' PROGRAMMERS . Part No. 061-3207-00
: REFERENCE Product Group 07

4400 SERIES
C LANGUAGE

TEK PROGRAMMERS Part No. 061-3207-00
REFERENCE Product Group 07

4400 SERIES
C LANGUAGE

Please Check at the

Rear of this Manual

for NOTES and

CHANGE INFORMATION

First Prining MAR 1986

Copyright 1986 by Tektronix , Inc., Beaverton, Oregon. Printed in the
United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc..
Smalltalk-80 is a trademark of Xerox Corp.

UniFLEX is aregistered trademark of Technical Systems Consultants,
Inc.

Portions of this manual are reprinted with permission of the copyright
holder. Technical Systems Consultants, Inc., of Chapel Hill, North
Carolina.

The operating system software copyright information is embedded in
the code. It can be read via the "info" utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when used
properly in the specified operating environment, for a period of three (3) months from the date of shipment, or
if the program is installed by Tektronix, for a period of three (3) months from the date of installation. If this
software product does not conform as warranted, Tektronix will provide the remedial services specified
below. Tektronix does not warrant that the functions contained in this software product will meet
Customer's requirements or that operation of this software product will be uninterrupted or error-free or
that all errors will be corrected.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the
expiration of the warranty period and make suitable arrangements for such service in accordance with the
instructions received from Tektronix. If Tektronix is unable, within a reasonable time after receipt of such
notice, to provide the remedial services specified below, Customer may terminate the license for the software
product and return this software product and any associated materials to Tektronix for credit or refund.

This warranty shall not apply to any software product that has been modified or altered by Customer. Tektronix
shall not be obligated to furnish service under this warranty with respect to any software product a) that is
used in an operating environment other than that specified or in a manner inconsistent with the Users
Manual and documentation or b) when the software product has been integrated with other software if the
result of such integration increases the time or difficulty of analyzing or servicing the software product or the
problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN
SPECIFIED, REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND
EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX
WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

PLEASE FORWARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES C LANGUAGE PROGRAMMERS REFERENCE

This manual supports the following versions of this product: 4404 Version 1.5, 4405 Version 1.1, and
4406 Version 1.1.

REV DATE DESCRIPTION

MAR 1986 Original Issue

4400 PROGRAMMERS REFERENCE

Section Table of Contents

SECTION 1 Introduction

ADOUL ThisS MANUALooieeiiiiieecieeeeeee ettt st st e e ae st e sae st e e se et e e e e et ae s eesaessaen 1-1
Where to find INfOrMAationccooiieeiioiiicie ettt et ettt e e eaae e e e e 1-1
Manual Syntax CONVENIONS cccceeeiieeeieeeitieeieieeeeireeeeesseseesrseeseessnseeesssssssssassssssssssssessssens 1-2
Invoking the C COMPILET uiiiiiiiieeecree et cetee et eeeteereeeteeetareeenseeensaesenssaessssaesesssensanes 1-2
The Command LiNEcccociviiiieeiiiiecieeie et e et te s eese s ae e sra e s as s aeassaessseanssansnasans 1-3
THE @ OPUOM ..ottt ettt ee st e e e aee e estesatesee e e seessessessee s eesae s et aenseseeaneensesnseres 1-5
ThE € OPLOM ..ttt ettt st a e s e e e e ees e eatese et ee st et et e s tesnaseesneenee 1-5
THE D OPHON ..eveeieeieeie ettt ettt e eeae et e e eveeesssae st sesseesseeseeseeessesanssesbesenssesreeesrnas 1-5
THE £ OPHON ..ottt et e et ee e bt e etr e e e ateetataeeetseeensaeeesssnesessseessnsaeennes 1-5
ThE 1 OPON ..eeiiiieeicie ettt eee e tee s ee e e st e e st e e erae s sbaeeesasesssbeeesas e snssaesnsnsaesnsesessnns 1-6
THE TOPLON ..ttt st etee et te st et ae st aeste st be s se e stessaesssessaassasansneesseasnsessrsesssss 1-6
THE T OPLOIM ottt ettt et rr e e st e st ee s e st e et e s en s e sa e e et et ensaentessesesesnsasseenneensannsenes 1-6
ThE L OPHOM ..ot cteeete et etteteee e s e s ae e e e s e bestaesbaeerbesssaessaesseaensanessesesassrnssnssesnnsenn 1-7
THhE M OPHOM .ottt et et et e et e cae e e e e eeebeeaseensseeseeeaneaeseennseesseeersnesanas 1-7
The M OPLON ..ottt sttt ettt e e b st s st e st et et sa et s aees bt emsensecnens 1-7
THE NOPUOM ..ottt sv et e e e e ese s e e st e s astasst et sesseessessaesseaseesssesnsansssnsas 1-7
The N OPLON ..ottt e ettt et et aeeb et e e sa e et eneensessessenneennen 1-7
THE O OPLOM ..ottt sttt ee e e e e seaeseesaessbe s see st aessseastaesssesnsseassesanseesrse srns 1-7
The O OPLON ..ottt ettt e e ettt e st e s e e esae st ee s et as st essasseansesesesenassesssesnsenseenses 1-8
The @ OPLOI ittt ettt et et e st e st seas e st e e e st sa e sesaesbbe e enbensesanan 1-8
THE TOPHON cceeiicieiitieie ettt ettt e et e e saae e e s aestesbas cabeerstensesssesrsaesssesrssaessasenssessseesrees 1-9
The R OPLON ..eciiiitiiee ettt et e et eer e et e ve et et e e st et ast e e esseseeantesasesssassesssnsnssnssenans 1-9
THE £ OPHOM ...eiieieee et eetee et ee s e e e et et e et e e ese st ae s e nsaseassaessessesssesssesssassesssesnsensesnses 1-9
The U OPON ..ottt ettt ettt e sr e et e et ebese e et enees 1-9
THE VOPHOM .ottt ee e sttt st e et ae et ees e e sase e ennesseeneeneeneenses 1-9
THE W OPLON ceeeueiieieetetee sttt ettt ettt sttt e e st e st e es e e sseene e ente st esensnessensenes 1-10
THE X OPLOM ..ociiiieieceie ettt et eseteste et et es e e e assssae s e seestassesssessesssanssesssassesasesssnnsenn 1-10
EXAMPIES oottt sttt e et e et st s et et aess e e st eeate e ra e e baeeaaesesaenets 1-11
Description of the LanguUagEecccocciieciirieriieninii e steie e e eeeresie e eesaresaneesresssanesssa snnas 1-12
ODJECE SIZES .eeouierieieeierteet ettt et e ettt es et et e e st e e et sete st e et et e et e besheenbesnseenten st e seanseensens 1-12
REGISIET VATIADIES .oeeiiiiiiiiciecitert ettt s e et et s st et s st e e e e et e e eesuseenseeens 1-12
SECTION 2 Kernighan and Ritchie Variations
IDETOAUCHION ettt ettt sttt e ettt st e e ea e chbesate sueebeensssaneeneeas 2-1
Identifiers (Names), PAZE 179 ...eoii ottt srbe s e sbe b e st eas 2-1
Character Constants, page 180 cooocieviiiirirciinieee ettt et e e e et s e e sasene 2-1
Enumeration COnstants, NEW SECHOM ...ccceverrueiirerueeriinmntenteiesisieessesse s eetsssssssesssesssssssosaneses 2-1
Hardware Characteristics, pPage 181coioiiiiiiieeeeece st ca s 2-1
What’s in a Name?, page 182 ..ottt s s s 2-2
Characters and Integers, page 183cccoirierieiereirete ettt s 2-2
R0 U BB 115 T 1o) « KOO OO PP 2-2
Type Specifiers, PAgE 193 ..o 2-2
Structure, Union, and Enumeration Declarations, page 196 c..ccocovevirveniennnsienneeneenee 2-3
Inclusion of an Information Field, NEwW SECHON cooeieuerieiiieniinieiecrte e e 2-4
Structures and Unions, Page 209 ccccocveirriesenineeicneir et e 2-4
Explicit Pointer Conversions, page 210ccccoiiiiiiiiiii 2-4
Portability Considerations, page 211cccccviiviiiiiniiiiii s 2-4
ANAchroniSms, PAgE 212cociiiiiieireeee ettt e e e s 2-4

Table of Contents-1

SECTION 3 System Calls and Functions

SECTION 4 Graphics Library Concepts

The Graphics LIDIAryccccovcieviiciriiseeicieseestcees e sesseaesiesreessse e e ssas s s ses s snsesnnesaesssessessnesenanes 4-1
ADOUL ThiS SECHOM ..cuviiniicrieiectiieie ettt sttt et e st e ae st se et e sressenbesaessesaesaassas 4-1
Using the Graphics Library in C Programsccceceeveevieereesieeseeeieeseee e rceeseee e e asseeenaeeens 4-1
Using the Graphics Library in Assembly Language Programsccocveeveeeneervenenscenennn. 4-2

Graphics Environment and STIUCIUTES cceccevirvierierierieereesteeseerteessesssseessesssessessasssesssessssssens 4-3
Entering and Exiting Graphics MOAeccccciieeeiieieieciiceieeeeeceeeetecneeeseres e seee s annaesees 4-3
Environmental SELHNEZS ...cccccveeieirnieeierresirsreeieeestesseesaessessessssessesssessessesssssasessasssassesssssnsens 4-4

Saving and Restoring the DiSplay Statec.ccccccevevireerisiverrererrieseeeneesessasessessesssssssserseens 4-4
DISPSTATE ..ooeoiteeteetere et tet e stte s e e e aseaesbesssessae s e s se s asssensessessaessessnsnssersseseenseen 4-4
PanDung oot et ere e e et e b b e eba e e be e e b b ebae b aesnbecaraesabes 4-5
MoOUSE BOUNAS ...ttt ettt st b st e st st e sn e bt 4-5
VIBWPOTIT oottt ettt et st sttt s te st et e s e st et et et esa et e s e st b e e esessaesaesasansesssasessesssssasnsesasnsans 4-5
Cursors and HalftONES cc.cocerereeiieeiinieienestire et ctesee e eeae st eseesaesaessssessesasssessessessassessassnnns 4-5
SCreen Size CONSLANES ceeeeeeerteririeeieiee ettt erete st st estesaeseste e stesaesesesesessessesassassenssanseses 4-6 .
GraphiCs SITUCIUTES ...c.ecveieiiieieieeetie ettt ets e st e st este e e e e e et esaesae e et ae e esestassessarsessesaensesnessanas 4-6
POINT ettt ettt st s se bbb et e b s bbb st erast et asse e seenestensasessansanean 4-6
RECT ettt sttt et s st e b e s s e s s st enes b et as e saean et asbanas 4-6
FORM ettt sttt et et st bt e aa st et se et st se e e e st e s e s aet e nesaaasesaestassnsssnsanaeans 4-7
FONT ettt sttt ettt sttt e te st et s e st e e st e s e st e st e s sss e e sa s sesaeseasassnesasneans 4-8
MENU ottt et et st s st e eb e e st e e st et e st st et e e sa e sesee st e sassassanseene 4-8

Bitblt GIAPRICS ...covieieriierisieriertee et rte et s e st eeves e st e te s e s e ste st e eesaessesassasnsessessensessansansenns 4-8
The BBCOM StIUCIUIE veeeeeieirieniiierieeetesesteeeste st esassesseseee e ssessessessessassessassesaensensessassassases 4-9
How the BitBlt Operation WOTKScccoieiveeerieeiieeeereeeeeesreseeseeseessesessesssesssensesnsesseennes 4-12
Drawing a BoX 0N the SCTEEMcccviviiieeiiiieeceetececteerrce e sr e eereeseerbessbessessaessesenessaenes 4-14

Initializing Graphics MOGEcccocevireiiniinieneieeetettse ettt et en e sa e e anessesnens 4-15
Setting Up the BitBIt StIUCIUIE c.cc.oieieiiiiiiiriccretreeeciere ettt st s st snesassenees 4-15
Drawing the BoXccccevivienieevniceinenceseceneeecene ettt e e e bsens 4-16
An Interesting Example PrOZramcccccoviiriiiinnieinnintencesieeste et eesaesessnesesssessaesseeneses 4-16

GraphiCs EITOr MESSAZES c.coueeriiririiiiieicieie sttt st st sa et es et e seemsss e sesessensennen 4-19

Creating Images In FOIMS ccccviieiiiiiccecee et ee et s sae st e e sabesseesaesnansnassnenns 4-19

SYSIEIM FOMLS ..ottt et cee e st et s e s ae e st e saeee st esbasae st asse st sasbassassensassessansnssennn 4-20
Font Styles and LayOULc.cccceeueeiereriienenierienciereereiiee et sres s et et enesessessesesaesessensssessenes 4-20

GIaphiCal TEXE ..oveiieecrieceieierce e ceeseeete e este e e ree e s sreestaesresssesstaesrnesssasssasstesssasssaasssaensneessessnns 4-24
MEIIUS ettt r e st s e st e e b s e s b s et e s b ee e s sesb e s e sae e s bt e sh e b e sesabe e st ens 4-25

POP-UP MENUS ..ocevitiereeete et et sttesve e st eeeste et e sae e sbe s e s ss e e e ses e sanesessstesusessensaesstes 4-25
TEXE MEIIUS .ottt ettt st st sa et e e s b st e e s et ss b sesbestsssesbenssubesntabasnesns 4-25
JCON MENUS .ottt ettt st ea bbb s s sh e s bbb s anais 4-27

EVENE PIOCESSES .uveuieirieriinieierteiiiie ettt sttt sesse st e sane e e sbae e ssesseasesaesassnesaensesnensons 4-28

SECTION § Graphics Library Reference

Graphics and Events LIDIaryccoccoocoiriivneniniiinienicnie ittt sressnessssssesssesnnes 5-1

ADOUL THiS SECLIOM ..cviiviririiieieieieeeiienerie et e s eeet et sat s eaesaeess e besseee st et e st essesrassaesbessaasanesanes 5-1

LiSt Of FUNCHONS ..veeoveveriieeieeeeiiecteteeeie st stes e ensestesatesaesstesnte st s e e snsssabsssssrasssnossssnroses 5-2
Figures
4-1. A 16 by 16 Bit FOMMI. ..iriieiiieiiiccieccrcetcicnec ettt sa s bbb sn s 4-7

Table of Contents-2

4-2. The BBCOM Data SIrUCIUIE. ..cccocveeueeiieiieicrteneeniesieneeieeitesiesseeseeeseesnnessnesraensesanesunessesnnes 4-9
4-3. The BitBIt OPEration.cccccciveeierireerunntiieiteentieestee st ss et e e st ee e sese e e bessesessesnssanes 4-12
4-4, Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serif).ccccee.e. 4-21
4-5. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1.occooviiiiininniniiiiinnene, 4-22
4-6. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 2.cccooceveverinirierienennnens 4-23
4-7. Event QUEUE ProCESSING.occcveiiiiiiiiieciiiecitecreesie st eeeie e ttesebeee s anaesesbessssaessuseasens 4-28
Tables

1-1 Variable SiZES ...cocviviiivieieiiirieeestc et ettt sttt et e e 1-12
4-1 Statebits defiNItIONS ..cccevvviiiiieienrieeieriteertrereeteeterse e s e s st eesetesaaesseesseeeesse et e en e e neeesaeeensens 4-5
5-1 SymbOliC ATZUMENLS ..coevvieiiririeriereiteniestete et sesiestesse st et assessessessesste s sssesee s enseseessenses 5-2

Table of Contents-3

Section 1
Introduction

About This Manual

This manual is the primary programmer’s reference to the 4400 Series C language. This manual
contains manual pages for C language functions and system calls as well as graphics library
functions. The 4400 Users Manual contains a complete list of the other manuals available for the
4400 Series.

This manual has these sections:

Section 1 Introduction. Tells you about this manual and also tells you how to invoke the C
compiler, and the options that are available for the command string.

Section 2 Kernigan and Ritchie Variations. Provides you with information about how the
4400 Series C language implementation is different from the implementation described in
Kernigan and Ritchie’s The C Programming Language.

Section 3 Functions and System Calls. A description of the C language function and
system calls available on the 4400 Series.

Section 4 Graphics Library Concepts. An introduction to graphics, fonts, and event
processes on the 4400 Series AIM systems. BitBlt graphics concepts are discussed in some detail.

Section 5 Graphics Library Reference. A description of the C and assembly language
callable graphics library functions on the 4400 Series systems.

Where to find Information

You have several important sources of information on the 4400:

® This manual, the 4400 Series C Language Reference manual, contains reference manual
pages for C language function and system calls as well as graphics library functions.

® The 4400 Series Operating System Reference manual contains the syntax and details of
commands and utilities. This manual also contains details about a text editor and a remote
terminal emulator.

® The 4400 Series Assembly Language Programmers Reference manual contains the details
of the assembler and linking loader.

® The 4400 Users manual contains basic information on system installation, startup,
installing software, and the other "how to put commands together” discussions. See the
index of the User’s manual to find how to perform particular tasks.

® The on-line help utility contains a brief description of the syntax of user commands.

® The Introduction to Smalltalk-80(tm) manual contains details and a short tutorial on the
Smalltalk-80 programming language.

4400 Series C Reference 1-1

Introduction

® The reference manuals for the optional languages for the 4400 product family are also
availabe.

Manual Syntax Conventions

Throughout this manual, the 4400 User’s manual, and in the on-line help files, the following
syntax conventions apply:

1. Words standing alone on the command line are keywords. They are the words recognized
by the system and should be typed exactly as shown.

2. Words enclosed by angle brackets (< and >) enclose descriptions that are replaced with a
specific argument. If an expression is enclosed only in angle brackets, it is an essential part
of the command line. For example, in the line:

adduser <user name>
you must specify the name of the user in place of the expression <user_name>.

3. Words or expressions surrounded by square brackets ([and]) are optional. You may omit
these words or expressions if you wish.

4. If the word list appears as part of a term, that term consists of one or more elements of the
type described in the term, separated by spaces. For example:

<file name_list>

consists of a series (one or more) of file names separated by spaces.

Invoking the C Compiler

The cc command is the program that drives the C compiler. By default, cc calls the two passes of
the C compiler — the relocating assembler, and the linking-loader. In addition, if you specify
the O option, cc calls the assembly language optimizer. Numerous options let you pass
information to the programs called by cc and to control their execution. The cc command
produces code that does not check the availability of stack space before trying to obtain space on
the stack.

The driver program accepts as input C source files, relocatable modules, or both. When you
specify either the r or R option, you may also use assembly language files as input. The name of
a C source file must end in .c; of an assembly language file, in .a; of a relocatable module, in .r;
of a preprocessor file in .p.

1-2

Introduction

By default, the cc command produces an output file named accordingly:

® If the user specifies only one file on the command line and that file is a file named
<filename> .c containing C source code, the output file is named <filename>.

® Otherwise, the output file is named <output>.

You may override this naming procedure by using the o option to cc to specify the name of the
output file. In any case, if a file with the same name already exists, it is deleted with no warning.

The cc command can produce as output one or more files containing intermediate language (from
the first pass of the C compiler), assembly language (from the second pass of the C compiler),
relocatable binary code, or executable binary code. You can obtain a listing of the C source code
by specifying the L or N option to cc. This listing is written to standard output.

Whether or not the cc command produces code that checks the availability of stack space before
trying to obtain space on the stack depends on the type of system being used. If it does, each time
the program needs space on the stack, it calls a run-time routine, which ensures that space is
available by adding to the stack if necessary. The cc command automatically produces the
correct code for a given system, but the user may override the default for a particular system by
using the s or S option. Code that does not check the availability of stack space is both smaller
and faster than code that does.

Compilation errors are always sent to standard output with the offending line of code and the line
number.

The Command Line

The syntax for invoking the C compiler is:
cc <file_name_list> [+acDfillLmMnNoOqrRtUvwx]

where <file_name_list> is a list of the names of the files to compile, assemble, and link. The
items in brackets are options that can be used in the command line. Brief descriptions of the
options that are available are given here. These options are discussed in more detail later in this
section.

a Stop when the second pass of the C compiler is complete.

c Put the comments generated by the C compiler into the assembly
language file.

D<symbol> [=def] Define the specified symbol.

f Produce an output module suitable for firmware.

4400 Series C Reference 1-3

Introduction

i=<dir_name>
I
I=<lib_name>
L

8

o=<filename>

-t

w

x=<ldr_option>

Specifies a directory to search for #include files.
Stop when the first pass of the C compiler is complete.
Specifies the name of a library to pass to the linking-loader.

Send to standard output a listing of those files containing C source code.
Expand #include files.

Tell the linking-loader to produce load and module maps.

Tell the linking-loader to produce as output one relocatable file. The
name of this file is output.r.

Call only the first pass of the C compiler. Do not produce any code.

Send to standard output a listing of thos2 files containing C source code.
Do not expand #include files.

Specifies the name of the executable (or if the M option is in effect, the
relocatable) output file.

Call the assembly language optimizer.

Produce code that does calculations on char and short variables without
first converting to int.

Tell the assembler to produce a relocatable module from each input file,
but do not call the linking-loader. The r option leaves the user with one
relocatable module for each input file.

Tell the assembler to produce a relocatable module from each input file.
Then call the linking-loader, but do not delete the relocatable modules.

Produce as output a shared-text, executable module.

Produce a line-feed character ($0A) for \n rather than the default of a
carriage return ($0D).

Use verbose mode. When this option is in effect, the cc command sends
messages to standard error describing its activities.

Warn about duplicate #define statements.

Pass the information following the equal sign to the linking-loader.
With this option the user can pass any option to the linking-loader.

Detailed descriptions of these options follow.

1-4

Introduction

The a Option

The a option instructs the cc command to stop when the second pass of the C compiler is
complete. The name of each output file is the same as the name of the corresponding C source
file provided on the command line except that the extension .a replaces the extension .c. The
output files contain assembly language code. This option may not be used in conjunction with
the o option.

The ¢ Option

The ¢ option tells the cc command to insert the comments generated by the C compiler during
code generation into the assembly language file. The C compiler generates a comment at the
beginning of each expression. It also generates comments for each variable declared in any given
block. This type of comment contains the name of the variable and the value of its offset. The ¢
option should only be used in conjunction with the a option.

The D Option

The D option allows the user to define symbols on the command line as if they were defined in
every one of the C source files with the preprocessor command #define. The syntax for this
option is

D=<symbol>[=def]

where <symbol> is the name of a symbol defined for the C preprocessor, which is replaced by def
in the source code. If the user provides no definition, the value of <symbol> is 1. The definition
is valid for all source files on the command line. The symbol is redefined at the beginning of
each source file. A user who does not wish to include a definition in a particular source file can
exclude it by using the preprocessor command #undef in that file. The D option may be used
repeatedly on the command line.

The f Option

When the f option is in effect, the cc command produces an output module suitable for firmware.
In such a case the compiler does not allow any globally initialized data. It places all code and
strings in the text segment and all global variables in the bss segment.

4400 Scrics C Reference 1-5

- Introduction

The i Option
The i option specifies a directory to search for #include files. The syntax for this option is:

i=<dirname>

where <dirname> is the name of a directory to search. The i option may be used repeatedly on
the command line. The directories specified with the i option are searched in the order in which
they appear on the command line.

The overall search for #include files proceeds as follows:
Search the directory containing the source file.
Search the current working directory.

Search the directories specified by the i option.

Search the directory include in the working directory.

A e

Search the directory /lib/include.

If the user encloses the file name used as an argument to the #include command in angle brackets,
‘<" and ">’ the compiler does not search the directory containing the source file. If the file name
specified begins with a slash character, 7/, the compiler does not search any directories, but
rather uses the file so specified as the #include file.

The | Option

The I option instructs the cc command to stop when the first pass of the C compiler is complete.
The name of each output file is the same as the name of the corresponding C source file provided
on the command line except that the extension .i replaces the extension .c. The output files
contain intermediate language, which cannot be read by the ¢ compiler.

The | Option

By default, the cc command passes to the linking-loader the names of the C libraries that contain
standard I/O and math functions (//ib/clibs or /lib/clib or both, depending on the hardware). The
linking-loader searches these files when it tries to resolve external references. By invoking the 1
option, the user can specify the name of a library to search before searching these standard
libraries. The syntax for this option is:

=<lib_name>
where <lib_name> is the name of a library to search. The I option may be used a maximum of

11 times on the command line. The libraries are searched in the order that the user specifies
them.

1-6

Introduction

The L Option

The L option instructs the compiler to send to standard output a listing of each file specified on
the command line that contains C source code. These listings, which contain line numbers,
include listings of any #include files (see the N option for more details).

The m Option
The m option tells the compiler to print the load and module maps from the linking-loader to

standard output. These maps are explained in detail in the 4400 Assembly Language Reference
manual. '

The M Option
The M option instructs the compiler to compile, assemble, and link the source files specified on

the command line and to produce as output one relocatable module. By default, the name of this
file is output.r.

The n Option

The n option instructs the ¢cc command to stop when the first pass of the C compiler is complete.
Pass 1 performs a syntactical check of the C source code in the files specified on the command
line but generates no code.

The N Option

The N option instructs the compiler to send to standard output a listing of each file specified on
the command line which contains C source code. These listings, which contain line numbers, do
not include listings of any #include files (see the L option for more details).

The o Option

The o option specifies the name of the file containing the executable (or if the M option is in
effect, the relocatable) output file. The syntax for this option is:

o=<filename>

The o option cannot be used in conjunction with the r or the a option.

4400 Series C Reference 1-7

Introduction

The O Option

The O option instructs the cc command to call the assembly language optimizer. Because it
makes certain assumptions about the source files it reads and because it replaces these files with
its optimized code, the optimizer should not be used on files containing hand-written assembly
language source code. For these reasons, even if the user specifies the O option, the cc command
does not run the optimizer on assembly language source files specified on the command line.

The q Option

The C language requires that all items of type char and short be converted to int before any
operations are performed on them. The q option bypasses this rule, allowing the generation of
better code in many instances. In general, the code generated with the q option is smaller but
equivalent to the code generated without the q option. For example, the statement

chl =ch2 << 3;

where chl and ch2 are of type char, generates code following these steps:
1. Convert ch2 to type int (sign extend).
2. Shift the result of the conversion left 3 places.
3. Convert the result of the shift to type char.
4. Assign the result of step 3 to chl.

In this example the conversions have no meaning. Because the C language ignores overflow, the
code generated without the conversions has exactly the same effect.

The user should, however, be careful not to use the q option when overflow is expected to occur
and is necessary to the operation being performed because the resulting code is not equivalent to
that generated without the q option. For example, if the previous statement is changed to read

intl = ch2 << 3;

where intl is of type int, use of the q option could cause the compiler to generate code that does
not perform as expected, depending on what the user intended and what the value of ch2 is. If the
q option is in effect, the variable ch2 is not converted to type int before the shift operation takes
place. Any overflow from ch2 is lost. If the q option is not in effect, ch2 is converted to int
before the shift operation takes place. Any overflow is retained for assignment to int/. An
explicit cast of ch2 into type int solves this problem.

In practice, using the q option does make the code smaller and faster, but it should be used
cautiously. You should thoroughly debug a program before attempting to compile it with the q
option. After compiling a program with the q option, the user should again check it thoroughly.

1-8

Introduction

The r Option

The r option instructs the compiler to produce a relocatable module for each input file, but not to
call the linking-loader. The name of each output file is the same as the name of the
corresponding file provided on the command line except that the extension .r replaces the
extension .c or .a. The output files contain relocatable object code. This option may not be used
with the o option.

The R option

The R option tells the compiler to produce a relocatable module from each input file, to call the
linking-loader to produce one executable output module, but not to delete the individual
relocatable modules. The name of each relocatable module is the same as the name of the
corresponding file provided on the command line except that the extension .r replaces the
extension .c or .a.

The t Option

The t option tells the compiler to produce as output a shared-text, executable module. This
option is merely passed to the linking-loader. Shared-text files are discussed in detail in the 4400
Series Assembly Language Reference manual.

The U Option

The U option instructs the compiler to produce a line-feed character ($0A) for the C character
constant \» rather than the default of a carriage return ($0D).

The v Option

The v option tells the cc command to send messages to standard error describing its activities.
The messages show the command currently being executed, complete with the arguments and
options sent to it.

4400 Series C Reference 1-9

Introduction

The w Option

The w option instructs the C preprocessor to warn the user about duplicate #define statements.

Redefining a preprocessor variable is allowed, but it can make the debugging process very
difficult.

The x Option
The x option passes options directly to the linking-loader, load. The syntax for the x option is:
x=<ldr_option>

where <ldr_option> is some valid option to the load command. No plus sign, +, is allowed in
front of <ldr_option>. For example, this use of the x option

+x=F=/lib/nonstd_env
specifies a file of options to the load command. As another example,
+x=b=8M

specifies the executable task to be 8 Mbytes in size.

1-10

Introduction

Examples

These examples illustrate some of the uses of the cc command:

cc test.c

This example compiles, assembles, and links the file test.c, producing as output the executable
module test.

cc math.c float.c driver.c +o=testmath +Owsq

This example compiles the code in the three files specified on the command line, calls the
assembly language optimizer, assembles the code, and calls the linking-loader. The output is the
single executable module named testmath. The code generated by this command performs
operations on variables of type short and char without converting them to integers. It does not
check the availability of stack space before trying to obtain space on the stack. The compiler
warns the user about duplicate definitions.

cc list.c +Ln

This example compiles the file list.c but generates no code. A listing of the C source file is sent
to standard output.

cc games.c help.c +DDBG=1 +o=play +l=gamelib +t

This example compiles, assembles, and links the files games.c and help.c, producing as output
the shared-text executable module play. The D option defines the variable DBG. The 1 option
tells the linking-loader to search the library gamelib before it searches the standard C libraries.

cc prog.c +NSvqca

This example compiles the file prog.c and produces as output the assembly language file prog.a,
which includes the comments generated by the compiler. A listing of the C source code is sent to
standard output. This listing does not include the #include files. The code generated by this
command performs operations on variables of type short and char without converting them to
integers. It checks the availability of stack space before trying to obtain space on the stack.
Because verbose mode is turned on, the command sends messages to standard error describing its
activities.

4400 Series C Reference 1-11

Introduction

Description of the Language

Advanced features implemented by this version of the C language include the passing, returning,
and assigning of structures and unions; enumeration types; and bit fields. The compiler supports
the types unsigned char, unsigned short, and unsigned long.

Object Sizes

Each variable defined in a C program requires some specific amount of space. Table 1-1 shows
the sizes of the basic types of variables.

Table 1-1
Variable Sizes

Type
char
short
float
int
long
pointers
double

=
o bBBAN P
@®

The qualifier unsigned, which can be applied to variables of type char, short, int, or long, does
not affect the size of the variable. Short implies short int; long implies long int; and unsigned
implies unsigned int.

The types float and double conform to IEEE Task P754 proposed floating point standard for
single and double precision formats respectively.

Register Variables

A user on any system may apply the storage class register to variables of all basic types except
float and double. Users whose hardware includes the MC68881 floating-point coprocessor may
apply the storage class register to variables of all basic types. The compiler can honor the
declarations of up to four pointer variables and five data variables (and, if applicable, five
floating-point registers) as register variables per function. It changes the storage class of an
invalid register declaration to auto.

1-12

Section 2
Kernighan and Ritchie Variations

Introduction

This section describes the differences between Technical Systems Consultant’s C compiler,
which is modeled after the UNIX System V C Compiler, and the language described by
Kernighan and Ritchie in Appendix A: C Reference Manual of The C Programming Language
(Kernighan and Ritchie, 1978). The numbers of the following sections and the accompanying
page numbers correspond to the numbers appearing in that appendix.

Identifiers (Names), page 179

External identifiers, which are used by the assembler and linking-loader, are restricted to:

59 characters, 2 cases

Character Constants, page 180

An additional escape sequence is allowed for vertical tab.

vertical tab VT \v

Enumeration Constants, new section

Names declared as enumerators are constants of the corresponding enumeration type and behave
like integer constants.

Hardware Characteristics, page 181

The hardware characteristics are:

char 8 bits
int 32 bits
short 16 bits
long 32 bits
float 32 bits
double 64 bits
float range 10E 38
double range 10E 308

4400 Series C Reference 2-1

Kernighan and Ritchie Variations

What's in a Name?, page 182

Each enumeration is conceptually a separate type with its own set of named constants. The
properties of an enumeration type (enwm) are identical to those of type int. The type enum is
classified as an integral type.

The type void is used to specify an empty set of values. Its primary use is to define the type of a
function that does not return a value.

~ The word unsigned may be used as an adjective to modify the types char, short, int, and long.
Used by itself, unsigned is equivalent to unsigned int.

Characters and Integers, page 183

Variables of type char range in value from -128 to 127 inclusive. Variables of the more explicit
type, unsigned char, range in value from 0 to 255 inclusive.

Void, new section

Objects declared to be type void may not be used in any way. Because a void expression denotes
a nonexistent value, such an expression may only be used as an expression statement or as the
left-hand operand of a comma expression. Expressions may be cast to type void in order, for
example, to make explicit the discarding of the value of a function call used as an expression
statement.

Type Specifiers, page 193
The compiler supports two additional type specifiers:

"void"
enumeration specifier

The following three combinations are also supported:

unsigned char
unsigned short
unsigned long

2-2

Kernighan and Ritchie Variations

Structure, Union, and Enumeration Declarations,
page 196

Fields are assigned from right to left. Fields are not signed, have only integral values, and should
be declared unsigned although int is accepted.

Enumerations are unique types with named constants. The compiler treats enumeration variables
and constants as being of type int. The syntax for the declaration of an enumeration type follows.
Keywords are enclosed in quotation marks. Other words are descriptors that the user must
replace with a specific example of the thing described.

enum specifier:
"enum" { enum-list }
"enum" identifier { enum-list }
"enum" identifier
enum-list:
enumerator
enum—-list, enumerator
enumerator:
identifier
identifier = constant-expression

The identifiers in an enumeration list are declared as constants and may appear wherever
constants are allowed or required. The values of the corresponding constants begin at 0 and
increase by 1 as the declaration is read from left to right. These values can be altered by using an
equals sign, "=’, after an identifier—in which case the value of the constant is that specified after
the equals sign. Subsequent identifiers continue the progression from the assigned value.

The names of all enumerators in the same scope must be distinct from each other. The role of the
identifier in the enum-specifier is entirely analogous to that of the structure tag in a struct-
specifier. It names a particular enumeration. For example:

enum color { red, white, blue=10, orange };
enum color *colptr, colval;

colval = white;

colptr = &colval;

if (*colptr == orange)

This piece of code makes color the enumeration tag of a type describing various colors. The

declarations declare colval as an object of that type and colptr as a pointer to an object of that
type. The possible values are taken from the set {0,1,10,11}.

4400 Series C Reference 2-3

Kernighan and Ritchie Variations

Inclusion of an Information Field, new section

For operating systems such as UniFLEX, which support information fields in binary files, the
preprocessor allows this command:

#info information-line

The information-line may be any text. All of the text, including the trailing carriage return, is
placed in the information field of the binary file. This feature may not appear in all versions of
the compiler because its usefulness is operating-system dependent.

Structures and Unions, page 209

Structures and unions may be assigned, passed as arguments to functions, and returned by
functions. Only identical structure and union types may be assigned.

Explicit Pointer Conversions, page 210

The pointer representation for a 68000-based machine corresponds to a 32-bit integer and
measures bytes. Variables of type char have no alignment requirements; variables of other types

have even addresses. All aggregates, except arrays of characters, are also aligned on even
addresses.

Portability Considerations, page 211

The order of evaluation of the arguments to a function is not specified by the language. This
compiler evaluates the arguments from right to left. Because character constants are really

objects of type int, multicharacter constants are permitted. Up to four characters may be present
in one constant.

Anachronisms, page 212

A structure or union reference is a chain of member references (qualifications) prefixed either by
a pointer to a structure or a union or by the name of a structure or a union. Because each
qualification implies the addition of an offset within an address computation, older compilers
(which failed to check for membership in the appropriate structure or union) allowed omission of
those qualifications with an offset of 0. This compiler requires complete qualification.

Section 3

System Calls and Functions

This section contains manual pages for each C library system call and function. To make the
manual pages easier to locate, they are listed in this section alphabetically and summarized

below:

abort

abs
access
acct
acos
addmount
alarm
asctime
asin
atan
atan2
atof
_atoh
atoi
atol
_atoo
_atos
basename
brk
calloc
cdata
ceil
chdir
chmod
chown
chtim
clearerr
close
closedir

4400 Series C Reference

Send a task-abort signal to the current task, causing the task to stop
immediately.

Absolute value function.

Check the accessibility of a file.

Begin or end system accounting.

Arc-cosine function.

Add an entry to the system mount table.

Set the alarm clock of the task.

Generate a time stamp.

Arc-sine function.

Arc-tangent function.

Arc-tangent function.

Convert a floating-point digit-string to a double.
Convert a hexadecimal digit-string to a long.
Convert a decimal digit-string to an int

Convert a string of decimal characters to an integer.
Convert an octal digit-string to a long.

Convert a decimal digit-string to a short.

Extract the simple filename from a pathname.
Change the task’s data segment memory allocation.
Allocate memory.

Change the task’s data segment memory allocation.
Calculate the smallest integer not less than a certain specified value.
Change the working directory.

Change the access permissions of a file.

Change the owner-ID of a file.

Change the modification date and time of a file.
Clear the streams error-indicators.

Close an open file.

Close a directory-stream.

3-1

System Calls and Functions

control_pty
cos

cosh
creat
create_pty
_crypt
ctime
daylight
dirname
dup
dup2
ecvt
edata
end
endpwent
errno
etext
execl
execle
execlp
execy
execve
execvp
exit
_exit
exp

fabs
fclose
fentl
fevt
fdopen
feof

ferror

3-2

Control a pseudo-terminal channel

Calculate the cosine of an angle.

Calculate the hyperbolic cosine of a value.

Create a new file or truncate an existing file.

Create a pseudo-terminal channel

Encrypt a character-string.

Generate a time stamp.

Daylight savings time flag.

Extract the directory prefix from a pathname.
Duplicate a file descriptor.

Duplicate a file descriptor onto a specific file descriptor.
Convert a floating-point value to a character-string.
End-of-memory address of initialized data.
End-of-memory address of uninitialized data.

End password-file handling.

The system error code of the most recent system error.
End-of-memory address of program text.

Execute a program found in an executable binary file.
Execute a program found in an executable binary file.
Execute a program found in an executable binary file.
Execute a program found in an executable binary file.
Execute a program found in an executable binary file.
Execute a program found in an executable binary file.
Exit the program.

Exit the program.

Calculate the exponential of a value.

Absolute value function.

Close a stream.

Control the behavior of a file

Convert a floating-point value to a character-string.
Attach an open file to a stream.

Test the end-of-file indicator of a stream.

Test the error-indicator of a stream.

System Calls and Functions

fflush Flush a stream opened for write access.

fgetc Read a character from a stream.

fgets Read a character-string from a stream.

fileno Get a file descriptor for the file attached to a stream.

finite Determine if a double precision floating point number is not an
infinity.

floor Calculate the largest integer not greater than a value.

fmod ' Floating-point remainder function.

fopen Open a file and attach it to a standard I/O stream.

fork Create a new task.

fprintf Write formatted data to a stream.

fputc Write a character to a stream.

fputs Write a character-string to a stream.

fread Read data from a stream.

free Free a block of allocated memory.

freopen Reopen an open stream.

frexp Separate the exponent from the mantissa of a floating-point value.

fscanf Read and interpret formatted data from a stream.

fseek Reposition a stream.

fstat Get the status of an open file.

ftell Get the current position of a stream.

ftime Get the current time statistics for the operating system.

_ftoa Convert a floating-point value to a character-string.

ftw Descend the specified directory structure.

fullname Generate the full pathname.

fwrite Write data to a stream.

gevt Convert a floating-point value to a character-string.

getc Read a character from a stream.

getchar Read a character from the standard input stream.

getewd Get the pathname of the working directory.

getenv Get information from the environment list.

get FPU_control Return the contents of the MC68881 control and status registers

get FPU_exception Access MC68881 coprocessor exception-information

4400 Series C Reference 3.3

System Calls and Functions

geteuid
getpass
getpid
getppid
getpw
getpwent

getpwnam
getpwuid

gets
getuid

getw
gmtime

gtty
idfd
_ierrmsg
index
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
islower

isnan

isprint

ispunct
isspace
isupper
isxdigit

Get the effective user-ID number of the current task.

Get a password using a prompt.

Get task-ID number of the current task.

Get the task-ID number of the parent of the current task.
Get a password-file entry based on a user-ID.

Get and decode the next entry in the system password file.

Get and decode the next entry in the system password file containing
the given user-name.

Get and decode the next entry in the system password file containing
the given user-ID number.

Read a character-string from the standard input stream.

Get the user-ID number of the current task. login file that has
specific <ut_line> value.

Read a word from a standard I/0O stream.

Break down a system-time value into units in the Greenwich Mean
Time zone.

Get the characteristics of an open character-device.

Return the last file descriptor which signalled "INPUT READY"
Initialize <sys_errlist> and <sys_nerr>.

Find the first occurrence of a character in a character-string.
Determine if a value is an alphabetic character or a decimal digit.
Determine if a value is an alphabetic character.

Determine if a value is an ASCII character.

Determine if a file descriptor references a character-special
Determine if a value is a control character.

Determine if a value is a decimal digit.

Determine if a value is a graphics character.

Determine if a value is a lower-case alphabetic character.

Determine if a double precision floating point number is not-a-
number.

Determine if a value is a printable character.

Determine if a value is a punctuation character.
Determine if a value is a white-space character.
Determine if a value is an upper-case alphabetic character.

Determine if a value is a hexadecimal digit.

System Calls and Functions

_itostr
kill
_12tos
13tol
_l4tol
ldexp
link
localtime
lock

log

log10
longjmp
Irec

Iseek
1tol3
_ltol4
_ltostr
make_realtime
malloc
matherr
memccpy
memchr
memcmp
memcpy
memman
memset

mknod

mktemp
modf
mount
nice

open

4400 Series C Reference

Convert an int to a character-string.

Send a signal to a task.

Convert two-byte integers to short integers.

Convert three-byte integers to long integers.

Convert four-byte integers to long integers.

Generate a floating-point value from a mantissa and an exponent.
Create a link to a file.

Break down a system-time value into units in the local time zone.
Lock a task in memory or unlock a locked task.
Calculate the natural logarithm of a value.

Calculate the base-10 logarithm of a value.

Perform a non-local goto.

Add an entry to the lock table of the operating system.
Change the current file position of an open file.
Convert long integers to three-byte integers.

Convert long integers to four-byte integers.

Convert a long to a character-string.

Declare the task to be a real-time task.

Allocate memory.

Floating-point error-handling function for built-ins.
Copy memory.

Find a value in a block of memory.

Compare two blocks of memory.

Copy memory.

Perform a memory management operation.

Set a block of memory.

Add an entry to the file-system that is a directory, a character-special
file, or a block-special file.

Generate a unique pathname from a template.

Separate a floating-point value into its integral and fractional parts.
Mount a block-special file onto the file-system.

Change the scheduling priority of a task.

Open an existing file.

3-5

System Calls and Functions

opendir Open a directory.

pause Suspend the current task.

pclose Close a stream connected to a pipe.

perror Write a message explaining the error code in errno.

pffinit Guarantee that the c¢c command loads the versions of standard I/O
functions that contain floating-point conversions.

phys Access or release a system resource.

pipe ' Create a pipe.

popen Open a pipe and attach it to a standard I/O stream.

pow Raise a value to a power.

printf Write formatted data to stdout.

profil Start or stop monitoring the current task.

putc Write a character to a stream.

putchar Write a character to stdout.

putenv Modify or add an environment-variable definition to the
environment list.

put_FPU_control Change the contents of the MC68881 control and status registers

put_FPU_exception Update MC68881 coprocessor exception-information

putpwent Format and write a system password-file record.

puts Write a character-string to stdout.

putw Write a word to a stream.

gsort Sort data.

rand Generate a random number.

read Read data from an open file.

readdir Read the next entry in an open directory.

realloc Reallocate an allocated block of data.

rewind Rewind a stream.

rewinddir Rewind a directory-stream.

rindex Find the last occurrence of a character in a character-string.

rmvmount Remove an entry from the system mount table.

rrand Set the seed of the random number generator to a value generated
from the current system-time value.

rump_create Create a new managed resource.

rump_dequeue Relinquish access to a named resource.

3-6

S, y;s:tem Calls and Functions

rump_destroy Destroy a managed resource.

rump_enqueue Obtain exclusive access to a named resource.

sbrk Change the memory allocation of the data segment.
scanf Read and interpret formatted data from stdin.
seekdir Change the current position of a directory-stream.
set_ftm Change the last-modification time of a file.

set_high_address_mask Set the hardware high address mask register

setbuf Set buffering attributes of a stream.

setjmp Setup for a non-local goto.

setpwent Reset password-file handling.

setuid Change both the user-ID and the effective user-ID.

signal Change the signal-handling address for a specific signal in the
current task.

sin Calculate the sine of an angle.

sinh Calculate the hyperbolic sine of a value.

sleep Suspend execution for an interval.

sprintf Generate a character-string containing formatted data.

sqrt Calculate the square root of a value.

srand Set the seed of the random number generator.

sscanf Interpret formatted data from a character-string.

stack Check and expand memory allocated to the stack segment of the
task.

stat Get the status of a file.

stderr Standard error stream for standard I/O.

stdin Standard input stream for standard I/O.

stdout Standard output stream for standard I/O.

stime Set the system-time value.

_stol2 Convert short integers to two-byte integers.

strcat Concatenate one character-string onto another.

strchr Find the first occurrence of a character in a character-string.

stremp Compare two character-strings.

strempci Compare two character-strings (case insensitive).

strcpy Copy a character-string.

strespn Determine the unlike character-count.

4400 Series C Reference 3-7

System Calls and Functions

strerror
strlen
strncat
strncmp
strncmpci
strncpy
strpbrk

strrchr
strspn
strstr
strstrci
_strtoi
strtok
strtol
stty
sync

sys_errlist
sys_nerr

system
time
times
timezone
toascii
_tolower
_toupper
truncf
ttyname
ttyslot
tzname
tzset

umask

3-8

Return a pointer to a message describing the specified error number.
Determine the length of a character-string.

Concatenate one character-string onto another.

Compare two character-strings.

Compare two character-strings (case insensitive).

Copy a character-string.

Find the first occurrence of any of a list of characters in a character-
string.

Find the last occurrence of a character in a character-string.
Determine the like character-count.

Find a substring with a character-string.

Find a substring within a character-string (case insensitive).
Convert the digits in a character-string to an int.

Extract the next token from a character-string.

Convert the digits in a character-string to a long.

Set the characteristics of an open character-device.

Update the file-system.

This is a global table containing references to messages describing
system error codes.

The number of system error messages referenced by the global table
sys_errlist.

Issue a shell command.

Get the current system-time value.

Get the CPU-usage information for the current task.

Current time zone value.

Generate a value that is within the range of valid ASCII characters.
Convert an upper-case character to a lower-case character.
Convert a lower-case character to an upper-case character.

Set the size of an open file.

Generate the pathname for a terminal.

Get the terminal number of the controlling terminal for the task.
Time-zone name abbreviations.

Initialize external variables containing time parameters.

Change the file-creation permissions mask for the task.

System Calls and Functions

umount
ungetc
unlink
urec
utime
vfork
wait

write

4400 Series C Reference

Unmount a mounted device.

Push a character onto an input stream.

Remove a link to a file.

Remove an entry from the operating system lock table.
Change the last-modification time for a file.

Create a new task.

Suspend the task until a child task terminates.

Write data to an open file.

abort

abort

Send a task-abort signal to the current task, causing the task to stop immediately.

SYNOPSIS

void abort ():;

Arguments

None

Returns

Never

DESCRIPTION

Abort sends a task-abort signal, #<n>, to the current task, which causes the task to terminate
immediately. The task-abort signal cannot be caught or ignored. The function never returns to
the caller.

The system signals can be found in the kill() manual page.

ERRORS REPORTED

None

NOTES

The termination status received by the parent of the current task contains an exit code of zero, a
termination code indicating that the task terminated because of a task-abort signal, and a flag that
indicates if a core-image file was produced.

SEE ALSO

System Call: signal(), wait()

Command: int

4400 Series C Reference A-1

abs

abs

Absolute value function.

SYNOPSIS

int abs (i)

int i;
Arguments
<i> The number whose absolute value is to be calculated
Returns

The absolute value of the argument <i>

DESCRIPTION

Abs calculates the absolute value of the argument <i>. It returns the calculated value as its
result.

NOTES

If <i> is the largest negative number, abs() returns that value as its result.

A-2

access

access
Check the accessibility of a file.

SYNOPSIS

#include <errno.h>
int access(path, perms)

char *path;
int perms;
Arguments

<path> The <path> argument is a character-string that specifies the directory location of the
file. Access locates the file to be checked by following the specified path.

<perms> A value indicating the type of access to check

Returns

This function returns a zero if access is permitted, otherwise the function returns a -1 with
<errno> set to the system error code (this indicates the reason for denying access).

DESCRIPTION

The access function checks the permissions of the file reached by the pathname in the character-
string referenced by <path>. The value <perms> specifies the type of permission to check. If
the file exists, the function returns zero and grants the requested access. Otherwise, this function
returns -1 with <errno> to indicate the reason the access is denied.

A -1 returned value indicates the path could not be followed, a part of the path is not a directory,
the pathname does not reach a file, or the file does not grant the effective user the requested
access permissions. '

The value <perms> is a bit-string that tells the access function the types of permissions to check.
<Perms> may be any combination of these values:

0x01 Read
0x02 Write
0x04 Execute (search)

A <perms> value of zero tells the function to check the path to the file to see if the file exists.

4400 Series C Reference A-3

access

Errors Reported

EACCES The file permissions do not grant the requested access type
EMSDR Cannot follow the path to the file

ENOEP The pathname does not reach a file

ENOTDIR A part of the path is not a directory

NOTES

If the current effective user is the owner of the specified file, the access function checks the file
permissions for its owner. Otherwise, it examines the permissions granted for users other than its
owner.

SEE ALSO

System Call: chmod(), stat()

A-4

acct

acct

Begin or end system accounting.

SYNOPSIS

#include <errno.h>
#include <sys/acct.h>
int acct (path)

char *path;
Arguments
<path> The address of a character-string that contains a pathname for the file where to write

accounting records, or (char *) NULL

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

If <path> is not (char *) NULL, the acct function begins system accounting. While system
accounting is active, every time a task terminates the system writes a system accounting record
(described later) to the file reached by the pathname referenced by <path> . The referenced file
must already exist. If <path> is (char *) NULL, the acct function ends active system accounting,
if any.

This function returns zero if it successfully performs its function, otherwise it returns -/ with
<errno> set to the system error code. This function requires that the current effective user-ID be
that of the system manager.

The function fails if <path> is not (char *) NULL and the path in the pathname can not be
followed, a part of the path is not a directory, the pathname does not reach a file, or system
accounting is already active. The function also fails if the current effective user is not the system
manager.

4400 Series C Reference A-S

acct

The following structure describes the record written by the system to the specified file each time

a task terminates.

struct acct
{

short ac_uid;
long ac_strt;
long ac_end;
char ac_syst[3];
char ac_usrt[3];
unsigned int ac_stat;
char ac_tty:;
char ac_mem;
unsigned int ac_blks;
char ac_spare[2];
char ac_name[8];

}:

The ac_uid entry contains the user-ID number associated with the task.
ac_strt contains the system-time at the start of the task.
ac_end contains the system-time at the end of the task.

ac_syst (a three-byte integer) contains the number of CPU-seconds used by the system on behalf
of the task.

ac_usrt (a three-byte integer) contains the number of CPU-seconds used by the task.
ac_stat contains task’s termination status.
ac_tty contains the task’s controlling terminal number.

ac_mem contains the maximum number of 1028-byte blocks of memory ever allocated to the task
at one time.

ac_blks contains the number of I/O units used by the task.
ac_spare is currently unused.

ac_name contains the first eight characters of the command that initiated the task.

ERRORS REPORTED

EACCES The current effective user is not the system manager
EEXIST System accounting is already active

EMSDR Could not follow the path to the file

ENOEP The pathname does not reach a file

ENOTDIR A part of the path is not a directory

acct

NOTES

The acct function does not report an error if the <path> is (char *) NULL and system accounting
is not currently active.

The operating system writes accounting records to the end of the specified file.

SEE ALSO

Command: /etc/sysact

4400 Series C Reference A-7

acos

Arc-cosine function.

SYNOPSIS

#include <math.h>
double acos (x)

double X;
Arguments
<x> The cosine value to use to compute an angle
Returns

The angle, in radians, that has the cosine <x>

DESCRIPTION

acos

The acos function calculates the angle in radians between 0.0 and pi that has as its cosine the

value <x>.

The function expects <x> to be between -1.0 and 1.0 inclusive. Values outside of that range
cause a domain error. If the function detects a domain error, it calls matherr(), passing to it the
address of a filled <struct> exception structure. It sets the <type> element of the structure to

DOMAIN, <name> to the address of the character-string acos, and <argl> to <x>.

If matherr() returns 0, the function writes the message

acos() error: Argument is out of range

to the standard I/O stream <stderr> and sets <errno> to EDOM. If matherr() returns
something other than 0, it returns the value retval in the <struct> exception structure as its result.

SEE ALSO

C Library: asin(), atan(), cos(), matherr()

A-8

addmount

addmount

Add an entry to the system mount table.

SYNOPSIS

void *addmount (device, path)
char *device;
char *path;

Arguments

<device> The address of a character-string containing the pathname of the device which is
mounted

<path> The address of a character-string containing the pathname of the directory on which
the device is mounted

Returns
Void

DESCRIPTION

This function adds an entry to the system’s mount-table file. The entry is composed of the
pathname of the device, the pathname of the directory, the actual user-ID of the current task, and
the current time.

If there already is an entry in the system’s mount-table file with the same device pathname, that
entry is overwritten; otherwise, a new entry is created.

NOTES

The addmount() function does not perform an actual mount of the device on the directory; it
only manipulates the system’s mount-table file.

No error is reported if the system’s mount-table file does not exist.

If the device pathname does not begin with a “/°, the string /dev/ is prepended to the specified
pathname before the system’s mount-table file is searched.

4400 Series C Reference A-9

addmount

SEE ALSO

C Library: rmvmount()
System Call: mount(), umount()

Command: /etc/mount, /etc/unmount

A-10

alarm

alarm

Set the alarm clock of the task.

SYNOPSIS

unsigned int alarm(sec)
unsigned int sec;

Arguments

<sec> The number of seconds to elapse before sending an alarm signal to the current task

Returns

The number of seconds remaining from a previous alarm clock request (zero if none)

DESCRIPTION

If <sec> is not zero, the alarm function arms the alarm clock of the task so the system sends an
alarm signal to the current task after the specified number of seconds has elapsed. If the alarm
clock was already armed, the alarm function cancels the previous alarm clock request. If <sec>
is zero, the alarm function cancels the previous alarm clock request.

This function returns as its result the number of seconds remaining on a previous alarm clock
request, or zero if there was no previous request.

ERRORS REPORTED

None

4400 Series C Reference A-11

alarm

NOTES

An alarm signal causes the current task to terminate unless it explicitly catches or ignores alarm
signals.

The actual amount of time that elapses before the system sends the alarm signal may be slightly
less than the requested time, since the system tics occur on one-second intervals.

SEE ALSO

C Library: sleep()
System Call: pause(), signal(), wait()

Command: sleep

A-12

asctime

asctime

Generate an ASCII time stamp.

SYNOPSIS

#include <time.h>
char *asctime (dttm)

struct tm *dttm;

Arguments

<dttm> The address of a structure containing date and time information

Returns

The address of the generated ASCII time stamp

DESCRIPTION

The asctime function generates an ASCII time stamp that represents the date and time
information in the structure referenced by <dttm>. It returns the address of the time stamp as its

result.

A time stamp is a 26-character string of characters (including the terminating null-character) that
represents:

[]

the day of the week
the month of the year
the day of the month
the hour

minute

second

year

The time stamp is generated by the sprintf{) format:

"%$3s %$3s %2.2d %2.2d:%2.2d:%2.2d %4.4d\n"

4400 Series C Reference A-13

asctime

NOTES

The character-string referenced by the result of this function is in static memory and is
overwritten by subsequent calls to this function and ctime().

SEE ALSO

C Library: ctime(), gmtime(), localtime(), sprintf()
System Call: time()

Command: date

A-14

asin

asin

Arc-sine function.

SYNOPSIS

#include <math.h>
double asin(x)

double X;
Arguments
<x> The sine value used to compute an angle
Returns

The angle, in radians, that has the sine <x>

DESCRIPTION

The asin function calculates the angle in radians between -pi/2 and pi/2 that has a sine value of
<x>. It returns that angle as its result.

The asin function expects the value <x> to be between -1.0 and 1.0 inclusive. Values outside of
that range cause a domain error. If the function detects a domain error, it calls matherr(),
passing to it the address of a filled <struct> exception structure. It sets the <type> element of
the structure to DOMAIN, <name> to the address of the character-string asin, and <argl> to
<X>.

If matherr() returns 0, the function writes the message
asin() error: Argument is out of range
to the standard I/O stream <stderr> and sets <errno> to EDOM. If matherr() returns

something other than zero, it returns the value retval in the <struct> exception structure as its
result.

SEE ALSO

C Library: acos(), atan(), matherr(), sin()

4400 Series C Reference A-15

atan

Arc-tangent function.

SYNOPSIS

#include <math.h>
double atan (x)

double X;
Arguments
<x> The tangent value used to compute an angle
Returns

The angle, in radians, that has the tangent <x>

DESCRIPTION

atan

The atan function calculates the angle in radians between -pi/2 and pi/2 that has as its tangent the

value <x>. Atan returns that angle as its result.

SEE ALSO

C Library: acos(), asin(), atan2(), tan()

A-16

atan2

atan2

Arc-tangent function.

SYNOPSIS

#include <math.h>
double atan2(x, y)
double X;
double Y’

Arguments

<x> The dividend of the tangent value used to compute an angle

<y> The divisor of the tangent value used to compute an angle

Returns

The angle, in radians, that has the tangent <x>/<y>

DESCRIPTION

The atan2 function calculates the angle (in radians) between -pi and pi that has as its tangent the
value <x>/<y>. Atan2 returns that angle as its result. This function has twice the range of the
atan() function because it takes into account the signs of values defining the tangent of the angle.
It also handles a divisor <y> of zero so that no zero division error occurs.

This function permits <x> and <y> to be any value, as long as they are not both 0.0. Having
both arguments 0.0 causes a singularity error. If the function detects a singularity error, it calls
matherr(), passing to it the address of a filled <struct> exception structure. Atan2 sets the
<type> element of the structure to SING, <name> to the address of the character-string atan2,
<argl>to <x>,and <arg2> to <y>.

4400 Series C Reference A-17

atan2

If matherr() returns 0, the function writes the message
atan2() error: Both arguments are 0.0
to the standard I/O stream <stderr> and sets <errno> to EDOM. If matherr() returns

something other than zero, it returns the value retval in the <struct> exception structure as its
result.

SEE ALSO

C library: acos(), asin(), atan(), matherr(), tan()

A-18

atof

atof

Convert a floating-point digit-string to a double.

SYNOPSIS

double atof (str)

char *str;
Arguments
<str> The address of the character-string to convert
Returns

The floating-point value generated

DESCRIPTION

The atof function generates a double from the character-string referenced by <str>. It returns the
generated value as its result.

The atof function expects the character-string to contain optional whitespace (see isspace(),
which it ignores, followed by an optional signed string of decimal digits (see isdigit()) containing
an optional decimal point, followed by an optional exponent. The exponent consists of an “E” or
‘e” character followed by an optional sign followed a string of optional decimal digits. It
continues converting until it reaches the end of the string or it finds an inappropriate character.

NOTES

The function returns the properly signed maximum value if the character-string represents a value
whose magnitude is larger than can be represented by a double.

SEE ALSO

C Library: _atoh(), atoi(), _atoo(), atol(), _atos(), ecvi(), feve(), _froa(), gevi()

4400 Series C Reference A-19

_atoh

_atoh

Convert a hexadecimal digit-string to a long.

SYNOPSIS

long _atoh(str)

char *str;
Arguments
<str> The address of the character-string to convert
Returns

The integer generated from the character-string referenced by <str>

DESCRIPTION

The _atoh function generates a long from the character-string referenced by <str>. It returns that
value as its result.

The function expects the character-string to contain optional whitespace (see isspace()), which is
ignored, followed by an optional sign, followed by a optional ("0") and an ("x”) or ("X"), which
are ignored, followed by a string of hexadecimal digits (see isxdigit()). _Atoh continues
converting until it reaches the end of the string or it finds inappropriate character.

NOTES

The function ignores overflow errors.

The conversion is performed by:

strtol(str, (char **) NULL, 16)

SEE ALSO

C Library: atof{), atoi(), _atoo(), atol(), _atos(), strtol()

A-20

atoi

atoi

Convert a decimal digit-string to an int.

SYNOPSIS

int atoi(str)

char *str;
Arguments
<str> The address of the character-string to convert
Returns

The integer generated from the character-string referenced by <str>

DESCRIPTION

The atoi function generates an int from the character-string referenced by <str>. Atoi returns the
generated value as its result.

The atoi function expects the character-string to contain optional whitespace (see isspace()),
which is ignored, followed by an optionally signed string of decimal digits (see isdigit()). Atoi
continues converting until it reaches the end of the string or it finds an inappropriate character.

NOTES

Overflow errors are ignored.

The conversion is performed by:

(int) strtol(str, (char **) NULL, 10)

SEE ALSO

C Library: atof{), _atoh(), _atoo(), atol(), _atos(), strtol()

4400 Series C Reference A-21

atol

atol

Convert a string of decimal characters to an integer.

SYNOPSIS

1l (str)
char *str;
Arguments
<str> The address of the character-string to convert
Returns

The integer generated from the character-string referenced by <str>

DESCRIPTION

This atol function generates a long from the character-string referenced by <str>. It returns that
value as its result. The atol function expects the character-string to contain optional whitespace
(see isspace()), which is ignored, followed by a string of decimal digits (see isdigit()). The
function converts until it reaches the end of the string or it detects an inappropriate character.

NOTES

Overflow errors are ignored. The conversion is performed by

strtol(str, (char **) NULL, 10)

SEE ALSO

C Library: _atoh(), atoi(), _atoo(), _atos(), strtol()

A-22

_atoo

_atoo

Convert an octal digit-string to a long.

SYNOPSIS

long _atoo(str)

char *str;
Arguments
<str> The address of the character-string to convert
Returns

The integer generated from the character-string referenced by <str>

DESCRIPTION

The _atoo function generates a long from the character-string referenced by <str>. _Atoo
returns that value as its result.

The _atoo function expects the character-string to contain optional whitespace (see isspace()),
which is ignored, followed by an optional sign, followed by a string of octal digits (digits 0
through 7). The function continues until it reaches the end of the string or it finds an
inappropriate character.

NOTES

Overflow errors are ignored.

The conversion is performed by

strtol(str, (char **) NULL, 8)

SEE ALSO

C Library: atof{), _atoh(), atoi(), atol(), _atos(), strtol()

4400 Series C Reference A-23

_atos

_atos

Convert a decimal digit-string to a short.

SYNOPSIS

short _atos(str)

char *str;
Arguments
<str> The address of the character-string to convert
Returns

The integer generated from the character-string referenced by <str>

DESCRIPTION

The _atos function generates a short from the character-string referenced by <str>. It returns
that value as its result.

The _atos function expects the character-string to contain optional whitespace (see isspace()),
which is ignored, followed by an optionally signed string of decimal digits (see isdigit()). The
function converts until it reaches the end of the string or it finds an inappropriate character.

NOTES

Overflow errors are ignored.

The conversion is performed by

(short) strtol(str, (char **) NULL, 10)

SEE ALSO

C Library: atof{), _atoh(), atoi(), atol(), _atoo(), strtol()

A-24

basename

basename

Extract the simple filename from a pathname.

SYNOPSIS

char *basename (path, suffix)

char *path;
char *suffix;
Arguments
<path> The address of a character-string containing a pathname

<suffix> The address of a character-string containing a filename <suffix> or (char *) NULL if
none

Returns

The address of a character-string containing the simple filename

DESCRIPTION

The basename function removes the directory prefix, if any, from the pathname in the character-
string referenced by <path>. If <suffix> is not (char *) NULL, the basename function also
removes the characters in the character-string referenced by <suffix> from the end of the
pathname, if the pathname ends in those characters. The basename function returns as its result
the address of a character-string containing the extracted simple filename.

NOTES

The result of the basename function is in static memory and is overwritten by subsequent calls to
this function.

Basename does not check the validity of the <path>. Nor does it verify that the <path> exists
on the filesystem.

SEE ALSO

C Library: dirname(), fullname()

Command: basename

4400 Series C Reference B-1

brk

brk

Change the task’s data segment memory allocation.

SYNOPSIS

#include <errno.h>
int brk (addr)

char *addr;
Arguments
<addr> The requested end-of-segment address for the data segment
Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

The brk function changes the amount of memory allocated to the data segment so that the end-
of-segment address of the data segment is <addr>. If the function succeeds, it returns zero as its
result. Otherwise, it returns -1 with <errno> set to the system error code describing the reason
for the failure of the function.

The function fails if the address specified in addr is less than the lowest address in the data
segment, or if it could not allocate enough memory to satisfy the request.

If the requested end-of-segment address is higher than the current end-of-segment address of the
data segment, the brk function allocates memory to the segment. If the requested end-of-
segment address is lower than the current end-of-segment address of the data segment, the brk
function releases memory from the segment.

B-2

brk

ERRORS REPORTED

ENOMEM Not enough memory is available

NOTES

The end-of-segment address of a segment is the lowest logical address that is higher than the
highest logical address of memory allocated to the segment.

SEE ALSO

C Library: calloc(), EDATA, free(), malloc(), realloc()
System Call: cdata(), sbrk()

4400 Series C Reference B-3

calloc

calloc

Allocate memory.

SYNOPSIS

char *calloc (num, size)
unsigned num;
unsigned size;

Arguments

<num> The number of units to allocate

<size> The size of a unit

Returns
The address of the allocated block of memory or (char *) NULL if no memory is available.

DESCRIPTION

The calloc function allocates <num> times <size> bytes of memory from the area of available
memory. Calloc returns the address of the first byte of the allocated memory or (char *) NULL if
no memory is available.

The first byte of the allocated memory is aligned for any use.

NOTES

Return allocated memory to the arena of available memory by using free().

SEE ALSO

C Library: free(), malloc(), realloc()
System Call: brk(), cdata(), sbrk()

4400 Series C Reference C-1

cdata

Change the task’s data segment memory allocation.

SYNOPSIS

#include <errno.h>
int cdata (addr)
char *addr;

Arguments

<addr> The requested end-of-segment address for the data segment

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

The cdata function changes the amount of memory allocated to the data segment so the end-of-
segment address is <addr>. If cdata allocates memory to the data segment, it allocates memory
that is physically contiguous to the last page of memory allocated to that segment. If cdata
succeeds, it returns zero as its result. Otherwise, cdata returns -1 with <errno> set to the system
error code describing the reason for failure.

Cdata fails if the address <addr> is less than the lowest address in the data segment, or if it
could not allocate enough contiguous memory to satisfy the request.

If the requested end-of-segment address is higher than the current end-of-segment address, cdata
allocates memory to the segment that is physically contiguous to the last page of the segment. If
the requested end-of-segment address is lower than the current end-of-segment address, the
function releases memory from the segment.

ERRORS REPORTED

ENOMEM Not enough memory is available

C-2

cdata

NOTES

The end-of-segment address is the lowest logical address that is higher than the highest logical
address of memory allocated to the segment.

On virtual memory systems, cdata is functionally equivalent to the brk() function.

SEE ALSO

C Library: calloc(), EDATA, free(), malloc(), realloc()
System Call: brk(), sbrk()

4400 Series C Reference C-3

ceil

ceil

Calculate the smallest integer not less than a specified value.

SYNOPSIS

#include <math.h>
double ceil (x)

double X;
Arguments
<x> The floating-point argument to the function
Returns

The smallest integer that is not less than <x>

DESCRIPTION

The ceil function calculates the smallest integer that is not less than the value <x>. As a result,
ceil returns that value represented as a double.

SEE ALSO

C Library: floor()

C-4

chdir

chdir

Change the working directory.

SYNOPSIS

#include <errno.h>
int chdir (path)
char *path;

Arguments

<path> The address of a character-string containing a pathname to the new working
directory

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code.

DESCRIPTION

The chdir function changes the working directory to the directory reached by the pathname in the
character-string referenced by <path>. Chdir returns zero as its result if it successfully changes
the working directory to the specified directory. Otherwise, chdir returns -1 with <errno> set to
the system error code.

The chdir function fails if the pathname could not be followed or a part of the pathname is not a
directory.

ERRORS REPORTED

EMSDR could not follow the path to this file
ENOTDIR A part of the path is not a directory or the file reached by the pathname is not a
directory

SEE ALSO

C Library: getcwd()
Command: chd

4400 Series C Reference C-5

chmod

chmod

Change the access permissions of a file.

SYNOPSIS

#include <errno.h>
#include <sys/modes.h>
int chmod (path, perms)

char *path;
int perms;
Arguments
<path> The address of a character-string containing a pathname to the file whose access

permissions you want to change

<perms> A bit-string describing the permissions to set on the file

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code.

DESCRIPTION

The chmod function changes the access permissions of the file reached by the pathname in the
character-string referenced by <path> to those described by the bit-string <perms>. The chmod
function requires that the current effective user be the owner of the file or the system manager.
Chmod returns zero as its result if it successfully changes the access permissions of the file.
Otherwise, chmod returns -1 with <errno> set to the system error code.

Chmod fails it could not follow the path, a file in the path is not a directory, the pathname does
not reach a file, or the current effective user is not the owner of the file or the system manager.

The value <perms> is a bit-string describing the permissions to set on the file. The include-file
sys/modes.h defines these constants that describe the meanings of each bit used by the function in
the bit-string:

S _IREAD 0x01
S_IWRITE 0x02
S_IEXEC 0x04
S_IOREAD 0x08
S_IOWRITE 0x10
S_IOEXEC 0x20
S_ISUID 0x40

C-6

chmod

S _TREAD grants reading permission to the owner, S_IWRITE grants writing permission to the
owner, and S_IEXEC grants searching permission to) the owner (if this is a directory; otherwise
S_IEXEC grants execution permission). S IOREAD grants reading permission to users other
than the owner of the file, S IOWRITE grants writing permission to others, and S_TOEXEC
grants searching permission to others if this is a directory, or execution permission if this is a file.
S_ISUID causes the effective user-ID to change to the owner of the file when the program in the
file is executed. The results of chmod are undefined if bits other than those defined above are set
in the bit-string <perms>.

ERRORS REPORTED

EACCES The current effective user is not the system manager or file owner
EMSDR could not follow the path to this file
ENOENT The pathname does not reach a file

ENOTDIR A part of the path is not a directory

SEE ALSO

System Call: chown(), fstat(), stat()

Command: dir, perms

4400 Series C Reference C-7

chown

chown
Change the owner-ID of a file.

SYNOPSIS

#include <errno.h>
int chown(path, uid)

char *path;
int uid;
Arguments

<path> The address of a character-string containing a pathname to the file whose owner-ID
you want to change

<uid> The user-ID to be the new owner-ID of the file

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code.

DESCRIPTION

The chown function changes the owner-ID of the file reached by the pathname in the character-
string referenced by <path> to the value <uid>. The owner-ID of a file is the user-ID of the user
that is the owner of the file. The chown function requires that the current effective user be the
system manager. Chown returns zero as its result if it successfully changes the owner-ID of the
specified file. Otherwise, it returns -1 with <errno> set to the system error code.

Chown fails if it could not follow the path, the path contains a file that is not a directory, the path
does not reach a file, or the current effective user is not the system manager.

ERRORS REPORTED

EACCES the current effective user is not the system manager
EMSDR could not follow the path to this file
ENOENT the pathname does not reach a file

ENOTDIR A part of the path is not a directory

C-8

chown

NOTES

The user-ID uid does not have to be in the system password file.

SEE ALSO

System Call: chmod(), fstat(), stat()

Command: dir, owner

4400 Series C Reference

C-9

chtim

chtim

Change the modification date and time of a file.

SYNOPSIS

#include <errno.h>

int chtim(path, time)
char *path;
long time;

Arguments

<path> The address of a character-string that contains a pathname to the file whose date and
time you want to to change

<time> The system-time value to set as the new date and time for the file

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

The chtim function changes the modification date and time of the file reached by the pathname in
the character-string referenced by <path> to the system-time value <time>. The chtim function
can not change the modification date and time of a file that is currently open by another task.
Chtim also expects the current effective user to be the system manager. The function returns
zero as its result if it successfully changes modification date and time of the specified file.
Otherwise, chtim returns -1 with <errno> set to the system error code.

The chtim function fails if it could not follow the path, the path contains a file that is not a
directory, the path does not reach a file, the file is currently open by another task, or the current
effective user is not the system-manager.

ERRORS REPORTED

EACCES The effective current user is not the system manager
EBSY The specified file is currently open by another task
EMSDR Could not follow the path to this file

ENOENT The pathname does not reach a file

ENOTDIR A part of the path is not a directory

chtim

NOTES

The chtim function does not demand that <time> be between the creation date of the file and the
current time-of-day.

The system represents time as the number of seconds that has elapsed since the epoch. The
system defines the epoch as 00:00 (midnight), January 1, 1980, Greenwich Mean Time.

Other functions which change a file’s modification date and time are chmod(), chown(), creat(),
link(), open(), and unlink().

SEE ALSO

System Call: chmod(), chown(), creat(), link(), open(), unlink()

Command: touch

4400 Series C Reference C-11

clearerr

clearerr

Clear the stream’s error-indicators.

SYNOPSIS

#include <stdio.h>
int clearerr (stream)
FILE *stream;

Arguments

<stream> The standard I/O stream

Returns
Undefined

DESCRIPTION

The clearerr function clears (resets) the error-indicator and the end-of-file indicator on the
standard I/O stream referenced by <stream>.

NOTES

The clearerr function is implemented as a macro. Macro side-effects are not possible since the
macro references its argument only once.

The ferror() function tests the error-indicator of a stream.
The feof() function tests the end-of-file indicator of a stream.

SEE ALSO

C Library: fdopen(), feof(), ferror(), fopen(), stderr, stdin, stdout

C-12

close

close

Close an open file.

SYNOPSIS

#include <errno.h>
int close(fildes)
int fildes;

Arguments

<fildes> A file descriptor for the file to close

Returns

Zero if successful, otherwise -1 with <errno> set to the system error code

DESCRIPTION

The close function closes the file referenced by the file descriptor <fildes>. The close function
returns zero as its result if it successfully closes the file, otherwise it returns -1 with <errno> set
to the system error code.

Close fails if <fildes> is out of range or does not reference an open file.

ERRORS REPORTED

EBADF The file descriptor does not reference an open file or the file is not open in the
proper mode.
EINVAL An argument to the function is invalid.

4400 Series C Reference C-13

close

NOTES

When a task terminates, the system automatically closes all files that the task has open.

SEE ALSO

C Library: fclose(), fopen()
System Call: creat(), dup(), dup2(), open(), pipe()

C-14

closedir

closedir

Close a directory-stream.

SYNOPSIS

#include <sys/dir.h>
void closedir (pdir)
DIR *pdir;

Arguments

<pdir> A reference to a directory-stream

Returns
Void

DESCRIPTION

The closedir function closes the directory-stream referenced by pdir. Closedir closes the
directory attached to the directory-stream and releases all of the resources allocated to that
directory stream.

NOTES

The include-file sys/dir.h contains definitions for the data types, structures, constants, and
functions needed to read directories.

SEE ALSO

C Library: opendir(), readdir(), rewinddir(), seekdir(), telldir()

4400 Series C Reference C-15

control_pty

control_pty

Control a pseudo-terminal channel

SYNOPSIS

#include <errno.h>

#include <sys/pty.h>

int control pty(fd, fcn, cval)
int f£d;
int fcn;
int cval;

Arguments

<fd> A file descriptor for master mode access of a pseudo-terminal
<fen> A function code

<cval> A control value

Returns

The current state of the pseudo-terminal if successful, otherwise -1 with <errno> set to the
system error code

DESCRIPTION

The control_pty function is used to control the behavior of a pseudo-terminal channel. All
functions return the state of the channel as described for the PTY_INQUIRY function.

The PTY_INQUIRY function is used to return the state of the channel. For this function, cval is
ignored. The value returned is a combination of bits which describe the state of the channel. The
bits are:

PTY_ PACKET MODE Reads on the master side return two bytes of status in
addition to any data written by the slave. If any slave data
is available, the status bytes are zero. If no data is present,

the status bytes are the same as those returned by
PTY_INQUIRY.

PTY_REMOTE_MODE If this bit is set, data written by the master is sent as is to the
slave side with no editing.

C-16

control_pty

PTY READ WAIT
PTY_HANDSHAKE MODE
PTY SLAVE HOLD

PTY_EOF
PTY _OUTPUT QUEUED

PTY_INPUT _QUEUED

If this bit is set, a read on the master side is blocked until
slave data is available.

If this bit is set, a write on the master side is not complete
until the slave consumes the data.

If this bit is set, the slave is prohibited from writing any
more data to the channel.

All slave accesses to the channel have been closed.

The slave side has written data to the channel that has not
yet been consumed by the master.

The master has written data to the slave side that has not yet
been consumed by the slave.

PTY _SET _MODE is used to change the control mode for the pseudo-terminal channel. The value
<cval> contains the new mode and should be some combination of the bits described in the
previous section. The new control mode is exactly what is in <cval> so to perform an
incremental change, the current value must be obtained using PTY _INQUIRY.

PTY FLUSH READ purges any data written by the master side to the slave input queue.

PTY FLUSH WRITE purges any data written by the slave side that has not yet been consumed

by the master side.

PTY_STOP_OUTPUT prevents the slave side from writing any more data to the master side.
This condition is reflected in the status bit PTY_SLAVE HOLD.

PTY START OUTPUT allows the slave side to continue writing data to the master side.

ERRORS REPORTED

EIO The file descriptor corresponds to slave mode access to the pseudo-terminal.

EINVAL An argument to the function is invalid

NOTES

The file descriptor must correspond to master mode access to the pseudo-terminal.

SEE ALSO

C Library: create_pty(), read()

4400 Series C Reference

cos

cos

Calculate the cosine of an angle.

SYNOPSIS

#include <math.h>
double cos(r)
double r;

Arguments

<r> The angle to use to compute the cosine

Returns

The cosine of the angle <r>

DESCRIPTION

The cos function calculates the cosine of the angle <r>. Cos returns that value as its result.

The cos function interprets the value <r> as an angle expressed in radians, and returns a result
between -1.0 and 1.0 inclusive.

SEE ALSO

C Library: acos(), sin(), tan()

C-18

cosh

cosh

Calculate the hyperbolic cosine of a value.

SYNOPSIS

#include <math.h>
double cosh (x)

double X;
Arguments
<x> The value to use to compute the hyperbolic cosine
Returns

The hyperbolic cosine of the argument <x>

DESCRIPTION

The cosh function calculates the hyperbolic cosine of the value <x>. The hyperbolic cosine of
<x> is defined as (exp(x) + exp(-x))/2. Cosh returns that value as its result.

The cosh function detects a range error if the magnitude of the hyperbolic cosine of x is larger
than can be represented by the data type double. If cosh detects a range error, it calls matherr(),
passing to it the address of a filled struct exception structure. Cosh sets the <zype> element of
the structure to OVERFLOW, <name> to the address of the character-string <cosh>, and
<argl>to <x>.

If matherr() returns 0, the function sets <errno> to ERANGE. The return value, which is
system-dependent, is given in the tables in Section 3. If matherr() returns something other than
0, the function returns the value retval found in the struct exception structure as its result.

SEE ALSO

C Library: exp(), matherr()

4400 Series C Reference C-19

creat

creat

Create a new file or truncate an existing file.

SYNOPSIS

#include <errno.h>
#include <sys/modes.h>
int creat (path, perms)

char *path;
int perms;
Arguments

<path> The address of a character-string that contains a pathname to the file you want to
create or truncate

<perms> A bit-string describing the access permissions to set on the created file

Returns

If successful, creat returns a file descriptor for the created or truncated file, otherwise creat
returns -1 with <errno> set to the system error code

DESCRIPTION

If no file is reached by the pathname in the character-string referenced by the argument <path>,
the creat function:

1. creates an empty file
2. assigns the current effective user-ID as the owner-ID of the file

3. assigns the access permissions to the file (described by anding the bit-string <perms> with
the ones-complement of the current file-creation mask)

4. links the specified pathname to the file

The creat function then opens the file for writing access, ignoring the access permissions of the
file, and sets the current file position to the beginning of the file.

If the pathname in the character-string referenced by <path> reaches a file, creat truncates the
file to a length of zero and opens the file for writing access, setting the current file position to the
beginning of the file. It does not change the access permissions or owner-ID of the file.

C-20

creat

If creat succeeds, it returns a file descriptor for the opened file. Otherwise, creat returns -1 with
<errno> set to the system error code. Creat fails if it could not follow the path, the path contains
a file that is not a directory, no more files can be created on the device to contain the file, or no
more files can be opened by the task. Creat also fails if the pathname does not reach a file and
the directory reached by the path does not grant the current effective user writing permission, or
the pathname reaches a file that does not grant the current effective user writing permission.

<Perms> is a bit-string that describes the permissions to set on the file. The include-file
sys/modes.h defines constants that describe the meanings of each bit used by creat in the bit-
string. These constants are:

S IREAD 0X01
S_IWRITE 0X02
S_IEXEC 0x04
S_TOREAD 0X08
S_IOWRITE 0X10
S_IOEXEC 0x20
S_ISUID 0X40

S_IREAD grants read permission to the owner of the file, S IWRITE grants write permission to
the owner, and S_IEXEC grants search permission to the owner if a directory, or S_IEXEC
grants execution permission if a file. S_IOREAD grants read permission to users other than the
owner of the file, S_ IOWRITE grants write permission to others, and S IOEXEC grants search
permission to others if a directory, or S_ IOEXEC grants execution permission if a file.
S_ISUID causes the effective user-ID to change to the owner of the file when the program in the
file is executed. The results of creat are undefined if bits other than those defined above are set
in <perms>.

ERRORS REPORTED

EACCES The existing file or the directory to contain the link to the new file does not
grant the user writing permission

EMFILE the maximum number of files are open

EMSDR could not follow the path to this file

ENOSPC The are no available file description nodes on the device that was to contain
the specified file

ENOTDIR A part of the path is not a directory

4400 Series C Reference C-21

creat

NOTES

The creat function opens the created file for writing, even if the access permissions assigned to
the file do not grant <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>