specified program to be continued. CONT * causes all
suspended programs to be continued. CONT I continues the slave program.

A program may be suspended in one of two ways: 1) If the ESCAPE key is
depressed twice in succession, UDOS will have suspended all programs. 2) The
user may suspend programs through the use of the SUSPEND command.

*CON * Error Responses:

24 - Job not active
25 - Job not suspended
31 - Parameter required

4-12

8BORT NAME
or
8BORT *
or
8BORT/

This command causes an active UDOS or user program to be aborted.

Abort
Close

ABORT NAME causes the specified program to be aborted. ABORT * causes all
active programs to be aborted. ABORT / causes the slave program to be aborted.

* ABT* Error Responses:

24 - Job not active
31 - Parameter required

CLOSE CH (... CH)

This command causes the specified channels to be closed. The channel numbers must
be in the range 0-7.

The logical connection between channel and device that was created in the ASSIGN
command is severed, and the channel and device are no longer logically related. If
the channel was assigned to a disk output file, the data remaining in the UDOS
deblocking buffer will be output to the file before it is closed.

C LS Error Responses:

2 - Directory write error
7 - Device write error

19 - Invalid channel number
31
62
64

- Parameter required
- Device not operational
- Invalid diskette

4-13

ASsign

I 8SSIGNCH DEVICE (. .. CH DEVICE)

This command causes the connection of the logical slave channel CH to the specified
DEVICE. CH must be in the range 0-7. DEVICE must be one of the system device
names or the name of a disk file.

The ASSIGN command views every disk file as an independent physical device.
When a disk file name is used as DEVICE in the ASSIGN command, the directory
of the diskette is searched for the filename. If the filename is not found, the file is
created in the directory.

The specified channel is connected to DEVICE, which results in all subsequent I/O
operations on the channel being performed on DEVICE.

The ASSIGN command applies to the user channels only.

* ASN* Error Responses:

1 - Directory read error
9 - Invalid drive number

12
19
20
21
31

4-14

- Invalid file name
- Invalid channel number
- Channel in use
- Channel assign failure
- Parameter required

4.6.4 System Option Commands.

SEArch ON
SEArch OFf

The user may set the value of various system options that remain in effect during all
subsequent operations, until removed or changed. To set system operations, the
following commands are used:

SEARCH
SYSTEM
DEVICE
CLOCK

SEARCH allows the user to invoke the automatic file searching system. SYSTEM
allows the user to designate the system drive. 0 EV ICE informs U DOS of device
status.

SEARCH ON (N)
or
SEARCH OFF

This command turns the automatic file searching flag, SEARCH, on or off. The
default value of SEARCH is off. N specifies the number of drives in the user system.
The default value of N is 2. If N is given, it must be greater than 2.

If automatic file searching is not being performed, i.e. SEARCH is off, then when
the user specifies a filename with some command that he enters, UDOS only searches
the directory of the specified drive for the file. (If no drive is specified, the default
value is the system drive.)

If automatic file searching is being performed, i.e. SEARCH is on, then when the
user specifies a filename but not a drive number, UDOS will search, in circular
manner, N directories, beginning with the system diskette, for that filename. If the
filename is not found, it will be created on the first diskette which can contain a
file. If that diskette is write protected, a directory write error will result.

This feature is very useful when drive 0 is a write protected system diskette and all
user files are on drive 1.

SCH Error Responses:

30 - Invalid parameter
31 - Parameter required

4-15

System
DEVice
Clack ON CLOck OFF

I .sYSTEM D I

This command designates drive 0 as the system disk drive.

This command allows the user to designate any disk drive attached to the system as
the system drive.

The default value for the system drive is O.

UDOS Error Responses:

9 - I nvalid drive number

DEVICE DEVICE U
or
DEVICE DEVICE D

This command informs UDOS of the availability of a peripheral device. The argu­
ment DEVI CE must be one of the system device names (see Table 4-1).

If U is specified as the second argument, the system is informed that the device is
UP, or available for use. If D is specified as the second argument, the system is in­
formed that the device is DOWN, or not available for use. Either U or D must be
specified.

DEV Error Responses:

30 - Invalid parameter
31 - Parameter required
52 - Invalid device

CLOCK ON
or
CLOCK OFF

This command enables or disables the 100 msec real time clock interrupt. (The real
time clock is synchronized with the system clock and is available out of master
memory for use by slave programs and other purposes.) Default value of CLOCK
isON.

*C L K * Error Responses:

30 - Invalid parameter
31 - Parameter required

4-16

Universal Disk Operating System

4.6.5 System Utilities Commands.

The user can perform disk and file maintenance and move data around the UNI­
VERSAL ONE system with these commands:

FORMAT
VERIFY
RENAME
DUP
LDIR
DELETE
COpy
PRINT

FORMAT initializes the diskette for use by the UNIVERSAL ONE system. VERI FY
determines if bad blocks exist on the disk and catalogs the location of the bad
blocks. RENAME changes the name of a disk file or changes a disk identification.
DUP duplicates diskettes. LDIR lists the directory of a specified diskette. DELETE
removes files from the disk. COpy copies data from one part of the system to
another. PR INT outputs the contents of a disk file on an appropriate device.

4-17

FORMAT

I FORMAT D (IDENT)

All virgin diskettes must be formatted and verified before they can be used by
UDOS.

This command causes the diskette on drive D to be formatted. The ASCII character
string I DENT is a unique code that must be used to identify every diskette; I DENT
is truncated if it is longer than 48 characters. D may not be the designated system
drive.

The formatting process is primarily performed by the floppy disk controller and
involves writing clock bits, sync patterns, the track and sector number, a data pattern
and a CRC character on every sector of the diskette. During the formatting process,
the directory is preset to indicate that tracks 1 through 4 are in use. This serves to
reserve those tracks for UD03. If a bad sector is detected on tracks a through 4 (the
directory and UDOS area) the formatting process is aborted.

If the diskette will not be used for storage of system software, the area reserved for
UDOS may be freed for other uses (after formatting is complete) by entering
DELETE UDOS command. This, however, will prevent ever using this diskette for
system programs.

During formatting,the ASCII character string I DENT is written to the diskette and
serves as the diskette identification. This identification is always displayed when the
LDIR command is used to list the diskette directory. Note that if IDENT is not
specified, a string of blanks wi II be used to identify the diskette.

FMT Error Responses:

2 - Directory write error
9 - Invalid drive number

17 - Output device assign failure
18 - Device in use
47 - System area bad

4-18

Verify

YERIFY D

This command causes the diskette on drive D to be verified.

The verification process consists of reading every sector on the diskette and noting
all the errors that occur. If, when a sector is read, an error occurs, the entire track on
which the bad sector is located is set in a Bad Block Bit Map. In addition, the track
and sector number of the defective sector are output to the console. When all the
sectors have been read, the Bad Block Bit Map is written on the diskette. Whenever
files are created and disk space allocation for the file is performed, referencewill be
made to the Bad Block Bit Map and the defective blocks will not be allocated.

If a defective sector is detected on any of tracks 0 through 4 (the UDOS system
area) during the verification process, the process wi II be aborted and an appropriate
message will be displayed on the console.

VER Error Responses:

1 - Directory read error
2 - Directory write error
9 - Invalid drive number

16
18
47

- Input device assign failure
- Device in use
- System area bad

4-19

REName

RENAME OLDFILE/D NEWFILE
or
RENAME D IDENT

The RENAME function has two forms. The first form renames the file 0 LDFI LE
to NEWFI LE. This form requires that a drive number be specified with 0 LDFI LE.
If a drive number is specified with NEWFI LE, it must be the same as the drive
number specified with OLDFI LE.

The· second form reidentifies the diskette on drive D with the character string
IDENT. When the string IDENT is used it will be truncated if it is longer than 48
characters.

REN Error Responses:

1 - Directory read error
2 - Directory write error
8 - Drive not specified
9 - Invalid drive number

12 - Invalid file name
13 - Input file not found
16 - Input device assign failure
18 - Device in use
30 - Invalid parameter
31 - Parameter required
32 - Too many parameters
57 - File name in use

DUP

DUP D1 D2 (IDENT)

This command causes the diskette on drive D1 to be copied to the diskette on drive
D2. Diskette D2 is identified by the character string IDENT. D1 may not be the
same as D2, and D2 may not be the system drive. IDENT will be truncated if it is
longer than 48 characters.

D1 is copied to D2 by copying all the files on D1 to D2. In the event of a disk read
or write error during a file copy, the output file will be deleted on D2, a warning
message will be displayed, and the DUP process will continue with the next file.

The diskette on drive D2 should be verified before the DUP command is executed.
This is done to establish the Bad Block Bit Map for the diskette.

DUP Error Responses:

1 - Directory read error
2 - Directory write error

·6 - Read error, dup continues
7 - Write error, dup continues
9 - Invalid drive number

16
17
21

- Input device assign failure
- Output device assign failure
- Channel assign failure

4-21

ldir
DElete

I .L.DIR (D) (.) (/) (DEVICE)

This command lists the contents of the directory of the diskette on drive 0 on
DEVICE. If 0 is not specified, the directory of the system diskette will be listed.
If '.' is specified, the UDOS system files will be included in the directory listing.
If '/' is specified, diskette space allocation information will be listed for each file in
the directory, and a summary of the total diskette utilization will follow at the end
of the directory listing. If DEVICE is not specified, the listing will be displayed on
the console.

* 0 I R * Error Responses:

1 - Directory read error
7 - Device write error

10 - Overlay load failure
15 - Invalid output device
17 - Output device assign failure

DELETE FI LENAME/D (. .. FI LENAME/D)

This command deletes all the filenames specified in its parameter list. Each filename
must have a drive number associated with it. Each file specified in the parameter
list will be deleted from the directory of the disk on which it resides, and the sector
blocks allocated to the fi Ie wi II be released for reallocation.

*DE L * Error Responses:

2 - Directory write error
8 - Drive not specified
9 - Invalid drive number

12 - Invalid file name
13 - File not found
18
21
30
31

4-22

- Device in use
- Channel assign failure
- Invalid parameter
- Parameter required

COPy

COpy INPUT (... 1 NPUT) OUTPUT

This command copies INPUT data to an OUTPUT file or device. INPUT is a disk
file or an input device, OUTPUT is a disk file or an output device.

If COpy INPUT OUTPUT is completely specified, data is copied from the specified
I N PUT device or fi Ie to the specified 0 UTPUT device or fi Ie unti I an end-of-fi Ie
condition is encountered on the I NPUT. If more than one I NPUT is specified, the
data is copied to the OUTPUT file in the following manner:

1) The first I NPUT is copied to OUTPUT until the end-of-file condition is
reached.

2) The second INPUT is then concatenated behind the first INPUT by copying
its data to OUTPUT directly after the first INPUT.

3) The third INPUT is then copied after the second, etc.

The copy process is completed when the last INPUT is written to OUTPUT, and its
end-of-file condition is reached. The OUTPUT file is then closed.

None of the I NPUT files or devices may be the OUTPUT file or device.

When an ASCII file is being input from one of the system peripherals (CONI,TTYR,
or HSPT), the CONTRO L-Z character is interpreted as the end-of-file condition.

COP Error Responses:

6 - I n put read error
7 - Output write error or eod

13 - Input file not found
14 - Invalid input device
15 - Invalid output device
16 - Input device assign failure
17 - Output device assign failure
30 - Parameter error

4-23

PRint
PRINTl

PRINT FILENAME (DEVICE)(L1 L2)
or
PRINTL FILENAME (DEVICE)(L1 L2)

This command causes lines from FILENAME to be written to a specified output
DEVICE. If DEVICE is not specified, the data is printed on LPT1. If L 1 and L2 are
specified, they must be greater than or equal to 1 and less than 32,768. L2 must be
greater than or equal to L 1.

If a line range is specified (L 1 L2), only the lines from L 1 through L2 will be printed.
If only L 1 is specified, the lines from the first line through L 1 will be printed. If no
line range is specified, the entire file will be printed.

If the PR INTL form is used, the lines will be numbered as they are displayed or
printed.

* P R N * Error Responses:

6 - Input read error
7 - Output write error or end of device

13 - Input file not found
14 - Invalid input device
15 - Invalid output device
16 - I nput device assign fai lure
17 - Output device assign failure
30 - Invalid parameter

4-24

Module
4.6.6 Object Program Utility Commands

The user will generally manipulate object program files to and from slave memory
with these commands:

MODULE
RHEX
WHEX
CSMS
WSMS

MODULE writes a binary format load module from slave memory. RHEX reads a
hexadecimal object file into slave memory. WHEX writes a hexadecimal object file
from slave memory. CSMS translates an SMS file and then compares the file with
slave memory. WSMS writes a block of slave memory in SMS format. SMS format
is used by mAny semiconductor companies for the generation of PROMs and is
described in Appendix F.

MODULE FILENAME A1, A2, A3 (IDENT)

This command writes a binary format load module to FI LENAME. A 1 and A2 are
the memory bounds in the slave memory and A3 is the starting address of the
program; A2 must be greater than or equal to A 1. I DENT is an optional character
string used to identify the module. I DENT will be truncated after the first 20 charac­
ters entered.

The contents of slave memory from A 1 to A2 will be output to the disk file
FI LENAME. The load module will be preceded by a 'header' which will contain
A 1 and A2, as well as A3.

MOD Error Responses:

7 - Device write error
10 - Overlay load failure
12 - Invalid filename
32 - Too many parameters
34 - Invalid address

4-25

Rhex

I BHEX (/BIAS) (DEVICE)

This command reads an absolute hexadecimal object file into slave memory. BIAS
is used to alter the absolute load address for the file. The default value of B lAS is O.
DEVICE is used to specify the input device or disk file where the object code resides.
The default value of DEV ICE is TTYR, the teletype paper tape reader.

The absolute hexadecimal file is read into memory from the specified input DEV ICE.
The initial load address is altered by BIAS which is a signed hexadecimal address
constant. If no sign is specified, the default polarity value of BIAS is assumed
to be +.

Note that the program start address given at the end of the object fi Ie wi II be ignored
by UDOS. The start address must be entered by the operator as part of the GO
command when execution of the program is requested.

NOTE

The hexadecimal format varies between slaves, as
determined by the microprocessor manufacturer.

RHX Error Responses:

6 - Device read error
14 - Invalid input device
16 - Input device assign failure
33 - Bias parameter error
40 - Invalid input format

4-26

WHex

WHEX A1 A2 ... ("A1 A2) (A3) (DEVICE)

This command outputs an absolute hexadecimal format file from slave memory.
The pairs A 1 ,A2 are hexadecimal address constants that indicate the bounds of the
slave memory segment to be written to the file. A3 is an optional program starting.
address. DEVICE is an optional output device or file. If DEVICE is not given, the
default value is CONO,the console output device. If DEV ICE is specified, the
starting address vector A3 must be specified.

This command writes, in hexadecimal ASCII format, the data from A 1 to A2 for
each A 1, A2 pair present in the parameter list. Note that two commas are required
between address pairs if multiple address pairs are specified.

NOTE

The hexadecimal format varies between slaves, as
determined by the microprocessor manufacturer.

WHX Error Responses:

7 - Device write error
15 - Inval id output device
17 - Output device assign failure
30 - Invalid parameter

4-27

CSms
WSms

I CSMS (ADDRESS) (DEVICE)

This command reads a file that is written in SMS format from DEVICE, translates
the data to binary, and compares the data with slave memory. ADDR ESSrefers to
the first location in slave memory that will be compared with the SMS file. The
default value of ADDRESS is O. DEVICE is the input device or disk file where the
SMS data is present. The default value of DEVICE is TTYR. CONI cannot be the
input device.

The SMS fi Ie is compared with a 512-byte block of memory. I f an SMS byte and the
contents of a memory location are not equal, the memory location, the SMS value,
and the contents of the memory location will be displayed on the console.

SMS Error Responses:

6 - Device read error
13 - Input file not found
14 - Invalid input device
21 - Channel assign failure
30 - Invalid parameter
35 - Invalid address

WSMS (ADDRESS) (DEVICE)

This command outputs a 512-byte block of slave memory in SMS format. ADDRESS
specifies the first location of memory to be read. The default value of ADDRESS is
O. DEVICE specifies the output device or disk file where the SMS data is to be
written. The default value of DEVICE is CONO.

SMS Error Responses:

7 - Device write error
15 - Invalid output device
21 - Channel assign failure
30 - Invalid parameter
35 - Invalid address

4-28

Universal Disk Operating System

4.6.7 Command Files.

UOOS provides the user with the capability of executing a sequence of UOOS
commands by issuing a single command. This capability is implemented through the
use of command files, which is a sequence of UOOS commands, identified by a
single name. When the name of the command file (as an example, we shall use the
name COM1) is used as a UOOS command:

"> COt'110

uoos first determines that COM1 is not one of the basic UOOS commands and
then searches the system directory for the file COM1. When UOOS locates COM 1,
it treats the first line in COM1 as an UOOS command and executes it. Then the
second line is executed, and so forth, until an end-of-file condition is reached
on COM1.

For example, suppose the Editor was used to create the following file named
LlSTALL:

LOIR 0 LPT1
LOIR 1 LPT1
LOI R 2 LPT1
LOIR 3 LPT1

If LIST ALL is entered as an UOOS command, UOOS will locate LIST ALL and
execute the first line as an UOOS command. This will result in the directory of the
diskette on drive 0 being printed on the line printer. Execution of the next three
lines will result in the directories of the diskettes on drives 1,2 and 3 being printed
on the line printer.

UOOS also allows parameters to be entered in the command line with the command
file filename. This is accomplished by allowing parameters following the command
file filename to replace parameters beginning with a $ in the command file. For
example, if LIST ALL were:

LOIR 0 LPT1
LOIR 1 LPT1
LOI R 2 LPT1
LOIR 3 LPT1

and the command:

:> L rSTALL

$1 $2
$1 $2
$1 $2
$1 $2

was entered, the '.' (the first parameter} would replace all the $1s in the LIST ALL
file and the '/' (the second parameter) would replace all the $2s in the LIST ALL
file. This would result in the following command stream being performed:

LOIR 0
LOIR 1
LOIR 2
LOIR 3

/ LPT1
/ LPT1
/ LPT1
/ LPT1

In general, if COM is a command file and has $1, $2, $3, ... $nas parameters in the
file, performing:

COM X 1 X2 X3 ... Xi

will result in:

X1 replacing the $1s in the COM file
X2 replacing the $2s in the COM file
X3 replacing the $3s in the COM file

Xi replacing the $ns in the COM file

If a device read error is encountered in a command file, the entire file execution will
be aborted, except when the value of the KI LL switch is off (see paragraph 4.6.8).

Command files cannot be nested, but they can be chained. That is, if the last UOOS
command in a command file is the name of another command file, the command
file in progress will be terminated and the next command file will be started.
Parameters can be passed from one command file to another in the same way they
are passed to U DOS commands.

A maximum of six disk files instead of the normal eight can be assigned to a slave
program while a command file is in progress.

4.6.8 Command File Utilities.

The user may control actions taken during command file execution with these
commands:

4-30

KILL
TYPE
*

KILL ON
or
KILL OFF

This command causes the UDOS switch KI LL to be set on or off.

Kill
TYpe

If the KI LL switch is on, a command file will be aborted if the current UDOS com­
mand being executed by the command file processor encounters an error. If the
KI LL switch is off, the command file processor will continue with the next UDOS
command in the file.

The default value of the KILL switch is on.

*KI L * Error Responses:

30 - Invalid parameter
31 - Parameter required

TYPE ON
or
TYPE OFF

This command causes the UDOS siwtch TYPE to be set on or off.

If the TYPE switch is on, UDOS command lines executed by the command file
processor will be output to the system console. If the TYPE switch is off, UDOS
command lines or 'EOJ' message will not be displayed on the console. Error messages
from UDOS programs are displayed regardless of the TYPE setting.

The default value of the TYPE switch is on.

TYP Error Responses:

30 - Invalid parameter
31 - Parameter required

4-31

*
I ~COMMENT
This command is used to insert comments into the job flow. The * must be followed
by a space or a carriage return. The ASCII string which follows the space cannot be
longer than 77 characters. This command is effectively ignored by UDOS.

The primary use of the * command is in command files where it can be used to
display comments around UDOS commands.

4.6.9 UDOS Error Messages.

All UDOS error messages are of the following form:

* id * ERROR #

where id is the UDOS system program identifier, Table 4-3, and error # is the
UDOS error number, Table 4-2. For example,

+I.,.IH;:·::+ PA~~ 03
+I.,.IH::-=:+ EPF.~DF.~ :;: 0

is issued by the program WHEX, indicated by the UDOS program identifier, *WHX*,
and informs the operator that an invalid parameter was received, indicated by the
UDOS error number 30.

4-32

Universal Disk Operating System

Table 4-2. UDOS Error Messages

1 - DIRECTORY READ ERROR 34 - INVALID ADDRESS
2 - DIRECTORY WRITE ERROR 35 - INVALID START ADDRESS
3 - COMMAND FI LE NOT FOUND 36 - INVALID END ADDRESS
4 - COMMAND FILE INPUT 37 - INVALID GO ADDRESS

ERROR 38 - INVALID DEBUG SLAVE
5 - PROCEDURE BUSY PROGRAM ADDRESS
6 - DEVICE READ ERROR 39 - INVALID HEX CHARACTER
7 - DEVICE WRITE ERROR OR 40 - INVALID RHEX INPUT

END-OF-DEVICE FORMAT
8 - DRIVE NOT SPECIFIED 41 - INVALID BREAKPOINT
9 - INVALID DRIVE ACCESS MODE

10 - OVERLAY LOAD FAILURE 42 - INVALID REGISTER PARA-
11 - OVERLAY AREA IN USE METER
12 - INVALID FILE NAME 43 - INVALID DATA PARAMETER
13 - INPUT FILE NOT FOUND 44 - INVALID TRACE MODE
14 - INVALID INPUT DEVICE PARAMETER
25 - INVALID OUTPUT DEVICE 45 - INVALID SLAVE SRB
16 - INPUT DEVICE ASSIGN ADDRESS

FAILURE 46 - SLAVE HAL TED
17 - OUTPUT DEVICE ASSIGN 47 - SYSTEM AREA BAD

FAILURE 48 - LOAD FILE NOT FOUND
18 - DEVICE IN USE 49 - LOAD FILE ASSIGN FAILURE
19 - INVALID CHANNEL 50 - FILE NOT A LOAD MODULE

NUMBER 51 - INVALID LOAD REQUEST
20 - CHANNEL IN USE 52 - fNVALID DEVICE
21 - CHANNEL ASSIGN 53 - INVALID SLAVE CPU

FAILURE 54 - INVALID MODE
22 - COMMAND LINE BUFFER 55 - INVALID MEMORY

OVERFLOW 56 - INVALID DEVICE ADDRESS
23 - INVALID COMMAND 57 - FI LE NAME IN USE
24 - JOB NOT ACTIVE 58 - DEVICE ASSIGN FAI LURE
25 - JOB NOT SUSPENDED 59 - MEMORY WRITE ERROR
26 - JOB ALREADY SUSPENDED 60 - END OF MEDIA
27 - JOB EXECUTING 61 - FILE IN USE
28 - JOB UNDER DEBUG CONTROL 62 - DEVICE NOT OPERATIONAL
29 - PROM POWER FAILURE 63 - DIRECTORY FULL
30 - INVALID PARAMETER 64 - INVALID DISKETTE
31 - PARAMETER REQUIRED 65 - MASTER MEMORY
32 - TOO MANY PARAMETERS PARITY ERROR
33 - BIAS PARAMETER ERROR 66 - SLAVE MEMORY PARITY ERROR

4-33

Table 4-3. U DOS System Program Identifiers

ABT ABORT OVERLAY *KIL * KI LL OVERLAY
ASN ASSIGN OVERLAY *MOD* MODULE OVERLAY
CLS CLOSE OVERLAY *PAT* PATCH OVERLAY
CON CaNT OVERLAY *PRM* PROM OVERLAY
COP COPY OVERLAY *PRN* PRINT OVERLAY
CLK CLOCK OVERLAY *REN* RENAME OVERLAY
DEB DEBUG OVERLAY *RHX* RHEX OVERLAY
DEL DELETE OVERLAY *SCH* SEARCH OVERLAY
DEV DEVICE OVERLAY *SLJ* PROGRAM RUNNING
DIR LDIR OVERLAY UNDER SLAVE CPU
DMP DUMP OVERLAY *SLV* SLAVE OVERLAY
DOS UDOS RESIDENT PROGRAM *SMS* SMS OVRELAY
DUP DUP OERLAY *SUS* SUSPEND OVERLAY
EXM EXAM OVERLAY *TYP* TYPE OVERLAY
FMT FORMAT OVERLAY *VER* VERIFY OVERLAY

WHX WHEX OVERLAY

4-34

Chapter

the Debugger

5.1 INTRODUCTION.

This chapter describes the Debugger, or the Debug Program. General topics include
an overall description of the Debug Program, entry and exit from it, a sample debug
session, and a description of each of the Debugger commands. Further information
on versions of the Debugger, related to particular slave CPUs, is contained in the
manual supplements provided with each of the slave CPU cards and emulation
cables.

5.2 THE DEBUG PROGRAM.

The Debugger is a subsystem of the UDOS, that is enhanced through UNIVERSAL
ONE hardware features which allow it to control program execution on the slave
CPU. When Debugger is executing, the user has a subset of the UDOS commands plus
a set of Debugger commands at his disposal.

Functionally, the Debugger is a combination of software, hardware on the debug
logic card, and the emulation cable. It can perform the following functions:

1 . display memory and register contents, as well as Debug status, and allow
these values to be modified;

2. control program execution and allow the user to request control at specified
locations using breakpoints;

3. trace program execution and display relevant machine states;

4. allow debugging in the user's prototype system.

To accomplish these functions, the Debugger monitors the user's progress and state
and saves necessary information. For example, the Debugger uses breakpoints to
control user program execution. (A breakpoint is a location in the user program
where the user wishes to have the Debugger take control of the system.) As another
example, the Debugger can do a trace to observe program execution; The entire
program or portions can be traced. As each instruction is executed, various parameters
that indicate the system state are displayed.

The Debugger is also used to debug user developed hardware. The emulation cable
allows the user to connect the slave CPU directly to his development hardware, where
in-circuit-emulation may be performed.

5-1

There is a different version of the Debugger for each of the different slave CPUs avail­
able with the UN IVERSAL ONE system. The basic operation of Debugger and the
functions of all Debug commands are the same for all versions, however some command
parameter formats and some formats of displays generated in response to commands,
vary from version to version. These differences are described in the manual supplement
provided with each slave CPU.

If you are fami liar with debugging programs, paragraph 5.3, I NVO KING TH E DE­
BUGGER, and paragraph 5.5, DEBUG COMMANDS, are recommended. If you are
not familiar with debugging programs, the above paragraphs plus paragraph 5.4,
SAMPLE DEBUG SESSION, are recommended. For the sample debug session, it is
recommended that the reader be familiar with the basic architecture and operation of
the 2650 microprocessor.

5.3 INVOKING THE DEBUGGER.

There are three important facts that require explanation before discussing use of the
Debugger:

1. The special UDOS keys, ESC and space bar retain their meanings while the
Debugger is executing. Their use is discussed in paragraphs 4.5.2 and 4.5.3.
Note in particular the impact of the ESC key on the EXAM command.

2. If it is necessary to switch from the master CPU to the slave, or change the
slave mode for a debug session, the change must be made before the Debugger
is invoked. To change the slave mode, execute the SLAVE command, which
is described in paragraph 5.5.

3. Executable programs are created and stored in the UNIVERSAL ONE system
one of two formats:

a) Hex format: two hex characters are stored for each byte of object
code produced. The Assembler creates hex format files. RHEX is
the UDOS command used to read hex format files.

b) Bi nary format: one byte of data is stored for each byte of object
code. The UDOS command MODU LE creates binary format files.
LOAD is the U DOS command used to read binary format fi les.

When the user desires to invoke the Debugger, he first must issue the SLAVE com­
mand (paragraph 5.5), then load the program to be debugged into slave memory, by
using either the LOAD or RHEX commands. Next, the DEBUG command can be
issued to enter the Debug Program and the UDOS command C LOC K 0 F F must be
issued to disable the real time clock interrupt.

When DEBUG is entered, the debug package appropriate to the slave microprocessor
being used is loaded into master memory (overlay area 1). I n add ition, a small trace
package, if necessary, is loaded into the slave memory. This package, is used to save
and restore the slave CPU registers when using ,GO and breakpoints, and serves as the
interface between the Master and slave CPU's. This package for most microprocessors
will be contained in PROM on the slave C·PU, instead of in slave memory.

5-2

The Debugger

After the Debug package has been loaded, the UDOS prompt character> is issued
to the console. Whenever 'this prompt is displayed, the Debugger is ready to accept
commands. Select the desired DEBUG mode (TRACE, BR EAKPOI NT, etc.), and
you are ready to initiate execution ot the application \user) program.

NOTE

The commands available to the Debug user are listed
in Appendix B. Note that several of the primary func­
tions of the Debugger, such as examining the altering
memory (the EXAM command), and execution control
(the GO and EXQ commands) are UDOS commands
that are also used by the Debugger. Other U DOS com­
mands however, are not available to Debugger.

If the UDOS prompt character is not displayed on the console and the operator desires
control, the following procedure should be utilized:

1. Depress the ESCAPE key twice. If the TRACE mode is active, a single
depression is sufficient.

2. When the UDOS prompt character appears, enter the desired commands.

3: When it is necessary to continue the user program, entering the GO command
will continue the user program from the point at which it was interrupted.

The user program will be stopped (which will result in the UDOS prompt character
being displayed and the system being available for input commands) under the
following conditions:

1. The user requests console control by depressing the ESCAPE key.

2. The user program has encountered a breakpoint.

3. The user program has executed a HALT instruction.

4. The user program has executed one instruction in the TRACE STEP mode.

5. The user program has reached a normal end of job condition.

The only way for the user to terminate the Debugger is to use the UDOS command
ABORT. This may be accomplished by ABORT DEBUG or ABORT*. In either case,
both the Debugger and the user program are terminated.

5.4 SAMPLE DEBUG SESSION (USING A 2650 SLAVE).

Let's monitor the program in Figure 5-1 ,a with the Debugger so that we may examine
some of the debug features. The sample program has been assembled into hex object
code, written to a disk file named DEMO. The starting location for the program is
3000.

The System is in the target slave mode 0 (see SLAVE command, paragraph 5.5) by
default, so an initial SLAVE command is not required.

5--3

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
9

10
11
12
13
14

5-4

IIEt·1IJ
PO
Pi

*
* TOPP
LOOP·

OP'::;
EOU
EOU

H"'::::OOO'"
o
1

AIIIIZ Pi ADD PEGISTEP 1 PEGISTEP 0
I r·iCPEt·1Et·n f;.' 0
COPPARE PO WITH 0

ADDI,PO 1
COtH, PO 0
HCFP,O LOOP
E:CTP, 0 TOPP
E t·m DE t·m

IF COMPARE FAJLED,BRANCH TO LOOP
IF COMPARE SUCCEEDED~BPAHCH TO TOP

a. Sample 2650 Microprocessor Program

> RHE:,·': DEt·10B...I
PH::-:; EO!

::- DEBUG

'S:ET F.' 0 0

> D:S:TAT
p=oooo R=OO 01 no 00 00 00 00 00 00

b. Loading Object Code, Activating Debugger, and Initializing
Slave Registers

,. TP I=i 'S:

(:;0 :::000
LOC It'ET t'1t'~Et'10r'~ ::-.:p u OPAII IADII r' I '.' EADD PO P1 p~:~

::':000 :::: 1 ADZ , 01 01 01 00

":. I::;
3001 8401 ADl . on 01 0'::' 01 00

::- G
:;:003 ~400 Ct'1 I , 00 00 0;:: 01. 00

G
3005 '~87A BFP , 00 3001 =:;::001 0;:' ('1 00

c. Single Step Trace All Mode

Figure 5-1. Displays During Sample Debugging Session

1;':3 ';'4

oe on

00 00

00 00

00 00

~'5 P6 PU Pl.
00 00 00 4 (I

00 00 (10 40

00 no 00 40

00 00 oe 40

The Debugger

To load the hex code from the file DEMO, enter the UDOS command RHEX DEMO
(line 1 of the Figure 5-1,b). This command loads the object code in the disk file
DEMO into slave memory. (If the file DEMO contained a binary load module pro­
duced by the use of the MODU LE command, the command LOAD DEMO would be
used instead of RHEX.) To load the DEBUG package, enter the UDOS command
DEBUG (line 4 of Figure 5-1,b). Both the object code from the sample program in
Figure 5-1,a and the DEBUG trace package now reside in slave memory. The DE­
BUG package is located in master memory overlay area 1.

The sample program uses the slave CPU registers 0 and 1. If we wish to give these
registers specified values, the SET command must be utilized. Suppose we wish to
enter the value 0 in register 0 and 1 in register 1. To do this, enter SET RO 0 1.
(I ine 6 of Figure 5-1,b). SET specifies the set register command, and RO sepcifies
the first register to store into.

If we desire to view the Debug status before beginning execution, the DST AT com­
mand must be employed. Entering DSTAT (line 8 of Figure 5-1,b) causes the in­
formation on line 9 of Figure 5-1,b to be displayed. This is a one line display which
provides the location of the last instruction executed in the slave CPU, the active
breakpoints, and the contents of the registers in the slave CPU. For the 2650 slave
this display is organized as follows: the area in Figure 5-1,b indicated by CD dis­
plays the program counter at the time the last slave CPU instruction was executed.
P=OOOO is the value of the program counter before any slave instruction is executed~
The area indicated by @ displays the breakpoints currently active in the Debugger.
Since we have not set any breakpoints, no information is displayed;@contains the
value of register O;@contains the values of registers 1,2, and 3 of bank O;@contains
the values of registers 1, 2 and 3 of bank 1 (9contains the upper and lower program
status word values.

Suppose we wish to trace the execution of this program. Turn the TRACE function
on, as shown on line 1 of Figure 5-1,c. TR A S is the TRACE (TR) command which
requests that all (A) instructions be tracedand that the si ngle step (S) mode be em­
ployed (see TRACE command description, paragraph 5.5). The ALL mode results
in the TRACE display being written to the console for every instruction executed
by the slave CPU, and the single step mode returns control to the operator after each
slave CPU instruction that is executed.

To start the execution of the program, the command, GO 3000 is entered (line 3 of
Figure 5-1,c). Because the object code was initially loaded with the RHEX com­
mand, a starting address (3000) must be given with the GO command. (if the
LOAD command is used to initially load the object code, the start address is auto­
matically entered into the system.)

The Debugger now assumes control, proceeds with one step of program execution,
and produces the TRACE display (lines 4 and 5 of Figure 5-1,c). The headings in
line 4 have the following meanings (all values are in hex):

LOC

INST

is the location of the last instruction executed.

is the hex value of the last instruction executed.

5-5

MNEMON

XR

U

OPAD

IADD

IV

EADD

RO

R1,R2,R3

R4,R5,R6

PU

PL

is the 2650 instruction mnemonic, including the register or condi­
tion code value, if required.

is the index register, if any, for the instruction.

if U is +, auto increment indexing is performed for an absolute
addressing instruction. Or, a forward address is calculated for a
relative addressing instruction.

if U is -, auto decrement indexing is performed for an absolute
addressing instruction. Or, a backward address is calculated for a
relative addressing instruction

is the operand value or operand address.

is the indirect address value.

is the index register value.

is the calculated effective address for the last instruction.

is the val '.Ie of RO (register 0)

are the values of R1 , R2, and R3 in Bank O.

are the values of R1, R2,.and R3 in Bank 1.

is the value of the Program Status Word, Upper.

is the value of the Program Status Word, Lower

Line 5 informs us that location 3000 was the last location executed; 81 was the hex
value of that location;ADZ,01 was the instruction mnemonic (note that ADZ is a
shortened form of the full 2650 mnemonic ADDZ, and the next nine entries indicate
register contents.

We can single step through the next instruction by entering the UDOS command G
(the GO command, line 7 of Figure 5-1 ,c). As can be seen in lines 7 - 8, as well as
lines 10 - 11 and 13 - 14 of Figure 5-1 ,c, the Debugger performs a single step and
then displays the TRACE information.

Suppose we do not wish to single step, but still wish to trace all the instructions
executed. This can be accomplished by altering the TRACE mode: TR A (line 1 of
Figure 5-2,a) requests that all instructions be traced, but does not request the single
step mode. When the next GO command is executed (line 3 of Figure 5-2,a), the
Debugger takes control of the slave CPU after every slave CPU instruction is executed,
and after it displays the T RACE information, control is not returned to the user, but
to the slave CPU.

This results in the lines from 4 to 14 being displayed, one line at a time, as each
instruction is executed in the slave CPU. If we are interested in whether the logic of
the instruction at 3007 is correct (3007 will not be executed until register 0 over­
flowsand reverts to 0), we would have to wait for large number of TRACE lines to be
displayed. To cancel the current TRACE, the ESCAPE key is pressed, which terminates
the TRACE (the effect can be noted on line 14 of Figure 5-2,a) and displays the
double prompt » (line 15 of Figure 5-2,a) to indicate readiness to accept
commands.

5-6

The Debugger

Suppose we desire to not view any TRACE displays until the instruction at 3007 is
executed. This can be accomplished by the actions shown in Figure 5-2,b. First we
set a breakpoint by the command in line 1 of Figure 5-2,b. BKPT 3007 requests
that a breakpoint be set at location 3007 of slave memory. Breakpoints are used to
control execution by commanding the Debugger to take control whenever the
address that is a breakpoint is referenced. Since we don't wish to see all the executed
instructions traced, the command of line 3 of Figure 5-2,b turns the TRACE mode
off.

Execution is resumed using the GO command (line 5 of Figure '5-2,b). The Debugger
monitors the slave program execution, and when the instruction at 3007 is executed,
the display on lines 6 and 7 of Figure 5-2,b is produced. Line 6 is the standard
TRACE display of the last instruction executed. Line 7 indicates that the program
execution stopped because a breakpoint was encountered. In line 6, note that the
EADD, which is the address where control will be transferred, is 3000. The prompt
character > at line 9 indicates that control has been returned to the operator.

Suppose we wish to monitor the execution of all the branch instructions. This can be
accomplished using the commands in Figure 5-2,c. First, let's set Register 1 to FA
(line 1 of Figure 5-2,c). Then, using the DSTAT command, we can view the current
DEBUG status (lines 3 and 4 of Figure 5-2,c). Note that the presence of the break­
point at 3007 is indicated in this display. The WR following BP=3007, refers to the
fact that either a read or a write to location 3007 will cause a break. Line 6 of Figure
5-2,c, TRA J, is the TRACE (TRA) command which requests that only branch (J)
instructions be displayed.

When the slave program is continued with the GO command (line 8 of Figure 5-2,c),
the Debugger displays the TRACE information for all branch instructions executed
whether the branch was performed or not (lines 9 - 15 of Figure 5-2,c). The De­
bugger informs us that a break has taken place in line 16 of Figure 5-2,c.

If we desire to clear a breakpoint, the command in line 4 of Figure 5-2,c must be
executed. CLBP 3007 requests that the breakpoint at location 3007 be cleared. By
viewing the DSTAT displays in lines 2 and 7 of Figure 5-2,c, the effect of the CLBP
operation is clear.

When we are finished with a debug session, the Debugger must be exited using the
UDOS command, ABORT (see line 8, Figure 5-2,c).

5.5 DEBUG COMMANDS.

This section lists commands that are used with the Debugger. Besides the DEBUG
command itself, there are eight commands that are used both with the Debugger
and under UDOS. These commands are:

GO
LOAD
XEQ
DUMP

EXAM

PATCH

STATUS

SLAVE

5-7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

:> TP A

> (50 :3000
3000 :31
::::001 :3401
300:::: E400
:::005 987A
3001 8401
:3003 E400
::::005 987A
::::001 8401
:300::;:: E400
:3 (I 05' ',87A
:=:001 8401

1 " BKPT 30(,7
2

"" Tf"'ACE OFF

.... G

ADZ ,01
AD I ,(I I)

Cl"'lI ,00
BF~' ,00
AD I ,00
CI"'11 ,00
BFP ,00
An I ,00
Ct'11 ,00
BF'F!~ ,,.00
ADI ,00

3
4
5
6
7
8
9

3007 1877 RTR ,00
:::007 BF'EAK

1> 'SET PI FA
2

:> D:S:TAT 3
4
5
6
7

P=:3007 BP=3007 WR

.> TPA .J

8 :::- 1:;0 :3 000
9

10
11
12
13
14
15

3005 ',87A
3005 '3::::7A
3005 '387A
3005 '387A
:;: 005 '387Ft
3005 9::::7A
:3007 1 ::::77

16 3007 BPEAI(

BFP ,00
BFJ';' ,00
BFP ,00
F:FJ;~ ,00
BFP ,00
F:F~' ,00
Rtp ,00

01
00
::::001
01
00
3001
01
00
3001

03 01 00 00 00 00 00 00 40
04 01 00 00 00 00 00 00 40
04 01 00 O~ 00 00 00 00 40

=3001 04 01 00 00 00 00 00 00 40
05 01 00 00 00 00 00 00 40
05 01 00 00 00 00 00 00 40

=3001 05 01 00 00 00 00 00 00 40
OS 01 00 00 00 00 00 00 40
06 01 00 00 00 00 00 00 40

=3001 06 01 00 00 00 00 00 00 40

a. Trace All Mode

3000 =::':000 (1) 01 00 00 00 00 00 00 21

b. Using Breakpoints

3001.
3001
3(101
':::001
:3001
:3001
::::000

p=oo FA 01) 00 00 00 00 00 21

=3001 FE: F8 00 00 00 00 00 00 80
=3001 FC FA 00 00 00 00 00 00 80
=3001 F'D FA 00 00 00 00 no 00 80
=3001 FE FA 00 00 00 00 00 00 80
=8001 FF FA 00 00 00 00 00 00 80
=3001 00 FA 00 00 00 00 00 00 21
=3000 00 FP 00 00 00 00 00 00 21

c. Clearing Breakpoints and Terminating a Debug Session

2
3

> DSTAT
1='=3007 'BP=3007 ,-,Ir;.' p=on FA 00 00 00 on 00 00 21

4) CLBP 3007

5
6
7
8

5-8

,> D~:TAT

P=':::007
'> Af.:DPT DEBUI:;

R=OO FA 00 00 00 00 00 00 21

_d. Clearing Breakpoints and Terminating a Debug Session

Figure 5-2. Typical Displays During Various Debugging Modes

DEBug
60

load
GO is used to start user programs. LOAD is used to read binary load files into the slave
memory. XEO is a combination of the LOAD and GO programs. DUMP displays
contents of slave memory on a specified device. EXAM allows the user to examine or
alter slave memory. PATCH allows the user to alter slave memory. STATUS displays
the status of the slave CPU and the job being executed by it. SLAVE sets the emula­
tion mode.

There are six commands that are unique to the Debugger and can only be used
after the DEBUG command has been executed. These commands are:

BKPT
CLBP
RESET
SET
DSTAT
TRACE

BKPTand CLBP are used to set and clear breakpoints. RESET generates a reset pulse
to the slave processor. SET allows the user to set slave CPU registers. DST A T provides
information on the Debug status. TRACE allows the user to trace slave CPU execution.

Note that as with all UNIVERSAL ONE system commands, the RETURN key0,
is used to start execution of any command.

I Q£6UG (ADDRESS) (DEVICE) I
This command causes the Debug Program to be loaded. ADDRESS is the address in
slave memory where the trace package is loaded. The default value of ADDRESS is
the top of memory. DEVICE is the output device or disk file where the Debug output
displays will be written. The default value of DEVICE is CONO, the console output
device.

I ~O (ADDRESS) I
This command causes control to be passed to a location in slave memory.

If ADDRESS is present, control is passed directly to that location in the slave memory.
If ADDR ESS is not present, either control is passed to the start address of a previously
loaded module or execution continues from the last point at which it was stopped.

DOS Error Responses:

37 - Invalid go address

.LOAD FILENAME I
This command loads the binary load module FI LENAME into slave memory. This
load module must have previously been created by the MODU LE command.

FI LENAME will be loaded into the slave memory starting at the location specified
at the time the load module was created. Control is not passed to the load module as
in the XEO command.

5-9

Xeq
Dump
DOS Error Responses:

6 - Device read error
14 - Invalid input device
48 - Load fi Ie not fou nd
49 - Load file assign failure
50 - File not a load module
51 - Invalid load request

6 EQ FILENAME I
This command causes the binary load module FI LENAME, previously created using
the MODU LE command, to be loaded into slave memory and executed. This com­
mand is the equivalent of LOAD FI LENAME followed by the GO command.

* DOS* Error Responses:

6 - Device read error
14 - Invalid input device
48 - Load file not found
49 - Load file assign failure
50 - File not a load module
51 - Invalid load request

QUMP A 1 (A2) (DEVICE) I
This command causes the contents of slave memory to be displayed on DEVICE, be­
gining with address A 1. In the display two hexadecimal characters represent the
contents of each byte displayed. If A2 is not specified, then only 16 bytes of data are
displayed. If DEVICE is not specified, the data will be displayed on the console.

Addresses A 1 and A2 (if specified) are always automatically adjusted in the following
manner. The low order hexadecimal character is replaced with O. For example,
3F3E is altered to 3F30. Then, A2 is replaced by A2 + hexadecimal 10. This has the
effect of lowering A 1 to the next lowest multiple of 1016 and raising A2 to the
next highest multiple of 1016 , The contents of memory from A 1 to A2 are then
displayed. For example, if DUMP 3F3E-4001 was entered, the DUMP program
would display the data from 3F30 to 4010. Sixteen bytes are displayed on each 'I ine,
preceded by the address of the first byte on that line.

DMP Error Responses:

17 - Output device assign failure
31 - Parameter requ ired
35 - I nval id starting address (A 1)
36 - Invalid ending address (A2)

5-10

Exam
£XAM ADDRESS

This command causes a single byte of the slave memory at location ADDRESS to be
displayed on the console. The user then has several options: a) display the next
sequential byte at ADDRESS; b) display address of the current location and its
contents; c) replace the current memory byte with data entered on the control
console and display the next sequential memory byte; d) terminate the EXAM
command.

After the initial memory byte is displayed, the user can press any of these keys to ini­
tiate the corresponding function:

SPACE

LlNEFEED or DELETE
(RUBOUT)

HEX DATA PAIR

RETURN

Display the next sequential byte.

Go to the next line and then display the address
of the current byte and the byte.

Replace the current memory location with a hex­
data pair. Then display the next sequential
byte.

Terminate the EXAM command.

The display of memory bytes will automatically go to the next line and display the
location and its data byte whenever the location to be displayed is a multiple of 10 .

16

The ESCAPE Key has a different interpretation when the EXAM command is being
used. Refer to paragraph 4.5.2 for detai Is.

For example, if locations 3000-3003 contain AF, CB, OF, FS respectively, the
EXAM command can be used as follows (user interaction underlined):

>EXAM 3000
3000=AF CB OF FS0
>

When the space bar is depressed, the next sequential byte is displayed. When return
is entered, the command is terminated. To increment each location, this sequence
can be used:

>EXAM 3000
3000=AF-01 CB-02 DF-03 FS-04 ...

The '-' is provided by the EXAM command when the user enters a hex character.

EXM Error Responses:

31 - Parameter required
35 - Invalid start address
39 - Invalid hex character

5-11

Patch
STatus

I .EATCH ADDRESS HEX-STRING

This command allows the user to alter slave memory. ADDRESS is a hexadecimal
address constant. HEX-STR I NG is a string of hexadecimal digits from 1 to 58
digits in length, entered by the user on the control console.

The contents of slave memory starting at ADD R ESS is replaced with the value
HEX-STRING. This replacement is performed on a byte-to-byte basis. For example,
PATCH 3000 3F001 E would replace the data at location 3000 in slave memory with
3F, the data at location 3001 with 00, and the data at location 3002 with 1 E ..

PA T Error Responses:

31 - Parameter required
34 - Invalid address
39 - I nval id hex character

~TATUS I
This command gives the status of the program being executed by the slave CPU.

The name of the program running under the slave CPU, the state of the program, and
the channel assignments of the program are output to the system console. The
status of any command file currently in progress is displayed. The table below lists
the STATUS information, displayed and possible values of the displayed parameters:

5-12

SLAVE (CHIP NAME)

(SLAVE JOB NAME)

IS ACTIVE
IDLE

IS LOADED
EXECUTING
IN I/O WAIT
SUSPENDED
UNDER DEBUG CONTROL

CHAN (N) ASSIGNED TO (DEVICE) (OPEN)
CHAN (N) ASSIGNED TO (DEVICE) (READ)
CHAN (N) ASSIGNED TO (DEVICE) WRITE)
CHAN (N) ASSIGNED TO (DEVICE) (EOF)

COMMAND FI LE (NAME) IS IN PROGRESS
SUSPENDED

SLAVE (MODE) (DEV ADDR)

Slave
BKpt

This command selects and activates the slave CPU and sets its mode of operation.
MODE designates the mode (also called emulation mode) in which the slave CPU will
operate. The default value of MODE is O. DEV ADDR gives the address of the slave
CPU board. The default value of DEV ADDR is determined by diskette being used.

The possible values for MODE are:

o - System Mode. Uses slave memory and system I/O.

- Partial emu lation mode. Uses slave memory, user prototype I/O and
user clock.

2 - Full emulation mode. Uses user prototype memory, I/O, and clock.

Note that in mode 2 the TRACE JUMP option is not available, (see TRACE command
description) .

The possible values for DEV ADDR are:

o - 2650
1 - 8080
2 - 6800

SLV Error Responses:

31 - Parameter required
32 - Too many parameters
54 - Invalid mode
56 - Invalid device address

BKPT ADDRESS (WRITE) (READ)

This command causes a program breakpoint to be set for the slave. If WR ITE is
specified the break occurs. only when there is an attempt to write to the specified
address. If READ is specified, the break occurs only when there is an attempt to
read the specified address. if neither WR ITE nor READ are specified the break
occurs whenever there is an attempt to write or read to the specified address.

When the breakpoint address is accessed during program execution, a trace line is
displayed on the debug output device, and a breakpoint message is displayed at the
console.

Up to two breakpoints may be active in the system.

Error Responses:

TOO MANY BREAKPOINTS - Two breakpoints are already active.

DEB Error Responses:

30 - Invalid parameter
34 - I nval id address

5-13

ClBp
SEt

RESet
DStat

I ~p (ADDRESS)

This command clears a breakpoint. If ADDRESS is specified, the breakpoint at the
specified address is cleared. If ADDRESS is not specified, all breakpoints are cleared.

Error Responses:

BREAKPOINT NOT ACTIVE - Thespecifiedaddresswasnotanactive break
point address.

DEB Error Responses:

34 - Invalid address

RESET

This command causes a RESET pulse to be applied to the slave processor.

I gT Rm A1 (. .. An) I
This command causes the specified slave CPU registers to be preloaded with the
hexadecimal constants A1 thru An. The limits for A are 0 to FF. SET Rm A ...
causes the slave CPU general registers beginning with Rm to be set to the values
sped-fied. Rm is set to A 1, Rm+1 is set to A2, and so forth. Only the registers for
which values are specified are changed.

The format of this command will vary according to the requirements of the micro­
processor.

DEB Error Responses:

30 - Invalid parameter
43 - Invalid data parameter

DSTAT

This command causes the Debug status to be displayed on the Debug output device.
The slave CPU's last instruction address, the active breakpoints, and the slave CPU's
register contents are displayed. The format of the DST A T display wi II vary somewhat
depending on the slave microprocessor.

5-14

TRACE OFF
or
TRACE ~LL (~TEP) (A 1 A2)
or
TRACE .JMP (STEP) (A 1 A2)

TRace OFf
TRace All (Step)

TRace Jmp (Step)

This command determines the TRACE mode for the Debugger. If TRACE OFF is
specified, the TRACE mode is disabled, which means that no instruction traces will
be displayed on the Debug display device. If TRACE ALL is specified, all the instruc­
tions executed by the slave CPU will have their trace information displayed on the
Debug display device. If TRACE JMP is specified, all branch instructions will have
their trace information displayed on the Debug display device.

If STEP is specified with the TRACE ALL or TRACE JMP command, control will be
returned to the console after every instruction trace is displayed. If the STEP option
is used, the GO command must be used to continue the user program after every
STEP trace.

If A 1 and A2 are specified, the TRACE function will be performed as specified, but
only the instructions executed between A 1 and A2 will have their trace information
displayed. A 1 and A2 are hexadecimal address constants in the range O-FFFF. A2
must be equal to or larger than A 1 . The default value for A 1 is O. The default value
for A2 is FFFF.

The TRACE JUMP form is not active in slave MODE 2. In slave MODE 2, the only
information displayed in the TRACE display is LOC and the register and program
status word values.

DEB Error responses:

31 - Parameter required
35 - Invalid statt address
36 - I nval id end address
44 -' I nval id trace mode parameter

5-15/5-16

Chapter

6.1 INTRODUCTION.

This chapter describes the Editor program. The Editor is discussed by examining the
UDOS command EDIT, presenting a sample edit, detailing all the Editor commands,
and listing all the messages which the Editor may display to the operator.

6.2 EDITOR OVERVIEW.

The major function of the UN IVE RSAL ON E Editor is to create new source programs
or to change existing source programs. The Editor is also used for the creation and
modification of command files. The Editor performs these functions by processing
command lines entered by the user. Each command line specifies one action, or a
series of actions, for the Editor to undertake, e.g., entering new source lines or
searching the file for a specified string.

The Editor resides in slave memory and occupies approximately seven thousand
bytes of the memory. The remainder of the slave memory is available for the text
that is being worked on. This is approximately 150 60-character lines in a 16K
system.

Throughout this discussion, there are two terms and a keyboard input convention
wh ich are used. These are:

Buffer: The buffer is the slave memory area that contains the text that
the Editor operates on. Data is written into and read from the
buffer by the Editor. The buffer can be seen as having a top (or
first) line and a bottom (or last) line. The Editor can operate on
any line in the buffer. In this chapter, the terms workspace and
buffer are used interchangeably.

Line Pointer: Data in the buffer is edited by examining, changing, inserting and
replacing lines. The Editor keeps track of which line the operator
is working on-by keeping a pointer at the current line.

o This symbol will indicate the RETURN key.

If you are familiar with editors, the section on the EDIT command, paragraph 6.3 the
detailed description of the commands, paragraph 6.5, and the Editor messages,
paragraph 6.6, will be most helpful.

6-1

EDIT
If you are not familiar with editors, paragraph 6.4, which describes a typical edit
session, will be helpful in illustrating the use of the Editor commands.

6.3 UDOS COMMAND EDIT.

You may start the Editor by utilizing the UDOS command EDIT. This command has
three forms:

1) EDIT INFI·LENAME OUTFI LENAME

2) EDIT FILENAME

3) EDIT

If form 1 is used, INFILENAME designates the PRIMARY INPUT file and OUT­
FI LENAME designates the PRIMARY OUTPUT file. The PRIMARY INPUT file will
be the default file in any Editor command that asks for data from the disk. The
PRIMARY OUTPUT file will be the default file in any Editor command that writes
data to the disk. If INFILE~JAME is the same as OUTFILENAME, the file will be
edited to itself. The Editor accomplishes this by automatically creating a temporary
work file to be used as OUTFI LENAME. When you finish your edit session, I NFl LE­
NAME is deleted, and then the temporary. work file is renamed INFI LENAME. For
example, if:

> EDIT DATAl DATAl 0
was performed, DATA1 would be the input file, and the Editor would create the
temporary * AT A 1 as the output file. After you complete your edit session, DATA 1
would be deleted, then * AT A 1 would be renamed DATA 1. In the event of disk read
or write errors during the edit session, both the DATA 1 and * AT A 1 files will remain
available to you.

If form 2 is used, the interpretation is based on whether FI LENAME is a new file or
an existing file. If FI LENAME is an existing file, FI LENAME is edited to itself as in
the previous example of EDIT DATA1 DATA1. If FILENAME is a new file, then
FI LENAME designates the PRIMARY OUTPUT file, and there is no PRIMARY IN­
PUTfile. Since there is no PRIMARY INPUTfile, you may not input from the default
file, so an ALTERNATE INPUT file must be specified.

Ifform 3 is used, there is no PRIMARY INPUT file and no PRIMARY OUTPUT file.
If you desire to input or output data, ALTERNATE INPUT or ALTERNATE OUT­
PUT files must be specified in the command.

In all cases, the Editor will respond with an identifying message and then present its
prompt character, * ,to indicate it is ready for commands.

You may not start the Editor while a command file is active under UDOS. The EDIT
request will be rejected if an attempt is made to do so.

6-2

NOTE

While the Editor is executing, the special UDOS keys,
ESCAPE and space bar, retain their special functions.
Consult paragraphs 4.5.2 and 4.5.3 for an explanation
of their use.

6.4 EDIT EXAMPLE.

The Editor

Let us go through an example of editing. Suppose you have conceived and coded a
program for a 2650 slave, as shown in Figure 6-1,a, and wish to create a new file
DADDSB, which will contain the source program data. Start the Editor program by
typing:

:> ED IT DAIIIISB/ (10 (form 2, see paragraph 6.3)

Thiswiliload Editor into slave memory and begin execution. The Editor will display:

•• EDIT VER U.l ••
•• tiE!.I.1 FILE ••
•

The * is the Text Editor prompt character, which indicates that the Editor is ready
to accept commands. Figures 6-2 through 6-7 are hard copy equivalents of the
Edit sessions that will be described .

• DOUBLE PRECISION ADD A IN RO,Pl
.ON RETURN, A+B IS R2,R3
•
IIArlD ST~~F', R 1 DA~~1

ADDR R3 DA~~1
PP:SL I._.IC
ADDZ p'-' "Co

:S:TF~Z J;:":' '.1-

CF.':S:L I.I.le
RETe, Ut'i

IIARI RES: 1.

Figure 6-1. A Sample Source Program

The first command entered, line 1 of Figure 6-2, is the TAB command (the Set TAB
Character Command). The command TAB., sets'.' as the TAB character. This
gives the I.' a special meaning, which is that when '.' is entered, the Editor is re­
quested to fill the buffer with spaces until the next TAB stop. This feature will be dis­
cussed later.

6-3

6.4.1 Input and Edit Modes. The Editor has two basic modes. These 9re an
EDIT mode, where you may perform any of the editing functions, and an INPUT
mode, where you may only enter source text.

If you desire to enter more than one or two lines of data, it is desirable to enter the
input mode. Since you desire to enter all of the source program at one time, the
input mode should be entered. To enter the input mode, press I and then RETURN
(line 2 of Figure 6-2). The Editor acknowledges this command by displaying I N­
PUT: to remind you of its mode (line 3 of Figure 6-2). You may then enter the
source program (lines 4-14 of Figure 6-2). As can be seen, errors have occurred
(lines 9 and 13 of Figure 6-2). To change from the input mode back to the edit
mode, enter a null line by pressing RETURN twice in succession (line 15 of Figure
6-2).

6.4.2 Setting Tabs. The effect of entering the TAB character can be seen by exam­
ining, for example, lines 9 and 23 in the display of the buffer (see Figure 6-2).
Entering '.' at the start of lir;e 9 resulted in spaces being entered up to the first TAB
stop, which is in column 8. Entering the second '.' as the sixth character in line 9
resulted in spaces being entered up to the next TAB stop, which is located in column
16. The user may change either the TAB character or TAB stops by using the TAB
and TAB S commands. The default TAB character is CTR L-I and the default TAB
stops are 8,16,24,32,40,48,56, and 64.

6.4.3 Displaying Buffer and Making Corrections. To view the text that has been
entered, it is necessary to move the line pointer to the top line of the buffer. This is
accomplished by entering B, the Move Pointer to Beginning of Buffer command (line
16 of Figure 6-2). On line 17 of Figure 6-2, the command to display 55 I ines of the
buffer is entered (55 is an arbitrarily large number which will allow the entire buffer
to be displayed). The Editor displays the buffer (lines 18 - 28 of Figure 6-2) and
then displays ** EOF** to indicate it has reached the bottom of the buffer. Note
that the tabs entered in the input mode are present as spaces in the buffer.

Upon examination of Figure 6-2, it is clear that two changes are necessary to the
text currently residing in the buffer. Line 23 should have WD altered to WC and
line 27 should have RETDMYNN altered to RETC,UN.

To find these lines, type F (the FIND command), a space, then WD , where the
data between the $s is the data you wish to find (I ine 1 of Figure 6-3). I n this case,
the $ isthe delimiting character, which means that the $s tell the Editor where the
data starts and where the data ends. The Editor finds the first line in the buffer that
contains WD, moves the line pointer to the beginning of the line, and displays the line
(line20f Figure 6-3). To alter the WD to WC, enter S (the SUBSTITUTE command),
a space, then WDWC$ (line 3 of Figure 6-3). The first $ says this is the start of the
stri ng to be del eted. WD is the stri ng to be del eted. The second $ is the end of the stri ng
to be deleted, and the beginning of the string to substitute for the deleted string. The
final $ indicatestheendofthestringtosubstitute. (Any character that will notappear
in the string itself can be used as the delimiter, in place of $.)

6-4

The Editor

The Editor performs the substitution and displays the line as altered (line 4 of
Figure 6-3). To change RETDMYNN to RETC,UN, find the line by entering F
(FIND), space, then -RET to locate this string (line 5 of Figu-re 6-3). The Editor
prints the line on which it locates RET (line 6 of Figure 6-3). In this case, you want
to replace the line with the correct information. This is done by pressing R (the
REPLACE command), space, and then entering the information desired, namely
, .' RETC,UN (line 7 of Figure 6-3). This command replaces the current line with
the line following the R ,space. The Editor displays the replacement line after it has
performed the replace function (line 8 of Figure 6-3).

To insure that the changes were performed correctly, go to the top of the buffer and
display its contents (see Figure 6-4).

1 .TAB.
2 .1
3 INPUT:
4 • DOUBLE PRECISION ADD. A IN RO,Rl. B IN R2,R3
5 .ON RETURN, A+B IS R2,R3
6 •
7 DADD.STRR,Rl.DARl
8 .ADDR.R3.DAR1
9 • PPSL. 1 .• .lD

10 • AIIIIZ. F.~2
11 • STRZ. F.~2
12 • CF'SL. I. •. IC
13 • F.' E T II t'l'r'tH'~
14 DAF.~ 1 • RES. 1
15

.T· C'C" -'._' 17
18
19
20
21
22
23
24
25
26
27
28
29

• DOUBLE PRECISION ADD A IN RO,R1
.ON RETURN, A+B IS R2,R3
•
DADD STRP,Rl DAR1

AD II F.: DAF.'l
PPSL \.t.ID
ADIIZ F.~2

STF.'Z F.' 2
CPSL 1. • .Ie
RETDt·".,..t·it·~

DAP1 RE:S' 1
•• EOF ••

Figure 6-2. Entering Text and Displaying the Buffer

6-5

Since you are satisfied that the buffer contains the correct information, you want to
store the information on the disk. This is accomplished using the FI LE command
(line 15 of Figure 6-4), which writes the contents of the buffer·to the PRIMARY
OUTPUT file and then transfers the rest of the PR I MARY I NPUT file, if one exists,
tothe PRIMARY OUTPUT file. Following the final transfer, the Editor is exited and
UDOS displays its prompt character. In this case, the buffer will be copied to disk file
DADDSB/O. There is no input file, so DADDSB/O will be closed, the Editor will be
exited and UDOS will display its prompt character (line 17 of Figure 6-4).

6-6

1 *F $ I.I.ID $
2 PPSL i.t.lD
3 *:S: $I.!.I D$I.I.I C:1;
4 PPSL ! ... IC
5 *F $F.'ET~f;

6 PETDt'1'.,..r·it·i
7 *r:~ • PETC ~ Ut·~
8 F.~ETC, Ut·i

*

Figure 6-3. Use of FIND, SUBSTITUTE and REPLACE Commands

1 *E:
2 .r·f' 55
3 • DOUBLE PRECISION ADD A IN PO~RI
4 .ON PETURN, A+B IS R2,R3
5 •
6 DArin
7
8
9

10
11
12
13 DAF.: I
14 •• EDF
15 *FILE
16
17 '>

STF.~F.~ ~ R I DFiF.~ 1
ADDR R:;: DARI
PPSL 1.I.le
ADDZ j:;;'.:' .•• L...

STF.~Z j:;;"-' ·.Co

CPSL 1 ... le
F.~ETC, U~i

PES I
••

Figure 6-4. Displaying the Buffer and Filing

The Editor

6.4.4 Editing In New Data. Suppose you wished to expand DADDSB/O to include
not only a double precision add, but a double precision subtract, a.s in Figure 6-5.

To edit the additional information into the file DADDSB/O, do the following tasks.

Start the Editor by entering:

> ED IT ItAItItSB I) 0
While this command is identical to the command entered earlier, it now has a different
interpretation. In the first example, DADDSB/O was a new file.

When a new filename is the sole argument to an EDIT command, the file is treated
as the PRIMARY OUTPUT file and there is no PRIMARY INPUT·file. This is as it
should be, since if you are in the process of creating a new file which will contain
unique information, there is no need for a PRIMARY INPUT file. In this case,
DADDSB/O is an existing file which contains the double precision addition routine, so
this EDIT command requests that DADDSB/O be edited to itself, as explained in
paragraph 6-3.

• ItOUBLE PRECISION ADD A IN RO,Rl
.ON RETURN, A+B IS R2,R3

•
DAItD

ADD~~

PPSL I.I./e
ADDZ F.~2
STF.'Z F.~2

CPS:L. I.I.IC
F.:ETC, UN

DAF.~l RES 1
•• EOF ••
• TAB •
• 1
I t'iPUT:
• DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO •• ,Pl
• ON RETURN, A-B IS IN R2,R3
•
DSUB.STRR,RO.DSRO
• STRF.:, R 1. DSF.~ 1
• SUBR, F.:::::. DSF.~ 1
• PPSL. I.I./C
• SUBF.~, P.2. nSF.~D
• CPSL. 1.1.le
• RETe, Ut·"
ItSRD. F.~ES. 1
IISR1. RES. 1
• ENIt. DAIIII

Figure 6-5. Sample Double Precision Add and Subtract Programs

6-7

When the Editor displays its prompt character, * ,you can proceed. Since the new
text is to be appended to the existing text in DADDSB, you must read the existing
file into the buffer. This is accomplished by entering G (the GET command), space,
and then 20, an arbitrarily large number that will result in DADDSB/O, which we
know to be approximately 10 lines long, being read into the buffer. (See line 1 of
Figure 6-6). The Editor reads the PRIMARY INPUT file, which is the default file­
name in the GET command, until it inputs the specified number of lines, or until it
reaches the end of file. In this case, the end of file is reached first, so the message
** EOF ** is displayed (line 2 of Figure 6-6).

Where was the data inserted in the buffer? The answer is that the data was inserted
above the line pointer as in the I NPUT mode example. To view the buffer, move the
pointer to the beginning of the buffer (line 3 of Figure 6-6). Display the buffer by
entering TY 55 (line 4 of Figure 6-6). This command displays the buffer and prints
** EOF ** to indicate the bottom of the buffer (lines 5 - 16 of Figure 6-6). (Note
that ** EOF ** has two uses, one to indicate the end of the buffer and one to in­
dicate the end of the file.)

To enter the double precision subtract routine after the add routine, you must go to
the bottom of the buffer to perform the insertion. Do this by entering END. This
command moves the line pointer to a location below the last line of text (lines 17 -
18 of Figure 6-6). The TAB character is specified as a '.' in line 19. Enter the input
mode by entering I (line 20 of Figure 6-6). Enter the source data (lines 22 - 35 of
Figure 6-6). The effect of the TAB character can be seen in lines 52 to 61 of Figure
6-6, when the entire buffer is displayed by the commands on lines 36 and 37.

Suppose you desired to make the source listing a little more readable. For example,
suppose you want to add an '*' line between lines 48 and 49 and between lines 58
and 59 of Figure 6-6. To do these tasks, you must first position the line pointer to
point to the line that begins with' * , DOUBLE PRECISION SUBTRACT. This canbe
accomplished by moving the line pointer down the buffer. Enter 0 (the Move Line
Pointer Down the Buffer Command), space, 10 (line 1 of the Figure 6-7). This moves
the line pointer 10 lines down. The Editor displays the line that the line pointer now
points to in line 2 of Figure 6-7. The' * ' line is desired between the DAR1 RES 1
lines and the '*' DOUBLE PRECISION SUBTRACT line. The INSERT command
inserts the line specified above the current li;le. Therefore, go down the buffer one
more line. This is accomplished by entering 0,(7), since the default value for the
number of lines to move is 1 (line 3 of Figure 6-7).

Toenterthe * line,enter I (the I isan INSERT linecommand unless it is immediately
followed by a RETURN in which case the user enters the INPUT mode), space, * ,
0(1ine 5 of Figure 6-7). To enter the second '* ' line between the two temporary
variables, DSRO and DSR1, and the subtract routine, go to the bottom of the buffer.
This is accomplished by entering END (line6 of Figure 6-7). The Editor indicates the
line pointer's position at the bottom of the buffer by displaying ** EOF ** (line 7
of Figure 6-7). Move the pointer up the buffer to the line where you wish to enter
the * by entering U (the Move Line Pointer UP the buffer command), space, :0,
(line 8 of Figure 6-7). This command moves the line pointer up three lines and'
displays the line (line 9 of Figure 6-7). To enter the ,*, line, enter I (INSERT),
space, * 0(line 10 of Figure 6-7).

6-8

.GET 20
•• EOF ••
• B
.T · 55
• DOUBLE PRECISION ADD A IN RO,P1
.ON RETURN, A+B IS R2,R3
•
DADD STRR,R1 DAR1

ADDR
PPSL
ADDZ
:S:TF.~Z

CPSL
RETC, Ut'i

nAF.~1 RE:S'
•• EOF ••
• Et·W
•• EOF ••
• TAB .
• 1
It'~PUT:

c.--.
1""".':1

..... =.
1"':,1-

I .• .IC

DARt

• DOUBLE PRECISION SUBTRACT. A IN R2,P3. B IN RO,R1
• ON RETURN, A-B INNS IN R2.R3
•
rSUB.STRR,RO.DSRO
· STF.·R, R 1 • D'5:R 1
• SUER, !;:~3. D:SR 1
• ~·P,S:L. I,.IC
• SUBR. R2. D:S:F.~ 0
• CPS I . I..,IC
• !;:~ETC, Ut'i
DSPO. ';'·ES. 1
reR1. RE'S:. 1
.Et·W. [lADD

.B

.T 25
• DOUBLE PRECISION ADD A IN RO,Pl
.n~ RETURN, A+B IS R2,P3
•
DADD STRP,Rl D8Pl

ADDR P3 DARl
PP:S:L 1.,le
ADDZ ';"2
:S:TPZ ~'2

CP:S:L !. • .Ie
';'~ETC, UN

DAR1 RE:S 1
.DOUBLE PPECISIDN SUBTRACT
• ON RETURN, A-B IS IN P2,R3
•
IrS:tJE:

DSRO
TlSR1

STf;;'P, P f) IrS:J;:~ (I

'~:TRR, R 1 D:S:f;;'1
:~'U:E:';", P3 I't::;:R 1
PP:5:L 1 ... le
:S:UBf;;'. R2 D:S:f;;' (I
cp:s: I hie
';"ETC, Ut·~
RE:~:

RES
Et·m DADD

•• EOF ••
•

Figure 6-6. Adding Data to an Existing File

The Editor

6-9

After displaying the buffer (lines 11 - 39 of Figure 6-7) and insuring that the text
you desire is present, the data may be stored on file DADDSB/O by the use of the com­
mand FILE (I i ne 40 of Figure 6-:-7). The contents of the buffer are written to the
PRIMARY OUTPUT file, *ADDSB/O. The remainder of the PRIMARY INPUT file,
DADDSB/O, is copied to the PRIMARY OUTPUT file. Since all the data has been
read from the PRIMARY INPUT file (lines 1-2 of Figure 6-6, **EOF**), no
additional data is written to the PR IMARY OUTPUT file. The file DADDSB/O is
deleted. * ADDSB/O is renamed DADDSB/O. The Editor is exited and UDOS
displays its prompt character.

6.5 EDITOR COMMAND DESCRIPTIONS.

This section provides detailed descriptions of all the Editor commands. As a prelude
to these descriptions, the Editor command I ine, the conventions and terms used in the
descriptions, and certain limitations will be explained.

6.5.1 Editor Command Line.

When the Editor presents its prompt character, * ,it is ready to accept commands.
All Editor commands are of the form:

I COMMAND PARAMETERLIST

where:

COMMAND identifies the particular action desired

PARAMETER LIST identifies necessary variables for the command. The
parameter list may be null.

There must be a space between command and parameters with one exception,
described in paragraph 6.5.2.

A command I,ine consists of one or more commands terminated by RETURN. If you
desire to specify two or more commands in one command line, the commands must
be separated by the command delimiter (:).

For example:

• F $BADLINES$: V 1 0
would find the next line in the buffer with the string BADLINE in it and then delete
that line.

A command line may not exceed 128 characters. If the line does exceed 128
characters, ** ABORTED ** will be displayed on the console and the entire
command line will be rejected.

6.5.2 Editor Command Description Conventions.

There are several conventions employed in the description of the Editor commands,
and two features of the Editor that require explanation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

·33
34
35
36
37
38
39
40
41
42

.D 10
DAR1 RES 1
.D
.• DDUBLE PRECISION SUBTRACT
.1 •
.ENII
•• EOF ••
.U :3-
DSRO
.1 •
.B
.T 55

RES 1

• DOUBLE PRECISION ADD A IN RO~Rl
.ON RETURN~ A+B IS R2,R3
•
IIADII

DAF.~ 1

•

STF.~F.' ~ F.' 1
ADDF.'
PP:S:L
ADDZ
STF.'Z
CP~S:L

RETC, Ut'i
J;:~E:S:

DFtF.~ 1

I.I.IC

F.~2
J;,~2

'.I.le

1

DAF.'l

.DDUBLE PRECISION SUBTF.'ACT
• ON RETURN, A-B IS IN R2,P3
•
DSUB STRF.',PO DSRO

STRF.~ ,p 1 DSf;,~ 1
SUBF.~, F.~:3 DSR 1
PPSL 1.1.1(:
SUE:R, R2 DSF.~ 0
CP'S:L h.le
~~ETC, Ut·~

•
DSF.~ 0 PES
IrS:Pl PES

Et'UI
•• EOF ••
.FILE
•• F.:OF ••
.SLJ. EO.-'

1
1
DADD

Figure 6-7. Inserting Lines Into the Buffer

The Editor

6-11

Conventions used in the command descriptions are:

a) The symbol N, used with several commands, refers to two possible entries.
These are an absolute number (n) or a line range (p-q). For example,
KI LL N refers to two possible types of command line, KI LL n or KI LL
p-q. Thus, you could KI LL the next n lines or KI LL lines p through q
(inclusive) in the buffer. N assumes a default of n=l if N is omitted, except
when it is used with the COPY command and, when an alternate file is
specified with the GET and PUT commands. In these cases, N must be
specified. In addition, N may be directly appended (without a space) to
the command when it is used. For example, KI LL N may be written as Kn -or
Kp-q. The arguments n,P and q must be integers in the range 1 to 32,767,
inclusive.

I n the "p-q" form I the letters B, E, and C may be used, where appl icable, to
refer to the Beginning, Ending, and Current lines in the workspace. If used,
these letters may not be directly appended to the command. A space after
the command is required.

b) The Editor maintainsa line pointer to the line in the buffer that it is currently
considering. The line is known as the current line. The line pointer will be
designated in this discussion as: @ ~
For example, the buffer appears as follows:

AIIDP, PE~ TEt'1P
@-----II .. ~s TF.~ P , F.~ 2 T E~1P 2

AIID I ,F.~2 EPP 1

c) The '$' character is used to represent the delimiting character for a string of
text. The delimiter cannot be a space and cannot appear in the string being
delimited. '$' was used in the Edit example, and its use was discussed in
paragraph 6.4.3.

d) The minimum characters required to initiate the command are underlined.

e) Parameters that are optional for a command are enclosed in parentheses.

The two features of the Editor are:

1) The Editor will type the line pointed to by the line pointer at the completion
of most commands. This feature keeps the user apprised of his position in
the buffer. For a complete discussion of how to manipulate this feature,
consult the BRIEF command.

2) The Editor has three special commands delimiters, : (which allows the user
to stack commands on a command line), < and > (which, used as a pair,
execute a command line repetitively, see paragraph 6.5.9). To enter these
characters into the buffer, they must be entered while in the I NPUT mode
or when a / prefix is used. (See paragraphs 6.4.1 and 6.5.3 for I NPUT, para­
graph 6.5.9 for /).

6-12

6.5.3 I nsertion Commands.

Insert
Input

The user may insert source lines into the buffer by the use of the commands INSERT
and INPUT.

I INSERT string I
This command will insert the line string before the current line in the buffer. This
allows the user to enter single lines into the buffer. The position of the line pointer
is not changed.

For example, if the buffer appears as follows:

ADDF.~ ~d~~ 0 ItAF.'2
@-"~-ADDP!' F.~1 DA~'3

and the command

+INSERT STRR~RO DAR5

was performed, the buffer would be altered to

ADIIR!' F.: (I DAF.:2
STF.'R!' F.~ 0 DA~'5

~ADIIF.~!' R1 IIAR:;:

If the user enters a null string, by depressin0fter the single delimiting space, the
editor will enter the INPUT mode, which is described below.

I lNPUT I
The editor may be placed in the INPUT mode by entering:

+INPUT 0
The editor will repsond with

InpUT:

to indicate that it has entered the input mode.

In the INPUT mode, the user may enter any number of lines. These lines will be
entered into the buffer before the current line. The I NPUT mode is terminated by
entering a null line. The position of the line pointer is not changed. For example, if
the buffer appears as follows:

ADDR, F.~ I) DAR2
@~"''''-ADDF.:!' F.'l IIAF.::3

and the sequence

6-13

Kill

was performed, the buffer would be altered to

ADDP, F.: I) DAP2
:S:TPP!' F.' 0 DAJ;;:5
ADDP .. P2 DAf;A
ADDZ,P2

@ .. ADDP .. J;'l DAF.':::

In the I NPUT mode, no text line may exceed 128 characters. If more than 128 char­
acters are input before RETURN is pressed, **TRUNCATED** will be printed on
the console, and only the first 128 characters entered will be placed in the buffer.

6.5.4 Deletion Commands.

The user may delete lines in the buffer using the command, KI LL.

I ~ILL N I
This command has two forms, 1) delete the next n lines beginning with current line,
or 2) delete lines p through q in the buffer. If no argument is specified, only the
current line is deleted.

For example, if the buffer appears as follows:

@ .. L I r·iE
LInE .:.

L-

L I t·~E :::
LIt"1E 4
LInE 5
PETC .. ur·1

and the following command is perform~d

*K4

the buffer will be changed to

The command K 1-4 could have been used to produce the same effect.

The KI LL command moves the line pointer in the following manner:

6-14

Substitute

1) If K n is used, and the line pointer is positioned on line q, the line pointer is
repositioned to point at what was line q+n before the deletion took place.

In the above example, K 4 is used as th.e command, and the line pointer is
positioned at line 1 in the buffer. Therefore, the line pointer is repositioned
to point at what was the fifth line, LI NE 5.

2) If K p-q is used, there are two possible positionings of the line pointer.

a) If the line pointer points at a line between line p and line q, the line
pointer will be repositioned at what was line q+1.

b) If the line pointer points at a line that is not between line p and line q,
the position of the line pointer is not changed.

6.5.5 Alteration Commands.

The user may alter lines in the buffer through the use of the commands SUBSTITUTE
and REPLACE. Both commands operate on the line pointed to by the line pointer.

I SUBSTITUTE $STRING1 $STRING2 $ I
The SUBSTITUTE command finds the first occurrence of STRING1 in the current
line and replaces STRING1 with STRING2.

For example, if the current I ine is

II F.~ :~: 1 ••• 1

the command

.:s: $D~'$IIA$

would alter the line to

DPS I
•••

I

If STRING1 is not found in the current line, **NOT FOUND** is displayed on the
console.

STRING 2 may contain TAB characters (see paragraph 6.5.9). Conversion of the TAB
characters to spaces in the buffer depends on the column in which the substitution
occurs. The substitution of spaces for TAB characters is always in accord with the
current TAB positions.

If a substitution causes a line to exceed 128 characters, the message **TRUN­
CATED** will be displayed on the console and the line will be truncated by trunca­
ting characters from the text which is being inserted. For example, if the current line
is the 127 character line:

@ ~ AA AABBCC CC (63A's and 62 CiS)

6-15

Rep/ace

and the command

S: BB:E:BBBB$
•• TPUt'1CATEIt ••

is performed, the message **TRUNCATED** will be displayed on the console and
the current line will be altered to the 128 characters:

AA AABBCC CC (63A's and 62 C's)

No matter what the result of any substitution, the position of the line pointer is not
changed.

In the example command line, SUBSTITUTE DRDA$, the character '$' is used
asadelimiter. The first '$' indicates the beginning of the string to be substituted for.
The second '$' indicates the completion of the first string and the beginning <;:>f the
string to substitute. The third and final '$' indicates the completion of the STR I NG
to substitute.

Suppose, however, this line appeared in the buffer:

!,.I I t-iES Bo.,-' $~' I Dt:iE$

if you desire to replace $RIDGE$ with +RIDGE+ , you cannot use this command:

S $$RIDGE$$+RIDGE+$
STRING1 STRING2

Since $ is being used as the delimiter, it may not be inserte9 in either STRING1 or
STRING2.

S /$RIDGE$/+RIDGE+/

would alter the line to the desir-ed:

I,d I t'iES B'l +P I DGE +

In this command, the / is used as the delimiting character.

I BEPLACE STRING I
The command REPLACE is used to replace the current I ine with STR I NG. For
example, if the current line is:

~ADDR!lR2 DA~~l
the command

will result in the current line being altered to:

6-16

Find

@ .. STF.~F.', F.~2 DAF.'l

The position of the line pointer is not altered. A blank line is not allowed as STR I NG.
For example:

+p0
is not a valid command.

If the REPLACE command is used in a command line that contains more than one
command, the command delimiting characters: , > , or < will indicate the end of
STRING. For example:

.K4:R GOODBYE: I THEN

would delete the next four lines, then the current line would be replaced by the line
GOODBYE. The I NSERT command would then be executed.

6.5.6 Search Commands.

The user may search the buffer for a specified stnng using the command FIN D.

I EIND $STRING$ I
This command searches the buffer, starting at the current I ine, for the first line that
contains STR I NG. If STR I NG is found, the line pointer is repositioned to point to the
line in which string occurs. If STRING is not found the message *NOT FOUND* is
displayed, and the line pointer is left unchanged.

If the buffer appears as follows:

@
LI t·~E 1 ... L I t·~E .: .

1.. .

LI t·~E . -, .:..

L I t'~E 4
L I t·~E 5

and the command:

is executed, the line pointer will be moved to this position:

LINE 1
LI t'~E .-,

Co

@
L I t'iE ::.: .. LI t'iE 4
LINE C"

._1

6-17

Get

In the sample command F 4, the $ is used as a delimiting character. The first
$ indicates the beginning of the STR I NGto be found; the second $ indicates the
end of the STRING to be found.

Note that the command

+F 1

will display *NOT FOUND* on the console since the specified STRING is in a line
above the line poi nter.

If the FIND command is invoked by use of the AGAIN command (see paragraph
6.5.8) the search starts at the current line plus one.

6.5.7 I/O Commands.

The user may bring information into or send information out of the buffer using the
commands GET, PUT, and LIST. The user may move data between files using the
COpy command.

Before discussing the I/O commands, there are three concepts that require explanation.

1) The Editor maintains 'pointers' into the PRIMARY INPUT and OUTPUT
files. These pointers indicate the position of the next line to be read from the
PR IMARY I NPUT file (the PI pointer) and the position of the next line to be
written in the PRIMARY OUTPUT file (the PO pointer). Initially, both
pointers point to the first line in the respective files.

The PI pointer will only be affected by GET commands that use-the default
filename option. The PO pointer will only be affected by PUT or COpy
commands that use the default filename option.

2) An existing file in the disk can be written over, under control of the Editor,
and thus be destroyed.

3) System devices, such as CONO, CON I, LPT1, etc., can also be specified as the
input or output files in all I/O commands.

~ET N (FI LENAME) I

This command reads N lines of data into thebuffer. FILENAME specifies the file
that will be accessed to provide the data. If FI LENAME is omitted, data will be input
from the PRIMARY INPUT file. The data that is input is inserted above the current
line pointer. The position of the line pointer is not changed.

For example, if the buffer appears as follows:

F'PSL !..Ie
@f----... ~ r;:~ETC!l ur-i

DAPl PES 1

and file A contains the five lines

AIIDZ ~ .. -.
"Co

~:;:TPZ p'=' '.1-

CPSL 1 ... le
~~ETC, UN

LAB PES 1

performing the command:

wi II cause the buffer to be altered to:

PPSL 1.1.le
ADDZ J;;~2

:S:T~~Z P2
CPSL 1.1.le

@ .. ~'ETC!l Ut·~
DA~: 1· ~~ES 1

Other features of the GET command include:

Put
purK

1) If the user specifies the PRIMARY INPUT file as FILENAME the pointer
into the PRIMARY INPUT file will not ·be altered. For example, if 6 lines
have been read from the PRIMARY INPUT file, ASYM, with a GET 6
command, a

command would read the 7th and 8th lines and move the PI pointer to the
ninth line. If, however, the command was not GET 2 but:

the 1st and 2nd lines would be read into the buffer. The GET 2 ASYM
command would not affect the pointer into the file ASYM. Any succeeding
GET N command would begin with the 7th line.

2) The PR IMARY OUTPUT file may not be used as FI LENAME.

EUT N (FILENAME)
PUTK N (FI LENAME)

These commands write N lines of data from the buffer to an output file. FI LENAME
specifies the fi Ie where the data wi II be written. F I LENAM E may not be the P RIMA RY
INPUT file or the PRIMARY OUTPUT file. If FILENAME is specified, the data will
be output to the beginning of the file and the file will be closed when the write is
complete. Thus, if FI LENAME already contains data, the old data will be lost. If

6-19

list
Copy

FILENAME is not specified, output will be to the PRIMARY OUTPUT file~ The
data will be written beginning at the PO pointer and the PO pointer will then be
moved at the next empty line in the file.

If the command is PUTK, the lines written to the output file are deleted from the
buffer. Thus, with the PUTK and PUT commands there are two possibilities:

a) The line pointer points to a line which needs to be deleted from the buffer.
In the case, PUTK is used and the line pointer is repositioned to the line
immediately following the deleted text.

For example, if the buffer appears as follows:

@
1
2

LINE .-,
._'

L I t·~E 4
L I t·~E 5

and the command

*PUTK 2

is executed, the second and third lines will be written to the PR IMARY
OUTPUT file and deleted from the buffer, leaving the buffer as follows:

Llt·~E 1
@----.... -LINE4

LInE 5

b) The line pointer points to a line which will not be deleted. In this case PUT is
used and the position of the line pointer is not altered.

LIST N I
This command lists N lines of data on the line printer. The current line pointer
position is not changed. The default value of Nis 1.

I ~OPYNINFILE(OUTFILE) I
This command copies N linesfrom INFILEtoOUTFILE. IfOUTFILE is not specified,
the data is copied fron) INFI LE to the PRIMA~Y OUTPUT file. OUTFI LE may not
be the PRIMARY INPUT file. You may specify the PRIMARY INPUT file as the
IN FILE without disturbing the pointer into the PR I MARY I NPUT file.

When OUTFI LE is specified, the data is copied from I NFl LE to the beginning of the
file and OUTF I L_E is then closed. If the PR I MARY OUTPUT file is used by default,
the data is copied from INFILE to the PRIMARY OUTPUT file beginning at the PO
pointer.

6-20

Begin
Down

N

End
Up

Again

The COpy command does not use the buffer to transfer data, and it will not alter the
buffer or the current line pointer.

6.5.8 Buffer Line Pointer Commands.

The user may alter the position of the buffer line pointer by using the commands
BEGIN, END, DOWN, and UP. The user may have the line pointer position printed
using the command, N.

I ~EGIN I
This command positions the line pointer at the first line of the buffer.

I ~ND I
This command positions the line pointer one line below the last line of the buffer;
EOF is displayed on the console.

I QOWN n I
This command moves the line pointer n lines down the buffer. The default value of n
is 1. If the current line is q and q+n is greater than the number of lines in the buffer,
the effect is the same as the END command.

I !dP n I
This command moves the line pointer n lines up the buffer. The default value of n is
1. If the current line is q and q-n is less than 1, the line pointer is set to point at the
first line.

This command displays on the console the number of the line pointed to by the
current line pointer.

6.5.9 Utilities.

The user may perform a variety of functions, including repeating previous commands,
listing portions of the buffer, setting the tabs, and terminating an edit session, using
the commands AGAIN, BRIEF, FILE, QUIT, UDOS, TAB, TABS, TYPE, 7, / and
the iterate command function, m < command >.

I AGAIN r

This command performs the previous command, as long as it is one of the repeatable
commands. For example, if the buffer appears as follows,

6-21

RlE

LInE ~

@
.L .. L I t'1E 2

L I t'iE .-:. "_,

'- I t'1E 4
L I t'iE 5

'L I t'iE E,

and the command

were performed, the buffer would be altered to,

L It'iE 1
... LI t'iE 4

1_ I r"iE c:-
"-'

L I t'iE 6

If the next command performed was

the buffer wou Id be altered to

L It'iE 1
@1----.... -Llt"iEEI

Commands that are not repeatable are:

AGAIN
BRIEF
FILE
INPUT
MACRO
QUIT
TAB
TABS

If a non-repeatable command was the last command specified, and the AGAI N com­
mand is entered, the AGAI N command will look back to discover the last repeat­
able command, which will then be performed.

I Elli I
This command transfers all the data in the buffer to the PR I MARY OUTPUT file.
The data is inserted beginning at the PO pointer, and the PO pointer is then reposi­
tioned to the end of the inserted text. The rest of the PRIMARY INPUT file (the
portion from the PI pointer to the end of the PRIMARY INPUT file) is then moved
to the PRIMARY OUTPUT file beginning at the PO pointer. Both files are then
closed. The Edit session will then be terminated and control will return to UDOS.

6-22

IYPE N

Type
aUIT

TAB

This command displays N lines of the buffer on the console. The current line pointer
is left unchanged. If no value is specified for N, the current line is displayed. For
example, if the buffer appears as follows:

L I t'iE 1
LINE .-.

@
c.

... LItiE .-. . :,.
L I t'iE 4
L I t'iE 5

the command

.T· 2-4

would result in the following display on the console

LI t'iE 2
I.:.ItiE :3
LIt'iE 4

Q1llI

This command closes the PRIMARY INPUT and PRIMARY OUTPUT files and then
terminates the Edit session. If the PR IMARY OUTPUT file is a new file, this file is
deleted before the Editor is exited and control returns to UDOS.

I IA6 CHAR I
This command defines the single character CHAR as the tab character. The tab char­
acter may not be the :, <, or> characters. The default value of the tab character
is CONTROL-I, which is produced by depressing the I key while the CONTROL key
is depressed.

When a character is defined as the tab character, it will not be displayed, but the
following character will start at the next tab position.

An example of using C as the tab character is:

.TAB C

.1
INPUT:
US I t'iG C o
.E::T
us INI:;

AS THE TAB CHARACTER IS NOT A GOOD IDEA

A:S: THE TAB HAF.~A TER IS NOT A GOOD IDEA

6-23

TABS
m

TABS C1 C2 C3 ...

This command sets the tab positions to the given columns C1 C2 C3 ... When the TAB
character is entered from the console, the Editor replaces the TAB character in the
buffer with spaces up to the next TAB position. The default TAB positions are 8, 16
24,32,40,48,56 and 64.

For example, the default TAB positions would produce this result,

*TAB C
*I
It'~PUT :
CHARACTER C IS THE TAB CHARACTER

o
*B:T

HAF.'A TEP I :S: THE TAB

The TAB positions could be altered to produce this result,

*TABS 1 6 11 16 25 31 36
*I
It'1PUT:
CHARACTER C IS THE TAB CHARACTER

o

HARA

H8PA TEF.~ I:S T~E TAF: HAP A TEF.~

m<commands> I

TEF.'

This form of the command line will cause the commands inside the angle brackets to
be repeated m times. If m is omitted, the commands inside the brackets are per­
formed once. For example, if the buffer appears as follows:

~STF.~Z DA~'2

the command

PPSL '-'JD
ADDP,P2 DAF.'1
ADDF.:, R:;: DA~: 1
CPSL b.ID

would result in the buffer being altered to:

6-24

ItAF.'2
PPSL 1.1.le
ADItF.~ ~ F.'2 ItAf;,'l

IID\ ADDf;,~ ~ F.~:::: ItAP 1
~~ ~ CP~::;:L 1.,.Ie

Iteration commands may be nested to a depth of 16 levels.

I UDOS I

UDOS
?

BRIEF

This command suspends the Editor and returns control to UDOS. The Editor may be
continued using the UDOS CONTI NUE command.

This command displays the Editor's I/O status. Entering the following command:

+?

results in the following information being displayed on the console.

PI
LINE
PO =
LINE
LAST AI
LAST AO=

PRIMARY INPUT Filename
Next line to "GET" from the PI file
PR IMARY OUTPUT Filename
Next I ine to "PUT" to the PO file
Last Alternate Input file referenced
Last Alternate Output file referenced

If the / character is the first character in an EDIT command line, the < , > ,and:
characters do not perform their usual functions. For example, the command

+B~F $LEFTANGLE~< $

would be rejected because the angle brackets do not balance. The command

+/B: F $LEFTANGLE,($

would find the string "LEFTANGLE' ,< . If FIND or SUBSTITUTE command is
the first command in a command line, then the / is not required at the beginning of
the line.

I BRIEF I
This command changes the state of a BR I EF switch from off to on or from on to
off. Under the initial BR I EF state, off, the Editor will type the line pointed to by the

6-25

Macro

current line pointer after completing any of the commands EN D, UP, DOWN,
FIND, SUBSTITUTE, and REPLACE. If the BRIEF switch is on, EDITOR will not
type the current line. For example, if the buffer appears as follows:

(0-........ L I t'~E 1
LINE 2
L I t'~E ::::

and the command:

.D 1

is performed, the Editor will move the line pointer down the buffer to LINE 2 and
display on the console:

LINE E~

The user may issue a BR I EF command to change the BR I EF switch to on. This state
will suppress the display of the current line. For example, if these commands were
entered:

.BF.~IEF
+Dl

the Editor would perform the DOWN command to move the line pointer down the
buffer to LINE 3 but would not display the line.

If the BRIEF switch is off, the user may still suppress the display if he appends a
(.) to the command. In the previous example, if the line pointed at LINE 1 and the
BRI EF switch was off, this command:

.D.l

would suppress the display of the current line following completion of the D com­
mand.

If the BR I E F switch is on, meaning display is suppressed, the user may display the
current line by appending the (.) to the command.

6.5.10 MACROS

The user may define or execute a macro through the use of the MACRO command.

I MACRO m=COMMANDLINE I
This command is used to define a MACRO. The m is an integer which identifies the
macro, and must be greater than 0 and less than 128. COMMANDLINE can be any
normal command line but can not contain a macro execution or definition command;
this will result in error when the macro is executed.

6-26

Macro

If a MACRO m already exists, and MACRO m=COMMAND LINE is performed,
COMMANDLINE will replace the old MACROm.

I MACRO m I
This command executes MACRO m. The effect is equivalent to having entered the
command line COMMANDLINE used when the MACRO was defined.

6.6 EDITOR MESSAGES.

This section provides a list of all Editor messages and an explanation of their meaning.

** WSP FU LL **
The buffer is full.

** NOT FOUND **
The given string could not be found.

** DISK FU LL **

Output diskette is full.

** NUMBER? **
The parameter n is in error.

** RANGE? **
The parameter N is an error or an attempt was made to reference lines which
are not in the workspace.

** MODE **
An attempt was made to execute a macro string from within a macro string;
this is not allowed.

** NEST **
The nesting brackets < and > do not balance.

** COMMAND? **
An unknown command was encountered in the command line.

** BREAK **
The ESCAPE Console Key was depressed to terminate execution of a file I/O
function.

6-27

** PROCEDURE ERROR **
Editor usage is in error.

** UDOS STAT= XX **
XX is the UDOS SRB status byte returned to the Editor when an unusual
request or event has occurred. The meaning of the status byte can be found
in Chapter 9.

** NO PI **
For this editing session there is no PRIMARY INPUT file; the user may not
do "GET's" without specifying an Alternate Input file.

** NO PO **
For this editing session there is no PRIMARY OUTPUT file; the user may not
do "PUT's" without specifying an Alternate Output file.

** READ FI LE? **
An attempt was made to read from a non-existent file or an illegal input
device.

** (I NPUT) **
The Editor response is in reference to an input attempt.

** (OUTPUT) **
The Editor response is in reference to an output attempt.

** PI **
** PO **
** AI **
** AO **

The Editor response occurred in reference to the Primary or Alternate Input
or Output, as appl icable.

** NEW FI LE **
A new file was created.

** (LPT1) **
The Editor response occurred in reference to the line printer.

** ASSIGN PROBLEM **
The Editor was unable to assign a channel to a given device.

6-28

The Editor

** PI=NEW FI LE? **
An attempt was made to "EDIT INFILENAME OUTFILENAME" where
INFILENAME and OUTFILENAME were not the same file and INFILE­
NAME was non-existent.

** EOF **
An end-of-file was reached on input or output or the end of workspace text
was reached.

** NO FILES SPECIFIED **
The user initiated the Editor without specifying any primary files; for this
editing session the user may not do "GET's" or "PUT's" without specifying
an Alternate file.

** TRUNCATED **
A command line exceeded 128 characters and was rejected.

** ABORTED **
An I NPUT I ine exceeded 128 characters and was truncated to the first 128
characters entered.

A SUBSTITUTE caused the line to exceed 128 characters and the line was truncated
to 128 characters. (See example in paragraph 6.5.5.)

6-29/6-30

Chapter

the Assembler

7.1 INTRODUCTION.

This chapter describes operation of the Assembler. Topics covered include an overall
description of the Assembler, procedure for using the Assembler, and an example of
a typical assembly listing. Further information on a particular Assembler version for
a specific slave CPU is contained in the manual supplement provided with that slave
CPU card.

7.2 ASSEMBLER OVERVIEW.

The Assembler is the system program used to translate source code into object code
that is executable by theslave CPU. Each UNIVERSAL ONE system software package
contains a particular version of the Assembler, suitable for that slave CPU which the
software package supports. The Assemblers provided in different system software
packages are those supplied by the microprocessor manufacturers. For example, for
the 8080A slave CPU package it will be the MDS 800 Macro Assembler, for the 2650
package it will be the SIGNETICS TWIN 2650 Assembler, etc.

The Assembler performs three major tasks:

1. It will assemble the user specified source file and generate hex format object
code which is written to a user specified object file. Different hex object
code formats are described in the manual supplements for the different micro­
processors.

2. It will create a listing which includes every assembled source instruction, the
instruction address generated for the source instruction, the object code
generated for the source instruction, and all assembly errors. This listing is
written to a user-specified device or file. For details on assembly language
syntax, instruction codes, and other related material, consult the manual
supplement for a specific microprocessor.

3. It will display errors on the console, if not overridden by a command
parameter.

7.3 USING THE ASSEMBLER.

The Assembler may be invoked when the UNIVERSAL ONE system is under the
control of UDOS, by using the ASM command. The user must ensure that two
conditions exist before the Assembler is used:

7-1

ASM
1. The source program is present on a floppy disk file.

2. UDOS is ready to accept commands. UDOS presents its prompt character
> when it is ready for commands.

To execute the Assembler, the user enters the following UDOS command:

ASM SOURCEFILENAME (LiSTFILENAME) (OBJECTFI LENAME)
(NOERR)

where:

SOURCEFILENAME

LISTFI LENAME

OBJECTFI LENAME

is the name of the disk file where the source code resides.

is the name of the disk file or device where the assembly
listing is to be written.

is the name of the disk file or output device where the hex
format object code is to be written.

OPTIONS one or more optional parameters used by Assemblers of
different slaves. For example, a particular slave may recog­
nize WI DE as a designation that the output line is to be
120 print positions wide; or NOERR to indicate that errors
should not be displayed on the console.

In response to the command, the Assembler will proceed to assemble the object code
and will display the listing on the system control console or another specified output
device. When the Assembler has completed its task, UDOS will display it's prompt
character > ,to indicate it is ready for other commands. Errors will have been
displayed on the console unless the N option was entered, in which case the error
display will have been suppressed.

In addition, the assembler will display the following run-time error messages on the
console, if it detects an error while trying to execute the ASM command:

MISSING INPUT FI LE PARAMETER

The input file was not specified. For example,
ASM 0 is not a val id command

UNACCEPTABLE INPUT DEVICE:

The input file is not on a valid input device. For example,
ASM LPTl is not a valid command.

INPUT FILE ASSIGN ERROR - SRB STAT=XX

The SRB Status Codes are listed in Chapter 9.

7.4 LOADING AN ASSEMBLED PROGRAM.

To load an object file assembled by the Assembler, utilize the following procedure;

1. Ensure that the object file is present on a disk file and that UDOS is ready to
accept commands.

The Assembler

2. Enter the U DOS command:

RHEX OBJECTFI LE

where OBJECTFI LE is the name of the file that contains the object code.

When the loading process is complete, the UDOS prompt character > will be
displayed.

Hex object code programs created on paper tape outside the UNIVERSAL ONE
system (for example, by the SOSOA cross-assembler) can be read into slave memory
by the RHEX command or to a disk file by using the UDOS COpy command. Note
that a CTR L-Z character is required by the COPY command at the end of the tape in
order to terminate the COpy and close the file

A binary load file can be made from slave memory by using the MODU LE command.

7.5 SAMPLE ASSEMBLY LISTING.

If the double precision add/subtract subroutine, discussed in the Chapter 6 edit
example, is to be assembled, the followi ng sequence has to be performed:

1. Six EQU assembler directives have to be entered into the source file. These
are needed to define the contents of various CPU registers (RO, R1, R3,
UN, WC), related only to the 2650 slave CPU (for details see the 2650 slave
CPU manual supplement).

2. The command

ASM DADDSB/O,LPT1,DADOBJ/0

will write the object code produced on file DADOBJ/O (see Figure 7-1),
and produce the listing in Figure 7-2 on the line printer.

7-3

• DOUBLE PRECISIO" ADD A IN RO,Rl
.ON RETURN, A+B IS R2,R3

Ut~
I .•. IC

•
DADD

DA~~1

•

EG'U
EG,U
EG,U
EG!U
EIJU

(I

1
2
.-,
.. :..
::::

EOU :3

STRF!:, R 1- DA~~ 1
ADDF!:, R:::: DAF.'1
PPSL 1. •. le
ADIIZ R2
STRZ
CPSL
~:ETC, UN
~'E:S

r::,':' 1""=.1-

hlC

1

.DOUBLE PRECISION SUBTRACT
• ON RETURN, A-B IS IN R2,R3
•
DSUB STRR,RO DSRO

•
DSF-'O
D:S:F.: 1

7-4

:STRF!:, F!'l D:S~~ 1
SUBR, Ft::: IISR 1
PPSL ·I. • .IC
SUBR, R2 II:SF:' 0
CP:S:L 1. • .Ie
RETC,UN

F-~ES
F-~E:S:

END

1
1
DADII

Figure 7-1. Sample 2650 Slave Program Listing Ready for Assembly

The Assembler

TWIN ASSEMBLER VER 2.0 PAI:5E 0001

LINE ADDR OBJECT E SOURCE

0001
0002
000::::
0004 0000
0005 0001
0006 0002
0007 0003
000::: 000::::
ono'3 000:3
o 10
(I 11
(I 1'-' c.
0 1':' '-'
0 14
0 15
0 lE.
(I 17
01..118
0019
OOC'O
o O;:'l.
002c~

0023
0024
0025
o Oc~E,
0027
0028
00,::9
0030
0031
0032
0033

0000
OOOE'
0004
OOOE,
0007'
000:::
OOOA
OOOB

oooc
OOOE
001 0
0012
0014
0016
001:::::

001'3
OOlA
0000

C'309
8B07
7708
c··:· '_'L-

(:2
750:::
17

':::::OB
C90A
ABOS
770::::
AAI):3
7508
17

+ DOUBLE PRECISION ADD A IN RO,Rl
.ON RETURN, A+B IS R2,R3
•
F.~O

f;.~ 1
F.: 2
F.~3

UN
!,.IC
+
DAIIII

DAF.'l
+

EG!U
EOU
EG!U
EG!U
EG!U
EG!U

S:TPR, F.~ 1
AIIDF.:, R3
PPSL
ADDZ
STF.~Z

CPSL
RETC, Ut·~
RES

0
1
2
.j

'-'
.j

'-'
:::

DAF.'l
DAP1
I.t.IC
f;."-' .c.
J;"=' ",1:..

hie

1

• DOUBLE PREC I S I Ot·~ SUBTRACT A I t·~ F.'2, F.':::: F.! I t1 ~'I), P 1
• ON PETURN, A-B IS IN R2,R3
+
DSUB STRR, F.~ 0 IISRO

'S:TRR, P1 D:::;:F.~ 1
:S:UBR, p':' w.o_' IrS:F.~ 1
PP:5:L i.I.!C
SUBR, F.'c~ D:~:RO

CPSL '-'.Ie
F.~ETC, Ut'i

+
DSRO RES 1
DSRl F.~ES 1

Et'HI DAIIII

TOTAL AS~EMBLY ERRORS = 0000
.SL.J+ EO.J Note: refer to 2650 slave manual supplement

for an explanation of the format in this listing.

Figure 7-2. Sample 2650 Slave Assembly Listing

7-5/7-6

Chapter

PROM Programmer

8.1 INTRODUCTION.

This chapter describes the optional PROM programming facilities of the UN IVERSAL
ONE system. Topics covered include a general description of the PROM programming
software and hardware, instructions for programming a PROM, and a description of
the associated commands.

8.2 PROM PROGRAMMING HARDWARE AND SOFTWARE.

The optional PROM programming facility is used to manually program PROM chips
in the UNIVERSAL ONE system or to output programming data to another device,
such as a paper tape punch. The PROM programming facility consists of one or two
programmer circuit cards and the PROM Programmer software. The current hardware
and software can support both the 82S115 bipolar fusible I ink PROM and the 1702A
MaS erasable PROM. Other hardware and software, in development at the time of
publication, will support the 2708 and 2704 MaS erasable PROMs.

The programmer circuit board is installed in the development computer card cage
and during programming controls the data flow (i.e., power application) to the
PROM chip inserted in one of the development computer front panel sockets. A
different programmer card is required for each different type PROM to be program­
med.

The PROM Programmer software is included in UDOS overlay area 1, on the system
diskette, and can be utilized for programming either the 82S115 or 1702A PROM.
Three software commands are used to read, write, or compare data in a PROM. Other
software will need to be written on the system diskette to support additional PROM
types.

8.3 USING THE PROM PROGRAMMER.

There are three sockets on the front panel of the development computer (see Figure
3-5). The 24-pin socket labeled PROM 1 is used for 1702A PROMs. The 24-pin
socket labeled PROM 2 is used .for 82S115 PROMs. (The third socket is reserved for
future use.)

To program a PROM, first load the fully debugged PROM object code from the disk
file into slave memory and then proceed according to the following procedure:

8-1

Rprom
1. Always turn PROM power off whenever inserting a PROM in its socket (or

removing it). Power to the socket is controlled by the PROM PWR switch
on the front panel of the development computer. (The PPWR indicator above
the switch is I ighted when power is on.)

2. Insert PROM in its correct socket. Use of the wrong socket is likely to cause
permanent damage to the PROM. Align pin 1 of the PROM with pin 1 of the
socket. Pin 1 is adjacent to the lever.

3. When inserting or removing the PROM leave the socket lever up; push down
on the lever to clamp the PROM inthe socket.

4. Acquire the UDOS prompt character > on the control console and the'n
enter the desired PROM Programmer command, or sequence of commands.
The commands that can be used are RPROM, WPROM and CPROM. RPROM
is used to read the contents of a PROM into slave memory. WPROM is used
to write binary code from slave memory to the PROM. CPROM is used to
compare the contents of slave memory with the contents of a PROM. See
paragraph 8.4 below for a more complete description of each command.

5. If instead of programming, it is desired to output the code to peripheral
equipment, use the WHEX (or WSMS) command (see paragraph 4.6.6).

8.4 PROM PROGRAMMER COMMANDS.

The PROM Programmer utilizes three commands: RPROM, WPROM, and CPROM.
These commands are stored in UDOS overlay area 1 and can be used whenever the
UDOS prompt character> appears on the control console.

I· BPROM (A 1) (N) (A2) (A3) (C) I
This command is used to read the contents from the PROM inserted in socket N into
slave memory. A 1 is the first location in slave memory to be stored into. The default
value of A 1 is O. N is the PROM type to be read. If N is equal to 1 the 1702A PROM
is specified. IfN is equal to 2 the 82S115 PHOM is specified. The default value of N
is 1. A2 is the address to begin reading from on the PROM. The default value of A2 is
O. A3 is the last address to read from on the PROM. The default value of A3 is OOFF.
C determines whether the data from the PROM should be complemented. If C is
equal to 1, the data is complemented before it is stored in memory. If C is equal to 0,
the data is not complemented. The default value of C is O.

PRM Error Responses:

8"""""2

7 - Device write error
29 - PROM power failure
30 - Invalid parameter
35 - Illegal start address
36 - Illegal end address

WPROM (A 1) (N) (A2) (A3) (C)

WProm
CProm

This command causes the PROM on port (socket) N to be programmed with the
contents of slave memory. A 1 is the address of the first slave memory byte to be
programmed in the PROM. The default value of A 1 is O. N is the number of the
PROM programmer port. N equal to 1 corresponds to the 1702A port and N equal to
2 corresponds to the 82S115 port. The default value of N is 1. A2 is the initial
PROM location and A3 is the last PROM location to program. The default value of
A2 is O. The default value of A3 of OOFF. C indicates whether the data should be
complemented before it is programmed in the PROM. If C is equal to 1, the data will
be complemented. If C is equal to 0, the data will not be complemented. The default
value of C is O.

After each memory byte has been written, the PROM is read. The byte read from the
PROM is compared with the byte written. If the bytes are not equal, a certain
number of retries are attempted. If the comparison sti II fai Is after these retries, the
PROM address and the contents of the PROM are displayed on the console. The
maximum number of retires is sixteen (16) for the 1702A and eight (8) for the
82S115. If an unsuccessful compare occurs on the 1702A, the PROM is rewritten
five (5) times before the next comparison.

PRM Error Responses:

7 - Device write error
29 - PROM power failure
30 - Invalid parameter
35 - Invalid start address
36 - Invalid end address

~PROM (A 1) (N) (A2) (A3) (C)

This command causes the contents of the PROM on port N to be compared with the
contents of slave memory. A 1 is the location of the first slave memory byte to be
used in the comparison. The default value of A 1 is O. N is the number of the PROM
programmer port. N equal to 1 corresponds to the 1702A port and N equal to 2
corresponds to the 82S115 port. The default value of N is 1 . A2 is the initial PROM
location to be compared witr. slave memory. The default value of A2 is O. A3 is the
last PROM location to be compared with slave memory. The default of A3 is OOFF. C
indicates whether the slave memory data should be complemented before it is com­
pared with the contents of PROM. If C is equal to 1, the slave memory data will be
complemented before the compare occurs; if C is equal to 0, the data will not be com­
plemented. The default value of C is O.

8-3

If the val ue read from the PROM and the slave memory data are not equal, the memory
location, its contents, and the PROM contents are displayed on the console.

PRM Error Responses:

8-4

7 - Device write error
29 - PROM power failure
30 - Invalid parameter
35 - Inval id start address
36 - Invalid end address

Supervisor Call Interface

9.1 INTRODUCTION.

This chapter describes Supervisor Call (SVC) software of the UNIVERSAL ONE
system. A general description of the SVC concept and applications is at the begin­
ning of the chapter, followed by a description of various component parts of the
SVC software.

9.2 GENERAL DESCRIPTION OF SUPERVISOR CALLS.

In the structure of UNIVERSAL ONE system software no direct communication is
allowed between the slave CPU and system peripherals. However, Supervisor Calls
are a means by which a user program, running under the slave CPU, can gain access
to system peripherals by generating interrupts to the master CPU. A program running
under the slave CPU can issue one of six SVCs - SVC1, SVC2, etc. - to acquire
either an I/O connection with system peripherals or obtain a UDOS program service.

The SVC is actually an extended slave CPU I/O instruction that is decoded on the
debug logic card to generate a master CPU interrupt. Corresponding to each SVC
there is a Service Request Block (SRB), which is an 8-byte block that identifies
certain specifics and stores status related to the I/O or service requested by the SVC.

The SVC is initiated by a slave CPU I/O instruction to slave CPU device ports F2
thru F7, followed by a slave CPU NOP instruction.

SVC No. Slave CPU SVC
I/O Port Pointer

SVC1 F7 40
SVC2 F6 42
SVC3 F5 44
SVC4 F4 46
SVC5 F3 48
SVC6 F2 4A

When the program running under the slave CPU issues an SVC, the debug logic card
decodes the SVC, halts the slave and interrupts the master CPU. The SVC is vectored
to a unique location in master memory where the UDOS program SVC Processor
module (refer to Chapter 4), which services all SVC interrupts, is located. Under
control of the SVC Processor, the master CPU looks at the SRB pointer in slave

9-1

memory, uses the pointer to access the SRB and then executes the SRB. During this
time the slave CPU remains in the halted state.

All SVC I/O operations are performed by UDOS running under the master CPU.
Data to be input from floppy disk files is first read into UDOS buffers and then
deblocked to the user's buffer, as required. Data to be output to floppy disk files
are accumulated in UDOS buffers and then output to the file as full sectors, under
control of the UDOS File Manager. Input/output operations on devices other than
floppy disk files are performed directly through the user's buffer.

9.3 SERVICE REQUEST BLOCK (SRB).

The user must place an SRB in the slave memory, corresponding to each of the six
SVCs. All of the information needed to perform the function requested by the SVC
caller is contained in the SRB.

An SRB consists of eight contiguous bytes, located in the first 16K page of common
(slave) memory. The contents of an SRB are as follows:

Byte Symbol Content

1 SFC SVC function code
2 SCH Channel number
3 STAT Status
4 SDAT Single byte data
5 BCNT I/O byte count
6 BMAX I/O buffer length

7-8 BPTR I/O buffer pointer

A description of each entry in the SRB is given below:

9.3.1 SRB Bytes.

SVC Function Code (SFC). The SVC function code specifies the I/O or service
function which is to be performed as a result of the SVC call. A list of 25 different
functions supported by U DOS is given in Appendix 0, and each function is described
in more detail in paragraph 9.3.2.

Channel Number (SCH). A logical channel number must be specified for all SVC
I/O function codes. The channel number must be in the range O~7. When a logical
channel is assigned to a physical device or file, the channel stays connected to the
device or file until a "CLOSE" function is issued on the channel. The same channel
number can be used in more than one SRB.

Status (STAT). For all I/O operations, an indication of the result of the I/O request
is returned by the master CPU and written in the location of the SRB byte STAT. If
a READ and PROCEED, or WRITE and PROCEED function is requested, STAT will
first be set by master CPU to indicate that the I/O operation is in progress. When the
I/O operation is complete, STAT will be set to indicate the result of the operation.
A list of status codes is given in Appendix E.

9-2

Supervisor Call Interface

Single Byte Data (SOAT). This location is used by the master CPU to return single
byte data requested by an SVC function other than an I/O function. For I/O, SDAT
is the physical status of the device being accessed.

I/O Byte Count (BCNT). This location is used by the master CPU to return the actual
number of bytes to be input or output by a READ or WRITE operation. For line
oriented ASCII read or write operations, this count is the actual number of characters
including the end-of-line character EOL. ·For binary read or write operations the
count is the actual number of bytes. BCNT is also used in conjunction with SDAT to
return double byte data requested by a non-I/O SVC function (e.g., GET TIME).

I/O Buffer Length (BMAX). The maximum number of bytes of data to be input to or
output from the user's buffer must be written in this byte by the user prior to
initiating the SVC. Once set by the user, it is not disturbed by UDOS.

I/O Buffer Pointer (BPTR). For all SVC I/O functions and for some non-I/O SVC
functions, the user must provide the starting address of a buffer in the first 16 K
page of common memory. Unless otherwise specified in the SVC function description,
data transfers to or from the user program are performed through the buffer pointed
to by BPTR.

9.3.2 SVC Function Descriptions.

Assign Channel. An application program running under the slave CPU has eight
logical channels, or ports, through which it can perform I/O. Any logical channel can
be assigned to any physical device attached to the system. A floppy disk file is
treated in the same manner as an independent physical device.

The physical device or floppy disk file to which a logical channel is to be assigned is
given as a string of ASCII characters terminated by an EOL character.

To assign a channel, the SRB byte SCH must contain a channel number in the range
0-7 and BPTR must contain the starting address of the device name string. If a
channel is assigned to a floppy disk file which does not exist, the file will be automati­
cally created and the STAT byte in the SRB will be set to a 1 to indicate that it is a
new file.

Read or Write ASCII. An ASCII line is defined as a string of ASCII characters
terminated by an end-of-line character EOL (a normal ASCII carriage return). An
application program running under the slave CPU can input or output a line through
a channel which has been previously assigned to a floppy disk file or other I/O
device. The required settings for the SRB are minimal.

To read a line from a peripheral source into an application program buffer, BPTR
must contain the starting address of a buffer into which the line is to be input. BMAX
must contain the maximum number of characters the user wants placed in the buffer
in the event an EOL character is not in the data stream. The user's buffer must be able
to contain BMAX+l bytes of data because, if an EOL character is not found in the

9-3

data stream and BMAX bytes have been placed in the buffer, an EOL character will
be placed in the buffer at the BMAX+1 position. This procedure assures the user
that an ASCII input line will always be terminated by an EOL.

To write a line to a peripheral device or file, BPTR must contain the starting address
of the line to be output. BMAX must contain the maximum number of ASCII
characters to be output in the event the line is not terminated by an EOL character.

After the I/O function is completed, BCNT will contain the actual number of ASCII
characters, including the EOL, which were input or output to or from the user's
buffer. Theactual number of characters input or output may be less than the maximum
specified by BMAX as a result of encountering the normal EOL character, and end­
of-file on a read before finding a EOL, or an end-of-device on a write. All but the first
return a non-zero status.

The maximum length of a line supported by UDOS is 255 characters, plus the EOL
character, for a total of 256. Thus, BMAX must be greater than or equal to 1 and less
than or equal to 255.

Read or Write Binary. An application program running under the slave CPU can input
or output a block of binary bytes through a channel which has been previously
assigned to a floppy disk file or other I/O device.

To read a block of binary bytes from a peripheral source, BPTR must contain the
starting address of a buffer into which the data is to be input. BMAX must contain
the number of bytes to be input to the buffer.

To write a block of binary bytes to a peripheral detke or file, BPTR must contain the
starting address of the buffer from which the data is to be output. BMAX must contain
the number of bytes to be output from the buffer.

After the I/O function is completed, BCNT will contain the actual number of bytes
which were input or output to or from the user's buffer.

Binary read and write operations are performed strictly under count control. A user
may input or output up to 256 bytes of data. In the case of read or write, a BMAX
value of 0 is taken to mean 256.

Close File. The CLOSE FILE function disconnects the given channel from the floppy
disk file or other I/O device to which it was assigned.

If the channel was assigned to a floppy disk write file, the UDOS buffer used for
thefilewill be output and a logical end-of-file will be recorded on the file before it is
disconnected. Subsequently, when the file is read, the end-of-file condition will be
sensed and indicated in the STAT byte of the SRB.

For physical devices other than the floppy disk, an appropriate clearing action will
be taken.

Rewind File. The REWINDfunctionappliesonlyto floppy disk files. It has the effect
of positioning a file at its beginning. If a device other than a floppy disk file has been
assigned to the channel, the REWIND function will be treated as a NOP.

9-4

Supervisor Call Interface

To rewind a file, SRB byte SCH must contain the channel number to which the floppy
disk file has been assigned. When a floppy disk file is "rewound" it is treated the
same as if it had just been assigned. If the first I/O operation for the rewound file is
a read, data will be input from the file in the normal manner. If the first I/O operation
for the rewound file is a write, the sectors previously allocated for the file will have
no significance and the file will be treated as if it were a new file.

Delete File. The DELETE function causes the floppy disk file assigned to the given
channel to be deleted from the directory of the diskette and, as a consequence, also
causes the channel to be disconnected from the file.

If a device instead of a floppy disk file has been assigned to the channel, the DELETE
function will be treated the same as CLOSE function.

Rename File. To rename the floppy disk file which has been assigned to the given
channel, BPTR must contain the starting address of the name {given as an ASCII
line} to which the file is to be renamed.

A file which is to be renamed must not be in the process of being read or written, i.e.,
the final must have just been assigned or rewound. If a device other than a floppy
disk file has been assigned to the channel for which the RENAME function is
entered, the function will be treated as a NOP.

Get Parameter (From Procedure Parameter Buffer). If an application program running
under the slave CPU has been invoked as a procedure from the system console,
often there are parameters in the procedure line. This SVC is used to get a particular
parameter for the application program.

Parameters are stored in the UDOS procedure parameter buffer in master memory.
The parameters are identified by number according to the order in which they
appear in the command line and exist as strings of ASCII characters terminated by an
EOl character. The desired parameter is requested as a number in SRB byte SDAT.
The parameter is returned to the user as an ASCII line, starting at the location
contained in BPTR.

When a procedure command line is entered, parameters are delimited by a space,
comma, or EOl character. A comma or space delimiter will be replaced with an
EOl character before the parameter is stored in the UDOS parameter buffer. A
parameter may be omitted from the ordered sequence by two consecutive commas.
If a parameter has been omitted, the first character in the user's buffer will be an
EOl character.

If the given parameter number is greater than the number of parameters included in
the command line, the first byte of the user's buffer will be a -1, followed by an
EOl, and the SRB status byte will indicate status code 06.

Get Parameter (From Slave Parameter Buffer). If an application program running
under the slave CPU has been invoked by a lOAD or EXECUTE command, often

9-5

there are parameters in the command line. This SVC gets a particular parameter for
the application program.

If parameters are present, they will be stored in the UOOS slave parameter buffer in
master memory. The parameters are identified by number according to the order in
which they appear in the command line and exist as strings of ASCII characters
terminated by an EOL character.

The desired parameter is requested as a number in SRB byte SOAT. The parameter
is returned to the user as an ASCII line, starting at the location contained in BPTR.

When the above UOOS command is entered, parameters are delimited by a space,
comma, or EOL character~ A comma or space delimiter will be replaced with an EOL
character before the parameter is stored in the UDOS parameter buffer. A parameter
may be omitted from the ordered sequence by two consecutive commas. If a para­
meter has been omitted, the first character in the user's buffer will be an EOL
character.

If the given parameter number is greater than the number of parameters included in
the command line, the first byte of the user's buffer will be a -1, followed by an EOL,
and the SRB status byte will indicate status code 06.

Load Overlay. Overlays for the user's programs can be stored on disk as load modules,
complete with memory beginning, end, and start addresses. The resident part of the
application program loadsan overlay by presetting the SRB bytes and then issuing the
SVC. The file name of the overlay is given as an ASCII string terminated by an EOL.
The BPTR byte in the SRB must point to this string. The header information in the
load module determines where the overlay is to be loaded in memory. The result of
the load operation is returned in STAT. The overlay is not started, and control
remains with the requesting program.

Execute Overlay. This SVC function is called and performed in the same way as the
LOAD OVE R LAY function with the exception that the overlay is executed after it
is loaded at the starting address given in the header of the load module. This SVC
provides the capability of chaining separate programs, as distinct from overlays.

Suspended Execution. This SVC function will cause the requesting program to be
suspended at the place the SVC is issued. The action is similar to an I/O and wait. The
program can be restarted again by an operator command issued from the system
console.

Exit. This SVC function will cause the program running under the slave CPU to be
terminated. The channels previously assigned by or for the program will not be
closed.

Abort. This SVC function will cause the program running under the slave CPU to be
terminated. The channels previously assigned by or for the program, if not already
closed, wi II be closed.

9-6

Supervisor Call Interface

Get Time. The accumulative milliseconds since system start-up time (module 216) is
returned in SDAT and BCNT bytes. Milliseconds will not accumulate if the CLOCK
has been disabled by the UDOS command CLOCK OFF.

Get Overlay Address. The memory bounds of the last overlay loaded into common
memory and the execution address of the overlay are stored in six consecutive bytes
starting at the address given in BPTR. The first two bytes will contain the low load
address, the next two bytes will contain the high load address, and the last two bytes
will contain the execution address.

Get Device Status. The status of the device assigned to the given logical channel (SCH),
as obtained from the physical device, is returned in SDAT. A default of zero will be
returned if there is no physical status available.

Get Device Type. The identification number of the device assigned to the channel
number in (SCH) is returned in SDAT and the device type is returned in BCNT. The
devices are identified as follows:

Device Name

CON I (Console Input)
CONO (Console Output)
LPT1 (Line Printer)
HSPT (H.S. PIT READER)
TTYR (TTY PIT READER)
DISK FI LE

DEVICE TYPES: 1
41

2
42

3
43

Device I.D.

1
2
3
4
6

-1

ASCII read
Binary read
ASCII write
Binary write
ASCII read/write
Binary read/write

Device Type

1
2
2
1
1

43

The device types specified for the UDOS I/O device represent the way in which the
UDOS commands treat the devices in normal usage. A user application program can
read from any input device in either ASCII or binary and can write to any output
device in either ASC II or binary.

The CONO, CON1, and the floppy disk are sharable devices which can be assigned to
more than one channel. The LPT1, HSPT, and TTY R are non-sharable devices and can
only be assigned to one channel at any given time.

A user application program can have a maximum of seven channels assigned to floppy
disk files.

Get Last Console Input Char. The last character input from the control console is
returned in SDAT. If sensed in a loop, while performing extensive calculations or
I/O, it provides the user program with a way to respond to a request for attention or
other action by the operator.

9-7/9-8

UDOS Command
Summary

The short form required to invoke the command is underlined.

8BORT NAME
or
8BORT *
or
8BORT /

ASSIGN CH DEVICE C .. CH DEVICE)

ASM SOURCEFI LE (LISTFI LE) (OBJECTFI LE) (WIDE) (~OER R)

BKPT ADDRESS (WRITE) (B-EAD)

CLBP (ADDRESS) .. .

CLOCK Qt:::l
or
CLOCK OFF

CLOSE CH (... CH)

C,ONT NAME
or
C,ONT *
or
C,ONT /

COPY INPUT (... INPUT) OUTPUT

CPROM (A 1) (N) (A2) (A3) (C)

CSMS (ADDRESS) (DEVICE)

DEBUG (DEVICE) (ADDRESS)

DELETE FI LENAME/D (, ... ,FI LENAME/D)

DEVICE DEVICE U
or
DEVICE DEVICE D

DSTAT

A-1

PAGE

4-13

4-14

7-2

5-13

5-14

4-16

4-13

4-12

4-23

8-3

4-28

5-9

4-22

4-16

5-14

QUMP A 1 (A2) (DEVICE)

DUP 01 D2 (IDENT)

EDIT (lNFI LENAME) (OUTFI LENAME)

E.XAM ADDRESS

FORMAT D (IDENT)

G.O (ADDRESS)

KILL ON
or
~ILL OFF

LDIR (D) (.) (I) (DEVICE)

LOAD FI LENAME

MODULE FILENAME A1, A2, A3 (IDENT)

J:ATCH ADDRESS HEX-STRING

PRINT FI LENAME (DEVICE) (L 1 L2)
or
PR INTL FI LENAME (DEVICE (L 1 L2)

RENAME OLDFILE/D NEWFILE/D
or
RENAME D IDENT

PAGE

5-10
4-21

6-2

5-11

4-18

5-9
4-31

4-22

5-9
4-25

5-12

4-24

4-20

5-14

BHEX (lBIAS) (DEVICE) (Format depends on type of slave CPU) 4-26

RPROM (A1) (N) (A2) (A3) (C) 8-2

SEARCH ON (N)
or
SEARCH OFF

4-15

SET Rm (A1 (... Ai) (Format depends on type of slave CPU) 5-14

SLAVE (MODE) (DEV ADDR) .. 5-13

STATUS

SUSPEND (NAME)
or
S.USPEND *
or
S.USPEND /

SYSTEM D

TRACE QEE
or
TRACE 8LL (STEP) (A 1 A2)
or
TRACE .J..MP (STEP) (A 1 A2)

A-2

5-12

4-12

4-16

5-15

TYPE ON
or
TYPE OFF

PAGE

4-31

~ERIFY D 4~19

WHEX A 1 A2 ... ("A 1 A2) (A3) (DEVICE) .. 4-27

WPROM (A 1) (N) (A2) (A3) (C) .. 8-3

WSMS (ADDRESS) (DEVICE)

XEQ FI LENAME

* COMMENT

A-3/A-4

4-28

5-10

4-32

Debugger Command
Summary

The minimum terms required to invoke the commands are underlined.

The following commands are used both by the Debugger and by UDOS (DEBUG is
used only during UDOS to invoke the Debugger).

8BORT

ASSIGN

CLOSE

DEBUG

DELETE

!dUMP

~XAM

GO
LOAD

1:.ATCH

SLAVE

STATUS

SYSTEM

XEQ

PAGE

4-13

4-14

4-13

5-9
4-22

5-10

5-11

5-9
5-9
5-12

5-13

5-12

4-16

5-10

The following commands are used only by the Debugger (only after the DEBUG
command).

BKPT

CLBP

DSTAT

RESET

SET

TRACE

B-1/B-2

PAGE

5-13

5-14

5-14

5-14

5-14

5-15

Editor Command

The short form required to invoke a command is underlined.

8GAIN

jiEGIN

BRIEF

COpy IN INFILE (OUTFILE)

PAGE

6-21

6-21

6-25

6-20

QOWN n 6-21

.END 6-21

FILE 6-22

fiND $STRING$.. 6-17

QET N (FI LENAME) 6-18

iNPUT ... 6-13

iNSERT STRING 6-13

~ILL N

.LIST N

MACRO m=COMMANDLINE

MACRO m

~

fUT N (F I LENAME)

PUTK N (FI LENAME)

QUIT

BEPLACE STRING

UDOS

S.UBSTITUTE $STRING 1 $STRING 2 $

C-1

6-14

6-20

6-26

6-27

6-21

6-19

6-19

6-23

6-16

6-25

6-15

TAB CHAR

TABS C1 C2 C3 ...

IYPE N

UPn

m<commands>

PAGE
6-23

6-24

6-23

6-21

6-24

6-25

L .. 6-25

C-2

HEX CODE

10
01
81
02
82
C1
42
C2
03
04
05
06
13
1C
17
18
19
1A
1 F
11
12
15
14
16

Appendix

SVC Function Codes

FUNCTION

ASSIGN channel to device or file
READ ASCII and WAIT
READ ASCII and PROCEED
WRITE ASCII and WAIT
WR ITE ASCII and PROCEED
READ BINARY and PROCEED
WRITE BINARY and WAIT
WRITE BINARY and PROCEED
CLOSE device or file on channel
REWIND file on channel
DELETE file on channel
RENAME file on channel
GET PARAMETER (From Procedure Parameter Buffer)
GET PARAMETER (From Slave Parameter Buffer)
LOAD OVERLAY
EXECUTE OVERLAY
SUSPEND EXECUTION
EXIT
ABORT
GET TIME (milliseconds)
GET OVERLAY ADDRESSES
GET DEVICE STATUS
GET DEVICE TYPE
GET LAST CONSOLE INPUT CHAR.

0-1/0-2

___ SRB Status Codes

00 - FUNCTION COMPLETE / NO ERROR

01 - CHANNEL ASSIGNED TO NEW FI LE

02 - ILLEGAL CHANNEL NUMBER

03 - CHANNEL NOT ASSIGNED

04 - CHANNEL BUSY

05 - ILLEGAL FUNCTION CODE

06 - NO EOL ON ASCII READ

07 - NO EOL ON ASCII WRITE

08 - ILLEGAL DRIVE NUMBER

09 - FILE IN USE

OA - DEVICE NOT OPERATIONAL

OB - DEVICE NOT AVAILABLE

OC - DEVICE NOT READY

00 - DEVICE IN USE

OE - DIRECTORY READ ERROR

OF - DIRECTORYWRITE ERROR

10 - 01 RECTORY FULL

11 - DEVICE READ ERROR

12 - DEVICE WRITE ERROR

13 - CODE NOT ASSIGNED

14 - CODE NOT ASSIGNED

15 - FILE NAME IN USE

16 - ILLEGAL FI LE NAME

17 - FI LE IN R/W PROGRESS

18 - CHANNEL ALREADY ASSIGNED

19 - INCORRECT DISKETTE

7F - I/O IN PROGRESS

FF - END OF FI LE OR END OF DEVICE

E-1/E-2

SMS Tape Format

An SMS tape consists of a block of data, preceded by a TAPE ON character
(CTRL-R or hex '12') and followed by a TAPE OFF character (CTRL-T or '14').
When the TAPE ON character is read, the address counter is set to zero. This means
that the next data byte will be stored at location O. When the TAPE OFF character
is read, the tape has been read and no more data is stored.

The data in between is represented as follows:

1) Each data word is represented by one or two hexadecimal characters.

2) Each data word is followed by an apostrophe (hex '27'). When the apostrophe
is read, the data word composed from the previous hexadecimal characters is
stored at the location pointed to by the address counter. The address counter is
then incremented.

All characters are punched in the standard 8-channel ASCII teletype code. Parity
is not checked.

EXAMPLE OF SMS FORMAT

01'FA'FA'OO'10' ,

o
THE TAPE ON CHARACTER. RESETS LOCATION COUNTER TO O.

2 AN INDIVIDUAL DATA BYTE, 01'. 01 IS THE DATA TO STORE. ' INDI­
CATES END OF THE DATA BYTE.

3 THE COMPLETE DATA FIELD FOR THIS TAPE.

4 THE TAPE OFF CHARACTER. INDICATES END OF DATA.

F-l/F-2

System
~ Readiness Test

(to be supplied)

G-1/G-2

Appendix
_ .. System Utility

Command Fles

Millenium supplies a command file, COPYSYS, which copies the operating system
from onedisk to another. The general form of this command is

COPYSYS 01 02

where 01 is the drive to copy from and 02 is the drive to copy to. For example, to
copy the operating system from drive 0 to drive 1, enter this command:

COPYSYS 0 1

When the command is invoked, the following files are copied from 01 to D2:

1. The resident UOOS binary load file

2. All UOOS overlays, including the Assembler and the Editor. They are all
bi nary load fi les.

3. The System Readiness Test

4. The COPYSYS command file

For the most rapid system response to commands to occur, the operating system
should be copied onto a disk before any other files are stored on it. This will allocate
the tracks closest to the outside to the system files, and minimize disk lead move­
ment when the overlays for the commands are brought into the overlay areas.

H-1/H-2

	000
	001
	002
	003
	004
	005
	006
	007
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	0A-01
	0A-02
	0A-03
	0B-01
	0C-01
	0C-02
	0D-01
	0E-01
	0F-01
	0G-01
	0H-01

