ST R AT

SN
rEavals

2.0 INSTRUCTION SET
2.1 9900 CPU Overview

2.1.1 Introduction

The 9900 CPU is not the only 16-bit microprocessor, but it
ranks as one of the most powerful ones. The architecture of
the 9900 is unlike that of most other microprocessors (8 or
16 bits). It has an architecture e¢lose to that of a
minicomputer. In fact, the 9900 instruction set is identical
to that of the Texas Instruments 990 minicomputer. This
section provides an overview of - the 9900 CPU from a
programming viewpoint. Combined with the individual
instruction descriptions in section 2.2 you have all the
tools to begin writing code.

As already mentioned, the 9900 CPU is a 16-bit computer. 1Its
architecture is vastly different from the simpler 8-bit

computers. One difference is that the working registers are
contained in memory. The only registers within the processor
itself are: the program counter, status register, and a
pointer to the working registers in memory. The overall
processor architecture is shown in Figure 2.1. The program
counter (PC) contains the address of the current instruction.
The workspace pointer (WP) is a 16-bit register which holds

the address of the first working register in memory. The
sixteen general registers R0O-R16, called workspace registers,
are contained in the sixteen sequential memory locations
addressed by the WP.

For easy reference, the entire 9900 dinstruction set 1is
described in detail in section 2.2 and summarized at the end
of that section.

Computations in the 9900 CPU are performed between the
registers, between the registers and memory, or between two
memory locations. The memory of the 9900 is addressed by
byte or word. The processor always references a word because
the least significant address bit is not available as an
external pin on the processor. Internally, however, you can
address either words (two consecutive bytes, starting with an
even byte), or bytes. All instructions are stored as one,
two, or three consecutive words. The addressing modes
available in the 9900 CPU are:

(1) immediate - The operand is contained in the word
following the instruction. For example,
LI R1,>1234 "t 3 load R1 with 1234 (hex)

will load register R1 with the value 1234 hexadecimal.



will load R2 with the memory location addressed by the
contents of Rl plus 10.

(6) relative - Relative addressing 1s used to obtain
the destination address for most of the 9900°s jump
instructions. To obtain the final destination address,
the second byte of the instruction is multiplied by two
and added to the address of the next sequential
instruction. The addition 1is performed using two’s
complement arithmetic. This allows the programmer to
transfer control to an address within the range of -254
to +256 of the present 1instruction. Since all
instructions are stored as words (two bytes), you can
transfer control to a word within the range of =127 to
+128 of the present instruction. An example of relative
addressing is:

JMP +10

This instruction will transfer control to the address of
the next sequential instruction plus 20 (10*2). If the
jump were at >1200, this would transfer control to
address >1216.

All of the op-codes are one word 1long. If immediate,
indirect, or indexed addressing is used, the constant 1is
stored in the word(s) following the op-code. The constant
for the source operand is stored in the first word following
the op-code and the constant for the destination operand is

stored in the next available word. This means that 9900
instructions are one to three words 1long, or two to six

bytes. The following six byter will transfer the contents of
variable VAR1 to VAR2:

MOV @VAR1,@VAR2 5 VAR2=VAR1



Figure 2.1 Processor Architecture

CPU

PC

ST

R

RO

R1

R15

MEMORY




2.1.2 Subroutine Linkage

Unlike many machines, the 9900 does not use a stack to hold
subroutine return addresses. Instead, the processor saves
the return address in workspace register R1l. For example,
the following instruction will save the address of BACK in
R11l and will transfer control to ROUT:

BL @ROUT 3 call ROUT
BACK .

To return from the subroutine, all you need to do is jump to
the contents of R11 (B #*R1l1l).

If one subroutine must call upon another, it must save the
contents of R11l prior to that c¢all, since the new return
address will be placed in R11 - thus destroying the old
return address. There are several different ways to approach
this problem. The first, and simplest, method is to save the
return address in one of the general registers. For example,
if ROUT 4is called as indicated above and must then call
ROUT2, the sequence below can be used:

MOV RI11,R1 ;" save return address
BL @ROUT 2 3 call next subroutine

B *R1 ; exit

If you have only two or three levels of subroutine, this may
be the most efficient approach. However, in larger systems
there are usually too many levels of subroutines to store all
the return addresses in the registers. In that case, the
return address can be saved in RAM. One way to do that is:

MOV R11,@TEMP 3 save return

To exit the subroutine, the following two instructions are
used:

MOV @TEMP,R11 ; get return
B *R11 ; exit

The major disadvantage of this technique is that four words
of instruction memory are required for the exit sequence, not
to mention the word used to hold the return address. If the
program is always to be run in RAM (never put imn PROM/ROM
storage), an alternate entry/exit sequence is:




MOV R11,QEX+2 : save return in exit branch

EX B @o ; exit

This time we saved the return address in the second word of
the branch instruction, thus eliminating the move. The
disadvantage here is that the program modifies itself. This
means that the program can never be placed in ROM. Most
microprocessor programs are eventually stored in ROM so this
.sequence couldn’t be used. However, 1if you are writing a
quick and dirty routine, to be runm. only from RAM, this
approach works well.

There is yet another way to save the return address. We can
put it on a stack. What stack, you say? Because of the
flexible modes of addressing, creation of a software stack is
a very simple task. During the initial start of the program,
we load one of the general registers, let’s say R15, with the
address of the first location of the stack. Then, an entry
can be placed on the stack with the following move:

MOV R11,*R15+ s stack R1l

The stack pointer 1is 1incremented after the store, so the
stack builds up instead of down as in other micros. To
retrieve an entry from the stack, the following instructions
are used: '

DECT R15 5 R15=R15-2
MOV *R15,R11 5 get the top entry

The stack could also be used to save some of the other
general registers that would be used by the subroutine.

If a subroutine requires a number of registers, another
method of call 1is the Branch and Link Workspace Pointer
(BLWP) . This dinstruction.is also a subroutine call, but
before performing the call it resets the workspace pointer.

This means that the subroutine has a whole new set of
registers to work with - without having to store the o0ld
ones! This instruction is very valuable, but should be used
with discretion because it requires more memory. More memory
for the call and sixteen words more memory for the new set of

registers.
2.1.3 Passing Parameters

There are many different methods for passing data to
subroutines - in the registers, following the subroutine



call, or addresses following the subroutine call. Since the
return address of the routine 1is already in one of the
general registers (R11), passing parameters or their
addresses following the call is especially useful with the
9900. For example, consider the floating point subroutines
called FMUL and FADD which are the multiply and add floating
point routines, respectively. Each one requires three
parameters, the address of which could be placed after. the
subroutine call. If this approach is used with the 9900, the
following sequence 1s used to calculate X1=X2*X3+X4:

BL  @FMUL ; TMP=X2%X3
DATA X2

DATA X3

DATA TMP

BL  @FADD ; X1=TMP+X4
DATA TMP

DATA X4

DATA X1

Before we can manipulate the parameters, it may be necessary
to place them in the registers. This is easily accomplished
by the following:

MOV *R11+4,R1 3 Rl=address of param 1
MOV *R11+,R2 ; R2=address of param 2
MOV *R11+,R3 35 R3=address of param 3

Notice how the indirect with auto increment addressing mode
avoids the need for intermediate increments.

2.1.4 Returning Results

Many subroutines must return results to the calling program.
The easiest way is to return the result in one of the general
registers. This works fine if the subroutine is called via a
BL instruction. On the other hand, if a BLWP (or XOP - which
will be discussed later) is used, the calling routine uses a
different set of registers than the subroutine. Therefore,
i1f we place the results in the registers, they will be lost
when control is returned to the calling program since the
workspace pointer will be reset. Since the 9900°s registers
are located in memory, there is a simple way around this
problem. Let’s assume that we want to returm a value in RO
and Rl - in the o0ld workspace. When the BLWP 1is executed,
the old workspace pointer is saved in R13. Using this fact,
we can create a sequence to store values in the previous
workspace:

MOV RO,*R13 $ old RO=new RO
MOV R1,@2(R13) s old Rl=new R1



As you see, the o0ld register Rl 1s the same as memory
location R1342*]1. That location may be addressed by @2(R13).
RO is a special case since @0(R13) is the same as *R13.

2.1.5 Byte Operations

Although the 9900 is a 16-bit processor, it can still handle
byte operations. There are a few aspects of the byte
operations that are initially confusing. First, whenever, a
register is addressed in the byte mode, the left byte of the
register 1s used (not the right byte). Second, whenever the
processor references memory it reads a full word. The proper
byte of that word is selected within the processor. This
means that it 1is not necessary for the processor to supply
the external memory addressing circuitry with the 1least
significant address bit - so it does not. If you examine the
hardware carefully you will note that there are only fifteen
address bitse. The missing bit d1is the least significant
address Dbit. It 1is wunnecessary because the processor
performs the byte selection.

Recognizing the special byte addressing operation, you will
quickly discover that the 9900 can cope with byte operands
nearly as well as it can with full word operands. To add the
contents of byte Bl to B2 we can use: '

AB @Bl,@B2 ; B2=B24B1
2.1.6 Extended Operations

The 9900 offers a unique instruction, Extended Operation
(X0P). The XOP execution is similar to the BLWP, but the
target address is determined by the XOP transfer vectors.
There are sixteen possible XO0Ps. During the XOP call, the
source operand is placed in R1ll of the new workspace. For
example, the following:

XOP @X,15

will perform an extended operation 15 and will place the
address of variable X in the new R1l1l. The workspace pointer
and address for extended operation 15 is in memory locations
7C=-7F. For other extended operations, the extended operation
transfer vector is stored in location 40+4*I through 43+4%*I.

The monitor uses three extended operations. Refer to the
monitor description details of the monitor X0P’S.

2.1.7 Multiply/Divide



One of the truly unique operations offered in the 9900 is the
hardware multiply and divide. Notice, however, that they
require unsigned operanmds. This is different than the other
instructions, which use two’s complement operands. We can
easily form a signed two’s complement multiply. If X1 and X2
are two arbitrary numbers, then X1%*X2’s sign 1is the
exclusive-or of the signs of X1 and X2. Using this fact we
can devise the routine to perform signed multiply. . The
sequence below will calculate X3=X1%*X2.

Assume: X1 is @>200, X2 1is @>202, X3 1is @>204

MOV @>200,R1 ;5 R1=X1
MOV @>202,R3 ; R3=X2 :
MOV R1,R2 ;3 R2(SIGN)=SIGN OF X1*X2
XOR R3,R2 :
ABS R1 ; GET RID OF SIGNS
ABS R3 - :
MOV R2,R2 3 TEST SIGN OF ANSWER
MPY R3,R1 ; (R1,R2)=ANSWER
JGT OK s CORRECT THE SIGN
NEG R2 H

»

OK MOV R2,@>204 SAVE ANSWER

The multiply operation produces a 32-bit result (in R1l, R2
for the example above), but does not affect any of the
condition bits (thats why the test can be performed before
the multiply). After the multiply, the result can be
converted back to two’s complement. Since you will often use
the result for some further add/subtract operation, only the
lower word of the product was converted. If you need to
convert both words, its a bit more difficult. The following
sequence will not work:

NEG R2
NEG R3

Why not? if R2=1 and R3=1, then the two’s complement of
(R2,R3) is >FEFF. However, the two’s complement of 1 is FF.
80 you see that the above sequence would yield >FFFF instead
of the required >FEFF. The solution is to take the one’s
complement of R2 except in the case where R3=0. The required
code is:

INV R2 3 R2=one’s comp. of R2

NEG R3 5 R3=R3

JNE ZRO ; 1f R3=0, adjust R2

INC R2 3 R2=two’s comp. of R2
ZRO .



A similar approach can be used to construct a signed divide.

The sign of X1/X2 is again the exclusive-or of X1,X2. If X1
and X2 are both 16-bit two’s complement variables, then the

routine below will calculate X2=X1/X2.

Assume: X1 is @>200, X2 is @>202

MOV @>200,R2 s R2=X1

MOV @>202,R3 ;s R3=X2

MOV R2,R4 s R4(SIGN)=SIGN OF X1/X2
XOR R3,R4 3

ABS R2 3 GET RID OF SIGNS

ABS R3 3

CLR R1 3 CLEAR UPPER BITS OF NUMERATOR
DIV R3,R1 ; R1=(R1,R2)/R3

MOV R4,R4 5 CORRECT SIGN

JGT OK 5

NEG R1

0K MOV R1,@>202 SAVE ANSWER

e

As you may have observed 1in that sequence, the divide
operation divides a 32-bit operand by a 16-bit operand.
Since we used only a 16-bit operand, the operand is placed in
the lower register of the pair of registers and the upper
register of the pair is cleared. If we want to use the full
divide capability, the routine must be recoded as:

Assume: X1 is @>200 to >203 and X2 is @>204 to >207

MOV @>200,R1 ; (R1,R2)=X1
MOV @>202,R2 :
MOV @>204,R3 ;s R3=X2
MOV R1,R4 ; R4(SIGN)=SIGN OF X1/X2
XOR R3,R4 H
ABS R3 3 GET RID OF SIGN OF X2
ABS R1 3 GET RID OF SIGN OF Xl
JGT OK1 ; IF X1<0, INVERT LOWER HALF
NEG R2 3
JEQ OKl1 5 IF R2 NOT ZERO, ADJUST R1
DEC R1 £ 3
0Kl DIV R3,Rl1 ; R1=X1/X2
MOV R4,R4 ;3 CORRECT THE SIGN
JGT OK2 3
NEG R1 ;
]

OK2 MOV R1,@>204 X2=X1/X2

The multiply is restricted to integer operands, but that does

2.0-10



N

not mean you cannot use it to perform fractiomal operations.
The approach for fractional multiplication is called scalinge.
Lets take a sample case. If the decimal point of X1 1is at
the extreme right and the decimal point of X2 is at the
extreme left, then the decimal point of X1#*X2 is between the
two registers. Using this approach, we can multiply ABC by
«75:

CON DATA >C000 ;s constant of .75 (decimal at left)

-

MOV @ABC,R1 3 get operand
MPY @CON,R1 ; Rl=integer part, R2=fraction part

In the beginning of this discussion, We indicated that it
was unusual that the multiply was unsigned. Yet, we can turn
this 1into an asset. Consider the problem of creating a
double precision multiply (32-bits times 32-bits). If we
consider unsigned numbers only (signs can be handled as in
the previous examples), then a 32-bit multiply (which
produces a 64-bit result) can be formed using four single
precision multiplies. Figure 2.2 illustrates the concept.
We use what is commonly called "cross multiply" techniques.
Before presenting the double precision multiply, lets look at
the double precision add which is an integral part of the
multiply routine. To calculate (R1,R2)=(R1,R2)+(R3,R4) we
can use the following (all wvalues are assumed to be
unsigned): :

A R4,R2 s add lower half
JNC L1 3 1f Cy, correct upper
INC R1

L1 A R3,R1 3 add upper half

Now, using this same concept for the subproduct additions, we
can create the 32-bit multiply routine:

2.0-11

L ilsnu =



0Kl

0K2

0K3

0K4

OK5

MOV R1,R5
MPY R3,R5
MOV R2,R7
MPY R4,R7
MOV R1,R9
MPY R4,R9
MPY R2,R3
CLR RO

A R3,R7
JNC OK1
INC RO

A R10,R7
JNC OK2
INC RO
CLR R1

A R2,R6
JNC OK3
INC R1

A R9,R6
JNC OK4
INC R1

A RO,R6
JNC OK5
INC R1

A R1,R5

M e NP W We WS W WS WS Ue U WE W WE VS We WE W WS WE We W ws WE We

(R5,R6)=R1%*R3
(R7,R8)=R2%*R4
(R9,R10)=R1*R4

(R3,R4)=R2*R3
RO=CARRY ACCUMULATOR

R1=CARRY ACCUMULATOR

ADD FIRST CARRY

ADD SECOND CARRY

2.0-12

e e el )



Figure 2.2 32-Bit Multiply Technique

bo = - -

R2 | R3 R4

R5 IR6 | |[R9 RIO| [R2 iR3 R7 iR8

C C
R5 'R6 :R7 R8




2.1.8 ARITHMETIC

The advanced instruction set of the 9900 CPU, opens up a new
microprocessor application area - signal processing. Because
of the mathematics 1involved, most signal processing tasks
cannot be done with the off-the-shelf microprocessor. The
9900 certainly cannot handle all of the signal processing
applications, but it can tackle a few of them. -

Many signal processing algorithms use the SIN, COS, or other
trigonometric functions. An algorithm to compute trig
functions - 1deally sulited to the 9900, is the CORDIC
(Coordinate Rotation Digital Computer) algorithm. Although
you may not recognize 1it, it is the same algorithm used in
many hand calculators. * We will see later why the 9900 is
ideally suited for the CORDIC procedure.

The CORDIC algorithm relies on a few very simple mathematical
facts. First, any given angle (we will restrict the angle
to 0-90 degree) can be represented as a sum/difference of a
set of base angles. Mathematically this can be expressed:

A=SUM(d(i)*a(1i)), where d(i)=+/-1 a(i)=base angle

This identity is certainly not true for any random delection
of base angles, but you can intuitively sees that 90 degrees,
45 degrees, 22.5 degree, s+ is one possible base set. The
second cornerstone of this algorithm is a pair of
.trigonometric identities:

SIN(a+b)=(SIN(a)+TAN(b)COS(a))COS(b)
COS(a+b)=(COS(a)—TAN(b)SIN(a))COS(b)

Now, if we have a given angle represented as a sum/difference
of a set of base angles, which are as yet unspecified, then
we can devise a simple process for calulating the SIN and COS
of that angle (called A):

X(i)=A
Y(i)=1
X(1)=X(1-1)+TAN(d(i)a(i))*¥Y(i-1)
Y(1)=Y(i-1)-TAN(d(i)a(i))*X(i-1)

After executing the above procedure, we don’t really have the
SIN and COS. Instead, we have X(n) = R(n)SIN(A) and Y(n) =
R(n)COS(A), where the constant R(n) is 1/(C0S(d(i)a(i))* ...
*C0oS(d(1i)a(i)). So far, we have nothing to cheer about
because our algorithm involves many more multiplies, tham a
simple Taylor series. But, the plot thickens. If we define
the base angles as:

2. 0-14



a(i)=ArcTan(.5*%*(i-1))
then
TAN(a(i))=(.5%*%(i-1))

This means that all of the multiply operations can be
reduced to a right shift. We must, of course, prove that all
angles can be represented as a sum of our base angles or the
whole algorithm collapses. I will not do so here, but it can
be done rather easily. Now, 1if we use the base angles
defined above, the algorithm may be restated as:

V(i)=-A
X(1)=0

Y(1)=1/R(1)=.60725
X(1)=X(1i-1)-SIGN(V(i-1))*Y(i-1)/2%*(i-1)
Y(1)=Y(i-1)+SIGN(V(i-1))*X(i-1)/2%*(i-1)
V(1)=V(i-1)-SIGN(V(1i-1))*ATAN(Ll/(2%*(i-1))

If we store the ArcTan values in a table, themn this
algorithm requires only shift, add, and subtract. The shift
operation requires a variable shift constant. This is why
the algorithm fits nicely in the 9900. 1If the shift count is
stored in RO, the variable shift can be performed by a single
9900 instruction:

SRA RI1,RO ; shift R1 right by (RO)

Since the SIN and COS are fractional wvalues, we must scale
the input to our routine. To keep matters simple, we scale
the angle so that Rl=angle*256. This provides B8-bits of
integer and 8-bits of fraction. We scale the X,Y values so
that X=SIN#*32768, and Y=C0S5*32768. This provides 16-bits of
signed fraction. The entire algorithm is shown in Figure
2.3. The input angle is in R1, and the outputs are in R2 and
R3. This subroutine calculates both the SIN and COS. The
TAN can be calculated by one additional divide. As you see,
this algorithm is a very fast and efficient way to obtain the

trigonometric wvalues.

2- 0‘-15



Figure 2.

CLR

3

R2

LI R3,19898

CLR
MOV
CLR
CLR
NEG
LOOP MOV
JLT

R4
R3,R5
RO

R6

R1
R1,R1
LESS

LESS

CONT

TAB

S R5,R2

A R4,R3

S @TAB(R6),R1
JMP CONT

A R5,R2

S R4,R3

A QTAB(R6),R1
INC RO

INCT R6

MOV R2,R4

SRA R4, RO
MOV R3,R5

SRA R5,R0

CI RO,12

JNE LOOP

B *R11

DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

11520
6800
3593
1824
916
458
229
115
57
29
14

7

Cordic Routine

ME WA W W WS W W W WA W WE W W We WE WE WE B W We WS

e W we

e we we

Ve Wwe W WE Y W

X=0
Y=.6072526%(2%*%15)
X0=0

YO=Y

SHIFT=0

COUNT=0

Vi=-V

TEST SIGN OF ANGLE
JUMP IF MINUS
C=C-Y/2%*T
Y=Y+X/2%*]
V=V=ATAN(1/2%%1)

X=X+Y /2%*1
Y=Y-X/2%*]
V=V+ATAN(1/2%%T)
UPDATE SHIFT COUNT
UPDATE ANGLE INDEX
R4=X/2%%T

R5=Y [/2%*T
END?

RETURN TO CALLER

ATAN(1l/1)*256
ATAN(1/2)*256
ATAN(1/4) %256
ATAN(1/8)*256
ATAN(1/16)*256
ATAN(1/32)%256
ATAN(1/64)*256
ATAN(1/128)#%256
ATAN(1/256)*256
ATAN(1/512)*%256
ATAN(1/1024)*256
ATAN(1/2048)*256

2.0-16



2.2 Instructions and Addressing

2.2.1 Workspace Register Addressing

The contents of the indicated workspace register 1is the
operand. (e.g. R3, R7)

2.2.2 Workspace Register Indirect Addressing

The contents of the 1ndicated workspace register
contains the memory address of the operand. (e.g.

2.2.3 Indexed Addressing

The contents of the indicated workspace register (RO is
-not allowed as- an index register) are added to the
address enclosed in the second command word. (e.g.

@2(r1),@6(R4))
2.2.4 Direct Addressing

The word following the instruction contains the memory
address of the operand. (e.g. @6, @123)

2.2.5 Workspace Register Indirect with Auto Increment
Addressing

The contents of the indicated workspace register contain
the memory address of the operand. The workspace
.register 1is automatically *incremented after the access
(plus 2 for word operations and plus 1 for byte
operations). (e.g. *Rl+,*RO+,*14+)

2.2.6 Immediate Addressing

The word following the instruction contains the operand.
(e.g. 26)

2.2.7 Relative Addressing
The 8-bit displacement of the instruction is added to

the updated program counter in jump instructions or to
the base address in single-bit CRU instructions.

2.0-17

.



2.2.8 Status Register

The CPU status register holds the condition bits as
follows:

- —————— ————————————— ———— T ————————————

| | | | | | | ] |
| LGT | AGT | EQ | ¢ | ov | OP | N/A |Interrupt |
|

LGT - Logical Greater Than
AGT - Arithmetic Greater Than
EQ - Equal

C - Carry

OV - Overflow

P - 0dd Parity

2.2.9 Instruction Description

The following shorthand notation is used to describe the
9900 CPU instruction set.

S = Gemneral address for the source operand. Any
addressing mode is acceptable.

D - General address for the destination operand. Any
addressing mode is acceptable.

IOP - Immediate operand

0 - Workspace register

DISP - Relative displacement
WP - Workspace pointer

PC

Program counter
ST - Status Register
() - Contents of address or register

—==> = Replaces

2.0-18



INSTRUCTION:

INST FORMAT:

HEX.

STAT

OPCODE:

CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

ADD

A 5,D

A000

LGT ,AGT,EQ,C,O0V

The source operand is added to the
destination operand. The sum replaces the
destination operand.

($)+(D)=--=>(D)

Use to add 16 bit numbers from:

Memory to Memory A @SCALE,@TABLE
Register to Register A R10,R9

Memory to Register A @PRIME,R6
Register to Memory A R14,Q@SUM

20 0"19

e M



INSTRUCTION:

INST FORMAT:

HEX.

STAT

OPCODE:

CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

ADD BYTES

AB S,D

B0O0O

LGT, AGT,EQ,C,0V,OP

Add two 8-bit bytes. The 8-bit source
operand is added to the 8-bit destination
operand. If either address is a workspace
register, then the left-most eight bits of
that workspace register will be used.

(S )+ (B )~rwa (D)

Used to add signed 8-bit numbers from:

Memory to Memory AB @X, @Y
Register to Memory AB R1,QY
Memory to Register AB @X,R1

Register to Register AB R1,R2

2.0-20



INSTRUCTION: ABSOLUTE VALUE
INST FORMAT: ABS S

HEX. OPCODE: 0740

STAT CHANGE: LGT,AGT,EQ,C,O0V

DESCRIPTION: Compute the absolute value of the source
: operand and replace the source operand
with that result.

INST RESULT: Absolute value of (S)--->(S)

APPL. NOTES: Used to compute the absolute wvalue of a
16-bit number.

ABS @LISTA
ABS @LISTB

BEFORE AFTER
LISTA FFF4 000C
LISTB 000C 000C

2. 0—21



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

ADD IMMEDIA&E
AI W,IO0P

0220

LGT,AGT, EQ,C, 0V

Add the immediate value to the specified
workspace register.

(W)+I0OP-—=>(W)
Add a constant to a workspace register.

AI R4,100 Add 100 to register R4
AI R11,10 Add ten to register RI11

2.0-22



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

AND IMHEDIA&E
ANDI W,IOP
0240

LGT, AGT, EQ

Perform a bit-by-bit logical AND operation
between the workspace register and the
immediate operand. Place the result in the
workspace register. '

(W) AND I0P--->(W)
Use to isolate certain bits of a workspace

register.

ANDI 6,>FO0O0E

Before: (R6)=>9877 1001 1000 0111 0111
Immed. Operand=>FO00E 1111 0000 0000 1110
After: (R6)=>9006 1001 0000 0000 0110

2. 0"23



INSTRUCTION:

INST FORMAT:

HEX.

OPCODE:

STAT CHANGE:

DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

UNCONDITIONAL BRANCH

B S

0440

None

Replace PC with the source address.
Ef fectively, transfers control to the
source address.

S===>(PC)

This is the most flexible jump and can be
used to transfer control to any location in
memory. If the jump is out of range (+127,
-128 words) for a relative jump
instruction, use B.

B @107 will cause PC to be set to 107

2- 0-24

A




INSTRUCTION:

INST FORMAT:

HEX.

OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

BRANCH AND LINK TO SUBROUTINE
BL S
0680
None

Place source address 1n PC and place the
address of the instruction following the BL
instruction in workspace register Rll.

(PC)=-==>(R11)
§=--=>(PC)

Use to transfer control to a subroutine.
Return from the subroutine is accomplished
with a branch indirect through register 1ll.

BL @SUB ———=————e————— > SUB .

= D T —— B *R11

2-0-25



INSTRUCTION:

INST FORMAT:

HEX.

STAT CHANGE:

OPCODE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

BRANCH AND LOAD WORKSPACE POINTER

BLWP S

0400
None

Place source operand into WP and the word
following it into the PC. Place previous
contents of WP into R13 of the new
workspace, PC(address immediately following
BLWP) into the new R1l4 and ST into the new
R15.

(§)===>(WP)
(S42)--=->(PC)
(original WP)--->(R13)
(original PC)--->(R14)
(original ST)--->(R15)

Use to call a subroutine and change the
workspace environment. The subroutine must
return via RTWP command.

BLWP R4 Place (R4) in WP, (R5) in PC
BLWP @SBR WP=(SBR), PC=(SBR+2)

The calling routine’s registers can be
accessed using indexed addressing since R13
is the o0ld workspace pointer. For example,
*R13 1is the calling routine RO, @8(R13) is
the calling R4, etc.

2. 0-26

R |



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

COMPARE

c s,D

8000

LGT,AGT, EQ

Compare the contents of the source operand
with the contents of the destination
operand and set/reset designated status
register bits.

Status register bits set/reset after
comparison.

Use to compare 16-bit numbers from:

Memory to Memory C @TOP, @LAST
Register to Register € R1,R6
Memory to Register C @BOT,R5
Register to Memory C R7,@11

2.0-27



PO BT g

Lo

INSTRUCTION:

INST

HEX.

FORMAT:

OPCODE:

STAT CHANGE:

DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

COMPARE BYTES

CB S,D
9000
LGT,AGT,EQ, OP

Compare the contents of the source operand
byte with the contents of the destination
operand byte and set/reset the designated
status register bits.

Status- ~Register Dbits set/reset - after
comparison.

Use to compare 8-bit numbers. If a
workspace register is used for S or D, the
left-most 8-bits will be used.

CB R1,R2 Compare R1l(byte) to R2(byte)

2-0-28

SET e PaRaT



viihaoads o

INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE :

DESCRIPTION:

APPL.

~-ENST*RESULT:

NOTES:

e e e et it it ettt i A

COMPARE IMMﬁDIATE
CI W,IO0P

0280

LGT,AGT, EQ

Compare the contents of the specified
register with the immediate operand and
set/reset the designated status register
bits.

status "~ Tegister - bits set/reset - after
comparison

Compare the contents of workspace register

.with some known value and set status

register bits accordingly.

CI R2,>73 Compare register R2 to >73

CI R3,0 Compare register R3 to zero.
(A more efficient way is:
MOV R3,R3)

2.0*29

s & o e



INSTRUCTION:
INST FORMAT:
HEX. OPCODE:
STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

CLEAR
CLR S
04CO
Nomne

Replace source operand with a full 16-bit
word of zeroes.

0===>(S)
Use to zero workspace registers or memory

locations.

CLR R5 Clear register R5

VCLR @suM Clear location SUM

LI R1,X Clear (X) to (X+10)
LooP CLR *R1+

CI R1,X+12

JL LOOP

2.0-30



|

INSTRUCTION: COMPARE ONES CORRESPONDING
INST FORMAT: COC S,W

HEX. OPCODE: 2000
STAT CHANGE: EQ

DESCRIPTION: When all ones inm the source operand have a
corresponding one in .the destinetion
workspace register, set the equal bit in
the status register.

INST RESULT: EQ status bit is set/reset.

APPL. NOTES: Use to check 1if a bit or bits din a
destination workspace register are set to
.onee. Bits correspond to the one bits in
‘the source operand. " If corresponding bits
- in destination are also set, the equal bit
in Status Register is also set.

As sume TEST=C102=1100 0001 0000 0010
R8=E306=1110 0011 0000 0110

Then COC @TEST,RS8

Every one bit in. TEST has a corresponding
one bit din register RS8. Therefore the
equal status bit is set.

MASK DATA 8000
COC @MASK,RI1 Is sign in R1 set?
JEQ ADD If so, jump to ADD

2- 0"'31



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

-DESCRIPTION:

+INST RESULT:

APPL. NOTES:

B

COMPARE ZEROES CORRESPONDING

CZC S,W

2400

EQ

When the bits in the destination workspace -

register corresponding to the pne bits in

the source operand are all equal to a logic

zero, set equal status bit. B ESE Rid,

.8et/reset status register equal bit. 3 rzz:3z2r egu

Use to test single/multiple bits within a .
workspace register.

Assume TEST=C102=1100 0001 0000 0610 ..... ... . cuwa
R8=2201=0010 0010 0000 0001

Then CZC @TEST,R8

Every logic one bit in TEST correspomds to
a logic zero in register RS8. Therefore, Sl
the equal status bit is set.

2-0_32



INSTRUCTION:
INST FORMAT:
BHEX. OPCODE:
STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

DECREMENT BY ONE

DEC S

0600

LET L ABT RO, C, 0V

Subtract one from the 16-bit source
operand.

(S)=1=-==>(S)

Used for indexing or controlling loops.

DEC @TEC TEC=TEC-1
JNE LOOP Jump if TEC not zero

2- 0-33

|



INSTRUCTION: DECREMENT BY TWO

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

DECT S

0640

LGT, AGT,EQ,

c,oVv

Subtract two from the 16=bit source

operand.

(§)=2===>(8)

Useful for
arrayse.

DECT @COUNT
DECT R10

counting and indexing full word

Subtract two from COUNT
Subtract two from register 10

2. 0-34



INSTRUCTION:

INST

HEX.

FORMAT:

OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

DIVIDE
DIV S,W
3co00

ov

Divide the destination operand (a 32-bit
unsigned integer) by the sScurce operand (a
16-bit wunsigned integer) . using dinteger
arithmetic and place the quotient in the
destination operand and the remainder in
the second word of the destination operand.
If the  '"-“quotient exceeds 16-bits,~ the
overflow is set.

(W,W+1)/(S)===>(W) quotient;
(W+1) remainder

Use divide for integer division (unsigned).

DIV R3,R4 Divide R4,R5 by (R3)
DIV @SUM,2 Divide R2,R3 by (SUM)

2.0-35

RS ——

1 Amivg s



INSTRUCTION: IDLE COMPUTER

INST FORMAT: IDLE

HEX. OPCODE: 0340

STAT CHANGE: None

DESCRIPTION: Place the computer 1in an IDLE state.
INST RESULT: Computer is IDLE.

A A ..APPL- NOTES: Used. to- halt the prOCESBOI’-'and -wait for.anm: v.ecssr. cue wass
interrupt.

- ' ' 2.0-36



e e e it i bt il i i it i Sl

INSTRUCTION: INCREMENT BY ONE
INST FORMAT: INC S
HEX. OPCODE: 0580
STAT CHANGE: LGT,AGT,EQ,C,O0V
DESCRIPTION: Add one to the 16-bit source operand.
INST RESULT: (S)+1---=>(S)
sd Aweee iAPPLe ' NOTES: Useful "for ‘cbntrolling byte addressing of Fa® aid Y

an index.

INC R6 R6=R6+1
INC @T(R1) increment table location
selected by RI1

2- 0-37



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

A Ao o APPL - NOTES ¢

INCREMENT BY TWO

INCT S

05Cco0
LGT, AGT,EQ,C,0V
Add two to the

(S)+2=-==>(5)

an index.

2- 0"'38

16-bit

source operande..

‘Useful '“for -‘controlling word- addressing of

1%

144
(B X
13
i

|



INSTRUCTION:
- INST FORMAT:
HEX. OPCODE:
STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

b e et i i bl

INVERT

INV §

0540

LGT, AGT, EQ

The 16-bit source operand is replaced with
its one’s complement.

One“s complement of (S)-==>(S)

Use this operation to "£lip" the bits in

some memory location or register.
INV R2 Invert location (SUM)
INV *R3 Invert location in register R3

2. 0-39



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

*DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

JUMP EQUAL

JEQ DISP

1300

None

When the equal .status bit 1is set, the
signed displacement is added to the PC.

(PC)+(displacement)--->PC (EQ=1)
(PC)+2--=>PC (EQ=0)

Used to transfer if equal

C @X,@y
JEQ YES go to YES if (X)=(Y)"

2.0-40



INSTRUCTION:
INST FORMAT:
HEX. OPCODE:
STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

(TWO)

JUMP IF GREATER THAN
JGT DISP

1500
None

When the arithmetic greater than status bit
is set, add the signed displacement to the
PC.

(PC)+Displacement-==>(PC) (AGT=1)
(PC+2--=->(PC) (AGT=0)
L ]

Used following a 16-bit arithmetic
operation:

C @ONE,Q@QTWO
JGT @OUI go to OUI if (ONE)is
arithmetically greater than

The arithmetic greater than is the result
of a signed compare, so >FFFF (-1) is not
arithmetic greater than >7FFF, but it is
logical greater than.

2.0-41



INSTRUCTION:

INST

HEX.

FORMAT:

OPCODE:

STAT CHANGE:

-DESCRIPTION:

2o ENST

APPL.

RESULT:

NOTES:

JUMP ON HIGH

JH DISP

1B0O

None

When the logical greater than status bit is
set and-the equal status bit is clear then
the signed displacement is added-to the PC.

(PC)+Displacement===->(PC) (LGT=1 and EQ=0)-- -~

(PC+2--->(PC) (LGT=0 or EQ=1)

Used when comparing logical or unsigned

~values.

C @BIG,@GOOD
JH @BAD go to BAD if (BIG) is

logically greater than
(GOOD) - (unsigned)

Since the 1logical greater thamn 1is an
unsigned compare, this instruction is most-
often used for address comparisons. But

beware, nothing d1is higher than >FFFF.

2. 0-42



INSTRUCTION: JUMP ON HIGﬁ OR EQUAL
INST FORMAT: JHE DISP

HEX. OPCODE: 1400

STAT CHANGE: None

- DESCRIPTION: When the equal status bit or the logical
T e e e greater than status bit is.set, the signed
displacement is added to the PC.

INST RESULT: (PC)+Displacement--->(PC) (LGT=1 or EQ=1)
& % %a © « . (PC)+2===>(PC) "(LGT=0 and EQ=0) -~ - -

APPL. NOTES: Use to branch or ttansfer” control when
either logical greater than or equal
status bits=1.

JHE $+4 If SR bits O or 2=1, skip one
word . '

JHE SUB If SR bits 0 or 2=1, Jjump to
SUB

2. 0-43



£ 138

L T

- i

INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

-~ DESCRIPTION:-

RS aREoes

»7

B

APPL.

INST RESULT:

I AT mt st

"NOTES:

JUMP ON LOW

JL DISP

1A00

None

When the logical greater than and equal -~---
status: bits are both reset, .thenm the :signed

displacement is added to . the PGC. - .

(PC)+Displacement--->(PC) (LGT=EQ=0)

(P€)+2--->(PC) (LGT=1 or EQ=1)-" -- ® 2T )

Use to transfer control when a logical or

-unsigned less than condition is detected. -

C @ONE,QTWO

- JL @GO go to GO-1if (ONE) logically

less than (TWO) (unsigned)

20 0-44



INSTRUCTION: JUMP ON LOW OR EQUAL
INST FORMAT: JLE DISP

HEX. OPCODE: 1200

STAT CHANGE: None

~DESCRIPTION: ‘When -the -equal status bit-is set or the R e
SEEET . .slogdical. greater than is reset, then: the L i@ CHSETR..
nEE . - slgned 'displacement is added:=to the PC. - L HEAC P B0

INST RESULT: (PC)+Displacement--->(PC) (LGT=0 or EQ=1)
{04 g Y1 . (PC)+2==-=>(PC) (LGT=1 and EQ=0)- - ° T a1 PERe

APPL.- NOTES: Use to test status register- bits and
: transfer control 1f LGT=0 or EQ=1.

"JLE ADDNO If SR bits 0=0 or 2=1,
‘ go to ADDNO

2- 0"45

- n



INSTRUCTION: JUMP ON LESS THAN

INST FORMAT: JLT DISP

HEX. OPCODE: 1100
STAT CHANGE: None

DESCRIPTION: If the arithmetic greater than and equal
E=os .. . status bits:: are reset them:add .the Bigned____'_Lﬁﬁtﬁuﬂ RRET.
displacement to the PC. . soi:iiaoe sitc 0 s v fas SRS L R B eE

INST RESULT: (PC)+Displacement—--->(PC) (LGT=EQ=0)
. =" (PC)+2===>(LGT=1 or EQ=1) 7¥&Feos W@ . =F Rfimi ) O LTmwn

APPL.  NOTES: Used when comparing ardithmetic values.
C @A,@B

. JLT LESS go to LESS if (A) 1is v as v . -
arithmetically less than (B)

2.0-46



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

UNCONDITIONAL JUMP
JMP DISP

1000

None

Add the signed displacement to the PC and S
place the sum into the PC.

(PC)+Displacement--=>PC

Use to transfer control unconditionally.

JMP LOOP Begin execution at loop
JMP $ Remain at this location
 JMP $+4 Jump over next address

The destination address must be within the
range+127 to -128 words. If not, use the
branch (B) instructione.

2.0-47



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

‘DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

JUMP ON NO CARRY

JNC DISP

1700

None

‘If the carry status bit is eclear, add the-
signed displacement to the PC.
(PC)+Displacement--=>(PC) (C=0)
(PC)+2--=>(PC) (C=1)

Use to branch when carry cleared.

JNC YES If carry clear, go to YES

Can be used to check for 16-bit carry for
melti-precision arithmetie. The following
will calculate (R1,R2)+(R3,R4).

A R4,R2
JNC GO
INC R1
Go A R4,R1

2.0-48



IFSTRUCTION:
INST FORMAT:
HEX. OPCODE:
STAT CHANGE:

DESCRIPTION:
INST RESULT:

APPL. NOTES:

e i s e i ket i i b AR i & AN

JUMP ON NOT EQUAL
JNE DISP

1600

None

If the equalstatus bit 1s reset, add the

.8igned displacement to the.:PC..

(PC)+Displacement--->(PC) (EQ=0)
(PC)+2--=->(PC) (EQ=1)

Used to branch when not equal.

A R1,R2

JNE X go to"X if R1+R2 not =zero
MOV R1,R1

JNE NO go to NO if Rl not zero

2.0-49

R



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

JUMP ON NO OVERFLOW
JNO DISP
1900

None

When the overflow status bit is reset,.add

the . signed displacement to the PC. S s

(PC)+Displacement-=-->(PC) (0V=0)
(PC)+2--=>(PC) (0OV=1)

Used to test arithmetic overflow.

A R1,R2

JNO GOOD go to GOOD IF R1+R2 does

. not overflow -

An overflow occurs during an add 1if the
sign of the two operands are the same but
the sign of the sum 1is not the same.

2-0-50



INSTRUCTION:
INST FORMAT:
HEX. OPCODE:
STAT CHANGE:

DESCRIPTION:
INST RESULT:

APPL. NOTES:

JUMP ON CARRY
JOC DISP

1800

None

When the carry status bit is set, add the
signed displacement to the PC.

(PC)+Displacement—--->(PC) (C=1)
(PC)+2--=>(PC) (C=0)

Use to branch or transfer control if carry
is set.
JOC START If Carry, Go to Start

Joc $-2 I1f Carry, Go to Previou
: & Instruction ’ -

2.0-51



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

JUMP ON ODD PARITY
JOP DISP

1000

None

When the odd parity status bit 1is set, add
the signed displacement . to the PC.

(PC)+Displacement=--=>(PC) (0P=1)
(PC)+2-==>(PC) (OP=0)

Used to test parity of 8-bit wvalues.

MOVB @CH,R1

~JOP ODD go to ODD if CH is odd parity

Note that the OP flag i1s only changed by
byte instructions (e.g. MOVB,CB)

2.0-52



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

Mol e e

INST RESULT:

APPL. NOTES:

LOAD COMMUNICATIONS REGISTER UNIT (OUTPUT)
LDCR S§5,C
3000

LGT,AGT,EQ,O0P (IF C<9)

‘Transfer - the ‘number of bits specified (C)-

.from .the .source operand to .consecutive CRU
lines.  The contents of R12 determines the
least significant CRU line.

(S)=--->CRU for C bits

Use this .to output a bit patiern ~to CRU:

lines for versatile I/0. If the.number of
bits specified is less than nine, then S is
a byte address. If the number of bits is
nine or more, S is a word address.’® The
least significant memory bit goes to the
least significant CRU bit. If the bit
count (C) is zero, then 16 bits are output.
Prior to an LDCR instruction, resigter R12

(CRU Base Address) must be loaded witheth

appropriate address. For the T99SS CPU
module, R12=0 will address bit 0.
LDCR 2,0 16 bits to CRU from R2

LDCR @NM, 8 8 bits to CRU from NM

20 0"53



INSTRUCTION:
INST FORMAT:
HEX. OPCODE:
STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

LOAD IMMEDIATE

LI W,IO0P

0200
LGT, AGT, EQ

Place the
specified r

IOP--=->(W)

Use to initialize register for counters or

addresses.

LI R5,TABLE

LI R1,10
LI R2,>100

immediate operand - -1in the
egister. KSE LRBLAT wid. ik

Load R5 with address of TABLE
Set R1 to 10
Set R2 to 100 (Hex)

2- 0-54



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

" DESCRIPTION:

INST RESULT:

APPL. NOTES:

LOAD INTERRUPT MASK iMHEDIATE
LIMI IOP

0300

Interrupt Mask

Pldace the four least significant bits of
I0P: into. the interrupt mash (bits 15-12 of
the Status Register). ‘

IOP (15-12)===>ST (15-12)
Used to enable or disable interrup;s-

LIMI O disable all interrupts
LIMI >F enable all interrupts

2. 0"'55

e o —— — o i s A



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

DESCRIPTION:

5 R T -

INST

-~ APPL.

RESULT:

NOTES:

LOAD WORKSPACE POINTER IMMEDIATE

LWPI IOP

02EOQ
None

Replace contents of workspace ©pointer
register with the beginning ‘address -of 16
contiguous words. This changes the current
workspace pointer and environment.

IOP-==>(WP)

Use to initialize the WP register to alter
workspace environment.

LWPL >100 Place >100 in workspace pinter

LWPI WSP " Locéation WSP = Register O

2.0-56

i i LR

-

PRERCES e



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

-DESCRIPTION:

INST RESULT:

MOVE WORDS

MOV S,D

c000

LGT ,AGT, EQ

Replace destinmation operand with a copy of ~: ~=~-":»2 2z

the source operand. wih e . e ek
(s)--->(D)

Memory ‘to ‘Memory MOV @TABLE, @TEMP Mw ey
Register to Register MOV R5,R9 5

Register to Memory (STORE) MOV R3,@ANSWER
Memory ‘to register (LOAD) MOV @TABL,RS8

2.0-57

e i g



INSTRUCTION: MOVE BYTES

INST FORMAT: MOWS,D

HEX. OPCODE: DOOO
STAT CHANGE: LGT,AGT,EQ, OP

: -DESCRIPTION: Move -the source byte
; destination byte operand.
«18 a workspace register,
8-bits are used.

INST RESULT: (S)===>(D)* .t

APPL. NOTES: Transfer bytes of data.

Load register

‘Store register

Move Memory to Memory.
Move Register to Register

2- 0"58

operand - to -:the
Whenever S or D

MOVB
MOVB
MOVEB
MOVE

then the leftmost

@xX,R1

R3,@13(R10)
ex, ey

R3,R4

ER R U a8 o

AT LA I g L



e e et e e - s

- INSTRUCTION: MULTIPLY
INST FORMAT: MPY S,W
HEX. OPCODE: 3800
STAT CHANGE: None

DESCRIPTION: Mutiply ~ the destination operand, an

ez Suar. .- -unsigned- -16-bit integer mbysethe ' source .unceser e -eae
i o g 2 - operand , - c-an' unsigned 16=bit - integer<: -v=- _s~-p1r - 2u:
Place the product  into the 32 bit (two ; :
P word) destination field right justified. . .. .. . _ ... ...

INST RESULT: (W)*(S)=--->(W,W+1)

APPL. NOTES: Use multiply (MPY) to multiply two 16-bit
: ‘unsigned integers. The-destination operand
.- must be a workspace Register, therefore the. .. ___.__._. _.____.
£ - result-will be in the workspace- register. Tl £
WOLKADATH x0T .apeclified and -the next onew If+ workspacve aevs anes o 1T -w0l
register 15 is specified then the next
memory location following the workspace
_ area is the second half of the product.

MPY *1,4 Mult. reg R4 by reg R1 (ind)
MPY @NUM, 4 Mult. reg R4 by (NUM) " e W

2.0-59



ERE

B

INSTRUCTION:

INST FORMAT:

HEX.

OPCODE:

STAT CHANGE:

DESCRIPTION:

b o

' INST RESULT:

APPL.

LWkl T2

NOTES:

NEGATE

NEG S

0500

LGT,AGT,EQ,C,O0V

Replace .source operand with .two”s . .. ; Ae G W LR, AR T
complement value of the source. .operand. . oo g o A B S
0<-(5)~==2(5)

Use NEG to replace the operand with 1its
additive inverse.

NEG R7 oE

The contents of workspace register R7 1is - SRE - e

.rveplaced :with fts two’s complement value. - =% & ComplLemsnt

2.0-60



i it et i e s S

INSTRUCTION: OR IMMEDIATE
INST FORMAT: ORI W, IOP
HEX. OPCODE: 0260

STAT CHANGE: LGT,AGT,EQ

~e+ -~ -DESCRIPTION: Perform a logical OR operation between the "© =~~~ === ==

WD S AATIN . LS ~-specified: - workspace register --and - the - = :sccemanarc.a
. immediate ‘operand. ‘Place the'result in thes
g workspace register. ek el ‘ B
+-~INST RESULT: (W) OR IOP---=>(W) . R S

cep-wo: APPL~n.- NOTES: Use ta perform logical OR between workspace:iczi v B&TWE2m-Wi
R woi e A i register and some known immediate value. tnoEn LORGOXNETE W
Example: ORI R10,>202D SR B - Ve 2L LD R
Before: R10=>1AD5 0001 1010 1101 0101
Imed. Operand= 0010 H000-0010 1101
After: R10=>3AFD 0011 1010 1111 1101
2 e Bl e - ORI RS’- >8000 Set R‘S S-?ign« -‘b'it’r Da e R ‘odH mey &
ORI R10,>F Set four LSB of R10 ’

~ ' | 2.0-61



INSTRUCTION: RETURN WITH WORKSPACE POINTER

INST FORMAT: RTWP

HEX. OPCODE: 0380

STAT CHANGE: All status bits set by R15, dincluding
interrupt mask.

torneasDESGRIPTION: -Replacescontents of WP with:..contents:of . - w;ﬁ#aczgu&

BYE T 7 : .zcurrent  R13,; PC with contents. of R14 ST JAT BT Al T o

b i 3 S "~ with current value of R15. " == - % o N e e

<~ INST RESULT: (R13)--->(WPR) Lide -=p(WPan: ¥ R
(R14)--->(PC)

(R15)===>(ST)

APPL. NOTES: Use to return from a ‘BLWP, XOP or a
s# c ot hardware interrupt. EPanrs TATA Faids Jota tazs=s

2.0-62



INSTRUCTION:

INST

HEX.

STAT

FORMAT:
OPCODE:

CHANGE:

SUBTRACT WORDS
S S,D
6000

LGT,AGT,EQ,C,O0V

=+ .21 DESCRIPTION: Subtract the source operand.. from: the

INST

APPL.

RESULT:

NOTES:

destination operand and place. the. result:

.iﬁ,the destination operangn.ﬂ
(D)-(8)=-=-->(D)

Use to subtract signed 16-bit integers
from:

Memory to Memory @OLDVAL,@NEWVAL .
Register to Register R8,R7

S
S
Register to Memory S R10,@DIET
Memory to Register S @CONS,R1l4

2.0-63

T



nwre

{:ﬁi‘:l

INSTRUCTION:

INST

HEX.

STAT

v «DESCRIPTION:-

INST

.y APPL.

FORMAT:

OPCODE:

CHANGE:

RESULT:

NOTES:

SUBTRACT BYTES
SB S5,D
7000

LGT,AGT,EQ,C,0V,0P

Subtract thessource operand: hyte: from the-

destination operand byte and place the

.difference . .in the destination . .operand

byte.
(D)-(8)--=->(D)
Use to. subtract signed integer bytes.

SB @3,@>503 Result in address. >503
SB R1,R2 ‘Result in upper byte of R2

Sperana  b¥re



INSTRUCTION: SET BIT ONE

INST FORMAT: SBO DISP



- |

S b ¥

%

INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

¢t 7ern. DESERIPTION:

«INST RESULT:

- APPL. NOTES:

SET BIT ZERO

SBZ DISP

1E00
None

Set-output CRU'bit to a loglcal zero'™ The rrn 2 [s5fcmil-car
CRU. bit address 1is determined by adding . .. _.....co o
contents«of-bits 3-14 of RI2 to -the signed.-.« «: sew 1z Lne
displacement.

0--=->(CRU-bit specified by bits.3=1l4w0f:R12:::1e2a sv oics s=14
+ displacement) ‘

Use To get the particular CRU line:.to a-
logical zero. . - -

LI 12,>280 ‘CRU base address=>140 (R12/2) -+ - v oo —~.
SBZ >28 . Clears CRU bit >168 (140+28).: - -2 ->: -~-==
SBZ =2 -€Clears CRU bit >13E (140-2)

2- 0-66



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

@i rcwt  PESERIPT TON< -

INST RESULT:

| “REEg

APPL. NOTES:

SET TO ONES
SETO S
0700

None

Replace™ the“soﬂrde‘operand*With*a 16=bit
word of one’s. - e s 5w

FFFF=-==>(S)

i

Use to initialize:-a table with -1 wvalues
instead of =zeroes 1if your application

-requires-such. “Use to initialize register

With "'1. - ¥ i S T £
'SETO- 5 “°°" Set register 5 to >FFFF

SETO @SUM Set- SUM to =l¥®a sz 2

2.0-67

s iy

=kl

e A o R R T

o

¥



INSTRUCTION: SHIFT LEFT ARITHHETIC

INST FORMAT: SLA W,C
HEX. OPCODE: OAOO
STAT CHANGE: LGT,AGT,EQ,C,OV

o par-DESGRIPT TON: « The contents:ofzd+he workspacerrepistersare s worirspfes rmegis

RS EE. SLLE _.-.shifted left the specified inumber-of bits  s:-i izosusmssr.
MeALE LER 1. co::(C). with .zeroes. filling the wvacated bit.._..u: s;s wswasca
SR AR RS TN . positions. The last bit shifted out is =:+ -~ Yt L TEALD
STOH WSy SRR placed in the carry out bits -If-C=0; the~-+ --= =~or-s=i--
right four bits of register RO are used as
the shift count. 2 aARITrT CSODUTT . ne I017TCT
o seo. BNST sRESULTz: (W) ds. ;shifted.left the @specdfidd . shifterz cne gpecazie

count (C).

i wnr-APPLw NOTES: -Use to shift- the contents -0of a workspace rosrsvras ar =

Laaw e e . .Teglster left . . by some -shift count. .. Svmt S AALE.
SLA R4, 8 Shift reg R4 left 8 places <
SLA R4, 2 Effectively mult. reg R4 by 4
SLA R4,0 Shift reg R4 by contents of RO

Note that SLA R4,0 will shift R4 by the
contents of the lower four bits of RO. If

RO=17, the shift count is one 'because
17=10001 (binary).

2- 0-68



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

SET ONES CORRESPONDING (LOGICAL OR)
SoC S,D

E00O

STAT CHANGE: LGT,AGT,EQ

1T s

INST RESULT.

et

.:APPL.. NOTES:.

Fe cak s@drs <€

AR TS ﬁmmSQGQPTIQN'nSe¢ stosiloglawonesx all. of the bitsging. the
s | . destination operand that correspond. to any
logic one value in the source operand.

This result is placed in the destination.

This is effectively a logical . OR operation.. .

(S) OR (D)--->(D)

L & Sk,

Use to perform.-a logical OR operation.

.This 'is similar. to ORI except. it-:.may.be

done between-  two general addresses.:«;

Before: (PATRN1)=>E06B=1110 0000 0110 1101

aLl

(PATRN2)=>4482=0100 0100 1000.0010. - . .

SOC @PATRN1,PATRN2

After: (PATRN1)=>E06B
(PATRN2)=>E4EF=1110 0100 1110 1111

20 0—69

BALE B LBy

- e e

o RAT e

o T



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

g Toww
B S

T Cam S VR G D R . U

INST RESULT:

APPL. NOTES:

I Wk ™ L0

ZDESCRIPT LON:: -

.~ ~SOCB R1,@X

SET ONES CORRESPONDING BYTE (LOGICAL OR)

SOCB S,D

F0O0O0

LGT,AGT,EQ,C

Set tor=a

‘logile&al. .one

the bits adintothez ! . onae

destination operand byte that .correspond.to .-
a logic..one in the source operand .byte.

This
operation.

(s) OR (D)--=>(D)

is~effectively an 8-—bit ~Fogiead~-OR=

Use to perform an 8-bit OR. R

2.0-70

EXY=CE) OR B sns s

S oy oWy

.

T
o e TR

= o T

L R A W1 A S8

A e

Sy =

=

AT



oo DESGRIPTION: -
- workspace register right by +«the -~numbersofr +»ionr hwrwhes noes

INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

QT TEROTNE . -

2 R B

SO AT e AT

INST RESULT:

APPL. NOTES:

[ v  S—

SHIFT RIGHT ARITHMETIC

SRA W,C

0800

LGT, AGT, EQ,C

Shift ~ the -~ Pcon¥ents’’ “of’““fhe ' *gpeciffédent=' "nFf Viks = sh,
places—-specified-.by C.. -The=-gignebdt:«bsg ~»v - wimaer el e
extended to fill the vacated-bits.+~ If< C=0+=- - oot Sodwar -

then the right four bits of workspace. . S5, LEe A
register RO are used for the shift count.

-*The: last <bit shifted out is placed in =therad ovr == wlime=a
‘carry bit of the status - register. SRl G W RS e

(W) shifted right C places—-==>(W)

Use to shift to the right a signed integer.

SRA R14,5

Shift right the contents of R1l4 by 5
places. This is a divide by 32. bt - F A A g D

2- 0-71



INSTRUCTION: SHIFT RIGHT CIRCULAR‘

INST FORMAT: SRC W,C
HEX. OPCODE: OBOO
STAT CHANGE: LGT,AGT,EQ,C

-- DESCRIPTION: Shift the specified workspace ‘register ---- .
Rl el " -“right by the specified number of places
(C), with the bits ©being shifted out of

Temenm 11 bit 15 placed in bit 0. If C=0, the -right -

four bits of register RO are used as the . .
shift count.

INST RESULT: (W) shifted right circ. C places=—=-=>(W)

APPL. NOTES: Shift right circeular some specified
weerkspace register.

SRC R9,5

2- 0"'72



INSTRUCTION: SHIFT RIGHT LOGICAL
INST FORMAT: SRL W,C
HEX. OPCODE: 0900

STAT CHANGE: LGT,AGT,EQ,C

gsrar pDESGRIPTION:; Shift - the: specified .work  register toecthe cc work
Rl right the specified shift count filling the
. vacated bits with =zeroes. The 1last. bit
SET S e S - -shifted out-«ds..placed in-the=. carry:esub:sce:

s

GE - : bit. If .C=0, -the right -£four.

~bits: . of ne 1,

register R0 are used as the shift count.

INST RESULT: (W) shifted right C places—-->(W)

logical. ; g i
SRL R10,5 .8hift reg R10 right 5 places.. s 5
SRL R9,1 Effectively divide reg 9 by 2 7 -7«

2.0-73

-5

«..APPL. NOTES: Use. to. shift .a. workspace register right...cceecce iuopuwce



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

STORE COMMUNICATION REGISTER UNIT (INPUT)

STCR S,C
3400
LGT,AGT,EQ,OP(<9 bits)

Transfer number of bits specified (C) from
the CRU 1lines addressed by R1l2Z to the
source operand. If the number of bits does

not fill entire mamory word, then zeroes
are added on the left. If C<9 , then S is

a byte address.
CRU lines--->(S) for C bits

Use to store contents of CRU lines in some
memory location. The least significant CRU
line is transferred to the least
significant memory bit.

If C<9 byte addressing
If C>9 word addressing

2- 0'—74



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

STORE STATUS REGISTER
STST W
02CO

None

Transfer the status register to workspace
register W.

Status Register—--->(W)

Used to transfer the status register to
workspace so it can be manipulated.

STST RS5 R5=status

2.0-75



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

STORE WORKSPACE POINTER

STWP W

02A0
None

Transfer the workspace pointer to workspace
register W.

WP===>(W)

Used to determine the address of the
register file.

STWP R6 R6 = address of RO

After execution of the above instruciton,

the following two dinstructions are the
same. ;

INC RO
INC *R6

2.0-76



INSTRUCTION:

INST

HEX.

STAT CHANGE:

FORMAT:

OPCODE:

DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

SWAP

SWPB

06CO

None

Swap
with

Swap

Used

MOVB
SWPB
MOVB

BYTES

the upper byte of the source operand
the lower byte of the source operand.

(S) upper and (S) lower.

for character manipulation.

@Cl1,R1 Rl=character one
R1 reverse bytes
@C2,R1 Rl=character two,one

2- 0"77



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

SET ZEROES CORRESPONDING

§ZC 5.0
4000
LGT ,AGT,EQ

Set to a logic zero the bits 1in the
destination operand that correspond to bit
positions equal to logic onme in the source
operand. The source 1is not changed.
Ef fectively this is a logical AND with the
source being inverted prior to the AND.

NOT (S) AND D--->D

Use to turn off flag bits or AND the

contents of one’s complement source and

destination. '

Before: (PAT1)=>3030=0011 0000 0011 0000
(PAT2)=>5511=0101 0101 0001 0001

SZC @PAT1,@PAT2

After: (PAT1)=>3030
(PAT2)=>4501=0100 0101 0000 0O0O1

2.0"78



INSTRUCTION:

INST FORMAT:

HEX.

STAT

OPCODE:

CHANGE:

DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

SET ZEROES CORRESPONDING (BYTE)
SZCB S,D

5000

LGT,AGT, EQ, OP

Set to a 1logical =zero the bits in the
destination operand byte that correspond to
bit positions equal to a logical one in the
source operand byte.

NOT (S) AND (D)--->(D)

Useful for character or flag manipulation.

SZCB @X,Q@QY Y=not X and ¥

2.0-79



INSTRUCTION:

INST

HEX.

STAT

FORMAT:

OPCODE:

CHANGE:

DESCRIPTION:

INST

APPL.

RESULT:

NOTES:

TEST BIT

TB DISP

1F00

EQ

Read the specified CRU i1input bit whose
address 1s computed by adding the signed
displacement to bits 3-14 of R12. Set the
equal status register bit to the wvalue
read.

CRU line read--->EQ

Use to read a particular CRU 1line and
depending on the result, make appropriate
decisions.

CLR R12 set CRU base
TB 14 wait for bit 14 to be set
JNE §-2

2- 0_80



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

EXECUTE

XS

0480

None (remote instruction may, however)

The instruction at the source operand 1is
executed.

Used to execute an instruction out of line,
typically in a table.

X @TAB(R1) execute the instruction in
table TAB pointed to by RI1



INSTRUCTION:

INST

HEX.

FORMAT:

OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL.

NOTES:

EXTENDED OPERATION

XOP S,N

2co0

None

Place extended operation into execution.
The (N) field indicates which XOP trap
location to utilize.

§=-==>(R11l) of XOP workspace
(0040+4n)—==>(WP)
(0042+4+4n)-~->(PC)
(WP)--->(R13) of XOP workspace
(PC)--->(R14) of XOP workspace
(ST)--->(R15) of XOP workspace

Use to implement software routines which
are used frequently. For example:
floating point arithmetic, signed multiply,
extended precision integer arithmetic. The
monitor uses XOP O as a breakpoint call.
That is, a breakpoint replaces the users
instruction by an XOP O. XO0P 1 and X0P 2
are wused for input and output. The
following will print the letter "A".

LETTER BYTE “A°
X0P @LETTER, 2

2.0-82



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

STAT CHANGE:

DESCRIPTION:

INST RESULT:

APPL. NOTES:

EXCLUSIVE OR

XOR S,W

2800

LGT ,AGT, EQ

Perform a bit by bit exclusive OR of the
16-bit source operand with the 16-bit
destination workspace register.

(S) XOR (W)--=>(W)

Use to perform an exclusive OR between a
workspace register and a source operand.

Assume: (RO)=>21BD 0010 0001 1011 1101

(TC)=>E436 1110 0100 0011 0110
Then: X0OR @TC,O
(RO)=>C58B = 1100 0101 1000 1011

2.0-83



INSTRUCTION:

INST FORMAT:

HEX. OPCODE:

DESCRIPTION:

EXTERNAL CONTROL

CKOF (Clock Off)
CKON (Clock On)

LREX (Load Ram/Execute)
RSET (Reset)

03cCco
03A0

03EO
0360

These instructions can be decoded by
external hardware. The 9900 CPU does not
perform any function when they are
executed. The T99SS CPU module does not
decode these instructions, so they should
be avoided.

2. 0_84



2.3 Instruction Summary

It 1is frequently necessary to obtain the hex equivalent or
time required for a specific dinstruction. The 9900°s
addressing often becomes confusing when trying to do that.
To assist the user, the instruction tables are provided. The
first gives the hexadecimal op-code and basic execution time;
the second defines the additional digits in the opcode for
addresssing; and the last one specifies operand address time.
For example, if the hex equivalent of MOV *R1,@6(R2) 1is
needed, the following steps are used:

(1) op-code=Cxxx (from Table)
(2) xxx=89s (from Addressing Table)
(3) Thus, instruction=C89s=C891 (s=R1)

The time for the instruction is "14AA" cycles. The two
letters after the time are the formula for source address and
destination address modification. The last table in this
section provides this time. For our example the first
operand 1is *R1 and requires 4 cycles of added time (WR
indirect). The second is @6(R2) so it requires 8 cycles more
(indexed). Thus the total time is 14+4+48=26 cycles. If two
times are shown (e.g. 8/10) then the first is for a jump not
taken and the second for a jump that is taken.

2.0-85



Mnemonic Op-code Time

A Axxx
AB Bxxx
AI 022s
ANDI 024s
C 8xxx
CB 9xxx
CIl 028s
CKOF 03Co
CKON 03A0
cocC 2aaa
CZC 2bbb
DIV 3ccce
IDLE 0340
JEQ 13yy
JGT 15yy
JH 1Byy
JHE léyy
JL lAyy
JLE 12yy
JLT llyy
JMP 10yy
JNC 17yy
JNE léyy
JNO 19yy
JocC 18yy
JOP ICyy
LDCR 3aaa
LI 020s
LIMI 0300
LREX 03EO
LWPI 02EO0
MOV Cxxx
MOVB Dxxx
MPY 3ddd
ORI 026s
RSET 0360
RTWP 0380
S 6xxx
SB 7xxx
SBO 1Dyy
SBZ l1Eyy
SLA OAns
socC Exxx
S0CB Fxxx
SRA 08ns
SRC OBns
SRL 09ns
STCR 3bbb
STST 02Cs

14AA
14BB
14—~
14—~
14AA
14BB
l4—-
12--
12==
14A-
14A-

see note 1

12--
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10
8/10

see note 2

12—--
16—-
12--
10--
14AA
14BB
52A-
14--
12--
14--
14AA
14BB
12--
12--
see note
14AA
14BB
see note
see note
see note

see note
s

S ww

Description

add Rs to Rd
add Rs (byte
add constant
AND Rs with

) to Rd (byte)
to Rs
Rd

compare Rs with Rd

compare Rs (
compare cons
clock-off
clock=-on
compare (Rd
compare (Rd
Rd=(Rd ,Rd+1)
idle

jump if equa

byte) to Rd (byte)
tant with Rs

AND Rs) with Rs
AND Rs) with zero
/Rs, Rd+l=rem.

1

jump if greater than

jump 1if high

jump if high or equal

jump if low
jump 1if low

or equal

Jump 1f less than
Jump unconditional
jump if no carry

jump if not

equal

jump 1f no overflow
jump if carry set

jump if odd
d-bits of Rs

parity
to CRU

load Rs immediate

load interrupt mask immediate
load Rom and execute

load WP immediate

move Rs to Rd

move Rs (byt
(Rd ,Rd+1)=Rd
OR or consta
reset

return with

subtract Rs

subtract Rs

set CRU bit

clear CRU bi
shift Rs lef

e) to Rd (byte)
times Rs
nt with Rs

workspace

from Rd

(byte) from Rd (byte)
¥y

t ¥y

t (alg.) by n

OR Rs with Rd

OR Rs (byte)

to Rd (byte)

Shift
Shift
shift

Rs right (alg.) by n
Rs right (ecirc.) by n
Rs right (log.) by n

d=-bits of CRU to Rs

Rs =

status register

2.0-86



STWP
SZC
SZCB
TB
X0P
X0R

02As
bxxx
S5xxx
1Fyy
2ccce
2ddd

14AA
14BB
12—~
36A-
14A-

Rs = workspace pointer

RD = Rd AND NOT Rs

Rd (byte) = Rd (byte) AND NOT Rs
test CRU bit yy

extended operation

ex-0OR Rs with Rd

20 0-87



ABS

BL
BLWP
CLR
DEC
DECT
INC
INCT
INV
NEG
SETO
SWPB

Note 1:
Actual

Rs
074s

04Cs
060s
064s
058s
05Cs
054s
050s
070s
06Cs
048s

16 cycles if OV is set.

time depends

*Rs
075s

045s
069s
D41ls
04Ds
061s
065s
059s
05Ds
055s
051s
071s
06Ds
049s

%*Rs+
077s

047s
06Bs
043s
04Fs
063s
067s
05Bs
05Fs
057s
053s
073s
06Fs
04Bs

@Rs
076s

046s
06As
042s
04Es
062s
066s
05As
05Es
056s
052s
072s
06Es
04As

clock cycle during execution.

Note 2:

12A-(MSB=0)
14A-(MSB=1)
8A-
12A-
26A-
10A-
10A-
10A-
10A-
10A-
10A-
12A-
10A-
10A-
see note 5

absolute value of Rs

branch

branch and link
branch and link

clear Rs

decrement
decrement
increment
increment
invert Rs
negate Rs
set Rs to

swap bytes of Rs
execute inst.

Rs by
Rs by
Rs by
Rs by
(ones
(twos
ones

92 to 124 if OV is not set.

20+2*number of bits transferred

Note 3: If C not zero, l2+2%*number of bits shifted.
then 20+2*number of bits shifted.

Note 4: Time determined by number of bits as:

Note 5:

1 to 7

8

9 to 15

16

42
44
58
60

84+time for instruction executed

2- 0""88

upond the partial quotient after each

If C=0

R1l
WP

one
two
one
two
comp.)
comp.)

at Rs



ADDRESSING

Rs,Rd

*Rs ,Rd
*Rs+, Rd
@Rs, Rd

Rs ,*Rd

*Rs , *Rd
*Rs+, Rd
@Rs, *Rd

Rs ,*Rd+

*Rs , *Rd+
*Rs+, *Rd+
@Rs, *Rd+

Rs ,@Rd
*Rs , @Rd

*Rs+, @Rd

@Rs,@Rd

Rs ,Rd
*Rs ,Rd
*#Rs+, Rd
@Rs ,Rd

Rs, *Rd
*Rs ,*Rd

*Rs+, *Rd

@Rs , *Rd

Rs ,*Rd+

*Rs ,*Rd+
*Rs+,*Rd+
@Rs ,*Rd+

Rs , @Rd
*Rs,@Rd

*Rs+, @Rd

@Rs ,@Rd

R1
00s
Ols
03s
02s

40s
41s
43s
42s

COs
Cls
C3s
C2s

80s
81s
83s
82s

R9
20s
21s
23s
22s

60s
6ls
63s
62s

EOs
Els
E 3s
E2s

AOs
Als
A3s
A2s

R2 R3 R4 RS R6 R7
0D4s 08s O0OCs 10s l4s 18s 1Cs Rs,Rd
05s 09s 0ODs 1l1s 158 19s 1Ds *Rs,Rd
07s OBs OFs 13s 17s 1Bs 1Fs *Rs+, Rd
06s O0As 0Es 12s l6s 1lAs lEs @Rs,Rd
44s 48s 4Cs 50s 54s 58s 5Cs Rs,Rd
45s 49s 4Ds 51s 55s 59s 5Ds *Rds,Rd
47s 4Bs 4Fs 53s 57s 5Bs 5Fs *Rs+, Rd
46s 4As 4Es 52s 56s 5As 5Es @Rs,Rd
C4s C8s CCs DOs D4s D8s DCs Rs ,Rd
C5s C9s CDs Dls D5s D9s DDs *Rs,Rd
C7s CBs CCFs D3s D7s DBs DFs *Rs+, Rd
C6s CAs CEs D2s D6s DAs DEs @Rs ,Rd
84s 88s 8Cs 90s 94g 98s 9Cs Rs ,Rd
85s 89s 8Ds 91s 95s 99s 9Ds *Rs,Rd
87s 8Bs 8Fs 93s 97s 9Bs 9Fs *Rs+, Rd
86s B8As 8Es 92s 96s 9As 9Es (@Rs,Rd

R10 R11 R1 2 R13 R14 R15
245 28s 2Cs 30s 34s 38s 3Cs Rs,Rd
25s 29s 2Ds 31is 35s 39s 3Ds *Rs, Rd
27s 2Bs 2Fs 33a 37s 3Bs 3Fs *Rs+,Rd
26s 2As 2Es 32s 36s 3As 3Es @Rs ,Rd
64s 68s 6Cs 708 74s 78s 7Cs Rs ,Rd
65s 69s 6Ds 71s 75s 79s 7Ds *Rs ,Rd
67s 6Bs 6Fs 73s 77s 7Bs 7Fs *Rs+, Rd
66s 6As 6Es 72s 76s 7JAs 7Es @Rs,Rd
E4s E8s ECs FOs TF4s TF8s FCs Rs,Rd
E5s E9s EDs TFls F5s F9s FDs *Rs ,Rd
E7s EBs EFs F3s F7s FBs FFs *Rs+,Rd
E6bs EAs EEs F2s Fbs FAs FEs @Rs,Rd
A4s A8s ACs BOs B4s B8s BCs Rs ,Rd
A5s A9s ADs Bls B5s B9s BDs *Rs , Rd
A7s ABs AFs B3s B7s BBs BFs *Rs+,Rd
A6s AAs AEs B2s B6bs BAs BEs @Rs ,Rd

2- 0"‘89

aaaa

bbbb

cccc

dddd

a2aaa

bbbbb

cccc

dddd



ADDRESS MODIFICATION TIME

Mode

Register

Register Indirect
Register Indirect
with increment
indexed

Time(A) Time(B)

=~ o

(o -]

o O

2- 0-90





