MILLENNIUM INFORMATION SYSTEMS,INC.
UNIVERSAL ONE

Microcomputer
Development System

Operator’s Guide

UNIVERSAL ONE

Mmrocorxgps}yﬂsq[rm

Operator’s Guide

Document No. UO1-0000-21
Issued Nov. 1976

MILLENNIUM INFORMATION SYSTEMS,INC.
420 MATHEW STREET, SANTA CLARA, CALIFORNIA 95050, 408-243-6652

DOCUMENT NO. UO1-0000-21
PRICE — $35.00

Copyright 1976, Millennium Information Systems, Inc. All rights reserved.

Millennium Information Systems, Inc. claims trademark rights to the names
UNIVERSAL ONE and UNIVERSAL EMULATOR

Table of Contents

Paragraph
CHAPTER 1 INTRODUCTION

1

1.
1.2
1.3

Obijectives of a Microcomputer Development System .
Universal One Overview
About This Book .

CHAPTER 2 SYSTEM DESCRIPTION

2.1 Introduction

22 Hardware . .

221 Development Computer .

222 Emulation Hardware . .

223 Dual Floppy Disk Subsystem .

224 Peripherals . . .

225 User-Supplied Perlpherals

2.3 Software .

2.3.1 uDOS (Umversal DISk Operatlng System)
23.2 The Debugger . ..

233 PROM Programming

234 The Editor . .

235 The Assembler .

2.3.6 Systems Readiness Test

CHAPTER 3 SYSTEM INSTALLATION AND OPERATION
3.1 Introduction

3.2 Unpacking .

3.2.1 Unpacking the Unnversal One Development Computer
322 Unpacking the CRT Terminal . .

3.2.3 Unpacking the Floppy Disk Unit .

324 Unpacking the Line Printer .

3.25 Installing the Emulation Cable.

3.3 Physical Installation . i
3.3.1 Power and Cable Interconnectlons .
332 Controls and Indicators

333 Development Computer .

Page

1-1
1-1

R

I\)I\)NNI\JI\)II\)MI\JNNNMI\)
PO NNNNTDDN o

ol

| l

wwwwwclowwwww

Table of Contents {Cont.)

Paragraph Page
334 Dual Floppy Disk Unit 3-8
3356 CRT Terminal 39
3.36 LinePrinter 39
34 Operation . . . e LY
3.4.1 Formatting and Verlfylng New Dlskettes 3410
342 System Startup Procedure 311
34.3 Manual Reset 312

CHAPTER 4 UNIVERSAL DISK OPERATING SYSTEM

4.1 Introduction . .

4.2 UDOS Overview . . .

421 - Resident UDOS Modu!es

422 UDQOS Overlays .

43 Files, Devices, and Channels

4.4 Entering UDOS Commands .

45 Special Keys

451 Delete Key .

452 Escape Key .

453 SpaceBar. . . .

454 CTRL-Z Command

46 The UDOS Commands.
46.1 The UDOS Command Structure .

##h#-&#?bb###b
DONNNOODOOOTWNN ==

46.2 UDOS Command Completion . S)

46.3 System Control Commands 4-10
464 System OptionCommands 4-15
465 System UtilitiesCommands 4-17
466 Object Program Utility Commands .- 4-25
46.7 Command Files 4-29
46.8 Command File Utilities 4-30
469 UDOS ErrorMessages 4-32

Table of Contents (Cont.)

Paragraph
CHAPTER b THE DEBUGGER

5.1
5.2
53
54
55

Introduction

The Debug Program .

Invoking the Debugger. . .

Sample Debug Session {Using a 2650 Slave)
Debug Commands Coe e e

CHAPTER 6 THE EDITOR

6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.54
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.6

Introduction
Editor Overview . . .
UDOS Command Edit .
Edit Example .
Editor Command Descrlpnons
Editor Command Line .
Editor Command Description Conventlons .
Insertion Commands
Deletion Commands
Alteration Commands .
Search Commands
/0 Commands)
Buffer Line Pointer Commands
Utilities . .
MARCROS .
Editor Messages

CHAPTER 7 THE ASSEMBLER

7.1
7.2
7.3
7.4
7.5

Introduction

Assembler Overview .

Using the Assembler . . . i
Loading An Assembled Program
Sample Assembly Listing .

Table of Contents (Cont.)

Paragraph
CHAPTER 8 PROM PROGRAMMER
8.1 Introduction

8.2 PROM Programming Hardware and Software .
8.3 Using the PROM Programmer . ..
8.4 PROM Programmer Commands . . . »

CHAPTER 9

SUPERVISOR CALL INTERFACE

9.1 Introduction e e
9.2 General Description of Supervisor Calls .
9.3 Service Request Block (SRB)

9.3.1 SRBBytes

9.3.2 SVC Function Descriptions .

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H

vi

UDOS COMMAND SUMMARY
DEBUGGER COMMAND SUMMARY
EDITOR COMMAND SUMMARY
SVC FUNCTION CODES

SRB STATUS CODES

SMS TAPE FORMAT

SYSTEM READINESS TEST

SYSTEM UTILITY COMMAND FILES

List of Wustrations

Figure Page
1—1 The UNIVERSAL ONE Microcomputer Development System 1-0
1—2 General Block Diagram of a Microprocessor-based Product . 1-3
2—1 Overall Block Diagram of the UNIVERSAL ONE 2-2
2—2 Data Organization on a Diskette . 2—-6
3—1 Development Computer Printed Circuit Board Layout 3-2
3—2 Development Computer (Top View) 3-3
3—-3 Envelope Dimensions of System Units. . . . 3-5
3—4 Typical Cabling Diagram of UNIVERSAL ONE System Installatuon 3—6
3-5 Front Panel of the Development Computer . e e 3-8
3—6 Rear Panel of the Development Computer . e e 39
3—7 Rear Panel of the Floppy Disk Drive 3=10
3-8 Inserting a Diskette 3-11
b—1 Displays During Sample Debugglng Sessnon . 54
5—2 Typical Displays During Various Debugglng Modes . 5-8
6—1 A Sample Source Program 6-3
6—2 Entering Text and Display the Buffer . . 6—5
6—3 Useof FIND, SUBSTITUTE and REPLACE Commands i 6—6
6—4 Displaying the Buffer and Filing . 6—6
6—5 Sample Double Precision Add and Subtract Programs 6—7
6—6 Adding Data to an Existing File . 6-9
6—7 Inserting Lines Into the Buffer . . . 6—11
7—1 Sample 2650 Slave Program Listing Ready for Assembly. 74
7—2 Sample 2650 Slave Assembly Listing . 7-b

vii

\ EMULATION

INTERFACE
ASSEMBLY

Figure 1—1. The UNIVERSAL ONE Microcomputer Development System
(Shown with Optional CRT Terminal.)

Chapter

Introduction

1.1 OBJECTIVES OF A MICROCOMPUTER DEVELOPMENT SYSTEM.

In the development of any product that includes a microprocessor, there are aspects
which have no parallel either in random logic design or in computer program develop-
ment (the two predecessors of microprocessor product development).

There is no clear cut demarcation between logic which should be implemented
using random logic hardware, or logic which should be implemented with programmed
instructions; that is what makes microprocessor product development unique. A
successful microcomputer development system, such as UNIVERSAL ONE, must
therefore support digital logic development and program creation with equal ease.

If in addition, the product or seriés of products can benefit from the use of different
microprocessors, a single universal hardware and software development system, of
the configuration of UNIVERSAL ONE, has several easily recognizable advantages:

1. It eliminates the cost of another development system each time a new micro-
processor is to be implemented.

2. It provides a common system for all development, thus eliminating heavy
investments in personnel training and software for multiple systems.

3. It frees the designer to consider any microprocessor-solely on the basis of
its capabilities and cost-effectiveness, rather than because the designer is
locked into a microprocessor from a previous product commitment.

1.2 UNIVERSAL ONE OVERVIEW.

1.2.1 Master/Slave Concept. UNIVERSAL ONE, achieves the required uni-
versality by dividing its operations into two functional areas. Those tasks that are
related to the development system itself are assigned to a master central processing
unit, and those that are prototype-related are assigned to a second, slave CPU. As
many as four different slaves may be installed simultaneously and individually invoked
with a corresponding slave diskette. This multiple architecture enables the hardware
to support a particular microprocessor with the addition of a printed circuit card
containing the corresponding slave CPU. Since the master processor need not be
changed to accommodate new slave units, all of the operating system software remain
the same.

1-1

The master CPU is responsible for all system services that are not prototype-
dependent, such as:

m File management — the storage and retrieval of data and programs.
® Text editor — maintains text files in the floppy disk.

B System input/output — the normal 1/O activities between the standard
system peripherals, such as the floppy disk, line printer, and system control
console.

m System utilities, inciuding programming of PROMs for the final version of
the prototype.

® Debug functions — the master executes the debug software and controls the
slave through a separate debugging hardware module.

The slave CPU'’s functions include:

u Program assembly — each slave may be used as a resident assembler of proto-
type programs.

m Prototype program execution — the prototype program is loaded into the
"~ slave memory and executed by the slave.

®m Prototype |/O — any special input/output required in the prototype can be
performed by the slave, without involving the master CPU.

n In-circuit emulation — a cable extends from the slave to the CPU socket in the
prototype.

1.2.2 System Functions. UNIVERSAL ONE may at first look like any other
general purpose minicomputer system; because there is a terminal which communicates
with a box that resembles a minicomputer, results may be created on a line printer,
and intermediate data or programs may be stored on diskettes.

Indeed, UNIVERSAL ONE offers many of the program creation and execution
facilities that any general purpose minicomputer system will offer. Source programs,
written in assembly language, may be entered via the terminal and stored on diskette.
Subsequently, source programs may be retrieved from diskette, edited and stored
back. An Assembler converts source programs into executable object code and a
Debugger allows the object code to be conditionally executed for the purpose of
detecting conceptual errors — that is, instruction sequences which, though they are
syntactically correct, do not accurately represent the intended logic or data flow.

So complete is this parallel between UNIVERSAL ONE and a general purpose mini-
computer, that there is nothing preventing UNIVERSAL ONE from being used like
a minicomputer —— as a text editor or even a business machine. User-written programs
may access diskettes via the disk operating system; indeed the disk operating system
can be included as a-utility within a large user-written program. A disk operating
system is provided to automate the process of accessing diskette files by identifying
file labels rather than diskette track and sector addresses.

1-2

Introduction

But UNIVERSAL ONE is much more than a general purpose minicomputer. The
typical microprocessor user program created on UNIVERSAL ONE is subsequently
going to become an object program, implemented in PROM or ROM. A microprocessor
object program is therefore ultimately to become a package, driving microprocessor—
based logic, in a configuration that may not even remotely resemble a computer.
The only constant that may be ascribed to these products is that they will contain a
microprocessor, driven by one or more object program packages; additional logic
must be present to handle the flow of data or signals to or from the microprocessor.
Figure 1—2 therefore generally identifies the ultimate configuration which any micro-
processor-based product will have,

1.23 System Capabilities. Every part of the end product illustrated in Figure
1—2 may be developed using UNIVERSAL ONE.

The process of creating an executable object program was discussed first, since
this is the most obvious capability of a system that looks like a general purpose mini-
computer. But the similarities between UNIVERSAL ONE and a general purpose

OBJECT PROGRAMS
IN ROM, RAM, OR PROM

INTERFACE‘LOGIC FOR
SIGNALS AND DATA EXCHANGE

|
I
|
l
: I MICROPROCESSOR
I
I
l
‘ TO OUTSIDE WORLD
|

INPUT/QUTPUT SIGNALS

Figure 1—2. General Block Diagram of a Microprocessor-based Product

1-3

minicomputer end at this superficial level. Consider some of the additional features
which UNIVERSAL ONE provides to serve as a total microprocesosr-based product
development aid.

To begin with the UNIVERSAL ONE provides at least two CPUs. The master CPU
performs monitoring and disk operating system functions; functions required by
UNIVERSAL ONE, but absent in the product being developed. The slave micro-
processor takes the place of the device which must be present in the end product.

Memory is also provided in duplicate. The master CPU has its own memory, out of
which it can execute :monitoring and disk operating system programs. The slave
CPU has a separate memory which remains available to simulate prototype memory,
for user application programs. When appropriate, the master CPU accesses slave
processor memory. The master and slave memories can be initially viewed as separated
for system use and for application or user use.

Because object programs are likely to be stored in PROM or ROM devices. UNI-
VERSAL ONE allows you to create the PROM, or to define the ROM mask.

Simulation of the 1/O logic shown in Figure 1—2 remains to be described. The
problem with this additional logic is that it is completely undefinable. Not only is
it impossible to say how far such logic migrates into an end product, it is equally
hard to determine, in advance, those functions which will end up as program steps in
memory, as opposed to random logic. UNIVERSAL ONE resolves the open-endedness
of this additional logic by providing the emulation cable. Any external logic may
communicate with the slave microprocessor and its slave memory via this cable.
Moreover, external logic beyond the emulation cable may, itself, contain program
memory.

Thus, UNIVERSAL ONE becomes a total microprocessor-based product development
system. Every aspect of a microprocessor-based product may be simulated and
designed using UNIVERSAL ONE. Object programs which, while being created, are
executed by a microprocessor which is identical to the end product microprocessor.
While object programs were executed by UNIVERSAL ONE, during their creation,
they interacted via the emulation cable with additional logic which, package-for-
package, will be identical to the eventual end product. Therefore, when going from
emulation to end product, the only changes will be in physical fabrication.

1.3 ABOUT THIS BOOK.

This book is a UNIVERSAL ONE Operator’s Guide. As such, it describes all aspects
of UNIVERSAL ONE system operation, from unpacking, through switches and
indicators, to the use of the various system development programs.

Additionally, there is a UNIVERSAL ONE System Reference Manual, document
number UO1-0000-11 which provides a detailed description of the UNIVERSAL
ONE system hardware and its various components.

1-4

Introduction

Each microprocessor supported on UNIVERSAL ONE system is provided with a
manual supplement describing the software and hardware peculiar to that micro-
processor.

Chapter 2 of this manual describes system hardware in general terms, and gives an
overview of system software. Chapter 3 describes unpacking, installation, and initial
operation; Chapter 4 gives details about the Universal Disk Operating System and
describes procedures for using it; Chapter 5 describes the emulation and the debug
capabilities of the UNIVERSAL ONE system and explains all Debugger commands;
Chapter 6 describes the Text Editor and gives procedures for using the Editor to
create and modify files; Chapter 7 describes how the Assembler is used to create
object programs from assembly language programs; Chapter 8 gives procedures for
programming type 1702A and type 825115 PROMs. from assembled user programs;
and Chapter 9 describes Supervisor Calls {(SVCs), with which any slave CPU program
can communicate with system peripherals.

1-5/1-6

Chapter
System

Description

2.1 INTRODUCTION.

This chapter outlines system configuration, peripherals, and software provided with
the system.

2.2 HARDWARE.

The UNIVERSAL ONE is a complete microcomputer development system. This
system is used to create and edit assembly language source programs, to assemble
source programs into object code, and to ‘execute object programs. User’s object
programs may be executed out of UNIVERSAL ONE memory, or by using the
emulation interconnecting cable assembly, object programs may be executed out of
external memory that is part of an end product. Thus UNIVERSAL ONE can
simulate an end product, or interface directly to it, and has the ability to support
every phase of product development. A UNIVERSAL ONE system consists of a
development computer with 16K bytes of master memory and 16K to 65K bytes of
slave (or common master/slave} memory, and a dual drive floppy disk unit; peripherals
include a terminal and a line printer. Options available include additional floppy disk
units, additional memory, PROM programmers, and general purpose 1/O cards. The
computer, disk unit, terminal, and line printer are all desk-top units and are self-
contained.

2.2.1 Development Computer.

The development computer consists of a mainframe enclosure and printed circuit
boards. In addition to the basic CPU and memory boards, optional boards can be
added to implement a particular development function. The following paragraphs
describe major functions of the development computer hardware and Figure 2—1
shows a block diagram of it.

Master and Slave CPUs. The UNIVERSAL ONE operating system (UDOS) and the
Text Editor run under the master CPU. The Assembler, other system programs, and
user programs all run on the slave CPU.

At any point in time, only one CPU within the system can be active and executing
instructions. The master CPU is responsible for determining which CPU is active.
The master CPU determines the state of the slave CPU via a series of control lines, to
the debug logic.

T
USER PROTOTYPE

TEST . MICROPROCESSOR
CLIPS SOCKET
USER BUFEER EMULATION CABLE CONSOLE
PERIPHERALS AND INTERFACE (CRTORTTY)
FRONT PANEL
STD. OR OPT.
SW-DISPLAY

FLOPPY DISK
STORAGE
SUBSYSTEM

PROM SOCKETS

OPTIONAL SYSTEM
PERIPHERALS

HARDWARE
ANALYZER
{option)

CONTROL AND
DEBUG LOGIC

MASTER
CPU

SLAVE

CONTROL/INTERRUPT

MASTER

MOS PROM
PROGRAM

BIPOLAR PROM
PROGRAM

MASTER
GP /0

CONTROL/INTERRUPT

16K — 65K

SLAVE MEMORY

16 K MASTER
MEMORY

Figure 2—1. Overall Block Diagram of the UNIVERSAL ONE

System Description

Partitioned 1/0. The master CPU handles all 1/0O communication with system peri-
pherals. Programs executed by the slave CPU communicate with system peripherals
via the master CPU by issuing requests to the master CPU for their system 1/0.
This is done through supervisor calls (SVCs) from the slave to the master. SVCs are
discussed in Chapter 9.

There is separate interface logic available only to the slave CPU. Using this logic, the
user can add interface boards for development-oriented peripherals, allowing the
slave CPU to communicate with its own peripheral units directly. Thus, programs
under development can be executed in hardware environment making full use of the
users prototype resources, including /O logic, power supplies, etc.

Dual Memories. The system includes two separate memories: one is the slave memory
of up to 65K bytes. This memory is accessible by both master and slave CPUs. Two
system programs, the Assembler, plus a small Debug trace package, are executed out
of the slave memory by the slave CPU. User development programs are also run by
the slave CPU from this memory. (The Editor is run out of slave memory by master
CPU.)

The other memory is the master memory from which the operating system and the
Debug monitor are run by the master CPU. This memory is protected completely
from the slave CPU and its application programs. The protected portion has an
address range from 0000 through 16383. The master CPU also has the ability to
map any one 16K section of the slave memory into an additional address space
available only to the master. This allows the master CPU access to user buffers and
pointers used for supervisor calls (SVCs).

Having separate master and slave memories ensures that the operating system need
not interfere with user programs. This also protects the integrity of the operating
system in the master memory so that it cannot be inadvertently affected by develop-
ment programs.

PROM Programming. The development computer contains two optional PROM
programming boards and three front-panel PROM sockets. Unique programming
boards are used for the 825115 bipolar PROM and the 1702A MOS PROM.
Programming of the PROMs is accomplished under program control, after the user
has a completely assembled and debugged program. A front panel switch turns off
PROM programmer power, so that devices cannot be damaged during insertion and
removal.

Control and Debug Logic. The Debug circuitry is an interrupt-driven interface be-
tween the master CPU and the active slave CPU. The master CPU can force an
interrupt, a reset, or a branch. The slave can aiso be run in single-step mode.There
are two hardware comparator registers available for address breakpoints. The debug
interrupt logic also functions to handle all I/O service requests from the slave CPU.

2-3

2.2.2 Emulation Hardware.

The emulation hardware consists of a cable and driver/receiver circuits that allow in-.
circuit emulation of user programs in user developed hardware. The user’s micro-
processor is removed and replaced by a cable plugged directly into the socket. The
other end of the cable is attached to the UNIVERSAL ONE slave CPU circuit
board, which contains multiplexing and other logic to support and discriminate
between the UNIVERSAL ONE operating modes. The slave CPU thus can become
the CPU for the user system.

Presently there are three modes of operation:

1) The slave CPU runs the program residing in slave memory using the /O
circuits contained in the UNIVERSAL ONE system. This is the normal non-
emulation mode.

2) The slave CPU runs the program resident in slave memory, but all 1/0 signals
and data are derived from external user developed hardware.

3) The slave CPU runs user programs resident in external user development
memory. All I/O signals and data are derived from the user developed hard-
ware.

The emulation cable contains an in-line printed circuit assembly (interface assembly)
which provides isolation for the UNIVERSAL ONE system from the user system.
The cable is approximately 10 feet long and has two connectors on one end (this
end is attached to the slave CPU board) and a 40-pin plug on the other end {which
is inserted into the user system). Refer to Chapter 3 for detailed installation instruc-
tions.

The cable may remain installed even though not in use as long as care is taken not to
short out the 40-pin plug. A 1 amp fuse on the slave CPU board protects the +bV
power to the emulation cable.

The SLAVE command controls what signals are passed over the emulation cable to
the user’s prototype system.

223 Dual Floppy Disk Subsystem.

The floppy disk subsystem is the mass storage medium for the system. The disk
subsystem consists of two disk drives, a microprocessor controller, power supplies,
and cabinet. The two disk drives are designated as drive O and drive 1, and the disk
subsystem communicates directly with the master CPU card in the development
computer through an interconnecting cable.

Drive O is usually the system drive. That is, the diskette with the system programs is
normally placed in this drive. The system drive is automatically accessed when a drive
number is not specified with a file name. The diskette loaded on the system drive is
known as the system diskette and normally contains all system programs, including
UDQS, Editor and the Debugger peculiar to a specific slave on the four outside
tracks. (The system diskette can be write protected to ensure that the system programs

System Description

are not altered.) Alternatively, any drive can be designated as the system drive by
UDOS commands.

Drive 1 usually contains a second diskette utilized primarily for storing user files, for
modifying user files, or as a scratch data area, and may or may not contain the system
programs. (If it does, the programs usually are duplicate of those on the system
diskette.) This diskette, since it may be used as a scratch area, is not write protected.

Controller. The floppy disk controller utilizes a 128-byte sector buffer to allow
asynchronous data transfer. Other important features include sector interleaving,
automatic data blocking, automatic system boot on power-up, automatic retry on
read or write failures, and the ability to expand to an eight drive system.

Diskette. The organization of data on a diskette is pictured in Figures 2—2a and 2—2b.
On each diskette, there are 77 concentric tracks (Figure 2—2a), which can contain
data. In Figure 2—2b, a typical track is divided into its component parts. Each
quarter track s referred to as a block. Each block is split into eight sectors. A sector
is the basic unit of disk data. Each sector can contain 128 eight-bit bytes. Due to
directory limitations, a maximum of 78 files can be contained on one diskette. The
disc operating system reserves track O for the disc directory, and tracks one through
four are normally automatically reserved for system programs.

In order for the disk drive to be able to read or write a diskette, the diskette must have
certain initial information on it. The process of placing this information on the
diskette is called formatting. Diskettes must be formatted before use. (See paragraph
3-16).

2.24 Peripherals.

Optional peripherals compatible with the system include a CRT terminal with a full
ASCII keyboard, a line printer, and a paper tape reader. In addition, an optional
general purpose 1/0 card supports any RS-232-C compatible device and contains four
8-bit parallel I/O ports which allow the user to interface TTL compatible peripherals
to the UNIVERSAL ONE.

CRT Terminal. The CRT terminal is the primary 1/O device for the operator. The
terminal consists of a CRT display and an operator keyboard. The keyboard is a
standard typewriter-style unit with additional mode keys.

ASR-33 Teletypewriter. Astandard ASR-33 with a 20 mA current loop or RS-232-C
interface can be used as an alternate console I/O device. In addition, the TTY can be
used to provide hard copy and to punch paper tapes for file storage off line. (Note:
because of its wide availability, Millennium Information Systems does not offer the
TTY as an option, it should also be noted that the system will also drive a Silent 700
terminal).

Line Printer. A Centronics 306C line printer is available as an option for hard copy
output. The line printer is connected through a cable to the floppy disk subsystem,

2-5

77 TRACKS

2—2a Track Layout

SECTOR

/ (128 8-BIT BYTES)

DATA——

an
¥

BLOCK

2—2b Layout of a Typical Data Track

Figure 2—2. Data Organization on a Diskette

System Description

and is capable of printing 100 characters per second with an 80 character column
width, or 165 characters per second with a 132 character column width.

225 User-Supplied Peripherals.

Any RS-232-C compatible peripheral can be connected to the serial I/O port of the
General Purpose |/O card, or any 8-bit parallel device to one of the four parallel
ports on the General Purpose |/O card. If these peripherals are to interface to the
operating system, the addition of a software driver to control the device is required.
This driver is added to the UNIVERSAL ONE software using the method described
in the UNIVERSAL ONE System Reference Manual.

23 SOFTWARE.

The UNIVERSAL ONE development system software consists of an overall operating
system, called UDQOS (Universal Disk Operating System), and several more or less
independent subordinate programs for specific functions: the Debugger, the Editor,
the Assembler, the optional PROM Programmer, and a Systems Readiness Test
program. Together, these are referred to as the system programs (as opposed to
user or application programs generated by the user, stored in the slave memory and
run entirely by the slave CPU, without involving the master CPU).

During operation UDOS resides in the master memory, but other programs reside in
the slave memory (except a portion of the Debugger is in the master memory). The
subordinate system programs are invoked by UDOS commands.

2.3.1 UDOS (Universal Disk Operating System).

UDOS provides the user with a variety of commands that allow the user to exercise
the flexibility of the UNIVERSAL ONE system. UDOS provides commands that:

Perform disk and file maintenance

Set the mode for /O channels

Perform system utility functions

Allow the user to control execution of programs
Display important system status

Manipulate and modify object code

* ok ok ok ok k¥

These commands are described in more detail in Chapter 4.

There are two other features of UDOS that deserve mention. These are the Debug
Monitor and the PROM programming capability. These are described in Chapter 5
and 8, respectively.

23.2 The Debugger.

The Assembler can only detect syntax errors in a source program. There usually
remain a number of logic errors in an object program which cannot be detected by
the Assembler. An object program is therefore executed in conjunction with the
Debugger in order to detect logic errors. The Debugger is able to control the execution

of object programs while examining, changing or tracing the contents of memory,
registers or system status.

All Debugger /0 functions are performed by UDOS. Due to the fact that the master
CPU may not access the slave CPU registers directly, a small section of the Debugger
is placed in slave memory to make slave CPU registers available to the Debugger for
examination and modification. The Debug monitor executes in master memory.

233 PROM Programming.

UDOS provides a series of commands that allow PROMs to be read, written and
compared with slave memory. All these commands apply to the PROM sockets
located in the front panel.

234 The Editor.

After a source program is conceived and designed, it is input to the UNIVERSAL ONE
system through the use of a program called the Editor, which will store a key-entered
source program on the floppy disk. The Editor is also used to modify source programs
that already exist on mass storage.

The Editor runs in slave memory using the master CPU. The 16K segment of slave
memory in which the Editor is located is also available as a text buffer for the data
being operated on by the Editor (all 16K is available, less space occupied by Editor
program). UDOS performs all the Editor’s I/O requests.

235 The Assembler.

After a source program has been entered and stored on disk, it must be translated
into @ machine-executable object program. This function is performed by the
Assembler, which stores the object code it has assembled frem the source program
on mass storage.

The Assembler runs in slave memory using the slave CPU. The Assembler uses the
available part of slave memory for |/O buffers and to create its symbol tables. UDOS
handles all the Assembler’s 1/O requests. \

236 Systems Readiness Test.

The systems Readiness Test allows the user to insure that the UNIVERSAL ONE
system is operational. This test is described in Appendix G.

System Description
Table 2-1. Performance Specifications and Leading Particulars

CHARACTERISTIC VALUE

DEVELOPMENT COMPUTER

MASTER CPU Type 2650
SLAVE CPUs Up to four — types 8080A, 2650, 6800
I/0 INTERFACES

Control Console Combined TTY and limited RS-232C interface, with EIA XMIT and EIA RCV pin
positions interchanged for direct connection to a terminal.
Others High speed paper tape reader, card reader — requires General Purpose 1/0 card.
SPARE CIRCUIT CARD 156 spare positions can be used selectively for PROM programmers, General Purpose
POSITIONS 1/0 cards, slave memory expansion, and slave CPU expansion.
MASTER MEMORY 16,384x8 bits RAM and 256x8 bits PROM
SLAVE (COMMON) 16384x8 bits RAM (can be expanded to 65,536x8 bits or 32,768x16 bits)
MEMORY
POWER REQUIREMENTS 35 amps at 115 V, £10%, 60 Hz; 2.0 amps at 230 V, +10%, 50 Hz
SIZE 44 cm W x 22 cm H x.69 cm L (17.5 x 8.75 x 23.23 inches)
WEIGHT 66 Ibs.
OPERATING
TEMPERATURE 1 0°-565° C (32°-130° F)
HUMIDITY to 90% relative, non-condensing

DUAL FLOPPY DISK

CAPACITY BITS BYTES
Per diskette 77x32x128x8 bits = 2,623,136 315,392
Per track 32x128x8 bits = 32,768 4,096
Per sector 128x8 bits = 1,024 128
ACESS TIME 10 msec/track
POWER REQUIREMENTS 3.0 amps at 115 V, £10%, 60 Hz; 1.5 amps at 230 V, +10%, 50 Hz
SIZE 44 cmW x27cm Hx 60 cm L (17.5 x 10.5 x 23.62 inches)
WEIGHT 85 Ibs.
OPERATING
TEMPERATURE 10°-38° C (50°—100° F)
HUMIDITY 20 — 80% relative, non-condensing

2-9/2—-10

Chapter
System Installation

and Operation

3.1 INTRODUCTION.

This chapter describes unpacking, installation, interconnection, and initial operation
of the system. Refer to the individual peripheral manuals provided for specific
installation procedures for these units.

3.2 UNPACKING.

The system is shipped with each major unit in a separate carton. Before unpacking the
units, inspect each carton for signs of external damage. If any damage is detected,
make a note on the shipper’s receipt.

3.2.1 Unpacking the Universal One Development Computer.

To unpack the development computer, open the carton and remove the unit from its
packing supports. Place the computer on a bench top and remove the top cover.
Remove the packing material from the printed circuit boards and install them in the
proper card slots. The suggested position for each board is shown in Figure 3—1. The
board connectors are offset to prevent them from being installed backwards. Push
each board firmly into its motherboard socket. Untape and remove the power-on
switch keys from the chassis and place in the key switch.

Connect the ribbon cable from the front panel to P3 on the debug logic card, the
ribbon cable from J108 on the rear panel to P2 on the master CPU card, the ribbon
cable from the left-most PROM socket on the front panel to P2 on the 1702A
programmer card (if included in the system), and the ribbon cable from the center
socket on the front panel to P2 on the 825115 programmer card (if included in the
system). Note that the red wire on each cable indicates the end of the cable to be
connected to pin 1 of its mating connector. A top view of the computer unit with
cards and cables properly installed is shown in Figure 3—2. Do not replace the top
cover at this time.

3.2.2 Unpacking the CRT Terminal.

Open the carton and remove the packing material from the top of the unit. Lift the
terminal and the keyboard out of the carton and set it on a bench top. No further
action is required until the system is ready for interconnection and operation.

16K RAM/256 BYTE PROM — MASTER

1702A PROM PROGRAMMER
J9 — DEBUG LOGIC AND FRONT PANEL 1/O

«©

w

E

FERs

o« o - - —_ -

Ol I w S| 2| 2|2

o 3 S o o o o

c | & z o|o|oc| o

o [3 w w w w

= > o 7 > > > >

3l = ; T | x| x|«

T | = s} P I (e S R B B |

o | < © = Qe e e

w | w w w w w < w w w w w w w w w

z| 2 £1%21%|2 Sy f|Elg|2|5/2|5|5|¢

ol Z < < | 2 <

8| o G| & | &= G126 |6 |&|6|65]|65|&]|6
| | ' | | | | | | | | | | t | | I | |
S|8(913|818,5|89% SIS |s5|s5]5|5|s5{5|5(5]8
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

FRONT PANEL

Figure 3—1. Development Computer Printed Circuit Board Layout

3.23 Unpacking the Floppy Disk Unit.

To unpack the floppy disk unit, open the carton and remove the packing supports.
Lift the unit out of the carton and place on the bench top. Remove the top cover and
remove the packing material from around the controller printed circuit board. Make
sure the board is secured in its card guides. Unwind the floppy disk and printer inter-
connect cables and feed them through the channel provided in the rear panel. Insure
that the ribbon cables are firmly installed in their sockets. Replace the top cover and
open the two diskette loading doors.

3.24 Unpacking the Line Printer.

To unpack the line printer you must have the following tools available: 1) 17 mm and
19 mm socket wrenches, or 2) an adjustable wrench. Remove the tape or straps hold-
ing the outer cardboard carton to the wooden pallet. Lift the carton off the pallet.
Remove the plastic covering the printer. To complete the unpacking, refer to the

System Installation and Operation

Figure 3—2. Development Computer (Top View)

detailed instructions packed with the printer. These instructions also provide the
necessary information on paper installation procedures.

3.25 Installing the Emulation Cable.

It is recommended that the emulation cable be set aside until required for prototype
system checkout. At such time, install the cable as follows. Remove the top cover
from the computer unit. Unwind the cables from the emulator interface assembly.
Feed the ribbon cables marked P2 and P3 through an access slot in the rear panel and
connect them to their corresponding connectors P2 and P3 on the slave CPU card.
Replace the top cover. Turn off the power on the user prototype system. Connect the
40-pin emulation cable connector to the socket on the user prototype system,
“making sure that pin 1 aligns correctly. The UNIVERSAL ONE system is now ready
for emulation operation.

3.3 PHYSICAL INSTALLATION.

The units should be placed on a convenient flat surface, close enough to each other
for the interconnecting cables to reach. (Figure 3—3 shows the envelope dimensions
of each unit of the UNIVERSAL ONE system.)

Since the CRT terminal and the UNIVERSAL ONE development computer draw
cooling air through openings in the bottom of their cabinets, these units should be
located where it is unlikely that paper, plastic, carpeting or other materials will be
drawn into the air intake and cause overheating. The other units draw cooling air
from openings in the rear panel.

3.3.1 Power and Cable Interconnections.

" Before connecting any units to the primary power source, turn all power switches to
the off position. Rotate the development computer key switch fully counterclock-
wise. Ensure that all units are wired for the primary input voltage used. Each system
unit has a separate power cord and requires a separate outlet for primary power.
Current requirements are as listed in Table 2—1.

Refer to Figure 3—4 and make the system interconnections as follows:

1. - Connect the dual floppy disk unit to the development computer by routing
the 40 lead ribbon cable (90014221) from the rear of the disk unit through
the center cableway on the rear of the computer to P3 of the Master CPU
card. Ensure that pin 1 of the cable (red stripe) is mated to pin 1 of P3.
Replace the top cover on the computer unit.

2. If a line printer is used, connect the ribbon cable (90014172) from the rear
of the floppy disk unit to the connector on the rear panel of the printer.
Lock the cable in place.

3. Connect the CRT terminal to the development computer by installing the
cable {90014191) between J108 on the computer rear panel and the 1/O
connector on the rear panel of the terminal. The ends of the cable are
identical.

23-1/4in

3/4in

System Installation and Operation

1/2in

17-1/2in I

17-1/8 in

Figure 3—3. Envelope Dimensioné of System Units

1-3/8 in

1/2in

23i

LINE PRINTER | HARDWARE/SOFT-
{optional) i WARE UNDER |
DEVELOPMENT
— —— —
 —
P/N 90014221 40-PIN DIP
SYSTEM CONTROL CONNECTOR
CONSOLE \ J2 (ON CRT)
(CRTORTTY) e
refl
1 o
P/N 90014191 o FLOPPY
J102 =] DISK
o DRIVE EMULATION EMULATION TYPE . PN
o« INTERFACE CABLE 8080 90013021
USER'S I3 | ASSEMBLY ASSEMBLY 2650 90013022
PERIPHERALS 8 6800 90013023
(FOR SLAVE OR
MASTER CPU)
TITI1 T P/N 90014021
—\
-
4108
Iz

}_Pz_

Note 3

GENERAL PURPOSE 1/0
DEBUG LOGIC

1702A PROM PROGRAMMER
825115 PROM PROGRAMMER

R 'Ul
. MASTER CPU b |
-
w
vl ©
,_L'\’ SLAVE CPU ,_L“

P:

N
R
N
1{
o

PROM 1IJ_.| PROM 2 FRONT PANEL

Notes:

1. If a control console other than the CRT power source (115 or 230 VAc). Power cables not
Terminal supplied by Millennium Information Systems shown.
is used, this cable must be supplied by the user. See 3. P2 to front panel cable used only when the
Table 3—1 for pin assignments of connector J108 and optional full display front panel is used on the develop
P3 on master CPU. ment computer.

2. All units shown (except emulation interface
assembly) are individually connected to primary

Figure 3—4. Typical Cabling Diagram of UNIVERSAL ONE System:Installation

'System Installation and Operation

NOTE

If the operator’s control console used is a user supplied
device (instead of the CRT terminal from Millennium
Information Systems), the user must also supply the
interconnecting cable. See Note in Figure 3—4 for
J108 interfacing information.

4. If multiple disk units are included in the system, refer to the special instruc-
tions packed with the system for installation of the additional units.

5. Connect all power cords to the line power source.

3.3.2 Controls and Indicators.

The operator controls and indicators on the system units, including peripherals, are
described below.

333 Development Computer.

Referring to Figure 3—5, the following controls are located on the computer front
panel:

1. The key-operated switch controls primary power to the unit. When the key
is rotated fully clockwise, power is applied; when the key is rotated fully
counterclockwise, power is off and the key may be removed.

2. The backlighted display has the following legends:

PWR lights when primary power is applied.
MSTR lights when the master CPU has control.
SLV lights when the slave CPU has control.
RUN lights when the system is running.

3. The DIAG INT switch initiates a reload of UDOS when the system is in the
run state. Control is returned to the master CPU. This switch is used with the
maintenance diagnostic software.

4. The RESET switch terminates any program in progress. The hardware is
initialized, and the operating system is reloaded.

5. The PROM POWER switch enables or disables PROM programming power at
the front panel PROM sockets. When enabled, the PPWR indicator above the
switch is lighted. PROM PWR should be off whenever devices are inserted or
rmeoved from the sockets.

6. PROM PROGRAM sockets. The left most socket (PROM 1) is used for
programming type 1702A MOS PROMs. The center socket (PROM 2) is
used for programming type 82S115 bipolar PROMs. The rightmost socket
(PROM 3) is reserved for future use. All three sockets are zero insertion
force sockets.

Referring to Figure 3—6, the following items are located on the rear panel.

10.

11.

334

Figure 3—5. Front Panel of the Development Computer

The 115/230 VAC 50/60 Hz connector J25 is for primary power; use the
power cable supplied with the unit.

The 230 VAC/115 VAC slide switch S2 selects the internal voltage taps for
115V or 230V operation. Ensure the F3 and F4 contain the proper fuses for
the selected voltage.

The barrier terminal strip TB2 allows connection of an external supply to a
separate motherboard bus line and allows the user the choice of chassis
grounded or floating logic. To connect logic ground to chassis ground, connect
the terminals so marked together.

Fuses protect the internal power supplies. F4 is the fuse for primary power
input. F3 independently fuses the +12V power supply. F1 and F2 fuse the
PROM programmer ac secondary voltage.

J108 is a female connector used to connect the CRT terminal or the teletype
to the computer.

Dual Floppy Disk Unit.

The floppy disk unit has a single front-panel POWER on/off pushbutton switch that
is lighted when primary power is on.

The disk unit rear panel has the following items on it (see Figure 3—7):

System Installation and Operation

CABLEWAY FLOPPY DISK
SLOTS DRIVE CONNECTOR J108

4103

PRIMARY POWER
INPUT CONNECTOR J25

Figure 3—6. Rear Panel of the Development Computer

Cableway slot for the cable from the development computer.
A 25-pin connector J102 for cable to printer.
Spare slot for 25-pin connector J101.

b~

Fuses: primary Ac power fuse F1; Ac fuse F2 for disk drives; BV power
supply fuse F3; spare fuse F4.

5. 3-prong recepticle for Ac power cable.

3.35 CRT Terminal.

The optional terminal consists of a CRT unit and keyboard. The keyboard layout
closely approximates an ASR-33 Teletype. Refer to the CRT terminal operator’s
manual for a description of all keysand controls, as well as for details of its operation.

3.3.6 Line Printer.

The optional line printer is described in the Centronics 306C operator’s manual.

3—-8

CABLEWAY
SLOT

Figure 3—7. Rear Panel of the Floppy Disk Drive

3.4 OPERATION.

34.1 Formatting and Verifying New Diskettes.

Before any new diskette is used, it must be formatted and verified. If a diskette must
be formatted, start up the system according to paragraph 3.4.2 and then follow the
procedures outlined in the discussion of the UDOS commands FORMAT and VERIFY

in paragraph 4.6.5.

On every diskette, there is a write protect slot (see Figure 3—8). If this slot is
covered, the diskette is write enabled, meaning that data may be written onto or
read from the diskette. If this slot is not covered, the diskette is write protected,
meaning that data may not be written onto the diskette, but may only be read from
it. If an attempt is made to write to a write-protected disk, the appropriate UDOS
error message will be displayed.

3—-10

System Installation and Operation

WRITE PROTECT
SLOT

Figure 3—8. Inserting a Diskette

342 System Startup Procedure.

To power up the UNIVERSAL ONE system and load the operating system (UDOS)
into memory, perform the following steps:

1) Power up the CRT terminal. After a brief warmup period, the cursor will
appear on the screen. Adjust the intensity to the desired level.

CAUTION

Do not turn power on or off the disk unit with diskettes
installed and doors closed, because media data might
be destroyed.

2) Power up the floppy disk unit.

3) Allow a b minute warmup time to let the disk drive electronics reach stable
temperature.

4)

5)
6)

343

Insert the system diskette into drive 0. The correct method for inserting a
diskette is shown in Figure 3—8. Ensure that the label side is toward the
POWER switch and that the label is the last part of the diskette inserted into
the drive. Close disk drive door.

Apply power to the line printer.

Apply power to the development computer. This will cause an automatic read
from drive 0, which will load UDQOS into master memory. When UODS has
been loaded, a welcoming message will be displayed on the terminal:

> UDOS WER 1.0 T¥PE

Where TYPE will be type of slave CPU enabled, such as 8080, 6800, 2650,
etc., and the > is the UDOS prompt character which informs the user that
UDOS is ready to accept commands. ‘

If the welcoming message does not appear within 15 seconds, depress the
RESET switch. If the system again does not respond correctly, an improper
diskette or a faulty drive may be the problem. Try again with a new system
diskette and/or using drive 1. If trouble presists, request service assistance
from Millennium.

NOTE

The computer will automatically switch the initializa-
tion process to drive 1 if only drive 1 contains a
diskette. '

If the welcoming message is incorrect, the baud rate-setting of the CRT may
not correspond to the rate selected on the Master CPU card. Select the correct
baud rate on the CRT terminal rear panel. Refer to the UNIVERSAL ONE
System Reference Manual for information on changing the baud rate on the
Master CPU card.

Manual Reset.

If a reinitialization of the system is desired during operation, the user may reload
UDOS by pressing the RESET switch on the front panel. The welcoming message and
the prompt character will be issued after UDOS has been loaded. (Do not use the
manual RESET when using the Editor — data files being created may be lost.)

System Installation and Operation

Table 3—1. Pin Assignments of Connectors J108 and P2.
(Development Computer Back Panel and Master CPU)

P2

J108

pin | PIN SIGNAL DESCRIPTION COMMENTS
1 1 |[CHS GND (Not Used)
2 114 |TTX TTY Current Loop Input -| RCVR IN
3 | 2 |EIARCV DATA | EIA Serial Input RCRV IN
4 |15 |TTRDR + Tape Reader Control Out |47 ohm to +12
5 | 3 |EIAXMITDATA]| EIA Serial Output EIA Driver
6 |16 |TTRDR - Tape Reader Control Out | Open Collector Driver
7 |4 REQ TO SND Request to Sned 2.2K Pull-up
8 |17 |TTRCV + TTY Current Loop 620 ohm to +12V
Output +
9 |5 CLR TO SND Clear to Send 2.2K Pull-up
10 |18 |TTRCV - TTY Current Loop Open Collector Driver
Qutput
11 |6 DATA SET RDY | Data Set Ready 2.2K Pull-up
12 119 —
13 |7 SIG GND EIA Ground
14 (20 |DATA TERM Data Terminal Ready 2.2K Pull-up
RDY
15 18 CARR DET (Not Used)
16 |21 —
17 {9 —
18 122 | RINGIND (Not Used)
19 (10 -
20 |23 —
21 {11 {ORIG (Not Used)
22 |24 —
23 |12 |LOCAL {Not Used)
24 |25 |SND (Not Used)
RESTRAINT
25 |13 | TTX+ TTY Current Loop 620 ohm to +12V
Input +
26

3-13/3—-14

Chapter
Universal Disk

Operating System

4.1 INTRODUCTION.

This chapter describes the Universal Disk Operating System (UDOS) for the UNI-
VERSAL ONE system. General topics include the use of the keyboard to enter
commands or request control of the system, an overview of the UDOS file structure,
a catalog of the UDOS commands and their functions, and a study of the command
file capability and overlay areas. In addition, summaries of the UDOS commands
and UDQOS error messages are provided at the end of the chapter.

4.2 UDOS OVERVIEW.

The Universal Disk Operating System (UDOS) executes in master memory and
consists of two sections: resident UDOS which is always present in the master
memory, and the UDOS overlays, which are loaded into the master memory auto-
matically from the system diskette, whenever certain UDOS commands are invoked.
The resident UDOS section, in turn, consists of a PROM portion and a RAM portion.

The PROM resident portion is the UDOS BOOT, which initially loads the resident
portion of UDOS from disk into RAM master memory, when the RESET switch
is depressed.

The RAM resident portion of UDOS is comprised of the following modules:

Command Line Processor
SVC Processor

Job Dispatcher

Fite Manager

Device Drivers

These modules are described in the following paragraph 4.2.1. In addition, peripheral
device 1/0 buffers are also located in the RAM resident portion.

The section of UDOS located in the disk consists entirely of the overlays, which
process most of the UDOS commands; the only commands always resident in RAM
are GO, SYSTEM, LOAD and XEQ.

The EDIT and ASM commands are also a part of the UDOS command set, but
because the Editor and Assembler programs both are executed out of the slave
memory these commands need not be either resident or in an overlay. Instead, they
cause the Command Line Processor to load the corresponding program into the slave
memory and need not be processed further by the UDOS program modules.

4.2.1 Resident UDOS Modules.

The Command Line Processor operates on commands input from the CRT terminal
(i.e. the system control console) or from a command file stored in the disk. It in-
terprets the command(s), prepares a parameter list, and then causes the function to
be performed, by transfering control to the appropriate resident procedure, or by
loading and executing an overlay.

The SVC Processor operates on internal requests for 1/0 or a UDOS service function.
All of the 1/O communication with system peripherals, for system programs running
under the slave CPU, are performed by the SVC Processor.

The Job Dispatcher controls execution of the active jobs in the system. It transfers
control to the highest priority job whose 1/O operation has been completed, or to
the job which, otherwise, is ready to run.

The floppy disk File Manager and other Device Drivers control operation of the
peripheral devices in the system, all of which are interrupt driven.

4.2.2 UDOS Overlays.

The UDQOS overlays consist of all UDOS commands except the four memory-resident
commands.

Master memory contains two overlay areas into which the UDOS overlay commands
are loaded prior to execution. The overlay areas are referred to as overlay area 1 and
overlay area 2. Some UDOS overlay commands are executed in overlay area 1, some
are executed in overlay area 2, and some occupy both overlay areas during execution.

The UDOS commands are categorized in the following list by the overlay area in
which they are executed:

Overlay Area 1 Overlay Area 2 Overlay Area 1 & 2
COPY RHEX ABORT DELETE DSTAT LDIR
DEBUG RSMS ASSIGN DEVICE SET MODULE
DUP VERIFY BKPT DUMP SLAVE
FORMAT WHEX CLBP EXAM SUSPEND
PRINT WSMS CLOSE PATCH TRACE
RPROM WPROM CONT RENAME TYPE
CPROM KILL RESET STATUS

Universal Disk Operating System

UDOS commands can be executed concurrently as long as they do not occupy the
same overlay area. In addition, the concurrent execution must be consistent with
the current state of the peripheral devices and must not cause any system conflicts.

For example, suppose a paper tape was being read into slave memory. This would be
accomplished using the RHEX command (described in paragraph 4.6.6):

While the tape is being processed, file maintenance could be performed. Pressing the
ESCAPE key would suspend RHEX execution and display the UDOS prompt
character >>. The DELETE command (paragraph 4.5.1) could then be entered:

»»TEL FILE1<1 DATA<1 30URCE-1 (T)

When the (RETURN key) was entered, the RHEX command was continued and
the DEL command started. Note that RHEX executes in overlay area 1, while
DELETE operates in overlay area 2, which allows the concurrent execution of
these programs.

4.3 FILES, DEVICES, AND CHANNELS

UDOS is a file-oriented system. The understanding of a file-oriented system is greatly
enhanced by understanding the concepts of a file, a device, and a channel.

A file is a set of data. The set has a logical beginning and a logical end. For example,
the government’s file on a person's tax return might begin with the first return filed
by the person and end with the last return filed. In between the first return and the
last return there could be other returns, audits, etc. All the information beginning
with the first return and ending with the last return is the file. In the UNIVERSAL
ONE system, files are stored on diskettes. Disk files can be accessed through their
logical beginning address, a map that indicates where the data in the file is located
on the disk, and a logical ending address.

Devices are physical peripherals that provide input and output services for UDOS.
- The five standard devices are the console input device, the console output device,
the line printer, the high speed paper tape reader and the teletype reader. These
devices all have reserved names through which the user can access them. These names
appear in Table 4—1.

Table 4—1. List of UDOS Device Names.

DEVICE NAME DEVICE
CONI CONSOLE INPUT
CONO CONSOLE OUTPUT
LPT1 LINE PRINTER1
LPT2 LINE PRINTER 2
HSPT HIGH SPEED PAPER TAPE READER
TTYR TELETYPE READER

For example, the command:

o CORPY TTYR LPTI
would copy the information from the teletype-paper tape reader to the line printer.

NOTE

Although UDOS software supports a high speed paper tape
reader, this peripheral is available only on request.

Files may also be viewed as devices. Files can be specified as input or output devices.
To refer to a file as a device, the operator must refer to the file name for that file. In
addition, if the file is not located on the diskette installed in the system drive, it may
be necessary to specify the drive on which the file is located. UDOS can automati-
cally create the necessary new files or search other diskette directories.

A filename must have the following properties:

1) The filename must contain at least one but not more than eight characters.
2} . The characters in the name must come from the following set:

The alphabetic characters (A — Z)
The numeric characters (0 — 9)
These special characters: |, ”, #, %, &,°, (,), *, ;,=,and ?.

3) The filename may not begin with a numeric character.

4) The filename must not be one of the reserved names which identify physical
devices: CONO, CONI, LPT1, LPT2, HSPT or TTYR.

B) The filename must be unique to the diskette containing the file.

Every diskette has a system area, called the directory, where system information is
kept on all the files on the diskette. This information includes the filename, disk
sectors used, beginning and ending disk addresses, etc. The directory also includes
system information which prevents bad disk sectors from being allocated for
file usage.

UDQOS is only aware of diskettes that are loaded in the available disk drives. For this
reason, diskettes are not referred to by diskette name; rather, they are referred to by
drive number. As an example, suppose you had diskettes loaded in drives 0 and 1.
Drive O is the system drive. There is a file named DATA1 on drive O and a file named
DATAT1 ondrive 1. If it was necessary to copy the second DATAT1 to the line printer,
‘how would this be accomplished? The action is performed by specifying a drive
number to indicate which DATAT1 is to be copied. To specify the drive, append the
drive number to the file name. This is done by following the filename with a’/’ to
separate the filename and drive and then inserting the drive number. To copy DATA1
on drive 1 to the line printer, the following command would be performed:

Universal Disk Operating System

CoOPY DRTAL-1 LFPTI

If no drive number is appended to a filename, UDOS normally assumes that the file
resides on the system drive, and will search the system drive directory for the file.
See the SEARCH command for an alternative mode.

Channels are used by the program running on the slave CPU. The user can assign a
channel to a device using the ASSIGN command. When this is accomplished, the
slave is able to perform input or output to the device through the channel. The
devices specified in the assignment may be physical devices or files.

4.4 ENTERING UDOS COMMANDS.

When the prompt character > is displayed, the user is allowed to enter commands
to UDOS. These commands will all have a similar format. The format is:

> COMMAND PARAMETERS @
where:
COMMAND is the name of the command to be executed;

PARAMETER isall of the required or optional list of parameters for the
specified command; and

@ is the RETURN key

The command is always separated from its parameters by one or more spaces or by
a comma.

For example, if the user entered the portion of the following line (after the prompt
character):

s LDIR 0 @

LDIR would be the command to be executed and O would be the parameter for
LDIR. When one presses the RETURN key, UDOS is told that a command is waiting
to be interpreted. UDOS identifies the command, loads the appropriate program
into master memory, and control is passed to the loaded program to perform the
requested function. In the LDIR 0 example, the command LDIR, (the List Directory
command) is identified by UDQOS, and results in the List Directory program being
loaded and executed. The parameter, O, specifies the drive whose directory will be
listed. The listing will be displayed on the console.

If one desires a listing that included the system files, the following entry should
be made:

s LDIR 0 . @

where:
LDIR is the command, and

Oand . (which requests that system files be included in the directory listing)
are the parameters.

Note that a space separates or delimits the two parameters. When two or more para-
meters are present in a command line, they must be separated by spaces, or by a
comma (,). Since the comma is also a delimiting character, the following command
line is interpreted by UDOS in the same way as the above example: ’

* LDIR»0s. @

The space and comma can be used as delimiters in the same command line.

4.5 SPECIAL KEYS.

UDOS pays special attention to certain keys in order to facilitate the entry of
command lines and operator control of the system. These keys are DELETE (or
RUBOUT), ESCAPE, and the space bar. UDOS also recognizes CTRL-Z as a special
character.

4.5.1 Delete Key.

Suppose the operator was entering the command LDIR 0,. discussed in the previous
section, miskeyed, and instead entered:

LIk

To remove the incorrect character K from the buffer, the DELETE key is used. One
depression of the DELETE key deletes the last character in the buffer, and echoes
that character to the console. While the console displays:

» LDEE

the buffer contains LD. The entry of the command line can then be completed as if
the K was never entered.

Suppose the error in the entry was of this nature:

sDIR O
and as the operator prepares to enter the delimiting character, notices that ;" was
entered instead of L. Rather than pressing DELETE six times to reach the incorrect
character, the operator may delete the entire line through the use of the ESCAPE
key.

Universal Disk Operating System

45.2 Escape Key.

Pressing the ESCAPE key during entry of a command line can result in different
UDOS responses depending on the current system mode. The possible system input
modes are:

1) Input is being performed for a UDOS command;
2) Input is being performed for the Editor;

3) Input is being performed for a user application program.

No matter which of these modes the system is operating in, the current input line
will be deleted.

If command input for UDOS is being performed, which is the case in the ;DIR 0
example, the system will delete the current command line and then respond with a
double prompt >>. An exception to this rule occurs when the EXAM command is
being performed. If the ESCAPE key is pressed while EXAM is being performed, the
memory locations which were altered prior to the key depression will remain altered.

If the Editor is running, the response will be the Editor prompt character (¥),
except if the Editor is in the INPUT mode, in which case no prompt character will
be displayed.

The system response, when a user application program is running, will depend on
what the user has programmed as a response.

The system response to a depression of the ESCAPE key when a UDOS or user pro-
gram is executing, as distinguished from console input being performed, is discussed
in paragraph 4.6.3, System Control Commands.

45.3 Space Bar.

The space bar (key) allows the user to control system output to the console. Suppose
the user has completed entering the LDIR O, . command and the system is
listing the directory on the console. Depressing the space bar once will temporarily
pause output to the console and allow the user to examine the directory before it
scrolls off the top of the CRT. Depress the space bar once again and the listing
will resume. '

454 CTRL-Z Command.

CTRL-Z, which is formed by holding the CTRL (control) key down while pressing
Z, is treated as an end-of-file character when an ASCI! read is being performed from
the console or other system input device.

4.6

THE UDOS COMMANDS.

This section provides a description of all UDOS commands with the following
exceptions: '

*

4.6.1

Commands that are primarily used in conjunction with the command file
facility are described in paragraph 4.6.8.

Commands that are associated with the Debug function are described in
Chapter 5.

The EDIT command is described in Chapter 6.

- The ASM command is described in Chapter 7.

Commands that are used for PROM programming and verification are de-
scribed in Chapter 8.

The UDOS Command Structure.

All UDOS commands are structured as follows:

COMMAND PARAMETER

The command definitions are followed with a description of their function. Most
descriptions proceed as follows:

1)

4)

5)

The command is presented. Parameters that are optional are enclosed in
parentheses. Three periods (...} indicate that the preceding parameter may be
repeated as many times as the limitations of the command allow. The
minimum characters required to initiate the command are underlined.
For example:

COPY INPUT (...INPUT) OUTPUT

COP INPUT QUTPUT, where INPUT and QUTPUT are two filenames, is the
minimum COPY command that will be executed. Additional INPUT files
may be specified as in COP INPUT1 INPUT2 INPUT3 OUTPUT.

The first sentence provides a brief description of the command’s function.

The parameters associated with the command are discussed. The effect of
parameters on execution and their default values, if any, are described.

If further discussion of the command is necessary, the reasoning behind the
command, its logic flow, or possible problems are analyzed in the next
paragraph.

The error messages that the command might evoke are listed. The format and
a list of UDOS error messages is presented in paragraph 4.6.9 and Table 4—2.

Universal Disk Operating System

In the command line specification, several terms and conventions are used. The
terms and conventions involved are NAME, CH, DEVICE, ADDRESS or A,
FILENAME, D and L.

NAME refers to a program name. For example, ABORT NAME requests that
the program NAME be aborted. If the program VAIL was to be aborted,
ABORT VAIL would be used.

CH refers to a channel number. Channel numbers may be in the range 0 — 7.
For example, if channel 2 were to be assigned to the line printer, 2
would replace CH and LPT1 would replace DEVICE in the ASSIGN
CH DEVICE command. This would result in ASSIGN 2 LPT1 being
executed.

DEVICE refers to any of the system devices or to any disk files. For example, if
channel 3 were to be assigned to the disk file SRCCD/1, 3 would re-
piace CH and SRCCD/1 would replace DEVICE in the ASSIGN CH
DEVICE command. This would result in ASSIGN 3 SRCCD/1 being
executed.

ADDRESS

or Ai refers to a hexadecimal address constant between O and FFFF. For
example, MODULE FILENAME, A1, A2, A3 could be replaced with
MODULE LDFLE, 100, 2FFF, 80.

FILENAME refers to a disk file. To edit the file DTA1/1 using the Editor, the user
would issue the command EDIT DTA1/1 where DTA1/1 is a specific
instance of the general parameter FILENAME. Note that in most com-
mands it is required that the name of the file be followed by /D, where
D is the floppy disk drive number.

D refers to the disk drive number. To duplicate the diskette on drive O on
to the diskette on drive 1, 0 would be used for D1 and 1 would be used
for D2 in the DUP D1 D2 command. This would yield a DUP 0 1
command.

L refers to a line number. To list the 8th through 14th lines of a file name
DTA/1 on the line printer, the user would replace PRINT FILENAME
(LT1L2) with PRINT DTA1/1 8 14.

4.6.2 UDOS Command Completion.

Most UDOS commands indicate that they have completed their function by display-
ing an End-of-Job message. The form of this message is *id* EOJ where ‘id’ is the
UDOS system program identifier (see Table 4-3) and EQJ is the end of job message.
Completion of any user-entered command causes the UDOS prompt character >
to be displayed.

4.6.3 System Control Commands.

The user may control the execution of system or slave programs through these
special keys: v

ESC
SPACE BAR

The ESC ESC sequence is used to suspend system or slave programs and to return
control to UDOS. The space bar key is used to control UDOS displays.

The user may also control the execution of system or slave programs and control the
slave channels with these commands:

SUSPEND
CONT
ABORT
ASSIGN
CLOSE

SUSPEND halts program execution. CONT restarts suspended programs. ABORT
terminates program or command execution. ASSIGN forms a connection between a
slave channel and a device. CLOSE terminates the logical connection formed by an
ASSIGN command. ’

4-10

ESC
Space Bar

ESC
or

ESC ESC

A single depression of the ESCAPE key has two possible interpretations:

a)

b)

If input was being performed to UDQOS, the Editor, or an application
program, refer to paragraph 4.5.2 for a discussion of the actions taken.

If an UDOS or user program is executing, a single depression of the ESCAPE
key will result in that program being temporarily suspended, unless the
program is one of the following four UDOS programs:

LDIR
TRACE
STATUS
DUMP

If one of these four programs is executing, a depression of the ESCAPE key
will terminate its execution. To restart any of the other UDOS programs or
the user program after it has been temporarily suspended by ESCAPE, either
press RETURN or enter a valid UDOS command.

When the ESCAPE key is depressed, UDOS will respond with a double
prompt to record the fact, unless a command line is being input to the
Editor or to a user application program.

Two consecutive depressions of the ESCAPE key will result in all active programs in
the system being suspended. No program suspended by this double depression of
the ESCAPE key will resume execution unless the user issues a CONT (Continue
Execution) command.

SPACE BAR

The space bar is discussed in paragraph 4.5.3.

Suspend
Cont

SUSPEND NAME
or —
SUSPEND *

or

SUSPEND /

This command suspends the execution of active programs. The Debug program may
not be suspended.

SUSPEND NAME suspends the specified program. SUSPEND * suspends all active
programs. SUSPEND / suspends the slave program.

The primary use for this command is in conjunction with the command file capa-
bitity discussed in paragraph 4.6.7. Inserting this command in a command file will
suspend system operation to allow some required user action, such as inserting a
special diskette into one of the drives.

SUS Error Responses:

24 — Job not active
26 — Job already.suspended
31 — Parameter required

CONT NAME
or

CONT *

or

CONT/

This command continues the execution of a suspended program.

CONT NAME causes the specified program to be continued. CONT * causes all
suspended programs to be continued. CONT / continues the slave program.

A program may be suspended in one of two ways: 1) If the ESCAPE key is
depressed twice in succession, UDOS will have suspended all programs. 2) The
user may suspend programs through the use of the SUSPEND command.

CON Error Responses:

24 — Job not active
256 — Job not suspended
31 — Parameter required

4-12

Abort
Close

ABORT NAME
or

ABORT *

or

ABORT/

This command causes an active UDOS or user program to be aborted.

ABORT NAME causes the specified program to be aborted. ABORT * causes all
active programs to be aborted. ABORT / causes the slave program to be aborted.

ABT Error Responses:

24 — Job not active
31 — Parameter required

CLOSE CH (...CH)

This command causes the specified channels to be closed. The channel numbers must
be in the range 0—7.

The logical connection between channel and device that was created in the ASSIGN
command is severed, and the channel and device are no longer logically related. If
the channel was assigned to a disk output file, the data remaining in the UDOS
deblocking buffer will be output to the file before it is closed.

CLS Error Responses:

2 — Directory write error

7 — Device write error
19 — Invalid channel number
31 — Parameter required
62 — Device not operational

64 — Invalid diskette

4-13

ASsign

ASSIGN CH DEVICE (...CH DEVICE)

This command causes the connection of the logical slave channel CH to the specified
DEVICE. CH must be in the range 0—7. DEVICE must be one of the system device
names or the name of a disk file.

The ASSIGN command views every disk file as an independent physical device.
When a disk file name is used as DEVICE in the ASSIGN command, the directory
of the diskette is searched for the filename. If the filename is not found, the file is
created in the directory.

The specified channel is connected to DEVICE, which results in all subsequent /0
operations on the channel being performed on DEVICE.

The ASSIGN command applies to the user channels only.

ASN Error Responses:

1 — Directory read error

9 — Invalid drive number
12 — Invalid file name
19 - Invalid channel number
20 — Channel in use
21 — Channel assign failure
31 — Parameter required

4-14

SEArch ON
SFArch OFf

4.6.4 System Option Commands.

The user may set the value of various system options that remain in effect during all
subsequent operations, until removed or changed. To set system operations, the
following commands are used:

SEARCH
SYSTEM
DEVICE

CLOCK

SEARCH allows the user to invoke the automatic file searching system. SYSTEM
allows the user to designate the system drive. DEVICE informs UDOS of device
status.

This command turns the automatic file searching flag, SEARCH, on or off. The
default value of SEARCH is off. N specifies the number of drives in the user system.
The default value of N is 2. If N is given, it must be greater than 2.

If automatic file searching is not being performed, i.e. SEARCH is off, then when
the user specifies a filename with some command that he enters, UDOS only searches
the directory of the specified drive for the file. (If no drive is specified, the default
value is the system drive.)

If automatic file searching is being performed, i.e. SEARCH is on, then when the
user specifies a filename but not a drive number, UDOS will search, in circular
manner, N directories, beginning with the system diskette, for that filename. If the
filename is not found, it will be created on the first diskette which can contain a
file. If that diskette is write protected, a directory write error will result.

This feature is very useful when drive O is a write protected system diskette and all
user files are on drive 1.

SCH Error Responses:

30 — Invalid parameter
31 — Parameter required

System
DEVice
CLOck ON CLOck OFF

SYSTEM D

This command designates drive D as the system disk drive.

This command- allows the user to designate any disk drive attached to the system as
- the system drive.

The default value for the system drive is O.

UDOS Error Responses:
9 — Invalid drive number

DEVICE DEVICE U
or
DEVICE DEVICED

This command informs UDOS of the availability of a peripheral device. The argu-
ment DEVICE must be one of the system device names (see Table 4—1).

If U is specified as the second argument, the system is informed that the device is
UP, or available for use. If D is specified as the second argument, the system is in-
formed that the device is DOWN, or not available for use. Either U or D must be
specified.

DEV Error Responses:

30 — Invalid parameter
31 — Parameter required
52 — Invalid device

O
—

CK

IO
Z

r
LOCK

o

O
O

EF

This command enables or disables the 100 msec real time clock interrupt. (The real
time clock is synchronized with the system clock and is available out of master
memory for use by slave programs and other purposes.) Default value of CLOCK
is ON.

CLK™ Error Responses:

30 — Invalid parameter
31 — Parameter required

4-16

Universal Disk Operating System

4.6.5 System Utilities Commands.

The user can perform disk and file maintenance and move data around the UNI-
VERSAL ONE system with these commands:

FORMAT
VERIFY
RENAME
DUP
LDIR
DELETE
COPY
PRINT

FORMAT initializes the diskette for use by the UNIVERSAL ONE system. VERIFY
determines if bad blocks exist on the disk and catalogs the location of the bad
blocks. RENAME changes the name of a disk file or changes a disk identification.
DUP duplicates diskettes. LDIR lists the directory of a specified diskette. DELETE
removes files from the disk. COPY copies data from one part of the system to
another. PRINT outputs the contents of a disk file on an appropriate device.

FORMAT

FORMAT D (IDENT)

All virgin diskettes must be formatted and verified before they can be used by
UDOS.

This command causes the diskette on drive D to be formatted. The ASCII character
string IDENT is a unigue code that must be used to identify every diskette; IDENT
is truncated if it is longer than 48 characters. D may not be the designated system
drive.

The formatting process is primarily performed by the floppy disk controller and
involves writing clock bits, sync patterns, the track and sector number, a data pattern
and a CRC character on every sector of the diskette. During the formatting process,
the directory is preset to indicate that tracks 1 through 4 are in use. This serves to
reserve those tracks for UDOS. If a bad sector is detected on tracks O through 4 (the
directory and UDOS area) the formatting process is aborted.

If the diskette will not be used for storage of system software, the area reserved for
UDOS may be freed for other uses (after formatting is complete) by entering
DELETE UDOS command. This, however, will prevent ever using this diskette for
system programs.

During formatting, the ASCII character string IDENT is written to the diskette and
serves as the diskette identification. This identification is always displayed when the
LDIR command is used to list the diskette directory. Note that if IDENT is not
specified, a string of blanks will be used to identify the diskette.

FMT¥ Error Responses:

2 — Directory write error

9 — Invalid drive number
17 — Output device assign failure
18 — Device in use

47 — System area bad

4-18

Verify

VERIFY D

This command causes the diskette on drive D to be verified.

The verification process consists of reading every sector on the diskette and noting
all the errors that occur. If, when a sector is read, an error occurs, the entire track on
which the bad sector is located is set in a Bad Block Bit Map. In addition, the track
and sector number of the defective sector are output to the console. When all the
sectors have been read, the Bad Block Bit Map is written on the diskette. Whenever
files are created and disk space allocation for the file is performed, referencewill be
made to the Bad Block Bit Map and the defective blocks will not be allocated.

If a defective sector is detected on any of tracks O through 4 (the UDOS system
area) during the verification process, the process will be aborted and an appropriate
message will be displayed on the console.

VER? Error Responses:

1 — Directory read error

2 — Directory write error

9 — Invalid drive number
16 — Input device assign failure
18 — Device in use

47 — System area bad

4-19

REName

ENAME OLDFILE/D NEWFILE

or
RENAME D IDENT

The RENAME function has two forms. The first form renames the file OLDFILE
to NEWFILE. This form requires that a drive number be specified with OLDFILE.
If a drive number is specified with NEWFILE, it must be the same as the drive
number specified with OLDFILE.

The second form reidentifies the diskette on drive D with the character string
IDENT. When the string IDENT is used it will be truncated if it is longer than 48
characters.

REN Error Responses:

1 — Directory read error
2 — Directory write error
8 — Drive not specified
9 — Invalid drive number
12 — Invalid file name
13 — Input file not found
16 — Input device assign failure
18 — Device in use
30 — Invalid parameter
31 — Parameter required
32 — Too many parameters
57 — File name in use

4--20

ouP

DUP D1 D2 (IDENT)

This command causes the diskette on drive D1 to be copied to the diskette on drive
D2. Diskette D2 is identified by the character string IDENT. D1 may not be the
same as D2, and D2 may not be the system drive. IDENT will be truncated if it is
longer than 48 characters.

D1 is copied to D2 by copying all the files on D1 to D2. In the event of a disk read
or write error during a file copy, the output file will be deleted on D2, a warning
message will be displayed, and the DUP process will continue with the next file.

The diskette on drive D2 should be verified before the DUP command is executed.
This is done to establish the Bad Block Bit Map for the diskette.

DUP Error Responses:

1 — Directory read error
2 — Directory write error
-6 — Read error, dup continues
7 — Write error, dup continues
9 — Invalid drive number
16 — Input device assign failure
17 — Output device assign failure
21 — Channel assign failure

4-21

Ldir
DEl ete

LDIR (D) (.) (/) (DEVICE)

This command lists the contents of the directory of the diskette on drive D on
DEVICE. If D is not specified, the directory of the system diskette will be listed.
If *." is specified, the UDOS system files will be included in the directory listing.
If '/" is specified, diskette space allocation information will be listed for each file in
the directory, and a summary of the total diskette utilization will follow at the end
of the directory listing. If DEVICE is not specified, the listing will be displayed on
the console.

DIR Error Responses:

1 — Directory read error
7 — Device write error
10 — Overlay load failure
15 — Invalid output device
17 — Output device assign failure

DELETE FILENAME/D (...FILENAME/D)

This command deletes all the filenames specified in its parameter list. Each filename
must have a drive number associated with it. Each file specified in the parameter
fist will be deleted from the directory of the disk on which it resides, and the sector
blocks allocated to the file will be released for reallocation.

DEL Error Responses:

2 — Directory write error
8 — Drive not specified
9 — Invalid drive number
12— Invalid file name
13 — File not found
18 — Device in use
21 — Channel assign failure
30 — Invalid parameter
31 — Parameter required

4-22

COPy

COPY INPUT (...INPUT) OUTPUT

This co
fileor a

mmand copies INPUT data to an OUTPUT file or device. INPUT is a disk
n input device, OUTPUT is a disk file or an output device.

If COPY INPUT OUTPUT is completely specified, data is copied from the specified

INPUT

device or file to the specified OUTPUT device or file until an end-of-file

condition is encountered on the INPUT. If more than one INPUT is specified, the
data is copied to the OUTPUT file in the following manner:

1)

2)

3)

The first INPUT is copied to OUTPUT until the end-of-file condition is
reached.

The second INPUT is then concatenated behind the first INPUT by copying
its data to OUTPUT directly after the first INPUT.

The third INPUT is then copied after the second, etc.

The copy process is completed when the last INPUT is written to OUTPUT, and its
end-of-file condition is reached. The OUTPUT file is then closed.

None of the INPUT files or devices may be the OUTPUT file or device.

When an ASCII file is being input from one of the system peripherals (CONI, TTYR,
or HSPT), the CONTROL-Z character is interpreted as the end-of-file condition.

COP

6

7
13
14
15
16
17
30

Error Responses:

— Input read error

— Output write error or eod
— Input file not found

Invalid input device

— Invalid output device

— Input device assign failure
— Qutput device assign failure
— Parameter error

4-23

PRint
PRINTL

PRINT FILENAME (DEVICE)(L1 L2)
or
PRINTL FILENAME (DEVICE)(L1 L2)

This command causes lines from FILENAME to be written to a specified output
DEVICE. If DEVICE is not specified, the data is printed on LPT1. If L1 and L2 are
specified, they must be greater than or equal to 1 and less than 32,768. L2 must be
greater than or equal to L1.

I a line range is specified (L1 L2), only the lines from L1 through L2 will be printed.
If only L1 is specified, the lines from the first line through L1 will be printed. If no
line range is specified, the entire file will be printed.

If the PRINTL form is used, thé lines will be numbered as they are displayed or
printed.

PRN Error Responses:

6 — Input read error
7 — Output write error or end of device
13 — Input file not found
14 — Invalid input device
15 — Invalid output device
16 — Input device assign failure
17 — Output device assign failure
30 — Invalid parameter

4-24

Module

4.6.6 Object Program Utility Commands

The user will generally manipulate object program files to and from slave memory
with these commands:

MODULE
RHEX
WHEX
CSMS
WSMS

MODULE writes a binary format load module from slave memory. RHEX reads a
hexadecimal object file into slave memory. WHEX writes a hexadecimal object file
from slave memory. CSMS translates an SMS file and then compares the file with
slave memory. WSMS writes a block of slave memory in SMS format. SMS format
is used by many semiconductor companies for the generation of PROMs and is
described in Appendix F.

MODULE FILENAME A1, A2, A3 (IDENT)

This command writes a binary format load module to FILENAME. A1 and A2 are
the memory bounds in the slave memory and A3 is the starting address of the
program; A2 must be greater than or equal to A1l. IDENT is an optional character
string used to identify the module. IDENT will be truncated after the first 20 charac-
ters entered.

The contents of slave memory from A1 to A2 will be output to the disk file
FILENAME. The load module will be preceded by a ‘header’ which will contain
Al and A2, as well as AS.

MOD Error Responses:

7 — Device write error
10 — Overlay load failure
12 — Invalid filename
32 — Too many parameters

34 — Invalid address

4-25

Rhex

RHEX (/BIAS) (DEVICE)

This command reads an absolute hexadecimal object file into slave memory. BIAS
is used to alter the absolute load address for the file. The default value of BIAS is O.
DEVICE is used to specify the input device or disk file where the object code resides.
The default value of DEVICE is TTYR, the teletype paper tape reader.

The absolute hexadecimal file is read into memory from the specified input DEVICE.
The initial load address is altered by BIAS which is a signed hexadecimal address
constant. If no sign is specified, the default polarity value of BIAS is assumed
to be +.

Note that the program start address given at the end of the object file will be ignored
by UDOS. The start address must be entered by the operator as part of the GO
command when execution of the program is requested.

NOTE

The hexadecimal format varies between slaves, as
determined by the microprocessor manufacturer.

RHX Error Responses:

6 — Device read error
14 — Invalid input device
16 — Input device assign failure
33 — Bias parameter error
40 — Invalid input format

4—-26

WHex

WHEX A1 A2 ... (,A1 A2) (A3) (DEVICE)

This command outputs an absolute hexadecimal format file from slave memory.
The pairs A1,A2 are hexadecimal address constants that indicate the bounds of the
slave memory segment to be written to the file. A3 is an optional program starting
address. DEVICE is an optional output device or file. If DEVICE is not given, the
default value is CONOQ, the console output device. If DEVICE is specified, the
starting address vector A3 must be specified.

This command writes, in hexadecimal ASCIl format, the data from A1 to A2 for
each A1, A2 pair present in the parameter list. Note that two commas are required
between address pairs if multiple address pairs are specified.

NOTE

The hexadecimal format varies between slaves, as
determined by the microprocessor manufacturer.

WHX Error Responses:

7 — Device write error
15 — Invalid output device
17 — OQutput device assign failure
30 — Invalid parameter

4-27

CSms
WSms

CSMS (ADDRESS) (DEVICE)

This command reads a file that is written in SMS format from DEVICE, translates
the data to binary, and compares the data with slave memory. ADDRESS refers to
the first location in slave memory that will be compared with the SMS file. The
default value of ADDRESS is 0. DEVICE is the input device or disk file where the
SMS data is present. The default value of DEVICE is TTYR. CONI cannot be the
input device.

The SMS file is compared with a 512-byte block of memory. If an SMS byte and the
contents of a memory location are not equal, the memory location, the SMS value,
and the contents of the memory location will be displayed on the console.

SMS Error Responses:

6 — Device read error
13 — Input file not found
14 - Invalid input device
21 — Channel assign failure
30 — Invalid parameter

35 — Invalid address

WSMS (ADDRESS) (DEVICE)

This command outputs a 512-byte block of slave memory in SMS format. ADDRESS
specifies the first location of memory to be read. The default value of ADDRESS is
0. DEVICE specifies the output device or disk file where the SMS data is to be
written. The default value of DEVICE is CONO.

SMS Error Responses:

7 — Device write error
15 — Invalid output device
21— Channel assign failure
30 — Invalid parameter

35 — Invalid address

4-28

Universal Disk Operating System

4.6.7 Command Files.

UDOS provides the user with the capability of executing a sequence of UDOS
commands by issuing a single command. This capabitity is implemented through the
use of command files, which is a sequence of UDOS commands, identified by a
single name. When the name of the command file {(as an example, we shall use the
name COM1) is used as a UDOS command:

> o ()

UDOQOS first determines that COM1 is not one of the basic UDOS commands and
then searches the system directory for the file COM1. When UDOS locates COM1,
it treats the first line in COM1 as an UDOS command and executes it. Then the
second line is executed, and so forth, until an end-of-file condition is reached
on COM1.

For example, suppose the Editor was used to create the following file named
LISTALL:

LDIR O LPT1
LDIR 1 LPT1
LDIR 2 LPT1
LDIR 3 LPT1

If LISTALL is entered as an UDOS command, UDOS will locate LISTALL and
execute the first line as an UDOS command. This will result in the directory of the
diskette on drive O being printed on the line printer. Execution of the next three
lines will result in the directories of the diskettes on drives 1, 2 and 3 being printed
on the line printer.

UDOS also allows parameters to be entered in the command line with the command
file filename. This is accomplished by allowing parameters following the command
file filename to replace parameters beginning with a $ in the command file. For
example, if LISTALL were:

LDIR O LPT1 $1 $2
LDIR 1 LPTT $1 $2

LDIR 2 LPT1 $1 $2
LDIR 3 LPT1 $1 $2

and the command:
= LIETAHLL
was entered, the *." (the first parameter) would replace all the $1s in the LISTALL

file and the ‘/' (the second parameter) would replace all the $2s in the LISTALL
file. This would result in the following command stream being performed:

4-29

LDIR O . / LPT1
LDIR 1 ./ LPT1
LDIR 2 . / LPT1
LDIR 3 . / LPT1

In general, if COM is a command file and has $1, $2, $3, ... $n-as parameters in the
file, performing:

COM X1 X2 X3 ... Xi
will result in:

X1 replacing the $1s in the COM file
X2 replacing the $2s in the COM file
X3 replacing the $3s in the COM file

Xi replacing the $ns in the COM file

If a device read error is encountered in a command file, the entire file execution will
be aborted, except when the value of the KILL switch is off (see paragraph 4.6.8).

Command files cannot be nested, but they can be chained. That is, if the last UDOS
command in a command file is the name of another command file, the command
file in progress will be terminated and the next command file will be started.
Parameters can be passed from one command file to another in the same way they
are passed to UDOS commands.

A maximum of six disk files instead of the normal eight can be assigned to a slave
program while a command file is in progress.

4.6.8 Command File Utilities.

The user may control actions taken during command file execution with these
commands:

KILL
TYPE
*

4-30

Kill
TYpe

KILL ON
or
KILLOFF

This command causes the UDOS switch KILL to be set on or off.

If the KILL switch is on, a command file will be aborted if the current UDOS com-
mand being executed by the command file processor encounters-an error. If the
KILL switch is off, the command file processor will continue with the next UDOS
command in the file.

The default value of the KILL switch is on.

KIL Error Responses:

30 — Invalid parameter
31 — Parameter required

|—| Q ‘—l
< 7 i<
o T
m m
5 B
m

This command causes the UDOS siwtch TYPE to be set on or off.

If the TYPE switch is on, UDOS command lines executed by the command file
processor will be output to the system console. If the TYPE switch is off, UDOS
command lines or ‘EQJ’ message will not be displayed on the console. Error messages
from UDOS programs are displayed regardless of the TYPE setting.

The default value of the TYPE switch is on.

TYP Error Responses:

30 — Invalid parameter
31 — Parameter required

4-31

* COMMENT

This command is used to insert comments into the job flow. The * must be followed
by a space or a carriage return. The ASCII| string which follows the space cannot be
longer than 77 characters. This command is effectively ignored by UDOS.

The primary use of the * command is in command files where it can be used to
display comments around UDOS commands.

4.6.9 UDOS Error Messages.
All UDOS error messages are of the following form:
*id * ERROR #

where id is the UDOS system program identifier, Table 4—3, and error # is the
UDOS error number, Table 4—2. For example,

+*uiH=+ FRE 032

+hiHx+ ERROR 20
is issued by the program WHEX, indicated by the UDOS program identifier, *WHX?¥,

and informs the operator that an invalid parameter was received, indicated by the
UDOQOS error number 30.

4-32

1
2
3

~N OO

8

10
"
12
13
14
25

16

17

18
19

20
21

22

23
24
25
26
27
28
29
30
31
32
33

Universal Disk Operating System

Table 4—2. UDOS Error Messages

— DIRECTORY READ ERROR

— DIRECTORY WRITE ERROR

— COMMAND FILE NOT FOUND

— COMMAND FILE INPUT
ERROR

— PROCEDURE BUSY

— DEVICE READ ERROR

— DEVICE WRITE ERROR OR
END-OF-DEVICE

— DRIVE NOT SPECIFIED

— INVALID DRIVE

— OVERLAY LOAD FAILURE

— OVERLAY AREA IN USE

— INVALID FILE NAME

— INPUT FILE NOT FOUND

— INVALID INPUT DEVICE

— INVALID OUTPUT DEVICE

— INPUT DEVICE ASSIGN
FAILURE

— OUTPUT DEVICE ASSIGN
FAILURE

— DEVICE IN USE

— INVALID CHANNEL
NUMBER

— CHANNEL IN USE

— CHANNEL ASSIGN
FAILURE

— COMMAND LINE BUFFER
OVERFLOW

— INVALID COMMAND

— JOB NOT ACTIVE

— JOB NOT SUSPENDED

— JOB ALREADY SUSPENDED

— JOB EXECUTING

— JOB UNDER DEBUG CONTROL

— PROM POWER FAILURE

— INVALID PARAMETER

— PARAMETER REQUIRED

— TOO MANY PARAMETERS

— BIAS PARAMETER ERROR

34
35
36
37
38

39
40

41
42

43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
68
59
60
61
62

63

64
65

66

INVALID ADDRESS

INVALID START ADDRESS

INVALID END ADDRESS

INVALID GO ADDRESS

INVALID DEBUG SLAVE
PROGRAM ADDRESS

INVALID HEX CHARACTER

INVALID RHEX INPUT
FORMAT

INVALID BREAKPOINT
ACCESS MODE

INVALID REGISTER PARA-
METER

INVALID DATA PARAMETER

INVALID TRACE MODE
PARAMETER

INVALID SLAVE SRB
ADDRESS

— SLAVE HALTED
— SYSTEM AREA BAD

!

LOAD FILE NOT FOUND
LOAD FILE ASSIGN FAILURE
FILE NOT A LOAD MODULE
INVALID LOAD REQUEST
INVALID DEVICE

INVALID SLAVE CPU
INVALID MODE

INVALID MEMORY

INVALID DEVICE ADDRESS
FILE NAME IN USE

DEVICE ASSIGN FAILURE
MEMORY WRITE ERROR
END OF MEDIA

FILE IN USE

DEVICE NOT OPERATIONAL
DIRECTORY FULL

INVALID DISKETTE

— MASTER MEMORY

PARITY ERROR

— SLAVE MEMORY PARITY ERROR

4-33

ABT
ASN
CLS

CON
COP

CLK
DEB
DEL
DEV
DIR

DMP
DOS
DUP
EXM
FMT

4-34

Table 4—3. UDOS System Program ldentifiers

ABORT OVERLAY
ASSIGN OVERLAY
CLOSE OVERLAY
CONT OVERLAY
COPY OVERLAY
CLOCK OVERLAY
DEBUG OVERLAY
DELETE OVERLAY
DEVICE OVERLAY
LDIR OVERLAY
DUMP OVERLAY
UDOS RESIDENT PROGRAM
DUP OERLAY
EXAM OVERLAY
FORMAT OVERLAY

KIL
MOD
PAT
PRM
PRN
REN
RHX
SCH
SLJ

SLVv
SMS
SUS
TYP
VER
WHX

KILL OVERLAY
MODULE OVERLAY
PATCH OVERLAY
PROM OVERLAY
PRINT OVERLAY
RENAME OVERLAY
RHEX OVERLAY
SEARCH OVERLAY
PROGRAM RUNNING
UNDER SLAVE CPU
SLAVE OVERLAY
SMS OVRELAY
SUSPEND OVERLAY
TYPE OVERLAY
VERIFY OVERLAY
WHEX OVERLAY

Chapter

the Debugger

5.1 INTRODUCTION.

This chapter describes the Debugger, or the Debug Program. General topics include
an overall description of the Debug Program, entry and exit from it, a sample debug
session, and a description of each of the Debugger commands. Further information
on versions of the Debugger, related to particular slave CPUs, is contained in the
manual supplements provided with each of the slave CPU cards and emulation
cables.

5.2 THE DEBUG PROGRAM.

The Debugger is a subsystem of the UDQOS, that is enhanced through UNIVERSAL
ONE hardware features which allow it to control program execution on the slave
CPU.When Debugger is executing, the user has a subset of the UDOS commands plus
a set of Debugger commands at his disposal.

Functionally, the Debugger is a combination of software, hardware on the debug
logic card, and the emulation cable. It can perform the following functions:

1. display memory and register contents, as well as Debug status, and allow
these values to be modified;

2. control program execution and allow the user to request control at specified
locations using breakpoints;

3. trace program execution and display relevant machine states;
4. allow debugging in the user’s prototype system.

To accomplish these functions, the Debugger monitors the user’s progress and state
and saves necessary information. For example, the Debugger uses breakpoints to
control user program execution. (A breakpoint is a location in the user program
where the user wishes to have the Debugger take control of the system.) As another
example, the Debugger can do a trace to observe program execution. The entire
program or portions can be traced. As each instruction is executed, various parameters
that indicate the system state are displayed.

The Debugger is also used to debug user developed hardware. The emulation cable
allows the user to connect the slave CPU directly to his development hardware, where
in-circuit-emulation may be performed.

There is a different version of the Debugger for each of the different slave CPUs avail-
able with the UNIVERSAL ONE system. The basic operation of Debugger and the
functions of all Debug commands are the same for all versions, however some command
parameter formats and some formats of displays generated in response to commands,
vary from version to version. These differences are described in the manual supplement
provided with each slave CPU.

If you are familiar with debugging programs, paragraph 5.3, INVOKING THE DE-
BUGGER, and paragraph 5.5, DEBUG COMMANDS, are recommended. If you are
not familiar with debugging programs, the above paragraphs plus paragraph 5.4,
SAMPLE DEBUG SESSION, are recommended. For the sample debug session, it is
recommended that the reader be familiar with the basic architecture and operation of
the 2650 microprocessor.

5.3 INVOKING THE DEBUGGER.

There are three important facts that require explanation before discussing use of the
Debugger:

1. The special UDOS keys, ESC and space bar retain their meanings while the
Debugger is executing. Their use is discussed in paragraphs 4.5.2 and 4.5.3.
Note in particular the impact of the ESC key on the EXAM command.

2. If it is necessary to switch from the master CPU to the slave, or change the
slave mode for a debug session, the change must be made before the Debugger
is invoked. To change the slave mode, execute the SLAVE command, which
is described in paragraph 5.5.

3. Executable programs are created and stored in the UNIVERSAL ONE system
one of two formats:

a) Hex format: two hex characters are stored for each byte of object
code produced. The Assembler creates hex format files. RHEX is
the UDOS command used to read hex format files.

b) Binary format: one byte of data is stored for each byte of object
code. The UDOS command MODULE creates binary format files.
LOAD is the UDOS command used to read binary format files.

When the user desires to invoke the Debugger, he first must issue the SLAVE com-
mand (paragraph 5.5), then load the program to be debugged into slave memory, by
using either the LOAD or RHEX commands. Next, the DEBUG command can be
issued to enter the Debug Program and the UDOS command CLOCK OFF must be
issued to disable the real time clock interrupt.

When DEBUG is entered, the debug package appropriate to the slave microprocessor
being used is loaded into master memory (overlay area 1). In addition, a small trace
package, if necessary, is loaded into the slave memory. This package, is used to save
and restore the slave CPU registers when using GO and breakpoints, and serves as the
interface between the Master and slave CPU’s. This package for most microprocessors
will be contained in PROM on the slave CPU, instead of in slave memory.

The Debugger

After the Debug package has been loaded, the UDOS prompt character > is issued
to the console. Whenever this prompt is displayed, the Debugger is ready to accept
commands. Select the desired DEBUG mode (TRACE, BREAKPOINT, etc.), and
you are ready to initiate execution of the application {user) program.

NOTE

The commands available to the Debug user are listed
in Appendix B. Note that several of the primary func-
tions of the Debugger, such as examining the altering
memory (the EXAM command), and execution control
(the GO and EXQ commands) are UDOS commands
that are also used by the Debugger. Other UDOS com-
mands however, are not available to Debugger.

If the UDOS prompt character is not displayed on the console and the operator desires
control, the following procedure should be utilized:

1. Depress the ESCAPE key twice. |f the TRACE mode is active, a single
depression is sufficient.

2. When the UDOS prompt character appears, enter the desired commands.

3: Whenitis necessary to continue the user program, entering the GO command
will continue the user program from the point at which it was interrupted.

The user program will be stopped (which will result in the UDOS prompt character
being displayed and the system being available for input commands) under the
following conditions:

The user requests console control by depressing the ESCAPE key.

The user program has encountered a breakpoint.

The user program has executed a HALT instruction.

Pwbh--

The user program has executed one instruction in the TRACE STEP mode.
5. The user program has reached a normal end of job condition. ‘
The only way for the user to terminate the Debugger is to use the UDOS command

ABORT. This may be accomplished by ABORT DEBUG or ABORT*. In either case,
both the Debugger and the user program are terminated.

54 SAMPLE DEBUG SESSION (USING A 2650 SLAVE).

Let's monitor the program in Figure 5—1,a with the Debugger so that we may examine
some of the debug features. The sample program has been assembled into hex object
code, written to a disk file named DEMO. The starting location for the program is
3000.

The System is in the target slave mode O (see SLAVE command, paragraph 5.5) by
default, so an initial SLAVE command is not required.

5-3

OCARANOAPLPWN=

©ONOCHALWN=

54

DEMO Orz HZ000-
R Efl 0
F1 EiL 1
*
+*
TOFF RIDDZ k1 ROD REGIZTER 1 FEGIZTER O
LOOF - ADDI-REO 3 IMCREMENT RO
COMIsRO 1 COFPFARE RO WITH 0
ECFR.0 LOOF IF COMFARE FATLED. BRAMCH TO LOOF
BCTR.0 TOFFR IF COMPARE ZUCCEEDEL. BRAMCH TO TOF
EHD DEMD
a. Sample 2650 Microprocessor Program
» RHEX DEMOEJ
*FH:=+ ED.
» DEERUG
ZET RO 04
= DETAT
FP=000n =00 0l N 0 00 D0 06 0o G0
b. Loading Object Code, Activating Debugger, and Initializing
Slave Registers
TR & =
o0 2000
LOC IMZT MHEMDM =R W OFRD IADD IW EADD RO FL FZ2 RZ R4
Zoon =2y ADZ « 011 01 01 00 Ao on
0
001 8401 ADT & 00 01 02 01 00 00 on
=
002 FE400 CMI .0 0 G 0y o0 onan
3
I00S SRTA EFR 2010 - 2001 =3001 02 01 00 00 00

Figure 5—1. Displays During Sample Debugging Session

c. Single Step Trace All Mode

(]
()

s

o

[y

Fe FLPL
ooonn gn

fif)

[B

D]

AR

The Debugger

To load the hex code from the file DEMO, enter the UDOS command RHEX DEMO
(line 1 of the Figure 5—1,b). This command loads the object code in the disk file
DEMO into slave memory. (If the file DEMO contained a binary load module pro-
duced by the use of the MODULE command, the command LOAD DEMO would be
used instead of RHEX.) To load the DEBUG package, enter the UDOS command
DEBUG (line 4 of Figure 5—1,b). Both the object code from the sample program in
Figure 5—1,a and the DEBUG trace package now reside in slave memory. The DE-
BUG package is located in master memory overlay area 1.

The sample program uses the slave CPU registers O and 1. If we wish to give these
registers specified values, the SET command must be utilized. Suppose we wish to
enter the value O in register O and 1 in register 1. To do this, enter SET RO 0 1.
(line 6 of Figure 5—1,b). SET specifies the set register command, and RO sepcifies
the first register to store into.

If we desire to view the Debug status before beginning execution, the DSTAT com-
mand must be employed. Entering DSTAT (line 8 of Figure 5—1,b) causes the in-
formation on line 9 of Figure 5—1,b to be displayed. This is a one line display which
provides the location of the last instruction executed in the slave CPU, the active
breakpoints, and the contents of the registers in the slave CPU. For the 2650 slave
this display is organized as follows: the area in Figure 5—1,b indicated by@dis—
plays the program counter at the time the last slave CPU instruction was executed.
P=0000 is the value of the program counter before any slave instruction is executed!
The area indicated by displays the breakpoints currently active in_the Debugger.
Since we have not set any breakpoints, no information is displayed;(3 Jcontains the
value of register 0;@contains the values of registers 1, 2, and 3 of bank O;@contains
the values of registers 1, 2 and 3 of bank 1;(6)contains the upper and lower program
status word values.

Suppose we wish to trace the execution of this program. Turn the TRACE function
on, as shown on line 1 of Figure 5—1,c. TR A Sis the TRACE (TR) command which
requests that all (A) instructions be traced and that the single step (S} mode be em-
ployed (see TRACE command description, paragraph 5.5). The ALL mode results
in the TRACE display being written to the console for every instruction executed
by the slave CPU, and the single step mode returns control to the operator after each
slave CPU instruction that is executed.

To start the execution of the program, the command, GO 3000 is entered (line 3 of
Figure 5—1,c). Because the object code was initially loaded with the RHEX com-
mand, a starting address (3000) must be given with the GO command. (if the
LOAD command is used to initially load the object code, the start address is auto-
matically entered into the system.)

The Debugger now assumes control, proceeds with one step of program execution,
and produces the TRACE display (lines 4 and 5 of Figure 5—1,c). The headings in
line 4 have the following meanings (all values are in hex):

LOC is the location of the last instruction executed.

INST is the hex value of the last instruction executed.

MNEMON

is the 2650 instruction mnemonic, including the register or condi-
tion code value, if required.

XR is the index register, if any, for the instruction.

U if U is+, auto increment indexing is performed for an absolute
addressing instruction. Or, a forward address is calculated for a
relative addressing instruction.
if U is -, auto decrement indexing is performed for an absolute
addressing instruction. Or, a backward address is calculated for a
relative addressing instruction

OPAD is the operand value or operand address.

IADD is the indirect address value.

Vv is the index register value.

EADD is the calculated effective address for the last instruction.

RO is the value of RO (register O)

R1,R2,R3 are the values of R1, R2, and R3 in Bank O.

R4,R5,R6 are the values of R1, R2,and R3 in Bank 1.

PU is the value of the Program Status Word, Upper.

PL is the value of the Program Status Word, Lower

Line 5 informs us that location 3000 was the last location executed; 81 was the hex
value of that location; ADZ,01 was the instruction mnemonic (note that ADZ is a
shortened form of the full 2650 mnemonic ADDZ, and the next nine entries indicate
register contents.

We can single step through the next instruction by entering the UDOS command G
(the GO command, line 7 of Figure 5—1,c). As can be seen in lines 7 — 8, as well as
lines 10 — 11 and 13 — 14 of Figure 5--1,c, the Debugger performs a single step and
then disptays the TRACE information.

Suppose we do not wish to single step, but still wish to trace all the instructions
executed. This can be accomplished by altering the TRACE mode: TR A (line 1 of
Figure 5—2,a) requests that all instructions be traced, but does not request the single
step mode. When the next GO command is executed (line 3 of Figure b—2,a), the
Debugger takes control of the slave CPU after every slave CPU instruction is executed,
and after it displays the TRACE information, control is not returned to the user, but
to the slave CPU.

This results in the lines from 4 to 14 being displayed, one line at a time, as each
instruction is executed in the slave CPU. If we are interested in whether the logic of
the instruction at 3007 is correct {3007 will not be executed until register O over-
flows and reverts to 0), we would have to wait for large number of TRACE lines to be
displayed. To cance! the current TRACE, the ESCAPE key is pressed, which terminates
the TRACE (the effect can be noted on line 14 of Figure 5—2,a) and displays the
double prompt >> (line 15 of Figure 5—2,a) to indicate readiness to accept
commands.

The Debugger

Suppose we desire to not view any TRACE displays until the instruction at 3007 is
executed. This can be accomplished by the actions shown in Figure 5—2,b. First we
set a breakpoint by the command in line 1 of Figure 5—2,b. BKPT 3007 requests
that a breakpoint be set at location 3007 of slave memory. Breakpoints are used to
control execution by commanding the Debugger to take control whenever the
address that is a breakpoint is referenced. Since we don’t wish to see all the executed
instructions traced, the command of line 3 of Figure 5—2,b turns the TRACE mode
off.

Execution is resumed using the GO command (line 5 of Figure 5—2,b). The Debugger
monitors the slave program execution, and when the instruction at 3007 is executed,
the display on lines 6 and 7 of Figure 5—2,b is produced. Line 6 is the standard
TRACE display of the last instruction executed. Line 7 indicates that the program
execution stopped because a breakpoint was encountered. In line 6, note that the
EADD, which is the address where control will be transferred, is 3000. The prompt
character > at line 9 indicates that control has been returned to the operator.

Suppose we wish to monitor the execution of all the branch instructions. This can be
accomplished using the commands in Figure 5—2,c. First, let’s set Register 1 to FA
(line 1 of Figure 5—2,c). Then, using the DSTAT command, we can view the current
DEBUG status (lines 3 and 4 of Figure 5—2,c). Note that the presence of the break-
point at 3007 is indicated in this display. The WR following BP=3007, refers to the
fact that either a read or a write to location 3007 will cause a break. Line 6 of Figure
5-2.c, TRA J, is the TRACE (TRA) command which requests that only branch (J)
instructions be displayed.

When the slave program is continued with the GO command (line 8 of Figure 5—2,c),
the Debugger displays the TRACE information for all branch instructions executed
whether the branch was performed or not (lines 9 — 15 of Figure 5—2,c). The De-
bugger informs us that a break has taken place in line 16 of Figure b—2c.

If we desire to clear a breakpoint, the command in line 4 of Figure b—2,c must be
executed. CLBP 3007 requests that the breakpoint at location 3007 be cleared. By
viewing the DSTAT displays in lines 2 and 7 of Figure 5—2,c, the effect of the CLBP
operation is clear.

When we are finished with a debug session, the Debugger must be exited using the
UDOS command, ABORT (see line 8, Figure 5—2,c).

55 DEBUG COMMANDS.

This section lists commands that are used with the Debugger. Besides the DEBUG
command itself, there are eight commands that are used both with the Debugger
and under UDOS. These commands are:

GO EXAM
LOAD PATCH
XEQ

SLAVE

CONOADLWN=

OCOAONOOO BWN=

CONOOA_AWN=

ONOO HWN=

- TR A
S0nn
21 RADZ ~ 01 U301 00 00 00D 00 ou o0 40
=q0] ROI »00 01 0 G100 00 a0 o0 00 00 40
E400 CMI s 00 an o4 01 D0 00 o0 00 00 0D 40
ETH EFF s 00 - =0 =001 04 o1 Q0 o0 00 00 00 00 40
sS40 RODI » 040 01 05 01 00 o0 00 a0 00 00 40
E400 CMI s 00 o as 01 a0 o0 00 o0 o0 00 40
SETA BFR s 00 - Anm =001 05 01 00 00 o0 00 00 00 40
2401 ADI 00 a1 0o 01 00 00 00 00 o0 0n 490
Ed400 CMI 00 o0 e 01 00 00 a0 00 an o0 40
S2TA BFR 200 - o0t =3001 06 01 00 00 00 00 00 00 40
2401 HDT s~ 00
a. Trace All Mode
BEPT 2007
TRACE OFF
DO 1
2007 18T ETR 00 - EN0N =3IO00 00 01 00 00 On o0 oo o0 21
007 BREAK
b. Using Breakpoints
ZET K1 FA
= DETAT
P=2007 EF=200F WF =00 OFHA o o0 oo oD an o0 21
TRA
=0 2000
3005 F7A EFR s 00 - t FR 00 08 00 00 80 00
I005 92TH EFF s 00 - COFE O o0 o o0 a0 0
: QASTH BFRE 00 - FR OO0 00 00 00 o0 Gn 20
QETH BFE ~ 010 - FA OO0 o0 a0 00 o0 o0 =0
ABTH EFF 00 - FR OO 00 00 00 00 a0 =0
Q227 BFE s 00 - FAR G0 00 00 o0 o0 o0 21
I007 1SF7 0 BTR » 00 - FROOO 00 o0 o0 on on 21
007 BREAK
c. Clearing Breakpoints and Terminating a Debug Session
= DETAT
F=2007 - BRP=2007 W F=0 FA OO0 an o0 0ore oon on 21

CLEBEF S00T7

=00 FR OO0 00 00 00 00 00 El\

d. Clearing Breakpoints and Terminating a Debug Session

Figure 5—2. Typical Displays During Various Debugging Modes

DEBug
Go

Load

GO is used to start user programs. LOAD is used to read binary load files into the slave
memory. XEQ is a combination of the LOAD and GO programs. DUMP displays
contents of slave memory on a specified device. EXAM allows the user to examine or
alter slave memory. PATCH allows the user to alter slave memory. STATUS displays
the status of the slave CPU and the job being executed by it. SLAVE sets the emula-
tion mode.

There are six commands that are unique to the Debugger and can only be used
after the DEBUG command has been executed. These commands are:

BKPT
CLBP
RESET
SET
DSTAT
TRACE

BKPT and CLBP are used to set and clear breakpoints. RESET generates a reset pulse
to the slave processor. SET allows the user to set slave CPU registers. DSTAT provides
information on the Debug status. TRACE allows the user to trace slave CPU execution.

Note that as with all UNIVERSAL ONE system commands, the RETURN key@,
is used to start execution of any command.

DEBUG (ADDRESS) (DEVICE)

This command causes the Debug Program to be loaded. ADDRESS is the address in
slave memory where the trace package is loaded. The default value of ADDRESS is
the top of memory. DEVICE is the output device or disk file where the Debug output
displays will be written. The default value of DEVICE is CONO, the consoie output
device.

GO (ADDRESS)

This command causes control to be passed to a location in slave memory.

If ADDRESS is present, control is passed directly to that location in the slave memory.
If ADDRESS is hot present, either control is passed to the start address of a previously
loaded module or execution continues from the last point at which it was stopped.

DOS Error Responses:
37 — Invalid go address

LOAD FILENAME

This command loads the binary load module FILENAME into slave memory. This
load module must have previously been created by the MODULE command.

FILENAME will be loaded into the slave memory starting at the location specified
at the time the load module was created. Control is not passed to the load module as
in the XEQ command.

Xeq
Dump

DOS Error Responses:

6 — Device read error
14 — Invalid input device
48 — Load file not found.
49 — Load file assign failure
50 — File not a load module
51 — Invalid load request

XEQ FILENAME

This command causes the binary load module FILENAME, previously created using
the MODULE command, to be loaded into slave memory and executed. This com-
mand is the equivalent of LOAD FILENAME followed by the GO command.

DOS Error Responses:

6 — Device read error
14 — Invalid input device
48 — Load file not found
49 — Load file assign failure
50 — File not a load module
51 — Invalid load request

DUMP A1 (A2) (DEVICE)

This command causes the contents of slave memory to be displayed on DEVICE, be-
gining with address A1l. In the display two hexadecimal characters represent the
contents of each byte displayed. If A2 is not specified, then only 16 bytes of data are
displayed. If DEVICE is not specified, the data will be displayed on the console.

Addresses A1 and A2 (if specified) are always automatically adjusted in the following
manner. The low order hexadecimal character is replaced with 0. For example,
3F3E is altered to 3F30. Then, A2 is replaced by A2 + hexadecimal 10. This has the
effect of lowering A1l to the next lowest multiple of 10,4 and raising A2 to the
next highest multiple of 10;4. The contents of memory from A1 to A2 are then
displayed. For example, if DUMP 3F3E-4001 was entered, the DUMP program
would display the data from 3F30 to 4010. Sixteen bytes are displayed on each line,
preceded by the address of the first byte on that line.

DMP Error Responses:

17 — Output device assign failure
31 — Parameter required

35 — Invalid starting address (A1)
36 — Invalid ending address {(A2)

5—10

Exam

EXAM ADDRESS

This command causes a single byte of the slave memory at location ADDRESS to be
displayed on the console. The user then has several options: a) display the next
sequential byte at ADDRESS; b) display address of the current location and its
contents; c) replace the current memory byte with data entered on the control
console and display the next sequential memory byte; d) terminate the EXAM
command.

After theinitial memory byte is displayed, the user can press any of these keys to ini-
tiate the corresponding function:

SPACE Display the next sequential byte.
LINEFEED or DELETE Go to the next line and then display the address
(RUBOUT) of the current byte and the byte.

HEX DATA PAIR Replace the current memory location with a hex-
data pair. Then display the next sequential
byte.

RETURN Terminate the EXAM command.

The display of memory bytes will automatically go to the next line and display the
location and its data byte whenever the location to be displayed is a multiple of 1016.

The ESCAPE Key has a different interpretation when the EXAM command is being
used. Refer to paragraph 4.5.2 for details.

For example, if locations 3000-3003 contain AF, CB, DF, F8 respectively, the
EXAM command can be used as foltows (user interaction underlined):

>EXAM 3000
'3000=AF CB DF Fs@
>

When the space bar is depressed, the next sequential byte is displayed. When return
is entered, the command is terminated. To increment each location, this sequence
can be used:

>EXAM 3000
3000=AF-01 CB-02 DF-03 F8-04 . . .

The - is provided by the EXAM command when the user enters a hex character.

EXM Error Responses:

31 — Parameter required
35 — Invalid start address
39 — Invalid hex character

5-11

Patch
STatus

PATCH ADDRESS HEX-STRING

This command allows the user to alter slave memory. ADDRESS is a hexadecimal
address constant. HEX-STRING is a string of hexadecimal digits from 1 to 58
digits in length, entered by the user on the control console.

The contents of slave memory starting at ADDRESS is replaced with the value
HEX-STRING. This replacement is performed on a byte-to-byte basis. For example,
PATCH 3000 3F001E would replace the data at location 3000 in slave memory with
3F, the data at location 3001 with 00, and the data at location 3002 with 1E.

PAT Error Responses:

31 — Parameter required

34 — Invalid address

39 — Invalid hex character
STATUS

This command gives the status of the program being executed by the slave CPU.

The name of the program running under the slave CPU, the state of the program, and
the channel assignments of the program are output to the system console. The
status of any command file currently in progress is displayed. The table below lists
the STATUS information, displayed and possible values of the displayed parameters:

SLAVE (CHIP NAME) IS ACTIVE
IDLE

(SLAVE JOB NAME) IS LOADED
EXECUTING
IN 1/0 WAIT
SUSPENDED
UNDER DEBUG CONTROL

CHAN (N) ASSIGNED TO (DEVICE) (OPEN)
CHAN (N) ASSIGNED TO (DEVICE) (READ)
CHAN (N) ASSIGNED TO (DEVICE) WRITE)
CHAN (N) ASSIGNED TO (DEVICE) (EOF)

COMMAND FILE (NAME) IS IN PROGRESS
SUSPENDED

Slave
BKpt

SLAVE (MODE) (DEV ADDR)

This command selects and activates the slave CPU and sets its mode of operation.
MODE designates the mode (also called emulation mode) in which the slave CPU wiill
operate. The default value of MODE is 0. DEV ADDR gives the address of the slave
CPU board. The default value of DEV ADDR is determined by diskette being used.

The possible values for MODE are:

0 — System Mode. Uses slave memory and system /0.

1 — Partial emulation mode. Uses slave memory, user prototype /O and
user clock.

2 — Full emulation mode. Uses user prototype memory, |/O, and clock.

Note that in mode 2 the TRACE JUMP option is not available, (see TRACE command
description).

The possible values for DEV ADDR are:

0 — 2650
1 — 8080
2 — 6800

SLV Error Responses:

31 — Parameter required
32 — Too many parameters
b4 — Invalid mode

56 — Invalid device address

BKPT ADDRESS (WRITE) (READ)

This command causes a program breakpoint to be set for the slave. If WRITE is
specified the break occurs. only when there is an attempt to write to the specified
address. If READ is specified, the break occurs only when there is an attempt to
read the specified address. if neither WRITE nor READ are specified the break
occurs whenever there is an attempt to write or read to the specified address.

When the breakpoint address is accessed during program execution, a trace line is
displayed on the debug output device, and a breakpoint message is displayed at the
console.

Up to two breakpoints may be active in the system.

Error Responses:

TOO MANY BREAKPOINTS — Two breakpoints are already active.

DEB Error Responses:

30 - Invalid parameter
34 — Invalid address

ClBp RESet
SEt DStat

CLBP (ADDRESS)

This cbmmand clears a breakpoint. If ADDRESS is specified, the breakpoint at the
specified address is cleared. If ADDRESS is not specified, all breakpoints are cleared.

Error Responses:

BREAKPOINT NOT ACTIVE — Thespecified address was not an active break
point address.

DEB Error Responses:
34 — Invalid address

RESET

This command causes a RESET pulse to be applied to the slave processor.

SET Rm A1 (.. .An)

This command causes the specified slave CPU registers to be preloaded with the
hexadecimal constants A1 thru An. The limits for A are 0 to FF. SET Rm A. ..
causes the slave CPU general registers beginning with Rm to be set to the values
specified. Rm is set to A1, Rm+1 is set to A2, and so forth. Only the registers for
which values are specified are changed.

The format of this command will vary according to the requirements of the micro-
processor.

DEB Error Responses:

30 — Invalid parameter
43 — Invalid data parameter
DSTAT

This command causes the Debug status to be displayed on the Debug output device.
The slave CPU's last instruction address, the active breakpoints, and the slave CPU's
register contentsare displayed. The format of the DSTAT display will vary somewhat
depending on the slave microprocessor.

TRace OFf
TRace All (Step)
TRace Jmp (Step)

TRACE OFF

or

TRACE ALL (STEP) (A1 A2)
or

TRACE JMP (STEP) (A1 A2)

This command determines the TRACE mode for the Debugger. if TRACE OFF is
specified, the TRACE mode is disabled, which means that no instruction traces will
be displayed on the Debug display device. If TRACE ALL is specified, all the instruc-
tions executed by the slave CPU will have their trace information displayed on the
Debug display device. If TRACE JMP is specified, all branch instructions will have
their trace information displayed on the Debug display device.

1f STEP is specified with the TRACE ALL or TRACE JMP command, control will be
returned to the console after every instruction trace is displayed. |f the STEP option

is used, the GO command must be used to continue the user program after every
STEP trace.

If A1 and A2 are specified, the TRACE function will be performed as specified, but
only the instructions executed between A1 and A2 will have their trace information
displayed. A1 and A2 are hexadecimal address constants in the range O-FFFF. A2
must be equal to or larger than Al. The default value for A1 is 0. The default value
for A2 is FFFF.

The TRACE JUMP form is not active in slave MODE 2. In slave MODE 2, the only
“information displayed in the TRACE display is LOC and the register and program
status word values.

DEB Error responses:

31 — Parameter required

35 — Invalid start address

36 — Invalid end address

44 —'Invalid trace mode parameter

5—-16/5—16

Chapter

the Editor

6.1 INTRODUCTION.

This chapter describes the Editor program. The Editor is discussed by examining the
UDOS command EDIT, presenting a sample edit, detailing all the Editor commands,
and listing all the messages which the Editor may display to the operator.

6.2 EDITOR OVERVIEW.

The major function of the UNIVERSAL ONE Editor is to create new source programs
or to change existing source programs. The Editor is also used for the creation and
modification of command files. The Editor performs these functions by processing
command lines entered by the user. Each command line specifies one action, or a
series of actions, for the Editor to undertake, e.g., entering new source lines or
searching the file for a specified string.

The Editor resides in slave memory and occupies approximately seven thousand
bytes of the memory. The remainder of the slave memory is available for the text
that is being worked on. This is approximately 150 60-character lines in a 16K
system.

Throughout this discussion, there are two terms and a keyboard input convention
which are used. These are:

Buffer: The buffer is the slave memory area that contains the text that
the Editor operates on. Data is written into and read from the
buffer by the Editor. The buffer can be seen as having a top (or
first) line and a bottom (or last) line. The Editor can operate on
any line in the buffer. In this chapter, the terms workspace and
buffer are used interchangeably.

Line Pointer: Data in the buffer is edited by examining, changing, inserting and
replacing lines. The Editor keeps track of which line the operator
is working on-by keeping a pointer at the current line.

@ : This symbol will indicate the RETURN key.

If you are familiar with editors, the section on the EDIT command, paragraph 6.3 the
detailed description of the commands, paragraph 6.5, and the Editor messages,
paragraph 6.6, will be most helpful.

EDIT

If you are not familiar with editors, paragraph 6.4, which describes a typical edit
session, will be helpful in illustrating the use of the Editor commands.

6.3 UDOS COMMAND EDIT.

You may start the Editor by utilizing the UDOS command EDIT. This command has
three forms:

1) EDIT INFILENAME OUTFILENAME
2) EDIT FILENAME
3) EDIT

If form 1 is used, INFILENAME designates the PRIMARY INPUT file and OUT-
FILENAME designates the PRIMARY QUTPUT file. The PRIMARY INPUT file will
be the default file in any Editor command that asks for data from the disk. The
PRIMARY QUTPUT file will be the default file in any Editor command that writes
data to the disk. If INFILEMNAME is the same as OUTFILENAME, the file will be
edited to itself. The Editor accomplishes this by automatically creating a temporary
work file to be used as OUTFILENAME. When you finish your edit session, INFILE-
NAME is deleted, and then the temporary. work file is renamed INFILENAME. For
example, if:

- ep1T pATAL DATAL (1)

was performed, DATA1 would be the input file, and the Editor would create the
temporary *ATA1 as the output file. After you complete your edit session, DATA1
would be deleted, then *ATA1 would be renamed DATA1. In the event of disk read
orwrite errors during the edit session, both the DATAT and *ATA1 files will remain
available to you.

If form 2 is used, the interpretation is based on whether FILENAME is a new file or
an existing file. If FILENAME is an existing file, FILENAME is edited to itself as in
the previous example of EDIT DATA1 DATA1. If FILENAME is a new file, then
FILENAME designates the PRIMARY OQUTPUT file, and there is no PRIMARY IN-
PUT file. Since there is no PRIMARY INPUT file, you may not input from the default
file, so an ALTERNATE INPUT file must be specified.

If form 3 is used, there is no PRIMARY INPUT file and no PRIMARY QUTPUT file.
If you desire to input or output data, ALTERNATE INPUT or ALTERNATE OUT-
PUT files must be specified in the command.

In all cases, the Editor will respond with an identifying message and then present its
prompt character, * , to indicate it is ready for commands.

You may not start the Editor while a command fible is active under UDQOS. The EDIT
request will be rejected if an attempt is made to do so.

The Editor

NOTE

While the Editor is executing, the special UDOS keys,
ESCAPE and space bar, retain their special functions.
Consult paragraphs 4.5.2 and 4.5.3 for an explanation
of their use.

6.4 EDIT EXAMPLE.

Let us go through an example of editing. Suppose you have conceived and coded a
program for a 2650 slave, as shown in Figure 6—1,a, and wish to create a new file
DADDSB, which will contain the source program data. Start the Editor program by

typing:
» EDIT DADDEB~-0 @ (form 2, see paragraph 6.3)

This will load Editor into slave memory and begin execution. The Editor will display:

++ EDIT YER 1.1 e
++ NEUW FILE ee
+*

The * isthe Text Editor prompt character, which indicates that the Editor is ready
to accept commands. Figures 62 through 6—7 are hard copy equivalents of the
Edit sessions that will be described.

+« DOUELE PRECIZION RDD A IM RO.F1 E IN FE2«R3
«0M FRETUEMs H+E IS RZEWRZ
L
LRI TTEFsF1 DRE1
ADTF F3 IAR1
FPZL Lz
ALLDZE Fe
ETRE Rz
CEEL Wi
FETCs LIM
DIRR1 RE= 1

Figure 6—1. A Sample Source Program

The first command entered, line 1 of Figure 62, is the TAB command (the Set TAB
Character Command). The command TAB ., sets '.’ as the TAB character. This
gives the * .’ aspecial meaning, which is that when is entered, the Editor is re-
quested to fill the buffer with spaces until the next TAB stop. This feature will be dis-
cussed later.

] ’

6.4.1 Input and Edit Modes. The Editor has two basic modes. These are an
EDIT mode, where you may perform any of the editing functions, and an INPUT
mode, where you may only enter source text.

If you desire to enter more than one or two lines of data, it is desirable to enter the
input mode. Since you desire to enter all of the source program at one time, the
input mode should be entered. To enter the input mode, press | and then RETURN
(line 2 of Figure 6—2). The Editor acknowledges this command by displaying IN-
PUT: to remind you of its mode (line 3 of Figure 6—2). You may then enter the
source program (lines 4—14 of Figure 6—2). As can be seen, errors have occurred
(lines 9 and 13 of Figure 6—2). To change from the input mode back to the edit
mode, enter a null line. by pressing RETURN twice in succession {line 15 of Figure
6—-2).

6.4.2 Setting Tabs. The effect of entering the TAB character can be seen by exam-
ining, for example, lines 9 and 23 in the display of the buffer (see Figure 6—2).
Entering ‘.’ atthestart of line9resulted in spaces being entered up to the first TAB
stop, which is in column 8. Entering the second .’ as the sixth character in line 9
resulted in spaces being entered up to the next TAB stop, which is located in column
16. The user may change either the TAB character or TAB stops by using the TAB
and TAB S commands. The default TAB character is CTRL-I and the default TAB
stops are 8, 16, 24, 32, 40, 48, 56, and 64.

6.4.3 Displaying Buffer and Making Corrections. To view the text that has been
entered, it is necessary to move the line pointer to the top line of the buffer. This is
accomplished by entering B, the Move Pointer to Beginning of Buffer command {line
16 of Figure 6—2). On line 17 of Figure 6—2, the command to display 55 lines of the
buffer is entered (55 is an arbitrarily large number which will allow the entire buffer
to be displayed). The Editor displays the buffer (lines 18 — 28 of Figure 6—2) and
then displays ** EOF** to indicate it has reached the bottom of the buffer. Note
that the tabs entered in the input mode are present as spaces in the buffer.

Upon examination of Figure 6—2, it is clear that two changes are necessary to the
text currently residing in the buffer. Line 23 should have WD altered to WC and
line 27 should have RETDMYNN altered to RETC,UN.

To find these lines, type F (the FIND command), a space, then WD , where the
data between the $s is the data you wish to find (line 1 of Figure 6—3). In this case,
the $ isthe delimiting character, which means that the $s tell the Editor where the
data starts and where the data ends. The Editor finds the first line in the buffer that
contains WD, moves the line pointer to the beginning of the line, and displays the line
(line 2 of Figure 6—3). To alter the WD to WC, enter S (the SUBSTITUTE command),
aspace, then SWDSWC$ (line 3 of Figure 6—3). The first $ says thisis the start of the
string to be deleted. WD is the string to be deleted. The second $ is the end of the string
to be deleted, and the beginning of the string to substitute for the deleted string. The
final $ indicates the end of the string to substitute. (Any character that will not appear
in the string itself can be used as the delimiter, in place of $.)

The Editor

The Editor performs the substitution and displays the line as altered (line 4 of
Figure 6—3). To change RETDMYNN to RETC,UN, find the line by entering F
(FIND), space, then RET to locate this string (line 5 of Figure 6—3). The Editor
prints the line on which it locates RET (line 6 of Figure 6—3). In this case, you want
to replace the line with the correct information. This is done by pressing R (the
REPLACE command), space, and then entering the information desired, namely
“.” RETC,UN (line 7 of Figure 6—-3). This command replaces the current line with
theline following the R , space. The Editor displays the replacement line after it has
performed the replace function (line 8 of Figure 6—3).

To insure that the changes were performed correctly, go to the top of the buffer and
display its contents (see Figure 6—4).

1 +THE .

2 +»1

3 INFUT:

4 + DOURBLE PRECIZION ADD. A IH ROsR1. B IM R2yR3
5 +0N RETURNs RA+E IS R2sR3

6 *

7 DADD. ETER:R1.LAR1

8 LAIDR.RZ.DAR1

9 LPREL. WD

10 LADDZ.RE

1 LETRZLRE

12 JCPEL WG

13 . RFETDMYHH

14 DAR1.REZ.1

15

16 +F

17 »TY 5%

18 + DOUELE PRECIZION RDD A IM FO:R1Q B INM RE2sR2
19 +[H FETURMs A+E IZ RE2sF3

20 *

21 RIDD ZTEF«FE1 TRR1

22 ALTF =5 DRr1
23 FFEL W

24 ARLDZ Rz

25 ETRZ R

26 CPIL WC

27 FETDMY MM

28 [AF1 REZ 1

29 % EOF #+

Figure 6—2. Entering Text and Displaying the Buffer

Since you are satisfied that the buffer contains the correct information, you want to
store the information on the disk. This is accomplished using the FILE command
(line 15 of Figure 6—4), which writes the contents of the buffer to the PRIMARY
OUTPUT file and then transfers the rest of the PRIMARY INPUT file, if one exists,
to the PRIMARY OUTPUT file. Following the final transfer, the Editor is exited and
UDOS displays its prompt character. In this case, the buffer will be copied to disk file
DADDSB/0. There is n6 input file, so DADDSB/0 will be closed, the Editor will be
exited and UDOS will display its prompt character (line 17 of Figure 6—4).

+F FLDE

FPEL i
+% RUDENCE

FFPZL LI
*F LFRETE

FETTMY MM
+F RETCUH

RETCs LIM

WONOOCOTDWN=

*

Figure 6—3. Use of FIND, SUBSTITUTE and REPLACE Commands

1 E

2 +TY 55 : (
3 + DOUVELE PRECIZION ADD P IM ROsR1 E IH R2sR2
4 +0H RETUEM:s A+E IZ RZ:R3

5 +

6 DRDD ETREE«F1 TIHE1

7 ADDR E3 TiAF1

8 FPEL Wz

9 ADDE FZ

10 ZTRE R

11 CREL W

12 FETC s LIM

13 TAR1 FE= 1

14 ++ EOF ++

15 +FILE

16

17

Figure 6—4. Displaying the Buffer and Filing

The Editor

644 Editing In New Data. Suppose you wished to expand DADDSB/O0 to include
not only a double precision add, but a double precision subtract, as in Figure 6—b.

To edit the additional information into the file DADDSB/0, do the following tasks.
Start the Editor by entering:
» EDIT DADDSE-/0 (T)

While this command is identical to the command entered earlier, it now has a different
interpretation. In the first example, DADDSB/0 was a new file.

When a new filename is the sole argument to an EDIT command, the file is treated
as the PRIMARY OUTPUT file and there is no PRIMARY INPUT file. This is as it
should be, since if you are in the process of creating a new file which will contain
unique information, there is no need for a PRIMARY INPUT file. In this case,
DADDSB/0 is an existing file which contains the double precision addition routine, so
this EDIT command requests that DADDSB/O be edited to itself, as explained in
paragraph 6—3.

+ DOUELE FPRECIZION ALID A IN RO«F1 E IM RSsF3
+0N RETURM: A+E IZ RZ«R2
*
DADD ZTERFE1 DRR1
RLDR] IAR1
PP=L Wz
ADDZ R
ETRZ 2
CREL Wi
RETCa LI
DARL REZ 1
++ EOF ++
+TARE .
+1
IMFUT:

« DOUBLE PRECIZION ZUBTRACT. A IM FESRI., B IN FO..sF1
+ [OM RETURMs A-B IZ IM R2sF3
+*

DEUE. ZTERRO. DERO
LETEREsR1,DER1

LEUERRZLDERL

PRI WG

LEUBRsRZ.DERO

CFEL. W

LRETC LM

DERO.REZ. 1

DERL.REZ. 1

LEMD,.TIRDD

Figure 6—-5. Sample Double Precision Add and Subtract Programs

When the Editor displays its prompt character, * , you can proceed. Since the new
text is to be appended to the existing text in DADDSB, you must read the existing
file into the buffer. This is accomplished by entering G (the GET command), space,
and then 20, an arbitrarily large number that will result in DADDSB/0, which we
know to be approximately 10 lines long, being read into the buffer. (See line 1 of
Figure 6—6). The Editor reads the PRIMARY INPUT file, which is the default file-
name in the GET command, until it inputs the specified number of lines, or until it
reaches- the end of file. In this case, the end of file is reached first, so the message
** EOF ** is displayed (line 2 of Figure 6—6). '

Where was the data inserted in the buffer? The answer is that the data was inserted
above the line pointer as in the INPUT mode example. To view the buffer, move the
pointer to the beginning of the buffer (line 3 of Figure 6—6). Display the buffer by
entering TY 55 (line 4 of Figure 6—6). This command displays the buffer and prints
** EQF ** to indicate the bottom of the buffer (lines 5 — 16 of Figure 6—6). (Note
that ** EOF ** has two uses, one to indicate the end of the buffer and one to in-
dicate the end of the file.)

To enter the double precision subtract routine after the add routine, you must go to
the bottom of the buffer to perform the insertion. Do this by entering END. This
command moves the line pointer to a location below the last line of text (lines 17 —
18 of Figure 6—6). The TAB character isspecifiedasa ‘.’ in line 19. Enter the input
mode by entering | (line 20 of Figure 6—6). Enter the source data (lines 22 — 35 of
Figure 6—6). The effect of the TAB character can be seen in lines 52 to 61 of Figure
6—6, when the entire buffer is displayed by the commands on lines 36 and 37.

Suppose you desired to make the source listing a little more readable. For example,
suppose you want to add an “ * ’ line between lines 48 and 49 and between lines 58
and 59 of Figure 6—6. To do these tasks, you must first position the line pointer to
point to the line that beginswith < * > DOUBLE PRECISION SUBTRACT. This canbe
accomplished by moving the line pointer down the buffer. Enter D (the Move Line
Pointer Down the Buffer Command}, space, 10 (line 1 of the Figure 6—7). This moves
the line pointer 10 lines down. The Editor displays the line that the line pointer now
points to in line 2 of Figure 6—7. The ¢ *’ line is desired between the DAR1 RES 1
lines and the “** DOUBLE PRECISION SUBTRACT line. The INSERT command
inserts the line specified above the current line. Therefore, go down the buffer one
more line. This is accomplished by entering D, , since the default value for the
number of lines to move is 1 (line 3 of Figure 6—7).

Toenterthe * line,enter | (thelisan INSERT line command unless it is immediately
followed by a RETURN in which case the user enters the INPUT mode), space, * ,

(line 5 of Figure 6—7). Toenter the second “* * line between the two temporary
variables, DSR0O and DSR1, and the subtract routine, go to the bottom of the buffer.
This isaccomplished by entering END (line 6 of Figure 6—7). The Editor indicates the
line pointer’s position at the bottom of the buffer by displaying ** EOF ** (line 7
of Figure 6—7). Move the pointer up the buffer to the line where you wish to enter
the * by entering U (the Move Line Pointer UP the buffer command), space, ,
(line 8 of Figure 6—7). This command moves the line pointer up three lines and -
displays the line (line 9 of Figure 6—7). To enter the * *’ line, enter | (INSERT),
space, * @(Iine 10 of Figure 6—7).

6—-8

SRET 20
o+ E[F »e
+E

TV 55

+ DOUELE PRECIZ
A+E IS FZsREZ

+0M RETURN,
*»
DADD STRRR1
ALIDR
PRIL
ADDZ
ITRZ
CREL
RETC LN

DAF1L
++ EOF
+EMD
++ C0OF

REZ
.

* 4

The Editor

104 ADD A IN ROsF1 B IH R2sRE

DRF1
EZ
W
R
55

I

TAR1

1

«THE .
+]
IMFILITS .
« DOURLE PRECIZION ZUBTRACT. A IM REFZ. B IN RU‘EI
+ O RETURMs A-B IMHIZ IM RZF2

*»

DEUE. ZTREsR 0. DERO

CETRESRL.DER
CEUBRSRIZ,DER
I 0% I T [
CEUERSREZLLERD
JOFPET LT
RETC LM
LERO.FEZ.L
DZR1L.RE=. 1
LEHWD. DADD

+E
T 25

« DOUEBLE PRECIZION ADD H
#rf RETLIFEM

*
TDATT

IAR1

+DOUELE PRECIZION SUEBTRACT H
EOIE

+ O REETURHM,

-
JikN)

ETRREF1
AR
FFEL
ADDE
ITRZ
CFEL
RETC UM
FE=

ETERLFN

DERD
=Rl

>
*

EDOF

FRIL
ZUBR RS
CRET
FETC M
FEZ

RET

EHD

L2 2

A+E T%

R-

IM RiisF1 B IM RE2R2

FEWRZ

JUSIZS
[
(0In
Ra
[

Wi

THF

1

I PRz B IMN POsF1

I F2aF2

DARDD

Figure 6—6. Adding Data to an Existing File

After displaying the buffer (lines 11 — 39 of Figure 6—7) and insuring that the text
you desire is present, the data may be stored on file DADDSB/0 by the use of the com-
mand FILE (line 40 of Figure 6—7). The contents of the buffer are written to the
PRIMARY OUTPUT file, *ADDSB/0. The remainder of the PRIMARY INPUT file,
DADDSB/0, is copied to the PRIMARY OUTPUT file. Since all the data has been
read from the PRIMARY INPUT file {lines 1—2 of Figure 6—6, **EOF*¥), no
additional data is written to the PRIMARY OUTPUT file. The file DADDSB/O0 is
deleted. *ADDSB/0 is renamed DADDSB/0. The Editor is exited and UDOS
displays its prompt character.

6.5 EDITOR COMMAND DESCRIPTIONS.

This section provides detailed descriptions of all the Editor commands. As a prelude
to these descriptions, the Editor command line, the conventions and terms used in the
descriptions, and certain limitations will be explained.

6.5.1 Editor Command Line.

When the Editor presents its prompt character, * , it is ready to accept commands.
All Editor commands are of the form:

COMMAND PARAMETERLIST

where:

COMMAND identifies the particular action desired

PARAMETERLIST identifies necessary variables for the command. The
parameter list may be null. ~

There must be a space between command and parameters with one exception,
described in paragraph 6.5.2.

A command line consists of one or more commands terminated by RETURN. If you
desire to specify two or more commands in one command line, the commands must
be separated by the command delimiter (:).

For example:
+ F $EADLIMESE®: K 1@

would find the next line in the buffer with the string BADLINE in it and then delete
that line.

A command line may not exceed 128 characters. If the line does exceed 128
characters, ** ABORTED ** will be displayed on the console and the entire
command line will be rejected.

6.5.2 Editor Command Description Conventions.

There are several conventions employed in the description of the Editor commands,
and two features of the Editor that require explanation.

-
COWONOATDLWN

WWwww WWWWNNNNN]
wﬂmmngdommqamgagggaaﬁaagaﬁz

(2]
88

H
N =

o0 10
DAR1
+0

+«] o
+EMD
++ ENOF
+ =
I=FE0
+] o
+E

+«T S5

+» DOUELE PRECIZION ADD A INM ROsR1

REZ

* b

FEZ

1

-+DOUELE PRECIZION SUBTRACT

+0H RETUREMNs H+E IS RZWR3
»
TRLD ETERsF1 DRR1
ADDR F3 JiIS1=n]
PRIL A
AODDZ 2
ZTRZ Fe
= W
FRETCs LN
DAR1 REZ 1
L 4

+D0UELE PRECIZION ZUETRACT

« OH RETURN: A-E IZ IN R2.F32

&

OZUE ZTRRsRO DEZRED
TTRRsR1 DEIR1
ZUBRRZ DIR1
FRIL (N
ZUERsRz DERO
CPREL W
RETC LM

+*

L=E0 RE= i

JUEH RE= i
EHD DARLRD

*+ EOF ++

*FILE

A IM RSW2F3

A IN RE2R2

The Editor

E IM ROsR1

B IM RosF2

E IMH FOsF1

+*»+ E[JF »»
+= 1« EDO.U

Figure 6—7. Inserting Lines Into the Buffer

Conventions used in the command descriptions are:

a)

b)

c)

d)
e)

The symbol N, used with several commands, refers to two possible entries.
These are an absolute number (n) or a line range (p-q). For example,
KILL N refers to two possible types of command line, KILL n or KILL
p-g. Thus, you could KILL the next n lines or KILL lines p through q
(inclusive) in the buffer. N assumes a default of n=1 if N is omitted, except
when it is used with the COPY command and, when an alternate file is
specified with the GET and PUT commands. In these cases, N must be
specified. In addition, N may be directly appended (without a space) to
the command when it is used. For example, KILL N may be written as Knor
Kp-g. The arguments n,p and g must be integers in the range 1 to 32,767,
inclusive.

In the “p-q”* form, the letters B, E, and C may be used, where applicable, to
refer to the Beginning, Ending, and Current lines in the workspace. If used,
these letters may not be directly appended to the command. A space after
the command is required.

The Editor maintainsa line pointer to the line in the buffer that it is currently
considering. The line is known as_the current line. The line pointer will be
designated in this discussion as:

For example, the buffer appears as follows:

HDIOFs RS TEMF

(—=:Trr:R2 TEMPE

ALDIsRZ ERRL

The ‘$’ character is used to represent the delimiting character for a string of
text. The delimiter cannot be a space and cannot appear in the string being
delimited. ‘$° was used in the Edit example, and its use was discussed in
paragraph 6.4.3.

The minimum characters required to initiate the command are underlined.
Parameters that are optional for a command are enclosed in parentheses.

The two features of the Editor are:

1)

2)

6—-12

The Editor will type the line pointed to by the line pointer at the completion
of most commands. This feature keeps the user apprised of his position in
the buffer. For a complete discussion of how to manipulate this feature,
consult the BRIEF command.

The Editor has three special commands delimiters, : (which allows the user
to stack commands on a command line), < and > (which, used as a pair,
execute a command line repetitively, see paragraph 6.5.9). To enter these
characters into the buffer, they must be entered while in the INPUT mode
or when a / prefix is used. (See paragraphs 6.4.1 and 6.5.3 for INPUT, para-
graph 6.5.9 for /).

Insert
Input

6.5.3 Insertion Commands.

The user may insert source lines into the buffer by the use of the commands INSERT
and INPUT.

INSERT string

This command will insert the line string before the current line in the buffer. This
allows the user to enter single lines into the buffer. The position of the line pointer
is not changed.

For example, if the buffer appears as follows:

ADDRs RO DARE
(P—=RDDR:R1 DARS

and the command
+IMZERT STRR:RO DARS
was performed, the buffer would be altered to

ARIDFEsR0 DRREZ
ZTRERSRED DARRS

ADDRsR1 DARS

If the user enters a null string, by depressing@after the single delimiting space, the
editor will enter the INPUT mode, which is described below.

INPUT

The editor may be placed in the INPUT mode by entering:

sirput ()

The editor will repsond with
IMHFPUT:

to indicate that it has entered the input mode.

in the INPUT mode, the user may enter any number of lines. These lines will be
entered into the buffer before the current line. The INPUT mode is terminated by
entering a null line. The position of the line pointer is not changed. For example, if
the buffer appears as follows:

AODREs KD DARE

ADDRSF1 DARZ

and the sequence

6—13

Kill

*INFUT
THFUT:

LETRRESRO.DARS
ADTRsR2. IARY
.HDDErEE(:)

was performed, the buffer would be altered to

ADDR RO DRRES
ZTREERD DRES
ADTEs Rz TIAFS
ADDE s R

Hnm:.-.. F1 DARE

in the INPUT mode, no text 'ine may exceed 128 characters. If more than 128 char-
acters are input before RETURN is pressed, **TRUNCATED** will be printed on
the console, and only the first 128 characters entered will be placed in the buffer.

6.5.4 Deletion Commands.

The user may delete lines in the buffer using the command, KILL.

KILL N

This command has two forms, 1) delete the next n lines beginning with current line,
or 2) delete lines p through g in the buffer. If no argument is specified, only the
current line is deleted.

For example, if the buffer appears as follows:

LINE

LINE
LIMNE
LINE
LIME 5
FETCsLIM

LR TN N

and the following command is performed
*kd

the buffer will be changed to

LIHE =

FETC LM
The command K 1—4 could have been used to produce the same effect.

The KILL command moves the line pointer in the following manner:

Substitute

1} If K nis used, and the line pointer is positioned on line g, the line pointer is
repositioned to point at what was line g+n before the deletion took place.

In the above example, K 4 is used as the command, and the line pointer is
positioned at line 1 in the buffer. Therefore, the line pointer is repositioned
to point at what was the fifth line, LINE 5.

2) If K p-q is. used, there are two possible positionings of the line pointer.

a) If the line pointer points at a line between line p and line q, the line
pointer will be repositioned at what was line g+1.

b) If the line pointer points at a line that is not between line p and line q,
the position of the line pointer is not changed.

6.5.5 Alteration Commands.

The user may alter lines in the buffer through the use of the commands SUBSTITUTE
and REPLACE. Both commands operate on the line pointed to by the line pointer.

SUBSTITUTE $STRING1 $STRING2 $

The SUBSTITUTE command finds the first occurrence of STRING1 in the current
line and replaces STRING1 with STRING2,

For example, if the current line is
ATDRERZ nR=yY
the command
+%Z FDREDAE
would alter the line to
ADDA.R = DRz

If STRING1 is not found in the current line, **NOT FOUND** is displayed on the
console.

STRING 2 may contain TAB characters (see paragraph 6.5.9). Conversion of the TAB
characters to spaces in the buffer depends on the column in which the substitution
occurs. The substitution of spaces for TAB characters is always in accord with the
current TAB positions.

If a substitution causes a line to exceed 128 characters, the message **TRUN-
CATED** will be displayed on the console and the line will be truncated by trunca-
ting characters from the text which is being inserted. For example, if the current line
is the 127 character line:

C—=na........ AABBCC......... CC (63A’sand 62 C's)

Replace

and the command

% #RETEEEEET
++ TREUNCATELD ++

is performed, the message **TRUNCATED** will be displayed on the console and
the current line will be altered to the 128 characters:

AA. AABBCC......... CC (63A'sand 62 C’s)

No matter what the result of any substitution, the position of the line pointer is not
changed.

In the example command line, SUBSTITUTE DRDAS, the character ‘$’ is used
asadelimiter. Thefirst ‘$’ indicates the beginning of the string to be substituted for.
The second ‘$’ indicates the completion of the first string and the beginning of the
string to substitute. The third and final ‘$’ indicates the completion of the STRING
to substitute.

Suppose, however, this line appeared in the buffer:
WIMEZ BY RRIDGEE
if you desire to replace $RIDGE$ with +RIDGE+ , you cannot use this command:

Z FERIDGEFF+RIDGE+E
STRING1 STRING2

Since $ is being used as the delimiter, it may not be inserted in either STRING1 or
STRING2.

T SERIDGEE<+RIDGE+
would alter the line to the desired:
WMIHEZ BY +RIDGE+

In this command, the / is used as the delimiting character.

REPLACE STRING

The command REPLACE is used to replace the current line with STRING. For
example, if the current line is:

ADDRsRE TAR1

the command
+F ZTRR.RZ DAR1

will result in the current line being altered to:

Find

“Z-:TF:F: RE TAR1

The position of the line pointer is not altered. A blank line is not allowed as STRING.
For example: '

10
is not a valid command.

If the REPLACE command is used in a command line that contains more than one
command, the command delimiting characters : , >, or < will indicate the end of
STRING. For example:

+k4:R RO0DBYE: T THEW

would delete the next four lines, then the current line would be replaced by the line
GOODBYE. The INSERT command would then be executed.

6.5.6 Search Commands.

The user may search the buffer for a specified string using the command FIND.

EIND $STRINGS$

This command searches the buffer, starting at the current line, for the first line that
contains STRING. If STRING isfound, the line pointer is repositioned to point to the
line in which string occurs. If STRING is not found the message *NOT FOUND?* is
displayed, and the line pointer is left unchanged.

If the buffer appears as follows:

LIME 1
CD—rLirE 2
LIME =
LIME 4
LIME S

and the command:
+*»F 4%

is executed, the line pointer will be moved to this position:

LINE
LIME
LINE

CD—_L1rE

LIME

0 -

L I

Get

In the sample command F $43%, the $ is used as a delimiting character. The first
$ indicates the beginning of the STRING to be found; the second $ indicates the
end of the STRING to be found.

Note that the command
«F 1%

will display *NOT FOUND* on the console since the specified STRING is in a line
above the line pointer.

If the FIND command is invoked by use of the AGAIN command (see paragraph
6.5.8) the search starts at the current line plus one.

6.5.7 1/O Commands.

The user may bring information into or send information out of the buffer using the
commands GET, PUT, and LIST. The user may move data between files using the
COPY command.

Before discussing the 1/O commands, there are three concepts that require explanation.

1) The Editor maintains ‘pointers’ into the PRIMARY INPUT and OUTPUT
files. These pointers indicate the position of the next line to be read from the
PRIMARY INPUT file (the Pl pointer) and the position of the next line to be
written in the PRIMARY OUTPUT file (the PO pointer). Initially, both
pointers point to the first line in the respective files.

The Pl pointer will only be affected by GET commands that use-the default
filename option. The PO pointer will only be affected by PUT or COPY
commands that use the default filename option.

2) An existing file in the disk can be written over, under control of the Editor,
and thus be destroyed.

3) Systemdevices, such as CONO, CONI, LPT1, etc., can also be specified as the
input or output files in all /O commands.

GET N (FILENAME)

This command reads N lines of data into the buffer. FILENAME specifies the file
that will be accessed to provide the data. If FILENAME is omitted, data will be input
from the PRIMARY INPUT file. The data that is input is inserted above the current
line pointer. The position of the line pointer is not changed.

For example, if the buffer appears as follows:

FPZL Wiz

RETC s UH

DRFE1 RE= 1

Put
PUTK

and file A contains the five lines

AIDZ R
ZTRE Rz
CEIL W
FETC LN
LRE FEZ 1

performing the command:

#5ET 1-2 H

will cause the buffer to be altered to:

FPREL W
ADDE ke
ETRE Fz
CRPEL WC

—=rETC:UN

TIRE1 - EREX i

Other features of the GET command include:

1)

2)

If the user specifies the PRIMARY INPUT file as FILENAME the pointer
into the PRIMARY INPUT file will not be altered. For example, if 6 lines
have been read from the PRIMARY INPUT file, ASYM, with a GET 6
command, a

#cET

command would read the 7th and 8th lines and move the Pl pointer to the
ninth line. If, however, the command was not GET 2 but:

*5ET 2 AEYM

the 1st and 2nd lines would be read into the buffer. The GET 2 ASYM
command would not affect the pointer into the file ASYM. Any succeeding
GET N command would begin with the 7th line.

The PRIMARY OUTPUT file may not be used as FILENAME.

PUT N (FILENAME)
PUTK N (FILENAME)

These commands write N lines of data from the buffer to an output file. FILENAME
specifies the file where the data will be written. FILENAME may not be the PRIMARY
INPUT file or the PRIMARY OUTPUT file. If FILENAME is specified, the data will
be output to the beginning of the file and the file will be closed when the write is
complete. Thus, if FILENAME aiready contains data, the old data will be lost. If

List
Copy

FILENAME is not specified, output will be to the PRIMARY OUTPUT file, The
data will be written beginning at the PO pointer and the PO pointer will then be
moved at the next empty line in the file.

If the command is PUTK, the lines written to the output file are deleted from the
buffer. Thus, with the PUTK and PUT commands there are two possibilities:

a) The line pointer points to a line which needs to be deleted from the buffer.
In the case, PUTK is used and the line pointer is repositioned to the line
immediately following the deleted text.

For example, if the buffer appears as follows:

‘ LINE
LINE
LINE
LINE
LINE

i B D3 T e

and the command
«FUTE =2

is execu’.ted, the second and third lines will be written to the PRIMARY
OUTPUT file and deleted from the buffer, leaving the buffer as follows:

LIME i

CD—L1rE 4

LIME 5

b) Theline pointer points to a line which will not be deleted. In this case PUT is
used and the position of the line pointer is not altered.

LIST N

This command lists N lines of data on the line printer. The current line pointer
position is not changed. The default value of N'is 1.

COPY N INFILE (OUTFILE)

This command copies N lines from INFILE to OUTFILE. If OUTFILE is not specified,
the data is copied from INFILE to the PRIMARY OUTPUT file. OUTFILE may not
be the PRIMARY INPUT file. You may specify the PRIMARY INPUT file as the
INFILE without disturbing the pointer into the PRIMARY INPUT file.

When OUTFILE is specified, the data is copied from INFILE to the beginning of the
file and OUTFILE is then closed. If the PRIMARY OUTPUT file is used by default,
the data is copied from INFILE to the PRIMARY OUTPUT file beginning at the PO
pointer.

6—20

- Begin End
Down Up
N Again

The COPY command does not use the buffer to transfer data, and it will not alter the
buffer or the current line pointer.

6.5.8 Buffer Line Pointer Commands.

The user ‘may alter the position of the buffer line pointer by using the commands
BEGIN, END, DOWN, and UP. The user may have the line pointer position printed
using the command, N.

BEGIN

This command positions the line pointer at the first line of the buffer.

END

This command positions the line pointer one line below the last line of the buffer;
EQF is displayed on the console.

DOWN n

This command moves the line pointer n lines down the buffer. The default value of n
is 1. If the current line is g and g+n is greater than the number of lines in the buffer,
the effect is the same as the END command.

UPn

This command moves the line pointer n lines up the buffer. The default value of n is
1. If the current line is g and g-n is less than 1, the line pointer is set to point at the
first line.

N

This command displays on the console the number of the line pointed to by the
current line pointer.

6.5.9 Utilities.

The user may perform a variety of functions, including repeating previous commands,
listing portions of the buffer, setting the tabs, and terminating an edit session, using
the commands AGAIN, BRIEF, FILE, QUIT, UDQOS, TAB, TABS, TYPE, ?, / and
the iterate command function, m < command > .

AGAIN

This command performs the previous command, as long as it is one of the repeatable
commands. For example, if the buffer appears as follows,

ALE

LIMHE
LIME
LIMNE
L IME
LIME
‘LINE

&

L I R P p A I

T

and the command

L

were performed, the buffer would be altered to,

LIME

—rL1re

LIME
LIME &

i I OR

If the next command performed was

*H

the buffer would be altered to

LIME 1
LINE &
Commands that are not repeatable are:

AGAIN
BRIEF
FILE
INPUT
MACRO
QuIT
TAB
TABS

If a non-repeatable command was the last command specified, and the AGAIN com-
mand is entered, the AGAIN command will look back to discover the last repeat-
able command, which will then be performed.

FILE

This command transfers all the data in the buffer to the PRIMARY OUTPUT file.
The data is inserted beginning at the PO pointer, and the PO pointer is then reposi-
tioned to the end of the inserted text. The rest of the PRIMARY INPUT file (the
portion from the Pl pointer to the end of the PRIMARY INPUT file) is then moved
to the PRIMARY OUTPUT file beginning at the PO pointer. Both files are then
closed. The Edit session will then be terminated and control will return to UDOS.

6—22

Type |
auir
TAB

TYPE N

This command displays N lines of the buffer on the console. The current line pointer
is left unchanged. If no value is specified for N, the current line is displayed. For
example, if the buffer appears as follows:

LINE
LINE
CD—=LInE
LINE
LINE

LI O

the command

would result in the following display on the console

LIMNE &
LIME 2

QuIT

This command closes the PRIMARY INPUT and PRIMARY OUTPUT files and then
terminates the Edit session. If the PRIMARY OUTPUT file is a new file, this file is
deleted before the Editor is exited and control returns to UDOS.

TAB CHAR

This command defines the single character CHAR as the tab character. The tab char-
acter may not be the :, <, or > characters. The default value of the tab character
is CONTROL-I, which is produced by depressing the | key while the CONTROL key
is depressed.

When a character is defined as the tab character, it will not be displayed, but the
following character will start at the next tab position.

An example of using C as the tab character is:

#THE

+]

INFLIT:

U=IMG © AT THE TARE CHARARACTER 1% HOT A 00D IDER

+E: T
UZIMG A% THE THE HARER TER IS HOT A SO00 ILER

6—-23

TABS

TABSC1C2C3...

This command sets the tab positions to the given columns C1 C2 C3. . . When the TAB
character is entered from the console, the Editor replaces the TAB character in the
buffer with spaces up to the next TAB position. The default TAB positions are 8, 16

24,32,40, 48, 56 and 64.

For example, the default TAB positions would produce this result,
+THE
+]

IMFUT:
CHARARCTER C I% THE THE CHARACTER
»E: T
HAFRA TER IZ THE TRHE HARH

The TAB positions could be altered to produce this result,

+TAE= 1 & 11 18 25 21 38

+1

IHFUT:

CHRRACTER © IX THE TRE CHARACTEFR

+E: T
HRFA TEFR I THE THE HRFEA TER

m<commands>

TEF

This form of the command line will cause the commands inside the angle brackets to
be repeated m times. If m is omitted, the commands inside the brackets are per-

formed once. For example, if the buffer appears as follows:

ZE-ZTF:Z DARE
FP=L W
ADDRE.RZ DAR1
RLDR.RZ DAR1
CPEL W

the command

o2 <F REWDESET EWMDEWMCE:

would result in the buffer being altered to:

6—24

unas

BRIEF

ETRE U1
FREL W

ADDEs RS DARL
ADDRFZ DAR1

@-—> [N S I LW

Iteration commands may be nested to a depth of 16 levels.

uDOS

This command suspends the Editor and returns control to UDOS. The Editor may be
continued using the UDOS CONTINUE command.

?

This command displays the Editor’s 1/O status. Entering the following command:

*7

results in the following information being displayed on the console.

Pl = PRIMARY INPUT Filename

LINE = Nextline to “GET" from the PI file
PO = PRIMARY OUTPUT Filename
LINE = Next line to “PUT" to the PO file
LAST Al = Last Alternate Input file referenced

LAST AO= Last Alternate Output file referenced

/

If the / character is the first character in an EDIT command line, the < , > , and:
characters do not perform their usual functions. For example, the command

+BEiF ELEFTANHGLE.< %
would be rejected because the angle brackets do not balance. The command

+-B: F ELEFTANGLE. <%

would find the string ‘LEFTANGLE’ , < . If FIND or SUBSTITUTE command is
the first command in a command line, then the / is not required at the beginning of
the line.

BRIEF

This command changes the state of a BRIEF switch from off to on or from on to
off. Under the initial BRIEF state, off, the Editor will type the line pointed to by the

6—25

Macro

current line pointer after completing any of the commands END, UP, DOWN,
FIND, SUBSTITUTE, and REPLACE. If the BRIEF switch is on, EDITOR will not
type the current line. For example, if the buffer appears as follows:

@———-LIHE

LINE
LINE

DO 3 O

and the command:

+0 1

is performed, the Editor will move the line pointer down the buffer to LINE 2 and
display on the console:

LIME 2

The user may issue a BRIEF command to change the BRIEF switch to on. This state
will suppress the display of the current iine. For example, if these commands were
entered:

+ERIEF
+01

the Editor would perform the DOWN command to move the line pointer down the
buffer to LINE 3 but would not display the line.

if the BRIEF switch is off, the user may still suppress the display if he appends a
(.) tothe command. In the previous example, if the line pointed at LINE 1 and the
BRIEF switch was off, this command:

‘III 1

would suppress the display of the current line following completion of the D com-
mand.

If the BRIEF switch is on, meaning display is suppressed, the user may display the
current line by appending the (.) to the command.

6.5.10 MACROS

The user may define or execute a macro through the use of the MACRO command.

MACRO m=COMMANDLINE

This command is used to define a MACRO. The m is an integer which identifies the
macro, and must be greater than O and less than 128. COMMANDLINE can be any
normal command line but can not contain a macro execution or definition command,;
this will result in error when the macro is executed.

6—26

Macro

If a MACRO m already exists, and MACRO m=COMMAND LINE is performed,
COMMANDLINE will replace the old MACROm.

MACRO m

This command executes MACRO m. The effect is equivalent to having entered the
command line COMMANDLINE used when the MACRO was defined.

6.6 EDITOR MESSAGES.

This section provides a list of all Editor messages and an explanation of their meaning.

** WSP FULL **
The buffer is full.

** NOT FOUND **
The given string could not be found.

** DISK FULL **
Output diskette is full.

** NUMBER? **
The parameter n is in error.

** RANGE? **

The parameter N is an error or an attempt was made to reference lines which
are not in the workspace.

** MODE **

An attempt was made to execute a macro string from within a macro string;
this is not allowed.

** NEST **
The nesting brackets < and > do not balance.

** COMMAND? **
An unknown command was encountered in the command line.

** BREAK **

The ESCAPE Console Key was depressed to terminate éxecution of a file 1/0
function.

6—-27

** PROCEDURE ERROR **
Editor usage is in error.

** UDOS STAT= XX **
XX is the UDOS SRB status byte returned to the Editor when an unusual
request or event has occurred. The meaning of the status byte can be found
in Chapter 9.

** NO P| **
For this editing session there is no PRIMARY INPUT file; the user may not
do “GET's" without specifying an Alternate Input file.

** NO PO **

For this editing session there is no PRIMARY QUTPUT file; the user may not
do "PUT's"” without specifying an Alternate Output file.

** READ FILE? **

An attempt was made to read from a non-existent file or an illegal input
device.

** (INPUT) **
The Editor response is in reference to an input attempt.

** (OUTPUT) **
The Editor response is in reference to an output attempt.

* % AI * %

The Editor response occurred in reference to the Primary or Alternate Input
or Output, as applicable.

** NEW FILE **
A new file was created.

** (LPTT) **
The Editor response occurred in reference to the line printer.

** ASSIGN PROBLEM **
The Editor was unable to assign a channel to a given device.

6—28

The Editor

** PI=NEW FILE? **

An attempt was made to “EDIT INFILENAME OUTFILENAME" where
INFILENAME and OUTFILENAME were not the same file and INFILE-
NAME was non-existent.

An end-of-file was reached on input or output or the end of workspace text
was reached.

** NO FILES SPECIFIED **
The user initiated the Editor without specifying any primary files; for this

[

editing session the user may not do ""GET's"” or "PUT’s" without specifying
an Alternate file.

** TRUNCATED **
A command line exceeded 128 characters and was rejected.

** ABORTED **

An INPUT line exceeded 128 characters and was truncated to the first 128
characters entered.

A SUBSTITUTE caused the line to exceed 128 characters and the line was truncated
to 128 characters. (See example in paragraph 6.5.5.)

6—29/6-30

Chapter

the Assembler

71 INTRODUCTION.

This chapter describes operation of the Assembler. Topics covered include an overall
description of the Assembler, procedure for using the Assembler, and an example of
a typical assembly listing. Further information on a particular Assembler version for
a specific slave CPU is contained in the manual supplement provided with that slave
CPU card.

7.2 ASSEMBLER OVERVIEW.

The Assembler is the system program used to translate source code into object code
that is executable by the slave CPU. Each UNIVERSAL ONE system software package
contains a particular version of the Assembler, suitable for that slave CPU which the
software package supports. The Assemblers provided in different system software
packages are those supplied by the microprocessor manufacturers. For example, for
the 8080A slave CPU package it will be the MDS 800 Macro Assembler, for the 2650
package it will be the SIGNETICS TWIN 2650 Assembler, etc.

The Assembler performs three major tasks:

1. It will assembie the user specified source file and generate hex format object
code which is written to a user specified object file. Different hex object
code formats are described in the manual supplements for the different micro-
processors.

2. It will create a listing which includes every assembled source instruction, the
instruction address generated for the source instruction, the object code
generated for the source instruction, and all assembly errors. This listing is
written to a user-specified device or file. For details on assembly language
syntax, - instruction codes, and other related material, consult the manual
supplement for a specific microprocessor.

3. It will display errors on the console, if not overridden by a command
parameter.
73 USING THE ASSEMBLER.

The Assembler may be invoked when the UNIVERSAL ONE system is under the
control of UDOQOS, by using the ASM command. The user must ensure that two
conditions exist before the Assembler is used:

ASM

1. The source program is present on a floppy disk file.
2. UDOS is ready to accept commands. UDOS presents its prompt character
> when it is ready for commands.
To execute the Assembler, the user enters the following UDOS command:

ASM SOURCEFILENAME (LISTFILENAME) (OBJECTFILENAME)
(NOERR) :

where:

SOURCEFILENAME is the name of the disk file where the source code resides.

LISTFILENAME is the name of the disk file or device where the assembly
listing is to be written.

OBJECTFILENAME is the name of the disk file or output device where the hex
format object code is to be written.

OPTIONS one or more optional parameters used by Assemblers of
different slaves. For example, a particular slave may recog-
nize WIDE as a designation that the output line is to be
120 print positions wide; or NOERR to indicate that errors
should not be displayed on the console.

In response to the command, the Assembler will proceed to assemble the object code
and will display the listing on the system control console or another specified output
device. When the Assembler has completed its task, UDOS will display it’s prompt
character > , to indicate it is ready for other commands. Errors will have been
displayed on the console unless the N option was entered, in which case the error
display will have been suppressed.

In addition, the assembler will display the following run-time error messages on the
console, if it detects an error while trying to execute the ASM command:

MISSING INPUT FILE PARAMETER

The input file was not specified. For example,
ASM @ is not a valid command

UNACCEPTABLE INPUT DEVICE:
The input file is not on a valid input device. For example,
ASM LPT1 is not a valid command.
'INPUT FILE ASSIGN ERROR — SRB STAT=XX
The SRB Status Codes are listed in Chapter 9.

74 LOADING AN ASSEMBLED PROGRAM.
To load an object file assembled by the Assembler, utilize the following procedure:

1. Ensure that the object file is present on a disk file and that UDOS is ready to
accept commands. '

The Assembler

2. Enter the UDOS command:
RHEX OBJECTFILE

where OBJECTFILE is the name of the file that contains the object code.

When the loading process is complete, the UDOS prompt character > will be
displayed.

Hex object code programs created on paper tape outside the UNIVERSAL ONE
system (for example, by the 8080A cross-assembler) can be read into slave memory
by the RHEX command or to a disk file by using the UDOS COPY command. Note
thata CTRL-Z character is required by the COPY command at the end of the tape in
order to terminate the COPY and close the file

Abinary load file can be made from slave memory by using the MODULE command.

75 SAMPLE ASSEMBLY LISTING.

If the double precision add/subtract subroutine, discussed in the Chapter 6 edit
example, is to be assembled, the following sequence has to be performed:

1. Six EQU assembler directives have to be entered into the source file. These
are needed to define the contents of various CPU registers (RO, R1, R3,
UN, WC), related only to the 2650 slave CPU (for details see the 2650 slave
CPU manual supplement). '

2. The command
ASM DADDSB/0,LPT1,DADOBJ/O

will write the object code produced on file DADOBJ/O (see Figure 7—1),
and produce the listing in Figure 7—2 on the line printer.

+ DOUELE PRECIZION ADD A IN RO.R1 E IN R2«R3

+0HN
L 4

RO
F1
Fz
R3
1M
(1]

L 3
DARDD

DHF1
-

«IOUELE PRECIZION SUETRACT A IN ReSaRZ:
FETURMs RA-

+ [
+*
D=UE

L=R0
Y|

RETUFEN

Eil
Ecd
EGL
El
Eld
ey

EZTREsF1-
ADDE s B2
FFIL
ADDZ
ETRZ
CPEL
RETC LM
FE=

ETRRsFO
EZTEEsR1
ZUBRsRZ
FFREL

EUER RS
CREL

HETCs UM

REZ
REE=
END

A+E 1% R2+R2

DOV KR

DAR1
TiAR1
Wc
R
e
bIC

1

E IT IH E2sR3

DERD
DRl
DER1

RS =31
bW

1
1
ORITD

E IH RiO.F1

Figure 7—1. Sample 2650 Slave Program Listing Ready for Assembly

TWIN
LINE

Doni
aoog
aons
NHES
noons
D00e
anovy
noos
anos
oot
nntt
aoig
onlz
antg
0n1s
anle
oLy
anls
oa1s
oz
anz1
anzz
Gos3

nozd

anza
anzn
Nz
anag

TOTAL AZZEMELY EFROR:
oL e

AESEMELER

ADDE

nono
nooi
nans
anos
nonz
anos

Qoo
ooos
niang
TS

aony

nons
=]
DOoOE

nonc
OnneE
agin
anlz
nnig
Orle
nonis

ao1s

noiA
Qoon

EOJ

OBJECT E =OURCE

=

iy N R B B]
LR I o Y 0]
& D

=5 o
]
o

CEOR
oA
HEOS
FYOS
AROE
TSOS
17

VER 2.0

+ DOUELE PRECIZION RDD A
#0M FETURMS

L 4

=1
=1
R
3
IR]
Wi

*
TRED

DAR1
+»

«DOUEBLE PRECIZION
+ [OH FRETLIREHM.

*
L=UE

RN
=R

B
EGIL
EGL
ELiLL
ERL
Evnd

ZTRR R
ADDRFE3
FFPIL
ADDZ
ZTRZ
CPEL
RETC LM
FEZ

ZTRRESRI
TTRREsF1
TUEBR«RZ
FRZL

ZUERsRZ
CREL

RETCs LIM

FEE
FE:Z
EMT

= D000

H+E I=

H-

The Assembler

PRE 0001

IN ROsRY B IN R2sRZ

FEsR3

SO0 00 T e

DRrR1
TRF1
Wiz
k2
Rz

Wi
1

ZUBTRACT A IM R2sF: B
E IZ IM RZ2.R2

I Rkl

TERD
DzR1
IzZR1
iz
DERN
Wi

1
1
AT

Note: refer to 2650 slave manual supplement
for an explanation of the format in this listing,

Figure 7—2. Sample 2650 Slave Assembly Listing

7-5/7-6

Chapter

PROM Programmer

8.1 INTRODUCTION.

This chapter describes the optional PROM programming facilities of the UNIVERSAL
ONE system. Topics covered include a general description of the PROM programming
software and hardware, instructions for programming a PROM, and a description of
the associated commands.

8.2 PROM PROGRAMMING HARDWARE AND SOFTWARE.

The optional PROM programming facility is used to manually program PROM chips
in the UNIVERSAL ONE system or to output programming data to another device,
such as a paper tape punch. The PROM programming facility consists of one or two
programmer circuit cards and the PROM Programmer software. The current hardware
and software can support both the 82S115 bipolar fusible link PROM and the 1702A
MOS erasable PROM. Other hardware and software, in development at the time of
publication, will support the 2708 and 2704 MOS erasable PROM:s.

The programmer circuit board is installed in the development computer card cage
and during programming controls the data flow (i.e., power application) to the
PROM chip inserted in one of the development computer front panel sockets. A
different programmer card is required for each different type PROM to be program-
med.

The PROM Programmer software is included in UDOS overlay area 1, on the system
diskette, and can be utilized for programming either the 825115 or 1702A PROM.
Three software commands are used to read, write, or compare data in a PROM. Other
software will need to be written on the system diskette to support additional PROM

types.

83 USING THE PROM PROGRAMMER.

There are three sockets on the front panel of the development computer (see Figure
3-5). The 24-pin socket labeled PROM 1 is used for 1702A PROMs. The 24-pin
socket labeled PROM 2 is used.for 825115 PROMs. (The third socket is reserved for
future use.)

To program a PROM, first load the fully debugged PROM object code from the disk
file into slave memory and then proceed according to the following procedure:

Rprom

1.

84

Always turn PROM power off whenever inserting a PROM in its socket (or
removing it). Power to the socket is controlled by the PROM PWR switch
on the front panel of the development computer. (The PPWR indicator above
the switch is lighted when power is on.)

Insert PROM in its correct socket. Use of the wrong socket is likely to cause
permanent damage to the PROM. Align pin 1 of the PROM with pin 1 of the
socket. Pin 1 is adjacent to the lever.

When inserting or removing the PROM leave the socket lever up; push down
on the lever to clamp the PROM in the socket.

Acquire the UDOS prompt character > on the control console and then
enter the desired PROM Programmer command, or sequence of commands.
The commands that can be used are RPROM, WPROM and CPROM. RPROM
is used to read the contents of a PROM into slave memory. WPROM is used
to write binary code from slave memory to the PROM. CPROM is used to
compare the contents of slave memory with the contents of a PROM. See
paragraph 8.4 below for a more complete description of each command.

If instead of programming, it is desired to output the code to peripheral
equipment, use the WHEX (or WSMS) command (see paragraph-4.6.6).

PROM PROGRAMMER COMMANDS.

The PROM Programmer utilizes three commands: RPROM, WPROM, and CPROM.
These commands are stored in UDOS overlay area 1 and can be used whenever the
UDOS prompt character > appears on the control console.

- BRPROM (A1) (N) (A2) (A3) (C)

This command is used to read the contents from the PROM inserted in socket N into
slave memory. A1 is the first location in slave memory to be stored into. The default
value of A1 is 0. N is the PROM type to be read. If N is equal to 1 the 1702A PROM
is specified. If N is equal to 2 the 82S115 PROM is specified. The default value of N
is 1. A2 is the address to begin reading from on the PROM. The default value of A2 is
0. A3is the last address to read from on the PROM. The default value of A3 is 00FF.
C determines whether the data from the PROM should be complemented. If C is
equal to 1, the data is complemented before it is stored in memory. If C is equal to O,
the data is not complemented. The default value of C is 0.

PRM Error Responses:

7
29
30
35
36

— Device write error

— PROM power failure
— Invalid parameter

— lllegal start address
— lilegal end address

WProm
CProm

WPROM (A1) (N) (A2) (A3) (C)

This command causes the PROM on port (socket) N to be programmed with the
contents of slave memory. A1l is the address of the first slave memory byte to be
programmed in the PROM. The default value of A1 is 0. N is the number of the
PROM programmer port. N equal to 1 corresponds to the 1702A port and N equal to
2 corresponds to the 825115 port. The default value of N is 1. A2 is the initial
PROM location and A3 is the last PROM location to program. The default value of
A2 is 0. The default value of A3 of O0FF. C indicates whether the data should be
complemented before it is programmed in the PROM. If C is equal to 1, the data will
be complemented. If C is equal to 0, the data will not be complemented. The default
value of Cis 0.

After each memory byte has been written, the PROM is read. The byte read from the
PROM is compared with the byte written. If the bytes are not equal, a certain
number of retries are attempted. If the comparison still fails after these retries, the
PROM address and the contents of the PROM are displayed on the console. The
maximum number of retires is sixteen (16) for the 1702A and eight (8) for the
82S115. If an unsuccessful compare occurs on the 1702A, the PROM is rewritten
five (B) times before the next comparison.

PRM Error Responses:

7 — Device write error
29 — PROM power failure
30 — Invalid parameter
35 — Invalid start address

36 — Invalid end address

CPROM (A1) (N) (A2) (A3) (C)

This command causes the contents of the PROM on port N to be compared with the
contents of slave memory. A1 is the location of the first slave memory byte to be
used in the comparison. The default value of A1 is 0. N is the number of the PROM
programmer port. N equal to 1 corresponds to the 1702A port and N equal to 2
corresponds to the 825115 port. The default value of N is 1. A2 is the initial PROM
location to be compared with slave memory. The default value of A2 is 0. A3 is the
last PROM location to be compared with slave memory. The default of A3 is O00FF. C
indicates whether the slave memory data should be complemented before it is com-
pared with the contents of PROM. If C is equal to 1, the slave memory data will be
complemented before the compare occurs; if Cis equal to 0, the data will not be com-
plemented. The default value of C is O.

If the value read from the PROM and the slave memory data are not equal, the memory
location, its contents, and the PROM contents are displayed on the console.

PRM Error Responses:

7 — Device write error
29 — PROM power failure
30 — Invalid parameter
35 — Invalid start address
36 — Invalid end address

Chapter

Supervisor Call Interface

9.1 INTRODUCTION.

This chapter describes Supervisor Call (SVC) software of the UNIVERSAL ONE
system. A general description of the SVC concept and applications is at the begin-
ning of the chapter, followed by a description of various component parts of the
SVC software.

9.2 GENERAL DESCRIPTION OF SUPERVISOR CALLS.

In the structure of UNIVERSAL ONE system software no direct communication is
allowed between the slave CPU and system peripherals. However, Supervisor Calls
are a means by which a user program, running under the slave CPU, can gain access
to system peripherals by generating interrupts to the master CPU. A program running
under the slave CPU can issue one of six SVCs — SVC1, SVC2, etc. — to acquire
either an 1/O connection with system peripherals or obtain a UDOS program service.

The SVC is actually an extended slave CPU 1/O instruction that is decoded on the
debug logic card to generate a master CPU interrupt. Corresponding to each SVC
there is a Service Request Block (SRB), which is an 8-byte block that identifies
certain specifics and stores status related to the 1/0 or service requested by the SVC.

The SVC is initiated by a slave CPU /0O instruction to slave CPU device ports F2
thru F7, followed by a slave CPU NOP instruction.

SVC No. Slave CPU SvC
I/O Port Pointer
SVC1 F7 40
SVC2 Fo6 42
SVC3 Fb 44
SVC4 F4 46
SVCH F3 48
SVC6 F2 4A

When the program running under the slave CPU issues an SVC, the debug logic card
decodes the SVC, halts the slave and interrupts the master CPU. The SVC is vectored
to a unique location in master memory where the UDOS program SVC Processor
module (refer to Chapter 4), which services all SVC interrupts, is located. Under
control of the SVC Processor, the master CPU looks at the SRB pointer in slave

memory, uses the pointer to access the SRB and then executes the SRB. During this
time the slave CPU remains in the halted state.

All SVC 1/0O operations are performed by UDOS running under the master CPU.
Data to be input from floppy disk files is first read into UDOS buffers and then
deblocked to the user’s buffer, as required. Data to be output to floppy disk files
are-accumulated in UDOS buffers and then output to the file as full sectors, under
control of the UDOS File Manager. Input/output operations on devices other than
floppy disk files are performed directly through the user’s buffer.

9.3 SERVICE REQUEST BLOCK (SRB).

The user must place an SRB in the slave memory, corresponding to each of the six
SVCs. All of the information needed to perform the function requested by the SVC
caller is contained in the SRB.

An SRB consists of eight contiguous bytes, located in the first 16K page of common
(slave) memory. The contents of an SRB are as follows:

Byte Symbol Content

1 SFC SVC function code

2 SCH Channel number

3 STAT Status

4 SDAT Single byte data

5 BCNT I/0 byte count

6 BMAX I/0 buffer length
7-8 BPTR I/0 buffer pointer

A description of each entry in the SRB is given below:
9.3.1 SRB Bytes.

SVC Function Code (SFC). The SVC function code specifies the 1/O or service
function which is to be performed as a result of the SVC call. A list of 25 different
functions supported by UDQOS is given in Appendix D, and each function is described
in more detail in paragraph 9.3.2.

Channel Number (SCH). A logical channel number must be specified for all SVC
I/0 function codes. The channel number must be in the range 0—7. When a logical
channel is assigned to a physical device or file, the channel stays connected to the
device or file until a “CLOSE" function is issued on the channel. The same channel
number can be used in more than one SRB.

Status (STAT). For all 1/0 operations, an indication of the result of the I/O request
is returned by the master CPU and written in the location of the SRB byte STAT. If
a READ and PROCEED, or WRITE and PROCEED function is requested, STAT will
first be set by master CPU to indicate that the 1/O operation is in progress. When the
I/O operation is complete, STAT will be set to indicate the result of the operation.
‘A list of status codes is given in Appendix E.

9-2

Supervisor Call Interface

Single Byte Data (SDAT). This location is used by the master CPU to return single
byte data requested by an SVC function other than an 1/0 function. For 1/0, SDAT
is the physical status of the device being accessed.

1/0 Byte Count (BCNT). This location is used by the master CPU to return the actual
number of bytes to be input or output by a READ or WRITE operation. For line
oriented ASCI| read or write operations, this count is the actual number of characters
including the end-of-line character EOL. For binary read or write operations the
count is the actual number of bytes. BCNT is also used in conjunction with SDAT to
return double byte data requested by a non-1/0 SVC function (e.g., GET TIME).

1/0 Buffer Length (BMAX). The maximum number of bytes of data to be input to or
output from the user’s buffer must be written in this byte by the user prior to
initiating the SVC. Once set by the user, it is not disturbed by UDQOS.

1/O Buffer Pointer (BPTR). For all SVC I/0 functions and for some non-1/O SVC
functions, the user must provide the starting address of a buffer in the first 16K
page of common memory. Unless otherwise specified in the SVC function description,
data transfers to or from the user program are performed through the buffer pointed
to by BPTR. '

9.3.2 SVC Function Descriptions.

Assign Channel. An application program running under the slave CPU has eight
logical channels, or ports, through which it can perform 1/O. Any logical channel can
be assigned to any physical device attached to the system. A floppy disk file is
treated in the same manner as an independent physical device.

The physical device or floppy disk file to which a logical channel is to be assigned.is
given as a string of ASCII characters terminated by an EOL character.

To assign a channel, the SRB byte SCH must contain a channel number in the range
0—7 and BPTR must contain the starting address of the device name string. If a
channel is assigned to a floppy disk file which does not exist, the file will be automati-
cally created and the STAT byte in the SRB will be set to a 1 to indicate that itisa
new file.

Read or Write ASCIl. An ASCII line is defined as a string of ASCI| characters
terminated by an end-of-line character EOL (a normal ASCII carriage return). An
application program running under the slave CPU can input or output a line through
a channel which has been previously assigned to a floppy disk file or other 1/0O
device. The required settings for the SRB are minimal.

To read a line from a peripheral source into an application program buffer, BPTR
must contain the starting address of a buffer into which the line is to be input. BMAX
must contain the maximum number of characters the user wants placed in the buffer
in the event an EOL character is not in the data stream. The user’s buffer must be able
to contain BMAX+1 bytes of data because, if an EOL character is not found in the

9-3

data stream and BMAX bytes have been placed in the buffer, an EOL character will
be placed in the buffer at the BMAX+1 position. This procedure assures the user
that an ASCII input line will always be terminated by an EOL.

To write a line to a peripheral device or file, BPTR must contain the starting address
of the line to be output. BMAX must contain the maximum number of ASCII
characters to be output in the event the line is not terminated by an EOL character.

After the 1/O function is completed, BCNT will contain the actual number of ASCII
characters, including the EOL, which were input or output to or from the user’s
buffer. Theactual number of characters input or output may be less than the maximum
specified by BMAX as a result of encountering the normal EOL character, and end-
of-file on aread before findinga EOL, or an end-of-device on a write. All but the first
return a non-zero status.

The maximum length of a line supported by UDOS is 255 characters, plus the EOL
character, for a total of 256. Thus, BMAX must be greater than or equal to 1 and less
than or equal to 255.

Read or Write Binary. An application program running under the slave CPU can input
or output a block of binary bytes through a channel which has been previously
assigned to a floppy disk file or other 1/0 device.

To read a block of binary bytes from a peripheral source, BPTR must contain the
starting address of a buffer into which the data is to be input. BMAX must contain
the number of bytes to be input to the buffer.

To writeablock of binary bytes to a peripheral defice or file, BPTR must contain the
starting address of the buffer from which the data is to be output. BMAX must contain
the number of bytes to be output from the buffer.

After the 1/0 function is completed, BCNT will contain the actual number of bytes
which were input or output to or from the user’s buffer.

Binary read and write operations are performed strictly under count control. A user
may input or output up to 256 bytes of data. In the case of read or write, a BMAX
value of 0 is taken to mean 256.

Close File. The CLOSE FILE function disconnects the given channel from the floppy
disk file or other 1/0 device to which it was assigned.

If the channel was assigned to a floppy disk write file, the UDOS buffer used for
the file will be output and a logical end-of-file will be recorded on the file before it is
disconnected. Subsequently, when the file is read, the end-of-file condition will be
sensed and indicated in the STAT byte of the SRB.

For physical devices other than the floppy disk, an appropriate clearing action will
be taken.

Rewind File, The REWIND function applies only to floppy disk files. It has the effect
of positioning a file at its beginning. If a device other than a floppy disk file has been
assigned to the channel, the REWIND function will be treated as a NOP.

9-4

. Supervisor Call Interface

Torewind a file, SRB byte SCH must contain the channel number to which the floppy
disk file has been assigned. When a floppy disk file is “‘rewound’’ it is treated the
same as if it had just been assigned. If the first I/O operation for the rewound file is
aread, data will be input from the file in the normal manner. If the first 1/O operation
for the rewound file is a write, the sectors previously allocated for the file will have
no significance and the file will be treated as if it were a new file.

Delete File. The DELETE function causes the floppy disk file assigned to the given
channel to be deleted from the directory of the diskette and, as a consequence, also
causes the channel to be disconnected from the file.

If a device instead of a floppy disk file has been assigned to the channel, the DELETE
function will be treated the same as CLOSE function.

Rename File. To rename the floppy disk file which has been assigned to the given
channel, BPTR must contain the starting address of the name (given as an ASCII
line) to which the file is to be renamed.

A file which is to be renamed must not be in the process of being read or written, i.e.,
the final must have just been assigned or rewound. If a device other than a floppy
disk file has been assigned to the channel for which the RENAME function is
entered, the function will be treated as a NOP.

Get Parameter {From Procedure Parameter Buffer). |f an application program running
under the slave CPU has been invoked as a procedure from the system console,
often there are parameters in the procedure line. This SVC is used to get a particular
parameter for the application program.

Parameters are stored in the UDOS procedure parameter buffer in master memory.
The parameters are identified by number according to the order in which they
appear in the command line and exist as strings of ASC!| characters terminated by an
EOL character. The desired parameter is requested as a number in SRB byte SDAT.
The parameter. is returned to the user as an ASCII line, starting at the location
contained in BPTR.

When a procedure command line is entered, parameters are delimited by a space,
comma, or EOL character. A comma or space delimiter will be replaced with an
EOL character before the parameter is stored in the UDOS parameter buffer. A
parameter may be omitted from the ordered sequence by two consecutive commas.
If a parameter has been omitted, the first character in the user’s buffer will be an
EOL character. '

If the given parameter number is greater than the number of parameters included in
the command line, the first byte of the user’s buffer will be a -1, followed by an
EOL, and the SRB status byte will indicate status code 06.

Get Parameter (From Slave Parameter Buffer). If an application program running
under the slave CPU has been invoked by a LOAD or EXECUTE command, often

there are parameters in the command line. This SVC gets a particular parameter for
the application program. '

If parameters are present, they will be stored in the UDOS slave parameter buffer in
master memory. The parameters are identified by number according to the order in
which they appear in the command line and exist as strings of ASCI| characters
terminated by an EOL character.

The desired parameter is requested as a number in SRB byte SDAT. The parameter
is returned to the user as an ASCII line, starting at the location contained in BPTR.

When the above UDOS command is entered, parameters are delimited by a space,
comma, or EOL character. A comma or space delimiter will be replaced with an EOL
character before the parameter is stored in the UDQS parameter buffer. A parameter
may be omitted from the ordered sequence by two consecutive commas. If a para-
meter has been omitted, the first character in the user’s buffer will be an EOL
character.

If the given parameter number is greater than the number of parameters included in
the command line, the first byte of the user’s buffer will be a -1, followed by an EOL,
and the SRB status byte will indicate status code 06.

Load Overlay. Overlays for the user’s programs can be stored on disk as load modules,
complete with memory beginning, end, and start addresses. The resident part of the
application program loadsan overlay by presetting the SRB bytes and then issuing the
SVC. The file name of the overlay is given as an ASCII string terminated by an EOL.
The BPTR byte in the SRB must point to this string. The header information in the
load module determines where the overlay is to be loaded in memory. The result of
the load operation is returned in STAT. The overlay is not started, and control
remains with the requesting program.

Execute Overlay. This SVC function is called and performed in the same way as the
LOAD OVERLAY function with the exception that the overlay is executed after it
is loaded at the starting address given in the header of the load module. This SVC
provides the capability of chaining separate programs, as distinct from overlays.

Suspended Execution. This SVC function will cause the requesting program to be
suspended at the place the SVC is issued. The action is similar to an 1/0O and wait. The
program can be restarted again by an operator command issued from the system
console.

Exit. This SVC function wiil cause the program running under the slave CPU to be
terminated. The channels previously assigned by or for the program will not be
closed.

Abort. This SVC function will cause the program running under the slave CPU to be
terminated. The channels previously assigned by or for the program, if not already
closed, will be closed.

Supervisor Call Interface

Get Time. The accumulative milliseconds since system start-up time {module 2t6) is
returned in SDAT and BCNT bytes. Milliseconds will not accumulate if the CLOCK
has been disabled by the UDOS command CLOCK OFF.

Get Overlay Address. The memory bounds of the last overlay loaded into common
memory and the execution address of the overlay are stored in six consecutive bytes
starting at the address given in BPTR. The first two bytes will contain the low load
address, the next two bytes will contain the high load address, and the last two bytes
will contain the execution address.

Get Device Status. The status of the device assigned to the given logical channel (SCH),
as obtained from the physical device, is returned in SDAT. A default of zero will be
returned if there is no physical status available.

Get Device Type. The identification number of the device assigned to the channel
number in (SCH) is returned in SDAT and the device type is returned in BCNT. The
devices are identified as follows:

Device Name Device I.D. Device Type
CONI (Console Input) 1 1
CONO (Console Output) 2 2
LPT1 (Line Printer) 3 2
HSPT (H.S. P/T READER) 4 1
TTYR (TTY P/T READER) 6 1
DISK FILE -1 43

DEVICE TYPES: 1 ASCII read
41 Binary read
2 ASCII write
42 Binary write
3 ASCII read/write
43 Binary read/write

The device types specified for the UDOS /O device represent the way in which the
UDOS commands treat the devices in normal usage. A user application program can
read from any input device in either ASC!I or binary and can write to any output
device in either ASCI!I or binary.

The CONOQO, CONT1, and the floppy disk are sharable devices which can be assigned to
more than one channel. The LPT1, HSPT,and TTYR are non-sharable devices and can
only be assigned to one channel at any given time.

A user application program can have a maximum of seven channels assigned to floppy
disk files.

Get Last Console Input Char. The last character input from the control console is
returned in SDAT. If sensed in a loop, while performing extensive calculations or
1/0, it provides the user program with a way to respond to a request for attention or
other action by the operator.

9-7/9-8

UDOS Command
Summary

The short form required to invoke the command is underlined.

ABORT /

ASSIGN CH DEVICE (.. CHDEVICE),
ASM SOURCEFILE (LISTFILE) (OBJECTFILE) (WIDE) (NOERR)

BKPT ADDRESS (WRITE) (READ)
CLBP (ADDRESS) .. S
CLOCK ON o

or
CLOCK OFF

CLOSE CH (.. CH) . e
CONT NAME

CONT *
or
CONT /

COPY INPUT (...INPUT) OUTPUT ..
CPROM (A1) (N) (A2) (A3) (C)
CSMS (ADDRESS) (DEVICE) .
DEBUG (DEVICE) (ADDRESS) ...
ELETE FILENAME/D (....,FILENAME/D)

DEVICEDEVICEU
or :
DEVICE DEVICED

O

|

DUMP A1 (A2) (DEVICE) o i 5—10
DUP D1 D2 (IDENT) s 4—-21

EDIT (INFILENAME) (OUTFILENAME) 6—2

EXAM ADDRESS e e e e e 5—11

FORMAT D (IDENT) o e e s 4-18

GO (ADDRESS) oo 5-9

KL ON 4--31

or

KILL OFF

LDIR (D) (.) (/) (DEVICE) e 4-22

LOAD FILENAME e 5—9

MODULE FILENAME A1, A2, AB({IDENT) 4—-25

PATCH ADDRESS HEX-STRING b—-12

PRINT FILENAME (DEVICE) (L1 L2) ..o, 4-24

or

PRINTL FILENAME (DEVICE (L1 L2)

RENAME OLDFILE/D NEWFILE/D i 4-20

or

RENAME D IDENT

BESET e 5—14

RHEX (/BIAS) (DEVICE) (Format depends on type of slave CPU) 4-26

BPROM (A1) (N) (A2) (A3) (C) e 8—2

SEARCH ON (N) e e e 4-15

or

SEARCH OFF

SET Rm (A1 (...Ai) (Format depends on type of slave CPU) b—14

SLAVE (MODE) (DEV ADDR) .. e 5-13

ST ATUS 5—12

SUSPEND (NAME) e e 4—12

or

SUSPEND *

or

SUSPEND /

SYSTEMD e [P 4-16

TRACE QEF o e b—15

or ‘

TRACE ALL (STEP) (A1 A2)

or

TRACE JMP (STEP) (A1 A2)

TYPE ON 4-31
or

TYPE OFF

VERIFY D 4-19
WHEX A1 A2 ... (,,A1 A2) (A3) (DEVICE) 4-27
WPROM (A1) (N) (A2) (A3) (C) ..o SN 8-3
WSMS (ADDRESS) (DEVICE) ... i 4-28
XEQ FILENAME e 5-10
P COMMENT e 4-32

A-3/A—-4

Appendix
Debugger Command

Summary

The minimum terms required to invoke the commands are underlined.

The following commands are used both by the Debugger and by UDOS (DEBUG is
used only during UDOS to invoke the Debugger).

PAGE
ABO R T 4-13
ASSIGN 4-14
CLOSE 4-13
DEBUG 5-9
DELETE 4-22
DUMP 5-10
EXAM 5—-11
GO 59
LOAD 5—-9
PATCH 5-12
SLAVE 5—-13
STATUS 5—-12
SY ST EM 4-16
XEQ 5-10

The following commands are used only by the Debugger (only after the DEBUG
command).

PAGE
BRPT 5-13
CLBP 5—-14
DS T AT 5-14
BESET 5-14
SET 5-14
TRACE e 5-15

B—1/B-2

Appendix
Editor Command

Summary

The short form required to invoke a command is underlined.

PAGE
AGAIN e 621
BEGIN e 6—21
BRIEF 6—-25
COPY IN INFILE (OQUTFILE) .. e 6—20
DOWN N e 6—-21
END 621
FLLE 6—22
FEIND $STRINGS 6—17
GET N (FILENAME) . e 6—18
INPUT e e 6—13
INSERT STRING . e e e e 6—13
KL N e e 6—-14
LIST N e 6—20
MACRO m=COMMANDLINE 6—26
MACRO M 6-—27
N 6—21
PUT N(FILENAME) . e e 6—19
PUTK NAFILENAME) e 6—19
QUIT 6—23
REPLACE STRING i 6—16
UDOS e 6—25
SUBSTITUTE $STRING! $STRING2$ 6—15

TAB CHAR e e 6-—23
TABS C1 C2 C3 ... 624
TYPE N 6—23
UP N 6-21
M<COMMANASD> .o e 6-24
7 6—25
L 6—25

HEX CODE

10
01

81

02
82
C1

42
C2
03
04
05
06
13
1C
17

18
19

1A
1F
1"

12
156
14
16

Appendix

SVC Function Codes

FUNCTION

ASSIGN channel to device or file
READ ASCIl and WAIT

READ ASCIt and PROCEED

WRITE ASCII and WAIT

WRITE ASCI1 and PROCEED

READ BINARY and PROCEED
WRITE BINARY and WAIT

WRITE BINARY and PROCEED
CLOSE device or file on channel
REWIND file on channel

DELETE file on channel

RENAME file on channel

GET PARAMETER (From Procedure Parameter Buffer)
GET PARAMETER (From Slave Parameter Buffer)
LOAD OVERLAY

EXECUTE OVERLAY

SUSPEND EXECUTION

EXIT

ABORT

GET TIME (milliseconds)

GET OVERLAY ADDRESSES

GET DEVICE STATUS

GET DEVICE TYPE

GET LAST CONSOLE INPUT CHAR.

D-1/D-2

Appendix

00
01
02
03
04
05
06
07
08

0A
0B
0C
0D
OE
OF
10
1"

12

13
14
15
16
17
18
19
7F
FF

SRB Status Codes

FUNCTION COMPLETE / NO ERROR
CHANNEL ASSIGNED TO NEW FILE
ILLEGAL CHANNEL NUMBER
CHANNEL NOT ASSIGNED
CHANNEL BUSY

ILLEGAL FUNCTION CODE

NO EOL ON ASCII READ

NO EOL ON ASCII WRITE
ILLEGAL DRIVE NUMBER

FILE IN USE |
DEVICE NOT OPERATIONAL
DEVICE NOT AVAILABLE
DEVICE NOT READY

DEVICE IN USE

DIRECTORY READ ERROR
DIRECTORY WRITE ERROR
DIRECTORY FULL

DEVICE READ ERROR

DEVICE WRITE ERROR

CODE NOT ASSIGNED

CODE NOT ASSIGNED

FILE NAME IN USE

ILLEGAL FILE NAME

FILE IN R/W PROGRESS
CHANNEL ALREADY ASSIGNED
INCORRECT DISKETTE

/0 IN PROGRESS

END OF FILE OR END OF DEVICE

E-1/E-2

Appendix

SMS Tape Format

An SMS tape consists of a block of data, preceded by a TAPE ON character
(CTRL-R or hex ‘12') and followed by a TAPE OFF character (CTRL-T or ‘14’).
When the TAPE ON character is read, the address counter is set to zero. This means
that the next data byte will be stored at location 0. When the TAPE OFF character
is read, the tape has been read and no more data is stored.

The data in between is represented as follows:

1)

2)

Each data word is represented by one or two hexadecimal characters.

Each data word is followed by an apostrophe (hex ‘27’). When the apostrophe
is read, the data word composed from the previous hexadecimal characters is
stored at the location pointed to by the address counter. The address counter is
then incremented.

All characters are punched in the standard 8-channel ASCII teletype code. Parity
is not checked.

EXAMPLE OF SMS FORMAT

}
éa

N

~ W

01'FA'FA’'00'10°

® © cE

THE TAPE ON CHARACTER. RESETS LOCATION COUNTER TO O.

AN INDIVIDUAL DATA BYTE, 01°. 01 IS THE DATA TO STORE. ' INDI-
CATES END OF THE DATA BYTE.

THE COMPLETE DATA FIELD FOR THIS TAPE.
THE TAPE OFF CHARACTER. INDICATES END OF DATA.

F—1/F—2

Appendix
System

Readiness Test

(to be supplied)

G-1/G-2

Appendix
System Utility
Command Files

Millenium supplies a command file, COPYSYS, which copies the operating system
from one disk to another. The general form of this command is

COPYSYS D1 D2

where D1 is the drive to copy from and D2 is the drive to copy to. For example, to
copy the operating system from drive O to drive 1, enter this command:

COPYSYS 0 1
When the command is invoked, the following files are copied from D1 to D2:

The resident UDOS binary load file

2. All UDOS overlays, including the Assembler and the Editor. They are all
binary load files.

3. The System Readiness Test
4. The COPYSYS command file

For the most rapid system response to commands to occur, the operating system
should be copied onto a disk before any other files are stored on it. This will allocate
the tracks closest to the outside to the system files, and minimize disk lead move-
ment when the overlays for the commands are brought into the overlay areas.

H—-1/H-2

	000
	001
	002
	003
	004
	005
	006
	007
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	0A-01
	0A-02
	0A-03
	0B-01
	0C-01
	0C-02
	0D-01
	0E-01
	0F-01
	0G-01
	0H-01

