
TE K SOFTWARE
MANUAL

UTek

Part No. 070-5317-01
Product Group 65

COMMAND REFERENCE

VOLUME2

First Printing NOV 1984
Revised SEP 1985

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California. We
acknowledge the following individuals and institutions for their role in its development:

W. N. Joy M. K. McKusick
0. Babaouglu E.Cooper
R. S. Fabry David Musher
K. Sklower S. J. Leffler
Eric P. Allman

University of California at Berkeley
Department of Electrical Engineering and Computer Science

The MH Mail System is based on software developed by the Rand Corporation.

Portions of this document are based on the RCS Revision Control System, © 1982
Walter F. Tichy.

This documentation is for the use of our customers, and not for general sale.

Copyright© 1984, 1985, Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending.

This document may not be copied in whole or in part, or otherwise reproduced except as
specifically permitted under U.S. copyright law, without the prior written consent of
Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077.

Specifications subject to change.

TEKTRONIX, TEK, and UTek are trademarks of Tektronix, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

TEK 4014 is a registered trademark of Tektronix, Inc.

NROFF ff ROFF is a registered trademark of AT&T Technologies.

TRENDATA is a registered trademark of Trendata Corporation.

TELETYPE is a registered trademark of AT&T Teletype Corporation.

DEC is a registered trademark of Digital Equipment Corporation.

Revision
INFORMATION

PRODUCT: 6000 Family Intelligent Graphics Workstation
This manual supports the following versions of this product: V2.2

REV DATE DESCRIPTION

NOV1984 Original Issue

JAN 1985 Added: ERROR(3C), MKTEMP(3C), TIME(3F), FERROR(3S)
Changed: HSEARCH(3C) - pg. 2

MAR 1985 Revised to support Version 2.1.

SEP 1985 Revised to support Version 2.2.
Part number rolled to 070-5317-01.

Contents

Volume2

Section2 System Calls

Section3 Subroutines

Section3C CLibrary

Section3D Database Management Library

Section3F Fortran Library

Section 3M Math Library

Section3MP Math Precision Library

Section3N Networking Library

Section3S Standard 110 Package

Section3T Terminal Functions

Section4 Special Files

Section5 File Formats

Section 7 Macros

Sections Maintenance

INTR0(2) COMMAND REFERENCE INTR0(2)

NAME
intro - introduction to. system calls and error numbers

SYNOPSIS
_#include (errno.h)

DESCRIPTION
This section describes all of the system calls. Most of these calls have
one or more error returns. An error condition is indicated by an otherwise
impossible return value. This is almost always -1; the individual
descriptions specify the details.

As with normal arguments, all return codes and values from functions are
of type "int" unless otherwise noted. An error number is also made
available in the external variable errno. Errno is not cleared on
successful calls, so it should be tested only after an error has been
indicated.

The following is a complete list of the errors and their names as given in
(errno.h). Only these symbolic names for error numbers should be used
in programs, since the actual value of the error number may vary with the
implementation. Certain implementations may contain extensions which
prevent some errors from ever occurring.

O Unused

EPERM Not file owner or superuser
Typically this error indicates an attempt to modify a file in· some
way forbidden by the file protection codes. It is also returned for
attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesn't, when the specified file is a symbolic link
to a file or directory that does not exist, or when one of the
directories in a pathname does not exist.

3 ESRCH No such process
No such process can be found corresponding to that specified by
the process ID.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If
execution is resumed after processing the signal, it will appear
as if the interrupted system call returned this error condition.

5 EIO 1/0 error

REV SEP 1985

Some physical 1/0 error occurred during a read or write. This
error may in some cases occur on a call following the one to
which it actually applies.

INTR0(2) COMMAND REFERENCE INTR0(2)

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, for
example, a tape drive is not on line, or a disk pack is not loaded
on a drive.

7 E2BIG Argument list too long
An argument list longer than NCARGS (defined in (sys/param.h))
bytes is presented to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, is not in the proper format for an
executable object program. See a.out(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read
(respectively write) request is made to a file which is open only
for writing (respectively reading).

10 ECHILD No children from process
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the
user is not allowed to create any more processes. This may be a
temporary condition and subsequent calls to the same routine
may complete normally.

12 ENOMEM Not enough core or swap space
During an execve or brk or sbrk, a program asks for more core or
swap space than the system is able to supply. A lack of swap
space is normally a temporary condition. However, a lack of
core is not a temporary condition; the maximum core size is a
system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to
access an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g. in mount.

16 EBUSY Device busy

REV SEP 1985

An attempt was made to access a device that was already in
use, such as mounting a device that is already mounted. This
error is also returned if an attempt is made to dismount a device
on which there is an active file directory (open file, current
directory, mounted-on file, active text segment).

2

2

INTR0(2) COMMAND REFERENCE INTR0(2)

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.
link .

. 18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device driver or operation
An attempt was made to apply an inappropriate system call to a
device; e.g. read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a pathname or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., mentioning an unknown signal in
kill, reading or writing a file for which /seek has generated a
negative pointer) has been used. Also set by math functions,
see intro(3m).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more
opens can be accepted.

24 EMFILE Too many open files
No process may have more than NOFILE (defined in
<sys/max.h)) file descriptors open at a time.

25 ENOTTY Request does not apply
A given request is not recognized by or does not apply to a
specified file or device.

26 ETXTBSY Text file busy
An attempt was made to open for writing a shared-text file that is
being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size.

28 ENOSPC No space left on device
During a write to an ordinary file, the creation of a directory or
symbolic link, or the creation of a directory entry failed because
no more disk blocks are available on the file system, or the
allocation of an inode for a newly created file failed because no
more inodes are available on the file system.

29 ESPIPE Illegal seek

REV SEP 1985

An /seek was issued to a pipe. This error may also be issued for
other non-seekable devices.

3

INTR0(2) COMMAND REFERENCE INTR0(2)

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt was made to make more than the legal limit of hard
links to a file.

32 EPIPE Unconnected pipe
A write on a pipe or socket was attempted, for which there is no
process to read the data. This condition normally generates a
signal; the error is returned if the signal is ignored.

33 EDOM Math argument out of range
The argument of a function in the math package (see intro(3m))
is out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package is not representable
within machine precision.

35 EWOU LDBLOCK Operation would block
An operation which would cause a process to block was
attempted on a object while in non-blocking mode (see ioctl (2)).

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a
connect (2)) was attempted on a non-blocking object (see ioctl
(2)).

37 EALREADY Disconnection already in progress
An operation was attempted on a non-blocking object which
already had an operation in progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal
message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics
of the socket type requested. For example you cannot use the
ARPA Internet UDP protocol with type SOCK_STREAM.

42 ENOPROTOOPT Protocol not available
A bad option was specified in a getsockopt(2) or setsockopt(2)
call.

43 EPROTONOSUPPORT Protocol not supported

REV SEP 1985

The protocol has not been configured into the system or no
implementation for it exists.

4

4

INTR0(2) COMMAND REFERENCE INTR0(2)

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the
system or no implementation for it exists .

.45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or
no implementation for it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.
For example, you shouldn't necessarily expect to be able to use
PUP Internet addresses with ARPA Internet protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an
address not on this machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by remote host
A connection was forcibly closed by a peer. This normally
results from the peer executing a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the
system lacked sufficient buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or,
a sendto or sendmsg request on a connected socket specified a
destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the
socket is not connected.

58 ESHUTDOWN Can't send after socket shutdown

REV SEP 1985

A request to send data was disallowed because the socket had
already been shut down with a previous shutdown(2) call.

5

INTR0(2) COMMAND REFERENCE INTR0(2)

59 ETOOMANYREFS Too many references; can't splice
Unused.

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not
properly respond after a period of time. (The timeout period is
dependent on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to connect to
a service which is inactive on the foreign host.

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a pathname exceeded MAXNAMLEN characters,
or an entire pathname exceeded MAXPATHLEN characters.
These are defined in <sys/max.h).

64 EHOSTDOWN Host is down
A requested host is not responding.

65 EHOSTUNREACH Host is unreachable
A requested host is not reachable from the current node.

66 ENOTEMPTY Directory not empty
A directory with entries other than "." and " .. " was supplied to
a remove directory or rename call.

67 EPROCLIM Too many processes
Unused.

68 EUSERS Too many users
Unused.

69 EDQUOT Disk quota exceeded
Unused.

70 ENOASCll Name contains byte with high-order bit set
A given pathname contains a non-ASCII character, a byte with
the high-order bit set.

71 EMCOLLIDE Map onto something already there
New areas may only be added where there is currently no
memory. If you want to replace an area, unmap it first.

72 EMRANGE Designated area out of range
Possible problems: Any part of the addressed area 1) crosses the
PO:P1 boundary (on a VAX); 2) is in the u area; 3) is out of the
user's address space.

73 EDFS_CD Too many chdir's to remote host

REV SEP 1985

A limited number of chdir's can be made to a remote host at one
time; this limit has been exceeded.

6

6

INTR0(2) COMMAND REFERENCE INTR0(2)

74 EDFSREF Reference is to remote file
A reference to a remote file was detected but is not supported for
this system call. In some cases (link, rename) this error is
returned if the two pathnames do not reference files on the same
host.

75 EDFSBADRESP Response length incorrect
The response from a remote host to the system call sent to that
host was of incorrect length. This is not a normal error. Contact
your service representative.

76 EDFSBADCMD Bad command (invalid command or wrong length)
The Distributed File System Daemon on a remote host received
a garbled command from the local host. This is not a normal
error. Contact your service representative.

77 EDFSNOSUCHHOST No such host
You specified a pathname of the form //host/path, and the
operating system was unable to find the location of 'host'.
Check that you have the correct host name and that the host is
operational on the network.

78 EDFSNOBUF Malloc failed on remote system; try smaller ((Bk) read
or write
You tried to do a read or write of more than 8192 bytes to a
remote file, and the malloc(3) call to get a buffer of the siz.e you
specified failed. Try again with an 8kbyte or smaller request.

79 EDFSBADVER Remote system couldn't handle version of request
The version of the Distributed File System on the local system
does not match the version of the daemon on the remote system.

80 EDFSNODAEMON DFS daemon is not running
A reference of the form 11//hostname/pathname 11 was detected,
but the attempt to convert the hostname to an internet address
failed because the Distributed File System daemon on the local
system was not running.

81 EDFSNOPROC No more processes on remote system

DEFINITIONS

A Distributed File System reference failed because when the
daemon on the remote host forked a process to handle your
request, the remote system's process table was full. This may
be a temporary condition.

Process ID
Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 0 to
NPROC.

Parent process ID

REV SEP 1985

A new process is created by a currently active process; see fork(2).
The parent process ID of a process is the process ID of its creator.

7

7

INTR0(2) COMMAND REFERENCE INTR0(2)

Process Group ID
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This is
the process ID of the group leader. This grouping permits the
signalling of related processes (see kil/pg(2)) and the job control
mechanisms of csh(lcsh).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping
is used to arbitrate between multiple jobs contending for the same
terminal; see csh(lcsh), and tty(4).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of one or more groups. One of these
groups is distinguished from others and used in implementing
accounting facilities. The positive integer corresponding to this
distinguished group is termed the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID, Effective Group ID, and Access Groups
Access to system resources is governed by three values: the
effective user ID, the effective group ID, and the group access list.

The effective user ID and effective group ID are initially the
process's real user ID and real group ID respectively. Either may be
modified through execution of a set-user-ID or set-group-ID file
(possibly by one of its ancestors); see execve(2).

The group access list is an additional set of group ID's used only in
determining resource accessibility. Access checks are performed as
described below in "File Access Permissions."

Super-user
A process is recognized as a super-user process and is granted
special privileges if its effective user ID is 0.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special.
Process O is the scheduler. Process 1 is the initialization process
init, and is the ancestor of every other process in the system. It is
used to control the process structure. Process 2 is the paging
daemon.

Descriptor

REV SEP 1985

An non-negative integer assigned by the system when a file is
referenced by open(2), dup(2), fcnt/(2), or pipe(2), or when a socket
is referenced by socket(2) or socketpair(2). The descriptor uniquely

8

8

INTR0(2) COMMAND REFERENCE INTR0(2)

identifies an access path to that file or socket from a given process
or any of its children.

File Name
Names consisting of up to MAXNAMLEN may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII
character excluding O (null) and the ASCII code for I (slash). (The
parity bit, bit 8, must be 0.)

Note that it is generally preferable to use only letters, numbers,
underscores and periods within file names, since the use of non
printing and other special characters can be confusing or
ambiguous in certain contexts.

Pathname and Path Prefix
A pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name. The total
length of a pathname must be less than MAXPATHLEN characters.

A path prefix is a pathname without the final file name.

If a pathname begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory. A slash by itself names the root directory. A null
pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are
pointers to data files or other directories. Directory entries are
called links. By convention, a directory contains at least two links, .
and .. , referred to as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory. In the root
directory, .. refers to the root directory itself.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory
and a current working directory for the purpose of resolving
pathname searches. A process' root directory need not be the root
directory of the root file system.

File Access Permissions

REV SEP 1985

Every file in the file system has a set of access permissions. These
permissions are used in determining whether a process may perform
a requested operation on the file (such as opening a file for writing).
Access permissions are established at the time a file is created.
They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be read,
written, or executed. Directory files use the execute permission to
indicate whether the directory may be searched.

File access permissions are interpreted by the system as they apply

9

9

INTR0(2) COMMAND REFERENCE INTR0(2)

to three different classes of users: the owner of the file, those users
in the file's group, and anyone else. Every file has an independent
set of access permissions for each of these classes. When an
access check is made, the system decides if permission should be
granted by checking the access information applicable to the class
of use of the caller.

Read, write, and execute/search permissions on a file are granted to
a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of
the file and the "owner" access permissions allow the access.

The process's effective user ID does not match the user ID of the
owner of the file, and either the process's effective group ID
matches the group ID of the file, or the group ID of the file is in the
process's group access list, and the "group" access permissions
allow the access.

Neither the effective user ID nor effective group ID and group
access list of the process match the corresponding user ID and
group ID of the file, but the access permissions for "other users"
allow access.

Otherwise, permission is denied.

Character and Block Special Files

Character and block special files are used to refer to physical
devices. Certain restrictions may apply to the use of character and
block special files which are implementation-dependent.

Sockets and Address Families

SEE ALSO

A socket is an endpoint for communication between processes.
Each socket has queues for sending and receiving data.

Sockets are typed according to their communications properties.
These properties include whether messages sent and received at a
socket require the name of the partner, whether communication is
reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket
types; consult socket(2) for more information about the types
available and their properties.

Each instance of the system supports some number of sets of
communications protocols. Each protocol set supports addresses of
a certain format. An Address Family is the set of addresses for a
specific group of protocols. Each socket has an address chosen
from the address family in which the socket was created.

intro(3m), perror(3c).

REV SEP 1985 10

10

ACCEPT(2) COMMAND REFERENCE ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <Sys/types.h>
'#include <Sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION
The argument s is a socket which has been created with socket(2), bound
to an address with bind(2), and is listening for connections after a
listen(2). Accept extracts the first connection on the queue of pending
connections, creates a new socket with the same properties of sand
allocates a new file descriptor, ns, for the socket. If no pending
connections are present on the queue, and the socket is not marked as
non-blocking, accept blocks the caller until a connection is present. If
the socket is marked non-blocking and no pending connections are
present on the queue, accept returns an error as described below. The
accepted socket, ns, may not be used to accept more connections. The
original sockets remains open.

The argument addr is a result parameter which is filled in with the
address of the connecting entity, as known to the communications layer.
The exact format of the addr parameter is determined by the domain in
which the communication is occurring. The addrlen is a value-result
parameter; it should initially contain the amount of space pointed to by
addr; on return it will contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently
with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by
selecting it for read.

DIAGNOSTICS
The accept will fail if:

[EBADFJ
The descriptor is invalid.

[ENOTSOCKJ
The descriptor references a file, not a socket.

[EOPNOTSUPPJ
The referenced socket is not of type SOCK_STREAM.

[EFAULTJ
The addr parameter is not in a writable part of the user address
space.

REV MAR 1985

11

ACCEPT (2) COMMAND REFERENCE ACCEPT (2)

[EWOU LDBLOCKJ
The socket is marked non-blocking and no connections are present
to be accepted.

[EINVALJ
The options for this socket probably does not include accepting
connections.

[ECONNABORTEDJ
Tried accepting connection on socket that has receiving shutdown.

RETURN VALUE
The call returns -1 on error. If it succeeds it returns a non-negative
integer which is a descriptor for the accepted socket.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2).

2 REV MAR 1985

12

ACCESS(2) COMMAND REFERENCE ACCESS(2)

NAME
access - determine accessibility of file

SYNOPSIS
_#include (sys/file.h)

access(path, mode)
char *path;
int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode.
Mode is the inclusive or of the following values, defined in <sys/file.h):

#define R_OK 4 * test for read permission *
#define W_OK 2 *test for write permission *
#define)LOK 1 * test for execute (search) permission *
#define F _OK O * test for presence of file *

Specifying mode as F _OK (i.e. 0) tests whether the directories leading to
the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID)
are used in verifying permission, so this call is useful to set-user-id
programs.

Notice that only access bits are checked. A directory may be indicated as
writable by access, but an attempt to open it for writing will fail (although
files may be created there); a file may look executable, but execve will fail
unless it is in proper format.

DIAGNOSTICS
Access to the file is denied if one or more of the following are true:

[ENOTDIR]
A component of the path prefix is not a directory.

[ENAMETOOLONG]
The argument path is too long.

[ENOENT]
The named file does not exist.

[ENOASCll]
The argument path contains a byte with the high-order bit set.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EROFS]
Write access is requested for a file on a read-only file system.

REV MAR 1985

13

ACCESS{2) COMMAND REFERENCE ACCESS{2)

[ETXTBSY]
Write access is requested for a pure procedure (shared text) file that
is being executed.

[EACCES]
Permission bits of the file mode do not permit the requested access;
or search permission is denied on a component of the path prefix.
The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits, members of the file's
group other than the owner have permission checked with respect to
the "group" mode bits, and all others have permissions checked with
respect to the "other" mode bits. If the file is located on a remote
host, this error code will be returned if the local host name and local
user name does not appear in letclhosts.dfs.access on the remote
machine. See hosts.dfs.access.5n).

[EFAULT]
Path points outside the process's allocated address space.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

2
14

REV MAR 1985

ADJTIME(2) COMMAND REFERENCE ADJTIME(2)

NAME
adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS
#include (sys/time.h)

adjtime(delta, mode)
struct timeval *delta;
int mode;

DESCRIPTION
Adjtime changes the system time, as returned by gettimeofday(2), in the
way specified by the argument mode. If mode is LADJ then adjtime
moves the time back or forward by a number of milliseconds
corresponding to the timeval delta while keeping the monotonicity of the
function. If mode is LSET then delta milliseconds are added algebraicly
to the time.

This call can be used in timeservers that synchronize the clocks of
computers in a network to keep an accurate network time.

Only the super-user can call

adjtime(2). The time is normally incremented by a 20ms tick. If LADJ is
passed and delta is negative, the clock is incremented with a smaller tick
for the time necessary to correct the error. When delta is positive a larger
tick is used. This way, the clock is always a monotonic function. With
respect to this, adjtime with mode set to LSET, should be used carefully
and only at boot tome before any users can log on.

The T _SET mode has been introduced to make, at the process level, the
operation of adding a value to the time an atomic one.

DIAGNOSTICS
Adjtime may set the following errors in errno:

[EINVAL]
mode is not valid.

[EFAULT]
An argument references invalid memory.

[EPERM]
The caller is not the super-user.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
gettimeofday(2), timed(8n).

15

BIND(2) COMMAND REFERENCE BIND(2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include (sys/types.h)
#include <sys/socket.h)

bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created
with socket(2) it exists in a name space (address family) but has no name
assigned. Bind requests the name, be assigned to the socket.

Binding a name in the Unix domain creates a socket in the file system
which must be deleted by the caller when it is no longer needed (using
unlink(2)}. The file created is a side-effect of the current implementation,
and will not be created in future versions of the UTek ipc domain.

The rules used in name binding vary between communication domains.
Consult the manual entries in section 4 for detailed information.

Name for an internet domain socket has three components, an address
family type, a port number, and an internet address. See
lusrlincludelnetinetlin.h for the appropriate data structures. A Unix
domain socket has two components, an address family and a pathname
to a 11 file 11 that serves as a communications rendezvous point. See
/usrlincludelsys/un.h for the appropirate data structures.

Suppose you wish to set up a communications channel between two
independent processes that models a client-server relationship. The
server would do a socket(2) call (using type SOCK_STREAM) followed by
a bind, a listen(2), and an accept(2). The client would do a socket(2) call,
followed by a connect(2)

DIAGNOSTICS
The bind call will fail if:

REVSEP1985

[EBADF]
Sis not a valid descriptor.

[ENOTSOCK]
S is not a socket.

[EADDRNOTAVAIL]
The specified address (in the internet domain) or name (in the Unix
domain) is not available from the local machine.

[EADDRINUSE]
The specified address (in the internet domain) or name (in the Unix
domain) is already in use.

16

BIND(2) COMMAND REFERENCE BIND(2)

[EMSGSIZE]
The specified address size (in the internet domain) or name (in the
Unix domain) is too big for the protocol. The pathname of a Unix
domain socket is limited to 108 bytes.

[EINVAL]
The socket is already bound to an address (in the internet domain) or
name (in the Unix domain).

[EACCESS]
The requested address (in the internet domain) or address (in the
Unix domain) is protected, and the current user has inadequate
permission to access it. Internet address port numbers less than
1024 are privileged, meaning that you can't bind to them unless you
are root (or, as in the case with rcp(l n), owned by root with the setuid
bit on).

[EFAULT]
The name parameter is not in a valid part of the user address space.

[EDFSREF]
Name for a Unix domain socket references a file on a remote system
(which is not allowed). If you need that capability, use an internet
domain socket.

RETURN VALUE
[OJ Bind was successful.

[-1]

SEE ALSO

Bind was unsuccessful. The error is further specified in the global
errno.

connect(2), listen(2), socket(2), getsockname(2).

REVSEP1985 2

17

BRK(2) COMMAND REFERENCE BRK(2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
#include (sys/types.h)

caddr_t brk(addr)
caddr_t addr;

newaddr = sbrk(incr)
caddr_t newaddr;
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process's contiguous heap. The change is made
by resetting the process's break value. The break value is the address of
the first location beyond the end of the contiguous heap. The amount of
allocated space increases as the break value increases. Brk sets the
break value to addr (rounded up to the next multiple of the system's page
size) and changes the allocated space accordingly. Locations greater
than addr and below the stack pointer are not in the address space and
will thus cause a memory violation if accessed.

Sbrk adds incr more bytes to the break value and changes the allocated
space accordingly. A pointer to the start of the new area is returned in
newaddr.

When a program begins execution via execve the break is set at the
highest location defined by the program and data storage areas.
Ordinarily, therefore, only programs with growing data areas need to use
sbrk.

The getrlimit(2) system call may be used to determine the maximum
permissible size of the data segment; it will not be possible to set the
break beyond the rlim_max value returned from a call to getrlimit, e.g.
"etext + rlp-rlim_max." (See end(3c) for the definition of etext.)

DIAGNOSTICS
Sbrk and brk will fail and no additional memory will be allocated if one of
the following are true:

[ENOMEM]
The limit, as set by setrlimit(2), would be exceeded.

[ENOMEM]
The maximum possible size of a data segment, text segment or stack
would be exceeded. These limits are MAXTSIZ, MAXDSIZ and
MAXSSIZ, defined in (machine/vmparam.h).

[ENOMEM]
Insufficient space exists in the swap area to support the expansion.

REV MAR 1985

18

BRK(2) COMMAND REFERENCE BRK(2)

RETURN VALUE
Brk returns O if the break could be set, otherwise it returns -1. Sbrk
returns a pointer to the new data area in newaddr if the break could be
set, otherwise it returns -1. Both brk and sbrk set errno if there is an
error.

CAVEATS
Setting the break may fail due to a temporary lack of swap space. It is
not possible to distinguish this from a failure caused by exceeding the
maximum size of the data segment without consulting getrlimit.

SEE ALSO
execve(2), getrlimit(2), end(3c), malloc(3c).

2 REV MAR 1985

19

CHDIR(2) COMMAND REFERENCE CHDIR(2)

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char *path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to
become the current working directory, the starting point for path searches
for pathnames not beginning with "/".

In order for a directory to become the current directory, a process must
have execute (search) access to the directory.

DIAGNOSTICS
Chdir will fail and the current working directory will be unchanged if one
or more of the following are true:

[ENOTDIR]
A component of the pathname is not a directory.

[ENOENT]
The named directory does not exist.

[ENAMETOOLONG]
The argument path is too long.

[ENOASCll]
The argument path contains a byte with the high-order bit set.

[EACCES]
Search permission is denied for any component of the path name. If
the target directory is located on a remote host, this error code will be
returned if the local host name and local user name does not appear
in letc/hosts.dfs.access on the remote machine. See
hosts.dfs.access(5n).

[EIO]
An 110 error occurred while reading from or writing to the file system.

[EFAULT]
Path points outside the process's allocated address space.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

[EDFS_CD]

REVSEP1985

There is a fixed limit for the number of chdirs that may be made to a
remote host. When this limit is exceeded this error message is
returned.

20

CHDIA(2) COMMAND REFERENCE CHDIR(2)

RETURN VALUE
Upon successful compJetion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
U you chdir to a directory on a remote host, and are inactive for four
hours, the daemon serving you will exit.

SEE ALSO
chroot(2).

REVSEP1985 2
21

CHMOD(2) COMMAND REFERENCE CHMOD(2)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
chmod(path, mode)
char *path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd
has its mode changed to mode. Modes are constructed by or'ing
together some combination of the following bit patterns:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode
1000 prevents the system from abandoning the swap-space image of the
program-text portion of the file when its last user terminates. Ability to
set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the group owner of a file(see chgrp(1)) turns off the
set-user-id and set-group-id bits. This makes the system somewhat
more secure by protecting set-user-id (set-group-id) files from remaining
set-user-id (set-group-id) if they are modified, at the expense of a
degree of compatibility.

DIAGNOSTICS
Chmod will fail and the file mode will be unchanged if:

[ENOASCll]
The argument path contains a byte with the high-order bit set.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENAMETOOLONG]
The argument path is too long.

[ENOENT]
The named file does not exist.

[EACCES]

REV SEP 1985

Search permission is denied on a component of the path prefix. If
the file is located on a remote host, this error code will be returned if

22

CHMOD(2) COMMAND REFERENCE CHMOD(2)

the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EPERM]
The effective user ID does not match the owner of the file and the
effective user ID is not the super-user.

[EROFS]
The named file resides on a read-only file system.

[EFAULT]
Path points outside the process's allocated address space.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

Fchmod will fail if:

[EPERM]
The effective user ID does not match the owner of the file and the
effective user ID is not the super-user.

[EBADF]
The descriptor is not valid.

[EINVAL]
Fd refers to a socket, not to a file.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EROFS]
The file resides on a read-only file system.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
chgrp(l), chown(2), open(2).

REVSEP1985 2

23

CHOWN(2) COMMAND REFERENCE CHOWN(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char *path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and
group changed as specified. Only the super-user may execute this call,
because if users were able to give files away, they could defeat the file
space accounting procedures.

On some systems, chown clears the set-user-id and set-group-id bits
on the file to prevent accidental creation of set-user-id and set-group-id
programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file
locking primitives {see //ock(2)).

Only one of owner and group may be set by specifying the other as -1.

DIAGNOSTICS
Chown will fail and the file will be unchanged if:

[ENOTDIR]
A component of the path prefix is not a directory.

[ENAMETOOLONG]
The argument pathname is too long.

[ENOASCll]
The argument path contains a byte with the high-order bit set.

[ENOENT]
The named file does not exist.

[EPERM]
The effective user ID is not the super-user.

[EROFS]
The named file resides on a read-only file system.

[EFAULT]
Path points outside the process's allocated address space.

[EPERM]
The effective user ID is not the super-user.

[ELOOP]

REVSEP1985

Too many symbolic links were encountered in translating the
pathname.

24

CHOWN(2) COMMAND REFERENCE CHOWN(2)

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

Fchown will fail if:

[EBADF]
Fd does not refer to a valid descriptor.

[EPERM]
The effective user ID is not the super-user.

[EROFSJ
The named file resides on a read-only file system.

[EIO]
An 110 error occurred while reading from or writing to the file system.

[EINVAL]
Fd refers to a socket, not a file.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), flock(2).

REVSEP1985 2

25

CHROOT(2) COMMAND REFERENCE CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
chroot(path)
char *path;

DESCRIPTION
Path is the pathname of a directory. Chroot causes this directory to
become the root directory, the starting point for path names beginning
with "/". An exception is a directory name used as an argument to
chroot; its root is "/".

This call is restricted to the super-user.

DIAGNOSTICS
Chroot will fail and the root directory will be unchanged if one or more of
the following are true:

[EPERMJ
The effective user ID is not the super-user.

[ENOTDIRJ
A component of the pathname is not a directory.

[ENAMETOOLONGJ
The argument path is too long.

[ENOASCllJ
The argument path contains a byte with the high-order bit set.

[ENOENTJ
The named directory does not exist.

[EFAULTJ
Path points outside the process's allocated address space.

[ELOOPJ
Too many symbolic links were encountered in translating the
pathname.

[EDFSREFJ
Reference is to remote directory which is not supported for this
system call.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate an error.

SEE ALSO
chdir(2).

26

CLOSE (2) COMMAND REFERENCE CLOSE (2)

NAME
close - delete a descriptor

SYNOPSIS
close(fd)
·int fd;

DESCRIPTION
The close call deletes the descriptor f d from the per-process object
reference table. If this is the last reference to the underlying object, then
it will be deactivated. For example, on the last close of a file the current
/seek pointer associated with the file is lost; on the last close of a socket(2)
associated naming information and queued data are discarded; on the
last close of a file holding an advisory lock the lock is released (see
f/ock(2)).

A close of all of a process's descriptors is automatic on exit, but since
there is a limit on the number of active descriptors per process, close is
necessary for programs which deal with many descriptors.

When a process forks (see fork(2)), all descriptors for the new child
process reference the same objects as they did in the parent before the
fork. If a new process is then to be run using execve(2), the process
would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the execve is
attempted, but if some of these descriptors will still be needed if the
execve fails, it is necessary to arrange for them to be closed if the execve
succeeds. For this reason, the call "fcntl(fd, F _SETFD, 1)" is provided
which arranges that a descriptor will be closed after a successful execve;
the call ''fcntl(fd, F _SETFD, O)'' restores the default, which is to not close
the descriptor.

DIAGNOSTICS
Close will fail if:

[EBADFJ
Fd is not an active descriptor.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and the global integer variable errno is set to indicate
the error.

SEE ALSO
accept(2), close(2), dup(2), execve(2), fcnt/(2), f/ock(2), fork(2), open(2),
pipe(2), socket(2), socketpair(2).

27

CONNECT(2) COMMAND REFERENCE CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket.h>

connect(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The parameters is a socket. If it is of type SOCK._DGRAM, then this call
permanently specifies the peer to which datagrams are to be sent; if it is
of type SOCK._STREAM, then this call attempts to make a connection to
another socket. The other socket is specified by name which is an
address in the communications space of the socket. Each
communications space interprets the name parameter in its own way.

DIAGNOSTICS
The call fails if:

[EBADFJ
S is not a valid descriptor.

[ENOTSOCKJ
S is a descriptor for a file, not a socket.

[EADDRNOTAVAILJ
The specified address (for internet domain sockets) or name (for
UT ek domain sockets) is not available on this machine.

[EAFNOSUPPORTJ
Addresses in the specified address family cannot be used with this
socket.

[EISCONNJ
The socket is already connected.

[ETIMEDOUTJ
Connection establishment timed out without establishing a
connection.

[ECONNREFUSEDJ
The attempt to connect was forcefully rejected.

[ENETU NREACHJ
The network isn't reachable from this host.

[EADDRINUSEJ
The address (for internet domain sockets) or name (for UTek domain
sockets) is already in use.

28

CONNECT(2) COMMAND REFERENCE CONNECT(2)

CEFAULTl
The name parameter specifies an area outside the process address
space.

CEWOULOBLOCKl
· The socket is non-blocking and the and the connection cannot be

completed immediately. It is possible to select(2) the socket while it is
connecting by selecting it for writing.

CEDFSREFl
Name for a UTek domain socket references a file on a remote system
(which is not allowed). If you need that capability, use an internet
domain socket.

RETURN VALUE
[0] Successful binding or connection.

(-1]

SEE ALSO

Unsuccessful binding or connection. A more specific error code is
stored in errno.

accept(2), select(2), socket(2), getsockname(2).

2

29

DUP(2) COMMAND REFERENCE DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newfd = dup(oldfd)
int newfd, oldfd;

newfd = dup2(oldfd, newfd)
int oldfd, newfd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldfd is a
small non-negative integer index in the per-process descriptor table.
The value must be less than the size of the table, which is returned by
getdtablesize(2). The new descriptor newfd returned by the call is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between
references using oldfd and newfd in any way. Thus if newfd and oldfd
are duplicate references to an open file, read(2), write(2) and lseek(2) calls
all move a single pointer into the file. If a separate pointer into the file is
desired, a different object reference to the file must be obtained by
issuing an additional open(2) call.

In the second form of the call, the value of newfd desired is specified. If
this descriptor is already in use, the descriptor is first deallocated as if a
close(2) call had been done first.

DIAGNOSTICS
Dup and dup2 fail if:

[EBADF]
Old/ d or newfd is not a valid active descriptor.

[EMFILE]
NOFILE (defined in (sys/max.h>) descriptors are already active.

RETURN VALUE
Upon successful completion, dup and dup2 return the new file descriptor
in newfd. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
accept(2), close(2), getdtablesize(2), open(2), pipe(2), socket(2), socketpair(2).

REV MAR 1985

30

DUP2(2) COMMAND REFERENCE DUP2(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newfd = dup{oldfd)
'int newfd, oldfd;

newtd = dup2{oldfd, newfd)
int oldfd, newfd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldfd is a
small non-negative integer index in the per-process descriptor table.
The value must be less than the size of the table, which is returned by
getdtablesize(2). The new descriptor new/ d returned by the call is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between
references using oldfd and newfd in any way. Thus if newfd and oldfd
are duplicate references to an open file, read(2), write(2) and lseek(2) calls
all move a single pointer into the file. If a separate pointer into the file is
desired, a different object reference to the file must be obtained by
issuing an additional open(2) call.

In the second form of the call, the value of newfd desired is specified. If
this descriptor is already in use, the descriptor is first deallocated as if a
close(2) call had been done first.

DIAGNOSTICS
Dup and dup2 fail if:

[EBADFJ
Oldfd or newfd is not a valid active descriptor.

[EM FILE]
NOFILE (defined in <Sys/max.h>) descriptors are already active.

RETURN VALUE
Upon successful completion, dup and dup2 return the new file descriptor
in newfd. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
accept(2), close(2), getdtablesize(2), open(2), pipe(2), socket(2), socketpair(2).

31

EXECVE(2) COMMAND REFERENCE EXECVE(2)

NAME
execve - execute a file

SYNOPSIS
execve(path, argv, envp)
char *path, *argv[], *envp[];

DESCRIPTION
Execve transforms the calling process into a new process. The new
process is constructed from path, an ordinary file called the new process
file. This file is either an executable object file, or a file of data for an
interpreter. An executable object file consists of an identifying header,
followed by pages of data representing the initial program (text) and
initialized data pages. Additional pages may be specified by the header
to be initialize with zero data. See a.out(5).

An interpreter file begins with a line of the form "#! interpreter". The
length of this line cannot exceed SHSIZE, defined in (sys/user.h)
(currently 32). When an interpreter file is execve 'd, the system execve 's
the specified interpreter. The original arguments are passed to the
interpreter as one argument (arg 1) and path , the name of the originally
execve'd file, is passed as an additional argument (arg 2).

There can be no return from a successful execve because the calling
core image is lost. This is the mechanism whereby different process
images become active.

The argument argv is an array of character pointers to null-terminated
character strings. These strings constitute the argument list to be made
available to the new process. By convention, at least one argument must
be present in this array, and the first element of this array should be the
name of the executed program (i.e. the last component of path).

The argument envp is also an array of character pointers to null
terminated strings. These strings pass information to the new process
which are not directly arguments to the command. See environ(7).

Descriptors open in the calling process remain open in the new process,
except for those for which the close-on-exec flag is set; see close(2).
Descriptors which remain open are unaffected by execve.

Ignored signals remain ignored across an execve, but signals that are
caught are reset to their default values. The signal stack is reset to be
undefined; see sigvec(2) for more information.

Each process has real user and group IDs and effective user and group
IDs. The real ID identifies the person using the system; the effective ID
determines his access privileges. Execve changes the effective user and
group ID to the owner of the executed file if the file has the "set-user
ID" or "set-group-ID" modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling
process:

REVSEP1985

32

EXECVE(2) COMMAND REFERENCE EXECVE(2)

process ID
parent process ID
process group ID
access groups
working directory
root di rectory
control terminal
resource usages
interval timers
resource limits
file mode mask
signal mask

see getpid(2)
see getppid(2)
see getpgrp(2)
see getgroups(2)
see chdir(2)
see chroot(2)
see tty(2)
see getrusage(2)
see getitimer(2)
see getrlimit(2)
see umask(2)
see sigvec(2)

When a 11C11 program is executed as a result of the call, it is called as
follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the number of elements in argv (the "arg count") and argv
is the array of character pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of
the process. A pointer to this array is also stored in the global variable
"environ". Each string consists of a name, an "= ", and a null
terminated value. The array of pointers is terminated by a null pointer.
The shell sh(lsh) passes an environment entry for each global shell
variable defined when the program is called. See environ(7) for some
conventionally used names.

DIAGNOSTICS
Execve will fail and return to the calling process if one or more of the
following are true:

[ENAMETOOLONG]
The new process file's pathname is too long.

[ENOENT]
One or more components of the new process file's pathname do not
exist, or the interpreter to be used to execute the new process file
does not exist.

[ENOTDIR]
A component of the new process file's or the interpreter's pathname
is not a directory.

[EACCES]
Search permission is denied for a directory listed in the new process
file's or the interpreter's path prefix.

[EACCES]
The new process file or the interpreter is not an ordinary file.

REVSEP1985 2

EXECVE(2) COMMAND REFERENCE EXECVE(2)

[EACCES]
The new process file mode or the interpreter mode denies execute
permission. If the file is located on a remote host, this error code will
be returned if the local host name and local user name does not
appear in /etclhosts.dfs.access on the remote machine. See
hosts.dfs.access(5n).

[ENOEXEC]
The new process file or the interpreter has the appropriate access
permission, but has an invalid magic number in its header (see
a.out(5)).

[ETXTBSY]
The new process file or the interpreter is a pure procedure (shared
text) file that is currently open for writing or reading by some process.

[ENOMEM]
The new process requires more virtual memory than is allowed by the
imposed maximum (getrlimit(2)).

[E2BIG]
The number of bytes in the new process's argument list is larger than
the system-imposed limit of NCARGS, defined in (sys/param.h).

[ENOEXEC]
The new process file is not as long as indicated by the size values in
its header.

[ENOEXEC]
The interpreter name is longer than SHSIZE, defined in (sys/user.h).

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EFAULT]
Path, argv, or envp point to an illegal address.

[ENOMEM]
Swap space is not available for the new process,.or the new process
file's textsize, datasize or stacksize exceed the system-imposed
limits MAXTSIZ, MAXDSIZ or MAXSSIZ, defined in
(machine/vmparam. h >.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
If execve returns to the calling process an error has occurred; the return
value will be -1 and the global variable errno will contain an error code.

CAVEATS
If a program is setuid to a non-super-user, but is executed when the real
uid is "root", then the program has the powers of a super-user as well.

REV SEP 1985 3

34

EXECVE(2) COMMAND REFERENCE EXECVE(2)

SEE ALSO
close(2), exit(2), fork(2)., getrlimit(2), sigvec(2), exec/(3c), a.out(5),
environ(7).

REVSEP1985 4

35

EXIT(2) COMMAND REFERENCE EXIT(2)

NAME
_exit - terminate a process

SYNOPSIS
_exit(status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or
is interested in the SIGCHLD signal, then it is notified of the
calling process's termination and the low-order eight bits of
status are made available to it; see wait(2).

The parent process ID of all of the calling process's existing child
processes are also set to 1. This means that the initialization
process (see intro(2)) inherits each of these processes as well.

Most "C" programs call the library routine exit(3c) which performs
cleanup actions in the standard 1/0 library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit(3c).

REV MAR 1985

36

FCNTL (2) COMMAND REFERENCE FCNTL (2)

NAME
fcntl - file control

SYNOPSIS
#Include <fcntl.h>

result= fcntl(fd, cmd, arg)
int result;
int fd, cmd, arg;

DESCRIPTION
Fenti provides for control over open descriptors. The argument f d is an
open descriptor. The value of result and arg depends on cmd; see below.
Cmd is one of the following, defined in <fcntl.h>:

F_DUPFD
Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file
status flags).

The close-on-exec flag associated with the new file descriptor is set
to remain open across execve(2) system calls.

F_GETFD
Get the close-on-exec flag associated with the file descriptor fd. If
the low-order bit is 0, the file will remain open across execve calls,
otherwise the file will be closed upon execution of execve calls.

F_SETFD
Set the close-on-exec flag associated with f d to the low order bit of
arg (0 or 1 as above).

F_GETFL
Get descriptor status flags, as described below.

F_SETFL
Set descriptor status flags to arg. Arg is created by or'ing FNDELAY,
FAPPEND and FASYNC; see below.

F_GETOWN
Get the process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

F_SETOWN
Set the process group to receive SIGIO and SIGURG signals. If arg
is negative, it is interpreted as a process group number. If arg is
positive, it is interpreted as a process ID and the associated process
group is used.

1

37

FCNTL (2) COMMAND REFERENCE FCNTL (2)

The flags for the F _GETFL and F _SETFL flags are as follows, defined in
<Sys/file.h>:

FNDELAY
Non-blocking 1/0; if no data is available to a read call, or if a write
operation would block, the call returns -1 with the error
EWOULDBLOCK.

FAPPEND
Force each write to append at the end of file; corresponds to the
O_APPEND flag of open(2).

FASYNC
Enable the SIGIO signal to be sent to the process group when 1/0 is
possible (e.g., upon availability of data to be read) and enable the
SIGURG signal to be sent when an exception occurs.

DIAGNOSTICS
Fenti will fail if one or more of the following are true:

[EBADFJ
Fd is not a valid open file descriptor.

[EINVALJ
Cmd or arg is an invalid value.

[EMFILEJ
Cmd is F _DUPFD and NOFILE (defined in <Sys/max.h~ file
descriptors are currently open.

[EINVALJ
Cmd is F _DUPFD and arg is negative or greater than NOFILE
(defined in <Sys/max.h~ (see getdtablesize(2)).

[EINVALJ
Cmd is F_SETOWN and arg is not a valid process ID.

[ENOTTYJ
Cmd is not a valid request for the type of object associated with fd.

[ENXIOJ
Cmd was attempted on a special device which does not exist, or
beyond the limits of the device.

[EIOJ
An 110 error occurred while accessing the file system.

[ENODEVJ
Fd is a device, and cmd is an inappropriate request for that device.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as
follows:

F_DUPFD
F_GETFD
F_GETFL

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags, or'd together.

2
38

FCNTL (2)

F_GETOWN
other

COMMAND REFERENCE

Value of file descriptor owner.
Value other than -1.

FCNTL (2)

Otherwise, a value of -1 is returned and errno is set to indicate the error.

CAVEATS
The asynchronous 110 facilities of FNDELA Y and FASYNC are currently
available only for tty operations. No SIGIO signal is sent upon draining of
output sufficiently for non-blocking writes to occur.

SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2), exec/(3c).

3
39

FLOCK(2) COMMAND REFERENCE FLOCK(2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include <sys/file. h >

flock(fd, operation)
int fd, operation;

DESCRIPTION
Flock applies or removes an advisory lock on the file associated with the
file descriptor fd. A lock is applied by specifying an operation. Operation
is constructed by or 'ing together some combination of the following,
defined in (sys/file.h):

#define LOCK_SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

1
2
4
8

/* shared lock */
/* exclusive lock */
/* don't block when locking */
/* unlock*/

A lock is applied by specifying either LOCK_SH or LOCK_EX, possibly
or 'd with LOCK_ NB. LOCK_ UN will unlock an existing lock.

Advisory locks allow cooperating processes to perform consistent
operations on files, but do not guarantee consistency (i.e. processes may
still access files without using advisory locks possibly resulting in
inconsistencies).

The locking mechanism allows two types of locks: shared locks and
exclusive locks. At any time multiple shared locks may be applied to a
file, but at no time are multiple exclusive, or both shared and exclusive,
locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa,
simply by specifying the appropriate lock type; this results in the previous
lock being released and the new lock applied (possibly after other
processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes
the caller to be blocked until the lock may be acquired. If LOCK_NB is
included in operation, then this will not happen; instead the call will fail
and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated
through dup(2) or fork(2) do not result in multiple instances of a lock, but
rather multiple references to a single lock. If a process holding a lock on
a file forks and the child explicitly unlocks the file, the parent will lose its
lock.

Processes blocked awaiting a lock may be awakened by signals.

REV MAR 1985

40

FLOCK(2) COMMAND REFERENCE FLOCK(2)

DIAGNOSTICS
The flock call fails if:

[EWOULDBLOCK] The file is locked and LOCK._NB was specified.

· [EBADF] The argument/dis an invalid descriptor.

[EOPNOTSUPP]

[EINVAL]

RETURN VALUE

The argument fd refers to a socket, not to a file.

The argument operation is an invalid request.

Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), dup(2), execve(2), fork(2), open(2).

2 REVMAA1985

41

FMAP(2) COMMAND REFERENCE FMAP(2)

NAME
mmap - map pages of memory

SYNOPSIS
#include (sys/types.h)
#include (sys/mman.h)

mmap(pid, fromaddr, toaddr, len, prot, share)
int pid;
caddr_t fromaddr, toaddr;
u_int len, prot, share;

DESCRIPTION
The mapping routine mmap allows a process to access areas of other
processes through its own address space. It causes the calling process'
pages starting at toaddr and continuing for len bytes to map onto the
process with id pid, starting at the object's pages fromaddr.

If pid is M_sELF, an area of the process is mapped to itself. If pid is
MYHYS, an area of the process is mapped to physical memory (in which
case share is ignored). If pid is M_'ZFILL, an area of the process is made
zero filled (in which case fromaddr and share are ignored).

If the parameter share is true, both mappings will share the same
memory. Otherwise, a private copy of the area is made, and changes
through one mapping are not visible through the other.

PRIVATE make a private copy for the new map
SHARED share the area between the mapping~

The parameter prot specifies the accessibility of the pages through the
new mapping. Read and write access may be given on the basis of
processes of the same user, same process group, same group, and
world. A process may also protect its pages against itself. The protection
for a page is specified by or'ing together the following values.

M_R_SELF
M_W_SELF
M_R_USER
M_W_USER
M_R_PGROUP read, process group
M_W_PGROUP write, process group

read, process
write, process
read, user
write, user

M_R_GROUP read, group
M_W_GROUP write, group
M_R_WORLD read, world
M_W_WORLD write, world

Note that the protection is associated with the mapping, and not with the
actual memory.

If the process must change the protection of a mapping, it may map the
area to itself, with the new protection. Doing this with share cleared will
disassociate the area with all other mappings.

REV SEP 1985

42

FMAP(2) COMMAND REFERENCE FMAP(2)

The toaddr, fromaddr and /en parameters must be multiples of the system
cluster size (found using the getpagesize(2) call).

DIAGNOSTICS
_Mmap will fail when one of the following occurs:

[EINVAL]
An address is not on a cluster boundary.

[EMCOLLIDE]
Portions of the new area are already mapped.

[EM RANGE]
An area is outside the possible user's address space or includes part
of the uarea.

[EACCES]
The required permissions (for reading and/or writing) are denied for
the named file or area of a process.

[ESRCH]
No process can be found corresponding to the specified pid.

[EPERM]
The area of the object to be mapped is protected against the desired
operation.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpagesize(2), mremap(2), munmap(2).

REV SEP 1985 2

43

FORK (2) COMMAND REFERENCE FORK(2)

NAME
fork - create a new process

SYNOPSIS
pid = forkO
int pid;

DESCRIPTION
Fork causes creation of a new process. The new process (child process)
is an exact copy of the calling process (parent process) except for the
following:

DIAGNOSTICS

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process
ID of the parent process).

The child process has its own copy of the parent's descriptors.
These descriptors reference the same underlying objects, so that,
for instance, file pointers in file objects are shared between the child
and the parent, so that a /seek(2) on a descriptor in the child process
can affect a subsequent read or write by the parent. This descriptor
copying is also used by the shell to establish standard input and
output for newly created processes as well as to set up pipes.

The child processes resource utilizations are set to O; see
setrlimit(2).

Fork will fail and no child process will be created if one or more of the
following are true:

[EAGAINJ
The system-imposed limit on the total number of processes under
execution, NPROC, would be exceeded.

[EAGAINJ
The system-imposed limit on the total number of processes under
execution by a single user, MAXUPRC, defined in <Sys/param.h>,
would be exceeded.

[ENOMEMJ
Insufficient space exists in the swap area for the child process.

44

FORK (2) COMMAND REFERENCE FOAK(2)

RETURN VALUE
Upon successful compJetion, fork returns a value of O in pid to the child
process and returns the process ID of the child process in pid to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the global variable errno is set
to indicate the error.

SEE ALSO
execve(2), setrlimit(2), vfork(2), wait(2).

2
45

FSTAT(2) COMMAND REFERENCE FSTAT(2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include (sys/types.h >
#include (sys/stat.h)

stat(path, buf)
char *path;
struct stat *buf;

lstat(path, buf)
char *path;
struct stat *buf;

fstat(fd, buf)
int fd;
struct stat *buf;

DESCRIPTION
Stat obtains information about the file path. Read, write or execute
permission of the named file is not required, but all directories listed in
the path name leading to the file must be reachable.

Lstat is like stat except in the case where the named file is a symbolic
link, in which case lstat returns information about the link, while stat
returns information about the file the link references.

Fstat obtains the same information about an open file referenced by fd,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed
concerning the file. The structure is defined in (syslstat.h > as:

struct stat {
dev_t

ino_t
u_short
short
short
short
dev_t

off_t
time_t
int
time_t
int
time_t
int
long
long
long

REV SEP 1985

st_dev;

st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;

st_size;
st_atime;
st_spare1;
st_mtime;
st_spare2;
st_ctime;
st_spareJ;
st_blksize;
st_blocks;
st.....hostid;

/* ID of device containing a directory entry */
/* for this file */
/*this inode's number*/
/* file mode; see below */
/* number of hard links to the file */
/*user ID of the file's owner*/
/*group ID of the file's group*/
/* ID of device - this entry is defined only */
/* for character special or block special files */
/* total size of file */
/* time of last access */

/* time of last data modification */

/* time of last file status change */

/* optimal blocksize for file system I/0 ops */
/* actual number of blocks allocated */
/* hostid of machine where file is located */

46

FSTAT(2) COMMAND REFERENCE FSTAT(2)

sLatime

sLmtime

sLctime

long st_spare4;
};

Time when file data was last read or modified. Changed by
the following system calls: mknod(2), utimes(2), and read(2).
For reasons of efficiency, sLatime is not set when a
directory is searched, although this would be more logical.

Time when data was last modified. It is not set by changes
of owner, group, link count, or mode. Changed by the
following system calls: mknod(2), utimes(2), write(2).

Time when file status was last changed. It is set both both
by writing and changing the i-node. Changed by the
following system calls: chmod(2) chown(2), link(2),
mknod(2), rename(2), unlink(2), utimes(2), write(2).

The status information word st__mode has these bits:

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory *I
#define S_IFCHR 0020000 /* character special *I
#define S_IFBLK 0060000 I* block special *I
#define S_IFREG 0100000 I* regular *I
#define S_IFLNK 0120000 /* symbolic link *I
#define S_IFSOCK 0140000 /* socket *I
#define S_ISUID 0004000 I* set user id on execution*'
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISVTX 0001000 I* save swapped text even after use */
#define S_IREAD 0000400 /*read permission, owner *I
#define S_IWRITE 0000200 /*write permission, owner*/
#define S_IEXEC 0000100 /*execute/search permission, owner*'

The mode bits 0000070 and 0000007 encode group and others
permissions (see chmod(2)}.

When fd is associated with a pipe, fstat reports an ordinary file with an
i-node number, restricted permissions, and a not necessarily meaningful
length.

DIAGNOSTICS
Stat and lstat wirt fail if one or more of the following are true:

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[ENOENT]
The named file does not exist.

REV SEP 1985 2

47

FSTAT(2) COMMAND REFERENCE FSTAT(2)

[EACCES]
Search permission is denied for a component of the path prefix. If
the file is located on a remote host, this error code will be returned if
the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EFAULT]
Buf or path points to an invalid address.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

Fstat will fail if one of the following are true:

[EBADF]
Fd is not a valid open file descriptor.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

RETURN VALUE
Upon successful completion a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
The fields in the stat structure currently marked sCsparel, scspare2, and
st_spare3 are present in preparation for inode time stamps expanding to
64 bits. This, however, can break certain programs which depend on the
time stamps being contiguous (in calls to utimes(2)).

Applying fstat to a socket returns a zeroed buffer.

SEE ALSO
chmod(2), chown(2), utimes(2).

REV SEP 1985 3
48

FSYNC(2) COMMAND REFERENCE

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;

DESCRIPTION

FSYNC(2)

Fsync causes all modified data and attributes off d to be moved to a
permanent storage device. This normally results in all in-core modified
copies of buffers for the associated file to be written to a disk.

Fsync should be used by programs which require a file to be in a known
state-for example, in building a simple transaction facility.

DIAGNOSTICS
The fsync fails if:

[EBADF]
Fd is not a valid descriptor.

[EINVAL]
Fd refers to a socket, not to a file.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
The current implementation of this call is expensive for large files.

SEE ALSO
sync(2), sync(8), update(8).

REV MAR 1985

49

GETDT ABLESIZE { 2) COMMAND REFERENCE

NAME
getdtablesize - get descriptor table size

SYNOPSIS
size = getdtablesizeO
int size;

DESCRIPTION

GETDT ABLESIZE { 2)

Each process has a fixed size descriptor table. Getdtableslze returns the
size of this table in size. The table has NOFILE slots; NOFILE is defined
in <Sys/max.h> and is guaranteed to be at least 20. The entries in the
descriptor table are numbered with small integers starting at o.

RETURN VALUE
Getdtablesize returns the value NOFILE in size.

SEE ALSO
close(2), dup(2), open(2).

50

GETEUID (2) COMMAND REFERENCE GETEUID (2)

NAME
getuid, geteuid - get .user identity

SYNOPSIS
uid = getuidO
int uid;

euid = geteuidO
int euid;

DESCRIPTION
Getuid returns the real user ID of the current process in uid; geteuid
returns the effective user ID in euid.

The real user ID identifies the person who is logged in. The effective
user ID gives the process additional permissions during execution of
"set-user-ID" mode processes, which use getuid to determine the real
user ID of the process which invoked them.

RETURN VALUE
Getuid returns the real user ID; geteuid returns the effective user ID.

SEE ALSO
getgid(2), setreuid(2).

51

GETGID(2) COMMAND REFERENCE GETGID(2)

NAME
getgid, getegid - get group identity

SYNOPSIS
gid = getgid()
int gid;

egid = getegid()
int egid;

DESCRIPTION
Getgid returns the real group ID of the current process in gid. Getegid
returns the effective group ID in egid.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional
access permission during execution of a "set-group-ID" process. It is
for such processes that getgid is most useful.

RETURN VALUE
Getgid returns the real group ID of the current process in gid. Getegid
returns the effective group ID in egid.

SEE ALSO
getuid(2), setregid(2), setgid(Jc).

REV MAR 1985

52

GETGROUPS(2) COMMAND REFERENCE GETGROUPS(2)

NAME
getgroups - get group access list

SYNOPSIS
#include <Sys/param.h>

getgroups(ngroups, gidset)
int *ngroups, *gidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and
stores it in the array gidset. The parameter ngroups points to the the
number of entries which may be placed in gidset and its contents are
modified on return to indicate the actual number of groups returned. No
more than NGROUPS, as defined in <sys/param.h>, will ever be returned
in ngroups.

DIAGNOSTICS
The possible errors for getgroups are:

[EFAULTJ
The argument gidset or ngroups specifies an invalid address.

[EINVALJ
The size of gidset, as specified by the contents of ngroups, is too
small to accommodate the entire group access list.

RETURN VALUE
Upon successful completion, a value of O is returned, and gidset and
ngroups are modifed as described above. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
setgroups(2), initgroups(3c).

53

GETGROU PS(2) COMMAND REFERENCE GETGROUPS(2)

NAME
getgroups - get group access list

SYNOPSIS
#include (sys/param.h)

getgroups(ngroups, gidset)
int *ngroups, *gidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and
stores it in the array gidset. The parameter ngroups points to the the
number of entries which may be placed in gidset and its contents are
modified on return to indicate the actual number of groups returned. No
more than NGROUPS, as defined in (syslparam.h), will ever be returned
in ngroups.

DIAGNOSTICS
The possible errors for getgroups are:

[EFAULT]
The argument gidset or ngroups specifies an invalid address.

[EINVAL]
The size of gidset, as specified by the contents of ngroups, is too
small to accommodate the entire group access list.

RETURN VALUE
Upon successful completion, a value of O is returned, and gidset and
ngroups are modifed as described above. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
setgroups(2), initgroups(3c).

54

GETHOSTID (2) COMMAND REFERENCE GETHOSTID (:

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostidO
int hostid;

sethostid(hostid)
int hostid;

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor which
intended to be unique among all UTek systems in existence. This is
normally a DARPA Internet address for the local machine. This call is
allowed only to the super-user and is normally performed at boot time.

RETURN VALUE
Gethostid returns the 32-bit identifier for the current processor.

CAVEATS
32 bits for the identifier is too small.

SEE ALSO
host id(1), gethostname(2).

55

GETHOSTNAME{2) COMMAND REFERENCE GETHOSTNAME{2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor,
as previously set by sethostname. The parameter name/en specifies the
size of the name array. The returned name is null-terminated unless
insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has
length name/en. This call is restricted to the super-user and is normally
used only when the system is bootstrapped.

DIAGNOSTICS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid
address.

[EPERM]

RETURN VALUE
[O]

[-1]

CAVEATS

The caller was not the super-user. Applies only to
sethostname.

Successful call.

Unsucessful call. An error code is placed in the
global location errno.

Host names are limited to 255 characters.

SEE ALSO
gethostid(2).

REV SEP 1985

56

GETITIMER(2) COMMAND REFERENCE GETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include (sys/time.h >

getitimer(which, value)
int which;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *Value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in
(sys/time. h):

#define ITIMER_REAL 0
#define !TIMER_ VIRTUAL 1
#define ITIMER_PROF 2

/* real time intervals *I
/* virtual time intervals */
I* user and system virtual time

The getitimer call returns in value the current value for the timer specified
in which. The setitimer call sets the value of the timer specified in which
to value, returning the previous value of the timer in ovalue.

A timer value is defined by the itimerval structure, defined in (sys/time.h):

struct itimerval {

};

struct timeval it_interval;
struct timeval it_value;

/* timer interval */
/* current value */

The timeval structure, defined in (sys/time.h), is:

struct timeval {

}

long
long

tv_sec;
tv_usec;

/* seconds */
/* and microseconds */

For getitimer, if it_value is non-zero, it indicates the time to the next
timer expiration. For example, if it_value is set to 30 seconds, then in 30
seconds the timer will expire and a SIGALRM signal will be sent to the
process. If it_interval is non-zero, it specifies a value to be used in
reloading it_value when the timer expires.

For setitimer, setting it_value to non-zero sets the time to the next timer
expiration. Setting iUnterval to non-zero specifies the value to be used
in reloading it_value when the timer expires. Setting it_value to 0 disables
a timer. Setting it_interval to O causes a timer to be disabled after its
next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded
up to this resolution.

REV SEP 1985

57

GETITIMER(2) COMMAND REFERENCE GETITIMER(2)

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is
delivered when this timer expires.

The !TIMER_ VIRTUAL timer decrements in process virtual time. It runs
only when the process is executing. A SIGVTALRM signal is delivered
when it expires.

The ITIMER_PROF timer decrements both in process virtual time and
when the system is running on behalf of the process. It is designed to be
used by interpreters in statistically profiling the execution of interpreted
programs. Each time the ITIMER_PROF timer expires, the SIGPROF
signal is delivered. Because this signal may interrupt in-progress system
calls, programs using this timer must be prepared to restart interrupted
system calls.

DIAGNOSTICS
Getitimer and setitimer will fail if one or more of the following are true:

[EFAULT]
The value parameter specifies a bad address.

[EINVAL]
Which is an invalid argument.

Setitimer will also fail if the following is true:

[EINVAL]
The value parameter specifies an invalid time. This could mean that
either the seconds or microseconds field of the timeval structure is
negative, or the seconds field is greater than 100000000 (over 3
years), or if the microseconds field is greater than 1000000 (1 sec).

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
Three macros for manipulating time values are defined in (sysltime.h).
Timerclear sets a time value to zero, timerisset tests if a time value is
non-zero, and timercmp compares two time values (beware that) = and
< = do not work with this macro).

SEE ALSO
gettimeofday(2), sigvec(2).

REV SEP 1985 2
58

GETPAGESIZE(2) COMMAND REFERENCE

NAME
getpagesize - get system page size

SYNOPSIS
pagesize = getpagesize(}
int pagesize;

DESCRIPTION

GETPAGESIZE(2)

Getpagesize returns the number of bytes in a page, (NBPG * CLSIZE), in
pagesize. NBPG and CLSIZE are defined in (machine/param.h). Page
granularity is the granularity of many of the memory management calls.

The page size is a system page size and may not be the same as the
underlying hardware page size.

RETURN VALUE
The number of bytes in a page is returned.

SEE ALSO
sbrk(2).

59

REV MAR 1985

GETPEERNAME(2) COMMAND REFERENCE GETPEERNAME(2)

NAME
getpeername - get name of connected peer

SYNOPSIS
getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to sockets. The
name/en parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS
The call succeeds unless:

[EBADF]

[ENOTSOCK]

[ENOTCONN]

[ENOBUFS]

[EFAULT]

RETURN VALUE
[O]

[-1]

CAVEATS

The arguments is not a valid descriptor.

The arguments is a file, not a socket.

The socket is not connected.

Insufficient resources were available in the system
to perform the operation.

The name parameter points to memory not in a valid
part of the process address space.

Sucessful call.

Unsucessful call.

Names bound to sockets in the UTek domain are inaccessible;
getpeername returns a zero length name.

SEE ALSO
bind(2), socket(2), getsockname(2).

REV MAR 1985

60

GETPGRP(2) COMMAND REFERENCE GETPGRP(2)

NAME
getpgrp - get process group

SYNOPSIS
pgrp = getpgrp(pid)
int pgrp;
int pid;

DESCRIPTION
Getpgrp returns the process group of the process specified by pid in
pgrp. If pid is zero, then the call applies to the current process.

Process groups are used for distribution of signals, and by terminals to
arbitrate requests for their input; processes which have the same process
group as the terminal are foreground and may read, while others will
block with a signal if they attempt to read.

This call is thus used by programs such as csh(l csh) to create process
groups in implementing job control. The TIOCGPGRP and TIOCSPGRP
calls described in tty(4) are used to get/set the process group of the
control terminal.

DIAGNOSTICS
Getpgrp will fail if the following is true:

[ESRCH]
Pid is an invalid process ID.

RETURN VALUE
Upon successful completion, getpgrp returns the process group in pgrp.
If an error occurs, -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), setpgrp(2), tty(4).

REVSEP1985

61

GETPID(2) COMMAND REFERENCE

NAME
getpid, getppid - get process identification

SYNOPSIS
pid = getpid()
long pid;

ppid = getppid()
long ppid;

DESCRIPTION

GETPID(2)

Getpid returns the process ID of the current process in pid. Most often it
is used with the host identifier gethostid(2) to generate uniquely-named
temporary files.

Getppid returns the process ID of the parent of the current process in
ppid.

RETURN VALUE
Getpid returns the current process ID; getppid returns the current
process' parent's process ID.

SEE ALSO
gethostid(2).

62

REV MAR 1985

GETPPID (2) COMMAND REFERENCE

NAME
getpid, getppid - get process identification

SYNOPSIS
pid = getpidO
long pid;

ppid = getppidO
long ppid;

DESCRIPTION

GETPPID (2)

Getpid returns the process ID of the current process in pid. Most often it
is used with the host identifier gethostid(2) to generate uniquely-named
temporary files.

Getppid returns the process ID of the parent of the current process in
ppid.

RETURN VALUE
Getpid returns the current process ID; getppid returns the current
process' parent's process ID.

SEE ALSO
gethostid(2).

REV MAR 1985

63

GETPRIORITY (2) COMMAND REFERENCE GET PRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#include (sys/time.h)
#include (sys/resource.h)

prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as
indicated by which and who is returned in prio with the getpriority call
and set to prio with the setpriority call.

Which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, defined
in (sys/resource. h):

#define PRIO_PROCESS 0
#define PRIO_PGRP
#define PRIO_USER

f * process */
1 /* process group */
2 /* user id */

Who is interpreted relative to which: a process identifier for
PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID
for PRIO_USER.

A value of 0 for who, in either getpriority or setpriority, will indicate the
operations are to apply to the current process, process group, or user.

The getpriority call returns in prio the highest priority (lowest numerical
value) enjoyed by any of the specified processes. Here, prio will be one
of 40 values in the range -20 to 19. The default priority is O; lower
priorities cause more favorable scheduling.

The setpriority call sets to prio the priorities of all of the specified
processes to the specified value. Only the super-user may lower
priorities.

DIAGNOSTICS
Getpriority and setpriority may return one of the following errors:

[ESRCH]
No process(es) are located using the which and who values specified.

[EINVAL]
Which is not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of
the following errors returned:

[EACCES]

REV SEP 1985

A process is located, but neither its effective nor real user ID
matched the effective user ID of the caller, and the caller is not the
super-user.

64

GETPRIORITY (2) COMMAND REFERENCE GETPRIORITY (2)

[EACCES]
A non super-user .is attempting to change a process priority to a
negative value.

RETURN VALUE
Setpriority returns 0 if there is no error, or -1 if there is, setting errno to
indicate the error. Getpriority returns the process' priority. Since
getpriority can legitimately return the value -1 , it is necessary to clear
the external variable errno prior to the call, then check it afterward to
determine if a -1 is an error or a legitimate value.

CAVEATS
If a prio larger than 19 is given to setpriority, it will be changed to 19 and
the priority set accordingly.

SEE ALSO
fork(2), nice(l).

REV SEP 1985 2

65

GETRLIMIT (2) COMMAND REFERENCE GETRLIMIT(2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include (sys/time.h)
#include (sys/resource.h)

getrlimit(resource, rip)
int resource;
struct rlimit *rip;

setrlimit(resource, rip)
int resource;
struct rlimit *rip;

DESCRIPTION
Limits on the consumption of system resources by the current process
and each process it creates may be obtained with the getrlimit call, and
set with the setrlimit call.

Getrlimit returns the limits on the current process in the rlimit structure
pointed to by rip; setrlimit uses the values in the structure to set the
process limits.

The resource parameter is one of the following, defined in
(sys/resource.h):

RLIMILDATA the maximum size, in bytes, of the data segment for a
process; this defines how far a program may extend its
break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a
process; this defines how far a program's stack
segment may be extended, either automatically by the
system, or explicitly by a user with the sbrk(2) system
call.

RLIMIT _RSS the maximum size, in bytes, a process's resident set
size may grow to. This imposes a limit on the amount
of physical memory to be given to a process; if memory
is tight, the system will prefer to take memory from
processes which are exceeding their declared resident
set size.

A resource limit is specified as a soft limit and a hard limit. When a soft
limit is exceeded a process may receive a signal (for example, if the cpu
time is exceeded), but it will be allowed to continue execution until it
reaches the hard limit (or modifies its resource limit). The rlimit structure
is used to specify the hard and soft limits on a resource, defined in
(sys/resource.h):

struct rlimit {

};

long
long

rlim_cur;
rlim_max;

66

/* current (soft) limit */
/* hard limit */

REV MAR 1985

GETRLIMIT(2) COMMAND REFERENCE GETRLIMIT (2)

Only the super-user may raise the hard limits. Other users may only
alter rlim_cur within the range from 0 to rlim_max or (irreversibly) lower
rlim_max.

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox?fffffff) in
(sys/resource. h).

Because this information is stored in the per-process information, this
system call must be executed directly by the shell if it is to affect all
future processes created by the shell; limit is thus a built-in command to
csh(lcsh).

The system refuses to extend the data or stack space when the limits
would be exceeded in the normal way: a break call fails if the data space
limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file 1/0 operation which would create a file which is too large will cause
a signal SIGXFSZ to be generated, this normally terminates the process,
but may be caught. When the soft cpu time limit is exceeded, a signal
SIGXCPU is sent to the offending process.

DIAGNOSTICS
The possible errors are:

[EFAULT]
The address specified for rip is invalid.

[EPERM]
The limit specified to setrlimit would have raised the maximum limit
value, and the caller is not the super-user.

[EINVAL]
The resource argument is not a valid value.

RETURN VALUE
A O return value indicates that the call succeeded, changing or returning
the resource limit. A return value of -1 indicates that an error occurred,
and an error code is stored in the global location errno.

SEE ALSO
csh(Jcsh), sh(lsh).

2 REV MAR 1985

67

GETRUSAGE(2) COMMAND REFERENCE GETRUSAGE{2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#include <Sys/time.h>
#include <Sys/resource.h>
getrusage(who, rusage)
int who;
struct rusage *rusage;

DESCRIPTION
Getrusage returns information describing the resources utilized by the
current process, or all its terminated child processes. The who parameter
is one of RUSAGE_SELF and RUSAGE_CHILDREN, defined in
<Sys/resouce.h>:
#define RUSAGE_SELF
#define RUSAGE_CHILDREN

0
-1

/* calling process */
/* terminated child processes */

The buffer pointed to by rusage will be filled in with the following structure,
defined in <Sys/resource.h>:
struct rusage {
struct timeval ru_utime;
struct timeval ru_stime;
long ruJDaxrss;
long ru_ixrss;
long ru_idrss;
long ru_isrss;
long ruJDinflt;
long ruJDajflt;
long ru_nswap;
long ru_inblock;
long ru_oublock;
long ru_msgsnd;
long ru_msgrcv;
long ru_nsignals;
long ru_nvcsw;
long ru_nivcsw;
};

/* user time used */
/* system time used */

/* integral shared memory size */
/* integral unshared data size */
/* integral unshared stack size */
/* page reclaims */
/* page faults */
/* swaps */
/* block input operations */
/* block output operations */
/* messages sent */
/* messages received */
/* signals received */
/* voluntary context switches */
/* involuntary context switches */

The fields are interpreted as follows:

ru_utime
the total amount of time spent executing in user mode.

ru_stime
the total amount of time spent in the system executing on behalf of
the process(es).

ru_maxrss
the maximum resident set size utilized (in kilobytes).

1

68

GETRUSAGE(2) COMMAND REFERENCE GETRUSAGE(2)

ru_ixrss
an "integral" value indicating the amount of memory used which was
also shared among other processes. This value is expressed in units
of kilobytes * seconds-of-execution and is calculated by summing
the number of shared memory pages in use each time the internal
system clock ticks and then averaging over 1 second intervals.

ru_idrss
an integral value of the amount of unshared memory residing in the
data segment of a process (expressed in units of kilobytes *
seconds-of-execution).

ru_isrss
an integral value of the amount of unshared memory residing in the
stack segment of a process (expressed in units of kilobytes *
seconds-of-execution).

ru_minflt
the number of page faults serviced without any 1/0 activity; here 1/0
activity is avoided by "reclaiming" a page frame from the list of
pages awaiting reallocation.

ru_majflt
the number of page faults serviced which required 1/0 activity.

ru_nswap
the number of times a process was "swapped" out of main memory.

ru_inblock
the number of times the file system had to perform input.

ru_outblock
the number of times the file system had to perform output.

ru_msgsnd
the number of ipc messages sent.

ru_msgrcv
the number of ipc messages received.

ru_nsignals
the number of signals delivered.

ru_nvcsw
the number of times a context switch resulted due to a process
voluntarily giving up the processor before its time slice was
completed (usually to await availability of a resource).

ru_nivcsw
the number of times a context switch resulted due to a higher priority
process becoming runnable or because the current process
exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real 110; data
supplied by the cacheing mechanism is charged only to the first process
to read or write the data.

2
69

GETRUSAGE(2) COMMAND REFERENCE GETRUSAGE(2)

DIAGNOSTICS
Getrusage will fail if one or more of the following is true:

[EINVALJ
The who argument is an invalid value.

[EFAULTJ
The argument rusage refers to an invaUd address.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
There is no way to obtain information about a child process which has not
yet terminated.

SEE ALSO
gettimeofday(2), wait(2).

3
70

GETSOCKNAME (2) COMMAND REFERENCE GETSOCKNAME (~

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The
name/en parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS
The call succeeds unless:

[EBADFJ
The arguments is not a valid descriptor.

lENOTSOCKJ
The arguments is a file, not a socket.

lENOBUFSJ
Insufficient resources were available in the system to perform the
operation.

lEFAULTJ
The name parameter points to memory not in a valid part of the
process address space.

RETURN VALUE
[OJ Getsockname was successful.

(-1]
Getsockname was unsuccessful.

CAVEATS
Names bound to sockets in the UTek domain are inaccessible;
getsockname returns a zero length name.

SEE ALSO
bind(2), socket(2).

71

GETSOCKOPT { 2) COMMAND REFERENCE GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket. h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *Optval;
int *Optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *Optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket.

To manipulate options at the "socket" level, level is specified as
SOLSOCKET.

The parameters optval and opt/en are used to specify option values for
setsockopt. For getsockopt they identify a buffer in which the value for
the requested option is to be returned. For getsockopt, opt/en is a
value-result parameter initially containing the size of the buffer pointed to
by optval. It is modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be
supplied as 0.

Optname and any specified option value are passed uninterpreted to the
appropriate protocol module for interpretation. The include file
<s-ys!socket.h> contains definitions for "socket" level options; see
socket(2). At this level, optname is a single option; that is, only one option
can be specified per call to getsockopt or setsockopt. Also, setsockopt
will fail if an optval of size greater than the mbuf data length (defined in
<s-ys!mbuf.h">) is specified.

DIAGNOSTICS
The call succeeds unless:

[EBADFJ
The arguments is not a valid descriptor.

[ENOTSOCKJ
The arguments is a file, not a socket.

[ENOPROTOOPTJ
The option specified in getsockopt is not set.

[EINVALJ
Optname or level is unknown; size of optval is too large (setsockopt).

72

GETSOCKOPT (2) COMMAND REFERENCE GETSOCKOPT (2)

[EFAULTJ
The options are not in a valid part of the process address space.

[ENOBUFSJ
No system buffer space is available.

RETURN VALUE
[OJ Successful call. In the case of getsockopt, the option specified by

optname is set.

[-1]
Unsuccessful call or optname is not set. An error code is stored into
the global variable errno.

CAVEATS
At present, only "socket" level options are allowed. Of these, only
SO_LINGER accepts an optval argument of integer size to setsockopt.

There is no provision for resetting an option, once set.

SEE ALSO
socket(2), getprotoent(3n).

2
73

GETTIMEOFDAY (2) COMMAND REFERENCE GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include (sys/time.h)

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time
and the current time zone in the structures pointed to by tp and tzp.
Settimeofday sets the time, using the contents of the structures.

Time returned is expressed relative in seconds and microseconds since
midnight January 1, 1970.

The structures pointed to by tp and tzp are defined in (sys!time.h) as:

struct timeval {
long tv_sec;
long tv_usec;

};

struct timezone {

/* seconds since Jan. 1, 1970 */
I* and microseconds */

int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply

};

The timezone structure indicates the local time zone (measured in minutes
of time westward from Greenwich), and a flag tz_dsttime, that, if nonzero,
indicates that Daylight Saving time applies locally during the appropriate
part of the year.

Only the super-user may set the time of day.

DIAGNOSTICS
Gettimeofday and settimeofday may set the following errors in errno:

[EFAULT]
An argument address references invalid memory.

In addition, settimeofday may set the following error:

[EPERM]
The caller is not the super-user.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

REV SEP 1985

74

GETTIMEOFDA y (2) COMMAND REFERENCE GETTIMEOFDAY (2)

CAVEATS
Time is never correct enough to believe the microsecond values. There
should a mechanism by which, at least, local clusters of systems might
synchronize their clocks to millisecond granularity. If tzp is NULL, the
time zone information will not be returned or set.

SEE ALSO
date(l), ctime(3c).

REVSEP1985
2

75

GETUID (2) COMMAND REFERENCE GETUID (2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
uid = getuidQ
int uid;

euid = geteuidQ
int euid;

DESCRIPTION
Getuid returns the real user ID of the current process in uid; geteuid
returns the effective user ID in euid.

The real user ID identifies the person who is logged in. The effective
user ID gives the process additional permissions during execution of
"set-user-ID" mode processes, which use getuid to determine the real
user ID of the process which invoked them.

RETURN VALUE
Getuid returns the real user ID; geteuid returns the effective user ID.

SEE ALSO
getgid(2), setreuid(2).

76

IOCTL (2) COMMAND REFERENCE IOCTL (2)

NAME
ioctl - control device

SYNOPSIS
#include <Sys/ioctl.h>

ioctl(fd, request, argp)
int fd;
long request;
char *argp;

DESCRIPTION
Ioctl performs a variety of functions, specified by request, on the open
descriptor fd. In particular, many operating characteristics of character
special files (e.g. terminals) may be controlled with ioctl requests.

An ioctl request has encoded in it whether the argument argp is an "in"
parameter or "out" parameter, and the size of argp in bytes. Macros and
defines used in specifying an ioctl request are located in the file
<syslioctl.h>.

The writeups of various devices in section 4 discuss how ioctl applies to
them. See that section for details.

DIAGNOSTICS
Ioctl will fail if one or more of the following are true:

[EBADFJ
Fd is not a valid open descriptor, or the object it references is not
readable or writable.

[ENOTTYJ
Fd is not associated with a character special device.

[ENOTTYJ
The specified request does not apply to the kind of object which the
descriptor fd references.

[EINVALJ
Request or argp is not valid.

[EFAULTJ
Argp references an invalid address.

[EFAULTJ
The size encoded in request is invalid.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
execve(2), fcnt/(2), tty(4), intro(4n).

77

KILL(2) COMMAND REFERENCE KILL(2)

NAME
kill - send signal to a process

SYNOPSIS
kill(pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process specified by the process number
pid. Sig may be one of the signals specified in sigvec(2), or it may be 0.
If sig is 0, error checking is performed but no signal is actually sent. This
can be used to check the validity of pid.

The sending and receiving processes must have the same effective user
ID, otherwise this call is restricted to the super-user. A single exception
is the signal SIGCONT which may always be sent to any child or
grandchild of the current process.

If pid is greater than 0, sig is is sent to the process whose process ID is
equal to pid.

If pid is 0, sig is sent to all other processes in the sender's process group;
this is a variant of killpg(2).

If pid is -1, and the user is the super-user, sig is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

DIAGNOSTICS
Kill will fail and no signal will be sent if any of the following occur:

[EINVAL]
Sig is not a valid signal number.

[ESRCH]
No process can be found corresponding to that specified by pid.

[EPERM]
The sending process is not the super-user and its effective user ID
does not match the effective user ID of the receiving process.

[EINVAL]
Pid is 0, but there is no process group associated with pid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpid(2), getpgrp(2), killpg(2), sigvec(2).

REV SEP 1985

78

KILLPG(2) COMMAND REFERENCE KILLPG(2)

NAME
killpg - send signal to a process group

SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a
list of signals.

The sending process and members of pgrp must have the same effective
user ID, otherwise this call is restricted to the super-user. As a single
special case the continue signal SIGCONT may be sent to any process
which is a descendant of the current process.

DIAGNOSTICS
Killpg will fail and no signal will be sent if any of the following occur:

[EINVAL]
Sig is not a valid signal number.

[ESRCH]
No process can be found corresponding to that specified by pid.

[EPERM]
The sending process is not the super-user and one or more of the
target processes has an effective user ID different from that of the
sending process.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

SEE ALSO
getpgrp(2), kil/(2), sigvec(2).

REV MAR 1985

79

LINK(2) COMMAND REFERENCE LINK(2)

NAME
link - make a hard link to a file

SYNOPSIS
link(path1 , path2)
char *path1 , *path2;

DESCRIPTION
Pathl names an existing file. Path2 names a new directory entry to be
created. Link creates a new link (directory entry) for the existing file,
named path2.

With hard links, both pathl and path2 must be in the same file system.
Unless the caller is the super-user, pathl must not be a directory. Both
pathl and path2 share equal access and rights to the underlying object.

DIAGNOSTICS
Link will fail and no link will be created if one or more of the following are
true:

[ENOASCll]
Either pathname contains a byte with the high-order bit set.

[ENOSPC]
The directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[ENAMETOOLONG]
Either pathname is too long.

[ENOTDIR]
A component of either path prefix is not a directory.

[ENOENT]
The file named by pathl does not exist.

[EEXIST]
The link named by path2 does exist.

[EPERM]
The file named by pathl is a directory and the effective user ID is not
super-user.

[EXDEV]
The link named by path2 and the file named by pathl are on different
file systems.

[EACCES]

REV SEP 1985

A component of either path prefix denies search permission or the
requested link requires writing in a directory with a mode that denies
write permission. If the file is located on a remote host, this error
code will be returned if the local host name and local user name does
not appear in letclhosts.dfs.access on the remote machine. See
hosts.dfs.access(5n).

80

LINK(2} COMMAND REFERENCE LINK(2)

[EROFS]
The requested link requires writing in a directory on a read-only file
system.

[EFAULT]
One of the pathnames specified is outside the process's allocated
address space.

[ELOOP]
Too many symbolic links were encountered in translating a
pathname.

[EIO]
An 1/0 error occurred while writing to the file system.

[EDFSREF]
Both pathl and path2 must reference files on the same host or this
error will be returned.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
symlink(2), unlink(2).

REV SEP 1985 2

81

LISTEN (2) COMMAND REFERENCE LISTEN (2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog
for incoming connections is specified with listen(2) and then the
connections are accepted with accept(2). The listen call applies only to
sockets of type SOCK_STREAM.

The backlog parameter defines the maximum length the queue of pending
connections may grow to. If a connection request arrives with the queue
full the client will receive an error with an indication of ECONNREFUSED.

DIAGNOSTICS
The call fails if:

[EBADFJ
The arguments is not a valid descriptor.

[ENOTSOCKJ
The argument s is not a socket.

[EOPNOTSUPPJ
The socket is not of a type that supports the operation listen.

RETURN VALUE
[OJ Listen was successful.

[-1]
Listen was unsuccessful.

CAVEATS
The backlog is currently limited (silently) to 5.

SEE ALSO
accept(2), connect(2), socket(2).

82

LSEEK(2) COMMAND REFERENCE LSEEK(2)

NAME
lseek - move read/write pointer

SYNOPSIS
#include (sys/types.h >
#include (sys/file.h>

pos = lseek(fd, offset, whence)
int pos;
int fd;
oft_t offset;
int whence;

DESCRIPTION
Lseek sets the file pointer of the file referenced by fd, and returns the
new value of the file pointer in pos. Fd refers to a file or device open for
reading and/or writing. Whence is one of the following values, defined in
(sys/file.h):

#define LSET O I* set the seek pointer *I
#define LINCR 1 /* increment the seek pointer*/
#define L_)(TND 2 /* extend the file size */

The use of offset is described below.

Lseek sets the file pointer

If whence is LSET, the pointer is set to offset bytes.

If whence is LINCR, the pointer is set to its current location plus
offset.

If whence is LXTND, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location as measured in
bytes from beginning of the file is returned in pos . Some devices are
incapable of seeking. The value of the pointer associated with such a
device is undefined.

Seeking far beyond the end of a file, then writing, creates a gap or
"hole", which occupies no physical space and reads as zeros.

DIAGNOSTICS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF]
Fd is not an open file descriptor.

[ESPIPE]
Fd is associated with a pipe or a socket.

[EINVAL]
Whence is not a proper value.

[EINVAL]
The new pointer would be negative.

REV SEP 1985

83

LSEEK(2) COMMAND REFERENCE LSEEK(2)

RETURN VALUE
Upon successful completion, a non-negative integer pos, the current file
pointer value, is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

CAVEATS
This document's use of whence is incorrect English, but maintained for
historical reasons.

SEE ALSO
dup(2), open(2).

REV SEP 1985 2
84

LSTAT(2) COMMAND REFERENCE LSTAT(2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include (sys/types.h)
#include (sys/stat.h)

stat(path, buf)
char *path;
struct stat *but;

lstat(path, buf)
char *path;
struct stat *but;

fstat(td, buf)
int fd;
struct stat *but;

DESCRIPTION
Stat obtains information about the file path. Read, write or execute
permission of the named file is not required, but all directories listed in
the path name leading to the file must be reachable.

Lstat is like stat except in the case where the named file is a symbolic
link, in which case lstat returns information about the link, while stat
returns information about the file the link references.

Fstat obtains the same information about an open file referenced by fd,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed
concerning the file. The structure is defined in (syslstat.h) as:

struct stat
dev_t

ino_t
u_short
short
short
short
dev_t

off _t
time_t
int
time_t
int
time_t
int
long
long
long

REV SEP 1985

{
st_dev;

st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;

st_size;
st_atime;
st_sparel;

/* ID of device containing a directory entry */
/* for this file */
/*this inode's number*/
/* file mode; see below */
/* number of hard links to the file */
/*user ID of the file's owner*/
/*group ID of the file's group*/
/* ID of device -- this entry is defined only */
/* for character special or block special files *
/* total size of file */
/* time of last access */

st_mtime; /* time of last data modification */
st_spare2;
st_ctime; /* time of last file status change */
st_spareJ;
st_blksize; /* optimal blocksize for file system I/O ops */
st_blocks; /* actual number of blocks allocated */
st_hostid; /* hostid of machine where file is located */

85

LSTAT(2) COMMAND REFERENCE LSTAT(2)

long st_spare4;
};

st_atime Time when file data was last read or modified. Changed by
the following system calls: mknod(2), utimes(2), and read(2).

st_mtime

st_ctime

For reasons of efficiency, st_atime is not set when a
directory is searched, although this would be more logical.

Time when data was last modified. It is not set by changes
of owner, group, link count, or mode. Changed by the
following system calls: mknod(2), utimes(2), write(2).

Time when file status was last changed. It is set both both
by writing and changing the i-node. Changed by the
following system calls: chmod(2) chown(2), /ink(2),
mknod(2), rename(2), unlink(2), utimes(2), write(2).

The status information word st_mode has these bits:

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /*character special*/
#define S_IFBLK 0060000 /*block special*/
#define S_IFREG 0100000 /* regular */
#define S_IFLNK 0120000 /* symbolic link */
#define S_IFSOCK 0140000 /* socket */
#define S_ISUID 0004000 /*set user id on execution*/
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISVTX 0001000 /* save swapped text even after use */
#define S_IREAD 0000400 /* read permission, owner */
#define S_IWRITE 0000200 /*write permission, owner*/
#define S_IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others
permissions (see chmod(2)).

When fd is associated with a pipe, fstat reports an ordinary file with an
i-node number, restricted permissions, and a not necessarily meaningful
length.

DIAGNOSTICS
Stat and lstat will fail if one or more of the following are true:

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[ENOENT]
The named file does not exist.

REV SEP 1985 2
86

LSTAT(2) COMMAND REFERENCE LSTAT(2)

[EACCES]
Search permission is denied for a component of the path prefix. If
the file is located on a remote host, this error code will be returned if
the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EFAULT]
Buf or path points to an invalid address.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

Fstat will fail if one of the following are true:

[EBADF]
Fd is not a valid open file descriptor.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

RETURN VALUE
Upon successful completion a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
The fields in the stat structure currently marked st_,sparel, st_spare2, and
st.....spare3 are present in preparation for inode time stamps expanding to
64 bits. This, however, can break certain programs which depend on the
time stamps being contiguous (in calls to utimes(2)).

Applying fstat to a socket returns a zeroed buffer.

SEE ALSO
chmod(2), chown(2), utimes(2).

REV SEP 1985 3

87

MKDIR(2) COMMAND REFERENCE MKDIR(2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char *path;
int mode;

DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new
file is initialized from mode. (The protection part of the mode is modified
by the process's mode mask; see umask(2)).

The directory's owner ID is set to the process's effective user ID. The
directory's group ID is set to that of the parent directory in which it is
created.

The low-order 9 bits of mode are modified by the process's file mode
creation mask: all bits set in the process's file mode creation mask are
cleared. See umask(2).

DIAGNOSTICS
Mkdir will fail and no directory will be created if:

[ENOASCll]
The path argument contains a byte with the high-order bit set.

[ENAMETOOLONG]
The argument path is too long.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOENT]
A component of the path prefix does not exist.

[EACCES]
You do not have write permission in the directory in which you want
to create the new directory, or you do not have search permission in
one of the components of the path prefix. If the directory is to be
created on a remote host, this error code will be returned if the local
host name and local user name does not appear in
/etclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EROFS]
The named file resides on a read-only file system.

[EEXIST]
The named directory path already exists.

[EFAULT]
Path points outside the process's allocated address space.

[ELOOP]

REV SEP 1985

Too many symbolic links were encountered in translating the
pathname.

88

MKDIR(2) COMMAND REFERENCE MKDIR(2)

[EIO]
An 1/0 error occurred while writing to the file system.

[ENOSPC]
The file system is out of inodes.

[ENOSPC]
The directory in which the entry for the new file is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[ENOSPC]
The new directory cannot be created because there is no space left
on the file system which will contain the directory.

[ENFILE]
The system inode table is full.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2), umask(2).

REV SEP 1985 2

89

MKNOD(2) COMMAND REFERENCE MKNOD(2)

NAME
mknod - make a special file

SYNOPSIS
mknod(path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new special file whose name is path. The mode of the
new file (including special file bits) is initialized from mode. (The
protection part of the mode is modified by the process's mode mask; see
umask(2)). The first block pointer of the i-node is initialized from dev and
is used to specify which device the special file refers to.

For a list of modes, see stat(2).

If mode indicates a block or character special file, dev is a configuration
dependent specification of a character or block 1/0 device. If mode does
not indicate a block special or character special device, dev is ignored.

Mknod may be invoked only by the super-user.

DIAGNOSTICS
Mknod will fail and the file mode will be unchanged if:

[EPERM]
The process's effective user ID is not super-user.

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The argument path is too long.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOENT]
A component of the path prefix does not exist.

[EROFS]
The named file resides on a read-only file system.

[EEXIST]
The named file already exists.

[EFAULT]
Path points outside the process's allocated address space.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EIO]
An 1/0 error occurred while writing to the file system.

REV SEP 1985

90

MKNOD(2) COMMAND REFERENCE MKNOD(2)

[EACCES]
Search permission is denied for any component of the path name. If
the target directory is located on a remote host, this error code will be
returned if the local host name and local user name does not appear
in letclhosts.dfs.access on the remote machine. See
hosts.dfs.access(5n).

[EN FILE]
The system inode table is full.

[ENOSPC]
The file system is out of inodes.

[ENOSPC]
The directory in which the entry for the new file is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2), umask(2).

REVSEP1985 2

91

MMAP(2) COMMAND REFERENCE MMAP(2)

NAME
mmap, fmap - map pages of memory

SYNOPSIS
#include (sys/types.h)
#include (sys/mman.h)

mmap(pid, fromaddr, toaddr, len, prot, share)
int pid;
caddr _t fromaddr, toaddr;
u_int len, prot, share;

DESCRIPTION
The mapping routine mmap allows a process to access areas of other
processes through its own address space. It causes the calling process'
pages starting at toaddr and continuing for ten bytes to map onto the
process with id pid, starting at the object's pages fromaddr.

If pid is M__sELF, an area of the process is mapped to itself. If pid is
MYHYS, an area of the process is mapped to physical memory (in which
case share is ignored). If pid is M_ZFILL, an area of the process is made
zero filled (in which case fromaddr and share are ignored).

If the parameter share is true, both mappings will share the same
memory. Otherwise, a private copy of the area is made, and changes
through one mapping are not visible through the other.

PRIVATE make a private copy for the new ma
SHARED share the area between the mappin!

The parameter prot specifies the accessibility of the pages through the
new mapping. Read and write access may be given on the basis of
processes of the same user, same process group, same group, and
world. A process may also protect its pages against itself. The protection
for a page is specified by or'ing together the following values.

M_R_SELF
M_W_SELF
M_R_USER
M_W_USER
M_R_PGROUP read, process group
M_W_PGROUP write, process group

read, process
write, process
read, user
write, user

M_R_GROUP read, group
M_W_GROUP write, group
M_R_WORLD read, world
M_W_WORLD write, world

Note that the protection is associated with the mapping, and not with the
actual memory.

If the process must change the protection of a mapping, it may map the
area to itself, with the new protection. Doing this with share cleared will
disassociate the area with all other mappings.

REVSEP1985

92

MMAP(2) COMMAND REFERENCE MMAP(2)

The toaddr, fromaddr and !en parameters must be multiples of the system
cluster size (found using the getpagesize(2) call).

DIAGNOSTICS
Mmap will fail when one of the following occurs:

[EINVAL]
An address is not on a cluster boundary.

[EMCOLLIDE]
Portions of the new area are already mapped.

[EM RANGE]
An area is outside the possible user's address space or includes part
of the uarea.

[EACCES]
The required permissions (for reading and/or writing) are denied for
the named file or area of a process.

[ESRCH]
No process can be found corresponding to the specified pid.

[EPERM]
The area of the object to be mapped is protected against the desired
operation.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpagesize(2), mremap(2), munmap(2).

REV SEP 1985 2

93

MOUNT(2) COMMAND REFERENCE MOUNT(2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(special, path, rwflag)
char *special, *path;
int rwflag;

umount(special)
char *special;

DESCRIPTION
Mount announces to the system that a removable file system has been
mounted on the block special file special. After successful completion,
references to file path will refer to the root file on the newly mounted file
system. Special and path are pointers to null-terminated strings
containing the appropriate pathnames.

Path must exist already. Path must be a directory. Its old contents are
inaccessible while the file system is mounted.

The rwflag argument is used to control write permission on the mounted
file system. If rwflag is 0, writing is allowed. If it is non-zero, no writing
can be done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are
updated, whether or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to
contain a removable file system. The associated file reverts to its
ordinary interpretation.

These calls are limited to the super-user.

DIAGNOSTICS
Mount and umount will fail when one of the following occurs:

[EPERM]
The caller is not the super-user.

[ENO ENT]
Special or path does not exist.

[ENOENT]
A component of the path prefix of special or path does not exist.

[ENAMETOOLONG]
The argument special or path is too long.

[ENOTBLK]
Special is not a block device.

[ENXIO]
The major device number of special is out of range (this indicates no
device driver exists for the associated hardware).

[ENOASCll]
The pathname special or path contains a character with the high
order bit set.

REV SEP 1985

94

MOUNT(2) COMMAND REFERENCE MOUNT(2)

[ELOOP]
Too many symbolic links were encountered in translating a
pathname.

[EDFSREF]
Path may not reference a file system on another host.

[EIO]
An 110 error occured while reading from or writing to the file system.

In addition, mount will fail when one or more of the following occurs:

[ENOTDIR]
Path is not a directory.

[EBUSY]
Another process currently holds a reference to path.

[ENOMEM]
No space remains in the mount table.

[EINVAL]
The super block for the file system has a bad magic number or an
out-of-range block size.

[ENOMEM]
Not enough memory is available to read the cylinder group
information for the file system.

[EIO]
An 110 error occurred while reading the super block or cylinder group
information.

[EIO]
An 1/0 error occurred while accessing the device.

[EACCES]
Search permission is denied for a component of the pathname prefix
of path or special.

[EFAULT]
Special or path points outside the process's allocated address space.

In addition, umount will fail when one or more of the following occurs:

[EINVAL]
The requested device is not in the mount table.

[EBUSY]
A process is holding a reference to a file located on the file system.

[EACCES]
Search permission is denied for a component of the pathname prefix
of special.

[EFAULT]
Special points outside the process's allocated address space.

REVSEP1985 2

95

MOUNT(2) COMMAND REFERENCE MOUNT(2)

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(8), umount(8).

REV SEP 1985 3
96

MREMAP(2) COMMAND REFERENCE MREMAP(2)

NAME
mremap - remap pages of memory

SYNOPSIS
#include <sys/types.h >
#include (sys/mman.h)

mremap(fromaddr, toaddr, len, prot)
caddr _t fromaddr, toaddr;
u_int len, prot;

DESCRIPTION
Mremap causes the process pages starting at fromaddr and continuing
for /en bytes to be mapped to the address toaddr. The parameter prot
specifies the accessibility of the newly mapped pages (see mmap(2)).

The fromaddr, toaddr, and /en parameters must be multiples of the
system page size (obtained with the getpagesize(2) call), which may be
larger than the underlying hardware page size.

DIAGNOSTICS
[EINVAL]

An address is not on a cluster boundary.

[EPERM]
The area of the object to be mapped is protected against the desired
operation.

[EMCOLLIDE]
Portions of the new area are already mapped. This check is made as
if the old area were gone, so overlapping moves work.

[EMRANGE]
An area is outside the possible user's address space or includes part
of the uarea.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
fmap(2), getpagesize(2), mmap(2), mremap(2), munmap(2).

REV MAR 1985

97

MSTAT(2) COMMAND REFERENCE MSTAT (2)

NAME
mstat - find out about process clusters

SYNOPSIS
#include <Sys/types.h>

mstat(type, addr, len, vec)
caddr_t addr;
int len;
char *Vee;

DESCRIPTION
N.B.: Mstat will not be implemented in the first release of the system.

Mstat returns information, in the character array vec, describing the
process clusters beginning at addr and continuing for /en bytes. Type is
one of the following:

M_S_INCORE
M_S_LOCKED
M_S_MAPPED
M_S_ADVISED

in core
locked into core
mapped
the advised strategy

Each entry in vec corresponds to a single cluster.

DIAGNOSTICS
[EFAULTJ

Part of vec lies outside of the process' allocated address space.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpagesize(2), fmap(2), madvise(2), mmap(2), munmap(2).

98

MUNMAP(2) COMMAND REFERENCE MUNMAP(2)

NAME
munmap - unmap pages of memory

SYNOPSIS
#include (sys/type.h)
#include (sys/mman.h)

munmap(addr, len)
caddr_t addr;
u_int len;

DESCRIPTION
Munmap causes the process pages starting at addr and continuing for /en
bytes to be removed from the legal address space of the process.

DIAGNOSTICS
[EINVAL]

addr is not on a cluster boundary or /en is not a multiple of the
pagesize.

[EMRANGE]
The area to be unmapped is outside the possible user's address
space or includes part of the uarea.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
fmap(2), getpagesize(2), mmap(2), mremap(2).

REV MAR 1985

99

OPEN(2) COMMAND REFERENCE OPEN(2)

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#include (sys/file.h>

fd = open(path, flags, mode)
int fd;
char *path;
int flags, mode;

DESCRIPTION
Open opens the file named by path as specified by the flags argument
and returns a descriptor for that file in fd.

The flags argument may indicate the file is to be created if it does not
already exist (by specifying the O_CREAT flag), in which case the file is
created with mode mode as described in chmod(2) and modified by the
process' umask value (see umask(2)).

Path is a null-terminated pathname (the address of a string of ASCII
characters representing a pathname, terminated by a null character).
Flags is constructed by or'ing the following values, defined in (sys/file.h):

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR
Open for reading and writing.

O_NDELAY
Do not block on open.

If the open call would result in the process being blocked for some
reason (e.g., waiting for carrier on a dialup line), the open returns
immediately.

O_APPEND
Append on each write.

If set, the file pointer will be set to the end of the file prior to each
write.

O_CREAT
Create file if it does not exist.

O_TRUNC
Truncate size to 0.

If the file exists, it is truncated to zero length.

O_EXCL
Error if create and file exists.

If O_EXCL and O_CREAT are set, open will fail if the file exists.

REV SEP 1985

100

OPEN(2) COMMAND REFERENCE OPEN(2)

Upon successful completion a non-negative integer fd, termed a file
descriptor, is returned. The file pointer used to mark the current position
within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see
close(2).

There is a limit on the number of file descriptors a process may have
open simultaneously. This number is NOFILE, defined in (sys/max.h).
The getdtablesize(2) call returns the current value of NOFILE.

DIAGNOSTICS
The named file is opened unless one or more of the following are true:

[ENAMETOOLONG]
The argument path is too long.

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOENT]
O_CREAT is not set and the named file does not exist.

[EACCES]
A component of the path prefix denies search permission.

[EACCES]
The required permissions (for reading and/or writing) are denied for
the named flag. If the file is located on a remote host, this error code
will be returned if the local host name and local user name does not
appear in letclhosts.dfs.access on the remote machine. See
hosts.dfs.access(5n).

[EISDIR]
The named file is a directory, and the arguments specify it is to be
opened for writing.

[EROFS]
The named file resides on a read-only file system, and the file is to
be modified.

[EM FILE]
NOFILE files are currently open (see getdtablesize(2)).

[ENXIO]
The named file is a character special or block special file, and the
device associated with this special file does not exist.

[ETXTBSY]
The file is a pure procedure (shared text) file that is being executed
and the open call requests write access.

[EFAULT]
Path points outside the process's allocated address space.

REV SEP 1985 2
101

OPEN(2) COMMAND REFERENCE OPEN(2)

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EEXIST]
O_EXCL is specified and the file exists.

[ENOS PC]
O_CREAT is specified, and the file system is out of inodes.

[ENOS PC]
The directory in which the entry for the new file is being placed
cannot be extended because there is no space left on the file system
containing the directory, the file does not exist and Q_CREAT is
specified.

[ENFILE]
O_CREAT is specified, and the system inode table is full.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[ENXIO]
The O_NDELA Y flag is given, and the file is a communications device
on which their is no carrier present.

[EBUSY]
An exclusively-opened port is already opened.

[EOPNOTSUPP]
An attempt is made to open a socket (not currently implemented).

[EDFSNOSUCH HOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
If no error occurred, open returns the file descriptor in fd. Otherwise, -1
is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), c/ose(2), dup(2), getdtablesize(2), lseek(2), read(2), write(2),
umask(2), unlink(2).

REV SEP 1985 3

102

PIPE{2) COMMAND REFERENCE PIPE(2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe(fd)
int fd[2];

DESCRIPTION
The pipe system call creates an 110 mechanism called a pipe. Pipe
returns two file descriptors in fd []. Fd [OJ is opened for reading, and
fd [1 J is opened for writing. When the pipe is written using fd [1 J up to
MINBSIZE (defined in (sys/fs.h>) bytes of data are buffered before the
writing process is blocked. A read using fd [OJ will pick up the data.

It is assumed that after the pipe has been set up, two (or more)
cooperating processes (created by subsequent fork(2) calls) will pass data
through the pipe with read(2) and write(2) calls.

The shell has a syntax to set up a linear array of processes connected by
pipes. See sh(lsh).

Read calls on an empty pipe (no buffered data) with only one end (all write
file descriptors closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are
implemented as such in the system.

A signal (SIGPIPE) is generated if a write on a pipe with only one end is
attempted.

DIAGNOSTICS
The pipe call will fail if:

[EMFILE]
More than NOFILE - 2 (defined in (sys/max.h>) descriptors are
already open in this process.

[EFAULT]
The fd buffer is in an invalid area of the process's address space.

[ENFILE]
The system file table is full.

[ENOBUF]
No buffer space is available for the pipe.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
Should more than 4096 bytes be necessary in any pipe among a loop of
processes, deadlock will occur.

SEE ALSO
fork(2), read(2), sh(lsh), socketpair(2), write(2).

REV MAR 1985

103

PROFIL (2) COMMAND REFERENCE PROFIL (2)

NAME
profil - execution time profile

SYNOPSIS
profil(buf, bufsiz, offset, scale)
char *but;
int bufsiz, offset, scale;

DESCRIPTION
Buf points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user's program counter (pc) is examined each clock
tick (10 milliseconds); offset is subtracted from it, and the result multiplied
by scale. If the resulting number corresponds to a word inside buf, that
word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: Ox10000 gives a 1-1 mapping of pc's to words in buf,·
Ox8000 maps each pair of instruction words together. Ox2 maps all
instructions onto the beginning of buf (producing a non-interrupting core
clock).

Profiling is turned off by giving a scale of O or 1. It is rendered ineffective
by giving a bufsiz of 0. Profiling is turned off when an execve is executed,
but remains on in child and parent both after a fork. Profiling is turned
off if an update in buf would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(l), setitimer(2), monitor(3c).

104

PTRACE(2) COMMAND REFERENCE PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include (signal.h)

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the
execution of a child process, and examine and change its core image.
The child process must be started by using exect (see execl(3c)).

Its primary use is for the implementation of breakpoint debugging. There
are four arguments whose interpretation depends on a request argument.
Generally, pid is the process ID of the traced process, which must be a
child (no more distant descendant) of the tracing process.

A process being traced behaves normally until it encounters some signal
whether internally generated like "illegal instruction" or externally
generated like "interrupt". See sigvec(2) for the list. Then the traced
process enters a stopped state and its parent is notified via wait(2).
When the child is in the stopped state, its core image can be examined
and modified using ptrace. If desired, another ptrace request can then
cause the child either to terminate or to continue, possibly ignoring the
signal.

The value of the request argument determines the precise action of the
call:

O This request is the only one used by the child process; it declares
that the process is to be traced by its parent. All the other arguments
are ignored. Peculiar results will ensue if the parent does not expect
to trace the child.

1,2 The word in the child process's address space at addr is returned. If
I and D space are separated (e.g. historically on a pdp-11), request 1
indicates I space, 2 D space. Addr must be even. The child must be
stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to
addr is returned. Addr must be even and less than 512. This space
contains the registers and other information about the process; its
layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space
corresponding to addr, which must be even. No useful value is
returned. If I and D space are separated, request 4 indicates I
space, 5 D space. Attempts to write in pure procedure fail if another
process is executing the same file.

REV MAR 1985

105

PTRACE(2) COMMAND REFERENCE PTRACE(2)

6 The process's system data is written, as it is read with request 3.
Only a few locations can be written in this way: the general registers,
the floating point status and registers, and certain bits of the
processor status word.

7 The data argument is taken as a signal number and the child's
execution continues at location addr as if it had incurred that signal.
Normally the signal number will be either 0 to indicate that the signal
that caused the stop should be ignored, or that value fetched out of
the process's image indicating which signal caused the stop. If addr
is (int *)1 then execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible
after execution of at least one instruction, execution stops again.
The signal number from the stop is SIG TRAP. This is part of the
mechanism for implementing breakpoints.

1 O A memory breakpoint is modified. Addr is the breakpoint address.
Data is a bit mask that is used to determine what kind of memory
breakpoint action to take. Bit O will force a breakpoint if addr is
written, bit 1 will force a breakpoint if addr is read, and bit 2
determines which breakpoint register to use. (If bit 2 is set,
breakpoint register 1 (BPR1) is used; otherwise breakpoint register O
(BPRO) is used.) The breakpoint is removed if neither bit 0 or bit 1 is
set.

As indicated, these calls (except for request O) can be used only when the
subject process has stopped. The wait call is used to determine when a
process stops; in such a case the "termination" status returned by wait
has the value 0177 to indicate stoppage rather than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group
id facilities on subsequent execve(2) calls. If a traced process calls execve,
it will stop before executing the first instruction of the new image showing
signal SIGTRAP.

DIAGNOSTICS
[ESRCH]

The specified process does not exist.

[EPERM]
The specified process cannot be traced.

[EIO]
Request is an invalid argument.

[EIO]
An 110 error occurred while performing the requested action.

2 REV MAR 1985

106

PTRACE(2) COMMAND REFERENCE PTRACE(2)

RETURN VALUE
A O value is returned if the call succeeds. If the call fails then a -1 is
returned and the global variable errno is set to indicate the error.

CAVEATS
Ptrace is unique and arcane; it should be replaced with a special file
which can be opened and read and written. The control functions could
then be implemented with ioct/(2) calls on this file. This would be simpler
to understand and have much higher performance.

The request O call should be able to specify signals which are to be
treated normally and not cause a stop. In this way, for example,
programs with simulated floating point (which use "illegal instruction"
signals at a very high rate} could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, see
intro(2), can be used to disambiguate.

It should be possible to stop a process on occurrence of a system call; in
this way a completely controlled environment could be provided.

SEE ALSO
adb(l), sigvec(2), wait(2), execl(Jc).

3 REV MAR 1985

107

READ(2) COMMAND REFERENCE READ(2)

NAME
read, readv - read input

SYNOPSIS
cc = read(fd, buf, nbytes)
int cc, fd;
char *buf;
int nbytes;

#include (sys/types.h>
#include (sys/uio.h)

cc = readv(fd, iov, iovcnt)
int cc, fd;
struct iovec *iov;
int iovcnt;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the
descriptor fd into the buffer pointed to by buf. Readv performs the same
action, but scatters the input data into iovcnt buffers specified by the
members of the iovec array: iov [O], iov [1] , ... , iov [iovcnt-1].

Readv is not supported for raw devices (e.g. raw disks, terminals) nor is it
supported for reading files on remote hosts.

Read and readv return in cc the number of bytes read.

For readv, the iovec structure is defined in (sys/uio.h) as:

struct iovec {
caddU iov_base;
int iov_len;

};

Each iovec entry specifies the base address and length of an area in
memory where data should be placed. Readv will always fill an area
completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the
pointer associated with fd, see lseek(2). Upon return from read, the
pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current
position. The value of the pointer associated with such a object is
undefined.

Upon successful completion, read and readv return the number of bytes
actually read and placed in the buffer. The system guarantees to read
the number of bytes requested if the descriptor references a file which
has that many bytes left before the end-of-file, but in no other cases.

If cc = 0, then end-of-file has been reached.

REV MAR 1985

108

READ(2) COMMAND REFERENCE READ(2)

DIAGNOSTICS
Read and readv will fail if one or more of the following are true:

[EBADF]
Fd is not a valid file descriptor open for reading.

[EFAULT]
Buf points outside the allocated address space.

[EINTR]
A read from a slow device was interrupted before any data arrived by
the delivery of a signal.

[ENOBUFS]
Fd is a socket, and the system lacks sufficient buffer space to do the
read.

[ENOTCONN]
Fd is a socket which is not connected.

[EWOULDBLOCK]
Fd is in non-blocking mode, and doing the read would cause a
process to block.

In addition, readv may return one of the following errors:

[EINVAL]
Iovcnt is less than or equal to 0, or greater than 16.

[EINVAL]
One of the iov_len values in the iov array is negative.

[EINVAL]
The sum of the iov_len values in the iov array overflowed a 32-bit
integer.

[ENXIO]
Readv was attempted on an unsupported raw device (see above).

[EDFSNOBUF]
Malloc failed on remote system; try smaller (Bk or less) read.

RETURN VALUE
If successful, the number of bytes actually read is returned in cc.
Otherwise, a -1 is returned and the global variable errno is set to
indicate the error.

SEE ALSO
dup(2), lseek(2), open(2), pipe(2), socket(2), socketpair(2).

2 REV MAR 1985

109

READCBCS(2) COMMAND REFERENCE READCBCS(2)

NAME
readcbcs - read compute engine configuration switch

SYNOPSIS
switch = readcbcs()
int switch;

DESCRIPTION
Readcbcs is a system call specific to the 6100 series workstations. It
returns the value of the 8 bit computer board configuration dipswitch
located at the rear of the workstation. To use this system call the
argument -161 with cc(l).

FILES
/usr/lib/lib61.a

CAVEATS
Care should be taken when modifying the setting of this switch as it is
read at powerup and boot.

SEE ALSO
writecbd(2).

REFERENCES
6130 System User's Guide section 2 for switch settings.

110

REV MAR 1985

READLINK(2) COMMAND REFERENCE READLINK(2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = readlink(path, buf, bufsiz)
int cc;
char *path, *buf;
int bufsiz;

DESCRIPTION
Readlink places the contents of the symbolic link path in the buffer buf
which has size bufsiz. Cc, the number of characters copied into buf, is
returned. Only bufsiz bytes are copied; if the contents of the link named
by path are longer than bufsiz, buf will contain a truncated copy of the
contents of the symbolic link.

DIAGNOSTICS
Readlink will fail and the file mode will be unchanged if:

[ENOASCll]
The path argument contains a byte with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOENT]
The named file does not exist.

[EACCES]
Search permission is denied on a component of the path prefix. If
the file is located on a remote host, this error code will be returned if
the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EINVAL]
The named file path is not a symbolic link.

[EFAULT]
Bu/ extends outside the process's allocated address space.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EIO]
An 1/0 error occurred while reading from the file system.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

REV MAR 1985

111

READLINK(2) COMMAND REFERENCE READLINK(2)

RETURN VALUE
The call returns in cc the count of characters placed in the buffer if it
succeeds, or a -1 if an error occurs, placing the error code in the global
variable errno.

SEE ALSO
lstat(2), stat(2), symlink(2).

2 REV MAR 1985

112

READV(2) COMMAND REFERENCE READV(2]

NAME
read, readv - read input

SYNOPSIS
cc= read(fd, buf, nbytes)
int cc, fd;
char *but;
int nbytes;

#include (sys/types.h)
#include <sys/uio.h)

cc= readv(fd, iov, iovcnt)
int cc, fd;
struct iovec *iov;
int iovcnt;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the
descriptor fd into the buffer pointed to by buf. Readv performs the same
action, but scatters the input data into iovcnt buffers specified by the
members of the iovec array: iov[O], iov[1], ... , iov[iovcnt-1].

Readv is not supported for raw devices (e.g. raw disks, terminals) nor is it
supported for reading files on remote hosts.

Read and readv return in cc the number of bytes read.

For readv, the iovec structure is defined in (sys/uio.h) as:

struct iovec {
caddr_t iov_base;
int iov_len;

};

Each iovec entry specifies the base address and length of an area in
memory where data should be placed. Readv will always fill an area
completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the
pointer associated with fd, see lseek(2). Upon return from read, the
pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current
position. The value of the pointer associated with such a object is
undefined.

Upon successful completion, read and readv return the number of bytes
actually read and placed in the buffer. The system guarantees to read
the number of bytes requested if the descriptor references a file which
has that many bytes left before the end-of-file, but in no other cases.

If cc = 0, then end-of-file has been reached.

REV MAR 1985

113

READV(2) COMMAND REFERENCE READV(2)

DIAGNOSTICS
Read and readv will fail if one or more of the following are true:

[EBADF]
Fd is not a valid file descriptor open for reading.

[EFAULT]
Buf points outside the allocated address space.

[EINTR]
A read from a slow device was interrupted before any data arrived by
the delivery of a signal.

[ENOBUFS]
Fd is a socket, and the system lacks sufficient buffer space to do the
read.

[ENOTCONN]
Fd is a socket which is not connected.

[EWOU LDBLOCK]
Fd is in non-blocking mode, and doing the read would cause a
process to block.

In addition, readv may return one of the following errors:

[EINVAL]
Iovcnt is less than or equal to 0, or greater than 16.

[EINVAL]
One of the iov_len values in the iov array is negative.

[EINVAL]
The sum of the iov_len values in the iov array overflowed a 32-bit
integer.

[ENXIO]
Readv was attempted on an unsupported raw device (see above).

[EDFSNOBUF]
Malloc failed on remote system; try smaller (Sk or less) read.

RETURN VALUE
If successful, the number of bytes actually read is returned in cc.
Otherwise, a -1 is returned and the global variable errno is set to
indicate the error.

SEE ALSO
dup(2), lseek(2), open(2), pipe(2), socket(2), socketpair(2).

REV MAR 1985 2

114

REBOOT(2) COMMAND REFERENCE REBOOT(2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <Sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION
N.8.: Reboot is not implemented with the first release of the system. Its
interface, as documented here, is likely to change when it becomes
available.

Reboot reboots the system, and is invoked automatically in the event of
unrecoverable system failures. Howto is a mask of options passed to the
bootstrap program. The system call interface permits only RB_HAL T or
RB_AUTOBOOT to be passed to the reboot program; the other flags are
used in scripts stored on the console storage media, or used in manual
bootstrap procedures. When none of these options (e.g.
RB_AUTOBOOT) is given, the system is rebooted from file "vmunix" in
the root file system of unit O of a disk chosen in a processor-specific way.
An automatic consistency check of the disks is then normally performed.

The bits of howto, defined in <Sys/reboot.h>, are:

RB_HALT
the processor is simply halted; no reboot takes place. RB_HALT
should be used with caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire
as to what file should be booted. Normally, the system is booted
from the file "xx(O,O)vmunix" without asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk
consistency check and then multi-user operations. AB_SINGLE
prevents the consistency check, rather simply booting the system
with a single-user shell on the console. RB_SINGLE is
interpreted by the init(8) program in the newly booted system.
This switch is not available from the system call interface.

Only the superuser may reboot a machine.

DIAGNOSTICS
[EPERMJ

The caller is not the superuser.

115

REBOOT(2) COMMAND REFERENCE REBOOT(2)

RETURN VALUE
If successful, this call never returns. Otherwise, a -1 is returned and an
error is returned in the global variable errno.

SEE ALSO
crash(8), halt(8), init(8), reboot(8).

2
116

RECV (2) COMMAND REFERENCE RECV(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket. h>

cc= recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgD;
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a
socket.

The recv call may be used only on a connected socket (see connect(2)),
while recvfrom and recvmsg may be used to receive data on a socket
whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in.
From/en is a value-result parameter, initialized to the size of the buffer
associated with from, and modified on return to indicate the actual size of
the address stored there. The length of the message is returned in cc. If
a message is too long to fit in the supplied buffer, excess bytes may be
discarded depending on the type of socket the message is received from;
see socket(2).

If no messages are available at the socket, the receive call waits for a
message to arrive, unless the socket is nonblocking (see ioct/(2)) in which
case a cc of -1 is returned with the external variable errno set to
EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the
values,

#define MSG_PEEK Ox1
#define MSG_OOB Ox2

117

/* peek at incoming message */
/* process out-of-band data *I

RECV (2) COMMAND REFERENCE RECV (2)

The recvmsg call uses a msghdr structure to minimize the number of
directly supplied parameters. This structure has the following form, as
defined in <sys/socket.h>:

struct msghdr {
caddr_t msg_name;
int msg_namelen;
struct iov *msg_iov;
int msg_iovlen;
caddr_t msg_accrights;
int msg_accrightslen;

};

/* optional address */
/* size of address */
/* scatter/gather array */
/* # elements in msg_iov */
/* access rights sent/received */

Here msg_n.ame and msg_n.amelen specify the destination address if the
socket is unconnected; msg_n.ame may be given as a null pointer if no
names are desired or required. The msg_iov and msg_iovlen describe the
scatter gather locations, as described in read(2). Access rights to be sent
along with the message are specified in msg_accrights, which has length
msg_accrightslen.

DIAGNOSTICS
The calls fail if:

[EBADFJ
The arguments is an invalid descriptor.

[ENOTSOCKJ
The argument s is not a socket.

[EWOULDBLOCKJ
The socket is marked non-blocking and the receive operation would
block.

[EINTRJ
The receive was interrupted by delivery of a signal before any data
was available for the receive.

[EFAULTJ
The data was specified to be received into a non-existent or
protected part of the process address space.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error
occurred.

SEE ALSO
read(2), send(2), socket(2).

2

118

RECVFROM (2) COMMAND REFERENCE RECVFROM (2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket.h>

cc= recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc= recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *but;
int len, flags;
struct sockaddr *from;
int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgO;
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a
socket.

The recv call may be used only on a connected socket (see connect(2)),
while recvfrom and recvmsg may be used to receive data on a socket
whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in.
From/en is a value-result parameter, initialized to the size of the buffer
associated with from, and modified on return to indicate the actual size of
the address stored there. The length of the message is returned in cc. If
a message is too long to fit in the supplied buffer, excess bytes may be
discarded depending on the type of socket the message is received from;
see socket(2).

If no messages are available at the socket, the receive call waits for a
message to arrive, unless the socket is nonblocking (see ioct/(2)) in which
case a cc of -1 is returned with the external variable errno set to
EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the
values,

#define MSG_PEEK Ox1
#define MSG_OOB Ox2

119

I* peek at incoming message *'
/* process out-of-band data */

RECVFROM (2) COMMAND REFERENCE RECVFROM (2)

The recvmsg call uses a msghdr structure to minimize the number of
directly supplied parameters. This structure has the following form, as
defined in <syslsocket.h>:

struct msghdr {

};

caddr_t msg_name;
int msg_namelen;
struct iov *msg_iov;
int msg_iovlen;
caddr_t msg_accrights;
int msg_accrightslen;

/* optional address */
/* size of address */
/* scatter/gather array */
/* # elements in msg_iov */
/* access rights sent/received */

Here msg_name and msg_name/en specify the destination address if the
socket is unconnected; msg_name may be given as a null pointer if no
names are desired or required. The msg_iov and msg_iovlen describe the
scatter gather locations, as described in read(2). Access rights to be sent
along with the message are specified in msg_accrights, which has length
msg_accrights/en.

DIAGNOSTICS
The calls fail if:

[EBADFJ
The argument s is an invalid descriptor.

[ENOTSOCKJ
The argument s is not a socket.

[EWOULDBLOCKJ
The socket is marked non-blocking and the receive operation would
block.

[EINTRJ
The receive was interrupted by delivery of a signal before any data
was available for the receive.

[EFAULTJ
The data was specified to be received into a non-existent or
protected part of the process address space.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error
occurred.

SEE ALSO
read(2), send(2), socket(2).

2

120

RECVMSG (2) COMMAND REFERENCE RECVMSG (2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket.h>

cc= recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc= recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgO;
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a
socket.

The recv call may be used only on a connected socket (see connect(2)),
while recvfrom and recvmsg may be used to receive data on a socket
whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in.
From/en is a value-result parameter, initialized to the size of the buffer
associated with from, and modified on return to indicate the actual size of
the address stored there. The length of the message is returned in cc. If
a message is too long to fit in the supplied buffer, excess bytes may be
discarded depending on the type of socket the message is received from;
see socket(2).

If no messages are available at the socket, the receive call waits for a
message to arrive, unless the socket is nonblocking (see ioct/(2)) in which
case a cc of -1 is returned with the external variable errno set to
EWOULDBLOCK.

The se/ect(2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the
values,

#define MSG_PEEK Ox1
#define MSG_OOB Ox2

121

/* peek at incoming message */
/* process out-of-band data *I

RECVMSG (2) COMMAND REFERENCE RECVMSG(2)

The recvmsg call uses a msghdr structure to minimize the number of
directly supplied parameters. This structure has the following form, as
defined in <syslsocket.h>:

struct msghdr {
caddr_t msg_name;
int msg_namelen;
struct iov *msg_iov;
int msg_iovlen;
caddr_t msg_accrights;
int msg_accrightslen;

};

/* optional address */
/* size of address */
/* scatter/gather array */
/* # elements in msg_iov */
/* access rights sent/received */

Here msgJlame and msgJlamelen specify the destination address if the
socket is unconnected; msgJlame may be given as a null pointer if no
names are desired or required. The msg_iov and msg_iovlen describe the
scatter gather locations, as described in read(2). Access rights to be sent
along with the message are specified in msg_accrights, which has length
msg_accrightslen.

DIAGNOSTICS
The calls fail if:

[EBADFJ
The argument s is an invalid descriptor.

[ENOTSOCKJ
The argument s is not a socket.

[EWOULDBLOCKJ
The socket is marked non-blocking and the receive operation would
block.

[EINTRJ
The receive was interrupted by delivery of a signal before any data
was available for the receive.

[EFAULTJ
The data was specified to be received into a non-existent or
protected part of the process address space.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error
occurred.

SEE ALSO
read(2), send(2), socket(2).

2

122

RENAME(2) COMMAND REFERENCE RENAME(2)

NAME
rename - change the name of a file

SYNOPSIS
rename(from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If to exists,
then it is first removed. Both from and to must be of the same type (that
is, both directories or both non-directories), and must reside on the same
file system.

Rename guarantees that an instance of to will always exist, even if the
system should crash in the middle of the operation.

DIAGNOSTICS
Rename will fail and neither of the argument files will be affected if any of
the following are true:

[ENOASCll]
Either pathname contains a byte with the high-order bit set.

[ENAMETOOLONG]
The argument from or to is too long.

[ENOTDIR]
A component of either path prefix is not a directory.

[ENOENT]
A component of either path prefix does not exist.

[EACCES]
A component of either path prefix denies search permission.

[ENOENT]
The file named by from does not exist.

[ENOSPC]
The directory in which the entry for the new name is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[EXDEV]
The link named by to and the file named by from are on different
logical devices (file systems). Note that this error code will not be
returned if the implementation permits cross-device links.

[EINVAL]
From is "." or " .. ", or the parent of from is the same as from.

[ENOTEMPTY]
To exists, and is a non-empty directory.

[ENOTDIR]
From is not a directory, but to is.

REV SEP 1985

123

RENAME(2) COMMAND REFERENCE RENAME(2)

[EISDIR]
From is a directory, but to is not.

[EEXIST]
From is an ancestor of to (allowing this would make to the ancestor
of from and would make a loop).

[ELOOP]
Too many symbolic links were encountered in translating a
pathname.

[EACCES]
The requested link requires writing in a directory with a mode that
denies write permission. If the from is located on a remote host, this
error code will be returned if the local host name and local user name
does not appear in letc!hosts.dfs.access on the remote machine. See
hosts.dfs.access.5n).

[EROFS]
The requested link requires writing in a directory on a read-only file
system.

[EFAULT]
Path points outside the process's allocated address space.

[EIO]
An 1/0 error occurred while accessing the file system.

[EDFSREF]
Both from and to must reference files on the same host or this error
will be returned. •

[EDFSNOSUCH HOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
The system can deadlock if a loop in the file system graph is present.
This loop takes the form of an entry in directory "a", say "a/foo", being a
hard link to directory "b", and an entry in directory "b", say "b/bar",
being a hard link to directory "a". When such a loop exists and two
separate processes attempt to perform "rename a/foo b/bar" and
"rename b/bar a/foo", respectively, the system may deadlock attempting
to lock both directories for modification. Hard links to directories should
be replaced by symbolic links by the system administrator.

SEE ALSO
open(2).

REV SEP 1985 2

124

RMDIR(2) COMMAND REFERENCE RMDIR(2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char *path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The
directory must not have any entries other than ''.'' and '' .. ''.

DIAGNOSTICS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]
The named directory contains files other than "." and " .. " in it.

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[ENOTOIR]
A component of the path prefix is not a directory.

[ENOENT]
The named file does not exist.

[EACCES]
A component of the path prefix denies search permission.

[EACCES]
Write permission is denied on the directory containing the link to be
removed.

[EACCES]
If the directory is located on a remote host, this error code will be
returned if the local host name and local user name does not appear
in letclhosts.dfs.access on the remote machine. See
hosts.dfs.access(5n).

[EBUSY]
The directory to be removed is the mount point for a mounted file
system.

[EINVAL]
Path is".".

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EROFS]
The directory entry to be removed resides on a read-only file system.

[EFAULT]
Path points outside the process's allocated address space.

REV SEP 1985

125

RMDIR(2) COMMAND REFERENCE RMDIR(2)

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EDFSNOSUCHHOST]
The pathname referenced a remote directory, but when we broadcast
a request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
mkdir(2}, unlink(2).

REV SEP 1985 2

126

RW_NVRAM (2) COMMAND REFERENCE RW_NVRAM (2)

NAME
rw_nvram - read or write the contents of a nonvolatile memory

SYNOPSIS
#include <machine/nvram .h>

rw_nvram(nvram_number, rw, bufp, size)
int nvram_number, rw;
u_char *bufp;
int size;

DESCRIPTION
Rw_nvram reads or writes size bytes of the nonvolatile memory (nvram)
specified by nvram__number from/to the buffer at bufp. The first byte of the
nvram is always an 8 bit checksum. The checksum value provided by the
user on a write is ignored. The second byte of the nvram is a version
number used to interpret the rest of the contents of the nvram.

A value of NV _GLOBAL in nvram__number selects the global system
nvram. Other nvrams are identified by the slot number of the board on
which they reside. If rw is NV_READ, the nvram is to be read. A value of
NV_WRITE indicates the nvram is to be written.

DIAGNOSTICS
Rw__nvram will fail when one of the following occurs:

[EBADFJ
The nvram specified by nvram__number does not exist.

[EFAULTJ
Bufp points outside the allocated address space.

[ENOTTYJ
The function requested in rw is not valid.

[EINVALJ
Size is negative or larger than the size of the nvram.

[EPERMJ
The caller requesting a write operation is not the super-user.

[EIOJ
An 110 error occurred while accessing the device.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

127

SBRK(2) COMMAND REFERENCE SBRK(2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
#include <Sys/types.h>

caddr_t brk(addr)
caddr_t addr;

newaddr = sbrk(incr)
caddr _t newaddr;
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process's contiguous heap. The change is made
by resetting the process's break value. The break value is the address of
the first location beyond the end of the contiguous heap. The amount of
allocated space increases as the break value increases. Brk sets the
break value to addr (rounded up to the next multiple of the system's page
size) and changes the allocated space accordingly. Locations greater
than addr and below the stack pointer are not in the address space and
will thus cause a memory violation if accessed.

Sbrk adds incr more bytes to the break value and changes the allocated
space accordingly. A pointer to the start of the new area is returned in
newaddr.

When a program begins execution via execve the break is set at the
highest location defined by the program and data storage areas.
Ordinarily, therefore, only programs with growing data areas need to use
sbrk.

The getrlimit(2) system call may be used to determine the maximum
permissible size of the data segment; it will not be possible to set the
break beyond the rlim_max value returned from a call to getrlimit, e.g.
"etext + rlp+-rlim_max." (See end(3c) for the definition of etext.)

DIAGNOSTICS
Sbrk and brk will fail and no additional memory will be allocated if one of
the following are true:

[ENOMEMJ
The limit, as set by setrlimit(2), would be exceeded.

[ENOMEMJ
The maximum possible size of a data segment, text segment or stack
would be exceeded. These limits are MAXTSIZ, MAXDSIZ and
MAXSSIZ, defined in <machine/vmparam.h>.

[ENOMEMJ

REV MAR 1985

Insufficient space exists in the swap area to support the expansion.

1
128

SBRK(2) COMMAND REFERENCE SBRK(2)

RETURN VALUE
Brk returns O if the break could be set, otherwise it returns -1 . Sbrk
returns a pointer to the new data area in newaddr if the break could be
set, otherwise it returns -1. Both brk and sbrk set errno if there is an
error.

CAVEATS
Setting the break may fail due to a temporary lack of swap space. It is
not possible to distinguish this from a failure caused by exceeding the
maximum size of the data segment without consulting getrlimit.

SEE ALSO
execve(2), getrlimit(2), end(3c), malloc(3c).

REVMAR1985 2
129

SELECT(2) COMMAND REFERENCE SELECT(2)

NAME
select - synchronous 1/0 multiplexing

SYNOPSIS
#include (sys/time.h)

nfound = select(nfd, readfd, writefd, execptfd, timeout)
int nfound, nfd;
unsigned long readfd[], writefd[], execptfd[];
struct timeval *timeout;

DESCRIPTION
Select examines the 1/0 descriptors specified by the arrays of bit masks
readfd, writefd, and execptfd to see if they are ready for reading, writing,
or have an exceptional condition pending, respectively. These mask
arrays must be at least as long as "(nfd + 31)/32", or one element for
every 32 file descriptors. File descriptor f is represented in the mask by:

mask [f/32] l = 1 (((f % 32)

Nfd descriptors are checked, i.e. the bits from O through nfd-1 in the
masks are examined. Select returns, in place, a mask of those
descriptors which are ready. The total number of ready descriptors is
returned in nfound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for
the selection to complete. If timeout is a zero pointer, the select blocks
indefinitely. To effect a poll, the timeout argument should be non-zero,
pointing to a zero-valued timeval structure.

Any of readfd, writefd, and execptfd may be given as 0 if no descriptors
are of interest.

DIAGNOSTICS
An error return from select indicates:

[EBADF]
One of the bit masks specifies an invalid descriptor.

[EINTR]
An signal was delivered before any of the selected-for events
occurred or the time limit expired.

[EINVAL]
Timeout does not point to a reasonable value.

[EFAULT]
An argument specifies an invalid address.

RETURN VALUE
Select returns the number of descriptors contained in the bit masks, or
-1 if an error occurred. If the time limit expires then select returns 0.

REV MAR 1985

130

SELECT(2) COMMAND REFERENCE SELECT(2)

CAVEATS
The descriptor masks (up to "(nfd + 31)/32") are always modified on
return, even if the call returns as the result of the timeout.

The return value of mask for descriptors greater than specified by nf d is
undefined. In other words, the bits specified by

mask [f /32] & (1 (((f % 32))

where f is greater than or equal to nfd should not be assumed to have
any meaningful value.

The magic constant 32 mentioned above is the number of bits in a long.

SEE ALSO
accept(2), connect(2), read(2), recv(2), send(2), write(2).

2 REV MAR 1985

131

SEND(2) COMMAND REFERENCE SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include (sys/types.h)
#include <sys/socket. h >
cc= send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc= sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg(];
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another
socket. Send may be used only when the socket is in a connected state,
while sendto and sendmsg may be used at any time.

The address of the target is given by to with to/en specifying its size. The
length of the message is given by /en. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send although return
values of -1 indicate some locally detected errors.

If no messages space is available at the socket to hold the message to be
transmitted, then send normally blocks, unless the socket has been
placed in non-blocking i/o mode. The select(2) call may be used to
determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send "out-of-band"
data on sockets which support this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

DIAGNOSTICS
[EBADF]

An invalid descriptor was specified.

[ENOTSOCK]
The argument s is not a socket.

[EFAULT]
An invalid user space address was specified for a parameter.

REV MAR 1985

132

SEND(2) COMMAND REFERENCE SEND(2)

[EMSGSIZE]
The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EWOULDBLOCK]
The socket is marked non-blocking and the requested operation
would block.

RETURN VALUE
The call returns the number of characters sent, or -1 if a local error
occurred.

SEE ALSO
recv(2), socket(2).

2 REV MAR 1985

133

SENDMSG(2) COMMAND REFERENCE SENDMSG (2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msgD;
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another
socket. Send may be used only when the socket is in a connected state,
while sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its size. The
length of the message is given by ten. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send although return
values of -1 indicate some locally detected errors.

If no messages space is available at the socket to hold the message to be
transmitted, then send normally blocks, unless the socket has been
placed in non-blocking i/o mode. The select(2) call may be used to
determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send "out-of-band"
data on sockets which support this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

DIAGNOSTICS
[EBADFJ

An invalid descriptor was specified.

[ENOTSOCKJ
The arguments is not a socket.

[EFAULTJ
An invalid user space address was specified for a parameter.

REV MAR 1985

134

SENDMSG (2) COMMAND REFERENCE SENDMSG (2)

[EMSGSIZEJ
The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EWOULDBLOCKJ
The socket is marked non-blocking and the requested operation
would block.

RETURN VALUE
The call returns the number of characters sent, or -1 if a local error
occurred.

SEE ALSO
recv(2), socket(2).

REVMAR1985 2

135

SENDTO (2) COMMAND REFERENCE SENDTO (2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc= sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

cc= sendmsg(s, msg, flags)
int cc, s;
struct msghdr msgD;
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another
socket. Send may be used only when the socket is in a connected state,
while sendto and sendmsg may be used at any time.

The address of the target is given by to with to/en specifying its size. The
length of the message is given by /en. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send although return
values of -1 indicate some locally detected errors.

If no messages space is available at the socket to hold the message to be
transmitted, then send normally blocks, unless the socket has been
placed in non-blocking i/o mode. The select(2) call may be used to
determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send "out-of-band"
data on sockets which support this notion (e.g. SOCK_STREAM).

See recv(2) tor a description of the msghdr structure.

DIAGNOSTICS
[EBADFJ

An invalid descriptor was specified.

[ENOTSOCKJ
The argument s is not a socket.

[EFAULTJ
An invalid user space address was specified for a parameter.

REV MAR 1985

136

SENDTO (2) COMMAND REFERENCE SENDTO (2)

[EMSGSIZE]
The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EWOULDBLOCK]
The socket is marked non-blocking and the requested operation
would block.

RETURN VALUE
The call returns the number of characters sent, or -1 if a local error
occurred.

SEE ALSO
recv(2), socket(2).

REV MAR 1985 2
137

SETGROUPS(2) COMMAND REFERENCE SETGROUPS(2)

NAME
setgroups - set group access list

SYNOPSIS
#include (sys/param.h)

setgroups(ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Setgroups sets the group access list of the current user process
according to the array gidset. The parameter ngroups indicates the
number of entries in the array and must be no more than NGRPS, as
defined in (sys!param.h).

Only the super-user may set new groups.

DIAGNOSTICS
The setgroups call will fail if:

[EPERM]
The caller is not the super-user.

[EFAULT]
The address specified for gidset is outside the process address
space.

[EINVAL]
Ngroups is too large a value.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getgroups(2), initgroups(3c).

REV MAR 1985

138

SETHOSTID (2) COMMAND REFERENCE SETHOSTID (2)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostidO
int hostid;

sethostid(hostid)
int hostid;

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor which is
intended to be unique among all UTek systems in existence. This is
normally a DARPA Internet address for the local machine. This call is
allowed only to the super-user and is normally performed at boot time.

RETURN VALUE
Gethostid returns the 32-bit identifier for the current processor.

CAVEATS
32 bits for the identifier is too small.

SEE ALSO
hostid(l), gethostname(2).

139

SETHOSTNAME(2) COMMAND REFERENCE SETHOSTNAME(2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor,
as previously set by sethostname. The parameter name/en specifies the
size of the name array. The returned name is null-terminated unless
insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has
length name/en. This call is restricted to the super-user and is normally
used only when the system is bootstrapped.

DIAGNOSTICS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid
address.

[EPERM] The caller was not the super-user. Applies only to
sethostname.

RETURN VALUE
[O]

[-1]

CAVEATS

Successful call.

Unsucessful call. An error code is placed in the
global location errno.

Host names are limited to 255 characters.

SEE ALSO
gethostid(2).

REV SEP 1985

140

SETITIMER(2) COMMAND REFERENCE SETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include (sys/time.h)

getitimer(which, value)
int which;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in
(sys!time.h):

#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2

/* real time intervals *I
/* virtual time intervals */
I* user and system virtual time i

The getitimer call returns in value the current value for the timer specified
in which. The setitimer call sets the value of the timer specified in which
to value, returning the previous value of the timer in ovalue.

A timer value is defined by the itimerval structure, defined in (sys/time.h):

struct itimerval {
struct timeval it_interval;
struct timeval it_value;

};

/* timer interval */
/* current value */

The timeval structure, defined in (sys/time.h), is:

struct timeval {
long
long

}

tv_sec;
tv_usec;

/* seconds */
/* and microseconds */

For getitimer, if it_value is non-zero, it indicates the time to the next
timer expiration. For example, if it_value is set to 30 seconds, then in 30
seconds the timer will expire and a SIGALRM signal will be sent to the
process. If it_interval is non-zero, it specifies a value to be used in
reloading it_value when the timer expires.

For setitimer, setting it_value to non-zero sets the time to the next timer
expiration. Setting iUnterval to non-zero specifies the value to be used
in reloading it_value when the timer expires. Setting it_value to 0 disables
a timer. Setting iUnterval to 0 causes a timer to be disabled after its
next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded
up to this resolution.

REV SEP 1985

141

SETITIMER(2) COMMAND REFERENCE SETITIMER(2)

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is
delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs
only when the process is executing. A SIGVTALRM signal is delivered
when it expires.

The ITIMER_PROF timer decrements both in process virtual time and
when the system is running on behalf of the process. It is designed to be
used by interpreters in statistically profiling the execution of interpreted
programs. Each time the ITIMER_PROF timer expires, the SIGPROF
signal is delivered. Because this signal may interrupt in-progress system
calls, programs using this timer must be prepared to restart interrupted
system calls.

DIAGNOSTICS
Getitimer and setitimer will fail if one or more of the following are true:

[EFAULT]
The value parameter specifies a bad address.

[EINVAL]
Which is an invalid argument.

Setitimer will also fail if the following is true:

[EINVAL]
The value parameter specifies an invalid time. This could mean that
either the seconds or microseconds field of the timeval structure is
negative, or the seconds field is greater than 100000000 (over 3
years), or if the microseconds field is greater than 1000000 (1 sec).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
Three macros for manipulating time values are defined in (sysltime.h).
Timerclear sets a time value to zero, timerisset tests if a time value is
non-zero, and timercmp compares two time values (beware that) = and
< = do not work with this macro).

SEE ALSO
gettimeofday(2), sigvec(2).

REV SEP 1985 2
142

SETPGRP (2) COMMAND REFERENCE SETPGRP (2)

NAME
setpgrp - set process group

SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;

DESCRIPTION
Setpgrp sets the process group of the specified process pid to the
specified pgrp. If pid is zero, then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have
the same effective user ID as the invoker or be a descendant of the
invoking process.

DIAGNOSTICS
Setpgrp will fail and the process group will not be altered if one or more
of the following occur:

[ESRCHJ
The requested process does not exist.

[EPERMJ
The caller is not the super-user, the effective user ID of the
requested process is different from that of the caller and the process
is not a descendent of the calling process.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpgrp(2).

1

143

SET PRIORITY (2) COMMAND REFERENCE SET PRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#include (sys/time.h >
#include (sys/resource.h)

prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as
indicated by which and who is returned in prio with the getpriority call
and set to prio with the setpriority call.

Which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, defined
in (sys/resource.h):

#define PRIO_PROCESS 0
#define PRIO_PGRP
#define PRIO_USER

/* process *'
1 /* process group */
2 /* user id */

Who is interpreted relative to which: a process identifier for
PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID
for PRIO_USER.

A value of O for who, in either getpriority or setpriority, will indicate the
operations are to apply to the current process, process group, or user.

The getpriority call returns in prio the highest priority (lowest numerical
value) enjoyed by any of the specified processes. Here, prio will be one
of 40 values in the range -20 to 19. The default priority is O; lower
priorities cause more favorable scheduling.

The setpriority call sets to prio the priorities of all of the specified
processes to the specified value. Only the super-user may lower
priorities.

DIAGNOSTICS
Getpriority and setpriority may return one of the following errors:

[ESRCH]
No process(es) are located using the which and who values specified.

[EINVAL]
Which is not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of
the following errors returned:

[EACCES]

REV SEP 1985

A process is located, but neither its effective nor real user ID
matched the effective user ID of the caller, and the caller is not the
super-user.

1

144

SETPRIORITY(2) COMMAND REFERENCE SET PRIORITY (2)

[EACCES]
A non super-user is attempting to change a process priority to a
negative value.

RETURN VALUE
Setpriority returns O if there is no error, or -1 if there is, setting errno to
indicate the error. Getpriority returns the process' priority. Since
getpriority can legitimately return the value -1, it is necessary to clear
the external variable errno prior to the call, then check it afterward to
determine if a -1 is an error or a legitimate value.

CAVEATS
If a prio larger than 19 is given to setpriority, it will be changed to 19 and
the priority set accordingly.

SEE ALSO
fork(2), nice(l).

REV SEP 1985 2

145

SETREGID(2) COMMAND REFERENCE SETREGID (2)

NAME
setregid - set real and effective group ID

SYNOPSIS
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
The real and effective group ID's of the current process are set to rgid
and egid respectively. Only the super-user may change the real group ID
of a process. Unprivileged users may change the effective group ID to
the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces
the system to substitute the current ID in place of the -1 parameter.

DIAGNOSTICS
[EPERM]

The current process is not the super-user and a change other than
changing the effective group ID to the real group ID was specified.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getgid(2), setreuid(2), setgid(Jc).

REV MAR 1985

146

SETREUID(2) COMMAND REFERENCE SETREUID(2)

NAME
setreuid - set real and effective user ID's

SYNOPSIS
setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION
The real and effective user ID's of the current process are set to ruid and
euid. If ruid or euid is -1, the current user ID is filled in by the system.
Only the super-user may modify the real user ID of a process. Users
other than the super-user may change the effective user ID of a process
only to the real user ID.

DIAGNOSTICS
[EPERM]

The current process is not the super-user and a change other than
changing the effective user ID to the real user ID was specified.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), setregid(2), setuid(Jc).

1 REV MAR 1985

147

SETRLIMIT (2) COMMAND REFERENCE SETRLIMIT(2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h)
#include <sys/resource.h)

getrlimit(resource, rip)
int resource;
struct rlimit *rip;

setrlimit(resource, rip)
int resource;
struct rlimit *rip;

DESCRIPTION
Limits on the consumption of system resources by the current process
and each process it creates may be obtained with the getrlimit call, and
set with the setrlimit call.

Getrlimit returns the limits on the current process in the rlimit structure
pointed to by rip; setrlimit uses the values in the structure to set the
process limits.

The resource parameter is one of the following, defined in
(sys/resource.h):

RLIMILDATA the maximum size, in bytes, of the data segment for a
process; this defines how far a program may extend its
break with the sbrk(2) system call.

RLIMILSTACK the maximum size, in bytes, of the stack segment for a
process; this defines how far a program's stack
segment may be extended, either automatically by the
system, or explicitly by a user with the sbrk(2) system
call.

RLIMIT _RSS the maximum size, in bytes, a process's resident set
size may grow to. This imposes a limit on the amount
of physical memory to be given to a process; if memory
is tight, the system will prefer to take memory from
processes which are exceeding their declared resident
set size.

A resource limit is specified as a soft limit and a hard limit. When a soft
limit is exceeded a process may receive a signal (for example, if the cpu
time is exceeded), but it will be allowed to continue execution until it
reaches the hard limit (or modifies its resource limit). The rlimit structure
is used to specify the hard and soft limits on a resource, defined in
(sys/resource.h):

struct rlimit
long rlim_cur;
long rlim_max;

};

REV MAR 1985

/* current (soft) limit */
/* hard limit */

SETRLIMIT(2) COMMAND REFERENCE SETRLIMIT (2)

Only the super-user may raise the hard limits. Other users may only
alter rlim_cur within the range from 0 to rlim_max or (irreversibly) lower
rlim_max.

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox?fffffff) in
(sys/resource.h).

Because this information is stored in the per-process information, this
system call must be executed directly by the shell if it is to affect all
future processes created by the shell; limit is thus a built-in command to
csh(lcsh).

The system refuses to extend the data or stack space when the limits
would be exceeded in the normal way: a break call fails if the data space
limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file 1/0 operation which would create a file which is too large will cause
a signal SIGXFSZ to be generated, this normally terminates the process,
but may be caught. When the soft cpu time limit is exceeded, a signal
SIGXCPU is sent to the offending process.

DIAGNOSTICS
The possible errors are:

[EFAULT]
The address specified for rip is invalid.

[EPERM]
The limit specified to setrlimit would have raised the maximum limit
value, and the caller is not the super-user.

[EINVAL]
The resource argument is not a valid value.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning
the resource limit. A return value of -1 indicates that an error occurred,
and an error code is stored in the global location errno.

SEE ALSO
csh(lcsh), sh(lsh).

REV MAR 1985 2

149

SETSOCKOPT(2) COMMAND REFERENCE SETSOCKOPT(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include (sys/types.h)
#include (sys/socket.h)

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *Optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket.

To manipulate options at the "socket" level, level is specified as
SOLSOCKET.

The parameters optval and opt/en are used to specify option values for
setsockopt. For getsockopt they identify a buffer in which the value for
the requested option is to be returned. For getsockopt, opt/en is a
value-result parameter initially containing the size of the buffer pointed to
by optval. It is modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be
supplied as 0.

Optname and any specified option value are passed uninterpreted to the
appropriate protocol module for interpretation. The include file
(syslsocket.h) contains definitions for "socket" level options; see
socket(2). At this level, optname is a single option; that is, only one option
can be specified per call to getsockopt or setsockopt. Also, setsockopt
will fail if an optval of size greater than the mbuf data length (defined in
(sys! mbuf. h)) is specified.

DIAGNOSTICS
The call succeeds unless:

[EBADF]
The arguments is not a valid descriptor.

[ENOTSOCK]
The arguments is a file, not a socket.

[ENOPROTOOPT]
The option specified in getsockopt is not set.

[EINVAL]
Optname or level is unknown; size of optval is too large (setsockopt).

[EFAULT]
The options are not in a valid part of the process address space.

150

SETSOCKOPT(2) COMMAND REFERENCE SETSOCKOPT(2)

[ENOBUFS]
No system buffer space is available.

RETURN VALUE
[OJ Successful call. In the case of getsockopt, the option specified by

optname is set.

[-1 J

CAVEATS

Unsuccessful call or optname is not set. An error code is stored into
the global variable errno.

At present, only "socket" level options are allowed. Of these, only
SO_LINGER accepts an optval argument of integer size to setsockopt.

There is no provision for resetting an option, once set.

SEE ALSO
socket(2), getprotoent(Jn).

2
151

SETTIMEOFDAY (2) COMMAND REFERENCE SETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h >

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp}
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time
and the current time zone in the structures pointed to by tp and tzp.
Settimeofday sets the time, using the contents of the structures.

Time returned is expressed relative in seconds and microseconds since
midnight January 1, 1970.

The structures pointed to by tp and tzp are defined in (sysltime.h) as:

struct timeval {
long tv_sec;
long tv_usec;

} ;

struct timezone {

/* seconds since Jan. 1, 1970 */
/* and microseconds */

int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

} ;

The timezone structure indicates the local time zone (measured in minutes
of time westward from Greenwich), and a flag tz_dsttime, that, if nonzero,
indicates that Daylight Saving time applies locally during the appropriate
part of the year.

Only the super-user may set the time of day.

DIAGNOSTICS
Gettimeofday and settimeofday may set the following errors in errno:

[EFAULT]
An argument address references invalid memory.

In addition, settimeofday may set the following error:

[EPERM]
The caller is not the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

REV SEP 1985

152

SETTIMEOFDA Y (2) COMMAND REFERENCE SETTIMEOFDAY(2)

CAVEATS
Time is never correct enough to believe the microsecond values. There
should a mechanism by which, at least, local clusters of systems might
synchronize their clocks to millisecond granularity. If tzp is NULL, the
time zone information will not be returned or set.

SEE ALSO
date(l), ctime(3c).

REV SEP 1985 2

153

SHUTDOWN(2) COMMAND REFERENCE SHUTDOWN(2)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the
socket associated withs to be shut down. If how is 0, then further
receives will be disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives will be
disallowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

The call succeeds unless:

[EBADF]
Sis not a valid descriptor.

[ENOTSOCK]
S is a file, not a socket.

[ENOTCONN]
The specified socket is not connected.

SEE ALSO
connect(2), socket(2).

REV MAR 1985

154

SIG BLOCK (2) COMMAND REFERENCE SIGBLOCK (2)

NAME
sigblock - block signals

SYNOPSIS
omask = sigblock(mask);
int omask;
int mask;

DESCRIPTION
Sigblock causes the signals specified in mask to be added to the set of
signals currently being blocked from delivery. Signal i is blocked if the i
th bit in mask is a 1. Bits are numbered beginning with 1.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this
restriction is silently imposed by the system.

RETURN VALUE
The previous set of masked signals is returned in omask.

CAVEATS
As noted above, bits are numbered beginning with 1, not 0.

SEE ALSO
kil/(2), sigsetmask(2), sigvec(2).

155

SIGPAUSE{2) COMMAND REFERENCE SIGPAUSE(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits
for a signal to arrive; on return the set of masked signals is restored.
Sigmask is usually 0 to indicate that no signals are now to be blocked.
Sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical
section, variables modified on the occurance of the signal are examined
to determine that there is no work to be done, and the process pauses
awaiting work by using sigpause with the mask returned by sigblock.

RETURN VALUE
Sigpause always terminates by being interrupted, returning EINTR.

SEE ALSO
sigblock(2), sigvec(2).

REV MAR 1985

156

SIGSETMASK(2) COMMAND REFERENCE SIGSETMASK(2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
omask = sigsetmask(mask);
int omask;
int mask;

DESCRIPTION
Sigsetmask sets the current signal mask (those signals which are
blocked from delivery) to mask. Signal i is blocked if the i-th bit in mask is
a 1. Bits are numbered beginning at 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be
blocked.

RETURN VALUE
The previous set of masked signals is returned in omask.

CAVEATS
As noted above, bits are numbered beginning at 1, not 0.

SEE ALSO
kil/(2), sigblock(2), sigpause(2), sigvec(2).

REV MAR 1985

157

SIGST ACK (2) COMMAND REFERENCE SIGSTACK (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <Signal.h>

sigstack(ss, oss);
struct sigstack *SS, *Oss;

DESCRIPTION
Sigstack allows users to define an alternate stack on which signals are to
be processed. If ss is non-zero, it specifies a signal stack on which to
deliver signals and tells the system if the process is currently executing
on that stack. The signal stack structure is defined in <signal.h> as:

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

};

When a signal's action indicates its handler should execute on the signal
stack (specified with a sigvec(2) call), the system checks to see if the
process is currently executing on that stack. If the process is not
currently executing on the signal stack, the system arranges a switch to
the signal stack for the duration of the signal handler's execution. If oss
is non-zero, the current signal stack state is returned.

Signal stacks are not "grown" automatically, as is done for the normal
stack. If the stack overflows unpredictable results may occur.

DIAGNOSTICS
Sigstack will fail and the signal stack context will remain unchanged if
one of the following occurs:

[EFAULTJ
Either ss or oss points to memory which is not a valid part of the
process address space.

RETURN VALUE
If oss is non-zero, upon successful co:-.• pletion the current signal stack
state is returned in oss. If oss is NULL, upon successful completion a
value of O is returned. If an error occurs, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
sigvec(2), setjmp(3c), setjmp(3f).

158

SIGVEC(2) COMMAND REFERENCE SIGVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#include <signal. h >

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *Ovec;

DESCRIPTION
Sigvec assigns a handler for a specific signal sig, using the following
structure, defined in (signal.h):

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_onstack;

};

If vec is non-zero, it specifies a handler routine sv_handler() and mask
sv_mask to be used when delivering sig. Further, if sv_onstack is 1, the
system will deliver the signal to the process on a signal stack, specified
with sigstack(2). If ovec is non-zero, the previous handling information for
the signal is returned to the user. For an explanation of these terms, see
below.

The system defines a set of signals that may be delivered to a process.
Signal delivery resembles the occurrence of a hardware interrupt: the
signal is blocked from further occurrence, the current process context is
saved, and a new one is built. A process may specify a handler to which
a signal is delivered, may reinstate the default action for a signal, or may
specify that a signal is to be ignored. A process may also specify that a
default action is to be taken by the system when a signal occurs.
Normally, signal handlers execute on the current stack of the process.
This may be changed, on a per-handler basis, so that signals are taken
on a special signal stack.

All signals have the same priority. Signal routines execute with the
signal that caused their invocation blocked, but other signals may yet
occur. A global signal mask defines the set of signals currently blocked
from delivery to a process. The signal mask for a process is initilized
from that of its parent (normally 0). It may be changed with a sigblock(2)
or sigsetmask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set
of signals pending for the process. If the signal is not currently blocked
by the process then it is delivered to the process. When a signal is
delivered, the current state of the process is saved, a new signal mask is
calculated (as described below), and the signal handler is invoked. The
call to the handler is arranged so that if the signal handling routine
returns normally the process will resume execution in the context from
before the signal's delivery. If the process wishes to 'resume in a different
context, then it must arrange to restore the previous context itself.

REV MAR 1985

159

SIGVEC(2) COMMAND REFERENCE SIGVEC(2)

When a signal is delivered to a process a new signal mask is installed for
the duration of the process' signal handler (or until a sigblock or
sigsetmask call is made). This mask is formed by taking the current signal
mask, adding the signal to be delivered, and or'ing in the signal mask
associated with the handler to be invoked.

The following is a list of all signals with names as in the include file
(signa/.h):

SIGH UP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIG KILL
SIG BUS
SIGSEGV
SIGSYS
SIG PIPE
SIGALRM
SIGTERM
SIGURG

1 hangup
2 interrupt
3* quit
4* illegal instruction (not reset when caught)
5* trace trap (not reset when caught)
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
1 O* bus error
11 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal from kill
16 • urgent condition present on socket,

exception condition present on a device
SIGSTOP 17t stop (cannot be caught or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19 • continue after stop (cannot be blocked)
SIGCHLD 20 •to parent on child stop or exit
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23 • 1/0 is possible on a descriptor (see fcnt/(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitime/{2))
SIGPROF 27 profiling timer alarm (see setitime/{2))
SIGUSR1 28 user-defined signal 1
SIGUSH2 29 user-defined signal 2
SIGPWR 31 power fail

The starred signals in the list above cause a core image if not caught or
ignored.

Once a signal handler is installed, it remains installed until another
sigvec call is made, or an execve(2) is performed. The default action for a
signal may be reinstated by setting sv_handler to SIG_DFL; this default is
termination (with a core image for starred signals) except for signals
marked with • or t. Signals marked with • are discarded if the action is
SIG_DFL; signals marked with t cause the process to stop. If sv_handler
is SIG_JGN the signal is subsequently ignored, and pending instances of
the signal are discarded.

2
160

REV MAR 1985

SIGVEC(2) COMMAND REFERENCE SIGVEC(2)

If a caught signal occurs during certain system calls, causing the call to
terminate prematurely, the call is automatically restarted. In particular
this can occur during a read or write(2) on a slow device (such as a
terminal; but not a file) and during a wait(2).

After afork(2) or vfork(2) the child inherits all signals, the signal mask,
and the signal stack.

The system call execve(2) resets all caught signals to default action;
ignored signals remain ignored; the signal mask remains the same; the
signal stack state is reset.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or
SIGCONT. This is done silently by the system.

The handler routine can be declared:
handler(sig, code, scp)
int sig, code;
struct sigcontext *Sep;

Here sig is the signal number, into which the hardware faults and traps
are mapped as defined below. Code is a parameter, a constant as given
below. Sep is a pointer to the sigcontext structure (defined in (signal. h)),
used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and
codes. All of these symbols are defined in (signal.h):

Hardware condition Signal Code
Arithmetic traps:

Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Floating inexact result

Length access control
Protection violation
Undefined instruction trap
Privileged instruction trap
Floating reserved operand trap
Floating illegal instruction trap
Customer-reserved instr.
Trace pending
Bpt instruction

DIAGNOSTICS

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIG BUS
SIGILL
SIGILL
SIGILL
SIGILL
SIG EMT
SIG TRAP
SIG TRAP

FPE_INTDIV_TRAP
FPE_FL TOVF _TRAP
FPE_FL TD IV_ TRAP
FPE_FL TU ND_ TRAP
FPE_INEXCT_ TRAP

ILLUNDEF _TRAP
ILLPRIVIN_ TRAP
ILL_RESOP _TRAP
ILLFLOA T_ TRAP

Sigvec will fail and no new signal handler will be installed if one of the
following occurs:

[EFAUL T]
Either vec or ovec points to memory which is not a valid part of the
process address space.

3 REV MAR 1985

161

SIGVEC(2) COMMAND REFERENCE SIGVEC(2)

[EINVAL]
Sig is not a valid signal number.

[EINVAL]
An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL]
An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).

RETURN VALUE
If ovec is non-zero, upon successful completion the previous handling
information is returned in ovec. If ovec is NULL, upon successful
completion a 0 is returned. If an error occurs, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
ki/1(1), ki/1(2), ptrace(2), sigblock(2), sigpause(2) sigsetmask(2), sigstack(2),
sigvec(2), setjmp(3c), setjmp(3f), tty(4).

4 REV MAR 1985

162

SOCKET(2) COMMAND REFERENCE SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h >
#include (sys/socket.h)

s = socket{af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The af parameter specifies an address format with which addresses
specified in later operations using the socket should be interpreted.
These formats are defined in the include file (sys/socket. h >. The currently
understood formats are

AF_UNIX
AF_INET
AF_PUP
AF_IMPLINK

(UTek path names),
(ARPA Internet addresses),
(Xerox PUP-I Internet addresses), an

(IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of
communication. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

A SOCK_STREAM type provides sequenced, reliable, two-way
connection based byte streams with an out-of-band data transmission
mechanism. A SOCK_DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small) maximum
length). SOCK_RAW sockets provide access to internal network
interfaces. SOCK_RAW is available only to the super-user.

The protocol specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket type
using a given address format. However, it is possible that many protocols
may exist in which case a particular protocol must be specified in this
manner. The protocol number to use is particular to the "communication
domain" in which communication is to take place.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to
pipes. A stream socket must be in a connected state before any data may
be sent or received on it. A connection to another socket is created with
a connect(2) call. Once connected, data may be transferred using read(2)
and write(2) calls or some variant of the send(2) and recv(2) calls. When a
session has been completed a close(2) may be performed. Out-of-band
data may also be transmitted as described in send(2) and received as
described in recv(2).

REV MAR 1985

163

SOCKET(2) COMMAND REFERENCE SOCKET(2)

The communications protocols used to implement a SOCK_STREAM
insure that data is not lost or duplicated. If a piece of data for which the
peer protocol has buffer space cannot be successfully transmitted within
a reasonable length of time, then the connection is considered broken
and calls will indicate an error with -1 returns and with ETIMEDOUT as
the specific code in the global variable errno. The protocols optionally
keep sockets "warm" by forcing transmissions roughly every minute in
the absence of other activity. An error is then indicated if no response
can be elicited on an otherwise idle connection for a extended period
(e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a
broken stream; this causes naive processes, which do not handle the
signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in send(2) calls. It is also possible to receive
datagrams at such a socket with recv(2).

An fcnt/(2) call can be used to specify a process group to receive a
SIGURG signal when the out-of-band data arrives.

The operation of sockets is controlled by socket level options. These
options are defined in the file (syslsocket.h > and explained below.
Setsockopt(2) and getsockopt(2) are used to set and get options,
respectively.

SO_DEBUG turn on recording of debugging information.
SO_REUSEADDR allow local address reuse.
SO_KEEPALIVE keep connections alive.
SO_DONTROUTE do no apply routing on outgoing messages.
SO_LINGER linger on close if data present.
SO_DONTLINGER do not linger on close.

SO_DEBUG enables debugging in the underlying protocol modules.
SO_REUSEADDR indicates the rules used in validating addresses
supplied in a bind(2) call should allow reuse of local addresses.
SO_KEEPALIVE enables the periodic transmission of messages on a
connected socket. Should the connected party fail to respond to these
messages, the connection is considered broken and processes using the
socket are notified via a SIGPIPE signal. SO_DONTROUTE indicates that
outgoing messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface according to
the network portion of the destination address. SO_LINGER and
SO_DONTLINGER control the actions taken when unsent messages are
queued on socket and a close(2) is performed. If the socket promises
reliable delivery of data and SO_LINGER is set, the system will block the
process on the close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period, termed
the linger interval, is specified in the setsockopt call when SO_LINGER is
requested). If SO_DONTLINGER is specified and a close is issued, the
system will process the close in a manner which allows the process to
continue as quickly as possible.

2 REV MAR 1985

164

SOCKET(2) COMMAND REFERENCE SOCKET(2)

DIAGNOSTICS
The socket call fails if:

[EAFNOSUPPORT]
The specified address family is not supported in this version of the
system.

[ESOCKTNOSU PPORT]
The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]
The specified protocol is not supported.

[EMFILE]
The per-process descriptor table is full.

[ENOBUFS]
No buffer space is available. The socket cannot be created.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a
descriptor referencing the socket.

CAVEATS
The use of keepalives is a questionable feature for this layer.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioct/(2),
listen(2), recv(2), select(2), send(2), shutdown(2), socketpair(2).

3 REV MAR 1985

165

SOCKETPAIA (2) COMMAND REFERENCE SOCKETPAIA (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <Sys/types.h>
#include <Sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the
specified domain d, of the specified type, and using the optionally
specified protocol. The descriptors used in referencing the new sockets
are returned in sv[QJ and sv[1 J. The two sockets are indistinguishable.

DIAGNOSTICS
The call succeeds unless:

[EM FILE]
Too many descriptors are in use by this process.

[EAFNOSUPPORTJ
The specified address family is not supported on this machine.

[EPROTONOSUPPORTJ
The specified protocol is not supported on this machine.

[EOPNOSUPPORTJ
The specified protocol does not support creation of socket pairs.

[EFAULTJ
The address sv does not specify a valid part of the process address
space.

RETURN VALUE
[OJ Socketpair was successful.

[-1]
Socketpair was unsuccessful.

CAVEATS
This call is currently implemented only for the UTek domain.

SEE ALSO
read(2), write(2), pipe(2).

166

STAT(2) COMMAND REFERENCE STAT{2)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
#include (sys/types.h >
#include (sys/stat.h>

stat(path, buf)
char *path;
struct stat *buf;

lstat(path, buf)
char *path;
struct stat *buf;

fstat(fd, buf)
int fd;
struct stat *buf;

DESCRIPTION
Stat obtains information about the file path. Read, write or execute
permission of the named file is not required, but all directories listed in
the path name leading to the file must be reachable.

Lstat is like stat except in the case where the named file is a symbolic
link, in which case lstat returns information about the link, while stat
returns information about the file the link references.

Fstat obtains the same information about an open file referenced by fd,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed
concerning the file. The structure is defined in (syslstat.h > as:

REVSEP1985

struct stat {
dev _ t st_dev; /* ID of device containing a directory entry */

/* for this file */
ino_t
u_short
short
short
short
dev_t

off_t
time_t
int
time_t
int
time_t
int
long
long
long
long

};

st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;

st_size;
st_atime;
st_sparel;

/*this inode's number*/
/* file mode; see below */
/* number of hard links to the file */
/*user ID of the file's owner*/
/*group ID of the file's group*/
/* ID of device -- this entry is defined only */
/* for character special or block special files *
/* total size of file */
/* time of last access */

st_mtime; /* time of last data modification */
st_spare2;
st_ctime; /* time of last file status change */
st_spareJ;
st_blksize;/* optimal blocksize for file system I/Oops*/
st_blocks; /* actual number of blocks allocated */
st_hostid; /* hostid of machine where file is located */
st_spare4;

167

STAT(2)

st_atime

st_mtime

st_ctime

COMMAND REFERENCE STAT(2)

Time when file data was last read or modified. Changed by
the following system calls: mknod(2), utimes(2), and read(2).
For reasons of efficiency, st_atime is not set when a
directory is searched, although this would be more logical.

Time when data was last modified. It is not set by changes
of owner, group, link count, or mode. Changed by the
following system calls: mknod(2), utimes(2), write(2).

Time when file status was last changed. It is set both both
by writing and changing the i-node. Changed by the
following system calls: chmod(2) chown(2), link(2),
mknod(2), rename(2), unlink(2), utimes(2), write(2).

The status information word st_mode has these bits:

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /*character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFLNK 0120000 /* symbolic link*/
#define S_IFSOCK 0140000 I* socket *I
#define S_ISUID 0004000 /*set user id on execution */
#define S_ISGID 0002000 /* set group id on execution */
#define S_ISVTX 0001000 /* save swapped text even after use *I
#define S_IREAD 0000400 /* read permission, owner*/
#define S_IWRITE 0000200 /* write permission, owner */
#define S_IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others
permissions (see chmod(2)).

When fd is associated with a pipe, fstat reports an ordinary file with an
i-node number, restricted permissions, and a not necessarily meaningful
length.

DIAGNOSTICS
Stat and lstat will fail if one or more of the following are true:

[ENOTDIR]
A component of the path prefix is not a directory.

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[ENOENT]
The named file does not exist.

REV SEP 1985 2

168

STAT(2) COMMAND REFERENCE STAT(2)

[EACCES]
Search permission is denied for a component of the path prefix. If
the file is located on a remote host, this error code will be returned if
the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EFAULT]
Buf or path points to an invalid address.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

Fstat will fail if one of the following are true:

[EBADF]
Fd is not a valid open file descriptor.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
The fields in the stat structure currently marked st....sparel, sLspare2, and
stspare3 are present in preparation for inode time stamps expanding to
64 bits. This, however, can break certain programs which depend on the
time stamps being contiguous (in calls to utimes(2)).

Applying fstat to a socket returns a zeroed buffer.

SEE ALSO
chmod(2), chown(2), utimes(2).

REVSEP1985 3

169

SWAPON(2) COMMAND REFERENCE SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
swapon(special)
char *Special;

DESCRIPTION
Swapon makes the block device special available to the system for
allocation for paging and swapping. The names of potentially available
devices are known to the system and defined at system configuration
time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

DIAGNOSTICS
Swapon will fail if one or more of the following are true:

[ENO ENT]
Special does not exist.

[ENOTDIR]
A component of the path prefix of special is not a directory.

[ENAMETOOLONG]
The argument special is too long.

[EACCES]
Search permission is denied on a component of the path prefix of
special.

[ENOASCll]
The pathname special contains a character with the high-order bit
set.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EFAULT]
special points to an invalid address.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[ENOTBLK]
Special is not a block device.

[ENXIO]
The major device number of special is out of range (this indicates no
device driver exists for the associated hardware).

[EBUSY]
Swapping is already being done on the device.

[ENODEV]
The device is not in the swap table.

REV SEP 1985

170

SWAPON(2) COMMAND REFERENCE SWAPON(2)

[EDFSREF]
Special is a reference to a remote device and this system call does
not support that capability.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
There is no way to stop swapping on a disk so that the pack may be
dismounted.

SEE ALSO
config(8), swapon(8).

REV SEP 1985 2

171

SYMLINK(2) COMMAND REFERENCE SVMLINK(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
symlink(path1, path2)
char *path1, *path2;

DESCRIPTION
A symbolic link path2 is created to path! (path2 is the name of the file
created, path! is the string used in creating the symbolic link). Either
name may be an arbitrary pathname; the files need not be on the same
file system.

DIAGNOSTICS
The symbolic link is made unless on or more of the following are true:

REV SEP 1985

[ENOASCll]
Path2 contain a character with the high-order bit set.

[ENAMETOOLONG]
One of the pathnames specified is too long.

[ENOTDIR]
A component of the path2 prefix is not a directory.

[EEXIST]
Name2 already exists.

[EACCES]
A component of the path2 path prefix denies search permission. If
the file is located on a remote host, this error code will be returned if
the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EROFS]
The file path2 would reside on a read-only file system.

[ENOSPC]
The file system is out of inodes.

[ENOSPC]
The directory in which the entry for the new symbolic link is being
placed cannot be extended because there is no space left on the file
system containing the directory.

[ENOSPC]
The new symbolic link cannot be ecreated because there is no space
left on the file system which will contain the link.

[ENFILE]
The system inode table is full.

[EFAULT]
Path! or path2 points outside the process's allocated address space.

[ELOOP]
Too may symbolic links were encountered in translating the
pathname.

172

SYMLINK(2) COMMAND REFERENCE SYMLINK(2}

[EIO]
An 1/0 error occurred while writing to the file system.

[EDFSNOSUCH HOST]
Path2 referenced a remote host, but when we broadcast a request for
its address, no host responded.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
ln(l), link(2), unlink(2).

REV SEP 1985 2

173

SYNC (2) COMMAND REFERENCE SYNC(2)

NAME
sync - update super-block

SYNOPSIS
syn co

DESCRIPTION
Sync causes all information in core memory that should be on disk to be
written out. This includes modified super blocks, modified i-nodes, and
delayed block 1/0.

Sync should be used by programs which examine a file system, for
example fsck, df, etc. Sync is mandatory before a boot.

CAVEATS
The writing, although scheduled, is not necessarily complete upon return
from sync.

SEE ALSO
fsync(2), sync(8), update(8).

174

SYSCALL(2) COMMAND REFERENCE SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
syscall(number, arg, ...)

DESCRIPTION
Syscall performs the system call whose assembly language interface has
the specified number, register arguments rO and rl and further arguments
arg.

The rO value of the system call is returned.

RETURN VALUE
When the flag bit is set, syscall returns -1 and sets the external variable
errno (see intro(2)).

CAVEATS
There is no way to simulate system calls such as pipe(2), which return
values in register r1.

Unless signals are being blocked or ignored, an invalid number will send
cause syscall to send signal SIG SYS (see sigvec(2)).

SEE ALSO
intro(2).

175

REV MAR 1985

TRUNCATE(2) COMMAND REFERENCE TRUNCATE(2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
long length;

ftruncate(fd, length)
int fd, long length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be
truncated to at most length bytes in size. If the file previously was larger
than this size, the extra data is lost. With ftruncate, the file must be
open for writing.

DIAGNOSTICS
Truncate succeeds unless:

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname path is too long.

[ENOTDIR]
A component of the path prefix of path is not a directory.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[ENO ENT]
The named file path does not exist.

[EACCES]
A component of the path prefix of path denies search permission.

[EACCES]
Write permission is denied for path.

[EACCES]
If the file is located on a remote host, this error code will be returned
if the local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EISDIR]
The named file is a directory.

[EROFS]
The named file resides on a read-only file system.

[ETXTBSY]
The file is a pure procedure (shared text) file that is being executed.

[EFAULT]
Path points outside the process's allocated address space.

REV SEP 1985

176

TRUNCATE(2) COMMAND REFERENCE TRUNCATE(2)

[ELOOP]
Too many symbolic links were encourntered in translating the
pathname.

[EINVAL]
Length value given was negative.

[EDFSNOSUCH HOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

Ftruncate succeeds unless:

[EBADF]
Fd is not a valid descriptor.

[EACCES]
Write permission is denied for the file referenced by fd.

[EINVAL]
Fd references a socket, not a file.

[EROFS]
Fd resides on a read-only file system.

[EINVAL]
Length value given was negative.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

CAVEATS
Partial blocks discarded as the result of truncation are not zero filled; this
can result in holes in files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be
discarded.

SEE ALSO
open(2).

REV SEP 1985 2

177

UMASK(2) COMMAND REFERENCE UMASK(2)

NAME
u mask - set file creation mode mask

SYNOPSIS
oumask = umask(numask)
int oumask, numask;

DESCRIPTION
Umask sets the process's file mode creation mask to numask and returns
the previous value of the mask in oumask. The low-order 9 bits of numask
are used whenever a file is created, clearing corresponding bits in the file
mode (see chmod(2)). This clearing allows each user to restrict the
default access to his files.

The mask is inherited by child processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2).

178

UMOUNT(2) COMMAND REFERENCE UMOUNT(2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(special, path, rwflag)
char *Special, *path;
int rwflag;

umount(special)
char *special;

DESCRIPTION
Mount announces to the system that a removable file system has been
mounted on the block special file special. After successful completion,
references to file path will refer to the root file on the newly mounted file
system. Special and path are pointers to null-terminated strings
containing the appropriate pathnames.

Path must exist already. Path must be a directory. Its old contents are
inaccessible while the file system is mounted.

The rwflag argument is used to control write permission on the mounted
file system. If rwflag is 0, writing is allowed. If it is non-zero, no writing
can be done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are
updated, whether or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to
contain a removable file system. The associated file reverts to its
ordinary interpretation.

These calls are limited to the super-user.

DIAGNOSTICS
Mount and umount will fail when one of the following occurs:

[EPERM]
The caller is not the super-user.

[ENOENT]
Special or path does not exist.

[ENOENT]
A component of the path prefix of special or path does not exist.

[ENAMETOOLONG]
The argument special or path is too long.

[ENOTBLK]
Special is not a block device.

[ENXIO]
The major device number of special is out of range (this indicates no
device driver exists for the associated hardware).

[ENOASCll]
The pathname special or path contains a character with the high-
order bit set. ·

REV SEP 1985

179

UMOUNT(2) COMMAND REFERENCE UMOUNT(2)

[ELOOP]
Too many symbolic links were encountered in translating a
pathname.

[EDFSREF]
Path may not reference a file system on another host.

[EIO]
An 1/0 error occured while reading from or writing to the file system.

In addition, mount will fail when one or more of the following occurs:

[ENOTDIR]
Path is not a directory.

[EBUSY]
Another process currently holds a reference to path.

[ENOMEM]
No space remains in the mount table.

[EINVAL]
The super block for the file system has a bad magic number or an
out-of-range block size.

[ENOMEM]
Not enough memory is available to read the cylinder group
information for the file system.

[EIO]
An 1/0 error occurred while reading the super block or cylinder group
information.

[EIO]
An 1/0 error occurred while accessing the device.

[EACCES]
Search permission is denied for a component of the pathname prefix
of path or special.

[EFAULT]
Special or path points outside the process's allocated address space.

In addition, umount will fail when one or more of the following occurs:

[EINVAL]
The requested device is not in the mount table.

[EBUSY]
A process is holding a reference to a file located on the file system.

[EACCES]
Search permission is denied for a component of the pathname prefix
of special.

[EFAULT]
Special points outside the process' allocated address space.

REV SEP 1985 2

180

UMOUNT(2) COMMAND REFERENCE UMOUNT(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(8), umount(8).

REV SEP 1985 3

181

UNAME(2) COMMAND REFERENCE UNAME(2)

NAME
uname - get name of current system

SYNOPSIS
#include (sys/utsname.h)

uname(name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current operating system in the
structure pointed to by name.

Uname uses the structure defined in (syslutsname.h) whose members
are:

char sysname [9];
char nodename [9];
char release [g];
char version [g];
char machine [9];

Uname returns a null-terminated character string naming the current
system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network.
Nodename contains the first 8 characters of the hostname that was set
using sethostname(2). The complete name is available using
gethostname(2). Release and version further identify the operating system.
Machine contains a standard name that identifies the hardware that the
system is running on.

DIAGNOSTICS
Uname will fail is the following is true:

[EFAULT]
Name points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
uname(l), gethostname(2), sethostname(2).

REV MAR 1985

182

UNLINK(2) COMMAND REFERENCE UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(path)
char *path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry
was the last link to the file, and no process has the file open, then all
resources associated with the file are reclaimed. If, however, the file was
open in any process, the actual resource reclamation is delayed until it is
closed, even though the directory entry has disappeared.

Only the super-user may unlink a directory.

DIAGNOSTICS
The unlink succeeds unless:

REV SEP 1985

[ENOASCll]
The path contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[ENOTDIR]
A component of the path prefix is not a directory.

[ENO ENT]
The named file does not exist.

[EACCES]
Search permission is denied for a component of the path prefix.

[EACCES]
Write permission is denied on the directory containing the link to be
removed.

[EACCES]
If the file is located on a remote host, this error code will be returned
if the local host name and local user name does not appear in
/etclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EPERM]
The named file is a directory and the effective user ID of the process
is not the super-user.

[EBUSY]
The entry to be unlinked is the mount point for a mounted file
system.

[ETXTBUSY]
Path is a shared text file that is being executed.

183

UNLINK(2) COMMAND REFERENCE UNLINK(2)

[EROFS]
The named file resides on a read-only file system.

[EFAULT]
Path points outside the process's allocated address space.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), link(2), open(2), rmdir(2), creat(3c).

REV SEP 1985 2

184

UTIMES(2) COMMAND REFERENCE UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#include (sys/time.h)

utimes(path, tvp)
char *path;
struct timeval tvp[2];

DESCRIPTION
The utimes call uses the values in the tvp array to set the "accessed"
and "modified" times (in that order) for the file named by path. The
timeval structure is defined in (sys/time.h > as:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

};

The caller must be the owner of the file or the super-user. The "inode
changed" time of the file is set to the current time.

DIAGNOSTICS

REVSEP1985

Utimes will fail if one or more of the following are true:

[ENOASCll]
The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
The pathname is too long.

[ENOENT]
The named file does not exist.

[ENOTDIR]
A component of the path prefix is not a directory.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EACCES]
A component of the path prefix denies search permission. If the file
is located on a remote host, this error code will be returned if the
local host name and local user name does not appear in
letclhosts.dfs.access on the remote machine. See hosts.dfs.access(5n).

[EPERM]
The process is not super-user and not the owner of the file.

[EROFS]
The file system containing the file is mounted read-only.

[EFAULT]
File or tvp points outside the process's allocated address space.

185

UTIMES(2) COMMAND REFERENCE UTIMES(2)

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EDFSNOSUCHHOST]
The pathname referenced a remote host, but when we broadcast a
request for its address, no host responded.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

REV SEP 1985 2

186

VFORK(2) COMMAND REFERENCE VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vfork()
int pid;

DESCRIPTION
Vfork is identical to fork(2). It is provided here for compatibility with
other systems. On those systems, vfork creates new processes without
copying the address space of the old process, borrowing the parent's
memory and thread of control until a call to execve(2) or an exit (either by
a call to exit(2) or abnormally).

Here, with both vfork and fork the address space is not copied; data and
stack are made copy-on-write so neither the parent nor the child can
modify the other's memory. The new process is created without the
overhead of copying the whole process.

Vfork returns 0 in pid in the child's context and (later) in pid the pid of the
child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to
return while running in the child's context from the procedure which
called vfork since the eventual return from vfork would then return to a
no-longer-existent stack frame. Be careful, also, to call _exit rather than
exit if you can't execve, since exit will flush and close standard 110
channels, and thereby mess up the parent processes standard 110 data
structures. (Even with fork it is wrong to call exit since buffered data
would then be flushed twice.)

DIAGNOSTICS
Vfork will fail and no child process will be created if one or more of the
following are true:

[EAGAIN]
The system-imposed limit on the total number of processes under
execution, NPROC, would be exceeded.

[EAGAIN]
The system-imposed limit on the total number of processes under
execution by a single user, MAXUPRC, defined in (sys/param.h),
would be exceeded.

[ENOMEM]
Insufficient space exists in the swap area for the child process.

RETURN VALUE
Upon successful completion, vfork returns a value of 0 in pid to the child
process and returns the process ID of the child process in pid to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and the global variable errno is set
to indicate the error.

REV SEP 1985

187

VFORK(2) COMMAND REFERENCE VFORK(2)

CAVEATS
To avoid a possible deadlock situation, processes which are children in
the middle of a vfork are never sent SIGTTOU or SIGTTIN signals;
rather, output or ioctls are allowed and input attempts result in an end
of-file indication.

SEE ALSO
execve(2), f ork(2), sigvec(2), wait(2).

REV SEP 1985 2

188

WAIT (2) COMMAND REFERENCE WAIT (2)

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#include <Sys/wait.h>

pid = wait(status)
int pid;
union wait *Status;

pid = wait(O)
int pid;

#include <Sys/time.h>
#include <Sys/resource. h>

pid = wait3(status, options, rusage)
int pid;
union wait *status;
int options;
struct rusage *rusage;

DESCRIPTION
Wait suspends the calling process until it receives a signal or one of its
child processes terminates. If any child is terminated prior to the call on
wait, return is immediate, returning in pid the process ID and in status the
exit status of one of the terminated children. If there are no children,
return is immediate with pid set to -1.

On return from a successful wait call, status is nonzero, and the high byte
of status contains the low byte of the argument to exit supplied by the
child process; the low byte of status contains the termination status of the
process. A more precise definition of the status word is given in
<Sys/wait. h>:

union wait {
int w_status; /* used in syscall */
I*
* Terminated process status.
*I

struct {

} w_T;
I*

unsigned short w_Termsig:7;
unsigned short w_Coredump:l;
unsigned short w_Retcode:8;

* Stopped process status. Returned

/* termination signal */
/* core dump indicator */
/* exit code if w_termsig=

* only for traced children unless requested
* with the WUNTRACED option bit.
*I

struct {

} w_s;

};

unsigned short w_$topval:8;
unsigned short w_$topsig:8;

IRQ

/* == W_$TOPPED if stopped
/* signal that stopped us

WAIT (2) COMMAND REFERENCE WAIT (2)

If wait is called with an argument of 0, no status information is returned.

Wait3 provides an alternate interface for programs which must not block
when collecting the status of child processes. The status parameter is
defined as above. The options parameter is one of the following, defined
in <Sys/wait.h>:
#define WNOHANG
#define WU NTRACED

1
2

I* don't hang in wait*/
/*tell about stopped, untraced children */

Options is used to indicate the call should not block if there are no
processes which wish to report status (WNOHANG), and/or that only
children of the current process which are stopped due to a SIGITIN,
SIGITOU, SIGTSTP, or SIGSTOP signal should have their status
reported (WUNTRACED). If rusage is non-zero, a summary of the
resources used by the terminated process and all its children is returned
in rusage (this information is currently not available for stopped
processes). See getrusage(2).

If rusage is NULL, no resource information is returned.

When the WNOHANG option is specified and no processes wish to report
status, wait3 returns a pid of 0. The WNOHANG and WUNTRACED
options may be combined by or'ing the two values.

See sigvec(2) for a list of termination statuses (signals); 0 status indicates
normal termination. A special status (0177) is returned for a stopped
process which has not terminated and can be restarted; see ptrace(2). If
the 0200 bit of the termination status is set, a core image of the process
was produced by the system.

If the parent process terminates without waiting on its children, the
initialization process (process ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a
signal while awaiting termination of a child process.

DIAGNOSTICS
Wait and wait3 will fail and return immediately if one or more of the
following are true:

[ECHILDJ
The calling process has no existing unwaited-for child processes.

[EFAULTJ
The status or rusage arguments point to an illegal address.

RETURN VALUE
If wait or wait3 return due to a stopped or terminated child process, the
process ID of the child is returned to the calling process in pid and the
exit status of the child is returned in status. Otherwise, a value of -1 is
returned in pid and errno is set to indicate the error.

2
190

WAIT (2) COMMAND REFERENCE WAIT (2)

Wait3 returns O if WNOHANG is specified and there are no stopped or
exited children.

SEE ALSO
exit(2), getrusage(2), ptrace(2), sigvec(2).

3

191

WAIT3 (2) COMMAND REFERENCE WAIT3 (2)

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#include <Sys/wait.h>

pid = wait(status)
int pid;
union wait *status;

pid = wait(O)
int pid;

#include <Sys/time.h>
#include <Sys/resource.h>

pid = wait3(status, options, rusage)
int pid;
union wait *status;
int options;
struct rusage *rusage;

DESCRIPTION
Wait suspends the calling process until it receives a signal or one of its
child processes terminates. If any child is terminated prior to the call on
wait, return is immediate, returning in pid the process ID and in status the
exit status of one of the terminated children. If there are no children,
return is immediate with pid set to -1.

On return from a successful wait call, status is nonzero, and the high byte
of status contains the low byte of the argument to exit supplied by the
child process; the low byte of status contains the termination status of the
process. A more precise definition of the status word is given in
<Sys/wait. h>:
union wait {
int w_status; /* used in syscall */
I*
* Terminated process status.
*I

struct {

} w_T;
I*

unsigned short w_Termsig:7;
unsigned short w_Coredwnp:l;
unsigned short w....Retcode:8;

* Stopped process status. Returned

/* termination signal */
/* core dump indicator */
/* exit code if w_termsig==O */

* only for traced children unless requested
* with the VUNTRACED option bit.
*I

struct {

} w.....S;

};

unsigned short w.....Stopval:8;
unsigned short w.....Stopsig:8;

1
lQ?

/* == V.....STOPPED if stopped */
/* signal that stopped us */

WAIT3 (2) COMMAND REFERENCE WAIT3(2)

If wait is called with an argument of 0, no status information is returned.

Wait3 provides an alternate interface for programs which must not block
when collecting the status of child processes. The status parameter is
defined as above. The options parameter is one of the following, defined
in <Sys/wait.h>:
#define WNOHANG 1 /* don't hang in wait */
#define WUNTRACED 2 /* tell about stopped, untraced children ~

Options is used to indicate the call should not block if there are no
processes which wish to report status (WNOHANG), and/or that only
children of the current process which are stopped due to a SIGTTIN,
SIGTTOU, SIGTSTP, or SIGSTOP signal should have their status
reported (WUNTRACED). If rusage is non-zero, a summary of the
resources used by the terminated process and all its children is returned
in rusage (this information is currently not available for stopped
processes). See getrusage(2).

If rosage is NULL, no resource information is returned.

When the WNOHANG option is specified and no processes wish to report
status, wait3 returns a pid of 0. The WNOHANG and WUNTRACED
options may be combined by or'ing the two values.

See sigvec(2) for a list of termination statuses (signals); O status indicates
normal termination. A special status (0177) is returned for a stopped
process which has not terminated and can be restarted; see ptrace(2). If
the 0200 bit of the termination status is set, a core image of the process
was produced by the system.

If the parent process terminates without waiting on its children, the
initialization process (process ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a
signal while awaiting termination of a child process.

DIAGNOSTICS
Wait and wait3 will fail and return immediately if one or more of the
following are true:

[ECHILDJ
The calling process has no existing unwaited-for child processes.

[EFAULTJ
The status or rusage arguments point to an illegal address.

RETURN VALUE
If wait or wait3 return due to a stopped or terminated child process, the
process ID of the child is returned to the calling process in pid and the
exit status of the child is returned in status. Otherwise, a value of -1 is
returned in pid and errno is set to indicate the error.

2

193

WAIT3 (2) COMMAND REFERENCE WAIT3 (2)

Wait3 returns O if WNOHANG is specified and there are no stopped or
exited children.

SEE ALSO
exit(2), getrusage(2), ptrace(2), sigvec(2).

3

194

WRITE(2) COMMAND REFERENCE WRITE(2)

NAME
write, writev - write on a file

SYNOPSIS
cc = write(fd, buf, nbytes)
int cc;
int fd;
char *buf;
int nbytes;

#include (sys/types.h >
#include (sys/uio.h)

cc = writev(fd, iov, iovcnt)
int cc;
int fd;
struct iovec *iov;
int. iovcnt;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the
descriptor fd from the buffer pointed to by buf. Writev performs the
same action, but gathers the output data from iovcnt buffers specified by
the members of the iovec array: iov[O], iov[1], ... , iov[iovcnt-1].

Writev is not supported for raw devices (for example, raw disks,
terminals) nor is it supported for a file located on a remote host.

Write and writev return the number of bytes written in cc.

For writev, the iovec structure is defined in (sys/uio.h) as:

struct iovec {
caddr_t iov_base;
int iov_len;

};

Each iovec entry specifies the base address and length of an area in
memory where data is gathered.

On objects capable of seeking, the write starts at a position given by the
pointer associated with fd, see /seek(2). Upon return from write, the
pointer is incremented by the number of bytes actually written.

Objects that are not capable of seeking always write from the current
position. The value of the pointer associated with such an object is
undefined.

If the real user is not the super-user, then write clears the set-user-id bit
on a file. This prevents penetration of system security by a user who
"captures" a writable set-user-id file owned by the super-user.

REV SEP 1985

195

WRITE(2) COMMAND REFERENCE WRITE(2)

DIAGNOSTICS
Write and writev will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF]
Fd is not a valid descriptor open for writing.

[EPIPE]
An attempt is made to write to a pipe that is not open for reading by
any process.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EPIPE]
An attempt is made to write to a socket of type SOCK_STREAM
which is not connected to a peer socket.

[EFBIG]
An attempt is made to write a file that exceeds the process's file size
limit or the maximum file size.

[EFAULT]
Part of iov or data to be written to the file points outside the
process's allocated address space.

[EMSGSIZE]
Fd is a socket, and the message sent on it was larger than the
internal message buffer.

[ENOTCONN]
Fd is a socket which is not connected.

[EDESTADDREQ]
Fd is a socket, and a required address was omitted from the write
request on the socket.

[EWOULDBLOCK]
Fd is in non-blocking mode, and the write would cause a process to
block.

[ENOBUFS]
Fd is a socket, and the system lacks sufficient buffer space to do the
write.

In addition, writev will fail is one or more of the following are true:

[EINVAL]
One of the iov_len values in the iov array is negative.

[EINVAL]
The sum of the iov_len values in the iov array overflows a 32-bit
integer.

[EINVAL]
Iovcnt is less than or equal to 0, or greater than 16.

REV SEP 1985 2
196

WRITE(2) COMMAND REFERENCE WRITE(2)

[ENXIO]
Writev was attempted on an unsupported raw device (see above).

[EDFSNOBUF]
Malloc failed on remote system; try smaller (8k or less) write.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned in cc. Otherwise a -1 is returned and errno is set to indicate the
error.

SEE ALSO
lseek(2), open(2), pipe(2), read(2).

REV SEP 1985 3

197

WRITECBD(2) COMMAND REFERENCE

NAME
writecbd - write to computer board diagnostic display

SYNOPSIS
writecbd(pattern)
char pattern;

DESCRIPTION

WRITECBD(2)

Writecbd is a system call specific to the 6100 series workstations. It
writes pattern to the seven-segment diagnostic display located at the
rear of the workstation. The segments are mapped to the bits in pattern
in the folowing manner:

0

1: :s
- <- 6 2: :4
- . <- 7
3

a 1 turns the given segment on and a 0 turns it off. To use this system
call the argument -161 must be used with cc(l).

FILES
/usr/lib/lib61.a

SEE ALSO
readcbcs(2)

REFERENCES
6130 System User's Guide section 2 for switch settings.

198

REVMAR1985

WRITEV(2) COMMAND REFERENCE WRITEV(2)

NAME
write, writev - write on a file

SYNOPSIS
cc= write(fd, buf, nbytes)
int cc;
int fd;
char *buf;
int nbytes;

#include (sys/types.h >
#include (sys/uio.h >

cc= writev(fd, iov, iovcnt)
int cc;
int fd;
struct iovec *iov;
int iovcnt;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the
descriptor f d from the buffer pointed to by buf. Writev performs the
same action, but gathers the output data from iovcnt buffers specified by
the members of the iovec array: iov [O], iov [1] , ... , iov [iovcnt-1] .

Writev is not supported for raw devices (for example, raw disks,
terminals) nor is it supported for a file located on a remote host.

Write and writev return the number of bytes written in cc.

For writev, the iovec structure is defined in (sys/uio.h) as:

struct iovec {
caddr_t iov_base;
int iov_len;

};

Each iovec entry specifies the base address and length of an area in
memory where data is gathered.

On objects capable of seeking, the write starts at a position given by the
pointer associated with fd, see lseek(2). Upon return from write, the
pointer is incremented by the number of bytes actually written.

Objects that are not capable of seeking always write from the current
position. The value of the pointer associated with such an object is
undefined.

If the real user is not the super-user, then write clears the set-user-id bit
on a file. This prevents penetration of system security by a user who
"captures" a writable set-user-id file owned by the super-user.

REV SEP 1985

199

WRITEV(2) COMMAND REFERENCE WRITEV(2)

DIAGNOSTICS
Write and writev will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF]
Fd is not a valid descriptor open for writing.

[EPIPE]
An attempt is made to write to a pipe that is not open for reading by
any process.

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[EPIPE]
An attempt is made to write to a socket of type SOCK_STREAM
which is not connected to a peer socket.

[EFBIG]
An attempt is made to write a file that exceeds the process's file size
limit or the maximum file size.

[EFAULT]
Part of iov or data to be written to the file points outside the
process's allocated address space.

[EMSGSIZE]
Fd is a socket, and the message sent on it was larger than the
internal message buffer.

[ENOTCONN]
Fd is a socket which is not connected.

[EDESTADDREQ]
Fd is a socket, and a required address was omitted from the write
request on the socket.

[EWOULDBLOCK]
Fd is in non-blocking mode, and the write would cause a process to
block.

[ENOBUFS]
Fd is a socket, and the system lacks sufficient buffer space to do the
write.

In addition, writev will fail is one or more of the following are true:

[EINVAL]
One of the iov_len values in the iov array is negative.

[EINVAL]
The sum of the iov_/en values in the iov array overflows a 32-bit
integer.

[EINVAL]

REV SEP 1985

Iovcnt is less than or equal to 0, or greater than 16.

2
200

WRITEV(2) COMMAND REFERENCE WRITEV(2)

[ENXIO]
Writev was attempted on an unsupported raw device (see above}.

[EDFSNOBUF]
Malloc failed on remote system; try smaller (Bk or less} write.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned in cc. Otherwise a -1 is returned and errno is set to indicate the
error.

SEE ALSO
lseek(2), open(2), pipe(2), read(2).

REV SEP 1985 3

201

INTR0(3) COMMAND REFERENCE INTR0(3)

NAME
intro - introduction to library functions

DESCRIPTION

FILES

This section describes functions that may be found in various libraries.
The library functions are those other than the functions which directly
invoke UTek system primitives, described in section two. This section
has the libraries physically grouped together. This is a departure from
older versions of the UNIX Programmer's Reference Manual, which did not
group functions by library. The functions described in this section are
grouped into various libraries:

(3c)
The 3c functions are the standard C library functions.

(3f) The 3f functions are all functions callable from FORTRAN. These
functions perform the same jobs as do the 3c functions.

(3m)

(3n)

These functions constitute the math library, libm. They are
automatically loaded as needed by the FORTRAN compiler /77(1).
The link editor searches this library under the -Im option.
Declarations for these functions may be obtained from the include file
(math.h).

These functions constitute the internet network library.

(3s) These functions constitute the standard 110 package; see stdio(Js).
These functions are in the C library. Declarations for these functions
may be obtained from the include file (stdio.h).

(3t) These functions constitute the curses and termcap libraries, and
contain routines for screen management. These functions are loaded
by using the arguments -lcurses and -ltermlib (or -ltermcap)
with cc(l).

(3d)
These functions constitute the database management library.

(3mp)
These functions constitute the multiple precision math library.

The functions in the (3c), (3n), and (3s) routines , constitute library libc,
which is automatically loaded by the C compiler cc(l) and the FORTRAN
compiler }77(1). The link editor ld(l) searches this library under the -le
option. Declarations for some of these functions may be obtained from
include files indicated on the appropriate pages.

/libllibc.a

/usrllibllibc_p.a

/usrllibllibm.a

Standard C library

Standard C library for profiling

Math library

REV SEP 1985

202

INTR0(3) COMMAND REFERENCE INTR0(3)

/usrllib/libF77.a

/usr!lib/libF77_p.a

/usr/libllib/77.a

lusr!lib/lib/77 _p.a

/usr!libllibU77.a

/usr!lib/libU77_p.a

/usr!lib/libcurses.a

/usrllibllibtermcap.a

lusrllib/libtermcap_p.a

I usr I lib I libtermlib. a

/usrllib/libtermlib_p.a

/usr/libllibdbm.a

f77 intrinsic functions

f77 intrinsic functions for profiling

f77 input/output functions

f77 input/output functions for profiling

f77 system call interface functions

f77 system call interface functions for profiling

Curses library

Terminal capability library

Terminal capability library for profiling

Terminal capability library

Terminal capability library for profiling

Database management library

/usrllibllibmp.a Multiple precision math library

DIAGNOSTICS
Functions in the math library (3m) may return conventional values when
the function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable errno (see intro(2)) is
set to the value EDOM (domain error) or ERANGE (range error). The
values of EDOM and ERANGE are defined in the include file (math.h).

SEE ALSO
cc(l), /77(1), ld(l), nm(l), intro(2), curses(3t), dbm(3d), intro(3f), intro(3m),
intro(3n), intro(3s), madd(3mp), stdio(3s), termcap(3t).

REV SEP 1985 2

203

ERROR(3) COMMAND REFERENCE ERROR(3)

NAME
ERROR - an error handling routine

SYNOPSIS
#include <errdefs.h>
ERROR (exiLcode, tag, ouLcode, format, args)
int exiLcode
char *lag
out_code is a macro described in the section Output Codes.
char *format

DESCRIPTION
ERROR prints error messages in standard formats and keeps track of
warnings. This subroutine works with special versions of exit(Jc) and
crt0(3c). Each of the arguments is described in the sections below.

Exit codes
The first argument to ERROR is the exit code number. Some special exit J

codes are defined in the include file errdefs.h. The following paragraphs
describe the actions and error message formats for different exit codes. In
these sections, program refers to the basename of the program calling
ERROR, user _message refers to the message text given by the format and
args arguments given to ERROR, and system_message refers to the
message from the system error list which corresponds to the system error
which occurred before the call to ERROR (see intro(2) for a more detailed
description of these messages). The exit code descriptions also refer to
the "warning code". This is described in the Exit Interface section.

The exit code NO_ERRS has the value 0. This causes the warning code
to be set to 0, and no message is printed.

Exit codes from 1 to 120 are not special to ERROR and should be used to
give useful information to the user via the exit code. These codes cause
the warning code to be set to the value of the exit code and an error
message to be printed. The error messages produced for these codes
are in the format:

program : user ...message (tag)

The exit code NO_CMD is used by the program sh(lsh) to signal that the
given command could not be executed.

The exit code NP _WARN causes the warning code to be set to the value
of NP _WARN and a message to be printed in the format:

program : user ...message (tag)

The exit code NP _ERR causes the program to exit with the value of
NP _WARN after printing a message in the format:

program : user ...message (tag)

204

ERROR(3) COMMAND REFERENCE ERROR(3)

The exit code P _WARN is used to print a warning message when a
system call such as open(2) fails. This code causes the warning code to
be set to the value of P _WARN and a message to be printed in the
format:

program : user _message : system_message (tag)

The exit code P _ERR is used to print an error message when a system
call such as open(2) fails. This code causes the program to exit with the
value of P _ERR after printing a message in the format:

program : user _message : system_message (tag)

The exit code USAGE is used to print a synopsis of the command line
syntax of the program. This code causes the program to exit with the
value of USAGE after printing a message in the format:

program : usage : program user _message

The exit code INTERNAL is used to print error messages when an error
occurs that should never occur. This code causes the program to dump
core and exit after printing a message in the format:

program : INTERNAL ERROR : user _message (tag)
At line line_number in Source file source-file

Tags
The second argument to ERROR is a special 'tag' which is printed in
parentheses after the error message. This tag is an index into the
verbose error message utilities, about which very little is currently known.

If the exit_code argument is either P _WARN or P _ERR and the tag
argument has a value of NULL or "" (the null string), the tag printed will
be '(sys#)', where '#' is the system error number (errno). Otherwise, a
null tag will cause no tag to be printed.

If the exit_code argument is USAGE, the tag argument is ignored.

If the environment variable NOTAGS is set, no tags will be printed.

Output Codes
The output code argument tells ERROR whether or not to print a
message, and where to print it. The output codes are described in the
include file errdefs.h. These codes are macros which send the output
code number, the source code file name and the line number to ERROR,
and only these macros should be used. The defined output codes and
corresponding actions are described in the next three paragraphs.

The output code O_ERR tells ERROR to print the error message on
standard error.

The output code Q_ERROUT tells ERROR to print the error message on
the standard output.

The output code NO_OUT tells ERROR not to print any error message.

User Error Messages (format and args)
The user may specify the error message to be printed by providing a
format and arguments in the same way as with printf(3f). Unless the
output code is NO_OUT, a format must be specified, even if it is null.

2

ERROA(3) COMMAND REFERENCE EAROA(3)

Debugging with ERROR
ERROR has a special feature which can be useful while debugging
programs. When the environment variable PRUNE is set, each error
message is followed by a line of the format:

At line line_number in Source file source-file

The source file is the file containing the call to ERROR and the line
number is the line on which ERROR is called. The exit code INTERNAL
always causes this message to be printed.

Exit Interface
When ERROR is called with an exit code that does not cause an
immediate exit, such as NP _WARN, an internal warning code is set.
When the program exits by calling the subroutine exit with a value of
NO_ERRS, or via the C statement return with a value of NO_ERRS, the
exit code is replaced by the value of the internai warning code. This way,
programs do not need to keep track of warnings and programs that print /
warning messages do not always exit with a value of 0.

EXAMPLES
The following example shows a use of ERROR with the P_WARN exit
code. Assume that the program is called "example".

char *file;
FILE *tp;

if ((tp = fopen(file, "r")) == HULL) {
ERROR (P_VARN, "open!", O_ERR, "%s", file);

}

exit {NO_ERRS);
}

In this case, if the program tried to open the file "foo" for reading and the
file did not exist, the message:

example : foo : No such file or directory

would be printed. When the program exits, the exit code would be the
value of P_WARN.

VARIABLES
PRUNE

NOTAGS

CAVEATS

Causes the source file name and line number to be
printed after any message.

Suppresses the printing of tags.

If the format or its arguments are invalid, errors will occur. No attempt is
made to check the validity of these arguments. For example, the call:

3
206

ERROR(3) COMMAND REFERENCE ERROR(3)

ERROR (P _ERR, "open1 ", O_ERR, file);

may cause problems if the string file contains any'%' characters.

If a null format is given to ERROR with the exit codes P _WARN or
P _ERR, the error message will contain two colons separated by a space.
For example, the code fragment:

if ((fp = fopen ("file", "r")) = = NULL) {

}
ERROR (P _WARN, "open1 ", O_ERR, "");

Will print the error message :

program : : No such file or directory

SEE ALSO
msghlp(I), sh(lsh), intro(2), abort(3c), crt0(3c}, exit(3c), fopen(3s),
printf(3s), errtag(5).

4
207

GETDISKBYNAME (3 } COMMAND REFERENCE GETDISKBYNAME (3 }

NAME
getdiskbyname - get disk description by its name

SYNOPSIS
#include <disktab.h>

struct disktab *
getdiskbyname(name)
char *name;

DESCRIPTION
Getdiskbyname takes a disk name (for example, rm03) and returns a
structure describing its geometry information and the standard disk
partition tables. All information is obtained from the disktab(5) file.

<disktab.h> has the following form:

'* @(#)disktab.h 4.2 (Berkeley) 3/6/83 *'
'* * Disk description table, see disktab(S)

* *$Header: disktab.h,v 1.3 84/05/11 16:01 :18 dee Stable$
*$Locker: $

* *Modifications from 4.2bsd
* Copyright (c) 1984, Tektronix Inc.
* All Rights Reserved

*'
#define DISKT AB "/etc/disktab"

struct disktab {
char *d_name; /* drive name *I
char *d_type; /*drive type*/
int d_secsize; /* sector size in bytes */
int d_ntracks; /* # tracks/cylinder */
int d_nsectors; /* # sectors/track */
int d_ncylinders; /* # cylinders */
int d_rpm; /* revolutions/minute */
struct partition {

int p_size; /* #sectors in partition */
short p_bsize; I* block size in bytes *I
short p_fsize; /* frag size in bytes */

} d_partitions[8];
};

struct disktab *getdiskbynameQ;

208

GETDISKBYNAME { 3) COMMAND REFERENCE GETDISKBYNAME { 3)

CAVEATS
This information should be obtained from the system for locally available
disks (in particular, the disk partition tables).

SEE ALSO
disktab(5).

2
209

REGCMP(3PW) COMMAND REFERENCE REGCMP(3PW)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp(string1 [, string2, ...], 0)
char *string1, *String2, ... ;

char *regex(re, subject[, retO, ...])
char *re, *Subject, *retO, ... ;

extern char * __ loc1;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the
compiled form. A NULL return from regcmp indicates an incorrect
argument. Regcmp(l) has been written to generally preclude the need for
this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional ,,
arguments are passed to receive values back. Regex returns NULL on
failure or a pointer to the next unmatched character on success. A global
character pointer _ _ Joel points to where the match began. Regmap and
regex were mostly borrowed from the editor, ed(l); however, the syntax
and semantics have been changed slightly. The following are the valid
symbols and their associated meanings:

[]*. - These symbols retain their current meaning.

$ Matches the end of the string; \n matches the newline.

Within brackets the dash means through. For example, [a-z) is
equivalent to [abed ... xyz]. The - can appear as itself only if
used as the last or first character. For example, the character
class expression []-] matches the characters] and -.

+ A regular expression followed by + means one or more times.
For example, [0-9]+ is equivalent to [0-9][0-9)*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. Mis the
minimum number and u is a number, less than 256, which is the
maximum. If only m is present (for example, {m}), it indicates
the exact number of times the regular expression is to be
applied. {m,} is analogous to {m,infinity}. The plus(+) and
star(*) operations are equivalent to { 1,} and {O,} respectively.

(•••)Sn The value of the enclosed regular expression is to be returned.

REV SEP 1985

The value will be stored in the (n + J)th argument following the
subject argument. At present, at most ten enclosed regular
expressions are allowed. Regex makes its assignments
unconditionally.

210

REGCMP(3PW) COMMAND REFERENCE REGCMP(3PW)

(...) Parentheses are used for grouping. An operator, for example, *·
+, or {}, can work on a single character or a regular expression
enclosed in parenthesis. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

EXAMPLES
This example will match a leading newline in the subject string pointed at
by cursor:

char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp("-\n", 0)), cursor);
free(ptr);

This next example will match through the string Testing3 and will return
the address of the character after the last matched character (cursor+ 11).
The string Testing3 will be copied to the character array retO.

char retO [9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-zo-91]{0,7})$0", 0);
newcursor = regex(name, "12.3Testing321", retO);

And this next example applies a precompiled regular expression in file.i
(see regcmp(J)) against string.

This routine is kept in /usr/libllibPW.a.

#include "file.i"
char *string, *newcursor;

newcursor = regex(name, string);

2 REVMAR1985

211

REGCMP(3PW) COMMAND REFERENCE REGCMP(3PW)

CAVEATS
The user program may run out of memory if regcmp is called iteractively
without freeing the vectors no longer required. This is because regcmp
uses malloc(3c) which does not use free space. The following user
supplied replacement for malloc(3c) reuses the same vector saving time
and space:

SEE ALSO

/* user's program */

malloc(n) {

}

static int rebuf [256];
return rebut';

ed(l), regcmp(l), malloc(3c).

3

212

REV MAR 1985

VALLOC(3) COMMAND REFERENCE

NAME
valloc - aligned memory allocator

SYNOPSIS
char *Valloc(size)
unsigned size;

DESCRIPTION

VALLOC(3)

Valloc allocates size bytes aligned on a page boundary. It is implemented
by calling malloc(3c) with a slightly larger request, saving the true
beginning of the block allocated, and returning a properly aligned pointer.

DIAGNOSTICS
Valloc returns a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a
block.

CAVEATS
Vfree is not implemented.

SEE ALSO
brk(2), malloc(3c).

REVMAR1985

213

VARARGS(3) COMMAND REFERENCE VARARGS(3)

NAME
varargs - variable argument list

SYNOPSIS
#include (varargs.h)

function(va_alist)
va_dcl
va_list pvar ;
va_start(pvar);
f = va_arg(pvar, type);
va_end(pvar);

DESCRIPTION
This set of macros provides a means of writing portable procedures that
accept variable argument lists. Routines having variable argument lists
(such as printf(3s)) that do not use varargs are inherently nonportable,
since different machines use different argument passing conventions.

Va_alist is used in a function header to declare a variable argument list.

Va_dcl is a declaration for va_alist. Note that there is no semicolon after
va_dcl.

Va_list is a type which can be used for the variable pvar, which is used to
traverse the list. One such variable must always be declared.

Va_start(pvar) is called to initialize pvar to the beginning of the list.

Va_arg(pvar, type) will return the next argument in the list pointed to by
pvar. Type is the type the argument it is expected to be. Different types
can be mixed, but it is up to the routine to know what type of argument is
expected, since it cannot be determined at run-time.

Va_end(pvar) is used to finish up.

Multiple traversals, each bracketted by va_start ... va_end, are
possible.

REV MAR 1985

214

VARARGS(3) COMMAND REFERENCE VARARGS(3)

EXAMPLES
The following subroutine executes the given filename with the given
arguments. The first argument must be a filename, and the last
argument must be a 0.

CAVEATS

#include (varargs.h)
execl(va_alist)
va_dcl
{
va_list ap;
char *filename;
char *args (100] ;
int argno = O;
va_start (ap) ;
filename = va_arg(ap, char *);
while (args[argno++] = va_arg(ap, char *))
;
va_end(ap);
return execv(filename, args);
}

It is up to the calling routine to determine how many arguments there are,
since it is not possible to determine this from the stack frame. For
example, execl passes a Oto signal the end of the list. Printf can tell
how many arguments are supposed to be there by the format.

SEE ALSO
nargs(3c).

2
215

REV MAR 1985

ABORT(3C) COMMAND REFERENCE ABORT(3C)

NAME
abort - generate a fault

DESCRIPTION
Abort executes an instruction which is illegal in user mode. This causes
a signal that normally terminates the process with a core dump, which
may be used for debugging.

DIAGNOSTICS
JOT trap - core dumped This response usually comes from the

shell.

CAVEATS
The abortO function does not flush standard 1/0 buffers. Use flush(3f).

SEE ALSO
adb(l), sigvec(2), exit(2).

REV MAR 1985

216

ABS (3C) COMMAND REFERENCE

NAME
abs - integer absolute value

SYNOPSIS
abs(i)
inti;

DESCRIPTION
Abs returns the absolute value of its integer operand.

CAVEATS

ABS (3C)

Applying the abs function to the most negative integer generates a result
which is the most negative integer. That is,

abs(Ox80000000)

returns 0xsooooooo as a result.

SEE ALSO
floor(3m).

217

ALARM (3C) COMMAND REFERENCE ALARM (3C)

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm(seconds)
unsigned seconds;

DESCRIPTION
NOTE: This interface is made obsolete by setitimer(2).

Alarm causes signal SIGALRM, see signa/(3c), to be sent to the invoking
process in a number of seconds given by the argument. Unless caught
or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If
the argument is 0, any alarm request is canceled. Because of scheduling
delays, resumption of execution of when the signal is caught may be
delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm
clock.

SEE ALSO
sigpause(2), sigvec(2), signa/(3c), sleep(3c).

1
218

ARGSCAN (3C) COMMAND REFERENCE ARGSCAN (3C)

NAME
argscan, argsbad - formatted conversion of command arguments

SYNOPSIS
int
argscan(argc, argv, format[, pointer] ••.)
int argc;
char *argvO;
char *format;

argsbad(error)
char *error

DESCRIPTION
Argscan converts the given argument list according to the specified
format, removing converted arguments from the list and storing the
results of the conversions in the locations provided. If successful,
argscan returns the number of arguments remaining in the list (excluding
argv[O]); otherwise, it will return a -1 after printing messages describing
the error encountered and the correct usage of the calling program.

Argscan expects as its parameters an argument count argc, a pointer to
an argument list argv (see execve(2)), a control string format, described
below, and a set of pointer arguments indicating where the converted
arguments should be stored.

The format string consists of a set of fields and comments separated by
spaces or tabs. Each comment is a string not containing percent(%) or
exclamation(!) and is printed ver batum in the usage message. It does
not affect argument conversion. Each field describes the format of an
acceptable argument (or arguments) and has the following structure:

key conversion flag(s) whitespace fieldname

Key may be either of

% Means the argument is optional - its absence is ignored.

Indicates a required argument - if absent, an error return ensues.

Conversion is a single character which specifies the type of argument
expected; the corresponding pointer parameter(s) must be of the
appropriate type.

Flag(s) consists of the alphabetic character(s) from a command argument
acceptable under this field.

Whitespace is any number of blanks and tabs. It separates flag(s) from
fieldname.

Fieldname is any string not containing blank, tab, percent(%), or
exclamation(!). It is a mnemonic for this field and will appear in the
usage message generated from this format string.

219

ARGSCAN(3C) COMMAND REFERENCE ARGSCAN(3C)

The following conversion characters are supported:

s A character string is expected in the command arguments; the
corresponding parameter should be a pointer to a char pointer. If
such a string is found, the char pointer will be set to the address of
the string. The flag(s) part of this field must be empty.

A dash (-) followed by one and only one of the characters in flag(s) is
expected in the command arguments; the corresponding parameter
should be an int pointer. Each bit of the integer pointed to
corresponds to one character in flag(s), the leftmost character
corresponding to the integer's least significant bit. When processed,
only the bit corresponding to the flag specified is set; none of the
other bits of the integer are modified. Whitespace and fieldname must
be empty.

+ A dash(-) followed by the single character in flag(s) followed in the
next argument by an unsigned decimal string is expected in the
command arguments; the corresponding parameters should be two
int pointers. If the proper information appears in the command
arguments, the first integer will be set to 1 and the second to the
converted decimal number; otherwise, neither integer is modified.

a The command arguments are expected to contain the same
information as+, but a character string, rather than a decimal
number, is expected; the corresponding parameters should be an int
pointer and a pointer to a char pointer. If the proper information
appears in the command arguments, the integer is set to 1 and the
char pointer is set to the address of the string; otherwise, neither
parameter is changed.

The scanner will process the format string from left to right, searching for
command arguments that match the specified fields.

An argument list that does not match the requirements of the control
string will cause the printing of a short message telling why, and a
message telling what the correct usage is. This usage is gleaned from
the control string, and the fieldnames are used directly. The fieldnames
should be both terse and descriptive.

Consider the following example of a call to argscan for the diff command:

int blanks; int flags; char *filename!; char *filename2;
argscan(argc, argv, "%-b I-efh Is filename! Is filename2",

&blanks, &flags, &filename!, &filename2);

This would require one and only one of either -e, -f, or -h to be
chosen, with-bas an independent option. Fi/enamel and filename2 are
both required. The usage message for this version of diff would be

Usage:
diff [-b] -{efh} filename! filename2

2
220

ARGSCAN(3C) COMMAND REFERENCE ARGSCAN(3C)

Argsbad is the subroutine used by argscan to print an error message
followed by a usage message. It is made available so that a program can
call argscan to make a preliminary check of the command line, then call
argsbad passing an appropriate error message (or a pointer to a null
string) if any further command line error is discovered.

Since argsbad uses the format string and argv[O] passed to argscan,
argscan must be called sometime prior to calling argsbad.

CAVEATS
By its nature a call to argscan defines a syntax which may be ambiguous,
and although the results may be surprising, they are predictable.

To prevent string and number parameters (conversions a and+) from
being gobbled up as string arguments (s conversion), all string conversion
fields must follow all string and number parameter fields in the format
string. For example:

"%-xyz Is zapstr %as string" is illegal;
"%-xyz %as string Is zapstr" is legal.

No check is made of the correctness of the format string.

SEE ALSO
execve(2).

3
221

ASSERT(3C) COMMAND REFERENCE ASSERT(3C)

NAME
assert - program verification

SYNOPSIS
#include (assert.h)

assert(expression)

DESCRIPTION
Assert is a macro that indicates expression is expected to be true at this
point in the program. It causes an exit(2) with a diagnostic comment on
the standard output when expression is false (0). Compiling with the cc(l)
option -DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
Assertion failed: file f line n.

SEE ALSO
intro(3f).

F is the source file and n is the source
line number of the assert statement.

REV MAR 1985

222

ATOF(3C) COMMAND REFERENCE ATOF(3C)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer,
and long integer representation respectively. The first unrecognized
character ends the string.

Atof recognizes an optional string of spaces, then an optional sign, then
a string of digits optionally containing a decimal point, then an optional e
or E followed by an optionally signed integer.

Atoi and atol recognize an optional string of spaces, then an optional
sign, then a string of digits.

DIAGNOSTICS
Atof calls ldexp(3c), which sets errno on overflow or underflow.

CAVEATS
There are no provisions for overflow in atol or atoi.

SEE ALSO
ldexp(3c), scanf(3s).

REVMAR1985

223

BSEARCH (3C) COMMAND REFERENCE BSEARCH (3C)

NAME
bsearch - binary search

SYNOPSIS
char *bsearch ((char*) key, (char*) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a datum
may be found. The table must be previously sorted in increasing order
according to a provided comparison function.

Key points to the datum to be sought in the table.

Base points to the element at the base of the table.

Ne/ is the number of elements in the table.

Compar is the name of the comparison function, which is called with two
arguments that point to the elements being compared. The function must
return an integer less than, equal to, or greater than zero according as
the first argument is to be considered less than, equal to, or greater than
the second.

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

CAVEATS
The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being
compared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
lsearch(3c), hsearch(3c), qsort(3c), tsearch(3c).

REV MAR 1985

224

BSTRING (3C} COMMAND REFERENCE BSTRING(3C}

NAME
bcopy, bcmp, bzero, ffs - bit and byte string operations

SYNOPSIS
bcopy(b1, b2, length)
char *b1, *b2;
int length;

int bcmp(b1, b2, length)
char *b1, *b2;
int length;

bzero(b, length)
char *b;
int length;

ffs(i)
inti;

DESCRIPTION
The functions bcopy, bcmp, and bzero operate on variable length strings
of bytes. They do not check for null bytes as the routines in string(3c) do.

Bcopy copies length bytes from string bl to the string b2.

Bcmp compares byte string bl against byte string b2, returning zero if
they are identical, and nonzero otherwise. Both strings are assumed to
be length bytes long.

Bzero places length O bytes in the string bl.

Ffs find the first bit set in the argument passed it and returns the index of
that bit. A return value of zero means that no bits are set. Bits are
numbered starting at 1 (i.e., ffs (1) returns 1, and ffs (8) returns 3).

CAVEATS
The bcmp and bcopy routines take parameters backwards from strcmp
and strcpy.

Unlike strcmp, bcmp only returns an indication of equality, and not of
relative order.

SEE ALSO
string(3c).

225

REV MAR 1985

CONY (3C) COMMAND REFERENCE CONY (3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <etype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascll (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3s): the integers
from -1 through 255. If the argument of toupper represents a lowercase
letter, the result is the corresponding uppercase letter. If the argument of
tolower represents an uppercase letter, the result is the corresponding
lowercase letter. All other arguments in the domain are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted domains and are faster.
_toupper requires a lowercase letter as its argument; its result is the
corresponding uppercase letter. _tolower requires an uppercase letter as
its argument; its result is the corresponding lowercase letter. Arguments
outside the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other
systems.

SEE ALSO
ctype(3c), stdio(3s).

226

CREAT(3C) COMMAND REFERENCE CREAT(3C)

NAME
creat - create a new file

SYNOPSIS
fd = creat(pathname, mode)
int fd;
char *pathname;
int mode;

DESCRIPTION
Note: This interface is made obsolete by open(2).

Creat creates a new file or prepares to rewrite an existing file whose
pathname is pathname. A file descriptor for the file is returned in fd. If
the file does not exist, it is given mode mode, as modified by the
process's mode mask (see umask(2)). Also see chmod(2) for the
construction of the mode argument.

If the file does exist, its mode and owner remain unchanged but it is
truncated to zero length; the file is also opened for writing.

DIAGNOSTICS
Creat will fail and the file will not be created or truncated if one of the
following occur:

[ENOASCll]
The argument contains a byte with the high-order bit set.

[ENOTDIR]
A component of the path prefix is not a directory.

[EACCES]
A needed directory does not have search permission.

[EACCES]
The file does not exist and the directory in which it is to be created is
not writable.

[EACCES]
The file exists, but it is unwritable.

[EISDIR]
The file is a directory.

[EM FILE]
NOFILE files are already open.

[EROFS]
The named file resides on a read-only file system.

[ENOSPC]
The directory in which the entry for the new file is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[ENOENT]
A component of the pathname which must exist does not exist.

REV SEP 1985

227

CREAT(3C) COMMAND REFERENCE CREAT(3C)

[EIO]
An 1/0 error occurred while reading from or writing to the file system.

[ENXIO]
The file is a character special or block special file, and the associated
device does not exist.

[ETXTBSY]
The file is a pure procedure (shared text) file that is being executed.

[EFAULT]
Pathname points outside the process's allocated address space.

[ELOOP]
Too many symbolic links were encountered in translating the
pathname.

[EOPNOTSUPP]
The file is a socket (not currently implemented).

RETURN VALUE
[-1] This value is returned if an error occurs.

If there is no error, the call returns a nonnegative descriptor which only
permits writing.

SEE ALSO
open(2), chmod(2), close(2), umask(2), unlink(2), write(2).

REV SEP 1985 2

228

CRT0(3C) COMMAND REFERENCE CRT0(3C)

NAME
crtO - C-program startup routine.

SYNOPSIS
extern int _last_err
extern char *_pgmname

DESCRIPTION
CrtO is an object file which contains the startup actions for C language
programs. It is loaded by default by the compilers. It builds the
argument lists, sets up a pointer to the program name, and initializes the
global exit code (set by ERROR(3c) and used by exit(3c)), and calls the
routine exit(3c) explicitly in case it is not called to exit the program.

The global exit code is stored in the variable _last_err. This value may be
set by user programs in cases where ERROR can not be called.

The variable _pgmname is a pointer to the basename of the name of the
program being executed. This value may be used in order to find out
what name the program was called by.

CAVEATS
The variable _pgmname is a pointer into the first element of the argument
list. Programs that change the value of the first element of the argument
list may trash the name of the program, making messages from ERROR
contain garbage.

SEE ALSO
cc(J), ld(l), ERROR(3c), exit(3c).

REV MAR 1985

229

CRYPT (3C) COMMAND REFERENCE CRYPT (3C)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, edflag)
char *block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data
Encryption Standard, with variations intended (among other things) to
frustrate use of hardware implementations of the DES for key search.

The first argument to crypt is normally a user's typed password. The
second is a two-character string chosen from the set a-z, A-Z, 0-9, .,
and/. The salt string is used to perturb the DES algorithm in one of
4096 different ways, after which the password is used as the key to
encrypt repeatedly a constant string. The returned value points to the
encrypted password, in the same alphabet as the salt. The first two
characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES
algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value O and 1 . If this string
is divided into groups of eight, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length
64 containing zeros and ones. The argument array is modified in place to
a similar array representing the bits of the argument after having been
subjected to the DES algorithm using the key set by setkeys. If edflag is
0, the argument is encrypted; if nonzero, it is decrypted.

CAVEATS
The return value points to static data whose content is overwritten by
each call.

SEE ALSO
passwd(l), passwd(5), login(l), getpass(3c).

230

CTIME (3C) COMMAND REFERENCE CTIME (3C)

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to
ASCII

SYNOPSIS
char *Ctime(clock)
long *Clock;

#include <lime.h>

struct tm *localtime(clock)
long *Clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by
gettimeofday(2) into ASCII and returns a pointer to a 26-character string
in the following form. (All the fields have constant width.)

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the
broken-down time. Localtime corrects for the time zone and possible
daylight savings time; gmtime converts directly to GMT, which is the time
UTek uses. Asctime converts a broken-down time to ASCII and returns
a pointer to a 26-character string.

These quantities give the time on a 24-hour clock, day of month (1-31),
month of year (0-11), day of week (Sunday = 0), year - 1900, day of
year (0-365), and a flag that is nonzero if daylight savings time is in
effect.

When local time is called for, the program consults the system to
determine the time zone and whether the standard U.S.A. daylight
savings time adjustment is appropriate. The program knows about the
peculiarities of this conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

Timezone returns the name of the time zone associated with its first
argument, which is measured in minutes westward from Greenwich. If
the second argument is 0, the standard name is used; otherwise, it is the
daylight savings version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced. For example,
in Afghanistan timezone(-(60*4+30), O) is appropriate because it is 4:30
ahead of GMT and the string GMT +4:30 is produced.

CAVEATS
The return values point to static data whose content is overwritten by
each call.

SEE ALSO
gettimeof day(2).

1

231

CTYPE(3C) COMMAND REFERENCE CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl,
isascii - character classification

SYNOPSIS
#include (ctype.h)

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup.
Each is a predicate returning nonzero for true, zero for false. lsascii is
defined on all integer values; the rest are defined only where isascii is
true and on the single non-ASCII value EOF (see stdio(3s)).

isalpha
c is a letter

isupper
c is an uppercase letter

is lower
c is a lowercase letter

isdigit
c is a digit

isalnum
c is an alphanumeric character

isspace
c is a space, tab, carriage return, newline, or formfeed

ispunct
c is a punctuation character (neither control nor alphanumeric)

isprint
c is a printing character, code 040(8) (space) through 0176 (tilde)

iscntrl
c is a delete character (0177) or ordinary control character (less than
040, except for space, horizontal and vertical tab, space, linefeed,
carriage return, and formfeed)

isascii
c is an ASCII character, code less than 0200

SEE ALSO
conv(3c), ascii(7).

REV SEP 1985

232

DIRECTORY(3C} COMMAND REFERENCE DIRECTORY (3C}

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include (sys/types.h >
#include (dir.h)

DIR *Opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

closedir(dirp)
DIR *dirp;

DESCRIPTION
Opendir opens the directory named by filename and associates a
directory stream with it. Opendir returns a pointer to be used to identify
the directory stream in subsequent operations. The pointer NULL is
returned if filename cannot be accessed or if it cannot malloc(Jc) enough
memory to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL
upon reaching the end of the directory or detecting an invalid seekdir
operation.

Telldir returns the current 19--~itb__!he named directory
stream.

Seekdir sets the position of the next readdir operation on the directory
stream. The new position reverts to the one associated with the directory
stream when the telldir operation was performed. Values returned by
telldir are good only for the lifetime of the DIR pointer from which they
are derived. If the directory is closed and then reopened, the telldir value
may be invalidated due to undetected directory compaction. It is safe to
use a previous telldir value immediately after a call to opendir and before
any calls to readdir.

Rewinddir resets the position of the named directory stream to the
beginning of the directory.

Closedir closes the named directory stream and frees the structure
associated with the DIR pointer.

REV SEP 1985

233

DIRECTORY (3C) COMMAND REFERENCE DIRECTORY(3C)

EXAMPLES
A sample code which searchs a directory for entry filename is:

CAVEATS

len = strlen(filename);
dirp = opendir(".");
for (dp = readdir(dirp); dp !=NULL; dp = ~eaddir(dirp))
if (dp-)d_namlen == len && !strcmp(dp-)d_name, filename)) {
closedir(dirp);
return FOUND;
}
closedir(dirp);
return NOT_FOUND;

Old UNIX programs which examine directories should be converted to use
this package, as the new directory format is not obvious.

Opendir will open any file as a directory, so the file should be checked to
make sure it is a directory by using stat(2) .

SEE ALSO
lseek(2), open(2), close(2), read(2), stat(2).

REV SEP 1985 2

234

ECVT (3C) COMMAND REFERENCE ECVT (3C)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits
and returns a pointer thereto. The position of the decimal point relative to
the beginning of the string is stored indirectly through decpt (negative
means to the left of the returned digits). If the sign of the result is
negative, the word pointed to by sign is nonzero; otherwise it is zero. The
low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded
for FORTRAN F-format output of the number of digits specified by
ndigits.

Gcvt converts the value to a null-terminated ASCII string in buf and
returns a pointer to buf. It attempts to produce ndigit significant digits in
FORTRAN F-format if possible, otherwise E-format, and get it ready for
printing. Trailing zeros may be suppressed.

CAVEATS
The return values point to static data whose content is overwritten by
each call.

SEE ALSO
printf(Js).

235

END (3C) COMMAND REFERENCE END (3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting
contents. The address of etext is the first address above the program
text, edata above the initialized data region, and end above the
uninitialized data region.

When execution begins, the program break coincides with end, but it is
reset by the routines brk(2), malloc(3c), standard input/output (stdio(3s)),
the profile (-p) option of cc(l), and so forth. The current value of the
program break is reliably returned by sbrk(O); see brk(2).

SEE ALSO
brk(2), malloc(3c).

236

ERROR (3C) COMMAND REFERENCE ERROR (3C)

NAME
ERROR - an error handling routine

SYNOPSIS
#include <errdefs.h>
ERROR (exit_code, tag, out_code, format, args)
int exit_code
char *tag
out_code is a macro described in the section Output Codes.
char *format

DESCRIPTION
ERROR prints error messages in standard formats and keeps track of
warnings. This subroutine works with special versions of exit(3c) and
crt0(3c). Each of the arguments is described in the sections below.

Exit codes
The first argument to ERROR is the exit code number. Some special exit
codes are defined in the include file errdefs.h. The following paragraphs
describe the actions and error message formats for different exit codes. In
these sections, program refers to the basename of the program calling
ERROR, user _message refers to the message text given by the format and
args arguments given to ERROR, and system_message refers to the
message from the system error list which corresponds to the system error
which occurred before the call to ERROR (see intro(2) for a more detailed
description of these messages). The exit code descriptions also refer to
the "warning code". This is described in the Exit Interface section.

The exit code NO_ERRS has the value 0. This causes the warning code
to be set to 0, and no message is printed.

Exit codes from 1 to 120 are not special to ERROR and should be used to
give useful information to the user via the exit code. These codes cause
the warning code to be set to the value of the exit code and an error
message to be printed. The error messages produced for these codes
are in the format:

program : user _message (tag)

The exit code NO_CMD is used by the program sh(lsh) to signal that the
given command could not be executed.

The exit code NP _WARN causes the warning code to be set to the value
of NP _WARN and a message to be printed in the format:

program : user _message (tag)

The exit code NP _ERR causes the program to exit with the value of
NP _WARN after printing a message in the format:

program : user _message (tag)

The exit code P _WARN is used to print a warning message when a
system call such as open(2) fails. This code causes the warning code to
be set to the value of P _WARN and a message to be printed in the

237

ERROR (3C) COMMAND REFERENCE ERROR (3C)

format:

program : user _message : system_message (tag)

The exit code P _ERR is used to print an error message when a system
call such as open(2) fails. This code causes the program to exit with the
value of P _ERR after printing a message in the format:

program : user _message : system_message (tag)

The exit code USAGE is used to print a synopsis of the command line
syntax of the program. This code causes the program to exit with the
value of USAGE after printing a message in the format:

program : usage : program user _message

The exit code INTERNAL is used to print error messages when an error
occurs that should never occur. This code causes the program to dump
core and exit after printing a message in the format:

program : INTERNAL ERROR : user _message (tag)
At line lineJ1umber in Source file source-file

Tags
The second argument to ERROR is a special 'tag' which is printed in
parentheses after the error message. This tag is an index into the
verbose error message utilities, about which very little is currently known.

If the exit_code argument is either P _WARN or P _ERR and the tag
argument has a value of NULL or 1111 (the null string), the tag printed will
be '(sys#)', where '#' is the system error number (errno). Otherwise, a
null tag will cause no tag to be printed.

If the exit_code argument is USAGE, the tag argument is ignored.

If the environment variable NOTAGS is set, no tags will be printed.

Output Codes
The output code argument tells ERROR whether or not to print a
message, and where to print it. The output codes are described in the
include file errdefs.h. These codes are macros which send the output
code number, the source code file name and the line number to ERROR,
and only these macros should be used. The defined output codes and
corresponding actions are described in the next three paragraphs.

The output code O_ERR tells ERROR to print the error message on
standard error.

The output code Q_ERROUT tells ERROR to print the error message on
the standard output.

The output code NO_OUT tells ERROR not to print any error message.

User Error Messages (format and args)
The user may specify the error message to be printed by providing a
format and arguments in the same way as with printf(3s). Unless the
output code is NO_OUT, a format must be specified, even if it is null.

2
238

ERROR(3C) COMMAND REFERENCE ERROR (3C)

Debugging with ERROR
ERROR has a special feature which can be useful while debugging
programs. When the environment variable PRUNE is set, each error
message is followed by a line of the format:

At line line_number in Source file source_Ji/e

The source file is the file containing the call to ERROR and the line
number is the line on which ERROR is called. The exit code INTERNAL
always causes this message to be printed.

Exit Interface
When ERROR is called with an exit code that does not cause an
immediate exit, such as NP _WARN, an internal warning code is set.
When the program exits by calling the subroutine exit with a value of
NO_ERRS, or via the C statement return with a value of NO_ERRS, the
exit code is replaced by the value of the internal warning code. This way,
programs do not need to keep track of warnings and programs that print
warning messages do not always exit with a value of 0.

EXAMPLES
The following example shows a use of ERROR with the P _WARN exit
code. Assume that the program is called "example".

char *file;
FILE *fp;

if ((fp = fopen{file, "r")) == NULL) {
ERROR (P_WARN, "openl", O_ERR, "%s", file);

}

exit (NO_ERRS);
}

In this case, if the program tried to open the file "too" for reading and the
file did not exist, the message:

example : too : No such file or directory

would be printed. When the program exits, the exit code would be the
value of P _WARN.

VARIABLES
PRUNE

NOTAGS

CAVEATS

Causes the source file name and line number to be
printed after any message.

Suppresses the printing of tags.

If the format or its arguments are invalid, errors will occur. No attempt is
made to check the validity of these arguments. For example, the call:

3

ERROR (3C) COMMAND REFERENCE ERROR (3C)

ERROR (P _ERR, "open1 ", O_ERR, file);

may cause problems if the string file contains any'%' characters.

If a null format is given to ERROR with the exit codes P_WARN or
P _ERR, the error message will contain two colons separated by a space.
For example, the code fragment :

if ((fp = fopen ("file", "r")) = = NULL) {
ERROR (P _WARN, "open1 ", O_ERR, 1111

);

}

Will print the error message :

program : : No such file or directory

SEE ALSO
msgh/p(l), sh(lsh), intro(2), abort(Jc), crt0(3c), exit(Jc), fopen(Js),
printf(Js), errtag(5).

4

240

EXECL(3C) COMMAND REFERENCE EXECL(3C)

NAME
execl, execv, execle, execlp, execvp, exec, exece, exect, environ -
execute a file

SYNOPSIS
execl(filename, argO, arg1, ... , argn, 0)
char *filename, *argO, *arg1, ... , *argn;

execlp(filename, argO, arg1, ... , argn, 0)
char *filename, *argO, *arg1, ... , *argn;

execv(filename, argv)
char *filename, *argv[);

execvp(filename, argv)
char *filename, *argv[);

execle(filename, argO, arg1, ... , argn, 0, envp)
char *filename, *argO, *arg1, ... , *argn, *envp(];

exect(filename, argv, envp)
char *filename, *argv[), *envp[];

extern char **environ;

DESCRIPTION
These routines provide various interfaces to the execve system call.
Refer to execve(2) for a description of their properties; only brief
descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then
transfers to the entry point of the core image of the file. There can be no
return from a successful exec; the calling core image is lost.

The filename argument is a pointer to the name of the file to be executed.
The pointers arg [O], arg [I] ... address null-terminated strings.
Conventionally arg [O] is the name of the file.

Two interfaces are available. Execl is useful when a known file with
known arguments is being called. The arguments to execl are the
character strings constituting the file and the arguments; the first
argument is conventionally the same as the filename (or its last
component). A 0 argument must end the argument list. Execle is like
execl but uses the addition argument envp; see below.

The execv version is useful when the number of arguments is unknown in
advance; the arguments to execv are the name of the file to be executed
and a vector of strings containing the arguments. The last argument
string must be followed by a "O" pointer.

The exect version is used when the executed file is to be manipulated
with ptrace(2). The program is forced to single step a single instruction
giving the parent an opportunity to manipulate its state. See ptrace(2).

REVMAR1985

241

EXECL(3C) COMMAND REFERENCE EXECL(3C)

FILES

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is
conventionally at least one and the first member of the array points to a
string containing the name of the file.

Argv is directly usable in another execv because argv [argc] is 0.

Envp is a pointer to an array of strings that constitute the environment of
the process. Each string consists of a name, an equal sign (=), and a
null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(lsh) passes an environment entry for each global
shell variable defined when the program is called. See environ(7) for
some conventionally used names. The C run-time start-off routine
places a copy of envp in the global cell environ, which is used by execv
and execl to pass the environment to any subprograms executed by the
current program.

Execlp and execvp are called with the same arguments as execl and
execv, but duplicate the shell's actions in searching for an executable file
in a list of directories. The directory list is obtained from the environment.

Even for the superuser, at least one of the execute-permission bits must
be set for a file to be executed.

!bin/sh Shell, invoked if command file found by
execlp or execvp.

DIAGNOSTICS
See execve(2).

RETURN VALUE
If exec returns to the calling process, an error has occurred. The return
value will be -1.

CAVEATS
If execvp is called to execute a file that turns out to be a shell command
file, and if it is impossible to execute the shell, the values of argv[OJ and
argv[-1] will be modified before return.

SEE ALSO
csh(lcsh), sh(lsh), execve(2), fork(2), ptrace(2), a.out(5), environ(7).

2 REV MAR 1985

242

EXIT(3C) COMMAND REFERENCE EXIT(3C)

NAME
exit - terminate a process

SYNOPSIS
exit(status)
int status;
extern int _last_err

DESCRIPTION
Exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or is
interested in the SIGCHLD signal, then it is notified of the calling
process's termination and the low-order eight bits of status are made
available to it; see wait(2). The low-order eight bits of status are available
to the parent process.

If the status given to exit is 0 or the status is not given, the status is
replaced by the value of the last warning code given to the subroutine
ERROR(Jc). The value of this warning code is stored in the variable
_/ast_err, and may be set by user programs in cases where ERROR
cannot be used.

The parent process ID of all of the calling process's existing child
processes is also set to 1. This means that the initialization process (see
intro(2)) inherits each of these processes as well.

RETURN VALUE
This call never returns.

CAVEATS
Programs that "fall off the end" (for example, do not explicitly call exit
and do not explicitly return with a value) do not exit with any useful value.
In this cases, any exit code may result.

Calling exit with no parameters causes the same action as calling exit
with a value of 0.

SEE ALSO
fork(2), wait(2), exit(2), ERROR(Jc).

REV MAR 1985

243

FREXP(3C) COMMAND REFERENCE FREXP(3C)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of
magnitude less than 1 and stores an integer n such that value = x* 2n
indirectly through eptr.

Ldexp returns the quantity value*2exp.

Modf returns the fractional part of value and stores the integer part
indirectly through iptr.

DIAGNOSTICS
If the result of ldexp could cause an overflow or underflow then errno is
set to ERANGE. HUGE or -HUGE is returned on overflow depending on
the sign of value and 0 is returned on underflow.

SEE ALSO
intro(3f).

244

GETARHDR(3C) COMMAND REFERENCE GETARHDR(3C)

NAME
getarhdr, fgetarhdr - read archive header

SYNOPSIS
#include (ar.h)
int getarhdr(fd, header)
int fd;
struct ar_hdr *header;
#include (stdio.h)
#include (ar.h)
int fgetarhdr(fp, header);
FILE *fp;
struct ar _hdr *header;

DESCRIPTION
The subroutine getarhdr reads the archive header from the file whose
descriptor is fd and places this information in the structure pointed to by
header. The value returned is the length of the name field in the archive
file, including slashes and padding, except when there is a problem or
end-of-file is reached (see RETURN VALUE). The subroutine fgetarhdr
is similar, except that it takes a FILE pointer instead of a file descriptor.

The name field is terminated by a null. This means that by using
fgetarhdr or getarhdr, filenames with imbedded spaces can be handled
correctly.

The subroutine is needed because the archive format supports long
filenames by surrounding them by slashes instead of making the name
field longer. This means that it is no longer possible to read the entire
header into a structure with a single read. See ar(l) and ar(5) for more
information on the archive format.

EXAMPLES
A typical program that reads archive files would read and check the
magic number and use getarhdr to get the header for each member of
the archive file.

DIAGNOSTICS
Getarhdr and fgetarhdr return 0 on end-of-file and -1 when the archive
file is malformed.

CAVEATS
Files opened viafopen(3s) should use fgetarhdr, especially if seeks are
performed.

The file is expected to be an archive file, but it can be either a long or
short format file (see ar(5)).

SEE ALSO
ar(l), open(2), fopen(3s), ar(5), oldar(5).

REV MAR 1985

245

GETENV (3C) COMMAND REFERENCE

NAME
getenv - value for environment name

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION

GETENV (3C)

Getenv searches the environment list (see environ(7)) for a string of the
form name=value and returns a pointer to the string value if such a string
is present; otherwise getenv returns the value O (NULL).

SEE ALSO
environ(7), execve(2).

246

GETFSENT (3C) COMMAND REFERENCE GETFSENT (3C)

NAME
getfsent, getfsspec, getfsfile, setfsent, endfsent - get file system
descriptor file entry

SYNOPSIS
#include <fstab.h>

struct fstab *getfsentO

struct fstab *getfsspec(name)
char *name;

struct fstab *getfsfile(name)
char *name;

int setfsendO

int endfsentO

DESCRIPTION

FILES

Getfsent, getfsspec, and getfsfile each return a pointer to an object with
the following structure containing the broken-out fields of a line in the file
system description file, !usrlinc/udelfstab.h.

#define FSNMLG 16

struct fstab{
char fs_spec[FSNMLG];
char fs_file[FSNMLG];
char fs_type[J];
int fs_freq;
int fs_passno;
};

The fields have meanings described in fstab(5).

Getfsent reads the next line of the file, opening the file if necessary.

Setfsent opens and rewinds the file.

Endfsent closes the file.

Getfsspec and getfsfile sequentially search from the beginning of the file
until a matching special filename or file system filename is found, or until
EOF is encountered.

/etc!fstab

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

CAVEATS
All information is contained in a static area so it must be copied if it is to
be saved.

SEE ALSO
fstab(5).

247

GETGRENT (3C) COMMAND REFERENCE GETGRENT (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

setgrent()

endgrent()

DESCRIPTION
Getgrent, getgrgid, and getgrnam each return pointers to an object with
the following structure containing the broken-out fields of a line in the
group file:

'* * grp.h

*
* $Header: grp.h ,v 1.3 84/05/11 16:02:45 dee Stable $
*$Locker: $

*
* Modifications from 4.2bsd
*Copyright (c) 1984, Tektronix Inc.
* All Rights Reserved

' struct group { / see getgrent(3) */
char *gr_name;
char *gr_passwd;
int gr_gid;
char **gr_mem;

};

struct group *getgrent(), *getgrgid(), *getgrnam();

The members of this structure are:

grJZame
The name of the group.

gr_passwd
The encrypted password of the group.

gr_gid
The numerical group ID.

gr_mem

248

GETGRENT (3C) COMMAND REFERENCE GETGRENT (3C)

FILES

Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search
until a matching gid or name is found (or until EOF is encountered). Each
routine picks up where the others leave off so successive calls may be
used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file when
processing is complete.

!etc/group

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

CAVEATS
All information is contained in a static area so it must be copied if it is to
be saved.

SEE ALSO
getlogin(Jc), getpwent(Jc), group(5).

2

249

GETLOGIN (3C) COMMAND REFERENCE

NAME
getlogin - get loginname

SYNOPSIS
char *getloginO

DESCRIPTION

GETLOGIN (3C)

Getlogin returns a pointer to the loginname as found in /etclutmp. It
may be used in conjunction with getpwnam to locate the correct
password file entry when the same user ID is shared by several

FILES

login names.

If getlogin is called within a process that is not attached to a typewriter, it
returns NULL. The correct procedure for determining the loginname is to
first call getlogin and if it fails, to call getpw(getuid()).

letc!utmp

DIAGNOSTICS
Returns NULL (0) if name not found.

CAVEATS
The return values point to static data whose content is overwritten by
each call.

SEE ALSO
getgrent(3c), getpw(3c), getpwent(3c), utmp(5).

250

GETOPT (3C) COMMAND REFERENCE GETOPT (3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv;
char *Optstring;

extern char *optarg;
extern int optind;
extern int opterr;
extern int optopt;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in
optstring. Optstring is a string of recognized option letters; if a letter is
followed by a colon, the option is expected to have an argument that may
or may not be separated from it by white space. Optarg is set to point to
the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to zero
automatically before the first call to getopt.

When all options have been processed (for example, up to the first
nonoption argument), getopt returns EOF. The special option -- (dash,
dash) may be used to delimit the end of the options; EOF will be returned,
and -- (dash, dash) will be skipped.

The variable opterr determines whether or not getopt will print error
messages itself. If set to 0, no messages are printed. Otherwise, getopt
will print an error message for any unknown option or missing option
argument.

The variable optopt is set to the current option letter, which is the same
value that getopt returns.

EXAMPLES
The following code fragment shows how you might process the
arguments for a command that can take the mutually exclusive options a
and b, and the options f and o, both of which require arguments:

main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

251

GETOPT (3C)

}

DIAGNOSTICS

COMMAND REFERENCE GETOPT (3C)

while ({c = getopt (argc, argv, ''abf:o:'')) I= EOF)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if {aflg)
errflg++;

else
bproc{);

break;
case 'f':

!filename = optarg;
break;

case 'o':
ofilename = optarg;
bufsiza = 512;
break;

case '?':
errflg++;

}
if (errflg) {

}

fprintf (stderr, usage: .•• '');
exit (2);

for optind < argc; optind++) {
if {access {argv[optind], 4)) {

Getopt prints an error message on stderr and returns a question mark (?)
when it encounters an option letter not included in optstring.

CAVEATS
The above routine uses <Stdio.h>, which causes it to increase the size of
programs, not otherwise using standard 110, more than might be
expected.

SEE ALSO
getopt(l).

2

252

GETPASS (3C) COMMAND REFERENCE GETPASS (3C)

NAME
getpass - read a password

SYNOPSIS
char *Qetpass(prompt)
char *prompt;

DESCRIPTION

FILES

Getpass reads a password from the file ldevltty, or if that cannot be
opened, from the standard input, after prompting with the null-terminated
string prompt and disabling echoing. A pointer is returned to a null
terminated string of at most eight characters.

Upon receiving an interrupt, the terminal state is restored, and an
interrupt is sent to the process for further handling. The return value in
this case will be a pointer to a null string.

ldevltty The user's terminal.

CAVEATS
The return value points to static data whose content is overwritten by
each call.

SEE ALSO
crypt(3c).

253

GETPW (3C) COMMAND REFERENCE

NAME
getpw - get name from uid

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION

GETPW (3C)

Getpw searches the password file for the (numerical) uid, and fills in buf
with the corresponding line; it returns nonzero if uid could not be found.
The line is null-terminated.

FILES
letclpasswd

DIAGNOSTICS
Nonzero return on error.

SEE ALSO
getpwent(3c), passwd(5).

254

GETPWENT (3C) COMMAND REFERENCE GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file
entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent()

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwent()

int endpwent()

DESCRIPTION
Getpwent, getpwuid, and getpwnam each return a pointer to an object
with the following structure containing the broken-out fields of a line in
the password file.

'* * pwd.h

*
*$Header: pwd.h,v 1.3 84/05/11 16:05:03 dee Stable$
*$Locker: $

*
* Modifications from 4.2bsd
*Copyright (c) 1984, Tektronix Inc.
* All Rights Reserved

' struct passwd { / see getpwent(3) */
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
int pw_quota;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

};

struct passwd *getpwent(), *getpwuid(), *getpwnam();

The fields pw_quota and pw_comment are unused; the others have
meanings described in passwd(5).

255

GETPWENT (3C) COMMAND REFERENCE GETPWENT (3C)

FILES

Getpwent reads the next line (opening the file if necessary); setpwent
rewinds the file; endpwent closes it.

Getpwuid and getpwnam search from the beginning until a matching uid
or name is found (or until EOF is encountered).

letc/passwd

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

CAVEATS
All information is contained in a static area so it must be copied if it is to
be saved.

SEE ALSO
getlogin(3c), getgrent(3c), passwd(5).

2

256

GETWD (3C) COMMAND REFERENCE GETWD (3C)

NAME
getwd - get current working directory pathname

SYNOPSIS
char *getwd(pathname)
char *pathname;

DESCRIPTION
Getwd copies the absolute pathname of the current working directory to
pathname and returns a pointer to the result.

If the current working directory is on another host, the current working
hostname is prepended to the name preceded by two slashes(//). For
example, if the local host is home and the current working directory is
/bin on the machine remote, the current working directory is I !remote/bin.

DIAGNOSTICS
Getwd returns 0 and places a message in pathname if an error occurs.

CAVEATS
Getwd may fail to return to the current directory if an error occurs.

Maximum pathname length is MAXPATHLEN characters.

SEE ALSO
pwd(l), pwd(lsh), getwroot(3c).

257

GETWROOT (3C) COMMAND REFERENCE GETWROOT (3C)

NAME
getwd - get current working root directory pathname

SYNOPSIS
#include <Sys/max.h>
char *getwroot(pathname, prinUocal)
char *pathname;
int prinUocal;

DESCRIPTION
Getwroot places the full name of the root directory of the current working
directory in pathname. If the current working directory is on the remote
machine host, the name will be I !host.

If print_/ocal is 0 and the current working directory is on the local host,
the name will be a slash (/). If print_/ocal is nonzero, the name will
always contain the local hostname.

Pathname should be a pointer to at least MAXHOSTNAMESIZE + 3
characters. MAXHOSTNAMESIZE is defined in /usrlincludelsys!max.h.

DIAGNOSTICS
Getwroot returns -1 on error, and the value of errno will be set to
indicate the cause.

SEE ALSO
getwd(Jc).

258

HSEARCH {3C) COMMAND REFERENCE HSEARCH {3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include (search.h)

ENTRY *hsearch {item, action)
ENTRY item;
ACTION action;

int hcreate {nel)
unsigned nel;

void hdestroy {)

DESCRIPTION
Hsearch is a hash table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location
at which an entry can be found. Item is a structure of type ENTRY
(defined in the (search.h) header file) containing two pointers: item.key
points to the comparison key, and item.data points to any other data to be
associated with that key. (Pointers to types other than a character should
be cast to pointer-to-character.) Action is a member of an enumeration
type ACTION indicating the disposition of the entry if it cannot be found in
the table. ENTER indicates that the item should be inserted in the table at
an appropriate point. FIND indicates that no entry should be made.
Unsuccessful resolution is indicated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called
before hsearch is used. Net is an estimate of the maximum number of
entries that the table will contain. This number may be adjusted upward
by the algorithm in order to obtain certain mathematically favorable
circumstances.

Hdestroy destroys the search table, and may be followed by another call
to hcreate.

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

Hcreate returns 0 if it cannot allocate sufficient space for the table.

CAVEATS
Only one hash search table may be active at any given time.

Hsearch uses open addressing with a multiplicative hash function.

SEE ALSO
bsearch(Jc), lsearch(Jc), string(Jc), tsearch(Jc).

REV SEP 1985

259

INITGROUPS(3C) COMMAND REFERENCE

NAME
initgroups - initialize group access list

SYNOPSIS
initgroups(name, basegid)
char *name;
int basegid;

DESCRIPTION

INITGROUPS(3C)

lnitgroups reads through the group file and sets up, using the
setgroups(2) call, the group access list for the user specified in name. The
basegid is automatically included in the groups list. Typically this value is
given as the group number from the password file.

FILES
/etc/group

DIAGNOSTICS
lnitgroups returns -1 if it was not invoked by the superuser.

CAVEATS
lnitgroups uses the routines based on getgrent(Jc). If the invoking
program uses any of these routines, the group structure will be
overwritten in the call to initgroups.

No one seems to keep /etc/group up to date.

SEE ALSO
setgroups(2).

260

REV MAR 1985

INSQUE(3C) COMMAND REFERENCE

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
struct qelem {

};

struct qelem *q_forw;
struct qelem *q_back;
char q_data[];

insque(elem, pred)
struct qelem *elem, *pred;

remque(elem)
struct qelem *elem;

DESCRIPTION

INSQUE(3C)

lnsque and remque manipulate queues built from doubly linked lists.
Each element in the queue must be in the form of "struct qelem".
lnsque inserts elem in a queue immediately after pred; remque removes
an entry elem from a queue. No values are returned.

SEE ALSO
bsearch(3c), hsearch(3c), lsearch(3c), tsearch(3c).

261

KNLIST(3C) COMMAND REFERENCE KNLIST(3C)

NAME
knlist - get entries from kernel CVT table

SYNOPSIS
#include (nlist.h >
knlist(filename, nl)
char *filename;
struct nlist nl[];

DESCRIPTION

FILES

Knlist examines a table of kernel symbols in kernel memory (the CVT
table) and selectively extracts a list of values. See cvt(4) for a description
of the CVT table. Knlist performs the same function as nlist(3l), but runs
faster and returns values that are guaranteed to correspond with the
currently running kernel.

The list of names to be looked up is passed in nl. NI should be
terminated with a null name. Filename is the name of the special file
containing the CVT table (usually ldevlcvt).

If the name of an entry in nl is found in the CVT table, the value from the
table is copied into that entry's value field in nl. If the name is not found,
the value is set to 0. See (nlist.h) for the nlist structure declaration.

If filename names an a.out file rather than the CVT table, knlist will call
nlist, passing its arguments.

/devlcvt Standard name for CVT table.

RETURN VALUE
Knlist returns 0 if everything worked as expected,

Knlist returns -1 upon error.

SEE ALSO
nlist(3c), cvt(4).

REV MAR 1985

262

L3TOL(3C} COMMAND REFERENCE L3TOL(3C}

NAME
13tol, lto13 - convert between three-byte integers and long integers

SYNOPSIS
13tol(lp, cp, n)
long *Ip;
char *cp;

ltol3(cp, Ip, n)
char *cp;
long *Ip;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by Ip.

Ltol3 performs the reverse conversion from long integers (Ip) to three
byte integers (cp).

These functions are useful for file system maintenance where the i
numbers are three bytes long.

SEE ALSO
intro(3f).

263

REV MAR 1985

LSEARCH (3C) COMMAND REFERENCE LSEARCH(3C)

NAME
lsearch - linear search and update

SYNOPSIS
char *lsearch ((char *)key, (char *)base, nelp, sizeof(*key), compar)
• msigned *"elp;
int (*compar)();

DESCRIPTION
Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm
S. It returns a pointer into a table indicating where a datum may be
found. If the datum does not occur, it is added at the end of the table.

Key points to the datum to be sought in the table.

Base points to the first element in the table.

Nelp points to an integer containing the current number of elements in
the table. The integer is incremented if the datum is added to the table.

Compar is the name of the comparison function which you must supply
(strcmp, for example). It is called with two arguments that point to the
elements being compared. The function must return O if the elements are
equal and nonzero otherwise.

CAVEATS
The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being
compared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Undefined results can occur if there is not enough room in the table to
add a new item.

SEE ALSO
bsearch(3c), hsearch(3c), intro(3), tsearch(3c).

REV MAR 1985

264

MALLOC(3C) COMMAND REFERENCE MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation
package. Malloc returns a pointer to a block of at least size bytes
beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its contents
are left undisturbed.

Needless to say, serious disorder will result if the space assigned by
malloc is overrun or if some random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space
found in a circular search from the last block allocated or freed,
coalescing adjacent free blocks as it searches. It calls sbrk (see brk(2))
to get more memory from the system when there is no suitable space
already free.

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of
malloc,realloc, or calloc; thus sequences of free,malloc, and realloc can
force the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS
Malloc,realloc, and calloc return a null pointer (0) if there is no available
memory or if the arena has been detectably corrupted by storing outside
the bounds of a block. Malloc may be recompiled to check the arena
very stringently on every transaction; those sites with a source code
license may check the source code to see how this can be done.

REV MAR1985

265

MALLOC(3C) COMMAND REFERENCE MALLOC(3C)

CAVEATS
When realloc returns 0, the block pointed to by ptr may be destroyed.

SEE ALSO
brk(2).

2

266

REV MAR 1985

MKTEMP (3C) COMMAND REFERENCE MKTEMP (3C)

NAME
mktemp - make a unique filename

SYNOPSIS
char *mktemp{template)
char *template;

DESCRIPTION
Mktemp replaces template by a unique filename, and returns the
address of the template. The template should look like a filename with
six trailing X's, which will be replaced with the current process ID and
possibly a unique letter.

The uniqueness of the filename is determined by checking to see if the
resulting file exists. Therefore, successive calls to mktemp without
creating the named file will result in the same name.

The unique letter is only supplied if it is required to make a unique
filename, and is in the range a-z.

If no unique name can be built, a pointer to the string I is returned.

SEE ALSO
getpid(2).

267

MONITOR(3C) COMMAND REFERENCE MONITOR(3C)

NAME
monitor, monstartup - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)O, (*highpc)O;
short buffera;
monstartup(lowpc, highpc)
int (*lowpc)Q, (*highpc)O;

DESCRIPTION
There are two different forms of monitoring available. An executable
program created by:

cc -p •••

automatically includes calls for monstartup with default parameters;
monitor need not be called explicitly except to gain fine control over
profiling. An executable program created by:

cc -pg •••

obtains a different monitor.

Monstartup is a high level interface to profi/(2). Lowpc and highpc specify
the address range that is to be sampled; the lowest address sampled is
that of lowpc and the highest is just below highpc. Monstartup allocates
space using sbrk(2) and passes it to monitor (see below) to record a
histogram of periodically sampled values of the program counter, and of
counts of calls of certain functions, in the buffer. Only calls of functions
compiled with the profiling option -p of cc(l) are recorded.

To profile the entire program, it is sufficient to use

extern etext();
monstartup((int) 2, etext);

Etext lies just above all the program text, see end(Jc).

To stop execution monitoring and write the results on the file mon.out,
use

monitor(O)

Then prof(l) can be used to examine the results.

Monitor is a low level interface to profi/(2). Lowpc and highpc are the
addresses of two functions; buffer is the address of a (user supplied)
array of bufsize short integers. At most nfunc calls, counts can be kept.
For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few times
smaller than the range of locations sampled. Monitor divides the buffer
into space to record the histogram of program counter samples over the
range lowpc to highpc, and spaces to record call counts of functions
compiled with the -p option of cc(l).

REV MAR 1985

268

MONITOR(3C) COMMAND REFERENCE MONITOR(3C)

To profile the entire program, it is sufficient to use

extern etext{);
monitor{(int) 2, etext, buf, bufsize, nfunc);

FILES
man.out

SEE ALSO
cc(l), prof(l), gprof(l), profi/(2), sbrk(2).

2 REV MAR 1985

269

NARGS(3C) COMMAND REFERENCE

NAME
nargs - returns the number of arguments

SYNOPSIS
int nargs()

DESCRIPTION

NARGS(3C)

Nargs returns the number of arguments passed to the calling subroutine.

FILES
llibllibc.a

CAVEATS
Nargs actually returns the number of words pushed on the stack which
may not give an accurate account for structures.

SEE ALSO
varargs(3).

270

REV MAR 1985

NICE(3C) COMMAND REFERENCE NICE(3C)

NAME
nice - set program priority

SYNOPSIS
int nice(incr)

DESCRIPTION
This interface is obsoleted by setpriority(2).

The scheduling priority of the process is augmented by incr. Positive
priorities get less service than normal. Priority 10 is recommended to
users who wish to execute long-running programs without flak from the
administration.

Negative increments are ignored except on behalf of the super-user. The
priority is limited to the range -20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a
privileged process to return to normal priority from an unknown state,
nice should be called successively with arguments -40 (goes to priority
-20 because of truncation), 20 (to get to 0), then O (to maintain
compatibility with previous versions of this call).

RETURN VALUE
Nice returns -1 on failure, leaving the global variable errno set to indicate
the error, and O on success.

SEI! Al..SO
nice(/), fork(2), setpriority(2), renice(8).

271

NLIST(3C) COMMAND REFERENCE NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include (nlist.h)
nlist(filename, nl)
char *filename;
struct nlist nlD;

DESCRIPTION
Nlist examines the name list, nl, in the given, executable file and
selectively extracts a list of values. The name list consists of an array of
structures containing names, types, and values. The list is terminated
with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the
next two fields. If the name is not found, both entries are set to 0. See
a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the
file lvmunix. In this way programs can obtain system addresses that are
up to date.

DIAGNOSTICS
All type entries are set to O if the file cannot be found or if it is not a valid
name list.

CAVEATS
On other versions of UNIX you must include (a.out.h) rather than
(nlist.h>; this is unfortunate, but (a.out.h> cannot be used on a 4.2bsd
based system because it has a union, which cannot be initialized.

SEE ALSO
a.out(5).

272

REV MAR 1985

NOTMAGIC (3C) COMMAND REFERENCE NOTMAGIC (3C)

NAME
notmagic - interface to magic number file

SYNOPSIS
int notmagic (lowbyte, highbyte)
char lowbyte, highbyte;

DESCRIPTION

FILES

The file lusrlliblmagic contains a list of magic numbers which describe
various special files such as object files, compacted data files, and
archives. The subroutine notmagic gets the magic numbers for files that
are definitely not text files, and compares them against the combination of
lowbyte and highbyte to see if the file is not a text file.

The normal way to use notmagic is to read the first two bytes of the file
and give them to notmagic in the proper order for your system's byte
ordering.

The first time notmagic is called, a table is built from the magic number
file. This table is saved for further calls to notmagic.

See RETURN VALUE for the meaning of the return values.

/usrlliblmagic The file containing magic number information.

RETURN VALUE
The possible return values from notmagic are:

O If the characters given match a magic number.

If the characters given do not match a magic number.

-1 If the magic number file cannot be opened. In this case, the
subroutine ERROR(Jc) should be called with an exit code of P _ERR
or P_WARN.

-2 If the magic number descriptions contain obvious errors. The
command file(I) should be used to diagnose the problem.

CAVEATS
The only information taken from the magic number file is from lines
whose magic numbers are not of type string, and only those lines which
begin with a 0.

The characters given to notmagic are expected to be the first two
characters in the file.

Due to some special restrictions, the programs in the ex editor family
(which includes vi) use a special version of notmagic which can only
handle up to 300 magic numbers of type long and/or short.

SEE ALSO
ex(/), file(I), ERROR(3c), magic(5).

273

PAUSE(3C) COMMAND REFERENCE

NAME
pause - stop until signal

SYNOPSIS
int pause()

DESCRIPTION

PAUSE(3C)

Pause never returns normally. It is used to give up control while waiting
for a signal from ki//(2) or an interval timer, see setitimer(2). Upon
termination of a signal handler started during a pause, the pause call will
return.

RETURN VALUE
Always returns -1.

ERRORS
Pause sets errno to:

[EINTR] The call was interrupted.

SEE ALSO
ki/1(2), select(2), sigpause(2).

274

PERROR(3C) COMMAND REFERENCE PERROR(3C)

NAME
perror, sys_errlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char *S;

int sys_nerr;
char *sys_errlist[];

DESCRIPTION
Perror produces a short error message on the standard error file
describing the last error encountered during a call to the system from a C
program. First the argument strings is printed, then a colon, then the
message and a newline. Most usefully, the argument string is the name
of the program which incurred the error. The error number is taken from
the external variable errno (see intro(2)), which is set when errors occur
but not cleared when nonerroneous calls are made.

To simplify variant formatting of messages, the vector of message strings
sys_errlist is provided; errno can be used as an index in this table to get
the message string without the newline. Sys_nerr is the number of
messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the
table.

SEE ALSO
intro(2), psignal(Jc).

REV MAR 1985

275

PSIGNAL(3C) COMMAND REFERENCE PSIGNAL(3C)

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
psignal(sig, s)
unsigned sig;
char *s;

char *sys_signlistU;

DESCRIPTION
Psignal produces a short message on the standard error file describing
the indicated signal. First the argument strings is printed, then a colon,
then the name of the signal and a newline. Most usefully, the argument
string is the name of the program which incurred the signal. The signal
number should be from among those found in (signal.h).

To simplify variant formatting of signal names, the vector of message
strings sys_siglist is provided; the signal number can be used as an index
in this table to get the signal name without the newline. The defined
NSIG, defined in (signal.h), is the number of messages provided for in
the table; it should be checked because new signals may be added to the
system before they are added to the table.

SEE ALSO
perror(3c).

276

REV MAR 1985

QSORT(3C) COMMAND REFERENCE QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the number of
elements; the third is the width of an element in bytes; the last is the
name of the comparison routine to be called with two arguments which
are pointers to the elements being compared. The routine must return an
integer less than, equal to, or greater than O accordingly, as the first
argument is to be considered less than, equal to, or greater than the
second.

SEE ALSO
sort(l).

277

REV MAR 1985

RAND(3C) COMMAND REFERENCE RAND(3C)

NAME
rand, srand - random number generator

SYNOPSIS
srand(seed)
int seed;

randO

DESCRIPTION
Note: The newer random(Jc) should be used in the new
applications; rand remains for compatibilty.

Rand uses a multiplicative congruential random number generator with
period 232 to return successive pseudo-random numbers in the range
from 0 to 231-1.

The generator is reinitialized by calling srand with 1 as its argument. It
can be set to a random starting point by calling srand with whatever you
like as an argument.

SEE ALSO
random(3c).

278

REVllAAR1985

RANDOM(3C) COMMAND REFERENCE RANDOM(3C)

NAME
random, srandom, initstate, setstate - better random number generator
and routines for changing generators

SYNOPSIS
long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *Setstate(state)
char *state;

DESCRIPTION
Random uses a nonlinear additive feedback random number generator
employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from 0 to 2{31}-1. The period of
this random number generator is very large, approximately 16*(2{31 {-1).

Random/srandom have (almost) the same calling sequence and
initialization properties as rand/srand. The difference is that rand(3c)
produces a much less random sequence - in fact, the low dozen bits
generated by rand go through a cyclic pattern. All the bits generated by
random are usable. For example, random()&01 will produce a random
binary value.

Unlike srand, srandom does not return the old seed; the reason for this
is that the amount of state information used is much more than a single
word. (Two other routines are provided to deal with restarting/changing
random number generators.) Like rand(3c), however, random will by
default produce a sequence of numbers that can be duplicated by calling
srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to
be initialized for future use. The size of the state array (in bytes) is used
by initstate to decide how sophisticated a random number generator it
should use - the more state, the better the random numbers will be.
(Current optimal values for the amount of state information are 8, 32, 64,
128, and 256 bytes; other amounts will be rounded down to the nearest
known amount. Using less than eight bytes will cause an error.) The seed
for the initialization (which specifies a starting point for the random
number sequence, and provides for restarting at the same point) is also
an argument. lnitstate returns a pointer to the previous state information
array.

Once a state has been initialized, the setstate routine provides for rapid
switching between states. Setstate returns a pointer to the previous state
array; its argument state array and is used for further random number
generation until the next call to initstate or setstate.

REV MAR 1985

279

RANDOM(3C) COMMAND REFERENCE RANDOM(3C)

Once a state array has been initialized, it may be restarted at a different
point either by calling initstate (with the desired seed, the state array,
and its size) or by calling both setstate (with the state array) and
srandom (with the desired seed). The advantage of calling both setstate
and srandom is that the size of the state array does not have to be
remembered after it is initialized.

With 256 bytes of state information, the period of the random number
generator is greater than 2{69}, which should be sufficient for most
purposes.

DIAGNOSTICS
If initstate is called with less than eight bytes of state information, or if
setstate detects that the state information has been garbled, error
messages are printed on the standard error output.

CAVEATS
About one and a half times the speed of rand(3c).

SEE ALSO
rand(3c).

2

280

REV MAR 1985

REGEX(3C) COMMAND REFERENCE REGEX(3C)

NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char *re_comp(s)
char *s;

re_exec(s)
char *s;

DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern
matching. Re_exec checks the argument string against the last string
passed to re_comp.

Re_comp returns O if the string s was compiled successfully; otherwise a
string containing an error message is returned. If re_comp is passed 0 or
a null string, it returns without changing the currently compiled regular
expression.

Re_exec returns 1 if the string s matches the last compiled regular
expression, O if the strings failed to match the last compiled regular
expression, and -1 if the compiled regular expression was invalid
(indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or
embedded newline characters; they are terminated by nulls. The regular
expressions recognized are described in the manual entry for ed(l), given
the above difference.

DIAGNOSTICS
Re_exec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

CAVEATS

No previous regular expression
Regular expression too long
unmatched \(
missing]
too many \N pairs
unmatchedV

The string is considered to match the regular expression if a portion of
the string matches. Therefore, if the entire string must match, it must be
enclosed by an caret n and$.

SEE ALSO
ed(l), ex(l), egrep(l), fgrep(l), grep(l).

REV SEP 1985

281

SCANDIR(3C) COMMAND REFERENCE SCANDIR(3C)

NAME
scandir - scan a directory

SYNOPSIS
#include (sys/types. h >
#include (dir.h)

scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelistD);
int (*select)O;
int (*compar)O;

alphasort(d1, d2)
struct direct **d1, **d2;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to
directory entries using malloc(3c). The third parameter is a pointer to a
routine which is called with a pointer to a directory entry and should
return a nonzero value if the directory entry should be included in the
array. If this pointer is null, then all the directory entries will be included.
The last argument is a pointer to a routine which is passed to qsort(3c) to
sort the completed array. If this pointer is null, the array is not sorted.
Alphasort is a routine which will sort the array alphabetically.

Scandir returns the number of entries in the array and a pointer to the
array through the parameter namelist.

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3c)
cannot allocate enough memory to hold all the data structures.

SEE ALSO
directory(3c), mal!oc(3c), qsort(3c).

REV MAR 1985

282

SETJMP(3C) COMMAND REFERENCE SETJMP(3C)

NAME
setjmp, longjmp - nonlocal goto

SYNOPSIS
#include (setjmp.h >
setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It
returns value 0.

Longjmp restores the environment saved by the last call of setjmp. It
then returns in such a way that execution continues as if the call of
setjmp had just returned the value val to the function that invoked
setjmp, which must not itself have returned in the interim. All accessible
data have values as of the time longjmp was called, except for objects of
storage class auto or register whose values have been changed between
the setjmp and longjmp calls. These values are undefined.

SEE ALSO
goto(lcsh), signal(Jc).

REV MAR 1985

283

SETUID (3C) COMMAND REFERENCE SETUID (3C)

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
setuid(uid)
int uid;
seteuid(euid)
int euid;
setruid(ruid)
int ruid;
setgid(gid)
int gid;
setegid(egid)
int egid;
setrgid(rgid)
int rgid;

DESCRIPTION
Setuid (setgid) sets both the real and effective user ID (group ID) of the
current process to the given ID.

Seteuid (setegid) sets the effective user ID (group ID) of the current
process.

Setruid (setrgid) sets the real user ID (group ID) of the current process.

Only the superuser may change the real user or group ID of a process.
Unprivileged users may change the effective user or group ID to the real
user or group ID, but to no other.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getgid(2), getuid(2), setregid(2), setreuid(2).

284

SIGNAL(3C) COMMAND REFERENCE SIGNAL(3C)

NAME
signal - simplified software signal facilities

SYNOPSIS
#include (signal.h)

(*signal(sig, func))()
int (*func)();

DESCRIPTION
Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a
terminal (quit, interrupt, stop), by a program error (bus error, and so
forth), by request of another program (kill), or when a process is stopped
because it wishes to access its control terminal while in the background
(see tty(4)). Signals are optionally generated when a process resumes
after being stopped, when the status of child processes changes, or when
input is ready at the control terminal. Most signals cause termination of
the receiving process if no action is taken; some signals instead cause
the process receiving them to be stopped, or are simply discarded if the
process has not requested otherwise. Except for the SIGKILL and
SIGSTOP signals, the signal call allows signals either to be ignored or to
cause an interrupt to a specified location. The following is a list of all
signals with names as in the include file (signal.h). The sig parameters
are listed in the first column.

SIGH UP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIG EMT
SIGFPE
SIG KILL
SIGBUS
SIGSEGV
SIG SYS
SIG PIPE
SIGALRM
SIGTERM
SIGURG

SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGTTIN
SIGTTOU
SIGIO
SIGXCPU

REV SEP 1985

1 hangup
2 interrupt
3* quit
4* illegal instruction (not reset when caught)
5* trace trap (not reset when caught)
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
1 O* bus error
11 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal from kill
16 • urgent condition present on socket,

exception condition present on device
17t stop (cannot be caught or ignored)
1 at stop signal generated from keyboard
19 • continue after stop (cannot be blocked)
20 • to parent on child stop or exit
21 t background read attempted from control terminal
22t background write attempted to control terminal
23 • 1/0 is possible on a descriptor (see fcnt/(2))
24 CPU time limit exceeded (see setrlimit(2))

285

SIGNAL(3C) COMMAND REFERENCE SIGNAL(3C)

SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))

The following signals are not yet implemented, but are planned for a later
release of the system:

SIGUSR1
SIGUSR2
SIGCLD
SIGPWR

28 user-defined signal 1
29 user-defined signal 2
30 death of a child
31 power fail

The starred signals in the list above cause a core image if not caught or
ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this
default is termination (with a core image for starred signals) except for
signals marked with • or t. Signals marked with • are discarded if the
action is SIG_DFL; signals marked with t cause the process to stop. If
June is SIG_IGN, the signal is subsequently ignored and pending
instances of the signal are discarded. Otherwise, when the signal occurs
further occurences of the signal are automatically blocked and June is
called.

A return from the function unblocks the handled signal and continues the
process at the point it was interrupted.

Note: Unlike previous signal facilities, the handler June remains
installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to
terminate prematurely, the call is automatically restarted. In particular,
this can occur during a read(2) or write(2) on a slow device (such as a
terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) valµe of June for the
particular signal.

After aJork(2) or vJork(2) the child inherits all signals. Exeeve(2) resets all
caught signals to the default action; ignored signals remain ignored.

DIAGNOSTICS
Signal will fail and no action will take place if one of the following occurs:

[EINVAL]
Sig is not a valid signal number.

[EINVAL]
An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL]

REV SEP 1985

An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).

2

286

SIGNAL(3C) COMMAND REFERENCE SIGNAL(3C)

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is
returned and errno is set to indicate the error.

SEE ALSO
kill(l), kil/(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
sigvec(2), setjmp(3c), tty(4).

REV SEP 1985 3

287

SLEEP (3C) COMMAND REFERENCE SLEEP (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may be
up to one second less than that requested, because scheduled wakeups
occur at fixed one-second intervals, and at a longer, arbitrary amount
because of other activity in the system.

The routine is implemented by setting an interval timer and pausing until
it occurs. The previous state of this timer is saved and restored. If the
sleep time exceeds the time to the expiration of the previous timer, the
process sleeps only until the signal would have occurred; and the signal
is sent one second later.

CAVEATS
An interface with finer resolution is needed.

SEE ALSO
sigpause(2), setitimer(2).

288

STRING(3C} COMMAND REFERENCE STRING(3C}

NAME
strcat, strncat, strcatn, strcmp, strncmp, strcmpn, strcpy, strncpy, strcpyn,
strlen, index, strchr, rindex, strrchr, strpbrk, strspn, strcspn, strtok, strtrn,
strntrn - string operations

SYNOPSIS
#include (strings.h)

char *strcat(s1, s2)
char *S1, *s2;

char *Strncat(s1, s2, n)
char *S1, *s2;
int n;

char *Strcatn(s1, s2, n)
char *S1, *s2;
int n;

strcmp(s1, s2)
char *s1, *s2;

strncmp(s1, s2, n)
char *S1 , *s2;
int n;

strcmpn(s1, s2, n)
char *S1, *s2;
int n;

char *strcpy(s1, s2)
char *S1 , *s2;

char *strncpy(s1 , s2, n)
char *S1, *S2;
int n;

char *Strcpyn(s1, s2, n)
char *s1, *s2;
int n;

int strlen(s)
char *S;

char *index(s, c)
char *S, c;

char *Strchr(s, c)
char *S, c;

char *rindex(s, c)
char *S, c;

char *Strrchr(s, c)
char *s, c;

REV SEP 1985

289

STRING(3C)

char *Strpbrk(s1, s2)
char *S1, *S2;

int strspn(s1, s2)
char *S1, *S2;

int strcspn(s1, s2)
char *S1, *S2;

char *Strtok(s1 , s2)
char *S1, *S2;

COMMAND REFERENCE

char *Strtrn(s, from, to)
char *S, *from, *to;

char *Strntrn(s, n, from, to)
char *S, *from, *to;
int n;

DESCRIPTION

STRING(3C)

These functions operate on null-terminated strings. They do not check
for overflow of any receiving string.

Streat appends a copy of string s2 to the end of string sl.
Strncat and strcatn copy at most n characters. Both return a pointer to
the null-terminated result.

Strcmp compares its arguments and returns an integer greater than,
equal to, or less than 0, depending on if sl is lexicographically greater
than, equal to, or less than s2.
Strncmp and strcmpn make the same comparison but looks at at most n
characters.

Strcpy copies string s2 to sl, stopping after the null character has been
moved.
Strncpy and strcpyn copy exactly n characters, truncating or null
padding s2; the target may not be null-terminated if the length of s2 is n
or more. All three return sl.

Strlen returns the number of nonnull characters ins.

Index (rindex) returns a pointer to the first (last) occurrence of character c
in strings, or O if c does not occur in the string. The null character
terminating the string is considered to be part of the string.

Strchr is a synonym for index.
Strrchr is a synonym for rindex.

Strpbrk returns a pointer to the first occurrence in string sl of any
character from string s2, or NULL if no character from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string sl
which consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or more
text tokens separated by spans of one or more from the separator string
s2. The first call (with pointer sl specified) returns a pointer to the first

REVSEP1985 2
290

STRING(3C) COMMAND REFERENCE STRING(3C)

character of the first token, and will have written a NULL character into sl
immediately following the returned token. If there are no separators in
the string, the entire string is returned. As long as the string pointed at
by s1 remains unchanged, subsequent calls with 0 for the first argument
will work through string sl in this way until no tokens remain. The
separator string s2 may be different from call to call. When no token
remains in sl, a NULL is returned.

Strtrn and strntrn implement the function of the utility tr(J) in a
subroutine. The string given is translated using a given key. The strings
is a pointer to the string to be translated. The integer n is the maximum
number of characters to be translated in the string. From and to are
pointers to strings containing the translation key. Each character position
in each string has a corresponding character in the other. If the key
strings are not of equal length, the shorter is padded using the last
character in the string (not including the null terminator). As with tr(l),
the key strings may contain range. The range a-e is expanded as abcde.
A reversed range, like e-a is not expanded, but is interpreted as the three
characters e,-, and a. If the from string pointer is NULL, the last set of
key strings given are used again. In this way, a translation can be
repeated a number of times without having·the key strings expanded
each time.

EXAMPLES

REV SEP 1985

For the following examples, constant strings are used, but pointers to
strings work the same way.

The following example uses strpbrk:

strpbrk ("abcde", "ce")

The pointer returned points to the string cde.

This example uses strspn:

strspn ("abcde", "cda")

The number returned is 1.

The following example uses strcpy and strtok:

char *s, *t;
(void) strcpy (s, "field1:field2 fieldJ");
t = strtok (s, ": ");
printf ("%s 11 , t);
t = strtok (0, ": ");

3
291

STRING(3C) COMMAND REFERENCE

printf ("%s ", t);
t = strtok (0, ": d");
printf ("%s\n", t);

This sequence of calls, when executed, cause the text

field1 field2 field3

to be displayed on the standard output.

STRING(3C)

The following example uses strncpy and strtrn. In this example, each
uppercase character in each string is converted to lowercase:

char *s, *t;
(void) strncpy (s, "First STRING.");
t = strtrn (s, "A-Z", "a-z");
printf ("%s\n", t);
t = strtrn ("Second STRING.", O);
printf ("%s\n", t);

When executed, the above code would display the following two lines on
the standard output :

CAVEATS

first string.
second string.

Note that comparison of characters outside of the seven-bit ASCII
character set (for example, those with octal values greater than 0177)
may be unpredictable except that all such characters will be considered
either all greater than or all less than the standard ASCII character set.

All string movement is performed character by character starting at the
left (the first character in the string). Thus, overlapping moves toward the
left will work as expected, but overlapping moves to the right may yield
surprises.

Since the character NULL is the string terminator, the translation routines
are not able to translate null characters. The call

strtrn (string, chars, "")

produces undefined results and should not be used.

SEE ALSO
bstring(Jc), printf(Js).

REVSEP1985 4

292

STTY(3C) COMMAND REFERENCE STTY(3C)

NAME
stty, gtty - set and get terminal state (defunct)

SYNOPSIS
#include (sgtty.h)

stty(fd, buf)
int fd;
struct sgttyb *buf;

gtty(fd, buf)
int fd;
struct sgttyb *buf;

DESCRIPTION
This interface is obsoleted by ioctl(2).

Stty sets the state of the terminal associated with fd. Gtty retrieves the
state of the terminal associated with fd. To set the state of a terminal the
call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)", while the gtty call is
"ioctl(fd, TIOCGETP, buf)". See ioct/(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful O is returned, otherwise -1 is returned and the
global variable errno contains the reason for the failure.

SEE ALSO
ioct/(2), tty(4).

293

SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS

COMMAND REFERENCE

swab{from, to, nbytes)
char *from, *to;

DESCRIPTION

SWAB(3C)

Swab copies nbytes bytes pointed to by from to the position pointed to by
to, exchanging adjacent even and odd bytes. It is useful for carrying
binary data between PDP11 's and other machines. Nbytes should be
even.

SEE ALSO
bstring(3c).

294

REV MAR 1985

SYSLOG(3C) COMMAND REFERENCE SYSLOG(3C)

NAME
syslog, openlog, closelog - control system log

SYNOPSIS
#include (syslog.h)

openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters ...)
char *message;

closelog()

DESCRIPTION
Syslog arranges to write the message onto the system log maintained by
syslog(8). The message is tagged with priority. The message looks like a
printf(3) string except that O/om is replaced by the current error message
(collected from errno). A trailing newline is added if needed. This
message will be read by syslog(8) and output to the system console or
files as appropriate.

If special processing is needed, openlog can be called to initialize the log
file. Parameters are ident which is prepended to every message, and
logstat which is a bit field indicating special status; current values are:

LOG_PID log the process ID with each message: useful for identifying
instances of daemons.

Openlog returns zero (0) on success. If it cannot open the file ldevllog,
it writes on ldevlconsole instead and returns -1.

Closelog can be used to close the log file.

EXAMPLES
syslog(LOG_SALERT, "who: internal error 23");

openlog("serverftp", LOG_FID);
syslog(LOG_INFO, "Connection from host %d", CallingHost);

CAVEATS
If you elect to have your messages sent to the standard system log as
specified in the configuration file (see syslog(8)) and the daemon,
letc!syslog is not running, your program will be sent a SIGPIPE (see
sigvec(2)) on the second call to syslog.

SEE ALSO
syslog(8).

REV SEP 1985

295

TIME(3C) COMMAND REFERENCE TIME(3C)

NAME
time, ftime - get date and time

SYNOPSIS
long time(O)

long time(tloc)
long *tloc;

#include <sys/types.h >
#include (sys/timeb.h)
ftime(tp)
struct timeb *Ip;

DESCRIPTION
Note: These interfaces are obsoleted by gettimeof day(2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in
seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc
points.

The ftime entry fills in a structure pointed to by its argument, as defined
by (sys!timeb.h):

/* timeb.h 6.1 (Berkeley)83/07/29*/

'* * 4.2 BSD Unix - include file

*
* Modifications from Berkeley 4.2 BSD
* Copyright (c) 1983, Tektronix Inc.
* All Rights Reserved

*
' ' * Structure returned by ftime system call

*' struct timeb
{

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more-precise interval, the local time zone (measured in
minutes of time westward from Greenwich), and a flag that, if nonzero,
indicates that daylight saving time applies locally during the appropriate
part of the year.

SEE ALSO
date(l), gettimeofday(2), settimeofday(2), ctime(3c).

REV MAR 1985

296

TIMES(3C) COMMAND REFERENCE TIMES(3C)

NAME
times - get process times

SYNOPSIS
#include (sys/types.h)
#include (sys/times. h)

times(buff er)
struct tms *buffer;

DESCRIPTION
This interface is obsoleted by getrusage(2).

Times returns time-accounting information for the current process and
for the terminated child processes of the current process. All times are in
1/HZ seconds, where HZ is 60.

This is the structure returned by times:

/usr/include/sys/times.h

The children times are the sum of the children's process times and their
children's times.

SEE ALSO
time(I), getrusage(2), wait3(2), time(3).

297

TSEARCH(3C) COMMAND REFERENCE TSEARCH(3C)

NAME
tsearch, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h)

char *tsearch ((char*) key, (char**) rootp, compar)
int (*compar)();

char *tdelete ((char*) key, (char**) rootp, compar)
int (*compar)();

void twalk ((char*) root, action)
void (*action)();

DESCRIPTION
Tsearch is a binary tree search routine generalized from Knuth (6.2.2)
Algorithm T. It returns a pointer into a tree indicating where a datum may
be found. If the datum does not occur, it is added at an appropriate point
in the tree.

Key points to the datum to be sought in the tree.

Rootp points to a variable that points to the root of the tree. A NULL
pointer value for the variable denotes an empty tree; in this case, the
variable will be set to point to the datum at the root of the new tree.

Compar is the name of the comparison function. It is called with two
arguments that point to the elements being compared. The function must
return an integer less than, equal to, or greater than zero according as
the first argument is to be considered less than, equal to, or greater than
the second.

Tdelete deletes a node from a binary search tree. It is generalized from
Knuth (6.2.2) algorithm D. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was
the root of the tree. Tdelete returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree.

Root is the root of the tree to be traversed. (Any node in a tree may be
used as the root for a walk below that node.)

Action is the name of a routine to be invoked at each node. This routine
is, in turn, called with three arguments.

The first argument is the address of the node being visited.

NOTE: This is not the address of the data in the tree; it is a
pointer to that address.

The second argument is a value from an enumeration data type:

typedef enum { preorder, postorder, endorder, leaf } VISIT;

REV MAR 1985

298

TSEARCH(3C) COMMAND REFERENCE TSEARCH (3C)

It is defined in the (search.h) header file, depending on whether this is the
first, second, or third time that the node has been visited (during a
depth-first, left-to-right traversal of the tree), or whether the node is a
leaf.

The third argument is the level of the node in the tree, with the root being
level 0.

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space
available to create a new node.

A NULL pointer is returned by tsearch and tdelete if rootp is NULL on
entry.

CAVEATS
The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being
compared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Warning: The root argument to twalk is one level of indirection
less than the rootp arguments to tsearch and tdelete.nentry.

Awful things can happen if the calling function alters the pointer to the
root.

SEE ALSO
bsearch(Jc), hsearch(3c), intro(3), lsearch(Jc).

2 REV MAR 1985

299

TTYNAME (3C) COMMAND REFERENCE TTYNAME (3C)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char *ttyname(filedes)

isatty(filedes)

ttyslotO

DESCRIPTION

FILES

Ttyname returns a pointer to the null-terminated pathname of the
terminal device associated with file descriptor filedes. (This is a system
file descriptor and has nothing to do with the standard 1/0 file typedef.)

lsatty returns 1 if filedes is associated with a terminal device; it is O
otherwise.

Ttyslot returns the number of the entry in the ttys(5) file for the control
terminal of the current process.

ldevl*

!etc/ttys

DIAGNOSTICS
Ttyname returns a null pointer (0) if filedes does not describe a terminal
device in directory ldev.

Ttyslot returns O if /etc/ttys is inaccessible or if it cannot determine the
control terminal.

CAVEATS
The return value points to static data whose content is overwritten by
each call.

SEE ALSO
ioct/(2), ttys(5).

1
300

ULIMIT(3C) COMMAND REFERENCE ULIMIT(3C)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values
available are:

1 Get the process's file size limit. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be
read.

2 Set the process's file size limit to the value of newlimit. Any
process may decrease this limit, but only a process with an effective
user 10 of superuser may increase the limit. Ulimit will fail and the
limit will be unchanged if a process with an effective user ID other
than superuser attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value (in bytes). See brk(2).

RETURN VALUE
Upon successful completion, a nonnegative value is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
limit(lcsh), ulimit(lsh), unlimit(lcsh), brk(2), getrlimit(2), sbrk(2),
setrlimit(2), write(2).

301

REV MAR 1985

VLIMIT(3C) COMMAND REFERENCE VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include (sys/vlimit.h)

vlimit(resource, value)

DESCRIPTION
This facility is superseded by getrlimit(2).

Vlimit limits the consumption by the current process and each process it
creates to not individually exceed value on the specified resource. If value
is specified as -1 , then the current limit is returned and the limit is
unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be
raised. Only the super-user may remove the noraise
restriction.

LIM_CPU the maximum number of cpu-seconds to be used by
each process

LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2)
beyond the end of the program text

LIM_STACK the maximum size of the automatically-extended stack
region

LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes)
to be given to the program. If memory is tight, the
system will prefer to take memory from processes which
are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this
system call must be executed directly by the shell if it is to affect all
future processes created by the shell; therefore, sh(lsh) and csh(lcsh)
have builtin commands to set limits, called ulimit(lsh) and limit(lcsh),
respectively.

The system refuses to extend the data or stack space when the limits
would be exceeded in the normal way; a break call fails if the data space
limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause
a signal SIGXFSZ to be generated, this normally terminates the process,
but may be caught. When the cpu time limit is exceeded, a signal
SIGXCPU is sent to the offending process; to allow it time to process the
signal it is given 5 seconds grace by raising the cpu time limit.

302

VLIMIT(3C) COMMAND REFERENCE VLIMIT(3C)

CAVEATS
If LIM_NORAISE is set, then no grace should be given when the cpu time
limit is exceeded.

SEE ALSO
csh(lcsh), fork(2), getrlimit(2), sbrk(2).

2
303

VTIMES(3C) COMMAND REFERENCE VTIMES(3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
vtimes(par_vm, ch_vm)
struct vtimes *par_vm, *Ch_vm;

DESCRIPTION
This facility is superseded by getrusage(2).

Vtimes returns accounting information for the current process and for the
terminated child processes of the current process. Either par_vm or
ch_vm or both may be 0, in which case only the information for the
pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents
of the include file /usrlinclude!syslvtimes.h:

struct vtimes {
int vm_utime; I* user time (*HZ) */
int vm_stime; /* system time (*HZ) */
I* divide next two by utime + stime to get averages */
unsigned vm_idsrss; /* integral of d + s rss */
unsigned vm_ixrss; /* integral of text rss */
int vm_maxrss; /* maximum rss */
int vm_majflt; /* major page faults */
int vm_minflt; /* minor page faults */
int vm_nswap; /* number of swaps */
int vm_inblk; /* block reads *I
int vm_oublk; /* block writes *I

};

The vm_utime and vm_stime fields give the user and system time
respectively in 60ths of a second (or 50ths if that is the frequency of wall
current in your locality.) The vm_idrss and vm_ixrss measure memory
usage. They are computed by integrating the number of memory pages
in use each over cpu time. They are reported as though computed
discretely, adding the current memory usage (in 512 byte pages) each
time the clock ticks. If a process used 5 core pages over 1 cpu-second
for its data and stack, then vm_idsrss would have the value 5*60, where
vmJ1time + vm_stime would be the 60. Vm_idsrss integrates data and
stack segment usage, while vm_ixrss integrates text segment usage.
Vm_maxrss reports the maximum instantaneous sum of the
text+ data+ stack core-resident page count.

The vm_majflt field gives the number of page faults which resulted in disk
activity; the vm_minf/t field gives the number of page faults incurred in
simulation of reference bits; vm_nswap is the number of swaps which
occurred. The number of file system input/output events are reported in
vm_inblk and vm_oublk These numbers account only for real i/o; data
supplied by the caching mechanism is charged only to the first process to
read or write the data.

SEE ALSO
getrusage(2), time(2), wait3(2).

304

DBM(3D) COMMAND REFERENCE DBM(3D)

NAME
dbminit, dbmclose, fetch, store, delete, firstkey, nextkey - database
subroutines

SYNOPSIS
typedef struct {

char *dptr;
int dsize;

} datum;

dbminit(filename)
char *filename;

dbmclose()

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION
These functions maintain key/content pairs in a database. The functions
will handle very large (a billion blocks) databases and will access a keyed
item in one or two file system accesses. The functions are obtained with
the loader option -ldbm.

Keys and contents are described by the datum typedef. A datum
specifies a string of dsize bytes pointed to by dptr. Arbitrary binary data,
as well as normal ASCII strings, are allowed. The database is stored in
two files. One file is a directory containing a bit map and has .dir as its
suffix. The second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At
the time of this call, the files filename.dir and filename.pag must exist. (An
empty database is created by creating zero-length .dir and .pag files.)

Once open, the data stored under a key is accessed by fetch and data is
placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use of firstkey and nextkey.
Firstkey will return the first key in the database. With any key nextkey
will return the next key in the database. This code will traverse the data
base:

for (key = firstkey(); key.dptr !=NULL; key= nextkey(key))

REV MAR 1985

305

DBM(3D) COMMAND REFERENCE DBM(3D)

Dbmclose may be called to close the current database files.

DIAGNOSTICS
All functions that return an int indicate errors with negative values.

A zero return indicates ok.

Routines that return a datum indicate errors with a null (O) dptr.

CAVEATS
The database is not locked so concurrent access by reading and writing
processes is dangerous.

Only one database may be opened at a time, though multiple databases
may be handled by closing one and opening another.

The .pag file will contain holes so that its apparent size is about four times
its actual content. Older UNIX systems may create real file blocks for
these holes when touched. These files cannot be copied by normal
means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that
is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal
block size (currently 1024 bytes). Moreover all key/content pairs that
hash together must fit on a single block. Store will return an error in the
event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it
available for reuse.

The order of keys presented by firstkey and nextkey depends on a
hashing function, not on anything interesting.

SEE ALSO
ar(l), cp(l), tar(l), tp(J).

2
306

REV MAR 1985

INTR0(3F} COMMAND REFERENCE INTR0(3F}

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION

FILES

This section describes those functions that are in the FORTRAN run-time
library. The functions listed here provide an interface from f77 programs
to the system in the same manner as the C library does for C programs.
They are automatically loaded as needed by the FORTRAN compiler
/77(1).

Most of these functions are in libU77.a. Some are in libF77.a or lib/77.a.

For efficiency, the RCS ID strings are not normally included in the a.out
file. To include them, simply declare

external f77lid

in any f77 module.

!usrllib/libF77.a

/usrllib/lib/77.a

I usr I lib I lib U77. a

f77 intrinsic function (math) and startup library.

f77 1/0 library.

f77 UTek system interface library.

SEE ALSO
intro(3).

REV SEP 1985

307

ABORT(3F) COMMAND REFERENCE ABORT(3F)

NAME
abort - terminate abruptly with core image

SYNOPSIS
subroutine abort (string)
character*(*) string

DESCRIPTION
Abort cleans up the 1/0 buffers and then aborts producing a core file in
the current directory. If string is given, it is written to logical unit 0
preceded by abort:.

EXAMPLES

FILES

The following section of FORTRAN code calls the abort routine in cases
where the value of i is out of range. The code could be used for
debugging a FORTRAN program where i should never be out of the
range from 1 to 3.

GOTO (10,20,JO) i
CALL abort ("Computed GOTO out of range 1-J")

10 [FORTRAN statements associated with 1st
statement label]

20 [FORTRAN statements associated with 2nd
statement label]

JO [FORTRAN statements associated with Jrd
statement label]

lusrllibllibF77.a

SEE ALSO

177 intrinsic function (math) and startup library.

abort(3c).

REV SEP 1985

308

ABS(3F) COMMAND REFERENCE ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs - FORTRAN absolute value

SYNOPSIS
integer i1, i2
real r1, r2
double precision dp1, dp2
complex cx1, cx2
double complex dx1, dx2
r2 = abs(r1)
i2 = iabs(i1)
i2 = abs(i1)
dp2 = dabs(dp1)
dp2 = abs(dp1)
cx2 = cabs(cx1)
cx2 = abs(cx1)
dx2 = zabs(dx1)
dx2 = abs(dx1)

DESCRIPTION
Abs is the family of absolute value functions. labs returns the integer
absolute value of its integer argument. Dabs returns the double
precision absolute value of its double-precision argument. Cabs returns
the complex absolute value of its complex argument. Zabs returns the
double-complex absolute value of its double-complex argument. The
generic form abs returns the type of its argument.

SEE ALSO
floor(3m).

309

ACCESS(3F) COMMAND REFERENCE ACCESS(3F)

NAME
access - determine accessability of a file

SYNOPSIS
integer function access (filename, mode)
character*(*) filename, mode

DESCRIPTION
Access checks the filename, for accessability with respect to the caller
according to mode. Mode may include, in any order and in any
combination, one or more of the following:

r
w
x

(blank)

Test for read permission
Test for write permission
Test for execute permission
Test for existence

An error code is returned if either argument is illegal, or if the file cannot
be accessed in all of the specified modes. 0 is returned if the specified
access would be successful.

EXAMPLES
The following FORTRAN subroutine Openfn illustrates how the access
function might be used to open a file for writing. The access function is
called to check if filename already exists. If the file does not exist, unit
number 7 is opened for writing and the subroutine is exitted with errno as
nonzero; otherwise an error message is printed to standard error and the
routine is exitted with errno set to zero.

SUBROUTINE Openfn (filename, errno)

CHARACTER*(*) filename
INTEGER errno, access

errno = access (filename " ")
IF (errno .NE. 0) THEN

OPEN (7, FILE=filename, STATUS=,NEW')
ELSE

WRITE (0, 900) File
END IF

900 FORMAT (A6, A, A17)

RETURN
END

, filename, already exists.

Note that the same result can be obtained with the error specifier (ERR=)
and the input/output status specifier (IOSTAT =) within the open state
ment.

REV SEP 1985

310

ACCESS(3F) COMMAND REFERENCE ACCESS(3F)

FILES
/usr/lib/libU77.a f77 UTek system interface library.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
/usrlinclude/max.h .

SEE ALSO
access(2), 11 perror(3f). 11

REV SEP 1985 2

311

ACOS(3F) COMMAND REFERENCE

NAME
acos, dacos - FORTRAN arccosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = acos(r1)
dp2 = dacos(dp1)
dp2 = acos(dp1)

DESCRIPTION

ACOS(3F)

Acos returns the real arccosine of its real argument. Dacos returns the
double-precision arccosine of its double-precision argument. The
generic form acos may be used with impunity as its argument will
determine the type of the returned value.

SEE ALSO
sin(3m).

312

AIMAG(3F) COMMAND REFERENCE AIMAG(3F)

NAME
aimag, dimag - FORTRAN imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd
r = aimag(cxr)
dp = dimag(cxd)

DESCRIPTION
Aimag returns the imaginary part of its single-precision complex
argument. Dimag returns the double-precision imaginary part of its
double-complex argument.

SEE ALSO
intro(Jf).

313

REV MAR 1985

AINT(3F) COMMAND REFERENCE

NAME
aint, dint - FORTRAN integer part intrinsic function

SYNOPSIS
real r1, r2
double precision dp1 , dp2
r2 = aint(r1)
dp2 = dint(dp1)
dp2 = aint(dp1)

DESCRIPTION

AINT(3F)

Aint returns the truncated value of its real argument in a real. Dint
returns the truncated value of its double-precision argument as a
double-precision value. Aint may be used as a generic function name,
returning either a real or double-precision value depending on the type of
its argument.

SEE ALSO
intro(3f).

314

REVMAR1985

ALARM(3F) COMMAND REFERENCE ALARM(3F)

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc

DESCRIPTION

FILES

This routine arranges for subroutine proc to be called after time seconds.
If time is 0, the alarm is turned off and no routine will be called. The
returned value will be the time remaining on the last alarm.

lusrllibllibU77.a t77 UTek system interface library.

CAVEATS
Alarm and sleep interact. If sleep is called after alarm, the alarm
process will never be called. SIGALRM will occur at the lesser of the
remaining alarm time or the sleep time.

SEE ALSO
alarm(3c), sleep(3f), signal(3j).

REV SEP 1985

315

ASIN (3F) COMMAND REFERENCE

NAME
asin, dasin - FORTRAN arcsine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = asin(r1)
dp2 = dasin(dp1)
dp2 = asin{dp1)

DESCRIPTION

ASIN (3F)

Asin returns the real arcsine of its real argument. Dasin returns the
double-precision arcsine of its double-precision argument. The generic
form asin may be used with impunity as it derives its type from that of its
argument.

SEE ALSO
sin(3m).

316

ATAN(3F) COMMAND REFERENCE

NAME
atan, datan - FORTRAN arctangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = atan(r1)
dp2 = datan(dp1)
dp2 = atan(dp1)

DESCRIPTION

ATAN(3F)

Atan returns the real arctangent of its real argument. Datan returns the
double-precision arctangent of its double-precision argument. The
generic form atan may be used with a double-precision argument
returning a double-precision value.

SEE ALSO
sin(3m).

317

ATAN2(3F) COMMAND REFERENCE

NAME
atan2, datan2 - FORTRAN arctangent intrinsic function

SYNOPSIS
real r1, r2, r3
double precision dp1, dp2, dp3
r3 = atan2(r1, r2)
dp3 = datan2(dp1, dp2)
dp3 = atan2(dp1, dp2)

DESCRIPTION

ATAN2(3F)

Atan2 returns the arctangent of argl!arg2 as a real value. Datan2
returns the double-precision arctangent of its double-precision
arguments. The generic form atan2 may be used with impunity with
double-precision arguments.

SEE ALSO
sin(3m).

1
318

BESSEL(3F) COMMAND REFERENCE

NAME
bessel functions - of two kinds for integer orders

SYNOPSIS
function besjO (x)

function besj1 (x)

function besjn (n, x)

function besyO (x)

function besy1 (x)

function besyn (n, x)

double precision function dbesjO (x)
double precision x

double precision function dbesj1 (x)
double precision x

double precision function dbesjn (n, x)
double precision x

double precision function dbesyO (x)
double precision x

double precision function dbesy1 (x)
double precision x

double precision function dbesyn (n, x)
double precision x

DESCRIPTION

BESSEL(3F)

These functions calculate Bessel functions of the first and second kinds
for real arguments and integer orders.

FILES
!usrllib!libF77.a f77 intrinsic function (math) and startup library.

DIAGNOSTICS
Negative arguments cause besyO, besy1, and besyn to return a huge
negative value. The system error code will be set to EDOM (33).

SEE ALSO
j0(3m), perror(3f).

REV SEP 1985

319

BIT(3F) COMMAND REFERENCE BIT(3F)

NAME
bit - and, or, xor, not, rshift, lshift bitwise functions

SYNOPSIS
(intrinsic) function and (word1, word2)

(intrinsic) function or (word1, word2)

(intrinsic) function xor (word1, word2)

(intrinsic) function not (word)

(intrinsic) function rshift (word, nbits)

(intrinsic) function lshift (word, nbits)

DESCRIPTION

FILES

These bitwise functions are built into the FORTRAN compiler and return
the data type of their argument(s). It is recommended that their
arguments be integer values; inappropriate manipulation of real objects
may cause unexpected results.

The bitwise combinatorial functions return the bitwise 11 and 11 (and), "or"
(or), or "exclusive or" (xor) of two operands. Not returns the bitwise
complement of its operand.

Lshift, or rshift with a negative nbits, is a logical left shift with no end
around carry. Rshift with a positive nbits, is a logical right shift with no
sign extension. Lshift with a negative nbits, is an logical right shift with
no sign extension. No test is made for a reasonable value of nbits.

These functions are generated in-line by the f77 compiler.

SEE ALSO
intro(3f).

REV SEP 1985

320

BSTRING(3F) COMMAND REFERENCE BSTRING(3F)

NAME
bcopy, bcmp, bzero - byte string operations

SYNOPSIS
subroutine bcopy(s1, s2, length)
character*(*) s1, s2
integer length

integer function bcmp(s1, s2, length)
character *(*) s1, s2
integer length

subroutine bzero(b1, length)
character*(*) b1
integer length

DESCRIPTION

FILES

The routines bcopy, bcmp, and bzero operate on variable length strings
of bytes.

Bcopy copies length bytes from string sf to the string s2.

Bcmp compares byte string sl against byte string s2, returning zero if
they are identical, and nonzero otherwise. Both strings are assumed to
be length bytes long.

Bzero places length 0 bytes in the string sf.

Although these subroutines are declared to operate on character strings
they operate equally well on common blocks and arrays, as long as the
addresses are properly passed and length is the number of bytes to be
manipulated.

lusrllibllibU77.a

SEE ALSO

f77 UTek system interface library.

bstring(3c).

321

CHDIR(3F) COMMAND REFERENCE CHDIR(3F)

NAME
chdir - change default directory

SYNOPSIS
integer function chdir (dirname)
character*(*) dirname

DESCRIPTION

FILES

The default directory for creating and locating files is changed to dirname.
Zero is returned as the value of the function if successful; an error code
otherwise.

lusr I lib/ libU77. a f77 UTek system interface library.

RETURN VALUE
Zero is returned as the value of the function if successful; an error code
otherwise.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
lusrlincludelmax.h .

Use of this function may cause the FORTRAN inquire statement by unit
number to fail.

SEE ALSO
chdir(2), cd(1), perror(3f).

REV SEP 1985

322

CHMOD(3F) COMMAND REFERENCE

NAME
chmod - change mode of a file

SYNOPSIS
integer function chmod (filename, mode)
character*(*) filename, mode

DESCRIPTION

CHMOD(3F)

This function changes the file system mode of filename. Mode can be any
specification recognized by chmod(l). Filename must be a single
pathname.

FILES
/usrllibllibU77.a f77 UTek system interface library.

lbin!chmod Exec'ed to change the mode.

RETURN VALUE
The normal returned value is 0. Any other value will be a system error
number.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
/usr/includelmax.h .

SEE ALSO
chmod(l).

REV SEP 1985

323

CONJG(3F) COMMAND REFERENCE CONJG(3F)

NAME
conjg, dconjg - FORTRAN complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2
cx2 = conjg(cx1)
dx2 = dconjg(dx1)

DESCRIPTION
Conjg returns the complex conjugate of its complex argument. Dconjg
returns the double-complex conjugate of its double-complex argument.

SEE ALSO
intro(3f).

324

COS(3F) COMMAND REFERENCE COS (3F)

NAME
cos, dcos, ccos - FORTRAN cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2
r2 = cos(r1)
dp2 = dcos(dp1)
dp2 = cos(dp1)
cx2 = ccos(cx1)
cx2 = cos(cx1)

DESCRIPTION
Cos returns the real cosine of its real argument. Dcos returns the
double-precision cosine of its double-precision argument. Ccos returns
the complex cosine of its complex argument. The generic form cos may
be used with impunity as its returned type is determined by that of its
argument.

SEE ALSO
sin(3m).

325

COSH (3F) COMMAND REFERENCE COSH(3F)

NAME
cosh, dcosh - FORTRAN hyperbolic cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = cosh(r1)
dp2 = dcosh(dp1)
dp2 = cosh(dp1)

DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument. Dcosh
returns the double-precision hyperbolic cosine of its double-precision
argument. The generic form cosh may be used to return the hyperbolic
cosine in the type of its argument.

SEE ALSO
sinh(3m).

326

ETIME(3F) COMMAND REFERENCE ETIME(3F)

NAME
etime, dtime - return elapsed execution time

SYNOPSIS
call etime (tarray)
function etime (tarray)
real tarray

call dtime (tarray)
function dtime (tarray)
real tarray

DESCRIPTION

FILES

These two routines return elapsed runtime in seconds for the calling
process.

Dtime returns the elapsed time since the last call to dtime, or the start of
execution on the first call. On return from this routine the two-element
time array (tarray) receives the user time and system elapsed time since
the last call to dtime, or since the start of execution. The user time is
returned in the first element and system time in the second element.

Etime returns the total elapsed execution time in seconds for the calling
process. The two-element time array, tarray, receives the user time and
system elapsed time since the start of execution.

The time array tarray must always be given. When called as a function,
dtime or etime returns the sum of user and system times.

The resolution of all timing is 1/Hz second where Hz is currently 60.

lusr/lib/libU77.a

SEE ALSO

f77 UTek system interface library.

intro(3f).

REV SEP 1985

327

EXIT(3F) COMMAND REFERENCE EXIT(3F)

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESCRIPTION

FILES

Exit flushes and closes all the process's files, and notifies the parent
process if it is executing a wait. The low-order 8 bits of status are
available to the parent process. (Therefore, status should be in the range
0 - 255.)

This call will never return.

The C function exit may cause cleanup actions before the final "sys exit".

lusrllibllibF77.a t77 intrinsic function (math) and startup library.

SEE ALSO
exit(2), fork(2), fork(3f), wait(2), wait(3f).

REV SEP 1985

328

EXP (3F) COMMAND REFERENCE EXP(3F)

NAME
exp, dexp, cexp - FORTRAN exponential intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2
r2 = exp(r1)
dp2 = dexp(dp1)
dp2 = exp(dp1)
cx2 = clog(cx1)
cx2 = exp(cx1)

DESCRIPTION
Exp returns the real exponential function ex of its real argument. Dexp
returns the double-precision exponential function of its double-precision
argument. Cexp returns the complex exponential function of its complex
argument. The generic function exp becomes a call to dexp or cexp as
required, depending on the type of its argument.

SEE ALSO
exp(3m).

329

FDATE(3F) COMMAND REFERENCE FDATE(3F)

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
character*(*) string

character*(*) function fdate()

DESCRIPTION
Fdate returns the current date and time as a 24 character string in the
format described under ctime(3c). Neither newline nor NULL will be
included.

Fdate can be called either as a function or as a subroutine.

EXAMPLES

FILES

To print the current date and time either a function or subroutine call can
be used. The following three lines illustrate the use of a subroutine call.

CHARACTER string*J

CALL fdate (string)
WRITE (*,*) string

If called as a function, the calling routine must define fdate's type and
length as shown below.

CHARACTER fdate*24
EXTERNAL fdate

WRITE (*,*) fdate()

/usr/lib/libU77.a f77 UTek system interface library.

SEE ALSO
ctime(3c), time(3f), itime(3j), idate(3f).

REV SEP 1985

330

FILEN0(3F) COMMAND REFERENCE

NAME
fileno - Map FORTRAN logical unit to UTek file number

SYNOPSIS
integer function fileno(lunit)
integer lunit

DESCRIPTION

FILEN0(3F)

Fileno returns the integer file descriptor associated with the FORTRAN
logical unit number, !unit.

FILES
lusrllibllibU77.a f77 UTek system interface library.

CAVEATS
The logical unit must be connected to a file or fileno will not return a
meaningful file number.

SEE ALSO
fileno(3s).

REV SEP 1985

331

FLMIN(3F) COMMAND REFERENCE FLMIN(3F)

NAME
flmin, flmax, ffrac, dflmin, dflmax, dffrac, inmax - return extreme values

SYNOPSIS
function flmin()

function flmax()

function ffrac()

double precision function dflmin()

double precision function dflmax()

double precision function dffrac()

function inmax(}

DESCRIPTION

FILES

Functions flmin and flmax return the minimum and maximum positive
floating point values respectively. Functions dflmin and dflmax return
the minimum and maximum positive double precision floating point
values. Function inmax returns the maximum positive integer value.

The functions ffrac and dffrac return the fractional accuracy of single and
double precision floating point numbers respectively. These are the
smallest numbers that can be added to 1.0 without being lost.

These functions can be used by programs that must scale algorithms to
the numerical range of the processor.

lusrllibllibF77.a

SEE ALSO

f77 intrinsic function (math) and startup library.

intro(Jf).

REV SEP 1985

332

FLUSH(3F) COMMAND REFERENCE

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (lunit)
integer lunit

DESCRIPTION

FLUSH(3F)

Flush causes the contents of the buffer for logical unit !unit to be flushed
to the associated file. This is most useful for logical units 0 and 6 when
they are both associated with the control terminal.

FILES
/usr/lib/libl77.a

SEE ALSO
fclose(3s).

REV SEP 1985

f77 1/0 library.

333

FORK{3F) COMMAND REFERENCE FORK(3F)

NAME
fork - create a copy of this process

SYNOPSIS
integer function fork()

DESCRIPTION

FILES

Fork creates a copy of the calling process. The only distinction between
the two processes is that the value returned to one of them (referred to as
the parent process) will be the process ID of the copy. The copy is
usually referred to as the child process. The value returned to the child
process will be zero.

All logical units open for writing are flushed before the fork to avoid
duplication of the contents of 1/0 buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the
negation of the system error code. See perror(3f).

A corresponding exec routine has not been provided because there is no
satisfactory way to retain open logical units across the exec. However,
the usual function of fork/exec can be performed using system(3f).

A pipe can be opened to another process using the f77 open statement
with

filename=' process' , status= 'pipe' , access=' read '

or

filename=' process' , status=' pipe' , access=' write'

lusrllibllibU77.a f77 UTek system interface library.

DIAGNOSTICS
If the returned value is negative, it indicates an error and will be the
negation of the system error code. See perror(3f).

SEE ALSO
fork(2), wait(Jf), kill(3f), system(Jf), perror(3f).

REV SEP 1985

334

FSEEK(3F) COMMAND REFERENCE FSEEK(3F)

NAME
tseek, ttell - reposition a file on a logical unit

SYNOPSIS
integer function fseek (lunit, offset, from)
integer lunit, offset, from

integer function ftell (lunit)
integer lunit

DESCRIPTION

FILES

Fseek repositions a tile accociated with a logical unit. Lunit must refer to
an open logical unit. Offset is an offset in bytes relative to the position
specified by from. Valid values tor from are:

0 meaning beginning of the file
1 meaning the current position
2 meaning the end of the file

The value returned by fseek will be 0 it successful, and is a system error
code otherwise. (See perror(Jf).)

Ftell returns the current position of the tile associated with the specified
logical unit, !unit. The value is an offset, in bytes, from the beginning of
the tile. If the value returned is negative, it indicates an error and will be
the negation of the system error code. (See perror(3f).)

/usrllib/libU77.a

SEE ALSO

f77 UTek system interface library.

fseek(3s), perror(3f).

REV SEP 1985

335

FTYPE{3F) COMMAND REFERENCE FTYPE{3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char - explicit
FORTRAN type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex ex
double complex dcx
character* I ch

i = int(r)
i = int(dp)
i = int(cx)
i = int(dcx)
i = ifix(r)
i = idint(dp)

r = real(i)
r = real(dp)
r = real(cx)
r = real(dcx)
r = float(i)
r = sngl(dp)

dp = dble(i)
dp = dble(r)
dp = dble(cx)
dp = dble(dcx)

ex = cmplx(i)
ex= cmplx(i, j)
ex = cmplx(r)
ex= cmplx(r, s)
ex = cmplx(dp)
ex = cmplx(dp, dq)
ex= cmplx(dcx)

dcx = dcmplx(i)
dcx = dcmplx(i, j)
dcx = dcmplx(r)
dcx = dcmplx(r, s)
dcx = dcmplx(dp)
dcx = dcmplx(dp, dq)
dcx = dcmplx(cx)

i = ichar(ch)
ch= char(i)

DESCRIPTION
These functions perform conversion from one data type to another. Int
converts to integer from its real, double precision, complex, or double

REV MAR 1985

336

FTYPE(3F) COMMAND REFERENCE FTYPE(3F)

complex argument. If the argument is real or double precision, int returns
the integer whose magnitude is the largest integer that does not exceed
the magnitude of the argument and whose sign is the same as the sign of
the argument (for example, truncation).

For complex types, the above rule is applied to the real part. lfix and
idint convert only real and double precision arguments respectively. Real
converts to real from an integer, double precision, complex, or double
complex argument. If the argument is double precision or double complex,
as much precision is kept as is possible. If the argument is one of the
complex types, the real part is returned. Float and sngl convert only
integer and double precision arguments respectively. Obie converts any
integer, real, complex, or double complex argument to double precision
form.

If the argument is of a complex type, the real part is returned. Cmplx
converts its integer, real, double precision, or double complex argument(s)
to complex form. Dcmplx converts to double complex form its integer, real,
double precision, or complex argument(s). Either one or two arguments
may be supplied to cmplx and dcmplx. If there is only one argument, it
is taken as the real part of the complex type and a imaginary part of zero
is supplied. If two arguments are supplied, the first is taken as the real
part and the second as the imaginary part.

lchar converts from a character to an integer depending on the
character's position in the collating sequence. Char returns the character
in the ith position in the processor collating sequence where i is the
supplied argument. For a processor capable of representing n
characters:

SEE ALSO
intro(3f).

ichar(char(i)) = i for 0 < = i < n

char(ichar(ch)) = ch for any representable character ch.

2 REV MAR 1985

337

GETARG(3F) COMMAND REFERENCE GETARG(3F)

NAME
getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (argno, arg)
integer argno
character*(*) arg

function iargc ()

DESCRIPTION

FILES

These routines permit FORTRAN programs to access the command
arguments. A call to subroutine getarg will return the argnoth command
line argument in character string arg. The 0th argument is the command
name. The string is truncated or padded with blanks, in accordance with
the rules of FORTRAN character assignment.

large returns the index of the last command line argument.

/usrllib/libU77.a

SEE ALSO

f77 UTek system interface library.

getenv(Jf), execve(2).

REV SEP 1985

338

GETC(3F) COMMAND REFERENCE GETC(3F)

NAME
getc, fgetc - get a character from a logical unit

SYNOPSIS
integer function getc (char)
character char

integer function fgetc (lunit, char)
integer lunit
character char

DESCRIPTION

FILES

These routines return the next character from a file associated with a
FORTRAN logical unit, bypassing normal FORTRAN 1/0. Getc reads
from logical unit 5, normally connected to the control terminal input.
Fgetc reads from logical unit !unit, which must be opened for input.

The value of each function is a system status code. 0 indicates no error
occured on the read; A return value of -1 indicates end-of-file was
detected. A positive value will be either a UTek system error code or an
f77 1/0 error code. See perror(3f).

/usrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The value of each function is a system status code.

[OJ Indicates no error occured on the read.

[-1] Indicates end-of-file was detected.

A positive value will be either a UTek system error code or an f77 1/0
error code. See perror(Jf).

SEE ALSO
getc(Js), intro(2), perror(Jf).

REV SEP 1985

339

GETCWD(3F) COMMAND REFERENCE

NAME
getcwd - get pathname of current working directory

SYNOPSIS
integer function getcwd (dirname)
character*(*) dirname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will
be returned in dirname. The value of the function will be zero if
successful; it is an error code otherwise.

FILES
lusrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The value of the function will be zero if successful; it is an error code
otherwise.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
lusrlincludelmax.h .

SEE ALSO
chdir(3f), perror(3f).

REV SEP 1985

340

GETENV(3F) COMMAND REFERENCE

NAME
getenv - get value of environment variables

SYNOPSIS
subroutine getenv (ename, evalue)
character*(*) ename, evalue

DESCRIPTION

GETENV(3F)

Getenv searches the environment list (see environ(7)) for a string of the
form ename=value. If such a string is present, getenv returns value in
evalue; otherwise evalue is filled with blanks.

FILES
/usrllibllibU77.a

SEE ALSO
environ(7), execve(2).

REV SEP 1985

f77 UTek system interface library.

341

GETLOG(3F) COMMAND REFERENCE

NAME
getlog - get user's loginname

SYNOPSIS
subroutine getlog (loginname)
character*(*) loginname

character*(*) function getlog ()

DESCRIPTION

GETLOG(3F)

Getlog will return the user's loginname or all blanks if the process is
running detached from a terminal.

FILES
/usrllib/libU77.a

SEE ALSO
getlogin(3c).

REV SEP 1985

f77 UTek system interface library.

342

GETPID(3F) COMMAND REFERENCE

NAME
getpid - get process id of current process

SYNOPSIS
integer function getpid ()

DESCRIPTION

GETPID(3F)

Getpid returns the process ID number of the current process.

FILES
/usrllibllibU77.a

SEE ALSO
getpid(2).

REV SEP 1985

177 UTek system interface library.

343

GETUID(3F) COMMAND REFERENCE

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
integer function getuid ()

integer function getgid ()

DESCRIPTION

GETUID(3F)

The functions getuid and getgid return the real user or group ID of the
user of the current process, respectively.

FILES
/usr/lib/libU77.a

SEE ALSO
getuid(2).

REV SEP 1985

f77 UTek system interface library.

344

HOSTNM(3F) COMMAND REFERENCE

NAME
hostnm - get name of current host

SYNOPSIS
integer function hostnm (name)
character*(*) name

DESCRIPTION

HOSTNM(3F)

This function puts the name of the current host machine into character
string name. The return value should be O; any other value indicates an
error.

FILES
/usrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The return value should be O; any other value indicates an error.

SEE ALSO
gethostname(2).

REV SEP 1985

345

IDATE{3F) COMMAND REFERENCE

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
subroutine idate (iarray)
integer iarray

subroutine itime
integer iarray

DESCRIPTION

IDATE{3F)

ldate returns the current date in iarray. The order is: day, month, year.
Day will be in the range 1-31. Month will be in the range 1-12. Year will
be ~ 1969.

ltime returns the current time in iarray. The order is: hour, minute,
second.

FILES
/usrllib/libU77.a

SEE ALSO
ctime(Jf), fdate(Jf).

REV SEP 1985

f77 UTek system interface library.

346

INDEX{3F) COMMAND REFERENCE INDEX(3F)

NAME
index, rindex, lnblnk, len - tell about character objects

SYNOPSIS
(intrinsic) function index (string, substr)
character*(*) string, substr

integer function rindex (string, substr)
character*(*) string, substr

function lnblnk (string)
character*(*) string

(intrinsic) function len (string)
character*(*) string

DESCRIPTION

FILES

Index (rindex) returns the index of the first (last) occurrence of the
substring substr in string, or.zero if it does not occur. Index is an f77
built-in intrinsic function; rindex is a library routine.

Lnblnk returns the index of the last nonblank character in string. This is
useful since all f77 character objects are fixed length, and blank padded.

Intrinsic function len returns the size of the character object argument,
string.

Index and len are reinerated in-line by the f77 compiler.

/usr//ib/libF77.a

SEE ALSO

f77 intrinsic function (math) and startup library.

intro(3f).

REV SEP 1985

347

IOINIT (3F) COMMAND REFERENCE IOINIT(3F)

NAME
ioinit - change f77 110 initialization

SYNOPSIS
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cctl, bzro, apnd, vrbose
character*(*) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 1/0 system,
and attaches externally defined files to logical units at run time. The
effect of the flag arguments applies only to logical units opened after
ioinit is called. The exception is the preassigned units, 5 and 6, to which
cctl and bzro apply at any time. loinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cctl is
.true. then carriage control will be recognized on formatted output to all
logical units except unit 0 (stderr), the diagnostic channel. Otherwise the
default will be restored.

By default, trailing and embedded blanks in input data fields are ignored.
If bzro is .true. then such blanks will be treated as zeros. Otherwise, the
default will be restored.

By default, all files opened for sequential access are positioned at their
beginning. It is sometimes necessary or convenient to open at the end
of-file so that a write will append to the existing data. If apnd is .true.
then files opened subsequently on any logical unit will be positioned at
their end upon opening. A value of .false. will restore the default
behavior.

Many systems provide an automatic association of global names with
FORTRAN logical units when a program is run. There is no such
automatic association in f77. However, if the argument prefix is a
nonblank string, then names of the form prefixNN will be sought in the
program environment. The value associated with each such name found
will be used to open logical unit NN for formatted sequential access. See
the first example below.

If the argument vrbose is .true. then ioinit will report on its activity.

The internal flags are stored in a labeled common block with the following
definition:

EXAMPLES

INTEGER*2 ieof, ictl, ibzr
COMMON /ioiflg/ ieof, ictl, ibzr

Proper usage of the prefix parameter is shown in the following
subprogram call within the f77 program myprogram:

CALL ioinit (.true., .false., .false., 'FORT', .false.}

REV SEP 1985

348

IOINIT(3F) COMMAND REFERENCE IOINIT(3F)

FILES

Executing the following sequence

% setenv FORT01 mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1, opened to file mydata and logical unit 12,
opened to file myresults. Any formatted output would have column 1
removed and interpreted as carriage control as indicated by the first
parameter cctl set to .true .. Embedded and trailing blanks would be
ignored on input (second parameter bzro set to .false.). Both files would
be positioned at their beginning (third parameter apnd set to .false.).

The effect of

CALL ioinit (.true., .true., .false., '', .false.)

can be achieved without the actual call by including -1166 on the f77
command line. This gives carriage control on all logical units except 0,
causes files to be opened at their beginning, and causes blanks to be
interpreted as zeros.

/usrllibllibF77.a

/usrllibllibl66.a

RETURN VALUE

f77 intrinsic and startup library.

Sets older FORTRAN 110 modes.

The value of ioinit will be .true. unless some error occurred.

CAVEATS
Prefix can be no longer than 30 characters. A pathname associated with
an environment name can be no longer than 255 characters.

The + carriage control character does not work.

SEE ALSO
getarg(3f), getenv(3f).

REV SEP 1985 2

349

KILL(3F) COMMAND REFERENCE

NAME
kill - send a signal to a process

SYNOPSIS
function kill (pid, signum)
integer pid, signum

DESCRIPTION

KILL(3F)

Kill sends a signal to a user process. Pid must be the process ID of one
of the user's processes. Signum must be a valid signal number (see
sigvec(2)). The returned value will be O if successful; it is an error code
otherwise.

FILES
lusrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The returned value will be O if successful; it is an error code otherwise.

SEE ALSO
kil/(2), sigvec(2), signa/(3f), fork(3f), perror(3f).

REV SEP 1985

350

LINK(3F) COMMAND REFERENCE LINK(3F)

NAME
link - make a link to an existing file

SYNOPSIS
function link (filename1, filename2)
character*(*) filename1, filename2

integer function symlnk (filename1, filename2)
character*(*) filename1, filename2

DESCRIPTION

FILES

Link makes a hard link to an existing Ji/enamel; the link itself has the
name filename2.

Fi/enamel must be the pathname of an existing file. Filename2 is a
pathname to be linked to filename I. Filename2 must not already exist.
With hard links, both filename] and filename2 must be in the same file
system. Unless the caller is the superuser, filenamel must not be a
directory. Both all old links and the new link share equal access and
rights to the underlying object (ti/enamel).

Symlnk creates a symbolic link tofilenamel; the link isfilename2. Either
name may be an arbitrary pathname; the files need not be on the same
file system.

The returned value will be 0 if successful; a system error code otherwise.

lusrllibllibU77.a 117 UTek system interface library.

RETURN VALUE
The returned value will be O if successful; a system error code otherwise.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
/usrlincludelmax.h .

SEE ALSO
link(2), symlink(2), perror(3f), unlink(3f).

REV SEP 1985

351

LOC(3F) COMMAND REFERENCE

NAME
loc - return the address of an object

SYNOPSIS
integer function loc (arg)

DESCRIPTION
The value returned from loc is the address of arg.

FILES
/usrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The returned value is the address of arg.

SEE ALSO
intro(Jf).

REV SEP 1985

352

LOC(3F)

LOG(3F) COMMAND REFERENCE LOG(3F)

NAME
log, alog, dlog, clog - FORTRAN natural logarithm intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2
r2 = alog(r1)
r2 = log(r1)
dp2 = dlog(dp1)
dp2 = log(dp1)
cx2 = clog(cx1)
cx2 = log(cx1)

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog returns
the double-precision natural logarithm of its double-precision argument.
Clog returns the complex logarithm of its complex argument. The
generic function log becomes a call to alog, dlog, or clog depending on
the type of its argument.

SEE ALSO
exp(3m).

353

REV MAR 1985

LOG10(3F) COMMAND REFERENCE LOG10(3F)

NAME
log10, alog10, dlog1 O - FORTRAN common logarithm intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = alog10(r1)
r2 = log10(r1)
dp2 = dlog10(dp1)
dp2 = log10(dp1)

DESCRIPTION
Alog10 returns the real common logarithm of its real argument. Dlog
returns the double-precision common logarithm of its double-precision
argument. The generic function log becomes a call to alog or dlog
depending on the type of its argument.

SEE ALSO
exp(3m).

354

REV MAR 1985

LONG(3F) COMMAND REFERENCE

NAME
long, short - integer object conversion

SYNOPSIS
integer*4 function long (int2)
integer*2 int2

integer*2 function short (int4)
integer*4 int4

DESCRIPTION

LONG(3F)

The functions long and short provide conversion between short and long
integer objects. Long is useful when constants are used in calls to library
routines and the code is to be compiled with -i2. Short is useful in
similar context when an otherwise long object must be passed as a short
integer.

FILES
/usrllib/libF77.a

SEE ALSO
intro(3f).

REV SEP 1985

f77 intrinsic function (math) and startup library.

355

MAX(3F) COMMAND REFERENCE MAX(3F)

NAME
max, maxO, amaxO, max1, amax1, dmax1 - FORTRAN maximum-value
functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dp1, dp2, dp3
I = max(i, j, k)
c = max(a, b)
dp = max(a, b, c)
k = maxO(i, j)
a= amaxO(i, j, k)
i = max1 (a, b)
d = amax1 (a, b, c)
dp3 = dmax1(dp1, dp2}

DESCRIPTION
The maximum-value functions return the largest of their arguments (of
which there may be any number). Max is the generic form which can be
used for all data types and takes its return type from that of its arguments
(which must all be of the same type). MaxO returns the integer form of
the maximum value of its integer arguments. AmaxO is the real form of
its integer arguments. Max1 is the integer form of its real arguments.
Amax1 is the real form of its real arguments. And dmax1 is the double
precision form of its double-precision arguments.

SEE ALSO
min(Jf).

356

REV MAR 1985

MCLOCK(3F) COMMAND REFERENCE

NAME
mclock - returns FORTRAN time accounting

SYNOPSIS
integer i i = mclock()

DESCRIPTION

MCLOCK(3F)

Mclock returns time accounting information about the current process
and its child processes. The value returned is the sum of the current
process's user time and the user and system times of all child processes.

SEE ALSO
time(Jc).

1

357

REV MAR 1985

MIN(3F} COMMAND REFERENCE MIN(3F}

NAME
min, minO, amino, min1, amin1, dmin1 - FORTRAN minimum-value
functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dp1, dp2, dp3
I = min(i, j, k)
c = min(a, b)
dp = min(a, b, c)
k = minO(i, j)
a = aminO(i, j, k)
i = min1 (a, b)
d = amin1 (a, b, c)
dp3 = dmin1 (dp1, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their arguments (of
which there may be any number). Min is the generic form which can be
used for all data types and takes its return type from that of its arguments
(which must all be of the same type). Mino returns the integer form of
the minimum value of its integer arguments. Amino is the real form of its
integer arguments. Min1 is the integer form of its real arguments.
Amin1 is the real form of its real arguments. And dmin1 is the double
precision form of its double-precision arguments.

SEE ALSO
max(3f).

358

REV MAR 1985

MOD(3F) COMMAND REFERENCE MOD(3F)

NAME
mod, amod, dmod - FORTRAN remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real r1, r2, r3
double precision dp1, dp2, dp3
k = mod(i, j)
r3 = amod(r1, r2)
r3 = mod(r1 , r2)
dp3 = dmod(dp1, dp2)
dp3 = mod(dp1, dp2)

DESCRIPTION
Mod returns the integer remainder of its first argument divided by its
second argument. Amod and dmod return, respectively, the real and
double-precision whole number remainder of the integer division of their
two arguments. The generic version mod will return the data type of its
arguments.

SEE ALSO
intro(3f).

359

REV MAR 1985

NARGS(3F) COMMAND REFERENCE

NAME
nargs - returns the number of arguments

SYNOPSIS
integer function nargs()

DESCRIPTION

NARGS(3F)

Nargs returns the number of arguments passed to the calling subroutine.

FILES
lusrllibllibU77.a

CAVEATS
Nargs actually returns the number of words pushed on the stack which
may not give an accurate count of arguments. Extra arguments are
passed for complex and character functions and character or procedure
arguments.

SEE ALSO
intro(3f), nargs(Jc).

REV MAR 1985

360

PERROR(3F) COMMAND REFERENCE PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
character*(*) string

subroutine gerror (string)
character*(*) string

character*(*) function gerror ()

integer function ierrno O
DESCRIPTION

FILES

Perror writes a message to FORTRAN logical unit O (stderr) appropriate
to the last detected system error. The user specified string will be written
preceding the standard error message.

Gerror returns the system error message in character variable string.
Gerror may be called either as a subroutine or as a function.

lerrno will return the error number of the last detected system error. This
number is updated only when an error actually occurs. Most routines and
110 statements that might generate such errors return an error code after
the call; that value is a more reliable indicator of what caused the error
condition.

/usrllibllibU77.a f77 UTek system interface library.

DIAGNOSTICS
UTek system error codes are described in intro(2). The f77 1/0 error
codes and their meanings are:

100 error in format
101 illegal unit number
102 formatted 110 not allowed
103 unformatted 110 not allowed
104 direct 1/0 not allowed
105 sequential 110 not allowed
106 cannot backspace file
107 off beginning of record
108 cannot stat file
109 no * after repeat count
11 O off end of record
111 truncation failed
112 incomprehensible list input
113 out of free space
114 unit not connected
115 read unexpected character
116 blank logical input field

REV SEP 1985

361

PERROR(3F) COMMAND REFERENCE PERROR(3F)

117 new file exists
118 cannot find old file
119 unknown system error
120 requires seek ability
121 illegal argument
122 negative repeat count
123 illegal operation for unit

CAVEATS
String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling
program.

SEE ALSO
intro(2), perror(3c).

REV SEP 1985 2
362

PUTC(3F) COMMAND REFERENCE PUTC(3F)

NAME
putc, fputc - write a character to a FORTRAN logical unit

SYNOPSIS
integer function putc (char)
character char

integer function fputc (lunit, char)
integer lunit
character char

DESCRIPTION

FILES

These funtions write a character to the file associated with a FORTRAN
logical unit, bypassing normal FORTRAN 1/0. Putc writes to logical unit
6, normally connected to the control terminal output. Fputc writes to
logical unit /unit, which must be opened for output.

The value of each function will be zero unless some error occurred; it is a
system error code otherwise. The value 0 indicates no error occurred on
the write. See perror(3f).

!usrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The value of each function will be 0 unless some error occurred; a system
error code otherwise. The valueO indicates no error occurred on the
write. See perror(3f).

SEE ALSO
putc(3s), intro(2), perror(3f).

REV SEP 1985

363

QSORT(3F) COMMAND REFERENCE QSORT(3F)

NAME
qsort - quick sort

SYNOPSIS
subroutine qsort (array, len, isize, compar)
integer len, isize
external compar
integer*2 compar

DESCRIPTION

FILES

Qsort is an implementation of the quicker-sort algorithm. One
dimensional array contains the elements to be sorted. Len is the number
of elements in the array. /size is the size (or width) of an element in
bytes, typically:

4
8
16
length of

For integer and real.
For double precision or complex.
For double complex.

character object For character arrays.

Compar is the name of a user supplied integer*2 comparison function that
will determine the sorting order. This function will be called with two
arguments that will be elements of array. The function must return:

negative If argl is considered to percede arg2.
zero If argl is equivalent to arg2.
positive If arg I is considered to follow arg2.

On return, the elements of array will be sorted.

lusrllibllibU77.a 117 UTek system interface library.

RETURN VALUE
On return, the elements of array will be sorted.

SEE ALSO
qsort(3c).

REV SEP 1985

364

RAND(3F) COMMAND REFERENCE RAND(3F)

NAME
rand, drand, irand - return random values

SYNOPSIS
integer function irand (iflag)

real function rand (iflag)

double precision function drand (iflag)

DESCRIPTION

FILES

These functions use rand(3c) to generate sequences of random numbers.
If iflag is 1 , the generator is restarted and the first random value is
returned. If iflag is otherwise nonzero, it is used as a new seed for the
random number generator, and the first new random value is returned.

lra_r,d returns positive integers in the range 0 through 2147483647
(2 - 1). Rand and drand return values in the range O. through 1 .0.

lusrllibllibF77.a f77 intrinsic function (math) and startup library.

RETURN VALUE
lra_r,d returns positive integers in the range O through 2147483647
(2 - 1). Rand and drand return values in the range O. through 1 .0 .

CAVEATS
The algorithm returns a 31 bit quantity.

SEE ALSO
rand(3c).

REV SEP 1985

365

RENAME(3F) COMMAND REFERENCE RENAME(3F)

NAME
rename - rename a file

SYNOPSIS
integer function rename (from, to)
character*(*) from, to

DESCRIPTION

FILES

From must be the pathname of an existing file. To will become the new
pathname for the file. If to exists, then both from and to must be the
same type of file, and must reside on the same file system. Furthermore,
if to exists, it will be removed first.

The returned value will be O if successful; it is a system error code
otherwise.

lusrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The value returned by rename will be O if successful; a system error code
otherwise.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
/usrlinc/ude/max.h .

SEE ALSO
rename(2), perror(Jf).

REV SEP 1985

366

RNDMODE(3F) COMMAND REFERENCE RNDMODE(3F)

NAME
rndmode - set rounding method for floating point instructions

SYNOPSIS
subroutine rndmode (mode)
int mode

DESCRIPTION
Rndmode allows the user to chose which rounding method should be
used when a floating point instruction produces a result that can not be
exactly represented. The default method is to round to the nearest value.

The mode has the following meaning:

FILES

VALUE

0
1
2
3

lusrllib/libF77.a

RETURN VALUE
[O]

[1]

SEE ALSO
traper(3f).

REV SEP 1985

MEANING

Round to the nearest value.
Round toward zero.
Round toward positive infinity.
Round toward negative infinity.

177 intrinsic function (math) and startup library.

Rndmode was not able to set rounding mode.

Rndmode set rounding mode.

367

ROUND(3F) COMMAND REFERENCE ROUND(3F)

NAME
anint, dnint, nint, idnint - FORTRAN nearest integer functions

SYNOPSIS
integer i
real r1, r2
double precision dp1, dp2
r2 = anint(r1)
i = nint(r1)
dp2 = anint(dp1)
dp2 = dnint(dp1)
i = nint(dp1)
i = idnint(dp1)

DESCRIPTION
Anint returns the nearest whole real number to its real argument (for
example, int(a+0.5) if a ~ 0, int(a-0.5) otherwise). Dnint does the
same for its double-precision argment. Nint returns the nearest integer
to its real argument. ldnint is the double-precision version. Anint is the
generic form of anint and dnint, performing the same operation and
returning the data type of its argument. Nint is also the generic form of
idnint.

SEE ALSO
intro(3f).

368

REVMAA1985

SETJMP(3F) COMMAND REFERENCE SETJMP(3F)

NAME
setjmp, longjmp - nonlocal goto

SYNOPSIS
integer function setjmp(ienv) integer ienv(18)

integer function longjmp(ienv, ival) integer ienv(18) integer ival

DESCRIPTION
These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in ienv for later use by longjmp. It
returns value 0.

Longjmp restores the environment saved by the last call of setjmp. It
then returns in such a way that execution continues as if the call of
setjmp had just returned the value ival to the function that invoked
setjmp, which must not itself have returned in the interim. All accessible
data have values as of the time longjmp was called, except for objects of
storage class auto or register whose values have been changed between
the setjmp and longjmp calls. These values are undefined.

SEE ALSO
setjmp(3c), signal(3c).

1
369

REV MAR 1985

SIGN(3F) COMMAND REFERENCE SIGN(3F)

NAME
sign, isign, dsign - FORTRAN transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real r1, r2, r3
double precision dp1, dp2, dp3
k = isign(i, j)
k = sign(i, j)
r3 = sign(r1, r2)
dp3 = dsign(dp1, dp2)
dp3 = sign(dp1, dp2)

DESCRIPTION
lsign returns the magnitude of its first argument with the sign of its
second argument. Sign and dsign are its real and double-precision
counterparts, respectively. The generic version is sign and will devolve
to the appropriate type depending on its arguments. When using sign, it
is required that the both arguments be of the same type.

SEE ALSO
intro(3f).

370

REV MAR 1985

SIGNAL(3F) COMMAND REFERENCE SIGNAL(3F)

NAME
signal - change the action for a signal

SYNOPSIS
integer function signal (signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal(3c)) the default action is
usually to clean up and abort. The user may choose to write an
alternative signal handling routine. A call to signal is the way this
alternate action is specified to the system.

Signum is the signal number (see signal(3c)). If flag is negative, then proc
must be the name of the user signal handling routine. If flag is O or
positive, then proc is ignored and the value of flag is passed to the
system as the signal action definition. In particular, this is how previously
saved signal actions can be restored. Two possible values for flag have
specific meanings: 0 means use the default action. 1 means ignore this
signal.

A positive returned value is the previous action definition. A value greater
than 1 is the address of a routine that was to have been called on
occurrence of the given signal. The returned value can be used in
subsequent calls to signal in order to restore a previous action definition.
A negative returned value is the negation of a system error code. (See
perror(3f).)

lusrllib/libU77.a f77 UTek system interface library.

CAVEATS
F77 arranges to trap certain signals when a process is started. The only
way to restore the default f77 action is to save the returned value from
the first call to signal.

If the user signal handler is called, it will be passed the signal number as
an integer argument.

SEE ALSO
kill(l), kil/(3f), signal(3c).

REV SEP 1985

371

SIN (3F) COMMAND REFERENCE

NAME
sin, dsin, csin - FORTRAN sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2
r2 = sin(r1)
dp2 = dsin(dp1)
dp2 = sin(dp1)
cx2 = csin(cx1)
cx2 = sin(cx1)

DESCRIPTION

SIN(3F)

Sin returns the real sine of its real argument. Dsin returns the double
precision sine of its double-precision argument. Csin returns the
complex sine of its complex arguemnt. The generic sin function becomes
dsin or csin as required by argument type.

SEE ALSO
sin(Jm).

372

REV MAR 1985

SINH(3F) COMMAND REFERENCE

NAME
sinh, dsinh - FORTRAN hyperbolic sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = sinh(r1)
dp2 = dsinh(dp1)
dp2 = sinh(dp1)

DESCRIPTION

SINH(3F)

Sinh returns the real hyperbolic sine of its real argument. Dsinh returns
the double-precision hyperbolic sine of its double-precision argument.
The generic form sinh may be used to return a double-precision value
given a double-precision argument.

SEE ALSO
sinh(3m).

373

REV MAR 1985

SLEEP(3F) COMMAND REFERENCE

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (itime)
integer itime

DESCRIPTION

SLEEP(3F)

Sleep causes the calling process to be suspended for itime seconds. The
actual time can be up to one second less than itime due to granularity in
system timekeeping.

FILES
/usrllibllibU77.a

SEE ALSO
sleep(3c).

REV SEP 1985

f77 UTek system interface library.

374

SQRT(3F) COMMAND REFERENCE

NAME
sqrt, dsqrt, csqrt - FORTRAN square root intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2
r2 = sqrt(r1)
dp2 = dsqrt(dp1)
dp2 = sqrt(dp1)
cx2 = csqrt(cx1)
cx2 = sqrt(cx1)

DESCRIPTION

SQRT(3F)

Sqrt returns the real square root of its real argument. Dsqrt returns the
double-precision square root of its double-precision arguement. Csqrt
returns the complex square root of its complex argument. Sqrt, the
generic form, will become dsqrt or csqrt as required by its argument
type.

SEE ALSO
exp(3m).

375

REV MAR 1985

STAT(3F) COMMAND REFERENCE STAT(3F)

NAME
stat, lstat, fstat - get file status

SYNOPSIS
integer function stat (filename, statb)
character*(*) filename
integer statb(12)

integer function lstat (filename, statb)
character*(*) filename
integer statb(12)

integer function fstat (lunit, statb)
integer statb(12), lunit

DESCRIPTION

FILES

These routines return detailed information about a file. Stat and lstat
return information about filename; fstat returns information about the file
associated with FORTRRAN logical unit /unit.

The order and meaning of the information returned in array statb is as
described for the structure stat under stat(2). The spare values are not
included.

The value of either function will be O if successful; an error code is
returned otherwise.

lusrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The value of either function will be zero if successful; an error code is
returned otherwise.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
/usrlincludelmax.h.

SEE ALSO
stat(2), access(3f), perror(3f), time(3f).

~EV SEP 1985

376

SYSTEM(3F) COMMAND REFERENCE SYSTEM(3F)

NAME
system - execute a UTek command

SYNOPSIS
integer function system (string)
character*(*) string

DESCRIPTION

FILES

System causes string to be given to your shell as input as if the string
had been typed as a command. If environment variable SHELL is found,
its value will be used as the command interpreter (shell); otherwise sh(lsh)
is used.

The current process waits until the command terminates. The returned
value will be the exit status of the shell. See wait(2) for an explanation of
this value.

lusrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The returned value will be the exit status of the shell. See wait(2) for an
explanation of this value.

CAVEATS
String cannot be longer than NCARGS-50 characters, as defined in
(syslparam.h).

SEE ALSO
exec(2), wait(2), system(Js).

REV SEP 1985

377

TAN(3F) COMMAND REFERENCE

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = tan(r1)
dp2 = dtan(dp1)
dp2 = tan(dp1)

DESCRIPTION

TAN(3F)

Tan returns the real tangent of its real argument. Dtan returns the
double-precision tangent of its double-precision argument. The generic
tan function becomes dtan as required with a double-precision
argument.

SEE ALSO
sin(3m).

378

REVMAR1985

TANH(3F) COMMAND REFERENCE TANH(3F)

NAME
tanh, dtanh - FORTRAN hyperbolic tangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
r2 = tanh(r1)
dp2 = dtanh(dp1)
dp2 = tanh(dp1)

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dtanh
returns the double-precision hyperbolic tangent of its double precision
argument. The generic form tanh may be used to return a double
precision value given a double-precision argument.

SEE ALSO
sinh(3m).

379

REV MAR 1985

TIME(3F) COMMAND REFERENCE TIME(3F)

NAME
time, ctime, ltime, gmtime - return system time

SYNOPSIS
integer function time ()

character*(*) function ctime (stime)
integer stime

subroutine ltime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION

FILES

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in
seconds. This is the value of the UTek system clock.

Ctime converts a system time to a 24 character ASCII string. The format
is described under ctime(Jc). No newline or NULL is included.

Ltime and gmtime disect a UTek time into month, day, and so forth,
either for the local time zone or as GMT. The order and meaning of each
element returned in tarray is described under ctime(Jc).

lusrllibllibU77.a f77 UTek system interface library.

SEE ALSO
ctime(Jc), itime(Jf), idate(3f), fdate(Jf).

REV SEP 1985

380

TRAPER(3F) COMMAND REFERENCE TRAPER(3F)

NAME
traper - trap arithmetic errors

SYNOPSIS
integer function traper (mask)

DESCRIPTION

FILES

Floating point roundoff errors and floating point underflow are not
normally trapped during execution. This routine enables these traps by
setting status bits in the floating point status register. These bits remain
set throughout the execution of a program, and the previous state is
restored only upon exit of the program or through another call to traper.
If the condition occurs and trapping is enabled, signal SIGFPE is sent to
the process. (See signal(Jc).)

The mask has the following meaning:

VALUE MEANING

O Do not trap either condition.
1 Trap inexact results (roundoff) only.
2 Trap floating underflow only.
3 Trap both the above.

The previous value of these bits is returned.

lusrllibllibF77.a f77 intrinsic function (math) and startup library.

RETURN VALUE
The previous value of the mask bits is returned.

SEE ALSO
signal(Jc), signal(Jf).

REV SEP 1985

381

TRAPOV(3F) COMMAND REFERENCE TRAPOV(3F)

NAME
trapov - trap and repair floating point overflow

SYNOPSIS
subroutine trapov (numesg, rtnval)
double precision rtnval

DESCRIPTION

FILES

NOTE: This routine is outdated by trpfpe. See trpfpe(Jf) for the
newer error handler.

This subroutine sets up signal handlers to trap arithmetic exceptions.
Trapping arithmetic exceptions allows the user's program to proceed from
instances of floating point overflow or divide by zero. The result of such
operations will be replaced by rtnval.

The first numesg occurrences of a floating point arithmetic error will cause
a message to be written to the standard error file. Rtnval must be a
double precision value. For example, OdO or dflmax().

lusrllibllibF77.a f77 intrinsic function (math) and startup library.

CAVEATS
Other arithmetic exceptions can be trapped but not repaired.

SEE ALSO
trpfpe(3f), signal(3f), flmin(3f).

REV SEP 1985

382

TRPFPE(3F) COMMAND REFERENCE TRPFPE(3F)

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (numesg, rtnval)
double precision rtnval

integer function fpecnt ()

common /fpeflt/ fperr
logical fperr

DESCRIPTION

FILES

Trpfpe sets up a signal handler to trap arithmetic exceptions. If the
exception is due to a floating point arithmetic fault, the result of the
operation is replaced with the rtnval specified. Rtnval must be a double
precision value. For example, OdO or dflmax().

The first numesg occurrences of a floating point arithmetic error will cause
a message to be written to the standard error file (stderr). Any exception
that can not be repaired will result in the default action, typically an abort
with core image.

Fpecnt returns the number of faults since the last call to trpfpe.

The logical value in the common block labeled fpeflt will be set to .true.
each time a fault occurs.

lusr!libllibF77.a f77 intrinsic function (math) and startup library.

CAVEATS
There is not a problem with the fixing an operation generated by the f77
compiler, but there may be problems in fixing an operation in an
assembly language routine.

The CMP and DEi opcodes are not dealt with.

SEE ALSO
signa/(3/), flmin(3f).

REV SEP 1985

383

TTYNAM(3F) COMMAND REFERENCE

NAME
ttynam, isatty - find name of a terminal port

SYNOPSIS
character*(*) function ttynam (lunit)
integer lunit

logical function isatty (lunit)
integer lunit

DESCRIPTION

TTYNAM(3F)

Ttynam returns a blank padded pathname of the terminal device
associated with logical unit /unit.

FILES

lsatty returns .true. if /unit is associated with a terminal device; it returns
.false. otherwise.

/devl*

lusrllibllibU77.a f77 UTek system interface library.

DIAGNOSTICS
Ttynam returns an empty string (all blanks) if /unit is not associated with
a terminal device in directory ldev.

SEE ALSO
intro(3f), isatty(3c), ttyname(3c).

REV SEP 1985

384

UNLINK(3F) COMMAND REFERENCE UNLINK(3F)

NAME
unlink - remove a directory entry

SYNOPSIS
integer function unlink (dirname)
character*(*) dirname

DESCRIPTION

FILES

Unlink causes the directory entry specified by pathname dirname to be
removed. If this was the last link to the file, the contents of the file are
lost. The returned value will be 0 if successful; it is a system error code
otherwise.

lusrllibllibU77.a f77 UTek system interface library.

RETURN VALUE
The value returned by unlink will be 0 if successful; it is a system error
code otherwise.

CAVEATS
Pathnames can be no longer than MAXPATHLEN as defined in
lusrlincludelmax.h .

SEE ALSO
unlink(2), link(Jf), filsys(5), perror(3j).

REV SEP 1985

385

WAIT(3F) COMMAND REFERENCE WAIT(3F)

NAME
wait - wait for a process to terminate

SYNOPSIS
integer function wait (status)
integer status

DESCRIPTION

FILES

Wait causes its caller to be suspended until a signal is received or one of
its child processes terminates. If any child has terminated since the last
wait, return is immediate; if there are no children, return is immediate
with an error code.

If the returned value is positive, it is the process ID of the child, and status
is its termination status (see wait(2)). If the returned value is negative, it
is the negation of a system error code.

!usrllibllibU77.a 177 UTek system interface library.

RETURN VALUE
If the returned value is positive, it is the process ID of the child and status
is its termination status (see wait(2)). If the returned value is negative, it
is the negation of a system error code.

SEE ALSO
wait(2), signa/(3f), kil/(3/), perror(3f).

REV SEP 1985

386

INTR0(3M) COMMAND REFERENCE INTR0(3M)

NAME
intro - introduction to mathematical library functions

DESCRIPTION
These functions constitute the math library, libm.a. They are automatically
loaded as needed by the FORTRAN compiler /77(1). The link editor
searches this library under the -Im option. Declarations for these
functions may be obtained from the include file RI < math.h).

DESCRIPTION OF FUNCTIONS

FILES

Name

a cos
as in
atan
atan2
cabs
ceil
cos
cosh
exp
tabs
floor
fmod
gamma
hypot
intro
jO
j1
jn
log
log10
pow
sin
sinh
sqrt
tan
tanh
yo
y1
yn

Appears on Page

sin.3m
sin.3m
sin.3m
sin.3m
hypot.3m
floor.3m
sin.3m
sinh.3m
exp.3m
floor.Sm
floor.3m
floor.Sm
gamma.Sm
hypot.3m
intro.Sm
jO.Sm
jO.Sm
j0.3m
exp.3m
exp.3m
exp.3m
sin.3m
sinh.Sm
exp.3m
sin.3m
sinh.3m
j0.3m
jO.Sm
jO.Sm

!usrllibllibm.a

/usrllibllibF77.a

SEE ALSO
intro(3).

REV SEP 1985

Description

trigonometric functions
trigonometric functions
trigonometric functions
trigonometric functions
Euclidean distance
floor, ceiling, remainder, absolute value functions
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
floor, ceiling, remainder, absolute value functions
floor, ceiling, remainder, absolute value functions
floor, ceiling, remainder, absolute value functions
log gamma function
Euclidean distance
introduction to mathemetical library functions
bessel functions
bessel functions
bessel functions
exponential, logarithm, power, square root
exponential, logarithm, power, square root
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
bessel functions
bessel functions
bessel functions

Mathematical library functions .

F77 intrinsic function (math) and startup
library.

387

EXP(3M) COMMAND REFERENCE EXP(3M)

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, and square
root functions

SYNOPSIS
#include (math.h)

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION

FILES

Exp returns the exponential function of x.

Log returns the natural logarithm of x; log10 returns the base 10
logarithm of x.

Pow returns x to the power of y.

Sqrt returns the square root of x.

lusrllibllibm.a Mathematical library functions.

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow;
errno is set to ERANGE. Pow returns O and sets errno to EDOM when
the first argument is negative or zero and the second argument is
negative and non-integral, for example, pow(-1.0,-0.5). The value of pow
(0.0,0.0) is defined to be 1 .0

Log returns -HUGE when xis zero or negative; errno is set to EDOM.

Sqrt returns 0 when xis negative; errno is set to EDOM.

SEE ALSO
hypot(3m), sinh(3m), intro(3m).

REVMAR1985

388

FLOOR(3M) COMMAND REFERENCE FLOOR(3M)

NAME
tabs, floor, ceil, fmod - absolute value, floor, ceiling, mod functions

SYNOPSIS
#include (math.h)

double floor(x)
double x;

double ceil(x)
double x;

double fmod(x, y)
double x, y;

double fabs(x)
double x;

DESCRIPTION
Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns x if y is zero; otherwise it returns the number f with the
same sign as x, such that x = iy +/for some integer i, and lf: (lY :.
Fabs returns the absolute value of :x :.

EXAMPLES

FILES

floor (5.4) = 5.0
floor (-5.4) = -6.0

ceil (5.4) = 6.0
ceil (-5.4) = -5.0

fmod (-10.6, 0.0) = -10.6
fmod (10.6, 4.0) = 2.6
fmod (-10.6, 4.0) = -2.6

Mathematical library functions. /usrllibllibm.a

llibllibc.a Standard C library functions (fabs part of this
library).

SEE ALSO
abs(Jc).

389

REV MAR 1985

GAMMA (3M) COMMAND REFERENCE

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

DESCRIPTION

GAMMA (3M)

Gamma returns ln I r (I x I) I . The sign of r(I x I) is returned in
the external integer signgam.

EXAMPLES
The following C program might be used to calculate r:

y = gamma(x);
if (y > 88.0)

error();
y = exp(y);
if (signgam)

y = -y;

FILES
/usr!libllibm.a Mathematical library functions.

DIAGNOSTICS
A huge value is returned for negative integer arguments.

CAVEATS
There should be a positive indication of error.

390

HYPOT(3M) COMMAND REFERENCE HYPOT(3M)

NAME
hypot, cabs - Euclidean distance

SYNOPSIS
#include (math.h >

double hypot (x, y)
double x, y;

double cabs (z)
struct { double x, y; } z;

DESCRIPTION
Hypot and cabs return

sqrt (x*x + y*y),

taking precautions against unwarranted overflows.

The x and y arguments to the complex absolute value function cabs
consist of the real and imaginary parts, respectively.

FILES
/usrllibllibm.a

/usrllib/libF77.a

SEE ALSO
exp(3m).

Mathematical library functions.

F77 intrinsic function (math) and startup
library.

REV MAR 1985

391

J0(3M) COMMAND REFERENCE

NAME
jO, j1, jn, yo, y1, yn - bessel functions

SYNOPSIS
#include <math.h)

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x)
double x;

double yo (x)
double x;

double y1 (x)
double x;

double yn (n, x)
double x;

DESCRIPTION

J0(3M)

These functions calculate Bessel functions of the first and second kinds
for real arguments and integer orders.

FILES
lusr/libllibm.a Mathematical library functions.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return a huge negative value
and set errno to EDOM.

SEE ALSO
intro(2), perror(3f).

REV MAR 1985

392

SIN(3M) COMMAND REFERENCE SIN(3M}

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include (math.h)

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION

FILES

Sin, cos, and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to make
sure the result is meaningful.

Asin returns the arc sin of x in the range -7r/2 to 7r/2.

Acos returns the arc cosine of x in the range O to 7r.

Atan returns the arc tangent of x in the range -7r/2 to 7r/2.

Atan2 returns the arc tangent of xly in the range -7r to 7r.

lusrllib/libm.a Mathematical library functions.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return
value O; errno is set to EDOM. The value of tan at its singular points is a
huge number, and errno is set to ERANGE.

SEE ALSO
intro(3m).

393

REV MAR 1985

SINH(3M) COMMAND REFERENCE

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include (math.h)

double sinh (x)

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH(3M)

The functions sinh, cosh, and tanh compute the designated hyperbolic
functions for real arguments.

FILES
/usrllib/libm.a Mathematical library functions.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct
value would overflow.

SEE ALSO
intro(3m).

394

REV MAR 1985

ITOM (3MP) COMMAND REFERENCE ITOM (3MP)

NAME
itom, mcmp, move - multiple precision integer assignment and
comparison

SYNOPSIS
cc ... -Imp

#include <mp.h>

MINT *itom(n)
int n;

int mcmp(a, b)
MINT*&, *b;

move (a, b)
MINT *a, *b;

DESCRIPTION
These routines perform various functions on integers of arbitrary length.
The integers are stored using the defined type MINT, which is found in
/usrlincludelmp.h.

The function itom is used to initialize a multiple precision integer. The
value of the parameter n is stored in a newly-allocated structure. The
return value is a pointer to this structure.

The function mcmp is used to compare two multiple precision integers.
The return value is O if the two are equal, greater than O if the first
argument is greater than the second, and less than 0 otherwise.

The subroutine move is the assignment operation. The value of the first
argument is copied to the second argument.

CAVEATS
The argument given to itom is an integer, but the value must fit into a
short integer (between -32768 and 32767). Other values will result in
strange behavior. This is only true for initialization. Other routines work
correctly for any size value.

SEE ALSO
cc(I), intro(3), madd(3mp), mout(3mp).

395

MADD(3MP) COMMAND REFERENCE MADD(3MP)

NAME
madd, msub, mult, mdiv, pow, rpow, gcd, invert, msqrt, sdiv - multiple
precision integer arithmetic

SYNOPSIS
cc ... -Imp

#include (mp.h)

madd(a, b, c)
msub(a, b, c)
mult(a, b, c)
mdiv(a, b, q, r)
rpow(a, b, c)
pow(a, b, m, c)
gcd(a, b, c)
invert(a, b, c)
msqrt(a, b, r)
MINT *&, *b, *C, *m, *q,

sdiv (a, n, q, r)
MINT*&, *q;
int n;
short *r;

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The
integers are stored using the defined type MINT, which is found in
lusrlincludelmp.h.

The subroutine madd calculates the sum of its first two arguments and
places the result in the third.

The subroutine msub calculates the difference of its first two arguments
and places the result in the third.

The subroutine mult calculates the product of its first two arguments and
places the result in the third.

The subroutine mdiv divides its first two arguments and places the
quotient in the third and the remainder in the fourth.

The subroutine rpow calulates the first argument raised to the power of
the second argument and places the result in the third argument.

The subroutine pow calulates the first argument raised to the power of
the second argument modulo the third argument, and places the result in
the fourth argument.

The subroutine gcd calculates the greatest common divisor of the first
two arguments and places the result in the third.

The subroutine invert calculates the modular inverse of the first argument
modulus the second argument and places it in the third.

REV MAR 1985

396

MADD(3MP) COMMAND REFERENCE MADD(3MP)

The subroutine msqrt calculates the closest perfect square that is less
than or equal to the first argument and places the square root in the
second argument. The difference between the first argument and the
perfect square found is placed in the third argument. Thus, ('arg2' *
'arg2') + 'arg3' = arg1.

The subroutine sdiv is the same as mdiv, except that the divisor is an
integer instead of a multiple precision integer.

CAVEATS
All arguments should be initialized by using the subroutine itom(Jmp).

SEE ALSO
cc(l), intro(3), itom(Jmp), mout(3mp).

2 REV MAR 1985

397

MOUT(3MP} COMMAND REFERENCE MOUT(3MP)

NAME
mout, min, omout, omin, fmout, fmin - multiple precision integer
input/output

SYNOPSIS
cc ... -Imp

#include <Stdio. h>
#include <mp.h>

mout(a)
min(a)
om out(a)
om in(a)
fmout(a, fp)
fmin(a, fp)
MINT *a;
FILE *fp;

DESCRIPTION
These routines are used to input and output on integers of arbitrary
length. The integers are stored using the defined type MINT, which is
found in lusrlincludelmp.h.

The subroutine mout prints the value of the given multiple precision
integer on the standard output, followed by a newline.

The subroutine min reads an integer from the standard input and places
the value in the argument. Spaces, tabs and backslashes (\) are ignored
in the input, and any '-' character negates the number. Thus, the string
"-12 5-" is interpreted as 125. If a character other than 0-9, space,
tab, newline, backslash, or '-' is encountered, the character is placed
back in the input via ungetc(Js), and is ignored. Upon end of file, the
value EOF is returned.

The subroutines omout and omin work the same as mout and min,
except that the conversions are done in octal. Omin does not check to
see if the input contains digits greater than 7.

The subroutines fmout and fmin work the same as mout and min,
except that the given FILE pointer is used for input and output.

SEE ALSO
cc(l), intro(3), itom(Jmp), madd(Jmp).

398

INTR0(3N) COMMAND REFERENCE

NAME
intro - introduction to network library functions

DESCRIPTION

INTR0(3N)

The functions in this library are applicable to the Internet domain.

SEE ALSO
intro(3).

399

REV MAR 1985

BYTEORDER(3N) COMMAND REFERENCE BYTEORDER(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network
byte order

SYNOPSIS
#include (sys/types.h)
#include (netinet/in.h)

netlong = htonl{hostlong);
u_long netlong, hostlong;

netshort = htons{hostshort);
u_short netshort, hostshort;

hostlong = ntohl{netlong);
u_long hostlong, netlong;

hostshort = ntohs{netshort);
u_short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32-bit quantities between network byte
order and host byte order. On machines such as the SUN, these routines
are defined as null macros in the include file (netinet!in.h).

These routines are most often used in conjunction with Internet addresses
and ports as returned by gethostent(3n) and getservent(3n).

CAVEATS
The VAX handles bytes backwards from almost everyone else in the
world. This is not expected to be fixed in the near future.

SEE ALSO
gethostent(3n), getservent(3n).

REV SEP 1985

400

GETHOSTENT (3N) COMMAND REFERENCE GETHOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get
network host entry

SYNOPSIS
#include <netdb.h>

struct hostent *gethostentO

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent(stayopen)
int stayopen;

endhostentO

sethostsock(stayopen)
int stayopen;

endhostsockO

DESCRIPTION
Gethostent, gethostbyname, and gethostbyaddr each return a pointer
to an object with the following structure.

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char *h_addr;

};

/* official name of host */
/* alias list */
/* host address type */
/* length of address */
/* address */

The members of this structure are:

hname Official name of the host.

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always
AF_INET.

h_length

h_addr

The length, in bytes, of the address.

A pointer to the network address for the host. Host
addresses are returned in network byte order.

Gethostent reads the next line of the file, !etc/hosts, opening the file if
necessary. The file remains open upon completion.

401

GETHOSTENT (3N) COMMAND REFERENCE GETHOSTENT (3N)

FILES

Gethostbyname and gethostbyaddr open a UTek domain socket (
/tmplnameserver) to the nameserver(8n), if necessary, then make a
request and get an answer. The socket is closed upon completion. Host
addresses are supplied in network order.

Sethostent opens and rewinds the file. If the stayopen flag is nonzero,
the host database will not be closed by subsequent calls to endhostent.

Endhostent closes the file.

Sethostsock opens the socket to the nameserver(8n). If the stayopen flag
is nonzero the socket will not be closed until endhostsock is called.

Endhostsock closes the socket.

/etc/hosts

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

CAVEATS
All information is contained in a static area so it must be copied if it is to
be saved. Only the Internet address format is currently understood.

SEE ALSO
hosts(5n).

2
402

GETNETENT (3N) COMMAND REFERENCE GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get
network entry

SYNOPSIS
#include <l'letdb.h>

struct netent *getnetentO

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net,addrtype)
long net;
int addrtype;

setnetent(stayopen)
int stayopen

endnetentO

DESCRIPTION
Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an
object with the following structure containing the broken-out fields of a
line in the network database, !etc/networks.

struct netent {

};

char
char
int
int

*n_name;
**n_aliases;
n_addrtype;
n_net;

The members of this structure are:

/* official name of net */
/* alias list */
/* net address type */
/* network # *I

n_name The official name of the network.

n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only
AF_INET.

n_net The network number. Network numbers are returned in host
byte order.

Getnetent reads the next line of the file, opening the file if necessary.
The file remains open upon completion.

Getnetbyname and getnetbyaddr open the file, if necessary, then
sequentially search from the beginning of the file until a matching net
name or net address and address family is found, or until EOF is
encountered. The file is closed upon completion. Network numbers are
supplied in host byte order.

403

GETNETENT (3N) COMMAND REFERENCE GETNETENT (3N)

Setnetent opens and rewinds the file. If the stayopen flag is nonzero,
the net database will not be closed by subsequent calls to endnetent
(either directly, or indirectly through one of the other getnet calls).

Endnetent closes the file.

FILES
/etc/networks

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

CAVEATS
All information is contained in a static area so it must be copied if it is to
be saved. Only Internet network numbers are currently understood.

SEE ALSO
networks(5n).

2
404

GETPROTOENT (3N) COMMAND REFERENCE GETPROTOENT { 3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent
- get protocol entry

SYNOPSIS
#include <Jletdb. h>

struct protoent *getprotoentO

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen

endprotoentO

DESCRIPTION
Getprotoent, getprotobyname, and getprotobynumber each return a
pointer to an object with the following structure containing the broken-out
fields of a line in the network protocol database, /etc/protocols.

struct protoent {
char *p_name;
char **p_aliases;
int p_proto;

};

The members of this structure are:

/* official protocol name */
/* alias list */
/* protocol # *I

pJZame The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p_proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.
The file remains open upon completion.

Getprotobyname and getprotobynumber open the file, if necessary,
then sequentially search from the beginning of the file until a matching
protocol name or protocol number is found, or until EOF is encountered.
The file is closed upon completion.

Setprotoent opens and rewinds the file. If the stayopen flag is nonzero,
the protocol database will not be closed by subsequent calls to
endprotoent (either directly, or indirectly through one of the other
getproto calls).

405

GETPROTOENT (3N) COMMAND REFERENCE

Endprotoent closes the file.

FILES
!etc/protocols

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

CAVEATS

GETPROTOENT (3N)

All information is contained in a static area so it must be copied if it is to
be saved. Only the Internet protocols are currently understood.

SEE ALSO
protocols(5n).

2
406

GETSERVENT (3N) COMMAND REFERENCE GETSERVENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get
service entry

SYNOPSIS
#include <netdb.h>

struct servent *getserventO

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen

endserventO

DESCRIPTION
Getservent, getservbyname, and getservbyport each return a pointer to
an object with the following structure containing the broken-out fields of a
line in the network services data base, /etc/services.

struct servent {
char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

};

The members of this structure are:

s_name The official name of the service.

/* official service name */
/* alias list */
I* port # *I
/* protocol to use *I

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers
are returned in network byte order.

s_proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.
The file remains open upon completion.

Getservbyname and getservbyport open the file, if necessary, then
sequentially search from the beginning of the file until a matching
protocol name or port number is found, or until EOF is encountered. If a
protocol name is also supplied (non-NULL), searches must also match
the protocol. The file is closed upon completion. Port numbers are
supplied in network byte order.

407

GETSERVENT (3N) COMMAND REFERENCE GETSERVENT (3N)

FILES

Setservent opens and rewinds the file. If the stayopen flag is nonzero,
the service database will not be closed by subsequent calls to
endservent (either directly, or indirectly through one of the other getserv
calls).

Endservent closes the file.

!etc/services

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

CAVEATS
All information is contained in a static area so it must be copied if it is to
be saved.

SEE ALSO
getprotoent(3 n), services(5n).

2
408

INET(3N) COMMAND REFERENCE INET(3N)

NAME
ineLaddr, ineLnetwork, ineLntoa, ineLmakeaddr, ineUnaof, ineLnetof
- internet address manipulation routines

SYNOPSIS
#include (sys/types.h)
#include (sys/socket.h)
#include (netinet/in.h)
#include (arpa/inet.h)

u_long ineLaddr(cp)
char *cp;

u_long ineLnetwork(cp)
char *cp;

char *ineLntoa(in)
struct in_addr in;

struct in_addr ineLmakeaddr(net, Ina)
int net, Ina;

int ineUnaof(in)
struct in_addr in;

int ineLnetof{in)
struct in_addr in;

DESCRIPTION
The routines ineLaddr and ineLnetwork each interpret character strings
representing numbers expressed in the Internet standard dot(.) notation,
returning numbers suitable for use as Internet addresses and Internet
network numbers, respectively. The routine ineLntoa takes an Internet
address and returns an ASCII string representing the address in dot (.)
notation. The routine ineLmakeaddr takes an Internet network number
and a local network address and constructs an Internet address from it.
The routines ineLnetof and ineUnaof break apart Internet host
addresses, returning the network number and local network address part,
respectively.

All Internet address are returned in network order (bytes ordered from left
to right). All network numbers and local address parts are returned as
machine format integer values.

INTERNET ADDRESSES

Values specified using the dot (.) notation take one of the following forms:
a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address. Note
that when an Internet address is viewed as a 32-bit integer quantity on

REV MAR 1985

409

INET(3N) COMMAND REFERENCE INET(3N)

the VAX, the bytes referred to above appear as d. c. b. a. That is, VAX
bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a
16-bit quantity and placed in the right most two bytes of the network
address. This makes the three part address format convenient for
specifying Class B network addresses as 128.net.host.

When a two part address is supplied, the last part is interpreted as a 24-
bit quantity and placed in the right most three bytes of the network
address. This makes the two part address format convenient for
specifying Class A network addresses as net.host.

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

All numbers supplied as parts in a dot (.) notation may be decimal, octal,
or hexadecimal, as specified in the C language (for example, a leading Ox
or OX implies hexadecimal; otherwise, a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

DIAGNOSTICS
The value -1 is returned by ineLaddr and ineLnetwork for malformed
requests.

CAVEATS
The string returned by ineLntoa resides in a static memory area so it
must be copied if it is to be saved.

SEE ALSO
gethostent(Jn), getnetent(Jn), hosts(5n), networks(5n).

2 REV MAR 1985

410

RCMD(3N) COMMAND REFERENCE RCMD(3N)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote
command

SYNOPSIS
rem= rcmd(ahost, inport, locuser, remuser, cmd, fd2p);
char **ahost;
int inport;
char *locuser, *remuser, *cmd;
int *fd2p;

s = rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;
int superuser;
char *ruser, *luser;

DESCRIPTION
Rcmd is a routine used by the superuser to execute a command on a
remote machine using an authentication scheme based on reserved port
numbers. Rresvport is a routine which returns a descriptor to a socket
with an address in the reserved port space. Ruserok is a routine used by
servers to authenticate clients requesting service with rcmd. All three
functions are used by the rshd(8n) server (among others).

Rcmd looks up the host *ahost returning -1 if the host does not exist, or
if some error occurred during or after setting up the connection.
Otherwise *ahost is set to the standard name of the host and a
connection is established to a server residing at the well-known Internet
port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the
caller, and given to the remote command as stdin and stdout. If fd2p is
nonzero, then an auxiliary channel to a control process will be set up, and
a descriptor for it will be placed in *fd2p. The control process will return
diagnostic output from the command (unit 2) on this channel, and will also
accept bytes on this channel as being UTek signal numbers, to be
forwarded to the process group of the command. If fd2p is 0, then the
stderr (unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to the
remote process; note that you may be able to get its attention by using
out-of-band data.

The protocol is described in detail in rshd(8n).

The rresvport routine is used to obtain a socket with a privileged address
bound to it. This socket is suitable for use by rcmd and several other
routines. Privileged addresses consist of a port in the range 0 to 1023.
Only the superuser is allowed to bind an address of this sort to a socket.

REV MAR 1985

411

RCMD(3N) COMMAND REFERENCE RCMD(3N)

Ruserok takes a remote host's name, as returned by a gethostent(3n)
routine, two user names and a flag indicating if the local user's name is
the superuser. It then checks the files !etc/hosts.equiv and, possibly,
.rhosts in the current working directory (normally the local user's home
directory) to see if the request for service is allowed. AO is returned if
the machine name is listed in the hosts.equiv file, or the host and remote
user name are found in the .rhosts file; otherwise ruserok returns -1. If
the superuser flag is 1, the checking of the host.equiv file is bypassed.

CAVEATS
There is no way to specify options to the socket call which rcmd makes.

SEE ALSO
rlogin(Jn), rsh(ln), rexec(3n), hosts.equiv(5n), rlogind(8n), rshd(8n).

2 REV MAR 1985

412

REXEC(3N) COMMAND REFERENCE REXEC(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem = rexec(ahost, in port, user, passwd, cmd, fd2p);
char **ahost;
int inport;
char *User, *passwd, *cmd;
int *fd2p;

DESCRIPTION
Rexec looks up the host *ahost returning -1 if the host does not exist.
Otherwise *ahost is set to the standard name of the host. If a username
and password are both specified, then these are used to authenticate to
the foreign host; otherwise the environment and then the user's .netrc file
in his or her home directory are searched for appropriate information. If
all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use
for the connection; it will normally be the value returned from the call
getservbyname(exec,tcp) (see getservent(3n)). The protocol for
connection is described in detail in rexecd(Bn).

If the call succeeds, a socket of type SOCK_STREAM is returned to the
caller, and given to the remote command as stdin and stdout. If fd2p is
nonzero, then an auxiliary channel to a control process will be set up, and
a descriptor for it will be placed in *fd2p. The control process will return
diagnostic output from the command (unit 2) on this channel, and will also
accept bytes on this channel as being UTek signal numbers, to be
forwarded to the process group of the command. If fd2p is 0, then the
stderr (unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to the
remote process, although you may be able to get its attention by using
out-of-band data.

CAVEATS
There is no way to specify options to the socket call which rexec makes.

SEE ALSO
rcmd(Jn), rexecd(8n), .rhosts(5n), hosts.equiv(5n).

REV MAR 1985

413

INTR0(3S) COMMAND REFERENCE INTR0(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include (stdio.h >
FILE *Stdin;
FILE *Stdout;
FILE *Stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering
scheme. The in-line macros getc and putc(3s) handle characters quickly.
The higher level routines gets, fgets, scanf, fscanf, fread, puts, fputs,
printf, fprintf, and fwrite all use getc and putc; they can be freely
intermixed.

A file with associated buffering is called a stream, and is declared to be a
pointer to a defined type FILE. Fopen(3s) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. There are three normally open streams with constant
pointers declared in the include file and associated with the standard open
files:

st din
stdout
stderr

Standard input file.
Standard output file.
Standard error file.

A constant pointer NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end-of-file or error by
integer functions that deal with streams.

Any routine that uses the standard input/output package must include the
header file (stdio.h) of pertinent macro definitions. The functions and
constants mentioned in sections labeled 3S are declared in the include file
and need no further declaration. The constants, and the following
functions are implemented as macros; redeclaration of these names is
perilous: getc, getchar, putc, putchar, feof, terror, and fileno.

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not
been initialized with fopen, input (output) has been attempted on an
output (input) stream, or a FILE pointer designates corrupt or otherwise
unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has
been changed to line buffer output to a terminal by default and attempts
to do this transparently by flushing the output whenever a read(2) from the
standard input is necessary. This is almost always transparent, but may
cause confusion or malfunctioning of programs which use standard 1/0
routines but use read(2) themselves to read from the standard input.

REV MAR 1985

414

INTR0(3S) COMMAND REFERENCE INTR0(3S)

In cases where a large amount of computation is done after printing part
of a line on an output terminal, it is necessary to fflush(3s) the standard
output before going off and computing so that the output will appear.

CAVEATS
The standard buffered functions do not interact well with certain other
library and system functions, especially vfork and abort.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3s), fseek(3s).

2 REV MAR 1985

415

FCLOSE(3S) COMMAND REFERENCE FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include (stdio.h)

fclose(stream)
FILE *Stream;

fflush(stream)
FILE *Stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the
file to be closed. Buffers allocated by the standard input/output system
are freed.

Fclose is performed automatically upon calling exit(3c).

Fflush causes any buffered data for the named output stream to be
written to that file. The stream remains open.

DIAGNOSTICS
These routines return o on successful completion and EOF if buffered data
cannot be transferred to the file.

SEE ALSO
c/ose(2), exit(3c), fopen(Js), setbuf(3s).

REV SEP 1985

416

FERROR (3S) COMMAND REFERENCE FERROR (3S)

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <Stdio.h>

feof (stream)
FILE *Stream;

ferror(stream)
FILE *Stream

clearerr(stream)
FILE *Stream

fileno(stream)
FILE *Stream;

DESCRIPTION
Feof returns nonzero when end-of-file is read on the named input stream;
otherwise, it is zero.

Ferrar returns nonzero when an error has occurred reading or writing the
named stream; otherwise, it is zero. Unless cleared by clearerr, the error
indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream; see
open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3s), open(2).

417

FFLUSH(3S) COMMAND REFERENCE FFLUSH(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include (stdio.h)

fclose(stream)
FILE *Stream;

fflush(stream)
FILE *Stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the
file to be closed. Buffers allocated by the standard input/output system
are freed.

Fclose is performed automatically upon calling exit(3c).

Fflush causes any buffered data for the named output stream to be
written to that file. The stream remains open.

DIAGNOSTICS
These routines return o on successful completion and EOF if buffered data
cannot be transferred to the file.

SEE ALSO
close(2), exit(3c), fopen(3s), setbuf(3s).

REV SEP 1985

418

FOPEN (3S) COMMAND REFERENCE FOPEN (3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <Stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *Stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it.
Fopen returns a pointer to be used to identify the stream in subsequent
operations.

Type is a character string having one of the following values:

r means open for reading

w means create for writing

a means append: open for writing at end of file, or create for
writing

In addition, each type may be followed by a+ to have the file opened for
reading and writing. r+ positions the stream at the beginning of the file,
w+ creates or truncates it, and a+ positions it at the end. Both reads and
writes may be used on read/write streams, with the limitation that an
fseek, rewind, or reading an end-of-file must be used between a read
and a write or vice-versa.

Freopen substitutes the named file in place of the open stream. It returns
the original value of stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin,
stdout, and stderr, to specified files.

Fdopen associates a stream with a file descriptor obtained from open,
dup, creat, or pipe(2). The type of the stream must agree with the mode
of the open file.

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be
accessed.

CAVEATS
Fdopen is not portable to systems other than UT ek.

The read/write types do not exist on all systems. Those systems without
read/write modes will probably treat the type as if the + was not present.
These are unreliable in any event.

SEE ALSO
open(2), fclose(3s).

419

FREAD (3S) COMMAND REFERENCE FREAD (3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <Stdio.h>

fread(ptr, sizeof(*ptr), nitems, stream)
FILE *Stream;

fwrite(ptr, sizeof{*ptr), nitems, stream)
FILE *Stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of
*ptr from the named input stream. It returns the number of items actually
read.

If stream is stdin and the standard output is line buffered, then any partial
output line will be flushed before any call to read(2) to satisfy the fread .

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr
to the named output stream. It returns the number of items actually
written.

DIAGNOSTICS
Fread and fwrite return O upon end-of-file or error.

SEE ALSO
read(2), write(2), fopen(3s), getc(3f), gets(3s), printf(3s), putc(3s), puts(3s),
scanf(3s).

420

FSEEK (3S) COMMAND REFERENCE FSEEK (3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <Stdio.h>

fseek(stream, offset, ptrname)
FILE *Stream;
long offset;

long ftell(stream)
FILE *Stream;

rewind(stream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from the
beginning, the current position, or the end of the file, deturmined by
whether ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3s).

Ftell returns the current value of the offset relative to the beginning of the
file associated with the named stream. It is measured in bytes on UTek;
on some other systems it is a magic cookie, and the only foolproof way to
obtain an offset for fseek.

Rewind (stream) is equivalent to fseek (stream, OL, 0).

DIAGNOSTICS
Fseek returns -1 for improper seeks.

SEE ALSO
lseek(2), fopen(3s).

421

GETC (3S) COMMAND REFERENCE GETC (3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include <Stdio.h>

int getc(stream)
FILE *stream;

int getcharO

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may
be used to save object text.

Getw returns the next word (in a 32-bit integer) from the named input
stream. It returns the constant EOF upon end-of-file or error, but since
that is a good integer value, feof and ferror(3s) should be used to check
the success of getw. Getw assumes no special alignment in the file.

DIAGNOSTICS
These functions return the integer constant EOF at end-of-file or upon
read error.

A stop, with the message, Reading bad file, means an attempt has been
made to read from a stream that has not been opened for reading by
fopen.

CAVEATS
The end-of-file return from getchar is incompatible with that in UNIX
editions 1-6.

Because it is implemented as a macro, getc treats a stream argument
with side effects incorrectly. In particular, getc(*f++); doesn't work
sensibly.

SEE ALSO
fopen(3s), putc(3s), gets(3s), scanf(3s), fread(3s), ungetc(3s).

422

GETS (3S) COMMAND REFERENCE GETS (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <Stdio.h>

char *gets(s)
char *S;

char *fgets(s, n, stream)
char *S;
FILE *Stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The
string is terminated by a newline character, which is replaced ins by a
null character. Gets returns its argument.

Fgets reads n-1 characters, or up to a newline character, whichever
comes first, from the stream into the strings. The last character read into
s is followed by a null character. Fgets returns its first argument.

DIAGNOSTICS
Gets and fgets return the constant pointer NULL upon end-of-file or
error.

CAVEATS
Gets deletes a newline, and fgets keeps it, all in the name of backward
compatibility.

SEE ALSO
puts(3s), getc(3f), scanf(3s), fread(3s), ferror(3s).

423

POPEN(3S) COMMAND REFERENCE POPEN (3S)

NAME
popen, pclose - initiate 1/0 to/from a process

SYNOPSIS
#include <Stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *Stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings
containing respectively a shell command line and an 1/0 mode, either r
for reading or w for writing. It creates a pipe between the calling process
and the command to be executed. The value returned is a stream pointer
that can be used (as appropriate) to write to the standard input of the
command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for
the associated process to terminate and returns the exit status of the
command.

Because open files are shared, a typer command may be used as an
input filter, and a type w as an output filter.

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be created, or
the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a popened command.

CAVEATS
Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing, for instance, with fflush, see
fclose(3S).

Popen alwyas calls sh; it never calls csh.

SEE ALSO
pipe(2), fopen(3S), fclose(3S), system(3S), wait(2), sh(lsh).

424

PRINTF(3S) COMMAND REFERENCE PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include (stdio.h)

int printf(format [, arg] ...)
char *format;

int fprintf(stream, format [, arg] ...)
FILE *Stream;
char *format;

char *Sprintf(s, format [, arg] ...)
char *S, format;

DESCRIPTION
Printf places output on the standard output stream stdout. The return
value is O unless an error occurred, in which case EOF is returned.

Fprintf places output on the named output stream. The return value is 0
unless an error occurred, in which case EOF is returned.

Sprintf places output in the string s, followed by the character \0. The
return value is a pointer to the strings.

Each of these functions converts, formats, and prints its arguments after
the first, under control of the first argument. The first argument is a
character string which contains two types of objects: plain characters,
which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next
successive arg printf.

Each conversion specification is introduced by the character%.
Following the %, there may be, in this order

- An optional minus sign (-) which specifies left adjustment of the
converted value in the indicated field.

- An optional digit string specifying a field width; if the converted value
has fewer characters than the field width, it will be blank-padded on the
left (or right, if the left-adjustment indicator has been given) to make up
the field width; if the field width begins with a zero, zero-padding will be
done instead of blank-padding.

- An optional dot(.) which serves to separate the field width from the
next digit string.

- An optional digit string specifying a precision which specifies the
number of digits to appear after the decimal point, fore- and f
conversion, or the maximum number of characters to be printed from a
string

- An optional # character specifying that the value should be converted
to an alternate form. For c, d, s, and u conversions, this option has no
effect. For o conversions, the precision of the number is increased to

425

PRINTF(3S) COMMAND REFERENCE PRINTF(3S)

force the first character of the output string to a zero. For x(X)
conversion, a nonzero result has the string Ox(OX) prepended to it. Fore,
E, f, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point only appears
in the results of those conversions if a digit follows the decimal point).
For g and G conversions, trailing zeros are not removed from the result
as they would otherwise be.

- The character I specifying that a following d, o, x, or u corresponds to
a long integer arg.

- A character which indicates the type of conversion to be applied.

A field width or precision may be* instead of a digit string. In this case
an integer arg supplies the field width or precision.

The conversion characters and their meanings are:

dox The integer arg is converted to decimal, octal, or hexadecimal
notation respectively.

f The float or double arg is converted to decimal notation in the style
[-]ddd.ddd where the number of d's after the decimal point is
equal to the precision specification for the argument. If the
precision is missing, six digits are given; if the precision is explicitly
0, no digits and no decimal point are printed.

e The float or double arg is converted in the style [-]d.ddde ± dd
where there is one digit before the decimal point and the number
after is equal to the precision specification for the argument; when
the precision is missing, six digits are produced.

g The float or double arg is printed in styled, in style f, or in style e,
whichever gives full precision in minimum space.

c The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from
the string are printed until a null character or until the number of
characters indicated by the precision specification is reached;
however if the precision is 0 or missing, all characters up to a null
are printed.

u The unsigned integer arg is converted to decimal and printed (the
result will be in the range O through MAXUINT, where MAXUINT
equals 4294967295 on a VAX-11 and 65535 on a PDP-11).

o/o Print a%; ·no argument is converted.

In no case does a nonexistent or small field width cause truncation of a
field; padding takes place only if the specified field width exceeds the
actual width. Characters generated by printf are printed by putc(3s).

2 REVMAR1985

426

PRINTF(3S) COMMAND REFERENCE PRINTF(3S)

EXAMPLES
To print a date and time in the form Sunday, July 3, 10:02, where weekday
and month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour,
min);

To print 7r to five decimals:

printf("pi = %. 5f", 4*atan(1.0));

CAVEATS
It is up the the programmer to ensure that the parameters passed to printf
match the format string. Programming errors which cause a type
mismatch may induce fatal runtime errors. Also, very wide specifier fields
()128 characters) fail.

SEE ALSO
putc(3s), scanf(3s), ecvt(3c).

3 REV MAR 1985

427

PUTC(3S) COMMAND REFERENCE PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include (stdio.h >
int putc(c, stream)
char c;
FILE *Stream;

putchar(c)

fputc(c, stream)
FILE *Stream;

putw(w, stream)
FILE *Stream;

DESCRIPTION
Putc appends the character c to the named output stream. It returns the
character written.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro.

Putw appends word (that is, int) w to the output stream. It returns the
word written. Putw neither assumes nor causes special alignment in the
file.

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good
integer, ferror(3s) should be used to detect putw errors.

CAVEATS
Because it is implemented as a macro, putc treats a stream argument
with side effects improperly. In particular

putc(c, *f++);

doesn't work sensibly.

Errors can occur long after the call to putc.

SEE ALSO
fopen(3s), fc/ose(3s), getc(3s), puts(3s), printf(3s), jread(3s).

REV MAR 1985

428

PUTS(3S) COMMAND REFERENCE PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include (stdio.h)

puts(s)
char *S;

fputs(s, stream)
char *s;
FILE *Stream;

DESCRIPTION
Puts copies the null-terminated strings to the standard output stream
stdout and appends a newline character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

CAVEATS
Puts appends a newline, and fputs does not, all in the name of backward
compatibility.

SEE ALSO
fopen(3s), gets(3s), putc(3s), printf(3s), ferror(3s) fread(3s).

REVMAR1985

429

SCANF(3S) COMMAND REFERENCE SCANF(3S)

NAME
scant, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <Stdio.h>

scanf(format [, pointer] . .
char *format;

fscanf(stream, format [, pointer] . .
FILE *Stream;
char *format;

sscanf(s, format [, pointer] ..)
char *S, *format;

DESCRIPTION
Scant reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character strings. Each
function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects as arguments a control
string format, described below, and a set of pointer arguments indicating
where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. Blanks, tabs or newlines, which match optional white space in the
input.

2. An ordinary character (not O/o) which must match the next character
of the input stream.

3. Conversion specifications, consisting of the character O/o, an optional
assignment suppressing character*, an optional numerical maximum
field width, and a conversion character.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding
argument, unless assignment suppression was indicated by *. An input
field is defined as a string of nonspace characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. The
following conversion characters are legal:

c A character is expected; the corresponding argument should be a
character pointer. The normal skip-over space characters is
suppressed in this case; to read the next nonspace character, try
O/o1s. If a field width is given, the corresponding argument should
refer to a character array, and the indicated number of characters is
read.

430

SCANF(3S) COMMAND REFERENCE SCANF(3S)

d A decimal integer is expected; the corresponding argument should be
an integer pointer.

e A floating point number is expected; the next field is converted
f accordingly and stored through the corresponding argument, which

should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field consisting of an
E ore followed by an optionally signed integer.

o An octal integer is expected; the corresponding argument should be
a integer pointer.

s A character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \0, which will be
added. The input field is terminated by a space character or a
newline.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

% A single O/o is expected in the input at this point; no assignment is
done.

Indicates a string not to be delimited by space characters. The left
bracket is followed by a set of characters and a right bracket; the
characters between the brackets define a set of characters making
up the string. If the first character is not a caret (-), the input field
is all characters until the first character not in the set between the
brackets; if the first character after the left bracket is - , the input field
is all characters until the first character which is in the remaining set
of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, o, and x may be capitalized or preceeded
by I to indicate that a pointer to long rather than to int is in the argument
list. Similarly, the conversion characters e or f may be capitalized or
preceded by I to indicate a pointer to double rather than to float. The
conversion characters d, o, and x may be preceeded by h to indicate a
pointer to short rather than to int.

The scanf functions return the number of successfully matched and
assigned input items. This can be used to decide how many input items
were found. The constant EOF is returned upon end of input; note that
this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character
in the input.

2
431

SCANF(3S) COMMAND REFERENCE SCANF(3S)

EXAMPLES
The following call with the input line

25 54.J2E:1 thompson

will assign to i the value 25, x the value 5.432, and name will contain
'thompson\0':

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

In the next example, the input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name.

inti; float x; char name[50];
scanf("%2d%f%*d%[12J4567890]", &i, &x, name);

After this, the next call to getchar will return a.

DIAGNOSTICS
The scant functions return EOF on end of input, and a short count for
missing or illegal data items.

CAVEATS
The success of literal matches and suppressed assignments is not
directly determinable.

SEE ALSO
atof(JC), getc(JS), printf(JS).

3

432

SETBUF(3S) COMMAND REFERENCE SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS
#include <Stdio.h>

setbuf(stream, buf)
FILE *Stream;
char *buf;

setbuffer(stream, buf, size)
FILE *Stream;
char *buf;
int size;

setlinebuf(stream)
FILE *Stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and
line buffered. When an output stream is unbuffered, information appears
on the destination file or terminal as soon as written; when it is block
buffered, many characters are saved up and written as a block; when it is
line buffered, characters are saved up until a newline is encountered or
input is read from stdin. Fflush (see fclose(3S)) may be used to force the
block out early. Normally all files are block buffered. A buffer is obtained
from malloc(3C) upon the first getc or putc(3S) on the file. If the standard
stream stdout refers to a terminal, it is line buffered. The standard stream
stderr is always unbuffered.

Setbuf is used after a stream has been opened but before it is read or
written. The character array buf is used instead of an automatically
allocated buffer. If buf is the constant pointer NULL, input/output will be
completely unbuffered. A manifest constant BUFSIZ tells how big an array
is needed. For example:

char buf[BUFSIZ];

Setbuffer, an alternate form of setbuf, is used after a stream has been
opened but before it is read or written. The character array buf whose
size is determined by the size argument is used instead of an
automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

Setlinebuf is used to change stdout or stderr from block buffered or
unbuffered to line buffered. Unlike setbuf and setbuffer it can be used
at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered
by using freopen (see fopen(3S)). A file can be changed from block
buffered or line buffered to unbuffered by using freopen followed by
setbuf with a buffer argument of NULL.

433

SETBUF(3S) COMMAND REFERENCE SETBUF (3S)

CAVEATS
The standard error stream should be line buffered by default.

The setbuffer and setlinebuf functions are not portable to non 4.2 BSD
versions of UNIX.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3C), fclose(3S), puts(3S), printf(3S),
fread(3S).

2

STDl0{3S) COMMAND REFERENCE STDl0(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include (stdio.h)

FILE *Stdin;
FILE *Stdout;
FILE *Stderr;

DESCRIPTION
The functions described in Sections 3S constitute a user-level buffering
scheme. The in-line macros getc and putc(3s) handle characters quickly.
The higher level routines gets, fgets, scanf, fscanf, fread, puts, fputs,
printf, fprintf, and fwrite all use getc and putc; they can be freely
intermixed.

A file with associated buffering is called a stream. and is declared to be a
pointer to a defined type FILE. Fopen(3c) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. There are three normally open streams with constant
pointers declared in the include file and associated with the standard open
files:

st din
stdout
std err

Standard input file.
Standard output file.
Standard error file.

A constant pointer NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end-of-file or error by
integer functions that deal with streams.

Any routine that uses the standard input/output package must include the
header file (stdio.h) of pertinent macro definitions. The functions and
constants mentioned in sections labeled 3S are declared in the include file
and need no further declaration. The constants, and the following
functions are implemented as macros; redeclaration of these names is
perilous: getc, getchar, putc, putchar, feof, terror, fileno.

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not
been initialized with fopen, input (output) has been attempted on an
output (input) stream, or a FILE pointer designates corrupt or otherwise
unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has
been changed to line buffer output to a terminal by default and attempts
to do this transparently by flushing the output whenever a read(2) from the
standard input is necessary. This is almost always transparent, but may
cause confusion or malfunctioning of programs which use standard 1/0
routines but use read(2) themselves to read from the standard input.

REV MAR 1985

435

STDI0(3S) COMMAND REFERENCE STDI0(3S)

In cases where a large amount of computation is done after printing part
of a line on an output terminal, it is necessary to flush(3f) the standard
output before going off and computing so that the output will appear.

CAVEATS
The standard buffered functions do not interact well with certain other
library and system functions, especially vfork and abort.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3s), fseek(3s).

2 REV MAR 1985

436

SYSTEM(3S) COMMAND REFERENCE SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
system(string)
char *String;

DESCRIPTION
System causes the string to be given to sh(lsh) as input as if the string
had been typed as a command at a terminal. The current process waits
until the shell has completed, then returns the exit status of the shell.

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

CAVEATS
It is very important to remember that system executes sh. This means
that shell metacharacters such as '*' and ' : ' are interpreted, even when
present in filenames. This can cause undesirable results when system is
used to execute commands with arguments provided by the user.

Since system executes sh, the overhead of executing sh, such as
copying the environment into shell variables, causes system to be slower
than simply using fork and exec.

For these reasons, it is best to use system in cases where the command
to be executed contains shell variables and/or redirection and/or pipes,
which are difficult to build in to a program.

SEE ALSO
execve(2), fork(2), wait(2), popen(Js).

REV MAR 1985

437

UNGETC(3S) COMMAND REFERENCE

NAME
ungetc - push character back into input stream

SYNOPSIS
#include {stdio.h >
ungetc(c, stream)
FILE *Stream;

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back on an input stream. That character
will be returned by the next getc call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered. Attempts to
push EOF are rejected.

Fseek(3s) erases all memory of pushed back characters.

DIAGNOSTICS
Ungetc returns EOF if it cannot push a character back.

SEE ALSO
getc(3s), setbuf(3s), fseek(3s).

REV MAR 1985

438

CURSES (3T) COMMAND REFERENCE CURSES (3T)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
#include <eurses.h>
#include <termcap.h>

cc [flags] filenames -lcurses -ltermcap [libraries 1
DESCRIPTION

These routines give the user a method of updating screens with
reasonable optimization. They keep an image of the current screen, and
the user sets up an image of a new one. Then the refreshO tells the
routines to make the current screen look like the new one. In order to
initialize the routines, the routine initscrO must be called before any of
the other routines that deal with windows and screens are used. The
routine endwinO should be called before exiting.

FUNCTIONS:
addch(ch)
addstr(str)
box(wi n, vert, hor)
crmodeQ
clearo
clearok(scr, boo If)
clrtobotQ
clrtoeolQ
delchO
deletelnQ
delwin(win)
echoO
endwinO
eraseo
getchO
getcap(name)
getstr(str)
gettmodeO
getyx(win, y ,x)
inchO
initscrQ
insch(c)
insertlnO
leaveok(win ,boo If)
longname(termbuf ,name)
move(y,x)
mvcur(lasty,lastx,newy,newx)
newwin(lines,cols,begin_y ,begin__x)
nlQ
nocrmodeQ
noechoO
non IQ

439

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end-of-line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y ,x) coordinates
get char at current (y,x) coordinal
initialize screens
insert a char c
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window

set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping

CURSES (3T) COMMAND REFERENCE

norawo
overlay(win1 ,win2)
overwrite(win1 ,win2)
printw(fmt,arg1 ,arg2, ...)
rawo
refreshQ
resettyQ
savettyQ
scanw(fmt,arg1 ,arg2, ...)
scroll(win)
scrollok(win,boolf)
setterm(name)
standendQ
standoutQ
subwin(win,lines,cols,begin_y,begin_)()
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(wi n ,str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln(win)
wmove(win,y,x)
wprintw(win,fmt,arg1 ,arg2, ...)
wrefresh(win)
wscanw(win,fmt,arg1 ,arg2, ...)
wstandend(win)
wstandout(win)

CAVEATS

CURSES (3T)

unset raw mode
overlay winl on win2
overwrite winl on top of win2
printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
"change'' all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end-of-line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert char into win
insert line into win
set current (y,x) coordinates on win
printf on win
make screen look like win
scanf through win
end standout mode on win
start standout mode on win

The size of the termcap entry buffer in this system is required to be
TCAPSIZ (defined in termcap.h). If this is not true, the program may get
a memory fault.

SEE ALSO
getenv(3c), getenv(3f), termcap(5t).

2

440

TERMCAP(3T) COMMAND REFERENCE TERMCAP(3T)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent
operation routines

SYNOPSIS
#include (termcap.h >
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char*
tgetstr(id, area)
char *id, **area;

char*
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)();

DESCRIPTION
These functions extract and use capabilities from the terminal capability
data base termcap(5t). These are low level routines; see curses(Jt) for a
higher level package.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp
should be a character buffer of size TCAPSIZ (defined in termcap.h) and
must be retained through all subsequent calls to tgetnum, tgetflag, and
tgetstr.

Tgetent returns -1 if it cannot open the termcap file, O if the terminal
name given does not have an entry, and 1 if all goes well.

It will look in the environment for a TERMCAP variable. If found, and the
value does not begin with a slash(/), and the terminal type name is the
same as the environment string TERM, the TERMCAP string is used
instead of reading the termcap file. If it does begin with a slash, the
string is used as a pathname rather than !etc/termcap. This can speed up
entry into programs that call tgetent, as well as to help debug new
terminal descriptions or to make one for your terminal if you cannot write
the file /etc/termcap.

REV MAR 1985

441

TERMCAP(3T) COMMAND REFERENCE TERMCAP(3T)

FILES

Tgetnum gets the numeric value of capability id, returning -1 if is not
given for the terminal. Tgetflag returns 1 if the specified capability is
present in the terminal's entry; it returns 0 if it is not. Tgetstr gets the
string value of capability id, placing it in the buffer at area, advancing the
area pointer. It decodes the abbreviations for this field described in
termcap(5t), except for cursor addressing and padding information.

Tgoto returns a cursor addressing string decoded from cm to go to
column destcol in line destline. It uses the external variables UP (from the
up capability) and BC (if be is given rather than bs) if necessary to avoid
placing \n, (CTRL-0), or (CTRL-@) in the returned string. (Programs
which call tgoto should be sure to turn off the XTABS bit(s), since tgoto
may now output a tab. Note that programs using termcap should in
general turn off XTABS anyway, since some terminals use (CTRL-1) for
other functions, such as nondestructive space.) If a O/o sequence is given
which is not understood, then tgoto returns OOPS.

Tputs decodes the leading padding information of the string cp; affcnt
gives the number of lines affected by the operation, or 1 if this is not
applicable. Outc is a routine which is called with each character in turn.
The external variable ospeed should contain the output speed of the
terminal as encoded by ioct/(2). See the manual page for tty(4) for
information on the output speed. The external variable PC should contain
a pad character to be used (from the pc capability) if a null (<CTRL-@))
is inappropriate.

lusrllibllibtermcap.a -!termcap library.

!etc/termcap Database.

CAVEATS
In order to be able to work with longer termcap entries, TCAPSIZ is 2048.
Programs which do not use this size may get memory faults.

SEE ALSO
ex(l), curses(3t), tty(4), termcap(5t).

2 REV MAR 1985

442

INTR0(4N) COMMAND REFERENCE INTR0(4N)

NAME
networking - introduction to networking facilities

SYNOPSIS
#include (sys/socket.h >
#include <net/route. h >
#include (net/if.h)

DESCRIPTION
This section briefly describes the networking facilities available in the
system. Documentation in this part of section 4 is broken up into three
areas: protocol-families, protocols, and network interj aces. Entries
describing a protocol-family are marked 4F, while entries describing
protocol use are marked 4P. Hardware support for network interfaces are
found among the standard 4 entries.

All network protocols are associated with a specific protocol-family. A
protocol-family provides basic services to the protocol implementation to
allow it to function within a specific network environment. These services
may include packet fragmentation and reassembly, routing, addressing,
and basic transport. A protocol-family may support multiple methods of
addressing, though the current protocol implementations do not. A
protocol-family is normally comprised of a number of protocols, one per
socket(2) type. It is not required that a protocol-family support all socket
types. A protocol-family may contain multiple protocols supporting the
same socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A
specific protocol may be accessed either by creating a socket of the
appropriate type and protocol-family, or by requesting the protocol
explicitly when creating a socket. Protocols normally accept only one
type of address format, usually determined by the addressing structure
inherent in the design of the protocol-family/network architecture. Certain
semantics of the basic socket abstractions are protocol specific. All
protocols are expected to support the basic model for their particular
socket type, but may, in addition, provide non-standard facilities or
extensions to a mechanism. For example, a protocol supporting the
SOCK._STREAM abstraction may allow more than one byte of out-of
band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces
comprise the lowest layer of the networking subsystem, interacting with
the actual transport hardware. An interface may support one or more
protocol families, and/or address formats. The SYNOPSIS section of
each network interface entry gives a sample specification of the related
drivers for use in providing a system description to the config(B) program.
The DIAGNOSTICS section lists messages which may appear on the
console and in the system error log lusrladmlmessages due to errors in
device operation.

REV MAR 1985

443

INTR0(4N) COMMAND REFERENCE INTR0(4N)

PROTOCOLS

The system currently supports only the DARPA Internet protocols fully.
Raw socket interfaces are provided to IP protocol layer of the DARPA
Internet. Consult the appropriate manual pages in this section for more
information regarding the support for each protocol family.

ADDRESSING

Associated with each protocol family is an address format. The following
address formats are used by the system:

#define AF _UNIX
#define AF _INET

ROUTING

1
2

/* local to host (pipes, streams) *'
/* internetwork: UDP, TCP, etc. *'

The network facilities provided limited packet routing. A simple set of
data structures comprise a "routing table" used in selecting the
appropriate network interface when transmitting packets. This table
contains a single entry for each route to a specific network or host. A
user process, the routing daemon, maintains this data base with the aid
of two socket specific ioct/(2) commands, SIOCADDRT and SIOCDELRT.
The commands allow the addition and deletion of a single routing table
entry, respectively. Routing table manipulations may only be carried out
by super-user.

A routing table entry has the following form, as defined in (netlroute.h);

struct rtentry {
u_long
struct
struct
short
short
\Llong
struct

};

rt-..hash;
sockaddr rt_dst;
sockaddr rt_gateway;
rt_f'lags;
rt_refcnt;
rt_use;
ifnet *rt_ifp;

with rt-flags defined from,

#define
#define
#define

RTF_UP
RTF_GATEWAY
RTF_HOST

Ox1
Ox2
Ox4

/* route usable */
/* destination is a gateway */
/* host entry (net otherwise) */

Routing table entries come in three flavors: for a specific host, for all
hosts on a specific network, for any destination not matched by entries of
the first two types (a wildcard route). When the system is booted, each
network interface autoconfigured installs a routing table entry when it
wishes to have packets sent through it. Normally the interface specifies
the route through it is a "direct" connection to the destination host or
network. If the route is direct, the transport layer of a protocol family
usually requests the packet be sent to the same host specified in the

2 REVMAR1985

444

INTR0(4N) COMMAND REFERENCE INTR0(4N)

packet. Otherwise, the interface may be requested to address the packet
to an entity different from the eventual recipient (i.e. the packet is
forwarded).

Routing table entries installed by a user process may not specify the
hash, reference count, use, or interface fields; these are filled in by the
routing routines. If a route is in use when it is deleted (rt_refcnt is non
zero), the resources associated with it will not be reclaimed until further
references to it are released.

The routing code returns EEXIST if requested to duplicate an existing
entry, ESRCH if requested to delete a non-existant entry, or ENOBUFS if
insufficient resources were available to install a new route.

User processes read the routing tables through the ldevlkmem device.

The rt_use field contains the number of packets sent along the route.
This value is used to select among multiple routes to the same
destination. When multiple routes to the same destination exist, the least
used route is selected.

A wildcard routing entry is specified with a zero destination address value.
Wildcard routes are used only when the system fails to find a route to the
destination host and network. The combination of wildcard routes and
routing redirects can provide an economical mechanism for routing traffic.

INTERFACES

Each network interface in a system corresponds to a path through which
messages may be sent and received. A network interface usually has a
hardware device associated with it, though certain interfaces such as the
loopback interface, lo(4n), do not.

At boot time each interface which has underlying hardware support
makes itself known to the system during the autoconfiguration process.
Once the interface has acquired its address it is expected to install a
routing table entry so that messages may be routed through it. Most
interfaces require some part of their address specified with an
SIOCSIFADDR ioctl before they will allow traffic to flow through them. On
interfaces where the network-link layer address mapping is static, only
the network number is taken from the ioctl; the remainder is found in a
hardware specific manner. On interfaces which provide dynamic
network-link layer address mapping facilities (e.g. 1 OMb/s Ethernets), the
entire address specified in the ioctl is used.

The following ioctl calls may be used to manipulate network interfaces.
Unless specified otherwise, the request takes an ifrequest structure as its
parameter. This structure has the form

struct if req {
char ifr_name[16]; /* name of interface (e.g. "ln
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;

3
445

REVMAR1985

INTR0(4N) COMMAND REFERENCE

short ifru_flags;
} ifr_ifru;

#define ifr_addr
#define ifr_dstaddr
#define ifr_flags
};

SIOCSIFADDR

ifr_ifru.ifru_addr
ifr_ifru.ifru_dstaddr
ifr_ifru.ifru_flags

INTR0(4N)

/* address */
/* other end of p-to-p lin~
/* flags */

Set interface address. If the family is AF _INET then the Internet
address is set; family AF _UNSPEC sets the hardware address
(Ethernet). Following the address assignment, the "initialization"
routine for the interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDSTADDR
Set point to point address for interface.

SIOCGIFDSTADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any
processes currently routing packets through the interface are
notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf
structure (see below) as a value-result parameter. The ifc_len
field should be initially set to the size of the buffer pointed to by
ifc_buf. On return it will contain the length, in bytes, of the
configuration list.

'* *Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
*for machine (useful for programs which
* must know all networks accessible).

*' struct ifconf {
int ifc_len;
union {

caddr_t ifcu_buf;
struct ifreq *if cu_req;

} if c_if cu;
#define ifc_buf ifc_ifcu.ifcu_buf
#define ifc_req ifc_ifcu.ifcu_req
};

4

446

/* size of associated buffer */

/* buffer address */
/* array of structures returned */

REV MAR 1985

INTR0(4N) COMMAND REFERENCE INTR0(4N)

SEE ALSO
socket(2), ioct/(2), config(8), lna(4N), routed(8N).

5 REV MAR 1985

447

ARP(4N) COMMAND REFERENCE ARP(4N)

NAME
arp - Address Resolution Protocol

SYNOPSIS
pseudo-device ether

DESCRIPTION
ARP is a protocol used to dynamically map between DARPAlnternet and
1 OMb/s Ethernet addresses. It is used by all the 1 OMb/s Ethernet
interface drivers.

ARP caches Internet-Ethernet address mappings. When an interface
requests a mapping for an address not in the cache, ARP queues the
message which requires the mapping and broadcasts a message on the
associated network requesting the address mapping. If a response is
provided, the new mapping is cached and any pending messages are
transmitted. ARP will queue at most one packet while waiting for a
mapping request to be responded to; only the most recently "transmitted"
packet is kept.

To enable communications with systems which do not use ARP, ioctl's
are provided to enter and delete entries in the Internet-to-Ethernet
tables. Usage:

#include (sys/ioctl.h)
#include (sys/socket.h)
#include (net/if.h)
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr _t)&arpreq);

Each ioctl takes the same structure as an argument. SIOCSARP sets an
ARP entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an
ARP entry. These ioctls may be applied to any socket descriptors, but
only by the super-user. The arpreq structure contains:

I*
* ARP ioctl request
*I

struct arpreq {
struct sockaddr arp_pa;
struct sockaddr arp.Jia;
int arp_flags;
};
/* arp_flags field values */

·/* protocol address */
/* hardware address */
/* flags */

#define ATF_COM 2 /* completed entry (arp.Jia valid) *1
#define ATF_FERM 4 /* permanent entry */
#define ATF_FUBL 8 /* publish (respond for other host)

The address family for the arp_pa sockaddr must be AF JNET; for the
arp_ha sockaddr it must be AF_UNSPEC. The only flag bits which may
be written are A TF YERMandA TF YUBL. A TF YERM causes the entry
to be permanent if the ioctl call succeeds. The peculiar nature of the

REVMAR1985

448

ARP(4N) COMMAND REFERENCE ARP(4N)

ARP tables may cause the ioctl to fail if more than 4 (permanent) Internet
host addresses hash to the same slot. A TF YUBL specifies that the ARP
code should respond to ARP requests for the indicated host coming from
other machines. This allows a Sun to act as an "ARP server" which may
be useful in convincing an ARP-only machine to talk to a non-ARP
machine.

ARP watches passively for hosts impersonating the local host (i.e. a host
which responds to an ARP mapping request for the local host's address).

DIAGNOSTICS
duplicate IP address!!
sent from ethernet address:
%x: %x:%x: %x: %x: %x.
ARP has discovered another
host on the local network which
responds to mapping requests
for its own Internet attdress.

CAVEATS
ARP packets on the Ethernet use only 42 bytes of data, however, the
smallest legal Ethernet packet is 60 bytes (not including CRC). Some
systems may not enforce the minimum packet size, others will.

SEE ALSO
inet(4n), arp(8n), ifconfig(8n).

2 REV MAR 1985

449

CVT (4) COMMAND REFERENCE CVT (4)

NAME
cvt - table of kernel symbols

DESCRIPTION

FILES

Cvt is a special file in kernel memory containing a table of names and
values of kernel symbols. The table is accessed using the knlist(3c)
subroutine and provides a fast way to obtain current values for kernel
symbols.

The table format consists of a magic number identifying the table (0401),
a value giving the size of the table, and a value and name field for each
symbol included in the table. The magic number, the size and the symbol
values are of type "long"; names are null-padded strings aligned on
four-byte boundaries. The table is terminated with a null name (four
bytes of O's where a name field would normally be).

The table is built from a description file containing a list of kernel symbols
to be included.

ldevlcvt

SEE ALSO
knlist(3c).

standard name of cvt table

450

DF(4) COMMAND REFERENCE DF(4)

NAME
df - standard floppy disk driver for 6130 System workstations

DESCRIPTION

FILES

The df device provides access to the standard on-board flexible disk
drive. It uses 5 1 /4 inch, double-sided, double density soft-sectored
pre-formatted flexible disks. Formatted flexible disks contain 48 tracks
per inch, 9 sectors per track and 512 bytes per sector. The disks are
compatible with IBM PC disks.

Device naming conventions specify a two-letter description of the device,
followed by the slot number, followed by the drive number. The slot
number and drive number for integral devices are 0. The standard name
for the flexible disk is dfOO. The flexible disk may also be accessed in
character (raw) mode. The character device name is the block name with
an "r" prefixed. Standard device names df and rdf are linked to dfOO and
rdfOO, respectively, for ease of use.

It is possible to make make a file system on a floppy, using mkfs, and
mount the file system, using mount. Care must be taken if this is done
because the removal of a floppy diskette while it is mounted may cause a
loss of data on any diskette subsequently inserted in the floppy. It could
even cause UTEK to panic.

1/0 requests must begin on a sector boundary and must avoid going
beyond the end of the disk.

ldevldfOO, ldevldf

ldev/rdfOO, ldev/rdf

block files

raw files

DIAGNOSTICS
The following errors may be returned.

[EBUSY]
Drive not ready (on a read or write).

[ENXIO]
Nonexistent drive (on open); or (on a read or write) offset is too large
or not on a sector boundary.

[EIO]
A physical error other than "not ready".

SEE ALSO
open(2), mknod(2), diskpart(5), mkfs(8), mount(8).

REV SEP 1985

451

DS(4) COMMAND REFERENCE DS(4)

NAME
ds - SCSI Winchester disk

DESCRIPTION
The files /dev/dsxyz refer to the SCSI Winchester disk interface. The
61TC01 option 14 disk provides 40 Mb of storage in the same cabinet as
the 61 TC01 tape drive. The partition tables and overall operation of the
SCSI disk are identical to those for the built-in disk.

The raw disk (/dev/rdsxyz) is formatted with 512 byte blocks. All reads,
writes and seeks should be multiples of 512 bytes.

DIAGNOSTICS
dsxyz: no disk

An attempt was made to access a nonexistant disk drive.

dsxyz: blown format
The disk must be reformatted. See format(8).

dsxyz: hard error, sector nnnnn

RETURN VALUE

An unrecoverable disk error occurred. If the error is repeatable,
the drive should be reformatted and the given address added to
the defect list. This message is printed on the system console.

If an error occurs, the call returns -1 and one of the following values is
left in errno:

[ENODEV] You have attempted to open a nonexistant or unformatted
drive.

[ENXIO]

[EIO]

CAVEATS

You have attempted to read or write beyond the end of the
partition.

An unrecoverable 1/0 error has occurred.

Turning off the disk drive while it is in use may damage the file system or
crash the workstation.

SEE ALSO
dump(B), restore(B), format(8), mkfs(8), fstab(5).

452

DW(4) COMMAND REFERENCE DW(4)

NAME
dw - Winchester disk driver for 6130 System workstations

DESCRIPTION

FILES

The dw device provides access to the integral Winchester disk drive.
Device naming conventions specify a two letter description of the device,
followed by the slot number, followed by the drive number, followed by
any partition information. The slot number and drive number for integral
devices are 0. The disk is normally divided into 16 disk partitions. The
desired partition is indicated by minor device number O through 15. The
partitions are named 'a' through 'p'. A partition on the standard
Winchester disk is therefore accessed as dwOO(a-p]

In block mode, the system accesses the disk via the normal file buffering
mechanism and allows reading and writing without regard to physical disk
records. A raw interface exists which provides one 110 operation per read
or write call. The names of the raw files are prefixed with 'r'.

The following disk drives are supported: Micropolis 1302, Micropolis 1304,
and Maxtor XT-1105. The Micropolis 1302 has 830 cylinders with 512
bytes/sector, 16 sectors/track and 3 tracks/cylinder. The Micropolis 1304
has 830 cylinders with 512 bytes/sector, 16 sectors/track and 6
tracks/cylinder. The Maxtor XT-1105 has 918 cylinders with 512
bytes/sector, 16 sectors/track and 11 tracks/cylinder.

110 requests must begin on a sector boundary and must not go beyond
the end of the disk. The dwOO a partition is normally used for the root file
system; and the dwOO b partition as a paging area. Partitions c through h
are considered data partitions and are currently not defined. Partitions i
through k are reserved for further use by UTek. Partition I covers
partitions a through h for easier referencing; partition m is used by the
UTek diagnostics; n is used as the defect partition (it contains the
manufacture's defect data). o is the maintainence partition; and p
references the entire disk. When accessing partitions a through k, a bad
sector replacement scheme is used to present a 11perfect11 disk. For
partitions I through p, no such scheme is used.

I dev I dwOO[a-pj

/devlrdwOO[a-pj

block files

raw files

DIAGNOSTICS
The following errors may be returned.

[EBUSY]
Drive not ready (on a read or write).

[ENXIO]
Nonexistent drive (on open); or (on a read or write) offset is too large
or not on a sector boundary.

[EIO]
A physical error other than "not ready".

REV SEP 1985

453

GINS(4) COMMAND REFERENCE GINS(4)

NAME
gins - GPIB instrument controller

SYNOPSIS
#include (box/gpib.h)
#include (sys/ioctl.h)

DESCRIPTION
This section describes both the instrument control special files and the
overall GPIB system organization.

System organization.

Each GPIB interface is associated with one configuration special file (
device), one interface special file (device), and up to 15 instrument
controller special files (devices). Configuration devices are used by the
GPIButilities gpconf(l), gpinit(l), and gprm(l) to set up the instrument
controller devices. They are described in gpid(4). Interface devices
support all GPIBoperations. They are also described in gpib(4).
Instrument control devices provide device-independent access to a single
GPIBinstrument. They are created by the gpconf(l) utility, and may be
given whatever names the user desires. Instrument control devices are
described below.

Applications which require the special features of the GPIB, such as the
ability to initiate a transfer in which the controller does not particitate,
should access the bus through the interface special files described in
gpib(4). Most applications do not need such features and should access
individual instruments through the instrument control devices.

The instrument control devices provide a device-independent means of
communicating with GPIBinstruments. In many cases, standard
commands such as cat(l) and echo(l) can be used to perform simple
control tasks without further programming. The system call ioctl(2) calls
configure the device and send interface messages. The system calls
read(2) and write(2) transfer device-dependent data without interpretation.
The GPIB is a message-oriented system; each read or write transfers a
single message. Note that this precludes the use of stdio(Js) which
assumes a stream-oriented device, although the function sscanf(Js) can
be used to format messages in a local buffer.

Configuration.

Instrument control devices are initially configured by the gpconf(l) utility.
Applications which need to change the device configuration "on the fly"
may use the GIOCGCONF and GIOCSCONF ioctl(2) described in gpib(4).
Specific differences in these calls are listed here:

Addr specifies the instrument's GPIBaddress. The primary address is
stored in the high byte. The secondary address is stored in the low byte.
Setting the primary address to NOADRS effectively removes the device
from the system.

REV MAR 1985

454

GINS(4) COMMAND REFERENCE GINS(4)

The SCAS, STD1, VSTD1, TCSYNC, and PPST flags are ignored.
TRDMA, EXCL, ASYNC, and NDELAY behave as described in gpib(4).
One new flag is added:

POLLME Enable polling of this instrument on service request. See the
description of the SRQ interrupt, below.

Interface messages.

ioctl(fd, GIOCCMD, cmd)
char cmd;

Assert ATN and send cmd on the GPIB. Cmd must be one of the
addressed commands defined in (boxlgpib.h). The driver will add the
appropriate device addresses just as it does for read(2) and write(2).

ioctl(fd, GIOCSPOLL, status)
char *Status;

Serial poll the instrument. If the POLLME flag is set and the instrument
has requested service since the last GIOCSPOLL or GIOCGSTAT, the
driver will return the saved status rather than polling the instrument
again.

Device-dependent messages.

The system calls read(2) and write(2) transfer device-dependent
messages. Each read transfers exactly one message. If the message is
longer than the buffer, the remaining bytes will be discarded. The term
field of the gpibstat structure (described below) records the termination
condition for the last transfer.

The driver sends the appropriate talk and listen addresses before each
transfer and UNT UNL afterwards.

Status and signals.

The GIOCGSTAT ioct/(2) returns the gpibstat structure described in
gpib(4) . Specific differences in this structure are listed here:

lntr records only the following events:

SRQ Service request. If the POLLME flag is set, the driver will poll
this instrument whenever it receives a bus SRQ message. If
this instrument is requesting service, the driver will set the
SRQ bit and update status.

LOST The instrument has requested service more than once. Only
the most recent status byte is saved.

If the ASYNC flag and the corresponding bit in the mask are set, the
driver will send a signal (SIGURG) to the associated pgrp. A service
request will also wake up processes waiting for an exception in select(2).
As a special case, if the POLLME flag is cleared, a select on an

2
455

REV MAR 1985

GINS(4) COMMAND REFERENCE GINS(4)

exception will enable polling until the device first requests service. At this
time, further polling will be disabled, the select will return, and a
GIOCGSTAT ioctl will report SRO and the device status.

Status is the instrument's last reported serial poll status.

Interaction with interface devices.

The driver arbitrates access to the interface hardware between the
interj ace device and any instrument control devices present. The driver
guarantees that there will be no interruptions during an instrument control
device operation (address-transfer-unaddress); in most cases, this will
be sufficient to prevent problems. You may use the GIOCASGN and
GIOCRELSE ioctls to prevent other devices from interrupting sequences
of operations.

SEE ALSO
gpconf(l), gpinit(l), gprm(l), gpstat(l), close(2), fcntl(2), ioctl(2), open(2),
read(2), select(2), sigvec(2), write(2), signal(3c), gpib(4), gpid(4), gins(4),
config(8).

3 REVMAR1985

456

GPIB(4) COMMAND REFERENCE GPIB(4)

NAME
gpib - GPIB interface driver

SYNOPSIS
#include (box/gpib.h)
#include (sys/ioctl.h)

DESCRIPTION
This section describes both the special files ldevlgpibn and the overall
GPIB system organization.

System organization.

Each GPIB interface is associated with one configuration special file (
device), one interface special file (device), and up to 15 instrument
controller special files (devices). Configuration devices are used by the
GPIB utilities gpconf(l), gpinit(l), and gprm(l) to set up the instrument
controller devices. They are described in gpid(4). Interface devices
support all GPIB operations. They are fully described below. Instrument
control devices provide device-independent access to a single GPIB
instrument. They are created by the gpconf(l) utility, and may be given
whatever names the user desires. Instrument control devices are
described in gins(4).

Applications which require the special features of the GPIB, such as the
ability to initiate a transfer in which the controller does not particitate,
should access the bus through the interface devices described here.
Most applications do not need such features and should access individual
instruments through the instrument control devices.

The ldevlgpibn devices allow direct control of the GPIB interface. Ioct/(2)
calls configure the interface and send interface messages. Read(2) and
write(2) transfer device-dependent data without interpretation. The GPIB
is a message-oriented system; each read or write transfers a single
message. Note that this precludes the use of stdio(3s) which assumes a
stream-oriented device, although the function sscanf(3s) can be used to
format messages in a local buffer.

Configuration.

The GIOCSCONF ioct/(2) sets or modifies the configuration of the
interface. GIOCGCONF returns the current settings. GIOCSCONF and
GIOCGCONF take the following structure (defined in (boxlgpib.h>) as
argument:

struct gpibconf {

REV SEP 1985

short gc_addr;
struct timeval gc.Jitime;
struct timeval gc_ptime;
short
long
short
short
};

gc_eom;
gc_flags;
gc_pgrp;
gc_mask;

457

/* GPIB address */
/* handshake timeout */
/* serial poll timeout */
/* end-of-message byte */
/* device-dependent control flags */
/* process or group to signal */
/* interrupt mask */

GPIB(4) COMMAND REFERENCE GPIB(4)

Addr specifies the interface's GPIB address. The primary address is
stored in the high byte. The secondary address (low byte) is forced to
NOADRS. Setting the primary address to NOADRS effectively removes
the interface from the system.

Htime and ptime specify the time limits for command/data transfers and
serial poll response, respectively. These values are the time allowed per
byte transferred. The actual timeout may be up to twice as long as
specified in certain cases. Setting the time to zero disables the timeout.

Eom is recognized as end-of-message during read(2). The driver
recognizes end-of-message, but does not modify the data. In particular,
the end-of-message byte is not removed or changed. Eom can be set to
-1 to disable end-of-message recognition. EOI will always terminate
input.

Flags encodes various options:

SCAS This interface is the GPIB system controller.

STD1

VSTD1

Reduce the interface T1 delay from 2.2 us to 1.2 us.

Reduce the interface T1 delay to 600 ns for the second and
following bytes of any device-dependent message.

TCSYNC Take control synchronously. Asynchronous assertion of ATN
(TCSYNC cleared) may cause data to be lost.

PPST Instrument status for parallel poll.

TRDMA Device-dependent data should be sent using OMA hardware, if
present.

POLLME (Not used by the interface device.)

EXCL Block further open(2) calls on this device. This bit may also be
set by the TIOCEXCL and cleared by the TIOCNXCL ioctls.

ASYNC Request asynchronous notification when the device status
changes. See the discussion of status and signals below.
ASYNC may also be set/cleared by the fcnt/(2) system call or
the FIOASYNC ioctl.

NDELAY Set the driver into non-blocking mode. Read(2), write(2), and
ioct/(2) will return EWOULDBLOCK if the interface is busy.
This bit may also be set/cleared by the FIONBIO ioctl or the
f cnt/(2) system call.

WEOI By default, this bit is turned on by the GPIB configuration utility
GPCONF(J). If a program turns this bit off and then writes
data, EOI won't be asserted with the last byte of the message.

Pgrp is the process group to be signalled when the driver is ready for 1/0
(SIGIO) or flags an exception (SIGURG). Note that the ASYNC flag must
be set to enable signalling. Pgrp defaults to the first process to open the
device. It may also be set/tested with the TIOCSPGRP/TIOCGPGRP
ioctls.

REV SEP 1985 2
458

GPIB(4) COMMAND REFERENCE GPIB(4)

Mask may be used to disable signals from certain events. See the
discussion of status and signals below.

Interj ace messages.

ioctl(fd, GIOCIFC, atv)
struct timeval *atv;

Send interface clear and take control. GIOCIFC will return an error if this
is not the system controller. Atv may be NULL, in which case IFC is
asserted for some default interval (0.5 second).

ioctl(fd, GIOCREN, aren)
int *aren;

Set the state of the interface REN line. GIOCREN will return an error if
this is not the system controller.

ioctl(fd, GIOCCMD, cmd)
char *Cmd;

Assert ATN and send cmd on the GPIB. Addressed, universal, and
secondary commands are defined in (boxlgpib.h). Cmd may point to a
null character ('\0') to take control (assert ATN) without sending any
command. The null will not be sent.

ioctl(fd, GIOCWEND, atv)
struct timeval *atv;

Drop ATN and wait for the data transfer to complete. There is no default
time value. Atv specifies the maximum time to be allowed for the
transfer.

ioctl(fd, GIOCSPOLL, status)
char *status;

Drop ATN and read one byte from the GPIB. This call is used to read the
serial poll status from a previously addressed device. You must use
GIOCSPOLL to read the serial poll status from a device; attempting to
use read(2) may hang the GPIB.

ioctl(fd, GIOCPPOLL, status)
char *Status;

Assert ATN with EOI (GPIB IDY message) and return the GPIB data.

Device-dependent messages.

Read(2) and write(2) transfer device-dependent messages. Each read
transfers exactly one message. If the message is longer than the buffer,
the remaining bytes will be discarded. The term field of the gpibstat
structure (described below) records the termination condition for the last
transfer.

REV SEP 1985 3
459

GPIB(4) COMMAND REFERENCE GPIB(4)

Status and signals.

The GIOCGSTAT ioctl(2) returns the following structure (defined in
(boxlgpib.h)):

struct gpibstat {
short

};

char
char
long

gs_intr;
gs_status;
gs_ term;
gs_state;

/* pending interrupts */
/* device status byte */
/* last I/O terminator */
/* interface state */

lntr records the following events:

SRO Service request. This bit will remain set as long as the GPIB
SRO message is true.

LOST (Not used by the interface device.)

RLC

TCT

DCAS

SPAS

GET

Remote/local status change. The current status is part of the
interface state.

Take control message received. Control is being passed to
this interface. You must accept control (GIOCACPT ioctl)
before attempting any 110.

Device clear active state. The driver interrupts any active 110
and sets this flag when the GPIB DCL or SOC message is
received.

Serial poll active state. The controller has polled this interface
and the status may be changed.

Device trigger message received.

IFC Interface clear message received.

MTA My talk address. The interface has entered the talker active
state.

MLA My listen address. The interface has entered the listener
active state.

IWANT I want control. This bit is provided for the benefit of certain
shared-control applications. It is set by a read or write to an
instrument control device if this interface is not the controller
in-charge.

When one of these events occurs, the status bit is set. SRO, TCT, and
IWANT stay active until the associated condition goes away. Other bits
are cleared when read.

If the ASYNC flag and the corresponding bit in the mask are set, the
driver will send a signal to the associated pgrp. MTA and MLA send
SIGIO; all other interrupts send SIGURG. An interrupt will also wake up a
process waiting in select(2). MTA and MLA will wake up a process waiting
for write or read, respectively. Other interrupts will wake up processes
waiting for exceptions.

REV SEP 1985 4

460

GPl8(4) COMMAND REFERENCE GPl8(4)

Status is this interface's serial poll status, set by the GIOCSSTAT or
GIOCRSV ioctls(2). It is not generally useful.

Term records the termination status for the last 1/0 operation:

END EOI was asserted with the last byte placed in the buffer.

EOM The last byte placed in the buffer was the end-of-message
byte.

ERR There were no active listeners on the bus. (The write(2)
returns EIO.)

TIME The transfer timed out. (The read(2) or write(2) returns EIO.)

INTR The transfer was interrupted by an interface message which
changed the addressed state of the interface.

State records the current addressed state of the interface, along with
some other values. See (gpib.h > for a complete list.

Interaction with instrument control devices.

The driver arbitrates access to the interface hardware between the
interface device and any instrument control devices present. To prevent
interference from other users, you must assign the GPIB during each
sequence of operations.

ioctl(fd, GIOCASGN, was)
int *was;

If was is non-null, GIOCASGN returns the previous (assigned/not
assigned) state. If the NDELAY flag is set and the interface is busy,
GIOCASGN will return EWOULDBLOCK.

ioctl(fd, GIOCRELSE, NULL)

Release the GPIB for other use.

SEE ALSO
gpconf(l), gpinit(l), gprm(l), gpstat(l), close(2), fcnt/(2), ioct/(2), open(2),
read(2), select(2), sigvec(2), write(2), sigset(3J), gpib(4), gpid(4), gins(4),
config(8).

REV SEP 1985 5

461

GPID(4) COMMAND REFERENCE GPID(4)

NAME
gpid - GPIB configuration device

SYNOPSIS
#include (box/gpib.h)
#include (sys/ioctl.h)

DESCRIPTION
The gpid device is used by the GPIB utilities to create, modify, and
remove the GPIB instrument control devices described in gins(4). It is
normally accessible only to the super-user. Gpid understands a modified
form of the GPIB ioctls GIOCGCONF and GIOCSCONF; the low-order bits
of the command (normally zero) are the internal unit number of the device
to be configured.

SEE ALSO
gpconf(l), gpinit(l), gprm(l), gpstat(l), close(2), ioct/(2), open(2), gpib(4),
gpid(4), gins(4), config(8).

REV SEP 1985

462

HC(4) COMMAND REFERENCE HC(4)

NAME
he - hard copy interface for 6130 System workstations

DESCRIPTION

FILES

He provides the interface to any Centronics type parallel interface devices
such as line printers, hard copy units, plotters or other output devices.
When the device is opened or closed, no page ejects are generated.

The unit number of the printer is specified by the minor device after
removing the lowest byte which act as per-device parameters. Currently
only the lowest three bits of the byte are interpreted. If bit 2 is set to 1, a
carriage return is output before each newline character in the data buffer.
If bit 1 is set to 0, all characters are "passed through" to the driver with
no character editing. If bit 1 is set to 1, the device is treated as having a
64-character set, rather than a full 96-character set. In the resulting
half-ASCII mode, the characters from columns 6 and 7 of the ASCII
codes chart are directly translated to the corresponding row character in
columns 4 and 5. The least significant bit of the minor device number is
used to specify channel O (bit set to 0) or channel 1 (bit set to 1) of the
interface.

An ioctl call is also available to change the device operating modes. The
request value of the call is 0 to clear CRM and RCSM, 2 to set RCSM, 4
to set CRM, and 6 to set both modes. Each ioctl call will cause the
modes to be cleared before the values of the request are set.

The driver does not interpret any control characters. It also does not
make any assumptions about form width, form length, tab stop positions,
etc.

/dev/hc

DIAGNOSTICS
ENXIO, EBUSY, EIO, ENOTTY

SEE ALSO
lpr(l), ioct/(2), mknod(8).

REV SEP 1985

463

HS(4) COMMAND REFERENCE HS(4)

NAME
hs - high-speed serial interface to 4100 series Option 3C

SYNOPSIS
#include (machine/hsio.h)
#include <sys/ioctl. h >

DESCRIPTION
This device driver provides the capability to communicate with a Tektronix
4100 series terminal equipped with Option 3C or a standard Tektronix
4111 terminal. Used in conjunction with the standard RS-232 interface of
the terminal, the High-speed Serial interface allows copying large
volumes of pixel data and picture processor commands between
workstation and terminal at rates up to one half megabit per second.

Part of the speed advantage over normal RS-232 communication is due
to the data transmission facility itself. The hs device implements a simple
block handshake protocol with CRC protection that insures reliable
transmission over a serial data link using RS-422 electrical
characteristics.

A further contributing factor in the long term transmission rate is the
format of terminal data. Since the hs device is treated as a separate
device by the terminal, the pixel and other display data does not have to
conform to the 7-bit ASCII conventions (escape sequences) of normal
RS-232 communications with a 4100 series terminal. Pixel data may be
sent as a simple bit array. Vector and other drawing commands may be
sent as "picture processor" instructions, eliminating the time consuming
process of packing xy coordinates into 7-bit ASCII (and subsequent
unpacking in the terminal).

The 4100 terminal treats the hs interface as a pseudo-device (DM:), from
which data can be copied to the display as pixels (PX:) or picture
processor commands (DS:) or to a particular segment (SG:). The copy
operation is started by sending a "copy" command to the terminal. Until
a copy command is sent to the terminal, the hs device will not be able to
send or receive data. After a copy command is sent to the terminal, the
terminal will not respond to RS-232 commands or data until the copy
command terminates.

Reads and writes for the hs device should only follow a valid copy
command. A "copy from DM:" at the terminal is associated with writing to
the hs device. A "copy to DM:" is associated with reading the hs device.
Once copying has started, hs device operation must be completed.
Completion of a "copy from DM:" will normally result from the hs device
sending an end-of-file indication. The hs device will send an end-of-file
if the hs device is closed after writing or if the ioctl HSSIOCEOF is
invoked. Completion of a "copy to DM:" will normally result from the
terminal finding an end-of-file condition in the source device. The
terminal will notify the hs device, which will return an end-of-file
indication to the read system call. Once a "copy to DM:" has been
initiated, the hs device should be read until an end-of-file is reached or

REV SEP 1985

464

HS(4)

I OCT LS

FILES

COMMAND REFERENCE HS(4)

the terminal copy operation may not complete.

An alternative way to terminate a copy operation between the hs device
and Option 3C is to 11 cancel 11 the operation. This can be done from the
workstation by invoking the ioctl HSSIOCCANCEL. It can also be done
from the terminal by pressing the CANCEL key. (Interface operations
can not be reliably canceled from the terminal end. Under some
circumstances, the terminal is unable to successfully cancel a copy
command involving the DM: pseudo-device.)

The device may be opened for both read and write. However, it is not
legal to change direction in mid-file. A write command may not follow a
read unless the read returned end-of-file. Likewise, a read may not
follow a write: it may follow an HSSIOCEOF ioctl.

For a more complete description of the factors involved in programming
display operations involving the hs device and 4100 Option 3C, see the
4110/4120 Host Programming Manual. The manual includes the source
listing of a demonstration program which copies pixel images between
Utek files and the terminal screen.

Before using the hs device, disable the device as a login port (see the
System Administration Manual). The hs device is an exclusive-use
device, so it should be assigned before using.

HSSIOCEOF This ioctl sends an end of file to the terminal.
HSSIOCEOF is not legal if the device is open for read.

HSSIOCCANCEL
This ioctl sends a cancel to the terminal. The effect is to
shut down the current file transfer before the file has
finished being written or read.

/devlhs, /devlhs*
ldevltty*

DIAGNOSTICS
[EBUSY]

[EIO]

CAVEATS

Device already is use.

A message was sent to the system console with the form:
igenxxxxx: hard 1/0 error, eioqual: Oxn
The xxxxx will be either read or write. The value n will be
one of the following:
1 hardware link down. (Check the cable.)
2 apparent protocol failure. (Probably hardware.)
5 retry count exceeded. (Bad connection.)

If noise, bad connections, etc. are present, the link will slow down due to
retries. (In some rare circumstances, a slower baud rate setting may
deliver higher throughput.) If an exceptionally bad connection is used,
link operations may terminate with an error due to retry exhaustion.

REV SEP 1985 2

465

HS(4} COMMAND REFERENCE HS(4}

The link protocol used to connect the workstation and terminal delivers
only correct bits. If you see things on the screen which are wrong, they
are problems with the data being sent, not problems with the line or
equipment.

SEE ALSO
411014120 SERIES HOST PROGRAMMING MANUAL
411014120 SERIES COMMAND REFERENCE MANUAL

REV SEP 1985 3

466

ILAN(4N) COMMAND REFERENCE ILAN(4N)

NAME
ilan - intelligent local network interface

DESCRIPTION
The ilan interface provides access to a 10 Mb/s IEEE 802.3 (Ethernet)
network on 6200 series workstations.

The host's Internet address is set from the on board NVRAM, but may be
changed with an SIOCSIFADDR ioctl and family AF _INET. The host's
IEEE 802.3 (Ethernet) address is also set from the NVRAM.

Use netconfig(8n) to change the Internet address. The Ethernet address
should not be changed.

The ilan interface employs the address resolution protocol described in
arp(4n) to dynamically map between Internet and Ethernet addresses on
the local network.

A Time Domain Reflectometer measurement can be made with the
SIOCTDR ioctl. The return value has the following form:

struct tdr {

};

DIAGNOSTICS

unsigned shorttdr_ok:1, /* link okay */
tdr_prb:1, /* transceiver problem */
tdr_open:1,/* cable open*/
tdr_srt:1, /* cable shorted */
:1,
tdr_time:11;/* reflection time */

ilanO: can't handle afO/ox. The interface was handed a message with
addresses formatted in an unsuitable address family; the packet was
dropped.

CAVEATS
The current versions of the link controller and interface chip sometimes
produce incorrect TOR results.

SEE ALSO
intro(4N), inet(4N), arp(4N), ioct/(2).

REV MAR 1985

467

INET (4N) COMMAND REFERENCE INET (4N)

NAME
inet - Internet protocol family

SYNOPSIS
#include <Sys/types.h>
#include <netinet/in. h>

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the
Internet Protocol (IP) transport layer, and utilizing the Internet address
format. The Internet family provides protocol support for the
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the
SOCK_RAW interface provides access to the IP protocol.

Internet addresses are four byte quantities, stored in network standard
format (on the VAX these are word and byte reversed). The include file
<netinetlin.h> defines this address as a discriminated union.

Sockets bound to the Internet protocol family utilize the following
addressing structure,

struct sockaddr_in {

};

short
u_short
struct
char

sin.__family;
sin.__port;
in.__addr sin.__addr;
sin.__zero[8];

Sockets may be created with the address INADDR_ANY to effect
"wildcard" matching on incoming messages.

The Internet protocol family is comprised of the IP transport protocol,
Internet Control Message Protocol (ICMP), Transmission Control Protocol
(TCP), and User Datagram Protocol (UDP). TCP is used to support the
SOCK_STREAM abstraction while UDP is used to support the
SOCK_DGRAM abstraction. A raw interface to IP is available by creating
an Internet socket of type SOCK_RAW. The ICMP message protocol is
not directly accessible.

CAVEATS
the Internet protocols develop. Users should not depend on details of the
current implementation, but rather the services exported.

SEE ALSO
tcp(4N), udp(4N), ip(4n).

468

IP (4N) COMMAND REFERENCE IP (4N)

NAME
ip - Internet Protocol

SYNOPSIS
#include <Sys/socket.h>
#include <netinet/in.h>

s = socket(AF _INET, SOCK_RAW, O);

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family. It
may be accessed through a "raw socket" when developing new
protocols, or special purpose applications. IP sockets are connectionless,
and are normally used with the sendto and recvfrom calls, though the
connect(2) call may also be used to fix the destination for future packets
(in which case the read(2) or recv(2) and write(2) or send(2) system calls
may be used).

Outgoing packets automatically have an IP header prepended to them
(based on the destination address and the protocol number the socket is
created with). Likewise, incoming packets have their IP header stripped
before being sent to the user.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONNJ
when trying to establish a connection on a socket which already has
one, or when trying to send a datagram with the destination address
specified and the socket is already connected;

[ENOTCONNJ
when trying to send a datagram, but no destination address is
specified, and the socket hasn't been connected;

[ENOBUFSJ
when the system runs out of memory for an internal data structure;

[EADDRNOTAVAILJ

CAVEATS

when an attempt is made to create a socket with a network address
for which no network interface exists.

One should be able to send and receive IP options.

The protocol should be settable after socket creation.

SEE ALSO
send(2), recv(2), inet(4n), intro(4n).

469

KMEM(4) COMMAND REFERENCE KMEM(4)

NAME
mem, kmem - main memory

DESCRIPTION

FILES

Mem is a special file that is an image of the main memory of the
computer. It may be used, for example, to examine (and even to patch)
the system.

Byte addresses in mem are interpreted as physical memory addresses.
References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory
rather than physical memory is accessed.

ldevlmem

ldevlkmem

470

LNA(4N) COMMAND REFERENCE LNA(4N)

NAME
Ina - local network interface

DESCRIPTION
The Ina interface provides access to a 10 Mb/s IEEE 802.3 (Ethernet)
network on 6130 system workstations.

The host's Internet address is set from the on board NVRAM, but may be
changed with an SIOCSIFADDR ioctl and family AF _INET. The host's
IEEE 802.3 (Ethernet) address is also set from the NVRAM.

Use netconfig(8n) to change the Internet address. The Ethernet address
should not be changed.

The Ina interface employs the address resolution protocol described in
arp(4n) to dynamically map between Internet and Ethernet addresses on
the local network.

A Time Domain Reflectometer measurement can be made with the
SIOCTDR ioctl. The return value has the following form:

struct tdr {

};

DIAGNOSTICS

unsigned shorttdr_ok:l, /* link okay */
tdr_prb:l, /* transceiver problem */
tdr_open:l,/* cable open*/
tdr_srt:l, /* cable shorted */
:1,
tdr_time:ll;/* reflection time */

lnaO: low on mbufs. A packet was dropped because the system was
temporarily low on network buffers.

lnaO: can't handle afO/od. The interface was handed a message with
addresses formatted in an unsuitable address family; the packet was
dropped.

CAVEATS
The current versions of the link controller and interface chip sometimes
produce incorrect TOR results.

SEE ALSO
intro(4N), inet(4N), arp(4N), ioct/(2).

REV SEP 1985

471

LO (4N) COMMAND REFERENCE LO (4N)

NAME
lo - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop interface is a software loopback mechanism which may be used
for performance analysis, software testing, and/or local communication.
By default, the loopback interface is accessible at address 127.0.0.1
(non-standard); this address may be changed with the SIOCSIFADDR
ioctl.

DIAGNOSTICS
lo %d: can't handle af%d. The interface was handed a message with
addresses formatted in an unsuitable address family; the packet was
dropped.

CAVEATS
It should handle all address and protocol families. An approved network
address should be reserved for this interface.

SEE ALSO
inet(4n), intro(4n).

472

MEM(4) COMMAND REFERENCE MEM(4)

NAME
mem, kmem - main memory

DESCRIPTION

FILES

Mem is a special file that is an image of the main memory of the
computer. It may be used, for example, to examine (and even to patch)
the system.

Byte addresses in mem are interpreted as physical memory addresses.
References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory
rather than physical memory is accessed.

ldev/mem

ldevlkmem

SEE ALSO
brk(2).

REV MAR 1985

473

MTI0(4) COMMAND REFERENCE MTI0(4)

NAME
mtio - magnetic tape interface for 6130 System workstations

SYNOPSIS
#include <sys/types.h)
#include <sys/mtio.h)

DESCRIPTION
A number of ioctl operations are available on raw magnetic tape. The
following definitions are in <syslmtio.h):

struct mtop {

};

short mt_op;
daddr_t mt_count;

/* operations defined below */
/* how many of them */

Operations:

MTWEOF write an end-of-file record
MTFSF forward space file
MTBSF backward space file
MTFSR forward space record
MTBSR backward space record
MTREW rewind
MTOFFL rewind and put the drive offline
MTNOP no operation, sets status only
MTFSS forward space sequential file marks
MTBSS backward space sequential file marks
MTERA erase tape
MTEND move to end of media
MTTEN re-tension tape

Not all operations are defined on all devices. The type field in the mtget
structure below encodes some advisory information about drive
capabilities. See the include file and the individual device manual pages
for details.

Structure for MTIOCGET - mag tape get status command:

REV SEP 1985

struct mtget {

} ;

short mt_type;
short mt_dsreg;
short mt_erreg;
short mt_resid;
daddr_t mt_fileno;
daddr_t mt_blkno;

474

/* type of magtape device */
/* drive status (dev dependent)*/
/* error (device dependent)*/
/* residual count */
/* reserved */
/* reserved */

MTI0(4) COMMAND REFERENCE

The following values for mt_type are defined for 6130 System
workstations.

MTl0(4)

MT_ISWANGTEK Wangtek 5V4in cartridge tape drive

FILES

MT _ISXT 9-track tape

Mag tape IOCTL commands:

MTIOCTOP
MTIOCGET

do a mag tape operation
get tape status

/devl*tc*
/dev/*mt*

- cartridge tape interface
- 9-track tape interface

CAVEATS
The status is not returned in a device independent format.

SEE ALSO
cpio(1), dd(1), mt(1), tar(1), mt(4), tc(4), dump(8), restore(B).

REV SEP 1985 2

475

NULL(4)

NAME
null - data sink

DESCRIPTION

COMMAND REFERENCE

Data written on a null special file is discarded.

Reads from a null special file always return O bytes,

FILES
/dev/null

476

NULL(4)

PTY(4) COMMAND REFERENCE PTY{4)

NAME
pty - pseudo terminal driver

SYNOPSIS
#include (sys/ioctl.h>

DESCRIPTION
The pty driver provides support for a device-pair termed a pseudo
terminal. A pseudo terminal is a pair of character devices, a master
device and a slave device. The slave device provides processes an
interface identical to that described in tty(4). However, whereas all other
devices which provide the interface described in tty(4) have a hardware
device of some sort behind them, the slave device has, instead, another
process manipulating it through the master half of the pseudo terminal.
That is, anything written on the master device is given to the slave device
as input and anything written on the slave device is presented as input on
the master device.

The following ioctl calls apply only to pseudo terminals:

TIOCSTOP
Stops output to a terminal (e.g., like typing -s). Takes no
parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing -s). Takes
no parameter.

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by
specifying (by reference) a nonzero parameter and disabled by
specifying (by reference) a zero parameter. When applied to the
master side of a pseudo terminal, each subsequent read from the
terminal will return data written on the slave part of the pseudo
terminal preceded by a zero byte (symbolically defined as
TIOCPKT_DATA), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive-or of zero
or more of the bits:

TIOCPKT_FLUSH READ
whenever the read queue for the terminal is flushed.

TIOCPKT_FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT _STOP
whenever output to the terminal is stopped a la -s.

TIOCPKT _START
whenever output to the terminal is restarted.

TIOCPKT _DOSTOP
whenever tstopc is -s and t_startc is -a.

477

PTY(4) COMMAND REFERENCE PTY(4)

FILES

TIOCPKLNOSTOP
whenever the start and stop characters are not -sro.

This mode is used by rlogin(1 C) and rlogind(BC) to implement a
remote-echoed, locally -sra flow-controlled remote login with
proper back-flushing of output; it can be used by other similar
programs.

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of
TIOCPKT. This mode causes input to the pseudo terminal to be
flow controlled and not input edited (regardless of the terminal
mode). Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage,
a write of data is like the data typed as a line on the terminal; a
write of 0 bytes is like typing an end-of-file character.
TIOCREMOTE can be used when doing remote line editing in a
window manager, or whenever flow controlled input is required.

/dev/pty*
/dev/ttyp*

master pseudo terminals
slave pseudo terminals

DIAGNOSTICS
None.

CAVEATS
It is not possible to send an EOT.

Pseudo terminals will be replaced by a more efficient mechanism in a
future version of UTek.

2

478

RSA(4) COMMAND REFERENCE RSA(4)

NAME
rsa - on-board asynchronous interface

DESCRIPTION

FILES

The discussion of terminal 1/0 given in tty(4) applies to these devices.

Speed selections from BO to 89600 as listed in tty(4) are available
through the ioct/(2) system call. Speed selection BO disables baud rate
generation and drops data terminal ready (useful for forcing a dataset
hang-up). Impossible speed changes are ignored.

In addition to the normal DC1/DC3 (CTRL-Q/CTRL-S) flow control, the
RS-232-C lines DTR and CTS can be used. When DTR is unasserted
(pin 20: -12v) by the terminal, then the driver will not transmit.
conversely, when the driver's input buffer is near full, it will unassert CTS
(pin 5) inhibiting the terminal from further transmission until the buffer is
near empty and CTS is re-asserted. The use of these hardware lines can
be individually enabled/disabled by the use of tty flags set/reset using the
ioct/(2) system call and the commands TIOC{GET,PUT,BIC,BIS}. The
appropriate flags are DODTR and DOCTS. These can be {re}set via
stty(l) using the {-}dtr and {-}cts flags.

I dev I console
ldevlttyo[0-1]

SEE ALSO
tty(4).

REV SEP 1985

479

SC(4) COMMAND REFERENCE SC(4)

NAME
sc - raw SCSI interface

SYNOPSIS
#include (sys/ioctl.h)
#include (box/scsi.h >

DESCRIPTION
The files /dev/scxy refer to devices on the SCSI bus, where x specifies
the interface slot number (1 through 6) and y specifies the SCSI device (0
through D). This provides for one or two drives (in SCSI parlance, logical
units) on each of seven controllers. (The SCSI interface itself uses
controller address 7.) For example, sc57 refers to enhancement slot 5,
controller 3, drive 1.

There are three ioctls which send commands to the device. All three take
the address of an sccommand structure (defined in scsi.h) as an argument.
The structure provides for up to twelve command bytes and a pointer to
any data to be moved. SCIOCCMD does not move any data; cmdarg and
cmdcount are ignored. SCIOCWCMD writes data to the device.
SCIOCRCMD reads data from the device. In each case, the driver will
send the command to the device. If the device returns BUSY status, the
driver will continue trying indefinitely. In such cases, it may be necessary
to turn the SCSI device off or remove it from the bus to 'unhang' the
driver. When the command completes, the driver will return 0 (successful
completion) or -1 (error).

RETURN VALUE
If an error occurs, the call returns -1 and one of the following values is
left in errno:

[ENODEV] You have attempted to access an interface or device which
doesn't exist.

[EIO] The SCSI command returned with a check status. You
should do a request sense command to find the reason for the
error.

CAVEATS
There is no way to set the host interface address, share peripherals, or
communicate between hosts.

There is no way to access logical units 2 through 7.

If a SCSI device hangs, it may be necessary to turn it off or unplug it from
the SCSI bus to abort the command.

SEE ALSO
ds(4), tc(4).

480

TC(4) COMMAND REFERENCE TC(4J

NAME
tc - SCSI cartridge tape for 6130 System workstations

SYNOPSIS
#include (sys/mtio.h >
#include (box/tcreg.h)

DESCRIPTION
The files /dev/tcnn refer to the SCSI cartridge tape interface. The tapes
have nine tracks of data in QIC-24 format, providing up to 45Mb of
storage. The driver normally rewinds the tape when closed; this may be
suppressed (for example, if you intend to add data to a tape) by using the
/dev/ntc device instead of the /dev/tc device.

Tapes are formatted with fixed length 512 byte blocks. All reads and
writes should be multiples of 512 bytes. The streaming drive used in the
tc device runs at 90 ips but takes several seconds to stop and restart.
For this reason, large reads and writes (up to 256kb at a time) are
preferred.

Reads and writes on tape are strictly sequential; seeks are ignored. The
tape may be rewound or spaced forward with the operations described in
mtio(4). Backward spacing is not allowed and attempts to backspace the
tape may have peculiar results.

The tc device may not be opened for simultaneous reading and writing.
Data may be written only at the beginning of the tape (erasing the old
data) or at the end; existing data cannot be selectively erased or
overwritten. The driver writes a file mark when closed after writing. Read
returns a zero count when a file mark is read; the next read will fetch the
first record of the next tape file.

DIAGNOSTICS
tcnn: can't update cartridge tape

An attempt was made to open the device for simultaneous
read/write.

tcnn: write protected

An attempt was made to write on a write protected tape.

tcnn: no tape

An attempt was made to access a nonexistant tape drive or a
drive without an installed tape cartridge.

tcnn: hard error, err= value(bits>

REV SEP 1985

An unrecoverable tape error occurred. The error code is printed
in hexadecimal with the bits symbolically decoded. This
message is printed on the system console.

481

TC(4) COMMAND REFERENCE TC(4)

RETURN VALUE
Read(2) returns zero at a file mark.

If an error occurs, the call returns -1 and one of the following values is
left in errno:

CAVEATS

[ENODEV] The named device doesn't exist, or you have attempted to
open a write-protected tape for writing.

[EBUSYJ Some process has opened the device. No additional opens
are allowed until the current user closes the device.

[ENXIO]

[EIO]

You have attempted to write past the end of the tape.

An unrecoverable read or write error has occurred.

Programs which were written specifically for nine-track magtape may not
work on cartridge tape because of the fixed block size. Other programs
should be modified to buffer a reasonable amount of data with each write.

New tapes, tapes which have been in storage, or tapes which have been
exposed to temperature or humidity changes should be retensioned twice
before use. (The mt command provides an easy way to do this.) Failure
to do this may result in unrecoverable read or write errors.

SEE ALSO
cpio(I), dd(I), mt(l), tar(l), mtio(4), dump(8), restore(8).

REV SEP 1985 2
482

TCP(4N) COMMAND REFERENCE TCP(4N)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#include (sys/socket.h >
#include < netinet/in. h >
s = socket(AF _INET, SOCK_STREAM, O);

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission
of data. It is a byte-stream protocol used to support the SOCK_STREAM
abstraction. TCP uses the standard Internet address format and, in
addition, provides a per-host collection of "port addresses". Thus, each
address is composed of an Internet address specifying the host and
network, with a specific TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "passive". Active
sockets initiate connections to passive sockets. By default TCP sockets
are created active; to create a passive socket the listen(2) system call
must be used after binding the socket with the bind(2) system call. Only
passive sockets may use the accept(2) call to accept incoming
connections. Only active sockets may use the connect(2) call to initiate
connections.

Passive sockets may "underspecify" their location to match incoming
connection requests from multiple networks. This technique, termed
"wildcard addressing", allows a single server to provide service to clients
on multiple networks. To create a socket which listens on all networks,
the Internet address INADDR...ANY must be bound. The TCP port may
still be specified at this time; if the port is not specified the system will
assign one. Once a connection has been established the socket's
address is fixed by the peer entity's location. The address assigned the
socket is the address associated with the network interface through which
packets are being transmitted and received. Normally this address
corresponds to the peer entity's network.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN]
when trying to establish a connection on a socket which already has
one;

[ENOBUFS]
when the system runs out of memory for an internal data structure;

[ETIMEDOUT]
when a connection was dropped due to excessive retransmissions;

[ECONNRESET]
when the remote peer forces the connection to be closed;

[ECONNREFUSED]

REV SEP 1985

when the remote peer actively refuses connection establishment
(usually because no process is listening to the port);

483

TCP(4N) COMMAND REFERENCE TCP(4N)

[EADDRINUSE]
when an attempt is made to create a socket with a port which has
already been allocated;

[EADDRNOTAVAI L]

CAVEATS

when an attempt is made to create a socket with a network address
for which no network interface exists.

It should be possible to send and receive TCP options. The system
always tries to negotiate the maximum TCP segment size to be 1024
bytes. This can result in poor performance if an intervening network
performs excessive fragmentation.

SEE ALSO
inet(4n), intro(4n).

REV SEP 1985 2

484

TTY(4) COMMAND REFERENCE TTY(4)

NAME
tty - general terminal interface for 6130 System workstations

SYNOPSIS
#include (sgtty.h)

DESCRIPTION
NOTE: This tty interface might change in future releases.

This section describes both a particular special file ldev!tty and the
terminal drivers used for conversational computing.

Line disciplines.

The system provides different line disciplines for controlling
communications lines. In this version of the system there are three
disciplines available:

old The old (standard) terminal driver. This is used when using the
standard shell sh(Jsh) and for compatibility with other standard
version 7 UNIX systems.

new A newer terminal driver, with features for job control; this must
be used when using csh(I csh).

net A line discipline used for networking and loading data into the
system over communications lines. It allows high speed input at
very low overhead, and is described in bk(4).

Line discipline switching is accomplished with the TIOCSETD ioctl:

int ldisc = LDISC; ioctl(fd, TIOCSETD, &ldisc);

where LDISC is OTTYDISC for the standard tty driver, NTTYDISC for the
new driver and NETLDISC for the networking discipline. The standard
(currently old) tty driver is discipline 0 by convention. The current line
discipline can be obtained with the TIOCGETD ioctl. Pending input is
discarded when the line discipline is changed.

All of the low-speed asynchronous communications ports can use any of
the available line disciplines, no matter what hardware is involved. The
remainder of this section discusses the "old" and "new" disciplines.

The control terminal.

When a terminal file is opened, it causes the process to wait until a
connection is established. In practice, user programs seldom open these
files; they are opened by init(8) and become a user's standard input and
output file.

If a process which has no control terminal opens a terminal file, then that
terminal file becomes the control terminal for that process. The control
terminal is thereafter inherited by a child process during a fork(2), even if
the control terminal is closed.

REV SEP 1985

485

TTY{4) COMMAND REFERENCE TTY(4)

The file /dev!tty is, in each process, a synonym for a control terminal
associated with that process. It is useful for programs that wish to be
sure of writing messages on the terminal no matter how output has been
redirected. It can also be used for programs that demand a file name for
output, when typed output is desired and it is tiresome to find out which
terminal is currently in use.

The association between a process and its control terminal can be broken
by the TIOCNOTTY ioct/(2). TIOCNOTTY does not close any existing file
descriptors. Therefore, you can place the ioctl and still read and write
from the file. But you no longer have a control terminal. Note that
TIOCNOTTY has no effect if the tty you apply it to is not the control
terminal.

A common use of TIOCNOTTY follows:

if((fd = open (11 /dev/tty11 ,0_WRONLY)))= O){
ioctl (fd, TIOCNOTTY, NULL);
close(fd);

}

TIOCNOTTY sets the process group to zero. The next time you open a
terminal file, that file becomes the control terminal. This new association
can be prevented by first setting the process group (see below) to some
non-zero value. For example,

setpgrp(getpid());

Process groups.

Command processors such as csh(l csh) can arbitrate the terminal
between different jobs by placing related jobs in a single process group
and associating this process group with the terminal. A terminals
associated process group may be set using the TIOCSPGRP ioct/(2):

ioctl(fildes, TIOCSPGRP, &pgrp)

or examined using TIOCGPGRP rather than TIOCSPGRP, returning the
current process group in pgrp. The new terminal driver aids in this
arbitration by restricting access to the terminal by processes which are
not in the current process group; see Job access control below.

Modes.

The terminal drivers have three major modes, characterized by the
amount of processing on the input and output characters:

cooked The normal mode. In this mode lines of input are collected
and input editing is done. The edited line is made available
when it is completed by a newline or when an EOT (control-D,
hereafter AD) is entered. A carriage return is usually made
synonymous with newline in this mode, and replaced with a

REV SEP 1985 2
486

TTY(4) COMMAND REFERENCE TTY(4)

newline whenever it is typed. All driver functions (input
editing, interrupt generation, output processing such as delay
generation and tab expansion, etc.) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing
input facilities, making the input character available to the user
program as it is typed. Flow control, literal-next and interrupt
processing are still done in this mode. Output processing is
done.

RAW This mode eliminates all input processing and makes all input
characters available as they are typed; no output processing is
done either.

The style of input processing can also be very different when the terminal
is put in non-blocking i/o mode; see fcnt/(2). In this case a read(2) from
the control terminal will never block, but rather return an error indication
(EWOULDBLOCK) if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is
present. To enable this mode the FASYNC flag should be set using
jcnt/(2).

Input editing.

A UTek terminal ordinarily operates in full-duplex mode. Characters may
be typed at any time, even while output is occurring, and are only lost
when the system's character input buffers become completely choked,
which is rare, or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some program.
Currently this limit is 256 characters. When this limit is reached, no more
input is accepted and the terminal bell is rung.

Input characters are normally accepted in either even or odd parity with
the parity bit being stripped off before the character is given to the
program. By clearing either the EVEN or ODD bit in the flags word it is
possible to have input characters with that parity discarded (see the
sections Basic ioctl and Basic modes: sgtty below.)

In all of the line disciplines, it is possible to simulate terminal input using
the TIOCSTI ioctl, which takes, as its third argument, the address of a
character. The system pretends that this character was typed on the
argument terminal, which must be the control terminal except for the
super-user (this call is not in standard version 7 UNIX).

Input characters are normally echoed by putting them in an output queue
as they arrive. This may be disabled by clearing the ECHO bit in the
flags word using the TIOCSETN or TIOCSETP ioctls (see the Summary
below).

In cooked mode, terminal input is processed in units of lines. A program
attempting to read will normally be suspended until an entire line has
been received (but see the description of SIGTTIN in Job access control

REV SEP 1985 3
487

TTY(4) COMMAND REFERENCE TTY{4)

above and FIONREAD in Basic ioctl below.) No matter how many
characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without
losing information.

During input, line editing is normally done, with the character ·-H'
logically erasing the last character typed and the character '-u' logically
erasing the entire current input line. These characters never erase
beyond the beginning of the current input line or an -o. These
characters may be entered literally by preceding them with '-v·; see
below.

The drivers normally treat either a carriage return or a newline character
as terminating an input line, replacing the return with a newline and
echoing a return and a line feed. If the CRMOD bit is cleared in the local
mode word then the processing for carriage return is disabled, and it is
simply echoed as a return, and does not terminate cooked mode input.

In both the old and the new driver there is a literal-next character (default
-v) which can be typed in both cooked and CBREAK mode preceding
any character to prevent its special meaning.

The new terminal driver also provides two other editing characters in
normal mode. The word-erase character, normally -w, erases the
preceding word, but not any spaces before it. For the purposes of -w, a
word is defined as a sequence of non-blank characters, with tabs
counted as blanks. Finally, the reprint character, normally -R, retypes the
pending input beginning on a new line.

Input echoing and redisplay

When a kill character is typed it is echoed followed by a new-line.

The new terminal driver has several modes for handling the echoing of
terminal input, controlled by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA
bit is normally set in the local mode word. Characters which are logically
erased are then printed out backwards preceded by'\' and followed by '/'
in this mode.

Crt terminals. When a crt terminal is in use, the LCRTBS bit is normally
set in the local mode word. The terminal driver then echoes the proper
number of erase characters when input is erased; in the normal case
where the erase character is a -H this causes the cursor of the terminal
to back up to where it was before the logically erased character was
typed.

Erasing characters from a crt. When a crt terminal is in use, the LCRTERA
bit may be set to cause input to be erased from the screen with a
"backspace-space-backspace" sequence when character or word
deleting sequences are used. A LCRTKIL bit may be set as well, causing
the input to be erased in this manner on line kill sequences as well.

REV SEP 1985 4

488

TTY(4) COMMAND REFERENCE TTY(4)

Echoing of control characters. If the LCTLECH bit is set in the local state
word, then non-printing (control) characters are normally echoed as -x
(for some X) rather than being echoed unmodified; delete is echoed as
-?.

The normal modes for using the new terminal driver on crt terminals are
speed dependent. At speeds less than 1200 baud, the LC RTE RA and
LCRTKILL processing is painfully slow, so stty(l) normally just sets
LCRTBS and LCTLECH; at speeds of 1200 baud or greater all of these
bits are normally set. Stty(l) summarizes these option settings and the
use of the new terminal driver as "newcrt."

Output processing.

When one or more characters are written, they are actually transmitted to
the terminal as soon as previously-written characters have finished
typing. (As noted above, input characters are normally echoed by putting
them in the output queue as they arrive.) When a process produces
characters more rapidly than they can be typed, it will be suspended
when its output queue exceeds some limit. When the queue has drained
down to some threshold the program is resumed. Even parity is normally
generated on output.

The terminal drivers provide necessary processing for cooked and
CBREAK mode output including delay generation for certain special
characters and parity generation. Delays are available after backspaces
-H, form feeds -L, carriage returns -M, tabs -1 and newlines -J. The
driver will also optionally expand tabs into spaces, where the tab stops
are assumed to be set every eight columns. These functions are
controlled by bits in the tty flags word; see Summary below.

Finally, in the new terminal driver, there is a output flush character,
normally -o, which sets the LFLUSHO bit in the local mode word,
causing subsequent output to be flushed until it is cleared by a program
or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any
pending input. An ioctl to flush the characters in the input and output
queues, TIOCFLUSH, is also available.

Hazeltine terminals

To deal with Hazeltine terminals, which do not understand that - has
been made into an ASCII character, the L TILDE bit may be set in the
local mode word when using the new terminal driver; in this case the
character - will be replaced with the character ' on output.

Flow control.

There are two characters (the stop character, normally -s, and the start
character, normally -Q) which cause output to be suspended and
resumed respectively. Extra stop characters typed when output is already
stopped have no effect.

REV SEP 1985 5
489

TTY(4) COMMAND REFERENCE TTY(4)

A bit in the flags word may be set to put the terminal into TANDEM mode.
In this mode the system produces a stop character (default -s) when the
input queue is in danger of overflowing, and a start character (default -a)
when the input has drained sufficiently. This mode is useful when the
terminal is actually another machine that obeys the conventions.

Line control and breaks.

There are several ioctl calls available to control the state of the terminal
line. The TIOCSBRK ioctl will set the break bit in the hardware interface
causing a break condition to exist; this can be cleared (usually after a
delay with sleep(3c) by TIOCCBRK. Break conditions in the input are
reflected as a null character in RAW mode or as the interrupt character in
cooked or CBREAK mode. The TIOCCDTR ioctl will clear the data
terminal ready condition; it can be set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user
has hung up his terminal) a SIGHUP hangup signal is sent to the
processes in the distinguished process group of the terminal; this usually
causes them to terminate (the SIGHUP can be suppressed by setting the
LNOHANG bit in the local state word of the driver.) Access to the
terminal by other processes is then normally revoked, so any further
reads will fail, and programs that read a terminal and test for end-of-file
on their input will terminate appropriately.

When using an ACU it is possible to ask that the phone line be hung up
on the last close with the TIOCHPCL ioctl; this is normally done on the
outgoing line.

Interrupt characters.

There are several characters that generate interrupts in cooked and
CBREAK mode; all are sent the processes in the control group of the
terminal, as if a TIOCGPGRP ioctl were done to get the process group
and then a killpg(2) system call were done, except that these characters
also flush pending input and output when typed at a terminal (a la
TIOCFLUSH). The characters shown here are the defaults; the field
names in the structures (given below) are also shown. The characters
may be changed, although this is not often done.

-c Lintrc (Delete) generates a SIGINT signal. This is the normal
way to stop a process which is no longer interesting, or to regain
control in an interactive program.

-, t_quitc (FS) generates a SIGQUIT signal. This is used to cause
a program to terminate and produce a core image, if possible, in
the file core in the current directory.

-z Lsuspc (SUB) generates a SIGTSTP signal, which is used to
suspend the current process group.

REV SEP 1985 6
490

TTY(4) COMMAND REFERENCE TTY(4)

-y Ldsuspc (EM) generates a SIGTSTP signal as -z does, but the
signal is sent when a program attempts to read the -y, rather
than when it is typed.

Job access control.

When using the new terminal driver, if a process which is not in the
distinguished process group of its control terminal attempts to read from
that terminal its process group is sent a SIGTTIN signal. This signal
normally causes the members of that process group to stop. If, however,
the process is ignoring SIGTTIN, has SIGTTIN blocked, is an orphan
process, or is in the middle of process creation using vfork(2)), it is
instead returned an end-of-file. (An orphan process is a process whose
parent has exited and has been inherited by the init(8) process.) Under
older UNIX systems these processes would typically have had their input
files reset to ldevlnull, so this is a compatible change.

When using the new terminal driver with the L TOSTOP bit set in the local
modes, a process is prohibited from writing on its control terminal if it is
not in the distinguished process group for that terminal. Processes which
are holding or ignoring SIGTTOU signals, which are orphans, or which
are in the middle of a vfork(2) are excepted and allowed to produce
output.

Summary of modes.

Unfortunately, due to the evolution of the terminal driver, there are 4
different structures which contain various portions of the driver data. The
first of these (sgttyb) contains that part of the information largely common
between version 6 and version 7 UNIX systems. The second contains
additional control characters added in version 7. The third is a word of
local state peculiar to the new terminal driver, and the fourth is another
structure of special characters added for the new driver. In the future a
single structure may be made available to programs which need to
access all this information; most programs need not concern themselves
with all this state.

Basic modes· sgtty

The basic ioctls use the structure defined in (sgtty.h):

struct sgttyb {

};

char
char
char
char
short

sg_ispeed;/* input speed */
sg_ospeed;/* output speed */
sg_erase;/* erase character */
sg_kill;/* kill character *'
sg_flags;/* mode flags *'

The sg_ispeed and sg_ospeed fields describe the input and output speeds
of the device according to the following table. NOTE: due to hardware
limitations, sg_ispeedandsg_ospeed must be the same.

REV SEP 1985 7

491

TTY(4) COMMAND REFERENCE

Symbolic values in the table are as defined in (ttydev.h).

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
B 11 0 3 11 0 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 1 O 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXT A 14 19200 baud
EXTB 15 External B

TTY(4)

In the current configuration, only 110, 150, 300 and 1200 baud are really
supported on dial-up lines. Code conversion and line control required for
IBM 2741 's (134.5 baud) must be implemented by the user's program.
The half-duplex line discipline required for the 202 dataset (1200 baud) is
not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argument structure specify the erase
and kill characters respectively. (Defaults are -H and -u.)
The sg_Jlags field of the argument structure contains several bits that
determine the system's treatment of the terminal:

ALLDELA Y OxOOOOFFOO Delay algorithm selection
BSDELAY Ox00008000 Select backspace delays (not implemented):
BSO OxOOOOOOOO
BS1 Ox00008000
VTDELA Y Ox00004000 Select form-feed and vertical-tab delays:
FFO OxOOOOOOOO
FF1 Ox00004000
CRDELAY Ox00003000 Select carriage-return delays:
CAO OxOOOOOOOO
CR1 Ox00001000
CR2 Ox00002000
CR3 Ox00003000
TB DELAY OxOOOOOCOO Select tab delays:
TABO OxOOOOOOOO
TAB 1 Ox00000400
TAB2 Ox00000800
XT ABS OxOOOOOCOO
NLDELAY Ox00000300 Select new-line delays:
NLO OxOOOOOOOO
NL1 Ox00000100
N L2 Ox00000200

REV SEP 1985 8

TTY(4)

NL3
EVE NP
ODDP
RAW
CRMOD
ECHO
LC ASE
CBREAK
TANDEM
DOD TR
DOC TS

COMMAND REFERENCE TTY(4)

Ox00000300
Ox00000080 Even parity allowed on input (most terminals)
Ox00000040 Odd parity allowed on input
Ox00000020 Raw mode: wake up on all characters, 8-bit interf1
Ox00000010 Map CR into LF; echo LF or CR as CR-LF
Ox00000008 Echo (full duplex)
Ox00000004 Map upper case to lower on input
Ox00000002 Return each character as soon as typed
Ox00000001 Automatic flow control
Ox02000000 Automatic flow control using DTR
Ox08000000 Transmission conditional on CTS

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to the
terminal. In all cases a value of O indicates no delay.

Backspace delays are currently ignored but might be used for Terminet
300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about 0.08 seconds and is suitable for
the Terminet 300. Delay type 2 lasts about 0.16 seconds and is suitable
for the VT05 and the Tl 700. Delay type 3 is suitable for the concept-100
and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 (about 0.12 seconds) is dependent on the current
column and is tuned for Teletype model 37's. Type 2 is useful for the
VT05 and is about 0.1 O seconds. Type 3 is unimplemented and is 0.

Tab delay type 1 is about 0.1 seconds and and is tuned to the Teletype
model 37. Type 2 is not implemented. Type 3, called XTABS, is not a
delay at all but causes tabs to be replaced by the appropriate number of
spaces on output.

Input characters with the wrong parity, as determined by bits 200 and
100, are ignored in cooked and CBREAK mode.

RAW disables all processing save output flushing with LFLUSHO; full 8
bits of input are given as soon as it is available; all 8 bits are passed on
output. A break condition in the input is reported as a null character. If
the input queue overflows in raw mode it is discarded; this applies to both
new and old drivers.

CRMOD causes input carriage returns to be turned into new-lines; input
of either CR or LF causes LF-CR both to be echoed (for terminals with a
new-line function).

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each
character as soon as typed, instead of waiting for a full line; all
processing is done except the input editing: character and word erase
and line kill, input reprint, and the special treatment of \ or EOT are
disabled.

REV SEP 1985 9

493

TTY(4) COMMAND REFERENCE TTY(4)

TANDEM mode causes the system to produce a stop character (default is
~ S) whenever the input queue is in danger of overflowing, and a start
character (default is ~Q) when the input queue has drained sufficiently. It
is useful for flow control when the 'terminal' is really another computer
which understands the conventions.

DODTR and DOCTS provide a hardware flow control mechanism.
DODTR works much like TANDEM in that when the buffer approaches
being full, the DTR line is deasserted; when the buffer is emptied DTR is
reasserted. DOCTS causes the USART to transmit or not depending on
the state of the CTS pin.

Basic joctls

In addition to the TIOCSETD and TIOCGETD disciplines discussed in
Line disciplines above, a large number of other ioct/(2) calls apply to
terminals, and have the general form:

#include <sgtty.h)

ioctl(fildes, code, arg)
struct sgttyb *arg;

The applicable codes are:

TIOCEXCL Set "exclusive-use" mode: no further opens are
permitted until the file has been closed.

TIOCGETP

TIOCHPCL

TIOCNXCL

TIOCSETP

TIOCSETN

TIOCSTART

TIOCSTOP

TIOCNOTTY

Fetch the basic parameters associated with the terminal,
and store in the pointed-to sgttyb structure.

When the file is closed for the last time, hang up the
terminal. This is useful when the line is associated with
an ACU used to place outgoing calls.

Turn off "exclusive-use" mode.

Set the parameters according to the pointed-to sgttyb
structure. The interface delays until output is quiescent,
then throws away any unread characters, before
changing the modes.

Set the parameters like TIOCSETP but do not delay or
flush input. Input is not preserved, however, when
changing to or from RAW.

Simulates the use of <CTRL-Q).

Simulates the use of <CTRL-S).

Breaks the association between a process and its control
terminal.

The remaining calls are not available in vanilla version 7 UNIX. In cases
where arguments are required, they are described; arg should otherwise
be given as 0.

TIOCSTI the argument is the address of a character which the
system pretends was typed on the terminal.

REV SEP 1985 10

494

TTY(4) COMMAND REFERENCE TTY(4)

TIOCSBRK the break bit is set in the terminal.

TIOCCBRK the break bit is cleared.

TIOCSDTR data terminal ready is set.

TIOCCDTR data terminal ready is cleared.

TIOCGPGRP arg is the address of a word into which is placed the
process group number of the control terminal.

TIOCSPGRP arg is a word (typically a process id) which becomes the
process group for the control terminal.

FIONREAD returns in the long integer whose address is arg the
number of immediately readable characters from the
argument unit. This works for files, pipes, terminals, and
sockets.

The following call uses a different structure than do the previous calls:

#include (sys/file.h)
ioctl(filedes, code, arg)
int *arg;

TIOCFLUSH

Icb.ars

Flush all characters waiting in input and/or output queues, based
on whether FREAD (input), FWRITE (output) or both have been
set in the word pointed to by arg. If that word is 0, both input
and output queues will be flushed. This last feature is provided
for compatibility with 4.1 c BSD.

The second structure associated with each terminal specifies characters
that are special in both the old and new terminal interfaces: The
following structure is defined in (sys!ioctl.h), which is automatically
included in (sgtty.h):

struct tchars {

};

char
char
char
char
char
char

t_intrc;
t_quitc;
t_startc;
t_stopc;
t_eofc;
t_brkc;

/* interrupt */
!* quit */
/* start output */
/* stop output */
/* end-of-file */
/* input delimiter (like nl) */

The default values for these characters are -?, -,, -a, -s, -o, and -1.
A character value of -1 eliminates the effect of that character. The
t_brkc character, by default -1, acts like a new-line in that it terminates
a 'line,' is echoed, and is passed to the program. The 'stop' and 'start'
characters may be the same, to produce a toggle effect. It is probably

REV SEP 1985 11

495

TTY(4) COMMAND REFERENCE TTY(4)

counterproductive to make other special characters (including erase and
kill) identical. The applicable ioctl calls are:

TIOCGETC Get the special characters and put them in the specified
structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode

The third structure associated with each terminal is a local mode word;
except for the LNOHANG bit, this word is interpreted only when the new
driver is in use. The bits of the local mode word are:

LCRTBS 000001 Backspace on erase rather than echoing erase
LPRTERA 000002 Printing terminal erase mode
LCRTERA 000004 Erase character echoes as BS-space-BS
L TILDE 000010 Convert - to ' on output (Hazeltine terminals)
LMDMBUF 000020 Stop/start output when carrier drops
LLITOUT 000040 Suppress output translations
L TOSTOP 000100 Send SIGTIOU for background output
LFLUSHO 000200 Output is being flushed
LNOHANG 000400 Don't send hangup when carrier drops
LCRTKIL 002000 BS-space-BS erase entire line on line kill
LCTLECH 010000 Echo input control chars as -x, delete as -?
LPENDIN 020000 Retype pending input at next read or input
LDECCTQ 040000 Only -a restarts output after -s, like DEC
LNOFLSH 0100000 Don't flush output on interrupt/suspend

The applicable ioctl functions are:

TIOCLBIS arg is the address of a mask which is the bits to be set in
the local mode word.

TIOCLBIC

TIOCLSET

TIOCLGET

arg is the address of a mask of bits to be cleared in the
local mode word.

arg is the address of a mask to be placed in the local
mode word.

arg is the address of a word into which the current mask
is placed.

Local special chars

The final structure associated with each terminal is the ltchars structure,
defined in (sys!ttychars.h), which defines interrupt characters for the new
terminal driver. Its structure is:

struct ltchars {

};

REV SEP 1985

char
char
char
char
char
char

t_suspc;
t_dsuspc;
t_rprntc;
t_flushc;
t_werasc;
t_lnextc;

12

/* stop process signal */
/* delayed stop process signal */
/* reprint line */
/* flush output (toggles) */
/* word erase */
/* literal next character */

TTY(4) COMMAND REFERENCE TTY(4)

FILES

The default values for these characters are -z, -v, -R, -o, -w, and -v.
A value of -1 disables the character.

The applicable ioctl functions are:

TIOCSL TC args is the address of a ltchars structure which defines the
new local special characters.

TIOCGL TC args is the address of a ltchars structure into which is placed
the current set of local special characters.

!devltty

!dev!tty*

I dev I console

CAVEATS
Half-duplex terminals are not supported.

SEE ALSO
csh(1 csh), stty(1), ioct/(2), sigvec(2), getty(B), init(B).

REV SEP 1985 13

497

UDP(4N) COMMAND REFERENCE UDP { 4N)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
#include <Sys/socket.h>
#include <netinet/in. h>

s = socket(AF _INET, SOCK.._DGRAM, O);

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support
the SOCK_DGRAM abstraction for the Internet protocol family. UDP
sockets are connectionless, and are normally used with the sendto and
recvfrom calls, though the connect(2) call may also be used to fix the
destination for future packets (in which case the recv(2) or read(2) and
send(2) or write(2) system calls may be used).

UDP address formats are identical to those used by TCP. In particular
UDP provides a port identifier in addition to the normal Internet address
format. Note that the UDP port space is separate from the TCP port
space (i.e. a UDP port may not be "connected" to a TCP port). In
addition broadcast packets may be sent (assuming the underlying network
supports this) by using a reserved "broadcast address"; this address is
network interface dependent.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONNJ
when trying to establish a connection on a socket which already has
one, or when trying to send a datagram with the destination address
specified and the socket is already connected;

[ENOTCONNJ
when trying to send a datagram, but no destination address is
specified, and the socket hasn't been connected;

[ENOBUFSJ
when the system runs out of memory for an internal data structure;

[EADDRINUSEJ
when an attempt is made to create a socket with a port which has
already been allocated;

[EADDRNOTAVAILJ

SEE ALSO

when an attempt is made to create a socket with a network address
for which no network interface exists.

send(2), recv(2), inet(4n), intro(4n).

498

XD(4) COMMAND REFERENCE XD(4)

NAME
XD - XO Multibus adapter SMD disk driver

DESCRIPTION

FILES

Files with minor device numbers 0 through 15 refer to various portions of
drive 0. The standard device names begin with xdx followed by the drive
number and then a letter a-h for partitions 0-7 respectively. The origin
and size (in sectors) of the default pseudo-disks on each drive are as
follows:

CDC9715-340 partitions
disk start
xdxOa 1
xdxOb 89
xdxOc 177
xdxOd 265
xdxOe 353
xdxOf 441
xdxOg 529
xdxOh 617

length
67584
67584
67584
67584
67584
67584
67584
71424

cyls
1-88
89-176
177-264
265-352
353-440
441-528
529-616
617-709

1/0 requests must be for an integral multiple of 512 bytes,
start on a sector boundary
and not go off the end of the disk.

ldevlxdxO[a-h] block files

ldevlrxdxO[a-h] raw files

DIAGNOSTICS
The following error may be returned.

[ENXIO]
Nonexistent or not configured drive (on open, read or write).

SEE ALSO
xt(4).

499

REV MAR 1985

XT{4) COMMAND REFERENCE XT(4)

NAME
XT - XT Multibus adapter 9-track tape driver

DESCRIPTION

FILES

The xt interface provides access to Multibus adapter 9-track tape drives.

ldev/xtxO

ldevlrxtxO

/dev/nxtxO

ldevlnrxtxO

block files with rewind on close (minor device
0)

raw files with rewind on close (minor device 0)

block files with no rewind on close (minor
device 8)

raw files with no rewind on close (minor device
8)

DIAGNOSTICS
The following errors may be returned.

[EBUSY]
Drive not ready (on a read or write).

[ENXIO]
Nonexistent drive or not configured drive (on open, read or write) or
attempt to read past end-of-file on block tape

[EIO]
Drive not online (open), no write ring (open for writing) or
forward/backspace error (ioctl).

[EINVAL]
invalid mtio command (ioctl).

SEE ALSO
ioct/(2), mtio(4), xd(4).

500

REVMAA1985

ALIASES(S) COMMAND REFERENCE ALIASES(&)

NAME
aliases - aliases file for sendmail

SYNOPSIS
/usr/lib/aliases

DESCRIPTION
This file describes user id aliases used by lusrlliblsendmail. It is
formatted as a series of lines of the form

name: namel, name2, name3, ..

The colon separates that which is aliased (name) from its aliases
(namel,name2,name3, ...). As shown above, comma-separated arguments
can appear in the file. Lines beginning with spaces or tabs are
continuation lines. Lines beginning with '#' are comments.

After aliasing has been done, local and valid recipients who have a
".forward" file in their home directory have messages forwarded to the list
of users defined in that file.

Arguments take four forms: loginname, loginname@host-id, /filename,
and :include: !filename. Loginname is the login name of the recipient on
the local machine. Loginname@host-id is the login name and the network
name of the recipient's home machine. If the /filename form is used, any
mail sent to the name being aliased is also appended to the named file.
If the file does not exist, it is created. If :include: /filename is used,
/filename is the only argument allowed. Recursive definitions cause
infinite recursion in sendmail. The name being aliased should never be
the recipient of the file since it's a dummy name. Input is taken from the
specified file until it ends. Processing of the current file continues.

This is an ASCII file used to modify the aliases database; the actual
aliasing information is placed into a binary format in the files
/usr/lib/aliases.dir and /usr/lib/aliases.pag using the command
newaliases. These are dbm(3d) files.

Newaliases is automatically run on the first attempt to send mail after
lusrlliblaliases is changed and then the change takes effect. To execute
a newaliases command, enter:

In /usr/lib/sendmail /etc/newaliases

or

/usr/lib/sendmail -bi

The person who maintains the list of aliases is known as the owner. To
establish an owner, enter:

owner-xxxx: yyyy

yyyy is the owner of the list and xxxx is the name of the list. If an error

REV SEP 1985

501

ALIASES{S) COMMAND REFERENCE ALIASES{S)

occurs, the owner receives an error message. If there is no owner and an
error occurs, the person sending the mail receives an error message.

EXAMPLES
An example of a simple alias is:

root: joe,sam,jane@central

Any mail addressed to root does not go to root, but rather to joe, sam,
and jane.

The recipient can also be a file, for example,

bug-list: /usrladmlbugsave

Mail is written to the file.

You can also read aliases in from a file, for example,

sys-list: : include: I usr I adml systemusers

Lines in the file are similar to lines in lusrlliblalias. Including aliases in a
file is done, for example, when the system administrator owns the mail list
of aliases, but the group list is owned by someone else.

If an error occurs on sending mail to a specified list, only the owner of the
list is notified of the error. In the example below, eric is the owner and
vax-advice is the name of the list. Only eric receives the error message.

owner-vax-advice: eric
vax-advice: eric,jil/,sam

Aliasing occurs only on local names. The following example is not valid.

john@ucbvax: bill

Duplicates cannot occur, since no messages are sent to any person more
than once. For example, given the aliases

sys-issues: sam,robert
sys-bugs: sys-issues,sam,fred

11 sam 11
,

11fred 11
, and 11 robert 11 each receive one copy of mail for sys-bugs.

CAVEATS
Because of restrictions in dbm(3d) a single alias cannot contain more than
about 1000 bytes of information. You can get longer aliases by chaining;
that is, make the last name in the alias be a dummy name which is a
continuation alias.

SEE ALSO
newaliases(l), dbm(Jd), sendmail(8mh).

REV SEP 1985 2

502

A.OUT (5) COMMAND REFERENCE A.OUT (5)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
A.out is the output file of the assembler as(l) and the link editor ld(I) .
Both programs make a.out executable if there were no errors and no
unresolved external references. Layout information as given in the
include file for the VAX-11 is:

I*
* Header prepended to each a.out
*I

file.

struct exec {

};

long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

#define OMAGIC
#define NMAGIC
#define ZMAGIC

I*

a_magic; /* magic number */
a_text; /* size of text segment */
a_data; /* size of initialized data */
a_bss; /* size of uninitialized data */
a_syms; /* size of symbol table */
a_entry; /* entry point */
a_trsize;/* size of text relocation*/
a_drsize;/* size of data relocation*/

0407
0410
0413

/* old impure format */
/* read-only text */
/* demand load format */

* Macros which take exec structures as arguments and tell whether
* the file has a reasonable magic number or off sets to
* text : symbols : strings.
*I

#define N-13ADMAG(x) \
(((x).a_magic)!=OMAGIC && ((x).a_magic)!=NMAGIC && \
((x).a_magic)l=ZMAGIC)

#define N_TXTOFF(x) \
((x).a_magic==ZMAGIC? 1024 : sizeof (struct exec))

#define N-8YMOFF(x) \
(N_TXTOFF(x) + (x).a_text+(x).a_data + (x).a_trsize+(x).a_drs

#define N-8TROFF(x) \
(N-8YMOFF(x) + (x).a_syms)

The file has five sections: a header, the program text and data, relocation
information, a symbol table and a string table (in that order). The last
three may be omitted if the program was loaded with the '-s' option of Id
or if the symbols and relocation have been removed by strip(!).

503

A.OUT (5) COMMAND REFERENCE A.OUT (5)

In the header the sizes of each section are given in bytes. The size of
the header is not included in any of the other sizes.

When an a.out file is executed, three logical segments are set up: the
text segment, the data segment (with uninitialized data, which starts off as
all 0, following initialized), and a stack. The text segment begins at 0 in
the core image; the header is not loaded. If the magic number in the
header is OMAGIC (0407), it indicates that the text segment is not to be
write-protected and shared, so the data segment is immediately
contiguous with the text segment. This is the oldest kind of executable
program and is rarely used. If the magic number is NMAGIC (0410) or
ZMAGIC (0413), the data segment begins at the first O mod 1024 byte
boundary following the text segment, and the text segment is not writable
by the program; if other processes are executing the same file, they will
share the text segment. For ZMAGIC format, the text segment begins at
a O mod 1024 byte boundary in the a.out file, the remaining bytes after
the header in the first block are reserved and should be zero. In this
case the text and data sizes must both be multiples of 1024 bytes, and
the pages of the file will be brought into the running image as needed,
and not pre-loaded as with the other formats. This is especially suitable
for very large programs and is the default format produced by ld(l) .

The stack will occupy the highest possible locations in the core image:
growing downwards from Ox7ffff000. The stack is automatically extended
as required. The data segment is only extended as requested by brk(2).

After the header in the file follow the text, data, text relocation data
relocation, symbol table and string table in that order. The text begins at
the byte 1024 in the file for ZMAGIC format or just after the header for the
other formats. The N_ TXTOFF macro returns this absolute file position
when given the name of an exec structure as argument. The data
segment is contiguous with the text and immediately followed by the text
relocation and then the data relocation information. The symbol table
follows all this; its position is computed by the N_SYMOFF macro.
Finally, the string table immediately follows the symbol table at a position
which can be gotten easily using N_STROFF. The first 4 bytes of the
string table are not used for string storage, but rather contain the size of
the string table; this size INCLUDES the 4 bytes, the minimum string
table size is thus 4.

The layout of a symbol table entry and the principal flag values that
distinguish symbol types are given in the include file as follows:

I*
* Format of a symbol table entry.
*I

struct nlist {
union {

char *n....name; /* for use when in-core */
long n_strx; /* index into file string table */

} n_un;
unsigned char n_type; /* type flag, i.e. N_TEXT; see below */

2
504

A.OUT (5) COMMAND REFERENCE A.OUT (5)

char n_other;
short n_desc; /* see <stab. h> * /
unsigned n_value; /* value of this symbol (or offset) *I

};
#define n....hash n_desc /* used internally by ld */

I*
* Simple values for n_type.
*I

#define N_UNDF OxO /* undefined */
#define N_ABS Ox2 /* absolute */
#define N_TEXT Ox4 /* text */
#define N.....DATA Ox6 /* data */
#define N_BSS Ox8 /* bss */
#define N_COMM Ox12 /* common (internal to ld) *I
#define NJ'N Oxlf /* file name symbol */

#define N__EXT 01 /*external bit, or'ed in*/
#define N_TYPE Oxle /* mask for all the type bits */

I*
* Other permanent symbol table entries have some of the N-8TAB bits se
* These are given in <stab.h>
*I

#define N--8TAB OxeO

I*
* Format for namelist values.
*I

#define NJ'ORMAT "%08x"

/* if any of these bits set, */
/* don't discard */

In the a.out file a symbol's n_un.n_strx field gives an index into the string
table. A n_strx value of O indicates that no name is associated with a
particular symbol table entry. The field n_un.nJl.ame can be used to refer
to the symbol name only if the program sets this up using n_strx and
appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero,
the symbol is interpreted by the loader Id as the name of a common
region whose size is indicated by the value of the symbol.

The value of a byte in the text or data which is not a portion of a
reference to an undefined external symbol is exactly that value which will
appear in memory when the file is executed. If a byte in the text or data
involves a reference to an undefined external symbol, as indicated by the
relocation information, then the value stored in the file is an offset from
the associated external symbol. When the file is processed by the link
editor and the external symbol becomes defined, the value of the symbol
will be added to the bytes in the file.

3
505

A.OUT (5) COMMAND REFERENCE A.OUT (5)

If relocation information is present, it amounts to eight bytes per
relocatable datum as in the following structure:

I*
* Format of a relocation datum.
*I

struct relocation_inf o {

};

int r_address;
unsigned r_symbolnum:24,

r_pcrel:l,
rJength:2,
r_extern:l,

:4;

/* address which is relocated */
/* local symbol ordinal */
/* was relocated pc relative already */
/* O=byte, l=word, 2=long */
/* does not include value of sym */
/* referenced */
/* nothing, yet */

There is no relocation information if a_trsize + a_drsize = = 0. If r _extern
is 0, then r _symbolnum is actually a n_type for the relocation (i.e.
N_TEXT meaning relative to segment text origin).

SEE ALSO
adb(l), as(l), ld(l), nm(l), strip(J), stab(5).

4
506

AR(S) COMMAND REFERENCE AR(S)

NAME
ar - archive (library) file format

SYNOPSIS
#include (ar.h)

DESCRIPTION
The archive command ar combines several files into one. Archives are
used mainly as libraries to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the
constituent files, each preceded by a file header. The magic number and
header layout as described in the include file are:
I*

* AR.H - ASCII archive header definitions.

* * Modifications from Berkeley 4.2 BSD
* Copyright (c) 1983, Tektronix Inc.
* All Rights Reserved

* *I

I*
* Note that the header format has changed. It is no longer fixed-forn
* See the manual page for ar(5) for
* information on the new archive format.
*I

#include (sys/max.h)
#define ARMAG 11 ! (arch)\n11/* Short format magic number.*/
#define LARMAG 11 ! (ARCH) \n" /* Long format magic number.*/
#define SARMAG 8

#define ARFMAG

struct ar_hdr
char
char
char
char
char
char
char

};

I*

{
ar_name[MAXNAMLEN + 1];
ar_date [12];
ar_uid[6];
ar_gid[6];
ar_mode [8];
ar_size [10];
ar_fmag [2];

* sar_hdr is the short archive header format (name (= 16 chars)
* SARNAMLEN is the length of the name field for the short archive
* header.
*I

REV MAR 1985

507

AR(S) COMMAND REFERENCE AR(S)

#define SARNAMLEN 16

struct sar_hdr {
char ar_name[16];
char ar_date[12];
char ar_uid [6];
char ar_gid [6];
char ar_mode[8];
char ar_size[10];
char ar_fmag [2];

};

In this system, the name may be either a blank-padded string of up to 15
characters stored in a 16 character field, or a string of up to
MAXNAMLEN characters surrounded by slashes. If the name has an odd
number of characters, an extra slash is added in order to keep the size of
the header even.

The command ar will keep the archive in short format (where the magic
string is "!(arch)") unless the name of any one of the archive member
names is longer than 15 characters. When this happens, the magic string
is changed to "!(ARCH)".

In order to make it easier to modify programs which use the old archive
format, the old format structure is provided.

The ar _f mag field contains ARFMAG to help verify the presence of a
header. The other fields are left-adjusted, blank-padded numbers. They
are decimal except for ar _mode, which is octal. The date is the
modification date of the file at the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted
between files if necessary. Nevertheless the size given reflects the actual
size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive
contains printable files, the archive itself is printable.

CAVEATS
File names with less than 15 characters lose trailing blanks.

Programs that work with this archive format will not work with the old
archive files. See oldar(5) for a description of the old archive format, and
use arcv(l) to convert old archive files to the new format.

Since the archive headers are of variable size, it is no longer possible to
read in the archive header using read(2) or fread(3s). The subroutines
fgetarhdr(3c) and getarhdr(3c) are supplied for the purpose of reading
archive headers.

Long format archives are not portable to other versions of UNIX. See the
manual page for ar(l) for a way to convert long format archives to short
format, which is portable.

2

508

REVMAR1985

AR(S) COMMAND REFERENCE AR(S)

SEE ALSO
ar(l), arcv(l), ld(l), make(l), nm(l), ranlib(l), fgetarhdr(3c), getarhdr(3c),
oldar(5).

3 REVMAR1985

509

ASSIGN.CLASSES (5) COMMAND REFERENCE ASSIGN.CLASSES(S)

NAME
assign.classes - defined classes of devices for assignment

SYNOPSIS
/etc/assign .classes

DESCRIPTION
This file defines the grouping of devices for assignment by the assign(l)
command. Devices are grouped into classes in order that all devices
corresponding to an actual physical device, for example, raw and cooked
versions, are assigned as a unit. Assignment changes the ownership of
the devices.

Each line defines one class and is of the form

class .•• =device .••

where classes are site defined names that correspond to the grouping of
devices on the line, and devices are full path names, usually of devices in
I dev. The equal sign separates class names from device names. All
names are separated by spaces or tabs. Class names that are listed in
more than one line are termed generic class names, and will be checked
by assign in the order listed in this file.

EXAMPLES
The following defines classes mt3 and mt4, tor mag tape devices 3 and 4,
with a generic class name tape.

mt3 tape = /dev/rmt03 /dev/nrmt03 /dev/nmtOJ /dev/mt03
mt4 tape = /dev/rmt04 /dev/nrmt04 /dev/nmt04 /dev/mt04

SEE ALSO
assign(l), sysadmin(8).

REV SEP 1985

510

BOM(S) COMMAND REFERENCE BOM(S)

NAME
born - Bill of Materials specification file format for use with comply

DESCRIPTION

FIELDS

REVSEP1985

Comply(8) specification file contains for each file to be checked for
compliance the following information:

pathname (full or relative to comply(8) invocation)
owner
group
mode
size
hard link count
rcsid number
checksum
symlink target

This is an ASCII file. Each field within each specification entry is
separated from the next by a tab. Each specification is separated from
the next by a new-line. Any line beginning with a % will be considered a
comment. If the first line in the file begins with a comment, that comment
will be used as a verbose description of the comply specification file when
comply(8) runs. All blank lines are ignored.

If any of the above described fields are empty (bracketed by tabs), then
comply will not bother to check compliance to those fields. This is true
for all fields but pathname, mode, and symbolic link target when the file
type is symbolic link fields.

pathname

owner

group

mode

size

This can be a absolute path (i.e. starts with /), or it can be a
relative path from the current working directory of the
comply(8) invocation.

Login name of the owner of the file/directory.

Symbolic name of the group owner of the file/directory.

This field contains both the file type and the file mode. The
format for this is as in /s(1). The first character specifies the
file type. Directories, block special, character special,
symbolically linked, and regular files are denoted by d, b, c, I,
and-, respectively. The remaining nine characters specify the
mode. The read (r), write (w), or execute (x) permissions are
in the order for owner, group, and others. Instead of x for the
owner (or group), s designates a setuid (setgid) program.
Similarly, t instead of x in the other mode designates a
program with the sticky(B) bit on.

The size in bytes on the disk, this does not represent the size
of the file/program in a running state in core. Or , if the file is
a device, this field should be the major/minor device numbers
comma or space separated.

511

BOM(S) COMMAND REFERENCE BOM(S)

hard link count
Number of hard links to this file.

rcsid number This is the RCS revision number associated with the
file (e.g. 1.35).

checksum
Checksum of the file as provided by the sum(l) command.

symlink target

EXAMPLES

This is the target file/directory name if this file is a symbolic
link. This has the same form as pathname.

An example of a born file follows where '@' is used to signify a tab.

/etc/catman@sys@sys@-rwxr-xr-x@16384@1 @1.4@65389@
/etc/chown@root@sys@-rwxr-xr-x@10360@1 @1.17@31625@
/bin/ll@sys@sys@lrwxr-xr-x@16384@1 @3.2@52346@/bin/ls

SEE ALSO
comply(8), ident(JRCS), ls(l), rcs(JRCS), sticky(8), sum(l).

REVSEP1985 2

512

BOOTSRV.CONF(SN) COMMAND REFERENCE BOOTSRV.CONF(SN)

NAME
bootsrv.conf - boot server configuration file

DESCRIPTION

FILES

The file letclbootsrv.conf contains the host-specific and default download
file specifications used by the boot server (see /etclbootsrvd(Bn)).
Comment lines begin with "#". The format of each non-comment file
entry is:

Hostaddr ID expr. load file #comment (optional)

"Hostaddr" is the requesting node's Internet address, or "*" for a default
file specification.
"ID expr." is a regular expression ((20 characters) used to match the
requesting node's ID.
"load file" is the full path name ((256 characters) of the download file.
All fields are separated by spaces or tabs.

A host-specific download file is associated with the Internet address given
in the first field of the line. When a boot request is received from a
remote station at that Internet address, the specified load file is then
transferred to the remote station.

If the boot server cannot find a host-specific download file for a remote
station, then the list of default file specifications is searched. For each
default file specified, the ID regular expression is compared with the ID
string in the boot request. When a match is found, the associated default
file is transferred to the remote station.

A default download file is specified with "*" in the hostaddr field, and a
valid regular expression in the ID expr. field. For default load files, the ID
expression must not be "*", but must include the machine family (e.g.,
"6100", "61.*''). Default file specifications should be ordered from
most-specific to least-specific.

lusrllib/bootsrv This is the directory in which the boot server
builds its database files. The "boot_conf' file
in this directory is a working copy of the
information contained in "letclbootsrv.conf'.

EXAMPLES
The following entry will associate the download file
"luljoeuserlmyloadfile" with the remote station at 201.123.234.255.

201.123.234.255 * /u/joeuser/myloadfile

The follow default file specification will cause the file
"ldiagsldiags_os.lan" to be transferred to 6130 System workstations.

* 61.* /diags/diags_os.lan

513

BOOTSRV .CONF(SN) COMMAND REFERENCE BOOTSRV .CONF(SN)

CAVEATS
If the configuration file is moved or deleted, the boot server will die. To
change the information in the configuration file, edit a temporary copy of
the information, then either copy or move this file into the configuration
file.

SEE ALSO
bootsrvd(8n).

2

514

CHFN(S) COMMAND REFERENCE CHFN(S)

NAME
chfn - definitions for password file gecos field contents

SYNOPSIS
/usr/lib/chfn

DESCRIPTION
The chfn file is a collection of regular expressions that are used by the
chfn(l) utility to check for legal input while updating the password file
gecos field. They specify the order for the entries and restrict input for
each section of the field.

The this file is used one line at a time by chfn(l) first to produce the
prompt string for the entry and then to check the user's input. Line
format is:

[!][prompt_string]; [regular_expr [: regular_expr] ...]

The prompt....string is the prompt to be issued for this portion of the gecos
field. Example entries should be included here. The current content of
the sub-field is printed following this prompt string.

If the first character of the prompt string is 11 !11 that sub-field can be
changed only by a person logged in _as root. It will be skipped in chfn(l)
calls for any other user. If restricted sub-fields exist, placing them at the
end of the gecos field will enhance execution speed.

There is no "and" condition and if the beginning of the line and the end
of the line are significant they must be included in the pattern. If no
pattern exists any input will be accepted.

The 11or11 construct has beed added to enhance the restricted environment
of regular expressions. If ": 11 is used the patterns specified are checked
in order. The first match stops the scan.

EXAMPLES

FILES

The following is an example file. It promts for a name and accepts any
input; then asks for a work phone and checks for a number of the form
XXX-XXXX; delivery station is requested next and a number for mail
delivery is requested; the user is then asked for a home phone number
and its form checked; finally, if the user is super user the home machine
entry is requested. Note that all patterns include start of line and end of
line indications.

Name;
Vork Phone (Example: 555-1212);-[1-9][0-9][0-9]-[0-9][0-9][0-9][0-9:
Delivery Station (Example: 77-215);-[Y0-9][0-9]-[0-9][0-9][0-9]$
Home Phone; - [1-9 J [0-9 J [0-9]- [0-9] (0-9] [0-9] [0-9]$
!Home Machine (Example: tekecs);-tektronix$:-tekecs$:-gumby$

lusr /lib/ chfn

REV MAR 1985

515

CHFN(5) COMMAND REFERENCE CHFN(S)

CAVEATS
If you are reading this page prior to the manual page for chfn(I) it won't
make much sense.

Regular expressions must be legal or changes will not be accepted. No
attempt is made to check the existing password file entries for
correctness, e.g. changes made with vipw(8) are not verified.

This file allows local modification of the restrictions placed on users for
access to the password file, it helps avoid mistakes. It does not stop the
super user from making changes outside the chfn(l) utility.

If changes are made to existing passwd(5) sequences the prompts will be
unrelated to the existing values until all users have updated their
information. Additions to the end are the easiest to make. Changes to
the information stored here also affects finger(Jn) output and must be
coordinated with the expected information there.

SEE ALSO
chfn(l), finger(ln), passwd(5), vipw(8).

2 REV MAR 1985

516

CORE(S) COMMAND REFERENCE CORE(S)

NAME
core - format of memory image file

SYNOPSIS
#include <lnachine/param.h>

DESCRIPTION
The UTek System writes out a memory image of a terminated process
when any of various errors occur. See sigvec(2) for the list of reasons; the
most common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The memory image is called core and is
written in the process's working directory (provided it can be; normal
access controls apply).

The maximum size of a core file is limited by setrlimit(2). Files which
would be larger than the limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by
the UPAGES manifest in the <machine!param.h>file. The u. area starts
with a user structure as given in <sysluser.h>. The remainder of the core
file consists first of the data pages and then the stack pages of the
process image. The amount of data space image in the core file is given
(in pages) by the variable u_dsize in the u. area. The amount of stack
image in the core file is given (in pages) by the variable u_ssize in the u.
area.

In general the debugger adb(l) is sufficient to deal with core images.

SEE ALSO
adb(l), setrlimit(2), sigvec(2).

517

CPIO(S) COMMAND REFERENCE CPI0(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(l) is not used, is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime [2],
h_namesize,
h_filesize [2];

char h_name[h__namesize rounded to word];

When the -c option is used, the header information is described by:

sscanf(Chdr,"%60%60%6o%60%60%6o%60%6o%111o%6o%11lo%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize,
respectively. The contents of each file are recorded in an element of the
array of varying length structures, archive, together with other items
describing the file. Every instance of h_magic contains the constant
070707 (octal). The items h_dev through h_mtime have meanings
explained in stat(2). The length of the null-terminated path name
h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!.
Special files, directories, and the trailer are recorded with h_filesize equal
to zero.

CAVEATS
On some systems, the value of Hdr.h_namesize must be less than 128.
On this system, the value is restricted only by the maximum length of a
pathname (currently 1024). Care must be taken if the cpio archives are
to be used on other systems.

SEE ALSO
ar(l), cpio(l), find(l), tar(l), stat(2), ar(5), tar(5).

REVSEP1985

518

DAEMONTAB(S) COMMAND REFERENCE DAEMONTAB(S)

NAME
daemontab - daemon process description file

DESCRIPTION
The file !etcldaemontab is used by the command /etc/daemon to find the
names of daemon programs, such as spoolers and network
communication programs.

The daemontab file may contain lines of three types. The first type is a
comment, which is any line that begins with the character '#'. These
lines are ignored by daemon.

The next type of line is read directly by daemon and is of the form:

[-Ksig J [-Ysig J [-wtime J path [args J

The -K option is used to specify the default signal to be used to kill the
program. The signal may either be a number or a word as listed by the
command kill -1. The -Y option is used to specify the default signal to
be used to synchronize the program. The signal may either be a number
or a word as listed by the command kill -1. The -w option is used to
specify the default time to wait after attempting to kill a process before
checking to see whether the process was really killed or not. The path is
the full pathname of the program, and the args are the arguments to the
command. For example, the line

-YHUP -K2 -w10 /etc/foo_daemon -1 -t15

specifies that /etc/foo_daemon is a daemon (at least when run with the
options -1 and -t15) and is to be killed with the signal 2 (or interrupt). A
successful kill will take up to 10 seconds to be reflected by the system;
the program is to be synchronized with the signal HUP (or signal 1}, and
if it is dead 1 O seconds after the synchonization is attempted, there is
something wrong. It is important to note that the lines:

-KJ /etc/f oo_daemon
-YHUP -w5 /etc/foo_daemon -1
-K2 -w10 /etc/foo_daemon -t15

all differ, both from one another and from the first example. The
command and its arguments together specify a distinct program
invocation. Spaces and tabs are not significant, and are reduced to a
single space.

The third type of line in the daemontab file begins and ends with the
backquote character ('). This type of line is executed by daemon via
popen(3s), and the output from the execution is taken as a list of program
names as if they were listed in the daemontab file. This feature makes it

519

DAEMONTAB(S) COMMAND REFERENCE DAEMONTAB(5)

FILES

possible to start different daemons depending on the state of the system.
For example, your system may have a package which requires one
daemon to be running if one peripheral is hooked up, and a different
daemon otherwise. The line:

/usr/pkg/whiclL.daemon

would cause daemon to execute the command /usr/pkg/which_daemon
and use the output as the name of the daemon that should be running.
This is similar to executing the command

/etc/daemon [options] ';usr/pkg/which_daemon

since the shell performs the same action with backquoted commands
(watch out for shells which turn newlines into spaces).

I etc/ daemon tab The daemon process description file.

CAVEATS
It is very important to realize that any user can execute the command
daemon, even if only the superuser can actually perform any actions on
the programs. Therefore, you must be very careful to make sure that the
commands which appear in backquotes do not do anything other than
print the names of daemons.

There is no way to specify the default signal or wait time with this type of
line. Otherwise, the lines produced are interpreted the same as with
program names directly specified in the daemontab file.

All lines in letcldaemontab are limited to 1024 characters in length. Also,
output from backquoted commands is limited to 1024 characters.

SEE ALSO
sh(lsh), kill(I), ps(l), popen(3s), daemon(8).

2

520

DEVDES(5) COMMAND REFERENCE DEVDES(S)

NAME
devdes - Device Description file for system configuration

DESCRIPTION

FILES

A device description file contains all information about a device needed
for system configuration, sysconf(8). The file should be named by
signature name suffixed with .d. A# indicates the rest of the line is a
comment. $separates entries if multiple devices are described in a file.

A device description file consists of six static fields followed by a
keywords indicating further information. The six static fields are:

the signature name,

the device driver name,

signature id (2 hex digits),

a flag word,

the name of the attach routine

a description of the device in quotes.

The possible settings of the flag word are:

REQ_DEV 1 Device is required

NO_DISPLA Y 2 Don't display

CONTRLR 4 Device is a controller

CONTROLLED 8 Device is a controlled device

The possible keywords are:

Character following fields are Character Switch table entries.

Block following fields are entries for Block switch table.

lotab following fields are entries for the 6200 1/0 table.
lotab is not valid for a 6100 workstation.

Makedev following lines are a shell script to be used in
making special device files. Lines terminate when a
keyword or the end of file is reached.

Controls list of devices supported by controller.

Define integer variable which needs to be defined for driver
useage. Two values are required; the first is used
when driver is not active; the second when the
driver is active.

Alias this device is considered an alias for device named
in the next field. The same device driver supports
both devices.

/usrlsys/conf ldescrip Directory for device descriptions for system
configuration

SEE ALSO
sysconf(8).

DIR(S) COMMAND REFERENCE DIR(S)

NAME
dir - format of directories

SYNOPSIS
#include (sys/types.h)
#include (sys/dir.h)

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a
bit in the flag word of its inode entry; see fs(5). The structure of a
directory entry as given in the include file is:

/*
* A directory consists of some number of blocks of DIRBLKSIZ
* bytes, where DIRBLKSIZ is chosen such that it can be transferred
*to disk in a single atomic operation (e.g. 512 bytes on most machines).

* * Each DIRBLKSIZ byte block contains some number of directory entry
* structures, which are of variable length. Each directory entry has
* a struct direct at the front of it, containing its inode number,
* the length of the entry, and the length of the name contained in
* the entry. These are followed by the name padded to a 4 byte boundary
* with null bytes. All names are guaranteed null terminated.
* The maximum length of a name in a directory is MAXNAMLEN.

*
* The macro DIRSIZ(dp) gives the amount of space required to represent
* a directory entry. Free space in a directory is represented by
*entries which have dp-)<L.reclen) DIRSIZ(dp). All DIRBLKSIZ bytes
* in a directory block are claimed by the directory entries. This
* usually results in the last entry in a directory having a large
* dp-)d__reclen. When entries are deleted from a directory, the
* space is returned to the previous entry in the same directory
* block by increasing its dp-)d__reclen. If the first entry of
* a directory block is free, then its dp-)d_ino is set to O.
* Entries other than the first in a dil'ectory do not normally have
* dp-)d_ino set to O.
*I

#ifdef KERNEL
#define DIRBLKSIZ DEV_BSIZE
#else
#define DIRBLKSIZ 512
#end if

#define MAXNAMLEN 255

I*
* The DIRSIZ macro gives the minimum record length which will hold
* the directory entry. This requires the amount of space in struct
* direct without the d_name field, plus enough space for the name
*with a terminating null byte (dp-)d_namlen+l), rounded up to a

REV SEP 1985

522

DIR(S)

* 4 byte boundary.
*I

#undef DIRSIZ
#define DIRSIZ(dp) \

COMMAND REFERENCE DIR(S)

((sizeof (struct direct) - (MAXNAMLEN+l)) + (((dp)-)d_namlen+l + 3) &

struct direct {

};

u_long d_ino;
short d_reclen;
short d_namlen;
char d_name[MAXNAMLEN + 1];
/* typically shorter */

struct _dirdesc {
int dd_fd;
long dd_loc;
long dd_size;
char dd_buf [DIRBLKSIZ];

};

The library routines for manipulating directories use the structure _dirdesc
for storing directory pointers (as with FILE in the standard 1/0 library).
The library routines are closedir(3c), opendir(3c), readdir(3c), scandir(3c),
seekdir(3c), and telldir(Jc).

By convention, the first two entries in each directory are for'.' and' .. '.
The first is an entry for the directory itself. The second is for the parent
directory. The meaning of ' . .' is modified for the root directory of the
master file system ("/"), where ' . .' has the same meaning as '.'.

SEE ALSO
fs(5), closedir(3c), opendir(3c), readdir(3c), scandir(Jc), seekdir(Jc),
telldir(Jc). .,

REVSEP1985 2

523

DISKPART(S) COMMAND REFERENCE DISKPART(S)

NAME
diskpart - results of IDSKIOCIDDRV rigid disk ioctl

SYNOPSIS
#include (sys/ioctl.h)
#include (machine/idiskioctl.h)

ioctl(fd, IDSKIOCIDDRV, argp)
int fd;
struct id_drvstat *argp;

DESCRIPTION
The IDDRV command is used to obtain information about a rigid disk
partition (this does not apply to floppy disks). The file descripter must be
opened on any raw device associated with the disk of interest. For
example, information about partition 2 (normally swap space) on the
internal disk of a 6130 would be obtained by opening /dev/rdwOO[a-p]
and calling ioctl with the IDSKIOCIDDRV command.

The structure id_drvstat can be found in the include file
(machine/idiskioctl.h) and is shown below:

I*
* Copyright (C) 1983, Tektronix Inc. - All rights Reserved

*
*I

I*
* struct id_drvstat - status of a drive -- the result of an
* IDDRV command. These structures should match those defined
* in the maintenance block structure.
*I

#define IDPARTCNT 16 /* partitions/drive */
struct id_volume_id {

char idvLdisk_id [8]; /* 8 bytes of ID */
char idvi_diskname[8]; /* disk type name */

};
struct id_phys_desc {

unsigned short idpy_ncyl; /* nbr of cylinders */
unsigned char idpy_nhead; /* number of heads */
unsigned char idpy_nsect; /* USED sectors/track */
unsigned char idpy_nspare; /* SPARE sectors/track */
unsigned char idpy_bps; /* coded data sector size */
unsigned short idpy_rpm; /* rotational speed */

};
struct id_partinf o {

unsigned short idpi_ncyls; /* size (in cylinders) */
unsigned short idpi_cylofst; /* starting cylinder number */
char idpLtype [2]; /* 2 char type (e.g. "US") */

'124

DISKPART(S)

char
};
#define idpi_blksiz
#define idpi_frgsiz

struct id_drvstat {

COMMAND REFERENCE

idpLval [2];

idpLval [O]
idpi_val [1]

struct id_volume_id idds_vid;
struct id_phys_desc idds_phys;

DISKPART (5)

/* 2 byte type-specific data */

/* coded fs blksize for "UF" */
/* coded fs fragsize for "UF" *

struct id_partinfo idds_part[IDPARTCNT];
};

I*
* values for id_phys_desc.idpy_bps
*I

#define IDMB_BPS_128 0
#define IDMB_BPS-256 1
#define IDMB_BPS_512 2
#define IDMB_BPS-1024 3

I*
* values for id_partinfo.idpi_blksiz and id_partinfo.idpi_frgsiz
* powers of 2, representing upper and lower limits
*/

#define IDMB_BLKL
#define IDMB_BLKH
#define IDMB_FRGL
#define IDMB_FRGH

I*

({char)12)
((char)1J)
((char)9)
((char)12)

* convert encoded value of id_partinfo.idpi_blksiz to integer
*I

#define idmb_blktosiz(code) (1 (((int)(code))

I*
* convert encoded value of id_partinfo.idpi_frgsiz to integer
*I

#define idmb_frgtosiz(code) (1 (((int)(code))

The following is a summary of the possible values of idpUype:

UF UTek file system partition.

US UTek paging space.

XX Unused partition.

AW Read/Write, a misnomer, used exclusively for the data space
partition.

2

DISKPART (5) COMMAND REFERENCE

DG Diagnostic partition.

MP Maintenance partition.

WD Whole disk partition.

EXAMPLES

DISKPART (5)

This example program estimates how many page pairs can be held by the
standard swap space on a 6130.

#define stratos
#include (stdio.h)
#include (sys/ioctl.h)
#include (machine/idiskioctl.h)

#define PAIRSIZE 1024

static struct id_drvstat info_buffer;

main()
{

register int fd;
register struct id_drvstat *argp;
register int bytes;

*argp = &info_buffer;
fd = open("/dev/rdwOOb", O);
ioctl(fd, IDSKIOCIDDRV, argp);
if (strncmp(argp-)idds_part [1]. idpi_type, "US", 2)

1= 0) {

}

SEE ALSO

fprintf(stderr, "failed consistency test.");
exit(l);

}
switch (argp-)idds_phys.idpy_bps) {
case IDMB_BPS_128: bytes = 128;
case IDMB_BPS-256: bytes = 256;
case IDMB_BPS_512: bytes = 512;
case IDMB_BPS_1024: bytes = 1024;
}
bytes *= argp-)idds_phys.idpy_nsect;
bytes *= argp-)idds_phys.idpy_nhead;

break;
break;
break;
break;

bytes *= argp-)idds_part[l].idpi_ncyls;
printf("swap space will hold %d page pairs\n",

bytes/ PAIRSIZE);

ioct/(2), dh(4), dw(4).

3

526

ERRTAG (5) COMMAND REFERENCE ERRTAG (5)

NAME
errtag - file format of the errtag files

DESCRIPTION

FILES

The msghlp(l) command provides help about error messages. It reads the
files in the /usrlliblerrtags directory for this information. The format of
the help files in this directory is as follows:

* comment
* comment
-strl
text
-str2
text

1 * comment
text
-strJ
text

The str? that matches the key is found and the following text lines are
printed. Comments are ignored.

I usr I lib I errtags directory containing files of message text.

lusr /lib/ errtagsl <non-numeric prefix>
the file searched if the message is not found
in /usr/liblerrtags/help/oc.

lusrlliblerrtagsldefau/t the file searched if the argument is all
numeric.

lusrlliblerrtags/help/oc the file searched if the argument has a non
numeric prefix.

/usr /lib/ errtagsl cmds

SEE ALSO

contains the syntax lines for the commands.

msghlp(I).

527

FORMS(SMDQS) COMMAND REFERENCE FORMS(SMDQS)

NAME
forms - MOOS valid forms file

DESCRIPTION
The file /usrlliblmdqslforms is used by MDQS commands to find the
names of valid forms that can be associated with devices or requests.

The forms file may contain any number of lines of the form:

(name) [(separator) (alias) ...]

The name is the name of a valid form available to any MDQS command
that needs to specify a form. The seperator is any white space or a
coma. The alais is any other name that can be used in place of the
original name.

CAVEATS

FILES

If the forms file does not exist any form name is considered valid. All
lines in /usrlliblmdqslforms are limited to 132 characters in length.

/usrlliblmdqslforms The MOOS valid forms file.

SEE ALSO
lpr(l mdqsd), qmod(l mdqs), qconf(5mdqs), qdev(8mdqs).

REVMAR1985

528

FS(S) COMMAND REFERENCE FS(S)

NAME
fs, inode - format of file system volume

SYNOPSIS
#include (sys/types.h)
#include <sys/fs.h)
#include <sys/inode.h >
#include <sys/param.h)

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has
a common format for certain vital information. Every such volume is
divided into a certain number of blocks. The block size is a parameter of
the file system. Sectors O to 15 on a file system are used to contain
primary and secondary bootstrapping programs. Sectors are 512 bytes in
length.

The actual file system begins at sector 16 with the super block. The layout
of the super block as defined by the include file (sys!fs.h > is:

#define FS_MAGIC
struct f s {

Ox011954

struct fs *fs_link; /* linked list of file systems */
struct fs *fs_rlink; /* used for incore super blocks */
daddr_t fs_sblkno; /* addr of super-block in filesys */
daddr_t fs_cblkno; /* offset of cyl-block in filesys */
daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
daddr_t fs_dblkno; /* offset of first data after cg */
long fs_cgoffset; /* cylinder group offset in cylinder */
long fs_cgmask; /* used to calc mod fs_ntrak */
time_t fs_time; /* last time written */
long fs_size; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fs_ncg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs */
long fs_fsize; /* size of frag blocks in fs */
long fs_frag; /* number of frags in a block in fs */

/* these are configuration parameters */
long fs_minfree; /~ minimum percentage of free blocks */
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second */

/* these fields can be computed from the others */
long fs_bmask; /* ''blkoff-- calc of blk offsets*/
long fs_fmask; /* fragoff calc of frag offsets */
long fs_bshift; /* lblkno'' calc of logical blkno */
long fs_fshift; /* numfrags'' calc number of frags */

/* these are configuration parameters */
long fs_maxcontig; /* max number of contiguous blks */
long fs_maxbpg; /* max number of blks per cyl group */

/* these fields can be computed from the others */
long fs_fragshift; /* block to frag shift */

REVSEP1985

529

FS(S) COMMAND REFERENCE FS(5)

long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fs....nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB */
long fs....nspf; /* value of NSPF */
long fs_sparecon[6]; /* reserved for future constants */
/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */
/* these fields should be derived from the hardware */
long fs....ntrak; /* tracks per cylinder */
long fs....nsect; /* sectors per track */
long fs_~pc; _ I* sectors per cylinder */
/* this comes from the disk driver partitioning */
long fs....ncyl; /* cylinders in file system */
/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group */
long fs_fpg; /* blocks per group * fs_frag */
/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */
/* these fields are cleared at mount time*/
char fsJmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs_ fsmnt [MAXMNTLE.'tl] i /* name mounted on * /
/* these fields retain the curl'ent block allocation info */
long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS]; /* list of fs_cs info buffers */
long fs_cpc; /* cyl per cycle in postbl */
short fs_postbl[MAXCPG][NRPOS];/* head of blocks for each rotation*/
long fs_magic; /* magic number * /
u_char fs_rotbl[l]; /* list of blocks for each rotation*/
/* actually longer */
};

Each disk drive contains some number of file systems. A file system
consists of a number of cylinder groups. Each cylinder group has inodes
and data.

A file system is described by its super-block, which in turn describes the
cylinder groups. The super-block is critical data and is replicated in each
cylinder group to protect against catastrophic loss. This is done at file
system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

REVSEP1985 2
530

FS(S) COMMAND REFERENCE FS(S)

Addresses stored in inodes are capable of addressing fragments of
"blocks." File system blocks of at most size MAXBSIZE (defined in
(sys/param.h)) can be optionally broken into 2, 4, or 8 pieces, each of
which is addressable; these pieces may be DEV _BSIZE (defined in
(sys/dir.h)), or some multiple of a DEV_BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue
wasted disk space, the last data block of a small file is allocated as only
as many fragments of a large block as are necessary. The file system
format retains only a single pointer to such a fragment, which is a piece
of a single large block that has been divided. The size of such a
fragment is determinable from information in the inode, using the
"blksize(fs, ip, lbn)" macro defined in (sys/fs.h).

The file system records space availability at the fragment level; to
determine block availability, aligned fragments are examined.

The root inode, inode 2, is the root of the file system. (lnode O can't be
used for normal purposes and inode 1 was once used for linking bad
blocks, so inode 2 is used for the root inode.) The lost+ found directory is
given the next available inode when it is initially created by mkfs.

fs_minfree gives the minimum acceptable percentage of file system blocks
which may be free. If the freelist drops below this level only the super
user may continue to allocate blocks. This may be set to 0 if no reserve of
free blocks is deemed necessary, however severe performance
degradations will be observed if the file system is run at greater than 90%
full; thus the default value of fs_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall
disk utilization at a loading of 90% comes with a fragmentation of 4, thus
the default fragment size is a fourth of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability
of blocks at different rotational positions, so that sequential blocks can be
laid out with minimum rotational latency. NRPOS is the number of
rotational positions which are distinguished. With NRPOS 8 the
resolution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another
disk transfer on the same cylinder. It is used in determining the
rotationally optimal layout for disk blocks within a file; the default value for
fs_rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is
allocated for each NBPI bytes of disk space. The inode allocation
strategy is extremely conservative.

MAXIPG (defined in (sys/fs.h)) bounds the number of inodes per cylinder
group, and is needed only to keep the structure simpler by having the
only a single variable size element (the free bit map).

REVSEP1985 3

531

FS(S) COMMAND REFERENCE FS(S)

N.B.: MAXIPG must be a multiple of INOPB(fs) (defined in (sys/ts.h)).

MINBSIZE (defined in (sys/ts.h)} is the smallest allowable block size.
With a MINBSIZE of 4096 it is possible to create tiles of size 2-32 with
only two levels of indirection. MINBSIZE must be big enough to hold a
cylinder group block, thus changes to (struct cg) must keep its size within
MINBSIZE. MAXCPG (defined in (sys/ts.h)) is limited only to dimension
an array in (struct cg); it can be made larger as long as that structure's
size remains within the bounds dictated by MINBSIZE. Note that super
blocks are never more than size SBSIZE (defined in (sys/ts.h)).

The path name on which the tile system is mounted is maintained in
fs_fsmnt. MAXMNTLEN (defined in (sys/ts.h)) defines the amount of
space allocated in the super block tor this name. The limit on the amount
of summary information per tile system is defined by MAXCSBUFS
(defined in (sys/ts.h)). It is currently parameterized tor a maximum of two
million cylinders.

Per cylinder group information is summarized in blocks allocated from the
first cylinder group's data blocks. These blocks are read in from
fs_csaddr (size fs_cssize) in addition to the super block.

N.B.: sizeot (struct csum) must be a power of two in order for the "fs_cs"
macro to work.

Super block for a file system: MAXBPC (defined in (sys/ts.h)) bounds the
size of the rotational layout tables and is limited by the fact that the super
block is of size SBSIZE. The size of these tables is inversely proportional
to the block size of the tile system. The size of the tables is increased
when sector sizes are not powers of two, as this increases the number of
cylinders included before the rotational pattern repeats (fs_cpc). The size
of the rotational layout tables is derived from the number of bytes
remaining in (struct ts).

MAXBPG (defined in (sys/fs.h)) bounds the number of blocks of data per
cylinder group, and is limited by the fact that cylinder groups are at most
one block. The size of the free block table is derived from the size of
blocks and the number of remaining bytes in the cylinder group structure
(struct cg).

lnode: The inode is the focus of all file activity in the UTek file system.
There is a unique inode allocated for each active file, each current
directory, each mounted-on file, text file, and the root. An inode is
'named' by its device/i-number pair. For further information, see the
include file (sys!inode.h).

SEE ALSO
fstab(5).

REVSEP1985 4

532

FSTAB(5) COMMAND REFERENCE FSTAB (5)

NAME
fstab - static information about the filesystems

SYNOPSIS
#include <1stab.h>

DESCRIPTION
The file /etclfstab contains descriptive information about the various file
systems. letclfstab is only read by programs, and not written; it is the
duty of the system administrator to properly create and maintain this file.
The order of records in /etclfstab is important because fsck, mount, and
umount sequentially iterate through letclfstab while executing.

The fstab structure is defined in /stab. h as:
struct f'stab {

};

char *f's_spec; /* block special device name */
char *fs_f'ile; /* file system path prefix */
char *f's_type; /* rw,ro,sw or xx */
int f's_freq; /* dump frequency, in days */
int fs_passno;/* pass number on parallel dump*/

The special file name is the block special file name, and not the
character special file name. If a program needs the character special file
name, the program must create it by appending a "r" after the last "/" in
the special file name.

Fs_type may be one of the following, from fstab.h:

#define FSTABJUl "rw" /* read-write device */
#define FSTAB_RO "ro" /* read-only device */
#define FSTAB_RQ "rq" /* read-write with quotas */
#define FSTAB-5ll "sw" /* swap device */
#define FSTAB_Il "xx" /* ignore totally */

If fs_type is "rw" or "ro" then the file system whose name is given in the
fs_file field is normally mounted read-write or read-only on the specified
special file. If fs_type is "rq", then the file system is normally mounted
read-write with disk quotas enabled. The fs_jreq field is used for these
file systems by the dump(8) command to determine which file systems
need to be dumped. The fs_passno field is used by the fsck(8) program to
determine the order in which file system checks are done at reboot time.
The root file system should be specified with a fs_passno of 1, and other
file systems should have larger numbers. File systems within a drive
should have distinct numbers, but file systems on different drives can be
checked on the same pass to utilize parallelism available in the hardware.

If fs_type is "sw" then the special file is made available as a piece of
swap space by the swapon(8) command at the end of the system reboot
procedure. The fields other than fs....spec and fs_type are not used in this
case.

533

FSTAB(S) COMMAND REFERENCE FSTAB (5)

FILES

If fs_type is "rq" then at boot time the file system is automatically
processed by the quotacheck(8) command and disk quotas are then
enabled with quotaon(8). File system quotas are maintained in a file
"quotas", which is located at the root of the associated file system.

If fs_type is specified as "xx" the entry is ignored. This is useful to show
disk partitions which are currently not used.

The proper way to read records from letclfstab is to use the routines
getfsent, getfsspec, getfstype, and getfsfile.

letc!fstab

SEE ALSO
getfsent(3c).

2

534

GETDATE(SMDQS) COMMAND REFERENCE GETDATE(SMDQS)

NAME
getdate - time and date format for MOOS

DESCRIPTION
Getdate converts common time specifications to standard UTek format.
The input format is used for time specification with the -a options of
mdqs commands batch and lpr. The format is a character string defined
as follows:

tod A tod is a time of day, which is of the form hh:mm [:ss]
[meridian] [zone]. If no meridian - am or pm - is specified, a
24-hour clock is used. A tod may be specified as just hh
followed by a meridian.

date A date is a specific month and day, and possibly a year.
Acceptable formats are mmldd [lyy] and monthname dd [, yy] If
omitted, the year defaults to the current year; if a year is
specified as a number less than 100, 1900 is added.

day A day of the week may be specified; the current day will be used
if appropriate. A day may be preceeded by a number indicating
which instance of that day is desired; the default is 1. A negative
number indicates past time. Some symbolic numbers are
accepted: last, next, and the ordinals first through twelfth
(second is ambiguous, and is not accepted as an ordinal number).
The symbolic number next is equivalent to 2. It refers not to the
immediately coming Monday, but to the one a week later.

relative time
Specifications relative to the current time are also accepted. The
format is [number] unit [ago acceptable units are year, month,
fortnight, week, day, hour, minute, second, today, now, this,
tomorrow, and yesterday.

The actual date is formed as follows:

First, any absolute date and/or time is processed and converted. Using
that time as the base, day-of-week specifications are added.

Next, relative specifications are used. If a date or day is specified, and
no absolute or relative time is given, midnight is used.

Finally, a correction is applied so that the correct hour of the day is
produced after allowing for daylight savings time differences.

Most common abbreviations for days, months, and so forth are allowable.
In particular, they may have upper- or lowercase first letters and three
letter abbreviations for any of them, with or without a trailing period, are
recognized. Units, such as weeks, may be specified in the singular or
plural. Time zone and meridian values may be in upper- or lowercase,
and with or without periods.

1
REV MAR 1985

535

GETDATE(SMDQS) COMMAND REFERENCE GETDATE(SMDQS)

EXAMPLES
For the following examples the current time is Jan 16, 1985 11 :05 AM.

tomorrow 2 PM

This date will be Jan 17, 1985 14:00.

20 minutes

This date will be Jan 16, 1985 13:05.

next thu lJ:.30

This date will be Jan 24, 1985 13:30.

April 1 5:30 PM

This date will be April 1, 1985 17:30.

1 hour ago

This date will be Jan 16, 1985 10:05.

CAVEATS
The daylight savings time correction can get confused if handed times
between midnight and 2:00 am on the days that the reckoning changes.

SEE ALSO
ctime(3c).

2

536

REV MAR 1985

GETTYTAB(S) COMMAND REFERENCE GETTYTAB(S)

NAME
gettytab - terminal configuration data base

SYNOPSIS
/etc/gettytab

DESCRIPTION
Gettytab is a simplified version of the termcap(5t) data base used to
describe terminal lines. The initial terminal login process getty(8)
accesses the gettytab file each time it starts, allowing simpler
reconfiguration of terminal characteristics. Each entry in the data base is
used to describe one class of terminals.

There is a default terminal class, default, that is used to set global
defaults for all other classes. (That is, the default entry is read, then the
entry for the class required is used to override particular settings.)

Refer to termcap(5t) for a description of the file layout.

The default column below lists defaults obtained if there is no entry in the
table obtained, nor one in the special default table.

Name Type Default Description
ap boo I false terminal uses any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb boo I false useCRTt backspace mode
Cd num 0 carriage-return delay
ce boo I false use CRT erase algorithm
ck boo I false use CRT kill algorithm
cl str NULL screen clear sequence
co boo I false console - add \n after login prompt
ds str -y delayed suspend character
ec boo I false leave echo OFF
ep boo I false terminal uses even parity
er str -? erase character
et str -o end of text (EOF) character
ev str NULL initial enviroment
to num unused tty mode flags to write messages
f1 num unused tty mode flags to read login name
f 2 num unused tty mode flags to leave terminal as
f d num 0 form-feed (vertical motion) delay
fl str -o output flush character
he boo I false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht boo I false terminal has real tabs
ig boo I false ignore garbage characters in login name
im str NULL initial (banner) message
in str -c interrupt character
is num unused input speed
kl str -u kill character

REV SEP 1985

537

GETTYTAB(S) COMMAND REFERENCE GETTYTAB(S)

le boo I false terminal has lower case
Im str login: login prompt
In str -v "literal next" character
lo str /bin/login program to exec when name obtained
nd num 0 newline (line-feed) delay
nl boo I false terminal has (or might have)

a newline character
nx str default next table (for auto speed selection)
op boo I false terminal uses odd parity
OS num unused output speed
pc str \0 pad character
pe boo I false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and

following flush (seconds)
ps boo I false line connected to a MICOM port selector
qu str -\ quit character
rp str -R line retype character
rw boo I false do NOT use raw for input, use cbreak
sp num unused line speed (input and output)
SU str -z suspend character
tc str none table continuation
to num 0 timeout (seconds)
tt str NULL terminal type (for enviroment)
ub boo I false do unbuffered output (of prompts etc)
UC boo I false terminal is known upper case only
un str none default user name to give to login
we str -w word erase character
xc boo I false do NOT echo control chars as -x
xf str -s XOFF (stop output) character
xn str -a XON (start output) character

If no line speed is specified, speed will not be altered from that which
prevails when getty is entered. Specifying an input or output speed will
override line speed for stated direction only.

Terminal modes to be used for the output of the message, for input of the
login name, and to leave the terminal set as before upon completion are
derived from the boolean flags specified. If the derivation should prove
inadequate, any (or all) of these three may be overriden with one of the
JO, fl, or /2 numeric specifications, which can be used to specify (usually
in octal, with a leading "O") the exact values of the flags. Local (new tty)
flags are set in the top 16 bits of this (32 bit) value.

Should getty receive a null character (presumed to indicate a line break)
it will restart using the table indicated by the nx entry. If there is none, it
will re-use its original table.

Delays are specified in milliseconds; the nearest possible delay available
in the tty driver will be used. Should greater certainty be desired, delays
with values 0, 1, 2, and 3 are interpreted as choosing that particular delay
algorithm from the driver.

REV SEP 1985 2

538

GETTYTAB(5) COMMAND REFERENCE GETTYTAB(S)

The cl screen clear string may be preceded by a (decimal) number of
milliseconds of delay required (a la termcap). This delay is simulated by
repeated use of the pad character pc.

The initial message im and login message Im may include the character
sequence o/oh to obtain the hostname. (%% obtains a single "%"
character.) The hostname is normally obtained from the system, but may
be set by the hn table entry. In either case it may be edited with he. The
he string is a sequence of characters. Each character that is neither
"@" nor "#" is copied into the final hostname. A "@" in the he string
causes one character from the real hostname to be copied to the final
hostname. A "#" in the he string causes the next character of the real
hostname to be skipped. Surplus "@" and "#" characters are ignored.

When getty execs the login process (given in the lo string, usually
!bin/login), it will have set the environment to include the terminal type,
as indicated by the tt string (if it exists). The ev string can be used to
enter additional data into the environment. It is a list of comma
separated strings, each of which will presumably be of the form
name= value.

If a non-zero timeout is specified with to, then getty will exit within the
indicated number of seconds, either having received a login name and
passed control to login, or having received an alarm signal and exited.
This may be useful to hangup dial-in lines.

Output from getty is even parity unless op is specified. Op may be
specified with ap to allow any parity on input, but generate odd parity
output. Note: this only applies while getty is being run; terminal driver
limitations prevent a more complete implementation. Getty does not
check parity of input characters in RAW mode.

CAVEATS
It is wise to always specify (at least) the erase, kill, and interrupt
characters in the default table. In all cases, "#" or "~H" typed in a login
name will be treated as an erase character, and "@" will be treated as a
kill character.

The delay capability is questionable. Apart form its general lack of
flexibility, some of the delay algorithms are not implemented. The
terminal driver should support sane delay settings.

Currently login(l) sets the environment, so any environment settings done
in gettytab will be overwritten.

Termcap format is hard to use; something more rational would be an
improvement.

SEE ALSO
termcap(5t), getty(8).

REV SEP 1985 3

539

GPS(SG) COMMAND REFERENCE GPS(5G)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher
level graphics programs such as plot(Jg) and vtoc(lg) produce GPS format
output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES

lines The lines primitive has a variable number of points from which
zero or more connected line segments are produced. The first
point given produces a move to that location. (A move is a
relocation of the graphic cursor without drawing.) Successive
points produce line segments from the previous point.
Parameters are available to set color, weight, and style (see
below).

arc The arc primitive has a variable number of points to which a
curve is fit. The first point produces a move to that point. If
only two points are included, a line connecting the points will
result; if three points a circular arc through the points is drawn;
and if more than three, lines connect the points. (In the future,
a spline will be fit to the points if they number greater than
three.) Parameters are available to set color, weight, and style.

text The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn.
Parameters are color, font, textsize, and textangle.

hardware The hardware primitive draws hardware characters or gives
control commands to a hardware device. A single point
locates the beginning location of the hardware string.

comment A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a
comment of zero length.

540

GPS(SG) COMMAND REFERENCE GPS(SG

GPS PARAMETERS

color Color is an integer value set for arc, lines, and text primitives.

weight Weight is an integer value set for arc and lines primitives to
indicate line thickness. The value 0 is narrow weight, 1 is
bold, and 2 is medium weight.

style Style is an integer value set for lines and arc primitives to give
one of the five different line styles that can be drawn on
TEKTRONIX 401 O series storage tubes. They are:

O solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

font An integer value set for text primitives to designate the text
font to be used in drawing a character string. (Currently font
is expressed as a four-bit weight value followed by a four-bit
style value.)

textsize Textsize is an integer value used in text primitives to express
the size of the characters to be drawn. Textsize represents the
height of characters in absolute universe-units and is stored at
one-fifth this value in the size-orientation (so) word (see
below).

textangle Textangle is a signed integer value used in text primitives to
express rotation of the character string around the beginning
point. Textangle is expressed in degrees from the positive x
axis and can be a positive or negative value. It is stored in the
size-orientation (so) word as a value 256/360 of it's absolute
value.

2

541

GPS(SG) COMMAND REFERENCE GPS(SG)

ORGANIZATION

GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

cw

point(s)

SW

so

string

SEE ALSO

cw points sw
cw points sw
cw point sw so [string]
cw point [string]
cw [string]

Cw is the control word and begins all primitives. It consists of
four bits that contain a primitive-type code and twelve bits that
contain the word-count for that primitive.

Point(s) is one or more pairs of integer coordinates. Text and
hardware primitives only require a single point. Point(s) are
values within a Cartesian plane or universe having 64K (-32K
to + 32K) points on each axis.

Sw is the style-word and is used in lines, arc, and text
primitives. For all three, eight bits contain color information.
In arc and lines eight bits are divided as four bits weight and
four bits style. In the text primitive eight bits of sw contain the
font.

So is the size-orientation word used in text primitives. Eight
bits contain text size and eight bits contain text rotation.

String is a null-terminated character string. If the string does
not end on a word boundary, an additional null is added to the
GPS file to insure word-boundary alignment.

abs(lg), af(lg), bar(lg), bel(lg), bucket(lg), cei/(lg), cor(lg), cusum(lg),
cvrtopt(lg), dtoc(lg), erase(lg), exp(lg), floor(lg), gamma(lg), gas(lg),
gd(lg), ged(lg), graphics(lg), gtop(lg), hardcopy(lg), hilo(lg), hist(lg),
hpd(lg), intro(lg), label(lg), list(lg), /og(lg), lreg(lg), mean(lg), mod(lg),
pair(lg), pd(lg), pie(lg), plot(lg), point(lg), power(lg), prime(lg), prod(lg),
ptog(lg), qsort(lg), quit(lg), rand(lg), rank(lg), remcom(lg), root(lg),
round(lg), siline(lg), sin(lg), subset(lg), td(lg), tekset(lg), title(lg),
total(lg), ttoc(lg), var(lg), vtoc(lg), whatis(lg), and yoo(lg).

3
542

GROUP(5) COMMAND REFERENCE GROUP(5)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory !etc. Because of the encrypted passwords, it
can and does have general read permission and can be used, for
example, to map numerical group ID's to names.

/etc/group

CAVEATS
The passwd(l) command won't change the passwords.

SEE ALSO
passwd(l), setgroups(2), crypt(3c), initgroups(3c), passwd(5).

543

HARDLINK(5) COMMAND REFERENCE HARDLINK(5)

NAME
hardlink - hard link specification file format for use with hardlink

DESCRIPTION
Hardlink(B) specification file consists of lines where each line contains all
the files that are to be hard linked together. The files on a given line may
be separated by any amount of white space (i.e. spaces and tabs). Each
specification is separated from the next by a new-line.

Any line beginning with a % will be considered a comment. If the first
line in the file begins with a comment, that comment will be used as a
verbose description of the hardlink specification file when hardlink(8)
runs. All blank lines are ignored.

EXAMPLES
An example of a hardlink file follows that would link all the different ways
vi can be cal led:

/bin/vi /bin/view /bin/ex /bin/e /bin/edit

SEE ALSO
ln(l), hardlink(8).

544

HOSTS(SN) COMMAND REFERENCE HOSTS(SN)

NAME
hosts - host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the
local network. Only hosts not running the Tek nameserver(Bn) are listed.
For each host a single line should be present with the following
information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A
"#" indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file. This file is
normally created from the official host data base maintained at the
Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown
hosts.

Network addresses are specified in the conventional "." notation using
the inet_addr routine from the Internet address manipulation library,
inet(3n). Host names may contain any printable character other than a
field delimiter, newline, or comment character.

/etc/hosts

CAVEATS
The nameserver(Bn) reads this file on startup, so changes will not be
reflected until it is restarted.

Only the first entry is used in the case of duplicates.

SEE ALSO
gethostent(3n), nameserver(Bn).

REV MAR 1985

545

HOSTS.DFS.ACCESS(SN) COMMAND REFERENCE HOSTS.DFS.ACCESS (SN)

NAME
hosts.dfs.access - control remote access to local files.

DESCRIPTION
The file hosts.dfs.access determines which users on which remote hosts
may access the local file system. This file is read by the distributed file
system daemon, dfsd(8n) when it starts up and also whenever the file is
changed. An example hosts.dfs.access file follows:

allow access by the following users:
host1 clarence
host2 doug
hostJ allen
hostJ steve

Note that # is a comment character.

Remember that hosts.dfs.access determines if the daemon will attempt
to execute the system call on behalf of the requesting host. However, the
standard UTek owner-group-other protection scheme will ultimately
determine the accessibility of the file by the remote process.

It is recommended that for editing hosts.dfs.access you use vidfs(8n). It
will make a number of checks on the validity of the entries in the access
file. When setting up hosts.dfs.access keep two points in mind. First,
users mentioned in hosts.dfs.access must already be in the password
file (letc!passwd). They do not, however, have to have login privileges nor
do they need a home directory. You can prevent them from logging on
by setting their encrypted password to '*' or any other single letter
(because no password encrypts to a single character). Secondly, the
local userid assigned to the remote user wishing to access the local file
system must match the userid assigned to that remote user on the remote
host.

The file is read only when dfsd notices that it has changed. The daemon
checks to see if the file has changed at most once a minute.

From version 2.0 of letcldfsd, it is possible to specify an 'alias' in
hosts.dfs.access, for example:

host1 root
host1 lean root

The first entry allows access by root from host]. However for security
reasons allowing access by root is not often appropriate. The second
entry allows access by root from hostl, but the local system treats the
request as if it came from /eon and so access is based on /eon's rights,
not those of root. Note that if two users have the same alias, only one of
those aliases will take effect. In other words it is not possible for multiple
users to have an entry with the same alias because when a request is
received from that alias, there is no way of knowing whose access rights
to use. This issue is resolved by the dfs daemon by assigning rights

REV SEP 1985

HOSTS.DFS.ACCESS(SN) COMMAND REFERENCE HOSTS.DFS.ACCESS (SN)

FILES

based on the first entry it finds in its internal tables (which are based on
hosts.dfs.access).

From version 3.0 of letcldfsd, it is possible to specify only an host name
in hosts.dfs.access, for example:

hostl
host! root

allow all accesses except root
also allow root access

Specifying only a hostname allows access by all users on that host except
root. Remember that even when specifying only a hostname, each user
from that remote host that wants to access the local system must be in
the local passwd file.

letc/hosts.dfs.access

SEE ALSO

DFS access database file.

dfsd(8n), vidfs(8n).

REV SEP 1985 2

547

""'

HOSTS.EQUIV(SN) COMMAND REFERENCE HOSTS.EQUIV(SN)

NAME
hosts.equiv, .rhosts - control remote access for rsh, rep, rlogin and
rcmd.

DESCRIPTION

FILES

REV SEP 1985

The files /etc/hosts.equiv and .rhosts determine which users on which
hosts may access the local file system. System utilities like rlogin(ln),
rsh(ln), and rcp(ln) use these files.

Access is based on user login names. Therefore it is important from a
security standpoint that all hosts allowed access to the local file system
are under the same administration (or at least cooperating closely) to
prevent accidently assigning the same user login name to two different
individuals.

The file !etc/hosts.equiv is meant to be used by system administrators to
govern which other hosts are allowed access to the local file system.
Typically only hostnames are specified in this file. Any remote access
attempt from any remote user (except root) on a host named in
!etc/hosts.equiv will be permitted assuming 1) the remote user has an
account on the local machine, and 2) the permissions for the local
account allow accessing the target file. It is also possible to limit access
to a particular user on a particular host by specifying the username after
the hostname. An example hosts.equiv file follows:

hostl
host2

The file .rhosts is meant to be used by individual users to allow access
from their accounts on other remote hosts or to allow access by other
remote users to the local user's account. The file must be located in the
user's home directory. An example .rhosts file follows:

hostl peter
host2 root

In other words, remote accesses from peter on hostl will be allowed. If
this example .rhosts file appeared in user scarlett's home directory, then
requests from peter on hostl will execute on the local system as if
submitted by scarlett. The format of .rhosts is the same as for the
hosts.equiv file but there is a slight change in interpretation. If a
hostname is listed but there is no username accompanying it, then
access will only be permitted for a user on the remote host with the same
user login name as the account on the local host in which the .rhosts file
is located. In other words, listing only a hostname in a .rhosts file does
not allow access by every user on that remote host.

The file is read each time access is attempted, so as soon as the file is
modified, the latest version of that file will be in effect.

/etc/hosts.equiv

.rhosts

548

HOSTS.EQUIV(SN) COMMAND REFERENCE HOSTS.EQUIV (SN)

CAVEATS
Other non-Tektronix systems may be far stricter about the format of the
.rhost and hosts.equiv files, i.e. a hostname must begin in the first column,
and the delimiter between the hostname and username must be a single
space.

SEE ALSO
rcp(ln), rlogin(ln), rsh(ln), rcmd(3n).

REV SEP 1985 2

549

INODE(S) COMMAND REFERENCE INODE(S)

NAME
fs, inode - format of file system volume

SYNOPSIS
#include (sys/types.h)
#include <sys/fs.h)
#include <sys/inode.h)
#include <sys/param.h)

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has
a common format for certain vital information. Every such volume is
divided into a certain number of blocks. The block size is a parameter of
the file system. Sectors 0 to 15 on a file system are used to contain
primary and secondary bootstrapping programs. Sectors are 512 bytes in
length.

The actual file system begins at sector 16 with the super block. The layout
of the super block as defined by the include file (sys!fs.h > is:

#define FS_MAGIC
struct f s {

Ox011954

struct fs *fs_link; /* linked list of file systems */
struct fs *fs_rlink; /* used for incore super blocks */
daddr_t fs_sblkno; /* addr of super-block in filesys */
daddr_t fs_cblkno; /* offset of cyl-block in filesys */
daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
daddr_t fs_dblkno; /* offset of first data after cg */
long fs_cgoffset; /* cylinder group offset in cylinder */
long fs_cgmask; /* used to calc mod fs_ntrak */
time_t fs_time; /* last time written */
long fs_size; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fs_ncg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs */
long fs_fsize; /* size of frag blocks in fs */
long fs_frag; /* number of frags in a block in fs */

/* these are configuration parameters */
long fs_minfree; /* minimum percentage of free blocks */
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second */

/* these fields can be computed from the others */
long fs_bmask; /* ''blkoff,, calc of blk offsets*/
long fs_fmask; /* fragoff calc of frag offsets */
long fs_bshift; /* lblkno'' calc of logical blkno */
long fs_fshift; /* numfrags'' calc number of frags */

/* these are configuration parameters */
long fs_maxcontig; /* max number of contiguous blks */
long fs_maxbpg; /* max number of blks per cyl group */

/* these fields can be computed from the others */
long fs_fragshift; /* block to frag shift */

REV SEP 1985

550

INODE(S) COMMAND REFERENCE INODE(5)

long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fs_nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB */
long fs_nspf; /* value of NSPF */
long fs_sparecon[6]; /* reserved for future constants*/

/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_nsect; /* sectors per track */
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */
long fs_ncyl; /* cylinders in file system */

/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group */
long fs_fpg; /* blocks per group * fs_frag */

/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */

/* these fields are cleared at mount time */
char fs_fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs_fsmnt[MAXMNTLEN];/* name mounted on*/

/* these fields retain the current block allocation info */
long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
long fs_cpc; /* cyl per cycle in postbl */
short fs_postbl[MAXCPG][NRPOS];/* head of blocks for each rotation*,
long fs_magic; /* magic number */
u_char fs_rotbl[l]; /* list of blocks for each rotation*/

/* actually longer */
};

Each disk drive contains some number of file systems. A file system
consists of a number of cylinder groups. Each cylinder group has inodes
and data.

A file system is described by its super-block, which in turn describes the
cylinder groups. The super-block is critical data and is replicated in each
cylinder group to protect against catastrophic loss. This is done at file
system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

REV SEP 1985 2

551

INODE(S) COMMAND REFERENCE INODE(S)

Addresses stored in inodes are capable of addressing fragments of
"blocks." File system blocks of at most size MAXBSIZE (defined in
(sys/param.h)) can be optionally broken into 2, 4, or 8 pieces, each of
which is addressable; these pieces may be DEV_BSIZE (defined in
(sys/dir.h)), or some multiple of a DEV_BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue
wasted disk space, the last data block of a small file is allocated as only
as many fragments of a large block as are necessary. The file system
format retains only a single pointer to such a fragment, which is a piece
of a single large block that has been divided. The size of such a
fragment is determinable from information in the inode, using the
"blksize(fs, ip, lbn)" macro defined in (sys/fs.h).

The file system records space availability at the fragment level; to
determine block availability, aligned fragments are examined.

The root inode, inode 2, is the root of the file system. (lnode 0 can't be
used for normal purposes and inode 1 was once used for linking bad
blocks, so inode 2 is used for the root inode.) The lost+ found directory is
given the next available inode when it is initially created by mkfs.

fs_minfree gives the minimum acceptable percentage of file system blocks
which may be free. If the freelist drops below this level only the super
user may continue to allocate blocks. This may be set to 0 if no reserve of
free blocks is deemed necessary, however severe performance
degradations will be observed if the file system is run at greater than 900/o
full; thus the default value of fs_minfree is 100/o.

Empirically the best trade-off between block fragmentation and overall
disk utilization at a loading of 90% comes with a fragmentation of 4, thus
the default fragment size is a fourth of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability
of blocks at different rotational positions, so that sequential blocks can be
laid out with minimum rotational latency. NRPOS is the number of
rotational positions which are distinguished. With NRPOS 8 the
resolution of the summary information is 2ms for a typical 3600 rpm drive.

fsJotdelay gives the minimum number of milliseconds to initiate another
disk transfer on the same cylinder. It is used in determining the
rotationally optimal layout for disk blocks within a file; the default value for
fsJotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is
allocated for each NBPI bytes of disk space. The inode allocation
strategy is extremely conservative.

MAXIPG (defined in (sys/fs.h)) bounds the number of inodes per cylinder
group, and is needed only to keep the structure simpler by having the
only a single variable size element (the free bit map).

REV SEP 1985 3

552

INODE(S) COMMAND REFERENCE INODE(5)

N.B.: MAXIPG must be a multiple of INOPB(fs) (defined in (sys/fs.h)).

MINBSIZE (defined in (sys/fs.h)) is the smallest allowable block size.
With a MINBSIZE of 4096 it is possible to create files of size r32 with
only two levels of indirection. MINBSIZE must be big enough to hold a
cylinder group block, thus changes to (struct cg) must keep its size within
MINBSIZE. MAXCPG (defined in (sys/fs.h)) is limited only to dimension
an array in (struct cg); it can be made larger as long as that structure's
size remains within the bounds dictated by MINBSIZE. Note that super
blocks are never more than size SBSIZE (defined in (sys/fs.h)).

The path name on which the file system is mounted is maintained in
fs_jsmnt. MAXMNTLEN (defined in (sys/fs.h)) defines the amount of
space allocated in the super block for this name. The limit on the amount
of summary information per file system is defined by MAXCSBUFS
(defined in (sys/fs.h)). It is currently parameterized for a maximum of two
million cylinders.

Per cylinder group information is summarized in blocks allocated from the
first cylinder group's data blocks. These blocks are read in from
fs_csaddr (size fs_cssize) in addition to the super block.

N.B.: sizeof (struct csum) must be a power of two in order for the "fs_cs"
macro to work.

Super block for a file system: MAXBPC (defined in (sys/fs.h>) bounds the
size of the rotational layout tables and is limited by the fact that the super
block is of size SBSIZE. The size of these tables is inversely proportional
to the block size of the file system. The size of the tables is increased
when sector sizes are not powers of two, as this increases the number of
cylinders included before the rotational pattern repeats (fs_cpc). The size
of the rotational layout tables is derived from the number of bytes
remaining in (struct fs).

MAXBPG (defined in (sys/fs.h)) bounds the number of blocks of data per
cylinder group, and is limited by the fact that cylinder groups are at most
one block. The size of the free block table is derived from the size of
blocks and the number of remaining bytes in the cylinder group structure
(struct cg).

lnode: The inode is the focus of all file activity in the UTek file system.
There is a unique inode allocated for each active file, each current
directory, each mounted-on file, text file, and the root. An inode is
'named' by its device/i-number pair. For further information, see the
include file (sys!inode.h).

SEE ALSO
fstab(5).

REV SEP 1985 4

553

MAGIC (5) COMMAND REFERENCE MAGIC (5)

NAME
magic - magic number file

DESCRIPTION
The magic file /usrlliblmagic contains information about certain kinds of
special files that exist in the system, like object code files, compacted
files, and archive files. The utility file(l) uses the magic file to print
information about files. The subroutine notmagic(Jc) uses the magic file to
determine if a file is a special type of file, not suitable for printing on a
terminal.

The magic file contains three types of lines. Lines beginning with the
character '#' are comments and are ignored. Lines beginning with 'O' are
considered to be magic number specification lines. If a line begins with a
'>, it is a continuation of the previous line and contains information about
following bytes.

The format of a specification line is:

0 type number description

All fields are separated by tabs. The type may be one of byte, short,
long, or string. Short numbers are interpreted as unsigned short. If the
magic number is not a string, it may be an octal, hex, or decimal number.
Octal numbers are specified by beginning them with a 'O'. Hex numbers
must begin with 'Ox'. Decimal numbers do not begin with 'O' or 'Ox'. The
description is a string that describes the type of file the magic number
describes. It may contain one printf style specifier (such as 'O/od') which
file will replace by the value of the magic number.

The following are examples of magic number specification lines. The first
line describes a compacted text file (see compact(l)), and the second
describes a long format archive file (see ar(5)).

0 short 017777
0
format)

string !<ARCH>

The format for a continuation line is:

>off set type op description

Compacted text
ASCII archive (long

Again, fields are separated by tabs. The offset is the number of bits that
should be checked in the next field, whose size is specified by the type
field. The op is one of '= ', '>, or '< followed by a number, the character
'x', or a string. If the op is '> followed by a number, the corresponding
data from the file must be a number that is greater than the number given
after the '>. The characters '< and '=' are similar in function and mean
'less than' and 'equal to'. The character 'x' means that any number will
match. If the type field is "string", the op field is a string to be matched.
The special string ".*" matches any string. This is useful for printing
null-terminated strings found at a known place in the file. The description

554

MAGIC (5) COMMAND REFERENCE MAGIC (5)

FILES

field is as before, except that a '%' specifier is replaced by the value
compared against op field.

The following lines show the description for an old style executable object
file.

0 short 0407 Old executable
>16 long >O not stripped

The '>16' in the second line implies that the next value to be checked
starts at the 16th byte in the file. The '>O' in the op field specifies that the
file matches the description ("not stripped") if the value is greater than 0.

This is the description for a file which contains the magic number
0177512 followed by a null terminated string which is the file description.

0
>4

long
string

0177512

·*

!usr!lib/magic The magic number file.

Described file
-- %s

CAVEATS
Most software that uses the magic file will not check the format of the file
very carefully. See the manual page for file(l). This utility has the ability
to check the format.

The programs vi, ex, e, edit, and view can only handle 300 magic
numbers of type long and/or short.

SEE ALSO
ex(l), file(l), more(l), notmagic(3c).

2

555

MAN(SMAN) COMMAND REFERENCE MAN(SMAN)

NAME
man - manual page control files and directories

DESCRIPTION
The system contains various commands which work with manual pages.
This document describes the manual page naming conventions, the
layout of the manual page file directories, and the format of the system
control files used by these commands.

Manual Page File Names
Each manual page file name is of the form title.section . The title is
typically the name of the command, file, subroutine, or concept that the
page describes, but a page may refer to a logical grouping of these. The
section consists of a number from 1 to 8 followed by zero or more
alphabetic characters. For example, this manual page is in a file called
man.5man, and the manual page describing the Bourne shell built-in
command type is in a file called type.lsh. If this name format is not
followed, the man command may not be able to find the page. The case
of section names is ignored by the man command, so section '3sh' is
equivalent to '3SH'.

Manual Page Directory Layout
The manual page commands expect to look in a directory and find
manual page files in the subdirectories 'man [1-8]' and 'cat[1-8]', and a
special database file called whatis (none of these are required) The
directories 'man [1-8]' are expected to contain the manual page sources,
and the directories 'cat[1-8]' are expected to contain the formatted
pages. The number at the end of the directory name refers to the section
number of the manual page. For example, the directories 'man1' and
'cat1' would contain manual page files with names of the form '* .1 *'.

Each command uses the subdirectories differently. The command man
looks only in 'cat [1-8]' for the formatted pages. The command catman
reformats the pages in 'man [1-8]' that are newer (have been modified
more recently than) the corresponding pages in 'cat [1-8]'. The
commands help, section, and buildif work with the manual page index
format tables (described in manindex(5man)). The command makewhatis
builds the special whatis database from the files in 'cat[1-8]'.

Manual Page Control Files
The directory lusrllib!man contains two manual page control files:
directories and sections, which are used by the various commands to
decide which actions to take.

The directories file contains lines of the form

man-directory command-directory actions

The man-directory is the name of a directory which contains manual page
subdirectories and a whatis database.

The command-directory is the name of a directory which contains the
commands corresponding to the manual pages. For example, the
directory lusrlman contains manual pages for the commands contained in

REV MAR 1985

556

MAN(5MAN) COMMAND REFERENCE MAN(5MAN)

FILES

/bin, /usrlbin, and/etc. (Since there may be more than one command
directory which corresponds to a manual page directory, multiple entries
beginning with the same man-directory are allowed.) This
correspondence is used by the man command to base manual page
directory searching order on the contents of the PATH environment
variable.

The actions part of the line is a set of letters which tell the command
catman what to do with the manual pages in the directories. The valid
actions letters are f,i, and w, which are described in the manual page for
catman(8man).

If a line begins with a '#', the line is ignored as a comment.

The sections file contains the default section ordering used by the man
command and is a complete list of the known section names. The
section names are separated by spaces, tabs, and newlines.

In addition, there may be items of the form [1-8 J +. These are used by
the catman command to decide where new subsections that appear
should go. For example, if the sections 3, 3c, 3s, 3n, and 3f exist and the
users tend not to need Fortran (section 3f) pages, the sections file might
contain a the sequence "3 3c 3s 3n 3 + 3f". If cat man finds a new
manual page whose section name is 3e, it would replace the '3 +' with
"3e 3 + ", resulting in the sequence "3 3c 3s 3n 3e 3 + 3f". If there are
no + specifiers corresponding to a section, new section names are added
to the end of the file. See the manual page for catman for more
information.

lusrlliblmanldirectories Description of directories where manual pages
are found.

lusrlliblmanlsections List of known manual page sections.

man[l-8]1* Manual page source files.

man[l-8]/* Formatted manual page files.

whatis Special manual page description database.

CAVEATS
The name 'x [1-8]' corresponds to the list of names "x1 x2 x3 x4 x5 x6
x7 x8" and not to a single name.

The sections file may not contain comments.

SEE ALSO
apropos(l man), buildif(l man), help(l man), makewhatis(J man), man(l man),
section(lman), whatis(Jman), manindex(5man), whatis(5man),
catman(8man).

2 REV MAR 1985

557

MANIN DEX (SMAN) COMMAND REFERENCE MANINDEX(SMAN)

NAME
manindex - manual page index format structure

DESCRIPTION
In order to work with the commands help(lman) and section(lman),
formatted manual pages must have a index format table at the end of the
file. This table is built by the command buildif(lman), which may be
automatically invoked by catman(8man).

The table consists of three sections, the header, the data, and the foot.
The header is a line consisting of a formfeed CL), the word
'%%index%%', and a newline. The data section consists of lines which
tell where the useful data for the sections of the manual page is found.
This is described in more detail later. The foot of the table consists of the
word '%%index%%', a 12-digit, 0-padded decimal number which tells
how many bytes of data are in the table (header and foot included), and a
newline. The entire table is in printable ASCII characters.

The data section of the index format table consists of lines with the
following form:

section:begin,length; .. . (newline)

The section is a two-letter abbreviation for the section name. The
following table shows the section names and their abbreviations:

NAME na
SYNOPSIS sy
DESCRIPTION de
OPTIONS op
EXAMPLES ex
FILES fi
DIAGNOSTICS di
VARIABLES va
RETURN VALUE rv
CAVEATS ca
SEE ALSO se
REFERENCES re

These abbreviations correspond to commands in help and the section-list
in section. The begin portion of the line is the decimal offset (beginning at
0) in the manual entry at which point the data for the section begins. The
length portion is the length of this data portion. There may be multiple
begin,length pairs for each section. The first pair always exists.
Subsequent pairs exist when the section contains a page boundary. If a
section doesn't exist in a manual entry, no line is generated in the table
for it.

EXAMPLES
Assume that a manual page contains the sections NAME, SYNOPSIS,
DESCRIPTION, EXAMPLES, RETURN VALUE, CAVEATS, and SEE

REV MAR 1985

558

MANINDEX{SMAN) COMMAND REFERENCE MANINDEX (SMAN)

ALSO, and that the DESCRIPTION section contains two page breaks and
that the RETURN VALUE section contains one page break. The following
shows a possible index format table (note that newlines are given as \n'
and the formfeed is given as '\f').

\f%%index%%\n
na:72,60;\n
sy:1J2,1J9;\n
de:271,1772;2J49,1741;4J96,J61;\n
ex:4757,905;\n
rv:5662,189;6157,205;\n
ca:6J62,767;\n
se:7129,277;\n
%%index%%000000000148\n

Note that this data begins 148 bytes from the end of the file.

CAVEATS
The command man(l man) knows not to print the index format data
whereas other programs do not. It is best to only use man to print out
manual pages.

SEE ALSO
apropos(l man), buildif(l man), help(l man), makewhatis(l man), man(l man),
section(lman), whatis(lman), man(5man), whatis(5man), catman(8man).

2 REV MAR 1985

559

MH(SMH) COMMAND REFERENCE MH(SMH)

NAME
mh - mh mail message format

DESCRIPTION
This section paraphrases the format of mail text messages.

ASSUMPTIONS

Messages are expected to consist of lines of text. Graphics and binary
data are not handled.

No data compression is accepted. All text is clear ASCII 7-bit data.

LAYOUT

A general "memo" framework is used. A message consists of a block of
information in a rigid format, followed by general text with no specified
format. The rigidly formatted first part of a message is called the
header, and the free-format portion is called the body. The header must
always exist, but the body is optional.

THE HEADER

Each header item can be viewed as a single logical line of ASCII
characters. If the text of a header item extends across several real lines,
the continuation lines are indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword
or name, along with associated text. The keyword begins at the left
margin, may contain spaces or tabs, may not exceed 63 characters, and
is terminated by a colon (:). Certain components (as identified by their
keywords) must follow rigidly defined formats in their text portions.

The text for most formatted components (e.g., "Date:" and "Message
Id:") is produced automatically. The only ones entered by the user are
address fields such as "To:", "cc:", etc. Addresses are assigned
mailbox names and host computer specifications. The rough format is
"mailbox at host", such as "Borden at Rand-UTek". Multiple addresses
are separated by commas. A missing host is assumed to be the local
host.

THE BODY

A blank line signals that all following text up to the end of the file is the
body. (A blank line is defined as a pair of (end-of-line) characters with
no characters in between.) No formatting is expected or enforced within
the body.

Within MH, a line consisting of dashes is accepted as the header
delimiter. This is a cosmetic feature applying only to locally composed
mail.

MESSAGE NAME BNF
msgs: =

msgspec: =

msgspec
msgs msgspec
msg:

560

REVMAR1985

MH(SMH)

msg:=

msg-name: =

msg-range: =

COMMAND REFERENCE

msg-range :
msg-sequence
msg-name :
(number)
"first" :
"last"
"cur"

"next"
"prev"
msg"-"msg
"all"

msg-sequence: = msg":"signed-number
signed-number:= "+"(number) :

"\--"(number) :
(number)

MH(SMH)

Where (number) is a decimal number in the range 1 to 999. Msg-range specifies
all of the messages in the given range and must not be empty. Msg-sequence
specifies up to (number) of messages, beginning with msg (in the case of first,
cur, next, or (number)), or ending with msg (in the case of prev or last).
+(number) forces "starting with msg", and -(number) forces "ending with
number". In all cases, msg must exist.

SEE ALSO
mh(lmh).

2 REV MAR 1985

561

MH_PROFILE(SMH) COMMAND REFERENCE MH_PROFILE{SMH)

NAME
mh_profile - user parameters for MH message handler

DESCRIPTION
Each user of mh is expected to have a file named .mh_profile in his or
her home directory. This file contains a set of user parameters used by
some or all of the mh family of programs. Each line of the file is of the
format

profile-component: value

The currently defined profile components are exemplified below:

Path: Mail Locates mh transactions in directory "Mail".

Current-Folder: inbox
Keeps track of currently open folder.

Editor: prompter Defines editor to be used by comp(lmh), repl(Jmh),
and forw(lmh).

Msg-Protect: 644 Defines octal protection bits for message files. See
chmod(l) for an explanation of the octal number.

Folder-Protect: 711 Defines protection bits for folder directories.

program: default switches
Sets default switches to be used whenever the mh
program program is invoked. For example, one
could override the Editor:profile component when
replying to messages by adding a component such
as:

repl: -editor prompter

cur-read-only/older: 172
Keeps track of the last message seen in the
specified read-only folder. In folders to which write
access is permitted, the current-message value is
kept in a file called cur within that folder.

prompter-next: ed Names the editor to be used on exit from
prompter(l mh)

The following profile elements are used whenever an mh program invokes
some other program such as refile(l mh) or ls(l). The mh_profile can be
used to select alternate versions of these programs if the user wishes.
The default values are given in the examples.

fileproc: !usrlteklrefile
installproc: lusr/liblteklmhlinstall-mh
lproc: /usrlucblmore
lsproc: ls
mailproc: /usrlteklmail
prproc: !bin/pr
scanproc: lusrlteklscan

562

REV MAR 1985

MH_PROFILE(SMH) COMMAND REFERENCE MH_PROFILE(SMH)

FILES

sendproc: lusrltek/send
showproc: /usr!ucblmore
delete-prog: /bin/rm

Normally, rmm(lmh), rather than removing a message in file X will
rename the file to ,X. If a user provides a delete-prog profile entry, the
specified program will be used to remove the file.

$HOME/. mh_profile

SEE ALSO

Personal MH configuration file.

mh(lmh).

2 REV MAR 1985

563

MTAB(S) COMMAND REFERENCE MTAB(S)

NAME
mtab - mounted file system table

SYNOPSIS
#include <fstab.h>
#include <mtab.h>

DESCRIPTION

FILES

Mtab resides in directory !etc and contains a table of devices mounted by
the mount command. Mount adds entries to the table; umount removes
entries.

The table is a series of mtab structures, as defined in <mtab.h>:
struct mtab {

char

};

char
char

m_path [32] ;
m_dname [32] ;
m_type[4];

/* mounted on pathname */
/* block device pathname 1

/* read-only, quotas */

Each entry contains the null-padded name of the place where the special
file is mounted, the null-padded name of the special file, and a type field,
one of those defined in <fstab.h>.

The special file has all its directories stripped away; that is, everything
through the last '/' is thrown away. The type field indicates if the file
system is mounted read-only, read-write, or read-write with disk quotas
enabled.

This table is present only as information to users. It does not matter to
mount if there are duplicated entries nor to umount if a name cannot be
found.

letclmtab

SEE ALSO
mount(8).

564

NETRC(SN) COMMAND REFERENCE NETRC(SN)

NAME
.netrc - remote machine login/passwords

DESCRIPTION
The .netrc file in a user's home directory contains a list of accounts on
other machines. It is used by the ftp and rdump commands to provide
auto-login.

The format is a keyword followed by a value seperated by a space,
comma, tab or newline. Used keywords are: machine, login, password.
These are keywords not currenly used but recognized: default, notify,
write, yes, y, no, n, command, force.

Since this file contains passwords to accounts on other systems the
programs that use this file will print an error message and not use the
information if it is readable by group or other. This is to encourage the
user to protect this sensitive file.

EXAMPLES

FILES

machine bigvax,login joeuser,password fatchance
machine tekworks,login wiseguy

$HOMEl.netrc

SEE ALSO
ftp(Jn), telnet(Jn), rexec(Jx), rdump(8n).

REV SEP 1985

565

NETWORK.CONF{ SN) COMMAND REFERENCE NETWORK.CONF(SN)

NAME
network.cont - non-volatile storage for network configuration status

DESCRIPTION

FILES

The network.conf file contains one line with the current hostname, and
one line containing the host ID as was last set by the user or by
netconfig(Bn) from an address of one of the network interfaces. Next is a
blank line. Following these are another line with either the string
net_enabled, or net_disabled, and another line with either the string
dfs_enabled or dfs_disabled.

The network address is specified in the conventional "." notation using
the inet_addr routine from the Internet address manipulation library,
inet(Jn). The host name may contain any printable character other than a
field delimiter, newline, or comment character.

letclnetwork.conf

CAVEATS
This file is for reading only and is maintained solely by netconfig(Bn).

SEE ALSO
netconfig(8n), inet(3n).

REV MAR 1985

566

NETWORKS (SN) COMMAND REFERENCE NETWORKS (SN)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks
which are reachable. For each network a single line should be present
with the following information:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A
"#" indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file. This file is
normally created from the official network data base maintained at the
Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown
networks.

Network number may be specified in the conventional "." notation using
the inet_]letwork routine from the Internet address manipulation library,
inet(3n). Network names may contain any printable character other than
a field delimiter, newline, or comment character.

I etc/networks

CAVEATS
The nameserver(8n) may be expanded to handle this function.

SEE ALSO
getnetent(3n).

567

OLDAR (5) COMMAND REFERENCE OLDAR(S)

NAME
oldar - old archive (library) file format

DESCRIPTION
The old archive file format is not supported by current software. These
files may be converted to the new format by arcv(l). Programs that work
with archives know how to distinguish the old and new archive files, and
usually print a message saying that the file is in the old format.

Old archive files are those from the 32v and Third Berkeley edition
archive programs. These files have the magic number (unsigned short)
0177545 at the start, followed by the constituent files, each preceded by a
file header. The header layout is

struct oar_hdr {

};

char oar_name[14];
short oar_sdate[2];
char oar_uid;
char oar_gid;
unsigned short oar_mode;
short oar_ssize[2];

The name is a blank-padded string. The date is the modification date of
the file at the time of its insertion into the archive.

The date and size fields should be converted to long values for use.
They are arrays of short values in the structure in order to make the
structure elements contiguous for use with read(2).

There is no provision for empty areas in an archive file.

Unlike the new archive format, the encoding of the header is not portable
across machines, and files do not have to begin on an even boundary.

CAVEATS
Old format files must be converted to the new archive format before use.
This must be done by using arcv(l) and not by editing the file, since this
may result in unrecoverable data.

The programs more(l) and ex(l) do not allow viewing or editing of old
format archives.

SEE ALSO
ar(J), arcv(l), ar(5).

568

PASSWD(5) COMMAND REFERENCE PASSWD(S)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

name (login name, contains no upper
encrypted password
numerical user ID
numerical group ID
user's real name, office, extension, home
initial working directory
program to use as Shell

The name may contain &, meaning insert the login name. This
information is set by the chfn(l) command and used by the finger(l)
command.

This is an ASCII file. Each field within each user's entry is separated
from the next by a colon. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if the
Shell field is null, then !bin/sh is used.

This file resides in directory I etc. Because of the encrypted passwords, it
can and does have general read permission and can be used, for
example, to map numerical user ID's to names.

Appropriate precautions must be taken to lock the file against changes if
it is to be edited with a text editor; vipw(8) does the necessary locking.

letc/passwd

SEE ALSO
chfn(l), login(l), passwd(l), finger(l), getpwent(3), group(5), vipw(8).

REV MAR 1985

569

PHONES(SN) COMMAND REFERENCE PHONES(SN)

NAME
phones - remote host phone number data base

DESCRIPTION

FILES

The file /etc/phones contains the system-wide private phone numbers for
the tip(ln) program. This file is normally unreadable, and so may contain
privileged information. The format of the file is a series of lines of the
form:

(system-name) [\t]* (phone-number)

The system name is one of those defined in the remote(5n) file and the
phone number is constructed from [0123456789- = *O/o]. The = and *
characters are indicators to the auto call units to pause and wait for a
second dial tone (when going through an exchange). The= is required by
the DF02-AC and the * is required by the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one
line in the file contains the same system name tip(ln) will attempt to dial
each one in turn, until it establishes a connection.

!etc/phones

SEE ALSO

System-wide phone numbers

tip(ln), remote(5n).

REV MAR 1985

570

PROTOCOLS (SN) COMMAND REFERENCE PROTOCOLS (SN)

NAME
protocols - protocol name data base

DESCRIPTION

FILES

The protocols file contains information regarding the known protocols
used in the local network. For each protocol a single line should be
present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A
"#" indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file.

Protocol names may contain any printable character other than a field
delimiter, newline, or comment character.

/etc/protocols

CAVEATS
These numbers are hard coded into many programs and the kernel (see
/usrlinclude/netinetlin.h, /usrlinclude/syslsocket.h)

SEE ALSO
getprotoent(3n).

571

PRSKEYWORDS (5SCCS) COMMAND REFERENCE PRSKEYWORDS (5SCCS)

NAME
prskeywords - keyword descriptions for prs

DESCRIPTION
Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file (see sccsfile(5sccs)) have an associated
data keyword. There is no limit on the number of times a data keyword
may appear in a dataspec.

The information printed by prs consists of: (1) the user supplied text; and
(2) the appropriate values (extracted from the SCCS file) substituted for
the recognized data keywords in the order of appearance in the dataspec.
The· format of a data keyword value is either Simple (S), in which keyword
substitution is direct, or Multi-line (M), in which keyword substitution is
followed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab
is specified by \t and carriage return/new-line is specified by \n.

1

572

PRSKEYWOADS (SSCCS) COMMAND REFERENCE PRSKEYWOADS (SSCCS)

TABLE 1. SCCS Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* s
:DL: Delta line statistics :Li:/:Ld:/:Lu: s
:Li: Lines inserted by Delta nnnnn s
:Ld: Lines deleted by Delta nnnnn s
:Lu: Lines unchanged by Delta nnnnn s
:OT: Delta type D-or-R s
:I: SCCS ID string (SID) :R:.:L:.:B:.:S: s
:A: Release number nnnn s
:L: Level number nnnn s
:B: Branch number nnnn s
:S: Sequence number nnnn s
:D: Date Delta created :Dy:/:Dm:/:Dd: s
:Dy: Year Delta created nn s
:Om: Month Delta created nn s
:Dd: Day Delta created nn s
:T: Time Delta created :Th:::Tm:::Ts: s

:Th: Hour Delta created nn s
:Tm: Minutes Delta created nn s
:Ts: Seconds Delta created nn s
:P: Programmer who created Delta log name s

:DS: Delta sequence number nnnn s
:DP: Predecessor Delta seq-no. nnnn s
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: s
:Dn: Deltas included (seq #) :DS:-:DS: ... s
:Ox: Deltas excluded (seq #) :DS:-:DS: ... s
:Dg: Deltas ignored (seq #) :DS:-:DS: ... s
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag text s

:MF: MR validation flag yes-or-no s
:MP: MR validation pgm name text s
:KF: Keyword error/warning flag yes-or-no s
:BF: Branch flag yes-or-no s
:J: Joint edit flag yes-or-no s

:LK: Locked releases :R: ... s
:Q: User defined keyword text s
:M: Module name text s
:FB: Floor boundary :A: s
:CB: Ceiling boundary :A: s
:Os: Default SID :I: s
:ND: Null delta flag yes-or-no s
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body text M
:W: A form of what(1sccs) string NIA :Z::M:\t:I: s
:A: A form of what(1sccs) string NIA :Z::Y:-:M:-:l::Z: s
:Z: what(1sccs) string delimiter NIA @(#) s
:F: SCCS file name NIA text s

:PN: secs file path name NIA text s
* :Dt:- = -:DT:-:1:-:D:-:T:-:P:-:DS:-:DP:

2

573

PRSKEYWORDS (SSCCS) COMMAND REFERENCE PRSKEYWORDS (SSCCS)

SEE ALSO
admin(lsccs), delta(lsccs), get(lsccs), prs(lsccs), rmdel(lsccs),
secs help(I secs), sccsfile(5sccs).

3

574

QCONF(SMDQS) COMMAND REFERENCE QCONF(SMDQS)

NAME
qconf - MDQS configuration file

SYNOPSIS
/etc/qconf

DESCRIPTION

REV SEP 1985

There are four sections to the Multi-Device Queuing System configuration
file, each separated by a row of hyphens. The first section specifies
MDQS parameter values, the second specifies devices used, the third
specifies queue names, and the fourth specifies device/queue/server
mappings.

The letclsysadmin program should be used for all but exceptional cases
of initializing and updating the MDQS configuration file. The help
facilities of this program are useful for additional explanation of letclqconf
parameters.

In letclqconf, the "#" character is a comment character signifying that
the rest of the line is to be ignored. Extra spaces, tabs and blank lines
are ignored, and double-quoted strings are treated as single tokens.

Entries in the first section have the form "parameter value". The
following parameters are recognized:

print-queue (queue)
print-forms (form)
print-prior (priority)
print-hdr (headerfile)
print-hdrdir (directory)
print-limit (pages)

The above parameters control the default behavior of the lpr program.
The queue must be specified in the third section of letclqconf, and may
be directed to a remote queue (in the fourth section of letclqconf) via the
netsend server. The form is used to direct entries from the default
queue to the default device. The form must be associated with the
device via the qdev program; this is handled automatically when using
the sysadmin program. The form must be a valid form as specified in
the MDQS forms file. Priority is in the range 0-10, with 0 being the
highest priority. Print-hdr specifies the default file to be used as part of
the banner page logo. Print-hdrdir specifies the directory which may
contain header files for shared use (see lpr -H). Print-limit specifies the
maximum number of pages a printing request may output. A limit of 0
indicates no limit.

batch-queue (queue)
batch-forms (form)
batch-prior (priority)

These parameters specify defaults for the batch program. The meanings
of queue, form, and priority are similar to the meanings for the print
parameters defined above.

575

QCONF(SMDQS) COMMAND REFERENCE QCONF(SMDQS)

REV SEP 1985

console (filename)
is the file opened by mdqsd as stderr.

scanwait (number)
sets the default time in seconds that mdqsd will sleep if there are no new
requests or finished requests. It is recommended that number be 60 so
that the delayed queue will be checked once a minute in the absence of
new activity.

openwait (number)
specifies the number of seconds the daemon will wait to retry opening a
device if a device open fails.

maxfailures (number)
If this variable is non-zero, the daemon will flag a device as failed if the
server on that device fails number times. If this happens, the device can
be restarted by disabling and re-enabling the device with the qdev
program. If disabling and re-enabling the device doesn't work, the
MOOS daemon can be killed and restarted via the daemon(8) program.

sysmgr (address)
Specifies where to mail orphan notices. This address defaults to mdqs.

netwait (number)
Specifies the amount of time (in minutes) to delay the retry of a request
that failed due to network errors.

Section two contains definitions for devices, where each line is of the
form "logical-device real-device forms status". Logical-device is the
parameter used to map devices to queues in the fourth section of
letclqconf, and may be used as a parameter to qdev. The real-device
should be a real device name, i.e., it should begin with ldevl. Examples
of real devices used for printer ports are ldevlttyl and ldevlhc*.

The net is a special logical-device which should always map here to
ldevlnull and should always map to the netsend server in the fourth
section. The batch program should always submit to queues mapped to
logical devices mapped to /devlnull. The forms field specifies what forms
are associated with the device. Anyform indicates that this device can
accept requests regardless of what forms were specified for the request.
The status is a set of symbolic flags used to control the behavior of a
device. Skipmsg disables the sending of completion messages on
successful completion of a request on the device. Roundrobin causes the
device to use a roundrobin algorithm in selecting requests from several
queues.

The third section simply contains queue names and an optional status
field, one per line. Queue names can be specified in submit programs
such as lpr and in status programs such as lpq. The status field has one
option form= form which will set the forms field of all requests submitted
to this queue with the form of form if no form was explicitly designated
when the request was submitted.

2

576

QCONF(SMDQS) COMMAND REFERENCE QCONF(SMDQS)

FILES

The fourth section specifies the mapping of queues, devices, and servers.
A line in this section is of the form queue device server . Queue and device
must have been previously defined in sections three and two respectively.
A mapping specifies that requests from queue are to be serviced by the
device (if the forms match those associated with the device) and the
request is to be processed using the server program. The server
process is run as setuid to the user id of the user who submitted the
request whether the request is run locally or remotely.

If multiple queues are mapped to one device, a request is taken from the
queue with the first listed queue/device mapping for this device, and if
this queue is empty, the request is taken from the queue with the next
queue/device mapping for this device, etc. (this can be overridden by
using the roundrobin status flag in section two).

A queue can hold requests directed to several devices, and these
requests can be partitioned by associating forms with a device.

letc!qconf lusrlliblmdqs/forms
!usrlliblmdqslremote.access

CAVEATS
letclsysadmin is the normal and preferred way to initialize and update
/etc!qconf. When letc!qconf is modified, letclmdqsd should be killed
and restarted - see mdqsd(Bmdqs). Rsh privileges are required in order to
execute remote requests.

SEE ALSO
forms(5mdqs), mdqsd(8mdqs), remote.access(5mdqs), /pserver(8mdqs),
sysadmin(8).

REV SEP 1985 3

577

RCSFILE (SRCS) COMMAND REFERENCE RCSFILE (SRCS)

NAME
rcsfile - format of RCS file

DESCRIPTION
An RCS file is an ASCII file. Its contents is described by the grammar
below. The text is free format, i.e., spaces, tabs and new lines have no
significance except in strings. Strings are enclosed by @. If a string
contains a@, it must be doubled.

The meta syntax uses the following conventions: : (bar) separates
alternatives; { and } enclose optinal phrases; { and }* enclose phrases
that may be repeated zero or more times; {and }+enclose phrases that
must appear at least once and may be repeated; <and >enclose
nonterminals.

<rcstext>
<admin>

<delta>

<desc>
<deltatext>

<num>
<digit>
<id>
<letter>
<idchar>

<Special>
<String>

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

<ad min> {<delta>}* <desc> { <deltatext>} *
head {<num>};
access {<id>}*;
symbols {<id>: <num>}*;
locks {<id> : <num>}*;
comment {<String>};
<num>
date
author
state
branches
next
desc
<num>
log
text
{<digit>{.}}+
0 : 1 : ... : 9

<nUm>;
<id>"
{<id~};
{<num>}*;
{<num>};
<String>

<String>
<String>

<letter>{ <idchar>} *
A:s: ... :z:a:b: ... :z
Any printing ASCII character except space,
tab, carriage return, new line, and <Special>.
; :: : ':@
@fany ASCII character, with '@'doubled}*@

Identifiers are case sensitive. Keywords are in lower case only. The sets
of keywords and identifiers may overlap.

The <delta> nodes form a tree. All nodes whose numbers consist of a
single pair (e.g., 2.3, 2.1, 1.3, etc.) are on the 11trunk 11

, and are linked
through the 11 next11 field in order of decreasing numbers. The 11head 11 field
in the <admin> node points to the head of that sequence (i.e., contains
the highest pair).

All <delta> nodes whose numbers consist of 2n fields (n ~ 2) (e.g., 3.1.1.1,
2.1.2.2, etc.) are linked as follows. All nodes whose first (2n)-1 number
fields are identical are linked through the 11 next 11 field in order of

578

RCS FILE (5 RCS) COMMAND REFERENCE RCSFILE (SACS)

increasing numbers. For each such sequence, the <delta> node whose
number is identical to the first 2(n-1) number fields of the deltas on that
sequence is called the branchpoint. The 11 branches 11 field of a node
contains a list of the numbers of the first nodes of all sequences for which
it is a branchpoint. This list is ordered in increasing numbers.

Example: HEAD

2.1

A Revision Tree 5317-01

2

579

ACSFILE (SACS) COMMAND REFERENCE ACSFILE (SACS)

Maximum Number of Revisions

When an RCS file contains 700 or more revisions, all RCS commands
except for ident and rlog -c will print a warning message (if possible)
saying that the maximum number of revisions is about to be reached.
When the file contains 719 revisions, no further checkins are allowed.
This maximum applies to the total number of revisions in all branches.
Starting a new branch will not release any space.

There are two things that can be done when this happens. The first is to
delete some of the revisions using the -o flag of the res command. This
should be done with some care, making sure that significant modifications
are kept separate.

The other method of fixing this problem is to make a copy of the RCS file
and delete all of the old revisions in the original file. For example, if the
RCS file prog.e, v has 715 revisions (1.1 through 1. 716), the following
commands will save the first 700 revisions in another file, and leave the
last 15 revisions where they can be easily found.

ep prog.e,v prog.old,v
res -ol.701-1.716 prog.old
res -ol.1-1.700 prog.e

Revision 1.348 can be retrieved by the command co -r 1.348 prog.old.
Revisions after 1.700 can be checked out of prog.e, v. Note that the res
command may take a while to delete 700 revisions.

SEE ALSO
ci(lres), eo(lrcs), ident(lres), rlog(lrcs), rcs(lrcs), rcsdiff(lres),
rcsintro(l res), rcsmerge(I res).

3

580

REMOTE (SN) COMMAND REFERENCE REMOTE (SN)

NAME
remote - remote host description file

DESCRIPTION
The systems known by tip(ln) and their attributes are stored in an ASCII
file which is structured somewhat like the termcap(5t) file. Each line in
the file provides a description for a single system. Fields are separated by
a colon (:). Lines ending in a\ character with an immediately following
newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than
one name for a system, the names are separated by vertical bars. After
the name of the system comes the fields of the description. A field name
followed by an =sign indicates a string value follows. A field name
followed by a # sign indicates a following numeric value.

Entries named tip* and cu* are used as default entries by tip, and the cu
interface to tip, as follows. When tip is invoked with only a phone
number, it looks for an entry of the form tip300, where 300 is the baud
rate with which the connection is to be made. When the cu interface is
used, entries of the form cu300 are used.

Capabilities are either strings (str), numbers (num), or boolean flags
(bool). A string capability is specified by capability= value; e.g.
dv= /devlharris. A numeric capability is specified by capability# value;
e.g. "xa#99". A boolean capability is specified by simply listing the
capability.

at (str) Auto call unit type.

br (num) The baud rate used in establishing a connection to the remote
host. This is a decimal number. The default baud rate is 300 baud.

cm (str) An initial connection message to be sent to the remote host. For
example, if a host is reached through port selector, this might be set
to the appropriate sequence required to switch to the host.

cu (str) Call unit if making a phone call. Default is the same as the 'dv'
field.

di (str) Disconnect message sent to the host when a disconnect is
requested by the user.

du (bool) This host is on a dial-up line.

dv (str) UTek device(s) to open to establish a connection. If this file
refers to a terminal line, tip(ln) attempts to perform an exclusive
open on the device to insure only one user at a time has access to
the port.

el (str) Characters marking an end-of-line. The default is NULL. ·-·
escapes are only recognized by tip after one of the characters in 'el',
or after a carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to
BUFSIZ.

581

REMOTE (SN) COMMAND REFERENCE REMOTE (SN)

hd (bool) The host uses half-duplex communication, local echo should
be performed.

ie (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is
transferring a file, this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This
may be one of "even", "odd", "none", "zero" (always set bit 8 to
zero), "one" (always set bit 8 to 1). The default is even parity.

pn (str) Telephone number(s) for this host. If the telephone number field
contains an @ sign, tip searches the file !etc/phones file for a list of
telephone numbers; see phones(5n).

tc (str) Indicates that the list of capabilities is continued in the named
description. This is used primarily to share common capability
information.

EXAMPLES
The following example shows the use of the capability continuation
feature:

UTek-1200:\

arpavax:ax:\

FILES
/etc/remote

SEE ALSO

:pn=7654J21%:tc=UNIX-1200

tip(l n), phones(5n).

2

582

REMOTE.ACCESS (SMDQS) COMMAND REFERENCE REMOTE.ACCESS (SMDQS)

NAME
remote.access - control remote access to MDQS services.

DESCRIPTION

FILES

The file remote.access determines which users on which remote hosts
can access local MDQS services. This file is read by the MDQS netrecv
program when it receives a request from a remote user that does not
have rsh privileges on the local host. An example remote.access file
follows:

allow access by the following users:
#(remote host) (local user) (remote user)
hostl clarence
hostl leon root
host2 doug *
* all en

Note that # is a comment character. The first entry allows access by
clarence from hostl. For security reasons, allowing access by root is not
often appropriate. The second entry allows access by root from host I,
but the local system treats the request as if it came from !eon and so
access is based on /eon's rights, not those of root. Note that if two users
have the same alias, only one of those aliases takes effect. In other
words, it is not possible for multiple users to have an entry with the same
alias because when a request is received from that alias, there is no way
of knowing whose access rights to use. This issue is resolved by
assigning rights based on the first entry it finds in the table. The third
entry allows access by any user from host2, but the local system treats
the request as if it came from doug. The fourth entry allows access by
alien from any system.

Remember that remote.access determines if the MDQS will accept a
request from a remote user that does not already have rsh privileges.
When setting up remote.access keep in mind that the local users
mentioned must already be in the password file (letclpasswd). They do
not, however, have to have login privileges, nor do they need a home
directory. You can prevent them from logging on by setting their
encrypted password to '*' or any other single letter (because no password
encrypts to a single character).

/usr/liblmdqs/remote.access
MDQS remote access database file.

SEE ALSO
mdqsd(8mdqs), qconf(5mdqs).

583

CCSFILE(5SCCS) COMMAND REFERENCE SCCSFILE(5SCCS)

~ME

sccsfile - format of SCCS file

::SCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum,
the delta table (contains information about each delta}, user names
(contains login names and/or numerical group IDs of users who may add
deltas}, flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body
(contains the actual text lines intermixed with control lines).

Throughout an secs file there are lines which begin with the ASCII SOH
(start of heading) character (octal 001). This character is hereafter
referred to as the control character and will be represented graphically as
@. Any line described below which is not depicted as beginning with the
control character is prevented from beginning with the control character.

Entries of the form DODOO represent a five digit string (a number between
00000 and 99999).

Each logical part of an secs file is described in detail below.

Checksum
The checksum is the first line of an secs file. The form of the
line is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @h provides a magic number of
(octal) 064001.

Delta table

!EV SEP 1985

The delta table consists of a variable number of entries of the
form:

@s DDDDD/DDDDD/DDDDD
@d (type) (SCCS ID) yr/mo/da hr:mi:se (pgmr) DODOO DODD
@i DODOO •.•
@x DODOO •••
@g DODOO •••
@m (MR number)

@c (comments) ...

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)

584

SCCSFILE(SSCCS) COMMAND REFERENCE SCCS Fl LE (5SCCS)

contains the type of the delta (currently, normal: o, and removed:
R), the secs ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the
time the delta was created, and the serial numbers of the delta
and its predecessor, respectively.

The @i, @x, and @Q lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with
the delta.

The @e line ends the delta table entry.

User names

Flags

REV SEP 1985

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines
containing these login names and/or numerical group IDs are
surrounded by the bracketing lines @u and @U. An empty list
allows anyone to make a delta.

Keywords used internally (see admin(lsccs) for more information
on their use). Each flag line takes the form:

@f (flag) (optional text)

The following flags are defined:
@f t (type of program>
@f v (program name)
@f i
@f b
@f m
@ff
@f c
@f d
@f n
@f j
@f I
@f q
@f z

(module name)
(floor)
(ceiling)
(default-sid)

(lock-releases>
(user defined)
(reserved for use in interfaces)

The t flag defines the replacement for the O/oYO/o identification
keyword. The v flag controls prompting for MR numbers in
addition to comments; if the optional text is present it defines an
MR number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When
the i flag is not present, this message is only a warning; when

2

585

SCCS Fl LE (SSC CS) COMMAND REFERENCE SCCSFILE(SSCCS)

the i flag is present, this message will cause a "fatal" error (the
file will not be gotten, or the delta will not be made). When the b
flag is present the -b keyletter may be used on the get
command to cause a branch in the delta tree. Them flag
defines the first choice for the replacement text of the %M%
identification keyword. The f flag defines the "floor" release; the
release below which no deltas may be added. The c flag defines
the "ceiling" release; the release above which no deltas may be
added. The d flag defines the default SID to be used when none
is specified on a get- command. Then flag causes delta- to
insert a "null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4
are skipped). The absence of then flag causes skipped releases
to be completely empty. The j flag causes get- to allow
concurrent edits of the same base SID. The I flag defines a list
of releases that are locked- against editing (see get(lsccs) with
the -e keyletter). The q flag defines the replacement for the
o/oQo/o identification keyword. z flag is used in certain specialized
interface programs.

Comments

Body

SEE ALSO

Arbitrary text surrounded by the bracketing lines @t and @T.
The comments section typically will contain a description of the
file's purpose.

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are
three kinds of control lines: insert, delete, and end, represented
by:

@100000
@D DODOO
@E DODOO

respectively. The digit string is the serial number corresponding
to the delta for the control line.

admin(lsccs), delta(l), get(lsccs), prs(l).

REV SEP 1985 3

586

SERVICES { SN) COMMAND REFERENCE SERVICES {SN)

NAME
services - service name data base

DESCRIPTION

FILES

The services file contains information regarding the known services
available on the local network. For each service a single line should be
present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The
port number and protocol name are considered a single item; a I is used
to separate the port and protocol (e.g. "512/tcp"). A# indicates the
beginning of a comment; characters up to the end of the line are not
interpreted by routines which search the file.

Service names may contain any printable character other than a field
delimiter, newline, or comment character.

!etc/services

CAVEATS
Many programs do not read this file to find their port numbers, therefore
some port numbers can not be changed.

The nameserver(8n) does not provide this information since it is not
machine specfic.

SEE ALSO
getservent(Jn).

587

STAB (5) COMMAND REFERENCE STAB(S)

NAME
stab - symbol table types

SYNOPSIS
#include <Stab.h>

DESCRIPTION
Stab.h defines some values of the n_type field of the symbol table of
a.out files. These are the types for permanent symbols (i.e., not local
labels, etc.) used by the debugger sdb(l) and the compilers. Symbol
table entries can be produced by the .stabs assembler directive. This
allows one to specify a double-quote delimited name, a symbol type, one
char and one short of information about the symbol, and an unsigned
long (usually an address). To avoid having to produce an explicit label for
the address field, the .stabd directive can be used to implicitly address
the current location. If no name is needed, symbol table entries can be
generated using the .stabn directive. The loader promises to preserve
the order of symbol table entries produced by .stab directives. As
described in a.out(5), an element of the symbol table consists of the
following structure:

I*
* Format of a symbol table entry.
*I

struct nlist {
union {

char *n_name; /* for use when in-core */
long n_strx; /* index into file string table */

} n_un;
unsigned char n_type; /* type flag */
char n_other; /* unused */
short n_desc; /* see struct desc, below */
unsigned n_value; /* address or offset or line */

};

The low bits of the n_type field are used to place a symbol into at most
one segment, according to the following masks, defined in <a.out.h>. A
symbol can be in none of these segments by having none of these
segment bits set.

/*
* Simple values for n_type.
*I
#define N_UNDF OxO
#define N_ABS Ox2
#define N_TEXT Ox4
#define N_DATA Ox6
#define N_BSS Ox8

#define N__EXT 01

/* undefined */
/* absolute */
/* text */
/* data */
/* bss */

/*external bit, or'ed in*/

588

STAB(5) COMMAND REFERENCE STAB (5)

The n_value field of a symbol is relocated by the linker, ld(l) as an
address within the appropriate segment. N_value fields of symbols not in
any segment are unchanged by the linker. In addition, the linker will
discard certain symbols, according to rules of its own, unless the n_type
field has one of the following bits set:

I*
* Other permanent symbol table entries have some of the N_STAB bits
* These are given in <stab.h>
*I

#define N-8TAB OxeO/* if any of these bits set, don't discard

This allows up to 112 (7 * 16) symbol types, split between the various
segments. Some of these have already been claimed. The symbolic
debugger, sdb(1), uses the following n_type values:

#define N_GSYM Ox20 /*global symbol: name,,O,type,O */
#define N_FNAME Ox22 /*procedure name (f77 kludge): name,,O */
#define N_FUN Ox24 /*procedure: name,,O,linenumber,address */
#define N--8TSYM Ox26 /* static symbol: name,,O,type,address */
#define N_LCSYM Ox28 /* .lcomm symbol: name,,O,type,address */
#define N_RSYM Ox40 /* register sym: name,,O,type,register */
#define N_8LINE Ox44 /* src line: 0,,0,linenumber,address */
#define N--8SYM Ox60 /*structure elt: name,,O,type,struct_offset
#define N__80 Ox64 /* source file name: name,,O,O,address */
#define N_LSYM Ox80 /* local sym: name,,O,type,offset */
#define N__80L Ox84 /* #included file name: name,,O,O,address */
#define N_FSYM OxaO /* parameter: name,,O,type,offset */

*

#define N_ENTRY Oxa4 /* alternate entry: name,linenumber,address */
#define N_LBRAC OxcO /* left bracket: 0,,0,nesting level,address */
#define N_RBRAC OxeO /* right bracket: 0,,0,nesting level,address *
#define N_BCOMM Oxe2 /* begin common: name,, */
#define N__ECOMM Oxe4 /* end common: name,, */
#define N__ECOML Oxe8 /*end common (local name): , , address * /

'

'

#define N_LENG Oxf e /* second stab entry with length information *J
where the comments give the sdb conventional use for .stabs and the
n_name, n_other, n_desc, and n_value fields of the given n_type. Sdb
uses the n_desc field to hold a type specifier in the form used by the C
Compiler, cc(l), in which a base type is qualified in the following structure:

struct desc {

};

short q6:2,
q5:2,
q4:2,
qJ:2,
q2:2,
q1:2,
basic:4;

2

589

STAB(S) COMMAND REFERENCE STAB (5)

There are four qualifications, with q1 the most significant and q6 the least
significant:

0 none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows:
0 undefined
1 function argument
2 character
3 short
4 int
5 long
6 float
7 double
8 structure
9 union
1 O enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
15 unsigned long

The Pascal compiler, pc(l), uses the following n_type value:

#define N__pc Ox JO /* global pascal symbol: name,,O,subtype,line */

and uses the following subtypes to do type checking across separately
compiled files:

1
2
3
4
5
6
7
8
9
10
11
12

SEE ALSO

source file name
included file name
global label
global constant
global type
global variable
global function
global procedure
external function
external procedure
library variable
library routine

as(l), ld(l), sdb(l), a.out(5).

3

590

SYSDEF(S) COMMAND REFERENCE SYSDEF(5)

NAME
sysdef - System Definition file for system configuration

DESCRIPTION
A system definition file describes the configuration of a system for use by
sysconf(8).

A # indicates the rest of the file is a comment.

Keywords are used to indicate interpretation of the rest of the line. The
active device drivers for a kernel are listed in the format:

device sn
cdevice sn sn_controller

device and cdevice are keywords indicating sn is the signature name of a
device. The keyword controller may be used in place of device to
indicate a controller. cdevice indicates the device named by sn is
controlled by the device named sn_controller.

The keyword option indicates the next field contains the name of a pre
linked kernel object for system configuration.

option objecUile

Parameters which may be set for a kernel are listed in the format:

int variable value

All variables are names of integers and value is assumed to be an integer.

The device number of files to be used as the root device, the dump
device and the argument holding device are given by:

dev
dev
dev

rootdev
dumpdev
argdev

The current timezone setting is shown as:

timezone minutes

major minor
major minor
major minor

dst

minutes is a an integer value indicating the number of minutes west of
Greenwich and dst is a integer indicating the type of daylight savings time
in affect.

SEE ALSO
sysconf(8).

591

TAR(5} COMMAND REFERENCE TAR(5}

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a
medium suitable for transportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK.
A file on the tape is represented by a header block which describes the
file, followed by zero or more blocks which give the contents of the file.
At the end of the tape are two blocks filled with binary zeros, as an end
of-file indicator.

The blocks are grouped for physical 1/0 operations. Each group of n
blocks (where n is set by the b keyletter on the tar(!) command line -
default is 20 blocks) is written with a single system call; on nine-track
tapes, the result of this write is a single tape record. The last group is
always written at the full size, so blocks after the two zero blocks contain
random data. On reading, the specified or default group size is used for
the first read, but if that read returns less than a full tape block, the
reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy[TBLOCK];
struct header {

} dbuf;

char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];

Name is a null-terminated string. The other fields are zero-filled octal
numbers in ASCII. Each field (of width w) contains w-2 digits, a space,
and a null, except size and mtime, which do not contain the trailing null.
Name is the name of the file, as specified on the tar command line. Files
dumped because they were in a directory which was named in the
command line have the directory name as prefix and !filename as suffix.
Mode is the file mode, with the top bit masked off. Uid and gid are the
user and group numbers which own the file. Size is the size of the file in
bytes. Links and symbolic links are dumped with this field specified as
zero. Mtime is the modification time of the file at the time it was dumped.

1

592

TAR(S) COMMAND REFERENCE TAR(S)

Chksum is a decimal ASCII value which represents the sum of all the
bytes in the header block. When calculating the checksum, the chksum
field is treated as if it were all blanks. Link/lag is ASCII 'O' if the file is
"normal" or a special file, ASCII '1' if it is an hard link, and ASCII '2' if it
is a symbolic link. The filename linked-to, if any, is given in linkname,
with a trailing null. Unused fields of the header are binary zeros (and are
included in the checksum).

The first time a given inode number is dumped, it is dumped as a regular
file. The second and subsequent times, it is dumped as a link instead.
Upon retrieval, if a link entry is retrieved, but not the file it was linked to,
an error message is printed and the tape must be manually re-scanned
to retrieve the linked-to file.

The encoding of the header is designed to be portable across machines.

CAVEATS
Names or linknames longer than NAMSIZ produce error reports and
cannot be dumped.

SEE ALSO
tar(l).

2

593

TCP _SERVERS(SN) COMMAND REFERENCE TCP _SERVERS(SN)

NAME
tcp_servers - tcpd services list

DESCRIPTION

FILES

The tcp_servers file contains a information regarding the services which
are started by tcpd(8n). For each service a single line should be present
with the following information:

name
command
arguments

The name is the name of the service as listed in services(5n). The
command is either the full path or path relative to the server directory
(letcltcp_services) of the command being run. The arguments are the
passed to the service when it is run.

Items are separated by any number of blanks and/or tab characters. A#
indicates the beginning of a comment.

The following are examples of service specification lines.

Tcpd configuration file sample
login rlogind
shell rshd
smtp /usr/lib/sendmail -bs
echo /bin/cat -u
daytime /bin/date

!etcltcp_servers

CAVEATS
Commands are executed directly, rather than being interpreted by sh(lsh),
so no redirection is possible.

SEE ALSO
services(5n), tcpd(8n).

REV MAR 1985

594

T.EJIM~AP~J) COMMAND REFF;flENC_E TeRMCAfl(STJ

NAME
termcap - terminal capability data_ base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminal attributes; it is often used by
vi(l), curses(Jt), and other programs requring terminal values to be
selected. Terminals are described in termcap by giving a set of
capabilities which they have, and by describing how operations are
performed. P~dding requirements and initralization sequences are
included in termcap. _ .. · - · ·

Entries in _termcap consist of a number of : separated fields. The first
entry for each terminal gives the names which are known for the terminal,
separated by I characters. The first name is always 2 characters long
and is used by older version 6..systems which store the terminal type in a
16 bit word in a systemwide data base. The second name given is the
most common.abbreviation for the terminal, -and the last name given
shou1d be a long name fully identifying the terminal. The second name
should contain no blanks; the last name may well contain blanks for
readability.

CAPABILITIES

(P) indicates padding may be specified
(P*) indicates that padding may be based on the number of tines affected

Name Type Pad? Description
ae str (P) -End alternate char_acter set
al str (P*) Add- new blank line
am boo I Terminal has· automatic margins
as str (P) Start alternate character set
be str Backspace if not -H
bs boo I Terminal can backspace with -H
bt str (P) Back tab
bw bool, Backspace wraps from column Oto last column
cc str Command pharacter in prototype if terminal settable
cd str (P*) Clear to end of display
ce- str (P)_ Clear to end of line
ch str (P) Like cm but horizorital. motion only, line stays same
cl str (P*) - Clear screen
cm str · . (P) Cu~sor motion
co num Number of columns in a line
er str (P*) Carriage return, (default -M)
cs str (P) Change scrolling regipn (vt100), like cm
ct str (P) Clear all tabs
CV str (P) like ch but vertical only.
da boo I Display may b_e retained above
dB num Number of miHisec of bs delay needed
db boo I Display may. be retained below

REV SEP 1985

595

TERMCAP(5T) COMMAND REFERENCE TERMCAP(ST)

dC num Number of millisec of er delay needed
de str (P*) Delete character
dF num Number of millisec of ff delay needed
di str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ":ei = :" if ic
eo str Can erase overstrikes with a blank
EP boo I Set even parity (used by tset(l))
ff str (P*) Hardcopy terminal page eject (default -L)
he boo I Hardcopy terminal
hd str Half-line down (forward 1 /2 linefeed)
HD boo I Half-duplex terminal (used by tset(l))
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1 /2 linefeed)
hz str Hazeltine; can't print -·s
ic str (P) Insert character
if str Name of file containing is
im str Insert mode (enter); give ":im = :" if ic
in boo I Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
k0-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
LC boo I Terminal can send lower case (used by tset(l))
Ii num Number of lines on screen or page
II str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mb str Enter blinking mode.
md str Enter bold mode.
me str Exit 'modes' (mb, md, mh, mk, mr).
mh str Enter dim mode.
mi boo I Safe to move while in insert mode
mk str Enter concealed mode.
ml str Memory lock on above cursor.
mr str Enter reverse video mode.

REV SEP 1985 2

596

TERMCAP(5T) COMMAND REFERENCE TERMCAP(5T)

ms boo I Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock).
nc boo I No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str {P*) Newline character (default \n)
NL boo I Disable return-newline mapping (used by tset(l))
NP boo I Turn off parity (used by tset(l))
ns boo I Terminal is a CRT but doesn't scroll.
OP boo I Set odd parity (used by tset(l))
OS boo I Terminal overstrikes
pb num Minimum baud rate requiring padding (used by tset(l))
pc str Pad character (rather than null)
pt boo I Has hardware tabs (may need to be set with is)
rf str Name of file containing ir
rs str Terminal reset string
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
st str (P) Set tab at current position (used by tset(I))
ta str (P) Tab (other than -, or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use cm
ti str String to begin programs that use cm
UC str Underscore one char and move past it
UC boo I Terminal can send upper case only (used by tset(l))
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul boo I Terminal underlines without special sequences
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
xb bool Beehive (f1 =escape, f2 = ctrl C)
xn boo I A newline is ignored after a wrap (Concept)
xr boo I Return acts like ce \r \n (Delta Data)
XS boo I Standout not erased by writing over it (HP 264?)
xt boo I Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-100, is among the
more complex entries in the termcap file as of this writing. (This
particular concept entry is outdated, and is used as an example only.)

c1:: lc100:: lconcept100:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\

REV SEP 1985

:al=J*\E-R:am:bs:cd=16*\E-C:ce=16\E-S:cl=2*-L:cm=\Ea%+ %+ :co#!
:dc=16\E-A:dl=J*\E-B:ei=\E\200:eo:im=\E-P:in:ip=16*:li#24:mi:nc
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

3

597

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

Entries may continue onto multiple lines by giving a\ as the last
character of a line, and empty fields may be included for readability
(shown here between the last field on a line and the first field on the
next). Capabilities in termcap are of three types: Boolean capabilities
which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular delays,
and string capabilities, which give a sequence that can be used to
perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has "automatic margins" (i.e. an automatic return and linefeed
when the end of a line is reached) is indicated by the capability am.
Hence the description of the Concept includes am. Numeric capabilities
are followed by the character# and then the value. Thus co which
indicates the number of columns the terminal has gives the value '80' for
the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an =, and then a string
ending at the next following : . A delay in milliseconds may appear after
the =in such a capability, and padding characters are supplied by the
editor after the remainder of the string is sent to provide this delay. The
delay can be either a integer, e.g. '20', or an integer followed by a*, i.e.
3*. A * indicates that the padding required is proportional to the number
of lines affected by the operation, and the amount given is the per
affected-unit padding required. When a* is specified, it is sometimes
useful to give a delay of the form '3.5' to specify a delay per unit to tenths
of milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \E maps to an
ESCAPE character, -x maps to a control-x for any appropriate x; the
sequence \n gives a newline, \r a return, \t a tab, \b a backspace, and
\f a formfeed. Finally, characters may be given as three octal digits after
a \, and the characters - and \ may be given as \ - and \ \. If it is
necessary to place a : in a capability it must be escaped in octal as \072.
If it is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termcap use C strings,
and strip the high bits of the output very late so that a \200 comes out as
a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the
description of a similar terminal in termcap and to build up a description
gradually, using partial descriptions with ex to check that they are correct.
Be aware that a very unusual terminal may expose deficiencies in the
ability of the termcap file to describe it or bugs in ex. To easily test a

REV SEP 1985 4
CCIQ

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

new terminal description you can set the environment variable TERMCAP
to a pathname of a file containing the description you are working on and
the editor will look there rather than in /etc/termcap. TERMCAP can also
be set to the termcap entry itself to avoid reading the file when starting up
the editor. (This only works on version 7 systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co
numeric capability. If the terminal is a CRT, then the number of lines on
the screen is given by the Ii capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, then
this is given by the cl string capability. If the terminal can backspace,
then it should have the bs capability, unless a backspace is accomplished
by a character other than -H, in which case you should give this
character as the be string capability. If it overstrikes (rather than clearing
a position when a character is struck over) then it should have the os
capability.

A very important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding off
the bottom of the screen will cause the screen to scroll up, and the am
capability tells whether the cursor sticks at the right edge of the screen.
If the terminal has switch selectable automatic margins, the termcap file
usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals.
Thus the model 33 teletype is described as

tJ : JJ : ttyJJ:co#72:os

while the Lear Siegler ADM-3 is described as

cl : admJIJ:lsi admJ:am:bs:cl=-Z:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a cm string capability,
with printf(3s)- like escapes (o/ox) in it. These substitute to encodings of
the current line or column position, while other characters are passed
through unchanged. If the cm string is thought of as being a function,
then its arguments are the line and then the column to which motion is
desired, and the o/o encodings have the following meanings:

REV SEP 1985

O/od
%2
%3
%.
O/o+x
O/o)xy
O/or

as in print/, 0 origin
like %2d
like %3d
like O/oc
adds x to value, then%.
if value) x adds y, no output.
reverses order of line and column, no output

5

599

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

O/oi increments line/column (for 1 origin)
%% gives a single %
O/on exclusive or row and column with 0140 (DM2500)
%8 BCD (16*(x/10)) + (x%10), no output.
%D Reverse coding (x-2*(x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be
sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the
rows and columns is inverted here, and that the row and column are
printed as two digits. Thus its cm capability is "cm= 6\E&O/or%2c%2Y".
The Microterm ACT-IV needs the current row and column sent preceded by
a -T, with the row and column simply encoded in binary, "cm= -TO/o.%.".
Terminals which use "%." need to be able to backspace the cursor (bs
or be), and to move the cursor up one line on the screen (up introduced
below). This is necessary because it is not always safe to transmit \t, \n
~D and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus "cm= \E = % + % + ".

Cursor motions

If the terminal can move the cursor one position to the right, leaving the
character at the current position unchanged, then this sequence should
be given as nd (non-destructive space). If it can move the cursor up a
line on the screen in the same column, this should be given as up. If the
terminal has no cursor addressing capability, but can home the cursor (to
very upper left corner of screen) then this can be given as ho; similarly a
fast way of getting to the lower left hand corner can be given as II; this
may involve going up with up from the home position, but the editor will
never do this itself (unless II does) because it makes no assumption about
the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as ce. If the terminal
can clear from the current position to the end of the display, then this
should be given as ed. The editor only uses ed from the first column of a
line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor
is, this should be given as al; this is done only from the first position of a
line. The cursor must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then this should be
given as di; this is done only from the first position on the line to be
deleted. If the terminal can scroll the screen backwards, then this can be
given as sb, but just al suffices. If the terminal can retain display
memory above then the da capability should be given; if display memory
can be retained below then db should be given. These let the editor
understand that deleting a line on the screen may bring non-blank lines

REV SEP 1985 6

600

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

up from below or that scrolling back with sb may bring down non-blank
lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap. The most
common insert/delete character operations affect only the characters on
the current line and shift characters off the end of the line rigidly. Other
terminals, such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the screen which is
either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type *abc def* using local cursor
motions (not spaces) between the *abc* and the *def*. I Then position the
cursor before the *abc* and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters to fall
off the end, then your terminal does not distinguish between blanks and
untyped positions. If the *abc* shifts over to the *def* which then move
together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the
capability in, which stands for "insert null". If your terminal does
something different and unusual then you may have to modify the editor
to get it to use the insert mode your terminal defines. We have seen no
terminals which have an insert mode not not falling into one of these two
classes.

The editor can handle both terminals which have an insert mode, and
terminals which send a simple sequence to open a blank position on the
current line. Give as im the sequence to get into insert mode, or give it
an empty value if your terminal uses a sequence to insert a blank
position. Give as ei the sequence to leave insert mode (give this, with an
empty value also if you gave im so). Now give as ic any sequence
needed to be sent just before sending the character to be inserted. Most
terminals with a true insert mode will not give ic, terminals which send a
sequence to open a screen position should give it here. (Insert mode is
preferable to the sequence to open a position on the screen if your
terminal has both.) If post insert padding is needed, give this as a
number of milliseconds in ip (a string option). Any other sequence which
may need to be sent after an insert of a single character may also be
given in ip.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g. if there is a tab after the insertion
position). If your terminal allows motion while in insert mode you can give
the capability mi to speed up inserting in this case. Omitting mi will
affect only speed. Some terminals (notably Datamedia's) must not have
mi because of the way their insert mode works.

REV SEP 1985 7

601

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

Finally, you can specify delete mode by giving dm anded to enter and
exit delete mode, and de to delete a single character while in delete
mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can
be given as so and se respectively. If there are several flavors of
standout mode (such as inverse video, blinking, or underlining - half
bright is not usually an acceptable "standout" mode unless the terminal
is in inverse video mode constantly) the preferred mode is inverse video
by itself. If the code to change into or out of standout mode leaves one
or even two blank spaces on the screen, as the TVI 912 and Teleray 1061
do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and
ue respectively. If the terminal has a code to underline the current
character and move the cursor one space to the right, such as the
Microterm Mime, this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a nondestructive
space.)

Many terminals, such as the HP 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed. Programs
using standout mode should exit standout mode before moving the cursor
or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly
(a bell replacement) then this can be given as vb; it must not move the
cursor. If the terminal should be placed in a different mode during open
and visual modes of ex, this can be given as vs and ve, sent at the start
and end of these modes respectively. These can be used to change,
e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and te. This arises, for example, from terminals like the
Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special
codes needed) even though it does not overstrike, then you should give
the capability ul. If overstrikes are erasable with a blank, then this should
be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the

REV SEP 1985 8

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

keypad is assumed to always transmit. The codes sent by the left arrow,
right arrow, up arrow, down arrow, and home keys can be given as kl, kr,
ku, kd, and kh respectively. If there are function keys such as fO, f1, ... ,
f9, the codes they send can be given as kO, k1, ... , k9. If these keys
have labels other than the default to through f9, the labels can be given
as 10, 11, ... , 19. If there are other keys that transmit the same code as
the terminal expects for the corresponding function, such as clear screen,
the termcap 2 letter codes can be given in the ko capability, for example,
":ko = cl,11,sf,sb:", which says that the terminal has clear, home down,
scroll down, and scroll up keys that transmit the same thing as the cl, II,
sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have
single character arrow keys. It is obsolete but still in use in version 2 of
vi, which must be run on some minicomputers due to memory limitations.
This field is redundant with kl, kr, ku, kd, and kh. It consists of groups
of two characters. In each group, the first character is what an arrow key
sends, the second character is the corresponding vi command. These
commands are h for kl, j for kd, k for ku, I for kr, and H for kh. For
example, the mime would be :ma= -Krzk-XI: indicating arrow keys left
CH), down CK), up CZ), and right CX). (There is no home key on the
mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then
this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character
other than -1 to tab, then this can be given as ta.

Hazeltine terminals, which don't allow '-· characters to be printed should
indicate hz. Datamedia terminals, which echo carriage-return linefeed for
carriage return and then ignore a following linefeed should indicate nc.
Early Concept terminals, which ignore a linefeed immediately after an am
wrap, should indicate xn. If an erase-eol is required to get rid of
standout (instead of merely writing on top of it), xs should be given.
Teleray terminals, where tabs turn all characters moved over to blanks,
should indicate xt. Other specific terminal problems may be corrected by
adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if,
the name of a file containing long initialization strings. These strings are
expected to properly clear and then set the tabs on the terminal, if the
terminal has settable tabs. If both are given, is will be printed before if.
This is useful where if is /usrllibltabsetlstd but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just
like the other with certain exceptions. The string capability tc can be
given with the name of the similar terminal. This capability must be last
and the combined length of the two entries must not exceed 1024. Since

REV SEP 1985 9

603

TERMCAP(ST) COMMAND REFERENCE TERMCAP(ST)

FILES

termlib routines search the entry from left to right, and since the tc
capability is replaced by the corresponding entry, the capabilities given at
the left override the ones in the similar terminal. A capability can be
canceled with xx@ where xx is the capability. For example, the entry

hn : 2621nl:ks@:ke@:tc=2621:

defines a 2621 nl that does not have the ks or ke capabilities, and hence
does not turn on the function key labels when in visual mode. This is
useful for different modes for a terminal, or for different user preferences.

!etc/termcap file containing terminal descriptions

CAVEATS
Ex allows only 2048 characters for string capabilities, and the routines in
termcap(3x) do not check for overflow of this buffer. The total length of a
single entry (excluding only escaped newlines) may not exceed 2048.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not
supported by any program.

The ti and te entries are specifically for the purpose of setting up the
terminal for cursor motion. It should not be used to clear the screen. The
program more(l) may need to use these strings in some cases, and
improper setting of these entries may cause problems.

The ul entry tells programs that the terminal will perform underlining
when given the sequence -H_x or _ -Hx CH is a backspace). It does not
mean that the terminal has the capability to do underlining via an escape
sequence.

SEE ALSO
ex(l), more(l), tset(I), ul(l), vi(l), curses(3t), termcap(3t).

REV SEP 1985

604

TTYS(5) COMMAND REFERENCE TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the init program and specifies which terminal
special files are to have a process created for them so that people can
log in. Each terminal special file is a one-line entry in the ttys file.

The first character of a line in the ttys file is either 'O' or '1 '. If the first
character on the line is a 'O', the init program ignores that line. If the first
character on the line is a '1 ', the in it program creates a login process for
that line. The second character on each line is used as an argument to
getty(8), which performs such tasks as baud-rate recognition, reading the
login name, and calling login. For normal lines, the character is 'O'; other
characters can be used, for example, with hard-wired terminals where
speed recognition is unnecessary or which have special characteristics.
(Getty will have to be fixed in such cases.) The remainder of the line is
the terminal's entry in the device directory, ldev.

!etc/ttys

SEE ALSO
login(l), gettytab(5), getty(8), init(8).

605

TTYTYPE(5) COMMAND REFERENCE TTYTYPE(S)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database with information about the kind of terminal
attached to each tty port on the system. There is one line per port, giving
the terminal type (as a name listed in termcap(5t), a space, and the name
of the tty, minus /devl.

This information is read by tset(l) and by login(l) to initialize the TERM
variable at login time.

SEE ALSO
login(l), tset(l).

606

TYPES(S) COMMAND REFERENCE TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <Sys/types.h>

DESCRIPTION
The data types defined in the include file <sys!types.h> are used in UTek
system code; some data of these types are accessible to user code, as
follows:

I*
* Basic system types and major/minor device constructing/busting macJ
*/

/* major part of a device */
#define major(x) ((int}(((unsigned}(x)>>16)&0177777))

/* minor part of a device */
#define minor(x) ((int)((x)&0177777))

/* device to slot or controller number */
#define devslot(x) ((int)(((x)>>8)&0377))

/* device to unit number and device-dependent flags */
#define devunit(x) ((int)((x)&0377))

/* make a device number from major/minor pair */
#define makedev(x,y) ((dev_t) (((x)<<l.6) : (y)))

/* make a device number from major/slot/unit triple */
#define devno(x,y,z) ((dev_t)(((x)«16) : ((y)<<8) : (z)))

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u_char;
u_short;
u_int;
u_long;
ushort;/* sys III compat */

typedef struct
typedef struct

int
} labeLt;
typedef char *
typedef struct
typedef long
typedef char *
typedef u_long

_physadr {int r[l]; } *physadr;
labeLt {
val[8];

gaddr_t;/* global address */

_quad {long val[2]; } quad;
daddr_t;
caddr_t;
ino_t;

1

607

TYPES(5)

typedef long
typedef int
typedef int
typedef long
typedef int

typedef struct
#end if

COMMAND REFERENCE

swblk_t;
size_t;
time_t;
dev_t;
off_t;

fd_set { int fds_bits[l]; } fd_set;

TYPES (5)

The form daddr_t is used for disk addresses except in an inode on disk;
see fs(5). Times are encoded in seconds since 00:00:00 GMT, January 1,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are
measured in bytes from the beginning of a file. The labe!_t variables are
used to save the processor state while another process is running.

SEE ALSO
adb(l), lseek(2), time(Jc), time(Jf), fs(5).

2
608

UTMP(S)

NAME
utmp - login records

SYNOPSIS
#include <Utmp.h>

DESCRIPTION

COMMAND REFERENCE UTMP(S)

The utmp file records information about who is currently using the
system. The file is a sequence of entries with the following structure
declared in the include file:

FILES

struct utmp {
char

};

char
char
long

ut_line[8];
ut_name[8];
ut_host[16];
ut_time;

/* tty name */
/* user id */
/* host name, if remo·
/* time on */

This structure gives the name of the special file associated with the user's
terminal, the user's login name, and the time of the login in the form of
time(3c).

letclutmp

/usr I admlwtmp

SEE ALSO
login(!), who(ln), ac(8), init(8).

609

UUENCODE(SN) COMMAND REFERENCE UUENCODE(SN)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(ln) consist of a header line, followed by a
number of body lines, and a trailer line. Uudecode(ln) will ignore any
lines preceding the header or following the trailer. Lines preceding a
header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters *begin *·
The word begin is followed by a mode (in octal), and a string which names
the remote file. A space separates the three items in the header line.

The body consists of a number of lines, each at most 62 characters long
(including the trailing newline). These consist of a character count,
followed by encoded characters, followed by a newline. The character
count is a single printing character, and represents an integer, the
number of bytes the rest of the line represents. Such integers are always
in the range from 0 to 63 and can be determined by subtracting the
character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are
offset by a space to make the characters printing. The last line may be
shorter than the normal 45 bytes. If the size is not a multiple of 3, this
fact can be determined by the value of the count on the last line. Extra
garbage will be included to make the character count a multiple of 4. The
body is terminated by a line with a count of zero. This line consists of
one ASCII space.

The trailer line consists of "end" on a line by itself.

SEE ALSO
mail(lmh), uucp(ln), uudecode(ln), uuencode(ln), uusend(ln).

610

WHATIS(SMAN) COMMAND REFERENCE WHATIS(SMAN)

NAME
whatis - manual page description database

DESCRIPTION

FILES

The commands apropos and whatis search files known as
whatisdatabases. These databases are created by the command
makewhatis and should exist in each manual page directory.

A whatis database will contain a listing for each manual page in the
manual page directories. The file is sorted by section number, but pages
are not sorted within each section.

Each database entry has three fields separated by tabs, and no entry may
contain tabs. The entries are separated by newlines. The first field of the
entry is the manual page name. The second field of the entry is the
manual page section. The last field is the manual page description. Most
manual pages will have a NAME section like:

command - what this command does

This will cause one entry of the form:

command(TAB)section(TAB)description

Some manual pages will have a NAME section like:

command1, command2, ... - what these commands do

In this case, there will be a database entry for each of 'command1 ',
'command2', and so forth. Each entry will have the same section and
description fields, but each name field will be different. (These
correspond to links made by makewhatis tor multiple commands.)

what is Special manual page description database.

SEE ALSO
apropos(lman), buildif(Jman), help(Jman), makewhatis(Jman), man(Jman),
section(Jman), whatis(Jman), man(5man), manindex(5man), catman(8man).

REV MAR 1985

611

WSDUMPTABLE(SN) COMMAND REFERENCE WSDUMPTABLE(SN)

NAME
wsdumptable - static information about dumping filesystems

DESCRIPTION
The file letclwsdumptable contains descriptive information about various
workstations and filesystems that will be dumped by wsdump{Sn). The
file is split up into two sections. The first section contains information on
how often to dump at each level.

level (dump level number, range 0-9; see dump(B)).
frequency (how often to dump at this level - in days)
groups (how many groups to dump at this level each night)

The second section contains information on each filesystem to be
dumped.

workstation (workstation that the filesystem resides on)
filesystem (name of the filesystem)
levels (the levels to dump this filesystem at)
group (the group that this filesystem belongs to)

This is an ASCII file. Each field within each entry is separated from the
next by a colon. Each entry is separated from the next by a new-line.
Lines starting with the '#' character are treated as comments. Lines
starting with the '-' character are treated as section delimiters.
letclwsdumptable is only read by programs, and not written; it is the duty
of the system administrator to properly create and maintain this file. This
file can be maintained using the program viwsb{S). The order of records
in letclwsdumptable will reflect the order in which filesystems will be
dumped.

EXAMPLES
wsdumptable
#(level): <freq): (groups)
0:30:1
1:7:2
9:1:9

#(workstation): (filesystem): <levels):< group)
kokomo:/dev/dw00a:019:A
duke:/dev/dw00a:019:8
pejs:/dev/dw00a:019:C

In this example level O dumps are done every 30 days, level 1 dumps are
done every 7 days and level 9 dumps are done every day. Level O dumps
are done to at most 1 group each day, level 1 dumps are done to at most
2 groups each day and level 9 dumps are done to at most 9 groups each
day. The file system ldevldwOOa on kokomo participates in dumps on
levels 0, 1 and 9 and is a member of group 'A'. The file system
ldevldwOOa on duke participates in dumps on levels 0, 1 and 9 and is a
member of group 'B'. The file system ldevldwOOa on pejs participates in
dumps on levels 0, 1 and 9 and is a member of group 'C'.

612

WSDUMPTABLE(SN) COMMAND REFERENCE WSDUMPTABLE(SN)

FILES
/etclwsdumptable

SEE ALSO
viwsb(8n), wsdump(8n).

2

613

WTMP(S) COMMAND REFERENCE WTMP(S)

NAME
wtmp - login records

SYNOPSIS
#include (utmp.h)

DESCRIPTION

FILES

The wtmp file records all logins and logouts. A null user name indicates
a logout on the associated terminal. Furthermore, the terminal name -
indicates that the system was rebooted at the indicated time; the adjacent
pair of entries with terminal names - :- and } indicate the system
maintained time just before and just after a date command has changed
the system's idea of the time.

Wtmp is maintained by login(l) and init(8). Neither of these programs
creates the file, so if it is removed record-keeping is turned off.

/etclutmp Current state of the machine.

lusrladmlwtmp Record of letclutmp.

SEE ALSO
login(l), who(ln), init(8).

REV SEP 1985

614

ENVIRON(7) COMMAND REFERENCE ENVIRON(7)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the "environment" is made available by
execve(2) when a process begins. By convention these strings have the
form "name= value." The following names are used by various
commands:

PATH

HOME

TERM

The sequence of directory prefixes that sh, time, nice(l), etc.,
apply in searching for a file known by an incomplete
pathname. The prefixes are separated by":". The command
login(l)sets PATH= :lbin:!usr/bin

A user's login directory, set by login(l) from the password file
passwd(5).

The kind of terminal for which output is to be prepared. This
information is used by commands like nroff which may exploit
special terminal capabilities. See !etc/termcap (termcap(5t))
for a list of terminal types.

SHELL The filename of the user's login shell.

TERMCAP

EXINIT

USER

The string describing the terminal in TERM, or the name of
the termcap file, see termcap(5t),termcap(t).

A startup list of commands read by ex(l), edit(l), and vi(J).

The login name of the user.

MAIL The pathname of the user's incoming mail drop.

Further names may be placed in the environment by the export
command and name= value arguments in sh(lsh), or by the setenv
command if you use csh(I csh). Arguments may also be placed in the
environment at the point of an execve(2). It is unwise to conflict with
certain sh(lsh) variables that are frequently exported by .profile files:
MAIL, PSJ, PS2, IFS.

SEE ALSO
csh(lcsh), ex(l), login(I), sh(lsh), execve(2), termcap(Jt), termcap(5t).

REV SEP 1985

615

EQNCHAR(7) COMMAND REFERENCE EQNCHAR(7)

NAME
eqnchar - special character definitions for eqn

SYNOPSIS
eqn /usr/pub/eqnchar [filenames] I troff [options]

neqn /usr/pub/eqnchar [filenames] I troff [options]

DESCRIPTION

ciplus
cit1mes
wig
-wig
>wig
<wig
=-wig
star
bigs tar
==dot
or sign
andsign
... de/
opp A
opp£

Eqnchar contains troff and nroff character definitions for constructing
characters that are not available on the Graphic Systems typesetter.
These definitions are primarily intended for use with eqn and neqn. It
contains definitions for the following characters:

~ II II square
® /angle I circle

rangle) blot
- hbar 1i bullet

~ ppd l. prop

~ <-> empty
;; <-> ... member

* I <: nomem

* I> ~ cup
- ang L cap
v rang L incl
!\ 3dor subset
~ thf supset -\I quarter 1; .. !subset

~]quarter 3/4 !supset
angstrom A degree 0

FILES
lusr/publeqnchar

616

[

c
I

a

'2
E
~
l
(

t:
c

~

MAILADDR(7) COMMAND REFERENCE MAILADDR(7)

NAME
mailaddr - mail addressing description

DESCRIPTION
Mail addresses are based on the ARPANET protocol listed at the end of
this manual page. These addresses are in the general format

user@domain

where a domain is a hierarchical dot separated list of subdomains. For
example, the address

eric@monet.Berkeley.ARPA

is normally interpreted from right to left: the message should go to the
ARPA name tables (which do not correspond exactly to the physical
ARPANE1), then to the Berkeley gateway, after which it should go to the
local host monet. When the message reaches monet it is delivered to the
user eric.

Unlike some other forms of addressing, this does not imply any routing.
Thus, although this address is specified as an ARPAaddress, it might
travel by an alternate route if that was more convenient or efficient. For
example, at Berkeley the associated message would probably go directly
to monet over the Ethernet rather than going via the Berkeley ARP ANET
gateway.

Abbreviation. Under certain circumstances it may not be necessary to
type the entire domain name. In general anything following the first dot
may be omitted if it is the same as the domain from which you are
sending the message. For example, a user on calder.Berkeley.ARPA
could send to eric@monet without adding the .Berkeley.ARPA since it is
the same on both sending and receiving hosts.

Certain other abbreviations may be permitted as special cases. For
example, at Berkeley ARPANET hosts can be referenced without adding
the .ARPA as long as their names do not conflict with a local hostname.

Compatibility. Certain old address formats are converted to the new
format to provide compatibility with the previous mail system. In
particular,

host:user

is converted to

user@host

to be consistent with the rcp(Jn) command.

Also, the syntax:

host!user

is converted to:

user@host.UUCP

617

REV MAR 1985

MAILADDR(7) COMMAND REFERENCE MAILADDR(7)

This is normally converted back to the "host!user" form before being sent
on for compatibility with older UUCP hosts. ·

The current implementation is not able to route messages automatically
through the UUCP network. Until that time you must explicitly tell the
mail system which hosts to send your message through to get to your
final destination.

Case Distinctions. Domain names (i.e., anything after the "@" sign) may
be given in any mixture of upper and lower case with the exception of
UUCP hostnames. Most hosts accept any mixture of case in user names,
with the notable exception of MULTICS sites.

Differences with ARPA Protocols. Although the UTek addressing scheme
is based on the ARPA mail addressing protocols, there are some
significant differences.

At the time of this writing the only "top level" domain defined by ARPA is
the .ARPA domain itself. This is further restricted to having only one
level of host specifier. That is, the only addresses that ARPA accepts at
this time must be in the format user@host.ARPA (where host is one
word). In particular, addresses such as:

eric@monet.Berkeley.ARPA

are not currently legal under the ARPA protocols. For this reason, these
addresses are converted to a different format on output to the ARPANET,
typically:

eric%monet@Berkeley.ARPA

Route-addrs. Under some circumstances it may be necessary to route a
message through several hosts to get it to the final destination. Normally
this routing is done automatically, but sometimes it is desirable to route
the message manually. An address that shows these relays are termed
"route-addrs." These use the syntax:

(@hosta,@hostb:user@hostc)

This specifies that the message should be sent to hosta, from there to
hostb, and finally to hostc. This path is forced even if there is a more
efficient path to hostc.

Route-addrs occur frequently on return addresses, since these are
generally augmented by the software at each host. It is generally
possible to ignore all but the user@host part of the address to determine
the actual sender.

Postmaster. Every site is required to have a user or user alias designated
"postmaster" to which problems with the mail system may be addressed.

CSNET. Messages to CSNET sites can be sent to "user.host@UDel
Relay''.

2 REV MAR 1985

618

MAILADDR(7) COMMAND REFERENCE MAILADDR(7)

BERKELEY
The following comments apply only to the Berkeley environment.

Hostnames. Many of the old familiar hostnames are being phased out. In
particular, single character names as used in Berknet are incompatible
with the larger world of which Berkeley is now a member. For this reason
the following names are being phased out. You should notify any
correspondents of your new address as soon as possible.

OLD NEW
j ingvax ucbingres
p ucbcad

arpavax ucbarpa
v csvax ucbernie
n ucbkim
y ucbcory

The old addresses will be rejected as unknown hosts sometime in the
near future.

What's My Address? If you are on a local machine, say monet, your
address is

yourname@monet.Berkeley.ARPA

However, since most of the world does not have the new software in
place yet, you will have to give correspondents slightly different
addresses. From the ARPANET, your address would be:

yourname%monet@Berkeley.ARPA

From UUCP, your address would be:

ucbvax!yourname%monet

Computer Center. The Berkeley Computer Center is in a subdomain of
Berkeley. Messages to the computer center should be addressed to:

user%host.CC@Berkeley.ARPA

The alternate syntax:

user@host.cc

may be used if the message is sent from inside Berkeley.

For the time being Computer Center hosts are known within the Berkeley
domain, i.e., the ".CC" is optional. However, it is likely that this situation
will change with time as both the Computer Science department and the
Computer Center grow.

Bitnet. Hosts on bitnet may be accessed using:

user@host.BITNET

SEE ALSO
mail(l), sendmail(Bmh).

3

619

REV MAR 1985

MAN{7) COMMAND REFERENCE MAN(7)

NAME
man - macros to typeset manual

SYNOPSIS
nroff -man.IR filename .. .

troff -man.IA filename .. .

DESCRIPTION

Request

.B t

. Bl t

.BR t

.OT

. HP i

.I t

.IB t

.IP xi

.IA t

.LP

.PDd

.PP

.RE

. RB t

.RI t

These macros are used to lay out pages of this manual. A skeleton page
may be found in the file lusrlman!manOl.xxx.

Any text argument t may be zero to six words. Quotes may be used to
include blanks in a 'word'. If text is empty, the special treatment is
applied to the next input line with text to be printed. In this way .I may be
used to italicize a whole line, or .SM followed by .B to make small bold
letters.

A prevailing indent distance is remembered between successive indented
paragraphs, and is reset to default value upon reaching a non-indented
paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and
after processing font and size setting macros.

These strings are predefined by -man:

*R '®','(Reg)' in nroff.

*S Change to default type size.

Cause If no
Break Argument
no t = n.t.I.*
no t=n.t.I.
no t = n.t.I.
no .Si 1i ...
yes i= p.i.*

no t=n.t.I.
no t = n.t.I.
yes x= ""
no t= n.t.I.
yes
no d= .4v
yes
yes

no t = n.t.I.
no t= n.t.I.

Explanation

Text tis bold .
Join words of t alternating bold and italic.
Join words oft alternating bold and Roman.
Restore default tabs .
Set prevailing indent to i. Begin paragraph
with hanging indent.
Text t is italic.
Join words oft alternating italic and bold.
Same as . TP with tag x.
Join words oft alternating italic and Roman.
Same as .PP.
lnterparagraph distance is d.
Begin paragraph. Set prevailing indent to .5i.
End of relative indent. Set prevailing indent to
amount of starting .RS .
Join words oft alternating Roman and bold.
Join words of t alternating Roman and italic.

1

620

REV MAR 1985

MAN(7)

.RS i yes

.Rv rt yes

. SH t yes

.SM t no

. TH n s x v m yes

.TP i yes

. Va v t yes

COMMAND REFERENCE MAN(7)

i= p.i. Start relative indent, move left margin in
distance i. Set prevailing indent to .Si for
nested indents.

r="" t=n.t.I Set Return Value type tor and the description
text tot.

t= n.t.1. Subhead .
t = n.t.1. Text t is small.

Begin page named n of section s; x is extra
commentary, e.g. 'local', for page foot center;
v alters page foot left, e.g. '4th Berkeley
Distribution'; m alters page head center, e.g.
'Brand X Programmer's Manual'. Set
prevailing indent and tabs to .5i.

i = p.i. Set prevailing indent to i. Begin indented
paragraph with hanging tag given by next text
line. If tag doesn't fit, place it on separate
line.

v = "" t = n.t.I Set Variable to v and the description text to t .

* n.t.I. next text line; p.i. = prevailing indent

FILES
lusrllib/tmac/tmac.an

/usrlman/manO!xxx

CAVEATS
Relative indents don't nest.

SEE ALSO
man(lman).

2 REV MAR 1985

621

ME(7) COMMAND REFERENCE ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me [options] filename .. .
troff -me [options] filename .. .

DESCRIPTION
This package of nroff and troff macro definitions provides a canned
formatting facility for technical papers in various formats. When
producing 2-column output on a terminal, filter the output through col(l).

The macro requests are defined below. Many nroff and troff requests
are unsafe in conjunction with this package, however these requests may
be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n = 1 single, n = 2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz + n add n to point size

Output of the eqn, neqn, refer, and tbl(l) preprocessors for equations
and tables is acceptable as input.

REQUESTS In the following list, "initialization" refers to the first
.pp, .Ip, .ip, .np, .sh, or .uh macro. This list is incomplete.

Request Initial Cause Explanation
Value Break

.(c

.(d

.(f

.(I

.(q

.(xx

.(z

.)c

.)d

.)f

.)I

.)q

.)x

.)z

.++mH-

.+c T

yes
no
no
yes
yes
no
no
yes
yes
yes
yes
yes
yes
yes
no

Begin centered block
Begin delayed text
Begin footnote
Begin list
Begin major quote
Begin indexed item in index x
Begin floating keep
End centered block
End delayed text
End footnote
End list
End major quote
End index item
End floating keep
Define paper section. m defines the part of the paper,
and can be C (chapter), A (appendix), P (preliminary, e.g.,
abstract, table of contents, etc.), B (bibliography), RC
(chapters renumbered from page one each chapter), or
RA (appendix renumbered from page one).

yes Begin chapter (or appendix, etc., as set by . + +). Tis
the chapter title.

REV MAR 1985

ME(7)

. 1c 1 yes

.2c 1 yes

. EN yes

.EQ xy yes

. TE yes

. TH yes

. TS x yes

.acA N no

. bx

.ba +n

.be

.bi x

. bxx

.ef 'x'..Y'z'

no no
O yes

no yes
no no
no no

.eh 'x'y'z' ""

.fo 'x'y'z' ""

. hx

no
no
no
no
no
yes
no
yes

.he 'x'y'z' ""

.hi

. ix no

.ip x y no

.Ip yes yes

.lo no

. np yes

.of 'x'y'z' no

.oh 'x'y'z' "" no

.pd yes

. pp no yes

. r yes no

. re no

. sc no no

.sh n x yes

.sk no no

.sz +n

.th
10p no
no no

. tp no yes

COMMAND REFERENCE

One column format on a new page .
Two column format.
Space after equation produced by eqn or neqn .

ME(7)

Precede equation; break out and add space. Equation
number is y. The optional argument x may be I to indent
equation (default), L to left-adjust the equation, or c to
center the equation.
End table .
End heading section of table .
Begin table; if x is H table has repeated heading .
Set up for ACM style output. A is the Author's name(s), N
is the total number of pages. Must be given before the
first initialization.
Print x in boldface; if no argument switch to boldface .
Augments the base indent by n. This indent is used to set
the indent on regular text (like paragraphs).
Begin new column
Print x in bold italics (nofill only)
Print x in a box (nofill only) .
Set even footer to x y z
Set even header to x y z
Set footer to x y z
Suppress headers and footers on next page .
Set header to x y z
Draw a horizontal line
Italicize x; if x missing, italic text follows .
Start indented paragraph, with hanging tag x. Indentation
is yens (default 5).
Start left-blocked paragraph .
Read in a file of local macros of the form .*x. Must be
given before initialization.
Start numbered paragraph .
Set odd footer to x y z
Set odd header to x y z
Print delayed text.
Begin paragraph. First line indented .
Roman text follows .
Reset tabs to default values .
Read in a file of special characters and diacritical marks .
Must be given before initialization.
Section head follows, font automatically bold. n is level of
section, x is title of section.
Leave the next page blank. Only one page is
remembered ahead.
Augment the point size by n points.
Produce the paper in thesis format. Must be given before
initialization.
Begin title page .

2 REV MAR 1985

ME(7)

. u x

. uh

. xpx

FILES

COMMAND REFERENCE

no Underline argument (even in troff). (Nofill only) .
yes Like .sh but unnumbered .
no Print index x .

lusrllibltmac!tmac.e

lusr/liblmel*

SEE ALSO
tbl(l).

3
624

ME(7)

REV MAR 1985

MM(7) COMMAND REFERENCE MM(7)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [filenames]

nroff -mm [options] [filenames]

nroff -cm [options] [filenames]

mmt [options] [filenames]

troff -mm [options] [filenames]

DESCRIPTION

FILES

This package provides a formatting capability for a very wide variety of
documents. The manner in which a document is typed in and edited is
essentially independent of whether the document is to be eventually
formatted at a terminal or is to be phototypeset. See the references
below for further details.

The -mm option causes nroff to use the non-compacted version of the
macro package, while the -cm option results in the use of the
compacted version, thus speeding up the process of loading the macro
package.

/usrllibltmacltmac.m

/usr/liblmacros/mm[nt]

/usrlliblmacroslcmp.n./dtj.m
/usr/liblmacros/ucmp.n.m

pointer to the non-compacted
version of the package
non-compacted version of the
package
compacted version of the package
initializers for the compacted
version of the package

SEE ALSO
mm(1), mmt(1), nrof/(1), troff(1).

REV MAR 1985

625

MS(7) COMMAND REFERENCE MS(7)

NAME
ms - macros for formating manuscripts

SYNOPSIS
nroff -ms [options J file .. .
troff -ms [options] file .. .

or

ms [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned
formating facility for technical papers in various formats. When producing
2-column output on a termina~. filter the output through col(l). Output of
the neqn(l), refer(]), and tbl(l) preprocessors for equations and tables is
acceptable as input.

REQUESTS
Following is a complete list of available ms formating requests. See the
manual(s) for detailed descriptions of the various requests .

. 1 C One column format on a new page .

. 2C

.AB

.AD/

.AE

.Al

. AN c

. AU

. Bx

.BC

.BD

. BE

. BP

. BR

. BS

.BT

. BU

.BX word

. CD

REV SEP 1985

Two column format.

Begin abstract.

Set right margin adjustment on (f = 1 or missing) or off (f = 0).

End abstract.

Author's institution follows.

Define auto increment number c .

Author's name follows .

Print x in boldface; if no argument switch to boldface .

Begin new column when in .2C mode.

Start centered block display which may extend over page
boundaries .

End text to be boxed; print it (also known as .B2).

Begin a new page .

Begin a new line (11break 11 the line) .

Start text to be enclosed in a box (also known as .B1) .

Print page footer at bottom of page. May be redefined.

Start a bullet item (indented paragraph with bullet label) .

Print word in a box .

Start centered display which may extend over page
boundaries.

626

MS(7)

.CN

.COL

.CSf

. DA

.DE

.DR

.DSx

. EH

. FE

.FSx

. HL

.HSxy

. HY f

. Ix

.ID

.IE

. IOC

.IP lxy

.IS

COMMAND REFERENCE MS(7)

Tektronix Labs confidentiality note. May be redefined.

Pipe output through co/(1) if necessary. Must be first.

Enter constant spacing mode if f is missing; leave constant
spacing mode if f is 0. Ignored in nroff.

Place current date at bottom of each page .

End displayed text.

This is a draft document.

Start of displayed text, to appear verbatim line-by-line. x= I
for indented display (default), x= L for left-justified on the
page, x= C for centered, x= B for make left-justified block,
then center whole block. Implies .KS.

End heading .

End footnote .

Start footnote. x is optional label to be placed to the left of
the footnote.

Draw a horizontal line across the page .

Specify heading style. 0 indicates outline form; I indicates
indented numbered sections.

Set hyphenation on (f = 1 or missing) or off (f = 0) .

Italicize x. If no argument switch to italics. Underline in nroff .

Start indented display which may extend over page
boundaries .

End an indented section .

IOC style. Must be first. .TO, .FR, .CC, .SU, .DA, .Tl,
.PL give information for IOC header.

Start indented paragraph, with hanging label /. Text
indentation is x spaces; label is indented y spaces .

Start indented section .

. JU 'l'c'r' Justify line, with /left-justified, c centered, and r right
justified .

. KE End keep. Put preceding text on next page if not enough
room.

.KF

.KS

.LO

Start floating keep. If the kept text must be moved to the
next page, float later text back to this page.

Start keeping following text.

Start left-justified display which may extend over page
boundaries.

REV SEP 1985 2

627

MS(7)

.LG

. LP

. LS n

.LT

. ND date

. NE n

. NH n

. NL

. P1

. PC

. PN n

.PP

. PT

. PX

.QE

. QP

.as

. R

.RD file

. RE

.RP

.RS

. SE

. SH

.SM

. so

.SP n

. SZ n

. TAx ...

. TC text

.TE

REV SEP 1985

COMMAND REFERENCE

Make letters larger. Ignored in nroff.

Start left-blocked paragraph .

Set line spacing to n lines (2 for double-spacing) .

Business letter style. Must be first.

Use date supplied in place of actual date .

Need n lines on page; page eject if not enough .

MS(7)

Same as .SH, with section number supplied aufomatically .
Numbers are multilevel, like 1 .2.3, where n tells what level is
wanted (default is 1).

Make letters normal size .

Include header at top of page 1 (normally suppressed) .

Print header preceding table of contents. May be redefined .

Set page number of next page ton .

Start paragraph. First line indented .

Print page header at top of page. May be redefined.

Print header preceding index. May be redefined .

End quoted material.

Start quoted paragraph (indented and shorter) .

Start quoted material (indented and shorter).

Roman text follows .

Read input from file .

End relative indent section.

Released paper style. Must be first.

Start level of relative indentation. Following .IP's are
measured from current indentation .

End a section of text to be sorted.

Section head follows; font automatically bold .

Make letters smaller. Ignored in nroff .

Sort following text.

Space n lines (1 if missing) .

Set character size. Ignored in nroff.

Set tabs .

Place text in the table of contents and also include in text.

End table.

3

628

MS(7)

.TH

COMMAND REFERENCE

End heading section of table.

Title of document follows .

MS(7)

. TL

.TMx

.TRx

.TSx

Technical memo style, with optional number x. Must be first.

Technical report style, with optional number x. Must be first.

Start table; if x is H table has repeated heading .

. UL word

.ux
Underline argument (even in troff).

'UNIX'; first time used, add footnote 'UNIX is a trademark of
Bell Laboratories.'

. XN text Add text to index without a page number .

.XX text Add text to index with current page number.

IN-LINE COMMANDS

\space Unpaddable Space Character

\e Echo Backslash Character

\ % Suppress Hyphenation

\Fx Switch to Font x (Also \f)

\sn Set Character Size to n Points

\s ± n Increase/Decrease Size by n Points

\(xy Special Character xy

\o' .. .' Overstrike Characters

\" Ignore Rest of Input Line (For Comments)

*{ Start Superscript

*} End Superscript

\ * [Start Subscript

\ *] End Subscript

*X Increment and Print Auto Number x

\nx Print Auto Number x (no incr.)

*(DT Today's Date

*(DY Today's Date (Changeable via .ND)

*(DW Day of the Week

\n(PN Current Page Number

STRING/NUMBER REGISTERS

.ds LH

.ds CH - \ \n(PN -

.ds RH

REV SEP 1985

Left Portion of Page Header (Initially Null)

Center Portion of Page Header

Right Portion of Page Header

4

629

MS(7)

FILES

.ds LF

.ds CF

.ds RF

.ds NF R

.ds HF B

.ds PD 1v

.ds DI Distribution

.nr LL 6i

.nr LT 6i

.nr FL 6i-3n

.nr PO 0

.nr HM 1i

.nr FM 1i

.nr Pl 5n

.nr QI 5n

.nr NI 4n

.nr PS 10

.nr VS 12

.nr CS 24

/usr/lib/tmac/tmac.s*

SEE ALSO
nroff(l), tbl(l).

REV SEP 1985

COMMAND REFERENCE MS(7)

Left Portion of Page Footer

Center Portion of Page Footer(\ *(DY if.DA)

Right Portion of Page Footer

Normal Text Font

Heading Font (.SHI.NH)

Paragraph Separation (.PP/.DS/.SP -- 0.5v if
-Tvpr)

Default for Missing . TO Argument in IOC

Line Length (6.Si for IOC)

Header/Footer Length (6.5i for IOC)

Footnote Line Length

Page Offset (Appropriate Value if - Tvpr)

Top Margin (Header in Middle of Margin)

Bottom Margin (Footer in Middle of Margin)

Paragraph (.PP/.IP/.IS) Indent

Quoted Section (.QP/.QS) Indent

Auto Indent for Numbered Sections (.HS I)

Character Point Size (Range 6 to about 18)

Vertical Spacing (Normally PS+ 2)

Constant Spacing Character Width (.CS)

5

630

TERM(7) COMMAND REFERENCE TERM(7)

NAME
term - conventional names for terminals

DESCRIPTION
Certain commands use these terminal names. They are maintained as
part of the shell environment (see sh(lsh), environ(7)).

adm3a
2621
hp
c100
h19
mime
1620
300
33
37
43
735
745
dumb
dial up

network

4014
vt52

Lear Seigler Adm-3a
Hewlett-Packard HP262? series terminals
Hewlett-Packard HP264? series terminals
Human Designed Systems Concept 100
Heathkit H19
Microterm mime in enhanced ACT IV mode
DIABLO 1620 (and others using HyType II)
DASl/DTC/GSI 300 (and others using HyType I)
TELETYPE® Model 33
TELETYPE Model 37
TELETYPE Model 43
Texas Instruments Tl735 (and Tl725)
Texas Instruments Tl745
terminals with no special features
a terminal on a phone line

with no known characteristics
a terminal on a network connection

with no known characteristics
Tektronix 4014
Digital Equipment Corp. VT52

The list goes on and on. Consult /etc/termcap (see termcap(5t)) for an
up-to-date and locally correct list.

Commands whose behavior may depend on the terminal either consult
TERM in the environment, or accept arguments of the form -Tterm,
where term is one of the names given above.

CAVEATS
The programs that ought to adhere to this nomenclature do so only
fitfully.

SEE ALSO
clear(l), ex(l), more(l), sh(lsh), stty(l), nroff, tset(l), ul(l), termcap(3t),
termcap(5t), ttytype(5), environ(7).

REV SEP 1985

631

ARP (SN) COMMAND REFERENCE ARP (SN)

NAME
arp - address resolution display and control

SYNOPSIS
arp hostname
arp -a [vmunix J [kmem J
arp -d hostname
arp -s hostname IEEE802.3_addr [temp J [pub J
arp -f filename

DESCRIPTION
The arp program displays and modifies the lnternet-to
IEEE802.3(Ethernet) address translation tables used by the address
resolution protocol (arp(4n)).

With no flags, the program displays the current ARP entry for hostname.
Hostname can be specified as either the name(hostname(ln)) selected for
the workstation or as the internet address(inet(4n)).

OPTIONS
-a The program displays all of the current ARP entries by reading

the table from the file kmem (default ldevlkmem) based on the
kernel file vmunix (default lvmunix).

-d A super-user may delete an entry for the host called hostname.

-s Create an ARP entry for the host called hostname with the
IEEE802.3 address IEEE802.3_addr An Example would be:

arp -s hosty 8:0:11:0:6:11 [temp][pub]

In this example hostname is hosty and the IEEE802.3-addr is
8:0:11:0:6:11. The IEEE802.3 address components are
hexadecimal and must be seperated by colons.
If temp had been specifed the entry would be temporary and

would be flushed. after 20 minutes. Also if pub had been
specified the entry will be "published", e.g., this system will
respond to ARP requests for hostname even though the
hostname is not its own.

-f Causes the file filename to be read and multiple entries to be set
in the ARP tables. Entries in the file should be of the form

hostname IEEE802.J_addr [temp] [pub]

with argument meanings as given above.

SEE ALSO
arp(4n), ifconfig(Bn).

632

BOOTSRVD(SN) COMMAND REFERENCE BOOTSRVD(SN)

NAME
bootsrvd - boot server

SYNOPSIS
/etc/bootsrvd [-f configfile] [-i interval] [-1 logfile] [-p port]
[-r retries] [-t timeout]

DESCRIPTION
Bootsrvd comprises the server side of the server+-remote "boot from
LAN" function. The server monitors the UDP boot service port (see
services(5n)) for boot request messages from remote stations and creates
a child process to handle each received request. Each child opens its
own UDP communications channel to the remote station, then determines
if the request is for boot file download or for service port information. If
the request is for download of a boot file, the child searches the boot
server database for the name of a file associated with the remote station's
Internet address, or for a default boot file associated with the identification
string included in the remote station's boot request. If an applicable file
is found and is available, it is then transferred to the remote station.
Conversely, if the request is for service port information, the child
determines the port number and protocol for the requested service and
returns this information to the remote station.

When bootsrvd is invoked, it builds a database of download files from the
information contained in the "letclbootsrv.conf' configuration file. This
file specifies host-specific download files for remote stations according to
each station's Internet address. Additionally, this file contains the default
download file specifications.

The configuration file is checked periodically to determine if the
information has changed. A check of the configuration file can be forced
by sending a hangup signal (SIGHUP) to the boot server process.

Each download file is assumed to be an a.out file executable on the
respective remote station. When bootsrvd opens this file for download, it
constructs a load address map from the information contained in the exec
header and symbol table of the file; hence, the download file should not
be stripped.

The server transfers the file using a message format containing the load
address, the byte count, and the data block. For each block of data, the
server sends a download message, then waits for the remote station to
echo the message. The echoed message is then compared to the
transmitted message to verify a successful transfer. A limited number of
retries are attempted in the event the remote station does not respond to
a message or the echoed message differs from the transmitted message.
If a transfer ultimately fails, the server closes the connection and the child
process terminates.

The server starts remote execution by transferring a download message
with a byte count of -1 .

REV SEP 1985

633

BOOTSRVD(BN) COMMAND REFERENCE BOOTSRVD(BN)

OPTIONS
-f configfile

Specifies an alternate configuration file. The default file is
"letclbootsrv.conf'.

-i interval
Specifies the number of seconds between configuration file checks.
If interval is 0, then no periodic checking is performed, and the
configuration file is checked only when the boot server process
receives a hangup signal. The default interval is 60 seconds.

-1 logfile
Specifies an alternate log file to receive the error messages
generated by sys log.

-pport
Specifies an alternate boot service port.

-r retries
Specifies the maximum number of retries per message. The default
is 2.

-t timeout
Specifies the maximum number of seconds to wait for a response to
each message from the remote station. If timeout is o, then the boot
server process waits forever for a message response. The default
timeout is 5 seconds.

EXAMPLES

FILES

The following invocation of bootsrvd specifies a 5 minute configuration
file check interval and a 1 O second message timeout value.

/etcjbootsrvd -i JOO -t 10

/etc/services

/etclbootsrv.conf

lusrlliblbootsrv

This file contains the definition of the UDP
boot service port.

This is the default boot server configuration
file.

This is the directory in which the boot server
builds its database files. The "boot_conf' file
in this directory is a working copy of the
information contained in the configuration file.

DIAGNOSTICS
Bootsrvd prints error messages to the system log file or a specified
alternate file via syslog(3c).

RETURN VALUE
[O] Bootsrvd is running.

[USAGE]

[P_ERR]

REV SEP 1985

Incorrect command line syntax. Execution terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

2

634

BOOTSRVD(SN)

[NP_ERR]

CAVEATS

COMMAND REFERENCE BOOTSRVD(SN)

An error occurred that was not a system error. Execution
terminated.

Since the boot port is privileged, only the super-user may invoke
bootsrvd.

Each download file listed in the configuration file should be specified with
its full pathname. Additionally, since the load address is derived from the
symbol table, the file should not be stripped. Due to functional
requirements, the download file should be linked without the "crtO.o"
startup file. (This implies that the download program will terminate via
return rather than exit.) Further, the download file for the 6130 systems
should have a text segment origin of 8000 (hex) or greater due to the
storage of critical data in low memory. The following Makefile example
illustrates the linking procedure:

ORIGIN = 8000

progname: $(0BJS)
$(LD) -o progname -e _main -T $(ORIGIN) $(0BJS) $(LOADLIBES)

NOTE: The remote station will repeat the "boot from LAN" procedure if
the download program return value is 0.

SEE ALSO
syslog(3c), udp(4n), a.out(5), bootsrv.con/(5n), services(5n).

REV SEP 1985 3

635

CATMAN(SMAN) COMMAND REFERENCE CATMAN(8MAN)

NAME
catman - format manual pages and build auxiliary files

SYNOPSIS
/etc/catman [-f command] [-i] [-p] [-n] [-s] [-v]
[-w] [-number] [directory . . .]

DESCRIPTION
Catman is used to format manual pages which have been changed and
build whatis databases and index format tables.

In order to find pages in need of formatting, catman compares the
modification dates of the files in the subdirectories manfl-8] (or only the
sections specified) against those in the corresponding cat subdirectory
(see man(5man) for the directory structure requirements). If the man file is
newer than the cat file, or the cat file is empty or nonexistent, the file is
formatted (see Formatting below).

Usage
There are three ways to use catman. The first, and most often used, way
is to execute catman nightly to format the system manual page files.
This can be done by having an entry in lusrlliblcrontab (see
EXAMPLES). In this case, directory names are obtained from the file
lusrlliblmanldirectories. If the actions field of the entry (see man(5man))
contains the character f, the manual pages are formatted. If the actions
field contains an i, the pages are formatted and the program
/usr/lib/buildif is invoked for each page to build and add index format
tables (for use by the commands help(lman) and section(lman)) to the
manual page. If the actions field contains a w, the pages are formatted
and the program /usr/lib/makewhatis is invoked in order to rebuild the
whatis database. In these last two cases, the action is only taken if
pages were reformatted.

The second use of catman is to process personal manual page
directories. When the -p option is given, the file $HOMEl.manrc is read
to obtain the names of personal manual page directories. Each of these
directories is checked for manual pages in need of formatting, and those
pages are formatted. In addition, the index format tables and whatis
database are rebuilt.

The third use of catman is to only reformat certain directories. In this
case, the directories are listed on the command line and are formatted
just as in the case of personal manual page directories (see EXAMPLES).

Formatting
By default, all manual pages are formatted using the command

nroff -man (source) formatted

REV SEP 1985

636

CATMAN(SMAN) COMMAND REFERENCE CATMAN(SMAN)

(The command line is executed by /bin/sh.) If the -f option is given, the
given command replaces the "nroff -man". ·

If the first 1024 characters of the manual page source file contains the
word $Compile:, the text following the : up to a newline or the sequence
$$is used in place of nroff-man. This command may contain a O/of,
which is replaced by the source file name. In this case, the (source
portion is not included in the command line. This feature is very useful
for manual pages which require preprocessing by commands such as tbl
and neqn and postprocessing by col.

Examples of $Compile lines are:

\" $Compile: tbl : nroff -man l col
\" $Compile: neqn %f l tbl l nroff -man col $$

The Sections File
When all directories have been processed, the set of sections seen is
compiled. If personal or command-line specified directories were
processed, the list of known sections is printed (this information can be
used to update the $HOMEl.manrc file or system sections file). If the
system directories were processed, the data is used to rebuild the file
/usrlliblmanlsections. In this case, the section ordering is preserved. All
new sections are placed before the ' + ' entry for that section number. If
there is no'+' entry for the section number, the new section is placed at
the end of the file. Sections that no longer exist are deleted. For
example, if the sections file contains '2 2x 2 +' and manual pages whose
sections are '2d' and '2n' are seen and no section '2x' manual pages
were seen, the sections file will contain '2 2d 2n 2 + '.

It is very important to note that giving sections to format on the command
line inhibits the rebuilding of the sections file and causes the sections to
be printed.

Directory Creation
If a cat directory does not exist, an attempt is made to create it. If the file
exists but is not a directory, catman will abort.

OPTIONS
-f command

Format all files using the given command. This overrides the default
use of nroff -man and any $Compile directives in the source.

-i Don't build index format tables. This overrides the i in the actions
field of entries in /usrlliblmanldirectories.

-p Format "personal" directories found in $HOMEl.manrc.

-n Print commands to be executed but do not execute them. This
results in a list of commands that can be executed, including creation
of directories. Double quotes will surround each file name.

REV SEP 1985 2

637

CATMAN(SMAN) COMMAND REFERENCE CATMAN(SMAN)

-v Versbose. Print commands as they are executing. When executing
makewhatis, the -v is also given so that any errors will be reported.

-w
Don't build whatis databases. This overrides the w in the actions
field of entries in lusrllib/manldirectories.

-number
Format only the given section. There may be more than one of these
options. Use of this option with the system directories inhibits
rebuilding of the sections file.

EXAMPLES

FILES

Catman is usually used to format the system directories. The following
entry, when placed in lusrlliblcrontab, will cause the changed files to be
reformatted each night at 2:30am.

30 02 * * * /etc/catman -v

This invocation will cause sections 1 , 2, and 3 of the directories listed in
"personal" entries of the file $HOMEl.manrc to be formatted. The
commands executed and known sections list will be printed.

/etc/catman -p -v -1 -2 -3

The following command will print the commands required to bring the
manual pages in lusr/tman up to date. The known suffix list will not be
printed.

/etc/catman -n -s /usr/tman

The following command will execute commands to bring the manual
pages in lusrlmanlmanl up to date. The known suffix list will be printed,
but /usr/liblmanlsections will have to be updated by hand. ·

/etc/catman -1 /usr/man

lusrllib/manldirectories

lusrllib/manlsections

$HOME/.manrc

Manual page search directory
information.

Known manual page sections list.

Searched for "personal" manual page
directory names.

REV SEP 1985 3

638

CATMAN (8MAN) COMMAND REFERENCE CATMAN(SMAN)

lusr/liblmakewhatis Whatis database-building command.

lusrlliblbuildif Index format file builder.

VARIABLES
PATH The user's execution path.

HOME The user's home directory.

RETURN VALUE

CAVEATS

[NO_ERRS J Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _WARNJ A system error occurred. Execution continues. See
intro(2) for more information on system errors.

Only manual pages with proper suffixes for the section are checked for
reformatting. For example, the file lusrlmanlman3/at.l would not be
formatted since it has a section specifier of 1 instead of 3.

Manual pages preprocessed by tbl and/or eqn should always be
postprocessed by col.

SEE ALSO
apropos(l man), buildif(l man), col(l), help(l man), more(l), neqn(l),
nroff(J), section(lman), tbl(l), whatis(lman), man(5man), manindex(5man),
whatis(5man), cron(8).

REV SEP 1985 4

639

CHARGEN(8N) COMMAND REFERENCE

NAME
chargen - tty test character pattern generator

SYNOPSIS
/etc/tcp_services/chargen

DESCRIPTION

CHARGEN(SN)

Chargen generates an endless character string useful for debugging and
network measurement. The generated pattern is a "barber pole" made
up of the 95 printing ASCII characters.

Chargen is run by tcpd(Bn) when a connection is made on the ''ttytst''
service specification; see services(5n).

SEE ALSO
tcpd(Bn).

1

640

CHOWN(8) COMMAND REFERENCE CHOWN(8)

NAME
chown - change owner

SYNOPSIS
/etc/ch own [-f] [-1] owner filename ...

DESCRIPTION
Chown changes the owner of filename to owner. The owner may be
either a decimal UID or a login name found in the password file.

Only the super-user can change owner, in order to simplify as yet
unimplemented accounting procedures.

OPTIONS
-f Force. No error messages about nonexistent files or files that can not

have ownership changed.

-I Follow symbolic links. Normally, the ownership of the symbolic link
itself is changed. The -I option causes chown to follow the
symbolic links and change the ownership of the file pointed to.

EXAMPLES
The following invocation will change the owner of the file temp to root:

/etc/chown root temp

FILES
letc!passwd the password file

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

SEE ALSO
chgrp(l), chmod(l), ln(l), chown(2), group(5), passwd(5).

REV SEP 1985

641

CLRI (8) COMMAND REFERENCE CLRI (8)

NAME
clri - clear inode

SYNOPSIS
/etc/clri filesystem i-number ...

DESCRIPTION
N.B.: Clri has been replaced by fsck(B) for normal file system repair work.

Clri writes zeros on the inodes numbered i-number on the specified
filesystem. Filesystem is a special file name referring to a device
containing a file system. The command should only be used in
emergencies and extreme care should be exercised.

Read and write permission is required on filesystem. The inode becomes
allocatable.

The primary purpose of this routine is to remove a file which for some
reason appears in no directory. If it is used to zap an inode which does
appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the inode is reallocated to some new file, the
old entry will still point to that file. At that point removing the old entry
will destroy the new file. The new entry will again point to an unallocated
inode, so the whole cycle is likely to be repeated again and again.

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

CAVEATS
If the file is open, clri is likely to be ineffective.

SEE ALSO
fsck(8).

642

COMPLY{&) COMMAND REFERENCE COMPLY{&)

NAME
comply - check files against specification

SYNOPSIS
comply [-D] [-R] [-S] [-c comment_char] [-d field_delim]
[-e] [-f] [-g grpfile] [-h] [-I] [-m] [-p passwdfile]
[-r pseudoroot] [-v] specification-file ...

DESCRIPTION
Comply checks files in the filesystem against a thoses listed in the
specification file. One or more specification files can be placed on the
command line. Briefly, each line of the specification file is a description
about a certain file in the filesystem. The specification contains the
information about the name of the file in the filesystem, who owns the file
(owner), the group ownership, the file type, the major/minor device
numbers if it is a device, the permission mode, the size in bytes, the hard
link count, the RCS revision number, the checksum, and the symbolic link
target if the file is a symbolic link are checked. See bom(5) for details of
file format. Whenever a match does not occur an error is printed. If the
-f option is used, comply will attempt to fix the filesystem version of the
file to match the specification.

Users may use comply to check their file protection modes. Additionally,
for system files, comply is recommended to be run from the initialization
process through the file /etc/re (see init(B) and rc(B)), or periodically by
cron(B).

OPTIONS
-C

Causes checking of checksums on regular files and directories.

-D
Causes checking of major/minor numbers on devices.

-R
Causes checking of RCS identification numbers on regular files.

-S
Causes checking of sizes on regular files and directories.

-c comment_char
Changes the comment character interpretation in the specification file
to comment_char (default is%).

-d field_delim
Changes the field deliminter character interpretation in the
specification file to field_delim. (default is TAB).

-e Causes comply to do only an existence check of the files. It does
NOT check file type, owner, links, size, etc ..

-f Causes comply to try to fix the filesystem according to the
specification file (i.e. change owner) if it can. In addition, comply will
create missing zero length files, missing directories, and symbolic
links as necessary.

REV SEP 1985

643

COMPLY(&) COMMAND REFERENCE COMPLY(&)

-g grpfile
Use grpfile as the group file for checking (default is /etc/group).

-h Causes only a help message to be printed. No other action will be
taken no matter what other options are specified.

-1 Check that the file hard link count is 'greater than or equal' to the
one in the specification, rather than exactly 'equal'.

-m
Check that the file mode is 'greater' than the one in the specification,
rather than exactly 'equal'.

-p passwdfile
Use passwdfile as the password file for checking (default is
/etc/passwd).

-r pseudoroot
Prepend pseudoroot to each file name being checked. (Default is
null).

-v Prints all errors encountered. (verbose). In addition, this prints all
comment lines from the beginning of the specification file upto the
first non-comment line.

RETURN VALUE
[OJ

[1]

[USAGE]

[NP_ERR]

[P _ERR]

CAVEATS

No errors occurred.

Errors occurred.

Incorrect command line syntax. Execution terminated.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Comply is unable to fix hard link counts, RCS ids, and checksums. Nor
is it currently able to create devices.

SEE ALSO
bom(5), cron(8), stat(2).

REV SEP 1985 2
644

CONFLICT(SMH) COMMAND REFERENCE CONFLICT(SMH)

NAME
conflict - search for alias/password conflicts

SYNOPSIS
/usr/lib/mh/conflict [-mail user name]

DESCRIPTION

FILES

Conflict is a program which checks to see that inconsistencies between
the Rand MH alias file (aliases(5MH)) and the passwd(5) file have not
been introduced. In particular, a line in the alias file may be "tom: jones"
(because the user 11jones 11 likes to be called Tom), but if 11tom 11 is also a
valid user name for someone else, then that user will no longer receive
any mail; his mail will be received by 11 jones 11 instead!

Conflict also checks for mailboxes in /usrlspoollmail which do not
belong to a valid user. It assumes that no user name will start with '.',
and thus ignores files in /usrlspoollmail which begin with '.'. It also
checks for entries in the group(5) file which do not belong to a valid user,
and for users who do not belong to any group in the group file. This last
test is local to Rand, and will not be performed unless the -DRANO flag
was set at compile time.

If the -mail flag is set, then the results will be sent to the specified user
name. Otherwise, the results are sent to the standard output.

Conflict should be run under Cron, or whenever system accounting takes
place.

/etc/Mai/Aliases

letc/passwd

/etc/group

lusr/spoollmaill*

SEE ALSO
group(5), passwd(5).

REV SEP 1985

645

CRON(8) COMMAND REFERENCE CRON(8)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
Cron executes commands at specified dates and times according to the
instructions in the file lusrlliblcrontab. Since cron never exits, it should
only be executed once. This is best done by running cron from the
initialization process through the file /etc/re; see init(8).

Crontab consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns to specify the minute
(0-59), hour (0-23), day of the month (1-31), month of the year (1-12),
and day of the week (1-7 with 1 =Monday). Each of these patterns may
contain a number in the range above; two numbers separated by a minus
meaning a range inclusive; a list of numbers separated by commas
meaning any of the numbers; or an asterisk meaning all legal values.
The sixth field is a string that is executed by the Shell at the specified
times. A percent character in this field is translated to a new-line
character. Only the first line (up to a% or end of line) of the command
field is executed by the Shell. The other lines are made available to the
command as standard input.

Crontab is examined by cron every minute.

EXAMPLES
The following example runs the program atrun every 15 minutes.

0,15,J0,45 * * * * /usr/lib/atrun

The next example shows how cron(8) can be used to run jobs as super
user (root).

0 0 * * * su daemon (/usr/local/lib/uucp.daily

FILES
usr /liblcrontab

RETURN VALUE
[NO_ERRS] Command completed without error.

SEE ALSO
at(l).

646

REV MAR 1985

DAEMON(&) COMMAND REFERENCE DAEMON(&)

NAME
daemon - daemon process handler

SYNOPSIS
/etc/daemon [-Ksig J [-Ysig J [-k J [-r J [-s J [-v J
[-wtime J [-y J [program . . . J

DESCRIPTION
Daemon is used to stop, start, synchronize, and report status of daemon
processes. The program arguments must be full pathnames of
executable programs followed by any arguments. If no program names
are specified, the file letcldaemontab is read for program names, -K,
-Y, and -w options, and commands to execute to obtain program
names (see daemontab(5)).

If the -k, -K, or -r options are given, the programs are killed. The
default kill signal is TERM (15), which is overriden with the -K option on
the command line or in the daemontab file. After the kill signal is sent,
daemon waits for 5 seconds (or the time specified by the -w option) and
checks to make sure that the process was killed. Failures are always
reported; sucesses only if the-vis specified.

If the -s or -r options are given, the programs that were not running or
were successfully killed are executed. The only kind of failure possible is
that no process slots are available.

The -y and -Y options specify that the program is to be "synchronously
restarted". This is done by sending the specified signal to the process,
which is supposed to tell the process to reread its configuration data. If
letc!daemontab is used, only entries which are preceded by the -Y will
be processed. If the -y is given, no programs may be specified on the
command line, since there is no default synchronization signal. These
restrictions exist because not all daemons can synchronize in this way.
After the signal is sent to the process, daemon waits for the time
specified by the -w option (or 5 seconds by default) and then checks to
see if the process has died. Death of a process in this case is marked as
a failure, since the intention was for the process to keep going. The -y
and -Y options may not be used with the -k, -K, -s, and -r options.

If the -v option is given, all actions taken are reported as they happen.
Finally, a table is printed after all other actions are taken. The table looks
like the following:

Pid Status Action Name

number status action taken program name with arguments

The Pid field contains the process ID number of the program. If the
program isn't running, this field is blank. The Status field contains the
same information as the STAT field printed by ps(l). If the program isn't
running, this field will be (none). The Action field contains a description
of what action was taken or why action was not taken. The Name field
contains the name of the program and its arguments.

647

DAEMON(&) COMMAND REFERENCE DAEMON(&)

Only the superuser may specify options other than -v. If no options are
given, -v is set.

OPTIONS
-Ksig

Kill programs with the given signal number or name. This option
overrides all options given in the daemontab file. Execute the
command "kill -I" for a list of signal names.

-Ysig
Send the specified signal to all programs listed on the command line,
or to all programs preceded by a -Y in the daemontab file. The
signal given overrides the signals specified in the daemontab file.
This option can not be given with -K, -k, -s, or -r.

-k Kill programs with default signal, which is either TERM (15) or the
signal specified by the -K option in the daemontab file.

-r Restart. Equivalent to giving both the -k and -s options.

-s Start the programs if they are not running or were succesfully killed.

-v Verbose. Print the results of executing commands from the
daemontab file, actions taken, and a summary table after all actions
are taken.

-wtime
If the processes are being killed (or restarted), wait time seconds
before checking to make sure the process is dead. If the processes
are being synchronized, wait"time seconds before checking to make
sure that the process is still running. The default time is 5 seconds.
This option overrides all -w options given in the daemontab file.

-y Synchronize processes by sending the signal specified in the
daemontab file. If no -Y is given for an entry in the daemontab
file, the entry is not processed. This option may not be applied to
programs listed on the command line, and may not be given with the
-K, -k, -s, and -r options.

EXAMPLES
This example will print a report about all of the programs listed in
letcldaemontab. No action is taken.

/etc/daemon

This example will restart all of the programs listed in the daemontab file,
as well as those named by executing commands listed in the daemontab
file, and print a summary table at the end.

/etc/daemon -v -r

2

648

DAEMON(&) COMMAND REFERENCE DAEMON(&)

FILES

This example will attempt to kill the program /etc/lookd that is running
with the argument debug with the signal INT,· will wait 5 seconds before
checking to see whether the kill succeeded, and will restart the program if
it did succeed. No table is printed.

/etc/daemon -K INT -s "/etc/lookd debug"

letcldaemontab Program names and commands to execute for
more names.

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
Arguments to programs are significant. If the program /etc/foo is
specified and /etc/foo -bar is running, they are not considered to be the
same program.

Since there is no way to tell if a daemon that is started actually survived,
the success of starting a program is determined by whether or not
daemon was able to get a new process slot and whether or not the
program is executable. To find out if the daemons actually got started,
execute daemon again without any options except -v.

Some daemons take a long time to die after a kill signal is executed in
order to clean up and finish what they are doing.

SEE ALSO
ki/1(1), ps(l), daemontab(5).

3

649

DFFORMAT(S) COMMAND REFERENCE DFFORMAT(S)

NAME
dfformat - format a floppy disk

SYNOPSIS
/etc/dfformat [interleave] [dev]

DESCRIPTION
Dfformat formats a two-sided, double density, 48 TPI floppy disk on a
Tektronix 6200 Series workstation. The optional arguments specify the
sector interleave factor and the formatting device. Absent arguments
cause the default equivalents to be assumed. The default drive and
interleave factor are, ldevlrdf and 4, respectively.

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE]

[P_ERR]

CAVEATS

Incorrect command line syntax. Execution terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Because of hardware differences between Tektronix workstations, the
optimum interleave factor on a 6200 Series workstation is not guaranteed
to be optimal on any other series of workstation, such as the 6100 Series.

SEE ALSO
d/(4).

REV SEP 1985

650

DFSD(8N) COMMAND REFERENCE DFSD(BN)

NAME
dfsd - Distributed File System Daemon

SYNOPSIS
/etc/dfsd [-p port number]

DESCRIPTION
Dfsd is the daemon for the Distributed File System. It receives system
call commands (like open, close, read, write, etc.) from the operating
system on a remote host, and executes them on the local system. When
dfsd receives a request it spawns a child process to handle it. The child
checks the access permission file (see hosts.dfs.access(5n) for the format
of that file) and if the access is permitted, sets up the umask as set on
the requesting host, the groupids as permitted for the remote user on the
local host (in /etc/group) and the effective and real userids as received
from the remote host. The child then executes the appropriate system
call and returns the result to the requesting kernel (which in turn passes
the response to the requesting process). The only exception to this
approach is for the execve(2) system call. In that case the daemon copies
the file to be exec'd back to the requesting host. The file is then
executed on the requesting host.

Access permission is based on userid, not username, so the userid on the
remote system must match the userid of the username in hosts.dfs.access.

The daemon is started automatically whenever the workstation is
rebooted. Initially the workstation owner will be prompted by netconfig(8n)
to enable or disable the Distributed File System. If the response is
affirmative, dfsd will be started by the re.net file whenever the system is
rebooted. Netconfig records if it should start up dfsd in the file
I etc/network.con[.

Dfsd (as well as other network daemons) logs its errors in
/usr I adm/ syslog.

OPTIONS
-p port number

Normally dfsd listens on the port defined in !etc/services. This default
may be overwritten by specifying an alternate port number. However,
to change the port number used by the kernel to establish remote
connections, the kernel must be patched.

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP_ERR]

[P _ERR]

SEE ALSO

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

hosts.dfs.access(5n), syslog(8).

REV SEP 1985

651

DISCARD(8N) COMMAND REFERENCE

NAME
discard - discard all input

SYNOPSIS
/etc/tcp_services/discard

DESCRIPTION

DISCARD(8N)

Discard reads its standard input and throws it away. It is used to
implement the TCP discard service.

SEE ALSO
tcpd(Bn).

REV SEP 1985

652

DMESG{8) COMMAND REFERENCE DMESG(8)

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
/etc/dmesg [-i] [-f kernelfile] [-c corefile]

DESCRIPTION
Dmesg looks in a system buffer for recently printed diagnostic messages
and prints them on the standard output. The messages are those printed
by the system if hardware errors occur and occasionally when system
tables overflow non-fatally.

OPTIONS

FILES

-i incrementally computes the new messages since the last
time it was run with the -i flag and places these on the
standard output. This is typically used with cron(8) to
produce the error log /usrladmlmessages by running the
command

/etc/dmesg -i)) /usr/adm/messages

every 1 O minutes.

-f kernelfile File used to get a pointer to the system message buffer.
Defaults to ldevlcvt.

-c corefile File in which the current system message buffer is found.
The pointer obtained from kernelfile is used as an offset
into corefi/e. Defaults to ldevlkmem.

/usr/adm/messages
/usr/adm/msgbuf

error log (conventional location)
scratch file for memory of -i option

CAVEATS
The -i flag should only be mentioned in crontab since the scratch file is
global and using it elsewhere may cause messages to be lost from
/usr/admlmessages.

The system error message buffer is of small finite size. As dmesg is run
only every few minutes, not all error messages are guaranteed to be
logged.

Error diagnostics generated immediately before a system crash will never
get logged.

SEE ALSO
cron(B).

653

REV MAR 1985

DUMP(8) COMMAND REFERENCE DUMP(S)

NAME
dump - generalized dump utility

SYNOPSIS
/etc/dump key [argument . . .] filesystem

DESCRIPTION
If a filesystem is specified, dump copies to specified media all files
changed after a certain date in that filesystem. The key specifies the date
and other options about the dump. Key consists of characters from the
set 0123456789bfuJsdWnFSX.

OPTIONS
0-9

b

f

u

s

d

REV SEP 1985

This number is the 'dump level'. All files modified since the last
date stored in the file letcldumpdates for the same filesystem at
lesser levels will be dumped. If no date is determined by the
level, the beginning of time is assumed; thus the option O causes
the entire filesystem to be dumped. Levels 1-9 provide for
incremental dumps. For example if a filesystem is dumped with
level 4 on Tuesday and level 5 on Wednesday, then
Wednesday's dump contains those files on that filesystem which
changed after the Tuesday dump.

Use alternate buffer size. The number must follow key
specifications and will be interpreted as number of 1 k blocks (the
default is 10k). The purpose of this option is to speed dumps to
certain media. If the S option is specified, this is automatically
set to 128 (i.e., 128k). This should not be used with flexible disk
media.

Place the dump on the next argument file or device instead of the
default media. Target media can be 9 track tape, cartridge tape
or flexible disk. The device can be local or remote (LAN access),
where remote is indicated by a 11node: 11 prefix to the pathname.
If the device is remote it must be owned by daemon, as root
privileges do not extend across the LAN.

This is necessary for incremental dumps. If the dump completes
successfuiiy, write the date of the beginning of the dump on file
/etc/dumpdates. This file records a separate date for each
filesystem and each dump level. The format of letcldumpdates is
readable by people, consisting of one free format record per line:
filesystem name, increment level and ctime(Jc) format dump
date. letcldumpdates may be edited to change any of the fields,
if necessary.

The size of the dump media is specified by the next argument.
When the specified size is reached, dump will wait for media to
be changed. The default size is 2000 feet for 9 track tapes 360k
for flexible disk and 400 feet for cartridge tape.

The density of the tape, expressed in BPI, is taken from the next
argument. This is used in calculating the amount of tape used

654

DUMP(8) COMMAND REFERENCE DUMP(8)

per volume. The default is 1600 for 9 track tape, and 8000 for
cartridge.

W Dump tells the operator what file systems need to be dumped.
This information is gleaned from the files letcldumpdates and
letclfstab. The W option causes dump to print out, for each file
system in letcldumpdates the most recent dump date and level,
and highlights those file systems that should be dumped. If the
W option is set, all other options and parameters are ignored,
and dump exits immediately.

w Is like W, but prints only those filesystems which need to be
dumped.

F Specifies flexible disk backup media (9-track tape is default).

S Specifies streaming cartridge tape backup media (9-track tape is
default).

n Whenever dump requires operator attention, notify by means
similar to a wall(l) all of the operators in the group "operator".

X Turn on debugging for remote dump operations (applies to
rdump only). This will result in the remote tape handler program,
rmt, putting a trace of what it does in /tmp/rmt.log (on the host
machine).

Dump requires operator intervention on these conditions: end of media,
end of dump, media write error, media open error or disk read error (if
there are more than a threshold of 32). In addition to alerting all
operators implied by the key, dump interacts with the operator on
dump's control terminal at times when dump can no longer proceed, or if
something is grossly wrong. All questions dump poses must be answered
by typing yes or no, appropriately.

Since making a dump involves a lot of time and effort for full dumps,
dump checkpoints itself at the start of each media volume. If writing that
volume fails for some reason, dump will, with operator permission, restart
itself from the checkpoint after the old tape has been rewound and
removed, and a new tape has been mounted.

Dump tells the operator what is going on at periodic intervals, including
usually low estimates of the number of blocks to write, the number of
volumes it will take, the time to completion, and the time to the volume
change. The output is verbose, so that others know that the terminal
controlling dump is busy, and will be for some time.

EXAMPLES
/etc/dump Ofu /dev/tc /dev/dw10a

(dump entire filesystem 11/dev/dw10a 11 to local device)

/etc/rdump Ofu nodename.name:/dev/rmtl /dev/dw10a

REV SEP 1985

(dump entire filesystem to remote device 11/dev/rmt1" on host
11 nodename 11 under control of userid 11 name 11)

2

655

DUMP(8) COMMAND REFERENCE DUMP(8)

FILES

/etc/dump OfFu /dev/rdf /dev/dwlOa
(dump entire filesystem to local flexible disk)

/etc/dump Ofbu /dev/rmt 60 /dev/dw10a
(dump entire filesystem to local 9 track tape with buffering of
60k)

/etc/dump w
(ask dump to list filesystems that need to be dumped)

ldevldwlOa

ldevltc

letc/dumpdates

letclfstab

default filesystem

default target device (cartridge tape)

new format dump date record

Dump table: file systems and frequency

!etc/group to find group operator

SEE ALSO
fstab(5), restore(8), rrestore(8), rdump(8).

REV SEP 1985 3

656

DUMPFS(S) COMMAND REFERENCE DUMPFS(S)

NAME
dumpfs - dump file system information

SYNOPSIS
dumpfs filesystem l device

DESCRIPTION
Dumpfs prints out the super block and cylinder group information for the
file system or special device specified. The listing is very long and
detailed. This command is useful mostly for finding out certain file
system information such as the file system block size and minimum free
space percentage.

Dumpfs should be run as super-user; it needs to open the file system for
reading.

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _WARNJ A system error occurred. Execution continues. See
intro(2) tor more information on system errors.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) tor more information on system errors.

SEE ALSO
disktab(5), fs(5), fsck(B), newfs(8), tunefs(8).

REVMAA1985

657

ECHOD (SN) COMMAND REFERENCE

NAME
echod - echo input to output

SYNOPSIS
/etc/tcp_services/echod

DESCRIPTION

ECHOD (SN)

Echod copies its standard input to standard output. Cat(l) can not be
used since it either buffers its input, or with the -u option, writes one char
at a time.

Echod is run by tcpd(8n) when a connection is made on the echo service
specification; see services(5n).

SEE ALSO
tcpd(8n), nettest(8n).

658

FSCK (8) COMMAND REFERENCE FSCK (8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck -p [filesystem . . . J
/etc/fsck [-b block# J [-n J [-y J [filesystem . . . J

DESCRIPTION
The first form of fsck preens a standard set of filesystems or the specified
file systems. It is normally used in the script !etc/re during automatic
reboot. In this case fsck reads the table /etclfstab to determine which
file systems to check. It uses the information there to inspect groups of
disks in parallel taking maximum advantage of 1/0 overlap to check the
file systems as quickly as possible. Normally, the root file system will be
checked on pass 1, other root(a partition) file systems on pass 2, other
small file systems on separate passes (e.g., the d file systems on pass 3
and thee file systems on pass 4), and finally the large user file systems
on the last pass (e.g., pass 5). A pass number of 0 in letclfstab causes a
disk to not be checked; similarly partitions which are not marked rw or ro
are not checked.

The system takes care that only a restricted class of innocuous
inconsistencies can happen unless hardware or software failures
intervene. These are limited to the following:

Unreferenced inodes

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super-block wrong

These are the only inconsistencies which fsck with the -p option will
correct; if it encounters other inconsistencies, it exits with an abnormal
return status and an automatic reboot started by /etc/re will then fail. For
each corrected inconsistency one or more lines will be printed identifying
the file system on which the correction will take place, and the nature of
the correction. After successfully correcting a file system, fsck will print
the number of files on that file system and the number of used and free
blocks.

Without the -p option, fsck audits and interactively repairs inconsistent
conditions for file systems. If the file system is inconsistent the operator
is prompted for concurrence before each correction is attempted. It
should be noted that a number of the corrective actions which are not
fixable under the -p option will result in some loss of data. The amount
and severity of data lost may be determined from the diagnostic output.
The default action for each consistency correction is to wait for the
operator to respond yes or no. If the operator does not have write
permission fsck will default to a -n action.

659

FSCK (8) COMMAND REFERENCE FSCK (8)

Fsck has more consistency checks than its predecessors check, dcheck,
fcheck, and icheck combined.

OPTIONS

FILES

The following flags are interpreted by fsck.

-b Use the block specified immediately after the flag as the super block
for the file system. Here, block means a 512-byte block. Block 32
(in 512-byte blocks) is always an alternate super block.

-n Assume a no response to all questions asked by fsck; do not open
the file system for writing.

-y Assume a yes response to all questions asked by fsck; this should
be used with great caution as this is a free license to continue after
essentially unlimited trouble has been encountered.

If no filesystem argument is given to fsck then a default list of file systems
is read from the file letclfstab.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the

file system.
3. Incorrect link counts.
4. Size checks:

Directory size not of proper format.
5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
lnode number out of range.

8. Super Block checks:
More blocks for inodes than there are in the file system.

9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
operator's concurrence, reconnected by placing them in the lost+ found
directory. The name assigned is the inode number. The only restriction is
that the directory lost+ found must preexist in the root of the filesystem
being checked and must have empty slots in which entries can be' made.
This is accomplished by making lost+ found, copying a number of files to
the directory, and then removing them (before fsck is executed).

Fsck must be run as super-user.

letclfstab contains default list of file systems to check

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

2

660

FSCK (8) COMMAND REFERENCE FSCK (8)

RETURN VALUE
[OJ Everything worked as expected.

[4] Fsck ran normally, except that the root file system was modified.
/etc/re usually reboots the system if it sees this return value.

[SJ A fatal error occurred. The diagnostic message provided will give
more information.

[12]
An internal inconsistency was found.

CAVEATS
lnode numbers for . and •. in each directory should be checked for
validity.

There should be some way to start a fsck -pat pass n.
SEE ALSO

fstab(5), fs(5), mkfs(8), newfs(8), reboot(8).

3

661

FTPD(8N) COMMAND REFERENCE FTPD(8N)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
/etc/tcp_services/ftpd [-d] [-I] [-ttimeout]

DESCRIPTION
Ftpd is the DARPA Internet File Transfer Prototocol server process. The
server uses the TCP protocol and is started by tcpd(Bn) when a
connection is made on the port specified in the ftp service specification;
see services(5n).

The ftp server currently supports the following ftp requests; case is not
distinguished.

Request Description
ABOR abort transfer in progress
ACCT specify account (ignored)
ALLO allocate storage (vacuously)
APPE append to a file
CWD change working directory
DELE delete a file
HELP give help information
LIST give list files in a directory ("Is -lg")
MODE specify data transfer mode
NLST give name list of files in directory ("Is")
NOOP do nothing
PASS specify password
PORT specify data connection port
QUIT terminate session
RETA retrieve a file
RNFR specify rename-from file name
RNTO specify rename-to file name
STAT status of transfer, server or file
STOA store a file
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory
XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XRMD remove a directory

The remaining ftp requests specified in Internet RFC 765 are recognized,
but not implemented.

A data transfer may be aborted or stated by sending the telnet chars /AC
IP and out of band data message, followed by the ABOR or STAT
command.

REV MAR 1985

662

FTPD(SN) COMMAND REFERENCE FTPD(SN)

Ftpd interprets file names according to the "globbing" conventions used
by csh(l csh). This allows users to utilize the metacharacters *?[){r.

Ftpd authenticates users according to three rules.

1) The user name must be in the password data base, letclpasswd,
and not have a null password. In this case a password must
be provided by the client before any file operations may be
performed.

2) The user name must not appear in the file letc!ftpusers.

3) If the user name is anonymous or ftp, an anonymous ftp account
must be present in the password file (user ftp). In this case the
user is allowed to log in by specifying any password (by
convention this is given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's
access privileges. The server performs a chroot(2) command to the home
directory of the ftp user. In order that system security is not breached, it
is recommended that the ftp subtree be constructed with care; the
following rules are recommended.

-ftp Make the home directory owned by ftp and
unwritable by anyone.

-ftp/bin Make this directory owned by the super-user and
unwritable by anyone. The program ls(l) must be
present to support the list commands. This
program should have mode 111 .

-ftp/etc

-ftp/pub

OPTIONS

Make this directory owned by the super-user and
unwritable by anyone. The files passwd(5) and
group(5) must be present for the Is command to
work properly. These files should be mode 444.

Make this directory mode 777 and owned by
ftp. Users should then place files which are to
be accessible via the anonymous account in
this directory.

-d Each socket created will have debugging turned on (SO_DEBUG).
With debugging enabled, the system will trace all TCP packets sent
and received on a socket.

-I Each ftp session is logged on the standard output. This allows a line
of the form /etc/ftpd -1) /tmp/ftplog to be used to conveniently
maintain a log of ftp sessions.

-ttimeout
Set the inactivity timeout period to timeout. By default the ftp server
will timeout an inactive session after 60 seconds.

2 REVMAR1985

663

FTPD(SN) COMMAND REFERENCE FTPD(8N)

RETURN VALUE
[OJ Ftpd is running.

[1] Ftpd is not running.

CAVEATS
The anonymous account is inherently dangerous and should avoided
when possible.

The server must run as the super-user to create sockets with privileged
port numbers. It maintains an effective user ID of the logged in user,
reverting to the super-user only when binding addresses to sockets.

SEE ALSO
ftp(J n), tcpd(8n).

3
664

REV MAR 1985

GETTY (8) COMMAND REFERENCE GETTY (8)

NAME
getty - set terminal mode

SYNOPSIS
/etc/getty [type J

DESCRIPTION

FILES

Getty is invoked by init(8) immediately after a terminal is opened,
following the making of a connection. While reading the name getty
attempts to adapt the system to the speed and type of terminal being
used.

lnit calls getty with type, an argument specified by the ttys file entry for
the terminal line. Type can be used to make getty treat the line specially.
It is used as an index into the gettytab(5) database to determine the
characteristics of the line. If there is no type argument, or there is no
table corresponding to type in gettytab, the default table is used. If there
is no letc!gettytab a set of system defaults is used.

If indicated by the table located, getty will clear the terminal screen, print
a banner heading, and prompt for a login name. Usually either the
banner or the login prompt will include the system hostname. Then the
user's name is read, a character at a time. If a null character is received,
it is assumed to be the result of the user pushing the "break"
("interrupt") key. The speed is usually then changed and the "login:" is
typed again; a second "break" changes the speed again and the "login:"
is typed once more. Successive "break" characters cycle through the
same standard set of speeds.

The user's name is terminated by a new-line or carriage-return
character. The latter results in the system being set to treat carriage
returns appropriately (see tty(4)).

The user's name is scanned to see if it contains any lower-case
alphabetic characters; if not, and if the name is non-empty, the system is
told to map any future upper-case characters into the corresponding
lower-case characters.

Finally, login is called with the user's name as an argument.

Most of the default actions of getty can be circumvented, or modified, by
a suitable gettytab table.

Getty can be set to timeout after some interval, which will cause dial-up
lines to hang up if the login name is not entered reasonably quickly.

letclgettytab data base describing terminal lines

!etc/ttys terminal initialization data

CAVEATS
Currently, the format of !etc/ttys limits the permitted table names to a
single character.

SEE ALSO
login(l), ioct/(2), tty(4), gettytab(5), ttys(5), init(8).

665

HALT (8) COMMAND REFERENCE HALT (8)

NAME
halt - stop the processor

SYNOPSIS
/etc/halt [-n J [-q J [-y J

DESCRIPTION
Halt writes out sandbagged information to the disks and then stops the
processor. The machine does not reboot, even if the auto-reboot switch
is set on the console.

OPTIONS
-n Prevents the sync before stopping.

-q Causes a quick halt, no graceful shutdown is attempted.

-y This option is needed if you are trying to halt the system from a
dial up.

RETURN VALUE
[NO_ERRSJ

[USAGE]

[NP_ERRJ

[P_WARNJ

SEE ALSO

Command completed without error.

Incorrect command line syntax. Execution terminated.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

reboot(8), shutdown(8).

666

HARDLINK(8) COMMAND REFERENCE HARDLINK(8)

NAME
hardlink - check and create hard links to files

SYNOPSIS
hardlink [-c comment_char] [-f] [-h] [-n] [-r pseudoroot]
[-v] specification_file ...

DESCRIPTION
Hardlink checks files in the filesystem against a thoses listed in the
specification file to be sure that the proper files are hard linked together.
One or more specification files can be placed on the command line.
Briefly, each line of the specification file is a description about a which
files in the filesystem should be hard linked together. See bom(5) for
details of file format. Whenever hardlink is unable to link files together,
an error is printed.

Hardlink assumes files with non-zero size has having more importance
than those that are zero length. In addition, hardlink will do a binary file
compare to determine if two files are not originally linked together to see
if they are the same, then hardlink will then remove one and link them
together.

OPTIONS
-c comment_char

Changes the comment character interpretation in the specification file
to comment_char (default is o/o).

-f Forcibly makes links to the first file in the specification line. It will
automatically remove any existing files except the first listed.

-h Causes only a help message to be printed. No other action will be
taken no matter what other options are specified.

-n Prints a shell script to stdout of what hardlink would do if it were to
do anything. Stdout is suitable to be piped or given to /bin/sh.

-r pseudoroot
Append pseudoroot to each file name being checked. (Default is
null).

-v Prints all errors encountered. (verbose). In addition, this prints all
comment lines from the beginning of the specification file upto the
first non-comment line ..

DIAGNOSTICS
Each error message has a number enclosed in square brackets that
indicate the line number of the input record causing the error or message.

RETURN VALUE
[OJ No errors occurred.

[1]

[USAGE]

[NP_ERR]

Errors occurred.

Incorrect command line syntax. Execution terminated.

An error occurred that was not a system error. Execution
terminated.

667

HARDLINK(B)

[P _ERR]

CAVEATS

COMMAND REFERENCE HARDLINK(S)

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Hardlink is unable to fix hard link counts, RCS ids, and checksums. Nor
is it currently able to create devices.

SEE ALSO
cron(8), hardlink(5), link(2).

2

668

ICHECK (8) COMMAND REFERENCE ICHECK (8)

NAME
icheck - file system storage consistency check

SYNOPSIS
/etc/icheck [-b numbers J [-s J [filesystem J

DESCRIPTION
N.B.: /check has been replaced by fsck(B) for normal consistency
checking.

lcheck examines a file system, builds a bit map of used blocks, and
compares this bit map against the free list maintained on the file system.
If filesystem is not specified, a set of default file systems is checked. The
normal output of icheck includes a report of

The total number of files and the numbers of regular, directory,
block special and character special files.

The total number of blocks in use and the numbers of single-,
double-, and triple-indirect blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free
list.

OPTIONS

FILES

-b This option is followed by a list of block numbers; whenever any of
the specified blocks turns up in a file, a diagnostic is produced.

-s Causes icheck to ignore the actual free list and reconstruct a new
one by rewriting the super-block of the file system. The file system
should be dismounted while this is done; if this is not possible (for
example if the root file system has to be salvaged) care should be
taken that the system is quiescent and that it is rebooted immediately
afterwards so that the old, bad in-core copy of the super-block will
not continue to be used. Notice also that the words in the super
block which indicate the size of the free list and of the i-list are
believed. If the super-block has been curdled these words will have
to be patched. The -s option causes the normal output reports to
be suppressed.

lcheck is faster if the raw version of the special file is used, since it reads
the i-list many blocks at a time.

Default file systems vary with installation.

669

IC HECK (8) COMMAND REFERENCE ICHECK (8)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system)
icheck announces the difficulty, the i-number, and the kind of block
involved. If a read error is encountered, the block number of the bad
block is printed and icheck considers it to contain 0. 'Bad freeblock'
means that a block number outside the available space was encountered
in the free list. 'N dups in free' means that n blocks were found in the
free list which duplicate blocks either in some file or in the earlier part of
the free list.

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

CAVEATS
Since icheck is inherently two-pass in nature, extraneous diagnostics
may be produced if applied to active file systems.

It believes even preposterous super-blocks and consequently can get
core images.

The system should be fixed so that the reboot after fixing the root file
system is not necessary.

SEE ALSO
fs(5), clri(8), fsck(8), ncheck(8).

2

670

IFCON FIG (SN) COMMAND REFERENCE IFCONFIG (SN)

NAME
ifconfig - configure network interface parameters

SYNOPSIS
/etc/ifconfig interface [address J [parameters J

DESCRIPTION
lfconfig is used to assign an address to a network interface and/or
configure network interface parameters. lfconfig must be used at boot
time to define the network address of each interface present on a
machine; it may also be used at a later time to redefine an interface's
address. The interface parameter is a string of the form nameunit, e.g.
enO, while the address is either a host name present in the host name
data base, hosts(5n), or a DARPA Internet address expressed in the
Internet standard "dot notation".

OPTIONS
The following parameters may be set with ifconfig:

up Mark an interface up.

down
Mark an interface down. When an interface is marked down, the
system will not attempt to transmit messages through that interface.

trailers
Enable the use of a trailer link level encapsulation when sending
(default). If a network interface supports trailers, the system will,
when possible, encapsulate outgoing messages in a manner which
minimizes the number of memory to memory copy operations
performed by the receiver.

-trailers
Disable the use of a "trailer" link level encapsulation.

arp Enable the use of the Address Resolution Protocol in mapping
between network level addresses and link level addresses (default).
This is currently implemented for mapping between DARPA Internet
addreses and 1 OMb/s Ethernet addresses.

-arp
Disable the use of the Address Resolution Protocol.

debug
Enable device driver specific debugging output.

-debug
Disable device driver specific debugging output.

lfconfig displays the current configuration for a network interface when
no optional parameters are supplied.

Only the super-user may modify the configuration of a network interface.

671

IFCONFIG (SN) COMMAND REFERENCE IFCONFIG (SN)

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested
address is unknown, the user is not privileged and tried to alter an
interface's configuration.

RETURN VALUE
[OJ lfconfig was successful.

[1 J lfconfig was unsuccessful.

[USAGE] Incorrect command line syntax. Execution terminated.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

SEE ALSO
intro(4n), netstat(ln), rc(8).

2
672

INIT(S) COMMAND REFERENCE INIT(S)

NAME
init - process control initialization

SYNOPSIS
/etc/in it

DESCRIPTION
lnit is invoked inside UTek as the last step in the boot procedure. It
normally then runs the automatic reboot sequence as described in
reboot(8), and if this succeeds, begins multi-user operation. If the reboot
fails, it commences single-user operation by giving the super-user a shell
on the console.

It is possible to pass parameters from the boot program to init so that
single-user operation is commenced immediately. For the 6200 series,
the parameter S will cause this. The parameter M will cause multi-user
operation to begin after reboot, as described above.

When such single user operation is terminated by killing the single-user
shell (i.e. by hitting -D), init runs !etc/re without the reboot parameter.
This command file performs housekeeping operations such as removing
temporary files, mounting file systems, and starting daemons.

In multi-user operation, init's role is to create a process for each terminal
port on which a user may log in. To begin such operations, it reads the
file !etc/ttys and forks several times to create a process for each terminal
specified in the file. Each of these processes opens the appropriate
terminal for reading and writing. These channels thus receive file
descriptors 0, 1 and 2, the standard input and output and the diagnostic
output. Opening the terminal will usually involve a delay, since the open
is not completed until someone is dialed up and carrier established on the
channel. If a terminal exists but an error occurs when trying to open the
terminal init complains by writing a message to the system console; the
message is repeated every 10 minutes for each such terminal until the
terminal is shut off in !etc/ttys and init is notified (by a hangup signal, as
described below), or the terminal becomes accessible (init checks again
every minute). After an open succeeds, !etc!getty is called with
argument as specified by the second character of the ttys file line. Getty
reads the user's name and invokes login to log in the user and execute
the Shell.

Ultimately the Shell will terminate because of an end-of-file either typed
explicitly or generated as a result of hanging up. The main path of init,
which has been waiting for such an event, wakes up and removes the
appropriate entry from the file utmp, which records current users, and
makes an entry in /usrladmlwtmp, which maintains a history of logins
and logouts. The wtmp entry is made only if a user logged in
successfully on the line. Then the appropriate terminal is reopened and
getty is reinvoked.

lnit catches the hangup signal (signal SIGHUP) and interprets it to mean
that the file !etc/ttys should be read again. The Shell process on each
line which used to be active in ttys but is no longer there is terminated; a

673

INIT (8) COMMAND REFERENCE INIT (8)

FILES

new process is created for each added line; lines unchanged in the file
are undisturbed. Thus it is possible to drop or add phone lines without
rebooting the system by changing the ttys file and sending a hangup
signal to the init process: use 'kill -HUP 1 .'

lnit will terminate multi-user operations and resume single-user mode if
sent a terminate (TERM) signal, i.e. "kill -TERM 1 ". If there are
processes outstanding which are deadlocked (due to hardware or
software failure), init will not wait for them all to die (which might take
forever), but will time out after 30 seconds and print a warning message.

lnit will cease creating new getty's and allow the system to slowly die
away, if it is sent a terminal stop (TSTP) signal, i.e. "kill -TSTP 1 ". A
later hangup will resume full multi-user operations, or a terminate will
initiate a single user shell. This hook is used by reboot(8) and halt(8).

I dev I console

ldevltty*

letclutmp

/usr I admlwtmp

/etc/ttys

!etc/re

DIAGNOSTICS
init: tty: cannot open.

A terminal which is turned on in the re file cannot be opened, usually
because the requisite lines are either not configured into the system
or the associated device was not attached during boot-time system
configuration.

WARNING: Something is hung (won't die); ps -ax/ advised.

SEE ALSO

A process is hung and could not be killed when the system was
shutting down. This is usually caused by a process which is stuck in
a device driver due to a persistent device error condition.

kill(l), /ogin(l), sh(lsh), ttys(5), crash(B), getty(8), halt(8), rc(8), reboot(8),
shutdown(8).

2

674

INSTALL(&) COMMAND REFERENCE INSTALL(&)

NAME
install - Install files from distribution media

SYNOPSIS
/usr/lib/install [-tar] [source [text]]

DESCRIPTION
Install reads files from source and copies them to their named destination
files. The destination for each file is determined from the name as it is on
the source relative to the current working directory.

Source defaults to /dev/rdf but may be any file. If source is flexible disk,
diskette or /dev/rdf, install(8) will load the files from the diskette drive. If
it is tape, /dev/rmt or /dev/nrmt then install(8) will load the files from the
9-track tape drive. If it is cart, cartridge, /dev/tc or /dev/ntc the files
will be read from the cartridge tape unit. Any other source is assumed to
be a file on the system.

Text defaults to diskette and is used in the cpio(l) prompt if source is
distributed on more than one diskette, tape or cartridge.

Files on source. are assumed to be in cpio(l) format. If the -tar option is
given, then the files are assumed to be in tar(l) format and tar(l) will be
used in lieu of cpio(l).

Install is usually called by a shell script called INSTALL found on source
by running the software installation option of letclsysadmin(8).
Sysadmin(8) will extract the file INSTALL from source and execute it.

After the files are read from source, if a file called INST ALL.READ is
found in the current directory, it will be copied to the screen via more(l).
INST ALL.READ is typically used to describe what has been installed
and/or to give further instructions about finishing the installation of a
particular package.

If a file called INST ALL.EXEC is found in the source , then it will be
executed after the files are read from the source. INST ALL.EXEC is
typically used to create file links, to move the files found on source to a
different directory and/or to verify that required files are present, to cause
makedev(S) to create special entries in /dev or any other tasks required
by the software being installed.

OPTIONS
-tar Use tar(l) instead of cpio(I) to extract files from source.

EXAMPLES

FILES

A typical INST ALL script on source could be

#!/bin/sh
cd I
/usr/lib/install cartridge "tape cartridge"

INST ALL.READ

INST ALL.EXEC

Information to be read before installing files.

Optional program on source to be executed
after files have been extracted from source.

REV SEP 1985

675

INSTALL(&)

SEE ALSO
cpio(l), more(l), tar(J).

REV SEP 1985

COMMAND REFERENCE

2
676

INSTALL(&)

LPSERVER(SMDQS) COMMAND REFERENCE LPSERVER(SMDQS)

NAME
lpserver, plpserver, rawlpserver - line printer servers for MDQS

SYNOPSIS
lpserver [-b baud] [-c] [-f flagging] [-h size]
[-p parity] [-C columns] [-H headers J [- T trailers J

DESCRIPTION
Lpserver, plpserver and rawlpserver are all line printer severs for
MDQS.

Lpserver is the general line printer server. This server optimizes for
overstriking and converts all control characters to their - (letter) patterns.
Since this server catches all control characters, it cannot be used to
control printers with escape sequences.

Plpserver is designed to be used with Printronix P150/P300/P600
printers. This server knows about these printers' special modes, such as
Plotmode.

Rawlpserver is used when you want the data to go out the port
completely unaltered. This server is especially good for outputting
graphical data and escape sequences to control printer modes.

OPTIONS
-b baud

Sets the baud rate for the tty port. The default baud rate is 9600.

-c Sets the tty port in CRMOD which causes all LF characters to be
output as CR-LF. This option implies a parity of ODD unless the
parity is explicitly set. If the parity is explicitly set to NONE, ODD
parity is still produced with the -c option.

-f flagging
Sets the flagging method used by the tty driver. The two values for
flagging are HW and SW representing hardware and software
respectively. Software flagging is the default.

-h size
Sets the amount of information presented on the banner page of the
printout. The values are LARGE, SMALL and NONE. The default is
LARGE.

-p parity
Sets the parity to be used by the tty driver. The values are EVEN,
ODD, SPACE and NONE. The value of NONE allows 8-bit data
transmission. NONE in conjunction with rawlpserver is useful in
outputting graphical data or special control commands t[printers.
The default setting for parity is NONE.

-C columns
Sets the maximum number of columns to be printed on for the
banner page. This is particularly useful when the paper in the printer
is only 80 columns wide and you do not want filenames on the
banner page to print past the end of the paper. The default is 132.

677

LPSERVER(8MDQS) COMMAND REFERENCE LPSERVER(8MDQS)

-H headers
Sets the number of banner pages to print at the start of each file.
The default is 1 .

-T trailers

EXAMPLES

Sets the number of trailing banner pages to print at the end of each
request. The default is 0.

The following example is for a Printronix printer running at 2400 baud
with one trailing banner page.

/usr/lib/mdqs/plpserver -b 2400 -T 1

The following example is for a Centronix printer using hardware flagging.

/usr/lib/mdqs/lpserver -f HW

The following example is for a color hardcopy unit with a small banner
page.

/usr/lib/mdqs/rawlpserver -h SMALL

DIAGNOSTICS
Diagnostics are passed back to the MDQS daemon and reported in the
MDQS console log specified in the qconf file.

CAVEATS
These commands are NEVER called directly by the user. These
commands are specified in the file /etc/qconf and are called by the
MDQS daemon.

SEE ALSO
lpr(lmdqs), qconf(5mdqs), mdqsd(8mdqs), sysadmin(8), tty(4).

2

678

MAKEDEV(B) COMMAND REFERENCE MAKEDEV(B)

NAME
makedev - make system special files

SYNOPSIS
/dev/MAKEDEV package : device [-v]

DESCRIPTION

OPTIONS

MAKEDEV is a shell script normally used to install special files. It resides
in the ldev directory, as this is the normal location of special files.

Note: MAKEDEV should be run in the directory in which the devices are
to be created (usually ldev). Also, use either the package or the device
argument, but not both.

Package is an assorted collection of devices; see below. Device is of the
form device-name? where device-name is one of the supported devices
listed in section 4 of this manual and "?" is a logical unit number. See
the 6130 System Administration manual for an explanation of the valid unit
numbers associated with each device name.

Packages:

std Create the standard devices for the system; e.g. ldevlconsole,
ldevlmem, terminals, pseudo-terminals, disks.

local Create those devices specific to the local site. This request
causes the shell file ldev!MAKEDEV.local, if it exists, to be
executed. Site specific commands, such as those used to
setup dialup lines as ttyd? should be included in this file.

Since all devices are created using mknod(8), this shell script is useful
only to the super-user.

-v verbose

DIAGNOSTICS
Either self-explanatory, or generated by one of the programs called from
the script. Use sh -x MAKEDEV in case of trouble.

SEE ALSO
intro(4n), config(8), mknod(8).

REV SEP 1985

679

MDQSD(BMDQS) COMMAND REFERENCE MDQSD(BMDQS)

NAME
mdqsd - MOOS queue scheduling daemon

SYNOPSIS
/etc/mdqsd

DESCRIPTION
The daemon is started upon system boot. It can be stopped and
restarted via the !etc/daemon program. If the daemon is stopped, it will
allow active requests to complete. Requests in the queue when the
MOOS daemon is stopped will be requeued upon restart.

The daemon reads the file !etc!qconf to determine the current
configuration of the queueing system. The daemon will write status files
in the directory /usrlspool!qllocklhome!adm which are read by the status
program, qstat.

EXAMPLES

FILES

To restart mdqsd :

/etc/daemon -k /etc/mdqsd
qstat [wait until active jobs finish - says not running]
/etc/daemon -s /etc/mdqsd

/etc!qconf

!etc/re

letc!rc.mdqs

- Queuing system configuration file

- System boot commands

- MOOS system boot commands

/usr!spoollq - Top of the queuing directories

CAVEATS
Mdqsd should only be killed with the TERM signal. See daemon(8).
Mdqsd should be restarted, using daemon(8).

SEE ALSO
lpr(lmdqs), qstat(lmdqs), qconf(5mdqs), daemon(8), qdev(8mdqs).

REV SEP 1985

680

MKFS(S) COMMAND REFERENCE MKFS(S)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special size [nsect [ntrack [blksize [fragsize [ncpg
[minfree [rps [nbpi J]]] J]] J

DESCRIPTION
N.B.: file systems are normally created with the newfs(8) command.

Mkfs constructs a file system by writing on the special file special. The
numeric size specifies the number of sectors in the file system. Mkfs
builds a file system with a root directory and a lost+ found directory. (see
fsck(8)) The number of inodes is calculated as a function of the file
system size. No boot program is initialized by mkfs (see newjs(8)).

Mkfs must be run as super-user, since it must open special for reading.

OPTIONS
The optional arguments allow fine tune control over the parameters of the
file system.

nsect
Specifies the number of sectors per track on the disk.

ntrack
Specifies the number of tracks per cylinder on the disk.

blksize
Gives the primary block size for files on the file system. It must be a
power of two, currently selected from 4096 or 8192.

fragsize
Gives the fragment size for files on the file system. The fragsize
represents the smallest amount of disk space that will be allocated to
a file. It must be a power of two currently selected from the range
512 to 8192.

ncpg
Specifies the number of disk cylinders per cylinder group. This
number must be in the range 1 to 32.

minfree
Specifies the minimum percentage of free disk space allowed. Once
the file system capacity reaches this threshold, only the super-user is
allowed to allocate disk blocks. The default value is 10%.

rps If a disk does not revolve at 60 revolutions per second, the rps
parameter may be specified.

nbpi
Specifies the number of inode blocks per cylinder group.

RETURN VALUE
[NO_ERRS J Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

REV MAR 1985

681

MKFS(S) COMMAND REFERENCE MKFS(S)

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
There is no way to specify bad blocks.

SEE ALSO
fs(5), dir(5), fsck(8), newfs(8), tunefs(8).

2

682

REVMAR1985

MKLOST +FOUND { 8 } COMMAND REFERENCE MKLOST+FOUND { 8 }

NAME
mklost +found - make a lost+ found directory for fsck

SYNOPSIS
/etc/mklost+found

DESCRIPTION
A directory lost+ found is created in the current directory and a number of
empty files are created therein and then removed so that there will be
empty slots for fsck(8) to use. This command should not normally be
needed since mkfs(B) automatically creates the lost+ found directory
when a new file system is created.

SEE ALSO
fsck(8), mkfs(8).

683

MKNOD(8) COMMAND REFERENCE MKNOD(8)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name [b : c J major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry.
The second is b if the special file is block-type (disks, tape) or c if it is
character-type (other devices). The last two arguments are numbers
specifying the major device type and the minor device (e.g. unit, drive, or
line number).

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE]

[P_ERRJ

SEE ALSO

Incorrect command line syntax. Execution terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

mknod(2), makedev(8).

684

MOUNT{S) COMMAND REFERENCE MOUNT{&)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [-f J [-r J [-v J [special J name

/etc/mount -a

/etc/umount [-v J special

/etc/umount -a
DESCRIPTION

Mount announces to the system that a removable file system is present
on the device special. The file name must exist already; it must be a
directory (unless the root of the mounted file system is not a directory). It
becomes the name of the newly mounted root.

If only name is given without special, name must be an entry in the file
letc!fstab (see fstab(5)).

Umount announces to the system that the removable file system
previously mounted on device special is to be removed.

These commands maintain and update a table of mounted devices in
!etc!mtab. If invoked without an argument, mount prints the table.

Mount and umount must be run by the super-user.

OPTIONS

FILES

-a All of the file systems described in letclfstab are attempted to be
mounted or unmounted. In this case, special and name are taken
from letc!fstab. The special file name from letclfstab is the block
special name.

-f If invoked with this option, mount will not actually mount any file
systems, but letclmtab will be updated as if it had.

-r Indicates to mount that the file system is to be mounted read-only.

-v This option will cause mount or umount to print its actions as it
executes.

Physically write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

!etclmtab

/etc!fstab

DIAGNOSTICS

mount table

file system table

Not owner
The caller is not the super-user.

Permission denied
The file !etclmtab could not be updated.

685

MOUNT(&) COMMAND REFERENCE MOUNT(S)

RETURN VALUE
For both mount and umount:

[NO_ERRS]

[USAGE]

[P_WARNJ

(P_ERRJ

For umount:

Command completed without error.

Incorrect command line syntax. Execution terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

CAVEATS
Mounting file systems full of garbage will crash the system.

Mounting a root directory on a non-directory makes some apparently
good pathnames invalid.

SEE ALSO
mount(2), fstab(5), mtab(5).

2

686

NAMEDBG(SN) COMMAND REFERENCE NAMEDBG(8N)

NAME
namedbg - nameserver debugger

SYNOPSIS
/etc/namedbg [-d] [-f hostname] [-a address]

DESCRIPTION
Namedbg is a program for testing the nameserver(8n). The debugger
allows testing, inspecting or modifying the hostname tables inside the
nameserver. It communicates with the nameserver over a UTek domain
socket. Namedbg has two operational modes, interactive and non
interactive. The latter is initiated by specifying a command line argument
to namedbg . For interactive mode the following commands are
supported:

COMMANDS

help
Give short help list

quit
Leave the debugger.

dump
Print the nameserver's database with use counts. The B flag means
this entry will be broadcast to other hosts which ask about it. The P
flag means this entry is permanent.

addhost addr
Add a new host entry (see CAVEATS).

delete name
Delete the all entries for name.

findname

OPTIONS

Find the entry a hostname.

-d Dump the entire nameserver database.

-f hostname
Call upon the nameserver to find the address of hostname.

-a address
Call upon the nameserver to find the host name corresponding to
address. The address is specified in internet format, each byte
converted to decimal and separated by '.' (e.g. 6.128.0.3).

DIAGNOSTICS
Most command errors generate the simple error message: syntax error.
Type the command help for a list of commands.

RETURN VALUE
[NO_ERRS] Command completed without error.

[1] Some unrecoverable error.

REV MAR 1985

687

NAMEDBG(8N) COMMAND REFERENCE NAMEDBG(8N)

CAVEATS
Changes to the hostname database are not permanent, change /etc/hosts
if the change is permanent.

SEE ALSO
nameserver(8n).

2
688

REV MAR 1985

NAMESERVER(SN) COMMAND REFERENCE NAMESERVER(SN)

NAME
nameserver - host name server daemon

SYNOPSIS
/etc/nameserver [-d J [-llocalsocket] [-rmaxretries J
[-ttimeout J [-pport# J

DESCRIPTION
Nameserver is the distributed server which maintains the host name and
address database used by the gethostbyname(Jn) and gethostbyaddr(Jn)
subroutines. Its operates on both a local Unix domain and a broadcast
socket to the network.

The Nameserver broadcasts and receives on a Internet datagram socket.
When initialized, it broadcasts the address and name of all interfaces on
the host machine. The names are combinations of the hostname
(returned by gethostname(2)) and the device name. For example:

Address
5.128.12.52myname
6.128.12.65
7.0.0.100

NameAliases
mynameO mynameilO
mynamemynamel mynameill
myname myname2 mynameecO

The file !etc/hosts is then read to create a list of hosts which are not
running the nameserver. Duplicates in this file are ignored.

Nameserver is a transaction oriented server; it handles transactions sent
to a Unix domain stream socket ltmplname_socket. Normally, the user
should use the functions gethostbyname(Jn) and gethostbyaddr(Jn), instead
of communicating with the socket directly.

If a request is found in the internal database, the answer is sent right
away. If not, then the request is broadcast to all networks to see if some
other host knows the answer. If no answer is received in 3 seconds (this
value can be changed with -t flag) then an error answer is sent.

The nameserver also answers requests from other hosts, and forwards
requests on to other networks.

TESTING
If the nameserver appears to have problems it may be tested with the
command namedbg(8n).

OPTIONS
-d Debugging, don't fork off a daemon. Use ltmplname_debug for the

local socket, and port 1163 for the remote socket.

-1/oca/file
The Unix domain socket localfile is used instead of /etclname_socket.

-tsecs

-rn

REV SEP 1985

Set timeout for retrying remote requests [default 3 secs].

Make the broadcast request n times after failing before before
returning "host unknown" [default 3 times].

689

NAMESERVER(SN) COMMAND REFERENCE NAMESERVER(SN)

-pport
Use Internet port number port instead of the entry tekname in
/etc/services.

PROTOCOL

The nameserver transmits and receives messages on the broadcast port
in the tekname service specification, see services(5n).

The local messages sent and received, are of the form (described in
/usrlinclude/sys/nameserver.h):

#define MAXALIASES 7 /* max aliases for host * /
#define NS_ VERSION 3 /* version */

#defineNSR_ERROR
#define NSFLANSW'ER
#defineNSR_GETNAME
#defineNSR_GETADDR
#defineNSR_STATUS
#defineNSILDELNAME
#defineNSRJ)ELADDR

struct ns_req {

0 /* type field values * /
1 /* answer to a request * /
2 /* Gethostbyname() */
3 /* Gethostbyaddr() */
4 /* Dump hostname/addresss list */
5 /* delete all entries for name * /
6 /* delete all entries for address * /

u_short nr_vers;/* version of nameserver*/
u_short nr_type;/* type of request */
u_long nr_addr;/* address of host */
char nr_host[MAXHOSTNAMESIZE];
char nr_aliases[MAXALIASES][MAXHOSTNAMESIZE];

};

All fields are converted to network byte order prior to transmission.

The broadcast requesUanswer formats are larger since they include
information on networks visited and a request ID.

#define MAXNETS 256

struct nb_broad {
struct ns_req
u_long nb_reqid;
u_long nb_from;
u_long nb_nets[MAXNETS];

};

nb_req;/* request */
/* unique request id */
/* originally from */
/* nets visited */

When forwarding a request to another network, a host extends the
nb_nets field to include all networks it is forwarding to. This allows a host
to hosts on other networks (via a gateway). A request is never sent to a
network already listed in the nb_nets list. The datagram can be shorter
than the full structure size (answers have only request and id).

REV SEP 1985 2

690

NAMESERVER(SN) COMMAND REFERENCE NAMESERVER(SN)

FILES

If no answer is received in 3 secs (set by -t option) then the request is
resent. If after 3 tries (set by -r option) then a NSR_ERROR is returned.

ltmp!name__socket
!etc/hosts

local communication to nameserver
hosts not running the nameserver.

DIAGNOSTICS
host name not set!!

The hostname was not set, this is usually done by netconfig(8n),
or hostname(l n).

Invalid hostname
Only the following characters are allowed in a hostname: letters
(upper or lower), digits, underline _, or minus sign -.

teknameludp not in !etc/services
The Internet datagram port number used by the nameserver is
not in the system file /etc/services.

Nameserver prints error messages via syslog(Jc) to the system log files,
after it has disassociated at start up.

RETURN VALUE
[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR]

CAVEATS

An error occurred that was not a system error. Execution
terminated.

Forces the mapping from Internet address to hostname to be unique; only
one !etc/hosts entry can be used for a given address (second one is
ignored).

Currently handles only Internet address.

Should be able to talk to Internet nameserver if on Arpanet.

The nameserver may cause Host Unknown messages when in fact the
host is just down.

SEE ALSO
gethostbyaddr(Jn), gethostbyname(Jn), gethostent(3n), namedbg(8n).

REV SEP 1985 3
691

NCHECK(8) COMMAND REFERENCE NCHECK(8)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
/etc/ncheck [-a J [-i i-number . . . J [-s J [fi/esystem J

DESCRIPTION
N.B.: For most normal file system maintenance, the function of ncheck is
subsumed by fsck(8).

Ncheck with no argument generates a pathname vs. i-number list of all
files on a set of default file systems. Names of directory files are followed
by/ ..

OPTIONS
-a allows printing of the names . and .. , which are ordinarily

suppressed.

-ii-number
reduces the report to only those files whose i-numbers follow.

-s reduces the report to special files and files with set-user-ID mode; it
is intended to discover concealed violations of security policy.

A file system filesystem may be specified.

DIAGNOSTICS
When the file system structure is improper, '??'denotes the 'parent' of a
parentless file and a pathname beginning with ' ... ' denotes a loop.

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

SEE ALSO
sort(l), fsck(8), icheck(8).

1

692

NETCONFIG(SN) COMMAND REFERENCE NETCONFIG(SN)

NAME
netconfig - configure workstation for network operation

SYNOPSIS
/etc/netconfig [-q] [-h hostname] [-i interfacename -a address]
[-e net : dfs] [-d net : djs] [-P]

DESCRIPTION
Netconfig is used to configure a workstation for operation on a local area
network. Netconfig allows the user to change the following network
attributes on the workstation:

Hostname
Host ID
Distributed File System (enabled or disabled)
Standard Network Utilities (enabled or disabled)
Internet address for each network interface.

After changing any of these attributes the workstation must be rebooted.
This is so the nameserver(Bn) daemon is restarted with the proper new
hostname and addresses, otherwise the network utilities will not work
correctly. Netconfig writes these changes into the network.conf(5n) file.
When rebooted rc(8) is executed which looks at the network.conf(5n) file
to set up the host ID and hostname, and to decide which daemons to
start up.

Typically netconfig is invoked with no options. The program will then
prompt the user with questions to set the attributes mentioned above.
When it asks for a hostname, the user should enter no more than 32
characters taken from the following set:

a-z, A-Z, 0-9, -, _

The first character must not be a number. Remember that the name
assigned to your workstation should be unique throughout the network.

Netconfig then asks if the Distributed File System (DFS) should be
enabled. The users response will be recorded in network.conf(5) as the
string "dfs_enabled" or "dfs_disabled". Enabling DFS means that the
DFS daemon (dfsd(Bn)) will be started on subsequent rebootings.

The first time netconfig is run on the workstation, the Internet address
will not be set (actually it is set to the invalid address 0.0.0.0). The user
will then be prompted to supply the network number of the local area
network to which the workstation is attached. There are three classes of
networks, A, B, and C. Since an Internet address has a network
component and a host component the difference between the classes is
where in the 4 byte Internet address is drawn the boundary between the
two components. Class C addresses allow 256 hosts on the network,
Class B addresses allow 65536 hosts on a network and Class A allow a
few million.

REV SEP 1985

693

NETCONFIG(SN) COMMAND REFERENCE NETCONFIG{SN)

When netconfig prompts for a network number the user selects which
class to use by entering the data as follows:

User enters: Class assumed: Where x,y, and z =
x A 0 (x (128
x.y B 127 (x (192,

0 (= y (256
x.y.z c 191 (x (224,

0 (= y (256,
0 (= z (256

In the above, x, y, and z are decimal integers.

Once the network number has been entered (and assuming that an
Internet address has not already been assigned to this workstation)
netconfig will suggest an Internet address. This suggested address is
based on the network number already supplied plus a host number
derived from the Ethernet address. Since the Ethernet address is
guaranteed to be unique, and the host number of the Internet address
must be unique on the local network, by basing the Internet address on
the Ethernet address we increase the likelihood that the suggested
address is unique. If you have selected class A or B addressing, and
have only 6130 workstations on your network, then the user can feel
confident that the suggested address is unique. If other vendors
equipment also appears on the network then before using the suggested
Internet address, verify that no other equipment uses that address.

If the suggested address is not appropriate, enter the host number
component of the Internet address as follows:

Class
A
B
c

User enters:
x.y.z
x.y
x

Where x,y, and z =
O (= x,y,z (256
0 (= x,y (256
0 (= x (256

In the above, x, y, and z are decimal integers.

Next netconfig asks whether to enable the regular network daemons.
These daemons include those that handle remote logins (rlogind(8n)) and
remote command execution (rshd(Bn)). See the file !etc/re.net for what
daemons will be started. Also see tcp_servers(5n), udpd(8n), and tcpd(8n).

If the DFS or regular network utilities are enabled and any of the
interfaces have not yet been set, netconfig will prompt for the Internet
address for each network interface.

OPTIONS
Typically the user would invoke netconfig without any switches or with
the -P switch. The full list of capabilities follows.

REV SEP 1985 2

694

NETCONFIG(SN) COMMAND REFERENCE NETCONFIG(SN}

-a address
Set the internet address from the command line. This option must be
used in conjunction with the -i option. No prompting provided
unless the "address" portion is omitted. Then netconfig will prompt
for the address of each interface on the workstation.

-d dfs
Netconfig writes the "dfs_disabled" string into the network.conf(5n)
file. No prompting occurs.

-d net
Netconfig writes the "net_disabled" string into the network.conf(5n)
file. No prompting occurs.

-e dfs
This option causes the "dfs_enabled" string to be written into the
network.conf(5n) file.

-e net
This option causes the "net_enabled,, string to be written into the
network.conf(5n) file. Prompting may occur if the internet address is
not set for the interface(s).

-h hostname
Set the hostname; no prompting is provided.

-i interfacename
Indicates the interface name to act upon using the -a option.

-q This option is for when netconfig is invoked from rc(8) at boot time. It
causes netconfig to prompt only for attributes for which we have no
known previous value.

-P
Print out the internet and ethernet address for each interface on the
workstation.

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE J Incorrect command line syntax. Execution terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) tor more information on system errors.

[NP _WARN J An error warranting a warning message occurred.
Execution continues.

[OJ Indicates to rc.net(5n) to not enable networking or the
Distributed File System.

[1 J Indicates to rc.net(5n) to enable networking but not the
Distributed File System.

[2] Indicates to rc.net(5n) to enable the Distributed File
System, but not networking.

REV SEP 1985 3

695

NETCONFIG(8N)

(3)

CAVEATS

COMMAND REFERENCE NETCONFIG(8N)

Indicates to rc.net(5n) to enable both the Distributed File
System and networking.

DO NOT CHANGE THE INTERNET ADDRESS TOO OFTEN!!
Netconfig stores the internet address in a non-volatile random access
memory in 6000 series products. This memory will fail after about 500-
1000 writes. The memory will not be written unless a y is the response to
the confirmation question to change the internet address.

Input validation for command line invocation is minimal.

SEE ALSO
hostid(ln), hostname(ln), gethostname(2), inet(3n), hosts(5n),
network. conf(5n).

REV SEP 1985 4

696

NETTEST (SN) COMMAND REFERENCE NETTEST (SN)

NAME
nettest - network diagnostic test utility

SYNOPSIS
/etc/nettest [-p pro to] [-r node [paddr J J [-t inter/ ace J [count J

DESCRIPTION
The nettest command provides the user with the capability to conduct a
loopback test of the local host's network functions and to perform a time
domain reflectometry (TOR) check of a network medium.

The loopback test allows the user to verify the operation of the networking
software and hardware. Also, the user can test the data link between the
local host and a selected remote host. Normally, this test sends its test
data to an "echo server" via the datagram (UDP) protocol and waits for a
reply. The data, if returned, are compared to the original data to
determine if any transmission errors occurred.

Alternatively, the user may elect to use the stream (TCP) or control
message (ICMP) protocols for data transmission. The ICMP protocol
handles the echoing of data directly, so no echo server is required in this
case.

Faults in a physical medium may be located through use of the LAN chip
set's inherent TOR capability. Time domain reflectometry is a technique
for locating discontinuities in a transmission line by injecting a signal into
the cable and measuring the time interval between the incident signal and
any reflection of that signal caused by an open or short in the
transmission cable. In the LAN environment, signal reflections result in
collisions, and since the point of the open or short is fixed, the time to
collision is constant. Thus, it is possible to gauge the approximate
distance to the cable fault by asserting the carrier signal and measuring
the time until a collision occurs. In the case of the LAN chip set in use,
the approximation is accurate to within 11. 7 meters (= 38.4 feet),
depending upon the LAN configuration in use.

If an iteration count is specified, nettest displays a"+" for each
successful packet loopback, a"?" for each missing packet, and a"-"
for each incorrect packet (e.g., CRC error, alignment error, or bad
comparison). If the iteration count is specified for a TOR test, nettest
reports the total number and type of each fault which may have occurred.

OPTIONS
-pproto

Use protocol proto when performing the loopback test. Proto may be
TCP, UDP (default), or ICMP.

-r node
Perform loopback test via the specified remote node. Node may be
an explicit host name as specified in the /etc/hosts database, or it
may be an Internet address written in "."notation.

NETTEST (8N) COMMAND REFERENCE NETTEST (8N)

-r node paddr
Perform loopback test via the specified remote node at physical
address paddr. The physical address is written as six hex bytes
separated by colons (e.g., 08:00:11 :00:8c:22). Typically, this form is
used to direct the loopback to a newly-installed or otherwise
unknown node, in which case node is specified as an Internet
address in order to update the information in the ARP tables.

-t interj ace
Perform a TOR test of the network physical medium via the network
interface named interface. (Interface names and network numbers
may be found by using the netstat utility.)

count
Perform the specified test count times.

EXAMPLES

FILES

nettest -t lnaO
Perform a TOR test of the network physical medium attached to
network interface "lnaO".

nettest -p icmp -r 8.10.21.234 00:01 :02:03:04:05
Perform a loopback test via the remote host at physical address
"O 1 2 3 4 5" using the Internet Control Message Protocol (ICMP).

/etc/hosts Data base for host names and addresses.

DIAGNOSTICS
Nettest displays error messages describing any system or data errors
which might occur.

RETURN VALUE
[0]

[1]

[USAGE]

[NP_ERRJ

[P_ERRJ

CAVEATS

The test passed.

The test failed.

Incorrect command line syntax. Execution terminated.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Use of the UDP or TCP protocols during the loopback test requires that
an echo server (see udpd(8n) and tcpd(8n)) be running on the target node
in order for the test to pass.

During the TOR test, hardware anomalies may cause some hosts to
falsely identify faults in the network medium when none actually exist.
Therefore, confirm any indicated faults either by performing the nettest
TOR on at least one other host on the network or by testing the network
medium with a TOR cable tester.

2

698

NETTEST (SN) COMMAND REFERENCE NETTEST (SN)

Since raw sockets are privileged, only the super-user may use the ICMP
loopback test.

Since entry of address information into the ARP tables is a restricted
operation, only the super-user may specify the Internet and physical
address of an unknown node.

SEE ALSO
netstat(ln), sh(lsh), inet(3n), syslog(3c), arp(4n), hosts(5n), arp(8n),
tcpd(8n), udpd(8n).

3

699

NEWFS(8) COMMAND REFERENCE NEWFS(8)

NAME
newts - construct a new file system

SYNOPSIS
/etc/newfs [-v] [-F] [mids-options] special

DESCRIPTION
Newfs is a "friendly" front-end to the mkfs(8) program. Newfs will use
the argument special to obtain information about the disk for calculating
the appropriate parameters to use in calling mkfs, then build the file
system by forking mkfs.

Special is the special file (device) on which the file system is to be
mounted.

Newfs must be run as super-user, since it must write to the file system.

OPTIONS
-v Newfs will print out its actions, including the parameters passed to

mids.

-F Newfs will only print warnings, rather than exit, if it fails to identify
the system, or if it discovers the special file is a swap device.

Mids-options which may be used to override default parameters passed
to mids are:

-b block-size
The block size of the file system in bytes.

-c #cylinders/group
The number of cylinders per cylinder group in a file system. The
default value used is 16.

-f frag-size
The fragment size of the file system in bytes.

-i byteslinode
This specifies the density of inodes in the file system. The default is
to create an inode for each 2048 bytes of data space. If fewer inodes
are desired, a larger number should be used; to create more inodes a
smaller number should be given.

-m freespace%
The percentage of space reserved from normal users; the minimum
free space threshhold. The default value used is 10%.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-S sector-size
The size of a sector in bytes (almost never anything but 512).

-s size
The size of the file system in sectors.

-t #tracks/cylinder
The number of tracks per cylinder.

REV SEP 1985

700

NEWFS(B) COMMAND REFERENCE NEWFS(B)

FILES
letclmkfs to actually build the file system

lusrlmdec for boot-strapping programs

RETURN VALUE
[NO_ERRS] Command completed without error.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

SEE ALSO
fs(5), format(8), fsck(8), mkfs(8), tunefs(8).

REV SEP 1985 2
701

PLPSERVER(SMDQS) COMMAND REFERENCE PLPSERVER(SMDQS)

NAME
lpserver, plpserver, rawlpserver - line printer servers for MDQS

SYNOPSIS
lpserver [-b baud] [-c] [-f flagging] [-h size] [-p
parity J [-s] [-C columns J [-H headers J [- T trailers]

DESCRIPTION
Lpserver, plpserver and rawlpserver are all lineprinter severs for MDQS.

Lpserver is the general lineprinter server. This server optimizes for
overstriking and converts all control characters to their - (letter) patterns.
Since this server chatches all control characters it cannot be used to
control printers with escape sequences.

Plpserver is designed to be used with Printronix P150/P300/P600 printers.
This server knows about these printers special modes such as Plotmode.

Rawlpserver is used when one wants the data to go out the port
completely unaltered. This server is especially good for outputting
graphical data and escape sequences to control printer modes.

OPTIONS
-b baud

Sets the baud rate for the tty port. The default baud rate is 9600.

-c Sets the tty port in CRMOD which causes all LF characters to be
output as CR-LF. This option implies a parity of ODD unless the
parity is explicitly set. If the parity is explicitly set to NONE, ODD
parity is still produced with the -c option.

-f flagging
Sets the flagging method used by the tty driver. The two values for
flagging are HW and SW representing hardware and software
respectively. Software flagging is the default.

-h size
Sets the amount of information presented on the banner page of the
printout. The values are LARGE, SMALL and NONE. The default is
LARGE.

-p parity
Sets the parity to be used by the tty driver. The values are EVEN,
ODD, SPACE and NONE. The value of NONE allows 8-bit data
transmission. NONE in conjunction with rawlpserver is useful in
outputting graphical data or special control commands to printers.
The default setting for parity is NONE.

-s Supress form-feed characters that appear at the end of each file and
banner page.

-C columns
Sets the maximum number of columns to be printed on for the
banner page. This is particularly useful when the paper in the printer
is only 80 columns wide and you do not want filenames on the

702

PLPSERVER(SMDQS) COMMAND REFERENCE PLPSERVER(SMDQS)

banner page to print past the end of the paper. The default is 132.

-H headers
Sets the number of banner pages to print at the start of each file.
The default is 1 .

-T trailers

EXAMPLES

Sets the number of trailing banner pages to print at the end of each
request. The default is 0.

The following example is for a Printronix printer running at 2400 baud and
one trailing banner page.

/usr/lib/mdqs/plpserver -b 2400 -T 1

The following example is for a Centronix printer using hardware flagging.

/usr/lib/mdqs/lpserver -f HV

The following example is for a color hardcopy unit with a small banner
page.

/usr/lib/mdqs/rawlpserver -h SMALL

DIAGNOSTICS
Diagnostics are passed back to the MDQS daemon and reported

in the MDQS console log specified in the qconf file.

CAVEATS
These commands are NEVER called directly by the user. These
commands are specified in the file /etc/qconf and are called by the
MDQS daemon.

SEE ALSO
lpr(I mdqs), qconf(5mdqs), mdqsd(8mdqs), sysadmin(8), tty(4).

2
703

PSTAT(S) COMMAND REFERENCE PSTAT(S)

NAME
pstat - print system facts

SYNOPSIS
/etc/pstat -fisTtx -p [a] [-u ubase] [system]
[corefile]

DESCRIPTION
Pstat interprets the contents of certain system tables. If corefile is given,
the tables are sought there, otherwise in ldevlkmem. Kernel symbols are
taken from the cvt table (see cvt(4)) unless system is specified. If system is
given, kernel symbols are obtained from the namelist in system.

OPTIONS
-f Print the open file table with these headings:

LOC The core location of this table entry.
TYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encoded thus:

A open for reading
W open for writing
A open for appending

CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS/SOCK

The file offset (see lseek(2)), or the core address of the
associated socket structure.

-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time (fs(5)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
S shared lock applied
E exclusive lock applied
Z someone waiting for an exclusive lock

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which this

inode resides.
ADC Reference count of shared locks on the inode.
WAC Reference count of exclusive locks on the inode (this may be

> 1 if, for example, a file descriptor is inherited across a
fork).

INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.

REV MAR 1985

704

PSTAT(S) COMMAND REFERENCE PSTAT(8)

UID User ID of owner.
SIZ/DEV

-p[a]

Number of bytes in an ordinary file, or major and minor
device of special file.

Print process table for active processes with the following headings.
If a is specified all processes, rather than just active ones, are
described.

LOC The core location of this table entry.
S Run state encoded thus:

0 no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace

F Miscellaneous state variables, or-ed together (hexadecimal):
000001 loaded
000002 the scheduler process
000004 locked for swap out
000008 swapped out
00001 O traced
000020 used in tracing
000080 in page-wait
000100 prevented from swapping during fork(2)
000200 gathering pages for raw i/o
000400 exiting
001000 process resulted from a vfork(2) which is not yet

complete
002000 another flag for vf ork(2)
004000 process has no virtual memory, as it is a parent in

the context of vfork(2)
008000 process is demand paging data pages from its text

inode.
010000 process has advised of anomalous behavior with

vadvise.
020000 process has advised of sequential behavior with

vadvise.
040000 process is in a sleep which will timeout.
080000 a parent of this process has exited and this

process is now considered detached.
100000 process used 4.1 BSD compatibility mode signal

primitives, no system calls will restart.
200000 process is owed a profiling tick.

POIP number of pages currently being pushed out from this
process.

PRI Scheduling priority, see setpriority(2).

2 REV MAR 1985

705

PSTAT(8)

SIGNAL

UID
SLP
TIM
CPU
NI
PGRP

COMMAND REFERENCE PSTAT(S)

Signals received (signals 1-32 coded in bits 0-31),
Real user ID.
Amount of time process has been blocked.
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see setpriority(2).
Process number of root of process group (the opener of the
controlling terminal).

PIO The process ID number.
PPID The process ID of parent process.
ADDA If in core, the page frame number of the first page of the 'u-

area' of the process. If swapped out, the position in the
swap area measured in multiples of 512 bytes.

ASS Resident set size - the number of physical page frames
allocated to this process.

SASS ASS at last swap (0 if never swapped).
SIZE Virtual size of process image (data+ stack) in multiples of

512 bytes.
WC HAN

Wait channel number of a waiting process.
Link pointer in list of runnable processes. LINK

TEXTP
CLKT

If text is pure, pointer to location of text table entry.
Countdown for real interval timer, setitimer(2) measured in
clock ticks (1 O milliseconds).

-s Print information about swap space usage: the number of (1 k byte)
pages used and free is given as well as the number of used pages
which belong to text images.

- T Print the number of used and free slots in the several system tables.
This option is useful for checking to see how full system tables have
become if the system is under heavy load.

-t Print table for terminals with these headings:

RAW Number of characters in raw input queue.
CAN Number of characters in canonicalized input queue.
OUT Number of characters in output queue.
MODE See tty(4).
ADDA Physical device address.
DEL Number of delimiters (newlines) in canonicalized input

queue.
COL Calculated column position of terminal.
STAT Miscellaneous state variables encoded thus:

W waiting for open to complete
0 open
S has special (output) start routine
C carrier is on
8 busy doing output
A process is awaiting output
X open for exclusive use

3 REV MAR 1985

706

PSTAT(S) COMMAND REFERENCE PSTAT(8)

FILES

H hangup on close
PGRP Process group for which this is controlling terminal.
DISC Line discipline; blank is old tty OTTYDISC or "ntty" for

NTTYDISC or "net" for NETLDISC (see bk(4)).

-uubase
Print information about a user process; ubase is its address as given
by ps(l). The process must be in main memory, or the file used can
be a core image and the address 0.

-x Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)
P resulted from demand-page-from-inode exec

format (see execve(2))
DADDR Disk address in swap, measured in multiples of 512 bytes.
CADDR Head of a linked list of loaded processes using this text

SIZE
IPTR
CNT
CCNT

segment.
Size of text segment, measured in multiples of 512 bytes.
Core location of corresponding inode.
Number of processes using this text segment.
Number of processes in core using this text segment.

I dev lcvt default source for kernel symbols

ldevlkmem default source of tables
RETURN VALUE

[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

CAVEATS
It would be very useful if the system recorded "maximum occupancy" on
the tables reported by - T; even more useful if these tables were
dynamically allocated.

SEE ALSO
ps(l), stat(2), cvt(4), fs(5).

4 REV MAR 1985

707

PWCK(8) COMMAND REFERENCE PWCK(8)

NAME
vipw, pwck - edit and/or check the password file

SYNOPSIS
vipw [-c [filename . . . J J
pwck [-c J [filename . . . J

DESCRIPTION
With no arguments, vipw locks the file /etclpasswd, copies its contents to
a temporary file, and invokes the editor (default = vi) on the temporary
file. After the editor is exited, the modified data is checked as described
below. If no problems are found, the temporary file replaces the old
password file, which is unlocked. If only problems in the Warning
category are found, the user may re-edit the file, quit without updating, or
update the password file, ignoring the warnings. If any problems in the
ERROR category are found, the user may re-edit the file or quit without
updating.

If called as pwck or with the -c option, vipw will check the named files
as described below. If no names are given, letclpasswd is checked.

File Checking
The following problems are considered Warnings. When they occur, a
message is printed giving the line number and a description of the
problem.

1 User name longer than 8 characters

2 User name begins with non-alphabetic character

3 User name contains characters other than a-z, A-Z, 0-9, -, and_

4 The home directory does not exist or is not a directory

These problems are considered ERRORs. When they occur, a message
is printed giving the line number and a description of the problem.

1 Not enough fields.

2 Too many fields.

3 Entry longer than 1024 characters.

4 Non-numeric or empty user id field.

5 Non-numeric or empty group id field.

6 The shell program does not exist or is not executable.

OPTIONS
-c

REV MAR 1985

Check the named files (default is letclpasswd).
Do not edit the password file.

708

PWCK(S)

FILES
/etclpasswd

letclptmp

RETURN VALUE
[NO_ERRSJ

[USAGE]

[1]

[NP_WARNJ

[NP_ERRJ

[P_WARNJ

[P_ERRJ

VARIABLES
EDIT

CAVEATS

COMMAND REFERENCE PWCK(B)

The password file to edit or the default file to
check.

The temporary edit file.

Command completed without error.

Incorrect command line syntax. Execution terminated.

The file(s) contained errors.

An error warranting a warning message occurred.
Execution continues.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

The editor to be used instead of vi.

Vipw can only be used by root to edit the password file (any user can
use pwck and vipw with the -c option). Its use should be restricted to
major modifications and corrections. Make normal changes with chfn(l),
chsh(l), passwd(l), and other utilities.

The earlier versions of this utility were shell scripts. It is imperative that
the earlier versions not be used in this system. Locking is now handled
by the kernel, whereas the shell scripts used a lock file.

SEE ALSO
chfn(l), chsh(l), passwd(l), passwd(5),

REV MAR 1985 2

709

QDEV(SMDQS) COMMAND REFERENCE QDEV(SMDQS)

NAME
qdev - display and modify MDQS local device status

SYNOPSIS
/etc/qdev [-d] [-e] [-f] [-If orm] [-r] [-s] [device ...]

DESCRIPTION
The qdev command is used to display or change the status of local
MDQS devices. Only one option can be specified at a time. If invoked
without an option, qdev will display the status of all local mdqs devices.

Any user may restart or flush a device if his job is active. Any user may
display device status. Only the superuser, the mdqs user, or a member
of the systems group may enable or disable a device, or load forms into a
device, or flush or restart a device with an active request which is not his
own.

OPTIONS
-d

-e
-f

-I form

disables the specified devices. Any requests being processed by
those devices are signaled to restart, causing them to be
requeued for later processing. If a device has been marked as
11 Failed 11 , disabling the device will clear the 11 Failed 11 flag. Thus,
a 11 Failed 11 device can be restarted by first disabling and then
re-enabling it.

enables the specified devices for processing requests

flushes the current request from the specified devices. The
request is removed from the queueing system and a message is
sent to the user who made the request indicating that the
request was forcibly flushed from the device.

changes the queueing systems idea of the current form on a
given device. The form argument must reference a valid form in
the formsfile if the formsfile exists. The same form will apply to
all listed devices. Forms may be used to direct requests from a
single queue to appropriate devices so that, for instance, all print
requests can be submitted to one queue, but requests within that
queue are directed to either a wide or a narrow printer.

-r restarts the current request in each of the specified devices. The
request is requeued.

-s causes the status of each of the specified devices to be printed.

REVSEP1985

If no devices are specified, the status of all local devices will be
given. The status information will always contain the name of
the device and the currently loaded forms. If the device is
disabled or flagged as having failed too many times, an
appropriate message will be displayed. If there is a request
being processed by that device, the request name and process
ID of the filecontrol process will also be displayed.

710

QDEV(BMDQS) COMMAND REFERENCE QDEV(BMDQS)

EXAMPLES
/etc/qdev

FILES

displays the status of all devices

/etc/qdev -1 fanfold vpO vpl
loads the devices vpO and vp1 with the forms 11 fanfold 11

/etc/qdev -d batchl
disables device batch1 and restarts the request that may have
been running on that device.

/etc/qdev -f net
flushes the current request being sent over the "net" device. A
letter will be generated informing the requestor that the request
was flushed.

letc/mdqsd

/etclqconf

/usrlliblmdqslforms

MDQS daemon

configuration information for MDQS

list of available forms

/usrlspoollq top of spooling directory tree

RETURN VALUE

CAVEATS

[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Things can change while qdev is running; the picture it gives is only a
close approximation of reality. For instance, qdev may produce false
error messages if it cannot find a particular file or if a data structure it is
looking at changes underneath it.

SEE ALSO
qstat(lmdqs), qmod(lmdqs), forms(5mdqs), mdqsd(8mdqs).

REV SEP 1985 2

711

QUOT(8) COMMAND REFERENCE QUOT(8)

NAME
quot - summarize file system ownership

SYNOPSIS
/etc/quot [-c] [-f] [-n] [-v] filesystem

DESCRIPTION
Quot prints the number of blocks in the named filesystem currently owned
by each user. The following options are available:

-c Print three columns giving file size in blocks, number of files of that
size, and cumulative total of blocks in that size or smaller file.

-f Print count of number of files as well as space owned by each user.

-n Cause the pipeline ncheck filesystem l sort +On : quot -n
filesystem to produce a list of all files and their owners.

-v Prints the following five columns of output; the total number of
blocks, the users name, and three columns consisting of the number
of blocks not accessed in the last 30, 60, and 90 days respectively.

EXAMPLES

FILES

The following example will print respectively the file size in blocks, the
number of files of that size, and the cumulative total of blocks in that size
or smaller file for the filesystem ldevlhp4a.

/etc/quot -c /devjhp4a

Default file system varies with system.

!etc!passwd to get user names

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
Holes in files are counted as if they actually occupied space.

SEE ALSO
df(l), du(l), ls(l).

712

RAWLPSERVER (8MDQS) COMMAND REFERENCE RAWLPSERVER (8MDQS)

NAME
lpserver, plpserver, rawlpserver - line printer servers for MDQS

SYNOPSIS
lpserver [-b baud] [-c] [-f flagging] [-h size]
[-p parity] [-s] [-C columns] [-H headers] [- T trailers]

DESCRIPTION
Lpserver, plpserver and rawlpserver are all lineprinter severs for MDQS.

Lpserver is the general lineprinter server. This server optimizes for
overstriking and converts all control characters to their - (letter) patterns.
Since this server chatches all control characters it cannot be used to
control printers with escape sequences.

Plpserver is designed to be used with Printronix P150/P300/P600 printers.
This server knows about these printers special modes such as Plotmode.

Rawlpserver is used when one wants the data to go out the port
completely unaltered. This server is especially good for outputting
graphical data and escape sequences to control printer modes.

OPTIONS
-b baud

Sets the baud rate for the tty port. The default baud rate is 9600.

-c Sets the tty port in CRMOD which c:auses all LF characters to be
output as CR-LF. This option implies a parity of ODD unless the
parity is explicitly set. If the parity is explicitly set to NONE, ODD
parity is still produced with the -c option.

-f flagging
Sets the flagging method used by the tty driver. The two values for
flagging are HW and SW representing hardware and software
respectively. Software flagging is the default.

-h size
Sets the amount of information presented on the banner page of the
printout. The values are LARGE, SMALL and NONE. The default is
LARGE.

-p parity
Sets the parity to be used by the tty driver. The values are EVEN,
ODD, SPACE and NONE. The value of NONE allows 8-bit data
transmission. NONE in conjunction with rawlpserver is useful in
outputting graphical data or special control commands to printers.
The default setting for parity is NONE.

-s Supress form-feed characters that appear at the end of each file and
banner page.

-C columns
Sets the maximum number of columns to be printed on for the
banner page. This is particularly useful when the paper in the printer
is only 80 columns wide and you do not want filenames on the
banner page to print past the end of the paper. The default is 132.

713

RAWLPSERVER (8MDQS) COMMAND REFERENCE RAWLPSERVER (8MDQS)

-H headers
Sets the number of banner pages to print at the start of each file.
The default is 1.

-T trailers

EXAMPLES

Sets the number of trailing banner pages to print at the end of each
request. The default is 0.

The following example is for a Printronix printer running at 2400 baud and
one trailing banner page.

/usr/lib/mdqs/plpserver -b 2400 -T 1

The following example is for a Centronix printer using hardware flagging.

/usr/lib/mdqs/lpserver -f HV

The following example is for a color hardcopy unit with a small banner
page.

/usr/lib/mdqs/rawlpserver -h SMALL

DIAGNOSTICS
Diagnostics are passed back to the MDQS daemon and reported

in the MDQS console log specified in the qconf file.

CAVEATS
These commands are NEVER called directly by the user. These
commands are specified in the file /etc/qconf and are called by the
MDQS daemon.

SEE ALSO
lpr(lmdqs), qconf(5mdqs), mdqsd(8mdqs), sysadmin(8), tty(4).

2

714

RC(S) COMMAND REFERENCE RC(8)

NAME
re - command script for auto-reboot and daemons

SYNOPSIS
/etc/re
/etc/re. local

DESCRIPTION

FILES

Re is the command script which controls the automatic reboot and
re.local is the script holding commands which are pertinent only to a
specific site.

When an automatic reboot is in progress, re is invoked with the argument
autoboot. If the file lfastboot exists, it indicates that the disk check (see
fsck(8)) run at the last system shutdown (see shutdown(B)) was successful
and fsck need not be run again. If !fastboot does not exist, re runs fsck
with option -p to "preen" all the disks of minor inconsistencies resulting
from the last system shutdown and to check for serious inconsistencies
caused by hardware or software failure. If this disk check and repair
succeeds, then the second part of re is run.

This second part of re, which is run after an auto-reboot succeeds and
also if re is invoked when a single user shell terminates (see init(8)),
starts the standard daemons on the system and performs other
housekeeping tasks such as preserving editor files, clearing the scratch
directory !tmp, and saving a core image of the kernel if one was made
(see savecore(8)). Re.local and any other re files that may exist, such as
re.net for starting network daemons and rc.mdqs for starting spooling
daemons, are then executed.

/fastboot indicates whether fsck should be run

SEE ALSO
init(8), reboot(8), savecore(8), shutdown(8).

715

RC.NET(SN) COMMAND REFERENCE RC.NET(SN)

NAME
re.net - command script for network auto-reboot and daemons

SYNOPSIS
/etc/re.net

DESCRIPTION

FILES

Re.net is the command script which controls the automatic reboot for
networking.

When an automatic reboot is in progress, re.net is invoked by letclrc(8).
Re.net runs netconfig(8n) and uses the return code to determine the
network configuration. Re.net then starts the appropriate network daemon
processes before terminating and returning control back to /etclrc(8).

There are four possible network configurations:

1. Enable no networking whatsoever. Start no network
daemons.

2. Enable Distributed File System (DFS) only. Start only the
daemons that are required by the DFS, such as syslog(8),
nameserver(8n), and dfsd(8n).

3. Enable Networking but no DFS. Start syslog(8),
nameserver(8n), and udpd(8n). Tcpd(8n) and udpd(8n), will
serve as the daemons for rlogin(ln) rsh(ln), uptime(ln),
ftp(ln), telnet(ln), and any other services that rely on the
tcp(4n), ip(4n), and udp(4n), network protocols.

4. Enable Networking and DFS. Start all of the DFS and
network daemons.

network.conf(5n) This file is used by netconfig(8n) to remember
from one boot to the next what the network
configuration is.

SEE ALSO
netconfig(8n).

716

RDUMP(SN) COMMAND REFERENCE

NAME
rdump - file system dump across the network

SYNOPSIS
/etc/rdump [key [argument . . .] filesystem]

DESCRIPTION

RDUMP(SN)

Rdump copies to magnetic tape all files changed in the filesystem after a
certain date. The command is identical in operation to dump(8) except
that the f key should be specified and the file supplied should be of the
form machine: device.

Rdump uses rexec to creates a remote server, /etclrmt, on the client
machine to access the tape device.

FILES
-1.netrc

DIAGNOSTICS
Same as dump(8) with some additional network related messages.

RETURN VALUE
[OJ Rdump was successful.

[1] Rdump was unsuccessful.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

SEE ALSO
dump(8), rmt(8n).

REVMAR1985

717

REBOOT(8) COMMAND REFERENCE REBOOT(8)

NAME
reboot - UTek bootstrapping procedures

SYNOPSIS
/etc/reboot [-n] [-q]

DESCRIPTION
UTek is started by placing it in memory transferring to it. Since the
system is not reenterable, it is necessary to read it in from disk or tape
each time it is to be bootstrapped.

Rebooting a running system. When UTek is running and a reboot is
desired, shutdown(8) is normally used. If there are no users then
/etc/reboot can be used. Reboot causes the disks to be synched, and a
multi-user reboot (as described below) is initiated. This causes a system
to be booted and an automatic disk check to be performed. If all this
succeeds without incident, the system is then brought up multi-user.

Power fail and crash recovery. Normally, the system will reboot itself at
power-up or after crashes. An automatic consistency check of the file
systems will be performed and unless this fails the system will resume
multi-user operation.

OPTIONS
-n Avoids the sync.

-q Reboots quickly and ungracefully, without shutting down running
processes first.

FILES
/vmunix system code

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

SEE ALSO
fsck(8), halt(8), init(8), newfs(8), rc(8), shutdown(8).

REV SEP 1985

718

RESTORE(&) COMMAND REFERENCE RESTORE(&)

NAME
restore - incremental file system restore

SYNOPSIS
/etc/restore key [argument ...] [filename ...]

DESCRIPTION
Restore reads tapes dumped with the dump(8) command. Its actions are
controlled by the key argument. The key is a string of characters
containing at most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or directory names
specifying the files that are to be restored. Unless the h key is specified
(see below), the appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.

OPTIONS
The function portion of the key is specified by one of the following letters:

r The tape is read and loaded into the current directory. This should
not be done lightly; the r key should only be used to restore a
complete dump tape onto a clear file system or to restore an
incremental dump tape after a full level zero restore. Thus

/etc/newfs /dev/rrpOg eagle
/etc/mount /dev/rpOg /mnt
cd /mnt
/etc/restore rf /dev/rmtl

is a typical sequence to restore a complete dump. Another restore
can be done to get an incremental dump in on top of this. Note that
restore leaves a file restoresymtable in the root directory to pass
information between incremental restore passes. This file should be
removed when the last incremental tape has been restored.
A dump(8) followed by a newfs(8) and a restore is used to change
the size of a file system.

R Restore requests a particular volume of a multi volume set on which
to restart a full restore (see the r key above). This allows restore to
be interrupted and then restarted.

x The named files are extracted from the tape. If the named file
matches a directory whose contents had been written onto the tape,
and the h key is not specified, the directory is recursively extracted.
The owner, modification time, and mode are restored (if possible). If
no file argument is given, then the root directory is extracted, which
results in the entire content of the tape being extracted, unless the h
key has been specified.

t The names of the specified files are listed if they occur on the tape.

REV SEP 1985

If no file argument is given, then the root directory is listed, which
results in the entire content of the tape being listed, unless the h
key has been specified. Note that the t key replaces the function of
the old dumpdir program.

719

RESTORE(&) COMMAND REFERENCE RESTORE(&)

REV SEP 1985

This mode allows interactive restoration of files from a dump tape.
After reading in the directory information from the tape, restore
provides a shell like interface that allows the user to move around
the directory tree selecting files to be extracted. The available
commands are given below; for those commands that require an
argument, the default is the current directory.

Is [arg] - List the current or specified directory. Entries that are
directories are appended with a I. Entries that have been
marked for extraction are prepended with a *. If the verbose
key is set the inode number of each entry is also listed.

cd [arg] - Change the current working directory to the specified
argument.

pwd - Print the full pathname of the current working directory.

add [arg] - The current directory or specified argument is added
to the list of files to be extracted. If a directory is specified,
then it and all its descendants are added to the extraction list
(unless the h key is specified on the command line). Files that
are on the extraction list are prepended with a * when they are
listed by Is.

delete [arg]- The current directory or specified argument is
deleted from the list of files to be extracted. If a directory is
specified, then it and all its descendants are deleted from the
extraction list (unless the h key is specified on the command
line). The most expedient way to extract most of the files from
a directory is to add the directory to the extraction list and then
delete those files that are not needed.

extract - All the files that are on the extraction list are extracted
from the dump tape. Restore will ask which volume the user
wishes to mount. The fastest way to extract a few files is to
start with the last volume, and work towards the first volume.

verbose - The sense of the v key is toggled. When set, the
verbose key causes the Is command to list the inode numbers
of all entries. It also causes restore to print out information
about each file as it is extracted.

help - List a summary of the available commands.

quit - Restore immediately exits, even if the extraction list is not
empty.

2

720

RESTORE(&) COMMAND REFERENCE RESTORE(&)

The following characters may be used in addition to the letter that selects
the function desired.

b The next argument to restore indicates buffer size for reading dump
media. The argument is interpreted as number of 1 k bytes, and it is
intended as a means of speeding up media reads (specifying the S
option for cartridge streaming tape causes the buffer size to be set
to 128 for a buffer size of 128k). The default is 1 Ok. The number
specified should agree with that used by dump to produce the
media. This option should not be used when reading flexible disk
media.

F This indicates flexible disk media is being used (default is 9 track
tape).

S This indicates that cartridge streaming tape is being used (default is
9 track tape).

v Normally restore does its work silently. The v (verbose) key causes
it to type the name of each file it treats preceded by its file type.

f The next argument to restore is the path name of the device to use
instead of the default. The path name can specify a flexible disk, a
cartridge tape, a 9-track tape, or a disk file, and the location of the
device can be local or remote. If the name of the file is "-",
restore reads from standard input. Thus, dump(8) and restore can
be used in a pipeline to dump and restore a file system with the
command

/etc/dump Of - /usr : (cd /mnt; /etc/restore xf -)

y Restore will not ask whether it should abort the restore if it gets a
tape error. It will always try to skip over the bad tape block(s) and
continue as best it can.

m Restore will extract by inode numbers rather than by file name.
This is useful if only a few files are being extracted, and one wants
to avoid regenerating the complete pathname to the file.

h Restore extracts the actual directory, rather than the files that it
references. This prevents hierarchical restoration of complete
subtrees from the tape.

EXAMPLES
cd Its (where fs is the file system to which you are restoring, e.g., /ab)

/etc/restore if /dev/tc
(use restore interactively from the cartridge streaming tape on
ldevltc)

/etc/restore tf /dev/rdf
(this will show all files involved in this flexible disk dump. The
information will be extracted from the volume)

/etc/restore tf /dev/rdf ./Joe

REV SEP 1985

(will show all files in subtree joe, where joe is a child of the
dumped file system lcdljoe).

3
721

RESTORE(&) COMMAND REFERENCE RESTORE(&)

FILES

/etc/restore tf /dev/rd.f joe
(same function as above)

cd /fs (fs is same as above)

/etc/restore xf /dev/rdf ./joe/thisdir
(will restore thisdir and everything dumped below thisdir. This
may not be all of thisdir, since dump only grabs files that have
changed.)

Note that syntax is relative to the current directory. For example, if
restore is preceded by cd /ab, then .ljoe, .ljoelthisdir, etc., will be
created as subtrees of I ab.

ldevltc

ltmplrstdir*

ltmp!rstmode*

. lrestoresymtable

the default tape drive (cartridge streamer)

file containing directories on the tape.

owner, mode, and time stamps for directories.

symtab information passed between
incremental restores.

DIAGNOSTICS
Complaints about bad key characters.

Complaints if it gets a read error. If y has been specified, or the user
responds y, restore will attempt to continue the restore.

If the dump extends over more than one volume, restore will ask the user
to change tapes. If the x or i key has been specified, restore will also
ask which volume the user wishes to mount. The fastest way to extract a
few files is to start with the last volume, and work towards the first
volume.

There are numerous consistency checks that can be listed by restore.
Most checks are self-explanatory or can "never happen". Common
errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is
automatically converted to the new file system format.

(filename): not found on tape
The specified file name was listed in the tape directory, but was not
found on the tape. This is caused by tape read errors while looking
for the file, and from using a dump tape created on an active file
system.

expected next file (inumber), got (inumber>

REV SEP 1985

A file that was not listed in the directory showed up. This can occur
when using a dump tape created on an active file system.

4
722

RESTORE(&) COMMAND REFERENCE RESTORE(&)

Incremental tape too low
When doing incremental restore, a tape that was written before the
previous incremental tape, or that has too low an incremental level
has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its
coverage where the previous incremental tape left off, or that has
too high an incremental level has been loaded.

Tape read error while restoring (filename)
Tape read error while skipping over inode < inumber)
Tape read error while trying to resynchronize

A tape read error has occurred. If a file name is specified, then its
contents are probably partially wrong. If an inode is being skipped
or the tape is trying to resynchronize, then no extracted files have
been corrupted, though files may not be found on the tape.

resync restore, skipped <num) blocks
After a tape read error, restore may have to resynchronize itself.
This message lists the number of blocks that were skipped over.

RETURN VALUE
[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

This is the return code used when restore has found that one or more
files it was about to restore already exist (the files are left alone). In this
case the system error variable, errno, will contain EEXIST (17).

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

Return values greater than 124 indicate a fatal condition from which
restore aborted.

CAVEATS
Restore can get confused when doing incremental restores from dump
tapes that were made on active file systems.

A level zero dump must be done after a full restore. Because restore
runs in user code, it has no control over inode allocation; thus a full
restore must be done to get a new set of directories reflecting the new
inode numbering, even though the contents of the files is unchanged.

SEE ALSO
rrestore(8), dump(8), rdump(8), mkfs(8), mount(8), newfs(8).

REV SEP 1985 5
723

REXECD (SN) COMMAND REFERENCE REXECD (SN)

NAME
rexecd - remote execution server

SYNOPSIS
/etc/tcp_services/rexecd

DESCRIPTION
Rexecd is the server for the rexec(3n) routine. The server provides
remote execution facilities with authentication based on user names and
encrypted passwords.

Rexecd is started by tcpd(Bn) when a service requests at the port
indicated in the "exec" service specification; see services(5n). When a
service request is received the following protocol is initiated:

1) The server reads characters from the socket up to a null ('\O')
byte. The resultant string is interpreted as an ASCII number,
base 10.

2) If the number received in step 1 is non-zero, it is interpreted as
the port number of a secondary stream to be used for the stderr.
A second connection is then created to the specified port on the
client's machine.

3) A null terminated user name of at most 16 characters is retrieved
on the initial socket.

4) A null terminated, encrypted, password of at most 16 characters
is retrieved on the initial socket.

5) A null terminated command to be passed to a shell is retrieved
on the initial socket. The length of the command is limited by
the upper bound on the size of the system's argument list.

6) Rexecd then validates the user as is done at login time and, if
the authentication was successful, changes to the user's home
directory, and establishes the user and group protections of the
user. If any of these steps fail the connection is aborted with a
diagnostic message returned.

7) A null byte is returned on the connection associated with the
stderr and the command line is passed to the normal login shell
of the user. The shell inherits the network connections
established by rexecd.

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with
the stderr, after which any network connections are closed. An error is
indicated by a leading byte .with a value of 1 (0 is returned in step 7
above upon successful completion of all the steps prior to the command
execution).

username too long
The name is longer than 16 characters.

1
724

REXECD (SN) COMMAND REFERENCE REXECD (SN)

password too long
The password is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as
configured into the system).

Login incorrect.
No password file entry for the user name existed or the wrong password
was supplied.

No remote directory.
The chdir command to the home directory failed.

Try again.
A fork by the server failed.

/bin/sh: ...
The user's login shell could not be started.

RETURN VALUE
[OJ Rexecd is running.

[1] Rexecd is not running.

[USAGE] Incorrect command line syntax. Execution terminated.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

SEE ALSO
rexec(3n), tcpd(8n).

2
725

RLOGIND(8N) COMMAND REFERENCE RLOGIND(8N)

NAME
rlogind - remote login server

SYNOPSIS
/etc/tcp_services/rlogind [-d J

DESCRIPTION
Rlogind is the server for the rlogin(ln) program. The server provides a
remote login facility with authentication based on privileged port numbers.

Rlogind is run by tcpd(8n) when a connection is made on the "login"
service specification; see services(5n). When a service request is received
the following protocol is initiated:

1) The server checks the client's source port. If the port is not in
the range 0-1023, the server aborts the connection.

2) The server checks the client's source address. If the address is
associated with a host for which no corresponding entry exists in
the host name data base (see hosts(5n)), the server aborts the
connection.

Once the source port and address have been checked, rlogind allocates a
pseudo terminal and manipulates file descriptors so that the slave half of
the pseudo terminal becomes the stdin , stdout, and stderr for a login
process. The login process is an instance of the login(l) program,
invoked with the -r option. The login process then proceeds with the
authentication process as described in rshd(8n), but if automatic
authentication fails, it reprompts the user to login as one finds on a
standard terminal line.

The parent of the login process manipulates the master side of the
pseduo terminal, operating as an intermediary between the login process
and the client instance of the rlogin program. The login process
propagates the client terminal's baud rate and terminal type, as found in
the environment variable, "TERM"; see environ(7) .

OPTIONS
-d Turn on socket debugging for use with trpt.

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with
the stderr, after which any network connections are closed. An error is
indicated by a leading byte with a value of 1.

Hostname for your address unknown.
No entry in the host name database existed for the client's machine.

Try again.
A fork by the server failed.

/bin/sh: ...
The user's login shell could not be started.

REV MAR 1985

726

RLOGIND(SN) COMMAND REFERENCE RLOGIND(SN)

RETURN VALUE
[O] Rlogind is running.

[1] Rlogind is not running.

[USAGE] Incorrect command line syntax. Execution terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.

CAVEATS

Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

The authentication procedure used here assumes the integrity of each
client machine and the connecting medium. This is insecure, but is
useful in an "open" environment.

SEE ALSO
rlogin(ln), rsh(ln), tcpd(8n).

2
727

REVMAR1985

RMT(8N) COMMAND REFERENCE RMT (SN)

NAME
rmt - remote magtape protocol module

SYNOPSIS
/etc/rmt

DESCRIPTION
Rmt is a program used by the remote dump and restore programs in
manipulating a magnetic tape drive through an interprocess
communication connection. Rmt is normally started up with an rexec(3n)
or rcmd(3n) call.

The rmt program accepts requests specific to the manipulation of
magnetic tapes, performs the commands, then responds with a status
indication. All responses are in ASCII and in one of two forms.
Successful commands have responses of

Anumber\n

where number is an ASCII representation of a decimal number.
Unsuccessful commands are responded to with

Eerror-number\nerror-message\n,

where error-number is one of the possible error numbers described in
intro(2) and error-message is the corresponding error string as printed from
a call to perror(3c). The protocol is comprised of the following commands
(a space is present between each token).

0 device mode
Open the specified device using the indicated mode. Device is a full
pathname and mode is an ASCII representation of a decimal number
suitable for passing to open(2). If a device had already been opened,
it is closed before a new open is performed.

C device
Close the currently open device. The device specified is ignored.

L whence offset
Perform an lseek(2) operation using the specified parameters. The
response value is that returned from the lseek call.

W count
Write data onto the open device. Rmt reads count bytes from the
connection, aborting if a premature end-of-file is encountered. The
response value is that returned from the write(2) call.

R count
Read count bytes of data from the open device. If count exceeds the
size of the data buffer (1 O kilobytes), it is truncated to the data buffer
size. Rmt then performs the requested read(2) and responds with
Acount-read\n if the read was successful; otherwise an error in the
standard format is returned. If the read was successful, the data
read is then sent.

REV MAR 1985

728

RMT(SN) COMMAND REFERENCE RMT(SN)

I operation count
Perform a MTIOCOP ioct/(2) command using the specified
parameters. The parameters are interpreted as the ASCII
representations of the decimal values to place in the mt_op and
mt_count fields of the structure used in the ioctl call. The return
value is the count parameter when the operation is successful.

S Return the status of the open device, as obtained with a MTIOCGET
ioctl call. If the operation was successful, an ack is sent with the size
of the status buffer, then the status buffer is sent (in binary).

Any other command causes rmt to exit.

DIAGNOSTICS
All responses are of the form described above.

RETURN VALUE
[OJ Rmt was successful.

[1] Rmt was unsuccessful.

CAVEATS
People tempted to use this for a remote file access protocol are
discouraged.

SEE ALSO
rcmd(3n), rexec(3n), rdump(8n), rrestore(8n).

2
729

ROUTE (SN) COMMAND REFERENCE ROUTE(BN)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/etc/route [-f] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing
tables. It normally is not needed, as the system routing table
management daemon, routed(8n), should tend to this task.

Route accepts three commands: add, to add a route; delete, to delete a
route; and change, to modify an existing route.

All commands have the following syntax:

/etc/route command destination gateway [metric]

where destination is a host or network for which the route is "to", gateway
is the gateway to which packets should be addressed, and metric is an
optional count indicating the number of hops to the destination. If no
metric is specified, route assumes a value of 0. Routes to a particular
host are distinguished from those to a network by interpreting the Internet
address associated with destination. If the destination has a "local
address part" of INADDRANY, then the route is assumed to be to a
network; otherwise, it is presumed to be a route to a host. If the route is
to a destination connected via a gateway, the metric should be greater
than 0. All symbolic names specified for a destination or gateway are
looked up first in the host name database, hosts(5n). If this lookup fails,
the name is then looked for in the network name database, networks(5n).

Route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl's to
do its work. As such, only the super-user may modify the routing tables.

OPTIONS
-f Route will "flush" the routing tables of all gateway entries. If this is

used in conjunction with one of the commands described above, the
tables are flushed prior to the command's application.

command args
See above for description.

DIAGNOSTICS
add %s: gateway %s flags %x
The specified route is being added to the tables. The values printed are
from the routing table entry supplied in the ioctl call.

delete %s: gateway %s flags %x
As above, but when deleting an entry.

%s %s done
When the -f flag is specified, each routing table entry deleted is
indicated with a message of this form.

730

ROUTE(SN) COMMAND REFERENCE ROUTE(SN)

not in table
A delete operation was attempted for an entry which wasn't present in the
tables.

routing table overflow
An add operation was attempted, but the system was low on resources
and was unable to allocate memory to create the new entry.

RETURN VALUE
[OJ No errors occurred.

[1] Errors occurred.

CAVEATS
The change operation is not implemented, one should add the new route,
then delete the old one.

SEE ALSO
intro(4n), routed(8n).

2

731

ROUTED (SN) COMMAND REFERENCE ROUTED (SN)

NAME
routed - network routing daemon

SYNOPSIS
/etc/routed [-s J [-q J [-t J [logfile J

DESCRIPTION
Routed is invoked at boot time to manage the network routing tables.
The routing daemon uses a variant of the Xerox NS Routing Information
Protocol in maintaining up to date kernel routing table entries.

In normal operation routed listens on udp(4n) socket 520 (decimal) for
routing information packets. If the host is an internetwork router, it
periodically supplies copies of its routing tables to any directly connected
hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl to find those
directly connected interfaces configured into the system and marked "up"
(the software loopback interface is ignored). If multiple interfaces are
present, it is assumed the host will forward packets between networks.
Routed then transmits a request packet on each interface (using a
broadcast packet if the interface supports it) and enters a loop, listening
for request and response packets from other hosts.

When a request packet is received, routed formulates a reply based on
the information maintained in its internal tables. The response packet
generated contains a list of known routes, each marked with a "hop
count" metric (a count of 16, or greater, is considered "infinite"). The
metric associated with each route returned provides a metric relative to
the sender.

Response packets received by routed are used to update the routing
tables if one of the following conditions is satisfied:

(1) No routing table entry exists for the destination network or host,
and the metric indicates the destination is "reachable" (i.e. the
hop count is not infinite).

(2) The source host of the packet is the same as the router in the
existing routing table entry. That is, updated information is being
received from the very internetwork router through which packets
for the destination are being routed.

(3) The existing entry in the routing table has not been updated for
some time (defined to be 90 seconds) and the route is at least as
cost effective as the current route.

(4) The new route describes a shorter route to the destination than
the one currently stored in the routing tables; the metric of the
new route is compared against the one stored in the table to
decide this.

When an update is applied, routed records the change in its internal
tables and generates a response packet to all directly connected hosts
and networks. Routed waits a short period of time (no more than 30

732

ROUTED (SN) COMMAND REFERENCE ROUTED (SN)

seconds) before modifying the kernel's routing tables to allow possible
unstable situations to settle.

In addition to processing incoming packets, routed also periodically
checks the routing table entries. If an entry has not been updated for 3
minutes, the entry's metric is set to infinity and marked for deletion.
Deletions are delayed an additional 60 seconds to insure the invalidation
is propagated throughout the internet.

Hosts acting as internetwork routers gratuitously supply their routing
tables every 30 seconds to all directly connected hosts and networks.

In addition to the facilities described above, routed supports the notion of
"distant" passive and active gateways. When routed is started up, it
reads the file !etc/gateways to find gateways which may not be identified
using the SIOGIFCONF ioctl. Gateways specified in this manner should
be marked passive if they are not expected to exchange routing
information, while gateways marked active should be willing to exchange
routing information (i.e. they should have a routed process running on
the machine). Passive gateways are maintained in the routing tables
forever and information regarding their existence is included in any
routing information transmitted. Active gateways are treated equally to
network interfaces. Routing information is distributed to the gateway and
if no routing information is received for a period of the time, the
associated route is deleted.

The !etc/gateways is comprised of a series of lines, each in the following
format:

<net : host > namel gateway name2 metric value <passive : active >

The net or host keyword indicates if the route is to a network or specific
host.

Namel is the name of the destination network or host. This may be a
symbolic name located in !etc/networks or !etc/hosts, or an Internet
address specified in "dot" notation; see inet(3n).

Name2 is the name or address of the gateway to which messages should
be forwarded.

Value is a metric indicating the hop count to the destination host or
network.

The keyword passive or active indicates if the gateway should be treated
as passive or active (as described above).

OPTIONS
-s This option forces routed to supply routing information whether it is

acting as an internetwork router or not.

-q This option is the opposite of the -s option.

2

733

ROUTED (IN) COMMAND REFERENCE ROUTED (IN)

FILES

-t This option causes, all packets sent or received to be printed on the
standard output. In addition, routed will not divorce itself from the
controlling terminal so that interrupts from the keyboard will kill the
process.

logfi/e
Any other argument supplied is interpreted as the name of the file in
which routed's actions should be logged. This log contains
information about any changes to the routing tables and a history of
recent messages sent and received which are related to the changed
route.

/etc/gateways for distant gateways

RETURN VALUE
[0] Routed is running.

Routed is not running.

No action taken.

[1]

[-1]

CAVEATS
The kernel's routing tables may not correspond to those of routed for
short periods of time while processes utilizing existing routes exit; the
only remedy for this is to place the routing process in the kernel.

SEE ALSO
udp(4n).

3

734

RRESTORE (SN) COMMAND REFERENCE RRESTORE (SN)

NAME
rrestore - restore a file system dump across the network

SYNOPSIS
/etc/rrestore [key J [filename . . . J

DESCRIPTION
Rrestore obtains from magnetic tape files saved by a previous dump(8).
The command is identical in operation to restore(8) except that the f key
should be specified and the file supplied should be of the form
machine:device.

Rrestore creates a remote server letclrmt on the client machine to
access the tape device.

DIAGNOSTICS
Same as restore(8) with a few extra related to the network.

RETURN VALUE
[OJ Rrestore was successful.

[1 J Rrestore was unsuccessful.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

SEE ALSO
restore(8), rmt(8n).

735

ASHD (SN) COMMAND REFERENCE ASHD (SN)

NAME
rshd - remote shell server

SYNOPSIS
/etc/tcp_services/rshd

DESCRIPTION
Rshd is the server for the rcmd(3n) routine and, consequently, for the
rsh(ln) program. The server provides remote execution facilities with
authentication based on privileged port numbers.

Tcpd spawns an Rshd process for service requests at the port indicated
in the cmd service specification; see services(5n). When a service request
is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in
the range 0-1023, the server aborts the connection.

2) The server reads characters from the socket up to a null ('\O')
byte. The resultant string is interpreted as an ASCII number,
base 10.

3) If the number received in step 1 is non-zero, it is interpreted as
the port number of a secondary stream to be used for the stderr.
A second connection is then created to the specified port on the
client's machine. The source port of this second connection is
also in the range 0-1023.

4) The server checks the client's source address. If the address is
associated with a host for which no corresponding entry exists in
the host name data base (see hosts(5n)), the server aborts the
connection. '

5) A null terminated user name of at most 16 characters is retrieved
on the initial socket. This user name is interpreted as a user
identity to use on the server's machine.

6) A null terminated user name of at most 16 characters is retrieved
on the initial socket. This user name is interpreted as the user
identity on the client's machine.

7) A null terminated command to be passed to a shell is retrieved
on the initial socket. The length of the command is limited by
the upper bound on the size of the system's argument list.

8) Rshd then validates the user according to the following steps.
The remote user name is looked up in the password file and a
chdir is performed to the user's home directory. If either the
lookup or chdir fail, the connection is terminated. If the user is
not the super-user, (user ID 0), the file /etc/hosts.equiv is
consulted for a list of hosts considered "equivalent". If the
client's host name is present in this file, the authentication is
considered successful. If the lookup fails, or the user is the
super-user, then the file .rhosts in the home directory of the
remote user is checked for the machine name and identity of the

736

RSHD (SN) COMMAND REFERENCE RSHD (SN)

user on the client's machine. If this lookup fails, the connection
is terminated.

9) A null byte is returned on the connection associated with the
stderr and the command line is passed to the normal login shell
of the user. The shell inherits the network connections
established by rshd.

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with
the stderr, after which any network connections are closed. An error is
indicated by a leading byte with a value of 1 (0 is returned in step 9
above upon successful completion of all the steps prior to the command
execution).

focuser too long
The name of the user on the client's machine is longer than 16
characters.

remuser too long
The name of the user on the remote machine is longer than 16
characters.

command too long
The command line passed exceeds the size of the argument list (as
configured into the system).

Hostname for your address unknown.
No entry in the host name database existed for the client's machine.

Login incorrect.
No password file entry for the user name existed.

No remote directory.
The chdir command to the home directory failed.

Permission denied.
The authentication procedure described above failed.

Can't make pipe.
The pipe needed for the stderr, wasn't created.

Try again.
A fork by the server failed.

!bin/sh: ...
The user's login shell could not be started.

RETURN VALUE
[OJ Rshd is running.

[1 J Rshd is not running.

[USAGE] Incorrect command line syntax. Execution terminated.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

2
737

RSHD (IN) COMMAND REFERENCE RSHD (SN)

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

CAVEATS
The authentication procedure used here assumes the integrity of each
client machine and the connecting medium. This is insecure, but is
useful in an "open" environment.

SEE ALSO
rsh(ln), rcmd(3n), tcpd(8n).

3
738

RWHOD (SN) COMMAND REFERENCE RWHOD(8N)

NAME
rwhod - system status server

SYNOPSIS
/etc/rwhod [-tscanrate J [-flogfile J

DESCRIPTION
Rwhod is the server which maintains the database used by the rwho and
uptime programs. Its operation is predicated on the ability to broadcast
messages on a network.

Rwhod operates as both a producer and consumer of status information.
As a producer of information it periodically queries the state of the system
and constructs status messages which are broadcast on a network. As a
consumer of information, it listens tor other rwhod servers' status
messages, validating them, then recording them in a collection of files
located in the directory lusrlspool!rwho.

The rwho server transmits and receives messages at the port indicated in
the rwho service specification, see services(5n). The messages sent and
received, are of the form:

struct outmp {
char out_line[8];/* tty name *I
char out_name[8];/* user id*/
long out_time;/* time on */

};

struct whod {
char
char
char
int
int
char
int
int
struct

wd_vers;
wd_type;
wd_fill[2];
wd_sendtime;
wd_recvtime;
wd_hostname [32] ;
wd_loadav [3] ;
wd_boottime;
whoent {
struct outmp we_utmp;
int we_idle;

} wd_we[1024 / sizeof (struct whoent)];
};

All fields are converted to network byte order prior to transmission. The
load averages are as calculated by the w(l) program, and represent load
averages over the 5, 10, and 15 minute intervals prior to a server's
transmission. The host name included is that returned by the
gethostname(2) system call. The array at the end of the message contains
information about the users logged in to the sending machine. This
information includes the contents of the utmp(5) entry for each non-idle
terminal line and a value indicating the time since a character was last
received on the terminal line.

739

RWHOD(SN) COMMAND REFERENCE RWHOD (SN)

Messages received by the rwho server are discarded unless they
originated at a rwho server's port. In addition, if the host's name, as
specified in the message, contains any unprintable ASCII characters, the
message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory lusrlspoollrwho. These files
contain only the most recent message, in the format described above.

Status messages are generated approximately once every 60 seconds.
Rwhod performs an nlist(3c) on lvmunix every 10 minutes to guard
against the possibility that this file is not the system image currently
operating.

OPTIONS
-tscanrate

Scanrate is the number of seconds between each status
broadcast [default 2 minutes] . Note: ruptime(l n) considers a
host down if no packet has arrived in 5 minutes.

-flogfile
Put debugging/trace information into logfile.

RETURN VALUE
[OJ Rwhod is running.

[1 J Rwhod is not running.

CAVEATS
As the number of hosts on the network increases, the number of rwho
packets increases as the square of the number of hosts. This can have a
detrimental effect on workstation performance, so for that reason, rwhod
is not normally enabled. If you do wish to install and run it, see
ruptime(1 n).

SEE ALSO
ruptime(ln), uptime(ln), rwho(Jn).

2

740

SAVECORE(S) COMMAND REFERENCE SAVECORE(8)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
/etc/savecore dirname [-d dumpdev] [-s system]

DESCRIPTION
Savecore is meant to be called near the end of the !etc/re file. Its
function is to save the core dump of the system (assuming one was
made) and to write a reboot message in the shutdown log.

Savecore checks the core dump to be certain it corresponds with the
current running system. If it does it saves the core image in the file
dirnamelvmcore.n and its brother, the namelist, in dirnamelvmunix.n The
trailing .n in the pathnames is replaced by a number which grows every
time savecore is run in that directory. This number is read from the
second line of the file dirnamelsavecore.bounds, and is incremented
whenever a core image is saved.

Before savecore writes out a core image, it reads an additional number
from the first line of the file dirnamelsavecore.bounds. If there are fewer
free blocks on the filesystem which contains dirname than this number
obtained from the savecore.bounds file, the core dump is not done. If the
savecore.bounds file does not exist, savecore always writes out the core
file (assuming that a core dump was taken).

Savecore also writes a reboot message in the shut down log. If the
system crashed as a result of a panic, savecore records the panic string
in the shut down log too.

OPTIONS

FILES

-d dumpdev
The name of the device containing the dump may be supplied as
dumpdev. Otherwise, the dump device is read from the kernel.

-s system
If the core dump was from a system other than the default, the name
of that system may be supplied as system.

lusr I admlshutdownlog

dirnamelsavecore. bounds

shut down log

ldevlcvt table of kernel symbols

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

741

SAVECORE(8)

[P_WARNJ

[P_ERRJ

CAVEATS

COMMAND REFERENCE SAVECORE(8)

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Savecore can be fooled into thinking a core dump is the wrong size.

SEE ALSO
cvt(4).

2

742

SENDMAIL(SMH) COMMAND REFERENCE SENDMAIL(SMH)

NAME
sendmail, mailq - send mail over the internet

SYNOPSIS
/usr/lib/sendmail [flags] [address . . .]

newaliases

mailq

DESCRIPTION
Sendmail sends a message to one or more people, routing the message
over whatever networks are necessary. Sendmail does internetwork
forwarding as necessary to deliver the message to the correct place.

If invoked as newaliases, sendmail will rebuild the alias database. If
invoked as mailq, sendmail will print the contents of the mail queue.

Sendmail is not intended as a user interface routine; other programs
provide user-friendly front ends; sendmail is used only to deliver pre
formatted messages.

With no flags, sendmail reads its standard input up to a control-Dor a
line with a single dot and sends a copy of the letter found there to all of
the addresses listed. It determines the network to use based on the
syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately.
Aliasing can be prevented by preceding the address with a backslash.
Normally the sender is not included in any alias expansions, e.g., if 'john'
sends to 'group', and 'group' includes 'john' in the expansion, then the
letter will not be delivered to 'john'.

If the first character of the user name is a vertical bar, the rest of the user
name is used as the name of a program to pipe the mail to. It may be
necessary to quote the name of the user to keep sendmail from
suppressing the blanks from between arguments.

OPTIONS
-ba

-bd

Go into ARPANET mode. All input lines must end with a CR-LF,
and all messages will be generated with a CR-LF at the end.
Also, the "From:" and "Sender:" fields are examined for the
name of the sender.

Run as a daemon. This requires Berkeley IPC.

-bi Initialize the alias database.

-bm Deliver mail in the usual way (default).

-bp Print a listing of the queue.

-bs Use the SMTP protocol as described in RFC821 . This flag implies
all the operations of the -ba flag that are compatible with SMTP.

-bt Run in address test mode. This mode reads addresses and
shows the steps in parsing; it is used for debugging configuration
tables.

REV MAR 1985

743

SENDMAIL(SMH) COMMAND REFERENCE SENDMAIL(SMH)

-bv Verify names only - do not try to collect or deliver a message.
Verify mode is normally used for validating users or mailing lists.

-bz Create the configuration freeze file.

-Cfilename
Use alternate configuration file.

-dX Set debugging value to X.

-Fful/name

-fname

Set the full name of the sender.

Sets the name of the "from" person (i.e., the sender of the mail).
-f can only be used by the special users root, daemon, and
network, or if the person you are trying to become is the same as
the person you are.

-hN Set the hop count to N. The hop count is incremented every time
the mail is processed. When it reaches a limit, the mail is
returned with an error message, the victim of an aliasing loop.

-n Don't do aliasing.

-ox value
Set option x to the specified value. Options are described below.

-q[time]

-rname

Processed saved messages in the queue at given intervals. If
time is omitted, process the queue once. Time is given as a
tagged number, with 's' being seconds, 'm' being minutes, 'h'
being hours, 'd' being days, and 'w' being weeks. For example,
"-q1 h30m" or "-q90m" would both set the timeout to one
hour thirty minutes.

An aiternate and obsolete form of the -f flag.

-t Read message for recipients. To:, Cc:, and Bee: lines will be
scanned for people to send to. The Bee: line will be deleted
before transmission. Any addresses in the argument list will be
suppressed.

-v Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally
these will only be used by a system administrator. Options may be set
either on the command line using the -o flag or in the configuration file.
These are described in detail in the Installation and Operation Guide. The
options are:

Afilename
Use alternate alias file.

2 REV MAR 1985

744

SENDMAIL(SMH) COMMAND REFERENCE SENDMAIL(BMH)

c On mailers that are considered "expensive" to connect to, don't
initiate immediate connection. This requires queueing.

dx Set the delivery mode to x. Delivery modes are 'i' for interactive
(synchronous) delivery, 'b' for background (asynchronous)
delivery, and 'q' for queue only - i.e., actual delivery is done the
next time the queue is run.

D Try to automatically rebuild the alias database if necessary.

ex Set error processing to mode x. Valid modes are 'm' to mail back
the error message, 'w' to "write" back the error message (or
mail it back if the sender is not logged in), 'p' to print the errors
on the terminal (default), 'q' to throw away error messages (only
exit status is returned), and 'e' to do special processing for the
BerkNet. If the text of the message is not mailed back by modes
'm' or 'w' and if the sender is local to this machine, a copy of the
message is appended to the file dead.letter in the sender's home
directory.

Fmode The mode to use when creating temporary files.

f Save UTek-style From lines at the front of messages.

gN The default group id to use when calling mailers.

Hfile The SMTP help file.

Do not take dots on a line by themselves as a message
terminator.

Ln The log level.

m Send to "me" (the sender) also if I am in an alias expansion.

o If set, this message may have old style headers. If not set, this
message is guaranteed to have new style headers (i.e., commas
instead of spaces between addresses). If set, an adaptive
algorithm is used that will correctly determine the header format
in most cases.

Qqueuedir

rtimeout

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will wait forever
for a mailer.

Sfile Save statistics in the named file.

s Always instantiate the queue file, even under circumstances
where it is not strictly necessary.

Ttime Set the timeout on messages in the queue to the specified time.
After sitting in the queue for this amount of time, they will be
returned to the sender. The default is three days.

tstz,dtz Set the name of the time zone.

3 REV MAR 1985

745

SENDMAIL(SMH) COMMAND REFERENCE SENDMAIL(SMH)

uN Set the default user ID for mailers.

xla If the load average is gr~ater than la mail is queued (for later
delivery) rather than processed immediately.

Xia If the load average is greater than la remote smtp connections to
the daemon are refused.

EXAMPLES

FILES

Given a file testletter like:

To: Joe
Subject: Sample sendmail letter

This is the hard way to send mail

The command to mail it would be:

sendmail -t -i -v (testletter

The -t tells sendmail to read the addresses from the letter. The -i tells
sendmail to deliver interactively (i.e. wait till delivered). The -v causes
sendmail to give a short synopsis of what it is doing.

Except for lusrlliblsendmail.cf and $HOMEl.forward, these pathnames
are all specified in lusrlliblsendmail.cf. Thus, these values are only
approximations.

$HOMEl.forward forwarding address

I usr I lib I aliases

lusr /lib/ aliases.pag

I usr I lib I aliases. dir

lusr/liblsendmail.cf

lusr /lib/ sendmail.fc

lusrlliblsendmail.hf

lusr /lib/ sendmail.st

lusrlbinluux

lusr/liblmaillmh.Jieliver

lusr I spool/ mqueue/*

raw data for alias names

data base of alias names

configuration file

frozen configuration

help file

collected statistics

to deliver uucp mail

to deliver local mail

temp files

DIAGNOSTICS
If there was an error in sending the letter, sendmail will either send mail
back to the sender, write a message to the user, or exit with a status
(depending on configuration and flags).

4 REV MAR 1985

746

SENDMAIL(SMH) COMMAND REFERENCE SENDMAIL(SMH)

VARIABLES
HOME

NAME

The user's home directory. Used to find the .forward file.

Full name placed on outgoing mail

RETURN VALUE
Sendmail returns an exit status describing what it did. The codes are
defined in (sysexits.h)

E)(_QK
E)(_NQUSER
E)(_UNAVAILABLE

CAVEATS

E)(_SYNTAX
E)(_SQFTWARE

E)(_QSERR

E)(_NQHOST
E)(_TEMPFAIL

Successful completion on all addresses.
User name not recognized.
Catchall meaning necessary resources were not
available.
Syntax error in address.
Internal software error, including bad
arguments.
Temporary operating system error, such as
"cannot fork".
Host name not recognized.
Message could not be sent immediately, but
was queued.

Sendmail converts blanks in addresses to dots. This is incorrect
according to the old ARPANET mail protocol RFC733 (NIC 41952), but is
consistent with the new protocols (RFC822).

SEE ALSO
mail(lmh), mailaddr(7).

5 REV MAR 1985

747

SHUTDOWN (8) COMMAND REFERENCE SHUTDOWN (8)

NAME
shutdown - close down the system at a given time

SYNOPSIS
/etc/shutdown [-h J [-k J [-r J time [warning-message ...

DESCRIPTION
Shutdown provides an automated shutdown procedure which a super
user can use to notify users nicely when the system is shutting down.

The preferred way to bring the system down is to turn off the power
switch. This will initiate shutdown. When shutdown exits, the system
will go through an automated process of checking the file systems (see
fsck(8)). If the file systems are healthy, a file named lfastboot is created.
The existence of this file signals the system at boot time that an
additional file system check need not be done at boot time and the
system will boot in much less time.

Time is the time at which shutdown will bring the system down and may
be the word now (indicating an immediate shutdown) or specify a future
time in one of two formats: +number and hour:min. The first form brings
the system down in number minutes and the second brings the system
down at the time of day indicated (as a 24-hour clock).

At intervals which get closer together as shutdown time approaches,
warning-messages are displayed at the terminals of all users on the
system. Five minutes before shutdown, or immediately if shutdown is in
less than 5 minutes, logins are disabled by creating /etclnologin and
writing a message there. If this file exists when a user attempts to log in,
login(l) prints its contents and exits. The file is removed just before
shutdown exits.

At shutdown time a message is written in the file lusrladmlshutdownlog,
containing the time of shutdown, who ran shutdown and the reason.
Then a terminate signal is sent at init to bring the system down to
single-user state.

The time of the shutdown and the warning message are placed in
letclnologin and should be used to inform the users about when the
system will be back up and why it is going down (or anything else).

OPTIONS

FILES

-h Shutdown will exec halt(8).

-k Shutdown will not shut down the system (-k is to make users think
the system is going down).

-r Shutdown will exec reboot(8).

letclnologin

/usr/ adm/shutdownlog

/fast boot

tells login not to let anyone log in

log file for successful shutdowns.

created during shutdown procedure after
successful disk check

748

SHUTDOWN(&) COMMAND REFERENCE SHUTDOWN (8)

RETURN VALUE
[NO_ERRSJ Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
Shutdown only allows you to kill the system between now and 23:59 if
you use the absolute time for shutdown.

SEE ALSO
login(l), fsck(8), reboot(8).

2

749

SWAPON(8) COMMAND REFERENCE SWAPON(8)

NAME
swapon - specify additional device for paging and swapping

SYNOPSIS
/etc/swapon [-a] [-q]
/etc/swapon name ...

DESCRIPTION
Swapon is used to specify additional devices on which paging and
swapping are to take place. The system begins by swapping and paging
on only a single device so that only one disk is required at bootstrap time.
Calls to swapon normally occur in the system multi-user initialization file
/etc/re making all swap devices available, so that the paging and
swapping activity is interleaved across several devices.

In the second form, name is individual block devices as given in the
system swap configuration table. The call makes only this space
available to the system for swap allocation.

OPTIONS

FILES

-a This option causes all devices marked as sw swap devices in
letclfstab to be made available.

-q This option prevents warning messages from being printed if a swap
device in letclfstab cannot be made available.

letclfstab

RETURN VALUE
[NQ_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
There is no way to stop paging and swapping on a device. It is therefore
not possible to make use of devices which may be dismounted during
system operation.

SEE ALSO
swapon(2), fstab(5), init(8).

REV SEP 1985

750

SYNC (8) COMMAND REFERENCE

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC(8)

Sync executes the sync system primitive. Sync can be called to insure
all disk writes have been completed before the processor is halted in a
way not suitably done by reboot(B) or halt(8).

See sync(2) for details on the system primitive.

SEE ALSO
sync(2), fsync(2), halt(B), reboot(B), update(8).

751

SYSADMIN(8) COMMAND REFERENCE SYSADMIN(S)

NAME
sysadmin - system administration interface

SYNOPSIS
/etc/sysadmin [-n]

DESCRIPTION

FILES

The command sysadmin executes the System Administration package
found in lusrlsysadmin. This package allows easy access to system
configuration files and simple ways to perform many of the tasks required
of the system administrator.

Without the -n option, the system administrator password is requested,
since the user must become the superuser to do any real work.

With the -n option, the package is executed without a change to the
user. This provides a way to view the menus without being able to make
any changes.

Some universal commands are provided at menu choice. Documentation
is provided by the package by typing H, h, or?. Typing (CNTRL-L)
redraws the screen. Typing ! followed by a command will execute the
command. After execution, the screen may have to be redrawn. All other
information is contained in the help mode provided by the package.

/usr!sysadmin System Administrator's home directory

CAVEATS
The userid for sysadmin is 0, which is the same userid as root. It is
very important to make sure that the sysadmin account has a
password. You may choose to use the same password for root and
sysadmin, a different password, or a '*'. Setting up the sysadmin
account with a password of'*' will make it so that only the superuser can
execute sysadmin.

Sysadmin will not work on a screen that is smaller than 23 lines by 79
columns.

Sysadmin uses curses(3t), so Tektronix 4025 terminals require the
termcap entry 4025-cr.

SEE ALSO
vipw(8).

REV SEP 1985

752

SYSCONF(B) COMMAND REFERENCE SYSCONF(8)

NAME
sysconf - system configuration interface

SYNOPSIS
sysconf [-d devicename] [-s sysin] [-o sysout]

DESCRIPTION
The System Configuration package is supplied as a separate package.
The package must be installed to use; see sysadmin(8). It consists of a
menu program sysconf , pre-linked kernel objects, a device driver
library, a directory of device description files, an assembler and a linker.

Sysconf is a menu-driven program which provides menus to set
parameters and enable devices. The option to generate a kernel uses the
selected driver information and parameter settings to generate an
assembler file, param.s. A shell script ld__kernel is executed to assemble
param.s and link the kernel with a pre-linked kernel object and device
library. A system definition file, sysdef(5), is created showing the active
device drivers supported and current parameter settings. A file,
MAKEDEV, is created containing rules for making the special device files
for active device drivers.

OPTIONS
-d devicename

Specifies a directory containing the device description files. The
default directory is .ldescrip

-s sysin
Specifies a system definition file to use for default input. The default
is to set all installed devices active and use default values for
parameters.

-o sysout
Specifies an output file for the system definition file. The default is
.lsysdef.

System Configuration means device drivers and system parameters can
be configured for a given application. System Configuration consists of
two facets: device configuration and parameter tuning. An option also
exists to specify an alternative pre-linked kernel object.

Each device which may be attached to a workstation needs a device
driver to allow useage of the device. Drivers are normally linked into the
kernel. Any driver linked into the kernel is considered active. If the driver
is not active, the given device can not be used and the memory normally
taken by the driver is available for use by user processes. Some drivers
require static buffers which consume memory; this memory is also
available if the driver is not active. A driver may provide support for more
than one device; one device is considered the real device and other
devices are aliases for the real device. Device configuration is based on
drivers not on devices; if the driver is active, support is available for the
real and alias devices. All device information is obtained from device
description files(see devdes(5)). Sysconf depends on the these files for all

REV SEP 1985

753

SYSCONF(S) COMMAND REFERENCE SYSCONF(8)

FILES

information dealing with device drivers. They should not be lightly
modified. Sysconf provides a menu to allow the enabling and disabling of
drivers. The default device configuration is obtained by checking the
workstation for devices currently installed; drivers for all on-board devices
and any installed devices are considered active.

Parameter tuning allows the sizes of Utek internal tables to be adjusted
and allows the setting of timezone parameters. The default values for
parameters are based on whether networking is to be used and the
maximum load factor. The maximum load factor is average amount of
entries needed in Utek tables to support work by x user processes.
Parameter tuning is done in six areas: timezone setting; process limits;
file 1/0; general 110; mass storage; and dynamically set parameters.
Timezone setting consists of setting the minutes west of Greenwich and
specifying the type of daylight saving's time to be used. Process limits
are the maximum number of processes allowed, and the number of
segments allowed. For the enhanced virtual memory kernel, the number
of memory maps and text segments may be set. File 1/0 parameters
consist of the number of change directories allowed using the Distributed
File System; the number of inodes available and the number of total open
files allowed. General 1/0 parameters are number of terminal character
lists; number of message buffers; and number of entries in the timeout
queue. Mass storage parameter tuning allows specification of the root,
dump and argument devices. The dynamically set parameters deal with
memory allocation for page buffers, the number of buffer headers and
number of swap buffers.

lusr!sys/conflsysconf

!usr!sys!confldescrip

lusr!sys!conf/lib6?00.a

/usrlsys/confl*.o

sysdef

MAKEDEV

System Configuration program

Directory of Device Description files

Device Driver Library

pre-linked kernel object

System Definition file

Shell script to make special devices for active
drivers

SEE ALSO
devdes(5), sysdef(5), sysadmin(8), as(l), ld(l).

REV SEP 1985 2

754

SYSLOG(8) COMMAND REFERENCE SYSLOG(8)

NAME
syslog - log systems messages

SYNOPSIS
/etc/syslog [-d] [-ffilename] [-mN]

DESCRIPTION
Syslog reads a datagram socket and logs each line it reads into a set of
files described by the configuration file !etclsyslog.conf. Syslog
configures when it starts up and whenever it receives a hangup signal.

Each message is one line. A message can contain a priority code,
marked by a digit in angle braces at the beginning of the line. Priorities
are defined in (syslog.h), as follows:

LOG_ALERT Priority 1 .
This priority should essentially never be used. It
applies only to messages that are so important that
every user should be aware of them, e.g., a serious
hardware failure.

LOG_SALERT Priority 2.

LOG_EMERG

LOG_ERR

LOG_CRIT

Messages of this priority should be issued only when
immediate attention is needed by a qualified system
person, e.g., when some valuable system resource
dissappears. They get sent to a list of system people.

Priority 3.
Emergency messages are not sent to users, but
represent major conditions. An example might be hard
disk failures. These could be logged in a separate file
so that critical conditions could be easily scanned.

Priority 4.
These represent error conditions, such as soft disk
failures, etc.

Priority 5.
Such messages contain critical information, but which
can not be classed as errors, for example, su attempts.
Messages of this priority and higher are typically
logged on the system console.

LOG_WARNING Priority 6.

LOG_NOTICE

REVSEP1985

Issued when an abnormal condition has been detected,
but recovery can take place.

Priority 7
Something that falls in the class of "important
information"; this class is informational but important
enough that you don't want to throw it away casually.
Messages without any priority assigned to them are
typically mapped into this priority.

755

SYSLOG(S) COMMAND REFERENCE SYSLOG(S)

LOG_INFO Priority 8.
Information level messages. These messages could be
thrown away without problems, but should be included
if you want to keep a close watch on your system.

LOG_DEBUG Priority 9.
It may be useful to log certain debugging information.
Normally this will be thrown away.

It is expected that the kernel will not log anything below LOG_ERR
priority.

The configuration file is in two sections separated by a blank line. The
first section defines files that syslog will log into. Each line contains a
single digit which defines the lowest priority (highest numbered priority)
that this file will receive, an optional asterisk which guarantees that
something gets output at least every 20 minutes, and a pathname. The
second part of the file contains a list of users that will be informed on
SALERT level messages.

To bring syslog down, it should be sent a terminate signal. It logs that it
is going down and then waits approximately 30 seconds for any additional
messages to come in.

There are some special messages that cause control functions. <*>N
sets the default message priority to N. ($ > causes syslog to reconfigure
(equivalent to a hangup signal). This can be used in a shell file run
automatically early in the morning to truncate the log.

Syslog creates the file /etc!syslog.pid, containing a single line with its
process ID. This can be used to kill or reconfigure syslog.

OPTIONS
-d Turn on debugging (if compiled in).

-fname
Specify an alternate configuration file.

-mN
Set the mark interval to N (default 20 minutes).

EXAMPLES
The configuration file:

REVSEP1985

5*/dev/console
8/usr/adm/syslog
J/usr/adm/critical

eric
kridle
kalash

2

756

SYSLOG(S) COMMAND REFERENCE SYSLOG(S)

FILES

logs all messages of priority 5 or higher onto the system console,
including timing marks every 20 minutes; all messages of priority 8 or
higher into the file lusrladmlsyslog; and all messages of priority 3 or
higher into /usrladmlcritical. The users "eric", "kridle", and "kalash"
will be informed on any subalert messages.

/etc/syslog.conf the configuration file

letclsyslog.pid the process ID

CAVEATS
LOG_ALERT and LOG_SUBALERT messages should only be allowed to
privileged programs.

Actually, syslog is not clever enough to deal with kernel error messages
in the current implementation.

SEE ALSO
syslog(3c).

REV SEP 1985 3

757

TCPD (SN) COMMAND REFERENCE TCPD(SN;

NAME
tcpd - T cp master server

SYNOPSIS
/etc/tcpd [-v J [-f confile J [-pserverdir J

DESCRIPTION
Tcpd is the master network server. This server acts as a surrogate for
network server programs. It opens sockets for each service and waits for
a connection to arrive on one of them. The appropriate server is then
started with the new connection on the standard input and output. The
standard error is connected to syslog(8).

Tcpd is used instead of having each server be a daemon, because this
reduces the number of processes (which improves performance).

The list of network servers/services is given in the configuration file;
default is letcltcp_servers (see tcp_servers(Sn) for description of format.

OPTIONS

Tcpd checks to see if the configuration file has changed (every minute),
and reconfigures itself if it has. Sending it a HUP signal will cause it to
reconfigure immediately.

-pserverdir
The daemon changes directory to serverdir starting up; [default is
lusr/libltcp_servers]

-fconfile
Use file confile instead of the usual configuration file letcltcp_servers.

-v Print out the name of all services which are provided when starting
up. (Used by !etc/re.net).

RETURN VALUE
[USAGE]

[P_ERRJ

[NP_ERRJ

CAVEATS

Incorrect command line syntax. Execution terminated.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

An error occurred that was not a system error. Execution
terminated.

The number of servers is limited to 26. The max number of arguments to
a server is limited to 64.

There is no way to set options before the accept. If the server wants an
option (such as SO_KEEPALIVE), it should do it itself.

SEE ALSO
services(Sn), ftpd(8n), rexecd(8n), rlogind(8n), rshd(Bn), syslog(8),
telnetd(8n).

758

REV MAR 1985

TELNETD (SN) COMMAND REFERENCE TELNETD (SN)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
/etc/tcp_services/telnetd [-d J [port J

DESCRIPTION
Telnetd is a server which supports the DARPA standard TELNET virtual
terminal protocol. The TELNET server process is started (by tcpd(8n))
when a connection is made at the port indicated in the TELNET service
description; see services(5n). This port number may be overridden (for
debugging purposes) by specifying a port number on the command line.

Telnetd operates by allocating a pseudo-terminal device for a client, then
creating a login process which has the slave side of the pseudo-terminal
as stdin, stdout, and stderr. Telnetd manipulates the master side of the
pseudo terminal, implementing the TELNET protocol and passing
characters between the client and login process.

When a TELNET session is started up, telnetd sends a TELNET option to
the client side indicating a willingness to do "remote echo" of characters.
The pseudo terminal allocated to the client is configured to operate in
"cooked" mode, and with XTABS and CRMOD enabled (see tty(4)).

OPTIONS

Aside from this initial setup, the only mode changes telnetd will carry out
are those required for echoing characters at the client side of the
connection.

Telnetd supports binary mode, and most of the common TELNET
options, but does not, for instance, support timing marks. Consult the
source code for an exact list of which options are not implemented.

-d Causes each socket created by telnetd to have debugging enabled
(see SO_DEBUG in socket(2)).

RETURN VALUE
[OJ Telnetd is running.

[1 J Telnetd is not running.

SEE ALSO
telnet(ln), tcpd(8n).

759

TFTPD(SN) COMMAND REFERENCE TFTPD(SN)

NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
/etc/tftpd [-d] [port]

DESCRIPTION
Tftpd is a server which supports the DARPA Trivial File Transfer Protocol.
The TFTP server operates at the port indicated in the TFTP service
description; see services(5n). This port number may be overridden (for
debugging purposes) by specifying a port number on the command line.
If the -d option is specified, each socket created by tftpd will have
debugging enabled (see SO_DEBUG in socket(2)).

The use of tftp does not require an account or password on the remote
system. Due to the lack of authentication information, tftpd will allow
only publicly readable files to be accessed. Note that this extends the
concept of "public" to include all users on all hosts that can be reached
through the network; this may not be appropriate on all systems, and its
implications should be considered before enabling tftp service.

OPTIONS
-d Causes each socket created by tftpd to have debugging enabled

(see SO_DEBUG in socket(2)).

port
Use this port instead of the one in services(5n).

RETURN VALUE
[O] Tftpd is running.

[1] Tftpd is not running.

[3] System socket error

CAVEATS
This server is known only to be self consistent (i.e. it operates with the
user TFTP program, tftp).

The search permissions of the directories leading to the files accessed
are not checked.

SEE ALSO
services(5n).

760

REV MAR 1985

TIMED(SN) COMMAND REFERENCE TIMED(SN)

NAME
timed - time daemon

SYNOPSIS
/etc/timed [-a] [-b] [-d] [-f logfile] [-t minutes]
remotehost

DESCRIPTION
Timed is a network server that implements a simple time synchronization
service.

The local host's time is compared to the time of the remotehost every 60
minutes. If the times differ, the local host's time will be synchronized to
the time of the remotehost.

OPTIONS
-a Get the remote host's time by using the udp service time instead of

the default service of utime.

-b Boottime; invoke timed as part of the booting process.

-d Debugging; don't spawn a new process and don't disconnect the tty.

-f logfile
Instead of writing error messages to syslog(8), write them to logfile.

-t minutes
Synchronize clocks every minutes minutes instead of the default of
every 60 minutes.

RETURN VALUE
[USAGE]

[NO_ERRS]

Incorrect command line syntax. Execution terminated.

Command completed without error.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) tor more information on system errors.

SEE ALSO
adjtime(2), udpd(Bn).

761

TUNEFS (8) COMMAND REFERENCE TUNEFS (8]

NAME
tunefs - tune up an existing file system

SYNOPSIS
/etc/tunefs tuneup-options special : filesystem

DESCRIPTION
Tunefs is designed to change the dynamic parameters of a file system
which affect the layout policies. The parameters which are to be changed
are indicated by the options given below.

The file system may be specified by giving special, the name of the
special file (device) on which the file system is mounted, or by specifying
filesystem, the name of the root directory of the file system.

OPTIONS
Tuneup options are:

-a maxcontig
This specifies the maximum number of contiguous blocks that will be
laid out before forcing a rotational delay (see -d below). The default
value is one, since most device drivers require an interrupt per disk
transfer. Device drivers that can chain several buffers together in a
single transfer should set this to the maximum chain length.

-d rotdelay
This specifies the expected time (in milliseconds) to service a transfer
completion interrupt and initiate a new transfer on the same disk. It
is used to decide how much rotational spacing to place between
successive blocks in a file.

-e maxbpg
This indicates the maximum number of blocks any single file can
allocate out of a cylinder group before it is forced to begin allocating
blocks from another cylinder group. Typically this value is set to
about one quarter of the total blocks in a cylinder group. The intent
is to prevent any single file from using up all the blocks in a single
cylinder group, thus degrading access times for all files subsequently
allocated in that cylinder group. The effect of this limit is to cause
big files to do long seeks more frequently than if they were allowed to
allocate all the blocks in a cylinder group before seeking elsewhere.
For file systems with exclusively large files, this parameter should be
set higher.

-m minfree
This value specifies the percentage of space held back from normal
users; the minimum free space threshold. The default value used is
10%. This value can be set to zero, however up to a factor of three
in throughput will be lost over the performance obtained at a 100/o
threshold. Note that if the value is raised above the current usage
level, users will be unable to allocate files until enough files have
been deleted to get under the higher threshold.

762

TUNEFS (8) COMMAND REFERENCE TUNEFS (8)

RETURN VALUE
[NO_ERRSJ Command completed without error.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _ERRJ A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
This program should work on mounted and active file systems. Because
the super-block is not kept in the buffer cache, the program will only take
effect if it is run on dismounted file systems. (If run on the root file
system, the system must be rebooted.)

SEE ALSO
fs(5), newjs(8), mkfs(8).

2
763

UDPD (SN) COMMAND REFERENCE UDPD (SN)

NAME
udpd - udp misc server

SYNOPSIS
/etc/udpd [-d J [-fconfile J

DESCRIPTION
Udpd is a network server which implements several simple network
services. The services are:

echo
Echo data back to the sender's address.

discard
Drop the packet.

time
Send back the time of day in seconds since 1 Jan 1900 midnight.
This is different from other UTek time functions which return time
since 1 Jan 1970. This is a 32-bit number in network byte order.

daytime
Send back the time of day in human readable form.

chargen
Send back a random length character pattern.

systat
Send back a list of user's currently on the system (maybe more than
one packet).

tekup
Send back a string similar to the output of uptime(ln) and w(l). This
function is used by the ECS version of the uptime command.

OPTIONS
-d Debugging; don't spawn a new process and don't disconnect the tty.

-flogfile
Instead of writing error messages to syslog(8), write them to logfile.

RETURN VALUE
O - daemon started okay

1 - errors prevented starting daemon

SEE ALSO
uptime(ln), services(5n), syslog(8).

764

UMOUNT(8) COMMAND REFERENCE UMOUNT(8)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [-f J [-r J [-v J [special J name

/etc/mount -a

/etc/umount [-v J special

/etc/umount -a
DESCRIPTION

Mount announces to the system that a removable file system is present
on the device special. The file name must exist already; it must be a
directory (unless the root of the mounted file· system is not a directory). It
becomes the name of the newly mounted root.

If only name is given without special, name must be an entry in the file
letclfstab (see fstab(5)).

Umount announces to the system that the removable file system
previously mounted on device special is to be removed.

These commands maintain and update a table of mounted devices in
letclmtab. If invoked without an argument, mount prints the table.

Mount and umount must be run by the super-user.

OPTIONS

FILES

-a All of the file systems described in letclfstab are attempted to be
mounted or unmounted. In this case, special and name are taken
from /etclfstab. The special file name from /etclfstab is the block
special name.

-f If invoked with this option, mount will not actually mount any file
systems, but letclmtab will be updated as if it had.

-r Indicates to mount that the file system is to be mounted read-only.

-v This option will cause mount or umount to print its actions as it
executes.

Physically write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

letclmtab

/etc I/stab

DIAGNOSTICS

mount table

file system table

Not owner
The caller is not the super-user.

Permission denied
The file letclmtab could not be updated.

765

UMOUNT(B) COMMAND REFERENCE UMOUNT(S)

RETURN VALUE
For both mount and umount:

[NO_ERRSJ

[USAGE]

[P_WARNJ

[P_ERRJ

For umount:

Command completed without error.

Incorrect command line syntax. Execution terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

CAVEATS
Mounting file systems full of garbage will crash the system.

Mounting a root directory on a non-directory makes some apparently
good pathnames invalid.

SEE ALSO
mount(2), fstab(5), mtab(5).

2

766

UPDATE(8) COMMAND REFERENCE

NAME
update - periodically update the super block

SYNOPSIS
/etc/update

DESCRIPTION

UPDATE(8)

Update is a program that executes the sync(2) primitive every 30 seconds.
This insures that the file system is fairly up to date in case of a crash.
This command should not be executed directly, but should be executed
out of the initialization shell command file.

SEE ALSO
sync(2), init(8), rc(8), sync(8).

767

UUCLEAN (8N) COMMAND REFERENCE UUCLEAN (8N)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
uuclean [option J ...

DESCRIPTION
Uuclean will scan the spool directory for files with the specified prefix and
delete all those which are older than the specified number of hours.

This program will typically be started by cron(8).

OPTIONS

FILES

-ppre
Scan for files with pre as the file prefix. Up to 10 -p arguments may
be specified. A -p without any pre following will cause all files older
than the specified time to be deleted.

-ntime

-m

Files whose age is more than time hours will be deleted if the prefix
test is satisfied. (default time is 72 hours)

Send mail to the owner of the file when it is deleted.

/usr /lib/uucp directory with commands used by uuclean
internally

lusrllibluucplspool spool directory

RETURN VALUE
(OJ No errors were encountered.

[nonzero]
Errors were encountered.

SEE ALSO
uucp(l n), uux(l n).

1

768

UUSNAP(8N) COMMAND REFERENCE UUSNAP(SN)

NAME
uusnap - show snapshot of the UUCP system

SYNOPSIS
uusnap

DESCRIPTION
Uusnap displays in tabular format a synopsis of the current UUCP
situation. The format of each line is as follows:

site N Cmds N Data N Xqts Message

Where site is the name of the site with work, N is a count of each of the
three possible types of work (command, data, or remote execute), and
Message is the current status message for that site as found in the STST
file.

Included in Message may be the time left before UUCP can re-try the call,
and the count of the number of times that UUCP has tried to reach the
site.

RETURN VALUE
[OJ No errors encountered.

[nonzero]
Errors encountered.

SEE ALSO
uucp(ln).

769

VIDFS(B) COMMAND REFERENCE VIDFS(8)

NAME
vidfs - edit and/or check the dfs access permissions file

SYNOPSIS
vidfs [-c [filename . . .]]

DESCRIPTION
With no arguments, vidfs locks the file letclhosts.dfs.access, copies its
contents to a temporary file, and invokes the editor (default = vi) on the
temporary file. After the editor is exited, the modified data is checked as
described below. If no problems are found, the temporary file replaces
the old access permissions file, which is unlocked. If only problems in
the Warning category are found, the user may re-edit the file, quit without
updating, or update the access permissions file, ignoring the warnings. If
any problems in the ERROR category are found, the user may re-edit the
file or quit without updating.

If called with the -c option, vidfs will check the named files as described
below. If no names are given, /etclhosts.dfs.access is checked.

File Checking
The following problems are considered Warnings. When they occur, a
message is printed giving the line number and a description of the
problem.

1 Duplicate entries

2 Host does not respond

3 Access by root permitted

The following problems are considered ERRORs. When they occur, a
message is printed giving the line number and a description of the
problem.

1 User not found in the password file

2 Ambiguous entry (an incoming request is to be assigned rights of
more than one local user)

OPTIONS

FILES

-c

letclhosts.dfs.access

Check the named files (default is
letc/hosts.dfs.access). Do not edit the access
permissions file.

The access permissions file to edit or the
default file to check.

letcldfstmp The temporary edit file.

VARIABLES
EDIT The editor to be used instead of vi.

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

REV SEP 1985

770

VIDFS(S) COMMAND REFERENCE VIDFS(S)

[1] The file(s) contained errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

CAVEATS
vidfs can only be used by root to edit the access permissions file (any
user can use vidfs with the -c option).

SEE ALSO
hosts.dfs.access(5n),

REV SEP 1985 2

771

VIPW(8) COMMAND REFERENCE VIPW(B)

NAME
vipw, pwck - edit and/or check the password file

SYNOPSIS
vipw [-c [filename . . .]]
pwck [-c] [filename . . .]

DESCRIPTION
With no arguments, vipw locks the file letclpasswd, copies its contents to
a temporary file, and invokes the editor (default = vi) on the temporary
file. After the editor is exited, the modified data is checked as described
below. If no problems are found, the temporary file replaces the old
password file, which is unlocked. If only problems in the Warning
category are found, the user may re-edit the file, quit without updating, or
update the password file, ignoring the warnings. If any problems in the
ERROR category are found, the user may re-edit the file or quit without
updating.

If called as pwck or with the -c option, vipw will check the named files
as described below. If no names are given, letc/passwd is checked.

File Checking
The following problems are considered Warnings. When they occur, a
message is printed giving the line number and a description of the
problem.

1 User name longer than 8 characters

2 User name begins with non-alphabetic character

3 User name contains characters other than a-z, A-Z, 0-9, -, and _

4 The home directory does not exist or is not a directory

These problems are considered ERRORs. When they occur, a message
is printed giving the line number and a description of the problem.

1 Not enough fields.

2 Too many fields.

3 Entry longer than 1024 characters.

4 Non-numeric or empty user id field.

5 Non-numeric or empty group id field.

6 The shell program does not exist or is not executable.
OPTIONS

-c Check the named files (default is letclpasswd).
Do not edit the password file.

REV MAR 1985

772

VIPW(8) COMMAND REFERENCE VIPW(8)

FILES
letclpasswd The password file to edit or the default file to

check.

letclptmp

VARIABLES

The temporary edit file.

EDIT

RETURN VALUE
[NO_ERRS]

[USAGE]

[1]

[NP_WARN]

[NP_ERR]

[P_WARN]

[P_ERR]

CAVEATS

The editor to be used instead of vi.

Command completed without error.

Incorrect command line syntax. Execution terminated.

The file(s) contained errors.

An error warranting a warning message occurred.
Execution continues.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Vipw can only be used by root to edit the password file (any user can
use pwck and vipw with the -c option). Its use should be restricted to
major modifications and corrections. Make normal changes with chfn(J),
chsh(J), passwd(l), and other utilities.

The earlier versions of this utility were shell scripts. It is imperative that
the earlier versions not be used in this system. Locking is now handled
by the kernel, whereas the shell scripts used a lock file.

SEE ALSO
chfn(I), chsh(l), passwd(l), passwd(5).

2 REVMAR1985

773

VIWSB(8N) COMMAND REFERENCE VIWSB(BN)

NAME
viwsb - edit and/or check the dumptable file

SYNOPSIS
/etc/viwsb [-c [filename . . .]]

DESCRIPTION
With no arguments, viwsb locks the file letc!dumptable, copies its
contents to a temporary file, and invokes the editor (default = vi) on the
temporary file. After the editor is exited, the modified data is checked as
described below. If no problems are found, the temporary file replaces
the old dumptable file, which is unlocked. If only problems in the Warning
category are found, the user may re-edit the file, quit without updating, or
update the dumptable file, ignoring the warnings. If any problems in the
ERROR category are found, the user may re-edit the file or quit without
updating.

If called with the -c option, viwsb will check the named files as
described below. If no names are given, letcldumptable is checked.

File Checking
The following problems are considered Warnings. When they occur, a
message is printed giving the line number and a description of the
problem.

1 Workstation name longer than 32 characters

2 Workstation name begins with non-alphabetic character

3 Workstation name contains characters other than a-z, A-Z, 0-9, -,
and_

4 Dump level mask longer than 1 O digits

5 More than one group designator

The following problems are considered ERRORs. When they occur, a
message is printed giving the line number and a description of the
problem.

1 Incorrect number of fields.

2 Entry longer than 1024 characters.

3 Empty file system field.

4 Non-numeric or empty dump level field.

OPTIONS

5 Non-numeric or empty frequency field.

6 Non-numeric or empty group load field.

7 Non-alphabetic or empty group field.

-c Check the named files (default is
letc/dumptable). Do not edit the dumptable
file.

774

VIWSB(SN)

FILES
I etc/ dump table

letclwsbtmp

VARIABLES
EDIT

RETURN VALUE
[NO_ERRS]

[USAGE]

[1]

[NP_WARN]

[NP_ERR]

[P_WARN]

[P _ERR]

CAVEATS

COMMAND REFERENCE VIWSB(SN)

The dumptable file to edit or the default file to
check.

The temporary edit file.

The editor to be used instead of vi.

Command completed without error.

Incorrect command line syntax. Execution terminated.

The file(s) contained errors.

An error warranting a warning message occurred.
Execution continues.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

Viwsb can only be used by root to edit the dumptable file (any user can
use viwsb with the -c option).

SEE ALSO
wsdumptable(5n), wsdump(8n), wsrestore(8n)

2

775

WSASS(8N) COMMAND REFERENCE WSASS(8N)

NAME
wsass - wsdump assign utility

SYNOPSIS
/etc/wsass [-a] [-d] [-r] device

DESCRIPTION
Wsass is a utility used by the workstation dump and restore programs in
assigning and rewinding a magnetic tape drive. Wsass calls assign(l),
deassign(l) and mt(l) to assign, deassign and rewind the device. Wsass
is needed to locally handle the device which is owned by the remote
process running under wsdump(8n).

OPTIONS
-a Assign the device.

-d Deassign the device.

-r Rewind the device.

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE]

[NP _ERR]

[P_WARN]

[P_ERR]

SEE ALSO

Incorrect command line syntax. Execution terminated.

An error occurred that was not a system error. Execution
terminated.

A system error occurred. Execution continues. See
intro(2) for more information on system errors.

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

assign(l), deassign(l),_ mt(l), wsdump(8n), wsrestore(8n).

776

WSDUMP(8N) COMMAND REFERENCE WSDUMP(BN)

NAME
wsdump - multi-workstation dump utility

SYNOPSIS
/etc/wsdump [-1 level] [-g group] [-w workstation [-f filesystem]]
[-s size] [-d density] [-F] [-S] target-media

DESCRIPTION
Wsdump is a multi-workstation dump which runs in conjunction with
rdump(8n).

OPTIONS
-I level This option specifies the 'dump level'. All files modified since

the last date stored in the file /etcldumpdates on the workstation
being dumped for the same filesystem at lesser levels will be
dumped. The -1 option must be specified if the ·-g or -w
option is specified.

-g group
This option specifies the group of workstations to be dumped.
Workstations are placed into groups ranging from A to z when
they are entered in the file /etclwsdumptable.

-w workstation
This option specifies the workstation to be dumped. If the -w
option is specified and the -f option is not specified, all
filesystems that reside on workstation and found in the file
letclwsdumptable will be dumped.

-f filesystem
This option specifies the filesystem to be dumped. This option
must be used with the -w option.

-s size The size of the dump media is specified by size. When the
specified size is reached, dump will wait for media to be
changed. The default size is 2000 feet for 9 track tapes 360k for
floppy disk and 400 feet for cartridge tape.

-d density
The density of the tape, expressed in BPI, is taken from density.
This is used in calculating the amount of tape used per volume.
The default is 1600 for 9-track tape, and 8000 for cartridge.

-F Specifies floppy disk backup media (9-track tape is default).

-5 Specifies streamer cartridge tape backup media (9-track tape is
default).

If no options are given, wsdump scans through the file letclwsdumptable
and determines which filesystems to dump at which levels. To execute
wsdump one must be logged in as dumpopr.

777

WSDUMP(8N) COMMAND REFERENCE WSDUMP(8N)

EXAMPLES

FILES

/etc/wsdump -1 0 -w kokomo -f /dev/dwlOa -S /dev/tc
(dump entire filesystem 11/dev/dw1 Oa 11 on 11 kokomo 11 to local tape
cartridge device 11 /dev/tc")

/etc/wsdump -I O -w nodename /dev/rmt1
(dump all filesystems on 11 nodename 11 found in the file
/etc/wsdumptable to the tape device 11 /dev/rmt1 11)

/etc/wsdump -I 0 -g A /dev/rmt2
(dump all filesystems in group 11A11 to the local tape device
11/dev/rmt2 11)

/etc/wsdump /dev/rmt8
(dump all filesystems on all workstations specified in
/etc/wsdumptable to the local tape device 11/dev/rmt8 11)

I etclwsdumpdates

I etclwsdumptable

-1.netrc

Dump date record: output file

Dump table input file

Network access file.

lusrladmlwsdumplast Dump table for group dumps

RETURN VALUE
[NO_ERRS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _ERR] An error occurred that was not a system error. Execution
terminated.

[P _ERR] A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

SEE ALSO
netrc(5n), wsdumptable(5n), rdump(8n), rrestore(8n), wsass(8n),
wsrestore(8n).

2

778

WSRESTORE(8N) COMMAND REFERENCE WSRESTORE(BN)

NAME
wsrestore - multi-workstation restore utility

SYNOPSIS
/etc/wsrestore [-w workstation] [-f fi/esystem] [-t restore device]
[-m modification date] [-I last access date] [-d dump date and time]
[-r restore directory] [-o restore options] [-F] [-S]

DESCRIPTION
Wsrestore is a multi-workstation restore that runs in conjunction with
rrestore(8n). Wsrestore executes rrestore on a remote workstation,
allowing that workstation to restore from a dump media on the host server
to the workstation's storage device.

OPTIONS
-w workstation

This option specifies the workstation to be restored. This option
is required. If it is not entered on the command line, then
wsrestore will prompt for it.

-f filesystem
This option specifies the filesystem to be restored. This option is
required. If it is not entered on the command line, then
wsrestore will prompt for it.

-t restore device
This option specifies the restore device to be used in restoring
archived files. The path must be a complete path specifying the
device as a floppy, a cartridge tape, a 9 track tape, or a disk file.
The raw device should be specified and no rewind should be
used for 9 track or cartridge tape (e.g. /dev/nrmt8). Default
devices are used depending on the media specified (see -F
and -S).

-m modification date
This option specifies the modification date of the file to be
restored. This date is used to scan the letclwsdumpdates file to
locate the proper volume to mount for the restore. This option
must be entered along with -I unless the -d option has been
used. If it is not entered on the command line, then wsrestore
will prompt for it.

-1 last access date
This option specifies the last access date of the file to be restored.
This date is used to scan the letclwsdumpdates file to locate the
proper volume to mount for the restore. This option must be
entered along with -m unless the -d option has been used. If
it is not entered on the command line, then wsrestore will
prompt for it.

-d dump date
This option specifies the dump date of the volume to be restored.
The dump date must be entered as date and time exactly to

779

WSRESTORE(SN) COMMAND REFERENCE WSRESTORE(SN)

match the volume required as listed in the letclwsdumpdates file.
If this option is used, -m and -1 are unnecessary.

-r restore directory
This option specifies the restore directory on the workstation
where files are to be restored. The default directory is
lusr I dumpopr /restore.

-o restore options
This option specifies the additional restore options to be used.
The default option is -i for interactive restoration.

-F Specifies floppy disk backup media (9-track tape is default).

-S Specifies streamer cartridge tape backup media (9-track tape is
default).

If no options are given, wsrestore will prompt for all information to
perform the restore. You must be logged in as dumpopr to execute
wsrestore.

EXAMPLES

FILES

/etc/wsrestore -w dolphin -f /dev/dwOOa -t /dev/nrmt7
(interactive restore of filesystem "/dev/dwOOa 11 on "dolphin" from
9-track tape device 11/dev/nrmt7 11 • Extracted files are placed in
/usr/dumpopr/restore on "dolphin".)

/etc/wsrestore -S -t /dev/ntc -r /tmp
(interactive restore from local tape cartridge device 11/dev/ntc".
Workstation and filesystem are prompted for by wsrestore.
Extracted files are placed in /tmp on specified workstation.)

/etc/wsrestore -w duke -d "08/22/85 OJ:2J:J4" -o iv
(verbose interactive restore of workstation 11duke 11 for dump done
on August 22, 1985 at 3:23:34. Restore device and filesystem
are prompted for by wsrestore.)

I etclwsdumpdates Dump date record - scanned to find volume to
mount for restore.

-1.netrc Network access file.

RETURN VALUE
[NO_EAAS] Command completed without error.

[USAGE] Incorrect command line syntax. Execution terminated.

[NP _WARN] An error warranting a warning message occurred.
Execution continues.

[NP _ERA] An error occurred that was not a system error. Execution
terminated.

[P _WARN] A system error occurred. Execution continues. See
intro(2) for more information on system errors.

2

780

WSRESTORE(SN)

[P_ERR]

SEE ALSO

COMMAND REFERENCE WSRESTORE(SN)

A system error occurred. Execution terminated. See
intro(2) for more information on system errors.

netrc(5n), wsdumptable(5n), rdump(8n), rrestore(8n), wsdump(8n).

3

781

