
TEK SYSTEM
MANUAL

UTek
TOOLS

VOLUME2

Part No. 070-5486-00
Product Group 65

First Printing NOV 1984

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California. We
acknowledge the following individuals and institutions for their role in its development:

W. N. Joy M. K. McKusick
0. Babaouglu E.Cooper
R. S. Fabry David Musher
K. Sklower S. J. Leffler
Eric P. Allman

University of California at Berkeley
Department of Electrical Engineering and Computer Science

Portions of this document are taken from UNIX System V documentation,© 1984 AT&T
Technologies.

Portions of this document are taken from earlier UNIX releases© Bell Telephone
Laboratories.

The MH Mail System is based on software developed by the Rand Corporation.

Portions of this document are based on the RCS Revision Control System,© 1982
Walter F. Tichy.

This documentation is for the use of our customers, and not for general sale.

Copyright© 1984, Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending.

This document may not be copied in whole or in part, or otherwise reproduced except as
specifically permitted under U.S. copyright law, without the prior written consent of
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077.

Specifications subject to change.

TEKTRONIX, TEK, and UTek are trademarks of Tektronix, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

TEK 4014 is a registered trademark of Tektronix, Inc.

NROFFffROFF is a registered trademark of AT&T Technologies.

TRENDATA is a registered trademark of Trendata Corporation.

TELETYPE is a registered trademark of AT&T Teletype Corporation.

Revision
INFORMATION

PRODUCT: 6000 Family UTek Operating System: 64WP02, 64WP05, 64WP06
This manual supports the following versions of this product: V2.0

REV DATE DESCRIPTION

NOV 1984 Original Issue

Contents

Section SA Lint - A C Program Checker Page
Usage .. 5A-1

Design Philosophy .. 5A-2
Unused Variables and Functions 5A-2
Set/Used Information .. 5A-3
Control Flow ... 5A-3
Function Values .. 5A-4
Type Checking ... 5A-5
Type Casts ... 5A-5
Nonportable Character Use .. 5A-6
Assignments of Type long to int 5A-6
Strange Constructions ... 5A-7
History .. 5A-8
Pointer Alignment ... 5A-8
Multiple Uses and Side Effects 5A-9

Implementation .. 5A-9
Portability .. 5A-9
Silencing Lint ... 5A-11
Library Declaration Files ... 5A-12

Section 58 Yacc: Yet Another Compiler-Compiler
Yacc: Yet Another Compiler-Compiler 58-1
Introduction ... 58-2
Basic Specifications .. 58-4
Actions ... 58-6
Lexical Analysis ... 58-9
How the Parser Works .. 58-10
Ambiguity and Conflicts ... 58-14
Precedence ... 58-18
Error Handling ... 58-21
The Yacc Environment .. 58-23
Hints for Preparing Specifications 58-24

Input Style ... 58-24
Left Recursion .. 58-24
Lexical Tie-ins .. 58-25
Reserved Words .. 58-26

Advanced Topics ... 58-27
Simulating Error and Accept in Actions 58-27
Accessing Values in Enclosing Rules 58-27
Support for Arbitrary Value Types 58-28

Yacc Input Syntax .. 58-30
A Simple Example ... 58-32
An Advanced Example ... 58-35

UTekTOOLS

Contents

Section 5C Curses and Terminfo Package Page
Introduction ... 5C-1

Output. .. 5C-1
Input .. 5C-3
Highlighting .. 5C-5
Multiple Windows ... 5C-6
Multiple Terminals ... 5C-7
Low-level Terminfo Usage .. 5C-8
A Larger Example ... SC-10

List of Routines .. SC-12
Structure .. SC-12
Initialization .. 5C-13
Setting Options ... SC-14
Terminal Mode Setting ... SC-16
Window Manipulation ... SC-17
Causing Output to the Terminal SC-18
Writing on Window Structures SC-18
Moving the Cursor .. SC-19
Writing One Character ... SC-19
Writing a String ... 5C-19
Clearing Areas of the Screen SC-19
Inserting and Deleting Text ... 5C-20
Formatted Output ... 5C-20
Miscellaneous .. 5C-21
Input from a Window .. 5C-21
Input from the Terminal .. SC-21
Video Attributes .. 5C-22
Bells and Flashing Lights .. 5C-23
Portability Functions .. 5C-23
Delays ... 5C-23
Lower Level Functions ... SC-24
Cursor Motion .. SC-24
Terminfo Level .. SC-24

Operational Details ... SC-27
Insert and Delete Line and Character SC-27
Additional Terminals ... SC-27
Multiple Terminals ... SC-28
Video Attributes .. SC-29
Special Keys ... SC-30
Scrolling Region .. SC-30
Minicurses ... SC-30
TTY Mode Functions .. SC-32
Type-ahea~ Check .. SC-32
Portability .. SC-33

ii

Contents

Section 5D Curses Examples Page
Example Program-editor .. 5D-1
Example Program - highlight ... 5D-6
Example Program - scatter ... 5D-8
Example Program - show .. 5D-1 O
Example Program - termhl ... 5D-12
Example Program -two .. 5D-14
Example Program - window .. 5D-17

Section 5E The Fortran 77 Compiler
Introduction ... 5E-1

Usage ... 5E-1
Implementation Strategy ... 5E-3

Language Extensions .. 5E-3
Double Complex Data Type .. 5E-3
Internal Files ... 5E-3
Implicit Undefined Statement 5E-3
Recursion .. 5E-4
Automatic Storage .. 5E-4
Source Input Format .. 5E-4
Include Statement .. 5E-4
Binary Initialization Constants 5E-5
Character Strings ... SE-5
Hollerith Notation ... 5E-6
Equivalence Statements ... 5E-6
One-trip Do Loops .. 5E-6
Commas in Formatted Input .. 5E-6
Short Integers .. 5E-7
Additional Intrinsic Functions SE-7

Violations of the Fortran 77 Standard 5E-7
Double Precision Alignment .. 5E-7
Dummy Procedure Arguments SE-8
t and ti Formats ... 5E-8

Inter-procedure Interface ... 5E-8
Procedure Names .. 5E-8
Data Representations ... 5E-8
Return Values .. 5E-9
Argument Lists ... SE-1 O

File Formats ... 5E-11
Structure of Fortran Files .. 5E-11
Portability Considerations .. 5E-11
Preconnected Files and File Positions 5E-12

UTekTOOLS iii

Contents

Section 5F Ratfor - A Preprocessor for Rational Fortran Page
Introduction ... 5F-1
Language Description .. 5F-2

Statement Grouping ... 5F-3
The else Clause .. 5F-4
Nested if Statements .. 5F-5
Ambiguity in if-else Statements 5F-6
The switch Statement ... 5F-7
The do Statement ... 5F-7
The break and next Statements 5F-9
The while Statement .. 5F-9
The for Statement ... SF-11
The repeat-until Statement ... SF-12
More Information on break and next Statements SF-13
The return Statement .. SF-13

The Appearance of a Ratfor Program SF-14
Free-form Input ... SF-14
Translation Services ... SF-15
The define Statement .. SF-16
The include Statement. .. SF-17
Ratfor Difficulties ... SF-17

Implementation .. SF-18

Section 5G Using Pascal on Utek
Introduction ... 5G-1
Basic UTek Pascal ... 5G-1

A Larger Program ... 5G-3
Formatting the Program listing SG-9
Execution Profiling .. SG-1 O

Error Messages .. SG-12
Compiler Semantic Errors .. SG-17

Error Message Format .. SG-17
Incompatible Types .. SG-18
Scalar .. SG-18
Function and Procedure Type Errors SG-19
Non-readable and Non-writable Scalars SG-19
Expression Diagnostics ... SG-20
Type Equivalence .. SG-21
Unreachable Statements SG-21
Goto Directed to Structured Statements SG-21
Unused and Unset Variables SG-21
Compiler Panics ... SG-22

Input/Output Errors ... SG-22

iv

Contents

Section 5G Using Pascal on Utek (cont) Page
lnpuUOutput .. 5G-23

End-of-File and End-of-Line .. 5G-23
Files, Reset, and Rewrite .. 5G-26
Argc and Argv .. 5G-26

Details on the Components of the System 5G-28
Options .. 5G-28
Pxref .. 5G-31
Multi-file Programs .. 5G-31
Separate Compilation with pc 5G-32

Appendix to Wirth's Pascal Report 5G-34
Extensions to the Pascal Language 5G-34
Resolution of Undefined Specifications 5G-35
Restricitons and Limitations .. 5G-39

Added Types, Operators, Procedures and Functions 5G-40
Features Not Available in UTek Pascal 5G-41

Section SH Lexical Analyzer Generator (lex)
Introduction ... 5H-1
Lex Source .. 5H-4
Lex Regular Expressions ... 5H-5

Operators .. 5H-5
Character Classes .. 5H-6
Arbitrary Characters ... 5H-6
Optional Expressions .. 5H-7
Repeated Expressions .. 5H-7
Alternations and Grouping ... 5H-7
Context Sensitivity .. 5H-8
Repetitions and Definitions ... 5H-8

Lex Actions ... 5H-9
Ambiguous Source Rules ... 5H-12
Lex Source Definitions .. 5H-14
Usage .. 5H-16
Using Lex with Yacc .. 5H-16
Examples ... 5H-17
Left Context Sensitivity ... 5H-18
Character Set ... 5H-20
Summary of Source Format ... 5H-20
Problems and Bugs .. 5H-22

UTekTOOLS v

Contents

Section 51 The M4 Macro Processor Page
Introduction ... 51-1
Invoking M4 ... 51-1
Defining Macros ... 51-2
Quoting ... 51-3
Arguments .. 51-4
Built-in Arithmetic Macro .. 51-5
File Manipulation .. 51-6
System Command ... 51-7
Conditionals .. 51-7
String Manipualtion .. 51-7
Printing ... 51-8

Section 5J The Programming Language EFL
Introduction ... SJ-1

Purpose ... SJ-1
History .. 5J-1
Character Set .. 5J-1
Lines .. SJ-2
Tokens .. SJ-3
Macros .. SJ-6

Program Form ... SJ-6

Data Types and Variables ... SJ-8
Basic Types .. SJ-8
Constants .. SJ-8
Variables .. SJ-9
Arrays ... SJ-1 O
Structures ... SJ-1 O

Expressions ... SJ-11
Primaries .. SJ-11

Parnetheses ... 5J-13
Unary Operators .. 5J-14

Dynamic Structures ... SJ-17
Repetition Operator ... SJ-18
Constant Expressions ... SJ-18

Declarations .. SJ-18
Syntax .. SJ-18
Attributes .. SJ-19

Variable List .. SJ-21
The Initial Statement .. SJ-21

Executable Statements ... SJ-21
Expression Statements .. SJ-22

vi

Contents

Section SJ The Programming Language EFL (cont) Page

Blocks ... 5J-22
Test Statements .. 5J-22

Select Statement .. 5J-23
Loops ... 5J-24

While Statement ... 5J-24
For Statement .. 5J-24

Repeat Statement ... 5J-25
Repeat ... Until Statement 5J-25
Do Loops ... 5J-26

Branch Statements .. 5J-26
Goto Statement .. 5J-26
Break Statement ... 5J-27
Next Statement .. 5J-28
Return .. 5J-28

Input/Output Statements ... 5J-28
Procedures ... 5J-31

Procedure Statement. .. 5J-31
End Statement ... 5J-31
Argument Association ... 5J-31
Execution and Return Values 5J-32
Known Functions ... SJ-32

Converting Older Programs ... SJ-33
Compiler Options .. 5J-37
Examples ... 5J-39
Portability ... 5J-43
EFL Design Considerations ... 5J-43

Relations Between EFL and Ratfor 5J-44
Compiler ... 5J-44
Constraints on the Design of the EFL Language 5J-45

Section SK Introduction to Debugging
Overview ... 5K-1
Object Files ... 5K-1
Debugger Features .. 5K-3

Breakpoints .. 5K-3
Execution Control ... SK-3
Accessing Variables ... 5K-4
Backtraces ... 5K-4
Termination .. 5K-4

UTekTOOLS vii

Contents

Section 5L Using the adb Debugger Page
~~~~~~~-=~~~~~~--=-=o___~~~~--~~~~~~~ 

Introduction ......................................................... 5L-1 
Overview ........................................................... 5L-1 
Command Requests ................................................. 5L-1 
Leaving adb ......................................................... 5L-2 
Addresses and Their Formats . . . . . . . . . . . . ............................ 5L-2 
Commands ......................................................... 5L-3 

Command Modifiers ............................................... 5L-4 
Debugging a Core Image .......................................... 5L-5 
Setting Breakpoints ............................................... 5L-8 
Advanced Breakpoint Usage ....................................... 5L-12 
Other Breakpoint Requests ........................................ 5L-13 

Maps ............................................................... 5L-14 
Advanced Uses of adb ................................................ 5L-17 

Formatted Dump .................................................. 5L-17 
Converting Values ................................................ 5L-19 

Writing to Files ...................................................... 5L-20 
Anomalies .......................................................... 5L-20 

Section 5M Using sdb, a Symbolic Debugger 
Overview ........................................................... 5M-1 
Invoking sdb ........................................................ 5M-1 
Debugging Programs ................................................. 5M-2 

Tracing Procedure Calls ........................................... 5M-2 
Setting Breakpoints ............................................... 5M-2 
Executing a Program with sdb ...................................... 5M-3 
Continuing from a Breakpoint ....................................... 5M-3 
Deleting Breakpoints .............................................. 5M-3 
Leaving the Debugger ............................................. 5M-3 

Displaying and Manipulating the Source File ............................. 5M-4 

Examining Variables ................................................. 5M-5 
Example sdb Routine ................................................. 5M-8 

Section 6A RCS - A Revision Control System 
Identifying RCS Files ................................................. 6A-1 
Checking In and Checking Out. ........................................ 6A-2 
Locking the File ...................................................... 6A-3 
Keyword Substitution ................................................. 6A-4 
Looking at the Revision History ........................................ 6A-5 
Accessing RCS and Working Files ..................................... 6A-6 
For Further Information ............................................... 6A-6 

viii 



Contents 

Section 68 Using Make Page 
Overview ........................................................... 68-1 

Basic Features ................................................... 68-1 
Description Files ..................................................... 68-3 

Parts of the Description Files ....................................... 68-4 
Target Rules ................................................... 68-4 
Commands ................................................... 68-5 
Suffix Rules ................................................... 68-7 
Defining Macros ............................................... 68-7 
Special Macros ................................................ 68-9 
Special Entries ................................................ 68-11 
Description File Syntax ......................................... 68-12 

Invoking the Make Command .......................................... 68-13 
Advanced Uses of Make .............................................. 68-14 

How Make Reads Default Rules ..................................... 68-14 
Make and the Description File ................................... 68-14 
Make and Default Rules ........................................ 68-15 
Writing Default Rules ........................................... 68-16 

Multi-Level Description Files ........................................ 68-17 
Maintaining Archive Libraries .................................... 68-19 
Debugging Make: the -d Option .................................. 68-20 
Debugging Output: Commands .................................. 68-21 
Debugging Output: Dependencies ............................... 68-22 
Make and the -p Option ......................................... 68-24 

Section 6C Using Make and RCS Together 
Introduction ......................................................... 6C-1 
Directory Searching .................................................. 6C-1 

Writing Special RCS Suffix Rules ................................... 6C-2 
Suffix Conversion Rules for RCS Files .................................. 6C-3 

Section 6D The Awk Programming Language 
General ............................................................ 6D-1 
Program Structure ................................................... 6D-1 
Lexical Conventions .................................................. 6D-2 

Numeric Constants ................................................ 60-3 
String Constants .................................................. 6D-3 
Keywords ........................................................ 6D-3 
Identifiers ........................................................ 6D-3 
Operators ........................................................ 6D-4 
Record and Field Tokens ........................................... 6D-6 
Record Separators ................................................ 6D-7 
Field Separator ................................................... 6D-7 
Multiline Records ................................................. 6D-7 

UTekTOOLS ix 



Contents 

Section 6D The Awk Programming Language (cont) Page 

Output Record and Field Separators ................................. 60-7 
Comments ....................................................... 60-8 
Separators and Brackets ........................................... 60-8 

Primary Expressions ................................................. 60-8 
Terms .............................................................. 60-13 
Expressions ......................................................... 60-14 
Using Awk .......................................................... 60-15 
Input: Records and Fields ............................................. 60-17 
Input: From the Command Line ........................................ 60-18 
Output: Printing ...................................................... 60-19 
Output: To Different Files .............................................. 60-22 
Output: To Pipes ..................................................... 60-23 

Comments ....................................................... 60-24 
Patterns ............................................................ 60-24 

BEGIN and END .................................................. 60-24 
Relational Expressions ............................................ 60-25 
Regular Expressions .............................................. 60-26 
Combinations of Patterns .......................................... 60-28 
Pattern Ranges ................................................... 60-28 

Actions ............................................................. 60-29 
Variables, Expressions, and Assignments ............................ 60-29 
Initialization of Variables ........................................... 60-30 
Field Variables .................................................... 60-31 
String Concatenation .............................................. 60-31 
Special Variables ................................................. 60-32 
Type ............................................................ 60-32 
Arrays ........................................................... 60-33 

Built-in Functions .................................................... 60-34 
Control Flow ........................................................ 60-36 
Report Generation ................................................... 6D-39 
Cooperation with the Shell ............................................ 6D-40 
Miscellaneous Hints .................................................. 60-41 

Section 7 A Interactive Desk Calculator (DC) 
Introduction ......................................................... 7A-1 
DC Commands ...................................................... 7A-1 
Internal Representation of Numbers .................................... 7A-3 
The Allocator ........................................................ 7 A-4 
Internal Arithmetic ................................................... 7A-4 

x 



Contents 

Section 7 A Interactive Desk Calculator (DC) (cont) Page 

Division ............................................................. 7 A-6 
Remainder .......................................................... 7 A-6 
Square Root ........................................................ 7A-6 
Exponentiation ...................................................... 7 A-6 
Input Conversion and Base ............................................ 7A-7 
Output Commands ................................................... 7 A-7 
Output Format and Base .............................................. 7A-7 
Internal Registers .................................................... 7A-7 
Stack Commands .................................................... 7 A-8 
S.ubroutine Definitions and Calls ....................................... 7 A-8 
Internal Registers-Programming DC ................................. 7A-8 
Pushdown Registers and Arrays ....................................... 7 A-8 
Miscellaneous Commands ............................................ 7 A-9 
Design Choices ...................................................... 7 A-9 

Section 78 Arbitrary Precision Desk Calculator Language (BC) 

Introduction ......................................................... 7B-1 
Bases .............................................................. 7B-3 
Scaling ............................................................. 7B-4 
Functions ........................................................... 7B-5 
Subscripted Variables ................................................ 7B-6 
Control Statements .................................................. 7B-7 
Additional Features .................................................. 7B-9 
Summary ........................................................... 7B-11 

Notation ......................................................... 7B-11 
Tokens .......................................................... 7B-11 
Expressions ...................................................... 7B-11 

Named Expresisons ............................................ 7B-11 
Identifiers ..................................................... 7B-12 
Array-name-[ expression] ........................................ 7B-12 
Scale, lbase, and Obase ........................................ 7B-12 
Functio Calls .................................................. 7B-12 

Relational Operators .............................................. 7B-14 
Storage Classes .................................................. 7B-15 
Statements ...................................................... 7B-15 

UTekTOOLS xi 



Contents 

Figures Page 
5H-1 
5H-2 
5K-1 
5L-1 
6A-1 
6D-1 
6D-2 
6D-3 
6D-4 
6D-5 
6D-6 
6D-7 
6D-8 
6D-9 
6D-10 

Overview of Lex ............................................... 5H-2 
Lex with Yacc ................................................. 5H-3 
Object Files .................................................. 5K-2 
adbAddress Maps ............................................ 5L-15 
The RCS File Cabinet .......................................... 6A-2 
Strings Used as Keywords ...................................... 6D-3 
Symbols and Descriptions for Assignment Operators .............. 6D-4 
Symbols and Descriptions for Aritmetic Operators ................. 6D-5 
Symbols and Descriptions for Relational Operators ................ 6D-5 
Symbols and Descriptions for Logical Operators ................... 6D-6 
Symbols and Descriptions for Regular Expression Pattern .......... 6D-6 
Numeric Values for String Constants ............................. 6D-9 
String Values for String Constants ............................... 6D-9 
Built-in Functions for Arithmetic and String Operators .............. 6D-11 
Expressions for String Functions ................................ 6D-11 

Examples 
5C-1 Framework of a Curses Program ................................... 5C-2 
5C-2 Use of Attributes ................................................. 5C-5 
5C-3 Sending a Message to Several Terminals ............................ 5C-8 
5C-4 Terminfo Level Framework ........................................ 5C-9 
5L-1 Program with Allocation Error ...................................... 5L-5 

Tables 
5C-1 Values Returned by keypad Keys ................................... 5C-4 
5H-1 Operators and Descriptions ....................................... 5H-22 
5J-1 Reserved Words with Special Meaning .............................. 5J-4 
SJ-2 Relation Between Binary Operation A and B ......................... 5J-15 
SJ-3 Relation Between Binary Operation A and B . . ...................... 5J-15 
SJ-4 Truth Tables ..................................................... SJ-16 
SJ-5 Relation Between Arithmetic Quantities ............................. SJ-16 
SJ-6 Keywords for FORTRAN and EFL .................................. SJ-34 
SJ-7 Minimum and Maximum Functions ................................. SJ-36 
SJ-8 Options for Setting Default Formats ................................. SJ-38 
SJ-9 Size and Alignment Options for FORTRAN Type ..................... SJ-38 
SL-1 adb Command Summary .......................................... SL-21 
5L-2 adb Format Summary ............................................. SL-21 
SL-3 adb Expression Summary ......................................... SL-22 
5M-1 Example sdb Commands .......................................... SM-1 O 
6A-1 RCS Commands ................................................. 6A-6 

xii 



5A 
Lint - A C Program 
Checker 

Lint examines C source programs, detecting a number of bugs and obscurities. It 
enforces the type rules of C more strictly than the C compilers. You can also use it 
to enforce portability restrictions. Another option detects a number of wasteful, error 
prone constructions that are still legal in C. 

Lint accepts multiple input files and library specifications, and checks them for 
consistency. It runs more slowly than the C compiler, but it examines a program 
more carefully. 

This document discusses the use of lint, gives an overview of the implementation, 
and gives some hints on the writing of machine independent C code. 

Usage 
Suppose there are two C source files, file I. c and file2.c, which are ordinarily 
compiled and loaded together. 

lint filel.c jile2.c 

This produces messages describing inconsistencies and inefficiencies in the 
programs. The program enforces the typing rules of C more strictly than the C 
compilers enforce them. For example: 

lint -p jilel.c file2.c 

This produces additional messages that relate to the portability of the programs to 
other operating systems and machines. Replacing the -p by -h produces 
messages about various error-prone or wasteful constructions that are not bugs. 
Entering -hp detects both portability problems and wasteful constructions. 

The next several topics describe the major messages; the last topics discuss the 
implementation and give suggestions for writing portable C. 

UTek TOOLS 5A-1 



Lint - A C Program Checker 

5A-2 

Design Philosophy 
Many of the facts that lint needs may be impossible to discover. For example, 
whether a given function in a program ever gets called may depend on the input 
data. Thus, most of the lint algorithms are a compromise. If a function is never 
mentioned, it can never be called. If a function is mentioned, lint assumes it can be 
called; this is not necessarily so, but in practice is quite reasonable. 

Lint tries to give highly relevant information. Messages of the form xxx might be a 
bug are easy to generate, but are acceptable only in proportion to the fraction of real 
bugs they uncover. 

Keeping these issues in mind, we now consider in more detail the classes of 
messages that lint produces. 

Unused Variables and Functions 
As sets of programs evolve and develop, previously-used variables and arguments 
to functions can become unused. External variables, or even entire functions, may 
become unnecessary and yet not be removed from the source. These errors rarely 
cause working programs to fail, but they are a source of inefficiency and make 
programs harder to understand and change. Moreover, information about such 
unused variables and functions can sometimes help discover bugs; if a function 
does a necessary job and is never called, something is wrong! 

Lint complains about variables and functions that are defined but not otherwise 
mentioned. An exception is variables that are declared through explicit external 
statements but are never referenced. Thus the statement: 

extern float sin(); 

evokes no comment if sin is never used. This agrees with the semantics of the C 
compiler. In some cases, these unused external declarations might be of some 
interest. They can be discovered by adding the -x option to the lint invocation. 

Certain styles of programming require many functions to be written with similar 
interfaces. Frequently, some of the arguments may be unused in many of the calls. 
The -v option is available to suppress the printing of complaints about unused 
arguments. When -v is in effect, no messages are produced about unused 
arguments, except for those arguments that are unused and also declared as 
register arguments. This can be considered an active (and preventable) waste of 
the register resources of the machine. 

In one case, information about unused or undefined variables is more distracting 
than helpful. This is when lint is applied to some, but not all, files that are to be 
loaded together. In this case, many of the functions and variables defined may not 
be used, and, conversely, many functions and variables defined elsewhere may be 
used. You can use the -u option to suppress the spurious messages, which might 
otherwise appear. 



Lint - A C Program Checker 

Set/Used Information 
Lint attempts to detect cases where a variable is used before it is set. This is very 
difficult to do well; many algorithms use large resources and still produce messages 
saying a program is valid. Lint detects local variables (automatic and register 
storage classes) whose first use is earlier in the input file than the first assignment to 
the variable. Lint assumes that taking the address of a variable uses that variable, 
since the actual use may occur at any later time. 

The algorithm to check use of variables is very simple to implement, since it is 
restricted to the physical orders of the variables in the file. It does mean that lint 
complains about some programs that are legal, but these programs might be 
considered bad on stylistic grounds . Because static and external variables are 
initialized to 0, no meaningful information can be discovered about their uses. The 
algorithm deals correctly, however, with initialized automatic variables and variables 
that are used in the expression that first sets them. 

The set and/or used information also permits recognition of those local variables that 
are set and never used. These form a frequent source of inefficiencies and may 
also be symptomatic of bugs. 

Control Flow 
Lint tries to detect unreachable portions of the programs that it processes. It 
complains about unlabeled statements immediately following goto, break, continue, 
or return statements. It tries to detect loops that can never be left at the bottom, 
detecting the special cases while( 1 ) and for(;;) as infinite loops. Lint also 
complains about loops that cannot be entered at the top. 

Lint has no way of detecting functions that are called, but never return. Thus, a call 
to exit can cause unreachable code that lint does not detect. The most serious 
effects of this deficiency are in the determination of returned function values. 

Usually, lint does not complain about one kind of unreachable statement: a break 
statement that cannot be reached. Programs generated by yacc, frequently 
generate unreachable break statements. The -0 option in the C compiler often 
eliminates the resulting object code inefficiency. Thus, these unreached statements 
are of little importance; usually, you can't do anything about them. The resulting 
messages clutter up the lint output. If these messages are desired, lint can be 
invoked with the -b option. 

UTek TOOLS SA-3 



Lint - A C Program Checker 

Function Values 
Sometimes functions return values that are never used; sometimes programs 
incorrectly use function values that have never been returned. Lint addresses this 
problem in a number of ways. 

Locally, within a function definition, the appearance of both 

return( expr ); 

and 

return; 

statements is cause for alarm; lint gives the message: 

function name contains return(e) and return 

The problem is detecting when a function return is implied by control flow reaching 
the end of the function. For example: 

f (aU(a) { 
if (a) return (J); 
g (); 

} 

Notice that, if a tests false, f calls g, and then return with no defined return value; 
this triggers a complaint from lint. If g, like exit, never returns, the message is still 
produced when nothing is wrong. In practice, some potentially serious bugs have 
been discovered by this feature; but it also accounts for a substantial number of the 
unnecessary messages produced by lint. 

On a global scale, lint detects cases where a function returns a value, but that is 
sometimes, or always, unused. When the value is always unused, it may constitute 
an inefficiency in the function definition. When the value is sometimes unused, it 
may represent bad style (for example, not testing for error conditions). 

This condition is detected using a function value when the function does not return 
one. This bug has been observed in working programs; the desired function value 
was computed in the function return register! 

SA-4 



Lint - A C Program Checker 

Type Checking 
Lint enforces the type checking rules of C more strictly than the compilers do. The 
additional checking is in four major areas: 

• across certain binary operators and implied assignments 

• at the structure selection operators 

• between the definition and uses of functions 

• in the use of enumerations 

There are a number of operators that have an implied balancing between types of 
the operands. The assignment, conditional (? : ), and relational operators have this 
property. The argument of a return statement, and expressions used in initialization 
also suffer similar conversions. In these operations, char, short, int, tong, 
unsigned, float, and double types may be freely intermixed. The types of pointers 
must agree exactly, except that arrays of x's can, of course, be intermixed with 
pointers to x's. 

The type checking rules also require that, in structure references, the left operand of 
the-> be a pointer to structure, the left operand of the . be a structure, and the 
right operand of these operators be a member of the structure implied by the left 
operand. Similar checking is done for references to unions. 

Strict rules apply to function argument and return value matching. The types float 
and double may be freely matched, as may the types char, short, int, and 
unsigned. Also, pointers can be matched with the associated arrays. Aside from 
this, all actual arguments must agree in type with their declared counterparts. 

With enumerations, checks are made that enumeration variables or members are not 
mixed with other types or other enumerations, and that the only operations applied 
are = , initialization, = =, ! =, and function arguments and return values. 

Type Casts 
The type cast feature in C was introduced largely as an aid to producing more 
portable programs. Consider the assignment: 

p = 1 ; 

where pis a character pointer. Lint will quite rightly complain. Now, consider the 
assignment: 

p = (char *)1 

UTek TOOLS 5A-5 



Lint - A C Program Checker 

In this case a cast is used to convert the integer to a character pointer. It seems 
harsh for lint to continue to complain about this. On the other hand, if this code is 
moved to another machine, such code is looked at carefully. The -c option 
controls the printing of comments about casts. When -c is in effect, casts are 
treated as though they were assignments subject to complaint. Otherwise, all legal 
casts are passed without comment, no matter how strange the type mixing seems to 
be. 

Nonportable Character Use 
On the PDP-11, characters are signed quantities, with a range from -128 to 127. 
On most of the other C implementations, characters take on only positive values. 
Thus, lint flags certain comparisons and assignments as being illegal or 
nonportable. For example, the fragment: 

char c; 

if( (c = getchar( )) < 0) .••. 

works on the PDP-11, but fails on machines where characters always take on 
positive values. The real solution is to declare can integer, since getchar is actually 
returning integer values. In any case, lint will say nonportable character comparison. 

A similar issue arises with bit-fields. When assignments of constant values are 
made to bit-fields, the field may be too small to hold the value. This is especially 
true because, on some machines, bit-fields are considered as signed quantities. 
While it may seem unintuitive to consider that a two-bit field declared of type int 
cannot hold the value 3, the problem disappears if the bit-field is declared to have 
type unsigned. 

Assignments of Type long to int 
Bugs may arise from the assignment of long to an int, which loses accuracy. This 
may happen in programs that have been incompletely converted to use typedefs. 
When a typedef variable is changed from int to long, the program may stop working 
because some intermediate results are assigned to ints, losing accuracy. Since 
there are a number of legitimate reasons for assigning longs to ints, the detection of 
these assignments is enabled by the -a option. 

5A-6 



Lint - A C Program Checker 

Strange Constructions 
Several perfectly legal, but somewhat strange, constructions are flagged by lint. 
The messages encourage better code quality, clearer style, and may even point out 
bugs. The -h option enables these checks. For example, in the statement 

*P+ +; 

the* does nothing; this provokes the message null effect from lint. The program 
fragment 

unsigned x; 
if( x <0) ... 

is clearly somewhat strange; the test will never succeed. Similarly, the test 

if( x >0) ... 

is equivalent to 

if( x ! = 0) 

which may not be the intended action. Lint says degenerate unsigned comparison in 
these cases. If you enter: 

if( 1 ! = 0) .... 

lint reports constant in conditional context, since the comparison of 1 with 0 gives a 
constant result. 

Another construction that lint detects involves operator precedence. Bugs that arise 
from misunderstandings about the precedence of operators can be accentuated by 
spacing and formatting, making such bugs extremely hard to find. For example, the 
statements: 

if( x&077 = = 0 ) ... 

or 

X< <2 + 40 

probably do not do what was intended. The best solution is to parenthesize such 
expressions, and lint encourages this with an appropriate message. 

Finally, when the -h option is in effect, lint complains about variables which are 
redeclared in inner blocks in a way that conflicts with their use in outer blocks. This 
is legal, but is considered by many to be bad style, unnecessary, and frequently a 
bug. 

UTek TOOLS SA-7 



Lint - A C Program Checker 

History 
There are several forms of older syntax that are being officially discouraged. These 
fall into two classes, assignment operators and initialization. 

The older forms of assignment operators (for example, = + , = -) can cause 
ambiguous expressions, such as: 

a =-1; 

this can be interpreted as either: 

a=- 1; 

or 

a = -1; 

The situation is especially perplexing if this kind of ambiguity arises as the result of 
a macro substitution. The newer, and preferred, operators ( + =, - =, etc. ) have 
no such ambiguities. To spur the abandonment of the older forms, lint complains 
about these old fashioned operators. 

A similar issue arises with initialization. The older language allowed: 

int x 1 ; 

to initialize x to 1 . This also caused syntactic difficulties. For example: 

int x ( -1 ) ; 

This looks somewhat like the beginning of a function declaration: 

int x ( y) { ... 

The compiler must read past this x to be sure what the declaration really is. Again, 
the problem is more perplexing when the initializer involves a macro. The current 
syntax places an equal sign (=)between the variable and the initializer: 

int x = -1 ; 

This is free of any possible syntactic ambiguity. 

Pointer Alignment 
Certain pointer assignments are legal on some machines, and illegal on others, due 
entirely to alignment restrictions. For example, on the PDP-11, it is legal to assign 
integer pointers to double pointers, since double precision values can begin on any 
integer boundary. On the Honeywell 6000, double precision values must begin on 
even-word boundaries; thus, not all such assignments make sense. Lint tries to 
detect cases where pointers are assigned to other pointers, and such alignment 
problems might arise. The message possible pointer alignment problem results 
whenever either the -p or -h options are in effect. 

5A-8 



Lint - A C Program Checker 

Multiple Uses and Side Effects 
In complicated expressions, the best order in which to evaluate subexpressions may 
be highly machine dependent. For example, on machines (like the PDP-11) in 
which the stack runs backwards, function arguments are probably best evaluated 
from right-to-left; on machines with a stack running forward, left-to-right seems 
most attractive. Function calls embedded as arguments of other functions may or 
may not be treated similarly to ordinary arguments. Similar issues arise with other 
operators that have side effects, such as the assignment operators and the 
increment and decrement operators. 

In order not to compromise the efficiency of Con a particular machine, the C 
language leaves the order of evaluation of complicated expressions up to the local 
compiler. The various C compilers have considerable differences in the order in 
which they evaluate complicated expressions. In particular, if any variable is 
changed by a side effect and also used elsewhere in the same expression, the result 
is explicitly undefined. 

Lint checks for the important special case where a simple scalar variable is affected. 
For example, the statement: 

a[i] = b[i+ +]; 

draws the complaint: 

warning: i evaluation order undefined 

Implementation 
Lint consists of two programs and a driver. The first program is a version of the C 
Compiler. This compiler does lexical and syntax analysis on the input text, 
constructs and maintains symbol tables, and builds trees for expressions. Instead of 
writing an intermediate file that is passed to a code generator, as the other 
compilers do, lint produces an intermediate file that consists of lines of ASCII text. 
Each line contains an external variable name, an encoding of the context in which it 
was seen (use, definition, declaration, etc.), a type specifier, and a source file name 
and line number. The information about variables local to a function or file is 
collected by accessing the symbol table, and examining the expression trees. 

Comments about local problems are produced as detected. The information about 
external names is collected onto an intermediate file. After all the source files and 
library descriptions have been collected, the intermediate file is sorted to bring all 
information collected about a given external name together. The second compiler 
then reads the lines from the intermediate file and compares all of the definitions, 
declarations, and uses for consistency. 

The driver controls this process and is responsible for making the options available 
to both passes of lint. 

UTek TOOLS 5A-9 



Lint - A C Program Checker 

Portability 
Con the Honeywell and IBM systems is used, in part, to write system code for the 
host operating system. This means that the implementation of C tends to follow 
local conventions rather than adhere strictly to UNIX system conventions. Despite 
these differences, many C programs have been successfully moved to GCOS and 
the various IBM installations with little effort. This section describes some of the 
differences between the implementations and discusses the lint features that 
encourage portability. 

Uninitialized external variables are treated differently in different implementations of 
C. Suppose two files both contain a declaration without initialization, such as int a ; 
outside of any function. The UTek loader resolves these declarations and causes 
only a single word of storage to be set aside for a. Under the GCOS and IBM 
implementations, this is not feasible so each' such declaration causes a word of 
storage to be set aside and called a. When loading or library editing takes place, 
this causes fatal conflicts, that prevent the proper operation of the program. If lint is 
invoked with the -p option, it detects such multiple definitions. 

A related difficulty comes from the amount of information retained about external 
names during the loading process. On the UTek system, externally known names 
have seven significant characters, and distinguish between upper and lowercase. 
On the IBM systems, there are eight significant characters, but the case distinction 
is lost. On GCOS, there are only six characters, of a single case. This leads to 
situations where programs run on the UTek system, but encounter loader problems 
on the IBM or GCOS systems. Lint -p causes all external symbols to be mapped 
to one case and truncated to six characters, providing a worst-case analysis. 

A number of differences arise in the area of character handling: characters in the 
UTek system are 8-bit ascii, while they are 8-bit EBCDIC on the IBM, and 9-bit 
ascii on GCOS. Moreover, character strings go from high to low bit positions (left to 
right) on GCOS and IBM, and low to high (right to left) on the PDP-11. This means 
that code attempting to construct strings out of character constants, or attempting to 
use characters as indexes into arrays, must be looked at with great suspicion. Lint 
is of little help here, except to flag multi-character character constants. 

The different word sizes cause less trouble than might be expected, at least when 
moving from the UTek system (16-bit words) to the IBM (32 bits) or GCOS (36 bits). 
The main problems are likely to arise in shifting or masking. C now supports a bit
field facility, which can be used to write much of this code in a reasonably portable 
way. Frequently, portability of such code can be enhanced by slight rearrangements 
in coding style. Many of the incompatibilities seem to have the flavor of writing 

x &= 0177700; 

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on 
GCOS and IBM. If the bit field feature cannot be used, the same effect can be 
obtained by writing 

x &= - 077; 

SA-10 



Lint - A C Program Checker 

which works on all these machines. The right shift operator is arithmetic shift on the 
PDP-11, and logical shift on most other machines. To obtain a logical shift on all 
machines, the left operand can be typed unsigned. Characters are considered 
signed integers on the PDP-11, and unsigned on the other machines. This 
persistence of the sign bit may be reasonably considered a bug in the PDP-11 
hardware that has infiltrated itself into the C language. If there were a good way to 
discover the programs that would be affected, C could be changed; in any case, lint 
is no help here. 

The above discussion may have made the problem of portability seem bigger than it 
in fact is. The most serious bar to the portability of UTek system utilities has been 
the inability to mimic essential UTek system functions on the other systems. The 
inability to seek to a random character position in a text file, or to establish a pipe 
between processes, has involved far more rewriting and debugging than any of the 
differences in C compilers. On the other hand, lint has been very helpful in moving 
the UTek operating system and associated utility programs to other machines. 

Silencing Lint 
There are occasions when the programmer is smarter than lint. There may be valid 
reasons for "illegal" type casts, functions with a variable number of arguments, etc. 
Moreover, as specified above, the flow of control information produced by lint often 
has blind spots, causing occasional spurious messages about reasonable programs. 
So it is useful to communicate with lint and suppress parts of it. 

Lint now recognizes a number of words when they are embedded in comments. 
The preprocessor passes comments through to its output, instead of deleting them 
as it did previously. Thus, lint directives are invisible to the compilers. 

The first directive is concerned with control flow information. If a particular place in 
the program cannot be reached, but this is not apparent to lint, enter this at the 
appropriate place in the program: 

/* NOTREACHED */ 

If you want to turn off strict type checking for the next expression, use the directive: 

/* NOSTRICT */ 

The -v option can be turned on for one function by the directive: 

/* ARGSUSED *I 

UTek TOOLS SA-11 



Lint - A C Program Checker 

Complaints about variable number of arguments in calls to a function can be turned 
off by this directive before the function definition: 

I* VARARGS *I 

Sometimes you want to check the first several arguments, and leave the later 
arguments unchecked. This can be done by following the VARARGS keyword 
immediately with a digit giving the number of arguments that should be checked: 

I* VARARGS2 *I 

This causes the first two arguments to be checked, the others unchecked. 

Finally, the directive: 

I* LINTLIBRARY *I 

at the head of a file identifies this file as a library declaration file. 

Library Declaration Files 
Lint accepts certain library directives, such as: 

-ly 

It also tests the source files for compatibility with these libraries. This is done by 
accessing library description files whose names are constructed from the library 
directives. These files all begin with the directive: 

/* LINTLIBRARY */ 

This is followed by a series of dummy function definitions. The critical parts of these 
definitions are the declaration of the function return type, whether the dummy 
function returns a value, and the number and types of arguments to the function. 
The VARARGS and ARGSUSED directives can be used to specify features of the 
library functions. 

Lint library files are processed similarly to ordinary source files. The only difference 
is that functions that are defined on a library file, but are not used on a source file, 
draw no complaints. Lint does not simulate a full library search algorithm and 
complains if the source files contain a redefinition of a library routine. 

By default, lint checks the programs it is given against a standard library file, which 
contains descriptions of the programs normally loaded when a C program is run. 
When the -p option is in effect, another file is checked containing descriptions of 
the standard 1/0 library routines, which are expected to be portable across various 
machines. The -n option can be used to suppress all library checking. 

SA-12 



Yacc: Yet Another 
Compiler-Compiler 

58 

Yacc: Yet Another Compiler
Compiler 
Computer program input generally has some structure; in fact, every computer 
program that does input can be thought of as defining an "input language" that it 
accepts. An input language can be as complex as a programming language, or as 
simple as a sequence of numbers. Unfortunately, usual input facilities are limited, 
difficult to use, and often are lax about checking their inputs for validity. 

Yacc provides a general tool for describing the input to a computer program. You 
specify the structures of the input, together with the code to be invoked as each 
such structure is recognized. Yacc turns such a specification into a subroutine that 
handles the input process; frequently, it is convenient and appropriate to have most 
of the flow of control in your application handled by this subroutine. 

The input subroutine produced by Yacc calls a user-supplied routine to return the 
next basic input item. Thus, you can specify your input in terms of individual input 
characters, or in terms of higher-level constructs, such as names and numbers. 
The user-supplied routine may also handle idiomatic features, such as comment 
and continuation conventions, which typically defy easy grammatical specification. 

Yacc is written in portable C. The class of specifications accepted is a very general 
one: LALR(l) grammars with disambiguating rules. 

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been used 
for less conventional languages, including a phototypesetter language, several desk 
calculator languages, a document retrieval system, and a FORTRAN debugging 
system. 

UTek TOOLS 58-1 



Yacc: Yet Another Compiler-Compiler 

Introduction 
Yacc provides a general tool for imposing structure on the input to a computer 
program. You prepare a specification of the input process; this includes rules 
describing the input structure, code to be invoked when these rules are recognized, 
and a low-level routine to do the basic input. Yacc then generates a function to 
control the input process. This function, called a parser, calls the user-supplied 
low-level input routine (the lexical analyzer ) to pick up the basic items (called tokens 
) from the input stream. These tokens are organized according to the input structure 
rules, called grammar rules. When one of these rules has been recognized, then 
user code supplied for this rule, an action , is invoked. Actions have the ability to 
return values and make use of the values of other actions. 

Yacc is written in a portable dialect of C and the actions, and output subroutine, are 
in Caswell. Moreover, many of the syntactic conventions of Yacc follow C. 

The heart of the input specification is a collection of grammar rules. Each rule 
describes an allowable structure and gives it a name. For example, one grammar 
rule might be: 

date : month_name day ',' year ; 

Here, date , month_name , day, and year represent structures of interest in the 
input process; presumably, month_name, day , and year are defined elsewhere. 
The comma (,) is enclosed in single quotes (' '); this implies that the comma is to 
appear literally in the input. The colon and semicolon merely serve as punctuation 
in the rule, and have no significance in controlling the input. Thus, with proper 
definitions, the input 

July 4, 1776 

might be matched by the above rule. 

An important part of the input process is carried out by the lexical analyzer. This 
user routine reads the input stream, recognizing the lower-level structures, and 
communicates these tokens to the parser. For historical reasons, a structure 
recognized by the lexical analyzer is called a terminal symbol, while the structure 
recognized by the parser is called a nonterminal symbol. To avoid confusion, 
terminal symbols are usually referred to as tokens. 

58-2 



Yacc: Yet Another Complier-Compiler 

There is considerable leeway in deciding whether to recognize structures using the 
lexical analyzer or grammar rules. For example, the rules 

monthJlame 

monthJlame 

monthJlame 

might be used in the above example. The lexical analyzer would only need to 
recognize individual letters, and monthJlame would be a nonterminal symbol. Such 
low-level rules tend to waste time and space, and may complicate the specification 
beyond Yacc's ability to deal with it. Usually, the lexical analyzer would recognize 
the month names, and return an indication that a monthJlame was seen; in this case, 
month_name would be a token. 

Literal characters such as (,) must also be passed through the lexical analyzer, and 
are also considered tokens. 

Specification files are very flexible. It is realively easy to add to the above example 
the rule 

date : month '/' day '/' year 

allowing 

7 / 4 / 1776 

as a synonym for 

July 4, 1776 

In most cases, this new rule could be "slipped in" to a working system with minimal 
effort, and little danger of disrupting existing input. 

The input being read may not conform to the specifications. These input errors are 
detected as early as is theoretically possible with a left-to-right scan. Thus, not 
only is the chance of reading and computing with bad input data substantially 
reduced, but the bad data can usually be quickly found. Error handling, provided as 
part of the input specifications, permits the reentry of bad data, or the continuation 
of the input process after skipping over the bad data. 

In some cases, Yacc fails to produce a parser when given a set of specifications. 
For example, the specifications may be self-contradictory, or they may require a 
more powerful recognition mechanism than that available to Yacc. The former 
cases represent design errors; the latter cases can often be corrected by making the 
lexical analyzer more powerful, or by rewriting some of the grammar rules. While 
Yacc cannot handle all possible specifications, its power compares favorably with 
similar systems; moreover, the constructions that are difficult for Yacc to handle are 
also frequently difficult for human beings to handle. Some users have reported that 
the discipline of formulating valid Yacc specifications for their input revealed errors 
of conception or design early in the program development. 

UTek TOOLS 58-3 



Yacc: Yet Another Compiler-Compiler 

The theory underlying Yacc has been described elsewhere. Yacc has been 
extensively used in numerous practical applications, including lint, and the Portable 
C Compiler. 

The next several sections describe the basic process of preparing a Yacc 
specification. Basic Specifications describes the preparation of grammar rules, 
Actions the preparation of the user supplied actions associated with these rules, and 
Lexical Analysis the preparation of lexical analyzers. How the Parser Works 
describes the operation of the parser. Ambiguity and Conflicts discusses various 
reasons why Yacc may be unable to produce a parser from a specification, and what 
to do about it. Precedence describes a simple mechanism for handling operator 
precedences in arithmetic expressions. Error Handling discusses error detection 
and recovery. The Yacc Environment discusses the operating environment and 
special features of the parsers Yacc produces. Hints for Preparing Specifications 
gives some suggestions that should improve the style and efficiency of the 
specifications. Advanced Topics discusses some advanced topics. Yacc Input 
Syntax gives a summary of the Yacc input form. A Simple Example has a brief 
example, and An Advanced Example gives an example using some of the more 
complicated features of Yacc. 

Basic Specifications 
Names refer to either tokens or nonterminal symbols. Yacc requires token names to 
be declared as such. In addition, for reasons discussed in the topic Lexical Analysis, 
it is often desirable to include the lexical analyzer as part of the specification file; it 
may be useful to include other programs as well. Thus, every specification file 
consists of three sections: the declarations , (grammar) rules, and programs . The 
sections are separated by double percent%% marks. (The percent sign (%)is 
generally used in Yacc specifications as an escape character.) 

In other words, a full specification file looks like 

declarations 
%% 
rules 
%% 
programs 

The declaration section may be empty. Moreover, if the programs section is 
omitted, the second%% mark may be omitted also. Thus, the smallest legal Yacc 
specification is: 

%% 
rules 

Blanks, tabs, and newlines are ignored except that they may not appear in names or 
multi-character reserved symbols. Comments may appear wherever a name is 
legal; they are enclosed in /* ... * /, as in C and PUI. 

58-4 



Yacc: Yet Another Complle1-Compller 

The rules section is made up of one or more grammar rules. A grammar rule has 
the form: 

A : BODY; 

The A represents a nonterminal name, and BODY represents a sequence of zero or 
more names and literals. The colon(:) and the semicolon(;) are Yacc punctuation. 

Names may be of arbitrary length, and may be made up of letters, dot(.), 
underscore (_), and non-initial digits. Upper- and lower-case letters are distinct. 
The names used in the body of a grammar rule may represent tokens or nonterminal 
symbols. 

A literal consists of a character enclosed in single quotes(' '). As in C, the 
backslash \ is an escape character within literals, and all the C escapes are 
recognized. Thus, 

\n' newline 
\r' return 
'\" single quote ' 
'\\' backslash\ 
'\t' tab 
'\b' backspace 
'\f' form feed 
\xxx' xx:x in octal 

For a number of technical reasons, the null character ('\O' or 0) should never be 
used in grammar rules. 

If there are several grammar rules with the same left side, the vertical bar or pipe ( 
) can be used to avoid rewriting the left side. In addition, the semicolon at the end 
of a rule can be dropped before a vertical bar. Thus the grammar rules 

A B c D 

A E F 

A G 

can be given to Yacc as 

A B c D 

E F 

G 

If all grammar rules with the same left side appear together in the grammar rules 
section, the input is much more readable and easier to change. 

If a nonterminal symbol matches the empty string, this can be indicated in the 
obvious way: 

empty: ; 

Names representing tokens must be declared; this is most simply by writing the 
following in the declarations section: 

%token namel name2 ... 

UTek TOOLS 58-5 



Yacc: Yet Another Compiler-Compiler 

Every name not defined in the declarations section is assumed to represent a 
nonterminal symbol. Every nonterminal symbol must appear on the left side of at 
least one rule. 

Of all the nonterminal symbols, one, called the start symbol, has particular 
importance. The parser is designed to recognize the start symbol; thus, this symbol 
represents the largest, most general structure described by the grammar rules. By 
default, the start symbol is taken to be the left side of the first grammar rule in the 
rules section. It is possible, and in fact desirable, to declare the start symbol 
explicitly in the declarations section using the O/ostart keyword: 

O/ostart symbol 

The end of the input to the parser is signaled by a special token, called the 
endmarker . If the tokens up to, but not including, the endmarker form a structure 
which matches the start symbol, the parser function returns to its caller after the 
endmarker is seen- it accepts the input. If the endmarker is seen in any other 
context, it is an error. 

The user-supplied lexical analyzer should return the endmarker when appropriate; 
see Actions below. Usually the endmarker represents some reasonably obvious 110 
status, such as end-of-file or end-of-record. 

Actions 
With each grammar rule, you can associate actions to be performed each time the 
rule is recognized in the input process. These actions may return values, and may 
obtain the values returned by previous actions. Moreover, the lexical analyzer can 
return values for tokens, if desired. 

An action is an arbitrary C statement, and as such can do input and output, call 
subprograms, and alter external vectors and variables. An action is specified by one 
or more statements, enclosed in braces ({and}). For example, 

A 

and 

xxx yyy zzz 

are grammar rules with actions. 

{ 

hello( 1, "abc" ) ; 

printf("a message\n"); 
option = 25; } 

To facilitate easy communication between the actions and the parser, the action 
statements are altered slightly. The dollar sign$ is used as a signal to Yacc in this 
context. 

56-6 



Yacc: Yet Another Complier-Complier 

To return a value, the action normally sets the pseudo-variable$$ to some value. 
For example, an action that does nothing but return the value 1 is 

{ $$ = 1; } 

To obtain the values returned by previous actions and the lexical analyzer, the 
action may use the pseudo-variables $1, $2, ... , which refer to the values returned 
by the components of the right side of a rule, reading from left to right. Thus, if the 
rule is 

A BCD ; 

for example, then $2 has the value returned by C, and $3 the value returned by D. 

As a more concrete example, consider the rule 

expr '(' expr ')' ; 

The value returned by this rule is usually the value of the expr in parentheses. This 
can be indicated by 

expr '(' expr ')' { $$ = $2; } 

By default, the value of a rule is the value of the first element in it ($1 ). Thus, 
grammar rules of the form 

A B 

frequently need not have an explicit action. 

In the examples above, all the actions came at the end of their rules. Sometimes, it 
is desirable to get control before a rule is parsed fully. Yacc permits an action to be 
written in the middle of a rule as well as at the end. This rule is assumed to return a 
value, accessible through the usual $ mechanism by the actions to the right of it. In 
turn, it may access the values returned by the symbols to its left. Thus, in the rule 

A B 

{ $$ = 1; } 

c 
{ x = $2; y = $3; 

the effect is to set x to 1, and y to the value returned by C. 

UTek TOOLS 58-7 



Yacc: Yet Another Compiler-Compiler 

Actions that do not terminate a rule are actually handled by Yacc by manufacturing 
a new nonterminal symbol name, and a new rule matching this name to the empty 
string. The interior action is the action triggered by recognizing this added rule. 
Yacc actually treats the above example as if it had been written: 

$ACT /* empty */ 
{ $$ = 1; 

A B $ACT C 
{ x = $2; y = $3; } 

In many applications, output is not done directly by the actions. Rather, a data 
structure, such as a parse tree, is constructed in memory, and transformations are 
applied to it before output is generated. Parse trees are particularly easy to 
construct, given routines to build and maintain the tree structure desired. For 
example, suppose there is a C function node, written so that the call 

node( L, nl, n2 ) 

creates a node with label L, and descendants nl and n2, and returns the index of 
the newly created node. Then parse tree can be built by supplying actions such as: 

ex pr expr '+' expr 
{ $$=node('+', $1, $3 ); } 

in the specification. 

You can define other variables to be used by the actions. Declarations and 
definitions can appear in the declarations section, enclosed in the characters%{ 
and %} . These declarations and definitions have global scope, so they are known 
to the action statements and the lexical analyzer. For example, 

%{ int variable = O; o/o} 

could be placed in the declarations section, making variable accessible to all of the 
actions. The Yacc parser uses only names beginning in yy; you should avoid such 
names. 

In these examples, all the values are integers: a discussion of values of other types 
is found in Advanced Topics. 

58-8 



Yacc: Yet Another Compiler-Compiler 

Lexical Analysis 
You must supply a lexical analyzer to read the input stream and communicate 
tokens (with values, if desired) to the parser. The lexical analyzer is an integer
valued function called yylex . The function returns an integer, the token number, 
representing the kind of token read. If there is a value associated with that token, it 
should be assigned to the external variable yylval . 

The parser and the lexical analyzer must agree on these token numbers in order for 
communication between them to take place. The numbers may be chosen by Yacc, 
or chosen by you. In either case, the# define mechanism of C lets the lexical 
analyzer return these numbers symbolically. For example, suppose that the token 
name DIGIT has been defined in the declarations section of the Yacc specification 
file. The relevant portion of the lexical analyzer might look like: 

yylex( ){ 
extern int yylval; 
int c; 

c = getchar( ); 

switch( c ) { 

case 'o': 

case 1 : 

yylval = c- 0 ; 
return( DIGIT ); 

The intent is to return a token number of DIGIT and a value equal to the numerical 
value of the digit. Provided that the lexical analyzer code is placed in the programs 
section of the specification file, the identifier DIGIT is defined as the token number 
associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers. The only condition 
is the need to avoid using any token names in the grammar that are reserved or 
significant in C or the parser. For example, the use of token names if or while will 
almost certainly cause severe difficulties when the lexical analyzer is compiled. The 
token name error is reserved for error handling, and should not be used naively. 

As mentioned above, the token numbers may be chosen by Yacc or by you. In the 
default situation, the numbers are chosen by Yacc. The default token number for a 
literal character is the numerical value of the character in the local character set. 
Other names are assigned token numbers starting at 257. 

UTek TOOLS 58-9 



Yacc: Yet Another Compiler-Compiler 

To assign a token number to a token (including literals), the first appearance of the 
token name or literal in the declarations section can be immediately followed by a 
nonnegative integer. This integer is taken to be the token number of the name or 
literal. Names and literals not defined by this mechanism retain their default 
definition. It is important that all token numbers be distinct. 

For historical reasons, the endmarker must have token number O or negative. This 
token number cannot be redefined by you. Thus, all lexical analyzers should be 
prepared to return O or negative as a token number upon reaching the end of their 
input. 

A very useful tool for constructing lexical analyzers is the Lex program. These 
lexical analyzers are designed to work in close harmony with Yacc parsers. The 
specifications for these lexical analyzers use regular expressions instead of grammar 
rules. Lex can be easily used to produce quite complicated lexical analyzers, but 
there remain some languages (such as FORTRAN) that do not fit any theoretical 
framework, and whose lexical analyzers must be crafted by hand. 

How the Parser Works 
Yacc turns the specification file into a C program, which parses the input according 
to the specification given. The algorithm used to go from the specification to the 
parser is complex, and is not discussed here. The parser itself, however, is 
relatively simple, and understanding how it works, while not strictly necessary, 
nevertheless makes treatment of error recovery and ambiguities much more 
comprehensible. 

The parser produced by Yacc consists of a finite state machine with a stack. The 
parser is also capable of reading and remembering the next input token (called the 
lookahead token). The current state is always the one on the top of the stack. The 
states of the finite state machine are given small integer labels. Initially, the machine 
is in state 0, the stack contains only state 0, and no lookahead token has been 
read. 

The machine has only four actions available to it, called shift , reduce , accept , 
and error . A move of the parser is done as follows: 

1. Based on its current state, the parser decides whether it needs a lookahead 
token to decide what action should be done. If it needs one, and does not have 
one, it calls yylex to obtain the next token. 

2. Using the current state, and the lookahead token if needed, the parser 
decides on its next action, and carries it out. This may result in states being 
pushed onto the stack, or popped off of the stack, and in the look-ahead token 
being processed or left alone. 

58-10 



Yacc: Yet Another Compiler-Complier 

The shift action is the most common action the parser takes. Whenever a shift 
action is taken, there is always a lookahead token. For example, in state 56 there 
may be an action: 

IF shift 34 

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed 
down on the stack, and state 34 becomes the current state (on the top of the stack). 
The lookahead token is cleared. 

The reduce action keeps the stack from growing without bounds. Reduce actions 
are appropriate when the parser has seen the right side of a grammar rule, and is 
prepared to announce that it has seen an instance of the rule, replacing the right 
side by the left side. It may be necessary to consult the lookahead token to decide 
whether to reduce, but usually it is not. In fact, the default action (represented by a 
(.)) is often a reduce action. 

Reduce actions are associated with individual grammar rules. Grammar rules are 
also given small integer numbers, leading to some confusion. The action 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule being reduced is 

A x y z 

The reduce action depends on the left side symbol (A in this case), and the number 
of symbols on the right side (three in this case). To reduce, first pop off the top 
three states from the stack. (In general, the number of states popped equals the 
number of symbols on the right side of the rule.) In effect, these states were the 
ones put on the stack while recognizing x, y, and z, and no longer serve any useful 
purpose. After popping these states, a state is uncovered; it was the state the 
parser was in before beginning to process the rule. Using this uncovered state, and 
the symbol on the left side of the rule, perform what is (in effect) a shift of A. A new 
state is obtained, pushed onto the stack, and parsing continues. There are 
significant differences between the processing of the left symbol and an ordinary 
shift of a token, however, so this action is called a goto action. In particular, the 
lookahead token is cleared by a shift, and is not affected by a goto. In any case, 
the uncovered state contains an entry such as: 

A goto 20 

causing state 20 to be pushed onto the stack, and become the current state. 

In effect, the reduce action "turns back the clock" in the parse, popping the states 
off the stack to go back to the state where the right side of the rule was first seen. 
The parser then behaves as if it had seen the left side at that time. If the right side 
of the rule is empty, no states are popped off of the stack; the uncovered state is in 
fact the current state. 

UTek TOOLS 58-11 



Yacc: Yet Another Compiler-Compiler 

The reduce action is also important in the treatment of user-supplied actions and 
values. When a rule is reduced, the code supplied with the rule is executed before 
the stack is adjusted. In addition to the stack holding the states, another stack, 
running in parallel with it, holds the values returned from the lexical analyzer and the 
actions. When a shift takes place, the external variable yylval is copied onto the 
value stack. After the return from the user code, the reduction is carried out. When 
the goto action is done, the external variable yyval is copied onto the value stack. 
The pseudo-variables $1, $2, etc., refer to the value stack. 

The other two parser actions are conceptually much simpler. The accept action 
indicates that the entire input has been seen and that it matches the specification. 
This action appears only when the lookahead token is the endmarker, and indicates 
that the parser has successfully done its job. The error action, on the other harid, 
represents a place where the parser can no longer continue parsing according to the 
specification. The input tokens it has seen, together with the lookahead token, 
cannot be followed by anything that would result in a legal input. The parser reports 
an error and attempts to recover the situation and resume parsing. Error recovery 
(as opposed to the detection of error) is covered in subsection Error Handling. 

Consider the specification: 

%token DING DONG DELL 
%% 
rhyme sound place 

sound DING DONG 

place DELL 

When Yacc is invoked with the -v option, a file called y.output is produced, with a 
human-readable description of the parser. They.output file corresponding to the 
above grammar (with some statistics stripped off the end) is: 

58-12 



Yacc: Yet Another Compiler-Compiler 

state 0 
$accept _rhyme $end 

DING shift 3 
error 

rhyme goto 1 
sound goto 2 

state 1 
$accept rhyme_$end 

$end accept 
error 

state 2 
rhyme sound_place 

DELL shift 5 
error 

place goto 4 

state 3 
sound DING_j)()NG 

DONG shift 6 
error 

state 4 
rhyme sound place_ (1) 

reduce 1 

state 5 
place DELL (3) 

reduce 3 

state 6 
sound DING DONG_ (2) 

reduce 2 

Notice that, in addition to the actions for each state, there is a description of the 
parsing rules being processed in each state. The backslash character(_) is used to 
indicate what has been seen, and what is yet to come, in each rule. Suppose the 
input is 

DING DONG DELL 

UTek TOO.LS 58-13 



Yacc: Yet Another Compiler-Compiler 

Follow the steps of the parser while it is processing this input. 

Initially, the current state is state 0. The parser needs to refer to the input in order 
to decide between the actions available in state O, so the first token, DING , is read, 
becoming the lookahead token. The action in state O on DING is shift 3, so state 3 
is pushed onto the stack, and the lookahead token is cleared. State 3 becomes the 
current state. The next token, DONG , is read, becoming the lookahead token. 
The action in state 3 on the token DONG is shift 6, so state 6 is pushed onto the 
stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 
6, without even consulting the lookahead, the parser reduces by rule 2. 

sound : DING DONG 

This rule has two symbols on the right side, so two states, 6 and 3, are popped off 
of the stack, uncovering state 0. When consulting the description of state 0, and 
looking for a goto on sound, 

sound goto 2 

is obtained. Thus state 2 is pushed onto the stack, becoming the current state. 

In state 2, the next token, DELL , must be read. The action is shift 5, so state 5 is 
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is 
cleared. In state 5, the only action is to reduce by rule 3. This has one symbol on 
the right side, so one state, 5, is popped off, and state 2 is uncovered. The goto in 
state 2 on place, the left side of rule 3, is state 4. Now, the stack contains 0, 2, and 
4. In state 4, the only action is to reduce by rule 1. There are two symbols on the 
right, so the top two states are popped off, uncovering state O again. In state O, 
there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is 
read; the endmarker is obtained, indicated by $end in they.output file. The action in 
state 1 when the endmarker is seen is to accept, successfully ending the parse. 

Ambiguity and Conflicts 
A set of grammar rules is ambiguous if there is some input string that can be 
structured in two or more different ways. For example, the grammar rule 

expr expr ' - ' expr 

is a natural way of expressing the fact that one way of forming an arithmetic 
expression is to put two other expressions together with a minus sign between them. 
Unfortunately, this grammar rule does not completely specify the way that all 
complex inputs should be structured. For example, if the input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

The first is called left association, the second right association. 

58-14 



Yacc: Yet Another Compiler-Complier 

Yacc detects such ambiguities when it is attempting to build the parser. Consider 
the problem that confronts the parser when it is given an input such as 

expr - expr - expr 

When the parser has read the second expr, the input that it has seen: 

expr - expr 

matches the right side of the grammar rule above. The parser could reduce the 
input by applying this rule. After applying the rule, the input is reduced to expr (the 

·1eft side of the rule). The parser would then read the final part of the input: 

- expr 

and again reduce. The effect of this is to take the left associative interpretation. 

Alternatively, when the parser has seen 

expr - expr 

it could defer the immediate application of the rule, and continue reading the input 
until it had seen 

expr - expr - expr 

It could then apply the rule to the rightmost three symbols, reducing them to expr 
and leaving 

expr - expr 

Now the rule can be reduced once more; the effect is to take the right associative 
interpretation. Thus, having read 

expr - expr 

the parser can do two legal things, a shift or a reduction, and has no way of 
deciding between them. This is called a shift/reduce conflict. It may also happen 
that the parser has a choice of two legal reductions; this is called a reduce/reduce 
conflict. Note that there are never any shift/shift conflicts. 

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. 
It does this by selecting one of the valid steps wherever it has a choice. A rule 
describing which choice to make in a given situation is called a disambiguating rule. 

Yacc invokes two disambiguating rules by default: 

1. In a shift/reduce conflict, the default is to do the shift. 

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule 
(in the input sequence). 

UTek TOOLS SB-15 



Yacc: Yet Another Compiler-Compiler 

Rule 1 implies that reductions are def-erred (whenever there is a choice) in favor of 
shifts. Rule 2 gives you rather crude control over the behavior of the parser in this 
situation, but reduce/reduce conflicts should be avoided whenever possible. 

Conflicts may arise because of mistakes in input or logic, or because the grammar 
rules, while consistent, require a more complex parser than Yacc can construct. 
The use of actions within rules can also cause conflicts, if the action must be done 
before the parser can be sure which rule is being recognized. In these cases, the 
application of disambiguating rules is inappropriate, and leads to an incorrect 
parser. For this reason, Yacc always reports the number of shift/reduce and 
reduce/reduce conflicts resolved by Rule 1 and Rule 2. 

In general, whenever Yacc applies disambiguating rules to produce a correct parser, 
you can also rewrite the grammar rules so that the same inputs are read but there 
are no conflicts. For this reason, most previous parser generators have considered 
conflicts to be fatal errors. Rewriting is somewhat unnatural, and produces slower 
parsers; thus, Yacc produces parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider a fragment from a 
programming language involving an IF-THEN-ELSE construction: 

stat IF '(' cond ')' stat 
IF '(' cond ')' stat ELSE stat 

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing 
conditional (logical) expressions, and stat is a nonterminal symbol describing 
statements. The first rule will be called the simple-if rule, and the second the if-else 
rule. 

These two rules form an ambiguous construction, since input of the form 

IF { C1 ) IF ( C2 ) S1 ELSE 52 

can be structured according to these rules in two ways: 

IF ( Cl ) { 
IF ( C2 ) Sl 
} 

ELSE S2 

or 

IF Cl ) { 
IF ( C2 ) Sl 
ELSE S2 
} 

58-16 



Yacc: Yet Another Complier-Complier 

The second interpretation is the one given in most programming languages having 
this construct. Each ELSE is associated with the last preceding un-ELSEd IF . In 
this example, consider the situation where the parser has seen 

IF ( C1 ) IF ( C2 ) S1 

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get 

IF ( C1 ) stat 

and then read the remaining input, 

ELSE S2 

and reduce 

IF ( C1 ) stat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the input. 

On the other hand, the ELSE may be shifted, S2 read, and then the right hand 
portion of 

IF ( C1 ) IF ( C2 ) S1 ELSE S2 

can be reduced by the if-else rule to get 

IF ( C1 ) stat 

This can be reduced by the simple-if rule. This leads to the second of the above 
groupings of the input, which is usually desired. 

Once again the parser can do two valid things - there is a shift/reduce conflict. 
The application of disambiguating rule 1 tells the parser to shift in this case, which 
leads to the desired grouping. 

This shift/reduce conflict arises only when there is a particular current input symbol, 
ELSE, and particular inputs already seen, such as 

IF ( C1 ) IF ( C2 ) S1 

In general, each conflict is associated with an input symbol and a set of previously
read inputs. The previously read inputs are characterized by the state of the parser. 

The conflict messages of Yacc are best understood by examining the verbose (-v) 
option output file. For example, the output corresponding to the above conflict state 
might be: 

23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

UTek TOOLS 

stat 
stat 

IF ( cond 
IF ( cond 

ELSE shift 45 
reduce 18 

stat_ (18) 
stat_ELSE stat 

58-17 



Yacc: Yet Another Compiler-Compiler 

The first line describes the conflict, giving the state and the input symbol. The 
ordinary state description follows, giving the grammar rules active in the state, and 
the parser actions. Recall that the underline (_) marks the portion of the grammar 
rules that has been seen. Thus in the example, in state 23 the parser has seen 
input corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The parser can do two 
possible things. If the input symbol is ELSE , it can shift into state 45. State 45 
then has, as part of its description, the line 

stat : IF ( cond ) stat ELSE_stat 

since the ELSE has been shifted in this state. Back in state 23, the alternative 
action, described by a dot(.), is to be done if the input symbol is not mentioned 
explicitly in the above actions. Thus, in this case, if the input symbol is not ELSE , 
the parser reduces by grammar rule 18: 

stat : IF '(' cond ')' stat 

Once again, notice that the numbers following shift commands refer to other states, 
while the numbers following reduce commands refer to grammar rule numbers. In 
they.output file, the rule numbers are printed after those rules that can be reduced. 
In most states, there is, at most, one reduce action possible in the state, and this is 
the default command. If you encounter unexpected shift/reduce conflicts you should 
look at the verbose output to decide whether the default actions are appropriate. 

Precedence 
The rules given above for resolving conflicts are not sufficient in the parsing of 
arithmetic expressions. Most of the commonly-used constructions for arithmetic 
expressions can be naturally described by the notion of precedence levels for 
operators, together with information about left or right associativity. It turns out that 
ambiguous grammars with appropriate disambiguating rules can be used to create 
parsers that are faster and easier to write than parsers constructed from 
unambiguous grammars. The basic notion is to write grammar rules of the form 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous grammar, 
with many parsing conflicts. As disambiguating rules, you specify the precedence, 
or binding strength, of all the operators, and the associativity of the binary operators. 
This information is sufficient to allow Yacc to resolve the parsing conflicts in 
accordance with these rules, and construct a parser that realizes the desired 
precedences and associativities. 

58-18 



Yacc: Yet Another Compiler-Compiler 

The precedences and associativities are attached to tokens in the declarations 
section. This is done by a series of lines beginning with a Yacc keyword: %left, 
%right, or o/ononassoc, followed by a list of tokens. All of the tokens on the same 
line are assumed to have the same precedence level and associativity. The lines are 
listed in order of increasing precedence or binding strength. Thus, 

0/oleft '+' '-' 
0/oleft '*' '/' 

describes the precedence and associativity of the four arithmetic operators. Plus(+) 
and minus (-) are left associative, and have lower precedence than asterisk (*) and 
slash (/), which are also left associative. The keyword %right is used to describe 
right associative operators, and the keyword o/ononassoc is used to describe 
operators, like the operator .LT. in FORTRAN, that may not associate with 
themselves. Thus: 

A .LT. B .LT. C 

is illegal in FORTRAN, and such an operator would be described with the keyword 
o/ononassoc in Yacc. As an example of the behavior of these declarations, the 
description 

%right 
%left + 
%left * I 

%% 

expr expr expr 
ex pr + ex pr 
expr expr 
expr * expr 
expr I expr 
NAME 

might be used to structure the input 

a = b = c*d - e - f*g 

as follows: 

a = ( b = ( ((c*d)-e) - (f*g))) 

When this mechanism is used, unary operators must, in general, be given a 
precedence. Sometimes a unary operator and a binary operator have the same 
symbolic representation, but different precedences. An example is unary and binary 
minuses(-); unary minus can be given the same strength as multiplication, or even 
higher, while binary minus has a lower strength than multiplication. The keyword 
o/oprec changes the precedence level associated with a particular grammar rule. 
o/oprec appears immediately after the body of the grammar rule, before the action or 
closing semicolon, and is followed by a token name or literal. It causes the 
precedence of the grammar rule to become that of the following token name or 
literal. For example, to make unary minus have the same precedence as 
multiplication, the rules might resemble: 

UTek TOOLS 58-19 



Yacc: Yet Another Compiler-Compiler 

%left + 
%left * I 

%% 

expr expr + ex pr 
expr expr 
expr * ex pr 
expr I ex pr 

ex pr %prec * 
NAME 

A token declared by %left, %right, and O/ononassoc need not be, but may be, 
declared by %token as well. 

The precedences and associativities are used by Yacc to resolve parsing conflicts; 
they give rise to disambiguating rules. Formally, the rules work as follows: 

1 . The precedences and associativities are recorded for those tokens and literals 
that have them. 

2. A precedence and associativity is associated with each grammar rule; it is the 
precedence and associativity of the last token or literal in the body of the rule. 
If the O/oprec construction is used, it overrides this default. Some grammar 
rules may have no precedence and associativity associated with them. 

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and 
either the input symbol or the grammar rule has no precedence and 
associativity, then the two disambiguating rules given at the beginning of the 
section are used, and the conflicts are reported. 

4. If there is a shift/reduce conflict, and both the grammar rule and the input 
character have precedence and associativity associated with them, then the 
conflict is resolved in favor of the action (shift or reduce) associated with the 
higher precedence. If the precedences are the same, then the associativity is 
used: left associative implies reduce, right associative implies shift, and 
nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce and 
reduce/reduce conflicts reported by Yacc. This means that mistakes in the 
specification of precedences may disguise errors in the input grammar. Be sparing 
with precedences, and use them in an essentially "cookbook" fashion, until some 
experience has been gained. They.output file is very useful in deciding whether the 
parser is actually doing what was intended. 

58-20 



Yacc: Yet Another Compiler-Compiler 

Error Handling 
Error handling is an extremely difficult area, and many of the problems are semantic 
ones. When an error is found, for example, you may need to reclaim parse tree 
storage, delete or alter symbol table entries, and, typically, set switches to avoid 
generating any further output. 

Do not stop all processing when an error is found; continue scanning the input to 
find further syntax errors. This leads to the problem of getting the parser restarted 
after an error. A general class of algorithms to do this involves discarding a number 
of toke:ns from the input string, and attempting to adjust the parser so that input can 
continue. 

To allow you some control over this process, Yacc provides a simple, but reasonably 
general, feature. The token name error is reserved for error handling. This name 
can be used in grammar rules; in effect, it suggests places where errors are 
expected, and recovery might take place. The parser pops its stack until it enters a 
state where the token error is legal. ft then behaves as if the token error were the 
current lookahead token, and performs the action encountered. The lookahead 
token is then reset to the token that caused the error. If no special error rules have 
been specified, the processing halts when an error is detected. 

In order to prevent a cascade of error messages, the parser, after detecting an error, 
remains in error state until three tokens have been successfully read and shifted. If 
an error is detected when the parser is already in error state, no message is given, 
and the input token is quietly deleted. 

As an example, a rule of the form 

stat error 

would, in effect, mean that on a syntax error the parser would attempt to skip over 
the statement in which the error was seen. More precisely, the parser scans ahead, 
looking for three tokens that might legally follow a statement, and start processing at 
the first of these. If the beginnings of statements are not sufficiently distinctive, it 
may make a false start in the middle of a statement, and end up reporting a second 
error where there is in fact no error. 

Actions may be used with these special error rules. These actions might attempt to 
reinitialize tables, reclaim symbol table space, etc. 

Error rules such as the above are very general, but difficult to control. Somewhat 
easier are rules such as 

stat error ';' 

Here, when there is an error, the parser attempts to skip over the statement, but 
does so by skipping to the next';'. All tokens after the error and before the next';' 
cannot be shifted, and are discarded. When the ';' is seen, this rule is reduced, and 
any "cleanup" action associated with it is performed. 

UTek TOOLS 58-21 



Yacc: Yet Another Compiler-Complier 

Another form of error rule arises in interactive applications, where it may be 
desirable to permit a line to be reentered after an error. A possible error rule might 
be 

input : error '\n' { printf( "Reenter last line:'' ); } input 
{ $$ = $4; } 

There is one potential difficulty with this approach; the parser must. correctly process 
three input tokens before it admits that it has correctly resynchronized after the 
error. If the reentered line contains an error in the first two tokens; the parser 
deletes the offending tokens, and gives no message.This is clearly unacceptable. 
For this reason, there is a mechanism that can be used to force the parser to 
believe that an error has been fully recovered from. The statement 

yyerrok; 

in an action, resets the parser to its normal mode. The last example is better written 

input error \n 
{ yyerrok; 

printf( "Reenter 
last line: ) ; } 

input 
{ $$ = $4; 

As mentioned above, the token seen immediately after the error symbol is the input 
token at which the error was discovered. Sometimes, this is inappropriate. For 
example, an error recovery action might take upon itself the jol::l of finding the 
correct place to resume input. In this case, the previous lookahead token must be 
cleared. The statement 

yyclearin; 

in an action has this effect. For example, suppose the action after error were to call 
some sophisticated resynchronization routine, supplied by you, that attempted to 
advance the input to the beginning of the next valid statement. After this routine 
was called, the next token returned by yylex would presumably be the first token in 
a legal statement. The old, illegal token must be discarded, and the error state 
reset. This could be done by a rule like 

stat error 
{ resynch( ); 

yyerrok ; 
yyclearin ; } 

These. mechanisms are admittedly crude, but do allow for a simple, fairly effective 
recovery of the parser from many errors. Moreover, you can get control to deal with 
the error actions required by other portions of the program. 

58-22 



Yacc: Yet Another Compiler-Compiler 

The Yacc Environment 
When you input a specification to Yacc, the output is a file of C programs, called 
y.tab.c on most systems (due to local file system conventions, the names may differ 
from installation to installation). The function produced by Yacc is called yyparse; it 
is an integer-valued function. When it is called, it in turn repeatedly calls yylex , 
the lexical analyzer supplied by you, to obtain input tokens. Eventually, either an 
error is detected, in which case (if no error recovery is possible) yyparse returns the 
value 1, or the lexical analyzer returns the endmarker token and the parser accepts. 
In this case, yyparse returns the value 0. 

You must provide a certain amount of environment for this parser in order to obtain 
a working program. For example, as with every C program, a program called main 
must be defined, that eventually calls yyparse . In addition, a routine called yyerror 
prints a message when a syntax error is detected. 

These two routines must be supplied in one form or another by you. To ease the 
initial effort of using Yacc, a library has been provided with default versions of main 
and yyerror . The name of this library is system dependent; on many systems, the 
library is accessed by a -ly argument to the loader. To show the triviality of these 
default programs, the source is given below: 

main( ) { 
return( yyparse( ) ); 
} 

and 

# include <stdio.h> 

yyerror(s) char *s; { 
fprintf( stderr , "%s\n", s ) ; 
} 

The argument to yyerror is a string containing an error message, usually the string 
syntax error. The average application will want to do better than this. Ordinarily, the 
program should keep track of the input line number, and print it along with the 
message when a syntax error is detected. The external integer variable yychar 
contains the lookahead token number at the time the error was detected; this may 
be of some interest in giving better diagnostics. Since the main program is probably 
supplied by you (to read arguments, etc.) the Yacc library is useful only in small 
projects, or in the earliest stages of larger ones. 

The external integer variable yydebug is normally set to 0. If it is set to a nonzero 
value, the parser outputs a verbose description of its actions, including a discussion 
of which input symbols have been read, and what the parser actions are. 
Depending on the operating environment, you may be able to set this variable by 
using a debugging system. 

UTek TOOLS 58-23 



Yacc: Yet Another Compiler-Compiler 

Hints for Preparing 
Specifications 
This section contains miscellaneous hints on preparing efficient, easy-to-change, 
and clear specifications. The individual subsections are more or less independent. 

Input Style 
It is difficult to provide rules with substantial actions and still have a readable 
specification file. The following style hints may help you: 

• Use all uppercase letters for token names, all lowercase letters for nonterminal 
names. 

• Put grammar rules and actions on separate lines. This lets either be changed 
without an automatic need to change the other. 

• Put all rules with the same left side together. Put the left side in only once, 
and let all following rules begin with a vertical bar. 

• Put a semicolon only after the last rule with a given left side, and put the 
semicolon on a separate line. This allows new rules to be easily added. 

• Indent rule bodies by two tab stops, and action bodies by three tab stops. 

The example in subsection A Simple Example is written following this style, as are 
the examples in the text of this paper (where space permits). You must make up 
your own mind about these stylistic questions; the central problem, however, is to 
make the rules visible through the action code. 

Left Recursion 
The algorithm used by the Yacc parser encourages so called left recursive grammar 
rules: rules of the form 

name name rest_of~le ; 

These rules frequently arise when writing specifications of sequences and lists: 

list 

and 

seq 

58-24 

item 
list 

item 
seq item 

item 



Yacc: Yet Another Compller·Compller 

In each of these cases, the first rule is reduced for the first item only, and the 
second rule is reduced for the second and all succeeding items. 

With right recursive rules, such as 

seq item 
item seq 

the parser would be a bit bigger, and the items would be seen, and reduced, from 
right to left. More seriously, an internal stack in the parser would be in danger of 
overflowing if a very long sequence were read. Thus, you should use left recursion 
wherever reasonable. 

It is worth considering whether a sequence with zero elements has any meaning, 
and if so, consider writing the sequence specification with an empty rule: 

seq /* empty */ 
seq item 

Once again, the first rule would always be reduced exactly once, before the first 
item was read, and then the second rule would be reduced once for each item read. 
Permitting empty sequences often leads to increased generality. However, conflicts 
might arise if Yacc is asked to decide which empty sequence it has seen, when it 
hasn't seen enough to know. 

Lexical Tie-ins 
Some lexical decisions depend on context. For example, the lexical analyzer might 
want to delete blanks normally, but not within quoted strings. Or names might be 
entered into a symbol table in declarations, but not in expressions. 

One way of handling this situation is to create a global option that is examined by 
the lexical analyzer, and set by actions. For example, suppose a program consists 
of zero or more declarations, followed by zero or more statements. Consider: 

%{ 
int dflag; 

%} 
other declarations 

%% 

prog decls stats 

UTek TOOLS 58-25 



Yacc: Yet Another Compiler-Compiler 

dee ls /* empty */ 
{ dflag = 1; } 

decls declaration 

stats /* empty */ 
{ dflag = O; } 

stats statement 

other rules ... 

The option dflag is now O when reading statements, and 1 when reading 
declarations, except for the first token in the first statement. This token must lie seen 
by the parser before it can tell that the declaration section has ended and the 
statements have begun. In many cases, this single token exception does not affect 
the lexical scan. 

This kind of "backdoor" approach represents a way of doing some things that are 
difficult, if not impossible, to do otherwise. 

Reserved Words 
Some programming languages permit you to use words such as if, which are 
normally reserved, as label or variable names, provided that such use does not 
conflict with the legal use of these names in the programming language. This is 
extremely hard to do in the framework of Yacc; it is difficult to pass information to 
the lexical analyzer telling it "this instance of if is a keyword, and that instance is a 
variable". You can try using the mechanism described in the last subsection, but it 
is difficult. 

It is better that the keywords be reserved; that is, they should be forbidden for use as 
variable names. There are powerful stylistic reasons for preferring this. 

58-26 



Yacc: Yet Another Compiler-Compiler 

Advanced Topics 
This section discusses a number of advanced features of Yacc. 

Simulating Error and Accept in Actions 
The parsing actions of error and accept can be simulated in an action by use of 
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the 
value 0. YYERROR causes the parser to behave as if the current input symbol had 
been a syntax error; (yyerror is called, and error recovery takes place). These 
mechanisms can be used to simulate parsers with multiple endmarkers or context
sensitive syntax checking. 

Accessing Values in Enclosing Rules 
An action may refer to values returned by actions to the left of the current rule. The 
mechanism is simply the same as with ordinary actions, a dollar sign $ followed by a 
digit, but in this case the digit may be 0 or negative. Consider 

sent 

adj 

noun 

adj noun verb adj noun 

THE 
YOUNG 

DOG 

CRONE 

{ look at the sentence . . . } 

( $$ = THE; } 
{ $$ = YOUNG; } 

{ $$ = DOG; } 

{ if( $0 == YOUNG ){ 
printf( "what?\n ); 
} 

$$ = CRONE; 
} 

In the action following the word CRONE, a check is made that the preceding token 
shifted was not YOUNG. Obviously, this is only possible when a great deal is known 
about what might precede the symbol noun in the input. This also seems 
unstructured. Nevertheless, at times, this mechanism will save a great deal of 
trouble, especially when a few combinations are to be excluded from an otherwise 
regular structure. 

UTek TOOLS 58-27 



Yacc: Yet Another Compiler-Compiler 

Support for Arbitrary Value Types 
By default, the values returned by actions and the lexical analyzer are integers. 
Yacc can also support values of other types, including structures. In addition, Yacc 
keeps track of the types, and inserts appropriate union member names so that the 
resulting parser is strictly type checked. The Yacc value stack (see Subsection How 
the Parser Works) is declared to be a union of the various types of values desired. 
You declare the union, and associates union member names to each token and 
nonterminal symbol having a value. When the value is referenced through a $$ or 
$n construction, Yacc automatically inserts the appropriate union name, so that no 
unwanted conversions takes place. In addition, type checking commands such as 
Lint are far more silent. 

There are three mechanisms used to provide for this typing. First, there is a way of 
defining the union; this must be done by you since other programs, notably the 
lexical analyzer, must know about the union member names. Second, there is a 
way of associating a union member name with tokens and nonterminals. Finally, 
there is a mechanism for describing the type of those few values where Yacc can 
not easily determine the type. 

To declare the union, you include in the declaration section: 

%union 
body of union ... 
} 

This declares the Yacc value stack, and the external variables yylval and yyval , to 
have type equal to this union. If Yacc was invoked with the -d option, the union 
declaration is copied onto the y.tab.h file. Alternatively, the union may be declared 
in a header file, and a typedef used to define the variable YYSTYPE to represent 
this union. Thus, the header file might also have said: 

typedef union { 
body of union ... 
} YYSTYPE; 

The header file must be included in the declarations section, by use of%{ and%}. 

58-28 



Yacc: Yet Another Compiler-Compiler 

Once YYSTYPE is defined, the union member names must be associated with the 
various terminal and nonterminal names. The construction 

<name> 

is used to indicate a union member name. If this follows one of the keywords 
%token, %left, %right, and %nonassoc, the union member name is associated 
with the tokens listed. Thus, saying 

%left <0ptype> '+' '-' 

causes any reference to values returned by these two tokens to be tagged with the 
union member name optype. Another keyword, %type, is used similarly to 
associate union member names with nonterminals. Thus, one might say 

%type <nodetype> expr stat 

There remain a couple of cases where these mechanisms are insufficient. If there is 
an action within a rule, the value returned by this action has no a priori type. 
Similarly, reference to left context values (such as $0 - see the previous subsection 
) leaves Yacc with no easy way of knowing the type. In this case, a type can be 
imposed on the reference by inserting a union member name, between <and >, 
immediately after the first $. An example of this usage is 

rule aaa { $<i.ntval>$ = J; } bbb 
{ fun( $<i.ntval>2, 
$<other>O ) ; } 

This syntax has little to recommend it, but the situation rarely arises. 

The facilities in this subsection are not triggered until they are used; in particular, 
the use of %type turns on these mechanisms. When they are used, there is a fairly 
strict level of checking. For example, use of $nor$$ to refer to something with no 
defined type is diagnosed. If these facilities are not triggered, the Yacc value stack 
is used to hold int's. 

UTek TOOLS 58-29 



Yacc: Yet Another Compiler-Compiler 

Yacc Input Syntax 
This subsection has a description of the Yacc input syntax, as a Yacc specification. 
Context dependencies, etc., are not considered. Ironically, the Yacc input 
specification language is most naturally specified as a LR(2) grammar; the difficult 
part comes when an identifier is seen in a rule, immediately following an action. If 
this identifier is followed by a colon, it is the start of the next rule; otherwise it is a 
continuation of the current rule, which just happens to have an action embedded in 
it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and 
decides whether the next token (skipping blanks, newlines, comments, etc.) is a 
colon. If so, it returns the token C_IDENTJFIER. Otherwise, it returns IDENTIFIER. 
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of 
C_IDENTIFIERs. 

%token 

%token 

%token 

%token 

%token 
%token 
%token 

/* grammar for the input to Yacc */ 

/* basic entities */ 
IDENTIFIER /* includes identifiers 

C_IDENTIFIER 

NUMBER 

I* 

I* 

* and literals */ 
identifier (but not literal) 

* followed by colon */ 
[0-9]+ */ 

I* reserved words: %type => TYPE, 

* %left => LEFT, etc. */ 

LEFT RIGHT NON ASSOC TOKEN PREC TYPE 

MARK I* the %% mark *I 
LC URL I* the %{ mark *I 
RCURL I* the %} mark *I 
/* ascii character literals stand 

* for themselves */ 

START UNION 

%start spec 

%% 

spec 

tail 

def s 

58-30 

defs MARK rules tail 

MARK { In this action, 
eat up the rest of file 

/* empty: the second MARK is optional */ 

/* empty */ 
def s def 



def 

rword 

tag 

nlist 

nmno 

I* NOTE: 
I 
I 

I* NOTE: 

I* rules 

rules 

rule 

rbody 

act 

prec 

UTek TOOLS 

Yacc: Yet Another Complier-Complier 

START IDENTIFIER 
UNION { Copy union definition to output 
LCURL { Copy C code to output file RCURL 

ndefs rword tag nlist 

TOKEN 

LEFT 
RIGHT 
NON ASSOC 
TYPE 

/* empty: union tag is optional */ 

'<' IDENTIFIER '>' 

nmno 
nlist nmno 
nlist nmno 

IDENTIFIER 
literal illegal with %type 
IDENTIFIER NUMBER 
illegal with %type *I 

section */ 

C_IDENTIFIER rbody prec 
rules rule 

C_IDENTIFIER rbody prec 
, I' 

I rbody prec 

/* empty */ 
rbody IDENTIFIER 
rbody act 

*I 

Copy action, translate $$, etc. 

/* empty */ 
PREC IDENTIFIER 
PREC IDENTIFIER act 
prec 

'}, 

58-31 



Yacc: Yet Another Compiler-Complier 

A Simple Example 
This example gives the complete Yacc specification for a small desk calculator. The 
desk calculator has 26 registers, labeled a through z, and accepts arithmetic 
expressions made up of the operators+, -, *, /, % (mod operator), & (bitwise 
AND), : (bitwise OR), and assignment. If an expression at the top level is an 
assignment, the value is not printed; otherwise it is. As in C, an integer that begins 
with O (zero) is assumed to be octal; otherwise, it is assumed to be decimal. 

As an example of a Yacc specification, the desk calculator does a reasonable job of 
showing how precedences and ambiguities are used, and demonstrating simple 
error recovery. The major oversimplifications are that the lexical analysis phase is 
much simpler than for most applications, and the output is produced immediately, 
line by line. Note the way that decimal and octal integers are read in by the 
grammar rules. This job is probably better done by the lexical analyzer. 

%{ 
# include <stdio.h> 
# include <ctype.h> 

int regs [26] ; 
int base; 

%} 

%start list 

%token DIGIT LETTER 

%left , I' 
I 

%left & 

%left + 
%left * I '%' 

%left UMINUS 
/* supplies precedence for unary minus */ 

%% /* beginning of rules section */ 

list I* empty *I 
list stat \n 
list error \n 

{ yyerrok; 

stat expr 

} 

printf( "%d\n 
LEITER = expr 

regs[$1] = 

58-32 

.. , $1 ) ; 

$3; 



Yacc: Yet Another Compiler-Compiler 

expr 

number 

'(' expr , ) , 

{ 
expr + expr 

expr expr 

expr '*' expr 

expr I expr 

expr '%' expr 

{ 
expr '&' expr 

expr , I' expr I 

expr 
{ 

LEITER 

number 

DIGIT 

base 
number DIGIT 

{ 

$$ $2; } 

$$ $1 + $3; 

$$ $1 - $3; 

$$ $1 * $3; 

$$ $1 I $3; 

$$ $1 % $3; 

$$ $1 & $3; 

$$ $1 I $3; I 

%prec UMINUS 
$$ - $2; 

$$ regs[$1]; 

$$ = $1; 
($1==0) ? 8 

} 

} 

} 

} 

10; } 

$$ = base * $1 + $2; 

%% /* start of programs */ 

yylex( ) { /* lexical analysis routine */ 
/* returns LEITER for a lower case letter, */ 

/* yylval = 0 through 25 */ 
/* return DIGIT for a digit, 
* yylval = 0 through 9 */ 

/* all other characters 
* are returned immediately */ 

int c; 

while( (c=getchar( )) == 
/* skip blanks */ } 

/* c is now nonblank */ 

UTek TOOLS 

{ 

58-33 



Yacc: Yet Another Compiler-Compiler 

if( islower( c ) ) { 
yylval c - a ; 
return LE'ITER ) ; 
} 

if( isdigit( c ) ) { 
yylval = c - 0 
return( DIGIT ); 
} 

return( c ); 
} 

58-34 



Yacc: Yet Another Compiler-Compiler 

An Advanced Example 
This subsection gives an example of a grammar using some of the advanced 
features discussed in Advanced Topics. The desk calculator example in A Simple 
Example is modified to provide a desk calculator that does floating point interval 
arithmetic. The calculator understands floating point constants, the arithmetic 
operations +, -, *, /, unary -, and = (assignment), and has 26 floating point 
variables, a through z. Moreover, it also understands intervals , written 

(x,y) 

where xis less than or equal toy. There are 26 interval valued variables A through 
Z that may also be used. The usage is similar to that in A Simple Example; 
assignments return no value, and print nothing, while expressions print the (floating 
or interval) value. 

This example explores a number of interesting features of Yacc and C. Intervals are 
represented by a structure, consisting of the left and right endpoint values, stored as 
double's. This structure is given a type name, INTERVAL, by using typedef . The 
Yacc value stack can also contain floating point scalars, and integers (used to index 
into the arrays holding the variable values). Notice that this entire strategy depends 
strongly on being able to assign structures and unions in C. In fact, many of the 
actions call functions that return structures as well. 

It is also worth noting the use of YYERROR to handle error conditions: division by 
an interval containing 0, and an interval presented in the wrong order. In effect, the 
error recovery mechanism of Yacc is used to throw away the rest of the offending 
line. 

In addition to the mixing of types on the value stack, this grammar also 
demonstrates an interesting use of syntax to keep track of the type (for example, 
scalar or interval) of intermediate expressions. Note that a scalar can be 
automatically promoted to an interval if the context demands an interval value. This 
causes a large number of conflicts when the grammar is run through Yacc: 18 
Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the 
two input lines: 

2.5 + ( 3.5 - 4. ) 

and 

2.5 + ( 3.5 ' 4. ) 

UTek TOOLS SB-35 



Yacc: Yet Another Compiler-Complier 

Notice that the 2.5 is to be used in an interval-valued expression in the second 
example, but this fact is not known until the comma(,) is read. By this time, 2.5 is 
finished, and the parser cannot go back and change its mind. More generally, it 
might be necessary to look ahead an arbitrary number of tokens to decide whether 
to convert a scalar to an interval. This problem is evaded by having two rules for 
each binary interval valued operator: one when the left operand is a scalar, and one 
when the left operand is an interval. In the second case, the right operand must be 
an interval, so the conversion is applied automatically. Despite this evasion, there 
are still many cases where the conversion may be applied or not, leading to the 
above conflicts. They are resolved by listing the rules that yield scalars first in the 
specification file; in this way, the conflicts are resolved in the direction of keeping 
scalar-valued expressions scalar valued until they are forced to become intervals. 

This way of handling multiple types is very instructive, but not very general. If there 
were many kinds of expression types, instead of just two, the number of rules 
needed would increase dramatically, and the conflicts even more dramatically. 
Thus, while this example is instructive, it is better practice in a more normal 
programming language environment to keep the type information as part of the 
value, and not as part of the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the treatment 
of floating point constants. The C library routine atof is used to do the actual 
conversion from a character string to a double precision value. If the lexical 
analyzer detects an error, it responds by returning a token that is illegal in the 
grammar, provoking a syntax error in the parser, and thence error recovery. 

%{ 

# include <stdio.h> 
# include <ctype.h> 

typedef struct interval { 
double lo, hi; 
} INTERVAL; 

INTERVAL vmul( ), vdiv( ); 

double atof( ); 

double dreg[ 26 ]; 
INTERVAL vreg[ 26 ]; 

%} 

%start 

%union 

58-36 

lines 

{ 
int ival; 
double dval; 
INTERVAL vval; 
} 



Yacc: Yet Another Compiler-Compiler 

%token <ival> DREG VREG 
/* indices into dreg, vreg arrays */ 

%token <dval> CONST · 
/* floating point constant */ 

/* expression */ %type <dval> dexp 

%type <Vval> vexp /* interval expression */ 

I* precedence information about the operators *I 

%left + 
%left * I 
%left UMINUS I* precedence for unary minus *I 

%% 

lines I* empty */ 
lines line 

line dexp \n 
{ printf( "%15.Bf\n '' , $1 ) ; 

vexp \n 
{ printf ( "(%15.8f , %15.8f 
\n , $1.lo, $1.hi ); 

DREG dexp \n 
{ dreg[$1] $3; } 

VREG vexp \n 
{ vreg[$1] $3; 

error \n 
{ yyerrok; } 

dexp CONST 
DREG 

{ $$ dreg[$1]; 
dexp + dexp 

{ $$ $1 + $3; 
dexp dexp 

{ $$ $1 - $3; 
dexp * dexp 

{ $$ $1 * $3; 
dexp I dexp 

UTek TOOLS 58-37 



Yacc: Yet Another Compiler-Compiler 

$$ = $1 I $3; 
dexp %prec UMINUS 

{ $$ - $2; } 
'(' dexp , ) , 

{ $$ $2; } 

vexp dexp 
{ $$.hi = $$.lo $1; } 

'(' dexp dexp , ) , 

{ 
$$.lo = $2; 
$$.hi = $4; 
if( $$.lo > $$.hi ){ 

printf( "interval out of order\n 
,, 

); 

YYERROR; 
} 

VREG 
$$ = vreg[$1]; } 

vexp + vexp 
$$.hi $1.hi + $3.hi; 
$$.lo $1.lo + $3.lo; 

dexp + vexp 
$$.hi $1 + $3.hi; 
$$.lo $1 + $3.lo; 

vexp vexp 
$$.hi $1.hi - $3.lo; 
$$.lo $1.lo - $3.hi; 

dexp vexp 
$$.hi $1 - $3. lo; 
$$.lo $1 - $3.hi; 

vexp * vexp 
$$ vmul( $1.lo, $1.hi, $3 ); } 

dexp * vexp 
$$ vmul( $1, $1, $3 ); 

vexp I vexp 
if( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.lo, $1.hi, $3 ) ; 

dexp I vexp 
{ if( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1, $1, $3 ) ; } 

vexp %prec UMINUS 
{ $$.hi = -$2.lo; $$.lo = -$2.hi; 

T vexp , ) , 

{ $$ = $2; } 

58-38 



Yacc: Yet Another Compiler-Compiler 

%% 

# define BSZ 50 
/* buffer size for floating point numbers */ 

/* lexical analysis */ 

yylex( ){ 

if( 

if( 

register c; 

while( (c=getchar( )) ){ 
I* skip over blanks */ 

if( isupper( c ){ 
yylval.ival = c - A,; 

return( VREG ) ; 
} 

islower( c ){ 
yylval. ival c - a ; 
return( DREG ) ; 
} 

isdigit( c ) 11 C== • ){ 11 

I* gobble up digits, points, exponents */ 

char 
int 

for( 

buf[BSZ+l], *cp = buf; 
dot = O, exp = O; 

(cp-buf)<BSZ ; ++cp,c=getchar() ){ 

*cp = c; 
if( isdigit( c ) ) continue; 
if( c ){ 

if( c 

if( dot++ l I exp ) return( ) ; 
/* will cause syntax error */ 
continue; 
} 

e ){ 
if( exp++ ) return( e ); 
/* will cause syntax error */ 
continue; 
} 

/* end of number */ 
break; 
} 

UTek TOOLS 58-39 



Yacc: Yet Another Compiler-Compiler 

if( a>b ) { v.hi = a; v.lo b; } 
else { v.hi = b; v.lo = a; 

if( c>d ) 
if( c>v.hi v.hi c; 
if( d<V.lo v.lo d; 
} 

else 
if( d>v.hi v.hi d; 
if( c<V.lo v.lo c; 
} 

return( v ) ; 
} 

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; 
return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo ) ); 
} 

dcheck( v ) 
if( 

INTERVAL v; 
v.hi >= O. && v.lo ~ O. ){ 

printf( "divisor interval contains O.\n 
return( 1 ); 
} 

return( 0 ); 
} 

) ; 

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; 
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) ); 
} 

*cp = \O'; 
if( (cp-buf) >= BSZ ) 
printf( "constant too long: truncated\n ); 
else ungetc( c, stdin ); 
/* push back last char read */ 
yylval.dval = atof( buf ); 
return( CONST ); 
} 

return( c ) ; 
} 

INTERVAL hilo( a, b, c, d ) double a, b, c, d; { 
/* returns the smallest 

SB-40 

* interval containing a, b, c, and d */ 
/* used by *• / routines */ 
INTERVAL v; 



5C 
Curses and Terminfo 
Package 

Introduction 
This chapter is an introduction to curses and terminfo. It is intended for the 
programmer who must write a screen-oriented program using the curses package. 
Several example programs are discussed. The example programs can be found in 
section 5D. This section also documents each curses function, and is intended as a 
reference. 

For curses to produce terminal-dependent output, it has to know what kind of 
terminal you have. The UTek system convention for this is to put the name of the 
terminal in the variable TERM in the environment. Thus, a user on a DEC VT100 
would set TERM= vtJOO when logging in. Curses uses this convention. 

Output 
A program using curses always starts by calling iinitscr(). Other modes can then 
be set as needed by the program. Possible modes include cbreak(), and 
idlok(stdscr, TRUE). These modes will be explained later. During the execution of 
the program, output to the screen is done with routines such as addch(ch) and 
printw(fmt,args). (These routines behave just like putchar and printf except that 
they go through curses). The cursor can be moved with the call move(row,col). 
These routines only output to a data structure called a window, not to the actual 
screen. A window is a representation of a video terminal screen, containing such 
things as an array of characters to be displayed on the screen, a cursor, a current 
set of video attributes, and various modes and options. You don't need to worry 
about windows unless you use more than one of them, except to realize that a 
window is buffering your requests to output to the screen. 

To send all accumulated output call refresh(). 

(This can be thought of as a flush.) Finally, before the program exits, it should call 
endwin(), which restores all terminal settings and positions the cursor at the bottom 
of the screen. See Example SC-1 for the framework of a curses program. 

UTek TOOLS 5C-



Curses and Termlnfo Package 

#include <curses.h> 
initscr(); /* Initialization*/ 

cbreak(); /* Various optional mode settings */ 
nonl(); 
noecho(); 
while (!done) {/* Main body of program */ 

endwin(); 
exit(O); 

/* Sample calls to draw on screen */ 
move(row, col); 
addch(ch); 
printw("Formatted print with value %d\n", 
value); 

/* Flush output */ 
refresh(); 

/* Clean up */ 

Example SC-1. Framework of a Curses Program. 

See the program scatter in Section 50 for an example program. This program 
reads a file, and displays the file in a random order on the screen. Some programs 
assume all screens are 24 lines by 80 columns. It is important to understand that 
many are not. The variables LINES and COLS are defined by initscr with the 
current screen size. Programs should use them instead of assuming a 24x80 
screen. 

No output to the terminal actually happens until refresh is called. Instead, routines 
such as move and addch draw on a window data structure called stdscr (standard 
screen). Curses always keeps track of what is on the physical screen, as well as 
what is in stdscr. 

When refresh is called, curses compares the two screen images and sends a 
stream of characters to the terminal that will turn the current screen into what is 
desired. Curses considers many different ways to do this, taking into account the 
various capabilities of the terminal, and similarities between what is on the screen 
and what is desired. It usually outputs as few characters as possible. This feature 
is called cursor optimization, and it is the source of the name of the curses package. 

NOTE 
Due to the hardware scrolling of terminals, writing to the 

lower righthand character position is impossible. 

SC-2 



Curses and Terminto Package 

Input 
Curses can do more than just draw on the screen. Functions are also provided for 
input from the keyboard. The primary function is getchO which waits for the user to 
type a character on the keyboard, and then returns that character. This function is 
like getchar except that it goes through curses. Its use is recommended for 
programs using the cbreakO or noecho() options, since several terminal- or 
system-dependent options become available that are not possible with getchar. 

Options available with getch include keypad, which allows extra keys such as arrow 
keys, function keys, and other special keys that transmit escape sequences, to be 
treated as just another key. (The values returned for these keys are listed in Table 
5C-1.) The values for these keys are over octal 400, so they should be sorted in a 
variable larger than a char. Nodelay mode causes the value -1 to be returned if 
there is no input waiting. Normally, getch will wait until a character is typed. 
Finally, the routine getstr(str) can be called, allowing input of an entire line, up to a 
newline. This routine handles echoing and the erase and kill characters of the user. 
Examples of the use of these options are in later example programs. 

The function keys might be returned by getch if keypad has been enabled. Note 
that not all of these are currently supported, due to lack of definitions in terminfo or 
the terminal not transmitting a unique code when the key is pressed. 

UTek TOOLS SC-3 



Curses and Termlnfo Package 

Table SC-1 
VALUES RETURNED BY KEYPAD KEYS 

Name Value Key name 

KEY_BREAK 0401 Break key (unreliable) 
KEY_DOWN 0402 The four arrow keys ... 
KEY_UP 0403 
KEY_LEFT 0404 
KEY_RIGHT 0405 
KEY_HOME 0406 Home key (upward +left arrow) 
KEY _BACKSPACE 0407 Backspace (unreliable) 
KEY_FO 0410 Function keys 
KEY_F(n) (KEY _FO + (n)) Formula for fn. 
KEY_DL 0510 Delete line 
KEY_IL 0511 Insert line 
KEY_DC 0512 Delete character 
KEY_IC 0513 Insert char or enter insert mode 
KEY_EIC 0514 Exit insert char mode 
KEY_CLEAR 0515 Clear screen 
KEY_EOS 0516 Clear to end of screen 
KEY_EOL 0517 Clear to end of line 
KEY_SF 0520 Scroll 1 line forward 
KEY_SR 0521 Scroll 1 line backwards (reverse) 
KEY_NPAGE 0522 Next page 
KEY_PPAGE 0523 Previous page 
KEY_STAB 0524 Set tab 
KEY_CTAB 0525 Clear tab 
KEY_CATAB 0526 Clear all tabs 
KEY_ENTER 0527 Enter or send (unreliable) 
KEY_SRESET 0530 Soft reset (unreliable) 
KEY_RESET 0531 Reset or hard reset (unreliable) 
KEY_PRINT 0532 Print or copy 
KEY_LL 0533 Home down or bottom (lower left) 

See the program show in the Section 50 for an example use of getch. Show 
pages through a file, showing one screen full each time the user presses the space 
bar. By creating an input file for show made up of 24 line pages, each segment 
varying slightly from the previous page, nearly any exercise for curses can be 
created. Such input files are called show scripts. 

In the show program, cbreak is called so that the user can press the space bar 
without having to press <RETURN>. The noecho function is called to prevent the 
space from echoing in the middle of refresh, and garbling the screen. The nonl 
function is called to enable more screen optimization. The idlok function is called to 
allow insert and delete line, since many show scripts are constructed to duplicate 
bugs caused by that feature. The clrtoeol and clrtobot functions clear from the 
cursor to the end of the line and screen, respectively. 

SC-4 



Curses and Terminfo Package 

Highlighting 
The function addch always draws two things on a window. In addition to the 
character itself, a set of attributes is associated with the character. These attributes 
cover various forms of highlighting of the character. For example, the character can 
be put in reverse video, bold, or be underlined. You can think of the attributes as 
the color of the ink used to draw the character. 

A window always has a set of current attributes associated with it. The current 
attributes are associated with each character as it is written to the window. The 
current attributes can be changed with a call to attrset(attrs). The names of the 
attributes are A_STANDOUT, A_REVERSE, A_BOLD, A_DIM, A_INVIS, and 
A_UNDERLINE. For example, to put a word in bold, the code in Example 5C-2 
might be used. The word boldface will be shown in bold. 

printw("A work in "); 
attrset( A_BOLD); 
printw("boldface"); 
attrset(O); 
printw(" really stands out. \n"); 
refresh( ); 

Example SC-2. Use of Attributes. 

Not all terminals are capable of displaying all attributes. If a particular terminal 
cannot display a requested attribute, curses will attempt to find a substitute 
attribute. If none is possible, the attribute is ignored. 

The standout attribute is used to make text attract the attention of the user. The 
particular hardware attribute used for standout varies from terminal to terminal, and 
is chosen to be the most visually pleasing attribute the terminal has. Standout is 
typically implemented as reverse video or bold. Many programs do not really need a 
specific attribute, such as bold or reverse video, but instead just need to highlight 
some text. For such applications, the A_STANDOUT attribute is recommended. 
Two convenient functions, standout() and standend() turn on and off this attribute. 

Attributes can be turned on in combination. Thus, to turn on blinking bold text, use 
attrset(A_BLINK :A_BOLD). Individual attributes can be turned on and off with 
attron and attroff without affecting other attributes. 

For an example program using attributes, see highlight in Section 50. The program 
takes a text file as input and allows embedded escape sequences to control 
attributes. In this example program, \U turns on underlining, \8 turns on bold, and 
\N restores normal text. Note the initial call to scrollok. This lets the terminal scroll 
if the file is longer than one screen. When an attempt is made to draw past the 
bottom of the screen, curses automatically scrolls the terminal up a line and calls 
refresh. 

UTek TOOLS 5C-5 



Curses and Terminfo Package 

Highlight comes about as close to being a filter as is possible with curses. It is not 
a true filter, because curses must take over the video screen. In order to determine 
how to update the screen, it must know what is on the screen at all times. This 
requires curses to clear the screen in the first call to refresh, and to know the 
cursor position and screen contents at all times. 

Multiple Windows 
A window is a data structure representing all or part of the video screen. It has 
room for a two-dimensional array of characters, attributes for each character (a total 
of 16 bits per character: 7 for text and 9 for attributes) a cursor, a set of current 
attributes, and a number of flags. Curses provides a full screen window, called 
stdscr, and a set of functions that use stdscr. Another window is provided called 
curscr, representing the physical screen. 

It is important to understand that a window is only a data structure. Use of more 
than one window does not imply use of more than one terminal, nor does it involve 
more than one process. A window is merely an object that can be copied to all or 
part of the terminal screen. The current implementation of curses does not allow 
windows that are bigger than the screen. 

You can create additional windows with the function newwin(lines, cols, 
begin_row, begin_col) and can return a pointer to a newly-created window. The 
window is be lines by cols, and the upper left corner of the window is be at screen 
position (begin_row, begin_col). All operations that affect stdscr have 
corresponding functions that affect an arbitrary, named window. Generally, these 
functions have names formed by putting a "w" on the front of the stdscr function, 
and the window name is added as the first parameter. Thus, waddch(mywin, c) 
would write the character c to window mywin. The wrefresh(win) function is used 
to flush the contents of a window to the screen. 

Windows are useful for maintaining several different screen images, and letting the 
user alternate among them. You can also subdivide the screen into several 
windows, refreshing each of them as desired. When windows overlap, the contents 
of the screen will be the more-recently refreshed window. 

In all cases, the non-w version of the function calls the w version of the function, 
using stdscr as the additional argument. Thus a call to addch(c) results in a call to 
waddch(stdscr, c). 

The program window in Section 50 is an example of the use of multiple windows. 
The main display is kept in stdscr. When the user temporarily wants to put 
something else on the screen, a new window is created covering part of the screen. 
A call to wrefresh on that window causes the window to be written over stdscr on 
the screen. Calling refresh or stdscr results in the original window being redrawn 
on the screen. Note the calls to touchwin before writing out an overlapping window. 
These are necessary to defeat an optimization in curses. If you have trouble 
refreshing a new window that overlaps an old window, it you may need to call 
touchwin on the new window to get it completely written out. 

5C-6 



Curses and Terminfo Package 

For convenience, a set of move functions is also provided for most of the common 
functions. These result in a call to move before the other function. For example, 
mvaddch(row, col, c) is the same as move(row, col); addch(c). Combinations 
also exist; for example, mvwaddch(row, col, win, c). 

Multiple Terminals 
Curses can produce output on more than one terminal at once. This is useful for 
single process programs that access a common database, such as multiplayer 
games. Output to multiple terminals is a difficult business, and curses does not 
solve all the problems for the programmer. The program must determine the 
filename of each terminal line, and what kind of terminal is on each of those lines. 
The standard method (checking $TERM in the environment) does not work, since 
each process can only examine its own environment. Another problem that must be 
solved is that of multiple programs reading from one line. This situation produces a 
race condition and should be avoided. Nonetheless, a program wishing to take over 
another terminal cannot just shut off whatever program is currently running on that 
line. (Usually, security reasons would also make this inappropriate. However, for 
some applications, such as an inter-terminal communication program, or a program 
that takes over unused tty lines, it would be appropriate). A typical solution requires 
the user logged in on each line to run a program that notifies the master program 
that the user is interested in joining the master program, telling it the notification 
program's process id, the name of the tty line and-the type of terminal being used. 
Then the program goes to sleep until the master program finishes. When done, the 
master program wakes up the notification program, and all programs exit. 

Curses handles multiple terminals by always having a current terminal. All function 
calls always affect the current terminal. The master program should set up each 
terminal, saving a reference to the terminals in its own variables. When it wishes to 
affect a terminal, it should set the current terminal as desired, and then call ordinary 
curses routines. 

References to terminals have type struct screen *. A new terminal is initialized by 
calling newterm(type, fd). newterm returns a screen reference to the terminal 
being set up. type is a character string, naming the kind of terminal being used. 
The parameter fd is a file descriptor to be used for input and output to the terminal. 
(If only output is needed, the file can be open for output only). This call replaces the 
normal call to initscr, which calls newterm(getenv("TERM"), stdout). 

To change the current terminal, call seLterm(sp) where sp is the screen reference 
to be made current. set_term returns a reference to the previous terminal. 

UTek TOOLS 5C-7 



Curses and Terminfo Package 

Each terminal has its own set of windows and options. Each terminal must be 
initialized separately with newterm. Options such as cbreak and noecho must be 
set separately for each terminal. The functions endwin and refresh must be called 
separately for each terminal. See Example 5C-3 for a typical scenario to output a 
message to each terminal. 

for (i=O; i<llterm; i++) ( 
set_term(terms[i]); 
mvaddstr(O, 0, "Important message"); 
refresh( ) ; 

Example 5C-3. Sending a Message to Several Terminals. 

See the sample program two in section SD for a full example. This program pages 
through a file, showing one page to the first terminal and the next page to the 
second terminal. It then waits for a space to be entered on either terminal, and 
shows the next page to the terminal typing the space. Each terminal has to be 
separately put into nodelay mode. Since no standard multiplexor is available in 
current versions of the UTek system, it is necessary to either busy wait, or call 
sleep; between each, check for keyboard input. This program sleeps for a second 
between checks. 

The two program is just a simple example of two terminal curses. It does not 
handle notification, as described above. Instead, it requires the name and type of 
the second terminal on the command line. As written, the command sleep 100000 
must be entered on the second terminal to put it to sleep while the program runs, 
and the first user must have both read and write permission on the second terminal. 

Low-level Terminfo Usage 
Some programs need to use lower-level primitives than those offered by curses. 
For such programs, the terminfo level interface is offered. This interface does not 
manage your video screen, but rather gives you access to strings and capabilities 
that you can use yourself to manipulate the terminal. 

Normally you should not use this level. Whenever possible, the higher level curses 
routines should be used. This makes your programs more portable to other UTek 
systems and to a wider class of terminals. Curses takes care of all the glitches and 
misfeatures present in physical terminals, but at the terminfo level you must deal 
with them yourself. Also, this part of the interface might change. 

5C-8 



Curses and Termlnfo Package 

There are two circumstances when it is proper to use terminfo. The first is when 
you are writing a special purpose tool that sends a special purpose string to the 
terminal, such as programming a function key, setting tab stops, sending output to a 
printer port, or dealing with the status line. The second situation is when writing a 
filter. A typical filter does one transformation on the input stream without clearing 
the screen or addressing the cursor. If this transformation is terminal-dependent 
and clearing the screen is inappropriate, use of terminfo is indicated. 

A program writing at the terminfo level uses the framework shown in Example SC-4. 

#include <curses.h> 
#include <term.h> 

setupterm(O, 1, O); 

putp(clear_screen); 

reset_shellJnode( ); 
exit (0); 

Example SC-4. Terminfo Level Framework. 

Initialization is done by calling setupterm. Passing the values 0, 1, and 0 invoke 
reasonable defaults. If setupterm cannot figure out what kind of terminal you are 
on, it prints an error message and exits. The program should call reset_shelLmode 
before it exits. 

Global variables with names like clear_screen and cursor_address are defined by 
the call to setupterm. They can be output using putp, or also using tputs, which 
allows the programmer more control. These strings should not be directly output to 
the terminal using printf since they contain padding information. A program that 
directly outputs strings will fail on terminals that require padding, or that use the 
XON/XOFF flow control protocol. 

In the terminfo level, the higher-level routines described previously are not 
available. It is up to the programmer to output whatever is needed. For a list of 
capabilities and a description of what they do, see the UTek Command Reference, 
terminfo(4). 

The example program termhl shows simple use of terminfo. It is a version of 
highlight that uses terminfo instead of curses. This version can be used as a filter. 
The strings to enter bold and underline mode, and to turn off all attributes, are used. 

This program is more complex than it needs to be in order to illustrate some 
properties of terminfo. The routine vidattr could have been used instead of directly 
outputting enter_bold_mode, enter_underline_mode, and exiLattribute_mode. In 
fact, the program would be more robust if it did, since there are several ways to 
change video attribute modes. This program was written to illustrate typical use of 
terminfo. 

UTek TOOLS SC-9 



Curses and Terminfo Package 

The function tputs(cap, affcnt, outc) applies padding information. Some 
capabilities contain strings like $<20>, which means to pad for 20 milliseconds. 
Tputs generates enough pad characters to delay for the appropriate time. The first 
parameter is the string capability to be output. The second is the number of lines 
affected by the capability. 

NOTE 
Some capabilities may require padding that depends on the 

number of lines affected. For example, insert-line may 
have to copy all lines below the current line, and may require 
time proportional to the number of lines copied. By 
convention, affcnt is 1 if no lines are affected. The value 1 
is used, rather than 0, for safety, since affcnt is multiplied 
by the amount of time per item, and anything multiplied by 
0 is 0. 

The third parameter is a routine to be called with each character. 

For many simple programs affcnt is always 1 and outc always calls putchar. For 
these programs, the routine putp(cap) is a convenient abbreviation. The program 
termhl could be simplified by using putp. 

Note also the special check for the underline_char capability. Some terminals, 
rather than having a code to start underlining and a code to stop underlining, have a 
code to underline the current character. The program termhl keeps track of the 
current mode, and if the current character is supposed to be underlined, it outputs 
underline_char if necessary. Details such as this are precisely why the curses level 
is recommended over the terminfo level. Programs at the terminfo level must 
handle such details themselves. 

A Larger Example 
For a final example, see the program editor in Section 50. This program is a very 
simple screen editor, patterned after the vi editor. The program shows how to use 
curses to write a screen editor. This editor keeps the buffer in stdscr to keep the 
program simple - obviously a real screen editor would keep a separate data 
structure. Many simplifications have been made here: no provision is made for files 
of any length other than the size of the screen, for lines longer than the width of the 
screen, or for control characters in the file. 

The routine to write out the file shows the use of the mvinch function, which returns 
the character in a window at a given position. The data structure used here does 
not keep track of the number of characters in a line, or the number of lines in the 
file, so trailing blanks are eliminated when the file is written out. 

The program uses the built-in curses functions insch, delch, insertln,and deleteln. 
These functions behave much as the similar functions on intelligent terminals 
behave, inserting and deleting a character or line. 

5C-10 



Curses and Terminfo Package 

The command interpreter accepts not only ASCII characters, but also special keys. 
This is important- a good program accepts both. It is important to handle special 
keys because this makes it easier for new users to learn your program if they can 
use the arrow keys, instead of having to memorize that h means left, j means down, 
k means up, and I means right. On the other hand, not all terminals have arrow 
keys, so your program will be usable on a larger class of terminals if there is an 
ASCII character which is a synonym for a special key. Also, experienced users 
dislike having to move their hands from the "home row" position to use special 
keys, since they can work faster with the alphabetic keys. 

Note the call to mvaddstr in the input routine. Addstr is roughly like the C fputs 
function, which writes out a string of characters. Like fputs, addstr does not add a 
trailing newline character. It is the same as a series of calls to addch using the 
characters in the string. Mvaddstr is the mv version of addstr, which moves to the 
given location in the windows before writing. 

The <CTRL-L> command illustrates a feature most programs using curses should 
add. Often some program beyond the control of curses has written something to 
the screen, or some line noise has messed up the screen beyond what curses can 
keep track of. In this case, the user usually types <CTRL-L>, causing the screen to 
be cleared and redrawn. This is done with the call to clearok(curscr), which sets a 
flag causing the next refresh to first clear the screen. Then refresh is called to 
force the redraw. 

Note also the call to flash(), which flashes the screen if possible, and otherwise 
rings the bell. Flashing the screen is intended as a bell replacement, and is 
particularly useful if the bell bothers someone within earshot. The routine beep() 
can be called when a real beep is desired. (If, for some reason, the terminal is 
unable to beep, but able to flash, a call to beep will flash the screen.) 

UTek TOOLS 5C-11 



Curses and Terminfo Package 

Another important point is that the input command is terminated by <CTRL-D>, not 
<ESC>. It is very tempting to use <ESC> as a command, since <ESC> is one of the 
few special keys that is available on every keyboard. (Return and break are the only 
others.) However, using <ESC> as a separate key introduces an ambiguity. Most 
terminals use sequences of characters beginning with <ESC> (escape sequences) to 
control the terminal, and have special keys that send escape sequences to the 
computer. If the computer sees an <ESC> coming from the terminal, it cannot tell 
for sure whether the user pushed <ESC>, or whether a special key was pressed. 
Curses handles the ambiguity by waiting for up to one second. If another character 
is received during this second, and if that character might be the beginning of a 
special key, more input is read (waiting for up to one second for each character) 
until either a full special key is read, one second passes, or a character is received 
that could not have been generated by a special key. While this strategy works 
most of the time, it is not foolproof. It is possible for the user to press <ESC>, then 
to type another key quickly, which causes curses to think a special key has been 
pressed. Also, there is a one second pause until the <ESC> can be passed to the 
user program, resulting in slower response to the <ESC> key. Many existing 
programs use escape as a fundamental command, which cannot be changed 
without frustrating users. Such programs cannot make use of special keys without 
dealing with this ambiguity, and at best must resort to a time-out solution. The 
moral is clear: when designing your program, avoid the <ESC> key. 

List of Routines 
This section describes all the routines available to the programmer in the curses 
package. The routines are organized by function. 

Structure 
All programs using curses should include the file curses.h. This file defines several 
curses functions as macros, and defines several global variables and the data type 
WINDOW. References to windows are always of type WINDOW *. Curses also 
defines WINDOW * constants stdscr (the standard screen, used as a default to 
routines expecting a window), and curscr (the current screen, used only for certain 
low-level operations like clearing and redrawing a messed up screen). Integer 
constants LINE and COLS are defined, containing the size of the screen. Constants 
TRUE and FALSE are defined, with values 1 and O respectively. Additional 
constants that are values returned from most curses functions are ERR and OK. 
OK is returned if the function could be properly completed, and ERR is returned if 
there was some error, such as moving the cursor outside of a window. 

The include file curses.h automatically includes stdio.hand an appropriate tty driver 
interface file, currently either agtty.h* or termio.h. 

SC-12 



Curses and Ter.mlnfo Package 

NOTE 
Including stdio.h again is harmless but wasteful. Including 

sgtty.h again will usually result in a fatal error. 

A program using curses should include the loader option -lcurses in the makefile. 
This is true for both the terminfo level and the curses level. The compilation option 
-DMINICURSES can be included if you restrict your program to a small subset of 
curses concerned primarily with screen output and optimization. The routines 
possible with minicurses are listed in the later topic Minicurses. 

Initialization 
These functions are called when initializing a program. 

initscr() 
The first function called always should be initscr. This determines the terminal type 
and initializes curses data structures. lnitscr also arranges that the first call to 
refresh will clear the screen. 

end win() 
A program should always call endwin() before exiting. This function will restore tty 
modes, move the cursor to the lower left corner of the screen, reset the terminal into 
the proper non-visual mode, and tear down all appropriate data structures. 

newterm(type, fd) 
A program that outputs to more than one terminal should use newterm instead of 
initscr. Newterm should be called once for each terminal. It returns a variable of 
type SCREEN *, which should be saved as a reference to that terminal. The 
arguments are the type of the terminal (a string) and a stdio file descriptor (FILE*) 
for output to the terminal. The file descriptor should be open for both reading and 
writing if input from the terminal is desired. The program should also call endwin 
for each terminal being used (see set_term below). If an error occurs, the value 
NULL is returned. 

set_term(new) 
This function is used to switch to a different terminal. The screen reference new 
becomes the new current terminal. The previous terminal is returned by the 
function. All other calls affect only the current terminal. 

long name() 
This function returns a pointer to a static area containing a verbose description of 
the current terminal. It is defined only after a call to initscr, newterm, or 
setupterm. 

UTek TOOLS SC-13 



Curses and Terminfo Package 

Setting Options 
These functions set options within curses. In each case, win is the window 
affected, and bf is a Boolean flag with value TRUE or FALSE indicating whether to 
enable or disable the option. All options are initially FALSE. It is not necessary to 
turn these options off before calling endwin. 

clearok(win,bf) 
If set, the next call to wrefresh with this window clears the screen and redraw the 
entire screen. If win is curscr, the next call to wrefresh with any window causes 
the screen to be cleared. This is useful when the contents of the screen are 
uncertain, or in some cases for a more pleasing visual effect. 

idlok(win,bf) 
If enabled, curses considers using the hardware to insert/delete line feature of 
terminals so equipped. If disabled, curses never uses this feature. The 
insert/delete character feature is always considered. Enable this option only if your 
application needs insert/delete line, for example, for a screen editor. It is disabled 
by default because insert/delete line tends to be visually annoying when used in 
applications where it is not really necessary. If insert/delete line cannot be used, 
curses redraws the changed portions of all lines that do not match the desired line. 

keypad(win,bf) 
This option enables the keypad of the user's terminal. If enabled, the user can 
press a function key and getch returns a single value representing the function key. 
If disabled, curses does not treat function keys specially. If the keypad in the 
terminal can be turned on and off, turning on this option turns on the terminal 
keypad. 

leaveok(win,bf) 
Normally, the hardware cursor is left at the location of the window cursor being 
refreshed. This option allows the cursor to be left wherever the update happens to 
leave it. It is useful for applications where the cursor is not used, since it reduces 
the need for cursor motions. If possible, the cursor is made invisible when this 
option is enabled. 

meta(win, bf) 
If enabled, characters returned by getch are transmitted with all 8 bits, instead of 
stripping the highest bit. The value OK is returned if the request succeeded; the 
value ERR is returned if the terminal or system is not capable of 8-bit input. 

Meta mode is useful for extending the nontext command set in applications where 
the terminal has a meta shift key. Curses takes whatever measures are necessary 
to arrange for 8-bit input. On other versions of UNIX systems, raw mode is used. 
On this system, the character size is set to 8, parity checking disabled, and stripping 
of the 8th bit turned off. 

Note that 8-bit input is a fragile mode. Many programs and networks only pass 7 
bits. If any link in the chain from the terminal to the application program strips the 
8th bit, 8-bit input is impossible. 

5C-14 



Curses and Terminfo Package 

nodelay(win,bf) 
This option causes getch to be a nonblocking call. If no input is ready, getch 
returns -1. If disabled, getch hangs until a key is pressed. 

intrflush(win,bf) 
If this option is enabled when an interrupt key is pressed on the keyboard, all output 
in the tty driver queue is flushed, giving the effect of faster response to the interrupt 
but causing curses to have the wrong idea of what is on the screen. Disabling the 
option prevents the flush. The default is for the option to be enabled. This option 
depends on support in the underlying teletype driver. 

typeahead(fd) 
Sets the file descriptor for type-ahead check. The parameter f d should be an 
integer returned from open or fileno. Setting type-ahead to -1 disables type-ahead 
check. By default, file descriptor O (stdin) is used. Type-ahead is checked 
independently for each screen, and for multiple interactive terminals it should 
probably be set to the appropriate input for each screen. A call to typeahead 
always affects only the current screen. 

scrollok(win,bf) 
This option controls what happens when the cursor of a window is moved off the 
edge of the window, either from a newline on the bottom line, or typing the last 
character of the last line. If disabled, the cursor is left on the bottom line. If 
enabled, wrefresh is called on the window, and then the physical terminal and 
window are scrolled up one line. Note that in order to get the physical scrolling 
effect on the terminal, it is also necessary to call idlok. 

setscrreg(t,b) 
wsetscrreg(win,t,b) 
These functions allow the user to set a software scrolling region in a window win or 
stdscr. t and bare the line numbers of the top and bottom margin of the scrolling 
region. (Line O is the top line of the wiridow.) If this option and scrollok are 
enabled, an attempt to move off the bottom margin line causes all lines in the 
scrolling region to scroll up one line. Note that this has nothing to do with use of a 
physical scrolling region capability in the terminal, like that in the VT100. Only the 
text of the window is scrolled. If idlok is enabled and the terminal has either a 
scrolling region or insert/delete line capability, they probably are used by the output 
routines. 

UTek TOOLS 5C-15 



Curses and Terminfo Package 

Terminal Mode Setting 
These functions are used to set modes in the tty driver. The initial mode usually 
depends on the setting when the program was called; the initial modes documented 
here represent the normal situation. 

cbreakO 
nocbreak() 
These two functions put the terminal into and out of CBREAK mode. In this mode, 
characters typed by the user are immediately available to the program. When out of 
this mode, the teletype driver buffers characters typed until a newline is typed. 
Interrupt and flow control characters are unaffected by this mode. Initially the 
terminal is not in CBREAK mode. Most interactive programs using curses set this 
mode. 

echoO 
noechoO 
These functions control whether characters typed by the user are echoed as typed. 
Initially, characters typed are echoed by the teletype driver. Authors of many 
interactive programs prefer to do their own echoing in a controlled area of the 
screen, or not to echo at all, so they disable echoing. 

nlO 
non I() 
These functions control whether newline is translated into carriage return and 
linefeed on output, and whether <RETURN> is translated into newline on input. 
Initially, the translations do occur. By disabling these translations, curses is able to 
make better use of the linefeed capability, resulting in faster cursor motion. 

raw() 
no raw() 
The terminal is placed into or out of raw mode. Raw mode is similar to cbreak mode 
in that characters typed are immediately passed through to the user program. The 
differences are that in RAW mode, the interrupt, quit, and suspend characters are 
passed through uninterpreted instead of generating a signal. RAW mode also 
causes 8-bit input and output. The behavior of the <BREAK> key may be different 
on different systems. 

resettyO 
savetty() 
These functions save and restore the state of the tty modes. Savetty saves the 
current state in a buffer, resetty restores the state to what it was at the last call to 
savetty. 

5C-16 



Curses and Terminfo Package 

Window Manipulation 
newwin(num_lines, num_eols, beg_row, beg_eol) 
Create a new window with the given number of lines and columns. The upper left 
corner of the window is at line beg_row column beg_eol. If either num_lines or 
num_cols is zero, they are defaulted to LINES-beg_row and COLS-beg_eol. A 
new full-screen window is created by calling newwin(0,0,0). 

newpad(num_lines, num_eols) 
Creates a new pad data structure. A pad is like a window, except that it is not 
restricted by the screen size, and is not associated with a particular part of the 
screen. Pads can be used when you need a large window, and only a part of the 
window is on the screen at one time. Automatic refreshes of pads (for example, 
from scrolling or echoing of input) do not occur. It is not legal to call refresh with a 
pad as an argument; the routines prefresh or pnoutrefresh should be called 
instead. Note that these routines require additional parameters to specify the part of 
the pad to be displayed and the location on the screen to be used for display. 

subwin(orig, num_lines, num_eols, begy, begx) 
Create a new window with the given number of lines and columns. The window is at 
position (begy, begx) on the screen. (It is relative to the screen, not orig.) The 
window is made in the middle of the window orig, so that changes made to one 
window affect both windows. When using this function, often it is necessary to call 
touehwin before calling wrefresh. 

delwin(win) 
Deletes the named window, freeing up all memory associated with it. In the case of 
overlapping windows, subwindows should be deleted before the main window. 

mvwin(win, br, be) 
Move the window so that the upper left corner is at position (br, be). If the move 
would cause the window to be off the screen, it is an error and the window is not 
moved. 

touehwin(win) 
Throw away all optimization information about which parts of the window have been 
touched, by pretending the entire window has been drawn on. This is sometimes 
necessary when using overlapping windows, since a change to one window affects 
the other window, but the records of which lines have been changed in the other 
window do not reflect the change. 

overlay(win1, win2) 
overwrite(win1, win2) 
These functions overlay win1 on top of win2; that is, all text in win1 is copied into 
win2. The difference is that overlay is nondestructive (blanks are not copied), while 
overwrite is destructive. 

UTek TOOLS 5C-17 



Curses and Termlnfo Package 

Causing Output to the Terminal 
refresh() 
wrefresh(win} 
These functions must be called to get any output on the terminal, as other routines 
merely manipulate data structures. Wrefresh copies the named window to the 
physical terminal screen, taking into account what is already there in order to do 
optimizations. Refresh is the same, using stdscr as a default screen. Unless 
leaveok has been enabled, the physical cursor of the terminal is left at the location 
of the window's cursor. 

doupdate(} 
wnoutrefresh(win) 
These two functions allow multiple updates with more efficiency than wrefresh. To 
use them, you must understand how curses works. In addition to all the window 
structures, curses keeps two data structures representing the terminal screen: a 
physical screen, describing what is actually on the screen, and a virtu(Il screen, 
describing what the programmer wants to have on the screen. Wrefresh works by 
first copying the named window to the virtual screen (wnoutrefresh}, and then 
calling the routine to update the screen (doupdate). If the programmer wishes to 
output several windows at once, a series of calls to wrefresh will result in alternating 
calls to wnoutrefresh and doupdate, causing several bursts of output to the screen. 
By calling wnoutrefresh for each window, it is then possible to call doupdate once, 
resulting in only one burst of output, with probably fewer total characters 
transmitted. 

prefresh(pad,pminrow ,pmincol ,sminrow, 
smincol,smaxrow ,smaxcol} 

pnoutrefresh(pad,pminrow,pmincol,sminrow, 
smincolm,smaxrow ,smaxcol} -

These routines are analogous to wrefresh and wnoutrefresh except that pads, 
instead of windows, are involved. The additional parameters are needed to indicate 
what part of the pad and screen are involved. Pminrow and pmincol specify the 
upper left corner, in the pad, of the rectangle to be displayed. Sminrow, smincol, 
smaxrow, and smaxcol specify the edges, on the screen, of the rectangle to be 
displayed in. The lower right corner in the pad of the rectangle to be displayed is 
calculated from the screen coordinates, since the rectangles must be the same size. 
Both rectangles must be entirely contained within their respective structures. 

Writing on Window Structures 
These routines are used to "draw" text on windows. In all cases, a missing win is 
taken to be stdscr. y and x are the row and column, respectively. The upper left 
corner is always (0,0), not (1,1). The mv functions imply a call to move before the 
call to the other function. 

5C-18 



Moving the Cursor 
move(y, x) 
wmove(win, y, x) 

Curses and Terminfo Package 

The cursor associated with the window is moved to the given location. This does 
not move the physical cursor of the terminal until refresh is called. The position 
specified is relative to the upper left corner of the window. 

Writing One Character 
addch(ch) 
waddch(win, ch) 
mvaddch(y, x, ch) 
mvwaddch(win, y, x, ch) 
The character ch is put in the window at the current cursor position of the window. 
If ch is a tab, newline, or backspace, the cursor is moved appropriately in the 
window. If ch is a different control character, it is drawn in the <CTRL-X> notation. 
The position of the window cursor is advanced. At the right margin, an automatic 
newline is performed. At the bottom of the scrolling region, if scrollok is enabled, 
the scrolling region is scrolled up one line. 

The ch parameter is actually an integer, not a character. Video attributes can be 
combined with a character by or-ing them into the parameter. This results in these 
attributes also being set. (The intent here is that text, including attributes, can be 
copied from one place to another with inch and addch.) 

Writing a String 
addstr(str) 
waddstr(win,str) 
mvaddstr(y ,x,str) 
mvwaddstr(win, y ,x,str) 

These functions write all the characters of the null terminated character string str on 
the given window. They are identical to a series of calls to addch. 

Clearing Areas of the Screen 
erase() 
werase(win) 
These functions copy blanks to every position in the window. 

clear() 
wclear(win) 
These functions are like erase and werase but they also call clearok, arranging that 
the screen is cleared on the next call to refresh for that window. 

UTek TOOLS SC-19 



Curses and Terminfo Package 

clrtobot() 
wclear(win) 
All lines below the cursor in this window are erased. Also, the current line to the 
right of the cursor is erased. 

clrtoeol() 
wclrtoeol(win) 
The current line to the right of the cursor is erased. 

Inserting and Deleting Text 
delch() 
wdelch(win) 
mvdelch(y ,x) 
mvwdelch(win, y ,x) 
The character under the cursor in the window is deleted. All characters to the right 
on the same line are moved to the left one position. This does not imply use of the 
hardware delete character feature. 

deleteln() 
wdeleteln(win) 
The line under the cursor in the window is deleted. All lines below the current line 
are moved up one line. The bottom line of the window is cleared. This does not 
imply use of the hardware delete line feature. 

insch(c) 
winsch(win, c) 
mvinsch(y ,x,c) 
mvwinsch(win,y,x,c) 
The character c is inserted before the character under the cursor. All characters to 
the right are moved one space to the right, possibly losing the rightmost character 
on the line. This does not imply use of the hardware insert character feature. 

insertln() 
winsertln(win) 
A blank line is inserted above the current line. The bottom line is lost. This does 
not imply use of the hardware insert line feature. 

Formatted Output 
printw(fmt, args) 
wprintw(win, fmt, args) 
mvprintw(y, x, fmt, args) 
mvwprintw(win, y, x, fmt, args) 
These functions correspond to printf. The characters which would be output by 
printf are instead output using waddch on the given window. 

5C-20 



Curses and Tennlnfo Package 

Miscellaneous 
box(win, vert, hor) 
A box is drawn around the edge of the window. The box is drawn with the vert and 
hor characters. 

scroll(win) 
The window is scrolled up one line. This involves moving the lines in the window 
data structure. As an optimization, if the window is stdscr and the scrolling region 
is the entire window, the physical screen is scrolled at the same time. 

Input from a Window 
getwx(win, y ,x) 
The cursor position of the window is placed in the two integer variables y and x. 
Since this is a macro, no ampersand character(&) is necessary. 

inch() 
winch(win) 
mvinch(y,x) 
mvwinch(win,y,x) 
The character at the current position in the named window is returned. If any 
attributes are set for that position, their values will be or-ed into the value returned. 
The predefined constants A..A TTRIBUTES and A_CHARTEXT can be used with the 
& operator to extract the character to attributes alone. 

Input from the Terminal 
getch() 
wgetch(win) 
mvgetch(y,x) 
mvwgetch(win, y ,x) 
A character is read from the terminal associated with the window. In nodelay mode, 
if there is no input waiting, the value -1 is returned. In delay mode, the program 
hangs until the system passes text through to the program. Depending on the 
setting of cbreak, this is after one character, or after the first newline. 

If keypad mode is enabled, and a function key is pressed, the code for that function 
key is returned instead of the raw characters. Possible function keys are defined 
with integers beginning with 0401, whose names begin with KEY_. These are listed 
in the previous topic Input. If a character is received that could be the beginning of 
a function key (such as <ESC>), curses sets a one-second timer. If the remainder 
of the sequence does not come in within one second, the character is passed 
through; otherwise the function key value is returned. For this reason, on many 
terminals, there is a one second delay after you press the <ESC> key. (Use by a 
programmer of the <ESC> key for a single character function is discouraged.) 

UTek TOOLS SC-21 



Curses and Terminfo ·Package 

getstr(str) 
wgetstr(win,str) 
mvgetstr{y,x,str) 
mvwgetstr(win, y ,x,str) 
A series of calls to getch is made, until a newline is received. The resulting value is 
placed in the area pointed at by the character pointer str. The user's erase and kill 
characters are int~rpreted. 

scan(fmt, args) 
wscanw(win, fmt, args) 
mvscanw{y, x, fmt, args) 
mvwscanw(win, y, x, fmt, args) 
This function corresponds to scanf. Wgetstr is called on the window, and the 
resulting fine is used as input for the scan. 

Video Attributes 
attroff(at) 
wattroff(win, attrs) 
attron(at) 
wattron(win, attrs) 
attrset(at) 
wattrset(win, attrs) 
standout() 
standend() 
wstandout(win) 
wstandend(win) 
These functions set the current attributes of the named window. These attributes 
can be any combination of A_STANDOUT, A_REVERSE, A_BOLD, A_DIM, 
ILBLINK, and A_UNDERLINE. These constants are defined in ~urses.h> and can 
be combined with the C: (or) operator. 

The current attributes of a window are applied to all characters that are written into 
the window with waddch. Attributes are a property of the character, and move with 
the character through any scrolling and insert/delete fine/character operations. To 
the extent possible on the particular terminal, they will be displayed as the graphic 
rendition of characters put on the screen. 

attrset(at) sets the current attributes of the given window to at. attroff(at) turns off 
the named attributes without affecting any other attributes. attron(at) turns on the 
named attributes without affecting any others. Standout is the same as 
attron(A_STANDOUT). standend is the same as attrset(O); that is, it turns off all 
attributes. 

5C-22 



Bells and Flashing Lights 
beep() 
flash() 

Curses and Terminfo Package 

These functions are used to signal the programmer. Beep sounds the audible alarm 
on the terminal, if possible, and if not, flashes the screen (visible bell), if that is 
possible. Flash flashes the screen, and if that is not possible, sounds the audible 
signal. If neither signal is possible nothing happens. Nearly all terminals have an 
audible signal (bell or beep), but only some can flash the screen. 

Portability Functions 
These functions do not directly involve terminal-dependent character output but 
tend to be needed by programs that use curses. Unfortunately, their 
implementation varies from one version of UNIX * to another. They have been 
included here to enhance the portability of programs using curses. 

baudrate() 
baudrate returns the output speed of the terminal. The number returned is the 
integer baud rate, for example, 9600, rather than a table index such as 89600. 

erasechar( ) 
The erase character chosen by the user is returned. This character is typed by the 
user to erase the character just entered. 

killchar() 
The line kill character chosen by the user is returned. This character is typed by the 
user to forget the entire line being entered. 

flushinp() 
Flushinp throws away any type-ahead that has been typed by the user and has not 
yet been read by the program. 

Delays 
These functions are usually not portable, but are often needed by programs that use 
curses, especially real-time response programs. Some of these functions require a 
particular operating system or a modification to the operating system to work. In all 
cases, the routine compiles and returns an error status if the requested action is not 
possible. Programmers should avoid use of these functions if possible. 

draino(ms) 
The program is suspended until the output queue has drained enough to complete 
in ms additional milliseconds. Thus, draino(50) at 1200 baud would pause until 
there are no more than six characters in the output queue, because it would take 50 
milliseconds to output the additional characters. The purpose of this routine is to 
keep the program (and thus the keyboard) from getting ahead of the screen. If the 
operating system does not support the input/output to implement draino, the value 
ERR is returned; otherwise, OK is returned. 

UTek TOOLS 5C-23 



Curses and Terminfo Package 

napms(ms) 
This function suspends the program for ms milliseconds. It is similar to sleep except 
with higher resolution. The resolution actually provided varies with the facilities 
available in the operating system, and often a change to the operating system is 
necessary to produce good results. If resolution of at least 0.1 second is not 
possible, the routine rounds to the next higher second, calls sleep, and returns 
ERR. Otherwise, the value OK is returned. Often, the resolution provided is 1/60th 
second. 

Lower Level Functions 
These functions are provided for programs not needing the screen optimization 
capabilities of curses. Programs are discouraged from working at this level, since 
they must handle various glitches in certain terminals. However, a program can be 
smaller if it only brings in the low-level routines. 

Cursor Motion 
mvcur(oldrow, oldcol, newrow, newcol) 
This routine optimally moves the cursor from (oldrow, oldcol) to (newrow, newcol). 
The user program is expected to keep track of the current cursor position. Note that 
unless a full screen image is kept, curses has to make pessimistic assumptions, 
sometimes resulting in less than optimal cursor motion. For example, moving the 
cursor a few spaces to the right can be done by transmitting the characters being 
moved over; but if curses does not have access to the screen image, it doesn't 
know what these characters are. 

Terminfo Level 
These routines are called by low-level programs that need access to specific 
capabilities of terminfo. A program working at this level should include both 
<eurses.h> and <term.h> in that order. After a call to setupterm, the capabilities 
will be available with macro names defined in <term.h>. See terminfo(4) in the 
Command Reference for a detailed description of the capabilities. 

Boolean-valued capabilities have the value 1 if the capability is present, and O if it is 
not. Numeric capabilities have the value -1 if the capability is missing, and have a 
value at least O if it is present. String capabilities (both those with and without 
parameters) have the value NULL if the capability is missing, and otherwise have 
type char * and point to a character string containing the capability. The special 
character codes involving the\ and - characters (such as \r for return, or -A for 
control A) are translated into the appropriate ASCII characters. Padding information 
(of the form $<time~ and parameter information (beginning with %) are left 
uninterpreted at this stage. The routine tputs interprets padding information, and 
tparm interprets parameter information. 

5C-24 



Curses and Termlnfo Package 

If the program only needs to handle one terminal, the definition -DSINGLE can be 
passed to the C compiler, resulting in static references to capabilities instead of 
dynamic references. This can result in smaller code, but prevents use of more than 
one terminal at a time. Few programs use more than one terminal, so almost all 
programs can use this flag. 

setupterm(term, filenum, errret) 
This routine is called to initialize a terminal. Term is the character string 
representing the name of the terminal being used. filenum is the UTek file 
descriptor of the terminal being used for output. errret is a pointer to an integer, in 
which a success or failure indication is returned. The values returned can be 1 (all 
is well), O (no such terminal), or -1 (some problem locating the terminfo database). 

The value of term can be given as 0, which causes the value of TERM in the 
environment to be used. The errret pointer can also be given as 0, meaning no 
error code is wanted. If errret is defaulted, and something goes wrong, setupterm 
prints an appropriate error message and exits, rather than returning. Thus, a simple 
program can call setupterm (0, 1, 0) and not worry about initialization errors. 

If the variable TERMINFO is set in the environment to a pathname, setupterm 
checks for a compiled terminfo description of the terminal under that path, before 
checking !etc/term. Otherwise, only /etc/term is checked. 

Setupterm checks the tty driver mode bits, using filenum, and change any that 
might prevent the correct operation of other low-level routines. Currently, the mode 
that expands tabs into spaces is disabled, because the tab character is sometimes 
used for different functions by different terminals. (Some terminals use it to move 
right one space. Others use it to address the cursor to row or column nine.) If the 
system is expanding tabs, setupterm will remove the definition of the tab and 
backtab functions, making the assumption that since the user is not using hardware 
tabs, he/she may not be properly set in the terminal. Other system-dependent 
changes, such as disabling a virtual terminal driver, may be made here. 

As a side effect, setupterm initializes the global variable ttytype, which is an array 
of characters, to the value of the list of names for the terminal. This list comes from 
the beginning of the terminfo description. 

After the call to setupterm, the global variable cur_term is set to point to the current 
structure of terminal capabilities. By calling setupterm for each terminal, and 
saving and restoring cur_term, a program can use two or more terminals at once. 

The mode that turns newlines into CALF on output is not disabled. Programs that 
use cursor_down or scrolUorward should avoid these capabilities if their value is 
linefeed unless they disable this mode. Setupterm calls reseLprog_mode after any 
changes it makes. 

reset_prog_mode( ) 
reset_shelLmode( ) 
def_prog_mode( ) 
deLshelLmode( ) 

UTek TOOLS 5C-25 



Curses and Terminfo Package 

These routines can be used to change the tty modes between the two states: shell 
(the mode they were in before the program was started) and program (the mode 
needed by the program). deLprog_mode saves the current terminal mode as 
program mode. setupterm and initscr call deLshelLmode automatically. 
reseLprog_mode puts the terminal into program mode, and reseLshelLmode puts 
the terminal into normal mode. 

A typical calling sequence is for a program to call initscr (or setupterm in a 
terminfo level program), then to set the desired program mode by calling routines 
such as cbreak and noecho, then to call deLprog_mode to save the current state. 
Before a shell escape or <CTRL-Z> suspension, the program should call 
reseLshelLmode, to restore normal mode for the shell. Then, when the program 
resumes, it should call reseLshelLmode before they exit. (The higher level routine 
endwin automatically calls reset_shelLmode.) 

Normal mode is sorted in cur_term_>Ottyb, and program mode is in 
cur_term_>Nttyb. These sturctures are both of type SGTTYB (which varies 
depending on the system). Currently the possible types are struct sgttyb (on some 
other systems) and struct termio (on this version of the UTek system). 
deLprog_mode should be called to save the current state in Nttyb. 

vidputs(newmode, putc) 
newmode is any combination of attributes, defined in <eurses.h>. Putc is a 
putchar-like function. The proper string to put the terminal in the given video mode 
is output. The previous mode is remembered by this routine. The resulting 
characters are passed through putc. 
vidattr(newmode) 
The proper string to put the terminal in the given video mode is output to stdout. 

tparm(instring, p1, p2, p3, p4, p5, p6, p7, p8, p9) 
Tparm is used to instantiate a parameterized string. The character string returned 
has the given parameters supplied, and is suitable for tputs. Up to nine parameters 
can be passed, in addition to the parameterized string. 

tputs(cp, affcnt, outc) 
A string capability, possibly containing padding information, is processed. Enough 
padding characters to delay for the specified time replace the padding specification, 
and the resulting string is passed, one character at a time, to the routine outc, 
which should expect one character parameter. (This routine often just calls 
putchar.) Cp is the capability string. affcnt is the number of units affected by the 
capability, which varies with the particular capability. (For example, the affcnt for 
inserUine is the number of lines below the inserted line on the screen, that is, the 
number of lines that will have to be moved by the terminal.) Affcnt is used by the 
padding information of some terminals as a multiplication factor. If the capability 
does not have a factor, the value 1 should be passed. 

5C-26 



Curses and Terminfo Package 

putp(str) 
This convenient function outputs a capability with no affcnt. The string is output to 
putchar with an affcnt of 1. It can be used in simple applications that do not need 
to process the output of tputs. 

delay_output(ms) 
A delay is inserted into the output stream for the given number of milliseconds. The 
current implementation inserts sufficient pad characters for the delay. This should 
not be used in place of a high resolution sleep, but rather for delay effects in the 
output. Due to buffering in the system, it is unlikely that this call results in the 
process actually sleeping. Since large numbers of pad characters can be output, ms 
should not exceed 500. 

Operational Details 
These paragraphs describe many of the details of how the curses and terminfo 
packages operate. 

Insert and Delete Line and Character 
The algorithm used by curses takes into account insert and delete line and 
character functions, if available, in the terminal. Calling the routine 

idlok(stdscr, TRUE); 

enables insert/delete line. By default, curses does not use insert/delete line. This 
was not done for performance reasons, since there is no speed penalty involved. 
Rather, experience has shown that some programs do not need this facility, and that 
if curses uses insert/delete line, the result on the screen can be visually annoying. 
Since many simple programs using curses do not need this, the default is to avoid 
insert/delete line. Insert/delete character is always considered. 

Additional Terminals 
Curses works even if absolute cursor addressing is not possible, as long as the 
cursor can be moved from any location to any other location. It considers local 
motions, parameterized motions, home, and carriage return. 

Curses is aimed at full duplex, alphanumeric, video terminals. No attempt is made 
to handle half-duplex, synchronous, hard copy, or bit-mapped terminals. Bit
mapped terminals can be handled by programming the bit-mapped terminal to 
emulate an ordinary alphanumeric terminal. This does not take advantage of the bit 
map capabilities, but it is the fundamental nature of curses to deal with 
alphanumeric terminals. 

UTek TOOLS SC-27 



Curses and Termlnfo Package 

The curses handles terminals with the "magic cookie glitch" in their video 
attributes. The term "magic cookie" means that a change in video attributes is 
implemented by storing a "magic cookie" in a location on the screen. This 
"cookie" takes up a space, preventing an exact implementation of what the 
programmer wanted. Curses takes the extra space into account, and moves part of 
the line to the right, as necessary. In some cases, this will results in losing text from 
the right edge of the screen. Advantage is taken of existing spaces. 

Multiple Terminals 
Some applications need to display text on more than one terminal, but control the 
text by the same process. Even if the terminals are of different types, curses can 
handle this. 

All information about the current terminal is kept in the following global variable: 

struct screen *SP; 

Although the screen structure is hidden from the user, the C compiler accepts 
declarations of variables that are pointers. The user program should declare one 
screen pointer variable for each terminal it wishes to handle. The routine 

struct screen * 
newterm(type, fd) 

sets up a new terminal of the given terminal type that does output on file descriptor 
f d. A call to initscr is essentially newterm(getenv("TERM"),stdout). A program 
wishing to use more than one terminal should use newterm for each terminal and 
save the value returned as a reference to that terminal. 

To switch to a different terminal, call the following: 

seLterm(term) 

The old value of SP now is returned. The programmer should not assign directly to 
SP because certain other global variables must also be changed. 

All curses routines always affect the current terminal. To handle several terminals, 
switch to each one in turn with seLterm, and closed down with endwin. 

5C-28 



Curses and Termlnfo Package 

Video Attributes 
Video attributes can be displayed in any combination on terminals with this 
capability. They are treated as an extension of the standout capability, which is still 
present. 

Each character position on the screen has 16 bits of information associated with it. 
Seven of these bits are the characters to be displayed, leaving separate bits for nine 
video attributes. These bits are used for the following: 

standout 
underline 
dim 
bold 
alternate 

blank 
blink 
reverse video 
protect 

Standout is taken to be whatever highlighting works best on the terminal, and should 
be used by any program that does not need specific or combined attributes. 
Underlining, reverse video, blink, dim, and bold are the usual video attributes. Blank 
means that the character is displayed as a space, for security reasons. Protected 
and alternate character sets depend on the particular terminal. The use of these last 
three bits is subject to change and is not recommended. Note also that not all 
terminals implement all attributes- in particular, no current terminal implements 
both dim and bold. 

The routines to use these attributes include the following: 

attrset(attrs) 
attron(attrs) 
attroff( attrs) 
standout() 
standend() 

wattrset(win, attrs) 
wattron(win, attrs) 
wattroff(uwin, attrs) 
wstandout(win) 
wstandend(win) 

Attributes, if given, can be any combination of A_STANDOUT, A_UNDERLINE, 
A_REVERSE, A_BLINK, A_DIM, A_BOLD, A_INVIS, A_PROTECT, and 
A_ALTCHARSET. These constants, defined in <eurses.h>, can be combined with 
the C : (or) operator to get multiple attributes. Attrset sets the current attributes to 
the given attrs; attron turns on the given attrs in addition to any attributes that are 
already on; attroff turns off the given attributes, without affecting any others. 
standout and standend are equivalent to attron(A._STANDOUT) and 
attrset(A._NORMAL). 

If the particular terminal does not have the particular attribute or combination 
requested, curses will attempt to use some other attribute in its place. If the 
terminal has no highlighting at all, all attributes are ignored. 

UTek TOOLS SC-29 



Curses and Terminfo Package 

Special Keys 
Many terminals have special keys, such as arrow keys, keys to erase the screen, 
insert or delete text, and keys intended for user functions. The particular sequences 
these terminals send differ from terminal to terminal. Curses allows the programmer 
to handle these keys. 

A program using special keys should turn on the keypad by calling the following at 
initialization: 

keypad(stdscr, TRUE) 

This causes special characters to be passed through to the program by the function 
getch. These keys have constants that are listed in the topic Input earlier in this 
section. They have values starting at 0401, so they should not be stored in a char 
variable, as significant bits will be lost. 

A program using special keys should avoid using the <ESC>, since most sequences 
start with escape, creating an ambiguity. Curses will set a one second alarm to deal 
with this ambiguity, which will cause delayed response to the <ESC>. You should 
avoid <ESC> in any case, since there is eventually pressure for nearly any screen
oriented program to accept arrow key input. 

Scrolling Region 
Normally, the programmer-accessible scrolling region is set to the entire window, 
but the calls 

setscrreg(top, bot) 
wsetscrreg(win, top, bot) 

set the scrolling region for stdscr or the given window to any combination of top and 
bottom margins. When scrolling past the bottom margin of the scrolling region, the 
lines in the region will move up one line, destroying the top line of the region. If 
scrolling has been enabled with scrollok, scrolling takes place only within that 
window. Note that the scrolling region is a software feature, and only causes a 
window data structure to scroll. This may or may not translate to use of the 
hardware scrolling region feature of a terminal, or insert/delete line. 

Minicurses 
Curses copies from the current window to an internal screen image for every call to 
refresh. If you are only interested in screen output optimization, and do not want 
the windowing or input functions, an interface to the lower level routines is available. 
This makes the program somewhat smaller and faster. The interface is a subset of 
full curses, so that conversion between the levels is not necessary to switch from 
minicurses to full curses. 

5C-30 



Curses and Terminfo Package 

The following functions of curses and terminfo are available to you with 
minicurses: 

addch(ch)) 
attrset(at) 
move(y,x) 
refresh() 
addstc(str) 
clear() 
mvaddch(y ,x,ch) 
standend() 

attroff(at) 
erase() 
mvaddstr(y ,x,str) 
standout() 
attron(at) 
initscr 
newterm 

The following functions of curses and terminfo are not available to you with 
minicurses: 

box delch 
deleteln getstr 
inch longname 
makenew mvprintw 
mvgetstr mvinch 
mvscanw mvwaddstr 
mvwdelch mvwgetch 
mvwaddch mvwgetstr 
mvwin mvwinch 
mvwinsch mvinsch 
mvwscanw newwin 
overlay mvwprintw 
overwrite printw 
putp scanw 
scroll setscrreg 
subwin touchwin 
waddch waddstr 
wclear vidattr 
wclrtobot wclrtoeol 
wdelch wdeleteln 
werase wgetch 
wgetstr winsch 
wmove wprintw 
wrefresh winsertln 
wscanw wsetsrreg 
clrtobot clrtoeol 
delwin getch 
insch insertln 
mvdelch mvgetch 

UTek TOOLS SC-31 



Curses and Termlnfo Package 

The subset mainly requires the programmer to avoid use of more than the one 
window stdscr. Thus, all functions beginning with ware generally undefined. 
Certain high level functions that are convenient but not essential are also not 
available, including printw and scanw. Also, the input routine getch cannot be 
used with minicurses. Features implemented at a low-level, such as use of 
hardware insert/delete line and video attributes, are available in both versions. Also, 
mode setting routines such as crmode and noecho are allowed. 

To access minicurses, add -DMINICURSES to the CFLAGS in the makefile. If 
routines are requested that are not in the subset, the loader prints error messages 
such as: 

Undefined: 
m_getch 
m_waddch 

to tell you that the routines getch and waddch were used but are not available in 
the subset. Since the preprocessor is involved in the implementation of mini
curses, the entire program must be recompiled when changing from one version to 
the other. 

TTY Mode Functions 
In addition to the save/restore routines savetty() and resetty( ), standard routines 
are available for going into and out of normal tty mode. These routines are 
resetterm( ), which puts the terminal back in the mode it was in when curses was 
started; fixterm( ), which undoes the effects of resetterm, that is, restores the 
"current curses mode"; and saveterm( ), which saves the current state to be used 
by fixterm( ). Endwin automatically calls resetterm, and the routine to handle 
<CTRL-Z> (on other systems that have process control) also uses resetterm and 
fixterm. You should use these routines before and after shell escapes, and also if 
they write their own routine to handle <CTRL-Z>. These routines are also available 
at the terminfo level. 

Type-ahead Check 
If you type something during an update, the update will stop, pending a future 
update. This is useful when you hit several keys, each of which causes a good deal 
of output. For example, in a screen editor, if you press the "forward screen" key, 
which draws the next screen full of text, several times rapidly, rather than drawing 
several screens of text, the updates are cut short, and only the last screen full is 
actually displayed. This feature is automatic and cannot be disabled. The feature 
only works on versions of the UNIX system with the necessary support in the 
operating system. 

5C-32 



Curses and Termlnfo Package 

gets tr 
No matter what the setting of echo is, strings entered in here are echoed at the 
current cursor location. The user's erase and kill characters are understood and 
handled. This makes it unnecessary for an interactive program to deal with erase, 
kill, and echoing when the user is entering a line of text. 

long name 
The longname function does not need any arguments. It returns a pointer to a 
static area containing the actual long name of the terminal. 

Nodelay Mode 
The following call puts the terminal in nodelay mode: 

nodelay(atdscr, TRUE) 

While in this mode, any call to getch returns -1 if there is nothing waiting to be read 
immediately. This is useful for writing programs requiring "real time" behavior 
where you watch action on the screen and press a key when you want something to 
happen. For example, the cursor can be moving across the screen in real-time. 
When it reaches a certain point, you can press an arrow key to change direction at 
that point. 

Portability 
Several useful routines are provided to improve portability. The implementation of 
these routines is different from system to system, and the differences can be 
isolated from the user program by including them in curses. 

Functions erasechar() and killchar() return the characters that erase one 
character, and kill the entire input line, respectively. The function baudrate() will 
return the current baud rate, as an integer. (For example, at 9600 baud, the integer 
9600 is returned, not the value 89600 from <Sgtty.h>.) The routine fluchinp() 
causes all type-ahead to be thrown away. 

UTek TOOLS SC-33 





5D 
Curses Examples 

The following examples are provided to demonstrate uses of curses. They are for 
illustration purposes only. A good programmer would expand the programs 
presented here before using them. 

Example Program - editor 

UTek Tools 

I* 
* editor: A screen-oriented editor. The user 
* interface is similar to a subset of vi. 
* The buffer is kept in stdscr itself to simplify 
* the program. 

*I 

#include <curses.h> 

#define CTRL(c) ('c'&037) 

main(argc,argv) 
char**argv; 

int i, n, l; 
int c; 
FILE *fd; 

if(argc !=2) 
fprintf(stderr,"Usage:edit fileO); 
exit(l); 

fd=fopen(argv[l],"r"); 
if(fd == NULL) { 

perror(argv[l]); 
exit(2); 

initscr(); 
cbreak(); 
nonl(); 
noecho(); 
idlok(stdscr,TRUE); 
keypad(stdscr,TRUE); 

SD-1 



CutSes Examples 

50-2 

} 

/* Read in the file */ 
while ((c=get(fd))l=EOF) 

addch(c); 
fclose(fd); 

move(O,O); 
refresh(); 
edit(); 

/* Write out the file */ 
fd = fopen(argv[l],"w"); 
for (1=0;1<2J;l++) { 

} 

n = len(l); 
for (i=O;i4l;i++) 

putc(mvinch(l,i),fd); 
putc( 'a,fd); 

fclose(fd); 

endwin(); 
exit(O); 

len(lineno) 
int lineno; 
{ 

int linelen = COLS-1; 

while (linelen ~O &&mvinch(lineno, linelen) ' ') 
linelen--; 

return linelen + 1; 
} 

/* Global value of current cursor position */ 
int row, col; 

edit() 
{ 

int c; 
for (;;) 

move(row, col); 
refresh (); 
c = getch(); 
switch (c) { /* Editor commands */ 



UTek Tools 

Curses Examples 

/* hjkl and arrow keys: move cursor */ 

/* in direction indicated */ 
case ,h,: 

case KEY_LEFT: 

case j : 

if {col > 0) 
col--; 

break; 

case KEY_DOWN: 
if (row < LINES-1) 

row++; 
break; 

case k : 
case KEY_UP: 

if (row > 0) 
row--; 

break; 

case 1,: 
case KEy_..RIGHT: 

if(col < COLS-1) 
col++; 

break; 

/* i: enter input mode */ 
case KEY_IC: 
case 'i' 

input(); 
break; 

/* x: delete current character */ 
case KEYJ>C: 
case x 

delch(); 
break; 

/* o: open up a new line and enter input mode */ 
case KEY_IL: 
case o 

move(++row, col=O); 
insertln () ; ; 
input(); 
break; 

50-3 



Curses Examples 

50-4 

/* d: delete current line */ 
case KEY_DL: 
case d 

} 

/* 

deleteln () ; 
break; 

/* <CTRL-1>: redraw screen */ 
case KELCLEAR: 
case CTRL(L); 

clearok(curscr); 
refresh (); 
break; 

/* w: write and quit */ 
case w 

return; 

/* q: quit without writing */ 
case q 

default: 

endwin (); 
exit(l); 

flash(); 
break; 

* Insert mode: accept characters and insert them. 
* End with <CTRL-D> or EIC 

*/ 
input() 
{ 

int c; 
standout(); 
mvaddstr(LINES-1, COLS-20, "INPUT MODE"); 
standend(); 
move(row, col); 
refresh(); 
for (;;) { 

c = getch(); 
if (c == CTRL(D) :: c 

break; 
insch(c); 
move(row, ++col); 
refresh(); 

KELEIC) 



UTek Tools 

move(LINES-1, COLS-20); 
clrtoeol(); 
move(row, col); 
refresh(); 

Curses Examples 

50-5 



Curses Examples 

Example Program - highlight 

50-6 

/* 
* highlight: a program to turn U, B, and 
* N sequences into highlighted 
* output, allowing works to be 
* displayed underlined or in bold. 

*I 
#include <curses.h> 
main(argc, argv) 
char **argv; 

FILE *fd; 
int c, c2; 

if (argc != 2) { 
fprintf(stderr, "Usage: highlight fileO}; 
exit(l); 

} 

fd = fopen(argv[l], "r"}; 
if (fd == NULL) { 

perror(argv[l]}; 
exit(2); 

} 

initscr(); 
scrollok(stcscr,TRUE); 

for (;;) { 
c = getc(fd); 
if (c == EOF) 

break; 
if ( c == , \ , ) { 

c2=getc(fd); 
switch (c2} { 
case B 

case U 

case N 

attrset(LBOLD); 
continue; 

attrset(A_UNDERLINE); 
continue; 

attrset(O); 
continue; 



UTek Tools 

else 

fclose(fd); 
refresh(); 
endwin(); 
exit(O); 

addch(c); 
addch(c2); 

addch(c); 

Curses Examples 

50-7 



Curses Examples 

Example Program - scatter 

50-8 

I* 
* SCATTER. This program takes the first 
* 23 lines from the standard 
* input and displays them on the 
* VDU screen, in a random manner. 

*I 

#include <curses.h> 

#define MAXLINES 120 
#define MAXCOLS 160 
char s[MAXLINES][MAXCOLS];/* Screen Array*/ 

main () 

register int row=O,col=O; 
register char c; 
int char_count=O; 
long t; 
char buf[BUFSIZ]; 

initscr(); 
for(row=O;row4'1AXLINES;row++) 

for(col=O;col4'1AXCOLS;col++) 
s[row][col]= 

row = O; 
/* Read screen in */ 
while((c=getchar()) !=EOF && row< LINES) { 

} 

if(c != 'o) { 

} else 

} 

/* Place char in screen array */ 
s[row][col++] = c; 
if(c != ' ') 

col=O; 
row++; 

char_count++; 



UTek Tools 

time(&t);/* Seed the random number generator*/ 
srand((int) (t&01777771)); 
while(char_count) { 

row=rand() % LINES; 

endwin(); 
exit(O); 

col=(rand()>>2) % COLS; 
if(s[row][col) !=' ') 
{ 

} 

move(row, col); 
addch(s[row)[col)); 
s[row)[col]=EOF; 
char_count--; 
refresh(); 

Curses Examples 

50-9 



Curses Examples 

Example Program - show 

50-10 

#include <curses.h> 
#include <signal.h> 

main (argc, argv) 
int argc; 
char *argv[]; 
{ 

FILE *fd; 
char linebuf[BUFSIZ]; 
int line; 
void done(), perror(), exit(); 

if(argc != 2) 
{ 

fprintf(stderr,"usage: % s fileO, argv[O]); 
exit(l); 

if((fd=fopen(argv[l],"r")) ==NULL) 
{ 

perror(argv[l]); 
exit(2); 

signal(SIGINT, done); 

initscr(); 
noecho(); 
cbreak(); 
nonl(); 
idlok(stdscr, TRUE); 

while(l) 
{ 

move(O,O); 
for(line=O; line<1.INES; line++) 
{ 

if(fgets(linebuf, sizeof linebuf, fd) 
== NULL) 
{ 

clrtobot () ; 
done(); 

move(line, O); 
printw(" %s", linebuf); 
} 



UTek Tools 

void 
done() 
{ 

} 

} 

refresh(); 
if(getch() == 'q') 

done(); 

move(LINES-1,0); 
clrtoeol(); 
refresh(); 
endwin(); 
exit(O); 

Curses Examples 

50-11 



Curses Examples 

Example Program term hi 

50-12 

I* 
* A terminfo level version of highlight. 

*I 
#include <curses.h> 
#include <term.h> 

int ulmode = O; /* Currently underlining */ 

main(argc, argv) 
char **argv; 
{ 

FILE *fd; 
int c, c2; 
int outch(); 

if (argc > 2) 
fprintf(stderr,"Usage: termhl [file]O); 
exit(l); 

if (argc == 2) { 

else { 

fd = fopen(argv[l],"r"); 
if (fd == NULL) { 

perror(argv[l]); 
exit(2); 

fd stdin; 

setupterm(0,1,0); 

for (;;) 
c = getc(fd); 
if (c EOF) 

break; 
if (c '\') { 

c2 = getc(fd); 
switch (c2) { 
case B 

case U 

tputs(enter_bold_mode, 1, outch); 
continue; 

tputs(enter_underline_mode, 1, outch); 
ulmode = 1; 

continue; 



UTek Tools 

Curses Examples 

case N 
tputs(exit_attribute_mode, 1, outch) 
ulmode = O; 

I* 

} 
else 

fclose(fd); 
fflush(stdout); 
resetterm(); 
exit(O); 

continue; 
} 
putch(c); 
putch(c2); 

putch(c); 

* This function is like putchar, but it checks for underlining. 

*I 
putch(c) 
int c; 

I* 

outch(c); 
if (ulmode && underline_char) 

outch(, 

tputs(underline_char, 1, outch); 

* Outchar is a function version of putchar that 
* can be passed to 
* tputs as a routine call. 
*I 
outch(c) 
int c; 

putchar(c); 

50-13 



Curses Examples 

Example Program - two 

50-14 

#include <curses.h> 
#include <signal.h> 

struct screen *me, *you; 
struct screen *set_term(); 

FILE *fd, *fdyou; 
char linebuf[512]; 

main(argc, argv) 
char **argv; 
{ 

int done(); 
int c; 

if (argc I= 4) { 

} 

fprintf(stderr,"Usage: two othertty 
otherttytype inputfileO); 
exit(l); 

fd = fopen ( argv [3] , "r") ; 
fdyou = fopen(argv[l],"w+"); 
signal(SIGINT, done); /*die gracefully*/ 

me= newterm(getenv("TERM" ), stdout); 
/* initialize my tty */ 

you= newterm(argv[2], fdyou); 
/* initialize hisjher terminal */ 

set_term(me); /*Set modes for my terminal*/ 
noecho(); /*turn off tty echo*/ 
cbreak(); /*enter cbreak mode*/ 
nonl(); /*Allow linefeed*/ 
nodelay(stdscr,TRUE); /*No hang on input*/ 

set_term(you); /*Set modes for other terminal*/ 
noecho(); 
cbreak(); 
nonl(); 
nodelay(stdscr,TRUE); 

/* Dump first screen full on my terminal */ 
dump_page(me); 



UTek Tools 

Curses Examples 

/* Dump second screen full on hisjher terminal */ 
dump_page(you); 

for (;;) /*for each screen full*/ 
set_term(me); 
c= getch(); 
if (c == 'q') /*wait for user to read it*/ 

done (); 
if (c == , , ) 

dump_page(me); 

set_term(you); 
c = getch(); 
if (c == , q') /* wait for user to read it */ 

done(); 
if (c == , ') 

dump_page(you); 
sleep(!); 

dump_page(term) 
struct screen *term; 

int line; 

set_term(term); 
move(O, O); 
for (line=O; line<LINES-1; line++) { 

if (fgets(linebuf, sizeof linebuf, fd) == NULL) { 
clrtobot(); 
done(); 

mvprintw(line, O, "%s", linebuf); 

standout(); 
mvprintw(LINES-1, O, "--More--"); 
standend () ; 
refresh(); /* sync screen */ 

50-15 



Curses Examples 

I* 
* Clean up and exit. 

I* 
done() 
{ 

50-16 

/* Clean up first terminal */ 
set_term(you); 
move(LINES-1,0); /* to lower left corner */ 
clrtoeol(); /* clear bottom line */ 
refresh(); /* flush out everything*/ 
endwin(); /*curses cleanup*/ 

/* Clean up second terminal */ 
set_term(me); 
move(LINES-1,0); /* to lower left corner */ 
clrtoeol(); 
refresh(); 
endwin(); 

exit(O); 

/* clear bottom line */ 
/* flush out everything */ 
/* curses cleanup */ 



Curses Examples 

Example Program window 

UTek Tools 

#include <curses.h> 

WINDOW *cmdwin; 

main () 

int i, c; 
char buf[120]; 

initscr(); 
nonl(); 
noecho(); 
cbreak(); 

cmdwin = newwin(J,COLS,0,0); 
for (i=O; i<LINES; i++) 

/* top 3 lines */ 

mvprintw(i,O,"This is line %d of stdscr", i); 

for(;;) 
refresh(); 
c = getch(); 
switch (c) { 
case c /* Enter command from keyboard */ 

case q 

werase(cmdwin); 
wprintw(cmdwin, "Enter command:"); 
wmove(cmdwin,2,0); 
for (i=O; i<COLS; i++) 

waddch(cmdwin, '-'); 
wmove(cmdwin); 
touchwin(cmdwin,1,0); 
wrefresh(cmdwin); 
wgetstr(cmdwin, buf); 
touchwin(stdscr); 

I* 
*The command is now in buf. 
* It should be processed here. 
*/ 
break; 

endwin( ); 
exit(O); 

50-17 





The Fortran 77 
Compiler 

Introduction 

5E 

The UTek operating system provides the Fortran 77 compiler. Fortran 77 is the 
official standard for the Fortran programming language, replacing Fortran 66. 
Fortran 77 includes many of the features of Fortran 66. This section describes the 
compiled language, interfaces between procedures, and the file formats assumed by 
the 1/0 system. 

Usage 
The command to run the Fortran compiler is: 

f77 I options] file 

The f77 command is a general-purpose command for compiling and loading Fortran 
and Fortran-related files. EFL and Ratfor sources files are preprocessed before 
they are presented to the Fortran compiler. C and assembler source files are 
compiled by the appropriate programs. The compiler also loads object files. The 
Fortran 77 compiler recognizes the following filename suffixes: 

.f 

.e 

.r 

.c 

.s 

.o 

.F 

UTek TOOLS 

Fortran source file 
EFL source file 
Ratfor source file 
C source file 
Assembler source file 
Object file 
Fortran source file, processed by C, EFL 

or Ratfor first 

SE-1 



The Fortran 77 Complier 

The Fortran 77 compiler accepts the following options: 

-S 

-c 

-m 

-f 

-p 

-gp 

-of 

-w 
-w66 

-0 

-C 

-one trip 

-U 

-u 

-12 

-Ex 

-Rx 

-F 

Generate assembler output for each source file, but do not 
assemble it. Assembler output for a source file x.f, x.e, x.r, or 
x.c is put in file x.s, where x is a filename. 

Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is 
put in file x.o. 

Apply the m4 macro pre-processor to each EFL or Ratfor 
source file before using the appropriate compiler. 

Apply the EFL or Ratfor processor to all relevant files, and 
leave the output from x.e or x.r in x.f, where xis a filename. 
Do not compile the resulting Fortran program. 

Generate code to produce usage profiles for use by the prof 
command. 

Generate code to produce usage profiles for use by the gprof 
command. 

Put executable code in file f. Default filename is a.out. 

Suppresses all warning messages. 

Suppress warnings about Fortran 66 features. 

Invoke the C object code optimizer. 

Compile code that checks that subscripts are within array 
bounds. 

Compile code that performs every do loop at least once. 

Do not convert uppercase letters to lowercase. The default 
converts Fortran programs to lowercase. 

Make the default type of a variable undefined. 

On machines that support short integers, make the default 
integer constants and variables short. (-14 is the standard 
value.) All logical quantities are short. 

Use the string x as an EFL option in processing .e files. 

Use the string x as a Ratfor option in processing Ratfor files. 

Ratfor and EFL source programs are preprocessed into 
Fortran files, but those files are not compiled or removed. 

Other options, all library names, and any names not ending with one of the 
understood suffixes, are passed to the loader. 

SE-2 



The Fortran 77 Complier 

Implementation Strategy 
The compiler and library are written entirely in C. The compiler generates C 
compiler intermediate code. This approach guarantees that the resulting programs 
are compatible with C usage. The run-time computational library is complete. The 
mathematical functions are computed to at least 63-bit precision. The run-time 1/0 
library makes use of the standard 1/0 package, written in C, to transfer data. With 
the few exceptions described below, only documented calls are used, so it should be 
relatively easy to modify programs to run on other operating systems. 

Language Extensions 
Fortran 77 includes almost all of Fortran 66 as a subset. The most important 
additions to Fortran 77 are a character string data type, file-oriented input/output 
statements, and random access 110. The language is also considerably streamlined. 

Double Complex Data Type 
The Fortran 77 compiler defines the new type double complex. Each piece of data is 
represented by a pair of double-precision real variables. The compiler provides a 
double-complex version of every complex built-in function. The specific function 
names begin with z instead of c. 

Internal Files 
Fortran 77 has "internal files" (memory arrays), but restricts their use to formatted 
sequential 1/0 statements. The 1/0 system lets you use internal files in direct and 
unformatted reads and writes. 

Implicit Undefined Statement 
Fortran 66 has a fixed rule that the type of a variable not appearing in a type 
statement is integer, if its first letter is i, j, k, I, m, or n, and real otherwise. Fortran 
77 has an implicit statement that overrides this rule. An additional type, undefined, 
is permitted. Consider the following statement: 

implicit undefined(a-z) 

This statement turns off the automatic data-typing mechanism, and the compiler 
issues a diagnostic for each variable that is used, but does not appear in a type 
statement. Specifying the -U option to the f77 command is equivalent to beginning 
each procedure with this implicit undefined statement. 

UTek TOOLS SE-3 



The Fortran 77 Compiler 

Recursion 
Procedures can call themselves, directly or through a chain of other procedures. 

Automatic Storage 
The Fortran 77 compiler recognizes two new keywords, static and automatic. 
These keywords can appear as types in type statements and in implicit statements. 
Local variables are static by default; there is exactly one copy of the data, and its 
value is retained between calls. Each invocation of the procedure has one copy of 
each variable declared automatic. Automatic variables cannot appear in 
equivalence, data, or save statements. 

Source Input Format 
To make it easier to type Fortran programs, the Fortran 77 compiler accepts input in 
variable-length lines. An ampersand character as the first character of a line 
indicates a continuation line; the remaining characters form the body of the line. A 
tab character in one of the first six positions of a line signals the end of the 
statement number and continuation part of the line; the remaining characters form 
the body of the line. A tab elsewhere on the line is treated as another kind of blank 
by the compiler. 

The Fortran 77 compiler expects lowercase input. By default, the compiler converts 
all uppercase characters to lowercase except those inside character constants. 
However, if you specify the -U option, uppercase letters are not transformed. Using 
this option, you can specify external names with uppercase letters in them, and 
make distinct variables that differ only in case. Whether or not you use the -U 
option, keywords are recognized in lowercase. 

Include Statement 
Consider the statement: 

include 'stuff' 

This statement is replaced by the contents of the file stuff. You can nest include 
statements to a depth of ten. 

5E-4 



The Fortran 77 Complier 

Binary Initialization Constants 
A logical, real, or integer variable can be initialized in a data statement by a binary 
constant, denoted by a letter followed by a quoted string. If the letter is b, the string 
is binary, and only zeroes and ones are permitted. If the letter is o. the string is 
octal. with digits 0-7. If the letter is z or x, the string is hexadecimal, with digits 0-
9, a-f. Thus, the following statements initialize all three elements of a to ten: 

integer a(3) 
data a/b'1010' ,o'12' ,z'a'/ 

Character Strings 
For compatibility with C usage, the compiler recognizes the following escape 
sequences: 

\n newline 

\t tab 

\b backspace 

\f form feed 

\0 null 

\' apostrophe (does not terminate a string) 

\" quotation mark (does not terminate a string) 

\ \ backslash 

\x x, where x is any other character 

Fortran 77 has only one quoting character, the apostrophe. The Fortran 77 compiler 
and 1/0 system recognize both the apostrophe and the double quote as quoting 
characters. If a string begins with one kind of quote mark, the other can be 
embedded within the string without using the repeated quote or escape sequences. 

Every scalar local character variable that is not equivalenced, and every character 
string constant, are aligned on an integer word boundary. Each character string 
constant appearing outside a data statement is followed by a null character to make 
communication with C routines easier. 

UTek TOOLS SE-5 



The Fortran 77 Complier 

Hollerith Notation 
In the Fortran 77 compiler, Hollerith data can be used in place of character string 
constants, and can also be used to initialize non-character variables in data 
statements, except for real variables. 

Equivalence Statements 
As a special case, Fortran 66 permits an element of a multi-dimensional array to be 
represented by a singly-subscripted reference in equivalence statements. Fortran 
77 does not permit this usage, since subscript lower bounds can now be different 
from 1. The Fortran 77 compiler permits single subscripts in equivalence 
statements, under the interpretation that all missing subscripts are equal to 1. A 
warning message displays for each missing subscript. 

One-trip Do Loops 
The Fortran 77 standard requires that the range of a do loop not be performed if the 
initial value is already past the limit value. For example: 

do 10 i = 2,1 

In Fortran 66 such a statement is undefined, but it was common practice to perform 
the range of a do loop at least once. In order to accommodate older programs, the 
-onetrip option to the Fortran 77 compiler generates non-standard loops. 

Commas in Formatted Input 
The 1/0 system attempts to be more lenient than the Fortran 77 Standard when it 
seems worthwhile. While doing a formatted read of non-character variables, you 
can use commas as value separators in the input record, overriding the field lengths 
given in the format statement. Thus this format reads the record -345,.0Se-3, 12 
correctly: 

(i10, f20.10, i4) 

5E-6 



The Fortran 77 Compiler 

Short Integers 
On machines that support half-word integers, the compiler accepts declarations of 
type integer*2. (Ordinary integers are of C type long init; half-word integers are of C 
type short init.) An expression involving only objects of type integer*2 is of type short. 
Generic functions return short or long integers depending on the actual types of 
their arguments. If you compile a procedure using the -12 option, all small integer 
constants are of type integer*2. If the precision of an integer-valued intrinsic 
function is not determined by the generic function rules, a rule is chosen that returns 
the prevailing length. When the -12 option is in effect, all quantities of type logical 
are short. Note that these short integer and logical quantities do not obey the 
standard rules for storage association. 

Additional Intrinsic Functions 
The Fortran 77 compiler supports all of the intrinsic functions specified in the Fortran 
77 Standard. In addition, there are functions for performing bitwise Boolean 
operations (or, and xor, and not) and for accessing the UTek command arguments 
(getarg and iargc). 

Violations of the Fortran 77 
Standard 
There are three ways in which this Fortran implementation violates the Fortran 77 
Standard: double precision alignment, dummy procedure arguments, and the tab 
format codes. Each of these violations is discussed in the following sections. 

Double Precision Alignment 
The Fortran Standard permits common or equivalence statements to force a double 
precision quantity onto an odd word boundary. For example: 

real a(4) 
double precision b,c 

equivalence (a(1),b), (a(4),c) 

All double precision real and complex quantities must be aligned on word 
boundaries. The system displays a diagnostic if the source code demands a 
violation of the rule. 

UTek TOOLS 5E-7 



The Fortran 77 Compiler 

Dummy Procedure Arguments 
If any argument of a procedure is of type character. all dummy procedure arguments 
of that procedure must be declared in an external statement. This requirement is a 
corollary of the way character string arguments are represented, and of the one
pass nature of the compiler. A warning displays if a dummy procedure is not 
declared external. 

t and ti Formats 
The implementation of the t (absolute tab) and ti (leftward tab) format codes is 
defective. These codes let you reread or rewrite part of the record that has already 
been processed. This implementation uses seeks, so if the terminal where you are 
running the program does not allow seeks, the program is in error. A benefit of this 
implementation of tab format codes is that there is no upper limit on the length of a 
record. Also, you do not have to pre-declare any record lengths, except where 
specifically required. 

Inter-procedure Interface 
To write C procedures that call or are called by Fortran procedures, you must know 
the conventions for procedure names, data representation, return values, and 
argument lists that the compiled code obeys. 

Procedure Names 
On the UTek system, the name of a common block or a Fortran procedure has an 
underscore appended to it. This distinguishes it from a C procedure, or an external 
variable with the same user-assigned name. Fortran library procedure names have 
embedded underscores to avoid clashes with user-assigned subroutine names. 

Data Representations 
The following is a table of corresponding Fortran and C declarations: 

5E-8 

Fortran 
integer*2 x 
integer x 
logical x 
real x 
double precision x 
complex x 
double complex x 
character *6 x 

short int x; 
long int x; 
long int x; 
float x; 
double x; 

c 

struct { float r, i; } x; 
struct { double dr, di; } x; 
char x[6]; 



The Fortran 77 Complier 

Return Values 
A function of type integer, logical, real, or double precision is declared as a C function 
that returns the corresponding type. A complex or double complex function is 
equivalent to a C routine with an additional initial argument that points to the· place 
where the return value is stored. Consider this example: 

complex function f( ... ) 

It is equivalent to: 

L(temp, ... ) 
struct { float r, i; } *temp; 

A character-valued function is equivalent to a C routine with two extra initial 
arguments: a data address and a length. Consider this example: 

character* 15 function g( ... ) 

It is equivalent to: 

g_(result, length, ... ) 
char resultD; 
long int length; 

This function is invoked in C by: 

char chars[ 15]; 

g_(chars, 15L, ... ); 

Subroutines are invoked as if they are integer-valued functions whose value 
specifies what alternate return to use. Alternate return arguments (statement labels) 
are not passed to the function, but do an indexed branch in the calling procedure. 
(If the subroutine has no entry points with alternate return arguments, the return 
value is undefined.) Consider the following statement: 

call nret(*1, *2, *3) 

It is treated exactly as if it were the computed goto: 

goto (1, 2, 3), nretO 

UTek TOOLS 5E-9 



The Fortran 77 Compiler 

Argument Lists 
All Fortran arguments are passed by address. In addition, for every argument of 
type character or that is a dummy procedure, an argument giving the length of the 
value is passed. (The string lengths are long int quantities passed by value.) The 
order of the arguments is then: 

• extra arguments for complex and character functions 

• address for each piece of data or function 

• a long int for each character or procedure argument 

Consider this call: 

external f 
character*7 s 
integer b(3) 

call sam(f, b(2), s) 

It is equivalent to: 

int fQ; 
char s[7]; 
long int b[3]; 

sam_(f, &b[1],s, OL, 7L); 

Note that the first element of a C array always has subscript 0, but Fortran arrays 
begin at 1 by default. Fortran arrays are stored in column-major order, C arrays are 
stored in row-major order. 

5E-10 



The Fortran 77 Compiler 

File Formats 

Structure of Fortran Files 
Fortran requires four kinds of external files: sequential formatted and unformatted, 
and direct formatted and unformatted. On UTek systems, these are all implemented 
as ordinary files that are assumed to have the proper internal structure. 

Fortran 110 is based on records. When a direct file is opened in a Fortran program, 
the record length of the records is given, and this is used by the Fortran 110 system 
to make the file look as though it is made up of records of the given length. In the 
special case that the record length is given as 1 , the files are not divided into 
records, but, like normal UTek files, are treated as byte-addressable byte strings. 

The particular requirements on sequential unformatted files make it unlikely that they 
will be read or written except by Fortran 110 statements. Each record is preceded by 
an integer containing either the record length in bytes or the maximum buffer size. 
Each record is followed by an integer containing the total length in bytes necessary 
to write the record. 

As it reads, the Fortran 110 system breaks sequential formatted files into records by 
using each newline as a record separator. Reading off the end of the record makes 
the 110 system treat the record as though it were extended by blanks. On output, 
the 110 system writes a newline at the end of each record. 

Programs can also write newlines for themselves. This is a program error, but its 
only effect is that the single record you wrote is treated as more than one record 
when you backspace over it or read it. 

Portability Considerations 
The Fortran 110 system uses only the facilities of the standard C 110 library, except 
for two nonstandard features: the 110 system needs to know whether a file can be 
used for direct 110, and whether it is possible to backspace. Both of these facilities 
are implemented using the fseek routine, so there is a routine canseek that 
determines if fseek will work. The inquire statement also lets you find out if two 
files are the same. It gets the name of an already open file in a form that enables 
the program to reopen it. 

UTek TOOLS 5E-11 



The Fortran 77 Compiler 

Preconnected Files and File Positions 
Units 5, 6, and O are preconnected when the program starts. Unit 5 is connected to 
the standard input, unit 6 is connected to the standard output, and unit 0 is 
connected to the standard error unit. All units are connected for sequential 
formatted 110. 

All the other units are also preconnected when execution begins. Unit n is 
connected to a file named fort.n. These files need not exist, nor are they created, 
unless their units are used without first executing an open. The default connection 
is for sequential formatted 110. 

The Fortran 77 Standard does not specify where a file is initially positioned when it 
is opened for sequential 110. In fact, the 110 system attempts to position the file at 
the end, so a write appends the file and a read results in an end-of-file. To 
position a file to its beginning, use a rewind statement. The preconnected units O, 
5, and 6 are positioned as they come from the program's parent process. 

5E-12 



Ratfor - A 
Preprocessor for 
Rational Fortran 

Introduction 

5F 

Most programmers agree that Fortran is an unpleasant language to program in, yet 
there are many occasions when they are forced to use it. Fortran is close to a 
universal programming language, and with care you can write large, portable Fortran 
programs. Fortran is often the most efficient language available, particularly for 
programs that require much computation. 

Perhaps the worst deficiencies of Fortran are control flow statements - conditional 
branches and loops - that express the logic of the program. The conditional 
statements in Fortran are primitive. The arithmetic IF forces the user into at least 
two statement numbers and two (implied) GOTO statements; it leads to unintelligible 
code. The logical IF is better, but very restrictive because the statement that follows 
the IF can be only one restricted Fortran statement. 

The Fortran DO statement restricts the user to going forward in an arithmetic 
progression. The DO statement is useless if a problem is not an arithmetic 
progression. 

When you are faced with a programming language that requires numerous labels 
and branches, a useful technique is to define a new language that overcomes the 
deficiencies and use a preprocessor to translate the new language into the original 
one. This is how ratfor is implemented. 

UTek TOOLS 5F-1 



Ratfor - A Preprocessor tor Rational Fortran 

Ratfor improves the control flow statements of Fortran by providing: 

• statement grouping 

• if-else and switch statements for decision making 

• while, for, do, and repeat-until statements for looping 

• break and next for controlling loop exits 

Ratfor improves the syntax of Fortran by providing: 

• free-form input 

• unobtrusive comments 

• translation of >, >= into .GT., .GE., etc. 

• return(expression) statement for functions 

• define statement for symbolic parameters 

• include statement for including source files 

For more detailed information on ratfor, including how to invoke the command, see 
your UTek Command Reference, ratfor(l). 

Language Description 
Ratfor retains the merits of Fortran - universality, portability, efficiency - and 
hides the worst Fortran inadequacies. The language is Fortran except for two 
aspects. First, ratfor provides decent control flow structures. They are sufficient 
and comfortable for programming without GOTO statements. Second, since the 
preprocessor examines an entire program to translate the control structure, it cleans 
up many of the cosmetic deficiencies of Fortran, providing code that is easier to 
read. 

Beyond these two aspects, ratfor does nothing about other weaknesses of Fortran. 
The design principle that determined what should be in ratfor is: ratfor doesn't 
know Fortran. Any language feature requiring that ratfor understand Fortran was 
omitted. Ratfor provides a small set of the most useful constructs, instead of 
everything that might prove useful. 

5F-2 



Ratfor - A Preprocessor for Rational Fortran 

Statement Grouping 
Fortran provides no way to group statements together, short of making them into a 
subroutine. For example: 

if (x > 100) 
{can error("x>100"); err= 1; return} 

This cannot be written directly in Fortran. Instead you must translate this relatively 
clear thought into Fortran, stating the negative condition and branching around the 
group of statements: 

if (x .le. 100) goto 10 
call error(5hx)>100) 
err = 1 
return 

10 .•. 

When this program doesn't work, you must translate it back into a clearer form 
before you know exactly what it does. 

Ratfor eliminates this error-prone and confusing back-and-forth translation; the 
first form is the way the computation is written in ratfor. A group of statements can 
be treated as a unit by enclosing them in braces. This is true throughout ratfor. 
Wherever you can use a single ratfor statement, several can be enclosed in braces. 

Cosmetics contribute to the readability of code. The character >is more clear than 
.GT, so ratfor translates it appropriately. 

Ratfor is a free-form language: statements can appear anywhere on a line, and 
several can appear on one line if they are separated by semicolons. The above 
example could also be written as: 

if (x > 100) { 
call error("x>100") 
err = 1 
return 

In this case, no semicolon is necessary at the end of each line because ratfor 
assumes that there is one statement per line unless told otherwise. 

Of course, if the statement that follows the if statement is a single statement, no 
braces are needed: 

if (y <= o.o & z <= 0.0) 
write(6,20) y, z 

UTek TOOLS SF-3 



Ratfor - A Preprocessor for Rational Fortran 

No continuation need be indicated because the statement is clearly not finished on 
the first line. In general, ratfor continues lines when it seems obvious that they are 
not yet done. 

Although a free-form language permits wide latitude in formatting styles, proper 
indentation is vital. It makes the logical structure of the program obvious to the 
reader. 

The else Clause 
Ratfor provides an else statement to handle the construction: 

if (a <= b) 

{ SW = 0; write (6, 1) a, b } 

else 
{ SW = 1; write (6, 1) b, a } 

This writes out the smaller of a and b, then the larger, and sets sw appropriately. 

The Fortran equivalent of this code is very circuitous: 

if (a .gt. b) goto 10 
SW = 0 
write(6, 1) a, b 
goto 20 

10 SW = 1 
write(6, 1) b, a 

20 

This is a mechanical translation; shorter forms exist, as they do for many similar 
situations. But all translations suffer from the same problem of being less 
understandable than code that is not a translation. To understand the Fortran 
version, you must scan the entire program to make sure that no other statement 
branches to statements 10 or 20. With the ratfor version, the if-else statement is a 
single unit that can be read and understood. 

As before, if the statement following an if or else is a single statement, no braces 
are needed: 

if (a <= b) 
SW = 0 

else 
SW = 1 

The syntax of the if statement is: 

if (legal Fortran condition) 
(Ratfor statement) 

else 
(Ratfor statement) 

SF-4 



Ratfor - A Preprocessor for Rational Fortran 

In this case, the else statement is optional. The legal Fortran condition is anything 
that can legally go into a Fortran logical IF. Ratfor does not check this clause, since 
it does not know enough Fortran to know what is permitted. The Ratfor statement is 
any ratfor or Fortran statement, or any collection of them in braces. 

Nested if Statements 
Since the statement that follows an if or an else can be any ratfor statement, it can 
be followed by another if or else. As a useful example, consider this problem: the 
variable f is set to -1 if x is less than zero, to + 1 if x is greater than 100, and to O 
otherwise. In ratfor enter: 

if (x < 0) 
f = -1 

else if (x > 100) 
f = +1 

else 
f = 0 

Here the statement after the first else is another if-else. Logically it is just a single 
statement, although it is rather complicated. 

This code says what it means. Any version written in straight Fortran is indirect 
because Fortran does not let you say what you mean. 

Following an else statement with an if statement is one way to write a multiple
choice branch in ratfor. In general this structure provides a way to specify the 
choice of exactly on of several alternatives: 

if ( ... ) 

else if 

else if 

else 

UTek TOOLS SF-5 



Ratfor - A Preprocessor for Rational Fortran 

Ratfor also provides a switch statement that does the same job in special cases; in 
more general situations, you have to make do. The tests are laid out in sequence, 
and each one is followed by the code associated with it. Read down the list of 
decisions until one is found that is satisfied. The code associated with this condition 
is executed, and then the entire structure is finished. The trailing else statement 
handles the default case, where none of the other conditions apply. If there is no 
default action, this final else statement is omitted: 

if ( x < 0) 
x = 0 

else if (x > 100) 
x = 100 

Ambiguity in if-else Statements 
There is one thing to notice about complicated structures involving nested if and 
else statements. Consider this fragment: 

if (x > 0) 
if (y > 0) 

write(6, 1) x, y 

else 
write(6, 2) y 

In this fragment there are two if statements and only one else statement. Which if 
does the else go with? 

This is a genuine ambiguity in ratfor. It is resolved by saying that in such cases the 
else goes with the previous if that does not have a corresponding else statement. 
In this case, the else goes with the inner if, as indicated by the indentation. 

You can also resolve this ambiguity using explicit braces. In the case above, enter: 

if ( x > 0) { 
if ( y > 0) 

write(6, 1) x, y 

else 
write(6, 2) y 

} 

This does not change the meaning, but it leaves no doubt in the reader's mind. If 
you want the other association write: 

5F-6 



Ratfor - A Preprocessor for Rational Fortran 

if(x>o){ 
if (y < 0) 

write(6, 1) x, y 

else 
write(6, 2) y 

The switch Statement 
The switch statement provides a clean way to express multiple-choice branches 
that branch on the value of some integer-valued expression. The syntax is: 

switch (expression) { 

case exprl: 
statements 

case expr2, expr3: 
statements 

default: 
statements 

Each case is followed by a list of comma-separated integer expressions. The 
expression inside switch is compared against the case expressions exprl, expr2 until 
one matches. Then the statements following that case are executed. If no cases 
match expression, and there is a default section, the statements there are executed. 
If there is no default, nothing is done. In all situations, as soon as some block of 
statements is executed, the entire switch is exited immediately. 

NOTE 
This behavior is not the same as that of the C switch 

statement. 

The do Statement 
The do statement in ratfor is similar to the DO statement in Fortran, except that it 
uses no statement number. The statement number serves only to mark the end of 
the DO. You can do this easily with braces. Thus: 

UTek TOOLS 

do i = 1, n { 
x(i) = 0.0 
y(i) = o.o 
z(i) = 0.0 

SF-7 



Ratfor - A Preprocessor for Rational Fortran 

This is the same as the Fortran: 

do 10 = 1, n 
x(i) = 0.0 
y(i) = 0.0 
z(i) = 0.0 

10 continue 

The syntax is: 

do legal Fortran DO text 
Ratfor statement 

The part that follows the keyword do can legally go into a Fortran DO statement. So 
if a local version of Fortran allows DO limits to be expressions, you can use them in 
a ratfor do. 

The Ratfor statement portion is often enclosed in braces, but like the if, a single 
statement need not have braces around it. This code sets an array to zero: 

do i = 1, n 
x(i) = 0.0 

This slightly more complicated code sets the entire array m to 0: 

do i = 1, n 
do j = 1, n 

m(i, j) = O 

This code sets the upper triangle of m to -1, the diagonal to 0, and the lower 
triangle to + 1 : 

do i = 1, n 
do j = 1, n 

if(i<j) 
m(i, j) = -1 

else if (i == j} 
m(i, j) = 0 

else 
m(i, j) = +1 

The operator = = means equals. In each case, the statement that follows the do is 
logically a single statement, so it doesn't need braces. 

5F-8 



Ratfor - A Preprocessor for Rational Fortran 

The break and next Statements 
Ratfor provides a statement for leaving a loop early, and one for beginning the next 
iteration. The break causes an immediate exit from the do; in effect it is a branch to 
the statement following the do. The next statement is a branch to the bottom of the 
loop, so it causes the next iteration to be done. For example, this code skips over 
negative values in an array: 

do i = 1, n { 

} 

if (x(i) < 0.0) 
next 

process positive element 

The break and next statements also work in ratfor looping constructions discussed 
in the next few topics. 

The break and next statements can be followed by an integer to indicate breaking 
or iterating that level of enclosing loop. For example: 

break 2 

This exits from two levels of enclosing loops, and break 1 is equivalent to break. 
The next statement iterates the second enclosing loop. 

The while Statement 
One of the problems with the Fortran DO statement is that it insists upon being done 
once regardless of its limits. If a loop begins: 

DO I= 2, 1 

This typically is done once, with I set to 2. Of course a ratfor do can easily be 
preceded by a test: 

if (J <= k) 
do i = j, k { 

A more serious problem with the DO statement is that it encourages you to write a 
program in terms of an arithmetic progression with small positive steps, although 
that may not be the best way to write it. 

To overcome these difficulties, ratfor provides a while statement, which is a simple 
loop: 

while some condition is true 
repeat this group of statements 

UTek TOOLS SF-9 



Ratfor - A Preprocessor for Rational Fortran 

For example, this routine to compute sin(x) by the Maclaurin series combines two 
termination criteria: 

real function sin(x, e) 
#returns sin(x) to accuracy e, by 
#sin(x) = x - x**3/31 + x**5/5! -

sin = x 
term = x 

i = 3 
while (abs(term)>e & i<l.00) { 

return 
end 

term = -term * x**2 / float(i*(i-1)) 
sin = sin + term 
i = i + 2 

If the routine is entered with term already smaller thane, the loop is done zero 
times, and no attempt is made to compute x**3, avoiding a potential underflow. 
Since the text is made at the top of the while loop instead of the bottom, a special 
case disappears - the code works at one of its boundaries. (The test i<lOO is the 
other boundary - making sure the routine stops after some maximum number of 
iterations.) 

A pound sign (#) in a line marks the beginning of a comment; the rest of the line is 
comment. Comments and code can co-exist on the same line. Blank lines are also 
permitted anywhere. Use them to emphasize the natural divisions of a program. 

The syntax of the while statement is: 

while (legal Fortran condition) 
Raif or statement 

As with the if, a legal Fortran condition is something that can go into a Fortran 
logical IF, and Ratfor statement is a single statement that can also be multiple 
statements in braces. 

The while encourages a style of coding not normally practiced by Fortran 
programmers. For example, suppose nextch is a function value and in its 
argument. Then a loop to find the first non-blank character is: 

while (nextch(ich) == iblank) 

5F-10 



Ratfor - A Preprocessor for Rational Fortran 

A semicolon by itself is a null statement that marks the end of the while; if it were 
not present, the while would control the next statement. When the loop is broken, 
ich contains the first non-blank. 

The for Statement 
The for statement is another ratfor loop. It carries the separation of loop-body from 
reason-for-looping a step further than does the while statement. A for statement 
allows explicit initialization and increment steps as part of the statement. For 
example, a DO loop is: 

for (i = 1; i <= n; i = i + 1) 

This is equivalent to: 

i = 1 

while (i <= n) { 

i = i + 1 

The initialization and increment of i are moved into the for statement, making it 
easier to see at a glance what controls the loop. 

The for and while versions are done zero times if n is less than 1; this is not true of 
the do statement. 

The loop of the sine routine in the previous section can be re-written with a for 
statement: 

for (i=J; abs{term) > e & i < 100; i=i+2) 
term = -term * x**2 / float{i*Ii-1)) 
sin = sin + term 

The syntax of the for statement is: 

for (init, condition; increment) 
Ratfor statement 

In this statement init is any single Fortran statement, and is executed once before 
the loop begins. The increment is any single Fortran statement, and is execute at 
the end of each pass through the loop, before the test. The condition is anything 
that is legal in a logical IF. You can omit any of init, condition, and increment, 
although you must enter each semicolon. A non-existent condition is treated as 
always true, so for(;;) is an indefinite repeat. 

UTek TOOLS 5F-11 



Ratfor - A Preprocessor for Rational Fortran 

The for statement is useful for backward loops, chaining along lists, loops that might 
be done zero times, and similar algorithms that are difficult and obscure with DO, IF, 
and GOTO. For example, here is a backwards DO loop to find the last non-blank 
character on a card: 

for (i = 80; i > O; i = i - 1) 
if (card(i) != blank) 

break 

The notation ! = is the same as .NE. The code scans the columns from 80 through 
1. If it finds a non-blank, the loop immediately breaks. If i reaches 0, the card is all 
blank. This handles the termination properly for free; i is 0 when you fall out of the 
for loop. 

The increment in a for need not be an arithmetic progression; the following program 
walks along a list (stored in an integer array ptr) until a zero pointer is found, adding 
up elements from a parallel array of values: 

sum= 0.0 
for (i = first; i > O; i = ptr(i)) 

sum = sum + value(i) 

Notice that the code works correctly if the list is empty. Again, placing the text at 
the top of a loop instead of the bottom eliminates a potential boundary error. 

The repeat-until Statement 
Sometimes you need a loop that tests at the bottom after one pass through. This 
service is provided by the repeat-until statement: 

repeat 
Ratfor statement 

until (legal Fortran condition) 

The Ratfor statement is done once, then the condition is evaluated. If it is true, the 
loop is exited; if it is false, another pass is made. 

The until part is optional, so a repeat by itself is the cleanest way to specify an 
infinite loop. Of course, such a loop must ultimately be broken by some transfer of 
control such as stop, return, or break, or an implicit stop such as running out of 
input with a READ statement. 

The repeat-until statement is much less used than the other looping constructions. 
Be cautious about using it, because loops that test only at the bottom often do not 
handle null cases well. 

SF-12 



Ratfor - A Preprocessor for Rational Fortran 

More Information on break and next 
Statements 
The break statement exits immediately from do, while, for, and repeat-until. The 
next statement goes to the text part of do, while and repeat-until, to the increment 
step of a for. 

The return Statement 
The standard Fortran mechanism to return a value from a function uses the name of 
the function as a variable that can be assigned to; the last value stored in that 
variable is the function value upon return. For example, here is a routine that 
returns 1 if two arrays are identical, and O if they differ. The array ends are marked 
by the special value -1 : 

#equal - compare strl to str2 
#return 1 if equal, 0 if not 

integer function equal(strl, str2) 
integer strl(lOO), str2(100) 
integer i 

for (i = 1; strl(i) == str2(i); i = i + 1) 
if (strl(i) == -1) { 

equal = 1 
return 

} 
equal = 0 
return 
end 

In many languages, you return a value from a function like this: 

return (expression) 

Ratfor provides this kind of return statement - in a function F, return(expression) is 
equivalent to: 

{ F = expression; return } 

UTek TOOLS 5F-13 



Ratfor - A Preprocessor tor Rational Fortran 

For example, here is equal again: 

#equal -- compare strl to str2 
#return 1 if equal, 0 if not 

integer function equal(strl, str2) 
integer strl(lOO), str2(100) 
integer i 

for (i = 1; strl(i) == str2(i); i = i + 1) 
if (strl(i) == -1) 

return(!) 
return(O) 
end 

If there is no parenthesized expression after return, a normal RETURN is made. 

The Appearance of a Ratfor 
Program 
The visual appearance of a language has a substantial effect on how easy it is to 
read and understand programs. Accordingly, ratfor provides a number of facilities 
that make programs more readable, including free-form input and translation 
services. 

Free-form Input 
You can put statements anywhere on a line; long statements are continued 
automatically, as are long conditions in if, while, for, and until. Blank lines are 
ignored. You can put multiple statements on one line, if they are separated by 
semicolons. No semicolon is needed at the end of a line, if Ratfor can make some 
reasonable guess about whether the statement ends there. Lines ending with any of 
these characters are assumed to be continued on the next line: 

=+-*,I&(_ 

Underscores are discarded wherever they occur; all others remain as part of the 
statement. 

5F-14 



Ratfor - A Preprocessor for Rational Fortran 

Any statement that begins with an all-numeric field is assumed to be a Fortran 
label, and placed in columns 1-5 on output. Thus: 

write(6, 100); 100 format("hello") 

is converted into: 

write(6, 100) 
100 format(5hhello) 

Translation Services 
Text enclosed in matching single or double quotes is converted to the Fortran 
convention nH, but is otherwise unaltered. Within quoted strings, the backslash (\) 
serves as an escape character; the next character is taken literally. This provides a 
way to get quotes (and of course the backslash itself) into quoted strings: 

This is a string containing a backslash and an apostrophe. (This is not the standard 
use of double quotes, but it is easier to use and more general.) 

Any line that begins with a percent sign (%) is left absolutely unaltered except for 
stripping off the percent sign and moving the line one position to the left. This is 
useful for inserting control cards, and other things that should not be changed a lot. 
Use the percent sign only for ordinary statements, not for the condition parts of if, 
while, etc., or the output can come out in an unexpected place. 

Ratfor makes the following character translations, except within single or double 
quotes, or on a line beginning with a percent sign: 

. eq . != .ne . 
> . gt. >= .ge. 
< .It. <= .le. 
& .and. .or . 

. not. . not . 

In addition, the following translations are provided for input devices with restricted 
character sets: 

[ 
$( 

UTek TOOLS 

] 
$) 

} 
} 

5F-15 



Ratfor - A Preprocessor for Rational Fortran 

The define Statement 
You can define any string of alphanumeric characters as a name; thereafter, 
whenever that name occurs in the input (delimited by non-alphanumerics), it is 
replaced by the rest of the definition line. (Comments and trailing white spaces are 
stripped off). A defined name can be arbitrarily long, and must begin with a letter. 

The define statement is typically used to create symbolic parameters: 

define ROVS 100 
define COLS 50 
dimension a(ROWS), b(ROWS, COLS) 

if (i > ROWS : j > COLS) 

Alternately, you can write definitions as: 

define(ROWS, 100) 

In this case, the defining text is everything after the comma up to the balancing right 
parenthesis; this lets you create multi-line definitions. 

Is it a good idea to use symbolic parameters for most constants, because they make 
clear the function of otherwise mysterious numbers. As an example, here is the 
routine equal again, this time with symbolic constants: 

cc 1&: 

define YES 1 
define NO 0 
define EOS -1 
define ARB 100 

# equal ~ compare strl to str2; 
# return YES if equal, NO if not 

integer function equal(strl, str2) 
integer strl(ARB), str2(ARB) 
integer i 

for (i = 1; strl(i) == str2(i); i = i + 1) 
if (strl(i) == EOS) 

return(YES) 
return(NO) 
end 



Ratfor - A Preprocessor for Rational Fortntn 

The include Statement 
This statement inserts the file found on input stream file into the ratfor input in 
place of the include statement: 

include file 

The standard usage is to place COMMON blocks on a file, and include that file 
whenever a copy is needed: 

subroutine x 
include commonblocks 

end 

subroutine y 
include commonblocks 

end 

This ensures that all copies of the COMMON blocks are identical. 

Ratfor Difficulties 
Ratfor catches certain syntax errors, such as missing braces, else clauses without 
an if, and most errors involving missing parentheses in statements. Beyond that, 
since Ratfor knows no Fortran, any errors you make are reported by the Fortran 
compiler, so you have to relate a Fortran diagnostic back to the ratfor source. 

Keywords are reserved - using if, else, etc. as variable names does not work. Do 
not leave spaces in keywords or use the arithmetic IF. 

The Fortran nH convention is not recognized anywhere by ratfor; use quotes 
instead. 

The biggest single problem with ratfor is that many Fortran syntax errors are not 
detected by ratfor, but by the local Fortran compiler. The compiler prints a 
message in terms of the generated Fortran, and in some cases this may be difficult 
to relate back to the offending ratfor line. You can deal with this problem by 
tagging each generated line with some indication of the source line that created it. 

Ratfor keywords are reserved. This rarely makes any difference, except for those 
hardy souls who want to use an arithmetic IF. A few standard Fortran constructions 
are not accepted by ratfor. You can use the percent sign to protect lines with those 
non-recognized Fortran constructions. 

UTek TOOLS SF-17 



Ratfor - A Preprocessor for Rational Fortran 

Implementation 
The ratfor grammar is simple and straightforward, being essentially: 

prog : stat 
: prog stat 

stat · if ( •.. )stat 
if ( •.• ) stat else stat 
while( •.• ) stat 
for ( ... ; ..• ; ••. ) stat 
do ... stat 
repeat stat 
repeat stat until( ... ) 
switch( .•• ) {case .•• : prog ... 

default: prog } 
: return 
l break 
: next 
: digits stat 
l{prog} 
l anything unrecognizable 

The observation that ratfor knows no Fortran follows directly from the rule that says 
a statement is "anything unrecognizable." In fact, most of Fortran falls into this 
category, since any statement that does not begin with one of the keywords is by 
definition "unrecognizable." 

Code generation is also simple. If the first thing on a source line is not a keyword 
(like if, else, etc.) the entire statement is simply copied to the output with the 
appropriate character translation and formatting. (Leading digits are treated as a 
label.) Keywords cause only slightly more complicated actions. For example, when 
if is recognized, two consecutive labels L and L + 1 are generated, and the value of 
Lis stacked. The condition is then isolated, and this code is output: 

if (.not. (condition)) goto L 

The statement part of the if is then translated. When ratfor encounters the end of 
the statement this code is generated: 

L continue 

This code is generated unless there is an else clause, in which case the code is: 

goto L+1 
L continue 

In this latter case, this code is produced after the statement part of the else: 

L+ 1 continue 

Code generation for the various loops is equally simple. 

SF-18 



5G 
Using Pascal on UTek 

Introduction 
This section discusses how the Pascal programming language works on the UTek 
operating system. Topics covered include: 

• error diagnostics produced by the compiler, pc 

• input and output 

• components and options of the system 

Another source of information on Pascal that you receive with your workstation is 
The Pascal User Manual and Report by Kathleen Jensen and Niklaus Wirth. This 
book actually contains two documents, the User Manual and the Report. The User 
Manual is a document designed to introduce you to the features of Pascal. The 
Report is a concise reference for use by experienced Pascal users. Many of the 
example programs in this section are taken from the User Manual. 

Basic UTek Pascal 
This section explains the basics of using UTek Pascal. The UTek Pascal system 
requires that programs reside in files whose named end with the suffix .p, so call 
the new file first.p. Create a file that contains the following program: 

program first(output) 
begin 

writeln('Hello, world!') 
end. 

Now you can compile the program using the pc command. Enter: 

pc first.p 
Tue Oct 14 21 :37 1984 first.p: 

2 begin 
e ----- Inserted ';' 

The compiler first printed a syntax error message. The number 2 indicates that the 
rest of the line is an image of the second line of our program. The compiler expects 
to find a semicolon (;) before the keyword begin on this line. If you look at the 
Pascal syntax charts in the Jensen-Wirth User Manual, you see that the terminating 
semicolon (;) of the program statement on the first line is omitted. 

UTek TOOLS 5G-1 



Using Pascal on UTek 

Another thing to notice about the error message is the letter 'e' at the beginning. It 
stands for 'error', indicating that the input was not legal Pascal. The fact that it is a 
lower-case 'e' instead of an upper-case one indicates that the compiler managed to 
recover from the error to produce an executable a.out file. An executable a.out file 
is produced when no fatal 'E' errors occur during compilation. Other classes of 
warning messages include 'w', which indicates inconsistencies that are probably due 
to bugs in the program. Warning messages preceded by 's' violate standard Pascal 
conventions. 

After compiling the program, you can run it by executing the a.out file. But first fix 
the error in the program, by inserting a semicolon at the end of the first line. Now 
enter Is to list the files in the current directory: 

Is 
first.p 
a.out 

The a.out file contains the executable binary code. Execute it by entering: 

a.out 
Hello, world! 

You can rename the program something other than a.out using the move command, 
mv. To rename the a.out file to program hello enter: 

mv a.out hello 

To execute the program enter: 

hello 
Hello, world! 

SG-2 



Using Pascal on UTek 

A Larger Program 
This program is similar to program 4.9 on page 30 of the Jensen-Wirth User Manual. 
For the sake of example, a number of problems have been introduced into the 
program. If the program resides in the file bigger.p, you can list it with numbers by 
entering: 

cat -n bigger.p 

1 (* 
2 * Graphic representation of a function 
3 * f(x) = exp(-x) * sin(2 * pi * x) 
4 *) 
5 program graphl(output); 
6 const 
7 
8 
9 

d = 0.0625; 
s = 32; 
h = J4; 

(* 1/16, 16 lines for interval [x, x+l] *) 
(* 32 character width for interval [x, x+l] 
(* Character position of x-axis *) 

10 
11 
12 var 
13 
14 
15 begin 
16 
17 
18 
19 
20 
21 
22 
23 
24 end. 

UTek TOOLS 

c = 6.28138; 
labeled = J2; 

x, y: real; 
i, n: integer; 

(* 2 * pi *) 

for i := 0 to labeled begin 
x := d I i; 

y := exp(-x9 * sin(i * x); 
n := Round(s * y) + h; 
repeat 

write(' '); 
n := n - 1 

writeln( '*') 

5G-3 



Using Pascal on UTek 

When you attempt to compile the program using pc, the following output displays: 

pc bigger.p 

5G-4 

Ved Aug 15 21:52 1984 bigger.p: 

w 

e 

E 

e 

E 

E 

e 

9 h = J4; (* Character position of x-axis *) 
--------------- (* in a (* ... *) comment 

16 for i := 0 to labeled begin 
--------------- Inserted keyword do 

18 y := exp(-x9 * sin(i * x); 
--------------- Undefined variable 
----------------·-------- Inserted , ) , 

19 n := Round(s * y} + h; 
------------- Undefined function 
------------------- Undefined variable 

23 writeln(, *,) 

----------- Inserted 
24 end. 

E ---- Expected keyword until 
E -- Malformed declaration 

------Unexpected end-of-file - QUIT 



Using Pascal on UTek 

Since there were fatal E errors in the program, no executable code was generated. 
To list the program with its error messages enter: 

pc -1 bigger.p 

Wed Aug 15 21:52 1984 bigger.p 

w 

e 

E 
e 

E 
E 

e 

1 
2 

3 
4 
5 
6 

(* 
* Graphic representation of a function 
* f(x) = exp(-x) * sin(2 * pi * x) 
*) 

program graphl(output); 
con st 

7 
8 

d = 0.0625; (* 1/16, 16 lines for interval [x, x+l] *) 
(* 32 character width for interval [x, x+l] 

--------------- (* in a (* ... *) comment 
s = 32; 

9 
10 
11 
12 
1J 
14 
15 
16 

h = J4; 
c = 6.28138; 
labeled = 32; 

var 
x, y: real; 
i, n: integer; 

begin 

(* Character position of x-axis *) 
(* 2 * pi *) 

for i := 0 to labeled begin 
----------------- Inserted keyword do 

17 
18 

x := d I i; 

y := exp(-x9 * sin(i * x); 
-------- Undefined variable 

----------------------- Inserted ') · 
19 n := Round(s * y) + h; 

------- Undefined function 

20 repeat 
21 
22 
23 

write(' '); 
n := n - 1 

writeln( '*') 
---------- -- Inserted 

24 end. 

-- Undefined variable 

E -----Expected keyword until 
E -- Malformed declaration 
------ Unexpected end-of-file - QUIT 

The next few sections work through examples of Pascal by correcting this program. 

UTek TOOLS SG-5 



Using Pascal on UTek 

Correcting the First Errors 
Most of the errors were syntactic errors, those in the format and structure of the 
program, rather than its content. In the output, syntax errors are marked by printing 
the offending line of the program followed by a line that tells where the error was 
detected. The second line also gives a possible cause of the error, how to recover 
from the error, a symbol expected at the point of error, or an indication that the input 
is incorrect. In the last case, the compiler can skip ahead to a point in the program 
where execution can continue. 

In this example, the first error message indicates that the compiler detected a 
comment within a comment. While this is not an error in standard Pascal, it usually 
corresponds to an error in the program. In this case, the trailing symbol *) of the 
comment was omitted on line 8. To correct this problem add *) to the end of line 8. 

The second error message, following line 16, says that the compiler expected the 
keyword do before the keyword begin in the for statement. Examine the statement 
syntax chart on page 118 of the User Manual. Do is a necessary part of the 
statement. Correct this error by first finding for in the file. On that line insert the 
keyword do in front of begin. 

The next error in the program is easy to pinpoint. On line 18, we did not hit the shift 
key, and got a 9 instead of a parenthesis. The compiler said that x9 is an undefined 
variable and that a parenthesis was missing in the statement. The compiler is not 
suggesting that you insert a parenthesis before the semicolon (;). The error 
message only indicates changes that help the program continue to compile. You 
must determine the correct cause of the error and correct it. 

This also illustreates the fact that one error in the input may lead to multiple error 
messages. Pc attempts to give only one message for each error, but a single error 
in the input can look like more than one error. It is also possible that pc does not 
detect an error when it occurs, but later in the input. In this example, typing x 
instead of x9 produces an error later in the output. 

The next error message, on line 19, says that the function Round and the variable h 
are undefined. The compiler does not recognize Round because in UTek all 
keywords and built-in procedure and function names are in lower-case letters. The 
compiler says that h is undefined because its definition was lost in the non
terminated comment on line 9. Terminating the comment takes care of this error. 

The next error caused the compiler to insert a semicolon (;) before the statement on 
line 23 that calls writeln. Look at the program around line 23. The error is that the 
keyword until and an associated expression are omitted. Note that the error 
message does not indicate the actual error. The compiler corrected the most 
plausible error, since the omission of a semicolon(;) is a common mistake. The 
compiler indicates a possible fix here. It laster detected that the keyword until is 
missing, but not until it sees the keyword end on line 24. The combination of these 
two error messages indicate the problem. 

SG-6 



Using Pascal on UTek 

The last syntactic error message says that the compiler needs an end keyword to 
match the begin at line 15. Since the end at line 24 is supposed to match this 
begin, another begin must have been mismatched. Before the final end, insert 
another end to match the begin at line 16. 

At the end of each procedure or function, and at the end of the program, the 
compiler summarizes references to undefined and improperly-used variables. It 
also warns of potential errors. In this program, the summary warns that c is unused, 
therefore somewhat suspicious. Examining the program, you see that the constant 
was intended for the expression that is an argument to sinf, so you can correct this 
expression and recompile the program. To correct the expression, replace the "i" 
in the expression following sin with a "c". 

The compiler suppresses warning messages for a particular procedure, function, or 
program when it finds severe syntax errors. This helps prevent confusing and 
incorrect warning messages. We are now ready to compile the program for the first 
time. This is what the program looks like after it is corrected: 

cat -n bigger.p 

1 (* 
2 * Graphic representation of a function 
3 * f(x) = exp(-x) * sin(2 * pi * x) 
4 *) 
5 program graphl(output); 
6 const 
7 
8 

9 

d = 0.0625; 
s = 32; 

(* 1/16, 16 lines for interval [x, x+l] *) 

h = 34; 
(* 32 character width for interval [x, x+l] *) 
(* Character position of x-axis *) 

10 
11 
12 var 
13 
14 
15 begin 

c = 6.28138; 
labeled = 32; 

x, y: real; 
i, n: integer; 

( * 2 * pi *) 

16 for i := 0 to labeled do begin 
17 x := d I i; 

18 y := exp(-x) * sin(c * x); 
19 n := round(s * y) + h; 
20 repeat 
21 write(' '); 
22 n := n - 1 
23 until n = O; 
24 writelnC* ') 
25 end 
26 end. 

UTek TOOLS 5G-7 



Using Pascal on UTek 

Executing the Second Example 
You are now ready to execute the second example. The first run of this example 
produced this output: 

pc bigger.p 

Floating exception (core dumped) 

The error consists of a "division by zero" at line 17. We can replace the division 
sign there with a multiplication sign, then re-run the program. 

SG-8 



The corrected program produces the following output: 

pc bigger.p 
a.out 

Formatting the Program Listing 

Using Pascal on UTek 

You can use special lines within the source text of a program to format the program 
listing. A blank line corresponds to a space macro in an assembler, leaving a 
completely blank line without a line number. A line containing only a <CTRL-L> 
causes a page eject in the listing, with the corresponding line number suppressed. 
This corresponds to an eject pseudo-instruction. See the Options of Pc discussion 
for details on the n and i options to pc. 

UTek TOOLS 5G-9 



Using Pascal on UTek 

Execution Profiling 
An execution profile consists of a structured listing of a program, that details the 
number of times each statement was executed in a particular run of the program. In 
a program that terminates abnormally due to excessive looping or recursion, or by a 
program fault, the counts help find the error. Zero counts mark portions of the 
program that were not executed. In preliminary debugging these portions should 
prompt you to use new test data or re-examine the program logic. The profile is 
most valuable in showing the portions of the program that dominate execution time. 
This information is useful for source-level optimization. 

An Example of Execution Profiling 
A prime number is divisible only by itself and the number one. The program primes, 
written by Niklaus Wirth, determines the first few prime numbers. In compiling the 
program, the p option to pc is used. This option causes the compiler to generate 
code that determines the number of times each procedure or function in the 
program was executed, and the percentage of total time spent in each. When 
exe<;ution of the a.out file completes, this data is written to the file mon.out in the 
current directory. It is possible to prepare an execution profile by running the 
profiler prof on the file that you profiled. The following example illustrates this: 

SG-10 



Using Pascal on UTek 

pc -1-p primes.p 

a.out 

2 3 
31 37 
73 79 

127 131 
179 181 

UTek TOOLS 

Ved Aug 15 21:52 1984 primes.p 

1 program primes(output); 
2 const n = 50; nl = 7; (*n1 = sqrt(n)*) 
3 var i,k,x,inc,labeled,square,l: integer; 
4 prim: boolean; 
5 p,v: array[l •. nl] of integer; 
6 begin 
7 write(2:6, 3:6); 1 := 2; 
8 x := 1; inc := 4; labeled := 1; square := 9; 
9 for i := 3 to n do 

10 begin (*find next prime*) 
11 repeat x := x + inc; inc := 6-inc; 
12 if square <= x then 
13 begin labeled := labeled+!; 
14 v[labeled] := square; square := sqr(p[labeled+l]) 
15 end ; 
16 k := 2; prim := true; 
17 while prim and (k<Labeled) do 
18 begin k := k+l; 
19 if v[k] < x then v[k] := v[k] + 2*p[k]; 
20 prim : = x <> v[k] 
21 end 
22 until prim; 
23 if i <= nl then p[i] := x; 
24 write(x:6); 1 := 1+1; 
25 if 1 = 10 then 
26 begin writeln; 1 := 0 
27 end 
28 end ; 
29 writeln; 
30 end . 

5 7 11 13 17 19 23 29 
41 43 47 53 59 61 67 71 
83 89 97 101 103 107 109 113 

137 139 149 151 157 163 167 173 
191 193 197 199 211 223 227 229 

SG-11 



Using Pascal on UTek 

Discussion 
After you compile the program, use the prof command to profile the data that was 
gathered: 

prof primes.p 

%time cumsecs #call ms/call name 
33,3 0.03 50 0.57 _doprnt 
22.2 0.05 6 J.18 _write 
11.1 0.06 306 0.03 _flsbuf 
11.1 0.07 1 9,53 _fstat 
11.1 0.08 _main 
11.1 0.09 1 9,53 _program 
o.o 0.09 1 0.00 _FCEXIT 
o.o 0.09 1 0.00 _FCLOSE 
o.o 0.09 1 0.00 _FCSTART 
o.o 0.09 1 0.00 _PFLUSH 
0.0 0.09 2 0.00 _fflush 
0.0 0.09 50 0.00 _:fprintf 
o.o 0.09 1 0.00 _gtty 
0.0 0.09 1 0.00 _ioctl 
o.o 0.09 1 0.00 _isatty 
o.o 0.09 1 0.00 _nargs 
o.o 0.09 1 0.00 _prof il 

Because the program primes.p was compiled using the -p option to pc, the profiler 
prof is able to give information about how the program executed. The first field in 
the output gives the percentage of time spent between one symbol (statement) name 
and the next, and the second field represents that time in cumulative seconds. The 
third field gives the number of calls to a symbol, and the field labeled ms/call gives 
the number of milliseconds per call. 

Error Messages 
This section discusses the error messages displayed by the compiler, pc. 

Compiler Syntax Errors 
A few comments on the nature of syntax errors frequently made by Pascal 
programmers, and on the recover mechanisms of the compiler, can help you use 
Pascal better. 

SG-12 



Using Pascal on UTek 

Illegal Characters 
Characters such as dollar sign and exclamation mark are not part of Pascal. In the 
source program they are considered illegal characters, unless they are part of a 
constant string, a constant character, or a comment. This can happen if you leave 
off an opening string quote. Note that the double quote character, although used in 
English to quote strings, is not used to quote strings in Pascal. Most non-printing 
characters in the input are also illegal, except in character constants and character 
strings. Except for the tab and form-feed characters, non-printing characters in the 
input file print as question marks, so that they show in your listing. 

String Errors 
There is no character string of length O in Pascal.' Consequently the input " (right 
double quote) is not acceptable. Similarly, encountering an end-of-line after an 
opening string quote ', without encountering the matching closing quote ', results in 
the error message Unmatched for string. You can use the character# instead of ' to 
delimit character and constant strings. For this reason, a misplaced# sometimes 
causes an error about unbalanced quotes. Similarly, a # in column one prepares 
programs that are kept in multiple files. 

Comments Within a Comment, Non
terminated Comments 
As you saw above, these errors are usually caused by leaving off a comment 
delimiter. You can convert parts of your program to comments without causing this 
error message, since there are two different kinds of comments - those delimited 
by braces and those delimited by asterisks. 

If a comment does not terminate before the end of the input file, the compiler points 
to the beginning of the comment, indicating that the comment is not terminated. In 
this case, processing stops immediately. 

UTek TOOLS SG-13 



Using Pascal on UTek 

Digits in Numbers 
This part of the language is a minor irritation. Pascal requires digits in real numbers 
both before and after the decimal point. So the following statements, which would 
seem reasonable to Fortran users, generate error messages in Pascal: 

Wed Aug 15 21:53 1984 digits.p: 
4 r := O.; 

e --------- Digits required after decimal point 
5 r := .O; 

e -- Digits required before decimal point 
6 r := 1.e10; 

e -- Digits required after decimal point 
7 r .- .05e-10; 

e -_ Digits required before decimal point 

Replacements, Insertions, and Deletions 
When the compiler encounters a syntax error in the input, the parser invokes an 
error recovery procedure. This procedure examines the input text immediately after 
the point of error and considers some simple corrections that might allow the 
analysis to continue. These corrections replace an input token with a different token 
or insert a token. Most of these changes do not cause fatal syntax errors. The 
exception is insertion or replacement with a symbol such as an identifier or a 
number. In this case the recover makes no attempt to determine which identifier or 
what number to insertr, and these are considered fatal syntax errors. 

Consider the following example: 

pc -1 synerr.p 

5G-14 

Wed Aug 15 21:53 1984 synerr.p 

1 program syn(output); 
2 var i, j are integer; 

e -- Replaced identifier with a 
3 begin 
4 for j :* 1 to 20 begin 

e ----------- Replaced * with a 
e ----------------- Inserted keyword do 

5 
6 

write(j); 
i = 2 ** j; 

e ------------ Inserted 
E -- Inserted identifier 

7 

8 end 
9 end. 

writeln(i)) 
-- Deleted ')' 



Using Pascal on UTek 

The output is as expected, except the complaint about * *. This occurs because 
Pascal does not have an exponentiation operator. This error illustrates that you 
must not assume that the language has a particular feature. The compiler is 
unlikely to recognize the construct that you enter. 

Undefined or Improper Identifiers 
If the compiler encounters an identifier in the output that is undefined, the error 
recovery replaces it with an identifier of the appropriate class. Further references to 
this identifier are summarized at the end of the containing procedure or function, or 
at the end of the program. Similarly, if you use an identifier inappropriately an error 
message displays and an identifier of the appropriate type is inserted. Further 
incorrect references to this identifier are noted only if they involve incorrect use in a 
different way. All incorrect uses are summarized in the same way as undefined 
variable uses. 

Expected Symbols and Malformed 
Constructs 
If none of the corrections mentioned above seem reasonable, the error recovery 
examines the input to the left of the point of error to see if there is only one symbol 
that can follow this input. If this is the case, the recovery prints a message 
indicating that the given symbol is "expected". 

In cases where none of these corrections resolve the problems in the input, the 
recovery can issue a diagnostic indicating that the input is "malformed". If 
necessary, the compiler can then skip forward in the input to a place where 
compilation can continue. This process can miss some errors in the text. 

UTek TOOLS SG-15 



Using Pascal on UTek 

Consider the following example: 

pc -I synerr2.p 

Wed Aug 15 21:53 1984 synerr2.p 

1 program synerr2(input,outpu); 
2 integer a(lO) 

E ------ Malformed declaration 
3 begin 
4 read(b); 

E --------------- Undefined variable 
5 for c := 1 to 10 do 

E --------------Undefined variable 
6 a(c) := b * c; 

E ------------------- Undefined procedure 
E ---------------------------- Malformed statement 

7 end. 
E 1 - File outpu listed in program statement but not declared 
In program synerr2: 

E - a undefined on line 6 
E - b undefined on line 4 
E - c undefined on lines 5 6 

The word "output" is misspelled, giving a Fortran-style variable that the compiler 
diagnoses as a "malformed declaration". On line 6, parentheses instead of brackets 
were used for subscripting. The compiler notes that a is not defined as a procedure. 
This occurred because procedure and function argument lists are not delimited by 
parentheses in Pascal. You cannot assign to procedure calls, so the compiler 
diagnosed a ''malformed statement''. 

Expected and Unexpected End-of-File 
If the compiler finds a complete program, but there is more non-comment text in the 
input file, it indicates that an end-of-file is expected. This situation can occur after 
a bracketing error, or if too many ends are present in the input. Following recovery, 
a message may appear saying that a period was expected, since the period is the 
symbol that terminates a program. 

SG-16 



Using Pascal on UTek 

If severe errors in the input prohibit further processing the compiler produces an 
error message followed by "QUIT". Consider the following example: 

pc -1 mism.p 

Wed Aug 15 21:53 1984 mism.p 

1 program mismatch(output) 
2 begin 

e ---------- Inserted ; 
3 writeln('***'); 
4 { The next line is the last line in the file 
5 writeln 

E -------------------------Malformed declaration 
------------------ Unexpected end-of-file - QUIT 

Compiler Semantic Errors 
The extremely large number of semantic error messages produced by the compiler 
make it impossible to discuss each message or group of messages in detail. This 
section explains the typical formats and the terminology used in error messages, so 
that you can interpret them. If you do not understand a particular error message, 
refer to the User Manual by Jensen and Wirth for examples. 

Error Message Format 
As we saw in the last example program, the error messages from the Pascal 
compiler include the number of a line in the text of the program, as well as the text 
of the error message. Occasionally, the error occurs on the line number containing 
a bracketing keyword like end or null. In this case, the error message might refer to 
the previous statement. This happens because of the method the compiler uses to 
sample line numbers. The absence of a trailing semicolon in the previous statement 
causes the line number corresponding to the end or null to become associated with 
the statement. As Pascal is a free-format language, the line number associations 
can only be approximate, and they may seem arbitrary. 

UTek TOOLS SG-17 



Using Pascal on UTek 

Incompatible Types 
Since Pascal is very much a language of types, many semantic errors manifest 
themselves as type errors. These are called type clashes by the compiler. The 
types allowed for various operators in the language are summarized on page 108 of 
the Jensen-Wirth User Manual. It is important to know that the Pascal compiler, in 
its diagnostics, distinguishes between the following type classes: 

• array 

• Boolean 

• char 

• file 

• integer 

• pointer 

• real 

• record 

• scalar 

• string 

These words display in many error messages. So if you try to assign an integer 
value to a char variable, an error message displays: 

Sat Aug 15 14:50 1984 clash.p: 
E7 - Type clash; integer is incompatible with char 
... Type of expression clashed with variable in assignment 

In this case, one error produced a two-line error message. If the same error occurs 
more than once, the same diagnostic displays each time. 

Scalar 
The only class whose meaning is not self-explanatory is scalar. Scalar has a 
precise meaning in the Jensen-Wirth User Manual, where it refers to char, integer, 
real, and Boolean types, as well as the enumerated types. For the purposes of the 
Pascal compiler, scalar in an error message refers to a user-defined, enumerated 
type. For example, color in this example: 

type color = (red, green, blue) 

For integers, the more explicit denotation integer is used. Although it is correct to 
refer to an integer variable as a scalar variable, pc prefers the more specific 
indication. 

SG-18 



Using Pascal on UTek 

Function and Procedure Type Errors 
For built-in procedures and functions, two kinds of errors occur. If the routines are 
called with the wrong number of arguments a message like this displays: 

Sat Aug 15 14:55 1984 sin2.p: 
E12 - sin's argument must be integer or real, not char 

Non-readable and Non-writable Scalars 
The messages stating that scalar (user-defined) types cannot be written to and read 
from files are often mysterious. For example, if you define: 

type color = (red, green, blue) 

With this definition standard Pascal does not associate these constants with the 
strings "red", "green", and "blue". UTek Pascal has a feature that allows 
enumerated types to be read an written. However, if the program is supposed to be 
portable, you have to write your own routines to perform these functions. Standard 
Pascal allows only the reading of characters, integers, and real numbers from text 
files. You cannot read strings or Booleans. 

UTek TOOLS 5G-19 



Using Pascal on UTek 

Expression Diagnostics 
The error messages for semantically incorrect expressions are very explicit. 
Consider this sample compilation: 

pc -1 expr.p 

Wed Aug 15 21:53 1984 expr.p 

1 program x(output); 
2 var 
3 a: set of char; 
4 b: Boolean; 
5 c: (red, green, blue); 
6 p: integer; 
7 A: alfa; 
8 B: packed array [1 .. 5] of char; 
9 begin 

10 b := true; 
11 c := red; 
12 new(p); 
13 a := []; 
14 A := 'Hello, yellow 
15 b := a and b; 
16 a := a * 3; 
17 if input< 2 then writeln('boo'); 
18 if p <= 2 then writeln('sure nuff'); 
19 if A= B then writeln('same'); 
20 if c =true then writeln('hue''s and color''s') 
21 end. 

E 14 - Constant string too long 
E 15 - Left operand of and must be Boolean, not set 
E 16 - Cannot mix sets with integers and reals as operands of * 
E 17 - files may not participate in comparisons 
E 18 - pointers and integers cannot be compared - operator was <= 
E 19 - Strings not same length in = comparison 
E 20 - scalars and Booleans cannot be compared - operator was = 
e 21 - Input is used but not defined in the program statement 
In program x: 

w - constant green is never used 
w - constant blue is never used 
w - variable B is used but never set 

This example is completely artificial, but it illustrates the clarity of the error 
messages about expressions. 

SG-20 



Using Pascal on UTek 

Type Equivalence 
Several messages produced by the Pascal compiler complain about non-equivalent 
types. In general, Pascal considers variables to have the same type only if they 
were declared with the same constructed type, or with the same type identifier. 
Thus, the variables x and y in this example do not have the same type: 

var 
x: - integer; 
y: - integer 

So the assignment x :=y results in an error message. 

So you must always declare a type, then use it to declare a variable. For example: 

type insert = - integer; 
var x: insert;y: insert; 

Since the parameter to a procedure or function must be declared with a type 
identifier, instead of a constructed type, you must declare any type that is used in 
this way. 

Unreachable Statements 
Pascal prints error messages about unreachable statements. Such statements 
usually correspond to errors in the program logic. A statement is considered 
reachable if there is a potential path of control, even if that path is never taken. So 
this statement does not result in an error message: 

if false then 
writeln('impossible!') 

Goto Directed to Structured Statements 
The compiler complains about goto statements that transfer control into structured 
statements. It does not allow such jumps, nor does it allow branching from the then 
part of an if statement into the else part. The compiler checks for this transfer of 
control only within a single procedure or function. 

Unused and Unset Variables 
Pc does not clear variables to Oat procedure and function entry, unless run-time 
checking is enabled using the C option. It is not good programming practice to rely 
on the initialization of the C option. To discourage this practice, and to help detect 
errors in program logic, pc gives a "w" warning error for: 

• use of a variable that is never assigned a value 

• a variable that is declared, but never used, distinguishing between variables 
whose values are computed and those completely unused 

UTek TOOLS 5G-21 



Using Pascal on UTek 

In fact, these messages apply to all declared items. So a const or procedure that 
is declared but never used is noted. You can use thew option of pc to suppress 
these warnings. 

Compiler Panics 
One kind of error that rarely happens, but causes termination of all processing, is 
called a panic. A panic indicates a compiler-detected internal inconsistency. A 
typical panic message is: 

snark (rvalue) line=11 O yyline=109 
Snark in pc 

If this kind of message displays, compilation terminates immediately. Contact the 
Tek representative in charge of your system software. 

Input/Output Errors 
Other errors that you may encounter when you run pc relate to input and output. If 
pc cannot open the file you specify, or if the file is empty, an error message 
displays. 

Run-time Errors 
The example program bigger.p had a run-time error. In this section we attempt to 
give general descriptions of run-time errors. Use the C option to activate run-time 
checking. 

As an example of a run-time error, suppose that you accidentally declared the 
constant nl to be 6, instead of 7. This error is on line 2 of the program primes, used 
as an example above. If we run this program the following response displays: 

pc -C -g primes.p 
a.out 

2 3 5 7 
31 37 41 43 

11 
47 

13 17 19 23 29 
53 59 61 67 71 

73 79 83 89 97 101 103 107 109 113 
127 131 137 139 149 151 157 163 167 

a.out: Subscript value of 7 is out of range 
Trace/BPT trap (core dumped) 

Now you can run the symbolic debugger, sdb, on your program to find the error. 
Enter: 

5G-22 

sdb 
*t 



Using Pascal on UTek 

After you enter the debugger, the asterisk displays as the sdb prompt. The t 
command give you a backtrace of the stack to tell you where the program died. 

Interrupts 
If the program is interrupted during execution a core image is produced. You can 
use sdb to examine this core image and look at a stack backtrace of the program. 

Input/Output Interaction Errors 
The final class of compiler errors results from inappropriate interactions with files, 
including the user's terminal. This includes bad formats for integers and real 
numbers that become evident when the file is read. 

lnp·ut/Output 
This section describes features of the Pascal input/output environment on UTek. 
The most basic aspects of input and output using the UTek shell are described in 
other documents. For information on file redirection and the redirection of output 
into other UTek commands, see section 28, Introduction to the Shell. 

End-of-file and End-of-line 
An extremely common problem encountered by new users of Pascal, especially in 
the UTek environment, relates to the definitions of end-of-file (eoj) and end-of-line 
(eoln). These functions are defined at the beginning of execution, indicating whether 
the input device is at the end of a line or at the end of a file. Setting eof or eoln 
corresponds to an implicit read where the input is inspected, but it is not used up. 
In fact, the system cannot know whether the input is at the end-of-file or at the 
end-of-line, unless it attempts to read a line from it. If the input is from a 
previously-created file, the reading can take place without your entering something 
during execution. However, if the input is from a terminal, then the user must type 
it. 

Pascal is designed so that an initial read is not necessary. At any given time, the 
Pascal system may or may not know whether the end-of-file or end-of-line 
conditions are true. Internally, these functions can have three values - true, false, 
and an indeterminate state. The indeterminate state says "I don't know yet; if you 
ask me I will have to find out." All files remain in this indeterminate state until the 
Pascal program requires a value for eof or eoln either explicitly or implicitly, for 
example, in a call to read. If you force the Pascal system to determine whether the 
input is at the end-of-file or the end-of-line, the program must try to read from the 
input. Consider the following example code: 

UTek TOOLS 5G-23 



Using Pascal on UTek 

while not eof do begin 
write('number, please ?'); 
read(i); 

end 

writeln(;that was a ',i:2}; 
write('number, please?) 

At first glance this appears to be a correct program that requests, reads, and echos 
numbers. Notice, however, that the while loop asks whether eof is true before the 
request is printed. This forces the Pascal system to decide whether the input is at 
the end-of-file. The system simply waits for the user to type a line. By inserting 
the prompt before testing eof, this code avoids the problem: 

write('number, please?'); 
while not eof do begin 

read(i); 

end 

writeln('that was a' ,i:2); 
write('number, please?') 

The user must still type a line before the while test is completed, but the prompt 
asks for it. This example, however, is still not correct. To understand why, it is 
necessary to know that there is a blank character at the end of each line in a Pascal 
text file. The read procedure, when reading integers or readl numbers, is defined to 
return a zero value and set the end-of-file condition only if there are blanks left in 
the file. If, however, there is a number remaining in the file, the end-of-file 
condition is not set, even if it is the last number. Read never reads the blanks after 
the number, and there is always at least one blank. So the modified code outputs 
the spurious line: 

that was a 0 

This displays at the end of a session when the end-of-file is reached. The simplest 
way to correct this problem is to use the procedure readln instead of read. In 
general, unless you test the end-of-file condition both before and after calls to read 
or readln, there are inputs where the program tries to read past the end-of-file. 

More About End-of-Line 
To have a good understanding of when eoln is true, recall that in any file there is a 
special character indicating end-of-line. In effect, the Pascal system always reads 
one character ahead of the Pascal read commands. For instance, in response to 
read(ch), the system sets ch to the current input characters and gets the next input 
character. If the current input character is the last character of the line, the next 
input character from the file is the new-line character, the UTek line separator. 
When the read routine gets the new-line character, it replaces ti1at character with a 
blank. This ends every line with a blank, and sets eoln to true. Eoln is true as soon 

5G-24 



Using Pascal on UTek 

as the program reads the last character of the line, and before it reads the blank 
character corresponding to the end-of-line. So it is almost always a mistake to 
write a program that deals with input in the following way: 

read( ch); 
if eoln then 
done with line 
else 
normal processing 

It is almost certain that this program will ignore the last character in the line. The 
read(ch) belongs with the normal processing. 

Given this framework, the readln call becomes very useful. This call is defined as: 

while not eoln do 
get(input); 

get(input); 

This advances the file until the blank that corresponds to the end-of-line is the 
current input character, then discards the blank. The next character available from 
read is the first character of the next line. 

Output Buffering 
It is extremely inefficient for the Pascal system to send each character to the user's 
terminal as the program generates it for output; even less efficient if the output is 
the input of another program. To gain efficiency, the Pascal system buffers the 
output characters. That is, it saves them in memory until the buffer is full and then 
emits the entire buffer in one interaction. However, so that interactive prompting 
works, this prompt displays before the Pascal system waits for a response. Because 
of this, Pascal normally prints all the output that has been generated for a particular 
file whenever: 

• a writeln occurs 

• the program reads from the terminal 

• the procedure message or flush is called 

So in this code, the output integers do not display until the writeln occurs: 

for i: = 1 to 5 do begin 
write(i:2); 
processing 

end 
writeln 

UTek TOOLS SG-25 



Using Pascal on UTek 

By setting the b option to O before the program statement, the output is completely 
unbuffered, with a corresponding degradation in program efficiency. For example: 

(*$b*O) 

See the Options section for more information on this feature. 

Files, Reset, and Rewrite 
You can use extended forms of the built-in functions reset and rewrite to associate 
UTek file names with Pascal file variables. When a file other than input or output is 
read or written, the reading and writing must be preceded by a reset or rewrite call. 
In general, if the Pascal file variable has never been used before, no UTek filename 
is associated with it. By mentioning the file in the program statement, you can 
associate a UTek file with the same name as the Pascal variable. If you do not 
mention a file in the program statement, and use it for the first time with the reset 
or rewrite statements, a temporary file is generated. The name of the temporary file 
is #tmp.x for some number x. This temporary UTek filename is associated with the 
Pascal file. The advantage of using temporary files is that they are automatically 
removed by the Pascal system as soon as they become inaccessible. They are not 
removed if a runtime error causes termination while they are accessible. 

To associate a UTek pathname with a Pascal file variable, give that name in the 
reset or rewrite call. For example, you can associate the Pascal file data with the 
file primes in our earlier example. Enter: 

reset(data, 'primes') 

It is not necessary to mention data in the program statement, but it helps document 
the program. The second parameter to reset and rewrite can be any string value, 
including a variable. So the names of UTek files associated with Pascal file 
variables are read when the program executes. 

Argc and Argv 
Each UTek process receives a variable-length sequence of arguments. Each 
argument is a variable-length character string. The built-in function argc and the 
built-in procedure argv can be used to access and process these arguments. The 
value of the function argc is the number of arguments to the process. By 
convention, the arguments are treated as an array, and indexed from O to argc-1, 
where the zeroth argument is the name of the program being executed. The rest of 
the arguments are those passed to the command on the command line. The 
following command invokes the program in the file obj, where argc has a value of 4. 

obj /etc/motd /usr/s/words hello 

5G-26 



Using Pascal on UTek 

The zeroth element accessed by argv is obj, the first letclmotd, and so on. 

Pascal does not provide variable-size arrays, nor does it allow character strings of 
varying length. For this reason, argv is a procedure: 

argv(i,a) 

In the procedure i is an integer and a is a string variable. This procedure call 
assigns the i'th argument of the current process to the string variable a. (The i'th 
argument can be truncated or blank padded). The file manipulation routines reset 
and rewrite strip trailing blanks from their optional second arguments. So blank 
padding is not a problem in the case where the arguments are filenames. 

Now we can execute a Pascal program called kat. This program has the same 
syntax as the UTek system program cat. 

cat kat.p 

UTek TOOLS 

program kat(input, output); 
var 

ch: char; 
i: integer; 
name: packed array [1 •• 100) of char; 

begin 
i := 1; 

repeat 
if i < argc then begin 

argv(i, name); 
reset(input, name); 
i := i + 1 

end; 
while not eof do begin 

while not eoln do begin 
read(ch); 
write(ch) 

end 

end; 
readln; 
writeln 

until i ~ argc 
end { kat }. 

SG-27 



Using Pascal on UTek 

If this program is in the file kat.p, enter: 

pc kat.p 
mv a.out kat 
kat <primes 

2 3 5 7 11 13 17 19 23 29 
31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 

Given standard input, kat copies each line. 

Details on the Components of 
the System 

Options 
Pc takes a number of options. 

Except for the b option, which takes a single-digit value, each option is set on or off. 
When you enter an on/off valued option on the pc command line it inverts the 
default setting of that option. This command enables option I, since the default 
value of option I is off: 

pc -1 foo.p 

The -1 option enables the run-time tests option. 

In addition to inverting the default settings of pc options on the command line, you 
can also control the pc options within the body of the program. Use special 
comment delimiters to control the options. For example: 

{$1-} 

The right brace comment delimiter is immediately followed by the dollar sign 
character. The dollar sign signals the start of the option list, and after it enter a 
sequence of letters and option controls, separated by commas. To enable options 
enter: 

{$1+ option +} 

SG-28 



Using Pascal on UTek 

To clear the options enter: 

{option-} 

Notice that the addition sign always enables an option and the minus sign always 
disables it, not matter what the default is. So the minus sign has a different 
meaning in an option comment than on the command line. 

Options to pr 
The following options apply to the pc Pascal compiler. This section discusses each 
option, its default setting, its setting on the command line, and a sample command 
using the options. Most options have on/off values, with the b option taking a 
single-digit value. 

Buffering the File Output -b 
The b option controls the buffering of the file output. The default is line buffering, 
and the buffer is flushed at each reference to the file input. Entering b on the 
command line causes the standard output to be block buffered. For example, enter: 

pc -b filename 

The -b option can also be controlled in comments. It takes a single-digit value 
rather than an on/off setting. For example, a value of 0 causes the file output to be 
unbuffered: 

{$b0} 

Any value 2 or greater causes block buffering and is equivalent to entering the 
option on the command line. The option control comment setting b must precede 
the program statement. 

Make a Listing -I 
The -I option enables a listing of the program, and its default value is off. When 
specified on the command line, it displays a header line that identifies the version of 
the compiler. The header also gives the modification time of the file. 

Standard Pascal Only -s 
The -s option causes features of the UTek implementation that are not found in 
standard Pascal to be diagnosed as "s" warning errors. This option defaults off and 
is enabled when mentioned on the command line. Some of the features diagnosed 
include: non-standard procedures and functions, extensions to the write procedure, 
and the padding of constant strings with blanks. In addition, all letters are mapped 
to lowercase except in strings and characters, so keywords and identifiers are 
effectively ignored. This option is most useful when a program is transported to 
another system. 

UTek TOOLS 5G-29 



Using Pascal on UTek 

Runtime Tests -C 
This option generates tests to verify that subrange variable values are within bounds 
when the program executes. Enabling runtime tests also verifies assert statements. 

Suppress Warning Diagnostics -w 
The -w option, which defaults on, lets the compiler print a number of warnings 
about inconsistencies in the input program. Turn this option off with a comment: 

{$w-} 

Or you can turn it off on the command line: 

pc -w filename 

Generate Assembly Language -S 
The program compiles and the assembly language output creates a file with a .s 
suffix. For example, this command creates the file foo.s: 

pc -S foo.p 

No executable file is created. 

Symbolic Debugger Information -go 
The -g option generates information needed by sdb, the symbolic debugger. See 
section 5L for details on sdb. 

Redirect the Output File -o 
The name argument following the -o option specifies a name other than a.out for the 
output file. Its typical use is to name the compiled program using the root of the 
filename. For example, this command names the compiled program myprog: 

pc -o myprog myprog.p 

Generate Counters for a prof Execution 
Profile -p 
The compiler produces code that counts the number of times each routine is called. 
The profiling is based on a periodic sample taken by the system. This results in 
faster execution, at somewhat of a loss in accuracy. See prof(J) in your UTek 
Command Reference for a complete description. 

5G-30 



Using Pasc11l on UTek 

Run the Object Code Optimizer -0 
When you specify this option the output of the compiler is run through the object
code optimizer. This increases compile time, in exchange for a decrease in the size 
of the compiled code and a decrease in execution time. 

Pxref 
You can use the cross-reference program pxref to make cross-referenced listings 
of Pascal programs. To produce a cross-reference of the program in the file foo.p 
enter: 

pxref foo.p 

The cross-reference is, unfortunately, not block structured. See pxref(J) in your 
UTek Command Reference for details. 

Multi-file Programs 
A text inclusion facility is available in Pascal. This facility interpolates source text 
from other files into the source stream of the compiler. You can use it to divide 
large programs into more manageable pieces for ease in editing, listing, and 
maintenance. 

The include facility is based on that of the UTek C compiler. To trigger it, place the 
character# in the first portion of the line. Then, after an arbitrary number of blanks 
or tabs, enter the word include, followed by a filename enclosed in single or double 
quotes. The filename can be followed by a semicolon to treat it as a pseudo-Pascal 
statement. The filenames of included files must end in .i. This is an example of the 
use of included files in a main program: 

program compiler(input, output, obj); 
#include "globals.i" 
#include "scanner.i" 
#include "parser.i" 
#include "semantics.i" 
begin 

{main program} 
end. 

When the compiler encounters the include pseudo-statement in the input, lines 
from the included file are interpolated into the input stream. For the purposes of 
compilation and run-time diagnostics, and statement numbers in the listings and 
post-mortem backtraces, the lines in the included file are numbered from 1. You 
can nest includes up to 10 deep. 

UTek TOOLS 5G-31 



Using Pascal on UTek 

See the descriptions of the i option to pc. You can use it to control listing when 
Include files are present. 

When the compiler encounters a non-trivial line in the source text after an include 
finishes, the "popped" filename is printed, in the same manner as above. 

When you are not making a listing, you can print the "popped" filename in error 
messages. If the current filename has changed since the last filename was printed, 
the filename prints. 

Separate Compilation with pc 
A separate compilation facility is provided with the pc compiler. This facility lets you 
divide programs into a number of files. The pieces can be compiled individually, 
then linked together later. This is especially useful for large programs, where small 
changes would otherwise require time-consuming recompilation of the entire 
program. 

Normally, pc expects entire Pascal programs. However, with the -c option on the 
command line, it accepts a sequence of definitions and declarations and compiled 
them into a .o file. The .o file is linked with a Pascal program later. So that 
procedures and functions are available across separately compiles files, you must 
declare them with the directive external. This directive is similar to the directive 
forward in that it must precede the resolution of the function or procedure. You 
must specify format parameters and function result types at the external declaration 
and not at the resolution. 

Pc performs type checking across separately-compiled files. Since Pascal type 
definitions define unique types, any types that are shared between separately
compiled files must be the same definition. 

This problem is solved using a facility similar to the include facility discussed above. 
You can place definitions in files with the .h suffix, and in the files included by 
separately-compiled files. Each definition from a .h file defines a unique type, and 
all uses of a definition from the .h file define the same type. 

Similarly, the facility allows the definition of consts and the declaration of labels, 
vars and external functions and procedures. Thus procedures and functions that 
are used between separately-compiled files must be declared external. They must 
be declared external in a .h included by any file that calls or resolves the function or 
procedure. Conversely, functions and procedures declared external can only be 
declared external in .h files. These files can be included only at the outermost 
level, so they define or declare global objects. Note that since only external 
function and procedure declarations (not resolutions) are allowed in .h files, statically 
nested functions and procedures cannot be declared external. 

5G-32 



This example shows the use of included .h files in a program: 

program compiler(input, output, obj); 
#include "globals.h" 
#include "scanner.h" 
#include "parser.h" 
#include "semantics.h" 
begin 

{main program} 
end. 

Using Pascal on UTek 

In the main program this might include the definitions and declarations of all the 
global labels, consts, types vars from the file globals.h, and the external function 
and procedure declarations for each of the separately-compiled files for the 
scanner, parser, and semantics. The header file scanner.h contains declarations of 
the form: 

type 
token = record 

{ token fields } 
end; 

function scan (var inclusion: text): token; 
external; 

Then the scanner might be in a separately-compiled file containing: 

#include "globals.h" 
#include "scanner.h" 

function scan; 
begin 

{ scanner code} 
end; 

This file includes the same global definitions and declarations, and it resolves the 
scanner functions and procedures declared external in the file scanner.h. 

UTek TOOLS SG-33 



Using Pascal on UTek 

Appendix to Wirth's Pascal 
Report 
This section is an appendix to the definition of the Pascal language in Niklaus 
Wirth's Pascal Report, so this section precisely defines this UTek implementation. It 
includes a summary of extensions to the language, shows how the undefined 
specifications were resolved, gives limitations and restrictions of the current 
implementation, and lists the added functions and procedures available. 

Extensions to the Pascal Language 
This section defines non-standard language constructs available in this 
implementation of Pascal. The s option of pc detects these extensions. 

String Padding 
UTek Pascal pads constant strings with blanks in expressions and as value 
parameters, to make them as long as required. The following is a legal UTek Pascal 
program: 

program x(output); 
var z : packed array [1 .. 13] of char 
begin 

z : = 'red'; 
writeln(z) 

end; 

The padded blanks are added on the right. So the assignment above is equivalent 
to Standard Pascal: 

z: = 'red 

Octal Constants, Octal and Hexadecimal 
Write 
You can give octal constants as a sequence of octal digits, followed by the character 
'b' or 'B'. For example: 

write(a:n oct) 
write(a:n hex) 

These forms cause the internal representation of expression a, which must be 
Boolean, character, integer, pointer, or a user-defined enumerated type, to be 
written in octal or hexadecimal. 



Using Pascal on UTek 

Assert Statement 
An assert statement evaluates a Boolean expression each time the statement is 
executed. A run-time error results if any of the expressions is evaluated false. The 
assert statement is treated as a comment if run-time tests are disabled. The syntax 
for assert is: 

assert <expression> 

Enumerated Type Input/Output 
Enumerated types can be read and written. On output, the stringname associated 
with the enumerated value is output. If the value is out of range, a run-time error 
occurs. On input an identifier is read and looked up in a table of names associated 
with the type of the variable, and the appropriate internal value is assigned to the 
variable being read. If the name is not found in the table, a run-time error occurs. 

Structure Returning Functions: 
Another extension allows function to return arbitrary-size structures, rather than just 
scalars. 

Separate Compilation 
The pc compiler allows separate compilation of programs. You can compile 
procedures and functions declared at the global level. When you load the program, 
the compiler type checks calls to separately-compiled routines to ensure that the 
entire program is consistent. 

Resolution of Undefined Specifications 
Each Pascal file variable is associated with a UTek filename. Except for input and 
output files, which do not conform to some of the rules, a filename becomes 
associated with a file in three ways: 

• a global Pascal file variable in the program statement is associated with a file 
of the same name 

• a file reset or rewritten using the two-argument form of reset or rewrite is 
associated with a file of the same name 

• a file reset or rewritten without specifying a name in the second argument has 
the temporary name #tmp.x. Temporary files are automatically removed when 
their scope is exited. 

UTek TOOLS 5G-35 



Using Pascal on UTek 

The Program Statement 
The syntax of the program statement is: 

program <id> ( <file id> { , <file id> } ) ; 

The file identifiers (except input and output) must be declared as variables of file 
type in the global declaration. 

The Files Input and Output 
The formal parameters input and output are associated with the standard input and 
output. The following rules apply to these files: 

• The program heading must contains the formal parameter output. If you use 
input, explicitly or implicitly, you must also declare it there. 

• Unlike other files, input and output must not be defined in a declaration. Their 
declaration is automatically: var input, output: text. 

• You can use the reset procedure on input. If no UTek filename is associated 
with input, and no filename is given, the compiler tries to 'rewind' input. If the 
'rewind' fails, a run-time error occurs. Rewrite calls to output initially do not 
have an associated file. So this simple statement associates a temporary 
name with output: rewrite(output). 

Details for Files 
To read a file other than input, the reading must be initiated by a call to the reset 
procedure. This causes the Pascal system to try to open the associated UTek file 
for reading. If this fails, a run-time error occurs. To write to a file other than output, 
the write request must be initiated by a rewrite call. This causes the Pascal system 
to create the associated UTek file and to then open the file for writing. 

Buffering 
The value of the b option determines the buffering for output at the end of the 
program statement. If its default value is 1, output is buffered in blocks of up to 
1024 characters. The buffer is flushed whenever a writeln occurs, and at each 
reference to the file input. If the value of the b option is 0, output is unbuffered. A 
value of 2 or more gives block buffering without line or input reference flushing. All 
other output files are buffered in blocks of 1024 characters. Output buffers are 
flushed when the files are closed at scope exit, and when the procedure message is 
called. Output buffers can also be flushed using the built-in procedure flush. 

SG-36 



Using Pascal on UTek 

The Character Set 
UTek uses the seven-bit ASCII character set. ASCII recognizes the standard Pascal 
symbols and, or, not, <=, >=,<>,and - . Less portable are the synonyms for and, 
or and not: 

& and 
or 
not 

Uppercase and lowercase characters are considered distinct. Keywords and built-in 
procedure and function names are in lowercase letters. So the identifiers GOTO 
and GOto are distinct from each other and from the keyword goto. The standard 
type boolean is available as Boolean. 

The single quote or the pound sign (#) delimits character strings and constants. The 
pound sign character has no special meaning when it is the first character on a line. 

The Standard Types 
The standard type integer is defined as: 

type integer = minint .. maxint; 

Integer is implemented with 32-bit twos-complement arithmetic. Pre-defined 
constants of type integer are: 

const maxint = 2147483647; minint = -21747483648; 

The standard type char is defined as: 

type char = minchar .. maxchar; 

Built-in character constants are minchar and maxchar, bell and tab, ord(minchar) = 
0, and ord(maxchar) = 127. 

The type real is implemented using 64-bit floating point arithmetic. The floating 
point arithmetic is done in rounded mode, and provides approximately 16 digits of 
precision with numbers as small as 1 O to the negative 308th power, and as large as 
1 O to the 308th power. 

Comments 
You can delimit comments by right and left braces or by(* and *). If a left brace 
appears in a comment delimited by a right and left brace, a warning message 
displays. A similar warning prints if the sequence (* appears in a comment 
delimited by (* and *). 

UTek TOOLS 5G-37 



Using Pascal on UTek 

Option Control 
You can control compiler options in two separate ways. You can enter many of the 
options on the command line when you invoke pc. Enter these options as one or 
more letters preceded by -. This is the most common way to change options from 
their default setting in UTek. 

If you want more control over portions of the program where options are required, 
place the option in comments. For example, to specify the I and s options enter the 
following as the first line of the program: 

{$1 + ,s + listing on, standard Pascal} 

This example consists of the dollar sign character as the first character of the 
comment, and a comma-separated list of directives. Directives consist of a letter 
designating the option, followed by an addition sign to turn the option on, or a 
subtraction sign to turn the option off. 

Notes on the Listings: 
The first page of a listing includes a banner line indicating the version and date of 
generation of pc. It also includes the UTek pathname of the source file and its date 
of last modification. 

In the body of the listing, lines are numbered consecutively, and they correspond to 
the line numbers of the editor. There are ~wo characters you can use to format the 
listing: <.CTRL-L> and a blank. Both should be placed on a line by themselves. 
<CTRL-L> causes a page eject in the listing, and the blank line causes the line 
number to be suppressed in the listing. These correspond to the eject and space 
macros found in many assemblers. Non-printing characters print as a question 
mark in the listing. 

The Standard Procedure Write 
If no minimum field-length parameter is specified for a write, the following default 
values are assumed: 

SG-38 

integer 
real 
Boolean 
char 
string 
oct 
hex 

10 
22 
length of true or false 
1 

length of the string 
11 
8 



Using Pascal on UTek 

Specifically indicate the end of each line in a text file by writeln(f), where 
writeln(output) can be written as writeln. For UTek, the built-in function page(f) 
puts a single ASCII form-feed character on the output file. 

Restrictions and Limitations 

Files 
Files cannot be members of files or members of dynamically-allocated structures. 

Arrays, Sets, and Strings 
The calculations involving array subscripts and set elements are done with 16-bit 
arithmetic. This restricts the types over which arrays and sets can be defined. The 
lower bound of such a range must be greater than or equal to -32768, and the 
upper bound less than 32768. In particular, strings can have any length from 1 to 
65535 characters, and sets can contain no more than 65535 elements. 

Line and Symbol Length 
There is no intrinsic limit on the length of identifiers. Identifiers are considered 
distinct if they differ in any single position over their entire length. The maximum 
input line length is over 160 characters. 

Procedure and Function Nesting, Program 
Size 
You can nest procedures and functions up to 20 levels. There is not a fundamental, 
compiler-defined limit on the size of the program that you can compile. 

There is no limit on the number of variables, and a definite limit of 65535 bytes per 
variable. 

Overflow 
The hardware of your workstation performs overflow checking. 

UTek TOOLS 5G-39 



Using Pascal on UTek 

Added Types, Operators, 
Procedures, and Functions 

Additional Predefined Types 
The type alfa is predefined as: 

type alfa = packed array [1 .. 10] of char 

The type intset is predefined as: 

type intset = set of O .. 127 

In most cases the context of an expression involving a constant set lets the compiler 
determine the type of the set, even though the constant set itself may not uniquely 
determine this type. In the cases where you cannot determine the type of the set 
from context, the expression type defaults to a set over the entire base type unless 
the base type is integer. In the latter case, the type defaults to the current binding 
of intset. lntset must be "type set of integer" at that point, where a "set of 
integer" means "a subrange of integer." 

Additional Predefined Operators 
The greater than and less than signs of proper set illustrates are available. With 
sets a and b note that: 

(not (a < b)) <>(a >= b) 

Non-standard Procedures 
argv(i,a) 

date( a) 

flush(f) 

halt 

linelimit(f ,x) 

SG-40 

where i is an integer and a is a string variable. This assigns the 
(possibly truncated or blank- padded) i'th argument to the 
invocation of the current UTek process to the variable a. The 
range of valid i is O to argc-1. 

assigns the current date to the alfa variable a in the format dd 
mmm yy, where mmm is the first three characters of the month. 

writes the output buffered for Pascal file f into the associated 
UTek file. 

terminates the execution of the program with a control flow 
backtrace. 

with fa text file and x an integer expression, causes the program 
to terminate abnormally if more than x lines are written on file f. 
If xis less than O then no limit is imposed. 



message(x, .. ) 

remove 

reset(f,a) 

rewrite(f ,a) 

stlimit(i) 

time( a) 

Using Pascal on UTek 

causes the parameters to be written unbuffered on the diagnostic 
unit 2, usually the user's terminal. 

where a is a string, this removes the UTek file whose name is a 

associates the file a with f, in addition to the normal function of 
reset. 

analogous to reset above. 

where i is an integer, the statement limit is i statements. 
Specifying the -p option to pc disables this limit. 

the current time, in the format hh:mm:ss is assigned to the alfa 
variable a. 

Non-standard Functions 

argc 

card(x) 

clock 

expo(x) 

random(x) 

seed(i) 

sysclock 

undefined{x) 

wallclock 

returns the count of arguments when the Pascal program was 
invoked. 

returns the number of elements (cardinality) in the set x. 

returns the number of milliseconds the CPU used by this 
process. 

yields the integer-valued exponent of the floating point
representation of x. 

in this case x is a real parameter that is evaluated, but otherwise 
ignored. This function invokes a linear congruential random 
number generator. Successive seeds are generated as (seed*a 
+ c)mod m. The new random number is a normalization of the 
seed to the range 0.0 to 1.0; a is 62605, c is 113218009, and m 
is 53670912. The initial seed is 7774755. 

sets the random number generator seed to i and returns the 
previous seed. 

returns the number of CPU milliseconds used by this process. 

a Boolean function whose argument is a real number and always 
returns false. 

returns the time in seconds since 00:00:00 Greenwich Mean 
Time on January 1, 1970. 

Features Not Available in UTek Pascal 
The following features are not available with UTek Pascal: 

• segmented files, and associated functions and procedures 

• the function trunc with two arguments 

• arrays whose indexes exceed the capacity of 16 bit arithmetic 

UTekTOOLS 5G-41 





Lexical Analyzer 
Generator (lex) 

Introduction 

5H 

Lex is a program generator that produces a program in a general purpose language 
that recognizes regular expressions. It is designed for lexical processing of 
character input streams. It accepts a high-level, problem-oriented specification for 
character string matching. The regular expressions are specified by you (the user) 
in the source specifications given to lex. The lex program generator source is a 
table of regular expressions and corresponding program fragments. The table is 
translated to a program that reads an input stream, copies the input stream to an 
output stream, and partitions the input into strings that match the given expressions. 
As each such string is recognized, the corresponding program fragment is executed. 
The recognition of the expressions is performed by a procedure generated by lex. 
The program fragments written by you are executed in the order in which the 
corresponding regular expressions occur in the input stream. 

You supply the additional code beyond the expression matching needed to complete 
the tasks, possibly including codes written by other generators. The program that 
recognizes the expressions is generated in the general purpose programming 
language employed for your program fragments. Thus, a high-level expression 
language is provided to write the string expressions to be matched, while your 
freedom to write actions is unimpaired. 

The lex written code is not a complete language, but rather a generator representing 
a new language feature that can be added to different programming languages, 
called host languages. Just as general purpose languages can produce code to run 
on different computer hardware, lex can write code in different host languages. The 
host language is used for the output code generated by lex and also for the program 
fragments added by you. Compatible run-time libraries for the different host 
languages are also provided. This makes lex adaptable to different environments 
and different users. Each application may be directed to the combination of 
hardware and host language appropriate to the task, your background, and the 
properties of local implementations. At present, the only supported host language is 
the C language, although FORTRAN (in the form of Ratfor) has been available in the 
past. The lex generator exists on the UTek operating system, but the codes 
generated by lex may be taken anywhere the appropriate compilers exist. 
appropriate compilers exist. 

The lex program generator turns your expressions and actions (called source) into 
the host general purpose language; the generated program is named yylex. The 
yylex program recognizes expressions in a stream (called input) and performs the 
specified actions for each expression as it is detected. See Figure SH-1. 

UTekTOOLS SH-1 



Lexical Analyzer Generator (lex) 

SOURCE ----i~~1 .. --L-ex __ :----~~ yylex 

INPUT ----;~.-.1 .. --yy-le_x __ ..... --.. ~~ OUTPUT 

5486·01 

Figure 5H-1 • Overview of Lex. 

For example, consider a program to delete from the input all spaces or tabs at the 
ends of lines: 

%% 
[ \[)+$ 

This input is all that is required. The program contains a %% delimiter to mark the 
beginning of the rules. Each rule is on a line. This rule contains a regular 
expression that matches one or more instances of the space or tab characters 
(written for visibility, in accordance with the C language convention) and occurs prior 
to the end of a line. The brackets indicate the character class made of space and 
tab; the + indicates "one or more ... "; and the $ indicates "end of line." No action 
is specified, so the yylex program generated by lex ignores these characters. 
Everything else is copied. To change any remaining string of spaces or tabs to a 
single space, add another rule. 

%% 
[ \{]+$ 

[ \t]+ 
j 

printf(,, "); 

the coded instructions (generated for this source) scan for both rules at once, 
observe (at the termination of the string of spaces or tabs) whether or not there is a 
newline character, and then executes the desired rule action. The first rule matches 
all strings of spaces or tabs at the end of lines, and the second rule matches all 
remaining strings of spaces or tabs. 

5H-2 



Lexical Analyzer Generator (lex) 

The lex program generator can be used alone for simple transformations or for 
analysis and statistics gathering on a lexical level. The lex generator can also be 
used with a parser generator to perform the lexical analysis phase; lex and yacc are 
particularly compatible. The lex program recognizes only regular expressions; yacc 
writes parsers that accept a large class of context-free grammars but requires a 
low-level analyzer to recognize input tokens. When used as a preprocessor for a 
later parser generator, lex is used to partition the input stream; and the parser 
generator assigns structure to the resulting pieces. The flow of control in such a 
scan is shown in Figure 5H-2. Additional programs, written by other generators or 
by hand, can be added easily to programs written by lex. The name yylex is what 
yacc expects its lexical analyzer to be named, so that the use of this name by lex 
simplifies interfacing. 

INPUT 

LEXICAL 
RULES 

Lex 

yylex 

GRAMMAR 
RULES 

Yacc 

yyparse 

Figure SH-2. Lex with Yacc. 

PARSED INPUT 

5486-02 

The program written by lex, your fragments (representing the actions to be 
performed as each regular expression is found) are gathered as cases of a switch. 
The program interpreter directs the control flow. Opportunity is provided for you to 
insert either declarations or additional statements in the routine containing the 
actions or to add subroutines outside this action routine. 

The lex program generator is not limited to a source that can be interpreted on the 
basis of one character look-ahead. For example, if there are two rules, one looking 
for ab and another for abcdefg, and the input stream is abcdefh, lex recognizes ab 
and leaves the input pointer just before cdefh. Such backup is more costly than the 
processing of simpler languages. 

UTek TOOLS 5H-3 



Lexical Analyzer Generator (lex) 

Lex Source 
The general format of lex source is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines are often omitted. The first%% is 
required to mark the beginning of the rules, but the second %% is optional. The 
minimum lex program is: 

%% 

(no definitions, no rules), which translates into a program that copies the input to the 
output unchanged. 

In the outline of lex programs shown above, the rules represent your control 
decisions. They are in a table containing: 

• A left column with regular expressions 

• A right column with actions and program fragments to be executed when the 
expressions are recognized. 

Thus, an individual rule might be: 

integer printf(11found keyword INT " ); 

to look for the string integer in the input stream and print the message found 
keyword INT whenever it appears. In this example, the host procedural language is 
C, and the C language library function printf is used to print the string. The end of 
the expression is indicated by the first blank or tab character. If the action is merely 
a single C language expression, it can just be given on the right side of the line; if it 
is compound or takes more than a line, it shquld be enclosed in braces { } . 

For example, suppose you want to change a number of words from British to 
American spelling. The lex rules, such as: 

colour 
mechanize 
petrol 

printf( 11color'' ); 
printf(11mechanize" ); 

printf("gas" ); 

would be a start. These rules are not sufficient since the word petroleum would 
become gaseum. 

5H-4 



Lexical Analyzer Generator (lex) 

Lex Regular Expressions 
A regular expression specifies a set of strings to be matched. It contains text 
characters (which match the corresponding characters in the strings being 
compared) and operator characters (which specify repetitions, choices, and other 
features). The letters of the alphabet and the digits are always text characters; the 
regular expression 

integer 

matches the string integer wherever it appears, and the expression 

a57D 

looks for the string a57D. 

Operators 
The operator characters are 

",c1--?.*+ :os1{J %<> 

and, if they are to be used as text characters, they should be indicated by quotation 
marks (" "). These marks indicate that whatever is contained between a pair of 
them is to be taken as text characters. Thus: 

XYZ"++" 

matched the string xyz + + when it appears. Note that a part of a string may be 
quoted. It is harmless, but unnecessary, to quote an ordinary text character; the 
expression 

"XYZ++" 

is equivalent to the previous one. Thus, by quoting every nonalphanumeric 
character being used as a text character, you can avoid remembering the list of 
current operator characters. 

An operator character may also be turned into a text character by preceding it with a 
backslash (\), as in: 

xyz\+\+ 

which is another, less readable, equivalent of the previous expressions. Another use 
of quotation marks is to get a space into an expression; normally, as explained 
above, spaces or tabs end a rule. Any space character not contained within [] (see 
below) must be quoted. Several normal C language escapes with\ are recognized: 
\n is newline, \t is tab, and \b is backspace. To enter \ itself, use \ \. Since 
newline is illegal in an expression, \n must be used; it is not required to use a 
backslash before a tab or backspace. Every character except space, tab, newline, 
and any of the operator characters is always a text character. 

UTek TOOLS SH-5 



Lexical Analyzer Generator (lex) 

Character Classes 
Classes of characters can be specified using the paired square brackets [ ]. The 
construction [abc] matches a single character which may be a, b, or c. Withing 
square brackets, most operator meanings are ignored. Only three characters are 
special; these are \ , - , and - . The - character indicates ranges. For example: 

[a-z0-9<>_ 1 
indicates the character class containing all the lowercase letters, the digits, the 
angle brackets, and underline. Ranges can be given in either order. Using -
between any pair of characters that are not both uppercase letters, both lowercase 
letters, or both digits is implementation-dependent and gets a warning message (for 
example, [O-z] in ASCII is many more characters than is in EBCDIC). If you want in 
include the character - in a character class, it should be first or last; thus: 

[-+0-9] 

matches all digits and the two signs. 

In character classes, the caret operator C) must appear as the first character after 
the left bracket to indicate that the resulting string is complemented with respect to 
the computer character set. Thus: 

rabc] 

matches all characters except a, b, or c, including all special or control characters; 
or: 

ra-zA-Z] 

is any character that is not a letter. The\ character provides the usual escapes (as 
it did in the previous examples with \) within character class brackets. 

Arbitrary Characters 
To match almost any character, the dot or period operator character(.) is used for 
all characters except newline. Escaping into octal is possible although nonportable. 

The following example matches all printable ASCII characters from octal 40 (space) 
to octal 176 (tilde): 

[\40-\176] 

SH-6 



Lexical Analyzer Generator (lex) 

Optional Expressions 
The operator ? precedes an optional element of an expression. Thus: 

ab?c 

matches either ac or abc. 

Repeated Expressions 
Repetitions of classes are indicated by the operators * and+. For example: 

a* 

is any number of consecutive a character, including none. At the same time, 

a+ 

is one or more instances of a. For example: 

[a-z]+ 

is all strings of lowercase letters. And 

[A-Za-zJ[A-Za-z0-9] * 

indicates all alphanumeric strings with a leading alphabetic character. This is a 
typical expression for recognizing identifiers in computer languages. 

Alternations and Grouping 
The operator l indicates alternation. The following example matches either ab or 
cd: 

(ab led) 

Note that parentheses are used for grouping, although they are not necessary on the 
outside level. 

This next example says and works like the previous expression: 

ab led 

Parentheses should be used for more complex expressions: 

(ab lcd+)?(efr 

This matches such strings as abefef, efefef, cedf, or cddd; it does not match abc, 
abed, or abcdef. 

UTek TOOLS SH-7 



Lexical Analyzer Generator (lex) 

Context Sensitivity 
The lex program recognizes a small amount of surrounding context. The two 
simplest operators for this are - and $. If the first character of an expression is - , 
the expression is only matched at the beginning of a line (after a newline character 
or at the beginning of the input stream). This never conflicts with the other meaning 
of - (complementation of character classes), since that only applies within the [ ] 
operators. If the very last character is $, the expression is only matched at the end 
of a line (when immediately followed by newline). The latter operator is a special 
case of the I operator character that indicates trailing context. The expression: 

ab/cd 

matches the string ab but only if followed by ed. Thus: 

ab$ 

is the same as: 

ab/ \n 

Left context is handled in lex by start conditions, as explained later. If a rule is only 
to be executed when the lex procedure is in start condition x, the rule should be 
prefixed by: 

using the angle bracket operator characters. If we considered "being at the 
beginning of a line" to be start condition ONE, then the operator would be 
equivalent to: 

<ONE> 

Start conditions are explained more fully later. 

Repetitions and Definitions 
The operators { } specify either repetitions (if they enclose numbers) or definition 
expansion (if they enclose a name). For example: 

{digit} 

looks for a predefined string named digit and inserts it at that point in the 
expression. The definitions are given in the first part of the lex input before the 
rules. In contrast: 

a{ 1,5} 

looks for 1 to 5 occurrences of a. 

Finally, initial % is used only as the separator for lex source segments. 

5H-8 



Lex/ca/ Analyzer Generato' (lex) 

Lex Actions 
When an expression is matched, lex executes the corresponding action. This 
section describes some features of lex that aid in writing actions. Note that there is 
a default action that consists of copying the input to the output. This is performed 
on all strings not otherwise matched. Thus, the lex user who wishes to absorb the 
entire input, without producing any output, must provide rules to match everything. 
When lex is being used with yacc, this is the normal situation. You may consider 
that actions are what is done instead of copying the input to the output; thus, in 
general, a rule that merely copies can be omitted. Also, a character combination 
that is omitted from the rules and that appears as input is likely to be printed on the 
output, thus calling attention to the gap in the rules. 

One of the simplest things that can be done is to ignore the input. Specifying a C 
language null statement using the semicolon (;) as an action causes this result. A 
frequent rule is: 

[\t\n] 

which causes the three spacing characters (space, tab, and newline) to be ignored. 

Another easy way to avoid writing actions is the action character ( : ), the pipe, 
which indicates that the action for this rule is the action for the next rule. The 
previous example could also have been written: 

11 11 I 
I 

"\t" : 

"\n"; 

with the same result. The quotation marks around \n and \tare not required. 

In more complex actions, you may often want to know the actual text that matched 
an expression such as [a-z]+. The lex program leaves this text in an external 
character array. Thus, to print the name found, a rule like: 

[a-z]+ printf(" %s", yytext); 

prints the string in yytextl ]. The C language function printf accepts a format 
argument and data to be printed; in this case, the format is "print string"(% 
indicating data conversion, ands indicating string type), and the data are the 
characters in yytext{ ]. This places the matched string on the output. This action is 
so common that it is abbreviated as ECHO. It is the same as the preceding example: 

[a-z]+ ECHO; 

UTek TOOLS 5H-9 



Lexical Analyzer Generator (lex) 

Since the default action is just to print the characters found, you might ask why give 
a rule like this one, which merely specifies the default action. Such rules are often 
required to avoid matching some other rule that is not desired. For example, if there 
is a rule that matches read, it normally matches the instances of read contained in 
break or readjust. To avoid this, a rule of the form [a-z]+ is needed. This is 
explained later. 

Sometimes it is more convenient to know the end of what has been found; hence, 
lex also provides a count yyleng of the number of characters matched. To count 
both the number of words and the number of characters in words in the input, write: 

[a-zA-Z]+ {words++;chars +=yyleng;} 

which accumulates in chars the number of characters in the words recognized. The 
last character in the string matched can be accessed by: 

yytext[yyleng-1 J 

Occasionally, a lex action may decide that a rule has not recognized the correct 
span of characters. Two routines are provided to aid with this situation. First, 
yymore( ... ) can be called to indicate that the next input expression recognized is 
to be tacked onto the end of this input. Normally, the next input string would 
overwrite the current entry in yytext. Second, yyless (n) can be called to indicate 
that not all the characters matched by the currently successful expression are 
wanted right now. The argument n indicates the number of characters in yytext to 
be retained. Further characters previously matched are returned to the input. This 
provides the same sort of look-ahead offered by the I operator but in a different 
form. 

Example 
Consider a language that defines a string as a set of characters between quotation 
marks(" ") and provides, that to include a " in a string, it must be preceded by a\. 
The regular expression match is somewhat confusing, so that it might be preferable 
to write: 

\"[-"]* { 
if(yytext[yyleng-1] '\\') 

yymore( ); 
else 

... normal user processing 
} 

Lex, when faced with a string such as "abc\def', first matches the five characters 
"abc\; then the call to yymore ( ) causes the next part of the string "def to be 
tacked on the end. Note that the final quote terminating the string should be picked 
up in the code labeled normal processing. 

SH-10 



Lexical Analyzer Gene'8tor (lex) 

The function yyless might be used to reprocess text in various circumstances. 
Consider the C language problem of distinguishing the ambiguity of =-a (note that 
there is a space after the a). Suppose you want to treat this as =-a (without the 
space after the a), but also to print a message. A rule might be: 

I 

=-[a-zA-Z] 
printf("Operator (=-) ambiguous\n"); 
yyless(yyleng-1); 
.•• action for=- ••• 

which prints a message, returns the letter after the operator to the input stream, and 
treats the operator as =- . (Note the space after the minus sign.) Alternatively, it 
might be desired to treat this as =-a (with a space after the a). To do this, just 
return the minus sign as well as the letter to the input. 

The following example performs the other interpretation: 

=-[a-zA-Z] 
printf("Operator (=-) ambiguous\n"); 
yyless(yyleng-2); 
.•. action for= .•• 

The expressions tor the two cases might more easily be written: 

=-/[A-Za-z] 

in the first case, and 

=/-[A-Za-z] 

in the second; no backup is required in the rule action. It is not necessary to 
recognize the whole identifier to observe the ambiguity. The possibility of =-3, 
however.makes the following a still better rule: 

=-Jr \t\n] 

In addition to these routines, lex also permits access to the 1/0 routines it uses. 
They are as follows: 

1. input( ) returns the next input character. 

2. output (c) writes the character c on the output. 

3. unput (c) pushes the character c back onto the input stream to be read later by 
input(). 

UTek TOOLS SH-11 



Lexical Analyzer Generator (lex) 

By default, these routines are provided as macro definitions, but you can override 
them and supply private versions. These routines define the relationship between 
external files and internal characters and must all be retained or modified 
consistently. They can be redefined to cause input or output to be transmitted to or 
from strange places including other programs or internal memory. The character set 
used must be consistent in all routines and a value of O returned by input must 
mean end of file. The relationship between unput and Input must be retained or the 
lex look-ahead does not work. The lex program does not look ahead at all if it does 
not have to, but every rule ending in +, *, ? , or $ or containing I implies look-ahead. 
Look-ahead is also necessary to match an expression that is a prefix of another 
expression. The standard lex library imposes a 100-character limit on backup. 

Another lex library routine that you may sometimes want to redefine is yywrap, 
which is called whenever lex reaches an end of file. If yywrap returns a 1, lex 
continues with the normal wrap-up on end of input. Sometimes, however, it is 
convenient to arrange for more input to arrive from a new source. In this case, you 
should provide a yywrap that arranges for new input and returns O. This instructs 
lex to continue processing. The default yywrap always returns 1. 

This routine is also a convenient place to print tables, summaries, and so on, at the 
end of a program. Note that it is not possible to write a normal rule that recognizes 
end of file; the only access to this condition is through yywrap. In fact, unless a 
private version of input is supplied, a file containing nulls cannot be handled since a 
value of O returned by input is taken to be end of file. 

Ambiguous Source Rules 
The lex program can handle ambiguous specifications. When more than one 
expression can match the current input, lex chooses as follows: 

1. The longest match is preferred. 

2. Among rules that matched the same number of characters, the rule given first 
is preferred. 

Thus, suppose the rules: 

integer keyword action ... ; 
[a-z]+ identifier action ... ; 

are to be given in that order. If the input is integers, it is taken as an identifier 
because: 

11[a-zl+" 

matches eight characters while integer matches only seven. If the input is integer, 
both rules match seven characters; and the keyword rule is selected because it was 
given first. Anything shorter (such as int) does not match the expression integer 
and so the identifier interpretation is used. 

5H-12 



Lexical Analyzer Generator (lex) 

The principle of preferring the longest match makes rules containing expressions 
like . * dangerous. For example: 

might appear to be a good way of recognizing a string in single quotation marks. 
However, it is an invitation for the program to read far ahead looking for a distant 
single quote. Presented with the input: 

'first'quoted string here,'second'here 

the above expression matches the following: 

'first' quoted string here, 'second' 

This is probably not what was wanted. A better rule is of the form: 

·r·\nl*' 
which, on the above input, stops after 'first'. The consequences of errors like this 
are reduced because the dot(.) operator does not match newline. Thus, 
expressions like . * stop on the current line. 

NOTE 
Do not try to defeat this with expressions like [. \n]+ or 

equivalents; the lex generated program tries to read the 
entire input file causing internal buffer overflows. 

Also note that lex normally is partitioning the input stream, not searching for all 
possible matches of each expression. This means that each character is accounted 
for once and·only once. For example, suppose it is desired to count occurrences of 
both she and he in an input text. Some lex rules to do this might be: 

she s++; 
he h++; 
\n 

where the last two rules ignore everything besides he and she. Remember that dot 
(.)does not include newline. Since she includes he, lex normally does not 
recognize the instances of he included in she since once it has passed a she, those 
characters are gone. 

Sometimes you might want to override this choice. The action REJECT means "go 
do the next alternative". It causes whatever rule was second choice after the current 
rule to be executed. The position of the input pointer is adjusted accordingly. 
Suppose you really want to count the included instances of he. Use the following 
rules to change the previous example to accomplish the task. 

she {s++;REJECT;} 
he {h++;REJECT;} 
\n 

UTek TOOLS SH-13 



Lexical Analyzer Generator (lex) 

After counting each expression, it is rejected; whenever appropriate, the other 
expression is then counted. In this example, you could note that she includes he 
but not vice versa and omit the REJECT action on he. In other cases, it is not 
possible to state which _input characters are in both classes. 

Consider these two rules: 

a[bc]+ 
a[cd]+ 

{ ... ;REJECT;} 
{ ... ;REJECT;} 

If the input is ab, only the first rule matches, and on ad only the second matches. 
The input string aced matches the first rule for four characters and then the second 
rule for three characters. In contrast, the input aced agrees with the second rule for 
four characters and then the first rule for three. 

In general, REJECT is useful whenever the purpose of lex is not to partition the 
input stream but to detect all examples of some items in the input, and the instances 
of these items may overlap or include each other. Suppose a digram table of the 
input is desired; normally, the digrams overlap, that is, the word the is considered to 
contain both th and he. Assuming a two-dimensional array named digramD to be 
incremented, the appropriate source is: 

%% 
[a-zl[a-zl 

\n 

{digram[yytext[O]][yytext[1 ]]++;REJECT;} 

where the REJECT is necessary to pick up a letter pair beginning at every character 
rather than at every other character. 

The action REJECT does not rescan the input; instead it remembers the results of 
the previous scan. This means that if a rule with trailing context is found and 
REJECT executed, you must not have used unput to change the characters 
forthcoming from the input stream. This is the only restriction on your ability to 
manipulate the not-yet-processed input. 

Lex Source Definitions 
Let's review the format of the lex source: 

{definitions} 
%% 
{rules} 
%% 
{user routines} 

So far, only the rules have been described. You need additional options to define 
variables for use in the program and for use by lex. 

5H-14 



Lexical Analyzer Generator (lex) 

Remember, lex is generating the rules into a program. Any source not intercepted 
by lex is copied into the generated program. There are three classes of such 
things: 

1. Any line not part of a lex rule or action that begins with a space or tab is copied 
into the lex-generated program. Such source input prior to the first%% 
delimiter is external to any function in the code; if it appears immediately after 
the first %%, it appears in an appropriate place for declarations in the function 
written by lex that contains the actions. This material must look like program 
fragments and should precede the first lex rule. 

Lines that begin with a space or tab and that contain a comment are passed 
through to the generated program. This can be used to include comments in 
either the lex source or the generated code; the comments should follow the host 
language convention. 

2. Anything included between lines containing only%{ and%} is copied out as 
described previously. The delimiters are discarded. This format permits entering 
text-like preprocessor statements that must begin in column one or copying lines 
that do not look like programs. 

3. Anything after the third%% delimiter, regardless of formats or whatever, is 
copied out after the lex output. 

Definitions intended for lex are given before the first%% delimiter. Any line in this 
section not contained between%{ and%} and beginning in column one is assumed 
to define lex substitution strings. The format of such lines is: 

name translation 

and it causes the string given as a translation to be associated with the name. The 
name and translation must be separated by at least one space or tab, and the name 
must begin with a letter. The translation can then be called out by the {name} 
syntax in a rule. Using {D} for the digits and {E} for an exponent field, for example, 
you can abbreviate rules to recognize numbers: 

D 

E 

%% 

[0-9] 
[DEde][-+]?{D}+ 

{D}+ printf("integer"); 
{D}+', ."{D}*({E})? 
{D}*''."{D}+({E})? 
{D}+{E} printf("real"); 

Note the first two rules for real numbers; both require a decimal point and contain 
an optional exponent field. The first requires at least one digit before the decimal 
point, and the second requires at least one digit after the decimal point. To correctly 
handle the problem posed by a FORTRAN expression such as 35.EQ.1, which does 
not contain a real number, a context-sensitive rule could be used in addition to the 
normal rule for integers. For example: 

[0-9]+/". 11EQ printf("integer' '); 

UTek TOOLS 5H-15 



Lexical Analyzer Generator (lex) 

The definitions section may also contain other commands including the selection of 
a host language, a character set table, a list of start conditions, or adjustments to 
the default size of arrays within lex itself for larger source programs. These 
possibilities are discussed later. 

Usage 
There are two steps in compiling a lex source program. First, the lex source must 
be turned into a generated program in the host general purpose language. Then 
this program must be compiled and loaded, usually with a library of lex subroutines. 
The generated program is in a file named lex.yy.c. The 1/0 library is defined in 
terms of the C language standard library. 

On the UTek operating system, the library is accessed by the loader flag -11. So an 
appropriate set of commends is: 

lex source 
cc lex.yy.c -11 

The resulting program is placed on the usual file a.out for later execution. To use 
lex with yacc, see the next topic, Lex and Yacc. Although the default lex 1/0 
routines use the C language standard library, the lex automatons themselves do not 
do so. If private versions on input, output, and unput are given, the library is 
avoided. 

Using Lex with Yacc 
To use lex with yacc, observe that lex writes a program named yylex (the name 
required by yacc for its analyzer). Normally, the default main program on the lex 
library calls this routine; but if yacc is loaded and its main program is used, yacc 
calls yylex. In this case, each lex rule ends with: 

return(token); 

where the appropriate token value is returned. An easy way to get access to yacc's 
names for tokens is to compile the lex output file as part of the yacc output file by 
placing the line: 

# include 11 lex.yy.c11 

in the last section of yacc input. If the grammar is to be named good and the 
lexical rules are to be named better, the UTek software command sequence could 
be: 

yacc good 
lex better 
cc y.tab.c -ly -11 

The yacc library (-ly) should be loaded before the lex library to obtain a main 
program that invokes the yacc parser. The generations of lex and yacc programs 
can be done in either order. 

SH-16 



Lex/ca/ Analyzer Generator (lex) 

Examples 
As a problem, consider copying an input file while adding 3 to every positive number 
divisible by 7. A suitable lex source program follows: 

"" int k; 
[0-9]+ { 

k=atoi(yytext); 
if(k%7==0) 

printf("%d" ,k+J); 
else 

printf("%d" ,k); 

The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary and 
stores the result ink. The operator% (remainder) is used to check whether k is 
divisible by 7; if it is, k is incremented by 3 as it is written out. You might object that 
this program alters such input items as 49.63 or X7. Furthermore, it increments the 
absolute value of all negative numbers divisible by 7. To avoid this, add a few more 
rules after the active one, as here: 

"" int k; 

-:?[0-9]+ { 
k=atoi(yytext); 
printf("%d,, ,k%7==0 ? k+J:k); 
} 

-?[0-9.]+ ECHO; 
[A-Za-z][A-Za-z0-9]+ ECHO; 

Numerical strings containing a dot(.) or preceded by a letter are picked up by one 
of the last two rules. and not changed. The if-else has been replaced by a C 
language conditional expression to save space; the form a?b:c means if a then b 
else c. For an example of statistics gathering, here is a program that determines the 
lengths of words, where a word is defined as a string of letters: 

"" [a-z]+ 

\n 
%% 
yywrap( 
{ 
int i; 

int lengs[lOO]; 

lengs[yyleng]++; 

printf ("Length No. words \n,, ) ; 
for(i=O;i<l.OO;i++) 

if(lengs[i]>O) 
printf("%5d%10d\n'' ,i,lengs[i]); 

return(!); 
} 

UTek TOOLS SH-17 



Lexical Analyzer Generator (lex) 

This program accumulates the data while producing no output. At the end of the 
input, it prints the table. The final statement return(1 ); indicates that lex performs 
wrap-up. If yywrap returns zero (false), it implies that further input is available and 
the program is to continue reading and processing. Providing a yywrap (that never 
returns true (1)) causes an infinite loop. 

Left Context Sensitivity 
Sometimes you want to have several sets of lexical rules to be applied at different 
times in the input. For example, a compiler preprocessor might distinguish 
preprocessor statements and analyze them differently from ordinary statements. 
This requires sensitivity to prior context, and there are several ways of handling 
such problems. The - (caret) operator, for example, is a prior-context operator 
recognizing the immediately preceding left context, just as $ recognizes 
immediately-following right context. Adjacent left context could be extended to 
produce a facility similar to that for adjacent right context, but it is unlikely to be as 
useful since often the relevant left context appeared some time earlier, such as at 
the beginning of a line. 

This part describes three means of dealing with different environments: 

• a simple use of flags (when only a few rules change from one environment to 
another) 

• the use of start conditions on rules 

• the possibility of making multiple lexical analyzers all run together 

In each case, there are rules that recognize the need to change the env.ironment in 
which the following input text is analyzed and tha,t set a parameter to reflect the 
change. This may be a flag explicitly tested by your action code; this is the simplest 
way of dealing with the problem since lex is not involved a,t all. It may be more 
convenient, however, to have lex remember the flags as initial conditions on the 
rules. Any rule may be associated with a start condition. The rule is only 
recognized when lex is in that start condition. The current start condition can be 
changed at any time. Finally, if the sets of rules for the different environments are 
very dissimilar, write several distinct lexical analyzers and switch from one to 
another as desired. 

5H-18 



Lexical Analyzer Gen&l'lltor (lex) 

Consider the following problem: the input to the output, changing the word magic to 
first on every line that began with the letter a, changing magic to second on every 
line that began with the letter b, and changing magic to third on every line which 
began with the letter c. All other words and all other lines are left unchanged. 

These rules are so simple that the easiest way to do the job is with a flag. For 
example: 

int flag. 
%% 

a {flag='a';ECHO;} 
b {flag='b' ;ECHO;} 
c {flag='c';ECHO;} 

\n {flag= O;ECHO;} 
magic { 

switch (flag) 
{ 
case 'a':printf(''rirst'');break; 
case 'b · :printf("second' ');break; 
case · c · :printf("third ··);break; 
default:ECHO;break; 
} 

To handle the same problem with start conditions, each start condition must be 
introduced to lex in the definition section with a line reading: 

%Start name/ name2 

where the conditions can be named in any order. The word Start can be 
abbreviated to s or S. The conditions can be referenced at the head of a rule with 
<angle brackets>: 

<name I >expression 

is a rule that is only recognized when lex is in the start condition namel. To enter a 
start condition, execute the action statement: 

BEGIN namel; 

which changes the start condition to name]. 

To resume the normal state: 

BEGIN O; 

resets the initial condition of the lex interpreter. A rule can be active in several start 
conditions. The following is a legal prefix: 

<name I, name2, name3> 

UTek TOOLS SH-19 



Lexical A 

Any rule 

The sam1 

%STAR'. 

%% 
a 
~b 

c 
\n 
<AA:.>ou 
<BB>mr 
<CC>mr 

where thE 
problem, 

Cha 
The prog1 
input, ou 
routines i 
character 
value eqL 
host com1 
character 
translate 
section a1 
contains I 

{integi 

Sun 
The gene 

{def in, 
%% 
{rules] 
%% 
{user~ 

SH-20 

Lexical Analyzer Generator (lex) 

Regular expressions in lex use the operators shown in Table SH-1. 

Table SH-1 
OPERATORS AND DESCRIPTIONS 

OPERATOR DESCRIPTION 

x the character x 

"x" "x•, even if x is an operator 

\X "x", even if x is an operator 

[xy] the character x or y 

[X-Z) the character x, y, or z 

(x] any character but x 

any character but newline 

x at the beginning of a line 

x when lex is in start condition y 

x$ x at the end of a line 

x? optional x 

x* 0,1,2, .. .instances of x 

x+ 1,2,3, ... instances of x 

xor y 

(x) x 

xly x but only if followed by y 

{xx} translation of xx from the definitions section 

x{m,n} m through n occurrences of x 

Problems and Bugs 
There are pathological expressions that produce exponential grow! 
when converted to deterministic machines; fortunately, they are ra 

REJECT does not rescan the input; instead it remembers the resu 
scan. This means that if a rule with trailing context is found and F 
you must not have used unput to change the characters coming f1 
stream. This is the only restriction on your ability to manipulate th 
processed input. 

SH-22 



Lexical Analyzer Genenttor (lex) 

Consider the following problem: the input to the output, changing the word magic to 
first on every line that began with the letter a, changing magic to second on every 
line that began with the letter b, and changing magic to third on every line which 
began with the letter c. All other words and all other lines are left unchanged. 

These rules are so simple that the easiest way to do the job is with a flag. For 
example: 

int flag. 
%% 
-a {flag='a';ECHO;} 
-b {flag='b';ECHO;} 
-c {flag='c';ECHO;} 
\n {flag= O;ECHO;} 
magic { 

switch (flag) 
{ 
case 'a':printf(''first'');break; 
case 'b' : printf ("second' ' ) ; break; 
case 'c' :printf("third' ');break; 
default:ECHO;break; 
} 

To handle the same problem with start conditions, each start condition must be 
introduced to lex in the definition section with a line reading: 

%Start name/ name2 

where the conditions can be named in any order. The word Start can be 
abbreviated to s or S. The conditions can be referenced at the head of a rule with 
<angle brackets>: 

<name 1 >expression 

is a rule that is only recognized when lex is in the start condition namel. To enter a 
start condition, execute the action statement: 

BEGIN namel; 

which changes the start condition to namel. 

To resume the normal state: 

BEGIN O; 

resets the initial condition of the lex interpreter. A rule can be active in several start 
conditions. The following is a legal prefix: 

<name] ,name2, name3> 

UTek TOOLS SH-19 



Lexical Analyzer Generator (lex) 

Any rule not beginning with the <>prefix operator is always active. 

The same example as qefore can be written as follows: 

%START AA BB CC 
%% 

a 

c 
\n 
<AA>magic 
<BB>magic 
<CC>magic 

{ECHO;BEGIN AA;} 
{ECHO;BEGIN BB;} 
{ECHO;BEGIN CC;} 
{ECHO;BEGIN O;} 

printf("first' '); 
printf("second,,); 
printf ("third' ') ; 

where the logic is exactly the same as in the previous method of handling the 
problem, but lex does the work rather than your code. 

Character Set 
The programs generated by lex handle character 1/0 only through the routines 
input, output, and unput. Thus, the character representation provided in these 
routines is accepted by lex and used to return values in yytext. For internal use, a 
character is represented as a small integer that, if the standard library is used, has a 
value equal to the integer value of the bit pattern representing the character on the 
host computer. Normally, the letter a is represented in the same form as the 
character constant a. If this interpretation is changed by providing 110 routines that 
translate the character, lex must be given a translation table that is in the definitions 
section and must be bracketed by lines containing only %T. The translation table 
contains lines in the form: 

{integer} {character string} 

Summary of Source Format 
The general form of a lex source file is: 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

5H-20 



Lex/cal Analyzer Generator (lex) 

The definitions section contains a combination of: 

1 . Definitions in the form name translation. 

2. Included code in the form " code" (where the blank space preceding the code 
is necessary). 

3. Included code in the form: 

%{ 
code 
%} 

4. Start conditions given in the form: 

%$ namel name2 ... 

5. Character set tables in the form: 

%T 
-number character-string 
%T 

6. Changes to internal array sizes in the form: 

%xnnn 

where nnn is a decimal integer representing an array size and x selects the 
parameter as follows: 

Letter. Parameter 

p positions 

n states 

e tree nodes 

a transitions 

k packed character classes 

0 output array size 

Lines in the rules section have the form expression action, where the action can be 
continued on succeeding lines by using brackets to delimit it. 

UTekTOOLS SH-21 



Lexical Analyzer Generator (lex) 

Regular expressions in lex use the operators shown in Table SH-1. 

Table 5H-1 
OPERATORS AND DESCRIPTIONS 

OPERATOR DESCRIPTION 

x the character x 

"x" "x", even if x is an operator 

\X "x", even if x is an operator 

[xy] the character x or y 

[X-Z] the character x, y, or z 
(x] any character but x 

any character but newline 

x at the beginning of a line 

x when lex is in start condition y 

x$ x at the end of a line 

x? optional x 

x* 0, 1,2, .. .instances of x 

x+ 1,2,3, ... instances of x 

xor y 

(x) x 

x/y x but only if followed by y 

{xx} translation of= from the definitions section 

x{m,n} m through n occurrences of x 

Problems and Bugs 
There are pathological expressions that produce exponential growth of the table 
when converted to deterministic machines; fortunately, they are rare. 

REJECT does not rescan the input; instead it remembers the results of the previous 
scan. This means that if a rule with trailing context is found and REJECT executed, 
you must not have used unput to change the characters coming from the input 
stream. This is the only restriction on your ability to manipulate the not-yet
processed input. 

SH-22 



5/ 
The M4 Macro 
Processor 

Introduction 
A macro processor enhances a programming language by making it more palatable 
or more readable, or tailoring it to a particular application. The basic facility 
provided by any macro processor is replacement of text by other text. 

M4 is a preprocessor for Ratfor, useful in those cases where macros without 
parameters are not powerful enough. M4 is particularly suited for functional 
languages like FORTRAN, PUI, and C, since macros are specified in a functional 
notation. 

M4 is a suitable preprocessor for Ratfor and C, and has also been used successfully 
with Cobol. Besides the straightforward replacement of one string of text by 
another, it provides macros with arguments, conditional macro expansion, 
arithmetic, file manipulation, and some specialized string-processing functions. 

M4 basically copies its input to its output. As the input is read, each alphanumeric 
token (string of letters and digits) is checked. If the token is the name of a macro, 
the name of the macro is replaced by the macro definition. The resulting macro 
definition is pushed back into the input to be rescanned. You can call macros with 
arguments, and the arguments are substituted into the macro definitions text before 
they are rescanned. 

M4 has about twenty built-in macros that perform various useful operations; and the 
user can define new macros. Built-in macros, and user-defined macros work 
exactly the same way, except that some of the built-in macros affect the state of the 
process. 

Invoking M4 
To invoke m4, enter: 

m4 [filenamel] [filename2] 

Each filename is processed in order. In this command, filename is optional. If you 
enter m4 without arguments, or with the argument -, input for the command comes 
from the standard input. The processed text is written to the standard output. 

UTek TOOLS 51-1 



The 114 Macro Processor 

Defining Macros 
The most important built-in function of m4 is define, and it defines new macros. 
This input defines the string name as stuff: 

define(name, stuff) 

All subsequent occurrences of name are replaced by stuff. In this example, name 
consists of letters and numbers, but must begin with a letter (the underscore ( _) 
counts as a letter). The string stuff is any text that contains balanced parentheses; 
it can stretch over multiple lines. 

Following is an example of the define function: 

define(N, I 00) 

if (i >N) 

This example defines N to be 100, and uses it in a later if statement. 

The left parenthesis immediately follows the word define , to signal that define has 
arguments. If a macro or built-in name is not followed immediately by a left 
parenthesis (, m4 assumes it has no arguments. 

A macro name is only recognized as such if it does not have a letter or a number 
either before or after it. For example: 

define(N, JOO) 

if (NNN > 100) 

The variable NNN is unrelated to the defined macro N . 

You can take a macro definition and extend it to another level: 

define(N, JOO) 
define(M, NJ 

This example defines both Mand Nto be 100. 

What happens if N is redefined? Or, to say it another way, is M defined as Nor as 
100? In m4, the latter is true; Mis 100, so even if N subsequently changes, M does 
not. 

This happens because m4 expands macro names into their defining text as soon as 
it possibly can. So when define ( N, JOO) is read, N is immediately replaced by 
100. The second statement of the example is equivalent to: 

define (M, JOO) 

51-2 



The M4 Macro Processor 

If you wanted to avoid permanent definitions that extend to all levels, you can do two 
things. The first, is to interchange the order of the definitions: 

define (M, N) 
define (N, JOO) 

Now Mis defined as N, so when you ask for M later, you get the current value of 
N, before N is redefined as 100. 

Quoting 
The more general solution to the problem of permanent redefinition delays 
expansion of the arguments of define by quoting them. Any text surrounded by 
single quotes(' and ')is not expanded immediately, but the quotes are stripped off. 
For example: 

define(N, JOO) 
define(M, 'N' ) 

In this example, the quotes around N are removed, and Mis defined as the string N, 
not 100. In general, m4 always strips off one level of single quotes whenever it 
evaluates something. This is true even outside of macros. If you want the word 
define to display in the output, quote it in the input: 

'define' = 1; 

You can also redefine N. 

The Nin this second definition is immediately 100. So it is equivalent to this illegal 
m4 statement. To redefine N , you must delay the evaluation by quoting: 

define(N, 100) 

define('N', 200) 

If it is inconvenient to use single quotes, the quote characters can be changed with 
the built-in macro changequote: 

changequote([, ]) 

This changes makes the quote characters left and right brackets. You can restore 
the original characters by entering: 

changequote 

UTek TOOLS 51-3 



The M4 Macro Processor 

There are two additional built-in macros related to define . The undefine macro 
removes the definition of some other macro: 

undefine( 'N') 

This removes the definition of N. You can also remove the definitions of built-in 
macros: 

undefine( 'define') 

NOTE 
Once you remove a built-in macro definition, you can 

never get it back. 

The built-in macro ifdef lets you determine if a macro is currently defined. In 
particular, m4 has pre-defined the names unix and gcos on the corresponding 
systems, so you can tell which one you're using: 

ifdef('unix', 'define(wordsize, 16)' ) 
ifdef('gcos', 'define(wordsize,36)' ) 

makes a definition appropriate for the particular machine. 

The macro ifdef accepts three arguments; if the name is undefined, the value of 
ifdef is then the third argument. For example: 

ifdef('unix', on UNIX, not on UNIX) 

Arguments 
So far we have discussed the simplest form of macro processing- replacing one 
string by another string. User-defined macros can also have arguments, so 
different invocations can have different results. In the replacement text for a macro 
(the second argument of define ) any occurrence of $n is replaced by the n th 
argument. So, the macro bump, defined as: · 

define(bump, $1 = $1 + 1) 

generates code to increment its argument by 1: 

bump(x) 

is equivalent to x = x + 1. 

A macro can have as many arguments as you want, but only the first nine are 
accessible as $1 to $9. (The macro name itself is $0, although that is less commonly 
used.) Arguments you do not enter are replaced by null strings, so you can define a 
macro cat that concatenates its arguments: 

define(cat, $1$2$3$4$5$6$7$8$9) 

51-4 



The M4 Macro Processor 

So: 

cat(x, y, z) 

is equivalent to xyz. 

The arguments $4 through $9 are null, because you did not enter them. 

White space (blanks, tabs, or newlines) at the beginning of arguments are 
discarded. All other white space is retained. So this macro defines a to be b c: 

define(a, b c) 

Arguments are separated by commas, but in m4, only the outside set of parentheses 
are counted properly. So a comma enclosed in secondary parentheses does not 
terminate an argument: 

define(a, (b,c)) 

In this example there are only two arguments; the second is literally (b,c) . And of 
course you can include a single comma or parenthesis in an argument by quoting it. 

Built-in Arithmetic Macro 
M4 provides two built-in macros for doing arithmetic on integers. The simplest is 
inca, that increments its numeric argument by 1. So to define a variable as "one 
more than N', enter: 

define(N, JOO) 
define(NJ, 'incr(N)') 

Then NJ is defined as one more than the current value of N. 

The more general mechanism for arithmetic is a built-in macro called eval, that is, it 
performs arbitrary arithmetic on integers. It provides the following operators, in 
decreasing order of precedence: 

1. unary + and -

2. * * or - (exponentiation) 

3. * /% (modulus) 

4. + -

5. != < <= > >= 

6. (not) 

7. & or && (logical and) 

8. : or : : (logical or) 

UTek TOOLS 51-5 



The M4 Macro Processor 

You can use parentheses to group operations. All the operands of an expression 
given to eval must ultimately be numeric. The numeric value of a true relation (like 
1 >O) is 1, and a false relation is 0. The precision in eval is 32 bits on UTek. 

As a simple example, suppose you want M to be 2* *N + 1 . Enter: 

define(N, 3) 
define(M, 'eva/(2**N + 1)1 

It is a good idea to quote the defining text for a macro unless it is very simple. 

File Manipulation 
You can include a new file in the input at any time by using the built-in macro 
include: 

include(fi/ename) 

This replaces the include macro with the contents of filename. The contents of the 
file are often a set of definitions. The value of include (that is, its replacement text) 
is the contents of filename. 

It is a fatal error if the file named in include cannot be accessed. Another macro, 
sinclude ("silent include"), says nothing and continues if it cannot access the file. 

You can also divert the output of m4 to temporary files during processing, and look 
at the collected material later. M4 maintains nine of these diversions, numbered 1 
through 9. Enter: 

divert(n) 

All subsequent output is appended to the end of a temporary file, referred to as n . 
Stop this file diversion by entering divert or divert(O). 

Diverted text is normally displayed all at once at the end of processing, with the 
diversions output in numeric order. You can bring back diversions at any time to 
append them to the current diversion. Enter: 

undivert 

This command brings back all diversions in numeric order, and undivert, with 
arguments, brings back the selected diversions in the order specified. The undivert 
command discards the diverted material, as does diverting to a number other than O 
to 9. 

The value of undivert is not the diverted material. Furthermore, the diverted 
material is not rescanned for macros. 

The built-in macro divnum returns the number of the currently active diversion. 
This is zero during normal processing. 

51-6 



The 114 Macro Processor 

System Command 
You can run any UTek program with the syscmd built-in macro. For example: 

syscmd(date) 

This runs the UTek date command. 

To facilitate making unique filenames, the built-in macro maketemp is provided. It 
works like the UTek command mktemp: a string of XXXXX in the argument is 
replaced by the process id of the current process. 

Conditionals 
There is a built-in macro called ifelse that enables you to perform arbitrary 
conditional testing. In the simplest form, the following example compares the two 
strings a and b: 

ifelse(a, b, c, d) 

If a and bare identical, ifelse returns the string c; otherwise it returns d. So you 
might define a macro called compare that compares two strings and returns yes if 
they are the same, or no if they are different. For example: 

define(compare, 'ifelse($1, $2, yes, no}') 

Note the quotes; they prevent premature evaluation of ifelse . 

If the fourth argument is missing, it is treated as empty. 

The macro ifelse can have any number of arguments, so it provides a limited form 
of multi-choice decision capability: 

ifelse{a, b, c, d, e, f, g) 

If the string a matches the string b , the result is c . Otherwise, if d is the same as e, 
the result is f. Otherwise the result is g . If the final argument is omitted, the 
result is null. 

String Manipulation 
The built-in macro len returns the length of the string that makes up its argument. 
For example: 

len(abcdej) 

This returns a value of 6. 

The built-in macro substr can be used to produce substrings of strings. It has the 
general form: 

substr(s, i, n) 

UTek TOOLS 51-7 



The M4 Macro Processor 

This returns the substring of s that starts at the i th position and is n characters long. 
If n is omitted, the rest of the string is returned. 

The macro index ( sl, s2 ) returns the index (position) in string sl where the string 
s2 occurs, or -1 if s2 is not present in sl. As with substr, the origin for strings is 0. 

The built-in macro translit performs character transliteration: 

translit(s, f, t) 

This modifies s by replacing any character found inf by the corresponding character 
oft. For example: 

translit(s, aeiou, 12345) 

This replaces the vowels by the corresponding digits. If t is shorter than f, 
characters without an entry in t are deleted; as a limiting case, if t is not present at 
all, characters from fare deleted from s . So 

translit(s, aeiou) 

This deletes vowels from s. 

There is also a built-in macro called dnl that deletes all characters following it 
including the next newline character. It is useful for throwing away empty lines that 
otherwise tend to clutter up m4 output. For example, if you enter: 

define(N, JOO) 
define(M, 200) 
define(L, 300) 

In this example the newline at the end of each line is not part of the definition, but it 
is copied into the output, where you might not want it. If you add dnl to each of 
these lines, the newline characters disappear. 

Another way to achieve this follows: 

divert(-1) 
define( ••• ) 

divert 

Printing 
The built-in macro errprint writes its arguments out on the standard error file. So 
you can enter: 

errprint('fatal error') 

The dumpdef macro is a debugging aid that dumps the current definitions of 
defined terms. If there are no arguments, you get all the definitions; otherwise you 
get the defined terms you name as arguments. Be sure to quote the defined terms 
you use as arguments. 

51-8 



The Programming 
Language EFL 

Introduction 

Purpose 

5J 

EFL is a general purpose computer language intended to encourage portable 
programming. It has a uniform and readable syntax and good data and control flow 
structuring. You can translate EFL programs into efficient FORTRAN code, so you 
can take advantage of the availability of FORTRAN, the valuable software libraries in 
FORTRAN, and the portability of a standardized language. EFL works especially 
well for numeric programs. EFL lets you express complicated ideas in a 
comprehensible way, yet retain the power of the FORTRAN environment. 

History 
EFL is a descendant of Ratfor. The current EFL compiler is written in C. It is much 
more than a simple preprocessor: it tries to diagnose syntax errors, to provide 
readable FORTRAN output, and to avoid a number of restrictions. 

Character Set 
The following characters are legal in an EFL program: 

letters abcdefghijklm 

nopqrstuvwxyz 

digits 0123456789 

white space blank tab 

quotes 

sharp # 

continuation 

braces { } 

parentheses ( ) 

UTek TOOLS SJ-1 



The Programming Language EFL 

other + - * I 
< > & - : $ 

Upper- or lower-case letters are ignored except within strings, so a and A are 
treated as the same character. All of the examples below are printed in lower case. 
An exclamation mark(!) may be used in place of a tilde C). You can use square 
brackets ([])in place of braces ({ }). 

Lines 
EFL is a line-oriented language. Except in special cases discussed below, the end 
of a line marks the end of a token and the end of a statement. You can use the 
trailing portion of a line for a comment. EFL can divert input from one source file to 
another, so you can replace a single line in the program with a number of lines from 
the other file. Diagnostic messages are labeled with the line number of the file 
where they are detected. 

White Space 
Any sequence of one or more spaces or tab characters acts as a single space, 
except outside of a character string or comment. Such a space terminates a token. 

Comments 
A comment can appear at the end of any line. It is introduced by a sharp character 
(#), and continues to the end of the line. (A sharp inside of a quoted string does not 
mark a comment.) EFL discards the sharp and succeeding characters on the line; 
they have no effect on execution. A blank line is also a comment. 

Include Files 
You can insert the contents of a file somewhere in the source text, by referencing it 
in a line. For example: 

include joe 

Do not put a statement or comment following an include line. The include line is 
replaced by the lines in the named file, but diagnostics refer to the line number in 
the included file. You can nest includes at least ten deep. 

5J-2 



The Programming Language EFL 

Continuation 
You can continue lines by using the underscore character (_). If the last character 
of a line is an underscore, the EFL ignores the end of a line and the initial blanks on 
the next line. Underscores are ignored in other contexts (except inside of quoted 
strings). So: 

1_000_000_ 
000 

equals 109. 

EFL also contains rules for continuing lines automatically: the end of line is ignored 
when it is obvious that the statement is not complete. Specifically, a statement is 
continued if the last token on a line is an operator, comma, left brace, or left 
parenthesis. Some compound statements are continued automatically; these 
instances are noted in the sections on executable statements. 

Multiple Statements on a Line 
A semicolon (;) terminates the current statement, so you can write more than one 
statement on a line. A line consisting of one or more semicolons forms a null 
statement. 

Tokens 
A program is made up of a sequence of tokens. Each token is a sequence of 
characters. A blank terminates any token other than a quoted string. End of line 
also terminates a token unless an underscore continues the line. 

Identifiers 
An identifier is a letter or a letter followed by letters or digits. Table SJ-1 contains 
the reserved words that have special meaning in EFL. They are discussed later. 

UTek TOOLS SJ-3 



The Programming Language EFL 

Table 5J-1 
RESERVED WORDS WITH SPECIAL MEANING 

array exit precision 
automatic external procedure 
break false read 
call field readbin 
case for real 
character function repeat 
common go return 
complex goto select 
continue if short 
debug implicit sizeof 
default include static 
define initial struct 
dimension integer subroutine 
do internal true 
double lengthof until 
doubleprecision logical value 
else long while 
end next write 
equivalence option writebin 

Strings 
A character string is a sequence of characters surrounded by quotation marks. If 
the string is bounded by single-quote marks ( ' ), it may contain double quote marks 
( "), and vice versa. You cannot-break a quoted string across a line boundary. 

Integer Constants 
An integer constant is a sequence of one or more digits. For example: 

0 
57 
123456 

5J-4 



The Prognmmlng Language EFL 

Floating Point Constants 
A floating point constant contains a dot and/or an exponent field. An exponent field 
consists of the letters "d" or "e" followed by an integer constant with an optional 
sign. If I and J are integer constants and E is an exponent field, then a floating 
constant has one of the following forms: 

.I 
I. 
l.J 
IE 
l.E 
.IE 
l.JE 

Punctuation 
Certain characters group or separate objects in the language. These are 

parentheses ( ) 

braces } 

comma 

semicolon 

colon 

end-of-line 

The end-of-line is a token when the line is neither blank nor continued. 

Operators 
The EFL operators are written as sequences of one or more special characters. 

+ * I ** 

< <= > >= 

&& 11 & 11 

+= *= /= **= 

&&= 11_ &= I_ 
11- 1-

-> $ 

A dot (.) is an operator when it qualifies a structure element name, but not when it 
acts as a decimal point in a numeric constant. There is a special mode in which 
some of the operators can be represented by a string consisting of a dot, an 
identifier, and a dot. 

UTek TOOLS SJ-5 



The Programming Language EFL 

Macros 
EFL has a simple macro substitution facility. You can define an identifier to be 
equal to a string of tokens; whenever that name appears as a token in the program, 
the string replaces it. A macro name is given a value in a define statement. For 
example: 

define count n += 1 

Any time the name count appears in the program, it is replaced by the statement 

n += 1 

You must put a macro definition alone on a line; the form is 

define name 

Trailing comments are part of the string. 

Program Form 

Files 
A file is a sequence of lines. EFL compiles each file as a single unit. The file can 
contain one or more procedures. Declarations and options outside of a procedure 
affect the succeeding procedures in that file. 

Procedures 
Procedures are the largest grouping of statements in EFL. Each procedure has a 
name by which it is invoked. (The first procedure invoked during execution, known 
as the main procedure, has the null name.) Procedure calls and argument passing 
are discussed later. 

Blocks 
You can form statements into groups inside a procedure. To describe the scope of 
names, the ideas of block and of nesting level are introduced. The beginning of a 
program file is at nesting level zero. Any options, macro definitions, or variable 
declarations in the file are also at nesting level zero. The text immediately following 
a procedure statement is at nesting level 1 . After the declarations, a left brace 
marks the beginning of a new block and increases the nesting level by 1; a right 
brace drops the level by 1. An end statement marks the end of the procedure, level 
1, and the return to level 0. A variable or macro name that is defined at a particular 
level is defined throughout that block. - it is also defined in all deeper levels, if the 
name is not redefined or redeclared. Thus, a procedure might look like the 
following: 

5J-6 



# block 0 
procedure george 
real x 
x = 2 

if(x > 2) 
{ 

The Programming Language EFL 

# new block 
integer x # a different variable 
do x = 1,7 

write(,x) 

} # end of block 
end # end of procedure, return to block 0 

Statements 
A statement is terminated by end of line or by a semicolon. Statements are of the 
following types: 

Option 
Include 
Define 
Procedure 
End 
Declarative 
Executable 

All these kinds of statements are discussed later in this section. Each procedure 
begins with a procedure statements and finishes with an end statement. 
Declarations describe types and values of variables and procedures. Executable 
statements cause EFL to take specific actions. A block is an example of an 
executable statement; it is made up of declarative and executable statements. 

Labels 
An executable statement can have a label that is used in a branch statement. A 
label is an identifier followed by a colon, as in 

read(, x) 
if(x < J) goto error 

error: fatal("bad input") 

UTek TOOLS SJ-7 



The Programming Language EFL 

Data Types and Variables 
EFL supports a small number of basic (scalar) types. You can define objects made 
up of variables of basic type; you can then define other aggregates in terms of 
previously-defined aggregates. 

Basic Types 
The basic types are: 

logical 
integer 
field(m:n) 
real 
complex 
long real 
character(n) 

A logical quantity can acquire the values true and false. An integer can acquire any 
whole number value in some machine-dependent range. A field quantity is an 
integer restricted to a particular closed interval ([m:nJ). A real quantity is a floating 
point approximation to a real or rational number. A long real is a more precise 
approximation to a rational. Real quantities are represented as single precision 
floating point numbers; long reals are double precision floating point numbers. A 
complex quantity is an approximation to a complex number. It is represented as a 
pair of reals. A character quantity is a fixed-length string of n characters. 

Constants 
A notation exists for a constant of each basic type. 

A logical type can acquire the two values: 

true 
false 

An integer or field constant is a fixed point constant, optionally preceded by a plus 
or minus sign. For example: 

17 
-94 
+6 
0 

A long real (double precision) constant is a floating point constant containing an 
exponent field that begins with the letter d. A real (single precision) constant is any 
other floating point constant. You can precede real or long real constant with a plus 
or minus sign. The following are valid real constants: 

5J-8 



17.3 
-.4 
7.9e-6 ( = 7.9 x 10 -6) 
14e9 ( = 1.4 x 1010) 

The following are valid long real constants: 

7.9d-6 ( = 7.9 x 10 6) 
5d3 

A character constant is a quoted string. 

Variables 

The Programming Language EFL 

A variable is a quantity with a name and a location. At any particular time the 
variable can also have a value. (A variable is undefined before it is initialized or 
assigned its first value, and after certain indefinite operations are performed.) Each 
variable has some of the following attributes. 

Storage Class 
The association of a name and a location is either transitory or permanent. 
Transitory association is achieved when arguments are passed to procedures. Other 
associations are permanent. 

Scope of Names 
The names of common areas are global, as are procedure names. You can use 
these names anywhere in the program. All other names are local to the block where 
they are declared. 

Precision 
Floating point variables are either of normal or long precision. You can state this 
attribute independently of the basic type. 

UTek TOOLS SJ-9 



The Programming Language EFL 

Arrays 
You can declare rectangular arrays of values of the same type. (The arrays can 
have any dimension.) The index set is always a cross-product of intervals of 
integers. The lower and upper bounds of the intervals must be constants for arrays 
that are local or common. A formal argument array can have intervals that have the 
same length as one of the other formal arguments. An element of an array is 
denoted by the array name, followed by a parenthesized list of integer values. The 
list is separated by commas and enclosed in parentheses. Each value must lie 
within the corresponding interval. The intervals can include negative numbers. EFL 
can pass entire arrays as procedure arguments or in input/output lists, or initialize 
them. All other array references must be to individual elements. 

Structures 
You can define new types that are made up of elements of other types. The 
compound object is known as a structure; its constituents are called members of the 
structure. You can give the structure a name. The name acts as a type name in 
the remaining statements, within the scope of its declaration. The elements of a 
structure may be of any type (including previously defined structures), or they can be 
arrays of such objects. EFL can pass entire structures to procedures or use them in 
input/output lists. It also references individual elements of structures. The uses of 
structures are detailed below. The following structure might represent a symbol 
table: 

struct tableentry 

5J-10 

{ 
character(8) name 
integer hashvalue 
integer numberof elements 
field(O:l) initialized, used, set 
field(0:10) type 
} 



The Programming Language EFL 

Expressions 
Expressions are syntactic forms that yield a value. An expression can have any of 
the following forms, recursively applied: 

primary 
( expression ) 
unary-operator expression 
expression binary-operator expression 

In the following table of operators, all operators on a line have equal precedence 
and have higher precedence than operators on later lines. These operators are 
described later. 

-> . 
** 
* / unary + - ++ --
+ -

< <= > >= == 
& && 

$ 

11 
11 

+= -= *= /= **= 
Examples of expressions are 

a<i> && b<e 
-(a+ sin(x)) I (5+cos(x))**2 

Primaries 

&= := &&= I I_ 
I 1-

Primaries are the basic elements of expressions, as follows: 

Constants 
Constants are described earlier. 

Variables 
Scalar variable names are primaries. They can appear on the left or the right side of 
an assignment. Unqualified names of aggregates (structures or arrays) can only 
appear as procedure arguments and in input/output lists. 

Array Elements 
An element of an array is denoted by the array name followed by a parenthesized 
list of subscripts, with one integer value for each declared dimension: 

a(S) 
b(6,-3,4) 

UTek TOOLS 5J-11 



The Programming Language EFL 

Structure Members 
A structure name, followed by a dot and the name of a member of that structure, 
reference that element. If that element is itself a structure, the reference can be 
further qualified. 

a.b 
x(3).y(4).z(5) 

Procedure Invocations 
You can invoke a procedure by an expression of one of the forms 

procedurename ( ) 
procedurename ( expression ) 
procedurename ( expression-I, 
expression-n ) 

The procedurename is the name of a variable declared external, or the name of a 
function known to the EFL compiler, or the actual name of a procedure from a 
procedure statement. If a procedurename is declared external and is an argument of 
the current procedure, it is associated with the procedure name passed as actual 
argument. Otherwise it is the actual name of a procedure. Each expression is called 
an actual argument. Examples of procedure invocations are: 

f(x) 
work() 
g(x, y+3, 'xx') 

When EFL performs a procedure invocation, it first evaluates each of the actual 
argument expressions. The types, precisions, and bounds of actual and formal 
arguments should agree. If an actual argument is a variable name, array element, 
or structure member, EFL lets the called procedure use the corresponding formal 
argument as the left side of an assignment or in an input list; otherwise the actual 
argument can only use the value. After the formal and actual arguments are 
associated, control passes to the first executable statement of the procedure. When 
that procedure executes a return statement, or when control reaches the end 
statement of that procedure, EFL makes available the function value. The function 
value is the value of the procedure invocation. The attributes of the procedurename 
that are declared or implied in the calling procedure, determine the type of the 
value. The type of the value must agree with the attributes the procedure declares 
for the function. In the special case of a generic function, the type of the result is 
also affected by the type of the argument. 

Input/Output Expressions 
You can use the EFL input/output syntactic forms as integer primaries. If an error 
occurs during input or output, the integer primaries have a nonzero value. 

SJ-12 



The Programming Language EFL 

Coercions 
You can convert an expression of one precision or type to another. Use an 
expression of the form 

attributes ( expression ) 

Attributes are precision and basic types. White spaces separate special attributes. 
You can coerce an arithmetic value of one type to any other arithmetic type; a 
character expression of one length can be coerced to a character expression of 
another length; logical expressions cannot be coerced to a nonlogical type. As a 
special case, you can construct a quantity of complex or long complex type from two 
integer or real quantities by passing two expressions (separated by a comma) in the 
coercion. Examples and equivalent values are 

integer(S.3) = 5 
long real(S) = 5.0dO 
complex(S,3) = 5+3i 

EFL does most conversions implicitly, since most binary operators permit operands 
of different arithmetic types. Explicit coercions are useful when you must convert 
the type of an actual argument to match the type of the corresponding formal 
parameter in a procedure call. 

Sizes 
There is a notation that gives the amount of memory required to store a datum or an 
item of specified type: 

sizeof ( leftside ) 
sizeof ( attributes) 

In the first case, leftside stands for a variable, array, array element, or structure 
member. 

Sizeof is an integer that gives the size in arbitrary units. If you need the size in 
specific units, compute it by division: 

sizeof(x) I sizeof(integer) 

This division gives the size of the variable x in integer words. 

The distance between consecutive elements of an array cannot equal sizeof 
because certain data types require final padding on some machines. The lengthof 
operator gives larger distance, again in arbitrary units. The form is: 

lengthof ( leftside ) 
lengthof ( attributes ) 

Parentheses 
An expression in parentheses is itself an expression. It must be evaluated before 
the expression it is part of is evaluated. 

UTek TOOLS 5J-13 



The Programming Language EFL 

Unary Operators 
All of the unary operators in EFL are prefix operators. The result of a unary operator 
has the same type as its operand. 

Arithmetic 
Unary+ has no effect. A unary - yields the negative of its operand. The value of 
either expression results from the addition or subtraction. For these two operators, 
the operand must be a scalar, array element, or structure member of arithmetic type. 
(As a side effect, the operand value is changed.) 

Logical 
The only logical unary operator is complement C). These equations define the 
complement operator: 

- true = false 
- false = true 

Binary Operators 
Most EFL operators have two operands, separated by the operator. Because the 
character set must be limited, strings of two or three special characters denote some 
operators. All binary operators except exponentiation are left associative. 

Arithmetic 
The binary arithmetic operators are 

+ addition 

subtraction 

multiplication 

division 

exponentiation 

Exponentiation is right associative: a** b * * c = a** (b * * c) = a (b c ) The operations 
have the conventional meanings: 

8+2 = 10, 8-2 = 6, 8*2 = 16, 8/2 = 4, 8**2 = 82 = 64. 

The type of its operands determines the type of the result of a binary operation A 
operator B. This is shown in Tables 5J-2 and 5J-3. 

5J-14 



TYPE OF A 

integer 
real 
long real 
complex 
long complex 

TYPE OF A 

integer 
real 
long real 
complex 
long complex 

The Programming Language EFL 

Table 5J-2 
RELATION BETWEEN BINARY OPERATION A AND B 

TYPE OFB 

Integer 

integer 
real 
long real 
complex 
long complex 

Table 5J-3 
RELATION BETWEEN BINARY OPERATION A AND B 

TYPEOFB 

1.ong real complex 

long real complex 
long real complex 
long real long complex 
long complex complex 
long complex long complex 

real 
real 

real 

long real 
complex 
long complex 

long complex 

long complex 
long complex 
long complex 

long complex 
long complex 

If the typ~ of the operand differs from the type of the result, EFL does the 
calculation as if the operand were first coerced to the type of the result. If both 
operands are integers, the result an integer type, and it is computed exactly. 
(Quotients are truncated toward zero, so 8/3 = 2.) 

UTek TOOLS SJ-15 



The Programming Language EFL 

Logical 
The two binary logical operations in EFL, and and or, are defined by the truth tables: 

Table SJ-4 
TRUTH TABLES 

A B A andB A orB 

false false false false 
false true false true 
true false false true 
true true true true 

Each of these operators comes in two forms. In one form, the order of evaluation is 
specified. EFL evaluates the expression 

a && b 

by evaluating a first; if a is false then the expression is false and b is not evaluated. 
If a is true, the the expression has the value of b. EFL evaluates the expression 

a I I b 

by evaluating a first; if a is true then the expression is true and b is not evaluated. If 
a if false the expression has the value of b. The other forms of the operators (&for 
and and I for or) do not imply an order of evaluation. With the & and : operators, 
the compiler can speed up the code by evaluating the operands in any order. 

Relational Operators 
There are six relations between arithmetic quantities. These operators are not 
associative. See Table 5J-5. 

5J-16 

Table SJ-5 
RELATION BETWEEN ARITHMETIC QUANTITIES 

EFL Operator 

< 
<= 

> 
>= 

Meaning 

< less than 
:5 less than or equal to 

equal to 
! = not equal to 

> greater than 
~ greater than or equal 



The Programming Langu19e EFL 

Since complex numbers are not ordered, the only relational operators that can have 
complex operands are == and -= . The character-collating sequence is not defined. 

Assignment Operators 
All of the assignment operators are right associative. The simple form of 
assignment is 

basic-left-side = expression 

A basic-left-side is a scalar variable name, array element, or structure member of 
basic type. This statement computes the expression on the right side and stores 
that value in the location named by the left side. The value of the assignment 
expression is the value assigned to the left side after coercion. 

An assignment operator corresponds to each binary arithmetic and logical operator. 
In each case,. a op = b is equivalent to a = a op b. (The operator and equal sign 
must not be separated by blanks.) So, n+=2 adds 2 to n. The location of the left side 
is evaluated only once. 

Dynamic Structures 
EFL does not have an address (pointer, reference) type. However, there is a 
notation for dynamic structures: 

leftside -> structurename 

This expression is a structure with the shape implied by structurename, but it starts 
at the location of leftside. In effect, this overlays the structure template at the 
specified location. The leftside must be a variable, array, array element, or structure 
member. The type of the leftside must be one of the types in the structure 
declaration. An element of such a structure is denoted using the dot operator. 
Thus, 

place(i) -> st.elt 

refers to the elt member of the st structure starting at the ith element of the array 
place. 

UTek TOOLS SJ-17 



The Programming Language EFL 

Repetition Operator 
Inside of a list, an element of the form 

integer-constant-expression $ constant-expression 

is equivalent to expression a number of times equal to the first expression. For 
example: 

(3, 3$4, 5) 

is equivalent to 

(3, 4, 4, 4, 5) 

Constant Expressions 
If an expression is built of operators (other than functions) and constants, the value 
of the expression is a constant. You can use the value of the expression anywhere 
a constant is required. 

Declarations 
The declarations statement describes the meaning, shape, and size of named 
objects in the EFL language. 

Syntax 
A declaration statement is made up of attributes and variables. Declaration 
statements have two possible forms: 

attributes variable-list 
attributes { declarations } 

In the first example, each name in the variable-list has the attributes you specify. 
This is also true for the second example. You can put a variable name in more than 
one variable list, so long as its attributes do not contradict each other. You can 
specify an initial value to accompany each name of a nonargument variable. The 
declarations inside braces consist of one or more declaration statements. Examples 
of declarations are: 

integer k=2 

long real b(7,3) 
common(cname) 

5J-18 

{ 
integer i 
long real array(5,0:3) x, y 
character(?) ch 
} 



The Programming Language EFL 

Attributes 

Basic Types 
Basic types in declarations include: 

logical 
integer 
field(m:n) 
character(k) 
real 
complex 

The quantities k, m, and n are integer constant expressions with the properties bO 
and n:>m. 

Arrays 
You can declare dimensionality by an array attribute of the form: 

array( b1 , ••• , bn) 

Each of the bi can be a single integer expression or a pair of integer expressions 
separated by a colon. The pair of expressions form a lower and an upper bound; 
the single expression is an upper bound with an implied lower bound of 1 . The 
number of dimensions is equal to n, where n is the number of bounds. All the 
integer expressions must be constants. EFL permits integer expressions that are 
not constants if all of the variables associated with an array declarator are formal 
arguments of the procedure. In this case, each bound must have the property that 
upper - lower + 1 is equal to a formal argument of the procedure. (The compiler 
has limited ability to simplify expressions, but it recognizes important cases such as 
(O:n-1). You ·can mark the upper bound for the last dimension (bn) with an asterisk 
( * ) if the size of the array is unknown. The following are legal array attributes: 

array(S) 
array(S, 1 :5, -3:0) 
array(S, *) 
array(O:m-1, m) 

UTek TOOLS SJ-19 



The Programming Language EFL 

Structures 
A structure declaration is of the form 

struct structname { declaration statements } 

Structname is optional; if it is present, it acts like the name of a type in the rest of its 
scope. Each name that appears inside the declaration statements is a member of the 
structure. It has a special meaning when you use it to qualify any variable declared 
with the structure type. A name can be a member of any number of structures, and 
may also be the name of an ordinary variable, because you use a structure member 
name only in contexts where the parent type is known. The following are valid 
structure attributes: 

struct xx 
{ 
integer a, b 
real x(5) 
} 

struct { xx z(3); character(5) y } 

The last line defines a structure containing an array of three xx 's and a character 
string. 

Precision 
You can declare variables of long floating point (real or complex) type to ensure 
higher precision than ordinary floating point variables. The default precision is 
short. 

Common 
Certain objects called common areas have external scope. You can reference them 
with any procedure that has a declaration for the name using the attribute: 

common ( commonareaname ) 

All the variables declared with a particular common attribute are in the same block; 
the order in which they are declared is significant. Declarations for the same block 
in different procedures must put variables in the same order, and use the same 
types, precision, and shapes. These variables do not have to use the same names. 

SJ-20 



The Programming Language EFL 

External 
If you use a name as the procedure name in a procedure invocation, it is implicitly 
declared to have the external attribute. If a procedure name is passed as an 
argument, you must declare it in a statement of the form: 

external [ name ] 

If name has the external attribute and is a formal argument of the procedure, it is 
associated with a procedure identifier, that is passed as an actual argument at each 
call. If the name is not a formal argument, it is the actual name of a procedure. 
The name corresponds to that in the procedure statement. 

Variable List 
A variable list in a declaration consists of a name, an optional dimension 
specification, and an optional initial value specification. The name follows the usual 
rules. The dimension specification has the same form and meaning as the 
parenthesized list in an array attribute. The initial value specification is an equal 
sign (=)followed by a constant expression. If the name is an array, the right side of 
the equal sign can be a parenthesized list of constant expressions, or repeated 
elements or lists. The total number of elements in the list must not exceed the 
number of elements of the array. The elements of the array are filled in column
major order. 

The Initial Statement 
You can specify an initial value for a simple variable, array, array element, or 
member of a structure. Use a statement of the form 

initial [ var = val ] 

Var can be a variable name, array element specification, or member of structure. 
Val follows the same rules as other declaration statements for an initial value 
specification. 

Executable Statements 
Every EFL program contains executable statements. Statements are frequently a 
composite of other statements. Blocks are the most obvious case, but many other 
forms are made up of statements. 

To make EFL programs more readable, you can break some of the statement forms 
without an explicit continuation. A pair of brackets ([ )) in the syntax represents a 
point where the end of a line is ignored. 

UTek TOOLS SJ-21 



The Programming Language EFL 

Expression Statements 

Subroutine Call 
A subroutine call is a procedure invocation that returns no value. Such an 
invocation is a statement. Examples are 

work(in, out) 
run( l) 

Input/output statements resemble procedure invocations, but do not yield a value. If 
an error occurs, the program stops. 

Assignment Statements 
An expression that is a simple assignment (for example, =) or a compound 
assignment (for example,+=) is a statement: 

&=b 
a= sin(x)/6 
x *= y 

Blocks 
A block is a compound statement that acts as a statement. A block begins with a 
left brace, optionally followed by declarations, and executable statements, followed 
by a right brace. You can use a block anywhere a statement is permitted. A block 
is not an expression and does not have a value. An example of a block is: 

{ 
integer i # this variable is unknown outside the braces 
big= 0 
do i = 1,n 

if(big < a(l)) 
big= a(z) 

Test Statements 
Test statements permit execution of certain statements conditional on the truth of a 
predicate. 

SJ-22 



The Programming Language EFL 

If Statement 
The simplest of the test statements is the if statement. It has the form: 

if ( logical-expression ) [ ) statement 

The logical expression is evaluated; if it is true, statement is executed. 

If-Else 
A more general statement has the form: 

if ( logical-expression ) [) statement-] [) else [ ] 
statement-2 

If logical-expression is true, statement-1 is executed. Otherwise statement-2 is 
executed. The next statement can itself be an if-else, so a completely nested test 
sequence is possible: 

if(x~) 
if(a<b) 

k = 1 
else 

k = 2 
else 

if(a<b) 
m·= 1 

else 
m = 2 

An else applies to the nearest preceding un-elsed if. A more common use is as a 
sequential test: 

if(x==l) 
k = 1 

else if(x==J x==5) 
k = 2 

else 
k = 3 

Select Statement 
You can succinctly state a multi-way test on the value of a quantity as a select 
statement, with_ the general form: 

select( expression ) [ ) block 

UTek TOOLS SJ-23 



The Programming Language EFL 

Inside the block two special types of labels are recognized. A prefix of the following 
form marks the statement to which control is passed if the expression in the select 
statement has a value equal to one of the case constants: 

case [ constant ] : 

If expression equals none of these constants, but a label default is present in the 
select statement, a branch is taken to that point; otherwise the statement following 
the right brace is executed. Once execution begins at a case or default label, it 
continues until it encounters the next case or default. The previous else-if 
example is better written as: 

select(x) 
{ 
case 1: 

k = 1 

case .3,5: 
k = 2 

default: 
k = .3 

Note that control does not fall through to the next case. 

Loops 
The loop forms provide the best way of repeating a statement or sequence of 
operations. The simplest form (while) is theoretically sufficient. But it is very 
convenient to have the loops of a general form available, since each illustrates a 
kind of control that programmer's frequently use. 

While Statement 
The while statement takes the following form: 

while ( logical-expression ) [ ] statement 

The expression is evaluated; if it is true, the statement executes, and the test is 
performed again. If the expression is false, execution proceeds to the next 
statement. 

For Statement 
The for statement is a more elaborate looping construct. It takes the following 
form: 

for ( initial-statement , [ ] logical-expression , 
[ ] interation-statement) [ ] body-statement 

SJ-24 



The Programming Language EFL 

Except for the behavior of the next statement, this construct is equivalent to: 

initial-statement 
while ( logical-expression ) 

{ 
body-statement 
iteration-statement 
} 

This form is useful for general arithmetic iterations, and for various pointer 
operations. The sum of the integers from 1 to 100 can be computed by the 
fragment: 

n = 0 
for(i = 1, i <= 100, i += 1) 

n += i 

Alternatively, you could use the single statement: 

for( { n = 0 ; i = 1 } , 
i<=100, { n += i ; ++i } ) 

Note that the body of the for loop is a null statement in this case. 

Repeat Statement 
The repeat statement takes the following form: 

repeat [ ] statement 

This command executes the statement, then does it again, without any termination 
test. Obviously, a test inside the statement is necessary to stop the loop. 

Repeat ... Until Statement 
The while loop performs a test before each iteration. The following statement 
executes the statement, then evaluates logical-expression: 

repeat [ ] statement [ ] until ( logical-expression ) 

In this command, if logical-expression is true, the loop is complete; otherwise control 
returns to the statement. Thus, the body is always executed at least once. The until 
refers to the nearest preceding repeat that is not paired with an until. In practice, 
this is a less frequently used looping construct. · 

UTek TOOLS SJ-25 



The Programming Language EFL 

Do Loops 
The simple arithmetic progression is common in numerical programs. EFL has a 
special loop form for ranging over an ascending arithmetic sequence: 

do variable= expression-I, expression-2, expression-3 
statement 

The variable is first given the value expression-I. The statement is executed, then 
expression-3 is added to the variable. The loop repeats until the variable exceeds 
expression-2. If you omit expression-3 and the preceding comma, the assumed 
increment is 1. The previous loop is equivalent to: 

t2 = expression-2 
t3 = expression-3 
for(variable = expression-I, variable<= t2 , variable+= t3) 

statement 

(The compiler translates EFL do statements into FORTRAN DO statements, that are 
compiled into excellent code.) You cannot change the do variable inside the loop, 
and expression-I must not exceed expression-2. For example, you can compute the 
sum of the first hundred positive integers as follows: 

n=O 
do i = 1, 100 

n += i 

Branch Statements 
Usually you can avoid branch statements in programs by using the loop and test 
constructs, but in some programs they are very useful. 

Goto Statement 
The most general, and most error prone, branching statement is the simple, 
unconditional goto statement: 

goto label 

5J-26 



The Programming Language EFL 

After this statement executes, the next statement following the label is executed. 
Inside a select statement you can use the case labels of that block as label. For 
example: 

select(k) 

case 1: 
error(7) 

case 2: 
k = 2 
goto case 4 

case J: 
k = 5 
goto case 4 

case 4: 
fixup(k) 
goto default 

default: 
prmsg("ouch' ') 

} 

(If you nest two select statements, the case labels of the outer select are not 
accessible from the inner one.) 

Break Statement 
The more frequently used break transfers control to the statement following the 
current select or loop construct. A repeat loop usually requires this kind of 
statement: 

repeat 
{ 
do a computation 
if l (finished) 

break 

More general forms let you control a branch using more than one construct: 

break 3 

UTek TOOLS 5J-27 



The Programming Language EFL 

This form transfers control to the statement following the third loop and/or select 
surrounding the statement. You can specify what type of construct (for, while, 
repeat, do, or select) to count. This statement breaks out of the first surrounding 
while statement: 

break while 

Either of the following statements transfers to the statement after the third enclosing 
for loop: 

break 3 for 
break for 3 

Next Statement 
The next statement makes the first surrounding loop statement go on to the next 
iteration. The next operation performed is the test of a while, the iteration-statement 
of a for, the body of a repeat, the test of a repeat ... until, or the increment of a 
do. Elaborations similar to those for break are available: 

next 
next 3 
next 3 for 
next for 3 

A next statement ignores select statements. 

Return 
The last statement of a procedure returns control to the caller. If you want to return 
control to the caller from any other point in the procedure, use the return statement: 

return 

Inside a function procedure, the function value is specified as an argument of the 
statement: 

return ( expression ) 

Input/Output Statements 
The input/output part of EFL very strongly reflects the facilities of FORTRAN. EFL 
has two input statements (read and readbin), two output statements (write and 
writebin), and three control statements (endfile, rewind, and backspace). You can 
use these forms as a primary with an integer value or as a statement. If an 
exception occurs when you use one of these forms as a statement, the result is 
undefined, but is usually treated as a fatal error. If you use them in a context 
where they return a value, they return zero if no exception occurs. For the input 
forms, a negative value indicates end-of-file and a positive value an error. 

SJ-28 



The Programming f..anguage ~Fl-

Input/Output Units 
Each 1/0 statement refers to a unit, identified by a small positive integer. EFL 
defines two special units, the standard input unit and the standard output unit. 
These particular units are assumed if no unit is specified in an 110 transmission 
statement. 

Information about the unit is organized into records. These records can be read or 
written in a fixed sequence, and each transmission moves an integral number of 
records. Transmission proceeds from the first record until the end of file. 

Binary Input/Output 
The readbin and writebin statements transmit data in a machine-dependent but 
swift manner. The statements are of the form: 

writebin( unit , binary-output-list ) 
readbin( unit , binary-input-list ) 

Each statement moves one unformatted record between storage and the device. 
The unit is an integer expression. A binary-output-list is an iolist (see the following 
topic, Iolists) without any format specifiers. A binary-input-list is an iolist without 
format specifiers where each of the expressions is a variable name, array element, 
or structure member. 

Formatted Input/Output 
The read and write statements transmit data as lines of characters. Each statement 
moves one or more records (lines). Numbers are translated into decimal notation. 
The exact form of the lines is determined by format specifications, provided, 
implicitly or explicitly, in the statement. The syntax of the statements is: 

write( unit, formatted-output-list ) 
read( unit, formatted-input-list ) 

The lists have the same form as binary 1/0, except that the lists can include format 
specifications. If the unit is omitted, the standard input or output unit is used. 

lolists 
An iolist specifies a set of values to be written or a set of variables into which values 
are to be read. An iolist is a list of one or more ioexpressions of the form: 

expression 
{ iolist } 
do-specification { iolist } 

UTek TOOLS SJ-29 



The Programming Language EFL 

For formatted 1/0, an ioexpression can also have these forms: 

ioexpression :format-specifier 
: format-specifier 

A do-specification has the syntax of a do statement, and it has a similar effect. The 
values in the braces are transmitted repeatedly until the do execution completes. 

Formats 
The following are format-specifiers recognized by EFL. The quantities w, d, and k 
must be integer constant expressions. 

i(w) 

f(w,d) 

e(w,d) 

l(w) 

c 

c(w) 

s(k) 

x(k) 

" 

integer with w digits 

floating point number of w characters, d of them to the right of the 
decimal point. 

floating point number of w characters, d of them to the right of the 
decimal point, with the exponent field marked with the letter e 

logical field of width w characters, the first of which is true or false 
(the rest are blank on output, ignored on input) 

character string of width equal to the length of piece of data 

character string of width w 

skip k lines 

skip k spaces 

use the characters inside the string as a FORTRAN format 

If no format is specified for an item in a formatted input/output statement, EFL 
chooses a default form. 

If an item in a list is an array name, then the entire array is transmitted as a 
sequence of elements, each with its own format. The elements are transmitted in 
column-major order, the same order used for array initializations. 

Manipulation Statements 
These three input/output statements look like ordinary procedure calls: 

backspace( unit) 
rewind( unit) 
endfile(unit) 

SJ-30 



The Programming Language EFL 

But you can use them either as statements, or as integer expressions that returns a 
nonzero value if an error is detected. The backspace statement causes the 
specified unit to back up, so that the next read reads the previous record again, and 
the next write over-writes it. The rewind statement moves the device to its 
beginning, so that the next input statement reads the first record. The endfile 
statement marks the file so that the record most recently written is the last record on 
the file, and any attempt to read past that point is an error. 

Procedures 
Procedures are the basic unit of an EFL program, providing the means of 
segmenting a program into parts that can be named and complied separately. 

Procedure Statement 
Each procedure begins with a statement of one of these forms, preceded by 
procedure on a line by itself: 

procedure 
attributes procedure procedurename 
attributes procedure procedurename ( ) 
attributes procedure procedurename ( [ name ] ) 

The first form spedfies the main procedure, where execution begins. In the other 
two forms, the attributes can specify precision and type, or you can omit them. You 
can declare the precision and type of the procedure in an ordinary declaration 
statement. If no type is declared, then the procedure is called a subroutine and it 
cannot return a value. Otherwise, the procedure is a function and a value of the 
declared type is returned for each call. Each name inside parentheses, as in the last 
form, is called a formal argument of the procedure. 

End Statement 
Each procedure terminates with the following statement: 

end 

Argument Association 
When a procedure is invoked, the actual arguments are evaluated. If an actual 
argument is the name of a variable, an array element, or a structure member, that 
entity becomes associated with the formal argument. The procedure can reference 
the values in the object, and assign values to it. Otherwise, the value of the actual 
argument is associated with the formal argument, but the procedure may not try to 
change the value of that formal argument. 

UTek TOOLS SJ-31 



The Programming Language EFL 

If the procedure changes the value of one of the arguments, the corresponding 
actual argument cannot be associated with another formal argument, or with a 
common element that is referenced in the procedure. 

Execution and Return Values 
After actual and formal arguments are associated, control passes to the first 
executable statement of the procedure. Control returns to the invoker when the end 
statement of the procedure is reached, or when a return statement is executed. If 
the procedure is a function (has a declared type), and a return value is executed, the 
value is coerced to the correct type and precision and returned. 

Known Functions 
EFL knows about a number of functions, and it is not necessary to declare them. 
The compiler knows the types of these functions. Some of them are generic, that is, 
they name a family of functions that differ in the types of their arguments and return 
values. The compiler chooses what element of the set to invoke based upon the 
attributes of the actual arguments. 

Minimum and Maximum Functions 
The generic functions are min and max. The min calls return the value of their 
smallest argument; the max calls return the value of their largest argument. These 
are the only functions that can take different numbers of arguments in different calls. 
If any of the arguments are long real, the result is long real. Otherwise, if any of the 
arguments are real, the result is real; otherwise all the arguments and the result 
must be integer. For example: 

min(S, x, -3.20) 
max(i, z) 

Absolute Value 
The abs function is a generic function that returns the magnitude of its argument. 
For integer and real arguments, the type of the result is identical to the type of the 
argument; for complex arguments the type of the result is a real of the same 
precision. 

Elementary Functions 
The following generic functions take arguments of real, long real, or complex type 
and return a result of the same type: 

sin sine function 
cos cosine function 
exp exponential function (ex) 

SJ-32 



The Prog11mming Language EFL 

log natural (base e) logarithm 
log10 common (base 10) logarithm 
sqrt square root function 

In addition, the following functions accept only real or long real arguments: 

atan 
atan2 

atan(x) = tan-1 x 
atan2(x,y) = tan-1 x over y 

Other Generic Functions 
The sign functions take two arguments of identical type; sign (x,y) = sgn(y) lx:. 
The mod function yields the remainder of its first argument when divided by its 
second. These functions accept integer and real arguments. 

Converting Older Programs 
Certain facilities are included in the EFL language to ease the conversion of old 
FORTRAN or Ratfor programs to EFL. 

Escape Lines 
To make use of nonstandard features of the local FORTRAN compiler, you 
occasionally need to pass a particular line through to the EFL compiler output. A 
line that begins with a percent sign (%) is copied through to the output without the 
percent sign. Inside procedure, each escape line is treated as an executable 
statement. If a sequence of lines constitutes a continued FORTRAN statement, they 
are enclosed in braces. 

Call Statement 
A subroutine call may be preceded by the keyword call: 

call joe 
call work(17) 

UTek TOOLS SJ-33 



The Programming Language EFL 

Obsolete Keywords 
The following keywords are recognized as synonyms of EFL keywords: 

Table 5J-6 
KEYWORDS FOR FORTRAN AND EFL 

FORTRAN EFL 

double precision long real 
function procedure 
subroutine procedure (untyped) 

Numeric Labels 
Standard statement labels are identifiers. You can also have a numeric (positive 
integer constant) label; the colon is optional following a numeric label. 

Implicit Declarations 
If you use a name but it is not in a declaration, the EFL compiler gives a warning 
and assumes a declaration for it. If you use the name in the context of a procedure 
invocation, EFL assumes it is a procedure name; otherwise it assumes a local 
variable defined at nesting level 1 in the current procedure. The first letter of the 
name determines the assumed type. The association of letters and types can be 
given in an implicit statement: 

implicit ( letter-list ) type 

In this statement letter-list is a list of individual letters or ranges (pair of letters 
separated by a minus sign). If no implicit statement is present, the following rules 
are assumed: 

implicit (a-h, o-z) real 
implicit (i-n) integer 

Computed goto 
FORTRAN contains an indexed multi-choice branch; You can use this facility in EFL 
by the computed goto: 

goto ( [ label ] ), expression 

The expression must be of type integer and be positive, but it cannot be larger than 
the number of labels in the list. Control is passed to the statement marked by the 
label whose position in the list is equal to the expression. 

SJ-34 



The Programming Language EFL 

Go to Statement 
In unconditional and computed goto statements, you can separate the words go 
and to: 

go to xyz 

Dot Names 
FORTRAN uses a restricted character set, so it represents certain operators by 
multi-character sequences. There is a dots= on option; that forces the compiler to 
recognize the forms in the second column: 

< .It. 
<= .le. 
> .gt. 
>= .ge. 

.eq . 

. ne . 
& . and. 
I .or. I 

&& .andand. 
11 .oror. 11 

.not . 
true . true. 
false .false. 

In this mode, no structure element may be named It, le, etc. The readable forms in 
the left column are always recognized. 

Complex Constants 
You can write a complex constant as a parenthesized list of real quantities. For 
example: 

(1.5, 3.0) 

The preferred notation is by a type coercion: 

complex(J.5, 3.0) 

UTek TOOLS 5J-35 



The Programming Language EFL 

Function Values 
The preferred way to return a value from a function in EFL is the return ( value ) 
construct. However, the name of the function acts as a variable to which you can 
assign values. An ordinary return statement returns the last value assigned to that 
name as the function value. 

Equivalence 
An equivalence statement has the form: 

equivalence vl, v2, ... , vn 

This statement declares that each v starts at the same memory location, where vis 
a variable name, array element name, or structure member. 

Minimum and Maximum Functions 
This category contains a number of nongeneric functions that differ in the required 
types of the arguments, and in the type of the return value. They can also have 
variable numbers of arguments, but all the arguments must have the same type. 
See Table 5J-7. 

Table SJ-7 
MINIMUM AND MAXIMUM FUNCTIONS 

Function Argument Type Result Type 

amino integer real 
aminl real real 
minO integer integer 
mini real integer 
dminl long real long real 

amaxO integer real 
amaxl real real 
maxO integer integer 
maxi real integer 
dmaxl long real long real 

5J-36 



The Programming Languag• EFL 

Compiler Options 
You can specify a number of options to control the output of the compiler, and to 
tailor it for various compilers and systems. The default options are conservative, but 
it is sometimes necessary to change the output to match peculiarities of the target 
environment. 

Set options with statements of the form: 

option [ opt ) 

where each opt is of one of the following: 

optionname 
optionname = optionva/ue 

The optionvalue is either a constant (numeric or string) or a name associated with 
that option. The two names yes and no apply to a number of options. 

Default Options 
Each option has a default setting. You can change the whole set of defaults by 
using the system option. At present, the on!y va!id values are system= unix and 
system= gcos. 

Input Language Options 
The dots option determines whether the compiler recognizes .It: and similar forms. 
The default setting is no. 

Input/Output Error Handling 
The ioerror option accepts three values, but none of the values let you use the 110 
statements in expressions, since there is no way to detect errors. The 
implementation of the ibm form uses ERR= and END= ~lauses. The implementation 
of the Fortran 77 form uses IOSTA T = clauses. 

Continuation Conventions 
By default, continued FORTRAN statements are indicated by a character in column 
6 (Standard FORTRAN). The option continue=column1 puts an ampersand (&) in 
the first column of the continued lines instead. 

UTek TOOLS SJ-37 



The Programming Language EFL 

Default Formats 
If no format is specified for for a read or write statement and datum in an iolist, a 
default is provided. You can change the default formats by setting the options 
shown in Table 5J-8: 

Table SJ-8 
OPTIONS FOR SETTING DEFAULT FORMATS 

Option Type 

iformat integer 
rformat real 
dformat long real 
;.format complex 
zdformat long complex 
/format logical 

The associated value must be a FORTRAN format: 

option rformat=f22.6 

Alignments and Sizes 
To implement character variables, structures, and the sizeof and lengthof 
operators, you must know how much space various FORTRAN data types require, 
and what boundary alignment properties they demand. The relevant options include 
those shown in Table 5J-9: 

Table SJ-9 
SIZE AND ALIGNMENT OPTIONS FOR FORTRAN TYPE 

FORTRAN Type Size Option Alignment Option 

integer isize ialign 
real rsize ralign 
long real dsize dalign 
complex zsize zalign 
logical /size /align 

The sizes are given in terms of an arbitrary unit; the alignment is given in the same 
units. The option charperint gives the number of characters per integer variable. 

5J-38 



The Programming Language EFL 

Default Input/Output Units 
The options ftnin and ftnout are the numbers of the standard input and output units. 
The default values are ftnin = 5 and ftnout = 6. 

Miscellaneous Output Control Options 
Each FORTRAN procedure generated by the compiler is preceded by the value of 
the procheader option. 

No Hollerith strings are passed as subroutine arguments if you specify 
hollincall =no. 

The FORTRAN statement numbers normally start at 1 and increase by 1. You can 
change the increment value by using the deltastno option. 

Examples 
To show the flavor or programming in EFL, this section presents a few examples. 
They are short, but they show the convenience of using EFL. 

Copying Files 
The following short program copies the standard input to the standard output, 
provided that the input is a formatted file containing lines no longer than a hundred 
characters: 

procedure fl main program 
character(100) line 

while( read( , line)== 0) 
write( , line) 

end 

Since read returns zero until the end of file (or a read error), this program keeps 
reading and writing until the input is exhausted. 

UTek TOOLS SJ-39 



The Programming Language EFL 

Matrix Multiplication 
The following procedure multiplies the m x n matrix a by the n x p matrix b to give 
the m x p matrix c. The calculation obeys the formula cij = aikbkj: 

procedure matmul(a,b,c, m,n,p) 
integer i, j, k, m, n, p 
long real a(m,n), b(n,p), c(m,p) 
do i = 1,m 
do j = 1,p 

c(i,j) = O 
do k = 1,n 

c(i,j) += a(i,k) * b(k,j) 
} 

end 

Searching a Linked List 
Assume you have a list of pairs of numbers (x,y). The list is stored as a linked list 
sorted in ascending order of x values. The following procedure searches this list for 
a particular value of x and returns the corresponding y value: 

define LAST 0 
define NOTFOUND -1 

integer procedure val(list, first, x) 

# list is an array of structures. 
# Each structure contains a thread index value, 
# an x, and a y value. 
struct 

{ 
integer nextindex 
integer x, y 
} list(*) 

integer first, p, arg 

for(p =first , p-=LAST && list(p).x<=x , 
p = list(p).nextindex) 
if(list(p).x == x). 

return(NOTFOUND) 
end 

SJ-40 

return( list(p).y 



Tiie Programming Language EFL 

The search is a single for loop that begins with the head of the list and examines 
items until the list is exhausted (P==LAST) or until it is known that the specified 
value is not on the list (list(p).x > x). The two tests in the conjunction must be 
performed in the specified order to avoid using an invalid subscript in the list(p) 
reference. Therefore, the && operator is used. The next element in the chain is 
found by the iteration statement p=list(p).nextindex. 

Walking a Tree 
As an example of a more complicated problem, imagine an expression tree stored in 
a common area, and that you want to print out an infix form of the tree. Each node 
is either a leaf (containing a numeric value) or it is a binary operator, pointing to a 
left and a right descendant. In a recursive language, you could implement this "tree 
walk" with the following simple pseudocode: 

if this node is a leaf 
print its value 

otherwise 
print a left parenthesis 
print the left node 
print the operator 
print the right node 
print a right parenthesis 

In a nonrecursive language like EFL, you must maintain an explicit stack to keep 
track of the current state of the computation. The following procedure calls a 
procedure outch to print a single character and a procedure outval to print a value: 

procedure walk(first) 
# print out an expression tree 

integer first · 
# index of root node 

integer currentnode 
integer stackdepth 
common(nodes) struct 

struct 

UTek TOOLS 

{ 
character(!) op 
integer leftp, rightp 
real val 
} tree(100) 

integer nextstate 
integer nodep 
} stackframe(lOO) 

# array of structures 

SJ-41 



The Prog1 

define NOI 
define STJ 
# nexts1 
define 00'11 
define LEF 
define RIG 
# initie 
stackdepth 
STACK.next 
STACK.node 

while( sta 

end 

5J-42 

The Programming Language EFL 

Relation Between EFL and Ratfor 
There are a number of differences between Ratfor and EFL, since 
language, and Ratfor is the union of the special control structures 
accepted by the underlying FORTRAN compiler. Ratfor running c 
FORTRAN is almost a subset of EFL. Most of the features descri 
Converting Older Programs are present to ease the conversion of 1 

EFL. 

A few incompatibilities remain: the syntax of the for statement is sl 
the two languages, and the three clauses are separated by semico 
by commas in EFL. (The initial and iteration statements can be co 
statements in EFL because of this change.) The input/output synta 
in the two languages, and there is no FORMAT statement in EFL. 
ASSIGN or assigned GOTO statements in EFL. 

The major additions in EFL are character data, factored declaratio1 
structure, assignment and sequential test operators, generic functi 
structures. EFL permits more general forms for expressions and ~ 
uniform syntax. 

Compiler 

Current Version 
The current version of the EFL compiler is a two-pass translator Vti 

C. It implements all of the features described previously, except f4 
numbers. 

Diagnostics 
The EFL compiler diagnoses all syntax errors. It gives the line an1 
known) where the error was detected. The compiler gives warnin~ 
that are used but not explicitly declared. 

Quality of FORTRAN Produced 
The FORTRAN produced by EFL is quite clean and readable. To 
possible, the variable names that appear in the EFL program are 1 

FORTRAN code. The bodies of loops and test constructs are inde 
numbers are consecutive. Few unnecessary GOTO and CONTINI 
used. It is considered a compiler bug if incorrect FORTRAN is pre 
escaped lines). 

5J-44 



The Programming Language EFL 

Constraints on the Design of the EFL 
Language 
Although FORTRAN can be used to simulate any finite computation, there are 
realistic limits on the generality of a language that can be translated into FORTRAN. 
The design of EFL was constrained by the implementation strategy. Certain of the 
restrictions are petty (six character external names), but others are sweeping (lack of 
pointer variables). The following paragraphs describe the major limitations imposed 
by FORTRAN. 

External Names 
External names (procedure and COMMON block names) must be no longer than six 
characters in FORTRAN. Further, an external name is global to the entire program. 
So, to compile EFL procedures separately you can have only one level of an 
external name. 

Procedure Interface 
The FORTRAN standards permit arguments to be passed between FORTRAN 
procedures either by reference or by copy-in/copy-out. This vague specification is 
evident in EFL. A program that depends on the method of argument transmission is 
illegal in either language. 

FORTRAN has no procedure-valued variables. A procedure· name can only be 
passed as an argument or be invoked; it cannot be stored. FORTRAN (and EFL) 
would be simpler if a procedure variable mechanism were available. The most 
serious problem with FORTRAN is its lack of a pointer-like data type. The 
implementation of the compiler would be easier, and the language would be more 
simple if you could simulate pointers by using subscripts; but they founder on the 
problems of external variables and initialization. 

Recursion 
FORTRAN procedures are not recursive, so EFL procedures cannot be recursive. 

Storage Allocation 
The definition of FORTRAN does not specify the lifetime of variables. It is difficult, 
but you can implement stack or heap storage disciplines by using COMMON 
blocks. 

UTek TOOLS SJ-45 





T1'e Programming Language EFL 

The search is a single for loop that begins with the head of the list and examines 
items until the list is exhausted (p==LAST) or until it is known that the specified 
value is not on the list (list(p).x > x). The two tests in the conjunction must be 
performed in the specified order to avoid using an invalid subscript in the list(p) 
reference. Therefore, the && operator is used. The next element in the chain is 
found by the iteration statement p=list(p).nextindex. 

Walking a Tree 
As an example of a more complicated problem, imagine an expression tree stored in 
a common area, and that you want to print out an infix form of the tree. Each node 
is either a leaf (containing a numeric value) or it is a binary operator, pointing to a 
left and a right descendant. In a recursive language, you could implement this "tree 
walk" with the following simple pseudocode: 

if this node is a leaf 
print its value 

otherwise 
print a left parenthesis 
print the left node 
print the operator 
print the right node 
print a right parenthesis 

In a nonrecursive Janguage like EFL, you must maintain an explicit stack to keep 
track of the current state of the computation. The following procedure calls a 
procedure outch to print a single character and a procedure outval to print a value: 

procedure walk(first) 
# print out an expression tree 

integer first · 
# index of root node 

integer currentnode 
integer stackdepth 
common(nodes) struct 

struct 

UTek TOOLS 

{ 
character(!) op 
integer leftp, rightp 
real val 
} tree(lOO) 

integer nexts~ate 
integer nodep 
} stackframe(lOO) 

# array of structures 

5J-41 



The Programming Language EFL 

define NODE 
define STACK 

tree(currentnode) 
stackframe(stackdepth) 

# nextstate values 
define DOWN 1 
define LEFT 2 
define RIGHT 3 
# initialize stack with root node 
stackdepth = 1 
STACK.nextstate = DOWN 
STACK.nodep = first 

while( stackdepth > O ) 

end 

5J-42 

{ 
currentnode = STACK.nodep 
select(STACK.nextstate) 

{ 
case DOWN: 

case LEFT: 

case RIGHT: 

} 

if(NODE.op == ,, '') 
# a leaf 
{ 
outval( NODE.val 
stackdepth -= 1 
} 
else{ 
# a binary operator node 
outch ( " ( " ) 
STACK.nextstate = LEFT 
stackdepth += 1 
STACK.nextstate = DOWN 
STACK.nodep = NODE.leftp 
} 

outch( NODE.op 
STACK.nextstate = RIGHT 
stackdepth += 1 
STACK.nextstate = DOWN 
STACK.nodep = NODE.rightp 

outch( 11 )'' ) 

stackdepth -= 1 



The Programming Language EFL 

Portability 
One of the major goals of the EFL language is to make it easy to write portable 
programs. The output of the EFL compiler is intended to be acceptable to any 
Standard FORTRAN compiler (unless you specify Fortran77 option). 

Primitives 
Certain EFL operations cannot be implemented in portable FORTRAN, so each 
environment has a few machine-dependent procedures. 

Copying a Character String 
The subroutine ef1asc is called to copy one character string to another. If the target 
string is shorter than the source, the final characters are not copied. If the target 
string is longer, its end is padded with blanks. The calling sequence is: 

subroutine eflasc(a, la, b, lb) 
integer a(*), la, b(*), lb 

It must copy the first lb characters from b to the first la characters of a. 

Character String Comparisons 
The function ef1 cmc is invoked to determine the order of two character strings. The 
declaration is: 

integer function eflcmc(a, la, b, lb) 
integer a(*), la, b(*), lb 

The function returns a negative value if the string a of length la precedes the string b 
of length lb. It returns zero if the strings are equal, and a positive value otherwise. 
If the strings are of different length, the comparison is carried out as if the end of the 
shorter string were padded with blanks. 

EFL Design Considerations 
This section details more completely the design considerations involved in the 
development of EFL, such as differences betwe.en EFL a·nd Ratfor, compiler design, 
and constraints on the language. 

UTek TOOLS SJ-43 



The Programming Language EFL 

Relation Between EFL and Ratfor 
There are a number of differences between Ratfor and EFL, since EFL is a defined 
language, and Ratfor is the union of the special control structures and the language 
accepted by the underlying FORTRAN compiler. Ratfor running over Standard 
FORTRAN is almost a subset of EFL. Most of the features described in the Section 
Converting Older Programs are present to ease the conversion of Ratfor programs to 
EFL. 

A few incompatibilities remain: the syntax of the for statement is slightly different in 
the two languages, and the three clauses are separated by semicolons in Ratfor, but 
by commas in EFL. (The initial and iteration statements can be compound 
statements in EFL because of this change.) The input/output syntax is quite different 
in the two languages, and there is no FORMAT statement in EFL. There are no 
ASSIGN or assigned GOTO statements in EFL. 

The major additions in EFL are character data, factored declaration syntax, block 
structure, assignment and sequential test operators, generic functions, and data 
structures. EFL permits more general forms for expressions and provides a more 
uniform syntax. 

Compiler 

Current Version 
The current version of the EFL compiler is a two-pass translator written in portable 
C. It implements all of the features described previously, except for long complex 
numbers. 

Diagnostics 
The EFL compiler diagnoses all syntax errors. It gives the line and filename (if 
known) where the error was detected. The compiler gives warnings for variables 
that are used but not explicitly declared. 

Quality of FORTRAN Produced 
The FORTRAN produced by EFL is quite clean and readable. To the extent 
possible, the variable names that appear in the EFL program are used in the 
FORTRAN code. The bodies of loops and test constructs are indented. Statement 
numbers are consecutive. Few unnecessary GOTO and CONTINUE statements are 
used. It is considered a compiler bug if incorrect FORTRAN is produced (except for 
escaped lines). 

5J-44 



Introduction to 
Debugging 

Overview 

5K 

Debugging tools let the user access the inner workings of programs, to see that they 
are running correctly. UTek provides two debuggers - adb and sdb - to debug 
programs written .in C, Pascal, Fortran 77, or assembly language. 

This section presents some introductory concepts about how debuggers work. It 
also provides information about the structure of object files, which is useful when 
you are using a debugger. 

In most cases, sdb is most convenient to use because it allows you to examine the 
source code of the program, as well as the core image file produced when an object 
file does not execute. Sdb also allows you to call procedures explicitly. 

Adb examines programs on a lower level than does sdb. It has facilities to examine 
object and core image files, as well as run programs interactively. Adb is especially 
useful for debugging programs written in assembly language, and for debugging the 
kernel. Adb also provides a primitive command file facility. 

Object Files 
Although sdb allows you to display and manipulate the program using source level 
constructs, debuggers examine the contents of an executable object file and the 
core image file created when the program halts and dumps to core. To understand 
how debuggers operate on the object file, the following figure is useful. 

UTek TOOLS SK-1 



Introduction ti 

SK-2 

TE 

HEADER 
Size Of Seg1 

TEXT SEGM 
Machine lnsl 

RELOCATIC 
Information I 

DATA SEGPt 
All Initialized 

SYMBOL TJI 
For The Loa1 

STRING TAI 
String Stora~ 

Introduction to Debugging 

Accessing Variables 
Sdb and adb let you do three things with variables: display t 
their addresses, and change their values. 

Backtraces 
Adb and sdb let you print a C program backtrace. A backtrac 
sequence of functions that brought you to the current point in 
you check to see that the parameters were passed on correc1 

the next. Sdb prints the backtrace with source line numbers. 

Termination 
You can quit the debugger at any point where you can enter c: 

necessary to finish executing the program being debugged. 

SK-4 



Introduction to 
Debugging 

Overview 

5K 

Debugging tools let the user access the inner workings of programs, to see that they 
are running correctly. UTek provides two debuggers - adb and sdb - to debug 
programs written in C, Pascal, Fortran 77, or assembly language. 

This section presents some introductory concepts about how debuggers work. It 
also provides information about the structure of object files, which is useful when 
you are using a debugger. 

In most cases, sdb is most convenient to use because it allows you to examine the 
source code of the program, as well as the core image file produced when an object 
file does not execute. Sdb also allows you to call procedures explicitly. 

Adb examines programs on a lower level than does sdb. It has facilities to examine 
object and core image files, as well as run programs interactively. Adb is especially 
useful for debugging programs written in assembly language, and for debugging the 
kernel. Adb also provides a primitive command file facility. 

Object Files 
Although sdb allows you to display and manipulate the program using source level 
constructs, debuggers examine the contents of an executable object file and the 
core image file created when the program halts and dumps to core. To understand 
how debuggers operate on the object file, the following figure is useful. 

UTek TOOLS SK-1 



Introduction to Debugging 

A.OUT 

HEADER 

TEXT SEGMENT 

DATA SEGMENT 

RELOCATlm.I 
INFORMATION 

SYMBOL 
TABLE 

STRING 
TABLE 

HEADER 
Size Of Segments And Entry Point 

TEXT SEGMENT 
Machine Instruction Space 

RELOCATION INFORMATION 
Information For The Loader 

DAT A SEGMENT 
All Initialized Data 

SYMBOL TABLE 
For The Loader And The Debuggers 

STRING TABLE 
String Storage For The Symbol Table 

CORE 

USER STRUCTURE 

SYSTEM STACK 

DAT A SEGMENT 

BSS SEGMENT 

USER 
STACK 

USER STRUCTURE 
All Process-Related Information 

PCB 
Images Of All Registers 

SYSTEM STACK 
Image Of The System Stack 

DAT A SEGMENT 
All lntialized Data 

BSS SEGMENT 
Uninitialized Globals And Common Blocks 

USER STACK 
Image Of The User Stack 

5486-03 

Figure 5K-1. Object Files. 

SK-2 



Introduction to Debugging 

Debugger Features 
Debuggers control the execution of a program and examine variables. Following are 
some features of adb and sdb that help accomplish these tasks. 

Breakpoints 
The debugger itself is a program that runs as a separate process from the program 
being debugged. Because the debugger runs as a separate process, it can control 
the execution of the program, selectively starting and stopping it at different points. 

To stop temporarily the execution of the program, set a breakpoint. It is often useful 
to set a breakpoint just before a procedure that causes the program to fail, so that 
you can examine values at that point. Adb and sdb allow you to set breakpoints, 
delete them, and display all breakpoints that are currently set. 

Execution Control 
Three basic types of commands control the execution of the program: run 
commands, single-step commands, and continue commands. 

Run commands cause the program being debugged to execute from scratch. 
Execution continues until a breakpoint is reached, an error occurs, or the program 
terminates, normally or abnormally. 

Single-step commands continue execution for a single instruction or a single line in 
the source file. 

Continue commands continue execution from a breakpoint until another breakpoint 
is reached, an error occurs, or the program terminates. 

UTek TOOLS 5K-3 



Introduction to Debugging 

Accessing Variables 
Sdb and adb let you do three things with variables: display their values, display 
their addresses, and change their values. 

Backtraces 
Adb and sdb let you print a C program backtrace. A backtrace recreates the calling 
sequence of functions that brought you to the current point in the program. This lets 
you check to see that the parameters were passed on correctly from one function to 

the next. Sdb prints the backtrace with source line numbers. 

Termination 
You can quit the debugger at any point where you can enter a command. It is not 
necessary to finish executing the program being debugged. 

SK-4 



5L 
Using the adb 
Debugger 

Introduction 
The UTek debugger adb allows you to debug programs by examining the core 
image produced when the program halts or by interactively executing a program. 
Adb prints results in a variety of formats, including octal, hexadecimal, and decimal. 
Adb also allows you to embed breakpoints in a program and patch errors in the 
object file. 

Adb is a complex debugger, and this section provides an introduction to its use. 
For more details on adb, see the UTek Command Reference, adb(l). 

Overview 
Adb is especially useful for debugging programs written in assembly language and 
for debugging the kernel. Another useful feature of adb is its ability to read 
complex, multiple commands in from another file and then execute them. 

Call the adb command by typing: 

adb objfil corfil 

Normally, objfil contains a program ready for execution. The default value for objfil 
is a.out. Corfil contains the core image of the objfile that aborted during execution. 
The default value for corfil is core. 

Command Requests 
Once you have invoked the adb utility, requests to adb take the general form: 

[address] [,count] [command] (;] 

where addresses is a location and command is a request you ask adb to perform. 
Count specifies how many times the command is executed. The default value of 
count is 1 . The semicolon (;) separates multiple commands. 

UTek TOOLS SL-1 



Using th• adb Debugger 

Leaving adb 
Adb intercepts signals, so a quit signal does not let you exit from adb. To exit from 
adb, you must type Sq or $Q. 

Addresses and Their Formats 
Adb has parameters for examining an address in either the object file or the core 
file. The ? request examines the contents of objfile, and the I request examines the 
contents of corfil. These requests take the general form: 

address?format 

or: 

address/format 

Adb maintains a current address, called dot, similar in function to dot in the UTek 
editor. Each time you enter an address, the current address is set to that location. 
When using the ? or I requests, you can advance the current address by typing 
<RETURN>, or decrement it by typing -. Typing" prints the last address you typed. 

The format that you request allows you to print the instruction present at the 
specified address in many different formats. For example, 

0126?i 

sets dot to hexadecimal 126 and prints the machine instruction at that address in 
integer format. The request: 

.,10/d 

prints sixteen decimal numbers starting at dot, where dot is the address of the 
previous item printed. 

Input integer formats in adb include the following formats. The first value is the 
default: 

nnnn default radix (hexadecimal) 

OOnnnn octal 

Oxnnn hexadecimal 

Otnnnn decimal 

5L-2 



Using the adb Debugger 

It is important to use a zero instead of the letter 0 in the last three formats. 
Otherwise, adb thinks that the integer is a symbol. 

Formats, like their associated address, are remembered. Typing a request without a 
format causes the new printout to default to the previous format. For a complete list 
of formats, see the UTek Commands Dictionary adb(1). The following are the most 
commonly-used formats and their sizes in bytes. 

02 print 2 bytes in octal 

04 print 4 bytes in octal 

d2 print 2 bytes in decimal 

04 print 4 bytes in long decimal 

x2 print 2 bytes in hexadecimal 

X4 print 4 bytes in hexadecimal 

Sn print a string using the -x convention (where control characters are printed 
as -x and and the delete character is printed as -?) 

i n print as 16032 instructions. N is the number of bytes occupied by the 
instruction. 

Commands 
We have already introduced the requests?, I, and ;. Following are some other 
commonly-used adb commands. 

print the value of the current address 

subprocess control 

$ miscellaneous requests 

escape to shell 

UTek TOOLS SL-3 



Using the adb Debugger 

Command Modifiers 
Most commands have modifiers that direct their functions. The commands most 
commonly used with a modifier are$ (miscellaneous requests) and : (manage a 
subprocess). Recall the general form of a request to adb: 

[address] [count] [command] [;] 

Modifiers in these two lists follow either the$ or the : command. 

$modifier 

< f read commands from the file f 

? print process identification 

print the general registers and the instruction addressed by the program 
counter. Dot is set to the point counter. 

b print all breakpoints and their associated counts and commands 

c C stack backtrace. If an address is given, then it as taken as the address 
of the current frame (instead of fp). 

m prints the address map 

:modifier 

b sets a breakpoint. The breakpoint is executed count -1 times before 
causing a stop. 

d delete a breakpoint at the given address. 

run objfil as a subprocess. If an address is specified, the program is 
entered at this point; otherwise it is entered at its standard entry point. 
Count specifies how many breakpoints to ignore before stopping. 

c continue the subprocess. If an address is specified, the subprocess is 
continued at that address. Count specifies how many breakpoints to ignore 
before stopping. 

s the subprocess is single-stepped count times. If there is currently no 
subprocess, then obj/ii is run as a subprocess. 

k the subprocess is terminated. 

p causes adb to consider a process active. 

SL-4 



Using the adb Debugger 

Debugging a Core Image 
Consider the following C program, example 5L-1. 

char *cp; 
main() 
{ 

strcpy (cp, "This will blow up!"); 
} 

Example SL-1. C Program with Allocation Error. 

This program illustrates a common error made by C programmers. No space has 
been allocated in which to write the string "This will blow up!". When you try to 
compile and execute the program, it results in a core dump, which you can examine 
using adb. 

The following steps illustrate how to use adb to debug the example program. 

To invoke adb, type: 

adb a.out core 

By default, adb does not have a prompt, so nothing displays on your screen after 
you type this request. Adb awaits a request. When you invoke adb you can use 
the -p option to specify a prompt. For example, to give adb an asterisk for a 
prompt, invoke it like this: 

adb -p * ..• 

The first debugging request: 

$c 
_strcpy(Ox10,0x800) from Ox129 
_main(Ox1,0x7fff8c,Ox7fff94) from Ox5b 

This gives a C backtrace through the subroutines called. The function strcpy was 
called from main. 

UTek TOOLS SL-5 



Using the adb Debugger 

The next request: 

$r 
rO Oxffffffff 
rl Ox800 
r2 Ox17 start+Ox17 
rJ Ox10cdc 
r4 OxO start 
r5 Ox10cf9 
r6 Ox10d70 
r7 Ox10cf0 
pc Ox125 _strcpy+Oxd 
fp or7fff64 
Sp Ox.7fff60 
mo OxO 
pa Oxb40 
fO OxO start 
fl OxO start 
f2 OxO start 
fJ OxO start 
f4 OxO start 
f5 OxO start 
f6 OxO start 
f7 OxO start 
fa OxO start 
mar Ox.70000 
bprO Ox44000000 
bprl Ox40000000 
bent Ox100144 
SC OxJlaJ 
_strcpy+Oxd: movsb [] 

prints out registers including the program counter and an interpretation of the 
instruction at that location. 

The request $e displays the values of all external variables: 
$e 
_environ: Ox.7fff94 
__ pgmname: Ox7fffac 
_last_err: OxO 
_errno: OxO 
_lob: OxO 
_sobuf: OxO 
-1astbuf: Oxd20 
_realloc_srchlen: Oxff fff ff f 
_end: OxO 
curbrk: Ox4da4 
minbrk: Ox4da4 
_sibuf: OxO 

5L-6 



Using the adb Debugger 

The map shows the beginning and ending addresses of the text, data, and stack 
segments. A map exists for each file handled by adb. The map for the a.out file is 
referenced by? and the map for the core file is referenced by/. To print out 
information about the maps, type: 

$m 
? map a.out 
bl = OxO el = Ox800 fl = Ox400 
b2 = Ox800 e2 = OxlOOO f2 = OxcOO 
I map core 
bl = Ox800 el = Ox5000 fl = OxlOOO 
b2 = Ox7ff400 e2 = Ox800000 f2 = Ox5800 

This output displays the contents of the maps. Maps are discussed in more detail 
later in this section. 

For this example program, it is useful to see the contents of the string pointed to by 
cp. Enter: 

*cp/x 
OxO: 
data address not found 

This command uses strcopy as a pointer to the core file and prints the information as 
a character string. It prints the address at the start of the string. The address is O, 
which is obviously incorrect. 

When you have identified the location of an error, it is useful to examine the 
address. The current address is now set to the address of the first argument. The 
request: 

.=X 

prints the current address (not its contents) in hexadecimal. 

UTek TOOLS 5L-7 



Using the adb Debugger 

Setting Breakpoints 
The following C program illustrates the use of breakpoints. This program changes 
tabs into blanks. 

SL-8 

/* decodetabs.c - C program to decode tabs */ 

#include <stdio.h> 

#define MAXLINE 80 
#define YES 1 
#define NO 0 
#define TABSP 8 

char *input = "data"; 
FILE *ibuf; 
int tabs[MAXLINE]; 

main() 
{ 

int col; 
int c; 
char ch; 

set tab (tabs) ; 
col = O; 

/* (because getc returns an int) */ 

/* set initial tab stops */ 

if ((ibuf = fopen(input, "r")) == NULL) { 
perror(input); /* file not found*/ 
exit(l); 

while ((c = getc(ibuf)) I= EOF) { 
ch = (char) c; 

switch(ch) { 
case 

do { 
putchar( ' '); 
++col; 

} while (ltabpos(col}); 
break; 



case 'o: 

default: 

} 
} 
exit(O); 

putchar( '0); 
col = O; 
break; 

putchar(ch); 
++Col; 
break; 

Using the adb Debugger 

int 
tabpos(col) 
int col; 

/* returns true if col is a tab stop *I 

{ 

} 

settab(t) 
int *t; 
{ 

if (col .>c MAXLIHE) { 
return(YES); 

} else { 
return(tabs[col]); 

} 

/* sets initial tab stops 

int i; 

for (i = O; i < MAXLIHE; ++i) { 
t[i] = ((i % TABSP) == O); 

To run this program under the control of adb, enter: 

adb a.qut -

*I 

This program does not produce a core image when it is executed, so the hyphen 
indicates an argument to adb that is not present. Again, adb does not display a 
prompt. The next thing you type is a request to the debugger. 

To set breakpoints, use the command: 

address:b 

UTek TOOLS SL-9 



Using the adb Debugger 

Enter the following requests to set breakpoints at the start of these functions: 

settab:b 
fopen:b 
tabpos:b 

C does not generate statement labels. Therefore you cannot set breakpoints at 
locations other than function entry points, unless you know the code generated by 
the C compiler. Note that some of the functions are from the C library. 

To print the location of breakpoints, use the $b request: 

$b 
breakpoints 
count bkpt 
1 _tabpos 
1 _fopen 
1 _set tab 

command 

memory breakpoints 

The display indicates a count field. adb bypasses a breakpoint count -1 times before 
stopping. The command field indicates the adb requests to be executed each time 
the breakpoint is encountered. In our example, no command fields are present. 

By displaying the original instructions at the function settab we can see that the 
breakpoint is set after the enter instruction. We can display the instructions using 
the adb request: 

settab,S?ia 
_settab: enter [], Ox4 
_settab+Ox6: movqd OxO, -Ox4(fp) 
_settab+Ox9: cm pd Ox50, -Ox4(fp) 
_settab+OxlO: ble _settab+OxJJ 
_settab+ox12: movd -Ox4(fp), rO 
_settab+Ox15: 

This request displays five instructions starting at settab and displays the address of 
each instruction. Another variation of this command displays the instructions with 
only the starting address: 

settab,S?i 
_settab: 

SL-10 

enter 
movqd 
cm pd 

[], Ox4 
OxO, -Ox4(fp) 
Ox50, -Ox4(tp) 

ble _settab+oxJJ 
movd -Ox4(fp), rO 



Using the adb Debugger 

Notice that we accessed the addresses from the a.out file using the? command. 
Usually when you ask for a printout of multiple items, adb advances the current 
address the number of bytes necessary to satisfy the request. In the last example 
five instructions were displayed and the current address was advanced over the full 
instruction. 

Once you have set the breakpoints, the :r command runs the program. 

:r 
a.out: running 
breakpoint _settab: enter [], Ox4 

Adb stops the program at the breakpoint. After the program stops at the first 
breakpoint, you can single-step through the program to make sure that the stack is 
set up. To single-step type: 

:s 
a.out: running 
stopped at _settab+Ox6: movqd OxO, -Ox4(fp) 

At this point you can use adb requests. To display the stack trace, for example, 
type: 

$c 
_settab (Oxld4c) from Oxlf2 
_main (Oxw,Ox7fff8c,Ox7fff94) from Ox5J 

Continue the program by typing :c. The example program produces the following 
output: 

:c 
a.out: running 
breakpoint _fopen: enter [r4, r5, r6, r7], Ox4 

Another useful adb request at this breakpoint is to print locations from the array 
called tabs. Type the request: 

tabs,3/8x 
_tabs: Oxl 

OxO 
Oxl 

OxO 
OxO 
OxO 

OxO 
OxO 
OxO 

OxO 
OxO 
OxO 

OxO 
OxO 
OxO 

OxO 
OxO 
OxO 

OxO 
OxO 
OxO 

OxO 
OxO 
OxO 

to display three lines of eight locations each from the array. By this point in the 
execution, settab has set a 1 at every eighth location of the array tabs. 

UTek TOOLS 5L-11 



Using the adb Debugger 

Advanced Breakpoint Usage 
The same example program illustrates more advanced uses of breakpoints. 

We can continue the execution of the program from the breakpoint at _/open by 
typing: 

:c 
a.out: running 
breakpoint _tabpos: enter [], OxO 

We encounter the first breakpoint at tabpos. Several breakpoints of tabpos occur 
until the program has changed the tab into equivalent blanks. Since we feel that the 
program is working, we can remove the breakpoint at that location: 

tabpos:d 

Continue the program again by typing: 

:c 
a.out: running 

asdlfkjdasfasfjk 
sdflkjsd flkj 
12390 84 
process terminated 

Now we can reset the breakpoint at settab and display the instructions located there. 
Enter the commands: 

settab:b settab,5?ia 
_settab: 
_settab+ox6: 
_settab+Ox9: 
_settab+OxlO: 
_settab+Ox12: 
_settab+Ox15: 

enter 
movqd 
cm pd 

ble 
movd 

[], Ox4 
OxO, -Ox4(fp) 
Ox50, -Ox4(fp) 
_settab+OxJJ 
-Ox4(fp), rO 

Note that setting a breakpoint causes the value of dot to change; executing the 
program under adb does not change dot. Therefore: 

settab:b .,5?ia 
fopen:b 

prints the last thing dot was set to ({open) instead of the location (settab) at which the 
program is executing. 

5L-12 



Using the adb Deb.41n•r 

Now display the breakpoints: 

$b 
breakpoints 
count bkpt 
1 _set tab 
1 _fopen 

memory breakpoints 

command 
settab,5?ia 

This display shows the earlier request for the settab breakpoint. When the 
breakpoint at settab is encountered, the adb request to display the instructions is 
executed, resulting in the output above. 

Other Breakpoint Requests 
• Arguments and change of standard input and output are passed to a program 

as: 

:r argl arg2 ... <infile '>Outjile 

This request kills any existing program under test and starts the a.out again. 

• Adb allows a program to be entered at a specific address by typing: 

address:r 

• The count field can be used to skip the first n breakpoints by typing: 

,n:r 

The request: 

,n:c 

can also be used to continue through the next n breakpoints when continuing a 
program. 

• A program can be continued at an address different from the breakpoint by: 

address:c 

• The program being debugged runs as a separate process and can be killed by: 

:k 

UTek TOOLS SL-13 



Using the adb Debugger 

Maps 
UTek supports several executable file formats. The name of the file type (also called 
the magic number) tell the loader how to load the program file into memory. File 
type 413 is the most common and is generated by the C compiler command cc. A 
410 file is produced by a C compiler command of the form cc -n, whereas a 407 file 
is produced by the command cc -N. adb interprets these different file formats and 
provides access to the different segments of these files through a set of maps. To 
print the maps type $m. 

In 407 files, text and data are intermixed. Therefore adb cannot differentiate data 
from instructions. 

In 410 and 413 files, the instructions and data are separated. In both these types of 
files, the corresponding core file does not contain the program text. 

Figure 5L-1 shows the display of two maps for the same program linked as a 407, 
410, or 413 file. 

5L-14 



407 FILES 

a.out hdr 

0 

core hdr 

0 

410 FILES (SHARED TEXT) 

a.out hdr 

0 

core hdr data 

8 

413 FILES (DEMAND-PAGED) 

a.out hdr 

I 
0 

core hdr data 

0 

The following adb variables are set. 

b 
d 

base of data 
length of data 
length of stack 
length of text 

text+ data 

text+data 

text 

D 

text 

D 

······I 
s 

······I 
s 

407 

0 
D 
s 
0 

Figure SL-1. adb Address Maps. 

UTek TOOLS 

Using the adb Debugger 

D 

TB 

stack 

I 
T 0 

stack 

D 

...... 1 

s 

410 

B 
D-8 

s 
T 

E 

E 

stack 

data 

data 

E 

D 

I 
D 

413 

0 
D 
s 
T 

5486-04 

SL-15 



Using the adb Debugger 

The fl field is the length of the header at the beginning of the file. The /2 field is 
the displacement from the beginning of the file to the data. For a 407 file with 
mixed text and datafi is the same as the length of the header. For 410 and 413 
files fi is the length of the header plus the size of the text portion. 

The b and e fields are the starting and ending locations for a segment. Given an 
address A, the location in the file is calculated as: 

b1)::s;A)::s;e1)-file address= (A-b1) + f1 
b2) ::s; A) ::s; e2)-file address = (A-b2) + f2 

You can access locations by using the adb-defined variables. The $v request prints 
the variables initialized by adb: 

b base address of data segment 
d length of the data segment 
s length of the stack 
t length of the text 
m execution type (407,410,413) 

In Figure 1 those variables not present are 0. You can use these variables by 
expressions such as: 

<b 

in the address field. Similarly the value of the variable can be changed by an 
assignment request.For example: 

02000>1> 

sets b to hexadecimal 2000. These variables are useful to know if the file under 
examination is an executable or core image file. 

Adb reads the header of the core image file to find the values for these variables. If 
the second file specified does not seem to be a core file, or if it is missing, then the 
header of the executable file is used instead. 

SL-16 



Using the adb Debugger 

Advanced Uses of adb 

Formatted Dump 
The request: 

< b,-1/4o4-8Cn 

prints four octal words followed by their ASCII interpretation from the data space of 
the core image file. Broken down, the various request pieces mean: 

<b the base address of the data segment print the base address to the end of 
the file. A negative count is used to loop indefinitely or until an error 
condition is detected 

The format 4o48Cn is broken down as follows: 

4o print four octal locations 

4 - back the current address up four locations 

SC print eight consecutive characters using an escape convention 

n print a <RETURN> character 

The request: 

< b,< d/4o4-8Cn 

could have been used instead to allow the printing to stop at the end of the data 
segment, since <II provides the data segment size in bytes. 

Adb lets you rearrange its output into more convenient formats. The formatting 
requests can be combined with adb's ability to read in a script and produce a core 
image dump script. To do this, invoke adb by typing: 

adb a.out core <dump 

UTek TOOLS SL-17 



Using the adb Debugger 

An example of such a script is: 
Ot120$w 
4095$s 
$v 
=3n 
$m 
=3n"C Stack Backtrace" 
$e 
=3n11Registers11 

$r 
0$s 
=3n"Data Segment" 

<b,-1/8ona 

The request Ot120$w sets the width of the output to 120 decimal characters (default 
width is 80 characters). 

The request 4095$s increases the maximum permissible offset to the nearest 
symbolic address from 255 (default) to 4095 hexadecimal. The request= can be 
used to print literal strings. Thus, headings are provided in this dump program with 
requests of the form: 

=3n"C Stack Backtrace" 

that spaces three lines and prints the literal string. The request $v displays all 
non-zero adb variables. 

The request 0$s sets the maximum offset for symbol matches to 0, thus suppressing 
the printing of symbolic tables in favor of hexadecimal values. Note that this request 
is done only for the printing of the data segment. 

The request: 

<b,-1/8ona 

prints a dump from the base of the data segment to the end of the file with an octal 
address field and eight octal numbers per line. 

5l-18 



Using the adb Debugger 

Converting Values 
You can use adb to convert values from one representation to another. For 
example, the request: 

072 = odx 

displays 

0162 58 Ox72 

which are the octal, decimal and hexadecimal representations of 072 hexadecimal. 
Adb remembers the formats you last used, so typing another number will print it in 
the given formats. 

Character values may be converted in a similar fashion. For example: 

'a'= co 

prints 

a 0141 

The = command can also be used to evaluate expressions. Note: all binary 
operators have the same precedence, and their precedence is lower than that of 
unary operators. 

UTekTOOLS SL-19 



Using the adb Debugger 

Writing to Files 
Adb writes to files using the w or W request. The write request is used frequently in 
conjunction with the locate request, I or L. Invoke the write or locate requests by 
typing: 

?I value 
?L value 
?w value 
?W value 

where value is an expression. The upper case requests match or write to four bytes, 
whereas the lower case requests match or write to two bytes. 

In order to modify a file, adb must be called by typing: 

adb -w file1 file2 

When called with this option, file I and file2 are created if necessary and opened for 
reading and writing. 

As an example of the -w option, consider a C program that has an internal logic 
flag. You could set the flag using adb and run the program. For example: 

adb a.out -
:s arg1 arg2 
flag/w 1 
:c 

The :s request is normally used to single step through a process. In this case, it 
starts a.out as a subprocess with arguments argl and arg2. If there is a subprocess 
running, adb writes to it rather than to the file, so the w request causes flag to be 
changed in the memory of the subprocess. 

Anomalies 
Following is a list of some strange things that users should be aware of. 

C backtraces are incorrect if you place a breakpoint at the first instruction of a 
subroutine, rather than after the first instruction. Adb cannot reference local or 
register variables. 

5L-20 



UTek TOOLS 

Using the adb Debugger 

Table SL-1 
ADB COMMAND SUMMARY 

Request 

? format 
I format 
=format 
?w expr 
/w expr 
?I expr 
:b 
:c 
:d 
:k 
:r 
:s 
$b 
$c 
$e 
$f 
$m 
$q 
$r 
$s 
$v 
$w 

>name 

Definition 

Print from a.out file according to format 
Print from core file according to format 
Print the value of dot 
Write expression into a.out file 
Write expression into core file 
Locate expression in a.out file 
Set breakpoint at dot 
Continue running program 
Delete breakpoint 
Kill the program being debugged 
Run a.out file under adb control 
Single-step 
Print current breakpoints 
C stack trace 
External variables 
Floating registers 
Print adb segment maps 
Exit from adb 
General registers 
Set offset for symbol match 
Print adb variables 
Set output line width 
Call shell to read rest of line 
Assign dot to variable or register name 

Table SL-2 
ADB FORMAT SUMMARY 

Request 

a 
b 
c 
D 
F 
0 
n 

s 
nt 
u· 
x 
y 

Definition 

The value of dot 
1 byte in octal 
1 byte as a character 
4 bytes in decimal 
8 bytes in floating point 
4 bytes in octal 
Print a new line 
Print a blank space 
A null-terminated character string 
Move to next n space tab 
2 bytes as unsigned decimal 
Hexadecimal 
Date 

Backup dot 
Print string 

SL-21 



Using the adb Debugger 

SL-22 

Table SL-3 
ADS EXPRESSION SUMMARY 

Expression Definition 

(expression) Expression grouping 
Add 
Subtract 
Multiply 

% Integer division 
6 Bitwise and 

Bitwise or 
Round up to the next multiple 
Not 
Contents of location 
Integer negate 



5M 
Using sdb, a Symbolic 
Debugger 

Overview 
Sdb is a debugging tool that allows you to debug programs written in C, Berkeley 
Pascal, and Fortran 77. Sdb works by examining a program at the source code 
level, which makes it an extremely useful tool for debugging programs written in 
high-level programming languages. 

This section is intended to take you through the process of debugging a program 
with sdb, as well as serving as a reference for more advanced use of the debugger. 
An example program and some examples of commonly used sdb commands are 
provided at the end of the section. 

Invoking sdb 
When you invoke sdb, the program expects to find three things in your current 
directory: the executable object file, the core image produced when the program 
crashed, and the language source file. Note that the presence of the core image is 
not necessary to debug your program. 

The general form for invoking sdb is: 

sdb [a.out] [core] 

where a.out and core are the default names for the object file and its core image file. 
If you simply type sdb, sdb finds a.out and core in the current directory. 

The following example shows a typical sequence of commands to invoke sdb: 

cc -go foo.c 
a.out 
Bus error - core dumped 
sdb a.out 
main:25: x[i] = O; 

When the object file is executed, a bus error occurs, causing the file to core dump. 
Sdb reports that the error occurred in the procedure main, at line 25. (Line numbers 
are relative to the beginning of the file.) It also prints the source text of line 25. The 
asterisk(*) in the above example is the sdb prompt, indicating that you have 
entered the debugger and it awaits a command. 

UTek TOOLS 5M-1 



Using sdb, a Symbolic Debugger 

For sdb to work correctly, you must compile your C and Fortran 77 source files with 
the -go option, also called the debug flag. Pascal source files must be compiled 
with the -g option. You cannot use sdb to debug procedures compiled without the 
debug flag. If you compile some portions of a program with the debug flag, and an 
error occurs in a procedure that is compiled without the debug flag, sdb prints the 
procedure name and the address at which the error occurred. However, you cannot 
use sdb to examine that procedure. Debugging can continue for routines compiled 
with the -go or -g option. 

~.!~~ta9es9Ju-:?!gh~ !!!. ~~!!'1~ you might want to follow to 
debug a program. These steps include tracing procedures in the stack, setting 
breakpoints, executing the program with breakpoints, continuing execution after 
breakpoint, and deleting breakpoints. 

At the end of this sdb reference guide you will find an example program executed 
under the control of sdb. 

Tracing Procedure Calls 
Type t for the trace command. This command prints the line number and the 
procedure where your program halted, as well as a back trace of the procedure calls 
and their parameters. You can examine variables in the core file for procedures 
shown in the back trace. The following pages contain instructions for examining 
variables. 

Setting Breakpoints 
After finding out where the program halts, you can try to run it again, stopping just 
before it halts. Set a breakpoint in the procedure where the error occurred by typing 
[procedure name]:b. The general form of breakpoint commands is: 

[procedure name] [file name]:[linenumber]b command 

Sdb commands are summarized later in this section. The b command sets a 
breakpoint at the first executable line of a file or procedure, unless you specify a line 
number. The B command lists all of the breakpoints that are currently set. 

SM-2 



Using sdb, a Symbolic Debugger 

Executing a Program with sdb 
After you have set breakpoints in the source file, run it using the r command. This 
command restarts the program as though it were invoked from the shell: therefore, 
you must call it with the same arguments you used at the initial execution. Type 
r[arguments]. Sdb executes the program. When sdb reaches the breakpoint it 
prints the message "Breakpoint at [procedure name] [line number]. Now you can 
examine variables at the breakpoint. 

Continuing from a Breakpoint 
To continue to the next breakpoint, type c. This command continues the execution 
of the program until it reaches another breakpoint or the program ends. To skip a 
certain number of breakpoints before stopping, type c[number] where number is the 
number of breakpoints to skip. This command is especially useful if you are in a 
loop and only want to check variables at a certain breakpoint. 

You can also types to single step the next executable line of the source file. This 
procedure is very slow if you single step across a line that calls a subroutine 
compiled without the -go option. If the current line calls the subroutine and you do 
not want to single step through a subroutine, typing S executes up to the next line in 
the current procedure. 

Deleting Breakpoints 
If you typed by itself, breakpoints are deleted interactively. The location of a 
breakpoint displays, and you can delete it by typing d o~ y. If you do not want to 
delete a breakpoints, hit <RETURN>. 

You can also delete breakpoints using the form: 

[procedure name:][linenumber]d 

to delete a specified breakpoint. 

Leaving the Debugger 
If you have finished debugging the program, you can stop its execution by typing k. 
To exit and return to the shell, type q. 

UTek TOOLS SM-3 



Using sdb, a Symbolic Debugger 

Displaying and Manipulating 
the Source File 
Sdb has been designed to make it easy to debug a program without constant 
reference to a current source listing. The debugger performs context searches 
within the source files of the program being debugged and displays selected 
portions of the source files. The commands for manipulating source text are similar 
to those of the UTek editors ed and ex. Like ed and ex, sdb keeps track of the 
current file and line within the file. Sdb also knows how the lines of a file are 
partitioned into procedures, so that it has a notion of current procedure. 

Displaying the Source File 
Four commands exist for displaying lines in the source file. They are useful for 
examining the source program and determining the context of the current line. The 
commands are: 

w print a window of 1 O lines around the current line. 

z print 10 lines starting at the current line. Current line advances by 10. 

<CTRL-D> print the next 10 lines. Current line advances by 10. 

p print the current line. 

e print the current procedure and filename. 

Changing the Current Line 
Like the UTek editors ex anded, sdb allows you to search for regular expressions in 
source files. The two commands are 

/regular expression/ 
?regular expression? 

The first command searches forward through the file for a line containing a string 
that matches the regular expression. The second command does the same thing, 
except that it searches backward through the file. You can omit the trailing I and ? 
from these commands without changing their operation. 

SM-4 



Using sdb, a Symbolic Debugger 

To move the current line forward or backward, you can also use the + and -
commands. These commands move the current line forward or backward a 
specified number of lines. These two commands can also be combined with the 
display commands so that 

+15z 

advances the current line by 15, then prints ten lines. 

Changing the Current Line in the Source File 
Thee command is used to change the current source file. Either of the forms 

e procedure 
efilename 

can be used. The first command makes the file containing the named procedure the 
current file, and the current line becomes the first line of the procedure. The second 
command makes the named file current, and the current line is the first line of the 
file. An e command with no argument prints the current procedure and file name. 

Examining Variables 
Sdb allows you to display the contents of a variable in different formats, display the 
address of the variable, or change the contents or the value of a variable. 

Displaying Variables 
The general form for displaying variables is: 

variable/ 

To display a variable in a procedure other than the current procedure, type 
procedure name:variable/. 

Normally sdb displays the variable in a format determined by its declared type in the 
source program. To request a different format, a length or format specifier is added 
after the slash. For example, the command errflg/bd displays the value of the 
variable errflg in one byte with decimal format. 

UTek TOOLS SM-5 



Using sdb, a Symbolic Debugger 

You can display a variable using the following format specifiers: 

c character 
d decimal 
u decimal unsigned 
o octal 
x hexadecimal 
f 32 bit single precision floating point 
g 64 bit double precision floating point 
s assume variable is a string pointer and print 

characters until a null is reached 
a print characters starting at the variable's 

address until a null is reached 

If you display a variable in formats d, o, x, or u, you can also specify its length. The 
length specifier precedes the format specifier. If you do not request a specific 
length for a variable, it displays in the word length of the host machine, so 32 bits on 
a workstation. The following length specifiers are available: 

b one byte 
h two bytes (half word) 
I four bytes (long word) 

The general form of a command to access a variable and display it with a different 
format and length is: 

variable/[length] [format] 

so, 

i/bx 

displays variable i in one byte hexadecimal. 

Sdb also knows about structures, one dimensional arrays, and pointers, so that all of 
the following commands work. 

array[2]/ 
sym.id/ 
psym-:>Usage/ 
xsym[20].p-:>Usage/ 

The only restriction is that array subscripts must be numbers. 

You can also display core locations by specifying their absolute addresses. The 
command 

1024/ 

displays location 1024 in decimal. 

5M-6 



Using sdb, a Symbolic Debugger 

Two other very useful commands give information about variables. The = 
command displays the address of a variable, so 

i= 

displays the address of i. Another useful feature is the command 

./ 

This redisplays the last variable you typed. 

Displaying Addresses 
To find out the address of a variable, type variable=. The general form of this 
command is 

[procedure name]: variable= {format] 

This allows you to specify a procedure name and the format of the address. Another 
useful variant is the command linenumber=. This displays the address in the object 
code that corresponds to the beginning of linenumber in the current source file. 

Changing Variables 
To change the value of a variable, type variable!value. The new value that you 
request can be a number, character, constant or another variable. Changing the 
value of variables can be very useful in determining which variable causes run-time 
errors. 

UTek TOOLS SM-7 



Using sdb, a Symbolic Debugger 

Example sdb Routine 
cat testdiv2.c 
main() { 

inti; 
i = div2(-1); 
printf("-1/2 = O/odO', i); 

} 
div2(i) { 

int j; 
j = i»1; 
return(j); 

cc -g testdiv2.c 

a.out 
-1/2 = -1 

sdb 
No core image 
*rdiv2 
6: div2(i) { 
*z 
6: div2(i) { 
7: int j; 
8: j = i»1; 
9: return(j); 
10: } 
*div2:b 
div2:8 b 
*r 
Breakpoint at 
div2:8: j = i»1 ; 

#Warning message from sdb 
# Search for procedure "div2" 

# It starts at line 6 
# Print the next few lines 

#Place a breakpoint at beginning of div2 
# Sdb echoes proc name and line number 

# Run the procedure 
# Execution stops just before line 8 

*t # Print trace of subroutine calls 
div2(-1) [testdiv2.c:8J 
main(1,2147483380,2147483388) [testdiv2.c:3J 
*i/ # Print i 
-1 

SM-8 



*s 
div2:9: 
*j/ 
-1 
*Sd 
*div2(1)/ 

0 
*dlv2(-2)/ 
-1 
*div2(-3)/ 
-2 
*q 

UTek TOOLS 

Using sdb, a Symbolic Debugger 

# Single step 
return(j); # Execution stops just before line 9 

#Print j 

# Delete the breakpoint 

# Try running div2 with different args 

#Exit sdb 

5M-9 



Using sdb, ,. Syml:Jollc Debugger 

Command 

35b 

test.c:55b 

sub2:78b 

B 

c 

s 

s 

w 

k 

!Is 

q 

glob1/ 

sub1 :p->e1/ 

arr[4]/ 

p.e1/ 

glob2/lx 

glob4/s 

sub1 :glob2=1x 

35= 

sub1 :glob4!34 

SM-10 

Table 5M-1 
EXAMPLE SOB COMMANDS 

Definition 

Trace back procedure calls 

Set breakpoint at line 35 in current source file 

Set breakpoint at line 55 of file test.c 

Set breakpoint at line number 78 in sub2 

Display all breakpoints 

Run program from start without arguments 

Continue until another breakpoint is reached 

Single step to next executable source line 

Single step across subroutine calls 

Print a 1 O line window around current source line 

Kill program 

Invoke shell to execute Is command 

Quit, exit sdb 

Display variable glob! in default format 

Display C structure element in procedure sub! 
referenced through pointer p 

Display array element 

Display C structure or Pascal record element 

Display variable glob2 as a 32 bit hex 

Display string pointed to by glob4 

Display address of glob2 in sub/ as 32 
bit hex 

Display address in object file corresponding to line 35 

Change value of variable glob4 in 
sub/ to decimal 34 



RCS - A Revision 
Control System 

6A 

The Revision Control System (RCS) maintains multiple versions of a text file. The 
RCS programs provide the following capabilities: 

• RCS stores and retrieves different versions of a file, and can reconstruct past 
versions. 

• RCS saves disk space by storing only the changes made for each version. 

• Each revision is identified and available at any time. 

• RCS can merge different revisions together. 

• RCS controls access to revisions so that only one user at a time can modify a 
file. 

!~n~o?w!r~!!!h'! Is !!g~m~ou ~!11!h~o types of files: an RCS file 
and a working file. An RCS file is identified by a , v extension. example: 

test,v 
test 

is an RCS file 
is the working file 

The working file is the file that you can edit, compile, and read. Each time you 
submit a working file to RCS, it becomes an RCS file. An RCS file keeps track of 
each submitted working file and gives it a revision number. Either of the files can 
be specified with or without a full pathname. 

You can think of RCS as being like a file system: When a file is updated, a copy is 
made and left so that previous versions of the file can be accessed. Refer to Figure 
6A-1. The RCS file cabinet is comparable to an RCS directory that has two RCS 
files in it: test, v and temp, v. To edit the latest revision in test, v, you have to take the 
file out of the file cabinet. When you take it out, RCS makes a copy of revision 1 .3, 
leaves it in the cabinet. and gives you a copy (the "working file") to work on. If you 
make changes to the working file and put it back into the file cabinet, it will be filed 
as revision 1.4. You can, at any time, access any revision in an RCS file. 

RCS also makes it possible to lock a file drawer after you have obtained a working 
file so that no one else can make changes to the revision you are working on. 

UTek TOOLS 6A-1 



RCS - A Revision Control System 

Revision 1.3 ~ 

Revision 1 .2 FILE FOLDERS 

Revision 1 . 1 

TEST,V 

TEMP, V 

RCS FILE CABINET 

5486·05 

Figure 6A-1. The RCS File Cabinet. 

Checking In and Checking Out 
If you want to put a file under the control of RCS, you start by checking in the file. 
For example, the following command checks in a file called temp.c: 

$ ci temp.c 

The system responds: 

>> 

6A-2 

temp.c,v <- temp.c 
initial revision: 1.1 
enter description, terminated with -o or '.': 
NOTE: This is NOT the log message! 



RCS - A Revision Control System 

At this point, you enter a description of your file. This description becomes part of 
the RCS file. 

When you check in a working file it is moved into the RCS file, and the working file 
no longer exists in your directory. For example, if you enter Is at this point, the 
temp.c will not be listed. To edit or read the file, you must use the co command to 
get a copy of your working file from the RCS file: 

$co temp.c 

After you have edited the file, you can check it in again. At check-in, the working file 
is given the next consecutive version number, put into the RCS file, and removed 
from your directory. This time, instead of being prompted for a description, you will 
be asked to enter a log message-a description of the changes you made to the 
version you are checking in. 

Locking the File 
Your system administrator can set the locking attribute of all RCS files to strict. This 
means that you must use the -1 option to check out a file: 

$ co -1 temp.c 

The -I option ensures that you are the only one who can check in the next update. 

If the locking attribute is set to strict and you do not use the -1 option when 
checking out the file, when you try to check in the file the system will display the 
following error message: 

ci error: no lock set by <fogin-name> 

To avoid los_ing the changes you just made, you must first use the res -1 command 
which locks the latest revision. You can then check in your file with the ci 
command. 

If you are the only one who will be putting revisions into your RCS file, then you 
don't necessarily need the locking attribute set to strict. To change from strict to 
non-strict use the following command: 

$ res -U temp.c 

To change back to strict use: 

$ res -L temp.c 

UTek TOOLS 6A-3 



RCS - A Revision Control System 

You may want to check in a file but still maintain a file you can work on (for 
example, to do some more editing). If your locking attribute is set to strict, use: 

ci -I temp.c 

The above command checks the file in, checi<s it out again, and locks it. This 
means that you can log your first changes into one revision of the file and begin 
working on the next revision. 

If you want to check in the changes you have made to a file, but still keep a current 
copy for reference use: 

ci -u temp.c 

This command checks the file in and checks it out again, but doesn't put a lock on 
the file that is checked out. If you have strict locking, you cannot change the file 
that is checked out. This is because you cannot check in a file that isn't locked. By 
default, your system administrator will have the locking on your system set to strict. 
You can set the environment variable RCSLOCK to nostrict to override this default. 

Keyword Substitution 
RCS has a variety of keywords that you can include in your text or within a comment 
statement. When the file is checked out, the keywords give helpful information about 
the revision. 

You enter a keyword in your text as follows: 

$keyword$ 

For example: 

$Author$ 

When the file is checked out, each keyword is replaced with a string of information. For 
example, if your file contains the $Author$ keyword, then when you check out the 
revision the $Author$ will be replaced with the login name of the user who checked in 
the revision: 

$Author: chrish $ 

The following is a list of RCS keywords available and their values: 

$Author$ 

$Date$ 

6A-4 

The login name of the user who checked in the revision. 

The date and time the revision was checked in. 



RCS - A Revision Control System 

$Header$ A standard header containing the RCS file name, the revision 
number, the date, the author, and the state. (The state is stage the 
revision is in. For example, Exp could mean experimental.) 

$Locker$ 

$Log$ 

The login name of the user who locked the revision (This 
information is included only if the file is not locked). 

The log message supplied during check in, preceded by the 
header. Existing log messages are NOT replaced. Instead, the 
new log message is inserted after $Log: 

$Revision$ 

$Source$ 

The revision number that RCS assigns to the revision. 

The full pathname of the RCS file. 

$State$ The state assigned to the revision with res -s or ci -s. 

Looking at the Revision History 
The rlog command prints information about the RCS file and the revisions that it 
contains. Rlog displays information in the following format: 

UTek TOOLS 

RCS file: res filename; Working file: working filename 
head: last version number 
locks: author; version number; locking attribute 
access list: login names of people who have access to RCS file 
symbolic names: names given to particular revisions 
comment leader: character or string that precedes keywords 
total revisions: number of selected revisions: # of revisions 

revisions made you asked 
to see 

description: 
description of file contents 

6A-5 



RCS - A Revision Control System 

revision: last revision number 
date: date revision checked in author: login name of author 
state: state of revision 
lines added/deleted:# of lines added to/# of lines deleted from revision 
log message 

The information under the dotted line is repeated for every revision, starting with the 
last revision and decreasing to the first. 

A useful option of rlog is the -c option, which prints only the current revision 
number of an RCS file. 

Accessing RCS and Working 
Files 
You can access an RCS file from anywhere in your file structure. It is good 
housekeeping, but not necessary, to create an RCS directory and keep all your RCS 
files there. When the RCS file is omitted in a command line or specified without a 
path, RCS looks first in the ./RCS directory and then in the current directory. 

There are three ways to specify an RCS file argument: 

• You can specify only an RCS file. The working file is placed in the current 
directory, and the, v extension is dropped. For example, if the RCS file is 
/ccljohnd!English/verb, v, then the working file is named verb. 

• You can specify only the working file. The RCS file is placed in the current 
directory and a, v extension is added. For example, if the working file is given 
as lcc/johnd/English/verb then the RCS file will be verb, v. 

• You can specify both an RCS file and a working file 

For Further Information 
This section has introduced you to the Revision Control System. There are many 
RCS commands available and each command has several options. Table 6A-1 lists 
RCS commands and a short description of each. For more information about each 
command, refer to the UTek Command Reference. 

6A-6 



UTek TOOLS 

RCS - A Revision Control System 

Table 6A-1 
RCS COMMANDS 

Command 

ci(1) 

co(1) 

ident(1) 

rcs(1) 

rcsdiff(1) 

rcsmerge(1) 

rlog(1) 

rcsfile(1) 

Description 

Checks in RCS revision 

Checks out RCS revision 

Gives keyword information for 
specified RCS file 

Changes RCS file attributes 

Compares RCS revisions 

Merges RCS revisions 

Prints log messages and other 
information about RCS files 

Describes format of RCS file 

6A-7 





68 
Using Make 

Overview 
Structured programming helps organize programming projects, and using make is 
an important tool in structured programming. Make is a UTek utility that keeps track 
of interrelated program modules and modifies them when one or more modules 
change. 

Programmers frequently divide programs into smaller, more manageable pieces. 
But it is easy to forget what files need to be reprocessed or recompiled after a 
change to part of the source code. You can tell make the sequence of files and 
commands necessary to complete the target program, as well as files that need to 
be up-to-date to complete the program. Then when you execute make, the proper 
files are created with minimal effort. Because make knows the relationship between 
the various files that comprise the program, it executes only the necessary 
commands, and only on files affected by a change. 

This section is directed at the beginning user of make, as well as more advanced 
users who can use it as a reference guide. Go to the end of this section for 
information on more advanced uses of make. 

Basic Features 
Make works by updating a target file, which you sometimes specify on the command 
line. Make checks to see that all the files on which the target depends exist and are 
current. If the dependent files have not been modified since the target was 
modified, make updates the target. Thus make depends on its ability to find the 
date and time a file was last modified. 

You enter the target file on the command line, but you must define what other files 
are necessary to build the target program. The description file (also known as a 
makefile) de.fines these dependencies. In the description file you set up a hierarchy 
of file dependencies, and you list commands to be executed to build the target 
program. When you invoke make, it checks the modification dates of dependent 
files and of the target program. If the dependent files have changed more recently 
than the target program, make looks at the description file and determines what 
commands to execute to bring all the program modules and the program itself up
to-date. 

Later in this section the description file is explained in greater detail. For now, 
follow this simple example of how make works. 

UTek TOOLS 68-1 



Using Make 

First, set up two files, test.c and sub.c. To create the file test.center: 

main() 
{ int t; 

t=O; 
printf("Hello world"); 
t= t+sub(); 
printf("%d\n",t); 

To create the file sub.center: 

sub() 
{ int j; 

J=5; 
return(j); 

Together test.c and sub.c compile to produce an executable file called test that 
produces the output "Hello worlds." Create a description file called makefile that 
defines the dependencies of the executable file test. Enter: 

test: test.c sub.c <RETURN> 
<TAB>ec test.c sub.c -o test 

The first line of makefile says that the executable file test depends on test.c and 
sub.c. The second line of makefile lists commands to be executed. It tells make to 
compile test.c and sub.c and send the output to a file called test. To run make, enter 
make test. In response to your entry the system displays the commands as it 
executes them. 

make test 

cc test.c sub.c -o test 

The default name for a description file is makefile or Makefile, so when you invoke 
make it uses the makefile to search for other files that the target test depends on, 
brings the dependent files up-to-date, and executes the associated commands. 

If no description file is present, make can still update a target file. See the "Make 
and Default Rules" section for further information. 

68-2 



Using Make 

Description Files 
The most fundamental part of using make is writing the description file or makefile. 
As we stated earlier, it defines the dependencies for all the parts of a program. The 
example description file above defined the dependencies for one target, the file test, 
but a description file can define the dependencies for many different targets. So the 
description file can define several hierarchies of dependency at the same time, as 
shown in the following program. 

prog: x.o y.o z.o 
cc x.o y.o z.o ~ls -o prog 

x.o: x.c defs 
cc -c x.c 

y.o: y.c defs 
cc -c y.c 

z.o: z.c 
cc -c z.c 

The dependencies that you define in a description file are the rules that make uses 
for its operation. But in writing a description file, you do not have to specify every 
dependency explicitly. Make contains its own default rules. As an example, let's 
consider the description file we wrote earlier, but with a minor change. The target 
program test now depends on test.o and sub.o instead of test.c and sub.c. 

test: test.o sub.o <RETURN> 
<TAB> cc test.o sub.o -o test 

Normally, the files test.c and sub.c must be compiled to create the object files. But 
the default rules of make know that the source file suffix .c in C cao be transformed 
to the object file suffix .o. Make contains a table of commonly-used program and 
processor suffixes and rules for transforming one suffix to another. The following 
are commonly-used suffixes that make recognizes. See the "Make and Default 
Rules" section for instructions on printing all the suffix transformation rules. 

UTek TOOLS 68-3 



Using Make 

,v RCS revision file 
.c C source code 
.s Assembly code 
.y Yacc input 
.sh Shell script 
.I Lex input 
.p Pascal source code 
.f Fortran 77 source code 
.r Ratfor source code 
.e EFL source code 
.h C include file 
.0 Object code 

Because make has default suffix transformation rules, always write the description 
file so that the object files depend on the target program. The target actually relies 
on executable files, instead of on source files. The target relies on the executable 
files, and the executable files depend on source code. For example, if the file x.c 
has a "#include defs" line, the object file x.o depends on the file defs; the file x.c 
does not. 

In summary, make has default rules that underlie the function of the description file. 

Parts of the Description File 
This section discusses the rules used to write a description file. The parts of the 
description file discussed in this section include: target rules, suffix rules, UTek 
commands, macros, and comment lines. This section also discusses description file 
syntax. 

Target Rules 
The target rule communicates dependency information to make. The target rule is 
also called a dependency rule. You can recognize a target rule in the description file 
because it contains an embedded colon. Target rules have the form: 

target: dependents 

where target is the file or operation you update when you enter make target. 
Dependents are the files and targets target relies on for information. When the 
dependent files are updated, the target must also be updated. The target line from 
the example description file you entered earlier was: 

test: test.o sub.o 

68-4 



Using Make 

This line says that the target program test depends on the files test.o and sub.o. 
When you enter make test, make checks to see that test.c and sub.c have been 
updated as recently as the target program test. 

You can change the last-modified time of a dependent without changing the 
contents of the dependent file using the touch command. For example, enter: 

touch filename 

The last-modified time for that file becomes the current time. Thus make can 
update a target, whether its dependents changed or not. 

The target line can also take the form: 

target:: dependents 

The double colon means that more than one rule can exist for a particular target. In 
other words, the target has two different sets of dependents. So to place a target on 
two or more lines in a description file you enter: 

targetl target2:: depl dep2 
target2:: dep3 

Entering these two target rules in the same description file indicates that target2 
depends on more than one set of names. If dep3 was modified more recently than 
target2, make brings target2 up-to-date, but does riot modify targetl. 

If depl, dep 2, and dep3 have all changed more recently than target] and target2, 
both target rules are interpreted. Make reads each rule in the order it appears in 
the description file. Make modifies the first instance of the target, and when that 
modification is complete, make moves on to the next target. 

Commands 
As we discussed earlier, make has a mechanism that modifies a target. You 
provide this mechanism by entering a UTek command line that is associated with 
each target line. These UTek commands must be executed to bring the target up
to-date. 

UTek TOOLS 68-5 



Using Make 

The UTek command line follows the target rule (dependency) line. A semicolon (;) 
or <flETURN>followed by <TAB> separate the dependency line from the command 
line. For example: 

test: test.o sub.o <RETURN> 
<TAB> cc test.o sub.o -o test 

In this example, <RETURN> followed by <TAB> separates the target line from the 
command line. The command line in the example executes the cc command with 
the -o option on the files test.c and sub.c. (Recall that make's default rules for suffix 
transformation change .o files to .c files.) 
As make executes each command, the command displays on your terminal. To turn 
off the display of individual commands, precede the description file entry for that 
command with the character @. 

Make checks the exit status of each command. A non-zero exit status for any 
command causes make to terminate, unless you precede the description file entry 
for that command with the character-. 

Normally, make executes the UTek commands directly, instead of passing them to 
the shell. This can cause problems with UTek commands that work together. For 
example, the target rule: 

target: 
cd .. 
make all 

When make tries to read this target rule, the error message make : cd : No such file 
or directory displays. The cd command is executed separately from the make 
command. And because it is executed as a separate invocation, the make 
command has no knowledge of the cd command. 

To correct this problem, you can enter a semicolon(;) to separate each UTek 
command, instead of separating the command with a <RETURN>. For example, 

target: 
cd .• ; make all 

Make invokes the shell to execute a command when the command includes the 
special characters =, <, >, : , ~, (, ), &, *, ? , [, J, : , $, ', \, or <RETURN>. The 
characters ' and " in a command do not cause make to invoke the shell. 

To summarize, the target rule and the UTek commands work together. The target 
rule states what files depend on the target, and the commands tell make what UTek 
commands to execute when the dependent files have been modified. The general 
form for this part of description file is: 

target :l-1 dependents <separator> commands 

6B-6 



Using Make 

Suffix Rules 
In addition to target rules, you can define suffix transformation rules in addition to 
the default rules built into make. Suffix rules take the following form: 

suffix1 suffix2: <:separator> commands 

where suffixl is a non-null file name suffix, like .c or , v, and suffix2 is a either a null 
or non-null file name suffix. If suffix2 is not null, it must begin with a period. A file 
ending with suffixl that has the same root as suffix2 causes make to execute the 
specified commands before suffix2 is considered current. 

Normally you do not need to define suffix rules, because make transforms one suffix 
to another automatically for commonly-used programming languages. The rules for 
transforming suffixes exist as default rules. This example shows a default rule used 
by make for changing a .c file to a .o file: 

.c.o: 
commands: 

cc [options] sourcefile -o objectfile 

This suffix rule takes file.c, compiles the dependency files, and directs the output to 
the target name to create file.o. 

NOTE 
Suffix rules are matched in the order defined in the 

description file. 

Defining Macros 
You can use make to define macros at the beginning of the description file. After 
you define a macro at the beginning of the makefile you can substitute that macro in 
a target rule or a dependency line. 

The line in the makefile that defines the macro contains an embedded equals sign 
( = ). For example: 

OBJECTS= x.o y.o z.o 
LIBES =-IS 

UTek TOOLS 68-7 



Using Make 

To invoke the macro within a target or command line, you must precede its name 
with a dollar sign($). Macro names that are more than one character long must also 
be enclosed in parentheses. For example: 

$Z 

or 

$(xy) 

The name of the macro is either the single letter following the dollar sign or the 
name inside parentheses. When you invoke the macro on a dependency line or a 
command line use $(macroname); the dollar sign tells make to substitute the value of 
the macro you defined at the beginning of the makefile. This example shows macro 
definition and substitution: 

OBJECTS = x.o y.o z.o 
LIBES =-IS 
prog: $(OBJECTS) 

cc $(OBJECTS) $(LIBES) -o prog 

For each occurrence of $(OBJECTS) make substitutes x.o, y.o, and z.o. And for 
each occurrence of $(LIBES) make substitutes -IS. Defining macros at the 
beginning of the makefile gives it much more flexibility. You can change many of 
the target rules and command lines simply by changing the macro definitions at the 
beginning of the description file. 

You can define a macro with the null value by using the equals sign by itself. For 
example, enter: 

CO FLAGS= 

68-8 



Using Make 

Special Macros 
In addition to macros that you define in the description file, make already has a set 
of special, predefined macros. The values assigned to these special macros are 
frequently used in makefiles. This saves you the trouble of entering their definitions 
at the beginning of the makefile. 

Special macros include: 

$$ 

$(MAKE) 

$(MFLAGS) 

$@ 

$< 

$? 

$* 

$% 

The dollar sign character ($). A single $ indicates a macro 
value, so make needs two dollar signs to pass the character$ 
to the shell. 

The name of the make utility (unless your system administrator 
changes it, this name is normally make). This is useful in 
multi-level description files, which are discussed later. 

The flags you entered on the command line for this invocation 
of make. This is useful in multi-level description files, which 
are discussed later. 

The name of the current target. 

The list of dependencies that caused the suffix transformation 
rule to be used. 

The list of dependencies that were out of date. 

The root of the target name .. 

The name of the member of the current archive file. 

Suppose, for example, that you want to direct the output of a command into the 
current target file. Use the $@ macro to substitute for the current target name; 
Enter in the description file: 

prog: $(OBJECTS) 
cc $(OBJECTS) $(LIBES) -o $@ 

This example description file entry for the target prog compiles the program using 
particular object files and libraries, then redirects the output into the target file by 
using -o $@. 

The special macros$@,$<,$?,$*, and$% can be expanded even further. 

The entry $(specialmacroD) expands to the directory names of its values. The entry 
$(specialmacroF) expands to the basenames of its values. 

UTek TOOLS 68-9 



Using Make 

The entry $(specialmacro:x = y) expands every occurrence of x in the macro value to 
y. For example, if the macro$? has the value filel.o file2.o, then $(?:.o = .c) 
expands the value of the macro to filel.c and file2.c. 

Just as make operates using default rules for suffix transformation, it also has 
default macros other than those we discussed above. To print out a list of those 
default macros enter: 

make -f /dev/null -p 

The default macros display at the beginning of the printout. The default macros 
include: 

MFLAGS = 
LOADLIBES = 
EFLAGS = 
FC = f77 
RFLAGS = 
RC= f77 
CFLAGS = 
PFLAGS = 
PC= pc 
AS= as 
COFLAGS = -q 
co= co 
LO= Id 
cc= cc 
LFLAGS = 
LEX= lex 
YFLAGS = 
YACC= yacc 
MAKE= make 

For now you can ignore everything on this printout except the macros that are listed 
at the beginning of the file. The macros are followed by default suffix rules that are 
discussed later in this section. 

As you can see, all of these default macros except those for command flags are 
defined. Those that end in FLAGS are set to the null string. They are present 
because many of the default rules for suffix transformation contain the FLAGS 
macro. Then if you define a FLAGS macro on the make command line, that macro 
is interpreted as make reads the default rules for suffix transformation. The 
exception to this is COFLAGS, which is always set to -q. 

68-10 



Using Make 

Enter the following makefile rule that uses default macros: 

get: get.o subs.o 
$(CC) $(CFLAGS) -o $@ get.o subs.o 

Although $(CFLAGS) is not defined at the beginning of the makefile, if you invoke 
make CFLAGS=-0, $(CC) has the value cc and $(CFLAGS) takes the value -0 from 
the definition you entered on the command line. 

Special Entries . 
Another component of the description file is a special entry. Special entries refine 
the environment in which the make utility runs. Each special entry has a name that 
begins with a period (.). Frequently, special entries are also followed by information 
that modifies the make environment. 

Some special entries correspond to make command options. For a list of those 
special entries see the UTek Command Reference, make(l). 

Following is a list of special entries that specify the information make needs to run. 
Each entry takes the form: 

special entry: arguments 

Entry 

.DEFAULT 

. DIRECTORIES 

.IGNORE 

&.SILENT 

. SUFFIXES 

UTekTOOLS 

Result 

When no rule exists for a target, the arguments following 
this entry are executed. A frequent use of this entry is to 
access SCCS files, since this version of make has no 
default rules for secs files. 

Without arguments, the directory list is set to null. With a . 
list of directories as arguments, the new directories are 
added to the directory list. 

Make ignores non-zero exit statuses. This is the same 
as the -i option. 

Suppresses the printing of commands as they are 
executed. This is the same as the -s option . 

• Without arguments, the suffix list is set to null. With 
suffixes as arguments, the new suffixes are added to the 
current suffix list. 

68-11 



Using Make 

The special entry .DIRECTORIES is extremely useful. It tells make what directories 
to search for dependent files, after make has searched the current directory. 
Suppose, for example that you have two program modules, test.c and sub.c. Test.c 
exists in the current directory, but sub.c is in the special library file /usrlmellib. Use 
the following description file to run make test: 

.DIRECTORIES: /usr/me/lib 

test: test.o sub.o 
$(CC) $(COFLAGS) -o $@ 

When you enter make test, the system responds with cc -o test. 

A complete list of special entries is available in the UTek Command Reference, 
make(J). 

Description File Syntax 
This section summarizes some syntax rules discussed in previous sections and 
introduces some new ones. 

• The target or dependency line uses a single colon (:)to separate the target 
from its dependent files. If the same target is present on two different 
dependency lines, both lines must use a double colon (::)to separate the target 
from its dependent files. 

• The target rule is separated from its associated command by a semicolon(;), 
or by <RETURN> followed by <TAB>. UTek commands are passed to a 
separate invocation of the shell, unless you separate them with a semicolon. 

• The dependent filenames in both target and suffix rules cannot contain the 
special characters:,>, &, l. space, and <TAB>, unless the special character is 
preceded by a backslash (\). All default suffix rules enclose filenames in 
double quotes ("). It is good practice to enclose filenames in double quotes 
when you write suffix rules into your makefile. 

• A line containing an embedded equals sign ( =) not preceded by a colon (:) or 
a tab defines a macro. A macro definition that has no characters to the right of 
the equal sign has the null string as its value. 

• The number sign (#) begins a comment line. Make ignores blank lines and 
lines beginning with#. 

• If a non-comment line of the description file is too long, you can continue it by 
placing a backslash(\) at the end of the line. The backslash, <RETURN>, and 
following blanks are replaced by a single space. Do not use a backslash at the 
end of a comment line. 

• The @ symbol in front of the description file command line causes make to 
execute the command, but not display it as it is executed. 

68-12 



Using Make 

Invoking the Make Command 
The general form for invoking make is: 

make options macro definitions targets 

where all arguments to the make command are optional. Summarizing these 
arguments clarifies how make works. 

Make first examines the macro definitions, and substitutes their values everywhere 
they are invoked in the description file. The macro definitions on the command line 
take precedence over the definition of the same macro in the description file. 

After make substitutes for the value of the macros, it examines the options. The 
following list details the most commonly-used options. For a complete list of 
options, see the UTek Command Reference, make(J). 

-d Print debugging output. See the examples at the end of this 
section for further information on debugging. 

-tfile Use file instead of makefile or Makefile as the name of the 
description file. 

-m Do not bring the description file up-to-date. 

-n Print the commands used to bring the target up-to-date, but do 
not execute them. However, command lines in the description file 
beginning with make are executed. 

-N Print the commands used to bring the target up-to-date, but do 
not execute them unless you enter $(MAKE) or ${MAKE} on the 
description file command line. This lets you trace multi-level 
description files, which are discussed later in this section. 

After reading the macro definitions and the options of the command line, make 
assumes that the remaining arguments are target names. If you Clo not use the -f 
option to specify a file where make should look for the target name, by default it 
looks in makefile or Makefile. You can specify multiple target names on the 
command line; as make reads multiple names it updates the targets in the order 
they appear on the command line, from left to right. 

If you do not specify a target name, make updates the first target in makefile or 
Makefile. . · 

UTek TOOLS 68-13 



Using Make 

Advanced Uses of Make 
Once you are familiar with the basic features of make and how to write a description 
file, you can use make for more advanced applications. The topics covered in this 
section include: using make for archiving and library functions, writing new implicit 
rules for yourself or for your system, and using make to debug modules. 

How Make Reads Default Rules 
To understand how make reads default rules it is necessary to understand how the 
command reads the description file and how make fills in the undefined gaps of the 
makefile with default rules. 

Make and the Description File 
When you invoke make, you specify one or more targets. In this case make 
searches inside the description file in the current directory for the rules that apply to 
those targets. 

If you simply type make, without specifying a target, make looks in Makefile or 
makefile for rules to execute. If you invoke make without the target but with the 
-ffile option, it searches file for rules to execute. When make finds the description 
file, it looks at the first target rule that does not begin with a period. Many makefiles 
have a target rule for "all" (that is, all the modules of a program) as the first target 
rule, so that simply typing make updates all the program modules. 

If you type make target, but a description file is not present in the current directory, 
make uses the default rules. Using the previous example, enter: 

make test 

The default rule that compiles a .c file into a .o file is read. When you want to 
compile only one module of a program with standard features, the default rules 
provide a fast and efficient way to accomplish the task without writing a description 
file. 

When a description file is present, make first expands the macros. Make substitutes 
for all instances of the first macro you defined, and when that operation is complete, 
make substitutes for all instances of the next macro. So, if you define the same 
macro to be two different things at different points in the description file, only the 
last definition of the macro is interpreted. Make substitutes for all the macros in the 
description file before it does anything else. 

66-14 



Using Make 

When make completes the expansion of macros, it brings the target up-to-date with 
respect to its dependents. Make looks at the file system to see when the target and 
the files it depends on were last modified. If the last-modified date of the target is 
older than the last-modified date of its dependents, make executes the commands 
associated with the target rule. 

Make executes some commands directly; other commands make passes to an 
invocation of the shell. Make passes a command to the shell if the command is a 
built-in Bourne shell command, or if the command contains a Bourne shell or C 
shell metacharacter. Make displays each command as it is executed, unless you 
invoke it using the -s option, or the special entry .SILENT is present in the 
description file. 

Make and Default Rules 
After make reads the description file, it reads default rules to fill in many gaps. For 
example, target rule dependents can be updated files; make knows what commands 
to execute to bring a file up-to-date. Make searches for default rules in a particular 
order, an order that affects its interpretation of the description file. 

A set of default rules is stored inside make itself. You can turn off these rules by 
invoking make with the -B option. 

The second location where make looks ·for default rules is in the system-wide file 
lusrlliblmakerules. The system administrator can set up default rules in this file for 
all the users on the system. This feature is provided for UTek facilities that do not 
have access to the source code of make. You can turn off th~se rules by invoking 
make with the -Y option. 

After make looks at system-wide default rules, it looks for default rules set up by the 
individual user. You can write personal default rules and put them in the file 
$HOMEl.makerc. To change the file name where make searches fo~ personal 
default rules to another file name, set the environment variable MAKERULES equal 
to another file name. You can turn off these rules by invoking make with the -R 
option. 

Whenever make is invoked, it attempts to bring makefile and Makefile up-to-date. 
Make does this by using a set of automatic rules. You can turn these rules off by 
in'voking 11)ake with the -m option. You can also turn the automatic rules off by 
invoking make with the -fjile option. The -n and -N options are ignored when 
automatic rules are read. 

The order in which make reads automatic rules is similar to the order in which it 
reads normal default rules. First, make looks within itself. Then it examines the file 
lusrlliblmfrules for system-wide automatic rules. These rules are written by the 
system administrator. They provide the ability to change automatic rules for UTek 
facilities that do not have access to source code. After make reads the system
wide automatic rules file it reads personal automatic rules in the file 
$HOMEl.mfilerc. To store personal automatic rules in another file name, set that 
file name in the environment variable MFRULES. 

UTek TOOLS 68-15 



Using Make 

You can examine the complete set of default rules and macro definitions by typing: 

make -pfn /dev/null 2>/dev/null 

This list includes system-wide and personal default rules, as well as default rules 
from make itself. 

Writing Default Rules 
As this section discussed earlier, default rules take the same form as the rules you 
write into a description file; make just reads default rules from a different location. 
Suffix rules have the general form: 

suffix/ .suf]lX2: 
commands 

As an example suppose that the files foo.c, bar.c and baz.c are in your current 
directory. Enter the following description file: 

CLFAGS = -0 
foo: foo.o bar.o baz.o 

$(CC) $(CFLAGS) -o foo foo.o bar .o baz.o 

Enter make. This executes the default rule that turns .c files into .o files and prints 
the following commands: 

cc -0 -c foo.c 
cc -0 -c bar.c 
cc -0 -c baz.c 
cc -0 -o foo foo.o bar.o baz.o 

The default rule for transforming .c to .o suffixes exists for the most normal case. 
But suppose that you want to compile C source into assembly language, then run it 
through a sed script and assemble it. In the description file enter: 

68-16 

$(CC) $(CFLAGS) -S $< 
sed -f sed.script $* .s :s(AS) -o $* .o 
rm -f $*.s 



Using Make 

When you have entered this rule in your personal default rules file, type make. 
Make executes the following commands: 

cc -0 -S foo.c 
sed -f sed.script foo.s : as -o foo.o 
rm -f foo.s 
cc -0 -o too foo.o bar.o baz.o 

Writing your own suffix rules and placing them in your personal default rules file lets 
you adapt make to your special needs. 

Multi-Level Description Files 
Multi-level description files provide a way for you to use make to execute other 
description files. For example, if you have related description files in different 
directories, but all those description files are related, you can make a master 
description file that executes make for all the other files. 

To help you understand how this works, this discussion presents an example of a 
multi-level description file. This example has description files for two levels of the 
directory hierarchy; one in the directory /usr.man, and the other in the directory 
/usr.manlmanl. The description file for the manl directory is duplicated in the 
directories /usr.manlman[2-8l. ·So the description file in the directory /usr.man 
essentially executes a make for all the description files in its subdirectories. This is 
a convenient way to maintain all the manual pages using one make command. 

Following are the two example description files. The first is in the directory 
/usr.man, while the second is in the directory !usr.manlmanl. · 

UTek TOOLS 

#Description file for usr.man 
SUBDIR= mario manl man2 manJ man4 man5 man7 man8 

all: ${SUBDIR} 

${SUBDIR}: 

clean: 

install: 

cd $@; $(MAKE) $(MFLAGS) 

for i in ${SUBDIR}; do cd $$i; 
$(MAKE) $(MFLAGS) clean; done 

for i in ${SUBDIR}; do cd $$i; 
$(MAKE) $(MFLAGS) install; done 

68-17 



U1lng A 

Followir 
same ta 
know e> 
names. 
com mar 
execute 

68-18 

Using Make 

To maintain a library with two members, ctime.o and fopen.o, ere 
makefile: 

lib: lib(ctime.o) lib(fopen.o) 
echo lib up-to-date 

The members of the library are enclosed in parentheses. The pa 
make to interpret the members with a .a suffix. 

When you type make lib, make executes the commands defined 
rule above. It breaks lib and ctime.o apart and defines two macrc 
$* = ctime. Then make finds the file ctime.c, and sets the$< me 
Now that make has the .c file ctime.c, it is compiled, archived, an 
.o file is deleted. Make performs the same process on the libra~ 
The resulting members of the lib archive library are ctime.a and j 

As mentioned earlier in this section, the special macro $% define 
member of an archive. This macro is evaluated each time the ta1 
($@) is evaluated. So when you write a description file rule for c: 

you can substitute $% for the archive member in parentheses. F 
in the description file: 

lib: lib(ctime.o) 
$(CC) -c $(CFLAGS) $< 
ar rv $% $* .o 
rm -f $*.o 

To let ctime.o have dependencies, you must include the full path 
dependent on the dependency line. For example, enter: 

lib(ctime.o): $(1NCDIR)/stdio.h 

Debugging Make: the -d Option 
The -d option lets you debug the make program. Use this optio 
or is not executing the commands that you expect. 

To invoke the debugging option enter: 

make -md target 

The -m option is necessary to suppress the automatic rules that 
description file is present. 

68-20 



Using Mfl/f.8-

The output from this command is very long and detailed. This section explains the 
broad outlines of the -d option; its specific output depends on the program make is 
updating. The first portion of the debugging output details the commands that make 
executed. The second portion of the output lists the dependencies that make used 
to accomplish its actions. 

The following sections take portions of the output of the command make -md make; 
in other words, debugging how make creates the target program "make." 

Debugging Output: Commands 
Consider this first portion of the output: 

doname(make,O) 
doname(defs,1) 
doname(./RCS/defs,v,2) 
TIME(./RCS/defs,v)=448215757 
co -q ./RCS/defs,v 
TIME(defs)=448J06162 

Let's examine this output line by line. 

doname(make,O) 
The target program of make is called "make." 

doname(defs, 1) 
The program depends on the target defs. 

dona me( ./RCS/defs, v ,2) 
The target defs implicitly depends on ./RCS/defs, v. 

TIME(./RCS/defs,v)=448215757 
The last modification date of .IRCS!defs, vis 448215757. All dates are 
relative to each other in make. 

co -q ./RCS/defs, v 
This command is executed to make defs out 9f. IRCS/defs, v. 

TIME(defs)=448306162 
Make gives defs the current time as the time of modification. 

After listing the commands and their dependents, and the new modification times, 
the -d output displaY.s all the directories that were opened during execution of the 
make command. Fo~ example, · 

UTek TOOLS 

6: /usr/include/sys 
5: /usr /include 
4: 
J: ./RCS 

68-21 



Using Make 

After printing the open directories, the -d option prints the final values of all the 
macros. If a macro has been defined in many places this can be useful, because 
make only interprets the final values of all macros. Here is an example of the first 
few macro values: 

? = defs rcsid.o ident.o main.a doname.o misc.o 
files.o dosys.o gram.o 
@ = 
< = gram.c 
* = gram 
XTESTDIR = /merlin/disks/curtests 
XDF.sTDIR = /merlin/disks/current 
XCC = /usr/16k/bin/c16 

Debugging Output: Dependencies 
The dependencies from the -d option fall into several categories. 

• The "leaf" files, those that are at the bottom of the hierarchy of dependency. 

• The list of targets, what they depend on, and the commands they cause to be 
executed. 

• The name of the target program (MAIN NAME). 

• Default rules. 

• Suffixes make used to learn about implicit dependencies. 

Each of these dependencies could have been used, according to the description file 
and. the other places make looks to interpret its rules. But only some of the 
dependencies are used. You can tell which were used by the notation 
done=(number) next to each dependent. Most commonly you will see done=O and 
done=2. Zero (0) means that the dependency was not updated, and 2 means that it 
was changed. The value 1 signifies an intermediary step between beginning and 
completion, and the value 3 means an error occurred when trying to change a 
dependent. 

Let's consider some examples of the various kind of dependency information 
displayed using the -d option. 

The dependencies at the bottom of the hierarchy take the form of a path name. 
Consider these examples: 

./RCS/gram.y,v done= 2 

./RCS/dosys.dds, v done= O 

./RCS/files.c,v done= 2 

68-22 



Using Make 

Following the information about dependencies that make was ready to use, make -d 
displays possible targets, what they depend on, and the commands necessary to 
update the target: 

rcsid.c: done= 2 
depends on: ident.c main.c doname.c misc.c files.c dosys.c gram.y 
commands: 

mklog -f "$(EXTLIBS) $(HORS) '$(WHICH) $(CC)'"$(STATE) 
rcsid.c $(SACS) 

printnew: done= O 
depends on: documents ident.c main.c doname.c misc.c files.c dosys.c gram.y 
commands: 

$(PRINT) $? Makefile : $(LPR) 
touch printnew 

Following the information about targets, make -d displays.the name of the target 
program. MAIN NAME always indicates make's primary target. 

make: done=2 (MAIN NAME) 
depends on: defs rcsid.o ident.o main.o 

doname.o misc.o files.o dosys.o 
gram.y 

commands: 
$(CC) $(CFLAGS) -o $(PGM) $(0BJS) 
rcsid.o $(LDFLAGS) 

After the '-d option prints information about the main target program, it displays all 
the default rules, again using done= 2 to indicate whether or not make used them. 
For example: 

.l.out done=O 
commands: 

$(LEX) $(LFLAGS) "$<'' 
$(CC) $(CFLAGS) lex.yy.c $(LOADLIBES) 
-11 -o "$@" 
@-rm -f lex.yy.c 

After displaying the default rules, make -d displays the suffixes make used to learn 
what implicit dependencies were present. Example output might look like this: 

UTek TOOLS 

.SUFFIXES: done=O 
depends on: .sh,v .sh .o .c .f .e .r .y .1 .s 

.p .h .o,v .c,v 

68-23 



Using Make 

Make and the -p Option 
If you want to know what the default rules and macros will do before you execute 
the make command, you can use the -p option. This option prints general 
information about macros, rules, and dependencies. It tells you what the makefile 
and default rules will do. It takes this informc:.tion from all the sources that make 
reads: source code rules, system-wide rules, personal rules, and automatic rules. 
This is a very useful option if you want to know in detail what make will do when 
executed. 

To use the -p option enter: 

make -mp target 

The -m option is necessary to suppress the automatic rules that are read when no 
description file is present. 

The output of make -mp is almost identical to that of make -md. With the -p 
option, macros display first, followed by rules. With the -p option, the commands 
make would execute display at the end of the output. 

You can interpret the output in the same way that you would interpret the -d output. 
See the previous section for details on interpreting the -d output. 

68-24 



Using lllake 

When you have entered this rule in your personal default rules file, type make. 
Make executes the following commands: 

cc -0 -S foo.c 
sed -f sed.script foo.s l as -o foo.o 
rm -f foo.s 
cc -0 -o foo foo.o bar.o baz.o 

Writing your own suffix rules and placing them in your personal default rules file lets 
you adapt make to your special needs. 

Multi-Level Description Files 
Multi-level description files provide a way for you to use make to execute other 
description files. For example, if you have related description files in different 
directories, but all those description files are related, you can make a master 
description file that executes make for all the other files. 

To help you understand how this works, this discussion presents an example of a 
multi-level description file. This example has description files for two levels of the 
directory hierarchy; one in the directory lusr.man, and the other in the directory 
lusr.manlmanl. The description file for the manl directory is duplicated in the 
directories /usr.manlman/2-81. ·So the description file in the directory /usr.man 
essentially executes a make for all the description files in its subdirectories. This is 
a convenient way to maintain all the manual pages using one make command. 

Following are the two example description files. The first is in the directory 
lusr.man, while the second is in the directory /usr.manlmanl. · 

UTek TOOLS 

#Description file for usr.man 
SUBDIR= manO manl man2 manJ man4 man5 man7 man8 

all: ${SUBDIR} 

${SUBDIR}: 

clean: 

install: 

cd $@; $(MAKE) $(MFLAGS) 

for i in ${SUBDIR}; do cd $$i; 
$(MAKE) $(MFLAGS) clean; done 

for i in ${SUBDIR}; do cd $$i; 
$(MAKE) $(MFLAGS) install; done 

68-17 



U1lng Make 

Following is the description file for /usr.manlmanl. As you can see, it has all the 
same targets as the description file of its parent directory. It is not important to 
know exactly what each target does, but notice that each file has the same target 

names. In the usr.man description file the macros $(MAKE) (which is the make 
command) and $(MFLAGS) (the options to the make command) work together to 
execute a make for its corresponding target name in the subdirectory. 

68-18 

#description file for the directory usr.man/manl 
CAT= /usr/man/catl 
DESTDIR= 
XDESTDIR= 
COFLAGS= -q -P 

/usr/man/manl 
/ecs/disks/current 

SRCS= 

VXSRCS= 

WKSRCS= 

admin.1\ 
ar.1\ 
arcv.1\ 

adb.1.vax 

adb.1.wk 

· ALLSRCS= $(SRCS) $(VXSRCS) $(WKSRCS) 

all: 

clean: 

$(ALLSRCS) 

resin $(ALLSRCS) 
rm -f $(ALLSRCS) 

install:$(ALLSRCS) 
@-mkdir $(CAT) 
@-mkdir $(DESTDIR) 
@-for i in $(SRCS); do\ 

done 

if [ -M $(DESTDIR)/$$i -lt -M $$i ] ; \ 
then \ 
install -c -o sys -m 444 $$i $(DESTDIR) \ 
echo "Updated $$i" ; \ 
fi ; \ 

@-for i in $(VXSRCS); do\ 
Name='basename $$i .vax ; \ 

done 

if [ -M $(DESTDIR)/$$Name -lt -M $$i ] ; \ 
then \ 
install -c -o sys -m 444 $$i $(DESTDIR)/$$Name \ 
echo "Updated $$i -> $$Name" ; \ 
fi ; \ 



done 

Using Make 

@-for i in $(VKSRCS); do \ 
Name='echo $$1 l sed 'sj\.wk$$/wk/\ 

;sj\.stratos$$/st/;s/.merlin$$/me/'' ; \ 

if [ -M $(DESTDIR)/$$Name -lt -M $$1 ] ; \ 
then \ 
install -c -o sys -m 444 $$1 $(DESTDIR)/$$Name \ 
echo "Updated $$1 -> $$Name" ; \ 
fl ; \ 

Basically, this second description file defines macros that describe three different 
kinds of manual pages, to be installed in three different places. The important thing 
to note is that instead of executing a make install from the directory lusr.manlmanl, 
the first description file executes a make install for all the subdirectories, including 
lusr.manlmanl. 

To ensure that the top-level description file always executes the same commands, it 
is important to use the pre-defined macros $(MAKE) and $(MFLAGS). They call the 
same make program throughout all the levels, and invoke it using the same options 
at each level. 

The -n option to make normally lets you print the commands that make would 
execute, without tracing them. But this option will not work in tracing multi-level 
description files because if a top-level file cannot actually execute the make 
command, it can't rind out any information about what action make would have at 
lower levels. You can use the -N option to trace a multi-level description file. 
When you enter make -N, this displays commands without executing them. But it 
does execute the command lines of a description file that contain $(MAKE) or 
${MAKE}. So if you write your top-level description files using the pre-defined 
$(MAKE) macro, but your lower level description files without the macro, you can 
always trace the lower levels. 

Maintaining Archive Libraries 
Make contains a rule for building libraries that is based on the .a file name suffix. 
So a .c.a suffix transformation rule internal to mak~ compiles a C language source 
file, adds it to the library, and removes the obsolete .o file. 

The actual default suffix rule to change a .c file to a .a file is: 

.c.a: 

UTek TOOLS 

$(CC) -c $(CFLAGS) $< 
ar rv $@ $* .o 
rm -f $*.o 

68-19 



Using Make 

To maintain a library with two members, ctime.o andfopen.o, create the following 
makefile: 

lib: lib(ctime.o) lib(fopen.o) 
echo lib up-to-date 

The members of the library are enclosed in parentheses. The parentheses force 
make to interpret the members with a .a suffix. 

When you type make lib, make executes the commands defined in the .c.a default 
rule above. It breaks lib and ctime.o apart and defines two macros, $@ = lib and 
$* = ctime. Then make finds the file ctime.c, and sets the$< macro to ctime.c. 
Now that make has the .c file ctime.c, it is compiled, archived, and the intermediary 
.o file is deleted. Make performs the same process on the library member fopen.o. 
The resulting members of the lib archive library are ctime.a and /open.a. 

As mentioned earlier in this section, the special macro $% defines the current 
member of an archive. This macro is evaluated each time the target name macro 
($@) is evaluated. So when you write a description file rule for archive members 
you can substitute $0/o for the archive member in parentheses. For example, enter 
in the description file: 

lib: lib(ctime.o) 
$(CC) -c $(CFLAGS) $< 
ar rv $% $*.o 
rm -f $*.o 

To let ctime.o have dependencies, you must include the full path name of its 
dependent on the dependency line. For example, enter: 

lib(ctime.o): $(1NCDIR)/stdio.h 

Debugging Make: the -d Option 
The -d option lets you debug the make program. Use this option when make halts 
or is not executing the commands that you expect. 

To invoke the debugging option enter: 

make -md target 

The -m option is necessary to suppress the automatic rules that are read when no 
description file is present. 

66-20 



6C 
Using Make and RCS 
Together 

Introduction 
This section assumes a working knowledge of both RCS and make, utilities 
described in sections 6A and 68. The source code control of RCS, combined with 
the ability of make to update program modules, gives you a complete system for 
managing programming projects. 

Directory Searching 
The UTek version of make lets you write description file rules for RCS files as 
though the target and dependent files were all in the current directory. For example, 
if you have a target program called test where the file test.o depends on test, make 
normally searches for a file with the root name test as a predecessor to test.o. 

Make has default suffix rules for RCS files. The end of this section lists all of these 
suffix rules. Basically, these rules tell make how to transform a, v file to an 
executable file. Consider the following target rule: 

test: test.a sub.o 

If you enter: 

make test 

make looks for source files that have the same root name as test. Make.looks for 
the source files test.c and sub.c in the current directory and in a subdirectory named 
RCS. 

Normally make looks in the current directory for files with the same root name. But 
the special entry .DIRECTORIES lists other directories where make looks for files . 
./RCS is the default directory for the special entry .DIRECTORIES. Using the 
example above, make would look for test.c, v and sub.c, v"in the RCS subdirectory. 

The default list of directories contains only ./RCS. A default suffix rule exists that 
transforms a .c, v file to a .c file. This means that fest.c by default depends on 
.IRCS/test.c, v. You do not need to specify this RCS dependency in your description 
file since it is written into the default suffix transformation rules and the default 
directory search. 

UTek TOOLS 6C-1 



Using Make and RCS Together 

Writing Special RCS Suffix Rules 
The list at the end of this section details the default rules for RCS suffix 
transformation. As with other default rules, you can modify them to meet your 
needs. 

Rules you write yourself enlarge on the default suffix rules. All the , v suffix 
transformation rules are alike in the commands they use to create a source file from 
a ,v file: 

$(CO) $(COFLAGS) "$<'' 

Substituting the default values of these macros, make generates the .c source file by 
executing co -q on the target , v file. After make generates the .c source file, it uses 
the .c.o suffix transformation rule to create an executable .o file. 

But when you write your own RCS suffix rules, you can eliminate the intermediate .c 
files. Intermediate source files are unnecessary since they also exist in the RCS 
directory. 

For example, suppose that you want to check a file out of RCS control, compile it 
into assembly language, run it through a sed script, and assemble it to create an 
executable file. Enter in the makefile: 

$(CO) $(COFLAGS) $< 
$(CC) $(CFLAGS) -S $ * .c 
sed -f sed.script $ * .s : $(AS) -o $ * .o 
rm -f $* .s $* .c 

This script removes the intermediary.sand .c files. 

6C-2 

NOTE 
If the RCS file is located in an RCS directory, co places 

the working file in the current directory, not necessarily in 
the parent directory of the RCS directory. 



Using Make and RCS Together 

Suffix Conversion Rules for 
RCS Files 
Make contains default rules for performing the following RCS suffix conversions: 

NULL SUFFIX RULES: 
,v 
.c,v 
.s,v 
.y,v 
.sh,v 
.l,v 
.p,v 
.f,v 
.r,v 
.e,v 

OTHER RULES: 
.c,v.o 
.c,v.a 
.s,v.a 
.p,v.o 
.e,v.o 
.r,v.o 
.f,v.o 
.s,v.o 
.y,v.c 
.y,v.o 
.l,v.o 
.l,v.c 
.c,v.c 
.sh,v.sh 
.f ,v.f 
.e,v.e 
.r,v.r 
.y,v.y 
.l,v.I 
.s,v.s 
.p,v.p 
.h,v.h 

UTek TOOLS 6C-3 





6D 
The Awk Programming 
Language 

General 
The awk is a file-processing programming language designed to make many 
common information and retrieval text manipulation tasks easy to state and perform. 
The awk: 

• Generates reports 

• Matches patterns 

• Validates data 

• Filters data for transmission 

Program Structure 
The awk program is a sequence of statements of the form 

pattern {action} 
pattern {action} 

The awk program is run on a set of input files. The basic operation of awk is to scan 
a set of input lines, in order, one at a time. In each line, awk searches for the 
pattern described in the awk program, then if that pattern is found in the input line, 
a corresponding action is performed. In this way, each statement of the awk 
program is executed for a given input line. When all the patterns are tested, the next 
input line is fetched; and the awk program is once again executed from the 
beginning. 

In the awk command, either the pattern or the action is omitted, but not both. If 
there is no action for a pattern, the matching line is simply printed. If there is no 
pattern for an action, then the action is performed for every input line. The null awk 
program does nothing. Since patterns and actions are both optional, actions are 
enclosed in braces to distinguish them from patterns. 

UTek TOOLS 60-1 



The Awk Programming Language 

For example, this awk program prints every input line that has an x in it: 

Ix/ {print} 

An awk program has the following structure: 

• a <BEGIN> section 

• a <record> or main section 

• an <END> section 

The <BEGIN> section is run before any input lines are read, and the <END> section 
is run after all the data files are processed. The <record> section is the section that 
is run over and over for each separate line of input. 

Values are assigned to variables from the awk command line. The <BEGIN> section 
is run before these variable assignments are made. 

The words BEGIN and END are actually patterns recognized by awk. These are 
discussed further in the pattern section of this guide. 

Lexical Conventions 
All awk programs are made up of lexical units called tokens. In awk there are eight 
token types: 

• numeric constants 

• string constants 

• keywords 

• identifiers 

• operators 

• record and file tokens 

• comments 

• separators 

6D-2 



The Awk Programming Language 

Numeric Constants 
A numeric constant is either a decimal constant or a floating constant. A decimal 
constant is a nonnull sequence of digits containing at most one decimal point as in 
12, 12., 1.2, and .12. A floating constant is a decimal constant followed bye or E, 
followed by an optional + or - sign, followed by a nonnull sequence of digits as in 
12e3, 1.2e3, 1.2e-3, and 1.2E+3. The maximum size and precision of a numeric 
constant are machine dependent. 

String Constants 
A string constant is a sequence of zero or more characters surrounded by double 
quotes as in "," 11a11

, 11ab11 , 

and " 1211
• A double quote is put in a string by preceding it with a backslash. For 

example, 11He said, \Sit!\""· A newline is put in a string by using \n in its place. No 
other characters need to be escaped. Strings can be (almost) any length. 

Keywords 
Strings used as keywords are shown in Figure 60-1. 

Ke_ywords 
begin break length 
end close log 
FILENAME continue next 
FS close number 
NF exit print 
NR exp printf 
OFS for split 
ORS getline sprintf 
OFMT if sqrt 
RS in string 

index substr 
int while 

Figure 60-1 . Strings Used as Keywords. 

I dent if iers 
Identifiers in awk denote variables and arrays. An identifier is a sequence of letters, 
digits, and underscores, beginning with a letter or an underscore. Uppercase and 
lowercase letters are different. 

UTek TOOLS 60-3 



The Awk Programming Language 

Operators 
The awk has assignment, arithmetic, relational, and logical operators similar to 
those in the C programming language and regular expression pattern matching 
operators similar to those in the UTek operating system programs egrep and lex. 

Assignment operators are shown in Figure 60-2. 

Ass~nment O_.e.erators 

Symbol Usa_s_e Descr!P_tion 

= assignment 

plus-equals 
X + = Y is similar 

+= to X = X + Y 

minus-equals 
X- = Y is similar 

-= 
to X = X-Y 

* times-equals 
X * = Y is similar 

= to X = X*Y 

I= divide-equals 
X = Y is similar 
to X =XIV 

O/o= mod-equals 
X % = Y is similar 
to X = X%Y 

prefix and + +X and X+ + are similar 
++ postfix to X=X+ 1 

increments 

prefix and - -X and X- - similar 
- postfix to X = X-1 

decrements 

Figure 60-2. Symbols and Descriptions for Assignment Operators. 

60-4 



The Awk Programming Language 

Arithmetic operators are shown in Figure 60-3. 

division 

% modulus 

( ... ) grouping 

Figure 6D-3. Symbols and Descriptions for Arithmetic Operators. 

Relational operators are shown in Figure 60-4. 

s 
< 

<= less than or equal to 

e ual to 

!= not equal to 

>= reater than or e ual to 

> greater than 

Figure 6D-4. Symbols and Descriptions for Relational Operators. 

UTek TOOLS 60-5 



The Awk Programming Language 

Logical operators are shown in Figure 60-5. 

I I or 

not 

Figure 60-5. Symbols and Descriptions for Logical Operators. 

Regular expression matching operators are shown in Figure 60-6. 

Regular Expression Pattern Matching Operators 
S_ymbol Descr!P.tion 

- matches 
does not match 

Figure 6D-6. Symbols and Descriptions for Regular Expression Pattern. 

Record and Field Tokens 
The variable $0 is a special variable whose value is that of the current input record. 
The variables $1, and $2 . . . are special variables whose values are those of the 
first field, the second field, and so on, of the current input record. The keyword NF 
(Number of Fields) is a special variable whose value is the number of fields in the 
current input records. Thus $FN has, as its value, the value of the last field of the 
current input records. Notice that the field of each record is numbered 1 and that the 
number of fields can vary from record to record. None of these variables is defined 
in the action associated with a BEGIN or END pattern, where there is no current 
input record. 

The keyword NR (Number of Records) is a variable whose value is the number of 
input records read so far. The first input record read is 1. 

60-6 



The Awk Programming Language 

Record Separators 
The keyword RS (Record Separators) is a variable whose value is the current record 
separator. The value of RS is initially set to newline, indicating that adjacent input 
records are separated by a newline. Keyword RS is changed to any character c by 
including the assignment statement RS = "C" in an action. 

Field Separator 
The keyword FS (Field Separator) is a variable indicating the current field separator. 
Initially, the value of FS is a blank, indicating that fields are separated by white 
space, that is, any nonnull sequence of blanks and tabs. Keyword FS is changed to 
any single character c by including the assignment statement F = 11c11 in an action 
or by using the optional command line argument -Fe. Two values of c have special 
meaning, space and t. The assignment statement FS = " " makes white space in 
the field separator; and on the command line, -Ft makes tab the field separator. 

If the field operator is not a blank, then there is a field in the record on each side of 
the separator. For instance, if the field separator is 1, the record 1XXX1 has three 
fields. The first and last are null. If the field separator is blank, then fields are 
separated by white space, and none of the NF fields is null. 

Multiline Records 
The assignment RS = 11 " makes an empty line the record separator and makes a 
nonnull sequence (consisting of blanks, tabs, and possibly a newline) the field 
separator. With this setting, none of the first NF fields of any record are null. 

Output Record and Field Separators 
The value of OFS (Output Field Separator) is the output field separator. It is put 
between fields by print. The value of ORS (Output Record Separators) is put after 
each record by print. Initially ORS is set to a newline and OFS to a space. You can 
change these values to any string by assignments such as ORS = 11abc 11 and 
OFS = "xyz". 

UTek TOOLS 60-7 



The Awk Programming Language 

Comments 
A comment is introduced by a# and terminated by a newline. For example: 

# this line is a comment 

A comment can be appended to the end of any line of an awk program. 

Separators and Brackets 
Tokens in awk are usually separated by nonnull sequences of blank, tabs, and 
newlines, or by other punctuation symbols such as commas and semicolons. Braces 
{ ... } surround actions, slashes I ... I surround regular expression patterns, and 
double quotes " .•. " surround strings. 

Primary Expressions 
In awk, patterns and actions are made up of expressions. The basic building blocks 
of expressions are the primary expressions: 

• numeric constants 

• string constants 

• var 

• function 

Each expression has both a numeric and a string value, one of which is usually 
preferred. The rules for determining the preferred value of an expression are 
explained below. 

Numeric Constants 
The format of a numeric constant was defined previously in the topic Lexical 
Conventions. Numeric values are stored as floating point numbers. Both the numeric 
and string value of a numeric constant are the decimal number represented by the 
constant. The preferred value is the numeric value. 

60-8 



Tiie Awk Programming Language 

Numeric values for string constants are in Figure 60-7. 

Numeric Constants 

Numeric Numeric String 
Constant Value Value 

0 0 0 

1 1 1 

.5 0.5 .5 

.5e2 50 50 

Figure 60-7. Numeric Values for String Constants. 

String Constants 
The format of a string constant was defined previously in Lexical Conventions. The 
numeric value of a string constant is O unless the string is a numeric constant 
enclosed in double quotes. In this case, the numeric value is the number 
represented. The preferred value of a string constant is its string value. The string 
value of a string constant is always the string itself. 

String values for string constants are in Figure 60-8. 

St. C rm_g_ onstants 

String Numeric String 
Constant Value Value 

"" 0 emp!YSRace 

"a" 0 a 

"XYZ" 0 x:t_Z 

"0" 0 0 

"1" 1 1 

".5" 0.5 .5 

".5e2" 50 .5e2 

Figure 60-8. String Values for String Constants. 

UTek TOOLS 60-9 



The Awk Programming Language 

Vars 
A var is one of the following: 

• identifier 

• identifier{expression} 

• $term 

The numeric value of any uninitialized var is 0, and the string value is the empty 
string. 

An identifier by itself is a simple variable. A var of the form identifier {expression} 
represents an element of an associative array named by identifier. The string value 
of expression is used as the index into the array. The preferred value of identifier or 
identifier {expression} is determined by context. 

The var $0 refers to the current input record. Its string and numeric values are those 
of the current input record. If the current input record represents a number, then 
the numeric value of $0 is the number and the string value is the literal string. The 
preferred value of $0 is string unless the current input record is a number. The $0 
cannot be changed by assignment. 

The var $1, $2, ... refer to fields 1, 2, ... of the current input record. The string and 
numeric value of $i for 1 <= i<= NF are those of the ith field of the current input 
record. As with $0, if the ith field represents a number, then the numeric value of $i 
is the number and the string value is the literal string. The preferred value of $i is 
string unless the ith field is a number. The $i is changed by assignment. The $0 is 
then changed accordingly. 

In general, $term refers to the input record if term has the numeric value 0 and to 
field i if the greatest integer in the numeric value of term is i. If i < 0 or if i > = 100, 
then accessing $i causes awk to produce an error diagnostic. If NF< i < = 100, then 
$i behaves like an uninitialized var. Accessing $i for i >NF does not change the 
value of NF. 

60-10 



The Awk Programming Language 

Functions 
The awk has a number of built-in functions that perform common arithmetic and 
string operations. 
The arithmetic functions are in Figure 60-9. 

Functions 

exp (expression) 
int (expression) 
log (expression) 
sqrt (expression) 

Figure 60-9. Built-in Functions for Arithmetic and String Operations. 

These functions (exp, int, log, and sqrt) compute the exponential, integer part, 
natural logarithm, and square root, respectively, of the numeric value of expression. 
The (expression) can be omitted; then the function is applied to $0. The preferred 
value of an arithmetic function is numeric. 

String functions are shown in Figure 60-10. 

String Function 
_g_etline 

index (expression1, expression2) 
length (expression) 
split (expression, identifier) 
split (expression1, identifier, expression2) 

sprintf (format, expression1, expression2 ... ) 
substr (expression1, expression2) 
substr (expression1, expression2, expression3) 
system (expression) 

Figure 60-10. Expressions for String Functions. 

The function getline causes the next input record to replace the current record. It 
returns 1 if there is a next input record or a 0 if there is no next input record. The 
value of NR is updated. 

UTek TOOLS 60-11 



The Awk Progtammlng Language 

The function index (e1 ,e2) takes the string value of expressions e1 and e2, and 
returns the first position where e2 occurs as a substring in e1. If e2 does not occur 
in e1, index returns 0. For example, index (11abc 11 , 11bc 11 ) = 2 and index (11abc 11 , 

"BC") =0. 

The function length without an argument returns the number of characters in the 
current input record. With an expression argument, length (e) returns the number of 
characters in the string value of e. For example, length (11abc 11 ) = 3 and 
length (17) = 2. 

The function split (e array, sep) splits the string value of expression e into fields that 
are then stored in array fl], array [2], ... , array fnl using the string value of sep as 
the field separator. Split returns the number of the fields found in e. The function 
split (e, array) uses the current value of FS to indicate the field separator. For 
example, after invoking n = split ($0), a[1], a[2, ... , a(nJ is the same sequence of 
values as $1, $2 ..• , $NF. 

The function sprintf (f, e1, e2 ... ) produces the value of expressions e1, e2 ... in 
the format specified by the string value of the expression f. The format control 
conventions are those of the printf statement in the C programming language. 

The function substr (string, pos) returns the suffix of string starting at position pos. 
The function substr (string, pos, length) returns the substring of string that begins at 
position pos and is length characters long. If pos + length is greater than the length 
of string then substr (string, pos, length) is equivalent to substr (string, pos). For 
example, substr (11abc 11 , 2, 1) = 11b 11 , substr (11abc 11

, 2, 2) = 11 bc 11 , and subtr 
( 11abc 11 , 2, 3) = 11bc 11

• Positions less than 1 are taken as 1. A negative or zero 
length produces a null result. 

The function system(string) produces the output from executing the shell !bin/sh on 
string. For example, to print the current date use: 

awk 'BEGIN {date=system("date"); 
printf "%s" date; exitJ' 

This also means that an awk program with this line at the beginning of the file: 

#! /bin/awk -f 

is the same as executing awk -f filename on the shell command line. 

The preferred value of sprintf and substr is string. The preferred value of the 
remaining string functions is numeric. 

60-12 



The Awk Programming Language 

Terms 
Various arithmetic operators are applied to primary expressions to produce larger 
syntactic units called terms. All arithmetic is done in floating point. A term has one of 
the following forms: 

• primary expression 

• term binop term 

• unop term 

• incremented var 

• (term) 

Binary Terms 
In a term of the form: 

• term1 

• binop 

• term2 

The form binop can be one of the five binary arithmetic operators +, -, 
*(multiplication), /(division), %(modulus). The binary operator is applied to the 
numeric value of the operand terml and term2, and the result is the usual numeric 
value. This numeric value is the preferred value, but it can be interpreted as a string 
value (See Numeric Constants). The operators *, /, and % have higher precedence 
than + and-. All operators are left associative. 

Unary Term 
In a term of the form: 

unop term 

The form unop can be unary + or -. The unary operator is applied to the numeric 
value of term, and the result is the usual preferred numeric value. However, it can 
be interpreted as a string value. Unary + and - have higher precedence than *, /, 
and%. 

UTek TOOLS 60-13 



The Awk Programming Language 

Incremented Vars 
An incremented var has one of the forms: 

+ +var 
--var 
var+ + 
var- -

The + + var has the value var + I and has the effect of var = var + I. Similarly, 
- - var has the value var - I and has the effect of var = var - 1. Therefor, var + + 
has the same value as var, and has the effect of var = var + I. Similarly, var - -
has the same value as var and has the effect of var = var - I. The preferred 

value of an incremented var is numeric. 

Parenthesized Terms 
Parentheses are used to group terms in the usual manner. 

Expressions 
An awk expression is one of the following: 

• term 

• term term ... 

• var asgnop expression 

Concatenation of Terms 
In an expression of the form terml term2 ... , the string value of the terms are 
concatenated. The preferred value of the resulting expression is a string value that 
can be interpreted as a numeric value. Concatenation of terms has lower 
precedence than binary + and -. For example, 1 + 2 3 + 4 has the string (and 
numeric) value 37. 

Assignment Expressions 
An assignment expression is one of the forms; 

var asgnop expression 

60-14 



The Awk Programming Language 

In this case, asgnop is one of the six assignment operators: 

+= 

I= 
O/o= 

The preferred value of var is the same as that of expression. 

In an expression of this form, the numeric and string values of var become those of 
expression: 

var = expression 

The expression: 

var op = expression 

is equivalent to: 

var = var op expression 

In this case, op is one of; +, -, *, I, %. The asgnops are right associative and have 
the lowest precedence of any operator. Thus, a + = b * = c-2 is equivalent to the 
sequence of assignments. 

b = b * (0-2) 
a= a+2 

Using Awk 
There are two ways in which to present your awk program of pattern-action 
statements to awk for processing: 

If the program is short (a line or two), it is often easiest to make the program the first 
argument on the command line: 

awk' program 'files 

In this command files is an optional list of input files and program is your awk 
program. Note that there are single quotes around the program in order for the shell 
to accept the entire string (program) as the first argument to awk. For example, write 
to the shell: 

awk' /X/ {print} 'files 

UTek TOOLS 60-15 



The Awk Programming Language 

This runs the awk script Ix/ {print} on the inputfi/es. If no input files are specified, 
awk takes input from the standard input. You can also specify that input comes from 
the standard input by using the hyphen (-) as one of the files. The pattern-action 
statement: 

awk'program'files -

looks for input from files and from the standard input and processes first from files, 
then from the standard input. 

Alternately, if your awk program is long, it is more convenient to put the program in 
a separate file, awkprog, and tell awk to fetch it from there. This is done by using 
the -f option after the awk command: 

awk -f awkprog files 

In this command files is an optional list of input files that can include the standard 
input. 

The following example program prints hello world on the standard output: 

awk'BEGIN { 

prints 

hello, world 

} 

print "hello, world" 
exit 

Recall that the word "BEGIN" is a special pattern indicating that the action following 
in braces is run before any data is read. The words "print" and "exit" are both 
discussed in later sections. 

You could also create a file containing: 

BEGIN { 
print "hello, world" 
exit 
} 

if this file is named awkprog, enter the command 

awk -f awkprog 

This has the same effect as the first procedure. 

60-16 



The Awk Programming Language 

Input: Records and Fields 
The awk reads its input one record at a time unless you change it. A record is a 
sequence of characters from the input ending with a newline character or with an 
end of file. Thus, a record is a line of input. The awk program reads in characters 
until it encounters a newline or end of file. The string of characters, thus read, is 
assigned to the variable $0. You can change the character that indicates the end of 
a record by assigning a new character to the special variable RS (the record 
separator). Assignment of values to variables and these special variables such as 
RS are discussed later. 

Once awk reads in a record, it splits the record into fields. A field is a string of 
characters separated by blanks or tabs, unless you specify otherwise. You can 
change field separators from blanks or tabs to whatever characters you choose, in 
the same way that record separators are changed. That is, the special variable FS is 
assigned a different value. 

As an example, let us suppose that the file countries contains the area in thousands 
of square miles, the population is millions, and the continent for the ten largest 
countries in the world. 

Sample input file countries: 

Russia 8650 262 Asia 
Canada 3862 24 North America 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
Australia 68 14 Australia 
India 1269 637 Asia 
Argentina 72 26 South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

The white spaces are tabs in the original input, and a single blank separates North 
and South from America. We use this data as the input for many of the awk 
programs in this guide, since it is typical of the type of material that awk is best at 
processing. This material includes a mixture of words and numbers separated into 
fields, or columns separated by blanks and tabs. 

Each of these lines has either tabs separate the fields. This is what awk assumes 
unless told otherwise. In the above example, the first record is: 

Russia 8650 262 Asia 

When this record is read by awk, it is assigned to the variable $0. If you want to 
refer to this entire record, it is done through the variable, $0. For example, the 
following input prints the entire record: 

{print $0} 

UTek TOOLS 60-17 



The Awk Programming Language 

Fields within a record are assigned to the variables $1, $2, $3, and so forth; that is, 
the first field of the present record is referred to as $1 by the awk program. The 
second field of the present record is referred to as $2 by the awk program. The ith 
field of the present record is referred to as $i by the awk program. Thus, in the 
above example of the file countries, in the first record; 

$1 is equal to the string "Russia" 
$2 is equal to the integer 8650 
$3 is equal to the integer 262 
$4 is equal to the string "Asia" 
$5 is equal to the null string 

To print the continent, followed by the name of the country, followed by its 
population, use the following awk script: 

{print $4, $1, $3} 

Note that awk does not require type declarations. 

Input: From the Command Line 
You can assign values to variables from within an awk program. Because you do 
not declare types of variables, a variable is created simply by referring to it. An 
example of assigning a value to a variable is: 

X=5 

This statement in an awk program assigns the value 5 to the variable x. It is also 
possible to assign values to variables from the command line. This provides another 
way to supply input values to awk programs. 

For example: 

awk' {print x}' x = 5 -

This prints the value 5 on the standard output for each record from the standard 
input. The minus sign at the end of this command is necessary to indicate that 
input is comming from the standard input instead of a file called x = 5. Similarly if 
the input comes from a file named file, the command is: 

awk' {print x}' file 

60-18 



The Awk Programming Language 

You cannot assign values to variables used in the BEGIN section in this way. 

If you must change the record separator and the field separator, you can do so from 
the command line. For example: 

awk -f awk.program RS=":" file 

Here, the record separator is changed to a colon(:). This causes your program in 
the file awk.program to run with records separated by the colon instead of the 
newline character, and with input coming from file. You can also change the field 
separator from the command line. 

Another way exists to change the field separator from the command line. There is a 
separate option -Fx that is placed directly after the command awk. This changes 
the field separator from blank or tab to the character x. For example: 

awk -F: -f awk.program file 

This changes the field separator FS to a colon (:). Note that if the field separator is 
specifically set to a tab, (that is, with the -F option or by making a direct 
assignment to FS) blanks are recognized by awk as separating fields. However, 
even if the field separator is specifically set to a blank, tabs are still recognized by 
awk as separating fields. 

Try this example problem to exercise what you have learned in this section. Using 
the input file countries write an awk script that prints the name of a country followed 
by the continent that it is on. Do this in such a way that continents composed of two 
words (for example, North Ame_rica) are processed as only one field and not two. 

Output: Printing 
An action may have no pattern; in this case, the action is executed for all lines as in 
the simple printing program: 

{print} 

This is one of the simplest actions performed by awk. It prints each line of the input 
to the output. It also prints one or more fields from each line. For instance, using the 
file countries: 

awk' { print $1, $3 } ' countries 

UTek TOOLS 60-19 



The Awk Programming Language 

This prints the name of the country and the population: 

Russia 262 
Canada 24 
China 866 
USA 219 
Brazil 116 
Australia 14 
India 637 
Argentina 14 
Sudan 19 
Algeria 18 

Note that the use of a semicolon at the end of statements in awk programs is 
optional. Awk accepts both: 

{print $1} 

{print $1 ;} 

Both forms mean the same thing. If you want to put two awk statements on the 
same line of an awk script, the semicolon is necessary. For example, the following 
semicolon is necessary if you want the number 5 printed: 

{x = 5; print x} 

Parentheses are also optional with the print statement. 

print $3,$2 

It is the same as: 

print ($3, $2) 

Items separated by a comma in a print statement are separated by the current 
output field separators (normally spaces, even though the input is separated by tabs) 
when printed. The OFS is another special variable that you can change. These 
special variables are summarized in a later section. 

Try another example problem. 

Using the input file, countries, print the continent followed, by the country followed by 
the population, for each input record. Then pipe the output to the UTek operating 
system command sort so that all countries from a given continent are printed 
together. 

Print also prints strings directly from your programs with the awk script: 

{print 11hello, world"} 

As another example exercise, print a header to the output of the previous problem. 
The header says "Population of Largest Countries", and is followed by headers to 
the other columns, for example, Country or Population. 

60-20 



The Awk Programming Language 

As we have already seen, awk makes available a number of special variables with 
useful values; for example, FS and RS. We now introduce another special variable 
in the next example. NR and NF are both integers that contain the number of the 
present record and the number of fields in the present record, respectively. So this 
example prints each record number and the number of fields in each record, 
followed by the record itself: 

{print NR, NF, $0} 

Using this program on the file, countries yields: 

This awk program 

{print NR, $1} 

prints: 

1 Russia 
2 Canada 
3 China 
4 USA 
5 Brazil 
6 Australia 
7 India 
8 Argentina 
9 Sudan 
10 Algeria 

14 Russia 
25 Canada 
34 China 
45 USA 
55 Brazil 
64 Australia 
74 India 
85 Argentina 
94 Sudan 
104 Algeria 

8650 262 
3852 24 
3692 866 
3615 219 
3286 116 
2986 14 
1269 637 
1072 26 
968 19 
920 18 

Asia 
North America 
Asia 
North America 
South America 
Australia 
Asia 
South America 
Africa 
Africa 

This is an easy way to supply sequence numbers to a list. Print, by itself, prints the 
input record. This prints the empty line: 

print"" 

Awk also provides the statement printf so that you can format output as desired. 
Print uses the default format "%.6g" for each variable printed. 

printjformat, expr, expr, ... 

This formats the expressions in the list according to the specification in the string, 
format, and prints them. The format statement is exactly that of the printf in the C 
library. For example, this prints $1 as a string of 1 O characters (right justified). 

{printf"%10s %6d0, $1, $2, $3} 

UTek TOOLS 60-21 



The Awk Programming Language 

The second and third fields (6-digit numbers) make a neatly columned table. 

However, without the comma in the print statement it produces the output: 

helloworld 

To get a comma in the output, you can either insert it in the print statement as in 
this case: 

{ x="hello";y="world" 
print x","Y 
} 

You can also insert a comma by changing OFS in a BEGIN section: 

BEGIN {OFS=", "} 

{x="hello";y="world" 
print x,y 
} 

Both of these last two scripts print: 

hello, world 

Note that the output field separator is not used when $0 is printed. 

Output: To Different Files 
The UTek operating system shell allows you to redirect standard output to a file. 
The awk program also lets you direct output to many different files from within your 
awk program. For example, with our input file countries we want to print all the data 
from countries of Asia in a file called ASIA, II the data from countries in Africa in a 
file called AFRICA, and so on. This is done with the following awk program: 

{if ($4 = = 11 Asia") print > 11ASIA" 

} 

if ($4 = = 11 Europe 11
) print > 11 EUROPE" 

if ($4= = 11 North 11 ) print> 11 NORTH_AMERICA 11 

if ($4 = = 11South 11 ) print > 11 SOUTH_AMERICA 11 

if ($4 = = 11Australia 11
) print >"AUSTRALIA" 

if ($4 = = 11 Africa 11
) print >"AFRICA" 

The control flow statements are discussed later. 

60-22 



The Awk Programming Language 

In general, you can direct output into a file after a print or a print! statement by 
using a statement of the form: 

print >"FILE" 

where FILE is the name of the file receiving the data, and the print statement can 
have any legal arguments to it. 

Notice that the filenames are quoted. Without quotes, the filenames are treated as 
uninitialized variables and all output then goes to the same file. 

If > is replaced by », output is appended to the file rather than overwriting it. 

Note that there is an upper limit to the number of files that are written in this way. 
At present it is NOFILE -3. 

Output: To Pipes 
You can also direct printing into a pipe instead of a file. For example: 

{ 
print $1 : 11sort 11 

} 

This takes the first field of each input record, sorts these fields, and then prints 
them. The command in quotes is any UTek command. 

As an example exercise, write an awk script that uses the input file to: 

• List countries that were used previously 

• Print the name of the countries 

• Print the population of each country 

• Sort the data so that countries with the largest population appear first 

• Mail the resulting list to yourself 

Another example of using a pipe for output is the following idiom that guarantees 
that its output always goes to your terminal: 

print . . . : "cat -u /dev/tty 11 

Only one output statement to a pipe is permitted in an awk program. In all output 
statements involving the redirection of output, the files or pipes are identified by 

their names, but they are created and opened only once in the entire run. 

UTekTOOLS 60-23 



The Awk Programming Language 

Comments 
You can place comments in awk programs; they begin with the character# and end 
with the end of the line. For example: 

print x, Y #this is a comment 

Patterns 
A pattern in front of an action acts as a selector that determines if the action is to be 
executed. A variety of expressions are used as patterns: 

• Regular expressions 

• Arithmetic relational expressions 

• String valued expressions 

• Combinations of these 

BEGIN and END 
The special pattern, BEGIN, matches the beginning of the input before the first 
record is read. The pattern END matches the end of the input after the last line is 
processed. BEGIN and END thus provide a way to gain control before and after 
processing for initialization and wrapping up. 

As you have seen, you can use a BEGIN to put column headings on the output: 

BEGIN {print 11Country11
, 

11Area", 
11 Population 11

, "Continent"} 
{print} 

This produces the output: 

Russia 8650 262 Asia 
Canada 3852 24 North America 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
Australia 2968 14 Australia 
India 1269 637 Asia 
Argentina 1072 26 South America 
Sudan 968 18 Africa 

6D-24 



The Awk Programming Language 

Formatting is not very good here; print/ would do a better job. 

Recall also that the BEGIN section is a good place to change special variables such 
as FS or RS: 

BEGIN { FS = " " 
print "Countries", "Area", " 

Population", "Continent" 
} 
{print} 

END forint 11The number of records is" ,NA} 
In this example program, FS is set to a tab in the BEGIN section and as a result all 
records have exactly four fields. 

Note that if BEGIN is present it is the first pattern, END is the last if it is used. 

Relational Expressions 
An awk pattern is any expression involving comparisons between strings of 
characters or numbers. For example, if you want to print only countries with more 
than 100 million population enter: 

$3>100 

This tiny awk program is a pattern without an action so it prints each line whose 
third field is greater than 100: 

Russia 8650 262 Asia 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
India 1269 637 Asia 

To print the names of the countries that are in Asia type: 

$4 = ="Asia" {print $1} 

This produces the output: 

Russia 
China 
India 

UTek TOOLS 6D-25 



The Awk Programming Language 

The conditions tested are<, <=, = =, ! =, >=, and >. In such relational tests, if 
both operands are numeric, a numerical comparison is made. Otherwise, the 
operands are compared as strings. Thus: 

$1 >= "s" 

This selects lines that begin with S, T, U, and so forth. In the case of countries: 

USA 
Sudan 

3615 
968 

219 North America 
19 Africa 

In the absence of other information, fields are treated as strings, so this program 
compares the first and fourth fields as strings of characters: 

$1 = = $4 

It prints the single line: 

Australia 2968 14 Australia 

If fields appear as numbers, the comparisons are done numerically. 

Regular Expressions 
Awk provides powerful capabilities for searching for strings of characters. These 
are regular expressions. The simplest regular expression is a literal string of 
characters enclosed in slashes. 

/Asia/ 

This is a complete awk program that prints all lines containing any occurrence of the 
name Asia. If a line contains Asia as part of a larger word like Asiatic, it is also 
printed. 

Awk regular expressions include those in: 

• the text editor ed 

• the pattern finder grep 

For example, you print all lines that begin with A using: 

Or all lines that begin with A, B, or C using: 

rEABCJ/ 

60-26 



The Awk Programming Language 

Or all lines that end with "ia" using: 

/ia$/ 

In general, the caret C) indicates the beginning of a line. The dollar sign ($) 
indicates the end of the line, and characters enclosed in braces match any one of 
the characters enclosed. In addition, awk allows parentheses for grouping, the pipe 
(I) for alternatives, + for "one or more" occurrences, and ? for "zero or one" 
occurrences. For example, this prints all the records that contain either an x or a y: 

Ix IYI {print} 

This program prints all records that contain an a, followed by one or more x's, 
followed by a b: 

/ax+ b/ {print} 

This program prints all records that contain an a, followed by ze.ro or one x's, 
followed by ab: 

/ax?b/ {print} 

The characters period(.) and asterisk(*) have the same meaning as they have in 
ed. A period can stand for any character and an asterisk means zero or more 
occurrences of the character preceding it. For example: 

la.bl 

This matches any record that contains an a, followed by any character, followed by a 
b. That is, the record must contain an a and ab separated by exactly one 
character. 

Just as in ed, you can turn off the special meaning of these metacharacters by 
preceding them with a backslash. An example of this is the pattern: 

/\I. *\II 

This matches any string of characters enclosed in slashes. 

You can also specify that any field or variable matches a regular expression (or does 
not match it) by using the operators or !'. For example, with the input file countries 
the program: 

$1 - /ia$/ {print $1} 

This prints all countries whose name ends in "ia": 

Russia 
Australia 
India 
Algeria 

UTek TOOLS 60-27 



The Awk Programming Language 

Combinations of Patterns 
A pattern is made up of similar patterns combined with the operators : : (OR), && 
(AND), ! (NOT), and parentheses. For example: 

$2 >= 3000 && $3 >= 100 

This selects lines where both area AND population are large. For example: 

Russia 
China 
USA 
Brazil 

8650 262 
3692 866 
3615 219 
3286 116 

Asia 
Asia 
North America 
South America 

This program selects lines with Asia or Africa as the fourth field: 

$4 = = 11Asia" : : $4 = = 11Africa11 

An alternate way to write this last expression is with a regular expression: 

$1 - r(Asia :Africa))$/ 

the operators && and : : guarantee that their operands are evaluated from left to 
right; evaluation stops as soon as truth or falsehood is determined. 

Pattern Ranges 
The pattern that selects an action can consist of two patterns separated by a 
comma. For example: 

pattern1, pattern2 { ... } 

In this case, the action is performed for each line between an occurrence of pattern1 
and the next occurrence of pattern2 (inclusive). As an example with no action: 

/Canada/,/Brazil/ 

This prints all lines between the one containing Canada and the line containing 
Brazil. For example: 

Canada 
China 
USA 
Brazil 

3852 
3692 
3615 
3286 

24 
866 
219 
116 

North America 
Asia 
North America 
South America 

This program does the action for lines 2 through 5 of the input: 

NR = = 2, NR = = 5 { ... } 

6D-28 



The Awk Programming Language 

Different types of patterns are mixed as in: 

/Canada/,$4 = = 11Africa11 

This prints all lines from the first line containing "Canada" up to and including the 
next record whose fourth field is "Africa". 

Note that patterns in this form occur outside of the action parts of the awk programs 
(outside of the braces that define awk actions). If you need to check patterns inside 
an awk action (inside the braces) use a control flow statement such as if or while. 
Control flow statements are discussed in the topic Built-in Functions. 

Actions 
An awk action is a sequence of action statements separated by newlines or 
semicolons. These action statements do a variety of bookkeeping and string 
manipulating tasks. 

Variables, Expressions, and Assignments 
The awk program provides the ability to do arithmetic and to store the results in 
variables for later use in the program. However, variables can also store strings of 
characters. You cannot do arithmetic on character strings, but you can stick them 
together and pull them apart as shown. As an example, consider printing the 
population density for each country in the file countries: 

{print $1, (1000000 * $3)/($2 * 1000)} 

(Recall that in this file the population is in millions and the area in thousands.) The 
result is population density in people per square mile: 

Russia 30.289 
Canada 6.23053 
China 234.561 
USA 60.5809 
Brazil 35.3013 
Australia 4.71698 
India 501.97 
Argentina 24.2537 
Sudan 19.6281 
Algeria 19.5652 

The formatting is bad; so using print! instead gives the program: 

{printf" %10s %6.lf0,$1, (1000000 * $3)/($2 * 1000) 

UTek TOOLS 60-29 



The Awk Programming Language 

This produces the output: 

Russia 30.3 
Canada 6.2 

China 234.6 
USA 60.6 

Brazil 35.3 
Australia 4.7 

India 502.0 
Argentina 24.3 

Sudan 19.6 
Algeria 19.6 

Arithmetic is done internally in floating point. The arithmetic operators are +, -, *, I 
and% (mod or remainder). 

To compute the total population and number of countries from Asia write: 

{pop + = $3; + + n} 
END {print "total population of", n, "Asian countries is", pop} 

This produces "total population of three Asian countries is 1765." 

Indeed, these operators, + +, -, - =, le, * =, + =, and % = are available in awk 
as they are in C. Operator x + = y has the same effect as x = x + y, but + = is 
shorter and runs faster. The same is true of the + + operator; it adds one to the 
value of a variable. The increment operators + + and - are used as prefix or 
postfix operators. These operators are also used in expressions. 

Initialization of Variables 
In the previous example, we did not initialize pop or n; yet, everything worked 
properly. This is because variables by default are initialized to the null string, which 
has a numerical value of 0. This eliminates the need for most initialization of 
variables in BEGIN sections. We can use default initialization to advantage in this 
program that finds the country with the largest population: 

maxpop < $3 { 
maxpop = $3 
country = $1 

} 
END {print country, maxpop} 

This produces the output: 

China 866 

60-30 



The Awk Programming Language 

Field Variables 
Fields in awk share essentially all of the properties of variables. they are used in 
arithmetic and string operations. They can be assigned to and initialized to the null 
string. Thus, divide the second field by 1000 to convert the area to millions of 
square miles using: 

{ $2 I= 1000; print } 

You can process two fields into a third using: 

BEGIN {FS= II 11 } 

{$4 = 1000 * $31 $2; print} 

Or you can assign strings to a field: 

/USA/ {$1 = "United States" ; print } 

This replaces USA by United States and prints the affected line: 

United States 3615 219 North America 

Fields are accessed by expressions; thus, $NF is the last field and $(NF-1) is the 
second to last. Note that the parentheses are needed since $NF-1 is 1 less than 
the values in the last field. 

String Concatenation 
Strings are concatenated by writing them one after the other as in the following 
example: 

This prints: 

{x = "hello" 

} 

x = x ", world" 
print x 

hello, world 

With input from the file countries, the following program: 

IA/ { s = s II II $1 } 
END { print s } 

This prints: 

Australia Argentina Algeria 

UTek TOOLS 60-31 



The Awk Programming Language 

Variables, string expressions, and numeric expressions can appear in 
concatenations; the numeric expressions are treated as strings in this case. 

Special Variables 
Some variables in awk have special meanings. These are detailed here and the 
complete list is given. 

NA Number of the current record. 

NF Number of fields in the current record. 

FS Input field separator, by default a blank or tab. 

RS Input record separator, by default it is set to the newline character. 

$i The ith input field of the current record. 

$0 The entire current input record. 

OFS Output field separator, by default it is set to a blank. 

ORS Output record separator, by default it is set to the newline character. 

OFMT 

FILENAME 

Type 

The format for printing numbers, with the print statement, be 
default is "%.6g". 

The name of the input file currently being read. This is useful 
because awk commands are typically of the form: awk -f 
program filel filel fi/e3 . ... 

Variables (and fields) take on numeric or string values according to context. For 
example, pop is presumably a number: 

pop + = $3 

While in this example, country is a string: 

country = $1 

In this example, the type of maxpop depends on the data found in $3, which is 
determined when the program is run: 

maxpop <$3 

60-32 



The Awk Programming Language 

In general, each variable and field is potentially a string or a number or both at any 
time. When a variable is set by the assignment, its type is set to that of expr: 

v = expr 

(Assignment also includes + =, + +, - =, and so on.) An arithmetic expression is of 
the type, "number"; a concatenation of strings is of type "string". If the assignment 
is a simply copy as in: 

v1 = v2 

then the type of v1 becomes that of v2. 

In comparisons, if both operands are numeric, the comparison is made numerically. 
Otherwise, operands are coerced to strings if necessary and the comparison is 
made on strings. 

The type of any expression is coerced to numeric by subterfuges such as: 

expr + 0 

Or you can coerce the type to string by: 

expr "" 

This last expression is string concatenated with the null string. 

Arrays 
As well as ordinary variables, awk provides one-dimensional arrays. Array elements 
are not declared; they come into existence by being mentioned. Subscripts can 
have any non-null value including non-numeric strings. 

As an example of a conventional numeric subscript, this statement assigns the 
current input line to the NRth element of the array x: 

x[NRJ = $0 

In fact, it is possible in principle, although slow, to process the entire input in a 
random order with the following awk program: 

{ x[NRJ = $0} 
END { . . . program ... } 

The first line of this program records each input line into the array x. In particular, 
the following program: 

{ x[NRJ = $1} 

UTek TOOLS 60-33 



The Awk Programming Language 

when run on the file countries produces an array of elements with: 

x[1] = "Russia" 
x[2] = "Canada" 
x[3] = "China" 

Arrays are also indexed by non-numeric values that give awk a capability rather like 
the associative memory of Snobol tables. For example, write: 

/Asia/ {pop[" Asia"] + = $3 } 
/Africa {pop[Africa] + = $3} 
END print " Asia=" pop[ 11Asia 11], 11Africa = 11 pop[ 11 Africa 11 ] } 

This produces the output: 

Asia 1765 Africa= 37 

Notice the concatenation. Also, any expression can be used as a subscript in an 
array reference. So this example uses the first field of a line (as a string) to index 
the array area: 

area[$1] = $2 

Built-in Functions 
The function: 

length 

is provided by awk to compute the length of a string of characters. The following 
program prints each record preceded by its length: 

{print length, $0} 

In this case the variable length means length($0), the length of the present record. 
In general, length(x) returns the length of x as a string. With input from the file 
countries, the following awk program prints the longest country name: 

length($1) >max {max = length($1); name = $1 } 
END { print name } 

The function: 

split 

written as split (s, array) assigns the fields of the string "s" to successive elements 
of the array. 

60-34 



The Awk Programming Language 

For example: 

split)" Now is the time", w) 

This assigns the value "now" to w[1 J, "is" to w[2J, and so on. It is possible to 
have a character other than a blank as the separator for the elements of w. For this, 
use split with three elements: 

n = split(s,array, sep) 

This splits the string s into array[1 J, ... array[nJ. The number of elements found is 
returned as the value of split. If the sep argument is present, its first character is 
used as the field separator; otherwise, FS is used. This is useful if in the middle of 
an awk script you must change the record separator for one record. 

Also provided by awk are the math functions: 

sqrt 
log 
exp 
int 

They provide the square root function, the base e logarithm function, exponential 
and integral part functions. This last function returns the greatest integer less than 
or equal to its argument. These functions are the same as those of the C library, so 
they have the same return on error as those in the C library. See the UTek 
Command Reference for information on C library return values. 

The subtract function is: 

substr 

The form substr(s,m,n) produces the substring of s that begins at position m and is 
at most n characters long. If the third argument is omitted, the substring goes to the 
end of s. For example, you can abbreviate the country names in the file countries: 

{ $1 = substr($1, 1,3); print } 

This produces the output: 

Aus 8650 262 Asia 
Can 3852 24 North America 
Chi 3692 866 Asia 
USA 3615 219 North America 
Bra 3286 116 South America 
Aus 2968 14 Australia 
Ind 1269 637 Asia 
Arg 1072 26 South America 
Sud 968 19 Africa 
Alg 920 18 Africa 

UTek TOOLS 60-35 



The Awk Programming Language 

Ifs is a number, substr uses its printed image. 

The function: 

index: 

in the form index(s/,s2) it returns the leftmost position where the strings2 occurs in 
sl, or zero if s2 does not occur in sl. 

This function: 

sprintf 

formats expressions as the printf statement does, but assigns the resulting 
expression to a variable instead of sending the results to the standard output. For 
example: 

x = sprintf( 11 %10s %6d ", $1, $2) 

This sets x to the string produced by formatting the values of $1 and $2. The x is 
then used in subsequent computations. 

The function: 

getline 

immediately reads the next input record. Fields NA and $0 are all set, but control is 
left at exactly the same spot in the awk program. Getline returns O for the end of a 
file and a 1 for a normal record. 

Control Flow 
The awk provides the basic control flow statements: 

• if-else 

•while 

• for 

These statements are grouped as in the C language. 

The if statement is used as follows: 

if (condition) statement/ else statement2 

The condition is evaluated, and if it is true statement/ is executed; otherwise, 
statement2 is executed. The else part is optional. Several statements enclosed in 
braces are treated as a single statement. You can rewrite the maximum population 
computation for the file countries using an if statement: 

60-36 



Tit• .Awk Programming La"'uege 

{ if (maxpop < $J) { 
maxpop= $J 
country= $1 
} } 

END {print country, maxpop } 

Awk also provides a while statment: 

while (condition) statement 

The condition is evaluated; if it is true, the statement is executed. The condition is 
evaluated again, and if true, the statement is executed. The cycle repeats as long 
as the condition is true. For example, the following prints all input fields, one per 
line: 

{ i = 1 

} 

while (i <= NF) 
print $i 
++i 
} 

Another example is the Euclidean algorithm for finding the greatest common divisor 
of $1 and $2: 

{printf"the greatest common divisor of" $1" and ",$2,"is" 
while ($1 =!$2) { 

if ($1>$2) $1 = $1 - $2 
else $2 = $2 - $1 
} 

printf $1 " 0 
} 

The for statement is like that of C: 

for (expressionl; condition; expression2) statement 

This has the same effect as: 

expression1 
while (condition) { 

statement 
expression2 
} 

So you can write another awk program that prints all input fields one per line: 

UTek TOOLS 

{ for (i=l; i <= NF; i++) 
print $i 

} 

60-37 



The Awk Programming Language 

This is an alternate form of the or statement. It is suited for accessing the elements 
of an associative array, as in awk: 

for (i in array) statement 

This executes statement with the variable i set in turn to each subscript of the array. 
The subscripts are each accessed once but in random order. Chaos ensues if the 
variable i is altered or if any new elements are created within the loop. For 
example, you could use the for statement to print the record number, followed by 
the record of all input records after the main program is executed: 

{ x[NR] = $0 } 
END { for(i in x) { print i, x[i] } 

A more practical example is the following use of strings to index arrays to add the 
populations of countries by continents: 

BEGIN {FS='"'} 
{population[$4] =+ $J} 

END {for(i in population) 
print i, population[i] 

} 

In this program, the body of the for loop is executed for i equal to setting the string 
"Asia", then for i equal to the string "North America", and so forth until all the 
possible values of i are exhausted; that is, until all the strings of names of countries 
are used. Note, however, the order in which the loops are executed is not specified. 
If the loop associated with "Canada" is executed before the loop associated with the 
string "Russia", such a program produces the output: 

South America 26 
Africa 16 
Asia 637 
Australia 14 
North America 219 

Note that the expression in the condition part of an if, while, or, for statement can 
include relational operators like<, <=, >, >=, = =, and ! =. It can include regular 
expressions that are used with the matching operators - and !-; it can include the 
logical operators : :, &&, and !; and it also includes parentheses for grouping. 

The break statement, if it occurs within a while or for loop, causes an immediate 
exit from the while or for loop. 

The continue statement, when it occurs within a while or for loop, causes the next 
iteration of the loop to begin. 

60-38 



The Awk Programming Language 

The next statement in an awk program causes awk to skip immediately to the next 
record and begin scanning patterns from the top of the program. (Note the 
difference between getline and next. Getline does not skip to the top of the awk 
program.) 

If an exit statement occurs in the BEGIN section of an awk program, the program 
stops execution and the END section is not executed. 

An exit that occurs in the main body of the awk program causes execution of the 
main body of the awk program to stop. No more records are read, and the END 
section is executed. An exit in the END section causes execution to terminate at 
that point. 

Report Generation 
The control flow statements in the last discussion are especially useful when you 
use awk as a report generator. Awk is useful for tabulating, summarizing, and 
formatting information. We have seen an example of awk in the tabulation of 
populations. Here is another example of this capability. Suppose you have a file 
called prog.usage that contains lines of three fields; name, program and usage: 

Smith draw 3 
Brown eqn 1 
Jones nroff 4 
Smith nroff 1 
Jones spell 5 
Brown spell 9 
Smith draw 6 

The first line indicates that Smith used the draw program three times. If you want to 
create a program that has the total usage o each program along with the names in 
alphabetical order and the total usage, use the following program, called list.a: 

{ use[$1 "" $2] + = $3} 
END {for (np in use) 

print np 11 
" use[np] : "sort + 0 + 2nr" } 

This program produces the following output when prog. usage is used as the input 
file: 

Brown eqn 1 
Brown spell 0 
Jones nroff 4 
Jones spell 5 
Smith draw 9 
Smith nroff 

UTek TOOLS 6D-39 



The Awk Programming Language 

To format the previous output so that each name is printed only once, pipe the 
output of the previous awk program into the following program, called format.a: 

{ if ($1 I= prev) } 
print $1 ":" 
rev = $1 
} 

print It II $211 II $J 
} 

The variable prev prints the unique values of the first field. The command: 

awk -f list.a prog.usage : awk -f format.a 

This gives the output: 

Brown: 
eqn 
spell 

Jones: 
nroff 
spell 

Smith: 
draw 
nroff 

1 
9 

4 
5 

9 

It is often useful to combine different awk scripts and other shell commands, such 
as sort, as we did in the last program. 

Cooperation with the Shell 
Normally, an awk program is either contained in a file or enclosed within single 
quotes: 

awk '{print $1 }' 

Awk uses many of the same characters that the shell does, such as $ and the 
double quote. Surrounding the program with single quotes ensures that the shell 
passes the awk program to awk intact. 

60-40 



The Awk Programming Language 

Consider writing an awk program to print the nth field, where n is a parameter 
determined when the program is run. That is, we want a program called field such 
that: 

field n 

runs the awk program: 

awk '{print $n}' 

How does the value of n get into the awk program? 

There are several ways to do this. One is to define field as follows: 

awk '{print $'$1'}' 

Spaces are critical here: as written, there is only one argument, even though there 
are two sets of quotes. The $1 is outside the quotes, visible to the shell, and 
therefore substituted properly when field is invoked. 

Another way to do this job relies on the fact that the shell substituted for $ 
parameters within double quotes: 

awk " {print $1} 11 

Here the trick is to protect the first $ with a\\; the $1 is again replaced by the 
number when field is invoked. 

Miscellaneous Hints 
You can simulate the effect of multi-dimensional arrays by creating your own 
subscripts. For example: 

for (i = 1; i <= 10; i++) 
for (j = 1; J. <= 10; j++) 

mult[i "," j] = ••• 

This creates an array whose subscripts have the form i,j; that is, 1,1; 1,2; and so 
forth, thus simulating a two-dimensional array. 

UTek TOOLS 60-41 





Interactive Desk 
Calculator (DC) 

Introduction 

7A 

The DC program is an interactive desk calculator program implemented on the UTek 
operating system to do arbitrary-precision integer arithmetic. It has provisions for 
manipulating scaled fixed-point numbers and for input and output in bases other 
than decimal. 

The size of numbers that can be manipulated by DC is limited only by available core 
storage. On typical implementations of the UTek system, the size of numbers that 
can be handled varies from several hundred on the smallest systems to several 
thousand on the largest. 

· The DC program works like a stacking calculator using reverse Polish notation. 
Ordinarily, DC operates on decimal integers; but an input base, output base, and a 
number of fractional digits to be maintained can be specified. 

A language called BC has been developed which accepts programs written in the 
familiar style of higher-level programming languages and compiles the output which 
is interpreted for the compiler interface and are not easy for a human user to 
manipulate . 

. Numbers that are typed into DC are put on a pushdown stack. The DC commands 
work by taking the top number or two off the stack, performing the desired 
operation, and pushing the result on the stack. If an argument is given, input is 
taken from that file until its e.nd; then it is taken from the standard input. 

DC Commands 
Any number of commands are permitted on a line. Blanks and newline characters 
are ignored except within numbers and in places. where a register name is expected. 

The following constructions are recognized: 

number (such as 244) 

The value of a number is pushed onto the stack. A number is an unbroken string of 
digits O through 9 and uppercase letters A through F (treated as digits with values 
1 O through 15, respectively). The number may be preceded by an underscore (_) to 
input a negative number and numbers may contain decimal points. 

UTek TOOLS ?A-1 



Interactive Desk Calculator (DC) 

The top two values on the stack are added ( + ), subtracted (-), multiplied (*), divided 
(/), remaindered(%), or exponentiated n by using 

+-*/%~ 

The two entries are popped off the stack, and the result is pushed on the stack in 
their place. The result of a division is an integer truncated toward zero. An 
exponent must not have any digits after the decimal point. 

In the following example, the top of the main stack is popped and stored in a 
register named x (where x may be any character): 

sx 

If s is uppercase, x is treated as a stack; and the value is pushed onto it. Any 
character, even blank or newline, is a valid register name. 

The value of register xis pushed onto the stack. Register xis not altered. If the I in 
the following example is uppercase, register xis treated as a stack, and its top value 
is popped onto the main stack: 

Ix 

All registers start with empty value which is treated as a zero by the command I and 
is treated as an error by the command L. 

The following characters perform the stated tasks: 

d The top value on the stack is duplicated. 

p The top value on the stack is printed. The top value remains 
unchanged. 

All values on the stack are printed. 

x Treats the top element of the stack as a character string, removes it 
from the stack, and executes it as a string of DC commands. 

[ .•. ] Puts the bracketed character string onto the top of the stack. 

q Exits the program. If executing a string, the recursion level is 
popped by two. If q is uppercase, the top value on the stack is 
popped; and the string execution level is popped by that value. 

<x>x=x!<x!>x !=x The top two elements of the stack are popped and 

7A-2 

compared. Register xis executed if they obey the stated 
relation. Exclamation point is negation. 

v Replaces the top element on the stack by its square root. The 
square root of an integer is truncated to an integer. 

Interprets the rest of the line as a UTek software command. Control 
returns to DC when the command terminates. 

c All values on the stack are popped; the stack becomes empty. 



Interactive Desk Calculator (DC) 

The top value of the stack is popped and used as the number radix 
for further input. If i is uppercase, the value of the input base is 

pushed onto the stack. No mechanism has been provided for the 
input of arbitrary numbers in bases less than 1 or greater than 16. 

o The top value on the stack is popped and used as the number radix 
for further output. If o is uppercase, the value of the output base is 
pushed onto the stack. 

k The top of the stack is popped, and that value is used as a scale 
factor that influences the number of decimal places that are 
maintained during multiplication, division, and exponentiation. The 
scale factor must be greater than or equal to zero and less than 
100. If k is uppercase, the value of the scale factor is pushed onto 
the stack. 

z The value of the stack level is pushed onto the stack. 

? A line of input is taken from the input source (usually the console) 
and executed. 

Internal Representation of 
Numbers 
Numbers are stored internally using a dynamic storage allocator. Numbers are kept 
in the form of a string of digits to the base 100, stored one digit per byte (centennial 
digits). The string is stored with the low-order digit at the beginning of the string. 
For example, the representation of 157 is 57, 1. After any arithmetic operation on a 
number, care is taken that all digits are in the range O to 99 and that the number 
has no leading zeros. The number zero is represented by the empty string. 

Negative numbers are represented in the 100s complement notation, which is 
analogous to twos complement notation for binary numbers. The high-order digit of 
a negative number is always -1 and all ot_her digits are in the range 0 to 99. The 
digit preceding-the high-order -1 digit is never a 99. The representation of -157 is 
43,98,-1. This is called the canonical form of a number. The advantage of this kind 
of representation of negative numbers is ease of addition. When addition is 
performed digit by digit, the result is formally correct. The result need only be 
modified, if necessary, to put it into canonical form. 

Because the largest valid digit is 99 and the byte can hold numbers twice that large, 
addition can be carried out and the handling of carries done later-when it is 
convenient. 

An additional byte is stored with each number beyond the high-order digit to 
indicate the number of assumed decimal digits after the decimal point. The 
representation of .001 is 1,3 where the scale has been italicized to emphasize the 
fact that it is not the high-order digit. The value of this extra byte is called the scale 
factor of the number. 

UTek TOOLS 7A-3 



Interactive Desk Cslculator (DC) 

The Allocator 
The DC program uses a dynamic string storage allocator for all of its internal 
storage. All reading and writing of numbers internally is through the allocator. 
Associated with each string in the allocator is a four-word header containing 
pointers to the beginning of the string, the end of the string, the next place to write, 
and the next place to read. Communication between the allocator and DC is via 
pointers to these headers. 

The allocator initially has one large string on a list of free strings. All headers 
except the one pointing to this string are on a list of free headers. Requests for 
strings are made by size. The size of the string actually supplied is the next higher 
power of two. When a request for a string is made, the allocator first checks the 
free list to see if there is a string of the desired size. If none is found, the allocator 
finds the next larger free string and splits it repeatedly until it has a string of the 
right size. Leftover strings are put on the free list. If there are no larger strings, the 
allocator tries to combine smaller free strings into larger ones. Since all strings are 
the result of splitting large strings, each string has a neighbor that is next to it in 
core and, if free, can be combined with it to make a string twice as long. 

If a string of the proper length cannot be found, the allocator asks the system for 
more space. The amount of space on the system is the only limitation on the size 
and number of strings in DC. If the allocator runs out of headers at any time in the 
process of trying to allocate a string, it also asks the system for more space. 

There are routines in the allocator for reading, writing, copying, rewinding, forward 
spacing, and backspacing strings. All string manipulation is done using these 
routines. 

The reading and writing routines increment the read pointer or write pointer so that 
the characters of a string are read or written in succession by a series of read or 
write calls. The write pointer is interpreted as the end of the information-containing 
portion of a string and a call to read beyond that point returns an end of string 
indication. An attempt to write beyond the end of a string causes the allocator to 
allocate a larger space and then copy the old string into the larger block. 

Internal Arithmetic 
All arithmetic operations are done on integers. The operands (or operand) needed 
for the operation are popped from the main stack and their scale factors stripped off. 
Zeros are added or digits removed as necessary to get a properly scaled result from 
the internal arithmetic routine. For example, if the scale of the operands is different 
and decimal alignment is required, as it is for addition, zeros are appended to the 
operand with the smaller scale. After performing the required arithmetic operation, 
the proper scale factor is appended to the end of the number before it is pushed on 
the stack. 

7A-4 



Interactive Desk Cslculator (DC) 

A register called scale plays a part in the results of most arithmetic operations. The 
scale register limits the number of decimal places retained in arithmetic 
computations. The scale register can be set to the number on the top of the stack 
truncated to an integer with the k command. The K command can be used to push 
the value of scale on the stack. The value of scale must be greater than or equal to 
O and less than 100. The descriptions of the individual arithmetic operations 
includes the exact effect of scale on computations. 

Addition and Subtraction 
The scale of the two numbers are compared, and trailing zeros are supplied to the 
number with the lower scale to give both numbers the same scale. The number with 
the smaller scale is multiplied by 1 O if the difference of the scales is odd. The scale 
of the result is then set to the larger of the scales of the two operands. 

Subtraction is performed by negating the number to be subtracted and preceding as 
in addition. 

The addition is performed digit by digit from the low-order end of the number. The 
carries are propagated in the usual way. The resulting number is brought into 
canonical form, which may require stripping of leading zeros, or for negative 
numbers, replacing the high-order configuration 99,-1 by the digit -1. In any case, 
digits that are not in the range Oto 99 must be brought into that range, propagating 
any carries or. borrows that result. 

Multiplication 
The scales are removed from the two operands and saved. The operands are both 
made positive. Then multiplication is performed in a digit by digit manner that 
exactly follows the hand method of multiplying. The first number is multiplied by 
each digit of the second number, beginning with its low-order digit. The 
intermediate products are accumulated into a partial sum that becomes the final 
product. The product is put into the canonical form and its sign is computed from 
the signs of the original operands. 

The scale of the result is set equal to the sum of the scales of the two operands. If 
that scale is larger than the internal register scale and also larger than both of the 
scales of the two operands, then the scale of the result is set equal to the largest of 
these three last quantities. 

UTek TOOLS ?A-5 



Interactive Desk Calculator (DC) 

Division 
The scales are removed from the two operands. Zeros are appended, or digits are 
removed from the dividend to make the scale of the result of the integer division 
equal to the internal quantity scale. The signs are removed and saved. 

Division is performed much as it would be done by hand. The difference of the 
lengths of the two numbers is computed. If the divisor is longer than the dividend, 
zero is returned. Otherwise, the top digit of the divisor is divided into the top two 
digits of the dividend. The result is used as the first (high-order) digit of the 
quotient. If it turns out to be one unit too low, the next trial quotient is larger than 
99; and this is adjusted at the end of the process. The trial digit is multiplied by the 
divisor, the result subtracted from the dividend, and the process is repeated to get 
additional quotient digits until the remaining dividend is smaller than the divisor. At 
the end, the digits of the quotient are put into the canonical form of the operands. 

Remainder 
The division routine is called, and division is performed exactly as described. The 
quantity returned is the remains of the dividend at the end of the divide process. 
Since division truncates toward zero, remainders have the same sign as the 
dividend. The scale of the remainder is set to the maximum of the scale of the 
dividend and the scale of the quotient plus the scale of the divisor. 

Square Root 
The scale is removed from the operand. Zeros are added if necessary to make the 
integer result have a scale that is the larger of the internal quantity scale and the 
scale of the operand. The method used to compute the square root is Newton's 
method with successive approximations by the rule. 

The initial guess is found by taking the integer square root of the top two digits. 

Exponentiation 
Only exponents with 0 scale factor are handled. If the exponent is 0, then the result 
is 1 . If the exponent is negative, then it is made positive; and the base is divided 
into 1. The scale of the base is removed. 

The integer exponent is viewed as a binary number. The base is repeatedly 
squared, and the result is obtained as a product of those powers of the base that 
correspond to the positions of the one-bits in the binary representation of the 
exponent. Enough digits of the result are removed to make the scale of the result 
the same as if the indicated multiplication had been performed. 

7A-6 



Interactive Desk calculator (DC) 

Input Conversion and Base 
Numbers are converted to the internal representation as they are read in. The scale 
stored with a number is simply the number of fractional digits input. Negative 
numbers are indicated by preceding the number with an underscore(_). The 
hexadecimal digits A through F correspond to the numbers 1 O through 15 regardless 
of input base. The i command can be used to change the base of the input 
numbers. This command pops the stack, truncates the resulting number to an 
integer, and uses it as the input base for all further input. The input base (ibase) is 
initialized to 10 (decimal) but can, for example, be changed to 8 or 16 for octal, or 
hexadecimal to decimal conversions. The command I pushes the value of the input 
base on the stack. 

Output Commands 
The command p causes the top of the stack to be printed. It does not remove the 
top of the stack. All of the stack and internal registers are output by typing the 
command f. Theo command is used to change the output base (obase). This 
command uses the top of the stack truncated to an integer as the base for all further 
output. The output base is initialized to 10 (decimal). It works correctly for any 
base. The command 0 pushes the value of the output base of the stack. 

Output F.ormat and Base 
The input and output bases only affect the interpretation of numbers on input and 
output; they have no affect on arithmetic computations. Large numbers are output 
with 70 characters per line; a backslash(\) indicates a continued line. All choices 
of input and output bases work correctly, although not all are useful. A particularly 
useful output base is 100000, which has the effect of grouping digits in fives. Bases 
of 8 and 16 are used for decimal-octal or decimal-hexadecimal conversions. 

Internal Registers · 
Numbers or strings can be stored in internal registers or loaded on the stack from 
registers with the commands s and I. The command sx pops the top of the stack 
and stores the result in register x. The x can be any character. The command Ix 
puts the contents of register x on the top of the stack. The I command has no effect 
on the contents of register x. The s command, however, is destructive. 

UTek TOOLS 7A-7 



Interactive Desk Calculator (DC) 

Stack Commands 
The command c clears the stack. The command d pushes a duplicate of the 
number on the top of the stack onto the stack. The command z pushes the stack 
size on the stack. The command X replaces the number on the top of the stack with 
its scale factor. The command Z replaces the top of the stack with its length. 

Subroutine Definitions and 
Calls 
Enclosing a string in brackets ([ ]) pushes the ASCII string on the stack. The q 
command quits or (in executing a string) pops the recursion levels by two. 

Internal Registers -
Programming DC 
The load and store commands, together with brackets ([ ]) to store strings, the x 
command to execute, and the testing commands(<, >, =, !<, !>, !=),can be used 
to program DC. The x command assumes the top of the stack is a string of DC 
commands and executes it. The testing commands compare the top two elements 
on the stack and, if the relation holds, execute the register that follows the relation. 
For example, to print the numbers O through 9, input the following: 

[lip1+ si li10>a]sa 
Osi lax 

Pushdown Registers and 
Arrays 
These commands are designed for use by a compiler, not directly by programmers. 
They involve pushdown registers and arrays. In addition to the stack that 
commands work on, DC can be thought of as having individual stacks for each 
register. These registers are operated on by the commands Sand L. Sx pushes 
the top value of the main stack onto the stack for the register x. Lx pops the stack 
for register x and puts the result on the main stack. The commands s and I also 
work on registers but not as pushdown stacks. The command I does not affect the 
top of the register stack, but s destroys what was there before. 

7A-8 



Interactive Desk Calculator (DC) 

The commands to work on arrays are: and ;. The command :x pops the stack and 
uses this value as an index into the array x. The next element on the stack is stored 
at this index in x. An index must be greater than or equal to O and less than 2048. 
The command ;x loads the main stack from the array x. The value on the top of the 
stack is the index into the array x of the value to be loaded. 

Miscellaneous Commands 
The command I interprets the rest of the line as a UTek software command and 
passes it to the UTek operating system to execute. One other compiler command is 
Q. This command uses the top of the stack as the number of levels of recursion to 
skip. 

Design Choices 
The real reason for the use of a dynamic storage allocator is that a general purpose 
program can be used for a variety of other tasks. The allocator has some value for 
input and for compiling (such as the bracket [ ... ] commands) where it cannot be 
known in advance how long a string will be. The result is, that at a modest cost in 
execution time: 

• All considerations of string allocation and sizes of strings are removed from the 
remainder of the program 

• Debugging is made easier 

• The allocation method used wastes approximately 25 percent of available 
space. 

The choice of 100 as a base for internal arithmetic seemingly has no compelling 
advantage. Yet the base cannot exceed 127 because of hardware limitations and, at the 
cost of five percent in space, debugging was made a great deal easier and decimal 
output was made much faster. 

The reason for a stack-type arithmetic design was to permit all DC commands from 
addition to subroutine execution to be implemented in essentially the same way. 
The result was a considerable degree of logical separation of the final program into 
modules with very little communication between modules. 

The rationale for the lack of interaction between the scale and the bases is to 
provide an understandable means of continuing after a change of base or scale 
(when numbers had already been entered). An earlier implementation which had 
global notations of scale and base did not work out well. If the value of scale is 
interpreted in the current input or output base, then a change of base or scale in the 
midst of a computation causes great confusion in the interpretation of the results. 
The current scheme has the advantage that the value of the input and output bases 
are only used for input and output, respectively, and they are ignored in all other 

UTek TOOLS ?A-9 



Interactive Desk catculator (DC) 

operations. The value of scale is not used for any essential purpose by any part of 
the program. It is used only to prevent the number of decimal places resulting from 
the arithmetic operations from growing beyond all bounds. 

The rationale for the choices for the scales of the results of arithmetic is that in no 
case should any significant digits be thrown away if, on appearances, you actually 
wanted them. So, if you want to add the numbers 1.5 and 3.517, it seemed 
reasonable to give them the result 5.017 without requiring to unnecessarily specify 
rather obvious requirements for precision. 

On the other hand, multiplication and exponentiation produce results with many 
more digits than their operands. It seemed reasonable to give as a minimum the 
number of decimal places in the operands but not to give more than that number of 
digits unless you asked for them by specifying a value for scale. Square root can 
be handled in just the same way as multiplication. The operation of division gives 
arbitrarily many decimal places, and there is simply no way to guess how may 
places you want. In this case only, you must specify a scale to get any decimal 
places at all. 

The scale of remainder was chosen to make it possible to recreate the dividend from 
the quotient and remainder. This is easy to implement; no digits are thrown away. 

7A-10 



78 
Arbitrary Precision 
Desk Calculator 
Language (BC) 

Introduction 
The arbitrary precision desk calculator language (BC) is a language and compiler for 
doing arbitrary precision arithmetic under the UTek operating system. The output of 
the compiler is interpreted and executed by a collection of routines that can input, 
output, and do arithmetic on infinitely large integers and on scaled fixed-point 
numbers. These routines are based on a dynamic storage allocator. Overflow does 
not occur until all available core storage is exhausted. 

The BC language has a complete control structure as well as immediate-mode 
operation. Functions can be defined and saved for later execution. A small 
collection of library functions is also available, including sin, cos, arctan, log, 
exponential, and Bessel functions of integer order. 

The BC compiler was written to make conveniently available a collection of routines 
(called DC) that are capable of doing arithmetic on integers of arbitrary size. The 
compiler is not intended to provide a complete programming language. It is a 
minimal language facility. 

Some of the uses of this compiler are: 

• Compile large integers 

• Compute accurately to many decimal places 

• Convert numbers from one base to another base 

There is a scaling provision that permits the use of decimal point notation. Provision 
is also made for input and output in bases other than decimal. Numbers can be 
converted from decimal to octal by simply setting the output base to ~qual eight. 

The actual limit on the number of digits that can be handled depends on the amount 
of core storage available. This is possible even on the smallest versions of the UTek 
operating system. 

The syntax of BC is very similar to that of the C language. This enables users who 
are familiar with C language to easily work with BC. 

UTek TOOLS 78-1 



Arbitrary Precision Desk C.lculator Language (BC) 

The simplest kind of statement is an arithmetic expression on a line by itself. For 
instance, if you type in the addition of two numbers (with the +operator) such as 

142857 + 285714 

the program responds immediately with the sum 

428571. 

The operators-, *, I, %, and - can also be used. They indicate subtraction, 
multiplication, division, remaindering, and integer result truncated toward zero. 
Division by zero produces an error comment. 

Any term in an expression may be prefixed by a minus sign to indicate that it is to 
be negated (the unary minus sign). The following expression is interpreted to mean 
that -3 is to be added to 7: 

7+-3 

More complex expressions with several operators and with parentheses are 
interpreted in the following order of precedence: power n is interpreted first; then *' 
%, and I are read; and finally, +and - are interpreted. Contents of parentheses are 
evaluated before material outside the parentheses. Exponentiations are performed 
from right to left and the other operators from left to right. 

a-b-c 
and 
a-(b-c) 

are equivalent, as are the following two expressions: 

a*b*c 
and 
(a*b)*c 

However, BC shares with FORTRAN and C language the undesirable convention 
that 

a/b*c 
is equivalent to 
(a/b)*c. 

Internal storage registers to hold numbers have single lowercase letter names. The 
value of an expression can be assigned to a register in the usual way. The following 
statement has the effect of increasing by three the value of the contents of the 
register named x: 

x=x+3 

When, as in this case, the outermost operator is an equal sign (=),the assignment 
is preformed; but the result is not printed. Only 26 of these named storage registers 
are available. 

76-2 



Arbitl'8ry Precision Desk Calculator Language (BC) 

There is a built-in square root function whose result is truncated to an integer (see 
the part on SCALING). Entering the lines 

X=Sqrt(191) 
x 

produces the printed result 

13 

Bases 
There are two special internal quantities; ibase (input base) and obase (output 
base). The contents of ibase, initially set to 10 (decimal), determines the base used 
for interpreting numbers read in. For example, the input lines 

ibase=8 
11 

produces the output line 

9 

The system is now ready to do octal to decimal conversions. Beware, however, of 
trying to change the input base back to decimal by entering 

ibase=10 

Because the number 10 is interpreted as octal, this statement has no effect. For 
dealing in hexadecimal notation, the characters A through Fare permitted in 
numbers (regardless of what base is in effect) and are interpreted as digits having 
values 10 through 15, respectively. The fo11owing statement changes the base to 
decimal regardless of what the current input base is: 

ibase=A 

Negative and large positive input bases are permitted but are useless. No 
mechanism has been provided for the input of arbitrary numbers in bases less than 
one and greater than 16. 

The content of obase, initially 10 (decimal), is used as the base for output numbers. 
The input lines 

obase=16 
1000 

produce the following output line: 

3E8 

This output is to be interpreted as a 3-digit hexadecimal number. Very large output 
bases are permitted and are sometimes useful. For example, large numbers can be 
output in groups of five digits by setting obase to 100000. Strange output bases 
(such as 1, 0, or negative) are handled appropriately. 

UTek TOOLS ?B-3 



Arbitrary Precision Desk Calculator Language (BC) 

Very large numbers are split across lines with 70 characters per line. Lines which 
are continued end with a backslash (\). Decimal output conversion is practically 
instantaneous, but output of very large numbers (such as those with more than 100 
digits) with other bases is rather slow. Nondecimal output conversion of a 100-digit 
number takes about three seconds. 

The ibase and obase have no effect on the course of internal computation or on the 
evaluation of expressions. They only affect input and output conversions, 
respectively. 

Scaling 
A third special internal quantity called scale is used to determine the scale of 
calculated quantities. The number of digits after the decimal point of a number is 
referred to as its scale. Numbers may have up to 99 digits after the decimal point. 
This fractional part is retained in further computations. 

The contents of scale must be no greater than 99 and no less than 0. It is initially 
set to 0. However, appropriate scaling can be arranged when more than 99 fraction 
digits are required. 

When two scaled numbers are combined by means of one of the arithmetic 
operations, the result has a scale determined by the following rules: 

• Addition and Subtraction- The scale of the result is the larger of the scales of 
the two operands. In this case, there is never any truncation of the result. 

• Multiplication- The scale of the result is never less than the maximum of the 
two scales of the operands and never more than the sum of the scales of the 
operands. Subject to those two restrictions, the scale of the result is set equal 
to the contents of the internal quantity scale. 

• Division- The scale of a quotient is the contents of the internal quantity scale. 
The scale of the remainder is the sum of the scales of the quotient and the 
divisor. 

• Exponentiation- The result of an exponentiation is scaled as if the implied 
multiplications were performed. An exponent must be an integer. 

• Square Root- The scale of a square root is set to the maximum of the scale of 
the argument and the contents of scale. 

All of the internal operations are actually carried out in terms of integers with digits 
being discarded when necessary. In every case where digits are discarded, 
truncation and not rounding is performed. 

78-4 



Arbitrary Precision Desk Cslculator Language (BC) 

The internal quantities scale, ibase, and obase can be used in expressions just like 
other variables. The input line 

scale=scale + 1 

increases the value of scale by one. The input line 

scale 

causes the current value of scale to be printed. 

The value of scale retains its meaning as a number of decimal digits to be retained 
in internal computation even when ibase or obase are not equal to 10. The internal 
computations (which are still conducted in decimal regardless of the bases) are 
performed to the specified number of decimal digits, never hexadecimal, octal, or 
any other kind of digits. 

Functions 
The name of a function is a single lowercase letter. Function names are permitted 
to coincide with simple variable names. 26 different defined functions are permitted 
in addition to the 26 variable names. The following input line begins the definition of 
a function with one argument: 

define a(x){ 

This line must be followed by one or more statements which make up the body of 
the function ending with a right brace({). The general form of a function is as 
follows: 

define a(x) { 

return 

Return of control from a function occurs when a return statement is executed or 
when the end of the function is reached. The return statement can take either of 
the two forms: 

return 
return(x) 

In the first case, the value of the function is O; and in the second, the value of the 
function is the expression in parentheses. 

Variables used in the function can be declared as automatic by a statement of the 
form 

auto x,y,z 

There can be only one auto statement in a function, and it must be the first 
statement in the definition. These automatic variables are allocated space and 
initialized to zero on entry to the function and thrown away on return (exit). The 

UTek TOOLS 78-5 



Arbitrary Precision Desk Calculator Language (BC) 

values of any variables with the same names outside the function are not disturbed. 
Functions may be called recursively and the automatic variables at each level of call 
are protected. The parameters named in a function definition are treated in the 
same way as the automatic variables of that function with the single exception that 
they are given a value on entry to the function. An example of a function definition 
follows: 

define a{x,y){ 
auto z 
z=x*y 
return{z) 

The value of this function a, when called, is the product of its two arguments, x and 
y. 

A function is called by the appearance of its name followed by a string of arguments 
enclosed in parentheses and separated by commas. The result is unpredictable if 
the wrong number of arguments is used. 

Functions with no arguments are defined and called using parentheses with nothing 
between them: Q. 

If the function a above has been defined, then the line 

a(7,3.14) 

causes the result 21.98 to be printed. The line 

z=a{a{3,4),5) 

causes the result 60 to be printed. 

Subscripted Variables 
A single lowercase letter variable name followed by an expression in brackets is 
called a subscripted variable (an array element). The variable name is called the 
array name, and the expression in brackets is called the subscript. Only one
dimensional arrays are permitted. The names of arrays are permitted to coincide 
with the names of simple variables and function names. Any fractional part of a 
subscript is discarded before use. Subscripts must be greater than or equal to zero 
and less than or equal to 2047. 

Subscripted variables may be used in expressions, in function calls, and in return 
statements. 

78-6 



Arbitrary Precision Desk Calculator Language (IC) 

An array name can be used as an argument to a function or may be declared as 
automatic in" a function by the use of empty brackets: 

f(aO) 
define f(aO) 
auto aa 

When an array name is so used, the whole contents of the array are copied for the 
use of the function and thrown away on exit from the function. Array names that 
refer to whole arrays cannot be used in any other contexts. 

Control Statements 
The if, while and for statements can be used to alter the flow within programs or to 
cause iteration. The range of each of them is a statement or a compound statement 
consisting of a collection of statements enclosed in braces. They are written in the 
following ways: 

or 

if (relation) statement 
while(relation) statement 
for(expressionl;relation;expression2) statement 

if(relation) {statements} 
while(relation) {statements} 
for(expressionl;relation;expression2) {statements} 

A relation in one of the control statements is an expression of the form 

x>y 

where two expressions are related by one of the following six relational operators: 

< less than 
> greater than 
<= less than or equal to 
>= greater than or equal to 

equal to 
!= not equal to 

NOTE 
Beware of using one equal sign ('=) instead of two equal 

signs (==) as a relational operator. Unfortunately, both of 
these are legal, so there will be no diagnostic message; but; 
the single equal sign (=) will not do a comparison. 

The if statement causes execution of its range if and only if the relation is true. 
Then control passes to the next statement in sequence. 

UTek TOOLS 78-7 



Arbitrary Precision Desk Calculator Language (BC) 

The while statement causes execution of its range repeatedly as long as the relation 
is true. The relation is tested before each execution of its range; and if the relation 
is false, control passes to the next statement beyond the range of the while 
statement. 

The for statement begins by executing expression]. Then the relation is tested; and 
if true, the statements in the range of the for are executed. Then expression2 is 
executed. The relation is then tested, and so forth. The typical use of the for 
statement is for a controlled iteration, as in the following statement: 

for(i=1 ;i<=10;i=i+1)i 

This example prints the integers from one to ten. The following are some examples 
of the use of the control statements: 

define f(n){ 
auto i,x 
X=l 
for(i=l;i<=n;i=i+l) 
X=X*i 

return (x) 
} 

The input line 

f(a) 

prints a factorial if a is a positive integer. The following is the definition of a function 
that computes values of the binomial coefficient (m and n are assumed to be positive 
integers): 

define b(n,m) { 
auto x,j 
X=l 
for U=l;}<=m;}=}=l) 
X=X* (n-j + 1) /} 
return (x) 
} 

78-8 



Arbitrary Precision Desk Cslculator Language (BC) 

The following function computes values of the exponential function by summing the 
appropriate series without regard for possible truncation errors: 

scale=20 
define e(x){ 

auto a,b,c,d,n 
a=l 
b=l 
c=l 
d=O 
n=l 
while (1==1){ 

a=a*X 
b=b*n 
c=c+a/b 
n:n+l 
if(c==d)retu:rn(c) 
d=c 

Additional Features 
There are some additional language features that every user should know. 

Normally, statements are entered one to a line. It is also permissible, however, to 
enter several statements on a line by separating the statements by semicolons. 

If an assignment statment is parenthesized, it then has a value; and it can be used 
anywhere that an expression c~n. For example, the following input line not only 
makes the indicated assignment, but also prints the resulting value: 

(x=y+17) 

The following is an example of a use of the value of an assignment statement even 
when it is not parenthesized. The input line causes a value to be assigned to x and 
also increments i before it is used as a subscript: 

x=a[i=i+1) 

UTek TOOLS 78-9 



Arbitrary Precision Desk Calculator Language (BC) 

The next examples construct work in BC in exactly the same manner as they do in 
the C language: 

x=y=z 
X=+y 
X=-y 
x=*y 
x=/y 
x=%y 
x= y 
X++ 
x
++X 
-x 

is the same as 

" 

NOTE 

x=(y=z) 
x=x+y 
x=x-y 
X=X*Y 
x=x/y 
x=x%y 
x=x y 
(x=x+l)-1 
(x=x-1)+1 
x=x+l 
x=x-1 

In some of these constructions, spaces are significant. 
There is a real difference between X=-y and X= -y. The first 
replaces x by x-y and the second by -y. 

The following are three important things to remember when using BC programs: 

• To exit a BC program, enter quit. 

• There is a comment convention identical to that of the C language. Comments 
begin with /* and end with * /. 

• There is a library of math functions that may be obtained by entering at the 
command level: 

bc-1 

This command loads a set of library functions that includes sine (s), cosine (c), 
arctangent (a), natural logarithm (I), exponential (e), and Bessel functions of integer 
order [j(n,x)J. The library sets the scale to 20, but it can be reset to another value. 

If you enter 

be filename ... 

the BC program reads and executes the named file or files before accepting 
commands from the keyboard. In this way, programs and function definitions are 
loaded. 

7B-10 



Arbitrary Precision Desk Calculator Language (BC) 

Summary 

Notation 
In the following pages, syntactic categories are in italics and literals are in bold. 
Material in brackets [ ] is optional. 

Tokens 
Tokens consist of keywords, identifiers, constants, operators, and separators. Token 
separators may be blanks, tabs, or comments. Newline characters or semicolons 
separate statements. 

Comments are introduced by the characters /* and terminated by * /. 

There are three kinds of identifiers: ordinary, array, and function. All three types 
consist of single lowercase letters. Array identifiers are followed by square brackets, 
possibly enclosing an expression describing a subscript. Arrays are singly 
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an 
array may be indexed from zero to 2047. Subscripts are truncated to integers. 
Function identifiers are followed by parentheses, possibly enclosing arguments. The 
three types of identifiers do not conflict. A program can have a variable named x, 
an array named x, and a function named x; all are separate and distinct. 

The following are reserved keywords: 

ibase if 
obase break 
scale define 
sqrt auto 
length return 
while quit 
for 

Constants consist of arbitrarily long numbers with an optional decimal point. The 
hexadecimal digits A through F are also recognized as digits with values 1 O through 
15, respectively. 

Expressions 
The value of an expression is printed unless the main operator is an assignment. 
Precedence is the same as the order of presentation here with highest appearing 
first. Left or right associativity, where applicable, is discussed with each operator. 

Named Expressions 
Named expressions are places where values are stored. Simply stated, named 
expressions are legal on the left side of an assignment. The value of a named 
expression is the value stored in the place named. 

UTek TOOLS 78-11 



Arbitrary Precision Desk Calculator Language (BC) 

Identifiers 
Simple identifiers are named expressions. They have an initial value of O. 

Array-name[ expression] 
Array elements are named expressions. They have an initial value of O. 

Scale, lbase, and Obase 
The internal registers scale, ibase, and obase are all named expressions. The 
scale register is the number of digits after the decimal point to be retained in 
arithmetic operations. It has an initial value of 0. The ibase and obase registers 
are the input and output number radix, respectively. Both ibase and obase have 
initial values of 10. 

Function Calls 

Function Name (lexpression[,expression .. ]]) 
A function call consists of a function name followed by parentheses containing a 
comma-separated list of expressions, which are the function arguments. A whole 
array passed as an argument is specified by the array name followed by empty 
square brackets. All function arguments are passed by value. As a result, changes 
made to the formal parameters have no effect on the actual arguments. If the 
function terminates by executing a return statement, the value of the function is the 
value of the expression in the parentheses of the return statement or is 0 if no 
expression is provided or if there is no return statement. 

squrt(expression) 
The result is the square root of the expression. The result is truncated in the least 
significant decimal place. The scale of the result is the scale of the expression or 
the value of scale, whichever is larger. 

length( expression) 
The result is the total number of significant decimal digits in the expression. The 
scale of the result is 0. 

scale( expression) 
The result is the scale of the expression. The scale of the result is 0. 

?B-12 



Arbitrary Precision Desk Calculator Language (BC) 

Constants 
Constants are primitive expressions. 

Parentheses 
An expression surrounded by parentheses is a primitive expression. The 
parentheses are used to alter the normal precedence. 

The unary operators bind right to left. 

-expression 
The result is the negative of the expression. 

+ +named-expression 
The named expression is incremented by one. The result is the value of the named 
expression after incrementing. 

- -named-expression 
The named expression is decremented by one. The result is the value of the named 
expression before incrementing. 

named-expression- -
The named expression is decremented by one. The result is the value of the named 
expression before decrementing. 

The exponentiation operator binds right to left. 

expression expression 
The result is the first expression raised to the power to the second expression. The 
second expression must be an integer. If a is the scale of the left expression and b 
is the absolute value of the right expression, then the scale of the result is as 
follows: 

min( ax b, max(scale,a)) 

The operators *, /, and o/o bind left to right. 

expression* expression 
The result is the product of the two expressions. If a and b are the scales of the two 
expressions, then the scale of the result is as follows: 

min( a+ b,max(scale,a,b)) 

UTek TOOLS 78-13 



Arbitrary Precision Desk Calculator Language (BC) 

expression I expression 
The result is the quotient of the two expressions. The scale of the result is the value 
of scale. 

expression % expression 
The % operator produces the remainder of the division of the two expressions. 
More precisely, a%b is equal to a-a/b*b. 

The scale of the result is the sum of the scale of the divisor and the value of scale. 

The additive operators bind left to right. 

expression + expression 
The result is the sum of the two expressions. The scale of the result is the 
maximum of the scales of the expressions. 

expression - expression 
The result is the difference of the two expressions. The scale of the result is the 
maximum of the scales of the expressions. 

The assignment operators bind right to left. 

named-expression = expression 
This expression results in assigning the value of the expression on the right to the 
named expression on the left. 

named-expression = + expression 
named-expression = - expression 
named-expression = * expression 
named-expression = I expression 
named-expression = % expression 
named-expression = - expression 

The result of the above expressions is equivalent to named-expression = named 
expression OP expression, where OP is the operator after the equal sign (=). 

Relational Operators 
Unlike all other operators, the relational operators are only valid as the object of an 
if or while statement or inside a for statement. 

78-14 



Arbitrary Precision Desk Calculator Language (BC) 

expression < expression 
expression > expression 
expression <= expression 
expression >= expression 
expression = = expression 
expression ! = expression 

Storage Classes 
There are only two storage classes in BC-global and automatic (local). Only 
identifiers that are to be local to a function need be declared with the auto 
command. The arguments to a function are local to the function. All other 
identifiers are assumed to be global and available to all functions. All identifiers, 
global and local, have initial values of o. Identifiers declared as auto are allocated 
on entry to the function and released on returning from the function. They therefore 
do not retain values between function calls. The auto arrays are specified by the 
array name followed by empty square brackets. 

Automatic variables in BC do not work in exactly the same way as in C language. 
On entry to a function, the old values of the names that appear as parameters and 
as automatic variables are pushed onto a stack. Until return is made from the 
function, reference to these names refers only to the new value. 

Statements 
Statements must be separated by a semicolon or newline. Except where altered by 
control statements, execution is sequential. 

When a statement is an expression (unless the main operator is an assignment), the 
value of the expression is printed followed by a newline character. 

Statements may be grouped together and used when one statement is expected by 
surrounding them with braces { } . 

The following statement prints the string inside the quotes: 

"any string" 

The substatement is executed if the relation is true: 

if(relation)statement 

The while statement is executed while the relation is true. The test occurs before 
each execution of the statement: 

for(expression;relation;expression)statement 

UTek TOOLS ?B-15 



Arbitrary Precision Desk Calculator Language (BC) 

The for statement is the same as the following (all three expressions must be 
present): 

first-expression 
while(relation) { 

statement 
last-expression 

} 

The break statement causes termination of a for or while statement: 

break 

The auto statement cause the values of the identifiers to be pushed down: 

auto identijierl identifierl 

The identifiers can be ordinary identifiers or array identifiers. Array identifiers are 
specified by following the array name with empty square brackets. The auto 
statement must be the first statement in a function definition. 

The define statement defines a function: 

define([,parameterl,parameter ... ]]){ 
statements} 

The parameters may be ordinary identifiers or array names. Array names must be 
followed by empty square brackets. 

The return statement has the following form: 

return 
return( expression) 

The return statment causes the following: 

• Termination of a function 

• Popping of the auto variables on the stack 

• Specifies the results of the function 

The first form is equivalent to return{O). The result of the function is the result of 
the expression in parentheses. 

The quit statement stops execution of a BC program and returns control to the UTek 
system software when it is first encountered. Because it is not treated as an 
executable statement, it cannot be used in a function definition or in an if, for or 
while statement. 

7B-16 


