
















































Address Range 
(hexadecimal) 

OS03 - OS04 
050S - OS06 
OS07 - OS08 

OS09 - OSOA 

'OSOB - OSOC, 

OSOD - OSOE 
OSOF - OSlO 
OSII - OS12 
OS13 - OS14 
OSlS - OS16 
OS17 - OS18 
OS19 - OSlA 
OSlB - OSlC 

,OSlO - OSlE 
051F - OS20 

'OS2l - OS22 
OS23 - OS24 
OS2S - OS26 
OS27 - OS28 
OS29 - OS2A 
OS2B - OS2C 

,OS2D - OS2E 
OS2F - OS30 
OS3l - OS32 
0533 - 0534 
OS3S - OS36 
OS37 - OS38 
OS39 - OS3A 
OS3B - OS3C 
'OS3D - OS3E 
OS3F - OS40 
OS4l - OS42 
OS43 - OS44 
OS4S - OS46 
OS47 - OS48 
OS49 - OS4A 
OS4B - OS4C 
OS4D - OS4E 
OS4F - OSSO 
OSSI - OSS2 
OSS3 - OSS4 
OSSS - OS56 

. OSS7 - 05S8 
OSS9 - OSSA 

. OSS8 - 05SC 
, OSSD - OSSE 

OSSF - OS60 
. OS6l - OS62 

TABLE OF ADDRESSES - version 7 

Description 

CHANL - Contains the address of the Channel Table. 
TRMNL - Contains the address of the Terminal Table. 
SSSS - Defines the end of useable memory. If zero, 
causes BASIC to use all available memory. 
CNVRA - Defines the number of digits that will be printed· 
in normal (as opposed to scientific) notation. 
USER - Contains the address of a location which contains 
the address of a user routine accessed by the USR function. 
MODES - Contains the address of the MODES Table. 
FSRC - Address of pointer to start of source. 
ESRC - Address of pointer to end of source. 
ERROR - Pointer to error routine. 
TSCN - Points to token just scanned. 
NSCN - Points to token to be scanned next. 
CHCK - Points to checksum routine. 
INFL - Integer to Floating, (HL) to (DE). 
FLIN - Floating to Integer, (HL) to (DE). 
STNM - String at (HL) to number at (DE). 
NMST - Number at (HL) to string at (DE). 
CMPR - Zero and carry set as for (HLl-(DE). 
SINE - Sine(HL) to (DE). 
SICO - Cosine(HL) to (DE). 
TANG - tangent(HL) to (DE). 
ATAN - Arctangent(HL) to (DE). 
BCDB - Number at (HL) to binary in HL. 
BBCD - Binary number in HL to number at (DE). 
ETOX - E to the (HL) power to (DE). 
LOGX - Log base E (HL) to (DE). 
SQUR - (HL) to 1/2 to (DE). 
PWRS - (HL) to the (DE) power to (BC). 
ADDER - (HL)+(DE) to (BC) 
SUBER - (HL)-(DE) to (BC) 
MULER - (HL)*(DE) to (BC) 
DIVER - (HL)/(DE) to (BC) 
KILL - Kill allocated dynamic RAM block. 
AMBL - Allocate a dynamic RAM block. 
EOF - End-of-file flag byte address. 
RECORD - Address of random file record number. 
FILE - Address of (file # or adr of name). 
TYPE - Address of .file type number. 
NAME - Address of address of file name. 
CMP16 - Address ofl6-bit compare routine. 
SUB16 - Address of l6-bit subtract routine. 
MOVE - Address of block move routine. 
MULT - 8 by 8 multiply, DE=D*E. 
ZERO - Zeroes A bytes starting at HL. 
DIV - L=HL/E. unrounded, h=remainder. 
DO - Address of first parameter of DO function • 
DOPARA - Adr of 2nd parameter of DO function. 
DISK Address of disk number. 
KIND - Adr of Kind (of transfer.) byte. 



INTERNAL FORMATS 

Symbol Table Format: ASCII, last character has bit 7 set=l. 

Symbol Directory Format: 
Bytes 0&1 are pointer to location (0 if 
Byte 2 bits have meanings as follows: 

O-statement name I-variable 
3-channel name 4-array 
6-has been stored to 7-trace on 

inactive dummy) • 

2-function 
5-unused 

Numeric Array Format: 
bytes n,n+l = back pointer 
bytes 2+n to n+x+l = number of elements per dimension 
where n=(table pointer), and x=number of dimensions 
bytes 2+n+x to 1+n+x+(6*E) = number storage 

. where E=total number of elements 
To locate an element within an array, location=base+offset, 
where base=2+n+x, and offset computed by: 

N=l 
OFFSET=S (N) 

LOOP N=N+l 
OFFSET=(OFFSET) (D(N»+S(N) 
IF N<>LAST DIMENSION GOTO LOOP 
OFFSET=OFFSET*6 
END 

Where S is subsoript, D cements in a dimension, () mean contents of. 
Example: Array dimensioned 3,4,5; Get element 2,1,4. 

N Offset 
1 2 
2 2*4+1=9 
3 9*5+4=49 
3 49*6=294 

String Locator: 
bytes n,n+l=back pointer. 
bytes n+2 to n+l+m=number of elements per dimension. 
bytes m+n+2 to n+l+(2E}+m=string pointers. 
Where m=number of dimensions, and E=number of elements. 
2 Bytes per pointer, same organization as elements of 
numeric arrays. If (pointer)=O, string is (null). 
Otherwise, points to first address of (string). 

String Format: 
bytes n,n+l=back pointer. 
n+2 to n+l+m=ASCII data. 
Where m=number of characters. 
All other characters have bit 

D-l 

Last character as bit 7=1. 
7=0. 



INTERNAL FORMATS (continued) 

String Array Pointer Format: 
Byte 0: bit O-not used, bit 1=0, bit 2=0, bit 3=1, bit 4=0, 

bit 5=0, bit 6=0 if not array.=l if array, bit 7 not used. 
Byte 1 = number of dimensions. 
Bytes 2&3 is a pointer to string locator or string. 
Bytes 4&5 are not used. 

String variables are treated internally as single dimension arrays. 

Numeric Array Pointer Format: 
Byte 0: bit 0=0 if integer, 1 if floating point. 

bit 1=0, bit 2=1, bit 3=0, bit 4=0, bit 5=0, 
bits 6&7 are unused • 

. Byte 1 = number of dimensions. 
Bytes 2&3 is a pointer to table loc~tion. 
Bytes 4&5 are not used. 

Numeric Format (constants and variables) 
Byte 0: bit 0=0 if integer, 1 if floating point. 

Byte 1 = 
Byte 2 = 
Byte 3 = 
Byte 4 = 
Byte 5 = 

bit 1=1. bit 2=0, bit 3=0, bit 4=0, bit 5=0, 
bit 6 is sign of exponent, bit ~ sign of mantissa. 
BCD exponent if floating point, MSD, MSO-l if integer. 
LSO+7, LSO+6 
LSO+5, LSO+4 
LSO+3. LSO+2 
LSO+l, LS~ 

0-2 



INPUT/OUTPUT 

The input and output facilities of TARBELL BASIC were designed 
·to create a new standard of flexibility. Essentially, commands 

are provided to allow any output statement to transfer data 
to most output devices, and any input statement to transfer data 

.from most input devices. In order to do this, devices are 
grouped into logical devices and physical devices. Logical 
devices are those that are activated by the input and output 
commands, and are listed in the table on the left. Physical 
devices are actual pieces of hardware, such as a CRT, printer, 
cassette, and disk. There is a table, called the MODES table, 
which remembers the assignment of physical devices to logical 
devices. The MODES table has ten byte~, numbered from 0 to 9. 
Each byte represents a corresponding I/O device driver in the 
I/O section. Each bit in each byte corresponds to one of the 
eight possible logical devices, numbered from 0 to 7. The 
table below shows the logical and physical devices, and their 
.default assignments for TARBELL CASSETTE BASIC: 

Logical Device Number Physical Device Number 

'INPUT 0 Console Keyboard 0 
PRINT 1 Console Printer 1 

,LOAD 2 Cassette Input 2 
.sAVE 3 Cassette Output 3 
BGET & BLOAD 4 Cassette Input 2 

, BPUT & BSAVE 5 Cassette Output 3 
Spare 6 Spare Input/Output 4 
Spare 7 Listing Device Output 5 

Reader Input 6 
Punch Output 7 
Disk Input 8 
Disk Output 9 

The current assignments may be viewed by entering the 
CHANNEL statement. Every place an X occurs, an assignment 
exists between the physical device to the left and the logical 
device above. The ASSIGN and DROP statements can be used to 
set and reset bits in the table, respectively. 

To get an idea of how this works, just type DROP 1,1. 
This will drop the console output device as the PRINT device. 
Don't worry! Nothing's wrong. Your keyboard is still feeding 
commands to the console INPUT device, you just can't see the 
echo. Now simply say ASSIGN 1,1 and you'll be back in business. 

Note that the I/O section (see seperate listing) 
creates the default assignments by transfering ten bytes 
to the MODES table. If you wish to change the default 
assignments, just change these ten bytes (at IMODES). 



INPUT/OUTPUT (continued) 

Mass storage (cassette or disk) flag useage: 

When a file is opened, the zero flag in the 8080 
CPU is set upon entering the mass storage output routine. 
When a file is closed, the carry flag in the 8080 
CPU is set upon entering the mass storage output routine. 
If the carry flag is set upon returning from a mass storage 
input routine, it is an indication to the BASIC interpreter 
than an error has occured on a read operation. 

Console (CRT, teletype, etc) flag usage: 

When an input routine is entered with the zero flag set, 
it is a check for control-C or control-S, rather than an 
actual keyboard read operation. If a control-C was pressed 
on the keyboard, a return is made with the zero flag set. 

The Terminal (TRMNL) Table: 

This is a table located in the scratch area above BASIC. 
There are ten entries, with three bytes per entry, each 
entry corresponding to one of the ten I/O channels defined 
by the CHANL table. The first byte of each entry is the 
terminal width, that is. the number of characters after 
which there is a carriage-return issued. The second byte 
is the current terminal position. The third byte is used 
to determine the rubout. The low 7 bits of the byte is 
the code which is sent to the terminal when a 7F(hex) is 
received from the keyboard. If the upper bit is 0, the 
internal pointer is not decremented. If it is 1, it is. 

The KIND byte: 

This is a byte located in the scratch area above BASIC. 
It is set every time any mass storage (cassette or disk) 
operation is invoked. It's purpose is to make available 
to the I/O section information about the kind of transfer 
being made. Only the low 5 bits are currently used. 

Content 
o 
1 
2 
3 
4 
5 
6 
7 
8 

.20 
21 

Statement 
LOAD 
SAVE 
BLOAD 
BSAVE 
GET 
PUT 
BGET 
BPUT 
APPEND 
OPEN 
CLOSE 

Bit 
o 
1 
2 
3 
4 

If 0 
input 
ASCII 
program 

not append 
not opn/cls 

If 1 
output 
binary 
data 
append 
open/close 



These ,fords ShOlllci not be used as line descriptors or 
variuble nl1Pies: 

ADS }\tiD 7'1, r-T )\f:r.irCN ATN 

,BGE? Br,O,.D npUT n:i\VE BYf; 

Cl.DD cr~Lr. CHAtJNEL CHR$ CLEAR CLOSE CaNT COS 

DATA DEF DELETE DIn DISK DO DROP 

EDIT ELSE EnD ENTER EOF EXP 

FILE FOR FRE 

GET GOPROC GOSUB GOTO 

HEX HEX$ 

IF INP INPUT INT 

LEFT$ LEN LET LIST LOAD LaC LOG 

r'lATCH MID$ 

NEW NEXT NOT 

OCT OCT$ ON OPEN OR OUT 

PEEK POKE pas PRINT PROCEDURE PUT 

READ RECEIVE RECORD REt., RESTORE RETURN RIGHT$ RND 

SAVE SGN SIN SPACES SPC SQR STEP STOP STR$ SYI-1BOL 

TAB TAN THEN TO TYPE 

USR 

VAL 

WAIT 

H 

RUN 



Known Bugs, Limitations, and Peculiarities 

Hopefully this section will remain small. We have, however, 
decided to not ignore the fact, like some manufacturers do, 
that there will be forever bugs and other strange things in 
the system. To expect us to be perfect is asking too much, 

. but we will at least work toward that objective. In that 

. direction, we have already spent several months searching 
for these vermin, and exterminating them as quickly as 
possible. But we know that our customers will find some for 
us, so we'd appreciate it if you would let us know, preferably 
in writing, when you see any of these creatures creeping about. 
This page of the manual will change from one release to the 
next, with an effort to make the page match the release. 

CTL STK ERROR message is somewhat obscure. 

A space is required after all statements. 

Assignments of values to variables are not allowed in command 
mode unless the variable has been previously defined in a 
program. 

The expression 1/2 will evaluate to 0, since integer mode 
is retained until a floating point value is seen. Use the 
expression 1./2 or 1/2. to get the correct answer of .5 • 

The LET statement name gets put in if you don't use it. 

Parentheses may get rearranged to an equivalent sequence. 
This is a product of the way expressions are represented internally. 

Tabs are not allowed in the middle of a statement. 

Random numbers evidently always end in the digit 5. 

When entering a number in exponential (E) format, always put either 
a space, minus sign, or plus sign after the E, then two digits. 

Sometimes goes into ENTRY mode at the wrong time. 

The expression X/y*Z is evaluated in the wrong order. 



How to Load Tarbell BASIC 

If you have TARBELL BASIC on a CP/M disk, simply put the disk 
into the drive. and type TBASIC. You can ignore the rest 
of this page. 

If you have TARBELL BASIC on cassette (Tarbell, of course), 
first examine the listing of the I/O section that carne with 
the TARBELL BASIC. 

Compare the console and cassette I/O routines to the ones you 
normally use in your system, to determine if there are any 
differences. If there are, mark the necessary changes on 
the listing. 

Using either the bootstrap program or input program in the 
Tarbell cassette interface manual, or the Read-Only-Memory 
Program, or other monitor, read the TARBELL BASIC interpreter 
from the cassette into your main memory, using the starting 
address and length which is specified on the cassette. 

NOTE: TARBELL BASIC is stored on tape at a rate of 1500 
bits per second, or 800 bits per inch. A several-second 
leader of clock cycles is followed by the start-byte (3C), 
then the sync-byte (E6), then the number of bytes of program 
indicated on the cassette label under ~length", then the 
checksum, all in one big block. The start-byte and sync
byte are detected by the hardware, and it is up to the 
software to read the proper number of bytes after that, 
and to check the checksum for errors, if desired. 

If you need to make changes in the I/O section, now is the 
time to do it, using either your front panel DEPOSIT button 
or suitable monitor in ROM. Note that the top of memory 
address which is put into location SSSS is done automatically 
in CP/M systems, but may need changing for other systems. 
The default in cassette versions is to search for end of memory. 

start your computer running at the starting address specified 
on the cassette, by doing an examine and run at that location, 
or by using your ROM monitor to jump to it. 

You should now get the opening message. 



Comparisons With Other BASIC's 

Speed: 

TARBELL BASIC will generally run slower than ALTAIR BASIC 
by a factor up to three, in most tests involving numbers. 
This is because TARBELL BASIC uses 10 digits of BCD instead 
of 8 digits of binary. This precludes penny roundoff errors. 

One place where TARBELL BASIC is faster, however, is in 
variable and label (line number/descriptor) references. 
This advantage in speed will not be significant on small 
benchmark programs, but only on the larger programs, with 
many variables and labels. The reason for the higher 
speed in this area is that TARBELL BASIC substitutes 
pointers for variable and label references, so instead of 
having to make a lengthy search through a table or program, 
the item is found immediately by a vectoring method. 

If you purchase the source, you may notice that several 
of the subroutines are equivalent to Z-80 instructions. 

,One good way for Z-80 users to drastically improve the 
speed of their TARBELL BASIC, is by patching in Z-80 
instructions for these subroutines. 

Readability: 

This is where TARBELL BASIC really shines. Since most other 
BASIC's use line numbers, and are restricted to a few sig
nificant characters in the variable names, TARBELL BASIC 
allows line descriptors and long variable names. 

Formatted PRINT output (PRINT USING): 

Although PRINT USING is not currently part of TARBELL BASIC, 
it is easier to implement in a subroutine than in most other 
BASIC's. This is because arguments are allowed for the 
GOSUB and GOPROC statements, and local variables are allowed 
by using the PROCEDURE statement. 

Interpreter vs Compiler: 

The current implementation of TARBELL BASIC is as an 
interpreter. This allows the programmer to debug a 
program online, instead of continually going back and 
forth between edit, compile, and run operations. It 
does, however, take up more memory than a compiler. 
For example, whereas TARBELL BASIC requires about 
22k of memory, CBASIC requires only 15k. There is 
one ray of hope, though. Since we make the source 
available at low cost, it is quite feasible to remove 
all those portions of the interpreter that a user 
doesn't need for a particular situation. 



ABS 4-1 
alphanumeric B-1 
Altair BASIC 1 
AND 6-1, B-2 
angles 1-1 
append 

from cassette 3-1 
in edit mode 2-2 

ASC 4-1 
ASSIGN 3-1 
ATN 4-1 
BASIC texts K 
BGET 3-1 
BLOAD 3-1 
BPUT 3-1 
brackets 1-1 
branch 3-3 
BSAVE 3-1 
bugs I 
BYE 2-1 
CALL 4-1 
cassette E-l 
change 2-2 
CHANNEL 3-1 
CHR$ 4-1 
CLEAR 2-1 
colon 1-1, 2-1 
commands 2-1,2 
constant B-1 
CONT 2-1 
Control Characters 1-1, E-3 
COS 4-1 
DATA 3-1,5 
DEF 3-2 
definitions B 
delete characters 2-2 
DELETE lines 2-1 
DIM 3-2 
Direct Mode 1-1 
DROP 3-2 
EDIT 2-2 
Edit Mode 1-1, 2-2 
ELSE 3-3 
END 3-2, 2-1 
ENTER 2-1 
Entry Mode 1-1, 2~1 

error codes A 
execution 2-2 
EXP 4-1 
expression 

definition B-1 
list B-1 
logical B-2 
string B-1 

FOR 3-2,4 
FRE 10 
functions 

built-in 4-1,2,3,4 
special 5-1,2 
user-defined 3-2 

GET 3-2 
GOPROC 3-3 
GOSUB 3-3 
GOTO 3-3 
HEX 4-1 
HEX$ 4-2 
IF 3-3 
INP 4-2 
INPUT 3-3 
input 3-1,3,4, 4-2, E 
output 3-1,4,5, E 
insert 

characters 2-2 
lines 2-1 

INT 4-2 
internal formats D 
intrinsic functions 4-1,2,3,~ 
LEFT$ 4-2 
LEN 4-2 
LET 3-3 
letter B-1 
limitations I 
line descriptors 1-2 
LIST 2-1 
LOAD 3-4 
loading BASIC J 
LaC 4-2 
LOG 4-2 
logical 

device 3-1,2, E-2 
operations 3-3, 6-2 
operators 6-2, B-2 



loop 3-2,4 
machine language 

input/output 3-4, 4-2, E 
memory access 3-4, 4-2, 4-3 
subroutines 4-1,4 

MATCH 4-2 
memory usage C 
MID$ 4-2 
Modes of Operation 1-1 
multiple statements 1-1 
NEW 2-1 
NEXT 3-4 
NOT 6-2, B-2 
numeral B-1 
numeric constant B-1 
numeric expression B-1 
OCT 4-3 
OCT$ 4-3 
ON 3-4 
operators 

arithmetic 6-1 
string 6-1 
logical 6-2 

OR ·6-2, B-2 
OUT 3-4 
peculiarities I 
PEEK 4~3 

physical device 3-1,2, E-2 
pointer 
, edit 2-2 

internal D 
POKE 3-4 
POS 4-3 
power 4-1, 6-1 
PRINT 3-4 
PROCEDURE 3-5 
program examples G 
publications K 
PUT 3-5 
question mark 2-1, 3-4 
READ 3-5,1 
RECEIVE 3-5,4 

,REM 3-5 
reserved words H 
RESTORE 3-5,1 
return from edit mode 2-2 
RE',I'URN 3-5,3 

RIGHT$ 4-3 
RND 4-3 
rubout 1-1, 2-2 
RUN 2-2 
Run Mode 1-1 
sample runs F 
SAVE 3-5 
search 2-2, 4-2 
semicolon 3-3,4 
SGN 4-3 
SIN 4-3 
SPACE$ 4-3 
SPC 4-3 
SQR 4-3 
statements 3-1,2,3,4,5 
STEP 3-2 
STOP 3-5, 2-1 
STR$ 4-3 
string 

commands 2-2 
definition B-1 
functions 4-1,2,3,4 
internal format D 
operators 6-1 

,statements 3-2,3,4,5 
subroutine 3-3,5 

SYMBOL 2-2 
tab 1-1 
TAB 4-4 
TAN 4-4 
THEN 3-3 
TO 3-2 
user defined 

functions 3-2 
subroutines 4-1,4 

USR 4-4 
VAL 4-4 
variable 

assignment 3-1,3,5 
definition B-1 
list B-2 
loc(,11 3-5 
location 2-2, 4~2 
name B-1 
representation D 

WAIT 3.-5 


