
TANDEM
T16!6520 and T1616524

Video Display Units

PROGRAMMING MANUAL

T16/ 8047-AOO
82047

--

Tl6/6520 AND Tl6/6524

VIDEO DISPLAY UNITS

PROGRAMMING MANUAL

Copyright (C) 1980

TANDEM COMPUTERS INCORPORATED
19333 Vallco Parkway

Cupertino, California 95014

Product No. TlG/8047 AOO
Part No. 82047

March 1980
Printed in U.S.A.

NOTICE

This document contains information that is protected by copyright. No
part of this document may be photocopied, reproduced or translated to
another program language without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated, and may
be used only to describe products of Tandem Computers Incorporated.

AXCESS
ENFORM
EN SCRIBE
ENVOY

EXPAND
GUARDIAN
Nonstop

PATHWAY
Tandem
TGAL

HOW TO USE THIS PUBLICATION

This publication is for programmers who are using the Tandem 16
Guardian Operating System to write application programs for the
6520 terminal. Additional information related to operating and
programming the terminal can be found in the following publications.

o Tl6/6520 and Tl6/6524 Video Display Units - Operating Guide 82048
o Tandem 16 Guardian Operating System Programming Manual 82019

The information in this publication is organized to allow you to make
a simple transition from learning about the terminal's functions to
writing application programs for its use. It contains five chapters:

1. Introduction
2. Conversational Mode
3. Block Mode
4. Programming Considerations
5. Appendices

It is recommended that you use this publication by first reading
the Introduction to familiarize yourself with some of the important
terminal functions and features. Then, as you start writing appli-·
cation programs, use the remaining chapters to look up detailed
reference information related to specific programming tasks.

Introduction - Contents

This chapter provides the information needed to understand the
capabilities of the terminal. The organization is sequential;
you can read it from front to back for general meaning and content.
By using this chapter, you should be able to describe or define:

o The basic functions provided by the terminal.
o The differences between block and conversational modes.
o How memory is organized in block and conversational modes.
o The display control and attribute capabilities provided in

block and conversational modes.
o Control codes and how they are used.
o Escape sequences and how they are used.
o The file management procedures used in programming the terminal.
o The buffer addressing and cursor addressing concepts required to

read from and write to the terminal.

i-1

HOW TO USE THIS PUBLICATION

Conversational Mode - Contents

This chapter contains the reference information that you need to
program the terminal in conversational mode. By using this chapter,
you should be able to:

o Understand the functions of all the control codes and escape
sequences issued in conversational mode.

o Set video attributes for conversational mode.

Block Mode - Contents

This chapter contains the reference information that you need to
program the terminal in block mode. By using this chapter, you should
be able to:

o Understand the functions of all the control codes and escape
sequences used in block mode.

o Set video attributes for block mode.
o Set data attributes for the protect submode of block mode.

Programming Considerations - Contents

This chapter contains general information related to programming the
terminal in both block and conversational modes. By using this
chapter and the information in the Guardian Operating System
Programming manual, you should be able to:

o Access the terminal.
o Use the Write, Read, and Writeread procedures to write data to and

read data from the terminal.
o Switch modes.
o Understand function key operations.
o Understand cursor positioning and buffer addressing in block mode.
o Write data to the 25th line.
o Control the printer.

Appendices - Contents

This section contains two appendices.

i-2

1. Appendix A is a description of the data type table supplied
with the 6520.

2. Appendix B is a summary of all the control codes and escape
sequences that can be issued in block and conversational modes.

CONTENTS

INTRODUCTION
Overview ~ . . .
Conversational Mode Capabilities

Memory Organization
Submodes •••••••
Display Control
Cursor Movement
Editing Functions
Video Attributes

Block Mode Capabilities
Memory Organization
Submodes •••••••
Display Control
Cursor Movement
Editing Functions
Video Attributes
Data Attributes •••••••

Programming Concepts
Using File Management Procedures
Control Codes and Escape Sequences
Cursor Positioning and Buffer Addressing
Selecting and Displaying Pages in Block Mode

.

Conventions ••••••••••••••••••••••••••••••••••

CONVERSATIONAL MODE
Function Overview
Functions ••••••••

BLOCK MODE
Function Overview
Functions •••••••••

PROGRAMMING CONSIDERATIONS
Description ••••••••••
Accessing the Terminal
Switching Modes ••••••
Using File Management Procedures
Block Mode Examples •••••••••
Conversational Mode Examples
Function Key Operation ••••••
Buff er Addressing In Block Mode
Writing Data to the 25th Line
Error Control ••••••••••
Controlling the Printer

APPENDIX A
APPENDIX B
INDEX

PREDEFINED DATA TYPE
ESCAPE SEQUENCES AND

.

.
TABLE •••••••••
CONTROL CODES

CONTENTS

1-1
1-1
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-6
1-7
1-7
1-8
1-9
1-10
1-10
1-11
1-12
1-12
1-13
1-14
1-14
1-15

2-1
2-1
2-3

3-1
3-1
3-4

4-1
4-1
4-1
4-2
4-3
4-3
4-6
4-8
4-9
4-11
4-11
4-12

A-1
B-1

i-3

INTRODUCTION

OVERVIEW

The 6520 terminal is an interactive terminal that provides a variety
of functions and features including:

o Two modes of operation - conversational and block. Within
each of these modes, display control, editing, and cursor
movement functions along with a full range of video and data
attributes (in block mode) are available.

o Multiple memory pages - increases throughput by keeping multiple
pages of characters available for immediate access in the
terminal's memory.

o A flexible communications interface - allows asynchronous
operation; point-to-point attachment; and up to nine different
asynchronous speeds.

The terminal keyboard is a typewriter style layout with 16 program
function keys (providing 32 functions shifted and unshifted), an
integral 10-key pad, local editing functions and an audible alarm.

Optionally, the terminal can support an external printer with the
addition of an RS-232 output port that controls a serial printer.
With this option, the terminal is designated as the 6524.

Figure 1-1 is an overview of the terminal and its operating
environment. The key elements of the figure are:

o The application programs, that you write, which communicate
through procedure calls with the Guardian file management
system.

o The Guardian file management and terminal processes that
provide the software interface between the application
program and the terminal hardware.

o The terminal and its connections to the software system.

Your major concerns as an application programmer will be: .how to .
assign attributes (video and data) to specific pieces of information
on the terminal screen or in its memory and how to use the terminal
functions (cursor movement, display control, etc.) to manipulate and
display the information.

The rest of this chapter contains the general information needed
to understand the functions provided by the terminal and to understand
how to control the terminal from an application program. For detailed
information on these topics see the Conversational Mode, Block Mode,
and Programming Considerations chapters of this publication.

1-1

INTRODUCTION

USER
APPLICATION

ENVIRONMENT

Application
program A

Application
program B

Application
program C

G
u
a
r
d
i
a'
n

f

e
m
a
n
a
g
e
m
e
n
t

s
y
s
t
e
m

SOFTWARE
SYSTEM

Guardian
terminal
process

HARDWARE

Async
terminal

controller

Figure 1-1. Overview of 6520 Operating Environment

1-2

INTRODUCTION

CONVERSATIONAL MODE CAPABILITIES

In conversational mode, the terminal transmits characters as key­
strokes are made. Selection of conversational mode is controlled
in one of two ways:

1. If the switches inside or on the back of the terminal are set
for conversational mode, the terminal will power up in conver­
sational mode.

2. If the terminal is in block mode, it can be switched to
conversational by issuing a mode switching procedure from

your application program.

Conversational mode has two submodes: half duplex (HDX) and full
duplex (FDX). Selection of submodes is controlled by a switch inside
the terminal.

To help you understand how to use and control the capabilities
provided in conversational mode, this section describes:

o How memory is organized
o The submodes
o Display control
o Editing functions
o Cursor movement
o Video attributes

Memory Organization - Conversational Mode

Memory is treated as a continuous area of 11,520 bytes, the
equivalent of six 1920 character screens. Display memory consists
of 144 lines, 24 of which can be displayed at one time. Through use
of display control function, all the data in memory is available for
display. The memory has an index mark and, when the screen is first
displayed, the index mark is aligned with the top of the screen.
Unless specified otherwise by cursor movement functions, data entry
starts from the top of the screen and proceeds line-by-line to the
24th line. When the 24th line is filled, data continues to be entered
on the 24th line and the previous data is automatically scrolled off
the top; no data is lost. Data that is moved off the top of the
screen continues to be stored until it is about to appear on the
bottom of the screen; it is then erased to blanks.

In conversational mode, the 25th line is used as the status display
line and since it resides in its own memory space, it is accessible
to an application with up to 64 character spaces available for
displaying information.

For an explanation of the functions available for viewing data that is
not on the screen, see the Display Control section of this chapter.

1-3

INTRODUCTION

Submodes - Conversational Mode

In the FDX submode, codes are transmitted, but not acted on, as they
are entered from the keyboard. The codes are not stored or displayed.
Incoming characters are always received and interpreted as displayable
characters, control characters or escape sequences. All displayable
characters are stored and displayed at the current cursor position and
the cursor is incremented to the next position. If the cursor is at
column 80, it is incremented to the first column of the next line. If
the cursor is at column 80 of the 24th line, it is moved to the first
column of the 24th line and the display is moved up one line.

In the HDX submode, all keystrokes are acted upon within the terminal
and transmitted. For example, a typed cfiaracter causes the terminal
to transmit the character, store and display it at the current cursor
position, and increment the cursor by one position. For incoming
data, the HDX submode acts exactly the same as the FDX submode.

Display Control - Conversational Mode

Display control functions allow the operator or application program to
control what appears on the display screen by moving lines of data
from the memory onto the screen. In conversational mode, the
following functions are available.

0 Roll up
0 Roll down
0 Next page
0 Previous page
0 Set line width to 40/80 characters

Cursor Movement - Conversational Mode

The cursor is identified as a blinking underline or an inverse block
and cursor movement functions allow the operator or an application
program to control the position of the cursor on the screen. In
conversational mode, the cursor movement functions include:

o Set/Clear tabs
o Tab
o Cursor Up/Down/Left/Right/Home/Home Down

Attempts to move the cursor off the right side of the screen result in
the cursor moving to the first position of the next line. Attempts to
move the cursor off the left side of the screen result in the cursor
moving to the last position of the previous line. Attempts to move
the cursor off the top or bottom of the screen result in existing
lines being moved down onto the bottom of the screen or being moved
up onto the top of the screen.

1-4

INTRODUCTION

When the index mark inside the display memory aligns with the top of
the screen, further movement down is inhibited. When the index mark
is aligned with the 24th line, new lines moved up onto the bottom of
the screen are blanked.

Editing Functions - Conversational Mode

Editing functions allow the operator or application program to change
data after it appears on the display; the change is permanent and the
new data will be placed into or removed from memory. Editing
functions should be distinguished from display control functions that
simply display different parts of the memory, but do not change the
actual information in the memory. In conversational mode, the editing
functions are:

o Erase line
o Erase page

Video Attributes - Conversational Mode

In conversational mode, video attributes can be turned on in one of
two ways:

1. By issuing the set video escape sequence followed by one byte
of video attributes (in ASCII character code form).

2. By issuing the set video condition prior register escape
sequence followed by one byte of attributes (in ASCII character
code form). When this escape sequence is issued, the selected
attributes are stored in a register and the attribute remains
in effect for the entire screen unless another attribute is
encountered.

1-5

INTRODUCTION

Regardless of how the attributes are defined, they perform the same
functions on the screen. A video attribute is in effect until it is
rolled off the screen or until another attribute is encountered. The
available video attributes are:

Underscore

Blinking

Reverse

Dim

Blank

the character positions following the attribute
bit definition are underscored. The character
above the underscore is not reduced in size.

the video attribute position and following
character positions blink.

the attribute position and following character
positions are displayed as reverse video.

the attribute position and following character
positions are displayed at half intensity.

the attribute position and following character
positions will not be displayed. This attribute
takes precedence over all other attributes.

Note that combinations of attributes (e.g, reverse dim} can be
issued.

BLOCK MODE CAPABILITIES

In block mode, the terminal has the capability of transmitting and
receiving blocks of data.

Selection of block mode occurs in one of two ways:

1. If the switches inside or on the back the terminal are set for
block mode, the terminal will power-up in block mode.

2. If the terminal is not in block mode, it can be entered by
issuing a procedure call from your application program.

The terminal is always ready to receive blocks of data, but it only
transmits when a function key is used, or when an escape sequence
requesting data is received.

Block mode has two submodes: protect and non-protect. Selection of
submodes is controlled by escape sequences from the application
program.

1-6

INTRODUCTION

To help you understand how to control and use the capabilities
provided in block mode, this section describes:

o How memory is organized
o The submodes
o The display control functions available
o Cursor control
o Editing functions
o Video attributes
o The data attributes that can be defined for characters and

fields in the protect submode.

Memory Organization - Block Mode

In block mode, memory is organized as:

1. Seven 1920-character pages where each page is displayed as 24
lines of 80 characters each

or
2. Ten 960-character pages where each page is displayed as 24

lines of 40 double-width characters.

The default is 1920-character pages and it can be changed by use of
an escape sequence from the application program.

Only one page can be displayed at a time and the operator cannot move
from page to page without the aid of the application program. The
program can perform I/Oto or from the pages at any time. However,
there is no I/O or editing across page boundaries.

Less than seven pages can be defined as useable for the display and
the remaining memory can be used for additional data attribute space.

Submodes

In non-protect submode, all character positions are treated the
same; the cursor can be positioned anywhere on the screen and data
can be entered into any field.

In protect submode, individual character positions and an area of
adjacent character positions on the screen (called a field) can be
defined to have various attributes. The attributes specify:

o How information is to be displayed (video attributes)
o What the user can enter in the position and what specific

characters are allowed (data attributes)

1-7

INTRODUCTION

In protect submode, it is most convenient to think of all operations
as taking place over the fields that you define. Fields can be any
length and can span lines. When fields are defined as protected,
they cannot be modified from the keyboard and the cursor cannot be
positioned into their area. However, application programs can write
into protected fields by using appropriate control codes and escape
sequences.

In protect submode, the first position of the first row on the page
is always protected; it is the start of the first field on the page.
Subsequent fields can be defined on the page in any sequence. Each
field definition starts with a buffer address followed by a start
field control sequence. After issuing a start field control sequence,
all character positions on the screen to the start of the next field
have the same attribute. When another start field is encountered, the
host processor program sets the buffer address to the start of the
next field and defines the attributes for that field: terminating the
previous field.

Each field on the screen has an associated entry in an off-screen
table that defines its data attributes. This table is built as the
page is defined and cleared as particular fields are deleted.

When a field is defined, its starting address is the address of the
video attribute. However, the entry for the field in the attribute
table points to the next position on the screen; this position is
where data attributes take effect. The video/data attribute address
pair will always remain intact with the video attribute being the
controlling item. When field modification (insert line, delete line,
etc.) is requested and the address range includes one but not both of
the atcributes, the requested change will occur to the screen.
However, the requested change to the data attribute table will only
occur if the address range includes the address of the video
attribute.

Display Control - Block Mode

In block mode, particular pages can be selected for display through
issuing an escape sequence from your application program.

1-8

INTRODUCTION

Cursor Movement - Block Mode

The cursor is identified as a blinking underline or an inverse block;
cursor movement functions allow the operator or an application program
to control the position of the cursor on the screen. In block mode,
the cursor movement functions are:

o Set tab
o Clear tab
o Tab
o Cursor Up/Down/Right/Left/Home/Home Down

Attempts to move the cursor off the right side of the screen result in
the cursor moving to the first position of the next line. Attempts to
move the cursor off the left side of the screen result in the cursor
moving to the last position of the previous line. Attempts to move
the cursor off the top or bottom of the screen result in the cursor
wrapping around to the opposite edge of the screen.

Each page in memory has a separate cursor and when a new page is
displayed, the cursor moves to the location stored for this page.
This location can be: the same location as the last displayed page,
a new location set by the host processor program, or the default home
position if the cursor has not been set previously.

In protect submode, the cursor cannot be positioned into a protected
character position on the display by the operator or by the
application program. If an attempt is made to position the cursor
into a protected field, the terminal will move the cursor from this
position to the beginning of the next unprotected field--wrapping
around the page boundaries if necessary. If there are no unprotected
fields on the page, the cursor will not be displayed.

1-9

INTRODUCTION

Editing Functions - Block Mode

Editing functions allow the operator or application program to
change data on a page; the change will be permanent. In block mode,
the editing functions available depend on whether protect or
non-protect submode is selected.

In non-protect submode, the functions are:

0 Insert line
0 Delete line
0 Erase line
0 Erase page
0 Insert character
0 Delete character

In protect submode, the functions are:

0 Erase field
0 Erase page
0 Insert character
0 Delete character
0 Insert line
0 Delete line

Video Attributes - Block Mode

In block mode, video attributes can be turned on in one of three
ways:

1. By issuing the set video escape sequence followed by one byte of
video attributes (in ASCII character code form). This function
can be used to store video attributes anywhere on the page,
making it possible to define several video attributes within a
field.

2. By issuing the set video condition prior register escape
sequence followed by one byte of attributes (in ASCII character
code form). When this escape sequence is issued, the selected
attributes are stored in a register and the attribute remains in
effect for the entire page unless another attribute is
encountered. A value for the prior condition is maintained for
each page and when a new page is displayed, this value is loaded
into the hardware register.

3. By issuing the Start Field control code or Start Field
Extended escape sequence followed by two bytes of attributes,
with the first byte defining video attributes for fields in
protect submode.

1-10

INTRODUCTION

Regardless of how the attributes are defined, they perform the same
functions on the screen. A video attribute is in effect until a new
page is loaded or until another attribute is encountered. The
available video attributes are:

Underscore

Blinking

Reverse

Dim

the character positions following the attribute
bit definition are underscored. The character
above the underscore is not reduced in size.

the video attribute position and following
character positions blink.

the attribute position and following character
positions are displayed as reverse video.

the attribute position and following character
positions are displayed at half intensity.

Blank the attribute position and following character
positions will not be displayed. This attribute
takes precedence over all other attributes.

Note that combinations of attributes (e.g., reverse dim} can be
issued.

Data Attributes - Block Mode

In protected submode of block mode, data attributes can be specified
for characters and fields on a page by issuing the start field control
code or the start field extended escape sequence followed by two
bytes of data in ASCII charaster code form; the first byte defines the
video attributes as described previously and the second byte defines
the following data attributes:

o Modified data tag
o Data type including: no restriction, alpha, numeric,

alphanumeric, full numeric, full numeric with space,
alpha with space, and alphanumeric with space.

o Auto - Tab disable
o Protected
o Upshift

See the BLOCK MODE chapter of this publication for a detailed
description of data attributes, data types and their implementation
through escape sequences and control codes.

1-11

INTRODUCTION

FROG.RAMMING CONCEPTS

As illustrated previously, in Figure 1-1, control of the terminal is
through the standard Guardian interface supplied with the system.
However, your installation can write its own application programs
to commmunicate with the terminal operator. These programs communicate
through the Guardian file management system and in this publication,
the word "application program" is used to denote the program
communicating with the terminal through the standard interface. To
effectively write application programs, you need to understand the
following basic concepts.

o Using file management procedures to read and write data from
the 6520 and to write control codes and escape sequences to
the terminal.

o Using control· codes and escape sequences to control terminal
functions.

o Positioning the cursor and writing to memory positions using
buffer addressing.

o Selecting and displaying pages in block mode.
o The conventions used in this publication.

This section provides a brief overview of the preceding concepts.
See the PROGRAMMING CONSIDERATIONS chapter of this publication for
detailed information related to programming for the terminal.

Using File Management Procedures

To control the terminal from within an application program, you
use the following procedures:

o OPEN
o READ
o WRITE
o WRITEREAD
o SETMODE

These procedures allow you to: open the 6520 as a file and establish
communications between your application program and the terminal
(file); write escape sequences and control codes to the terminal; read
from and write data to the terminal; and to change modes (block to
conversational and vice versa). For detailed information about coding
the procedures, see the file management section of the GUARDIAN
OPERATING SYSTEM PROGRAMMING MANUAL. For detail related to using the
procedures to control the 6520, see the PROGRAMMING CONSIDERATIONS
chapter of this publication.

1-12

INTRODUCTION

Control Codes and Escape Sequences

Control codes are not stored or displayed, but are acted on
immediately by the 6520. These codes (ranging from %00 to %37) can be
issued from an application program to control the functions shown in
Table 1-1.

Table 1-1. Control Code Functions

ASCII Keys used Function Mode (s)
Code

NUL %00 CTRL @ Fill character - not B & c
stored in buffer

SOH %01 CTRL A Function key header B & c
ENQ %05 CTRL E Send ACK c only
ACK %06 CTRL F Acknowledge ENQ c only
BEL %07 CTRL G Sound Alarm B & c
BS %10 CTRL H Cursor left one space B & c
HT %11 CTRL I Cursor to next tab stop B & c
LF %12 CTRL J Cursor down one line B & c
CR %15 CTRL M Cursor beginning of

of current line B & c
DCl %21 CTRL Q Set buff er address B only
DC3 %23 CTRL s Set cursor address B only
ESC %33 CTRL [Interpret next character B & c

for function
GS %35 CTRL Start field B only

NOTE: B = block mode and C = conversational mode

All other codes within the range %00 through %37 are ignored.

NOTE: Problems can occur if you use control characters in passwords
when logging onto the system. Since they are echoed back to
the 6520 by the system, actions different from the ones that
you anticipated can occur at the terminal. To avoid problems,
all of the control codes in Table 1-1 should normally be
avoided in passwords. For example, do not use CTRL Q as a
password.

Escape sequences are a control code (ESC or CTRL [) followed by
another character and, in some cases, data. The control code modifies
the interpretation of the next character and you use escape sequences
to perform a variety of functions in both block and conversational
mode. See the BLOCK MODE and CONVERSATION MODE chapters of this
publication for detailed information on control codes and escape
sequences.

1-13

INTRODUCTION

Cursor Positioning and Buffer Addressing

As you write application programs, you need to make a distinction
between cursor position and buffer addressing. For the 6520, the
cursor position is an offset from the home position on the screen. In
both block and conversational modes all keyboard operations take place
at the cursor position. After keyboard entry, the cursor will advance
one position.

In block mode, buffer addressing is used to specify where the output
from your application program will be written; the output can be
written to any part of the screen regardless of cursor position or
whether or not the screen contains protected fields. Each separate
page in block mode has its own cursor. Therefore the cursor position
and the buffer address can be the same or different, allowing you
write to different areas while reading operator input from the cursor
position. Additionally, buffer addressing can be used to read selected
parts of a page.

Cursor position and buffer addresses are specified by issuing control
sequences, in your program, followed by two ASCII characters that
indicate the row and column positions over which operations start or
take place.

Figure 1-2 illustrates the differences between memory management
and addressing in block and conversational modes.

Selecting and Displaying Pages in Block Mode

In blnck mode, another important distinction is the difference between
displayed pages and selected pages. A displayed page is the page on
the terminal screen. A selected page is the page where your program's
input and output occurs; again they can be the same of different.
Initially, when you enter block mode, the selected page and the
displayed page are both set to page 1 of memory. By issuing escape
sequences from your program, you can control which page is selected
and which page is displayed. This feature allows you to process
operator input for one page while the operator is responding to
another page of data on the screen.

1-14

INTRODUCTION

Memory
144
lines

CONVERSATIONAL MODE

Page i

BLOCK MODE

Memory
7 pages
maximum

Figure 1-2. Memory Management and Addressing in Block and

Conversational Modes

Conventions

Eight bit microprocessors traditionally number bits within a byte
from the right using bit O as the LSB. Tandem normally stores a byte
in bits 8-15 of a 16 bit word using bit 15 as the LSB. This
publication uses the microprocessor designation for the 6520 shown
below.

I OI 11 21 31 41 SI 61 71 al 9llol11112l13114llsl

71 61 sl 41 31 21 11 OI

Tandem

6520

1-15

CONVERSATIONAL MODE

FUNCTION OVERVIEW

There are five categories of functions in conversational mode:
(1) cursor movement, (2) display control, (3) editing, (4) attribute
control, and (5) miscellaneous control functions. The categories are
described below and summmarized in Table 2-1. Each function can be
controlled from an application program, communicating with the 6520,
by issuing an appropriate escape sequence or control code. In the
rest of this chapter, each function along with its associated escape
sequence or control code is described in detail in the order that it
appears in Table 2-1.

Cursor movement functions include:

0 Cursor left one space
0 Cursor down one line
0 Cursor to beginning of current U,ne
0 Cursor home
0 Cursor home down
0 Cursor right
0 Clear tab
0 Cursor to next tab stop
0 Clear all tabs
0 Set tab

Display control functions include:

0 Next page
0 Previous page
0 Roll down
0 Roll up
0 Set line width to 40 characters
0 Set line width to 80 characters

Editing Functions include:

o Erase to end of line.
o Erase to end of page.

Attribute Control Functions include:

o Set video attribute
o Set video prior condition register

2-1

CONVERSATIONAL MODE

Miscellaneous control functions include:

o Define RETURN key
o Fill character
o Function key header
o Interpret next character for function
o Modem disconnect
o Print page
o Read terminal status
o Send ACK/Acknowledge ENQ
o Sound audible alarm

Table 2-1. 6520 Programming ·Functions - Conversational Mode

Function
Clear all tabs
Clear memory to spaces
Clear tab
Cursor down one line
Cursor home
Cursor home down
Cursor left one space
Cursor to beginning of line
Cursor to next tab stop
Cursor right
Define RETURN key
Display text on 25th line
Erase to end of line
Erase to end of page
Execute self-test
Fill character
Function key header
Interpret next character
for function
Modem disconnect
Next page
Previous page
Print page
Read terminal status
Roll up
Roll down
Send ACK/Acknowlegde ENQ

Set line width to 40 chars
Set line width to 80 chars
Set tab
Set video attribute
Set video prior condition
register
Sound Audible Alarm

Contr6lled By
ESC 3
ESC I
ESC 2
code %12 (LF)
ESC H
ESC F
code %10 (BS)
code %15 (CR)
code %11 (HT)
ESC C
ESC u
ESC o
ESC K
ESC J
ESC z
code %00 (NUL)
code %01 (SOH)
code %33 (ESC)

ESC f
ESC U
ESC V
ESC 0
ESC "'
ESC S
ESC T
codes %05 (ENQ)

%06 (ACK)
ESC 8
ESC 9
ESC 1
ESC 6
ESC 7

code %07 (BEL)

--
2-2

CONVERSATIONAL MODE

FUNCTIONS

Each function in this section is described in the order that it
appears in Table 2-1.

Clear All Tabs ••• ESC 3.

All tabs will be cleared simultaneously.

Clear Memory to Spaces ••• ESC I

All memory will be cleared to spaces. After the memory is cleared,
the cursor is placed in the home position and all lines are set to
display 80 characters.

Clear Tab ••• ESC 2

The tab is cleared at the current cursor position.

Cursor Down One Line (LF) • • • %12

The cursor is moved down one line. If the cursor is at the 24th
line, the display is scrolled up one line.

Cursor Home ••• ESC A

The display is scrolled down until the index mark is aligned with the
top of the screen and the cursor is placed in the upper left-hand
corner.

Cursor Home Down ••• ESC F

The display is scrolled up until the index mark is at the 24th line
and the cursor is placed at the 1st position of the line.

Cursor Left One Space (BS) %10

The cursor ~s moved left one space. If the cursor is at the home
position on the screen, it will be moved to the last position of the
previous line and the screen will be rolled up one line unless the
index mark is aligned with the top of the screen.

Cursor Right ••• ESC C

The cursor is moved right one column. If the cursor is at the last
position of the screen, it is moved to the beginning of the next line
and the display is scrolled up one line.

Cursor to Beginning of Current Line (CR) ••• %15

The cursor is moved to the beginning of the current line.

2-3

CONVERSATIONAL MODE

Cursor to Next Tab Stop (HT) ••• %11

The cursor is moved to the next specified tab stop.

Define RETURN Key ••• ESC u

Upon power-up, the return key is set to generate a CR code in conver­
sational mode. To modify this code when the RETURN key is presseq,
issue:

--
ESC u <count> <string>

where:

count

string

is one character indiciating the length
in bytes of <string> biased by %40;
count therefore will equal length + %40.

is an arbritrary character string that
will be generated when the RETURN key
is pressed. Its maximum length is 8
characters.

For example, to generate CR LF, issue the following.

ESC u <"> <CR> <LF>

Display Text on 25th Line ••• ESC o

To display text on the 25th line, issue ESC o followed by a text
string. The 6520 will display the text following the ESC o. To
terminate the text string, follow it with a CR or any control sequence
except ESC 6. A maximum of 64 characters can be displayed. The 25th
line will be immediately blanked to display the characters. The
characters can be erased by sending a null string: i.e. ESC o CR.

Erase to End-of-Line ••• ESC K

All cursor positions, beginning with the current cursor position, are
written to spaces. The cursor position does not change.

Erase to End-of-Page ••• ESC J

All character positions in memory, beginning with the current cursor
position, are written to spaces. The position of the cursor does not
change.

2-4

CONVERSATIONAL MODE

Execute Self-Test ••• ESC z

Self-test does a test of the RAM and ROM, and puts a pattern on the
display. This pattern - containing all of the characters capable of
being displayed as well as characters displayed with all of the video
attributes - indicates that the self-test has passed. Symbols
occupying the 32 control character positions in the ROM will not be
displayed. Any error conditions are displayed on the 25th line.

After execution of self-test, the original contents of memory are lost
and the screen will contain the test pattern. The terminal will be
returned to the mode (block or conversational) that it was in when the
self-test was issued.

Fill Character (NUL) %00

The character is not stored in the buffer.

Function Key Header (SOH) ••• %01

In conversational mode, when a function key is depressed a predefined
sequence starting with %01 and terminating with a CR is transmitted.
The format of the sequence is

I l
I SOH <char> <cursor> CR I
I I
I where: I
I l
I char is an ASCII @ through 0 for Fl - Fl6 unshifted I
I or an ASCII ' through o for Fl - Fl6 shifted. I
I I
I cursor is a two-byte sequence specifying the current I
I cursor position. The format of this sequence I
i is two ASCII characters, representing the row I
I and column respectively. The ASCII characters I
I are derived from the respective absolute row and l
i column numbers by adding %37. This results in l
i characters space through 7 (%40 - %67) represent- I
I ing rows 1 -24 and characters space through o I
I (%40 - %157) representing columns 1-80. l
I l
--
Note that the preceding sequence can be echoed back by the host.
Therefore, when the terminal receives a %01, it ignores it and all
subsequent characters up to and including the next CR unless the
character immediately following the %01 is a B or C which indicate
that the sequence is a mode switching message. See the PROGRAMMING
CONSIDERATIONS chapter for a discussion of mode switching.

2-5

CONVERSATIONAL MODE

Interpret Next Character For Function {ESC) ••• %33

The terminal sets an internal flag that causes the character sequence
following the %33 to be interpreted differently. This character
sequence is known as an escape {ESC) sequence and it is used to
control terminal functions.

Modem Disconnect ••• ESC f

The terminal places the Data Terminal Ready line into a low state for
three seconds which causes the terminal to "hang up."

Next Page ••• ESC U

The display is moved up 24 lines and the next available 24 lines in
memory are displayed.

Previous Page ••• ESC V

The display is moved down 24 lines.

Print Page ••• ESC 0

The 24 lines on the display are sent to the printer port for printing.
This function is available for printers that have an RS-232C signal
interface. See the PROGRAMMING CONSIDERATIONS chapter of this
publication for an explanation of controlling the printer.

CONVERSATIONAL MODE

Read Terminal Status ••• ESC A

The 6520 transmits its status to the program. The format of
this message is:

--
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

SOH char status CR

char is an ASCII ? (%77)

status is a three-byte sequence, with the following format:

6 5 4 3 2 1 0
byte i I i I I I

~--1~-----,-----1-----1---r---1---

' I I I I 1=: -r I I I __ _
I I I I __ _
I I I ___ _
I I I
I I I ____ _
I I
I l~--~--
1 l~~~~~~-
1~~~~~~~~~~~

6 5 4 3 2 1 0
byte 2

6 5 4 3 2 1 0
byte 3

!=Self-test passed
O=Self-test failed
!=Power-up or self-test
O=Conditions normal
!=Printer timed out

on last operation
O=last printer

operation sucessful
O=no printing in process
l=printing in process
Unused

Terminal ID

Firmware Revision Level

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--
The status bytes are described in Table 2-2.

2-7

CONVERSATIONAL MODE

Table 2-2. Terminal Status Bytes

Self-test passed = 1 when the last execution of self-test was
successful.
Self-test passed = O when either the last execution of self-test
was unsuccessful or if self-test has not been run since the last
power-up.

Printer status = 1 when the last printer operation timed out
waiting for a data terminal ready from the printer to occur.
Printer ~tatus = O when the last printer operation succeeded.

Print in process = 1 when a printer operation is in process and
0 when no printer operation is in process.

Power-up or self-test = 1 when either a power-up has occurred
or self-test has been run. This bit is reset when status has
been read successfully.

Terminal ID is a code which will be used to distinguish between
various Tandem terminal products. For the initial product
described in this publication, this code will be a "C".

Firmware Revision Level is a code which will be used to
distinguish between various firmware revision levels of a given
product. For the initial product described in this publication,
this code will be a "C". The revision level will be changed
each time the firmware is revised. This code is displayed in
column 80 of the 25th line while self-test is executing.

--

2-8

CONVERSATIONAL MODE

Roll Up ••• ESC S

The display will move up one line each time this sequence is issued.
When the index mark is aligned with the 24th line, this sequence will
be ignored.

Send ACK/Acknowlege ENQ •••• %05 (ENQ) or %06 (ACK)

Since some of the control codes and escape sequences that are received
by the terminal can take longer than one character sequence to
process, the terminal has a software procedure that is used to buffer
incoming characters until they can be processed. Under some
circumstances, this procedure can be overrun. To control this
problem, fill characters or time delay sequences can be used after the
time-consuming sequences. An alternative solution is to send an %05
(ENQ) at any time. The terminal will respond with a %06 (ACK) only
when the buffer is empty. To guarantee no overruns, the ENQ should be
sent after every 256 characters. Under normal circumstances, the ACK
will be returned immediately.

Set Line Width to 40 Characters ••• ESC 8

The line containing the cursor is set to display 40 double-width
characters and the remaining characters, on the line, are not
displayed. This escape sequence affects only the line containing the
cursor and all other lines are displayed as 80 characters unless an
ESC 8 has been issued for them. As new lines are created (because of
roll-up), the lines are set to 80 characters. If the cursor is beyond
the 40th column when this sequence is issued, it is moved to the first
position of the current line.

Set Line Width to 80 Characters ••• ESC 9

The line containing the cursor is set to display 80 characters.

Set Tab ••• ESC 1

Tabs are set at the column of the current cursor position for all
lines on the screen. The tabs do not take up space on the screen.

2-9

CONVERSATIONAL MODE

Set Video Attribute ••• ESC 6

Video attributes are modified in conversational mode by issuing ESC 6
followed by an ASCII character corresponding to the binary values
below.

--
I
I

6 5 4 3 2 1 0 I
0 I 1 I I

I
I I. l I I
I I I l is 1 for dim and I
l I I - I O for normal
I I I I
I I I is 1 for blinking and I
I I 0 for normal I
I I I
I I is 1 for reverse video I
I I and O for normal I
l I I
I I is 1 for blank and I
I I 0 for normal I
I I I
I I is 1 for underscore I
I I and O for normal I
I I is 1 I
I I
I is O I

I
I
I
I

---------------------------~--

For example, to turn on a reverse video blinking field, issue ESC 6 &
(&is the ASCII character code corresponding to binary 0100110).
Issuing an ASCII character that is outside the range will cause all
normal attributes to be assigned.

2-10

CONVERSATIONAL MODE

An attribute takes up a character position on the screen and is
displayed as a blank with the same attribute as the field it is
defining with one exception: the underscore is not turned on until the
character following the attribute. When underscore is turned off, the
effect is immediate.

The video attribute remains in effect until the next attribute
character is encountered: left-to-right and top-to-bottom on the
screen. When a video attribute rolls off the top of the screen, the
rest of the characters return to normal until another video attribute
is encountered.

Set Video Prior Condition ••• ESC 7

ESC 7 should be followed by a video attribute character as described
in the previous section. The terminal will load the video prior
condition register with the specified attribute and it will remain in
effect for the entire screen unless another attribute is encountered.
The attribute does not occupy a position on the screen. When memory
is cleared, the attribute remains in effect and can be changed only
by jssuing another ESC 7. Upon power-up, the video prior condition
register is initialized to normal video.

Sound Audible Alarm (BEL) ••• %07

When this code is received, the terminal will sound an audio tone.

2-11

BLOCK MODE

FUNCTION OVERVIEW

There are five categories of functions in block mode: (1) cursor
movement, (2) editing, (3) attribute control, (4) page control, and
(5) miscellaneous control functions. The categories are described
below and summarized in Table 3-1. Each function can be controlled
from an application program, communicating with the 6520/6524, by
issuing an appropriate escape sequence or control code. In the rest
of this chapter, each function along with its associated escape
sequence or control code is described in detail in the order that
it appears in Table 3-1.

Cursor Movement Functions include:
o Cursor left one space
o Cursor down one line
o Cursor to beginning of current line
o Cursor to next tab stop
o Cursor home
o Cursor home down
o Cursor right
o Cursor up
o Back tab
o Clear all tabs
o Clear tab
o Set tab

Editing Functions include:
o Clear to spaces
o Delete character
o Delete line
o Disable line editing
o Insert character
o Insert line
o Erase to end of line/field
o Erase to end of page

Attribute Functions include:
o Define data type table
o Set video attribute
o Set video prior condition register
o Start field
o Start field extended
o Reset modified data tags

Page Control Functions include:
0 Display page
0 Select page
0 Set page size to 960
0 Set maximum page number

3-1

BLOCK MODE

Miscellaneous Control Functions include:
o Enter protect submode
o Exit protect submode
o Lock keyboard
o Unlock keyboard
o Read buff er
o Read cursor address
o Read with address
o Read terminal status
o Print page
o Display text on 25th line
o Modem disconnect
o One second delay
o Simulate function key
o . Execute self-test
o Reinitialize
o Fill character
o Interpret next character for function
o Set buff er address
o Set cursor address
o Sound audible alarm

Table 3-1. 6520 Programming Functions - Block Mode
Part 1 of 2

3-2

Function

Back tab
Clear all tabs
Clear tab
Clear to spaces
Cursor down one line
Cursor home
Cursor home down
Cursor left one space
Cursor right one space
Cursor to beginning of
current line
Cursor to next tab stop
Cursor up
Define data type table
Delete character
Delete line

Controlled By

ESC i
ESC 3
ESC 2
ESC I
code %12 (LF)
ESC H
ESC F
code %10 (BS)
ESC C

code %15 (CR)
code %11 (HT)
ESC A
ESC r
ESC P
ESC M

BLOCK MODE

Table 3-1. 6520/24 Programming Functions - Block Mode
Part 2 of 2

--
Function

Disable line editing
Display page
Display text on 25th line
Enter protect submode
Erase to end of line/field
Erase to end of page
Execute self-test
Exit protect submode
Fill character
Insert character
Insert line
Interpret next character
for function
Lock keyboard
Modem disconnect
One second delay
Print page
Read buffer
Read cursor address
Read terminal status
Read with address
Reinitialize
Reset modified data tags
Select page
Set buffer address
Set cursor address
Set maximum page number
Set page size to 960
Set tab
Set video attribute
Set video prior condition
register
Simulate function key
Sound audible alarm
Start field
Start field extended
Unlock keyboard

Controlled By

ESC N
ESC ;
ESC o
ESC W
ESC K
ESC J
ESC z
ESC X
code %00 (NUL)
ESC 0
ESC L

code %33 (ESC)
ESC c
ESC f
ESC @
ESC 0
ESC <
ESC a
ESC ""
ESC =
ESC q
ESC >
ESC
code %21 (DC!)
code %23 (DC3)
ESC p
ESC t
ESC 1
ESC 6

ESC 7
ESC d
code %07 (BEL)
code %35 (GS)
ESC [
ESC b

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3-3

BLOCK MODE

FUNCTIONS

Each function in this section is described in the orqer that it
appears in Table 3-1.

Back Tab ••• ESC i

In non-protect submode, the cursor is moved to the previous columnar
tab stop or to the first column of the current line if there are no
further tab stops on the current line. If the cursor is in the first
colummn of the line, it is moved to the rightmost tab stop of the
previous line.

In protect submode, the cursor is moved to the first unprotected
position of the previous field in the page if it is at the beginning
of a field when the back tab is issued. If there is no unprotected
previous field, the cursor moves to the lower right-hand c~rner of the
screen and the search continues. If the cursor is not at the
beginning of a field when back tab is issued, it moves to the first
position of the field that it is in.

Clear All Tabs ••• ESC 3

All tabs will be cleared.

Clear Tab ••• ESC 2

The tab is cleared at the current buffer address.

Clear to Spaces ••• ESC I

This sequence is followed by a pair of buffer addresses specifying the
starting row and column and the ending row and column over which the
clearing occurs. The buffer addresses are transmitted as two encoded
ASCII characters representing the row and column respectively. The
ASCII chararacters are derived from the respective absolute row and
column numbers by adding %37. This results in space through 7
(%40 through %67) representing rows 1-24 and space through o
(%40 through %157) representing columns 1-80.

In non-protect submode, this escape sequence causes the page from the
first specified address through the last address to be written to
spaces. There is no modification of the buffer address or cursor
address by this sequence.

In protect submode, this escape sequence causes the page from the
first specified address through the last specified address to be
written to spaces. Additionally, if any of the locations in the range
are exactly equal to the start address of a field (this would normally
contain the video specification for the field), the associated entry
in the attribute table will be deleted. After this operation is
complete, the cursor is in a protected position and it will tab
forward to the next unprotected position. If there are no remaining

3-4

BLOCK MODE

unprotected positions on the page, the cursor will not be displayed.
The current buffer address is not modified by this sequence.

Cursor Down One Line (LF) ••• %12

The cursor is moved down one line. If the cursor is at the 24th
line, the display is scrolled up one line.

Cursor Home ••• ESCH

The 6520 puts the display in the home position, corresponding to the
first column of the first row of the page in non-protect submode and
the first position of the first unprotected field in protect submode.

Cursor Home Down ••• ESC F

The 6520 puts the display in the home down position, corresponding to
the first column of the 24th row of the page in non-protect submode
and the first position of the last unprotected field in protect
submmode.

Cursor Left One Space (BS} ••• %19

The cursor is moved left one space. If the cursor is at the first
position on the screen, it will be moved to the last position of the
previous line.

Cursor Right ••• ESC C

The cursor is moved right one column. If the cursor is at the last
position of the line, it is moved to the beginning of the next line.

Cursor to Beginning of Current Line (CR) •• %15

In non-protect submode, the cursor will be positioned to the beginning
of the next line. In protect submode, the cursor is moved to the next
tab stop.

Cursor to Next Tab Stop (HT) ••• %11

In non-protect submode, the cursor is moved to the next columnar tab
stop or to the first column of the next line if there are no further
tab stops on the line. In non-protect submode, there is only one set
of columnar tab stops and they apply to all pages.

In protect submode, the cursor is moved to the first unprotected
position of the next field in the page. If there are no unprotected
fields, the cursor moves around the home position and the search
continues.

Cursor Up ••• ESC A

The cursor is moved up one line.

3-5

BLOCK MODE

Define Data Type Table ••• ESC r

The data type attribute defines which of several possible sets of
characters can be entered into a field. The attribute is 3 bits long
and it defines allowable characters to be from one of eight possible
sets. The sets are defined by a 96-byte table that has one byte for
each character from space through DEL (%40 through %177). For a given
entry, if bit n is a "l", then the character is a member of set n and
is allowable in a field of data type n. A character can be a member
of more than one set.

An application program can redefine this table by issuing ESC r
followed by a sequence of 96 hexadecimal-ASCII pairs (0-9, A-F).
Each pair defines one entry in the table; all 96 pairs must be defined
for each sequence. Each hexadecimal-ASCII pair is the ASCII
equivalent of the hexadecimal values of the bits in the table. For
example, the ASCII equivalent of X'AO' is AO. The new definition will
be in effect until protect submode is reentered.

A predefined data type table is stored in ROM. See Appendix A for a
description of the table, its contents and an example of how to change
it.

Delete Character ••• ESC P

In protect submode, the character at the current buffer address is
deleted and all characters to the end of field are moved left one
position. Additionally, a space is inserted at the end of the field.
If the buffer address points to a protected area, no action occurs.

In non-protect submode, the character at the current buffer address
is deleted and all characters to the end of the line are moved left
one position.

Delete Line ••• ESC M

All characters are deleted in the line at the current buffer address.
In protect submode, all field attributes in the line will be deleted
from the attribute table and no new attributes will created for the
new 24th line.

Disable Line Editing ESC N

The INS/DEL LINE key is disabled from local operation and becomes an
additional function key. The new function key operation will be in
effect until:

o Block mode is reentered
o A reinitialize escape sequence is executed
o A mode switch from protect to non-protect submode occurs

3-6

BLOCK MODE

Display Page ••• ESC ;

Issuing this sequence followed by a single character, specifying
page number, allows the application program to control which page
is selected for display. The character starts at ! (%41) repre­
senting page 1 and continues to the maximum number of pages.
Specifying page 0 (space) causes the entire screen to be blanked
and the keyboard to be locked. You should be aware of the following
when using this escape sequence.

o Writing to or reading from a non-displayed page does not
cause the keyboard to be locked.

o The selected page and the displayed page could be the same.
o If the display page and the selected page are the same, any

attempt to write to or read from the page will cause the
keyboard to lock until the operation is complete.

o The selected page continues to be displayed until a request
to display a new page is received.

o The default on entering block mode is page 1.

Display Text on 25th Line ••• ESC o

Issuing ESC o followed by a character string will cause the 6520 to
display the characters following the ESC o. To terminate the
character string, follow it with a CR or any escape sequence except
ESC 6. A maximum of 64 characters can be displayed. The 25th line
will be immediately blanked to display the characters. The characters
can be erased by sending a null string; i.e., ESC o CR.

Video attributes can be turned on and off in the 25th line by using
the set video escape sequence. Since attributes require a character
position, their use will restrict the text on the 25th line to less
than 64 characters.

Enter Protect Submode ••• ESC W

The 6520 is placed in protected submode of block mode. Upon entering
protect submode,the following conditions are in effect.

o Any printing in process is aborted.
o Tabbing is done on a field base; columnar tabs are ignored.
o Only unprotected characters can be modified from the keyboard.
o All pages are cleared to protected space.
o The set video prior condition register is set to normal video

for all pages.
o Page 1 is displayed.
o Page 1 is selected.
o The buffer address is set to row 1, column 1 for all pages.
o The cursor address is set to row 1, column 1 for all pages.
o The keyboard is locked.
o The 25th line is cleared.
o The data type attribute table is initialized to the ROM table.
o Insert mode is reset.

3-7

BLOCK MODE

Erase to ~nd-of-Line/Field ••• ESC K

In non-protect submode all character positions in the line, starting
at the current buffer address, are erased to blanks.

In protect submode, all character positions in the field, starting
at the current buffer address, are erased to blanks.

Erase to End-of-Page ••• ESC J

In non-protect submode, all character positions in the page, beginning
with the current buffer address, are written to spaces.

In protect submode, all unprotected character positions in the page,
beginning with the current buffer address, are written to spaces.

Execute Self-Test ••• ESC z

Self-test does a test of the RAM and ROM, and puts a pattern on the
display. This pattern--containing all of the characters capable of
being displayed as well as characters displayed with all of the video
attributes--indicates that the self-test has passed. Symbols
occupying the 32 control character positions in the ROM are not
displayed. Any error conditions are displayed on the 25th line.

After execution of self-test, the original contents of memory are lost
and the screen will contain the test pattern. The terminal will be
returned to the mode (block or conversational) that it was in when the
self-test was issued.

Exit f_otect Submode ••• ESC X

The 6520 is placed in non-protect submode within block mode. Upon
entering non-protect submode, the following conditions are in effect.

0 Any printing in process is aborted .
0 All character positions are treated similarly; there is no

concept of protected data.
0 All pages are cleared to spaces.
0 Page 1 is displayed.
0 Page 1 is selected.
0 The buff er address is set to row 1 and column 1 for all pages.
0 The cursor address is set to row 1 and column 1 for all pages.
0 The keyboard is locked.
0 The 25th line is cleared.
0 Insert mode is reset.
0 Local line editing is enabled.
0 All horizontal tab stops are cleared.

Fill Character (NUL) %00

The character is not stored in the buffer.

3-8

BLOCK MODE

Insert Character ••• ESC o

In non-protect submode, all characters in the line, starting at the
current buffer address, are moved one position to the right.

In protect submode, all characters in the field, starting at the
current buffer address, are moved one position to the right. If
the address is in a protected field, no action is taken.

In both protect and non-protect submode, the rightmost character
in the line or field is lost.

Insert Line ••• ESC L

The line containing the buffer address and all following lines are
pushed down one line. The 24th line will be lost and it is the
responsibility of the application program to read and save the
data on the 24th line. In protect submode, any field attribute
for a field with a starting address in the 24th line is deleted
from the attribute table and new entries will not be created in
in the table.

Interpret Next Character For Function (ESC) ••• %33

The terminal sets an internal flag that causes the character sequence
following the %33 to be interpreted differently. This character
sequence is known as an escape (ESC) sequence and you use it to
control terminal functions.

Lock Keyboard ••• ESC c

The keyboard is locked immediately; the cursor is not displayed on the
screen; and all keys with the exception of RESET are disabled. The
message KBD LOCK is displayed on the right-hand side of the 25th line.
This sequence should be used whenever data is transmitted to or from
the displayed page.

Modem Disconnect ••• ESC f

The terminal places the Data Terminal Ready line into a low state for
three seconds which causes the terminal to "hang up."

One Second Delay ••• ESC @

The 6520 will stop processing the input stream for approximately
one second; normal processing will continue after the delay.

Print Page ••• ESC 0

The 24 lines on the display are sent to the printer. This function
is available for printers that have an RS-232C signal interface. See
the PROGRAMMING CONSIDERATIONS chapter of this publication for an
explanation of controlling the printer.

3-9

BLOCK MODE

Read Buffer (ESC <)

This escape sequence causes either the entire selected page to be
transmitted to the application program (in non-protect submode) or
all unprotected fields to be transmitted (in protect submode). The
escape sequence must occupy the first two character positions in the
"TEXT" buffer (see the PROGRAMMING CONSIDERATIONS chapter for an
explanation of text transmission in block mode). The format of the
data transmitted depends on the submode of the 6520.

In non-protect submode, the text consists of the displayable data,
with any video attributes transmitted as their respective control
sequences. Trailing spaces on a line are not transmitted. The
individual lines are separated by CR characters.

Text for line 1

ESC} Define video attribute
6 }

}
More text for line 1

CR End of non-blank data for line 1
Text for line 2

etc.

In protect submode, the text consists of the data stored in all
unprotected fields, independent of whether these fields have been
modified. The transmission starts with the first unprotected field on
the selected page and continues through the last unprotected field on
the page. The address transmitted for each field is the address of
the first unprotected character of the respective field.

The format of the data transmitted is:

DCl}
}
}

DCl}
}
}

Set buff er address
Address of 1st unprotected field

Text

Set buffer address
Address of 2nd unprotected field

Text

etc.

Trailing spaces in a field are not transmitted.

3-10

BLOCK MODE

Read Cursor Address ••• ESC a

The 6520 transmits the address of the cursor for the selected page
to the application program. This escape sequence must be the only
text in the TEXT buffer. The format of the transmission is:

char page cursor

where:

char
page

cursor

is an ASCII (%137}
is a byte that specifies the page number of the
selected page
is a two-byte sequence specifying the current
cursor position. The position is transmitted as
two encoded ASCII characters representing the row
and column respectively. The ASCII chararacters

I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I

are derived from the respective absolute row and
column numbers by adding %37. This results in space
through 7 (%40 through %67) representing rows 1-24
and space through o (%40 through %157) representing
columns 1-80.

Read with Address (ESC =}

This escape sequence is used to read selected areas of a page. The
escape sequence must occupy the first two character positions in the
'TEXT' buffer and the sequence is immediately followed by two 2-byte
buffer addresses which specify the starting and ending addresses
(inclusive} of the area to be read. These six characters must be the
only text in the buffer. The actual data transmitted and the format
of the data depends on the submode of the terminal.

In non-protect submode, the format of the data is exactly the same as
that in the Read Buffer case, except that instead of reading the
entire page, only the specified data is read.

In protect submode, only data from fields with the Modified Data Tag
set are transmitted, and then only fields within the range of the two
buffer addresses specified. The transmission starts with the first
field which begins at or after the starting buffer address. Hence, if
a buffer address is given which is not at the beginning of a field,
the transmission will not start until the next field. Note that both
unprotected and protected fields may be transmitted if the particular
fields have their respective MDT set. The format of the data
transmitted is exactly the same as that in the Read Buffer case.

As in the Read Buffer case, in both submodes, the transmission of
trailing spaces is suppressed.

3-11

BLOCK MODE

Read Terminal Status ••• ESC ~

The 6520 transmits its status to the host processor. The format of
this message is:

SOH char status CR
char is an ASCII ? (%77)
status is a six-byte sequence, with the following format:

6 5 4 3 2 1 0
byte i I i

6
byte 2

\

6
byte 3

\

6
byte 4 I l

6
byte 5 l l

3-12

l
\ I -,-

l
I
l
l
l
l
l
I

5 4

5 4
I I

5 4
l 0

\

5 4
0

\

3 2 l 0

I

3 2 l 0
I I I I

'---,

I

l=Self-test passed
O=Self-test failed
l=Power-up or self-test
O=Conditions normal
l=Printer timed out

on last operation
O=last printer

operation sucessful
O=no printing in process
l=printing in process
Unused

Terminal Id

Firmware revision level
~-------~

3 2

3 2

1 0

I
Maximum page number

l 0

I
Number of fields per

------- page (MSB)

Terminal Status Bytes - Part l of 2

I
I
I
l
I
l
I
I
I
I
i
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I

BLOCK MODE

6 5 4 3 2 1 0
byte 6 ~1_1--;.--~~l~_;..l~~l~--...l~___...I

~~~~~~~~-

Number of fields per 
page (LSB) 

Self-test passed = 1 when the last execution of self-test 
was successful. 

Self-test passed = 0 when either the last execution of 
self-test was unsuccessful or if self-test has not been 
been run since the last power-up. 

Power-up or self-test = 1 when either a power-up has 
occurred or self-test has been run. This bit is reset 
when status has been read successfully. 

Printer status = 1 when a printer operation is in process 
and 0 when no printer operation is in process. 

Terminal ID is a code which will be used to distinguish 
between various Tandem terminal products. For the 
initial product described in this specification, this 
code will be an "C". 

Firmware Revision Level is a code which will be used to 
distinguish between various firmware revision levels of 
a given product. For the product described in this 
specification, this code will be a "C". The revision 
level will be changed each time the firmware is revised. 
This code is displayed in column 80 of the 25th line 
while self-test is executing. 

Number of fields per page is a twelve-bit integer specifying 
the maximum number of fields that can be defined for each 
page in protect submode. 

-------------------------------------------------------~--------------
Terminal Status Bytes - Part 2 of 2 

3-13 



BLOCK MODE 

Reinitialize ••• ESC q 

The 6520 will initialize to the conditions set for entering block 
mode. They are: 

o Any printing in process is aborted 
o 1920 character pages are set 
o The non-protect submode is selected 
o The maximum page number is set to 7 
o Clear all pages to spaces; including page 1 
o Set video prior condition register for all pages to normal video 
o Display page 1 
o Select page 1 
o Set buffer address to row 1, column 1 for all pages 
o Set cursor address to row 1, column 1 for all pages 
o Lock keyboard 
o Clear 25th line 
o Reset insert mode 
o Enable local line editing 
o Initialize to ROM data-type table 
o Inhibit transmission from 6520 to CPU 
o Clear all horizontal tab stops 

This sequence must be the only sequence in the TEXT buffer. 

Reset Modified Data Tags ••• ESC > 

All modified data tags of all unprotected fields on the selected pages 
are reset. This escape sequence must be only text in the TEXT buffer. 
Modified data tags in protected fields are not changed. 

Select Page ••• ESC : 

This sequence, followed by a single character, allows the application 
program to control which page is selected • Selected pages are where 
the input and output from the application program are directed to. 
The character starts at ! (page 1) and continues through the maximum 
number of pages available for display. After a page is selected, it 
remains selected until another select page sequence is received. 

Set Buffer Address (DC!) ••• %21 

This code, followed by two bytes specifying the buffer address, sets 
the buffer address for the selected page. The buffer address specifies 
the area into which data will be stored and it is transmitted as 
two encoded ASCII characters representing the row and column 
respectively. The ASCII chararacters are derived from the respective 
absolute row and column numbers by adding %37. This results in 
space through 7 (%40 through %67) representing rows 1-24 and space 
through o (%40 through %157) representing columns 1-80. 

3-14 



BLOCK MODE 

Set Cursor Address (DC3) ••• %23 

This code, followed by two bytes specifying the cursor address, sets 
the cursor address for the selected page. The cursor address is 
transmitted as two encoded ASCII characters representing the row and 
column respectively. The ASCII chararacters are derived from the 
respective absolute row and column numbers by adding %37. This 
results in space through 7 (%40 through %67) representing rows 
1-24 and space through o (%40 through %157) representing columns 
1-80. For example, to put the cursor on the beginning of the 24th 
row, issue DC3 followed by "7 " 

Set Maximum Page Number 

This escape sequence is used to reduce the number of displayable pages 
below the maximum of seven. The format of the command is: 

ESC p n 

where n is an ASCII number between 0 and 7. 

You can use this sequence to increase the amount of data attribute 
space available in memory. 

Because of the initialization process performed on entry into 
the protect submode, it is not possible to increase the maximum 
page number and the number specified must always be less than the 
previous value. Additionally, if the terminal is set to 960 character 
pages, the terminal will double the number, internally, before using 
it. Therefore, for example, setting the maximum page number to 5 in 
960 character mode allows pages 1-10 to be used. 

Set Page Size to 960 ••• ESC t 

The default upon entering block mode is 1920 character pages. 
This escape sequence sets the page size to 960 character pages; 
erases memory for all pages to spaces; and causes the terminal 
to default to the ROM data type attribute table. 

Set Tab ••• ESC 1 

Tabs are set at the column of the current buffer address for all lines 
on the screen. The tabs do not take up space on the screen. 

3-15 



BLOCK MODE 

Set Video Attribute ••• ESC 6 

Video attributes are modified by issuing ESC 6 followed by an ASCII 
character corresponding to the binary values below. 

------------------------------·----------------------------------------

6 5 4 3 2 1 0 
0 1 

i i i i T normal/dim 
i i i i normal/blinking 
i i I normal/reverse 
i i normal/blank 
i normal/underscore 

-------------------------~--------------------------------------------

For example; to turn on a reverse video blinking field, issue ESC 6 & 
(&is the ASCII character code corresponding to binary 0100110). 

An attribute takes up a character position on the screen and is 
displayed as a blank with the same attribute as the field it is 
defining with one exception;the underscore is not turned on until 
the character following the attribute is encountered. 

The video attribute remains in effect until the next attribute is 
encountered: left-to-right and top-to-bottom on the screen. When 
video attribute rolls off the top of the screen, the rest of the 
characters return to normal until another video attribute is 
encountered. 

This sequence can be used to store attributes anywhere on the page 
in both the protect and non-protect submodes. In protect submode, 
it is possible to define several video attributes within a field or 
to change the video attribute of a field without changing the data 
attributes. 

You should note that if a video attribute is turned on within an 
unprotected field and the character position occupied by the 
attribute is not protected, the user can type over the position. 

3-16 



BLOCK MODE 

Set Video Prior Condition ••• ESC 7 

Issuing ESC 7 followed by a video attribute character, as described 
in the previous section, will cause the terminal to load the video 
prior condition register with the specified attribute and it will 
remain in effect for the entire page unless another attribute is 
encountered. The attribute does not occupy a position on the screen. 
When memory is cleared, the attribute remains in effect and can be 
changed only by issuing another ESC 7. Upon power-up, the video prior 
condition register is initialized to normal video. 

A value for the prior condition register is maintained for each page, 
just as the cursor position is maintained for each page. When a new 
page is displayed, this value is loaded into the hardware register. 
Upon entering Block Mode, these save locations are all initialized to 
normal video. 

Simulate Function Key ••• ESC d 

Issuing this escape sequence followed by a single character will cause 
the terminal to generate a function key sequence using the character 
as the k~y indicator. For example; issuin~ 

ESC d X 

will cause the terminal to send 

X page cursor 

Sound Audible Alarm (BEL) ••• %07 

When this code is received,, the terminal will sound its audio tone. 

3-17 



BLOCK MODE 

Start Field (GS) ••• %35 

In protect submode, you use the start field control code, followed by 
two bytes of attributes, to define both video and data attributes for 
fields on the page. This code can also be used change attributes after 
the initial definition. The attributes that can be defined are 
illustrated below. 

Byte 1 

Byte 2 

6 5 4 3 2 1 0 
0 1 

j t j j j 
I l i I 
I I I 
l l 
I 

6 5 4 3 2 1 0 
1 I l I l I l l 

\ _______ / 
------

normal/dim 
normal/blinking 
no rm al/ reverse 
normal/blank 
normal/underscore 

Modified Data Tag 
Data type 

0 = free entry 
1 = alpha 
2 = numeric 
3 = alphanumeric 
4 = full numeric 
5 = full numeric 

with space 
6 = alpha with space 
7 = alphanumeric with 

space 
Auto-Tab Disable 
Protected 

~~~-~~~~~~----

l
l
I
I
I
I
l
I
I
l
I
I
I
l
I
l
I
l
l
l
I
l
l
I
1
l
l
l
I
I
I
I

--

3-18

BLOCK MODE

--
I I
I Protect I
I I
I The protect attribute defines the field as a protected field. I
I When fields are defined as protected, they cannot be modified I
I from the keyboard and the cursor cannot be positioned into I
I their area. I
I I
I Auto-Tab Disable I
I I
I Upon keyboard entry into the last character of an unprotected I
I field, the cursor normally automatically tabs to the first I
I position of the next unprotected field. If the Auto-Tab I
I Disable is set for a field and data is entered into the last I
I position of the field, the cursor advances to the next I
I position on the screen: by definition a protected area. I
I Although it is not necessary to have a protected field of I
I non-zero length between adjacent unprotected fields, there I
I will always be at least one space between fields to account I
I for the video attribute stored for the following field. Under I
I any other circumstance it is impossible for the cursor to be I
I placed in a protected area. While the cursor is in this I
I position, further data input is inhibited. As soon as the I
I user takes some action to move the cursor (e.g., tab, cursor I
I movement, etc.) the cursor returns to its normal behavior. I
I Normal usage would be to fill a field, then strike TAB to move I
I the cursor to the start of the next field. In this way the I
I user can strike TAB after every field, regardless of whether I
I the field is full. I
I I
I Modified Data Tag I
I I
I Every field, whether defined as protected or unprotected, has I
I a Modified Data Tag (MDT). The MDT is set whenever the field I
I is modified from the keyboard, and hence the operator can set I
I the MDT only for unprotected fields. Note that there are I
I several ways that the operator may modify the field, including I
I simply typing into the field, executing an ERASE LINE, ERASE I
I PAGE, INS CHAR, DEL CHAR, etc. The MDT may be set in I
I protected fields from the host processor. The MDT for all I
I unprotected fields may be reset by use of an escape sequence I
I from the application program. When the page is later read l
I with a Read Modified escape sequence, the terminal will I
l suppress tranmission of those fields which have not been l
I altered by the operator. Since the MDT can be set in I
I protected fields, it is also possible for the application l
I program to read fixed data from a page, such as a form ID I
I (which might be displayed with a 11 blank 11 video attribute) • l
I The latter could be used to guarantee screen integrity. l
I l
I l
i --> I
--

3-19

BLOCK MODE

I
I Data Type
I
I The data type attribute defines which of several possible
I sets of characters may be entered into a field. The
I attribute is 3 bits long and defines the allowable
I characters to be from one of eight possible sets. The
I sets are defined by a 96-byte table which has one byte
I for each character from space through DEL. For a given
I entry, if bit n is a "l", then this character is a member
I of set n and is allowable in a field of data type n.
I Note that a character may be a member of several sets.
I
I A data type table is stored in the ROM. See Appendix A for a
I description of the table contents.

For your convenience, the data types are summarized below.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Data I Use 1Upper-Case1Lower-Case1Numericl.,+-$1Spacel0ther
TyEei I AlEha I Alpha

,,
I I I I

0 !Free Entry I x I x x x x I x
1 I Alpha I x I x I
2 I Numeric I I x I
3 I Alphanumeric I x I x x I
4 !Full Numeric! I x x I
5 !Full Numeric! I x x x I

I with space I I I
6 !Alpha with I x I x x I

I space I I I
7 I Alphanumeric I x I x x x I

I with space I I I

--

3-20

BLOCK MODE

Start Field Extended ••• ESC [

This escape sequence is used to perform exactly the same function as
the Start Field sequence, with the exception that the upshift and
reserved bits can also be set in the data attribute. The escape
sequence is followed by three bytes, the first two of which have the
same format as shown for Start Field. The third byte is

I
I
I
I
I
I
I
I
I
I
I
I
I

Table 3-4. Extended Field Attributes for Protect Mode

6 5 4 3 2 1 0
Byte 3 1 O O O O I

~~~~~~~~--~~~..--.......... -

Upshift ••• 

Reserved •• 

1 = upshift 
1 = reserved 

All alphabetic characters entered into 
unprotected fields from the keyboard 
to be upshifted. 
Not used 

Unlock Keyboard ••• ESC b 

The terminal unlocks the keyboard immediately. Although the user can 
then enter data on the screen, any action that causes a transmission 
to the CPU is delayed until the terminal has received an ENQ. 

3-21 





PROGRAMMING CONSIDERATIONS 

DESCRIPTION 

This chapter contains the information that you need to: 

o Access the terminal 
o Set device dependent functions, including mode switching, for 

the terminal 
o UsE!" file management procedures to write data to and read data 

from the terminal. 
o Understand function key operations 
o Understand cursor positioning and buffer addressing in block 

mode 
o Write data to the 25th line 
o Understand the error control protocol followed for the 

terminal operation. 
o Control the printer 

ACCESSING THE TERMINAL 

Your application program communicates with the terminal through: 

o $<device name> 
or 

o $<logical device number> 

To obtain the device number of the home terminal where an application 
process is created, use the MYTERM procedure. To open the terminal 
for input and output, use the OPEN procedure. The following example 
illustrates the use of MYTERM and OPEN. 

Int .TERMANAME[O:ll], 
TERMANUMBER; 

Call MYTERM (TERMANAME); 
Call OPEN (TERMANAME,TERMANUMBER); 

!returns $<device name> 
!returns filenumber 

4-1 



PROGRAMMING CONSIDERATIONS 

SWITCHING MODES 

To set device dependent functions, including mode switching, for 
the terminal, use the SETMODE procedure as described in the file 
management section of the GUARDIAN OPERATING SYSTEM PROGRAMMING 
MANUAL. The functions, in this procedure, applicable to the 6520 
are numbered: 

6 - line printer or terminal, set system spacing control 
7 - terminal, set system autolinefeed 
8 - terminal, set system transfer mode 

<parameter l> = 0 for conversational mode 
1 for block mode 

9 - terminal, set interrupt characters (conversational mode) 
10 - terminal, set parity checking by system 
11 - terminal, set break ownership 
12 - terminal, set terminal access mode 
20 - terminal, set system echo mode 
22 - terminal, set baud rate 
24 - terminal, set parity generation by system 
27 - line printer or terminal, set system spacing mode 
28 - terminal, reset to configured values 

For exdmple, to set the terminal in block mode from your application 
program, issue: 

CALL SETMODE (TERMANUMBER,8,1) 

Note that the mode change will not occur until the first 1/0 
operation to the terminal. 

4-2 



PROGRAMMING CONSIDERATIONS 

USING FILE MANAGEMENT PROCEDURES 

To read data from the terminal and to write data to the terminal, from 
your application program, use the following file management 
procedures. 

o READ 

o WRITE 

o WRITEREAD 

is used to return data to an array in the applica­
tion program's data area. In conversational mode, 
this procedure is used to read data entered by the 
operator at the cursor position. In block mode, 
this procedure is only used to read the function 
key pressed by the operator to determine the next 
operation to be performed by the application. Note 
that the keyboard will be locked after the function 
key is pressed. 

is used to write data from an array to the terminal. 
In block mode, this procedure is typically used to 
write a form or prompt to the terminal and to unlock 
the keyboard. 

is used to write data from an array in the applica­
tion program's data area and then wait for data to 
be transferred back to the array. In conversational 
mode, this procedure is used to write a prompt to 
the screen and read the operator's reply. In block 
mode, this procedure is used to send control 
characters that the terminal has to respond to and 
then to read information returned by the terminal. 
The control characters allowed are: 

- Read buffer (ESC <) 
- Read cursor address (ESC a) 
- Read terminal status (ESC A) 
- Read with address (ESC =) 
- Simulate function key (ESC d) 

Each of the preceding escape sequences will cause the 
terminal to immediately return the specified informa­
tion to the application program. Typically, after 
the operator has entered information and pressed a 
function key signalling end of entry, READ would be 
used to determine when the operator has completed 
data entry and which function key was pressed, and 
WRITEREAD would be used to read all of the data 
entered by the operator. To summarize, think of 
using WRITEREAD when you expect the terminal to 
respond with information; use READ to read the 
function key and use WRITE to put your data on the 
screen for an operator response. Figure 4-1 
illustrates this sequence. 

4-3 



PROGRAMMING CONSIDERATIONS 

----------------------------------------------------------------------

WRITE -----------> PUT DATA ON SCREEN 
WRITE -----------> UNLOCK KEYBOARD 
READ ------------> READ FUNCTION KEY 
WRITEREAD -------> READ DATA ON SCREEN 

Figure 4-1. Block Mode Procedure Sequence 

The information that your program passes to these procedures can 
include text, control codes and escape sequences. See the file 
management section of the GUARDIAN OPERATING SYSTEM for a complete 
description of the procedures. 

Since the operating system protocols for block and conversational 
modes are different, the following examples illustrate use of the 
file management procedures in both modes. 

BLOCK MODE EXAMPLES 

This example illustrates the following sequence of operations in block 
mode: 

1. Using WRITE to write information to the screen - two prompts. 
2. Using WRITE to write a message to the 25th line. 
3. Using WRITE to unlock the keyboard and allow the operator to 

reply. 
4. Using READ to read the function key pressed by the operator. 
5. Using WRITEREAD to read data entered by the operator at a 

specified position on the screen. 

Each example uses the following declaration and assumes that the 
terminal is in the protect submode of block mode. 

LITERAL ESC :::: %033, !ESCAPE FUNCTION 
READADRS = "=" , !READ WITH ADDRESS FUNCTION 
UNLOCK = II bll r !UNLOCK FUNCTION 
GS = %035, !START FIELD FUNCTION 
LINE25 = II O II !WRITE TO 25TH LINE FUNCTION 
DCl = %021, !SET BUFFER ADDRESS FUNCTION 
REVERSE = %044, !REVERSE VIDEO ATTRIBUTE 
PROTECT = %140, !PROTECTED FIELD 
BLINK = %042, !BLINKING VIDEO ATTRIBUTE 
UNPROTECT= %104, !UNPROTECTED NUMERIC FIELD 
UNBLINK = %040; !STOP BLINKING FIELD VIDEO 

DEFINE ROW{A) = A + %37#, 
COLUMN(A) = A + %37#; 

INT TERM"'NUMBER, 
BUF[0:40]; 

STRING SBUF = BUF; 

4-4 



PROGRAMMING CONSIDERATIONS 

Writing Protected and Unprotected Fields to the Screen 

SBUF I:= I [GS, REVERSE, PROTECT, II ENTER I TEMNO: II] ; 

!Start Reverse Video Protected Field 

SBUF [ 16] ': =' [GS ,BLINK, UN PROTECT,"-" ,GS, UNBLINK, PROTECT] ; 

!Start/end Blinking/Unblinking Unprotected Field 

CALL WRITE(TERMANUMBER,BUF,24]; 

!Write First Prompt to Row 1 Column 1 

SBUF ':=' [DC1,ROW(3) ,COLUMN(!) ,GS,REVERSE,PROTECT,"ENTER CODE:"]; 

!Start Second Reverse Video Protected Field 

SBUF [ 1 7] ': =' [GS ,BLINK, UN PROTECT,"--", GS, UNBLINK, PROTECT] ; 

!Start/end Blinking/Unblinking Unprotected Field 

CALL WRITE(TERM"NUMBER,BUF,26]; 

!Write Second Prompt to Row 3 Column 1 

In this example, two reverse video prompts (ENTER ITEMNO: and ENTER 
CODE:) are written to rows 1 and 3 of the screen as protected fields. 
Each prompt is followed by a 3-byte blinking unprotected field ( __ ); 
only numeric data will be allowed in these fields. After the writes, 
the cursor will be in the first position of the first unprotected 
field. 

Writing a Message to the 25th Line 

SBUF ':=' [ESC,L1NE25,"PRESS ANY FUNCTION KEY FOR ENTRY",%12]; ,., 

!Message for 25th line. 

CALL WRITE (TERM"NUMBER,BUF,35); 
Terminating 
Seqeunce 

!Write message to 25th line 

In this example, the message (PRESS ANY FUNCTION KEY FOR ENTRY) is 
written to the 25th line. 

4-5 



PROGRAMMING CONSIDERATIONS 

Unlock the Keyboard 

SBUF I:= I [ESC I UNLOCK]; 
CALL WRITE (TERMANUMBER,BUF,2); !Unlock Keyboard 

In this example, the first two bytes of data in the application 
program's array are written to the terminal and the terminal is 
unlocked. 

Read the Function Key 

CALL READ (TERMANUMBER,BUF,4); !Read Function Key 

In this example, 4 bytes of data are read into the application 
program's array: the char, page and cursor as discussed in the 
function key section of this chapter. 

Read Data Entered by Operator 

SBUF ':=' [ESC,READADRS,ROW(l),COLUMN(l5),ROW(l) ,COLUMN(l7)]; 

!Starting Address is row 1, column 15 
!Ending Address is row 1, columnA.7 
!Add Positions for Video Attributes 

CALL WRITEREAD (TERMANUMBER,BUF,6,6); 
!First three characters returned are control code + addresses 

In this example, the read with address function is written to the 
screen and six bytes of data are read back into the application 
progra .. i's array. The six bytes are: DCl, the address of the data, 
and the three characters entered by the operator. 

4-6 



PROGRAMMING CONSIDERATIONS 

CONVERSATIONAL MODE EXAMPLES 

This example illustrates the following sequence of operations in 
conversational mode. 

o Issue a prompt and read the first line of data entered by 
the operator. 

o Write a line of data to the screen. 
o Read all of the data on the screen. 

Each example uses the following declarations and assumes that the 
terminal is in conversational mode. 

INT BUE[0:40], 
TERMANUMBER; 

STRING SBUF = BUF; 

Issue a Prompt and Read the First Line of Data 

SBUF := "?"; 
CALL WRITEREAD (TERMANUMBER,BUF,1,80); 

In this example, a one byte prompt (?) is written to the screen and 
the first line of the reply is written back to the application 
program's array. 

Write a Line of Data to. the Screen 

SBUF ':=' "WHAT ARE YOU READING THIS FOR, THIS IS ONLY FILLER!" 
CALL WRITE (TERMANUMBER,BUF,50); 

In this example, the first 50 bytes of data in the array are 
written to the screen. 

Read all of the Data on the Screen 

DO 
BEGIN 

CALL READ (TERMANUMBER,BUF,80); 
continue to process input data 
END 

UNTIL !END OF FILE!; 

In this example, lines of data entered by the operator are read into 
the input array until the operator signals end of file. 

4-7 



PROGRAMMING CONSIDERATIONS 

FUNCTION KEY OPERATION 

The terminal has 16 function keys (Fl-Fl6) that can be operated 
shifted or unshifted, providing a total of 32 functions. The 
INSERT/DELETE LINE key can have its local function disabled and be 
used as a function key. In addition, in Block Mode the ROLL UP, ROLL 
DOWN, NEXT PAGE, and PREV PAGE keys have no local function but are 
treated as additional function keys. In a polling environment, the 
BREAK key acts as an additional function key. 

Depression of a function key locks the keyboard and transmits the 
sequence: 

----------------------------------------------------------------------

4-8 

char page cursor 

where: char is from Table 4-1 

Table 4-1. Function Key Operations 

Key unshifted shifted 

Fl-Fl6 @-0 -o 
ROLL UP p p 
ROLL DOWN Q q 
NEXT PAGE R r 
PREV PAGE s s 
INSERT/DELETE LINE T t 
BREAK (polling only) u u 

page is the page number of the displayed page 

cursor is a two-byte sequence specifying the 
current cursor position. The format of these 
two bytes is described in the buffer addressing 
section. 



PROGRAMMING CONSIDERATIONS 

BUFFER ADDRESSING IN BLOCK MODE 

When functions are performed from the keyboard or remotely in 
Conversational Mode, any reference to screen location is via the 
cursor position. 

In Block Mode, however, memory addressing is more complex as the 
concept of buffer addressing is introduced. Some of the terminal 
functions make use of the cursor address, while others make use of 
an independent buffer address. The rules which are followed are 
summarized below: 

1. All keyboard operations take place at the cursor position. 
2. All remote operations that are explicit cursor movement 

operations {such as cursor home, line feed, etc.) make use 
of the cursor position. 

3. All remote operations that do not explicitly involve the 
cursor (such as set tab, erase page, etc.) make use of the 
buffer address. 

4. All data input from the keyboard makes use of the cursor 
position, with the cursor advancing after each character. 

5. All data input from the host makes use of the buffer address, 
with the buffer address advancing after each character. 

6. A significant difference between cursor positioning and buffer 
addressing occurs in protect submode. The cursor may never be 
placed into a protected area, either from the keyboard or from 
a program. However, buffer addressing is always sequential, 
and programs can write into any area of the memory, protected 
or unprotected. 

4-9 



PROGRAMMING CONSIDERATIONS 

All cursor and buff er addresses are passed between the system and 
the terminal as two encoded ASCII characters, representing the row 
and column. The ASCII characters are derived from the respective 
absolute row and column numbers by adding %37. This results in space 
through 7 (%40 - %67) representing rows 1-24, and space through o 
(%40 - %157) representing columns 1-80. The first character always 
represents the row, and the second the column. 

A summary of the action of each of the control sequences is shown in 
Table 4-2. 

4-10 

Table 4-2. Block Mode Addressing 

Function 

Set Tab 
Clear Tab 
Clear to Spaces 
Erase Line/Field 
Erase Page 
Insert Character 
Delete Character 

Start Field 
Start Field Ext. 
Set Video Attr. 
Insert Line 
Delete Line 
Backspace 
Horizontal Tab 
Line Feed 
Carriage Return 
Back-Tab 
Cursor Up 
Cursor Right 
Cursor Home 
Cursor Home Down 

Keyboard 

Cursor 
Cursor 
N.A. 
Cursor 
Cursor 
Cursor 
Cursor 

N.A. 
N.A. 
N.A. 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 

Host 
Non-Protect I 

I Buffer Addr 
I Buff er Addr 
I Spec. Range 
I Buff er Addr 
I Buff er Addr 
l Buff er Addr 
I Buff er Addr 
l 
I 
I 
I 
I 
l 
l 
I 
I 
l 
I 
I 
I 
I 
I 
I 

N.A. 
N.A. 
Buff er 
Buff er 
Buff er 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 
Cursor 

Addr 
Addr 
Addr 

Protect 

N.A. 
N.A. 
Spec. Range 
} Buffer Addr., 
} Unprotected 
} fields only, 
} ignored if Buffer 
} Addr. in 
} protected area 
Buffer Addr 
Buff er Addr 
Buff er Addr 
N.A. 
N.A. 
Cursor} 
Cursor} 
Cursor} 
Cursor} 
Cursor}-Unprotected 
Cursor} fields only 
Cursor} 
Cursor} 
Cursor} 

~~----~~~~~- -~------~!~------------- -~------------~--~ 



PROGRAMMING CONSIDERATIONS 

WRITING DATA TO THE 25th LINE 

The terminal is capable of displaying 25 lines on the screen. The 
normal text is displayed on the first 24 lines, and the 25th line is 
reserved for status information. There is only one 25th line, and it 
is stored in a separate area of memory independent of the other pages. 
The 25th line is formatted as follows. 

6 6 6 7 7 8 
1 2 5 6 7 8 9 0 

I IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI IBBBBBBBBBBBBBBBBJ ICI 

Text may appear in field A (columns 2-65) from two sources. If the 
terminal is operating in Block Mode, Protect submode, certain error 
messages may be displayed as a result of an attempt to enter invalid 
data into a field (e.g., numeric data in an alpha-only field, etc.). 
These messages appear and are erased automatically by the terminal 

Application programs can write text into field A by sending ESC o, 
followed by the text to be displayed (up to 64 characters), and 
terminated by a CR or any sequence except ESC 6. The message is 
cleared by sending a null message. This escape sequence is described 
in the BLOCK and CONVERSATIONAL MODE chapters of this publication. 

Field B (columns 67-78) is used for displaying terminal status 
information. Display of this information is initiated by depressing 
CTRL NEXT PAGE and disabled by depressing CTRL PREV PAGE. 

Field C (column 80) is reserved for displaying the status of the Data 
Set Ready (CC} communications control line. An '*' is displayed if 
this line is high and a 'space' if it is low. 

ERROR CONTROL 

Error control depends on whether the terminal is in block or 
conversational mode. 

In conversational mode, error control consists of parity checking 
if the parity switch is in the proper ODD or EVEN position. 

In block mode, error control is in the form of LRC checking. It 
proceeds according to the following steps. 

1. Each block is terminated with a single character LRC. On 
transmitting, the terminal generates the LRC and on receiving the 
terminal checks the LRC. 

2. Both the host processor and the terminal acknowledge blocks with 
either an ACK or a NAK. Neither may send another block until the 
acknowledgement is received. 

3. If the terminal receives a NAK it automatically retransmits the 
last block. It will do this continuously until an ACK is received, 

4-11 



PROGRAMMING CONSIDERATIONS 

or until receipt of an EOT. 

4. If the LRC on a received message is in error, the VDU will NAK the 
block and wait for a retransmission. 

During the receipt of a block or while waiting for an acknowledgement, 
the terminal sets up a time-out mechanism. If a received block 
terminates before the end, the terminal delays for 5 seconds. If no 
other character is received during this period, the terminal discards 
the partial block and waits for a completely new block. If an 
acknowledgement (ACK or NAK) is not received within 5 seconds, the 
terminal waits for a new message. 

CONTROLLING THE PRINTER 

Printing can be started in one of two ways. 

1. The operator can press the print key. In conversational mode, 
the 24 lines on the display will be moved to a reserved page and 
the print process will start; the keyboard will not be locked. 
In block mode, printer pointers are set to the displayed page and 
the print process will start; the keyboard will be locked to 
prevent the operator to request an action that could modify the 
displayed page. 

2. The application program can start printing a page by issuing the 
print page escape sequence. The process is the same as the one 
that occurs for pressing the print key with the exception of 
setting the print pointers to the selected page and not locking 
the keyboard. 

You may encounter the following problems in attempting to control the 
printer from an application program. 

Requesting a Print while a Print is in Process 

When this situation occurs, the following actions are taken by 
the system. 

o The current print is aborted. 
o A CR is sent to the printer interface. 
o A form feed character is sent to the printer interface. 
o The audible alarm is sounded. 
o An error message (PTR ABORT) is displayed on the 25th line; 

it can be cleared by pressing any key. 

To avoid this situation: 

o Lock the keyboard 
o Check the status bytes for a print in process. 
o Initiate a new print if there is no print in process. 
o Unlock the keyboard. 

4-12 



PROGRAMMING CONSIDERATIONS 

Modifying the Page being Printed while a Print is in Process 

When this situation occurs, the following can occur. The printed 
page can contain some of the modified data. The modification to 
memory will be performed correctly and neither the operator nor 
the application program will be notified of the invalid print. 

To avoid this situation: 

o Monitor your printing to avoid conflict by checking the 
status bytes before every print in block mode. 

Unlocking the Keyboard While a Local Print is in Process 

When this situation occurs, the operator can modify the page being 
printed. 

To avoid this situation, check to determine if the selected page is 
not equal to the displayed page and avoid accepting any function 
key that changes pages until the printing is complete. 

4-13 





APPENDIX A - PREDEFINED DATA TYPE TABLE 

PREDEFINED DATA TYPE TABLE 
I Character I Data TTEe I 
I octal I Graphic I 1 I 6 I 5 I 4 3 I 2 I 1 I o I 
I I I I I I I I I I I 
I 40 I space I 1 I 1 I I I I I I 1 I 
I 41 I ! I I I 1 I I I I I 1 I 
I 42 I II I I I 1 I I I I I 1 I 
I 43 I # I I I 1 I I I I 1 I 
I 44 I $ I I I 1 I 1 I I I 1 I 
I 45 I % I I I 1 I I I 1 I 
I 46 I & I I I 1 I I I 1 I 
I 47 I I I I 1 I I I 1 I 
I 50 I ( I I I 1 I I I 1 I 
I 51 I } I I I 1 I I I 1 I 
I 52 I * I I I 1 I I I 1 I 
I 53 I + I I I 1 I 1 I I 1 I 
I 54 I ' I I I 1 I 1 I I 1 I 
I 55 I I I 1 I 1 I I 1 I 
I 56 . I I I 1 I 1 I I 1 I 
I 57 I I I I 1 I I I 1 I 
I 60 0 I 1 I I 1 I 1 I 1 1 I 1 I 
I 61 1 I 1 I I 1 I 1 I 1 1 I 1 I 
I 62 2 I 1 I I 1 I 1 I 1 1 I 1 I 
I 63 3 I 1 I I 1 I 1 I 1 1 I 1 I 
I 64 4 I 1 I I 1 I 1 I 1 1 I 1 I 
I 65 5 I 1 I 1 I 1 I 1 1 I 1 I 
I 66 6 I 1 I 1 I 1 I 1 1 I 1 I 
I 67 7 I 1 I 1 I 1 I 1 1 I 1 I 
I 70 8 I 1 I 1 I 1 I 1 1 I 1 I 
I 71 9 I 1 I 1 I 1 I 1 I 1 I 1 I 
I 72 I I 1 I I I 1 I 
I 73 ; I I 1 I I I 1 I 
I 74 < I I 1 I I I 1 I 
I 75 ::; I I 1 I I I 1 I 
I 76 > I I 1 I I I 1 I 
I 77 ? I 1 I I I 1 
I 100 @ I 1 I I I 1 
I 101 A I 1 1 I 1 I I 1 I 1 
I 102 B I 1 1 I 1 I I 1 I 1 
I 103 c I 1 1 I 1 I I 1 I 1 

104 D I 1 1 I 1 I I 1 1 
105 E I 1 1 I I 1 I I 1 1 
106 F I 1 1 I I 1 I I 1 1 
107 G I 1 1 I I 1 I I 1 1 
110 H I 1 1 I I 1 I I 1 1 
111 I I 1 1 I I 1 I I 1 1 
112 J I 1 1 I I 1 I I 1 1 
113 K I 1 1 I I 1 I I 1 1 
114 L I 1 1 I I 1 I I 1 1 
115 M I 1 1 I I 1 I I 1 1 
116 N I 1 1 I I 1 I I 1 1 
117 0 I 1 1 I I 1 I I 1 1 

I I I I I 

A-1 



APPENDIX A - PREDEFINED DATA TYPE TABLE 

PREDEFINED DATA TYPE TABLE (Continued) 

Character I Data TTpe 
Octal Graphic I 1 I 6 2 I 1 0 5 4 3 

I I I I 
120 p I 1 I 1 I 1 I 1 1 
121 Q I 1 I 1 I 1 I 1 1 
122 R I 1 I 1 I 1 I 1 1 
123 s I 1 I 1 I 1 I 1 1 
124 T I 1 I 1 I 1 I 1 1 
125 u I 1 I 1 I 1 I 1 1 
126 v I 1 1 I 1 I 1 1 
127 w I 1 1 1 I 1 1 
130 x 1 1 1 I 1 1 
131 y 1 1 1 I 1 1 
132 z 1 1 1 I 1 1 
133 [ 1 I 1 
134 \ 1 I 1 
135 ] 1 I 1 
136 .... 1 1 
137 1 1 
140 T 1 1 
141 a 1 1 1 1 1 
142 b 1 1 1 1 1 
143 c 1 1 I 1 1 1 
144 d l 1 I 1 l l 
145 e 1 l I l l 1 
146 f l 1 I 1 1 1 
147 g 1 l I l 1 1 
150 h l I l I l l 1 
151 i l I l I I 1 l 1 
152 j l I l I I 1 1 l 
153 k 1 I l I I 1 1 1 
154 1 1 I 1 I I 1 1 1 
155 m 1 I 1 I I 1 1 1 
156 n 1 I 1 I I 1 1 1 
157 0 1 I 1 I I I 1 1 1 
160 p 1 I 1 I I I l l 1 
161 q 1 I 1 I I I 1 1 1 
162 r l I 1 I I I 1 l 1 
163 s l I 1 I I I 1 1 1 
164 t 1 I 1 I I I 1 I 1 1 
165 u 1 I l I I I l I 1 l 
166 v l I 1 I I I l I I l l 
167 w l I l I I I 1 I I l l 
170 x l I l I I I l I I l l 
171 y 1 I 1 I I I l I I 1 1 
172 z 1 I 1 I I I 1 I I 1 1 
173 { I I 1 I I I I l 
174 I I I l I I I I l 
175 } I I l I I I I 1 
176 I I l I I I I l 
177 DEL I I 1 I I I I l 

I I I I I I 

A-2 



APPENDIX A - PREDEFINED DATA TYPE TABLE 

Example 

The character space is a member of sets 7, 6, and 0 (Hex-ASCII 
equivalent is Cl). To change it to be a member of sets 7, 6, 5, 
and O (Hex-ASCII equivalent is El), transmit ESC r El followed by 
95 additional ASCII pairs for each of the characters in .the table. 

A-3 





APPENDIX B 

6520 Programming Functions - Part 1 of 2 

----------------------------------------------------------------------
Function 

Back tab 
Clear all tabs 
Clear tab 
Clear to spaces 
Cursor down one line 
Cursor home 
Cursor home down 
Cursor left one space 
Cursor right one space 
Cursor to beginning of 
current line 
Cursor to next tab stop 
Cursor up 
Define data type table 
Define return key 
Delete character 
Delete line 
Disable line editing 
Display page 
Display text on 25th 
line 
Enter protect submode 
Erase to end of line 
Erase to end of 
line/field 
Erase to end of page 
Execute self-test 
Exit protect submode 
Fill character 
Insert character 
Insert line 
Interpret next 
character for funtion 
Lock keyboard 
Modem disconnect 

NOTE: B = block mode; C 

Controlled By 

ESC i 
ESC 3 
ESC 2 
ESC I 
code %12 (LF) 
ESC H 
ESC F 
code %10 (BS) 
ESC C 

code %15 (CR) 
code %11 (HT) 
ESC A 
ESC r 
ESC u 
ESC P 
ESC M 
ESC N 
ESC ; 

ESC o 
ESC W 
ESC K 

ESC K 
ESC J 
ESC z 
ESC X 
code %00 (NUL) 
ESC 0 
ESC L 

code %33 (ESC) 
ESC c 
ESC f 

= conversational mode 

Mode 

B 
B 
B & C 
B 
B & C 
B & C 
B & C 
B & C 
B & C 

B & C 
B & C 
B & C 
B 
c 
B 
B 
B 
B 

B & C 
B 
c 

B 
B & C 
B & C 
B 
B & C 
B 
B 

B & C 
B 
B & C 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----------------------------------------------------------------------

B-1 



APPENDIX B 

6520 Programming Functions - Part 2 of 2 

Function 

Next page 
One second delay 
Previous page 
Print page 
Read buff er 
Read cursor address 
Read terminal status 
Read with address 
Reinitialize 
Reset modified data 
tags 
Roll up 
Roll down 
Select page 
Set buff er address 
Set cursor address 
Set line width to 40 
Set line width to 80 
Set maximum page number 
Set page size to 960 
Set tab 
Set video attribute 
Set video prior 
condition register 
Simulate function key 
Sound audible alarm 
Start field 
Start field extended 
Unlock keyboard 

Controlled By 

ESC U 
ESC @ 
ESC V 
ESC 0 
ESC < 
ESC a 
ESC "' 
ESC = 
ESC q 

ESC > 
ESC S 
ESC T 
ESC 
code %21 (DCl) 
code %23 (DC3) 
ESC 8 
ESC 9 
ESC p 
ESC t 
ESC 1 
ESC 6 

ESC 7 
ESC d 
code %07 (BEL) 
code %35 (GS) 
ESC [ 
ESC b 

NOTE: B = block mode; C = conversational mode 

Mode 

c 
B 
c 
B & C 
B 
B 
B & C 
B 
B 

B 
c 
c 
B 
B 
B 
c 
c 
B 
B 
B & C 
B & C 

B & C 
B 
B & C 
B 
B 
B 

~---------------------------------------------------------------------

B-2 



Accessing the terminal 4-1 
Audible alarm 

control codes 
in conversational mode 2-11 
in block mode 3-17 

Back tab sequence 3-4 
BEL control code 

in block mode 3-17 
in conversational mode 2-6 

Block mode 
function overview 3-1 
list of functions 3-2/3 

Block mode capabilities 
cursor movement 1-9 
data attributes 1-10/11 
display control 1-8 
editing functions 1-10 
memory organization 1-7 
submodes 1-7 
video attributes 1-10/11 

Block mode function description 
clear to spaces 3-4 
cursor down one line 3-5 
cursor home 3-5 
cursor home down 3-5 
cursor left one space 3-5 
cursor right 3-5 
cursor to beginning of line 3-5 
cursor to next tab stop 3-5 
cursor up 3-5 
define data type table 3-6 
delete character 3-6 
delete line 3-6 
disable line editing 3-6 
display page 3-7 
display text on 25th line 3-7 
enter protect submode 3-7 
erase to end of line/field 3-8 
erase to end of page 3-8 
execute self-test 3-8 
exit protect submode 3-8 
fill character 3-8 
insert character 3-9 
insert line 3-9 
interpret next character for function 3-9 
lock keyboard 3-9 
modern disconnect 3-9 
one second delay 3-9 

INDEX 

Index-1 



INDEX 

print page 3-9 
read buffer 3-9, 3-10 
read cursor address 3-11 
read terminal status 3-12/13 
reinitialize 3-12 
reset modified data tags 3-14 
select page 3-14 
set buff er adddress 
set cursor adddress 
set page size to 960 
set tab 3-15 

3-14 
3-15 

3-15 

set video attribute 3-15 
set video prior condition 3-16 
simulate function key 3-17 
sound audible alarm 3-17 
start field 3-17/20 
start field extended 3-4, 3-21 
unlock keyboard 3-21 

BS control code 
in block mode 3-5 
in conversational mode 2-3 

Buff er addresses 
passed to system 4-10 

Buff er addressing 
concepts 1-14 
example 4-5 
in block mode 4-9/10 

Clear all tabs sequence 
in block mode 3-4 
in conversational mode 2-3 

Clear memory to spaces sequence 
in block mode 3-4 
in conversational mode 2-3 

Control codes and escape sequences 
in block mode 3-4/21 
in conversational mode 2-3/11 
in passwords 1-13 
overview 1-13 

Controlling the printer 
concepts 4-12/13 
problems 4-12/13 

Conversational mode 
function overview 2-1/2 
list of functions 2-2 

Conversational mode capabilities 
cursor movement 1-4 
display control 1-4 
editing functions 1-5 
memory organization 1-3 
submodes 1-4 
video attributes 1-5 

Conversational mode function description 
clear all tabs 2-3 

Index-2 



clear memory to spaces 2-3 
clear tab 2-3 
cursor down one line 2-3 
cursor home 2-3 
cursor home down 2-3 
cursor left one space 2-3 
cursor right 2-3 
cursor to beginning of line 2-3 
cursor to next tab stop 2-4 
display text on 25th line 2-4 
erase to end of line/field 2-4 
erase to end of page 2-4 
execute self test 2-5 
fill character 2-5 
function key header 2-5 
interpret next character for function 2-6 
modem disconnect 2-6 
next page 2-6 
previous page 2-6 
print page 2-6 
read terminal status 2-7 
roll up 2-9 
send ACK/acknowledge ENQ 2-9 
set line width to 40 characters 2-9 
set line width to 80 characters 2-9 
set tab 2-9 
set video attribute 2-10 
set video prior condition 2-10 
sound audible alarm 2-11 

CR control code 
in conversational mode 2-3 

Cursor addresses 
passed to system 4-10 

Cursor down one line code 
in block mode 3-5 
in conversational mode 2-3 

Cursor home down sequence 
in block mode 3-5 
in conversational mode 2-3 

Cursor home sequence 
in block mode 3-5 
in conversational mode 2-3 

Cursor left one space code 
in conversational mode 2-3 

Cursor movement 
in conversational mode 1-4 

Cursor positioning and buffer addressing 
concepts 1-14 
descritpion 4-10 

Cursor right sequence 
in block mode 3-5 
in conversational mode 2-3 

Cursor to beginning of line code 
in block mode 3-5 

INDEX 

Index-3 



INDEX 

in conversational mode 2-3 
Cursor to next tab stop 

in block mode 3-5 
Cursor to next tab stop code 

in conversational mode 2-4 
Cursor up 

in block mode 3-5 

Data attributes 
defining in a program - example 4-4/5 
defining using control codes 3-18/20 
description 1-11 

Data type table 
changing 3-6 
description 5-1/2 

Data types in block mode 3-18/20 
DC! control code 

in block mode 3-14 
DC3 control code 

in block mode 3-15 
Define data type table sequence 

in block mode 3-6 
Define return key sequence 

in conversational mode 2-4 
Delete character sequence 

in block mode 3-6 
Delete line sequence 

in block mode 3-6 
Disable line editing sequence 

in block mode 3-6 
Display control 

in block mode 1-8 
in conversational mode 1-4 

Display memory size 
in block mode 1-7 
in conversational mode 1-3 

Display page sequence 
in block mode 3-7 

Display text on 25th line 
in block mode 3-7 
in conversational mode 2-4 

Editing Functions 
in block mode 1-10 
in conversational mode 1-4 

Enter protect submode sequence 
in block mode 3-7 

Erase to end of line sequence 
in conversational mode 2-4 

Erase to end of line/field sequence 
in block mode 3-8 

Erase to end of page sequence 
in conversational mode 2-4 

Error control 4-11 

Index-4 



ESC escape sequence 
in block mode 3-9 
in conversational mode 2-6 

Escape sequences 
in block mode 3-4/21 
in conversational mode 2-3/11 

Examples 
block mode 

explanation 4-4 
reading data entered by operator 4-6 
reading the function key 4-6 
unlocking the keyboard 4-6 
writing a message to the 25th line 4-5 
writing fields to the screen 4-5 
writing information to the screen 4-5 

conversational mode 
issuing prompts and reading data 4-7 
read data on screen 4-7 
writing a line of data to the screen 4-7 

Execute self test sequence 
in block mode 3-8 
in conversational mode 2-5 

Exit protect submode sequence 
in block mode 3-8 

Features 
multiple memory pages 1-1 
operational modes 1-1 

Field definition 
in block mode 3-18/21 

Fill character code 
in block mode 3-8 
in conversational mode 2-5 

Full duplex 1-3 
Function key header code 

in conversational mode 2-5 
Function key operation 4-8 

Half duplex 1-3 
HT control code 

in block mode 3-5 

Input and output to a page 
buffer and cursor positions 4-9/10 
concepts 1-14 

Insert character sequence 
in block mode 3-9 

Insert line sequence 
in block mode 3-9 

Interpret character for function sequence 
in block mode 3-9 
in conversational mode 2-6 

Introduction 1-1/15 

INDEX 

Index-5 



INDEX 

LF control code 
in block mode 3-5 
in conversational mode 2-3 

List - Control Codes I Escape Sequences 6-1/2 
Lock keyboard sequence 

in block mode 3-9 

Memory organization 
in block mode 1-7 
in conversational mode 1-3 

Modem disconnect sequence 
in block mode 3-9 
in conversational mode 2-6 

MYTERM procedure 4-1 

Next page sequence 
in conversational mode 2-6 

NUL control code 
in block mode 3-8 
in conversational mode 2-5 

One second delay sequence 
in block mode 3-9 

OPEN procedure 4-1 
Overview of application environment. 1-1 

Predefined data type table 5-1/2 
Previous page sequence 

in conversational mode 2-6 
Print page sequence 

in block mode 3-9 
in conversational mode 2-6 

Printer interface 1-1 
Printer problems 4-12/13 
Programming concepts 

control codes and escape sequences 1-13 
conventions 1-15 
cursor positioning and buffer addressing 1-14 
selecting and displaying pages 1-14 
using file management procedures 1-12 

Programming Considerations 4-1/13 
Programming Functions 6-1/2 
Protected fields 

definition 1-7/8 
setting in block mode 3-18/20 

Protect submode 
description 1-7/8 
entering 3-7 
exiting 3-8 

Read buffer sequence 
in block mode 3-10 

READ procedure 
description 4-3 

Index-6 



example 4-4/7 
Read terminal status sequence 

in block mode 3-12 
in conversational mode 2-7 

Read with address sequence 
in block mode 3-11 

Reading the function key 4-3/4 
Reinitialize sequence 

in block mode 3-14 
Reset modified data tags sequence 

in block mode 3-14 
Roll up escape sequence 

in conversational mode 2-8 

Selecting and displaying pages 
overview 1-14 
displaying a page in block mode 
selecting a page in block mode 

Selecting submodes 
in block mode 1-6 
in conversational mode 1-3 

3-7 
3-14 

Send Ack/acknowledge Enq escape sequence 
in conversational mode 2-9 

Set cursor address code 
in block mode 3-15 

Set line width to 40 characters sequence 
in conversational mode 2-9 

Set line width to 80 characters sequence 
in conversational mode 2-9 

Set maximum page number sequence 
in block mode 3-15 

Set page size to 960 sequence 
in block mode 3-15 

Set tab sequence 
in block mode 3-15 
in conversational mode 2-9 

Set video attribute sequence 
in block mode 3-16 
in conversational mode 2-10 

Set video prior condition sequence 
in block mode 3-17 
in conversational mode 2-11 

SETMODE procedure 4-2 
SOH control code 

in conversational mode 2-5 
Sound audible tone code 

in conversational mode 2-11 
Start field control code 

in block mode 3-18/20 
Start field extended sequence 

in block mode 3-21 
Status bytes 

terminal 
in block mode 3-12/13 

INDEX 

Index-7 



INDEX 

in conversational mode 2-7/8 
Submodes 

description 
in block mode 1-7/8 
in conversational mode 1-4 

Switching modes 
using SETMODE procedure 4-2 

Unlock keyboard sequence 
in block mode 3-21 

Using file management procedures 
description 4-3 
overview 1-12 

Video attributes 
defining in a program - example 4-4/5 
description for block mode 1-10/11 
description for conversational mode 1-4 
setting - in block mode 3-16/21 
setting - in conversational mode 2-10/11 

WRITE procedure 
description 4-3 
example 4-4 /5 

WRITEREAD procedure 
description 4-3 
example 4-4/5 

Writing data to the 25th line 4-11 

Index-8 



FOL.D ... 

FOL.D ._ 

READER'S COMMENTS 

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate 
a specific section and page number when commenting on any manual. Does this manual have the 
desired completeness and flow of organization? Are the examples clear and useful? Is it easily 
understood? Does it have obvious errors? Are helpful additions needed? 

Title of manual(s):-----------------------------

FROM: 

Name 

Company --------------------------------

Address --------------------------------

City/State ------------------ Zip --------

A written response is requested, yes no ? 



111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U S A 

POSTAGE WILL BE PAID BY ADDRESSEE 

COMPUTERS, INC. 

Attn: Technical Publications 
19333 Vallee Parkway 
Cupertino, CA, U.S.A. 95014 

STAPLE HERE 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

- --CFOLD 


	0-000
	0-001
	0-002
	0-01
	0-02
	0-03
	0-04
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	replyA
	replyB



