
TEK PROGRAMMERS
REFERENCE

Part No. 070-5969-00
Product Group 07

4400 SERIES
COM,MON LISP

TEK PROGRAMMERS
REFERENCE

First Printing APR 1986

Part No. 070-5969-00
Product Group 07

4400 SERIES
COMMON LISP

Please Check at the
Rear of this Manual
for NOTES and
CHANGE INFORMATION

-n:dd:ronix~

Reprinted with permission from Franz Inc. Printed in the
United States of America.

© 1985, 1986 by Franz Incorporated, Alameda, California.
All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means electronic, mechanical, by
photocopying or recording, or otherwise, without the prior
and explicit written permission of Franz Incorporated.

TEKTRONIX is a registered trademark of Tektronix, Inc.

This version describes COMMON LISP as implemented by
Tektronix.

Please address all mail to;

Artificial Intelligence Machines
Tektronix, Inc.
P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES COMMON LISP PROGRAMMING

This manual supports the following versions of this product: . Version 1.0

REV DATE DESCRIPTION

APR 1986 Original Issue

4400 SERIES COMMON LISP PROGRAMMERS

Tek COMMON LISP Installation

INTRODUCTION
This document describes the Tek COMMON LISP distribution. It describes the diskettes, the file
organization, and discusses how to get COMMON LISP running on your 4400 Series system.

The software comes on a set of floppy diskettes in relative backup format. To install the
software, you must create a directory called Icommon-lisp, restore the files using the restore
utility, then build your COMMON LISP system.

LOADING THE SOFTWARE
The following step-by-step procedure assumes that you have not created a file called Icommon
lisp on your system.

1. Boot your system.

2. login as system.

3. You must be in the root directory ("1"). To insure this type:

chd /

4. Create a directory called Icommon-lisp. To do so, type:

crdir common-lisp

5. Restore the COMMON LISP files from the distribution diskettes. To do so, type:

restore +ldb common-lisp

6. At the system's prompt, insen the diskettes in order.

FILE ORGANIZATION
The organization of the files are as follows:
/ common-lisp:

build:
This directory contains files for building a fresh common-lisp. It contains the following:

Readme

make-cl

ucl

ucl-4400

files.bu

COMMONUSP

; describes how to use the makefile.

; builds an upper-ease-insensitive COMMON LISP.

; a runtime system used only for the 4405/4406

; a runtime system for either 4404 or 4405/4406.

; contains all fasl files comprising the common-lisp system.

i-I

Tek COMMON LISP Installation

lib:
This directory contains two other subdirectories

code and doc.

/common-lisp/liblcode contains:

tracefasl [The trace package]

stepfasl [The Stepper]

flavorsfasl [The flavors system]

vanillafasl [The base flavors system]

tek-graphfasl [The 4400 Tektronix Graphics Library]

/common-lisp/libldoc contains:

docstrings [The COMMON LISP documentation strings]

BUILDING A COMMON LISP
To build a COMMON LISP, follow this procedure:

1. restore all the diskettes as described above.

2. Move to the directory Icommon-lisplbuild. Type:

sys++ chd /common-lisp/build
sys++

3. Read the file called ReadMe. To do so type:

sys++ more ReadMe
The display will pause at the end of each screenful of text until you press the space bar.

4. Make an executable version of COMMON LISP for your machine. To make a upper-case
insensitive COMMON LISP for the 4405/4406, type:

sys++ make-cl
It will take a few minutes to create an executable file called Ibin/cl. This will be an upper
case-insensitive version (the standard version) of COMMON LISP. The file /common
lisp/build/ReadMe contains details of how to build other case modes and versions of
COMMON LISP that will run on the 4404.

5. Run COMMON LISP. To do so, type:

sys++ cl
You are now inside the Tek COMMON LISP interpreter.

i-2

·

Preface
1 The language p-l
2 History p-l
3 Comments and suggestions p-2
4 Reporting bugs p-2
5 Keeping abreast p-4

1 Introduction
1.1 Format of the manual 1-1
1.2 Chapter descriptions 1-2
1.3 Reference to other documents
1.4 How to run lisp 1-3
1.5 How to compile functions 1-3
1.6 Note on special function forms

2 Implementation
2.1 Data types 2-1
2.2 Storage allocation 2-2
2.3 Pathnames 2-2

3 Extensions
3.1 Reader case modes 3-1
3.2 Errors 3-4
3.3 Miscellaneous functions 3-4

4 Operating-system interface

5 Top level
5.1 Introduction 5-1
5.2 The top level specification 5-1

1-2

1-4

5.3 Adding new top-level commands 5-18
5.4 A Sample Init File 5-20

6 Flavors
6.1 Introduction 6-1
6.2 Objects 6-1

Contents

6.3 Modularity 6-3
6.4 Generic operations 6-6
6.5 Generic operations in LIsP 6-8
6.6 Simple use of flavors 6-10
6.7 Mixing flavors 6-14
6.8 Flavor functions 6-18
6.9 Defflavor options 6-27
6.10 Flavor families 6-36
6.11 Vanilla flavor 6-37
6.12 Method combination 6-39
6.13 Implementing flavors 6-48
6.14 Property list operations 6-50
6.15 Copying instances 6-52

7 Profiling

8 Extrinsic data and procedures

A Summary of symbols

I Index

The Tek COMMON LISp User Guide and the book, Common Lisp: The
Language, comprise the Tek COMMON LISp documentation kit.
Together, they describe the language and its use. Common Lisp
details the functions and the calling conventions of standard COM
MON LISP, while Tek COMMON LISP User Guide describe features of
this implementation of COMMON LISp: its extensions, added features,
and peculiarities. We advise the user to read at least the following
chapters of this document before using Tek COMMON LISp:

Chapter 1: 'Introduction'
Chapter 2: 'Implementation'
Chapter 4: 'Operating System Interface'
Chapter 5: 'Top Level'

Preface

The Tek COMMON LISp system consists of an interpreter and an in- 1
line optimizing compiler. Tek COMMON LISp is a robust and com- The language
plete implementation of COMMON LISP, as specified in Common
Lisp. In addition, it has been enhanced by a fast, solid implementa-
tion of Flavors and a rich, mod~less top level with extensive intrinsic
debugging facilities. A symmetric interface package between LISP
and extrinsic data and procedures (e.g. of C and FORTRAN) is
currently under development, and will be added to the language in a
later release. Tek COMMON LISP was designed to be compact and
very fast. It is written in COMMON LISP and a special low-level
language.

LISP was one of the fITst high-level computer languages developed, 2
originating in the late fifties, soon after the emergence of FORTRAN. History
From the beginning LISP was a memory-intensive language. For this
and less practical reasons, LISP was used mostly at universities until
the parallel development of inexpensive fast memory and the
nascence of microprocessors in the early eighties made it practicable
for general use. By that time, LISP had diverged into a number of
dialects developed at major research centers. With LISP's increasing
pervasion, the LISp community felt a concomitantly increasing need

p-1

Tektronix, Inc.
p-2 Preface

3
Comments
and
suggestions

4
Reporting
bugs

to standardize the language. This need culminated in the efforts of
Guy L. Steele, Jr., and others to define a new language, COMMON

LIsP, combining the features of the various dialects of LiSp into a sin
gle lingua franca of the artificial intelligence community, now com
mercial as well as academic. In this process, inconsistencies and
vagaries of particular dialects were rationalized, making COMMON

LISP a 'cleaner' language than older LISPs encrusted with layers of
tributes to generations of hackers come and gone. The book Com
mon Lisp defines the resulting language. Tek COMMON LISP is a
complete implementation of the COMMON LiSp language as defined
in that book, enhanced with extensions in important areas such as the
top level, error handling, and debugging, left undefined or vague by
the book. This Tek COMMON liSP User Guide describes our imple
mentation of COMMON LiSp.

We are always seeking a dialogue with our users in order to improve
Tek COMMON LISP. We invite your comments and suggestions. A
form is provided at the back of this manual for your convenience, but
of course personal correspondence is always welcome. The address
to which to write, either by post or by electronic mail, is on the infor
mation sheet enclosed with this document.

We are committed to the highest standards of software engineering.
Releases of Tek COMMON LiSp are extensively tested both internally
and in the field before wide dissemination. Nevertheless, as with all,
es~cially new, complicated computer programs, it is possible that
you will find bugs or encounter behavior that you do not expect. In
that event, we will do our utmost to resolve the problem. But, resolv
ing bugs is a cooperative venture, and we need your help. Before
reporting a bug, please study this document and Common Lisp to be
sure that what you experienced was indeed a bug. If the documenta
tion is not clear, this is a bug in the documentation: Tek COMMON

LISP may not have done what you expected, but it may have done
what it is supposed to do. A report that such and such happened is
generally of limited value in determining the cause of a problem. It
is very important for us to know what happed before the error
occured: what you typed in, what Tek COMMON LISP typed out. A
literatim log, preferably hard copy, may be needed. If you are able to
localize the bug and reliably duplicate it with a minimal amount of
code, it will greatly expedite repairs. It is much easier to find a bug
that is generated when a single isolated function is applied than a bug
that is generated somewhere when an enormous application is
loaded. Although we are intimately familiar with Tek COMMON

Tek COMMON Lisp
Preface p-3

LISP, you are familiar with your application and the context in which
the bug was observed. Context is also important in detennining
whether the bug is really in Tek COMMON LISP or in something that
it depends on, such as the operating system.

To this end, we request that your reports to us of bugs or of
suspected bugs include the following information. If any of the
information is missing, it is likely to delay or complicate our
response.

• Lisp implementation details. Tell us the implementation of Tek
COMMON LISP that you are using, including at least the release
number and date of release of Tek COMMON LISP, the manufac
turer, model, and version of the hardware on which you are run
ning Tek COMMON LISP, and the operating system and its release
number. The minimum information we need can be provided by
executing the following functions within Tek COMMON LISP:
lisp-implementation-type, lisp-implementation-version,
machine-type, maChine-version, software-type, software
version, and short-site-name.

• Information about you. Tell us who you are, where you are and
how you can be reached (an electronic mail address if you are
reachable via Internet or Usenet, a postal address, and your tele
phone number), your Tek COMMON LISP license number, and in
whose name the license is held.

• A description of the bug. Describe clearly and concisely the
behaviour that you observe.

• Exhibits. Provide us with the smallest, self-contained LISP
source fragment that will duplicate the problem, and a log (e.g.
produced with the dribble function) of a complete session with
Tek COMMON LISP that illustrates the bug.
A convenient way of generating at least part of a bug report is to

use the dribble function in Tek COMMON LISP. (The function is
described in §25.3, p. 443 of Common Lisp.) First type (dribble
filename) to record the remainder of the session in file filename.
Then apply the functions that were described earlier to describe your
implementation of Tek COMMON LISP. Next duplicate your bug.
And then type (dribble) to end the log. Note that if what you type to
duplicate the bug loads in mes either directly or indirectly, attach a
complete listing of the source version of these files to your session
log. The following dialogue provides a rudimentary template for the
kernel of a bug report.

<cl> (dribble "bug.dribble")
<cl> (11sp-implementation-type)
<cl> (11sp-implementation-vers1on)
<cl> (machine-type)

Tektronix, Inc.
p-4 Preface

5
Keeping
abreast

<cl> (machine-version)
<cl> (software-type)
<cl> (software-version)
<cl> (short-site-name)
<cl> ;; Now duplicate your bug
<cl> (dribble)

Send bug reports to either of the electronic mail or postal
addresses that are given on the information sheet that is enclosed
with this document. In general an electronic report can be acted
upon more speedily. When we receive your bug report, it will be
assigned a number by which we can mutually refer to it concisely
and unambiguously, and you will be sent a receipt. We will
investigate the report and inform you of its resolution in a timely
manner.

We will meet you more than half way to get your project moving
again when a bug stalls you. We only ask that you take a few steps
in our direction.

We maintain mailing lists, both by post and by electronic mail. We
also maintain an electronic mail forum, accessible via Internet and
Usenet, for users ofTek COMMON LISP. You are invited to subscribe
to our mailings and to become a member of our electronic forum.
We like to hear about what our customers are doing with Tek COM
MON LISP, and we can keep you abreast of new releases and other
pertinent information. The addresses appear on the information sheet
enclosed with this document. Join us!

1 Introduction

1.1 Format of the manual 1-1
1.2 Chapter descriptions 1-2
1.3 Reference to other documents 1-2
1.4 How to run lisp 1-3
1.5 How to compile functions 1-3
1.6 Note on special function forms 1-4

1 Introduction

This document is the Tek COMMON LISP User Guide. It is designed
to supplement Common Lisp: The Language (Guy L. Steele, Jr.,
Digital Press, 1984), and it describes feature and implementation
details specific to this implementation of COMMON LISP. This intro
duction will describe the format of this manual; the contents of the
other chapters; other documents that will be useful to you, and how
this document relates to them; and how to run Tek COMMON LISp
and compile functions. We urge users to read this chapter, and at
least chapters 2, 4 and 5 before using Tek COMMON LISP.

This document is a reference manual. Neither it nor Common
Lisp are primers to COMMON LISP nor introductions to the language.
The user is encouraged to consult textbooks on LISP such as USPcraft
(Robert Wilensky, W. W. Norton and Company, 1984) to gain
familiarity with the language. We assume that you are familiar with
at least one dialect of LISp.

This document is divided up into several chapters describing how we
implemented features either not described in Common Lisp or not
specified exactly in Common Lisp. We have tried to follow the for
mat of Common Lisp, where possible. The format is described in
detail in § 1.2.5 of Common Lisp. Briefly, definitions of functions,
variables, named constants, special forms and macros appear on their
own line in a special type font and in the following fonn:

name parameters

For example:

digit-char-p char &optiona/ (radix 10)
default-pathname-defaults
setf {place newvalue}*

[Type]

[Function]
[Variable]

[Macro]

As in Common Lisp, defmitions may spill over onto additional lines,
and are followed by explanation and examples.

Type faces are used to distinguish between functions, symbols,
constants, printed fonns, and examples. Functions are printed in
bold gothiC. Other symbols are printed in gothic. Constants (such

1 .1
Format of the

manual

1-1

Tektronix, Inc.
1-2 Introduction

1.2
Chapter
descriptions

1.3
Reference to
other
documents

as 0, #AA, '~", or nil) and special symbols (such as *package*) are
printed in italic gothic. Keywords and lambda-list keywords (such as
:test and &optiona/, respectively) are indicated in bold italic
gothic. Printed forms are printed in italic gothic. Examples in the
text are printed in gothic. When examples appear separate from the
text, output from the Tek COMMON LISP system is printed in
courier; input to Tek COMMON LiSp is printed in bold
courier; and comments are printed in italic courier.

This document contains the following chapters:
1 This 'Introduction.'
2 'Implementation.' This chapter describes specifics of this imple

mentation of the Common Lisp language, with sections on data
types, storage allocation, pathnames and the compiler.

3 'Extensions.' This chapter describes some of the extensions to
Common Lisp found in Tek COMMON LISP. In particular, the
error handler is described.

4 'Operating-system interface. '
5 'Top level.' The top level is the user's interface with Tek COM

MON LISP. This chapter describes it.
6 'Flavors.' Flavors is an object-oriented language that is part of

Tek COMMON LISP as an extension to COMMON LISP. This
chapter is a user guide to the Flavors system.

7 'Profiling.' This chapter describes the profiling tools, which
allow the user to discover where code is spending time.

8 'Extrinsic data and procedures.' This chapter describes the
foreign-function interface.

Also included in this document are a summary of symbols and an
index. Certain machine-specific information are included in the
appropriate copies of this document.

Along with this document and Common Lisp, you should have
received an installation guide. Release notes are bound in with this
document. Most of Tek COMMON LiSp is described in Common
Lisp. You should refer to that book for most information on the func
tionality of Tek COMMON LISP. If the description in Common Lisp
are vague, or if the implementation is explicitly unspecified, then
refer to this document, where details of this implementation are
described. Also found in this document are descriptions of exten
sions to COMMON LiSp (features beyond the scope of the specifica
tion in Common Lisp), such as 'Flavors' (chapter 6) and 'Profiling'
(chapter 7).

D·OI"{}'2(4

Tek COMMON Lisp
Introduction 1-3

New users should install their system following the instructions
in the installation guide. Once the system has been successfully
installed, there should be no reason to refer to the installation guide
again. It should be kept, however, in case you must reinstall the sys
tem for any reason.

We recommend that you at least scan most of this manual before
seriously using Tek COMMON LISP, for details of the implementation
are contained here. Also, look over the release notes, which list
features (and problems) that affect this release. Common Lisp should
be your main reference manual. Tek COMMON LISP implements the
language as described in that book. We would appreciate any com
ments you have about the documentation, its completeness, ease of
use, or clarity. You may send comments to the address listed on the
information page at the end of this document.

The installation procedure ends with the building of a file named d.
The exact location of this file will depend on your machine confi
guration. Let us assume, however, that the file is in a directory con
tained in your search path (e.g., lusrllocal). To get into Tek COM
MON LIsP, just type

% cJ.

There will be a short wait while Tek COMMON LISp is being loaded
and initialized. Then you should see the Tek COMMON LISp header
and the prompt, which looks like

<cl>

At this point, you are in the LISP environment and have all of COM
MON LISp at your disposal.

If you have insufficient swap space, LiSp may stop with an error
message indicating that the swap space is too small. In that case,
either stop other processes or increase the size of your swap space,
and then start Tek COMMON LISP again. (If you find it necessary to
increase your swap space, refer to your operating-system documenta
tion.)

COMMON LISP provides two ways to compile functions. The first is
to define the function in the interpretive environment and then call
the compile function. The second way is to write the function to a
file either with an editor or some other means, and then call the
compile-file function. For example, suppose you have the function
100 defined already in your LISP environment, then to compile it, just
type

1.4
How to run

lisp

1.5
How to

compile
functions

Tektronix, Inc.
1-4 Introduction

1.6
Note on
special
function forms

<cl> (compi~e 'fool

which will replace the interpreted version of foo with the compiled
version of faa. If you want to compile a whole· file (say foofnes.c!)
full of functions, you can use the function compile-file as follows

"<cl> (compi~e-fi~e "foofncs.c~")

which will result in a new file being created infoofnes.el's directory
called foofncs/asl. This file can then be loaded into your LISP
environment (with either the load function or with the :Id top-level
command), and you will then have .all of foofnes's compiled func
tions at your disposal.

Users trying to debug code will often have occasion to look at the
stack for recent function calls. There, one may find, instead of *, I,
+, <, etc., oddly named functions of the form:

string_2op
string_30p

where string is *, +, I, <, etc. This function is called for compiler
efficiency, and should be interpreted as the function named by
string. Thus, for example, 1_20p should be intepreted 1 (Le. the divi
sion function).

2 Implementation

2.1 Data types 2-1
2.2 Storage allocation 2-2
2.3 Pathnames 2-2

2.3.1 Parsing pathnames 2-2
2.3.2 Merging pathnames 2-3

2 Implementation

Tek COMMON LISP contains all of the required COMMON LISp data
types plus an instance data type for use by the flavors system. Fix
nums are signed 29-bit quantities. Bignums may be as large as
21,048,576. There are two distinct floating-point types. Short-float and
single-float are equivalent and are 32-bits wide. Double-fioat and
long-float are equivalent and are 64-bits wide. The distinct array
data types are the following:

(array t)
(array bit)
(array (unsigned-byte 8)}
(array (unsigned-byte 16»
(array (unsigned-byte 32»
(array string-char)
(array single-float)
(array double-float)
(array (signed-byte 8))
(array (signed-byte 16))
(array (signed-byte 32»
(array fixnum)
(simple-array t (*))
(simple-array bit (*))
(simple-array (unsigned-byte 8) (*))
(simple-array (unsigned-byte 16) (*)}
(simple-array (unsigned-byte 32) (*))
(simple-array single-float (*))
(simple-array double-float (*))
(simple-array (signed-byte 8) (*))
(simple-array (signed-byte 16) (*)}
(simple-array (signed-byte 32) (*))
(simple-array fixnum (*))

2.1
Data types

2-1

Tektronix, Inc.
2-2 Implementation

2.2
Storage
allocation

2.3
Pathnames

2.3.1
Parsing
path names

Tek COMMON LIsp useS a two-space, copying garbage collector.
Data objects which cannot move or are unlikely to become garbage
are placed in a special static storage area.

gc

[Variable]

• If the variable *gcprint* is not nil, then when garbage collec
tion is started a message will be printed on the terminal, and after
it is complete another message will be printed describing the
current state of storage allocation. It prints the statistics in this
form: a/be c), where is a is the number of bytes of dynamic space
is use, b is the total number of dynamic bytes available, and c is
the total number of static space bytes allocated.

[Function]

• This will cause a garbage collection to occur. A garbage col
lection will occur automatically whenever the free space is
exhausted.

COMMON LISP pathnames do not always map easily into operating
system filenames. In this section we describe the mapping chosen
for Tek COMMON LISP on the Unix operating system.

The host and version components of pathnames are ignored.
The directory, name, and type fields are determined from a name

string as follows: If there are no slashes in the namestring, then the
directory component is nil. If there are slashes then all characters
from the beginning of the namestring to, but not including, the last
slash in the namestring is the directory component. The one excep
tion is that if there is just one slash and it is at the beginning of the
name, then the directory component is "1". After removing the direc
tory component and the following slash from the namestring, the rest
of the string determines the name and type components. If the rest of
the string is empty then both components are nil, otherwise, the name
contains everything up and excluding the last period in the string.
The characters following the period are the type. If the name ends in
a period, then the type is the empty string. The exceptions are for
names beginning with a period. In this case the period is being used
to hide the file from the directory listing program, not to separate the
name and type components, thus a leading period is treated as a non
period character. The string " .. " is treated specially and is parsed as a
name of If •• " and a type of nil. The following table has some examples
of pathname parsing:

Tek COMMON LiSp
Implementation 2-3

Pathname components

Namestring Directory Name Type

"1" "I" nil nil
"Ifoo" "I" "foo" nil
"Ifoo." ''/'' "foo" ""
"Ifoo.b" "I" "foo" "b"
"Ifoo.bar. " "j" "foo.bar" ""
"Ifoo.bar.baz" ''/'' "foo.bar" "baz"
"Ifoo .. bar" ''/'' "foo." "bar"
"foo.bar" nil "foo" "bar"
"fool" "foo" nil nil
"foolbar" "foo" "bar" nil
"foolbarlbaz" "foolbar" "baz" nil
"foolbarl" "foolbar" nil nil
"./isprc" nil ".Iisprc" nil
"x./isprc" nil "x" "/isprc"
" " nil " " nil .
" " nil " " nil
" " nil " " "" ..
Table 2.1. Examples of conversions of namestrings to
pathnames.

Merging of pathnames is handled specially by Tek COMMON LISP on
the Unix operating system to take advantage of directory hierarchies.

Given two pathnames a and b, then the result (c) of merging these
pathnames may cause merging of their directory components.

(setf c (merge-pathnames a b»

If pathname a does not have a directory component, then the direc
tory component of pathname b becomes the directory component of
the result c. If pathname a's directory component is absolute (i.e. it
begins with a slash "1") then pathname c will have pathname A's
directory component.

If pathname a has a directory component that is relative, then the
directory component of pathname c depends on the directory com
ponent of pathname b. If pathname b has a relative directory com
ponent, then c's directory component will be the same as a's. If b's
directory component is absolute, the relative directory component of
pathname a is appended to the absolute component and the result is
canonicalized to eliminate such components as "." and " .. ". For

2.3.2
Merging

pathnames

Tektronix, Inc.
2-4 Implementation

example if pathname b's directory component is ''/foo'' and pathname
a's directory component is "./bar", then pathname e's directory com
ponent will be "/foolbar". Finally, if pathname b does not have a
directory component, the directory component' of pathname a
becomes e's directory component.

!).()I-02I4

3 Extensions

3.1 Reader case modes 3-1
3.1.1 The modes 3-1
3.1.2 Functions and variables 3-2
3.1.3 The set-ease-mode function 3-2
3.1.4 Compatability 3-3

3.1.4.1 Case preference 3-3
3.1.4.2 Compiled code 3-3
3.1.4.3 Using set-ease-mode 3-4

3.2 Errors 3-4
3.3 Miscellaneous functions 3-4

3 Extensions

In Standard COMMON LISP, the reader converts all unescaped lower 3.1
case characters to upper case, so that for example Foo and too are Reader case
both read as FOa. This is a sign of the age of the LISP programming modes
language. When LISp was invented in the sixties, most terminals
could only handle upper case. When lower case terminals started to
appear, most operating systems and languages were modified to sim-
ply map lower case characters to upper case and then proceed as
before. Some modem programming languages (C, Smalltalk,
Modula-2, Newspeak) distinguish between upper and lower case in
identifiers and programmers use this distinction to great advantage.
In C, constants are usually in upper case and variables in lower case.
In Smalltalk, capitalization is used to distinguish words in multi-
word identifiers, and to classify identifiers. The set-ease-mode
function can change Tek COMMON LISP's reader so that the case of
characters in identifiers is significant.

There are two parameters that determine the reader's actions:
case preference and case sensitivity. The preferred case is either
upper or lower, and refers to the case of the characters in the print
names of all of the standard symbols, such as car and cdr. Case sen
sitivity is either sensitive or insensitive. Case-sensitive means that
the reader doesn't modify the case of any characters it reads. Case
insensitive means that characters that are not of the preferred case are
converted to the preferred case.

There are four possible values for the combination of case preference 3. 1 . 1
and case sensitivity. The modes

• Case-insensitive, upper case preferred. This is the mode used in
Standard COMMON LISP and in most of the older LISPs such as
MacLISP. With this mode you can even enter LIsp programs with
a card punch.

• Case-sensitive, upper case preferred. This is the mode used by
InterLISP. This is perhaps the most difficult mode to use since
you have to hold the shift key down to type the names of system
functions, or else they won't be recognized.

3-1

Tektronix, Inc.
3-2 Extensions

3.1.2
Functions and
variables

3.1.3
The set-case
mode function

• Case-insensitive, lower case preferred. This mode is very similar
to the case-insensitive, upper case preferred mode.

• Case-sensitive, lower case preferred. This is the mode use by
FRANz LISP (and the C programming language). It matches the
conventions of the Unix and Tektronix operating systems, and
thus is the most natural mode to use for some programmers.

The function and variables used in switching modes are listed next.

set-ease-mode new-mode {Function]

• new-mode is one of the four keywords: :case-insensitive
upper, :case-insensitive-Iower, :case-sensitive-upper, and
:case-sensitive-Iower. set-ease-mode converts LISP to use the
new mode for subsequent reading and returns a keyword denoting
the previous mode. This function must do quite a bit of con
sistency checking when changing between modes with different
case preferences, and may may take as long as three cpu minutes
to complete. Below we go into more detail on the operation of
set-case-mode and the implications on compatibility.

eurrent-ease-mode [Variable]

• The value of this variable is the keyword denoting the current
mode. This variable should be considered read-only, it is
changed by set-ease-mode to reflect the current mode. Its ini
tial value is :case-insensltlve-upper.

ignore-paekage-name-case {Variable]

• If this value is true, then the case of characters in single-case
package names and nicknames is ignored by the reader when
looking up qualified symbols. This variable is initially nil, but the
user may find it useful to give this variable a non-nil value if he
chooses to operate in one of the case-sensitive modes. This is
described in more detail below.

Initially the reader is in :case-insensifive-upper mode. If the user
executes (set-ease-mode :case-sensitive-upper), the set-ease-mode
function need only inform the reader not to alter the case of charac
ters it reads, and inform the printer that lower case characters needn't
be escaped on output. If the user wants to change the mode to one of
the lower case preferred modes, then much more work must be done:
Every (interned) symbol's printname is examined. If the print name

Tek COMMON LISP
Extensions 3-3

does not contain characters of different cases, then the print name is
converted to the new preferred case (in this example, lower case). If
the print name contains characters of different case then it isn't modi
fied at all. If converting a symbol's print name to lower case would
cause there to be two symbols with the same print name in the same
package, then no conversion is done for the symbol. Similarly, the
names and nicknames of packages are converted to the new preferred
case if the names do not contain both lower and upper case charac
ters. After set-ease-mode has examined and converted as many
symbol's as possible, it prints a list of those symbols which couldn't
be converted due to mixed case or a symbol conflict

Changing the case of identifiers or making LISP case sensitive is not
an upward compatible change to LISP. Thus the user must weigh the
advantages of a more 'modem' LISP syntax against possible future
drawbacks, such as not being able to run the code in-other versions of
COMMON LISP. Let us examine the possible compatibily problems:

None of the standard Tek COMMON LISP code depends on the case of
the characters in identifiers, and it is unlikely that future code will.
Packages are unfortunately referred to by strings and thus compatibil
ity problems can crop up. set-ease-mode will convert the cases of
package names to the preferred case. However, if lower case is the
preferred case and the user types (in-package "LISP") then this will
create a new package LISP distinct from the existing lisp package.
There are two solutions for this problem. One is to set the *ignore
package-name-case* variable to t. In this case, when in-package
looks for and doesn't find a package named LISP, it converts it to lisp
and then finds the package. If in-package is given a name contain
ing upper and lower case characters, then even if *ignore-package
name-case* is t, it will not convert it to the preferred case. For
example, (in-package "Lisp") will fail to match the package named
lisp. The second solution to this problem is to always use symbols
when referring to packages, i.e. use (in-package 'lisp). This expres
sion will refer to the lisp package in all modes except :case
sensitive-upper.

When a file is compiled, the case mode setting at the beginning of
the compilation is stored in the lasl file. If the preferred case when a
file was compiled is different than than when it is loaded, the fast
loader will do case conversion on the fly to those symbols whose
print names which do not have both lower and upper case characters.

3.1.4
Compatability

3.1.4.1
Case

preference

3.1.4.2
Compiled

code

Tektronix, Inc.
3-4 Extensions

3.1.4.3
Using set
case-mode

3.2
Errors

3.3
Miscellaneous
functions

The version of Tek COMMON LISP that you received will work in any
mode. We expect that most users will do one of the following. One
group will choose to use Tek COMMON LISP in its standard :case
insensitive-upper mode. These users can simply use LISP as distri
buted and ignore everthing about case modes. The second group will
want to run in :case-sensitive-Iower mode. They should execute
the set-case-mode function, create an image with dumplisp and
use that LISP. In order to load or compile source code written assum
ing the standard :case-insensitive-upper mode, they should use
set-case-mode to put lisp in :case-insensitive-Iower mode. It is
much faster to go from :case-sensitive-Iower mode to :case
insensitive-lower mode, than to :case-insensitive-upper mode,
and the two insensitive modes are nearly equivalent in their effect.

errorset form [announcep] [Macro]

o The expression form is evaluated, and if no errors occured
then the first value returned from errorset will be t, and the rest
will be the values returned from the evaluation of form. If an
error occurs, then the single value nil is returned. If announcep is
non-nil, then the error message associated with the error will be
printed, otherwise nothing is printed.

Note: This is currently how errors are detected during the evaluation of
expressions. When the COMMON LISP standard specifies an error
handling system, this function may be obsoleted.

dumplisp &key:name :restart-function :read-init-file [Function]

• Save an image of the currently executing COMMON LISP as an
executable me. The name of the executable me will be savedcl
unless the name argument is provided. Unless the read-init-file
argument is given a value nil, when the saved image is executed,
it will will search for .and load the .clinit.cl file (see Chapter 5,
'Top level,' for a description of this file). Normally, the next step
is for the top level to print a prompt and enter the read-eval-print
loop. If however the restart-function argument is given a non-nil
value, then that value will be funcalled. Should the restart
function return, the standard read-eval-print loop will be entered.

uncompile function-name

Tek COMMON Lisp
Extensions 3-5

[Function]

• If the function function-name was compiled with the compile
function (as opposed to having been in a file that was compiled
with compile-file and subsequently loaded), then the function is
'uncompiled,' i.e. its function definition is replaced by the origi
nal interpreted lambda form.

file-older-p file-1 file-2 [Function]

• If file-1 and file-2 both exist, and if fiJe-1 is older than file-2,
this function returns t. Otherwise, it returns nil.

compile-file-if-needed filename &key:output-file [Function]
:force-compile

• The file filename will be compiled if it is younger than the
output file specified by the :output-file keyword argument, or if
the value of the :force-compile keyword argument is t.

o If :output-file is not given, the compiled pathname will be
constructed by merging the extension fasl with filename.

pp name [Macro]

• The defmition of the function or macro name is 'pretty
printed' to *standard-output*.

4 Operating-system interface

4 Operating-system interface

This chapter describes functions in Tek COMMON LISP that interact
with the host operating system.

shell &optional command [Function]

• If the command argument is not given, then an interactive
shell is spawned. To get back to LISP, exit from the shell. If the
command (a string) is given, then a shell is spawned and directed
to execute that command.

current-directory [Function]

• Return a pathname with the directory component holding the
current directory.

username-to-home-directory name [Function]

• Return a pathname with the directory component holding the
named user's home directory.

4-1

5 Top level

5.1 I ntroductio n 5-1
5.2 The top level specification 5-1

5.2.1 Initialization 5-1
5.2.2 Top level input 5-2
5.2.3 Commands 5-2

5.2.3.1 Getting help 5-2
5.2.3.2 History 5-2
5.2.3.3 Break levels 5-4
5.2.3.4 Stack commands 5-5
5.2.3.5 Miscellaneous commands 5-9

5.2.4 The trace package 5-10
5.2.4.1 Special variables used by trace 5-11

5.2.5 The step package 5-13
5.2.5.1 Special variables used by step 5-14

5.2.6 Top-level variables 5-14
5.3 Adding new top-level commands 5-18
5.4 A Sample Init File 5-20

5 Top level

The user interacts with COMMON LISP in the top level. The top level 5. 1
facilitates the user's interactions with LISP, allowing the user access Introduction
the full power of the LISP environment. In the top level, the user
loads, debugs, and runs programs. The essence of the top level is a
read-eval-print loop, which reads user input, evaluates it, and prints
the result. Also in the top level are a set of commands which allow
the user to do useful things, such as re-evaluating a previously typed
command, loading fIles, recovering from errors and debugging.

The debugging tools in Tek COMMON LISP are integrated into the
top level. They consist of a trace and step package, a set of top-level
commands which allow dynamic examination and manipulation of
LISP data and the runtime evaluation stack, and mechanisms to single
stepping through expressions or function calls.

The Tek COMMON LISP top level is modeless-all top-level com
mands are always accessible, no matter what mode of operation the
top level is currently executing (tracing a function, or stepping
through expressions). For example, while stepping through the
expressions in a function, the user may want to examine a functions
parameters, abort stepping, ask for help on any top-level command,
or exit COMMON LISP. There is one set of top-level commands
which control all the functions of the top level.

This section describes the top-level syntax and semantics. 5.2
The top level
specification

When COMMON LISP is fIrst invoked it looks for and loads one or 5.2.1
more initialization fIles. COMMON LISP fIrst searches the user's Initialization
home directory for a fIle called .clinit.clloading it if it is there; then
COMMON LISP searches the current directory for a fIle of the same
name, and if found, loads it too. The initialization file in the current
directory overrides defaults set in the users home directory initializa-
tion me. Any valid LIsp expressions may be present in the

5-1

Tektronix, Inc.
5-2 Top level

5.2.2
Top level
input

5.2.3
Commands

5.2.3.1
Getting help

5.2.3.2
History

initialization file, and it customizes the users LISP environment, by,
for example, loading programs or changing reader syntax.

Top-level commands (prefixed by the top-level command charac
ter) can not be used from within the initialization file, or any other
file. They may only be typed to the top level.

Before reading input from the user, the top level issues a prompt.
This prompt is initially the four character string "<cl> If. The user can
change this prompt by changing the value of the variable top
level:*prompt*. If the prompt string contains the two character
subsequence ,r-d", the top level substitutes these characters with the
number assigned to the current input. See the documentation for for
mat for more information on "-d", and the example in §5.2.3.1 for
top-level input.

The top level understands two sorts of input: top-level commands
and LISP expressions. A top-level command is identified to COM
MON LISP by prefixing it with a single character (initially the colon
character). This can be changed by binding a different character
object to the variable top-Ievel:*command-char*.

A newline typed to the top level is the null command, which is
ignored, extra spaces and tabs are ignored, and typing an end-of-file
has a special meaning which is discussed below (see §5.2.3.3 and
§5.2.6). In Tek COMMON LISP there is no top-level command which
puts the user in debugging mode. Debugging commands are always
available-the standard function calling sequence allows for the max
imum debugging information on the runtime stack.

Some top-level commands may be abbreviated-refer to the :help
command for a list of the commands and valid abbreviations.

:help [command-name] {Command]

• Without an argument, print a summary of the commands,
mostly consisting of name, abbreviation, and valid arguments; if
command-name is present, then print detailed documentation
about this command.

As the user types commands and expressions to the top level, they
are recorded on an entity called the history list. The value of top
level:*history* is the number of user inputs (commands or expres
sions) to remember, and is the maximum size the history list can

D·Ol.()2(4

Tek COMMON LiSp
Top level 5-3

grow. When the history list reaches its maximum size, the oldest
entries are thrown off as new ones are added. Note that only expres
sions and commands typed to the top level are added to the history
list, but not input read from programs which are called from the top
level.

The following commands print and retrieve expressions from the
history list:

:history [:reverse] [n] [Command]

• Print the last n, defaulting to 15, items on the history list, in
reverse order if :reverse is present.

:[+I-]number [?]
::pattern [? I +]

[Command]
[Command]

• These two forms are the how previously typed expressions are
re-evaluated. The fIrst form, :number, re-evaluates the numberth
typed expression, as reported by the history command. The
second form, with an optional pattern, searches the history list for
input matching pattern and re-evaluates the matching expression
as if it were typed to the top level, otherwise, the last expression
typed is re-evaluated. If + is given as an argument to the :: com
mand form, then the search will be in the reverse sense, from the
beginning of the history list forward, instead of from the end
backward. If? is an argument to either type of command, then
the user will be asked to confirm the re-evaluation of the com
mand or expression. For example:

<cl> (setq top-~eve~:*prompt* n<c~ -d> n)

"<cl -d> "
<cl 3> :his

1 (dribble "foo")
2 (setq top-level: *prompt* "<cl -d> ")
3 :his
<cl 4> (setq a 10)

10
<cl 5> (set 'b 'setq)

setq
<cl 6> :: setq
(set ' b ' setq)

setq
<cl 7> :: (setq

Tektronix, Inc.
5-4 Top level

(setq a 10)

10
<cl 8> :6
(set 'b 'setq)

setq
<cl 9> :his

1
2
3
4

5
6
7
8
9
<cl 10>

(dribble "foo")
(setq top-level: *prompt * "<cl -d> ")
:his
(setq a 10)
(set 'b 'setq)
(set 'b 'setq)
(setq a 10)
(set 'b 'setq)
:his

5.2.3.3 The main, or topmost, read-eval-print loop is labeled break level 0,
Break levels and this is the level the user fIrst enters. Each time an error occurs, a

new read-eval-print loop, and thus a new break level, is entered.
There are a fIxed number of ways a new break level may be entered:
(1) the functions error, cerror, and break, (2) the trace and step
packages, (3) external signals, such as a keyboard interrupt, or (4)
errors while reading, evaluating, or printing user input. Cases (2)
through (4) are really special cases of (I)-all entrances to new read
eval-print loops are through the functions error, cerror and break.

When a new break level is entered a message is printed, indicat
ing the cause, and when break levels are exited, a reminder of the
previous cause is printed.

Here are the commands to manipulate break levels:

:reset [Command]

• This will reset the state of the top level, and return the user to
break level O. If errors have occurred, then all error conditions
will be cleared, and a throw to the topmost level will be done.

:continue [Command]

• If the current break level is continuable, then continue compu
tation with side effects specified by the :error command.

Tek COMMON LISp
Top level 5-5

:pop [n] [Command]

• Pop up to the previous break level, or to the n th previous one,
if n is given.

:prt [Command]

• Return to the previous break level, and retry the command
which caused the error. The previous user input is printed before
re-evaluation as a reminder.

:error

• Print the cause of entering the current break level.

<cl> (setq foo bad)

[Command]

Error: Attempt to take the value of the unbound sym
bol bad.
[1] <cl> (/ 1 0)
Error: An attempt was made to divide by zero.
[2] <cl> :pop
Previous error: Attempt to take the value of the
unbound symbol bad.
[1] <cl> (setq bad :not-so-bad)

:not-so-bad
[1] <cl> :prt

<cl> (setq foo bad)

:not-so-bad
<cl> foo

:not-so-bad
<cl> (cerror "just continue" "error!")

Continuable Error: error!
If continued with : continue, just continue
[Ie] <cl> :cont

nil

The runtime stack is the entity where arguments to LISP functions are
stored. When a function is called, the calling function evaluates and
pushes the arguments to the called function onto the stack. The
called function then references the stack when accessing its argu
ments. A stack frame is the area on the stack where the arguments to
one function call reside. If faa calls bar, which in turns calls yaf,
then three stack frames are active when yaf is entered. The frame for

5.2.3.4
Stack

commands

Tektronix, Inc.
5·6 Top level

the most recently called function is on the top of the stack. The fol
lowing commands which access and display the stack, operate on a
single stack frame. After a frame is examined, it normally becomes
the current stack frame, so further reference to the stack will, by
default, operate on the previously selected stack frame. When a
break level is entered, the current frame pointer starts at the top of the
stack.

:zoom {arguments}* [Command]

• This command prints the evaluation stack. It uses the current
stack frame as the center of attention, and prints some number of
frames on either side of the current frame. The value of the vari
able top·level:*zoom-display* is the total number of frames to
display, and an equal number of frames are printed above and
below the current stack frame, if possible. The arguments to the
:zoom command control the type and quantity of the displayed
stack. After a :zoom, the special variable * contains the LISP
expression representing the current frame. The arguments to
:zoom are:

Only one of the following three options may be specified: (The
following output control options stick, meaning once you use one,
the next :zoom will use the same output style.)

:brief [Keyword]

o Print the function names of stack frames only.

:moderate [Keyword]

o Print function names, and actual parameters (the values
passed on the stack). The output of this form is LISP like in
appearance.

:verbose [Keyword]

o Print function names, formal (the names of the parameters
in the function definition) and actual parameters.

One of the following two options may be specified:

:top [Keyword]

o Move the current stack frame pointer to the top of the
stack before printing. Newer stack frames are toward the top
of the stack.

D-OI.Q2('

,",

Tek COMMON Lisp
Top level 5-7

:bottom [Keyword]

:n

:up [n]
:dn [n]

o Move the current stack frame pointer to the bottom of the
stack before printing. Older stack frames are toward the bot
tom of the stack.

[KeyWord]

o Print this many frames, instead of using the value of top
level:*zoom-display*, which is initially 8.

[Command]
[Command]

• Move up or down the stack by n frames, or 1 if no argument is
supplied. The special variable top-Ievel:*auto-zoom*, which
defaults to t, controls whether a :zoom is done after moving the
stack pointer.

:find tunc {options}* [Command]

• Find the frame where function tunc is being called. The
default direction to search the stack is down, or towards older
stack frames. The current frame pointer is set to point to the
matching stack frame, and the LISP expression corresponding to
the match is bound to the variable *. The options to :find are:

:up
:dn

[Keyword]
[Keyword]

o Find tunc going up (toward newer stack frames) or down
(toward older stack frames) the stack.

:skip n [Keyword]

o Skip n matching occurrences of func before setting the
current frame pointer.

:current [Command]

• Print the current stack frame, as a LISP expression.

:Iocal name [Command]

• This prints the value of the local (or lexical) variable name.
When a variable is bound in a function by using let, for example,
the scope of this variable is visible only inside this function. For
this reason, the :Iocal command is needed to examine the
environments of functions on the stack.

Tektronix, Inc.
5-8 Top level

<cl> (defun func (x) (car x»

func
<cl> (func 10)
Error: Attempt to take the car of 10 which is not a
cons.
[1] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop nil ...)
(error)
(car 10)
(block func ...)
(funcall (lambda * ...) ...)
(eval (func 10»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

[1] <cl> :find block
Evaluation stack:

(lisp::read-eval-print-loop nil ...)
(error)
(car 10)

->(block func ...)
(funcall (lambda * ...) ...)
(eval (func 10»
(lisp: :read-eval-print-loop nil ...)
(start-reborn-lisp)

[1] <cl> *

(block func (car x»
[1] <cl> :local x
10
[1] <cl> :error
current error: Attempt to take the car of 10 which is
not a cons.
[1] <cl> :current
(block func (car x»
[1] <cl> :pop
<cl> (compile 'func)

#<Function func @ #xl148c1>
<cl> (func 10)
Error: Attempt to take the car of 10 which is not a
cons.
;; notice that there is less information on the stack
;; when the function 'func' is compiled ...
[1] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop nil ...)

O-OI·02(

Tek COMMON LISp
Top level 5-9

(error)
(func 10)
(eval (func 10»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

[1] <cl>

:aliases

• See §5.3 for a description of this command.

:cf {file}*

[Command]

[Command]

• The one or more arguments are interpreted as file names,
which should represent the names of Tek COMMON LISP source
files. The list of source files are compiled, resulting in files with
the same name, but with the file type of "fas/". For example, :cf
foo would compile foo.cl into foo.fasl, which is acceptable to the
function load. The files are compiled in the order they appear in
the argument list. For convenience, as the previous example
illustrates, the file names may be given without the file type (see
chapter 23 of Common Lisp: The Language), which default to
"c/". See the compiler chapter in the Tek COMMON LISP user's
manual for information on compiling files and functions, and
chapter 23 of Common Lisp for information onpathnames.
o See also the description of top-Ievel:*file-ignore-case* in
§5.2.6.
o If no arguments are given to :cf, then the arguments to the last
call to :cf are used again.

:exit [val] [Command]

• Exit LISP and return exit status val to the operating system or
shell.

:Id {file}* [Command]

• The arguments to :Id are interpreted as file names, which are
loaded into LISP by the load function. If the file type portion of
any of the filenames is not given and the value of the variable
top-level:*ld-options* is not nil, then the behavior of the :Id com
mand is dependant on the value of top-level:*ld-options*.
o See also the description of top-level:*ld-options* and top
level:*file-ignore-case* in §5.2.6.

5.2.3.5
Miscellaneous

commands

Tektronix, Inc.
5-10 Top level

5.2.4
The trace
package

o With no arguments, the last files given to the :Id command are
loaded again.

The trace package provides a way to track or trace when functions
are called. For example, when tracing a function, a message is
printed upon entering and exiting the function.

The trace package is invoked at the top level using :trace and
turned off using :untrace. The trace package can also be invoked
and exited using the functions trace and untrace, which have the
same argument syntax as their top-level command counterparts (see
the example below).

The output from trace is designed to be readable-a function
being traced may be called many times, and the entrance and exit
from each instance should be obvious, by the numbers at the begin
ning of the lines and the indentation of the lines printed by the traced
function.

:trace {function-or-option-list}* [Command]

• With no arguments, all the functions currently being traced are
printed, otherwise the arguments to :trace are function names
(symbols) or option lists. An option list starts with a function
name, and the rest of the list are options for tracing that particular
function, and do not affect the tracing of any other function. The
options come in pairs, the first element of the pair being the
option name (i.e., a keyword), and the second part being the
option value. Missing options default to nil.
o The following are valid options to :trace:

:condition expr

• Trace this function if expr evaluates to non-nil.

:break-before val
:break-after val
:break-all val

[Keyword]

[Keyword]
[Keyword]
[Keyword]

• If val is t, then enter a new break level before, after, or
before and after this function is entered. Otherwise, val is
evaluated, in the appropriate place.

:inside func [Keyword]

• Trace this function if we are currently inside the evalua
tion of the function tunc. tunc may also be a list of functions.
For example, (trace (deeper :inside deep» would trace the

D-Ol-021

Tek COMMON LiSp
Top level 5-11

function deeper only when called from within a call to deep.

:prinf-before expr
:prinf-after expr
:prinf-all expr

[Keyword]
[Keyword]
[Keyword]

• expr should either be a single object or a list of object
which are evaluated, and the results printed before entering or
after leaving the function, or both, in the case of :prinf-all.

:untrace [function-list] [Command]

• With no arguments, stop tracing all functions currently being
traced, otherwise the arguments are assumed to be the names of
currently traced functions which are to be untraced. :untrace
also has a function counterpart, called untrace.

The following are special variables manipulated by the trace pack
age.

trace-output [Variable]

• The stream where :trace sends output, which is normally
termina/-io.

trace-print-Ievel
*trace-print-Iength *

[Variable]
[Variable]

• During the printing of trace forms, *print-Ievel* and *print
length* are bound to these, respectively. See page 372 of Com
mon Lisp for an explanation of *print-Ievel* and *print-Iength*.

<c1> (defun fact (n)
(cond «= n 1) 1)
(t (* n (fact (1- n»»»

fact
<c1> (fact 5)

120
<c1> :tra fact
fact
<c1> (fact 5)

0: (fact 5)
1: (fact 4)

2: (fact 3)
3: (fact 2)

4: (fact 1)

5.2.4.1
Special

variables
used by trace

Tektronix, Inc.
5-12 Top level

4: returned 1
3: returned 2

2: returned 6
1: returned 24

0: returned 120
120
<cl> (defun deep (x) (deeper (list x»)

deep
<cl> (defun deeper (x) (format t "-'-s-%" x»

deeper
<cl> (deep 10)

(10)

nil
<cl> :tr (deeper :inside deep)
deeper
<cl> (deeper 10)

10

nil
<cl> (deep 10)

0: (deeper (10»
(10)

0: returned nil
nil
<cl> :tr (deeper :break-before t)
deeper
<cl> (deep 10)

0: (deeper (10»
Break: trace entry
(lc] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop t ...)
(break "trace entry")
(lisp: : trace-call (lambda # ...) ...)
(let (# #) •••)
(funcall (lambda :#1= •••) •••)

(block deep ...)
(funcall (lambda :#1= •••) •••)

(eval (deep 10»

[lc] <cl> :cont

(10)

D-Ol-02(

Tek COMMON LISp
Top level 5-13

0: returned nil
nil
<cl>

The step package allows the user to watch and control the evaluation
of LISp expressions, either inside certain functions or over certain
expressions. When stepping is turned on, evaluation of all expres
sions is done in single-step mode-after evaluating one form, a step
read-eval-print loop is entered, from which the user may continue or
abort.

As with the :trace command, :step is a top-level command and
step is a function.

With no arguments or an argument of nil, step turns off stepping.
With an argument of t, stepping is turned on globally, otherwise the
arguments are checked to be functions, and stepping is done only
when inside one of the functions given to step.

Once stepping is turned on, the top level recognizes three more
commands: :scont, :sover, and carriage return (which is a synonym
for :scont 1). Also, the top-level prompt for step read-eval-print
loops is prefixed with [step], as a reminder that the above step com
mands are available.

:step [t I nil I function-list] [Command]

• With no arguments or an argument of nil, stepping is disabled,
with an argument of t, stepping is enabled globally, otherwise the
arguments are assumed to be a list of functions wherein stepping
should occur. Any non-functions supplied to :step will be
flagged as invalid arguments, and an error will not occur.

:scont [n] [Command]

• Continue stepping, for n expressions, and evaluate the last
expression printed by the stepper. After evaluating the last
printed expression, the next expression to be evaluated is printed.
If there are no more expressions stepping is turned off. When
stepping is enabled, a carriage return (or new-line) character is
equivalent to :scont 1, allowing the user to step quickly with
minimum keystrokes.

:sover [Command]

• Evaluate the current expression in normal, non-stepping mode.

5.2.5
The step
package

Tektronix, Inc.
5-14 Top level

5.2.5.1
Special
variables
used by step

5.2.6
Top-level
variables

The following special variables control output from the stepper:

step-print-Ievel
step-print-Iength

[Variable]
[Variable]

• During the printing of forms to be evaluated, *print-Ievel* and
print-Iength are bound to the value of these variables, respec
tively. See page 372 of Common Lisp for an explanation of
print-Ievel and *print-Iength*.

The following variables are maintained or used by the top level.

top-Ievel:*command-char* [Variable]

• The character recognized as the prefix for top-level com
mands. The value of this variable must be a character object, and
is initially the LISP character object' #\:' .

top-Ievel:*history* [Variable]

• The number of commands which are remembered by the his
tory mechanism, defaulting to 15.

top-level :*prompt* [Variable]

• The value of this variable is printed by the top-level as a
prompt for user input; it must be a LISP string. For break levels
greater than 0, this prompt will be augmented with the break level
number. In contiriuable break levels a 'c' will be present next to
the break level indicator.

top-level :*exit-on-eof* [Variable]

• If bound to a non-nil value and the current break level is 0,
then typing an end-of-file to the top-level will exit LISP, without
asking for confirmation. The method of exit is taken via the
function exit. The default value is nil.

top-level:*ld-options* [Variable]

• The :Id command uses the value of this variable to determine
the name of the fIles to load. It is intended to make the manipula
tion of fIles in Tek COMMON LISP more convenient.
o The default value is nil; in this case, arguments to :Id are
assumed to be the real file names, and given the fIle/oo, :Id will
try to load the flie/oo.

O-OI-02(

<I)

Tek COMMON LIsp
Top level 5-15

o In the following description of valid options, it is assumed that
no file type was given-if a file type is given, the following
options have no effect. For example, the input :Id foo, foo has an
unqualified file type, whereasfoo.cl orfoofasl has a specified file
type, and :Id foo.cl would load the filefoo.cl.

:cl [Keyword]

o Look for a file with the same name but with a file type of
d. If this file does not exist, then try the unqualified name,
with no file type. Look, for example, for foo.d, and thenfoo,
but notfoofasl.

:fasl [Keyword]

o Look for a file with the same name but with a file type of
fasl. If this file does not exist, then try the unqualified name,
with no file type. Look, for example, for foofasl, and then
foo, but notfoo.d.

:most-recent [Keyword]

o Look for the most recent (last modified) of the file types cl
and fasl. For example, :Id foo would cause foofasl to be
loaded if it was older, more recently modified, thanfoo.cl.

:ask-most-recent [Keyword]

o Look for the most recent (last modified) of the file types d
andfasl, and ask the user for verification before loading.

:compile [Keyword]

o This causes a compiled version of the Tek COMMON LISP
source file to be loaded, compiling the source file if it is
newer than the corresponding fasl file, or if the fasl file does
not exist. For example, :Id foo would cause foo.d to be com
piled and the resultingfoofasl to be loaded iffoofasl did not
exist or was older than foo.cl. In other words, this option
causes an up-to-date compiled file to be loaded, compiling the
source file if necessary.

:ask-compile [Keyword]

o This has the same behavior as :compile, except that con
firmation is obtained from the user before compiling the
source file.

Tektronix, Inc.
5-16 Top level

top-level: *file-ig nore-case* [Variable]

• The :Id and :cf commands use value of this variable to deter
mine the correct file names of their arguments where the case
might be incorrect because of the setting of the current case
mode. (See the description of set-case-mode in Tek COMMON

liSP User Guide.) top-Ie vel: *file-ign ore-case * is initially nil, and
should either be bound to nil or a symbol with a funcallable
definition, such as string-downcase For example, if the value of
the variable *current-case-mode* is :case-insensitive-upper
and *file-ignore-case* is string-downcase, then :Id foo/bar
would look for the file "foo/bar", and not "FOO/BAR".

top-Ievel:*read*
top-Ievel:*eval*
top-Ievel:*print*

[Variable]
[Variable]
[Variable]

• The values of these variables, if bound to valid functions
(acceptable to the function funcall), will be funcalled to read
user input, evaluate the result the top-Ievel:*read*, and print the
result of top-Ievel:*eva/*, respectively. Great care should be
taken before setting one of these variables, since binding these to
something other than a function will result in a recursive error
(since after an error, another read-eval-print loop is called).

top-Ievel:*print-Ievel*
top-Ievel:*print-Iength*

[Variable]
[Variable]

• lisp:*print-Ievel* and lisp:*print-Iength* are bound to these,
respectively, during the application of the top-Ievel:*print* func
tion on the result of the top-Ievel:*eval* function. See page 372
of Common Lisp for an explanation of lisp:*print-Ievel* and
lisp: *print-Iength* .

top-Ievel:*reset-hook* [Variable]

• If non-nil, and bound to a valid function (something acceptable
to funcall), then this function is called after executing the :reset
command.

top-Ievel:*zoom-display* [Variable]

• The value of this variable is the number of stack frames
displayed by the :zoom command.

Note: The following variables are required by Common Lisp.

D·01.02(

Tek COMMON Lisp
Top level 5-17

+
++
+++

[Variable]
[Variable]
[Variable]

• While an expression or form is being evaluated by top
level:*eval*, the variable + is bound to the previous form read by
top-Ievel:*fead*. The variable ++ holds the previous value of +,
or the form read two reads ago, and +++ holds the previous value
of ++.

[Variable]

• While a form is being evaluated by top-Ievel:*eval*, the vari
able - is bound to the form itself, or the value which will be given
to + after top-Ievel:*eval* returns.

*
**

[Variable]
[Variable]
[Variable]

I
II
III

• While a form is being evaluated by top-Ievel:*eval*, the vari
able * is bound to the last value returned from top-Ievel:*eval*,
or the value produced by evaluating the form in +. If more than
one value is returned, all but the first are discarded, and if zero
values were returned, then * is bound to nil. The variable **
holds the previous value of *, or the result of the second previous
top-Ievel:*eval*, and *** holds the previous value of **.
o If the evaluation of + produces an error, then *, **, and ***
are left untouched; they are updated before top-Ievel:*print* is
called.

[Variable]
[Variable]
[Variable]

• While a form is being evaluated by top-Ievel:*eval*, the vari
able I is bound to the list of results from the last top-Ievel:*eval*,
or the list of all values produced by evaluating the form in +. The
value of * should be the same as the car of the value of I. The
variable II holds the previous value of I, or the list of results from
second previous top-Ievel:*eval*, and III holds the previous value
of II. Therefore, the car of II should be the same as **, and the
car of III the same as ***.
o If the evaluation of + produces an error, then I, II, and III are
left untouched; they are updated before top-fevel:*print* is
called.

Tektronix, Inc.
5-18 Top level

5.3
Adding new
top-level
commands

The top-level command set is extensible-the user may add new com
mands to the list of known commands. This allows the user to
further customize the top-level environment.

A top-level alias is a user defined top-level command, which is
invoked the same as built-in top-level commands. The difference
between built-in commands and aliases, is aliases can be removed,
one at a time or all at once.

top-Ievel:alias {name I (name abbr-index)} arglist body [Macro]

• This is how top-level aliases are defined. The form of top
level:alias is similar to defun, and body can be anything accept
able as the body of a lambda expression. name is the name of the
top-level alias, which must be a string. If the (name abbr-index)
form is used, then abbr-index must be an integer which is the
index into the string name which defines the shortest possible
abbreviation. For example, ("load" 1) would specify that fo and
loa are valid abbreviations for load. arglist is the list of formal
parameters to the alias function, and has the same form as the for
mal list to a lambda expression.

top-Ievel:remove-alias &rest names [Function]

• This will remove the alias commands known by names, or all
user defined aliases if the argument is :all. Built-in top-level
commands may not be removed with this function. If abbrevia
tions were specified for names, then all abbreviations are also
removed from the command set.

:aliases [Command]

• This command prints all user defined alias commands in tabu
lar format, with the documentation string, if there is one.

top-Ievel:do-command name &rest arguments [Function]

• This function allows the execution of top-level commands
from programs. It hides the method of dispatch for top-level
commands, and should be the sole means of accessing top-level
commands outside typing them to the top-level read-eval-print
loop.
D name must be a string and the name of a top-level command,
otherwise an error occurs.

The following function is used internally to define aliases, and is
documented to allow defmition of commands which can not be
removed with top-Ievel:remove-alias.

D·OI-02(

Tek COMMON Lisp
Top level 5-19

top-Ievel:add-new-command name abbr handler doc [Function]

• Add the string name to the list of known top-level commands.
The new command will be invoked as other top-level command,
by prefixing it with the top-level command character. abbr is the
character index which defines the shortest abbreviation. For
example, if name and abbr are "load" and 1, then the :Ioad com
mand could be abbreviated to :10 and :Ioa. handler is the name
of the function which will be called to do the work of this com
mand, and it must be a symbol. doc is a short documentation
string, which the :help command will print if given no argu
ments. Extended documentation can be specified when defining
the function handler, which will be printed by the :help com
mand.

<cl> (top-level:alias "ff" (&rest args)
"my alias for the :find command"
(apply #'top-level:do-command "find" args»

<el> (defun test (x) (break "testing ... "»
test
<cl> (test nil)

Break: testing ...
[le] <cl> :zo
Evaluation stack:

->(lisp::read-eval-print-loop t ...)
(break "testing ... ")
(block test ...)
(funcall (lambda # .•.) ...)
(eval (test nil»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

[Ie] <el> :ff block
Evaluation stack:

(lisp::read-eval-print-loop t ...)
(break "testing ... ")

->(bloek test ...)
(funeall (lambda # .••) .•.)
(eval (test nil»
(lisp::read-eval-print-loop nil ...)
(start-reborn-lisp)

Tektronix, Inc.
5-20 Top level

5.4
A Sample Init
File

; ;

" common lisp initialization file
; ;

(format *terminal-io* "-&; Loading home in it file. lf)

;; the following is for the :ld and :cf commands, and so
;; that all my filenames don't have to be in uppercase!

(if (eq *current-case-mode* :case-insensitive-upper)
(setq top-level:*file-ignore-case* 'string

downcase))

(setq

)

top-level:*prompt* n<cl -d> If
top-level:*history* 50
top-level:*print-level* 20
top-level:*print-length* 20
top-level:*zoom-print-level* 3
top-level:*zoom-print-length* 3
top-level:*zoom-display* 7
top-level:*ld-options* :ask-compile
top-level:*exit-on-eof* t
top-level:*command-char* t?
top-level:*auto-zoom* nil

;; exit Lisp when a AX (control-X) is typed to the top
level
(defun exit-char-mac (stream char) (exit 0»
;; the AX in the next expression is the single character
control-X
(set-macro-character tx t'exit-char-mac)

(top-level:alias ("shell" 1) (&rest args)
"':sh args' will execute the shell command in 'args'lf
(let «cmd

(apply t'concatenate 'simple-string
(mapcar t' (lambda (x)

(concatenate 'simple-string
(write-to-string x) " If»

args))))
(prin1 (shell cmd»»

0-01-021

6 Flavors

6.1 Introduction 6-1
6.2 Objects 6-1
6.3 Modularity 6-3
6.4 Generic operations 6-6
6.5 Generic operations in LIsp 6-8
6.6 Simple use of flavors 6-10
6.7 Mixing flavors 6-14
6.8 Flavor functions 6-18
6.9 Defflavor options 6-27
6.10 Flavor families 6-36
6.11 Vanilla flavor 6-37
6.12 Method combination 6-39
6.13 Implementing flavors 6-48

6.13.1 Order of definition 6-49
6.13.2 Changing a flavor 6-50

6.14 Property list operations 6-50
6.15 Copying instances 6-52

·

6

The object-oriented programming style used in the Smalltalk and
Actor families of languages is available in Tek COMMON LISP. Its
purpose is to perform generic operations on objects. Part of its
implementation is simply a convention in procedure-calling style;

. part is a powerful language feature, called Flavors, for defining
abstract objects. This chapter explains the principles of object
oriented programming and message passing, and the use of Flavors in
implementing these in Tek COMMON LISP. It assumes no prior
knowledge of any other languages.

The implementation of Flavors distributed by Franz Incorporated
with Tek COMMON LISp is new, proprietary code which employs
special interpreter and compiler hooks for very efficient execution.
The code shares some components with the Franz Inc. native imple
mentation of Flavors distributed with FRANZ LISp. Except where the
underlying LISP dialects require fundamental differences (for exam
ple, in variable scoping) the two Flavors systems are functionally
identical. The Tek COMMON LISp implementation of Flavors is also
quite similar to that in ZetaLISp, l although a few details and exten
sions differ. Most code should port easily between the two.

The text of this chapter is a heavily-edited version of Chapter 20
from the MIT LISP Machine Manual, as made available through
MIT's Project Athena. It has been subsequently edited by the staff of
Franz Inc. for inclusion in the Tek COMMON LISp manual.

When writing a program, it is often convenient to model what the
program does in terms of objects, conceptual entities that can be
likened to real-world things. Choosing what objects to provide in a
program is very important to the proper organization of the program.
In an object-oriented design, specifying what objects exist is the first
task in designing the system. In a text editor, the objects might be
pieces of text, pointers into text, and display windows. In an electri
cal design system, the objects might be resistors, capacitors,

1 ZetaLISP is a trademark of SymboIics, Inc.

Flavors

6.1
Introduction

6.2
Objects

6-1

Tektronix, Inc.
6-2 Flavors

transistors, wires, and display windows. After specifying what
objects there are, the next task of the design is to figure out what
operations can be performed on each object. In the text editor exam
ple, operations on pieces of text might include inserting text and
deleting text; operations on pointers into text might include moving
forward and backward; and operations on display windows might
include redisplaying the window and changing which piece of text
the window is associated with.

In this model, we think of the program as being built around a set
of objects, each of which has a set of operations that can be per
formed on it. More rigorously, the program defines several types of
object (the editor above has three types), and it can create many
instances of each type (that is, there can be many pieces of text,
many pointers into text, and many windows). The program defines a
set of types of object and, for each type, a set of operations that can
be performed on any object of the type.

The new type abstractions may exist only in the programmer's
mind. The mapping into a concrete representation may be done
without the aid of any programming features. For example, it is pos
sible to think of an atom's property list as an implementation of an
abstract data type on which certain operations are defmed, imple
mented in terms of the LISP get function. There are other property
lists (association lists of pairs) which are, however, not stored in the
global structure of an atom, such as are implemented in terms of the
COMMON LISP getf function. Such a property list is just a list with
an even number of items. This type can be instantiated with any
function that creates a list; for example, the form (list 'a 23) creates a
new property list with a single key/value pair. The fact that property
lists are really implemented as lists, indistinguishable from any other
lists, does not invalidate this point of view. However, such concep
tual data types cannot be distinguished automatically by the system;
one cannot ask: is this object a disembodied property list, as opposed
to an ordinary list?

Use of defstruct is another mechanism for creating new data
types. This is reviewed in the next section, where a data type for ship
is used as an example. defstruct automatically defines some opera
tions on the objects: the operations to access its elements. We could
define other functions that did useful computation with ships, such as
computing their speed, angle of travel, momentum, or velocity, stop
ping them, moving them elsewhere, and so on.

In both cases, we represent our conceptual object by one LISP
object. The LISP object we use for the representation has structure
and refers to other LISP objects. In the case of a property list, the
LISP object is a list of pairs; in the ship case, the LISP object is an
array or vector whose details are taken care of by defstruct. In both

· Tek COMMON Lisp
Flavors 6-3

cases, we can say that the object keeps track of an internal state,
which can be examined and altered by the operations available for
that type of object. getf examines the state of a property list, and
setf of getf alters it; ship-x-position examines the state of a ship,
and (setf (ship-x-position ship) 5.0) alters it.

This is the essence of object-oriented programming. A concep
tual object is modeled by a single LISP object, which bundles up
some state information. For every type of object, there is a set of
operations that can be performed to examine or alter the state of the
object.

An important benefit of the object-oriented style is that it lends itself
to a particularly simple and lucid kind of modularity. If you have
modular programming constructs and techniques available, they help
and encourage you to write programs that are easy to read and under
stand, and so are more reliable and maintainable. Object-oriented
programming lets a programmer implement a useful facility that
presents the caller with a set of external interfaces, without requiring
the caller to understand how the internal details of the implementa
tion work. In other words, a program that calls this facility can treat
the facility as a black box; the calling program has an implicit con
tract with the facility guaranteeing the external interfaces, and that is
all it knows.

For example, a program that uses disembodied property lists
never needs to know that the property list is being maintained as a list
of alternating indicators and values; the program simply performs the
operations, passing them inputs and getting back outputs. The pro
gram depends only on the external definition of these operations: it
knows that if it stores a property by doing a setf of a getf, and
doesn't remf it (or setf over it), then it can use getf to be sure of get
ting back the same thing which was put in. This hiding of the details
of the implementation means that someone reading a program that
uses disembodied property lists need not concern himself with how
they are implemented; he need only understand what abstract opera
tions are represented. This lets the programmer concentrate his ener
gies on building a higher-level program rather than understanding the
implementation of the support programs. This hiding of implementa
tion means that the representation of property lists could be changed
and the higher-level program would continue to work. For example,
instead of a list of alternating elements, the property list could be
implemented as an association list or a hash table. Nothing in the
calling program would change at all.

The same is true of the ship example. The caller is presented
with a collection of operations, such as shIp-x-position, ship-y-

6.3
Modularity

Tektronix, Inc.
6-4 Flavors

position, ship-speed, and ship-direction; it simply calls these and
looks at their answers, without caring how they did what they did. In
our example above, ship-x-position and ship-y-position would be
accessor functions, defined automatically by defstruct, while ship
speed and ship-direction would be functions defined by the imple
mentor of the ship type. The code might look like this:

(defstruct ship
x-position
y-position
x-velocity
y-velocity
mass)

(defun ship-speed (ship)
(sqrt (+ (expt (ship-x-velocity ship) 2)

(expt (ship-y-velocity ship) 2»»

(defun ship-direction (ship)
(atan (ship-y-velocity ship)

(ship-x-velocity ship»)

The caller need not know that the f11'st two functions were struc
ture accessors and that the second two were written by hand and per
form arithmetic. Those facts would not be considered part of the
black-box characteristics of the implementation of the ship type. The
ship type does not guarantee which functions will be implemented in
which ways; such aspects are not part of the contract between ship
and its callers. In fact, ship could have been written this way instead:

(defstruct ship
x-position
y-position
speed
direction
mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction

ship»»

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction

ship»»

In this second implementation of the ship type, we have decided
to store the velocity in polar coordinates instead of rectangular coor
dinates. This is purely an implementation decision. The caller has
no idea which of the two ways the implementation uses; he just

Tek COMMON LISp
Flavors 6-5

performs the operations on the object by calling the appropriate func
tions.

We have now created our own types of objects, whose implemen
tations are hidden from the programs that use them. Such types are
usually referred to as abstract types. The object-oriented style of
programming can be used to create abstract types by hiding the
implementation of the operations and simply documenting what the
operations are defined to do.

Some more terminology: the quantities being held by the ele
ments of the ship structure are referred to as instance variables.
Each instance of a type has the same operations defined on it; what
distinguishes one instance from another (besides eqness) is the
values that reside in its instance variables. The example above
illustrates that a caller of operations does not know what the instance
variables are; our two ways of writing the ship operations have dif
ferent instance variables, but from the outside they have exactly the
same operations.

One might ask: but what if the caller evaluates (svref ship 2) and
notices that he gets back the x-velocity rather than the speed? Then
he can tell which of the two implementations were used. This is true;
if the caller were to do that, he could tell. However, when a facility
is implemented in the object-oriented style, only certain functions are
documented and advertised, the functions that are considered to be
operations on the type of object. The contract from ship to its callers
only speaks about what happens if the caller calls these functions.
The contract makes no guarantees at all about what would happen if
the caller were to start poking around on his own using svref. A
caller who does so is in error. He is depending on the concrete
iinplementation of the abstraction: something that is not specified in
the contract. No guarantees were ever made about the results of such
action, and so anything may happen; indeed, if ship were reimple
mented, the code that does the svref might have a different effect
entirely and probably stop working. This example shows why the
concept of a contract between a callee and a caller is important: the
contract specifies the interface between the two modules.

Unlike some other languages that provide abstract types, Tek
COMMON LISP makes no attempt to have the language automatically
forbid constructs that circumvent the contract. This is intentional.
One reason for this is that LISP is an interactive system, and so it is
important to be able to examine and alter internal state interactively
(usually from a debugger). Furthermore, there is no strong distinc
tion between the system and the user portions of the Tek COMMON

LISP system; users are allowed to get into nearly any part of the
language system and change what they want to change.

Tektronix, Inc.
6-6 Flavors

6.4
Generic
operations

In summary: by defining a set of operations and making only a
specific set of external entry-points available to the caller, the pro
grammer can create his own abstract types. These types can be use
ful facilities for other programs and programmers. Since the imple
mentation of the type is hidden from the callers, modularity is main
tained and the implementation can be changed easily.

We have hidden the implementation of an abstract type by mak
ing its operations into functions which the user may call. The impor
tance of the concept is not that they are functions-in LISP everything
is done with functions. The important point is that we have defined a
new conceptual operation and given it a name, rather than requiring
each user who wants to do the operation to write it out step-by-step.
Thus we say (ship-x-velocity s) rather than (aref s 2).

Often a few abstract operation functions are simple enough that it
is desirable to compile special code for them rather than really cal
ling the function. (Compiling special code like this is often called
open-coding.) The compiler is directed to do this through use of mac
ros for example. defstruct arranges for this kind of special compila
tion for the functions that get the instance variables of a structure.

When we use this optimization, the implementation of the
abstract type is only hidden in a certain sense. It does not appear in
the LISP code written by the user, but does appear in the compiled
code. The reason is that there may be some compiled functions that
use the macros (or other concrete manifestation of the implementa
tion). Even if you change the definition of the macro, the existing
compiled code will continue to use the old definition. Thus, if the
implementation of a module is changed, programs that use it may
need to be recompiled. This sacrifice of compatibility between inter
preted and compiled code is usually quite acceptable for the sake of
efficiency in debugged code.

In the Tek COMMON LISP implementation of Flavors that is
discussed below, there is never any such incorporation of nonmodu
lar knowledge into a program by either the interpreter or the com
piler, except when the :ordered-instance-variables feature is used
(described below). If you don't use the :ordered-instance
variables feature, you don't have to worry about incompatibilities.

Consider the rest of the program that uses the ship abstraction. It
may want to deal with other objects that are like ships in that they are
movable objects with mass, but unlike ships in other ways. A more
advanced model of a ship might include the concept of the ship's
engine power, the number of passengers on board, and its name. An
object representing a meteor probably would not have any of these,
but might have another attribute such as how much iron is in it.

0-01-02(4

5)

Tek COMMON LISP
Flavors 6-7

However, all kinds of movable objects have positions, velocities,
and masses, and the system will contain some programs that deal
with these quantities in a uniform way, regardless of what kind of
object is being modeled. For example, a piece of the system that cal
culates every object's orbit in space need not worry about the other,
more peripheral attributes of various types of objects; it works the
same way for all objects. Unfortunately, a program that tries to cal
culate the orbit of a ship needs to know the ship's attributes, and
must therefore call ship-x-position and ship-y-velocity and so on.
The problem is that these functions won't work for meteors. There
would have to be a second program to calculate orbits for meteors
that would be exactly the same, except that where the first one calls
ship-x-position, the second one would call meteor-x-position, and
so on. This would be very bad; a great deal of code would have to
exist in multiple copies, all of it would have to be maintained in
parallel, and it would take up space for no good reason.

What is needed is an operation that can be performed on objects
of several different types. For each type, it should do the thing
appropriate for that type. Such operations are called generic opera
tions. The classic example of generic operations is the arithmetic
functions in many programming languages, including Tek COMMON
LISP. The + function accepts integers, floats or bignums and per
forms an appropriate kind of addition based on the data types of the
objects being manipulated. In MACSYMA, a large algebraic
manipulation system implemented in LISP, the + operation works for
matrices, polynomials, rational functions, and arbitrary algebraic
expression trees. In our example, we need a generic x-position
operation that can be performed on either ships, meteors, or any
other kind of mobile object represented in the system. This way, we
can write a single program to calculate orbits. When it wants to
know the x position of the object it is dealing with, it simply invokes
the generic x-position operation on the object, and whatever type of
object it has, the correct operation is performed, and the x position is
returned.

In the following discussion we use another idiom adopted from
the Smalltalk language: performing a generic operation is called
sending a message. The message consists of an operation name (a
symbol) and arguments. One can imagine objects in the program as
'little people' who accept messages and respond to them with
answers (returned values). In the example above, an object is sent an
x-position message, to which it responds with its x position.

Sending a message is a way of invoking a function without speci
fying which function is to be called. Instead, the data determines the
function to use. The caller specifies an operation name and an
object; that is, it said what operation to perform, and what object to

Tektronix, Inc.
6-8 Flavors

6.5
Generic
operations in
LISp

perform it on. The function to invoke is found from this information.
The two data used to figure out which function to call are the type

of the object, and the name of the operation. The same set of func
tions are used for all instances of a given type, so the type is the only
attribute of the object used to figure out which function to call. The
rest of the message besides the operation is data which are passed as
arguments to the function, so the operation is the only part of the
message used to find the function. Such a function is called a
method. For example, if we send an x-position message to an object
of type ship, then the function we find is the ship type's x-position
method. A method is a function that handles a specific operation on
a specific kind of object; this method handles messages named x
position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x
position of the object it is working on by sending that object a
message consisting of the operation x-position and no arguments.
The returned value of the message is the x position of the object. If
the object was of type ship, then the ship type's x-position method
was invoked; if it was of type meteor, then the meteor type's x
position method was invoked. The orbit-calculating program just
sends the message, and the right function is invoked based on the
type of the object. We now have true generic functions, in the form
of message passing: the same operation can mean different things
depending on the type of the object.

How do we implement message passing in LISP? Our convention is
that objects that receive messages are always functional objects (that
is, you can apply them to arguments). A message is sent to an object
by calling that object as a function, passing the operation name as the
first argument and the arguments of the message as the rest of the
arguments. Operation names are represented by symbols; normally
these symbols are in the keyword package, since messages may nor
mally be passed between objects defined in different packages. So if
we have a variable my-ship whose value is an object of type ship, and
we want to know its x position, we send it a message as follows:

(send my-ship : x-position)

To set the ship's x position to 3.0, we send it a message like this:

(send my-ship :set-x-position 3.0)

A variation supported in some Flavor systems would allow

0-01-02('

(send my-ship :set :x-position 3.0)
;;; not supported

Tek COMMON LiSp
Flavors 6-9

but this is now deprecated and not provided in Tek COMMON USP.
It should be stressed that no new features are added to LISP for

message sending; we simply define a convention on the way objects
take arguments. The convention says that an object accepts messages
by always interpreting its flrst argument as an operation name. The
object must consider this operation name, find the function which is
the method for that operation, and invoke that function.

To emphasize the relationship between well-known features and
the new object-oriented version, we defme the two basic functions
for message passing as follows:

send object message &resf arguments {Function]

• This function is equivalent to funca"; however, send may be
more efficient in some implementations because funea" must
determine the type of object it is passed, whereas send can
assume that object is a flavor instance. In any case, the function
send is preferable to funeall when a message is being sent, since
it documents that Flavors and message sending are being used.
o Conceptually, this sends object a message with operation and
arguments as specified.
o In some implementations of Flavors, the semantics of send
may differ from funea" in those cases where object is a symbol,
list, number, or other object that does not normally handle
messages.

lexpr-send object message {arguments}* Iist-of
arguments

{Macro]

• This function is equivalent to apply; see the notes above for
send. The last argument should be a list.

How does this all work? The object must somehow fmd the right
method for the message it is sent. Furthermore, the object now has to
be callable as a function. However, an ordinary function will not do:
we need a data structure that can store the instance variables (the
internal state) of the object. Of the Tek COMMON LISP features
available, the most appropriate is the closure. A message-receiving
object could be implemented as a closure over a set of instance vari
ables. The function inside the closure would have a big ease form to
dispatch on its flrst argument.

While using closures would work, it has several problems. The
main problem is that in order to add a new operation to a system, it is
necessary to modify code in more than one place: you have to find all

Tektronix, Inc.
6-10 Flavors

6.6
Simple use of
flavors

the types that understand that operation, and add a new clause to the
case. The problem with this is that you cannot textually separate the
implementation of your new operation from the rest of the system:
the methods must be interleaved with the other operations for the
type. Adding a new operation should only require adding LISP code;
it should not require modifying LISP code.

For example, the conventional way of making generic operations
for arithmetic on various new mathematical objects is to have a pro
cedure for each operation (+, *, etc), which has a big case for all the
types; this means you have to modify code in generic-plus,
generic-times, ... to add a type. This is inconvenient and error
prone.

The flavor mechanism is a streamlined, more convenient, and
time-tested system for creating message-receiving objects. With fla
vors, you can add a new method simply by adding code, without
modifying existing code. Furthermore, many common and useful
things are very easy to do with flavors. The rest of this chapter
describes flavors.

Aflavor, in its simplest form, is a defInition of an abstract type. New
flavors are created with the defflavor special form, and methods of
the flavor are created with the defmethod special form. New
instances of a flavor are created with the make-instance function.
This section explains simple uses of these forms.

For an example of a simple use of flavors, here is how the ship
example above would be implemented.

(defflavor ship (x-position
y-position
x-velocity
y-velocity
mass)

()

:gettable-instance-variables)

(defmethod (ship : speed) ()
(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2))}}

(defmethod (ship : direction) ()
(atan y-velocity x-velocity»

The code above creates a new flavor. The flrst subform of the
defflavor is ship, which is the name of the new flavor. Next is the
list of instance variables; they are the fIve that should be familiar by
now. The next subform is something we will get to later. The rest of

0-01-02('

Tek COMMON LiSp
Flavors 6-11

the subforms are the body of the defflavor, and each one specifies an
option about this flavor. In our example, there is only one option,
namely :getfable-instance-variables. This means that for each
instance variable, a method should automatically be generated to
return the value of that instance variable. The name of the operation
is a symbol with the same name as the instance variable, but interned
in the keyword package. Thus, methods are created to handle the
operations :x-position, :y-position, and so on.

Each of the two defmethod forms adds a method to the flavor.
The fIrst one adds a handler to the flavor ship for the operation
:speed. The second subform is the lambda-list, and the rest is the
body of the function that handles the :speed operation. The body
can refer to or set any instance variables of the flavor, just like vari
ables bound by a containing let. When any instance of the ship fla
vor is invoked with a fIrst argument of :direction, the body of the
second defmethod is evaluated in an environment in which the
instance variables of ship refer to the instance variables of this
instance (the one to which the message was sent). So the arguments
passed to atan are the the velocity components of this particular ship.
The result of atan becomes the value returned by the :direction
operation.

Now we have seen how to create a new abstract type: a new fla
vor. Every instance of this flavor has the five instance variables
named in the defflavor form, and the seven methods we have seen
(fIve that were automatically generated because of the :gettable
instance-variables option, and two that we wrote ourselves). The
way to create an instance of our new flavor is with the make
instance function. Here is how it could be used:

(setq my-ship (make-instance 'ship»

This returns an object whose printed representation is something
like #<ship 13731210>. (The details of the print form will vary; it is
an object which cannot be read back in from this default short-hand
printed representation.) The argument to make-instance is the name
of the flavor to be instantiated. Additional arguments, not used here,
are init options, that is, commands to the flavor of which we are mak
ing an instance, selecting optional features. This will be discussed
more in a moment.

Examination of the flavor we have defined shows that it is quite
useless as it stands, since there is no way to set any of the parameters.
We can fix this up easily by putting the :settable-instance
variables option into the defflavor form. This option tells defflavor
to generate methods for operations :set-x-position, :set-y-position,
and so on. Each such method takes one argument and sets the
corresponding instance variable to that value.

Tektronix, Inc.
6-12 Flavors

Another option we can add to the defflavor is :initable
instance-variables, (alternative spelling for compatibility is
:iniftable-instance-variables) which allows us to initialize the
values of the instance variables when an instance is flrst created.
:initable-instance-variables does not create any methods; instead, it
makes initialization keywords named :x-position, :y-position, etc.,
that can be used as init-option arguments to make-instance to ini
tialize the corresponding instance variables. The list of init options is
sometimes called the init-plist because it is like a property list.

Here is the improved defflavor:

(defflavor ship (x-position
y-position
x-velocity
y-velocity
mass)

()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

All we have to do is evaluate this new defflavor, and the existing
flavor defmition is updated and now includes the new methods and
initialization options. In fact, the instance we generated a while ago
now accepts the new operations! We can set the mass of the ship we
created by eValuating:

(send my-ship :set-mass 3.0)

and the mass instance variable of my-ship is properly set to 3.0.
If you want to play around with flavors, it is useful to know that

describe of an instance tells you the flavor of the instance and the
values of its instance variables. If we were to evaluate (describe
my-ship) at this point, the following would be printed:

f<ship 3214320>, an object of flavor ship,
has instance variable values:

x-position: nil
y-position: nil
x-velocity: nil
y-velocity: nil
mass: 3.0

Now that the instance variables are initable, we can create
another ship and initialize some of the instance variables using the
init-plist Let's do that and describe the result:

=> (setq her-ship
(make-instance 'ship

:x-position 0.0
:y-position 2.0
:mass 3.5»

#<ship 3242340>

=> (describe her-ship)
#<ship 3242340>, an object of flavor ship,
has instance variable values:

x-position: 0.0
y-position: 2.0
x-velocity: nil
y-velocity: nil
mass: 3.5

Tek COMMON LiSp
Flavors 6-13

A flavor can also establish default initial values for instance vari
ables. These default values are used when a new instance is created
if the values are not initialized any other way. The syntax for speci
fying a default initial value is to replace the name of the instance
variable by a list, whose fIrst element is the name and whose second
is a form to evaluate to produce the default initial value. For exam
ple when read in the definitions:

(defvar *default-x-velocity* 2.0)
(defvar *default-y-velocity* 3.0)

(defflavor ship «x-position 0.0)
(y-position 0.0)
(x-velocity *default-x-velocity*)
(y-velocity *default-y-velocity*)
mass)

()

:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

Then the results are as follows:

=> (setq another-ship (make-instance 'ship :x
position 3.4»
#<ship 2342340>
=> (describe another-ship)
#<ship 2342340>
an object of flavor ship,

has instance variable values:
x-position: 3.4
y-position: 0.0
x-velocity: 2.0

Tektronix, Inc.
6-14 Flavors

6.7
Mixing flavors

y-velocity:
mass:

3.0
nil

The value of x-position was initialized explicitly, so the default
was ignored. The value of v-position was initialized from the default
value, which was 0.0. The two velocity instance variables were ini
tialized from their default values, which came from two global vari
ables. The value of mass was not explicitly initialized and did not
have a default initialization, so it was left as nil. Some flavor imple
mentations set an uninitialized instance variable to unbound rather
than nil.

There are many other options that can be used in defflavor, and
the init options can be used more flexibly than just to initialize
instance variables; full details are given later in this chapter. But
even with the small set of features we have seen so far, it is easy to
write object-oriented programs.

Now we have a system for derming message-receiving objects so that
we can have generic operations. If we want to create a new type
called meteor that would accept the same generic operations as ship,
we could simply write another defflavor and two more defmethods
that looked just like those of ship, and then meteors and ships would
both accept the same operations. Objects of type ship would have
some more instance variables for holding attributes specific to ships
and some more methods for operations that are not generic, but are
only defined for ships; the same would be true of meteor.

However, this would be a a wasteful thing to do. The same code
has to be repeated in several places, and several instance variables
have to be repeated. The code now needs to be maintained in many
places, which is always undesirable. The power of flavors (and the
name flavors) comes from the ability to mix several flavors and·get a
new flavor. Since the functionality of ship and meteor partially over
lap, we can take the common functionality and move it into its own
flavor, which might be called moving-object. We would define
moving-object the same way as we dermed ship in the previous sec
tion. Then, ship and meteor could be dermed like this:

(defflavor ship (engine-power
number-of-passengers
name)

(moving-object)
:gettable-instance-variables)

{defflavor meteor (percent-iron)
(moving-object)

D-OI-02(4

:initable-instance-variables)

Tek COMMON LiSp
Flavors 6-15

These defflavor forms use the second subform, for which we pre
viously used O. The second subform is a list of flavors to be com
bined to form the new flavor; such flavors are called components.
Concentrating on ship for a moment (analogous statements are true
of meteor), we see that it has exactly one component flavor: moving
object. It also has a list of instance variables, which includes only the
ship-specific instance variables and not the ones that it shares with
meteor. By incorporating moving-object, the ship flavor acquires all
of its instance variables, and so need not name them again. It also
acquires all of moving-objects methods, too. So with the new defini
tion, ship instances still implement the :x-velocify and :speed
operations, with the same meaning as before. However, the
:engine-power operation is also understood (and returns the value of
the engine-power instance variable).

What we have done here is to take an abstract type, moving
object, and build two more specialized and powerful abstract types
on top of it. Any ship or meteor can do anything a moving object can
do, and each also has its own specific abilities. This kind of building
can continue; we could defme a flavor called ship-with-passenger
that was built on top of ship, and it would inherit all of moving
objects instance variables and methods as well as ships instance vari
ables and methods. Furthermore, the second subform of defflavor
can be a list of several components, meaning that the new flavor
should combine all the instance variables and methods of all the fla
vors in the list, as well as the ones those flavors are built on, and so
on. All the components taken together form a big tree of flavors. A
flavor is built from its components, its components' components, and
so on. We sometimes use the term components to mean the immedi
ate components (the ones listed in the defflavor), and sometimes to
mean all the components (including the components of the immedi
ate components and so on). (Actually, it is not strictly a tree, since
some flavors might be components through more than one path. It is
really a directed graph; it can even be cyclic.)

The order in which the components are combined to form a flavor
is important. The tree of flavors is turned into an ordered list by per
forming a top-down, depth-first walk of the tree, including non
terminal nodes before the subtrees they head, ignoring any flavor that
has been encountered previously somewhere else in the tree. For
example, if flavor-1 s immediate components are flavor-2 and flavor-3,
and flavor-2s components are flavor-4 and flavor-5, and flavor-3s com
ponent was flavor-4, then the complete list of components of flavor-1
would be: (flavor-1, flavor-2, flavor-4, flavor-5, flavor-3). The flavors
earlier in this list are the more specific, less basic ones; in our

Tektronix, Inc.
6-16 Flavors

example, ship-with-passengers would be fIrst in the list, followed by
ship, followed by moving-object. A flavor is always the first in the
list of its own components. Notice that flavor-4 does not appear
twice in this list Only the fIrst occurrence of a flavor appears; dupli
cates are removed. (The elimination of duplicates is done during the
walk; a cycle in the directed graph does not cause a non-terminating
computation.)

The set of instance variables for the new flavor is the union of all
the sets of instance variables in all the component flavors. If both
flavor-2 and flavor-3 have instance variables named foo, then flavor-1
has an instance variable named foo, and all methods that refer to foo
refer to this same instance variable. Thus different components of a
flavor can communicate with one another using shared instance vari
ables. (Often, only one component ever sets the variable; the others
only look at it.) The default initial value for an instance variable
comes from the first component flavor to specify one.

The way the methods of the components are combined is the
heart of the flavor system. When a flavor is defined, a single func
tion, called a combined method, is constructed for each operation
supported by the flavor. This function is constructed out of all the
methods for that operation from all the components of the flavor.
There are many different ways that methods can be combined; these
can be selected by the user when a flavor is defined. The user can
also create new forms of combination.

There are several kinds of methods, but so far, the only kinds of
methods we have seen are primary methods. The default way
primary methods are combined is that all but the earliest one pro
vided are ignored. In other words, the combined method is simply
the primary method of the first flavor to provide a primary method.
What this means is that if you are starting with a flavor foo and build
ing a flavor bar on top of it, then you can override foos method for an
operation by providing your own method. Your method will be
called, and foo' s will never be called.

Simple overriding is often useful; for example, if you want to
make a new flavor bar that is just like foo except that it reacts com
pletely differently to a few operations. However, often you don't
want to completely override the base flavor's (foo's) method; some
times you want to add some extra things to be done. This is where
combination of methods is used.

The usual way methods are combined is that one flavor provides
a primary method, and other flavors provide daemon methods. The
idea is that the primary method is in charge of the main business of
handling the operation, but other flavors just want to keep informed
that the message was sent, or just want to do the part of the operation
associated with their own area of responsibility.

·
Tek COMMON LISp

Flavors 6-17

daemon methods come in two kinds, before and after. There is a
special syntax in defmethod for defining such methods. Here is an
example of the syntax. To give the ship flavor an after-daemon
method for the :speed operation, the following syntax would be
used:

(defmethod (ship :after : speed) (body»

Now, when a message is sent, it is handled by a new function
called the combined method. The combined method first calls all of
the before daemons, then the primary method, then all the after
daemons. Each method is passed the same arguments that the com
bined method was given. The returned values from the combined
method are the values returned by the primary method; any values
returned from the daemons are ignored. Before-daemons are called
in the order that flavors are combined, while after-daemons are called
in the reverse order. In other words, if you build bar on top of foo,
then bar's before-daemons run before any of those in foo, and bars
after-daemons run after any of those in foo.

The reason for this order is to keep the modularity order correct.
If we create f1avor-1 built on flavor-2, then the components offlavor-2
should not matter. Our new before-daemons go before all methods of
flavor-2, and our new after-daemons go after all methods of flavor-2.
Note that if you have no daemons, this reduces to the form of combi
nation described above. The most recently added component flavor
is the highest level of abstraction; you build a higher-level object on
top of a lower-level object by adding new components to the front.
The syntax for defining daemon methods can be found in the descrip
tion of defmethod below.

To make this a bit more clear, let's consider a simple example
that is easy to play with: the :print-self method. The LISP printer
(i.e. the print function) prints instances of flavors by sending them
:print-self messages. The first argument to the :print-self operation
is a port (we can ignore the others for now), and the receiver of the
message is supposed to print its printed representation on the port. In
the ship example above, the reason that instances of the ship flavor
printed the way they did is because the ship flavor was actually built
on top of a very basic flavor called vanilla-flavor; this component is
provided automatically by defflavor. It was vanilla-flavor's :print
self method that was doing the printing. Now, if we give ship its
own primary method for the :print-self operation, then that method
completely takes over the job of printing: vanilla-flavors method will
not be called at all. However, if we give ship a before-daemon
method for the :print-self operation, then it will get invoked before
the vanilla-flavor method, and so whatever it prints will appear before
what vanilla-flavor prints. So we can use before-daemons to add

Tektronix, Inc.
6-18 Flavors

6.8
Flavor
functions

.

preftxes to a printed representation; similarly, after-daemons can add
suffixes.

There are other ways to combine methods besides daemons, but
this way is the most common. The more advanced ways of combin
ing methods are explained in a later section. The details of vanilla
flavor and what it does for you are also explained later.

We've been using the following special form informally:

defflavor flavor-name ({vars}*) ({flavors}*) {options}* [Macro]

• WHERE flavor-name is a symbol which serves to name this
flavor.
o The vars are the names of the instance-variables containing
the local state for this flavor. A list of two elements: the name of
an instance-variable and a default initialization form is also
acceptable; the initialization form is evaluated when an instance
of the flavor is created if no other initial value for the variable is
obtained. If no initialization is specified, the variable has value
nil.
o The flavors are the names of the component flavors out of
which this flavor is built. The features of those flavors are inher
ited as described previously.
o Each of the options may be either a keyword symbol or a list
of a keyword symbol and arguments. The options to defflavor
are described under Defflavor Options, below.
o type-of applied to an instance returns the symbol which is the
name of its flavor.
• SIDE EFFECT: The symbol flavor-name is given a flavor pro
perty which is the internal data-structure containing the details of
the flavor.
• NOTE: In Tek COMMON LISP objects which are instances of
flavors are implemented by a hidden internal data type, actually a
kind of vector. The svref function can access the slots of an
instance. The zeroth slot points to the internal descriptor for that
flavor; successive slots hold the instance variables.

all-f1avor-names [Variable]

• A special variable containing a list of the names of all flavors
that have ever been defflavored.

. ,

defmethod (flavor-name [method-type] operation)
lambda-list {forms}*

Tek COMMON LISp
Flavors 6-19

[Macro]

• WHERE flavor-name is a symbol which is the name of the fla
vor which is to receive the method. operation is a keyword sym
bol which names the operation to be handled. method-type is a
keyword symbol for the type of method; it is omitted when you
are defining a primary method. For some method-types, addi
tional information is expected. It comes after operation.
• SIDE EFFECf: defmethod defines a method, that is, a function
to handle a particular operation for instances of a particular fla
vor. The meaning of method-type depends on what style of
method combination is declared for this operation. For instance,
if :daemon combination (the default style) is in use, method
types :before and :after are allowed. See the section below on
Method Combination for a complete description of the way
methods are combined.
o lambda-list describes the arguments and &aux variables of the
function. The first argument to the method, which is the opera
tion name itself, is automatically handled and so is not included
in lambda-list. Note that methods may not have unevaluated
arguments; that is, they must be functions, not macros or special
forms. The forms are the function body; the value of the last
form is returned when the method is applied. Some methods can
return multiple values, depending on the style of method combi
nation used.
o The variant form

(defmethod (flavor-name operation) function)

where function is a symbol, says that flavor-names method for
operation is function, a symbol which names a function. When
function is called, self and any special instance variables will be
bound. The function must take appropriate arguments; the first
argument is the operation. Various flavor implementations have
different conventions for automatically-supplied arguments to
method functions; these should be conditionalized if code must
be transportable.

If you redefine a method that is already defmed, the new defmition
replaces the old one. Given a flavor, an operation name, and a
method type, there can only be one function (with the exception of
:case methods), so if you define a :before daemon method for the
foo flavor to handle the :bar operation, then you replace the previous
before-daemon; however, you do not affect the primary method or
methods of any other type, operation or flavor .

Tektronix, Inc.
6-20 Flavors

Along with other things, defmethod causes a function to be
defuned. The function -name is fonned by concatenating the
hyphen-separated print names of all the symbols in the first def
method subfonn, then suffixing -method; this name is interned in the
same package as the flavor name. For example, (defmethod (faa
:before :bar) ...) defines a function named foo-before-bar-method.
This is useful to know if you want to trace a method, or if you want
to poke around at the method function itself.

make-instance flavor-name {init-option value}* [Function}

• RETURNS an instance of the specified flavor which has just
been created.
o Arguments after the first are alternating init-option keywords
and arguments to those keywords. These options are used to ini
tialize instance variables and to select arbitrary options, as
described above. An :init message is sent to the newly-created
object with one argument, the init-plist. This is a property-list
containing the init-options specified and those defaulted from the
flavor's :default-init-pllst (however, init keywords that simply
initialize instance variables, and the corresponding values, may
be absent when the :init methods are called). make-instance is
an easy-to-call interface to instantiate-flavor, below.

instantiate-flavor flavor-name init-plist &optional
send-init-message-p return
unhandled-keywords area

• RETURNS a new instance of flavor flavor-name.

[Function}

• NOTE: This is an extended version of make-instance, giving
you more features. Note that it takes the init-plist as an individual
argument, rather than taking a &rest argument of init options and
values.

This property list can be modified; the properties from the default
init-pHst are added on if not already present, and some :fnft methods
may do explicit (setf (getf ... » onto the init-plist.

. In the event that :fnit methods rem prop properties already on the
init-plist, as opposed to simply doing (setf (getf ... », then the init-plist
is rplacded. This means that the actual supplied list of options is
modified, so this list should not be one contained inside a body of
code. This would permanently modify the calling code. Therefore
for each call of instantiate-flavor the caller should recreate or other
wise copy (e.g. with append) the list to be passed as the init-plist
argument.

Do not use nil as the init-plist argument. This would mean to use
the properties of the symbol nil as the init options. If your goal is to

Tek COMMON lisp
Flavors 6-21

have no init options, you must provide a property list containing no
properties, such as the list (nil), which can be created by evaluating
the form (list nil).

Here is the sequence of actions by which instantiate-flavor
creates a new instance:
(1) The specified flavor's instantiation flavor function if it exists, is

called to determine which flavor should actually be instantiated.
If there is no instantiation flavor function, the specified flavor is
instantiated.
If the flavor's method hash-table and other internal information
have not been computed or are not up to date, they are computed.
This may take a substantial amount of time, but it happens only
once for each time you define or redefine a particular flavor.

(2) The instance itself is created. The area argument is ignored by
Tek COMMON LISp and refers to consing in specified areas, a
feature used in some LISP machines.

(3) Initial values of the instance variables are computed. If an
instance variable is declared initable, and a keyword with the
same spelling as its name appears in init-plist, the property for that
keyword is used as the initial value.
Otherwise, if the default init-plist specifies such a property, the
value form is evaluated and the result used. Otherwise, if the fla
vor definition specifies a default initialization form, it is
evaluated and that result is used. In either case, the initialization
forms may not refer to any instance variables, nor will they find
the variable self be bound to the new instance. The value forms
are evaluated before the instance is actually allocated.
If an instance variable does not get initialized either of these
ways it is left nil; an :init method may initialize it (see below).
All remaining keywords and values specified in the :default
init-plist option to defflavor, that do not initialize instance vari
ables and are not overridden by anything explicitly specified in
init-plist are then merged into init-plist using setf of getf. The
default init plist of the instantiated flavor is considered first, fol
lowed by those of all the component flavors in the standard order.

(4) Keywords appearing in the init-plist but not defmed with the
:init-keywords option or the :initable-instance-variables
option for some component flavor are collected. If the :allow
other-keys option is specified with a non-nil value (either in the
original init-plist argument or by some default init plist) then these
unhandled keywords are ignored. If the return-unhandled
keywords argument is non-nil, a list of these keywords is returned
as the second value of instantiate-flavor. Otherwise, an error is
signaled if any unrecognized init keywords are present

Tektronix, Inc.
6-22 Flavors

(5) If the send-init-message-p argument is supplied and non-nil, an
:init message is sent to the newly-created instance, with one argu
ment, the init-plist. getf can be used to extract options from this
property-list Each flavor that needs initialization can contribute
an :init method by defining a daemon.

The :init methods should not look on the init-plist for keywords that
simply initialize instance variables (that is, keywords defined with
:initable-instance-variables rather than :init-keywords). The
corresponding instance variables are already setup when the :init
methods are called, and sometimes the keywords and their values
may actually be missing from the init-plist if it is more efficient not to
put them on. To avoid problems, always refer to the instance vari
ables themselves rather than looking for the init keywords that initial
ize them.

:init init-plist [Message]

• This operation is implemented on all flavor instances.
• SIDE EFFECT: This function examines the init keywords and
perform whatever initializations are appropriate. init-plist is the
argument that was given to instantiate-flavor, and may be
passed directly to getf to examine the value of any particular init
option.
o The default definition of this operation does nothing. How
ever, many flavors add :before and :after daemons to it.

instancep object [Function]

• RETURNS t if object is an instance of a flavor.

defwrapper (flavor-name operation) lambda-list &body [Macro]
body

• NOTE: This feature is complex and you may not be able to
understand it completely until you have gained some experience
with flavors. It can safely be skipped meanwhile.
o Sometimes the way the flavor system combines the methods
of different flavors (the daemon system) is not powerful enough.
In that case defwrapper can be used to define a macro that
expands into code that is wrapped around the invocation of the
methods. This is best explained by an example; suppose you
needed a lock locked during the processing of the :foo operation
on flavor bar, which takes two arguments, and you have a lock
frobboz special-form that knows how to lock the lock (presum
ably it generates an unWind-protect). Jock-frobboz needs to see
the first argument to the operation; perhaps that tells it what sort

of operation is going to be perfonned (read or write).

(defwrapper (bar :foo) «argl arg2) . body)
'(lock-frobboz (self argl)

. ,body»

Tek COMMON Lisp
Flavors 6-23

The use of the body macro-argument prevents the macro defined
by defwrapper from knowing the exact implementation and
allows several defwrappers from different flavors to be com
bined properly.

Note that the argument variables, arg 1 and arg2, are not refer
enced with commas before them. These may look like defmacro
argument variables, but they are not. Those variables are not
bound at the time the defwrapper-defined macro is expanded and
the back-quoting is done; rather, the result of that macro
expansion and back-quoting is code which, when a message is
sent, will bind those variables to the arguments in the message as
local variables of the combined method.

Consider another example. Suppose you thought you wanted
a :before daemon, but found that if the argument was nil you
needed to return from processing the message immediately,
without executing the primary method. You could write a
wrapper such as:

(defwrapper (bar :foo) «argl) . body)
'(cond «null argl»

(t (print "About to do :FOO")
. ,body»)

Suppose you need a variable for communication among the
daemons for a particular operation; perhaps the :after daemons
need to know what the primary method did, and it is something
that cannot be easily deduced from just the arguments. You
might use an instance variable for this, or you might create a spe
cial variable which is bound during the processing of the opera
tion and used free by the methods.

(defvar *communication*)
(defwrapper (bar :foo) (ignore . body)

'(let «*communication* nil»
. ,body»

Similarly you might want a wrapper that puts a catch around
the processing of an operation so that anyone of the methods
could throw out in the event of an unexpected condition.

Like daemon methods, wrappers work in outside-in order;
when you add a defwrapper to a flavor built on other flavors, the
new wrapper is placed outside any wrappers of the component

Tektronix, Inc.
6-24 Flavors

flavors. However, all wrappers happen before any daemons hap
pen. When the combined method is built, the calls to the before
daemon methods, primary methods, and after-daemon methods
are all placed together, and then the wrappers are wrapped around
them. Thus, if a component flavor defines a wrapper, methods
added by new flavors execute within that wrapper's context.

Be careful about inserting the body into an internal lambda
expression within the wrapper's code. Doing so interacts with
the internals of the flavor system and requires knowledge of
things not documented in the manual in order to work properly.

defwhopper (flavor-name operation) lambda-list &body [Macro]
body

• NOTE: Whoppers are a feature of some flavor implementations
which do many of the same things as wrappers. They will be
documented when they are implemented in Tek COMMON LISP.

undefmethod flavor [type] operation [suboperation] [Macro]

• Removes a method: (undefmethod (flavor :before :operation))
removes the method created by (defmethod (flavor :before
:operation) ... }. To remove a wrapper, use undefmethod with
:wrapper as the method type.

undefflavor flavor [Function]

self

• Undefines flavor flavor. All methods of the flavor are lost.
flavor and all flavors that depend on it are no longer valid to
instantiate. If instances of the discarded definition exist, they
continue to use that definition.

[Variable]

• When a message is sent to an object, the variable self is
automatically bound to that object for the benefit of methods
which want to manipulate the object itself (as opposed to its
instance variables). self is a lexical variable, that is, its scope of
is local to the method body.

send instance message [argument ...]
funcall instance message &rest arguments

[Macro]
[Function]

• NOTE: This is the way a message is passed to an instance of a
flavor. send and funcall operate in essentially the same manner.
send is potentially slightly more efficient because the evaluator
can infer that the functional argument is an instance, whereas

O'()I-02(

funcall must determine the type of its first argument

send-self message {arguments}*
funcall-self message {arguments}*
lexpr-send-self message {arguments}* list-ot-arguments
lexpr-funcall-self message {arguments}* Iist-of-

arguments

Tek COMMON LiSp
Flavors 6-25

[Macro]
[Macro]
[Macro]
[Macro]

• funcall-self is nearly equivalent to funca" with self as the
first argument, but may be a little faster. The others are analo-
gous.

recompile-flavor flavor-name &optional single-op use- [Function]
old-combined-methods do-
dependents

• Updates the internal data of the flavor and any flavors that
depend on it If single-op is supplied non-nil, only the methods
for that operation are changed. The system does this when you
define a new method that did not previously exist If use-old
combined-methods is t, then the existing combined method func
tions are used if possible. New ones are generated only if the set
of methods to be called has changed. This is the default. If use
old-combined-methods is nil, automatically-generated functions
to call multiple methods or to contain code generated by
wrappers are regenerated unconditionally. If do-dependents is
nil, only the specific flavor you specified is recompiled. Nor
mally all flavors that depend on it are also recompiled.
o recompile-flavor affects only flavors that have already been
compiled. Typically this means it affects flavors that have been
instantiated, but does not bother with mixins.

compile-flavor-methods {tlavor-names}* [Macro]

• The form (compile-flavor-methods flavor-name-1 flavor
name-2 ...), placed in a file to be compiled, directs the compiler
to perform flavor combination for the named flavors, forcing the
generation and compilation of automatically-generated combined
methods at compile time. Furthermore, the internal data struc
tures needed to instantiate the flavor will be computed at load
time, rather than waiting for the first attempt to instantiate the fla
vor.
o You should only use compile-flavor-methods on a flavor
that is going to be instantiated. For a flavor that is never going to
be instantiated (that is, a flavor that only serves to be a com
ponent of other flavors that actually do get instantiated), it is a

Tektronix, Inc.
6-26 Flavors

complete waste of time, except in the unu.sual case where those
other flavors can inherit the combined methods of this flavor
instead of each one having its own copy of the combined method
which happens to identical to the others. In this unusual case,
you should use the :abstract-flavor option to defflavor.
o compile-flavor-methods fonns should be compiled after all
of the other infonnation needed to create the combined methods
is available. You should put them after all the definitions of all
relevant flavors, wrappers, and methods of all components of the
argument flavors.
o When a compile-flavor-methods fonn is seen by the inter
preter, the internal data structures are generated and the combined
methods are defined.

get-handler-for object operation [Function]

• Given an object and an operation, this returns the object's
method for that operation, or nil if it has none. When object is an
instance of a flavor, this function can be useful to find which of
that flavor's components supplies the method.
o This is equivalent to the :get-handler-for message provided
by si:vanilla-flavor.

flavor-al1ows-init-keyword-p flavor-name keyword [Function]

• RETURNS non-nil if the flavor named flavor-name allows key
word in the init options when it is instantiated, or nil if it does not.
The non-nil value is the name of the component flavor that contri
butes the support of that keyword.

si :flavor-allowed-i nit-keywords flavor-name [Function1

• RETURNS a list of all the init keywords that may be used in
instantiating flavor-name.

symeval-in-instance instance symbol &optionsl no- [Function1
error-p

• RETURNS the value of the instance variable symbol inside
instance. If there is no such instance variable, an error is sig
naled, unless no-error-p is non-nil, in which case nil is returned.

set-in-instance instance symbol value [Function1

• SIDE EFFECT: Sets the value of the instance variable symbol
inside instance to value. If there is no such instance variable, an
error is signaled.

.\

Tek COMMON LISP
Flavors 6-27

describe-flavor flavor-name [Function]

• SIDE EFFECT: Prints descriptive information about a flavor; it
is self-explanatory. An important thing it tells you that can be
hard to figure out yourself is the combined list of component fla
vors; this list is what is printed after the phrase 'and directly or
indirectly depends on.'

There are quite a few options to defflavor. They are all described
here, although some are for very specialized purposes and not of
interest to most users. A few options take additional arguments, and
these are listed and described with the option.

Several of these options declare things about instance variables.
These options can be given with arguments which are instance vari
ables, or without any arguments in which case they refer to all of the
instance variables listed at the top of the defflavor. This is not
necessarily all the instance variables of the combined flavor, just the
ones mentioned in this flavor's defflavor. When arguments are
given, they must be instance variables that were listed at the top of
the defflavor; otherwise they are assumed to be misspelled and an
error is signaled. It is legal to declare things about instance variables
inherited from a component flavor, but to do so you must list these
instance variables explicitly in the instance variable list at the top of
the defflavor, or mention them in a required-instance-variable
option.

:gettable-instance-variables [Defflavor option]

• Enables automatic generation of methods for getting the
values of instance variables. The operation name is the name of
the variable, in the keyword package (Le. it has a colon in front
of it).
o Note that there is nothing special about these methods; you
could easily define them yourself. This option generates them
automatically to save you the trouble of writing out a lot of very
simple method definitions. (The same is true of methods defined
by the :settable-instance-variables option.) If you defme a method
for the same operation name as one of the automatically
generated methods, the explicit definition overrides the automatic
one.

:settabJe-instance-variables [Defflavor option]

• Enables automatic generation of methods for setting the values
of instance variables. The operation name is :set- followed by

6.9
Defflavor

options

Tektronix, Inc.
6-28 Flavors

the name of the variable. All settable instance variables are also
automatically made gettable and initable. (See the note in the
description of the :getfable-instance-variables option, above.)

:initable-instance .. variables [Defflavor option]

• The instance variables listed as arguments, or all instance vari
ables listed in this deft/avor if the keyword is given alone, are
made initable. This means that they can be initialized through
use of a keyword (a colon followed by the name of the variable)
as an init-option argument to make-instance. For compatibility
with certain other implementations, the spelling :inittable
instance-variables is also accepted.

:special-instance-variables [Defflavor option]

• NOTE: Special instance variables are not implemented Tek
COM:MON LISp. Instance variables are scoped lexically inside a
method in both compiled and interpreted code. Special instance
variables are unimplementable in COM:MON LISP for the same
reasons that it is impossible to close over a normal special vari
able. In any case, they are deleterious to proper code modularity;
the original designers of Flavors now deprecate them as a mis
feature except for very obscure (or historical) purposes. The Tek
COM:MON LISP implementation ignores the :special-instance
variable specification other than issuing a warning message, but
the resulting code will be unlikely to do the right thing if the
instance variables were declared special for some particular pur
pose.

:init-keywords [Defflavor option]

• The arguments are declared to be valid keywords to use in
instantiate-flavor when creating an instance of this flavor (or
any flavor containing it). The system uses this for error
checking: before the system sends the :init message, it makes
sure that all the keywords in the init-plist are either initable
instance variables or elements of this list. If any is not recog
nized, an error is signaled. When you write a :init method that
accepts some keywords, they should be listed in the :init
keywords option of the flavor. If :allow-other-keys is used as
an init keyword with a non-nil value, this error check is
suppressed. Then unrecognized keywords are simply ignored.

:defau/f-init-plist

Tek COMMON LISp
Flavors 6-29

[Defflavor option]

• The arguments are alternating keywords and value forms, like
a property list. When the flavor is instantiated, these properties
and values are put into the init-plist unless already present. This
allows one component flavor to default an option to another com
ponent flavor. The value forms are only evaluated when and if
they are used. For example,

(:default-init-plist :frob-array
(make-array IOO})

would provide a defaultJrob array for any instance for which the
user did not provide one explicitly. The following specification
prevents errors for unhandled init keywords in all instantiations
of this flavor and other flavors that depend on it.

(:default-init-plist :allow-other-keys t)

:required-inif-keywords [Defflavor option]

• The arguments are init keywords which are to be required
each time this flavor (or any flavor containing it) is instantiated.
An error is signaled if any required init keyword is missing.

:required-insfance-variables [Defflavor option]

• Declares that any flavor incorporating this one that is instan
tiated into an object must contain the specified instance variables.
An error occurs if there is an attempt to instantiate a flavor that
incorporates this one if it does not have these in its set of instance
variables. Note that this option is not one of those that checks the
spelling of its arguments in the way described at the start of this
section (if it did, it would be useless).
o Required instance variables may be freely accessed by
methods just like normal instance variables. The difference
between listing instance variables here and listing them at the
front of the defflavor is that the latter declares that this flavor
owns those variables and accepts responsibility for initializing
them, while the former declares that this flavor depends on those
variables but that some other flavor must be provided to manage
them and whatever features they imply.

:required-mefhods [Defflavor option]

• The arguments are names of operations that any flavor incor
porating this one must handle. An error occurs if there is an
attempt to instantiate such a flavor and it is lacking a method for

Tektronix, Inc.
6-30 Flavors

one of these operations. Typically this option appears in the def
flavor for a base flavor. Usually this is used when a base flavor
does a (send self ...) to send itself a message that is not handled
by the base flavor itself; the idea is that the base flavor will not be
instantiated alone, but only with other components (mixins) that
do handle the message. This keyword allows the error of having
no handler for the message to be detected when the flavor instan
tiated or when compile-flavor-rnethods is done, rather than
when the missing operation is used.

:required-flavors [Defflavor option]

• The arguments are names of flavors that any flavor incorporat
ing this one must include as components, directly or indirectly.
The difference between declaring flavors as required and listing
them directly as components at the top of the defflavor is that
declaring flavors to be required does not make any commitments
about where those flavors will appear in the ordered list of com
ponents; that is left up to whoever does specify them as com
ponents. Declaring a flavor to be required only provides error
checking: an attempt to instantiate a flavor that does not include
the required flavors as components signals an error. Compare
this with :requ;red-methods and :requ;red-;nstance-variables.

For an example of the use of required flavors, consider the ship
example given earlier, and suppose we want to define a relativity
mixin which increases the mass dependent on the speed. We might
write,

(defflavor relativity-mixin () (moving-object»
(defmethod (relativity-mixin :mass) ()

(/ mass (sqrt (- 1
(expt (/ (send self : speed)

speed-of-light)
2» »)

but this would lose because any flavor that had relativity-mixin as a
component would get moving-object right after it in its component
list. As a base flavor, moving-object should be last in the list of com
ponents so that other components mixed in can replace its methods
and so that daemon methods combine in the right order. relativity
mixin has no business changing the order in which flavors are com
_ bined, which should be under the control of its caller. For example,

(defflavor starship () (relativity-mixin long
distance-mixin ship»

'"

Tek COMMON LISp
Flavors 6-31

puts moving-object last (inheriting it from ship). So instead of the
definition above we write,

(defflavor relativity-mixin () () (:required
flavors moving-object))

which allows relativity-mixins methods to access moving-object
instance variables such as mass (the rest mass), but does not specify
any place for moving-object in the list of components.

It is very common to specify the base flavor of a mixin with the
:required-flavors option in this way.

:included-flavors [Defflavor option]

• The arguments are names of flavors to be included in this fla
vor. The difference between declaring flavors here and declaring
them at the top of the defflavor is that when component flavors
are combined, if an included flavor is not specified as a normal
component, it is inserted into the list of components immediately
after the last component to include it. Thus included flavors act
like defaults. The important thing is that if an included flavor is
specified as a component, its position in the list of components is
completely controlled by that specification, independently of
where the flavor that includes it appears in the list.

:included-flavors and :required-flavors are used in similar ways; it
would have been reasonable to use :included-flavors in the
relativity-mixin example above. The difference is that when a flavor
is required but not given as a normal component, an error is signaled,
but when a flavor is included but not given as a normal component, it
is automatically inserted into the list of components at a reasonable
place.

:no-vanilla-flavor [Defflavor option]

• Normally when a flavor is instantiated, the special flavor
si:vanilla-flavor is included automatically at the end of its list of
components. The vanilla flavor provides some default methods
for the standard operations which all objects are supposed to
understand. These include :print-self, :describe, :which
operations, and several other operations.
o If any component of a flavor specifies the :no-vanilla-flavor
option, then si:vanilla-flavor is not included in that flavor. This
option should not be used casually.

Tektronix, Inc.
6-32 Flavors

:defaulf-handler [Defflavor option]

• The argument is the name of a function that is to be called to
handle any operation for which there is no method. Its arguments
are the arguments of the send which invoked the operation,
including the operation name as the fIrst argument. Whatever
values the default handler returns are the values of the operation.
o Default handlers can be inherited from component flavors. If
a flavor has no other default handler, one is provided which sig
nals an error if a message is sent for which there is no handler.

:ordered-instance-variables [Defflavor option]

• This option is mostly for esoteric internal system uses. The
arguments are names of instance variables which must appear
first (and in this order) in all instances of this flavor, or any flavor
depending on this flavor. This is used for instance variables that
are specially known about by other code (e.g. non-LISP) and also
in connection with the :outside-accessible-instance-variables
option. If the keyword is given alone, the arguments default to
the list of instance variables given at the top of this defflavor.
o Any number of flavors to be combined together can specify
this option. The longest ordered variable list applies, and an error
is signaled if any of the other lists do not match its initial ele
ments.
o Removing any of the :ordered-instance-variables, or chang
ing their positions in the list, requires that you recompile all
methods that use any of the affected instance variables.

:outside-accessible-instance-variables [Defflavor option]

• The arguments are instance variables which are to be accessi
ble from outside of this flavor's methods. A macro is defIned
which takes an object of this flavor as an argument and returns
the value of the instance variable; self may be used to set the
value of the instance variable. The name of the macro is the
name of the flavor concatenated with a hyphen and the name of
the instance variable. These macros are similar to the accessors
created by defstruct.
o This feature works in two different ways, depending on
whether or not the instance variable has been declared to have a
fixed slot in all instances, via the :ordered-instance-variables
option.
o If the variable is not ordered, the position of its value cell in
the instance must be computed at run time. This takes noticeable
time, possibly more or less than actually sending a message

D-OI-02(4

Tek COMMON LiSp
Flavors 6-33

would take. An error is signaled if the argument to the accessor
macro is not an instance or is an instance that does not have an
instance variable with the appropriate name. However, there is
no error check that the flavor of the instance is the flavor the
accessor macro was defined for, or a flavor built upon that flavor.
This error check would be too expensive.
o If the variable is ordered, the compiler compiles a call to the
accessor macro into a primitive (actually a svref) which simply
accesses that variable's assigned slot by number. No error
checking is performed to make sure that the argument is really an
instance, much less that it is of the appropriate type.
o setf works on these accessor macros to modify the instance
variable.

:accessor-prefix [Defflavor option]

• Normally the accessor macro created by the :outside
accessible-instance-variables option to access the flavor f's
instance variable v is named f-v. This option allows something
other than the flavor name to be used for the first part of the
macro name. Specifying (:accessor-prefix get$) causes it to be
named get$v instead.

:alias-flavor [Defflavor option]

• NOTE: :alias-flavor is presently unimplemented in Tek COM
MaN LIsp.
• Marks this flavor as being an alias for another flavor. This fla
vor should have only one component, which is the flavor it is an
alias for, and no instance variables or other options. No methods
should be defined for it.
o The effect of the :alias-flavor option is that an attempt to
instantiate this flavor actually produces an instance of the other
flavor. Without this option, it would make an instance of this fla
vor, which might behave identically to an instance of the other
flavor. :alias-flavor eliminates the need for separate mapping
tables, method tables, etc. for this flavor, which becomes truly
just another name for its component flavor.
o The alias flavor and its base flavor are also equivalent when
used as an argument of subtypep or as the second argument of
typep; however, if the alias status of a flavor is changed, you
must recompile any code which uses it as the second argument to
typep in order for such code to function.
o :alias-flavor is mainly useful for changing a flavor's name
gracefully.

Tektronix, Inc.
6-34 Flavors

:abstract-flavor [Defflavor option]

• This option marks the flavor as one that is not supposed to be
instantiated (that is, is supposed to be used only as a component
of other flavors). An attempt to instantiate the flavor signals an
error.
o It is sometimes useful to do compile-flavor-methods on a
flavor that is not going to be instantiated, if the combined
methods for this flavor will be inherited and shared by many oth
ers. :abstract-flavor tells compile-flavor-methods not to com
plain about missing required flavors, methods or instance vari
ables. Presumably the flavors that depend on this one and actu
ally are instantiated will supply what is lacking.
• NOTE: :abstract-f/avor is accepted but currently ignored in
Tek COMMON LISP.

:method-combination [Defflavor option]

• Specifies the method combination style to be used for certain
operations. Each argument to this option is a list (style order
operation 1 operation2 ...). operation 1 , operation2, etc. are
names of operations whose methods are to be combined in the
declared fashion. style is a keyword that specifies a style of com
bination. order is a keyword whose interpretation is up to style;
typically it is either :base-flavor-first or :base-flavor-Jast.
o Any component of a flavor may specify the type of method
combination to be used for a particular operation. If no com
ponent specifies a style of method combination, then the default
style is used, namely :daemon. If more than one component of a
flavor specifies the combination style for a given operation, then
they must agree on the specification, or else an error is signaled.

:run-time-alternatives deftlavor
:mixture deftlavor

[Defflavor option]
[Defflavor option]

• A run-time-alternative flavor defines a collection of similar
flavors t all built on the same base flavor but having various mix
ins as well. Instantiation chooses a flavor of the collection at run
time based on the init keywords specified, using an automatically
generated instantiation flavor function.
o A simple example would be

(defflavor foo () (basic-foo)
(:run-time-alternatives
(:big big-foo-mixin»
(:init-keywords :big»

·
Tek COMMON LIsp

Flavors 6-35

o Then (make-instance 'foo :big t) makes an instance of a flavor
whose components are big-foo-mixin as well as foo. But (make
instance 'foo) or (make-instance 'foo :big nil) makes an instance
of foo itself. The clause (:big big-foo-mixin) in the :run-time
alternatives says to incorporate big-foo-mixin if :big's value is t,
but not if it is nil.
o There may be several clauses in the :run-time-alternatives.
Each one is processed independently. Thus, two keywords :big
and :wide could independently control two mixins, giving four
possibilities.

(defflavor foo () (basic-foo)
(:run-time-alternatives (:big big-foo-mixin)

(: wide wide-foo-
mixin))

(:init-keywords :big»

o It is possible to test for values other than t and nil. The clause:

(:size (:big big-foo-mixin)
(:small small-foo-mixin)
(nil nil»

allows the value for the keyword :size to be :big, :small or nil
(or omitted). If it is nil or omitted, no rnixin is used (that's what
the second nil means). If it is :big or :small, an appropriate
rnixin is used. This kind of clause is distinguished from the
simpler kind by having a list as its second element. The values to
check for can be anything, but eq is used to compare them.
o The value of one keyword can control the interpretation of
others by nesting clauses within clauses. If an alternative has
more than two elements, the additional elements are subclauses
which are considered only if that alternative is selected. For
example, the clause:

(:etherial (t etherial-mixin)
(nil nil

(:size (:big big-foo-mixin)
(:small small-foo-mixin)
(nil nil}»)

says to consider the :size keyword only if :etherial is nil.
o :mixture is synonymous with :run-time-alternatives. It
exists for compatibility with ZetaLISP or other LISP Machine sys
tems.

Tektronix, Inc.
6-36 Flavors

6.10
Flavor
families

:documentation [Defflavor option]

• Specifies the documentation string for the flavor definition.
This documentation can be viewed with the describe-flavor
function.

The following organization conventions are recommended for pro
grams that use flavors.

A base flavor is a flavor that defmes a whole family of related
flavors, all of which have that base flavor as a component. Typically
the base flavor includes things relevant to the whole family, such as
instance variables, :required-methods and :required-instance
variables declarations, default methods for certain operations,
:method-combination declarations, and documentation on the
general protocols and conventions of the family. Some base flavors
are complete and can be instantiated, but most cannot be instantiated
themselves. They serve as a base upon which to build other flavors.
The base flavor for the foo family is often named basic-foo.

A mixin flavor is a flavor that defines one particular feature of an
object A mixin cannot be instantiated, because it is not a complete
description. Each module or feature of a program is defmed as a
separate mixin; a usable flavor can be constructed by choosing the
mixins for the desired characteristics and combining them, along
with the appropriate base flavor. By organizing your flavors this
way, you keep separate features in separate flavors, and you can pick
and choose among them. Sometimes the order of combining mixins
does not matter, but often it does, because the order of flavor combi
nation controls the order in which daemons are invoked and wrappers
are wrapped. Such order dependencies should be documented as part
of the conventions of the appropriate family of flavors. A mixin fla
vor that provides the mumble feature is often named mumble-mixin.

If you are writing a program that uses someone else's facility,
using that facility's flavors and methods, your program may still
defme its own flavors, in a simple way. The facility provides a base
flavor and a set of mixins: the caller can combine these in various
ways depending on exactly what it wants, since the facility probably
does not provide all possible useful combinations. Even if your
private flavor has exactly the same components as a pre-existing fla
vor, it can still be useful since you can use its :default-init-plist to
select options of its component flavors and you can define one or two
methods to customize it just a little.

D"()1..mt4.

Tek COMMON LiSp
Flavors 6-37

The operations described in this section are a standard protocol, 6. 11
which all message-receiving objects are assumed to understand. The Vanilla flavor
standard methods that implement this protocol are automatically sup-
plied by the flavor system unless the user specifically tells it not to do
so. These methods are associated with the flavor si:vanilla-flavor:

si :vanilla-flavor [Flavor]

• NOTE: For source code compatibility with other implementa
tions, Tek COMMON LISP defines si: as an alias for the system:
package.
• Unless you specify otherwise (with the :no-vanilla-flavor
option to defflavor), every flavor includes the vanilla flavor,
which has no instance variables but provides some basic useful
methods.

:print-self stream prindepth escape-p [Message]

• The object should output its printed-representation to a stream.
The printer sends this message when it encounters an instance or
an entity. The arguments are the stream, the current depth in
list-structure (for comparison with *print-Ievel*), and whether
escaping is enabled (a copy of the value of *print-escape*).
si:vanilla-flavor ignores the last two arguments and prints some
thing like #<flavor-name octal-address>. The flavor-name tells
you what type of object it is and the octal-address allows you to
tell different objects apart.

: describe [Message]

• The object should describe itself, printing a description onto
the standard output stream. The describe function sends this
message when it encounters an instance. si:vanilla-flavor outputs
in a reasonable format the object, the name of its flavor, and the
names and values of its instance-variables. The instance vari
ables are printed in their order within the instance.

:which-operations [Message]

• The object should return a list of the operations it can handle.
si:vanilla-flavor generates the list once per flavor and remembers
it, minimizing consing and compute-time. If the set of operations
handled is changed, this list is regenerated the next time someone
asks for it.

Tektronix, Inc.
6-38 Flavors

:operation-handled-p operation [Message]

• operation is an operation name. The object should return t if it
has a handler for the specified operation, nil if it does not.

:get-handler-for operation [Message]

• operation is an operation name. The object should return the
method it uses to handle operation. If it has no handler for that
operation, it should return nil. This is like the get-handler-for
function.

:send-if-handles operation {arguments}* [Message]

• operation is an operation name and arguments is a list of argu
ments for the operation. If the object handles the operation, it
should send itself a message with that operation and arguments,
and return whatever values that message returns. If it doesn't
handle the operation it should just return nil.

:eval-inside-yourself form [Message]

• The argument is a form that is evaluated in an environment in
which special variables with the names of the instance variables
are bound to the values of the instance variables. It works to
setq one of these special variables; the instance variable is modi
fied. This is intended to be used mainly for debugging.

:funcall-Inside-yourself function &rest args [Message]

• function is applied to args in an environment in which special
variables with the names of the instance variables are bound to
the values of the instance variables. It works to setq one of these
special variables; the instance variable is modified. This is a way
of allowing callers to provide actions to be performed in an
environment set up by the instance.

:break [Message]

• break is called in an environment in which special variables
with the names of the instance variables are bound to the values
of the instance variables.

Tek COMMON LISP
Flavors 6-39

When a flavor has or inherits more than one method for an operation,
they must be called in a specific sequence. The flavor system creates
a function called a combined method which calls all the user
specified methods in the proper order. Invocation of the operation
actually calls the combined method, which is responsible for calling
the others.

For example, if the flavor foo has components and methods as
follows:

(defflavor foo () (foo-mixin foo-base»
(defflavor foo-mixin () (bar-mixin»

(defmethod (foo :before :hack) ...)
(defmethod (foo :after :hack) ...)

(defmethod (foo-mixin :before :hack) .. ,)
(defmethod (foo-mixin :after :hack) ...)

(defmethod (bar-mixin :before :hack) .. ,)
(defmethod (bar-mixin :hack) ...)

(defmethod (foo-base :hack) ...)
(defmethod (foo-base :after :hack) ...)

then the combined method generated looks like this (ignoring many
details not related to this issue):

(defmethod (foo :combined :hack) (&rest args)
(apply #' (:method foo :before :hack) args)
(apply #' (:method foo-mixin :before :hack) args)
(apply #' (:method bar-mixin :before :hack) args)
(multiple-value-progl

(apply #' (:method bar-mixin :hack) args}
(apply #' (:method foo-base :after :hack) args)
(apply #' (:method foo-mixin :after :hack)

args)
(apply #' (:method foo :after :hack) args)})

This example shows the default style of method combination, the one
described in the introductory parts of this chapter, called :daemon
combination. Each style of method combination defines which
method types it allows, and what they mean. :daemon combination
accepts method types :before and :after, in addition to untyped
methods; then it creates a combined method which calls all the
:before methods, only one of the untyped methods, and then all the
:after methods, returning the value of the untyped method. The com
bined method is constructed by a function much like a macro's
expander function, and the precise technique used to create the com
bined method is what gives :before and :after their meaning.

6.12
Method

combination

Tektronix, Inc.
6-40 Flavors

Note that the :before methods are called in the order foo, foo
mixin, bar-mixin and foo-base. (foo-base does not have a :before
method, but if it had one that one would be last.) This is the standard
ordering of the components of the flavor foo; since it puts the base
flavor last, it is called :base-flavor-Iast ordering. The :after
methods are called in the opposite order, in which the base flavor'
comes fIrst. This is called :base-flavor-first ordering.

Only one of the untyped methods is used; it is the one that comes
first in :base-flavor-Iast ordering .. An untyped method used in this
way is called a primary method.

Other styles of method combination defme their own method
types and have their own ways of combining them. Use of another
style of method combination is requested with the :method
combination option to defflavor. Here is an example which uses
:Iist method combination, a style of combination that allows :list
methods and untyped methods:

(defflavor foo () (foo-mixin 'foo-base»
(defflavor foo-mixin () (bar-mixin»
(defflavor foo-base () ()

(:method-combination (:list :base-flavor-last
:win»)

(defmethod (foo :list :win) .. -.)

(defmethod (foo :win) ...)
(defmethod (foo-mixin :list :win) ...)
(defmethod (bar-mixin :list :win) ...)
(defmethod (bar-mixin :win) ...)
(defmethod (foo-base :win) ...)

;; yielding this combined method

(defmethod (foo :combined :win) (&rest args)
(list (apply i' (:method foo :list :win) args)

(apply i' (:method foo-mixin :list :win)
args)

(apply i' (:method bar-mixin :list :win)
args)

(apply i' (:method foo :win) args)
(apply i' (:method bar-mixin :win) args)
(apply i' (:method foo-base :win) args)))

The :method-combination option in the defflavor for foo-base
causes :Iist method combination to be used for the :win operation on
all flavors that have foo-base as a component, including foo. The

Tek COMMON LiSp
Flavors 6-41

result is a combined method which calls all the methods, including
all the untyped methods rather than just one, and makes a list of the
values they return. All the :list methods are called fIrst, followed by
all the untyped methods; and within each type, the :base-flavor-Iast
ordering is used as specified. If the :method-combination option
said :base-flavor-first, the relative order of the :list methods would
be reversed, and so would the untyped methods, but the :list methods
would still be called before the untyped ones. :base-flavor-Iast is
more often right, since it means that foo's own methods are called
first and si:vanilla-flavor's methods (if it has any) are called last.

One method type, :default, has a standard meaning independent
of the style of method combination, and can be used with any style.

Here are the standardly defined method combination styles:

:daemon [Method-combination type]

• The default style of method combination. All the :before
methods are called, then the primary (untyped) method for the
outermost flavor that has one is called, then all the :after methods
are called. The value returned is the value of the primary
method.

:daemon-with-or [Method-combination type]

• Like the :daemon method combination style, except that the
primary method is wrapped jn an :or special form with all :or
methods. Multiple values can be returned from the primary
method, but not from the :or methods (as in the or special form).
This produces combined methods like the following:

(progn
(foo-before-method)
(multiple-value-progl

(or (foo-or-method)
(foo-primary-method»

(foo-after-method»)

This is useful primarily for flavors in which a mixin introduces an
alternative to the primary method. Each :or method gets a
chance to run before the primary method and to decide whether
the primary method should be run or not; if any :or method
returns a non-nil value, the primary method is not run (nor are the
rest of the :or methods). Note that the ordering of the combina
tion of the :or methods is controlled by the order keyword in the
:mefhod-combination option.

Tektronix, Inc.
6-42 Flavors

:daemon-with-and [Method-combination type]

• Like :daemon-with-or except that it combines :and methods
in an and special form. The primary method is run only if all of
the :and methods return non-nil values.

:daemon-with-override [Method-combination type]

• Like the :daemon method combination style, except an or
special form is wrapped around the entire combined method with
all :override typed methods before the combined method. This
differs from :daemon-with-or in that the :before and :after
daemons are run only if none of the :override methods returns
non-nil. The combined method looks something like this:

(or (foo-override-method)
(progn

(foo-before-method)
(multiple-value-progl

(foo-primary~method)

(foo-after-method»»

:progn [Method-combination type]

:or

• Calls all the methods inside a progn special form. Only
untyped and :progn methods are allowed. The combined method
calls all the :progn methods and then all the untyped methods.
The result of the combined method is whatever the last of the
methods returns.

[Method-combination type]

• Calls all the methods inside an or special form. This means
that each of the methods is called in turn. Only untyped methods
and :or methods are allowed; the :or methods are called fIrst. If
a method returns a non-nil value, that value is returned and none
of the rest of the methods are called; otherwise, the next method
is called. In other words, each method is given a chance to han
dle the message; if it doesn't want to handle the message, it can
return nil, and the next method gets a chance to try.

:and [Method-combination type]

• Calls all the methods inside an and special form. Only
untyped methods and :and methods are allowed. The basic idea
is much like :or; see above.

r61

Tek COMMON Lisp
Flavors 6-43

:append [Method-combination type]

• Calls all the methods and appends the values together. Only
untyped methods and :append methods are allowed; the
:append methods are called first.

:nconc [Method-combination type]

• Calls all the methods and ncones the values together. Only
untyped methods and :nconc methods are allowed, etc.

:list [Method-combination type]

• Calls all the methods and returns a list of their returned values.
Only untyped methods and :Iist methods are allowed, etc.

:inverse-Iist [Method-combination type]

• Calls each method with one argument; these arguments are
successive elements of the list that is the sole argument to the
operation. Returns no particular value. Only untyped methods
and :inverse-list methods are allowed, etc.
o If the result of a :list-combined operation is sent back with an
:inverse-list-combined operation, with the same ordering and
with corresponding method defmitions, each component flavor
receives the value that came from that flavor.

:pass-on [Method-combination type]

• NOTE: :pass-on method combination is not yet implemented
in Tek COMM:ON LISP.
• Calls each method on the values returned by the preceding
one. The values returned by the combined method are those of
the outermost call. The format of the declaration in the defflavor
is:

(:method-combination (:pass-on (ordering.
arglist)
'operation-names»

where ordering is :base-f1avor-firsf or :base-f1avor-lasf. arglist
may include the &aux and &optional keywords.
o Only untyped methods and :pass-on methods are allowed.
The :pass-on methods are called first.

Tektronix, Inc.
6-44 Flavors

:case [Method-combination type]

• With :case method combination, the combined method
automatically does a caseq dispatch on the first argument of the
operation, known as the suboperation. Methods of type :case
can be used, and each one specifies one sub operation that it
applies to. If no :case method matches the sub operation, the
primary method, if any, is called.

(defflavor foo (a b) ()
(:method-combination (:case :base-flavor-last

:win) »

(defmethod (foo :case :win :a) ()
" This method handles nd a-foa :win :a):
a)

(defmethod (foo :case :win :a*b) ()
" This method handles nd a-foo :win :a*b):
(*ab»

(defmethod (foo :win) (suboperation)
;; This method handles nd a-foa :win

:something-else):
(list 'something-random suboperation»

:case methods are unusual in that one flavor can have many
:case methods for the same operation, as long as they are for dif
ferent suboperations.
o The suboperations :which-operations, :operation-handJed
p, :send-if-handJes and :get-handler-for are all handled
automatically based on the collection of :case methods that are
present.
• NOTE: :send-if-handles and :get-handler-for are presently
unimplemented in Tek COMMON LISP.
o Methods of type :or are also allowed. They are called just
before the primary method, and if one of them returns a non-nil
value, that is the value of the operation, and no more methods are
called.

Here is a list of all the method types recognized by the standard
styles of method combination:

no method type [Method type]

• If no type is given to defmethod, a primary method is
created. This is the most common type of method.

D-Ol-iY,l('

S\

Tek COMMON LIsp
Flavors 6-45

:before
:after

[Method type]
[Method type]

• These are used for the before-daemon and after-daemon
methods used by :daemon method combination.

:default [Method type]

:or

• If there are no untyped methods among any of the flavors
being combined, then the :defau/f methods (if any) are
treated as if they were untyped. If there are any untyped
methods, the :default methods are ignored.
o Typically a base-flavor defines some default methods for
certain of the operations understood by its family. When
using the default kind of method combination these default
methods are suppressed if another component provides a
primary method.

:and
[Method type]
[Method type]

• These are used for :daemon-with-or and :daemon-with
and method combination. The :or methods are wrapped in
an or, or the :and methods are wrapped in an and, together
with the primary method, between the :before and :after
methods.

:override [Method type]

• Allows the features of :or ~ethod combination to be used
together with daemons. If you specify :daemon-with
override method combination, you may use :override
methods. The :override methods are executed first, until one
of them returns non-nil. If this happens, that method's
value(s) are returned and no more methods are used. If all the
:override methods return nil, the :before, primary and :after
methods are executed as usual.
o In typical usages of this feature, the :override method usu
ally returns nil and does nothing, but in exceptional cir
cumstances it takes over the handling of the operation.

Tektronix, Inc.
6-46 Flavors

:or
:and
:progn
:list
:inverse-list
:pass-on
:append
:nconc

{Method type]
{Method type]
{Method type]
[Method type]
[Method type]
[Method type]
[Method type]
[Method type]

• Each of these methods types is allowed in the method
combination style of the same name. In those method combi
nation styles, these typed methods work just like untyped
ones, but all the typed methods are called before all the
untyped ones. These method types can be used with any
method combination style; they have standard meanings
independent of the method combination style being used.

:wrapper {Method type]

• This is used internally by defwrapper.

:combined [Method type]

• This is used internally for automatically-generated com
bined methods.

The most common form of combination is :daemon. One thing may
not be clear: when do you use a :before daemon and when do you
use an :after daemon? In some cases the primary method performs a
clearly-defined action and the choice is obvious: :before :Iaunch
rocket puts in the fuel, and :after :Iaunch-rocket turns on the radar
tracking.

In other cases the choice can be less obvious. Consider the :init
message, which is sent to a newly-created object. To decide what
kind of daemon to use, we observe the order in which daemon
methods are called. First the :before daemon of the instantiated fla
vor is called, then :before daemons of successively more basic fla
vors are called, and fmally the :before daemon (if any) of the base
flavor is called. Then the primary method is called. After that, the
:after daemon for the base flavor is called, followed by the :after
daemons at successively less basic flavors.

Now, if there is no interaction among all these methods, if their
actions are completely independent, then it doesn't matter whether
you use a :before daemon or an :after daemon. There is a difference
if there is some interaction. The interaction we are talking about is
usually done through instance variables; in general, instance vari
ables are how the methods of different component flavors

Tek COMMON LIsp
Flavors 6-47

communicate with each other. In the case of the :init operation, the
init-plist can be used as well. The important thing to remember is
that no method knows beforehand which other flavors have been
mixed in to form this flavor; a method cannot make any assumptions
about how this flavor has been combined, and in what order the vari
ous components are mixed.

This means that when a :before daemon has run, it must assume
that none of the methods for this operation have run yet But the
:after daemon knows that the :before daemon for each of the other
flavors has run. So if one flavor wants to convey information to the
other, the fIrst one should transmit the information in a :before
daemon, and the second one should receive it in an :after daemon.
So while the :before daemons are run, information is transmitted;
that is, instance variables get set up. Then, when the :after daemons
are run, they can look at the instance variables and act on their
values.

In the case of the :init method, the :before daemons typically set
up instance variables of the object based on the init-plist, while the
:after daemons actually do things, relying on the fact that all of the
instance variables have been initialized by the time they are called.

The problems become most diffIcult when you are creating a net
work of instances of various flavors that are supposed to point to
each other. For example, suppose you have flavors for buffers and
streams, and each buffer should be accompanied by a stream. If you
create the stream in the :before :init method for buffers, you can
inform the stream of its corresponding buffer with an init keyword,
but the stream may try sending messages back to the buffer, which is
not yet ready to be used. If you create the stream in the :after :init
method for buffers, there will be no problem with stream creation,
but some other :after :init methods of other mixins may have run and
made the assumption that there is to be no stream. The only way to
guarantee success is to create the stream in a :before method and
inform it of its associated buffer by sending it a message from the
buffer's :after :init method. This scheme-creating associated objects
in :before methods but linking them up in :after methods-often
avoids problems, because all the various associated objects used by
various mixins at least exist when it is time to make other objects
point to them.

Since flavors are not hierarchically organized, the notion of levels
of abstraction is not rigidly applicable. However, it remains a useful
way of thinking about systems.

Tektronix, Inc.
6-48 Flavors

6.13
Implementing
flavors

An object that is an instance of a flavor is implemented as a hidden
data type similar to a simple vector. The zeroth slot points to aflavor
descriptor, and successive slots of the vector store the instance vari
ables. Sometimes, for debugging, it is useful to know that svref is
legal on an instance. However, it is of course a violation of the
implicit contract with a flavor to use this fact in real code.

A flavor descriptor is a defstruct of type flavors::flavor. It is also
stored on the flavors::flavor property of the flavor name. It contains,
among other things, the name of the flavor, the size of an instance,
the table of methods for handling operations, and information for
accessing the instance variables. The function (describe-flavor
flavor-name) will print much of this information in readable format.
defflavor creates a flavor-descriptor for each flavor and links them
together according to the dependency relationships between flavors.
Much of the information stored there, of course, is not computed
until flavor-combination time.

A message is sent to an instance simply by calling it as a func
tion, with the first argument being the operation. The evaluator looks
up the operation in the dispatch hashtable stored in the flavor descrip
tor for that flavor and obtains a handler function and a mapping table.
It then binds self to the object, si::self-mapping-tabJe to the mapping
table. Finally, the handler function is called. If there is only one
method to be invoked, the handler function is that method; otherwise
it is an automatically-generated function, called the combined
method, which calls the component methods appropriately. If there
are wrappers, they are incorporated into the combined method.

The code body of each method function knows only about the
instance variables declared for its flavor, and this set of instance vari
ables is known when the defining defmethod is evaluated. How
ever, the location of these instance variables within an instance of an
arbitrary flavor containing that flavor is not known until flavor
combination time. The mapping table is used by a method to map
the set of instance variables it knows about into slot offsets within
self. If all the component methods invoked by the combined method
derive from a single flavor, the mapping table obtained from the
method dispatch hashtable is a simple vector of slot numbers. If
methods from more than one component flavor are invoked from the
combined method, then the mapping table is an alist mapping each
component flavor to its appropriate component mapping table, and
the combined method takes care of binding si:self-mapping-table
appropriately before calling each component.

For both interpreted and compiled methods in Tek COMMON LISP
all instance variables are lexical scoped within the body of the
method. (This is different from the FRANZ LISP implementation, in
which the interpreter cannot implement lexical scoping.)

0-01-02(4-

"

Tek COMMON LiSp
Flavors 6-49

There is a certain amount of freedom to the order in which you do
defflavors, defmethods, and defwrappers. This freedom is
designed to make it easy to load programs containing complex flavor
structures without having to do things in a certain order. It is con
sidered important that not all the methods for a flavor need be
defined in the same file. Thus the partitioning of a program into files
can be along modular lines.

The rules for the order of defmition are as follows.
Before a method can be defined (with defmethod or

defwrapper) its flavor must have been defined (with defflavor).
This makes sense because the system has to have a place to
remember the method, and because it has to know the instance
variables of the flavor if the method is to be compiled.

When a flavor is defined (with defflavor) it is not necessary that
all of its component flavors be defined already. This is to allow
defflavors to be spread between files according to the modularity of
a program, and to provide for mutually-dependent flavors. Methods
can be defined for a flavor some of whose component flavors are not
yet defined; however, compilation of a method which refers to
instance variables inherited from a flavor not yet defined, and not
mentioned in a :required-instance-variable clause, will produce a
compiler warning that the variable was declared special (because the
system did not realize it was an instance variable). If this happens,
you should fix the problem and recompile. It may be sufficient just
to change the order in which the flavors are defined, but considera
tions of modularity, clarity, and self documentation make it far
preferable to insert :required-instance-variable clauses.

The methods automatically generated by the :gettable
instance-variables, :settable-instance-variables, and :outside
accessible-instance-variables defflavor options are generated at
the time the defflavor is done.

The first time a flavor is instantiated, or when compile-f1avor
methods is done, the system looks through all of the component fla
vors and gathers various information. At this point an error is sig
naled if not all of the components have been defflavored. This is
also the time at which certain other errors are detected, such as the
lack of a required instance-variable (see the :required-instance
variables option to defflavor). The ordered set of instance variables
is determined and their slots assigned within an instance. The com
bined methods are generated unless they already exist and are
correct. The flavor system tries very hard never to redefun a com
bined method unless its contents actually must change.

After a flavor has been instantiated, it is possible to make
changes to it. Such changes affect all existing instances if possible.
This is described more fully immediately below.

6.13.1
Order of

definition

Tektronix, Inc.
6-50 Flavors

6.13.2
Changing a
flavor

6.14
Property list
operations

You can change anything about a flavor at any time. You can change
the flavor's general attributes by doing another defflavor with the
same name. You can add or modify methods by doing defmethods.
If you do a defmethod with the same flavor-name, operation (and
suboperation if any), and (optional) method-type as an existing
method, that method is replaced by the new definition.

These changes always propagate to all flavors that depend upon
the changed flavor. Normally the system propagates the changes to
all existing instances of the changed flavor and its dependent flavors.
However, this is not possible when the flavor has been changed in
such a way that the old instances would not work properly with the
new flavor. This happens if you change the number of instance vari
ables, which changes the size of an instance. It also happens if you
change the order of the instance variables (and hence the storage lay
out of an instance), or if you change the component flavors (which
can change several subtle aspects of an instance). The system does
not keep a list of all the instances of each flavor, so it cannot find the
instances and modify them to conform to the new flavor definition.
Instead it gives you a warning message to the effect that the flavor
was changed incompatibly and the old instances will not get the new
version. The system leaves the old flavor data-structure intact (the
old instances continue to point at it) and makes a new one to contain
the new version of the flavor. If a less drastic change is made, the
system modifies the original flavor data-structure, thus affecting the
old instances that point at it. However, if you redefine methods in
such a way that they only work for the new version of the flavor, then
trying to use those methods with the old instances won't work.

It is often useful to associate a property list with an abstract object,
for the same reasons that it is useful to have a property list associated
with a symbol This section describes a mixin flavor, si:property
Iist-mixin, that can be used as a component of any new flavor in order
to provide that new flavor with a property list For more details and
examples, see the general discussion of property lists. The usual pro
perty list functionalities (get, putprop, etc.) are obtained by sending
the instance the corresponding message. The contents of the property
list can be initialized by providing a :property-list init option on the
init-plist given to instantiate-flavor.

si:properfy-list-mixin [Flavor]

• This mixin flavor provides the basic operations on property
lists.

:get property-name

• Looks up the object's property-name property.

:getl property-name-Iist

Tek COMMON LiSp
Flavors 6-51

[Message]

[Message]

• Like the :get operation, except that the argument is a list of
property names. The :getl operation searches down the property
list until it finds a property whose property name is one of the
elements of property-name-list. It returns the portion of the pro
perty list beginning with the first such property that it found. If it
doesn't find any, it returns nil.

:putprop value property-name [Message]

• Gives the object a property-name property of value.

:remprop property-name [Message]

• Removes the object's property-name property, by splicing it
out of the property list It returns one of the cells spliced out,
whose car is the former value of the property that was just
removed. If there was no such property to begin with, the value
is nil.

:push-propertyvalueproperty-name [Message]

• The property-name property of the object should be a list
(note that nil is a list and an absent property is nil). This operation
sets the property-name property of the object to a list whose car
is value and whose cdr is the former property-name property of
the list. This is analogous to doing

(push value (get object property-name»

:property-list [Message]

• RETURNS the list of alternating property names and values that
implements the property list.

:set-property-list list [Message]

• Sets the list of alternating property names and values that
implements the property list to list.

Tektronix, Inc.
6-52 Flavors

6.15
Copying
instances

There are no built-in techniques to copy instances because there are
too many questions raised about what should be copied. These
include:

• Do you or do you not send an :init message to the new instance?
If you do, what init-plist options do you supply?

• If the instance has a property list, you should copy the property
list (e.g. with copylist) so that putprop or rem prop on one of
the instances does not affect the properties of the other instance.

• If the instance is a port connected to a network, some of the
instance variables represent an agent in another host elsewhere in
the network. Should the copy talk to the same agent, or should a
new agent be constructed for it?

• If the instance is a port connected to a file, should copying the
stream make a copy of the file or should it make another stream
open to the same file? Should the choice depend on whether the
file is open for input or for output?
In general, you can see that in order to copy an instance one must

understand a lot about the instance. One must know what the
instance variables mean so that the values of the instance variables
can be copied if necessary. One must understand what relations to
the external environment the instance has so that new relations can
be established for the new instance. One must even understand what
the general concept 'copy' means in the context of this particular
instance, and whether it means anything at all.

Copying is a generic operation, whose implementation for a par
ticular instance depends on detailed knowledge relating to that
instance. Modularity dictates that this knowledge be contained in the
instance's flavor, not in a general copying function. Thus the way to
copy an instance is to send it a message, as in (send object :copy). It
is up to you to implement the operation in a suitable fashion, such as

(defflavor foc (a b c) ()
(:initable-instance-variables a b»

(defmethod (foo : copy) ()
(make-instance ' foo : a a : b b)}

The flavor system chooses not to provide any default method for
copying an instance, and does not even suggest a standard name for
the copying message, because copying involves so many semantic
issues.

If a flavor supports the :reconstruction-init-plist operation, a
suitable copy can be made by invoking this operation and passing the
result to make-instance along with the flavor name. This is because
the definition of what the :reconstruction-init-pllst operation should
do requires it to address all the problems listed above. Implementing

Tek COMMON LISp
Flavors 6-53

this operation is up to you, and so is making sure that the flavor
implements sufficient init keywords to transmit any information that
is to be copied.

·

7 Profiling

7 Profiling

In order to speed up a large LISp program it is fIrst necessary to
determine the parts of the program where most of the time is being
spent. Excl automatically counts the number of times each function
is called. This information, along with the programmer's knowledge
of which functions are large and/or time consuming, will pinpoint the
parts of the program that should be optimized.

The code for recording function call counts is very small and fast
(just one machine instruction per function call) thus for most applica
tions it makes sense to permit function call counting to occur. How
ever for certain time critical highly recursive functions, it may be
desireable to instruct the compiler to omit the the function call count
ing code for certain functions. This can be done by setting the vari
able compiler:*do-call-counts* to nil before compiling the function.
The code which does the counting is compiled into the compiled
functions and thus can be turned on or off on a function by function
basis. The system code always does call counting.

function-call-report &optional number-to-report [Function]

• For all interned symbols with compiled function definitions,
gather information on the number of times they have been called
since the last function call report, and clear the call counts at the
same time. Then sort the functions in descending order of
number of times called and print the function call information on
the most called functions. The optional argument, number-to
report, determines how many functions are printed. number-to
report defaults to 50. Functions which are anonymous (not asso
ciated with any interned symbol) will be omitted from this list.

function-call-list [Function]

• This function returns a list of all the functions which were
called at least once and their call counts, and it clears the call
counts. The form of each list entry is (number-of-calls .
function-name). The list is sorted in descending order of
number-of-calls.

7-1

Tektronix, Inc.
7-2 Profiling

function-call-clear [Function]

• Clear the call counts for all functions.

function-call-count function [Function]

• Return the number of times function has been called. function
can either be a compiled function object or a symbol with a com
piled function object as its function definition.

get-and-zero-call-count function [Function]

• Return the number of times the function has been called and
zero the call count. function can either be a compiled function
object or a symbol with a compiled function object as its function
definition.

compiler:*do-call-counts* [Variable]

• If non-nil, then when the compiler compiles a function it will
add code to maintain a call count.

8 Extrinsic data and procedures

8 Extrinsic data and procedures

In a future release, Tek COMMON LISp will provide the abilities to
access and modify extrinsic data and to use extrinsic procedures.

8-1

A Summary of symbols

Summary of symbols

- ... 5-17
* ... 5-17
** ... 5-17
*** ... 5-17
+ ... 5-17
++ ... 5-17
+++ ... 5-17
I ... 5-17
II ... 5-17
III ... 5-17
:abstract-flavor ... 6-34
:accessor-prefix ... 6-33
:after ... 6-45
:aliases ... 5-9,5-18
:alias-flavor ... 6-33
all-flavor-names ... 6-18
:and ... 6-42, 6-45, 6-46
:append ... 6-43, 6-46
:ask-compile ... 5-15
:ask-most-recent ... 5-15
:before ... 6-45
:bottom ... 5-7
:break ... 6-38
:break-after val ... 5-10
:break-allval ... 5-10
:break-before val ... 5-10
:brief ... 5-6
:case ... 6-44
:cf {file}* ... 5-9
:cl ... 5-15
:combined ... 6-46
:compile ... 5-15
compile-file-if-needed filename &key :output-file :force-compile

... 3-5
compile-flavor-methods {flavor-names}* ... 6-25

A-1

Tektronix, Inc.
A-2 Summary of symbols

compiler:*do-call-counts* ... 7-2
:condition expr ... 5-10
:continue ... 5-4
:current ... 5-7
current-case-mode ... 3-2
current-directory ... 4-1
:daemon ... 6-41
:daemon-with-and ... 6-42
:daemon-with-or ... 6-41
:daemon-with-override ... 6-42
:default ... 6-45
:default-handler ... 6-32
:default-init-plist ... 6-29
defflavor flavor-name ({vars}*) ({flavors}*) {options}* ... 6-18
defmethod (flavor-name [method-type] operation) lambda-list

{forms}* ... 6-19
defwhopper (flavor-name operation) lambda-list &body body ... -

6-24
defwrapper (flavor-name operation) lambda-list &body body ... 6-

22
:describe ... 6-37
describe-flavor flavor-name ... 6-27
:dn ... 5-7
:dn [nJ ... 5-7
:documentation ... 6-36
dumplisp &key :name :restarl-function :read-init-file ... 3-4
:error ... 5-5
errorset form [announcepJ ... 3-4
:eva/-inside-yourself form ... 6-38
:exit [val] ... 5-9
:fasl ... 5-15
file-older-p file-1 file-2 ... 3-5
:find func {options}* ... 5-7
flavor-allows-init-keyword-p flavor-name keyword ... 6-26
funca" instance message &rest arguments ... 6-24
:funcall-inside-yourself function &rest args .,. 6-38
funcall-self message {arguments}* ... 6-25
function-call-clear ... 7-2
function-call-count function ... 7-2
function-call-Jist ... 7-1
function-call-report &optional number-to-report ... 7-1
gc ..• 2-2
gcprint ... 2-2
:get property-name ... 6-51
get-and-zero-call-count function ... 7-2

O.()1-02(4-4

'"'

get-handler-for object operation ... 6-26
:get-handler-for operation ... 6-38
:getl property-name-list ... 6-51
:gettable-instance-variables ... 6-27
:help [command-name] ... 5-2
:history [:reverse] [n] ... 5-3
ignore-package-name-case ... 3-2
:included-flavors ... 6-31
:init init-plist ... 6-22
:initable-instance-variables ... 6-28
:init-keywords ... 6-28
:inside func ... 5-10
instancep object ... 6-22

Tek COMMON LIsp
Summary of symbols A-3

instantiate-flavor flavor-name init-plist &optional send-in it
message-p return-unhandled-keywords area
... 6-20

:inverse-list ... 6-43, 6-46
:Id {file}* ... 5-9
lexpr-funcall-self message {arguments}* list-ot-arguments .•. 6-

25
lexpr-send object message {arguments}* list-ot-arguments ... 6-9
lexpr-send-self message {arguments}* list-ot-arguments ... 6-25
:list ... 6-43, 6-46
:Iocal name ... 5-7
make-instance flavor-name {init-option value}* ... 6-20
:method-combination ... 6-34
:mixture defflavor ... 6-34
:moderate ... 5-6
:most-recent ... 5-15
:n ... 5-7
:nconc ... 6-43, 6-46
no method type ... 6-44
:no-vanilla-flavor ... 6-31
:[+I-]number [?] ... 5-3
:operation-handled-p operation ... 6-38
:or ... 6-42, 6-45, 6-46
:ordered-instance-variables ... 6-32
:outside-accessible-instance-variables ..• 6-32
:override ... 6-45
:pass-on ... 6-43, 6-46
::pattern [? I +] ... 5-3
:pop [n] .•. 5-5
pp name ••. 3-5
:print-after expr ... 5-11
:print-all expr •.. 5-11

Tektronix, Inc.
A-4 Summary of symbols

:print-before expr ... 5-11
:print-self stream prindepth escape-p ... 6-37
:progn ... 6-42, 6-46
:property-list ... 6-51
:prt ... 5-5
:push-properlyvalueproperty-name ... 6-51
:putprop value property-name ... 6-51
recompile-flavor flavor-name &optional single-op use-old-

combined-methods do-dependents ... 6-25
:remprop property-name ... 6-51
:required-flavors ... 6-30
:required-init-keywords ... 6-29
:required-instance-variables ... 6-29
:requ;red-methods ... 6-29
:reset ... 5-4
:run-time-alternatives defflavor ... 6-34
:scont [n] ... 5-13
self ... 6-24
send instance message [argument ...] .•. 6-24
send object message &rest arguments ... 6-9
:send-if-handles operation {arguments}* ... 6-38
send-seff message {arguments}* ... 6-25
set-case-mode new-mode ... 3-2
set-in-instance instance symbol value ... 6-26
:set-property-list list ... 6-51
:settable-instance-variables ... 6-27
shell &optional command ... 4-1
si:flavor-allowed-init-keywords flavor-name ... 6-26
si:property-list-mixin ... 6-50
si:vanilla-flavor ... 6-37
:skip n ... 5-7
:sover ..• 5-13
:special-instance-variables ... 6-28
:step [t I nil I function-list] .•. 5-13
step-print-Iength ... 5-14
step-print-Ievel ... 5-14
symeval-in-instance instance symbol &optional no-error-p ... 6-

26
:top ... 5-6
top-Ievel:add-new-command name abbr handler doc ... 5-19
top-Ievel:alias {name I (name abbr-index)} arglist body ... 5-18
top-Ievel:*command-char* ... 5-14
top-Ievel:do-command name &rest arguments ... 5-18
top-leveJ:*eval* ••• 5-16
top-leveJ:*exlt-on-eof* •.. 5-14

top-Ievel:*file-ignore-case* ... 5-16
top-Ievel:*history* ... 5-14
top-level:*ld-options* ... 5-14
top-Ievel:*print* ... 5-16
top-Ievel:*print-Iength* ... 5-16
top-level :*print-Ievel* ... 5-16
top-Ievel:*prompt* ... 5-14
top-Ievel:*read* ... 5-16
top-Ievel:remove-alias &rest names ... 5-18
top-Ievel:*reset-hook* ... 5-16
top-Ievel:*zoom-display* ... 5-16
:trace {function-or-option-list}* ... 5-10
trace-output ... 5-11
trace-print-Iength ... 5-11
trace-print-Ievel ... 5-11
uncompile function-name ... 3-5
undefflavor flavor ... 6-24

Tek COMMON LISp
Summary of symbols A-5

undefmethod flavor [type] operation [suboperation] ... 6-24
:untrace [function-list] ... 5-11
:up ... 5-7
:up [n] ... 5-7
username-to-home-directory name ... 4-1
:verbose ... 5-6
:which-operations ... 6-37
:wrapper ... 6-46
:zoom {arguments}* ... 5-6

· Index

)

."

- variable 5-13
+ variable 5-13
++ variable 5-13
+++ variable 5-13
/ variable 5-14
II variable 5-14
/1/ variable 5-14
* variable 5-14
** variable 5-14
*** variable 5-14

:abstract-flavor defflavor option
6-31

:accessor-prefix defflavor option
6-30

Adding new top-level commands
(§5.3) 5-14

:after method type 6-40
:aliases top-level command

5-15,5-7
:alias-f1avor defflavor option

6-30
all-flavor-names variable 6-16
:and method type 6-40,6-41

method-combination type 6-38
:append method type 6-41

method-combination type 6-38
Arrays (§2) r-l
:ask-compile top-level: *ld

options* value 5-12
:ask-most-recent top-Ievel:*ld

options* value 5-12

bbcomp function S-4
Bbcoms (§2.4) S-3
bb-d constant S-5
bb-d-or-not-s constant S-5
bb-not-d constant S-5
bb-not-s constant S-5

bb-not-s-and-d constant S-5
bb-not-s-and-not-d constant S-5
bb-not-s-or-not-d constant S-5
bb-not-s-xor-d constant S-5
bb-one constant S-5
bb-s constant S-5
bb-s-and-d constant S-5
bb-s-and-not-d constant S-5
bb-s-or-d constant S-5
bb-s-or-not-d constant S-5
bb-s-xor-d constant S-5
bb-zero constant S-5
:before method type 6-40
bit-bit function S-7
black-halftone variable S-21
:bottom top-Ievel:zoom keyword

5-5
:break message 6-35
Break levels (§5.2.3.3) 5-3
:break-after trace options 5-8
:break-all trace options 5-8
:break-before trace options 5-8
:brief top-Ievel:zoom keyword

5-5

:case method-combination type
6-39

Case preference (§3.1.4.1) 3-3
:cf top-level command 5-7
Changing a flavor (§6.13.2) 6-45
Chapter descriptions (§1.2) 1-2
char-draw function S-7
char-draw-raw-x function S-7
char-draw-x function S-7
char-width function S-7
circle-draw function S-7
circle-draw-x function S-7
:c/ top-Ievel:*ld-options* value

5-11
clear-screen function S-8

Index

1-1

Tektronix, Inc.
/-2 Index

:combined method type 6-41
Commands (§5.2.3) 5-2
Comments and suggestions (§3)

p-2
Compatability (§3.1.4) 3-3
:compile top-Ievel:*ld-options*

value 5-12
Compiled code (§3.1.4.2) 3-3
compile-file-if-needed function

3-5
compile-flavor-methods macro

6-23
compiler:*do-call-counts* variable

7-2
:condition trace options 5-8
:continue top-level command

5-4
Copying instances (§6.15) 6-47
:current top-level command 5-6
current-case-mode variable

3-2
current-directory function 4-1
cursor-track function 8-8
cursor-visible function 8-8

:daemon method-combination
type 6-37

:daemon-with-and method
combination type 6-38

:daemon-with-or method
combination type 6-37

:daemon-with-override method
combination type 6-38

dark-grey-halftone variable
8-21

Data structures (§2) 8-1
Data types (§2.1) 2-1
*daylight-savings-time-observed-

p* variable r-2
:defaulf method type 6-40
:default-handler defflavor option

6-29
:defau/f-inif-plisf defflavor option

6-26
defflavor macro 6-16
Defflavor options (§6.9) 6-24
defmethod macro 6-16
defwhopper macro 6.,21

defwrapper macro 6-20
:describe message 6-34
describe-flavor function 6-24
Display states (§2.5) 8-4
display-state-p function 8-4
display-visible function 8-8
:dn top-level command 5-6
:dn top-Ievel:zoom keyword 5-6
:documenfafion defflavor option

6-33
dumplisp function 3-4

:error top-level command 5-4
Errors (§3.2) 3-4
errorset macro 3-4
:eval-inside-yourself message

6-35
event-clear-alarm function 8-8
event-disable function 8-8
event-enable function 8-8
event-get-count function 8-8
event-get-new-count function

8-9
event-get-next function 8-9
event-get-time function 8-9
event-set-alarm function 8-9
event-set-mouse-interval func-

tion 8-9
event-set-sig nal function 8-10
:exit top-level command 5-7
exit-graphics function 8-10
Extensions (Chapter 3) 3-1
Extrinsic data and procedures

(Chapter 8) 8-1

:fasl top-Ievel:*ld-options* value
5-11

file-older-p function 3-5
:find top-level command 5-6
Flavor families (§6.10) 6-33
Flavor functions (§6.8) 6-16
flavor-allows-init-keyword-p

function 6-24
Flavors (Chapter 6) 6-1
font-close function 8-10
font-open function 8-10
Format of the manual (§ 1.1) 1-1

form-create function S-10, S-2
form-draw function S-10
form-get-point function S-lO
form-h function S-3
formp function S-3
form-read function S-10
Forms (§2.3) S-2
form-set-point function S-11
form-w function S-3
form-write function S-11
funcall function 6-22
:funcall-inside-yourself message

6-35
funcall-self macro 6-22
Functionality (§1) r-l
function-call-clear function 7-2
function-call-count function 7-2
function-call-list function 7-1
function-call-report function 7-1
Functions (§5) S-6
Functions and variables (§3.1.2)

3-2

gc function 2-2
gcprint variable 2-2
Generic operations (§6.4) 6-6
Generic operations in LIsp (§6.5)

6-8
:get message 6-46
get-and-zero-caH-count function

7-2
get-buttons function S-11
get-cursor function S-11
get-cursor-position function

S-11
get-handler-for function 6-23
:get-handler-for message 6-35
:getl message 6-46
get-machine-type function S-11
get-mouse-bounds function

S-12
get-mouse-position function

S-12
get-real-machine-type function

S-11
:gettable-instance-variables def

flavor option 6-25
get-term-ern-rc function S-12

Getting help (§5.2.3.1) 5-2
get-viewport function S-12
grey-halftone variable S-21

Halftone forms (§6) S-21
:help top-level command 5-2
History (§2) p-l

(§5.2.3.2) 5-2

Tek COMMON LiSp
Index 1-3

:history top-level command 5-3
How to compile functions (§ 1.5)

1-3
Howtorunlisp (§1.4) 1-3

icon-menu-create function
S-12, S-4

icon-menu-create-x function
S-12, S-4

ignore-package-name-case
variable 3-2

Implementation (Chapter 2) 2-1
Implementing flavors (§6.13)

6-43
:included-flavors defflavor

option 6-28
:init message 6-20
:initable-instance-variables def-

flavor option 6-25
init-graphics function S-13
Initialization (§5 .2.1) 5-1
initialize-tek-graphics function

S-13
:init-keywords defflavor option

6-26
Input/output (§3) r-l
:inside trace options 5-8
instancep function 6-20
instantiate-flavor function 6-18
Introduction (§ 1) S-1

(§5.1) 5-1
(§6.1) 6-1
(Chapter 1) 1-1

:inverse-/ist method type 6-41
method-combination type 6-39

Tektronix, Inc.
1-4 Index

Keeping abreast (§5) p-4

The language (§ 1) p-l
:Id top-level command 5-7
lexpr-funcall-self macro 6-22
lexpr-send macro 6-9
lexpr-send-self macro 6-22
light-grey-halftone variable

S-21
line-draw function S-13
line-draw-x function S-13
:Iist method type 6-41

method-combination type 6-39
:Iocal top-level command 5-6
Iocal-seconds-west-of-gmt vari

able r-2

make-bbcom function S-3
make-display-state function S-4
make-halftoneform function

S-21
make-instance function 6-18
make-point function S-1
make-rect function S-2
menu-create function S-13, S-4
menu-create-x function S-13,

S-5
menu-destroy function S-14,

S-5
menu-left constant S-5
menu-nose/ect constant S-5
menu-right constant S-5
Menus (§2.6) S-4
menu-select function S-14
Merging pathnames (§2.3.2) 2-3
Method combination (§6.12)

6-36
:method-combination defflavor

option 6-31
Miscellaneous commands

(§5.2.3.5) 5-7
Miscellaneous features (§4) r-2
Miscellaneous functions (§3.3)

3-4
Mixing flavors (§6.7) 6-12
:mixture defflavor option 6-32
:moderate top-Ievel:zoom

keyword
5-5

The modes (§3.1.1) 3-1
Modularity (§6.3) 6-3
:most-recent top-Ievel:*ld-

options* value 5-12

:n top-Ievel:zoom keyword 5-6
:nconc method type 6-41

method-combination type 6-39
no method type method type

6-40
Note on special function forms

(§1.6) 1-4
:no-vanilla-flavor defflavor

option 6-29
:[+I-]number top-level command

5-3

Objects (§6.2) 6-1
Operating-system interface

(Chapter 4) 4-1
:operation-handled-p message

6-35
:or method type 6-40,6-41

method-combination type 6-38
Order of definition (§6.13.1)

6-44
:ordered-instance-variables def

flavor option 6-29
:outside-accessible-instance

variables defflavor option
6-30

:override method type 6-41

paint-line function S-14
pan-cursor-enable function

S-14
pan-disk-enable function S-14
Parsing pathnames (§2.3.1) 2-2
:pass-on method type 6-41

method-combination type 6-39
Pathnames (§2.3) 2-2
::pattern top-level command 5-3
point-distance function S-14
pOint-from-user function S-14

point-max function 8-14
point-midpoint function S-15
point-min function S-15
pOintp function S-2
Points (§2.1) S-l
pOints-to-rect function S-15
pOint-to-row-column function

S-15
pOint-x function S-l
point-y function S-l
polygon-draw function S-15
polygon-draw-x function S-15
polyline-draw function S-15
polyline-draw-x function S-16
:pop top-level command 5-4
pp macro 3-5
Preface (Prependix p) p-1
:print-after trace options 5-9
:print-all trace options 5-9
:print-before trace options 5-9
:print-self message 6-34
Profiling (Chapter 7) 7-1
:progn method type 6-41

method-combination type 6-38
Property list operations (§6.14)

6-46
:properly-Jist message 6-47
protect-cursor function S-16
:prt top-level command 5-4
:push-properlyproperly-name

message 6-47
:putprop message 6-46

Reader case modes (§3.1) 3-1
recompile-flavor function 6-22
Rectangles (§2.2) S-2
rect-areas-differing function

S-16
rect-areas-outside function

S-16
rect-box-draw function S-16
rect-box-draw-x function S-16
rect-contains-point function

S-17
rect-contains-rect function S-17
rect-draw function S-17
rect-draw-x function 8-17
rect-from-user function S-17

Tek COMMON LiSp
Index 1-5

rect-from-user-x function S-17
rect-h function S-2
rect-intersect function S-17
rect-intersects function S-18
rect-merge function S-18
rectp function S-2
rect-w function S-2
rect-x function S-2
rect-y function S-2
Reference to other documents

(§ 1.3) 1-2
Release 1.0 notes for Tektronix

(Prependix r) r-1
release-cursor function S-18
:remprop message 6-46
Reporting bugs (§4) p-2
:required-flavors defflavor option

6-27
:required-init-keywords defflavor

option 6-26
:required-instance-variables def

flavor option 6-27
:required-methods defflavor

option 6-27
:reset top-level command 5-4
restore-display-state function

S-18
row-column-to-rect function

S-18
Rules for bit-bit (§3) S-5
:run-time-alternatives defflavor

option 6-32

A Sample lnit File (§5.4) 5-16
save-display-state function

S-18
:scont top-level command 5-10
screen-height variable S-5
screen-saver-enable function

8-19
screen-width variable $-5
self variable 6-22
send function 6-8

macro 6-22
:send-if-handles message 6-35
send-self macro 6-22
set-case-mode function 3-2
The set-case-mode function

Tektronix, Inc.
1-6 Index

(§3.1.3)
3-2

set-cursor function S-19
set-curs~r-position function

S-19
set-in-instance function 6-24
set-keyboard-code function

S-19
set-machine-type function S-19
set-mouse-bounds function

S-19
set-mouse-position function

S-19
:set-properly-/ist message 6-47
:settable-instance-variables def-

flavor option 6-25
set-viewport function S-20
shell function 4-1
si :flavor-allowed-in it-keywords

flavor-name function 6-24
Simple use of flavors (§6.6) 6-9
si:property-/ist-mixin flavor

6-46
si:vanilla-flavor flavor 6-34
:skip top-Ievel:zoom keyword

5-6
:sover top-level command 5-10
Special variables used by step

(§5.2.5.1) 5-10
Special variables used by trace

(§5.2.4.1) 5-9
:special-instance-variables def-

flavor option 6-25
Stack commands (§5.2.3.4) 5-4
:step top-level command 5-10
The step package (§5.2.5) 5-9
step-print-Iength variable 5-10
step-print-Ievel variable 5-10
Storage allocation (§2.2) 2-2
string-draw function S-20
string-draw-raw-x function S-20
string-draw-x function S-20
string-width function S-20
symeval-in-instance function

6-24

Tektronix 4400 graphics library
(Supplement S) S-l

terminal-enable function S-20
time-zone variable r-2
:top top-Ievel:zoom keyword 5-5
Top level (Chapter 5) 5-1
Top level input (§5.2.2) 5-2
The top level specification (§5.2)

5-1
Top-level variables (§5.2.6) 5-10
top-Ievel:add-new-command

function 5-15
top-Ievel:alias macro 5-14
top-Ievel:*command-char* vari

able 5-10
top-Ievel:do-command function

5-15
top-Ievel:*eval* variable 5-12
top-Ievel:*exit-on-eof* variable

5-11
top-Ievel:*file-ignore-case* vari

able 5-12
top-Ievel:*history* variable 5-11
top-level:*ld-options* variable

5-11
top-Ievel:*print* variable 5-12
top-Ievel:*print-Iength* variable

5-13
top-Ievel:*print-Ievel* variable

5-13
top-Ievel:*prompt* variable 5-11
top-Ievel:*read* variable 5-12
top-Ievel:remove-alias function

5-15
top-Ievel:*reset-hook* variable

5-13
top-Ievel:*zoom-display* variable

5-13
:trace top-level command 5-8
The trace package (§5.2.4) 5-8
trace-output variable 5-9
trace-print-Iength variable 5-9
trace-print-Ievel variable 5-9

uncompile function 3-4
undefflavor function 6-22
undefmethod macro 6-22
:untrace top-level command 5-9
:up top-level command 5-6
:up top-Ievel:zoom keyword 5-6

username-to-home-direetory
function 4-1

Using set-ease-mode (§3.1.4.3)
3-4

Vanilla flavor (§6.11) 6-34
Variables (§4) S-5
:verbose top-Ievel:zoom keyword

5-5
very-light-grey-halftone variable

S-21
video-normal function S-20
view-height variable S-6
view-width variable S-6

:which-operafions message
6-34

*white-halftone** variable S-21
:wrapper method type 6-41

:zoom top-level command 5-5

Tek COMMON LIsp
Index 1-7

Tektronix 4400 graphics library

1 Introduction S-l
2 Data structures S-l

2.1 Points S-l
2.2 Rectangles S-2
2.3 Forms S-2
2.4 Bbcoms S-3
2.5 Display states S-4
2.6 Menus S-4

3 Rules for bit-bit S-5
4 Variables S-5
5 Functions S-6
6 Halftone forms S-21

Tektronix 4400 graphics library

The LISP tek4400-graphics (nicknamed gr) package permits LISp
users to directly call functions in the graphics library on the 4400
series machines. The LISP interface is nearly identical to the C inter
face. Please refer to the Graphics Library documentation in the
Workstation Reference Manual for information on what each graph
ics routine does. Listed below are the LISP function names and the
reference to the C graphics name in the 4400 Series C Reference.

The tek4400-graphics module can be loaded automatically with
COMMON LISP require function as in (require 'tek-graph). Once
loaded, the graphics mode must be initialized by calling the function
initialize-tek-graphics which sets the *screen* variable. *screen*
is the form representing the display bitmap.

A point is a special data type which internally consists of two 16-bit
signed integers.

make-point x y

• Returns a point. x and y are integers.

point-x p
pOint-y p

• Accesses point p's x and y coordinates respectively.

[Function]

[Function]
[Function]

o To modify the x and y coordinates of a point p, use self as in
(setf (point-x p) x2}, where x2 is an integer.

1
Introduction

2
Data

structures

2.1
Points

8-1

Tektronix, Inc.
S-2 Tektronix 4400 graphics library

2.2
Rectangles

2.3
Forms

pointp p [Function]

• Returns t if and only if p is a point.

A rectangle is a special data type internally represented as four 16-bit
signed integers.

make-rect x y w h [Function]

• Returns a rectangle. x, y, w, and h are each integers.

rect-x r
rect-y r
rect-w r
rect-h r

[Function]
[Function]
[Function]
[Function]

• Accesses rectangle r's x, y, w, and h corrdinates respectively.
o To modify these coordinates of rectangle r, use seH as in (setf
(rect-x r) x2), where x2 is an integer.

rectp v [Function]

• Returns t if and only if v is a rectangle.

Aform is a bitmap. The contents of aform should only be manipu
lated with such functions as bit-bit or paint-line; the fields should
never be modified in any other way by a user program! Doing so
may cause the low level bit-bIt primitive to overwrite adjacent LISP
objects and cause LISP to crash. Forms created by the form-create
function contain the bitmap in the form (thus unless you set *print
array* to nil or set *print-Iength* to a small value you will not want
'print' to ever print a form value). The form returned by init
graphics points to the screen form (which is not in the form itself but
which is pointed to by the form). Eachfarm begins with a 'magic'
number to aid type checking.

form-create w h [Function]

• Creates and returns a form. This function is described in the
'Functions' section below.
o See the C function FormCreate in §5 of the 4400 Series C
Reference.

Tek COMMON Lisp
Tektronix 4400 graphics library 8-3

form-w f
form-h f

[Function]
[Function]

• Accesses/orm f 's w (width) and h (height) dimensions respec
tively.

formp v [Function]

• Returns t if and only if v is a/orm.

A bbcom is a bit-bit command vector. The user constructs the com
mand vector and then passes it to such functions as bit-bIt or paint
line. The contents of the bbcom may be modified, but only with
legal values. Fields are:

srcform a/orm or nil

destform a/orm
srcpoint a point

destrect a rect

cliprect arect

halftoneform a/orm or nil
rule aflXnum

make-bbcom &key:srcform :destform :srcpoint [Function]
:destrect :cliprect :halffoneform :rule

• Returns a bbcom. The default values are

srcform nil
destform *screen*
halftoneform nil
srcpoint (0,0)
destrect (0,0, *screen-width*, *screen-height*)
cliprect (0,0, *screen-width*, *screen-height*)
rule bb-s if srcform is non-nil or

bb-one if srcform is nil.

screen names the form for the screen. *screen-width* and
screen-height name the pixel width and height of the screen
respectively.

2.4
Bbcoms

Tektronix, Inc.
8-4 Tektronix 4400 graphics library

o For each of the fields X, there is a bbcom-X function to access
that field.
o To modify a field X, one can use setf for each X as in (setf
(bbcom-halftoneform form) r2) where form is a form, and r2 is a
bbcomrule.
o This function replaces the 8bcomOefauit function in the C
graphics library.

bbcomp v [Function]

• Returns t if and only if v is a bbcom.

2.5 A display state holds the complete state of the display (except the

Display states screen bitmap).

2.6
Menus

make-display-state [Function]

• Returns a display state.

display-state-p v [Function]

• Returns t if and only if v is a display state.

A menu is a structure containing forms, a bbcom and several other
fields.

icon-menu-create icon-vector [Function]

• Initializes and returns a menu. This function is described in
the 'Functions' section below.
o See the C function IconMenuCreate in §5 of the 4400 Series
C Reference.

icon-menu-create-x icon-vector flag-vector previous [Function]

• Initializes and returns a menu. This function is described in
the 'Functions' section below.
o See the C function IconMenuCreateX in §5 of the 4400 Series
C Reference.

menu-create vector-of-strings [Function]

• Initializes and returns a menu. This function is described in
the 'Functions' section below.
o See the C function MenuCreate in §5 of the 4400 Series C
Reference.

Tek COMMON Lisp
Tektronix 4400 graphics library 8-5

menu-create-x vector-of-strings flag-vector previous
font

[Function]

• Initializes and returns a menu. This function is described in
the 'Functions' section below.
o See the C function MenuCreateX in §5 of the 4400 Series C
Reference.

menu-destroy menu [Function]

• Deallocates a menu. This function is described in the 'Func
tions' section below.
o See the C function MenuDestroy in §5 of the 4400 Series C
Reference.

menu-left
menu-nos elect
menu-right

• Constants for the flag vectors of menu structures.

bb-zero
bb-s-and-d
bb-s-and-not-d
bb-s
bb-not-s-and-d
bb-d
bb-s-xor-d
bb-s-or-d
bb-not-s-and-not-d
bb-not-s-xor-d
bb-not-d
bb-s-or-not-d
bb-not-s
bb-d-or-not-s
bb-not-s-or-not-d
bb-one

[Constant]
[Constant]
[Constant]

[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant}
[Constant]
[Constant}
[Constant]
[Constant}
[Constant]

• These LISP constants are the rules passed to bit-bit and
correspond to the C constants defined in /liblinclude/graphics.h.

screen-height
screen-width

[Variable]
[Variable]

3
Rules for bit-

bit

4
Variables

Tektronix, Inc.
8-6 Tektronix 4400 graphics library

5
Functions

• These variables contain the size in pixels, as height and width,
of the screen bitmap.

view-height
view-width

[Variable]
[Variable]

• These variables contain the size in pixels, as height and width,
of the visible portion of the screen bitmap.

The documentation for these functions can be found in §5, 'Graphics
Library Reference,' of the 4400 Series C Reference. The order that
the functions are listed below is the same order as they appear in that
section of the manual, i.e. in alphabetical order. Note that some of
the functions have been described above, and that some functions in
the C library have no counterpart in LISP. Functions that have no
counterpart are functions such as BbcomDefault and FormCopy that
manifest the unique programming paradigm of C. In the case of
BbcomDefault, the LISP counterpart is make-bbcom, which both
allocates and initializes a bbcom object. In C a bbcom would be
created by declaring a struct BBCOM structure, whereas in LISP a
bbcom object must be allocated. In the case of Form Copy, the
generic LISP function copy-seq subsumes the data-specific C func
tion.

In general the LISP function's name is generated by a simple
transformation of the C function name. The C function name is
divided just before each embedded capital letter, the letter is con
verted to lower case, and a hyphen is inserted at each such division.
For example, the C library function ClearScreen becomes the LISP
function clear-screen. In some cases the LISP function expands
abbreviated components in C function names, e.g. the C function
GetCPosition becomes the LISP function get-curs~r-position.

Certain conventions are observed in describing the arguments to
these functions. Arguments ending with "p" are predicates. The
value nil means 'false' and anything else means 'true'. Some of the
functions that return structures take optional arguments (e.g. get
viewport). If the argument is passed to the function, then the result
value will be stored in that argument, otherwise the function will
allocate a new structure and return it.

N.B. All functions check for errors from the library and signal an
error if an error is detected. Thus functions don't return if there was
an error. If there was no error, the functions return the value returned
by the C library function, converted to an appropriate LISP data type.

bit-bit bbcom

Tek COMMON LiSp
Tektronix 4400 graphics library 8-7

[Function]

• Perfonns the bit-bit command described in the bbcom record.
o See the C function BitBlt in §5 of the 4400 Series C Refer
ence.

char-draw char point [Function]

• Draws the character char at point point.
o See the C function CharDraw in §5 of the 4400 Series C
Reference.

char-draw-raw-x char pOint bbcom font [Function]

• Draws the character char in font font at point point using the
parameters of the bbcom.
o See the C function CharDrawRawX in §5 of the 4400 Series C
Reference.

char-draw-x char point bbcom font [Function]

• Draws the character char in font font at point point using the
parameters of the bbcom. The value of point is updated to loca
tion at the end of the character.
o See the C function CharDrawX in §5 of the 4400 Series C
Reference.

char-width char font [Function]

• Returns the width in pixels required to draw character char in
font font.
o See the C function CharFont in §5 of the 4400 Series C Refer
ence.

circle-draw center radius [Function]

• Draws a circle centered at point center of the specified fixnum
radius.
o See the C function CircleDraw in §5 of the 4400 Series C
Reference.

circle-draw-x center radius width bbcom [Function]

• Draws a circle centered at point center of the specifiedfunum
radius using a line of fixnum width onto the fonn specified by
bbcom.
o See the C function CircleDrawX in §5 of the 4400 Series C
Reference.

Tektronix, Inc.
8-8 Tektronix 4400 graphics library

clear-screen [Function]

• Clear the screen.
o See the C function ClearScreen in §5 of the 4400 Series C
Reference.

cursor-track trackp [Function]

• Force cursor to track the mouse if trackp is true.
D See the C function CursorTrack in §5 of the 4400 Series C
Reference.

cursor-visible visiblep [Function]

• Make cursor visible or invisible based on visiblep
o See the C function CursorVisible in §5 of the 4400 Series C
Reference.

display-visible visiblep [Function]

• Make the display visible or invisible based on visiblep.
D See the C function DisplayVisible in §5 of the 4400 Series C
Reference.

event-clear-alarm [Function]

• Clears any pending alarms that the process has requested.
o See the C function EClearAlarm in §5 of the 4400 Series C
Reference.

event-disable [Function]

• Disables event processing.
o See the C function EventDisable in §5 of the 4400 Series C
Reference.

event-enable [Function]

• Enables event processing.
D See the C function EventEnable in §5 of the 4400 Series C
Reference.

event-get-count [Function]

• Returns the number of event vvalues in the event buffer wait
ing to be processed.
o See the C function EGetCount in §5 of the 4400 Series C
Reference.

\

event-get-new-count

Tek COMMON LiSp
Tektronix 4400 graphics library 8-9

[Function]

• Returns the number of event values in the event buffer which
have occurred since the previous call to this function.
o See the C function EGetNewCount in §5 of the 4400 Series C
Reference.

event-get-next [Function]

• Returns two values: an event-type code and an event value.
The event-type codes are shown below.

0 delta time
1 mouse x location

2 mouse y location
3 key or button pressed
4 key or button released
5 absolute time

o Whenever the keyboard or mouse changes state, a time event
is generated (either a type 0 or type 5 event) that reports the time
of the event. This is accompanied by an event value that speci
fies the actual change that occurred.
o See the C function EGetNext in §5 of the 4400 Series C
Reference.

event-get-time [Function]

• Returns the time, in milliseconds, since the system was
powered up.
o See the C function EGetTime in §5 of the 4400 Series C
Reference.

event-set-mouse-interval interval [Function]

• Specifies how frequently mouse motion events are to be
created if the mouse is continuously moving. interval is afu:num.
o See the C function ESetMlnterval in §5 of the 4400 Series C
Reference.

event-set-alarm time [Function]

• Requests a signal when the specified time, in milliseconds, is
reached.
o See the C function ESetAlarm in §5 of the 4400 Series C
Reference.

Tektronix, Inc.
8-10 Tektronix 4400 graphics library

event-set-signal [Function]

• Requests the event manager to signal the current process when
events occur.
o See the C function ESetSignal in §5 of the 4400 Series C
Reference.

exit-graphics [Function]

• Exit graphics mode.
o See the C function ExitGraphics in §5 of the 4400 Series C
Reference.

font-close font [Function]

• Releases storage used for the specifiedfont font.
o See the C function FontClose in §5 of the 4400 Series C
Reference.

font-open font-file [Function]

• Initializes a font from the font file font-file.
D See the C function FontOpen in §5 of the 4400 Series C
Reference.

form-draw form [Function]

• Displays the form form.

form-create w h [Function]

• Creates and returns aform with width w and height h.
D See the C function FormCreate in §5 of the 4400 Series C
Reference.

form-get-point form &optional point [Function]

• Returns the value of a particular point (default (0, 0)) in a
fonn.
D See the C function FormGetPoint in §5 of the 4400 Series C
Reference.

form-read file-name [Function]

• Reads a file in Smalltalk: 'form' format from disk and returns a
fonn object initialized from the file.
D See the C function FormRead in §5 of the 4400 Series C
Reference.

form-set-point form point value

Tek COMMON Lisp
Tektronix 4400 graphics library 8-11

[Function]

• Sets the value of a single point in form to value.
o See the C function FormSetPoint in §5 of the 4400 Series C
Reference.

form-write form file-name [Function]

• Writes the form form to the file file-name in Sma1ltalk format.
o See the C function FormWrite in §5 of the 4400 Series C
Reference.

get-buttons [Function]

• This returns an integer whose lower three bits are the mouse
button values (1 == down).
o See the C function GetButtons in §5 of the 4400 Series C
Reference.

get-cursor &optional form [Function]

• Returns the cursor image bitmap. The image will be stored in
form if provided.
o See the C function GetCursor in §5 of the 4400 Series C
Reference.

get-cursor-position &optional point [Function]

• Get the position where the cursor is currently displayed.
o See the C function GetCPosition in §5 of the 4400 Series C
Reference.

get-machine-type [Function]

• Returns the 4400-series model number as set at machine ini
tialization time or by the function set-machine-type.
o See the C function GetMachineType in §5 of the 4400 Series
C Reference.

get-real-machine-type [Function]

• Returns the 4400-series model number stored in internal
ROM.
o See the C function GetRealMachineType in §5 of the 4400
Series C Reference.

Tektronix, Inc.
8-12 Tektronix 4400 graphics library

get-mouse-bounds &optional point1 point2 [Function]

• Get the limits on mouse motion. The points will be stored in
pOint1 and point2 if provided.
o See the C function GetMBounds in §5 of the 4400 Series C
Reference.

get-mouse-position &optional point [Function]

• Get the position where the mouse is currently pointing. The
point will be stored in point if provided.
o See the C function GetMPosition in §5 of the 4400 Series C
Reference.

get-term-em-rc [Function]

• Returns two flXnum values, the number of rows and columns,
of the terminal emulator.
o See the C function GetTermEmRC in §5 of the 4400 Series C
Reference.

get-viewport &optional pOint [Function]

• Get the position which the panning hardware is displaying as
the upper left-hand corner of the display.
o See the C function GetViewport in §5 of the 4400 Series C
Reference.

icon-menu-create icon-vector [Function}

• Initializes and returns a menu. The argument icon-vector is a
vector of pointers to forms or nil.
o See the C function IconMenuCreate in §5 of the 4400 Series
C Reference.

icon-menu-create-x icon-vector flag-vector previous [Function]

• Initializes and returns a menu. The argument icon-vector is a
vector of pointers to forms or nil. The argument flag-vector must
be an array of (signed-byte 32) elements of the same length as
icon-vector. The frxnum parameter previous specifies the initial
mouse position.
o See the C function IconMenuCreateX in §5 of the 4400 Series
C Reference.

Tek COMMON liSp
Tektronix 4400 graphics library 8-13

init-graphics &optional set-full-graphics-mode-p [Function]

• Initialize display for graphics.
o See the C function InitGraphics in §5 of the 4400 Series C
Reference. It is recommended to use initialize-tek-graph ics.

initialize-tek-graphics [Function]

• This function sets the *screen* variable and must be called
before doing any graphics operations.
o This function is equivalent to {setq *screen* (init-graphics
nil)).

line-draw point-1 point-2 [Function]

• Draws a one-pixel wide line between the points point-1 and
point-2. Both endpoints are drawn.
o See the C function LineOraw in §5 of the 4400 Series C
Reference.

line-draw-x point-1 point-2 width draw-Iast-p bbcom [Function]

• Draws a line of width width pixels between the points pOint-1
and point-2 onto the form specified by bbcom. Both endpoints
are drawn unless draw-Iast-p is nil and width is 1.
o See the C function LineOrawX in §5 of the 4400 Series C
Reference.

menu-create vector-of-strings [Function]

• Initializes and returns a menu. The argument vector-of-strings
must be of type (simple-array (simple-string *) (*».
o See the C function MenuCreate in §5 of the 4400 Series C
Reference.

menu-create-x vector-of-strings flag-vector previous
font

[Function]

• Initializes and returns a menu. The argument vector-of-strings
must be of type (simple-array (simple-string *) (*». The argu
ment flag-vector must be of type (array (signed-byte 32» and of
the same length as vector-of-strings. The funum argument previ
ous specifies the initial mouse position. Menu items are
displayed infont font.
o See the C function MenuCreateX in §5 of the 4400 Series C
Reference.

Tektronix, Inc.
8-14 Tektronix 4400 graphics library

menu-destroy menu [Function]

• The menu menu is deallocated.
D See the C function MenuDestroy in §5 of the 4400 Series C
Reference.

menu-select menu [Function]

• Opens the specified menu and waits for a mouse click or
release.
D See the C function MenuSelect in §5 of the 4400 Series C
Reference.

paint-line bbcom point [Function]

• Paints a line on the display.
D See the C function PaintLine in §5 of the 4400 Series C
Reference.

pan-cursor-enable enablep [Function]

• Enable screen panning using the cursor if enablep is true.
D See the C function PanCursorEnable in §5 of the 4400 Series
C Reference.

pan-disk-enable enablep [Function]

• Enable screen panning using the joydisk if enablep is true.
D See the C function PanDiskEnable in §5 of the 4400 Series C
Reference.

pOint-distance point-1 point-2 [Function]

• Returns the distance between the two points.
o See the C function PointDistance in §5 of the 4400 Series C
Reference.

point-from-user point [Function]

• Returns a point selected by the user.
D See the C function PointFromUser in §5 of the 4400 Series C
Reference.

point-max point-1 point-2 [Function]

• Returns the lower right corner of the rectangle defined the the
two points.
o See the C function PointMax in §5 of the 4400 Series C Refer
ence.

point-midpoint point-1 point-2

Tek COMMON LiSp
Tektronix 4400 graphics library 8-15

[Function]

• Returns the midpoint of the line defined by the two points.
D See the C function PointMidpoint in §5 of the 4400 Series C
Reference.

point-min pOint-1 point-2 [Function]

• Returns the upper left comer of the rectangle defined by the
two points.
D See the C function PointMin in §5 of the 4400 Series C Refer
ence.

point-to-row-column point [Function]

• Converts a screen coordinate to the row, column indices which
define the terminal emulator character cell which contains that
point. Returns two values: the row and column.
D See the C function PointToRC in §5 of the 4400 Series C
Reference.

points-to-rect point-1 pOint-2 [Function]

• Returns the minimum rectangle that contains both points.
D See the C function PointsToRect in §5 of the 4400 Series C
Reference.

polygon-draw point-vector [Function]

• Draws a filled-in polygon defined by the points in the simple
vector point-vector.
o See the C function Polygon Draw in §5 of the 4400 Series C
Reference.

polygon-draw-x point-vector bbcom [Function]

• Draws a filled-in polygon defined by the points in the simple
vector point-vector onto the destination form specified by bbcom.
o See the C function PolygonDrawX in §5 of the 4400 Series C
Reference.

polyline-draw point-vector [Function]

• Draws a series of line segments connecting the points of the
simple-vector poi nt-vector using the bb-s-or-d combination rule.
The line segments are one-pixel wide.
o See the C function PolyLineDraw in §5 of the 4400 Series C
Reference.

Tektronix, Inc.
8-16 Tektronix 4400 graphics library

polyline-draw-x point-vector width closed bbcom [Function]

• Draws a series of line segments connecting the points of the
simple-vector point-vector, each line of width width pixels onto
the form specified by bbcom. If the fzxnum closed is not zero,
then a closing line segment is drawn from the last to the first
point in the vector. The last endpoint is not drawn.
o See the C function PolyLineDrawX in §5 of the 4400 Series C
Reference.

protect-cursor rect1 &optional rect2 [Function]

• Tell the operating system to respond by removing the cursor
from the screen if it is in either rect1 or (optionally) rect2.
o See the C function ProtectCursor in §5 of the 4400 Series C
Reference.

rect-areas-differing rectangle-1 rectangle-2 [Function]

• Returns the regions of rectangle-1 that are outside of
rectangle-2, and the regions of rectangle-2 that are outside of
rectangle-1.
D See the C function RectAreasDiffering in §5 of the 4400
Series C Reference.

rect-areas-outsi de rectangle-1 rectangle-2 [Function]

• Returns the regions of rectangle-1 that are outside of
rectangle-2.
o See the C function RectAreasOutside in §5 of the 4400
Series C Reference.

rect-box-draw rectangle width [Function]

• Draws a box offzxnum width pixels around rectangle using the
bbSorD combination rule.
D See the C function RectBoxDraw in §5 of the 4400 Series C
Reference.

rect-box-draw-x rectangle width bbcom [Function]

• Draws a box of fzxnum width pixels around rectangle onto the
fonn specified by bbcom.
o See the C function RectBoxDrawX in §5 of the 4400 Series C
Reference.

Tek COMMON LISp
Tektronix 4400 graphics library 8-17

reet-eontains-point rectangle point [Function]

• Returns nil if rectangle does not contain point, otherwise it
returns t.
D See the C function ReetContainsPoint in §5 of the 4400
Series C Reference.

reet-eontains-reet rectangle-1 rectangle-2 [Function]

• Returns nil unless rectangle-1 contains rectangle-2, in which
case it returns t.
D See the C function ReetContainsReet in §5 of the 4400
Series C Reference.

reel-draw rectangle [Function]

• Draws a solid rectangle using the bbS combination rule.
D See the C function ReetDraw in §5 of the 4400 Series C
Reference.

reet-draw-x rectangle bbcom [Function]

• Draws a solid rectangle onto the form specified by bbcom.
o See the C function ReetDrawX in §5 of the 4400 Series C
Reference.

reel-from-user &optional rectangle [Function]

• The region selected by the user is returned.
D See the C function ReetFromUser in §5 of the 4400 Series C
Reference.

reet-from-user-x minimum-size form &optional rectan- [Function]
gle

• The region selected by the user is returned. The minimum-size
argument specifies the minimum size of the region. The form
argument specifies a half-tone form to highlight the selected
region.
o See the C function ReetFromUserX in §5 of the 4400 Series
C Reference.

reet-interseet rectangle-1 rectangle-2 &opfional
rectangle-3

[Function]

• Returns (in rectangle-3 if given) the intersection of rectangle-
1 and rectangle-2.

Tektronix; Inc.
8-18 Tektronix 4400 graphics library

o See the C function Rectlntersect in §5 of the 4400 Series C
Reference.

rect-intersects rectangle-1 rectangle-2 [Function]

• Returns t if the rectangles intersect, otherwise nil.
o See the C function Rectlntersects in §5 of the 4400 Series C
Reference.

rect-merge rectangle-1 rectangle-2 &optional [Function]
rectangle-3

• Returns (in rectangle-3 if given) the minimum rectangle that
contains both rectangle-1 and rectangle-2.
o See the C function RectMerge in §5 of the 4400 Series C
Reference.

release-cursor [Function]

• Tell the operating system to restore the cursor if it was
removed due to a call to protect-cursor.
D See the C function ReleaseCursor in §5 of the 4400 Series C
Reference.

restore-display-state display-state [Function]

• Re-establish the state defined by display-state.
D See the C function RestoreDisplayState in §5 of the 4400
Series C Reference.

row-column-to-rect row column &optional rect [Function]

• Returns rectange which describes the terminal emulator char
acter cell given by row and column. The rectangle will be
returned in rect if provided.
D See the C function RCToRect in §5 of the 4400 Series C
Reference.

save-display-state &optional display-state [Function]

• Return the display-state of the current display state. The
display-state will be stored in display-state if provided.
D See the C function SaveDisplayState in §5 of the 4400 Series
C Reference.

Tek COMMON LiSp
Tektronix 4400 graphics library 8-19

screen-saver-enable enablep [Function]

• Enable the screen saver timeout, which causes the screen to be
blanked after 10 minutes of keyboard or mouse inactivity.
D See the C function ScreenSaverEnable in §5 of the 4400
Series C Reference.

set-cursor form [Function]

• Install a new cursor. form must be a 16x16 bit form.
D See the C function SetCursor in §5 of the 4400 Series C
Reference.

set-cursor-position point [Function]

• Display the cursor at the specified position.
D See the C function SetCPosition in §5 of the 4400 Series C
Reference.

set-key board-code val [Function]

• Tells the keyboard to output either event codes, if val is 0, or
ANSI character strings, if val is 1.
o See the C function SetKBCode in §5 of the 4400 Series C
Reference.

set-machine-type value [Function]

• Sets the machine type to the fixnum value.
D See the C function SetMachineType in §5 of the 4400 Series
C Reference.

set-mouse-bounds point1 point2 [Function]

• Set the limits on mouse motion to be the rectangle defmed by
the upper left point point1 and the lower right point point2.
D See the C function SetMBounds in §5 of the 4400 Series C
Reference.

set-mouse-position point [Function]

•. Position the mouse at the specified position.
o See the C function SetMPosition in §5 of the 4400 Series C
Reference.

Tektronix, Inc.
8-20 Tektronix 4400 graphics library

set-viewport point [Function]

• Set the panning hardware to display the upper left-hand corner
of the display at the specified point.
o See the C function SetViewport in §5 of the 4400 Series C
Reference.

string-draw string point [Function]

• Draws the simple-string string using the default font starting at
the specified pOint.
o See the C function StringDraw in §5 of the 4400 Series C
Reference.

string-draw-raw-x string point bbcom font [Function]

• Draws the simple-string string using font font starting at the
specified point onto the form specified by bbcom.
o See the C function StringDrawRawX in §5 of the 4400 Series
C Reference.

string-draw-x string point bbcom font [Function]

• Draws the simple-string string using font font starting at the
specified point onto the form specified by bbcom.
o See the C function StringDrawX in §5 of the 4400 Series C
Reference.

string-width string font [Function]

• Returns the width in pixels of the simple-string string in font
font.
o See the C function StringWidth in §5 of the 4400 Series C
Reference.

terminal-enable enablep [Function]

• Enable the terminal emulator if enablep is true. The previous
mode is returned (t for enabled, nil for disabled).
o See the C function TerminalEnable in §5 of the 4400 Series
C Reference.

video-normal normalp [Function]

• Set display to white on black if normalp is nil, and to black on
white otherwise.
o See the C function VideoNormal in §5 of the 4400 Series C
Reference.

Tek COMMON LISp
Tektronix 4400 graphics library 8-21

Tek COMMON LIsp includes a function for creating halftone forms,
and several variables that represent common halftone forms.

make-halftoneform &optional patternlist [Function]

• Make a halftone which has the given pattern in it. patte rn list
is normally a list of sixteen 16-bit signed integers. If patternlist
has fewer than sixteen integers, then the whole pattern is repeated
as many times as is necessary to get sixteen integers.

black-halftone
dark-grey-halftone
grey-halftone
light-grey-halftone
very-light-grey-halftone
white-halftone *

• Various common halftone forms.

[Variable]
[Variable]
[Variable]
[Variable]
[Variable]
[Variable]

6
Halftone

forms

•
The Tek COMMON LISp User Guide was printed on an Apple Laser
writer laser printer driven by Adobe Systems' Postscript. The
manual was typeset using the Unix device-independent ditroff pro
gram, with tables preprocessed by dtbl and equations by deqn. The
Index, Contents, and Appendix A were generated automatically. The
text is set in Times Roman and Helvetica. Examples are set in
Courier.

•

Information Sheet

This sheet provides the postal and electronic mail addresses to which bugs, comments, sugges
tions, and other correspondence may be addressed. We look forward to hearing from you!

Bug reports

Subscription requests to the
electronic forum

Contributions to the elec
tronic forum

Mailing list additions

General correspondence

Franz Incorporated
Technical Support Group
1141 Harbor Bay Parkway
Alameda, California 94501

4157695656

... !ucbvax !franz !bugs
bugs%franz.uucp@kim.berkeley.edu

... !ucbvax!exel-forum-request
excl-forum-request@ucbvax.berkeley.edu

... !ucbvax !exel-forum
excl-forum@ucbvax.berkeley.edu

Franz Incorporated
Mailing Lists
1141 Harbor Bay Parkway
Alameda, California 94501

4157695656

... !ucbvax !franz !info
info%franz.uucp@kim.berkeley.edu

Franz Incorporated
1141 Harbor Bay Parkway
Alameda, California 94501

4157695656

... !ucbvax !franz !info
info%franz.uucp@kim.berkeley.edu

Customer Comment Sheet

We invite your comments and suggestions about this manual-how it can be improved and how it has been
helpful. If you find any errors (typographical, of omission, of contint, or otherwise), please let us know so
that we may con-ect them in our next edition. This form is provided only for your convenience-we always
welcome personal correspondence. Thank you for taking the time to help us improve the manual.

yourname ___ __

Company ___ _

Address ___ __

City __________________________________ _

State ______________________ Postal Code _________________ _

Nation __ _

Telephone __ _

Operating system _________________________ _

Hardware ________ --_____________________ _

Extended COMMON Usp release ____________________________________ _

Errors, omissions, and inconsistencies:

Suggestions for Improving the manual:

Features of this manual you found helpful:

For further comments, please use the other side of this form. Thank you.

Release 1.0 notes for Tektronix

This chapter describes release 1.0 of Tek COMMON LISp for Tek
tronix workstations. The information provided here pertains specifi
cally to this release-general information on the topics discussed here
may be found in the Tek COMMON LISP User Guide and in Common
Lisp: The Language.

An extension to COMMON LIsP, the foreign-function interface, is not 1
part of this release. It is currently in development and will be incor- Functionality
porated into a future release.

It is not possible to compile functional objects (closures) created
by interpretive evaluation of the function special form. For exam
ple, the functional value of symbol closure-sym below cannot be
compiled in this release, and an error will be signalled by the com
pile function.

<cl> (setf (symbol-function 'closure-sym)
(let «local-var 0»

(function
(lambda (bound-var)

(+ bound-var
local-var»»)

<cl> (compile 'closure-sym)

The functions bit, sbit, char and schar are treated just like aref in
that no effort is made to ensure that the first argument is of the
correct type. It is an error, although it is not signalled, to provide a
sequence argument of the wrong type.

The variable *print-circle* is ignored by the printer in this release. In
particular, the printer prints lists by recursive descent and does not
attempt to detect circularities.

The If reader macro, specifying load-time evaluation is not func
tionally distinct, in this release, from the #. reader macro. That is, #,
currently evaluates the form that it precedes at read time.

2
Arrays

3
I nputloutput

r-1

Tektronix, Inc.
r-2 Release 1.0 notes for Tektronix

4
Miscellaneous
features

The Tektronix 4406 does not maintain time with respect to
Greenwich Mean Time (GMT), whereas COMMON LISP's time func
tions require that the time be reported with respect to GMT. The fol
lowing variables may be set when Tek COMMON LISP is built or they
may be set in one's .clinit.cl file so that the COMMON LISP time func
tions will work correctly.

[Variable]

• This variable is set to the number of hours west of GMT
(ignoring Daylight-Savings Time). The values for time zones in
the continental United States are shown below.

Time zone

Eastern
Central

Mountain
Pacific

Iocal-seconds-west-of-gmt

time-zone
5
6
7
8

[Variable]

• This variable should be set to (* *time-zone* 3600) since
there are 3600 seconds in one hour.

daylight-savings-time-observed-p {Variable]

• This variable should be t if Daylight-Savings Time is observed
during the summer months.

