SYM-1 SINGLE BOARD COMPUTER

HARDWARE

THEORY OE OPERATIONS

MANUAT

By Robert A. Peck

Copyright 1979
Robert A. Peck
All Rights Reserved

Sym-1 is a trademark Of

Synerteck Systems Corporation

TABLE OF CONTENTS

An Overview 1
Power-On Reset 2
Addressing of the Monitor RAM 4
IC Function Tables 6
Addressing Space Allocations (as delivered) 14
Memory MAP 16
Adding More 6522's 17
Appendix 1 (IC Interconnect Cross Ref.) 18
Appendix 2 (Signal Name Cross Ref.) 30
Appendix 3 (SYM-1 Schematic Design) 38
ACKNOWLEDGEMENTS1 wish to thank Synertek Systems Corporationfor their support of this project includingtheir permission to include the SYM-1 sche-matic in this book.

Introduction -

The SYM-1 Microcomputer is a well-organized unit having many unique features. The instruction manuals provided with it are certainly helpful in getting to know how to use the unit, however for the user with homebrew expansion on his mind or the OEM manufacturer adding the SYM to their systems, there seemed to be something missing. That needed item is hopefully provided here. It is intended to be a line-by-line, gate-by-gate theory of operations manual for the SYM-1 single board computer. The primary emphasis is on the digital functions.

It is intended to serve as a trouble shooting reference as well as a basis on which additional features could be added to the SYM. Various items contained herein are also covered in the SYM Reference Manual, but the viewpoint or approach here may differ. From this combination of available information, the user may gain a better nderstanding of the unit and thereby a greater degree of usefulness.

If the user of this manual has any questions about the SYM which have not been covered here, I will attempt to provide an answer. Suggestions for additions or changes to this manual would also be welcomed. If you desire a written response, please send your questions or comments along with a self-addressed stamped envelope to the address below.

For those SYM owners who need introductory software, I also offer the SYM/KIM Appendix. Send a self-addressed stamped envelope for a free reprint of the description printed in the December 1979 issue of MICRO magazine.

Robert A. Peck P.O.B0x 2231 Sunnyvale, Ca. 94087

P.S.

The SYM-1 Monitor Theory of Operations Manual is in process and should be ready in March, 1980. It contains a description of the SYM monitor routines supplementing the monitor listings currently in the SYM Reference Manual. It consists of a set of flow narratives for each of the monitor routines to enable the user to understand the way each subroutine is used. From a thorough knowledge of the monitor, one might save time by using more of its routines in other programs. Write for price details.

Since the power of the SYM-1 is derived not only by the basic hardware features which it employs, but also from the functions provided by the monitor, it seems appropriate to start an indepth analysis of the unit by examining the circuitry which controls the monitor, and how we get there in the first place.

The monitor circuit is contained in a 2332 ROM (4k by 8) located in socket U2O on the board. Further ROM space, for easy expandability, is provided in prewired sockets U21, U22, and U23. Each of these can be configured to accept a 2716, $2316 \mathrm{~B}, 2332$ or 2364 ROM at a future date. The address decoding and socket reconfiguration can all be accomplished by removal and repositioning of small wire jumpers strategically placed on the board so that no cutting of circuit board traces would be required to change the system.

Because of the types of ROM sockets already provided on the board, and their possible configurations, one might conceive the possibility of eventually adding four 2364 type ROM's on the board for a total of 32 K by 8 of ROM continuously online. This possibility is not too far-fetched at this time considering the current offerings by Synertek Systems Corp. Specifically, the current monftor ROM is a 4 K by 8 unit, and an eventual expansion to an 8 K by 8 monitor is planned.

In addition to the monitor, also offerred is a Microsoft 8 K basic on a pair of 4 K ROM's and a resident editor assembler on a single 2364 or a pair of 2332 ROM's occupying another 8 K of memory space. So even now we can fill the empty sockets with presently avallable finmare preconfigured for the unit, bringing it close to its total onboard capacity with ease. (One might decide to resort to some form of piggy-back arrrangement to preserve the very last ROM socket for separate use later, but thats up to the user to decide).

Address decoding for all of the memory comprising the upper 32 K block of the memory space is provided by a pair of 74LS145 BCD-Decimal Decoders. These are specified as U10 and Ull. The five high order address lines (A15-A11) are decoded here. Each one of the open-collector outputs of the decoders (with exception of outputs 8 and 9) is used as the active-low chip select line, either for the ROM's or for the system-dedicated RAM or I/O devices, all of which will be discussed later.

One additional level of logic is used in the production of the chip select for the ROM sockets, and that is a 7408 Quad-AND gate. The output of each of these gates is dedicated to controlling the chip select lines for each of the 4 ROM's designated U20-23. The reason for this extra logic is to take care of the power-on reset jump into the monitor circuit. This is a separate subject and the following section is dedicated entirely to the power-on reset function.

POWER-ON RESET
The monitor circuit has been written to occupy the memory space from 8000-8FFF (hex) with future versions potentially going from $8000-9 F F F$. At the time of power-up, the 6502 automatically puts FFFC onto the address bus to retrieve the low order byte of the reset routine address. Then it puts out FFFD onto the address bus to retrieve the high order byte of the reset routine. Next, this routine address is assembled internally and is put out onto the address bus to retrieve the first op code of the reset routine. At this time the reset routine address becomes the contents of the program counter. The address found during the initial reset sequence is $884 A$. Since this is in the monitor circuit, the monitor chip is selected. The reset routine could now proceed nomally.

To access this data, since there is no ROM physically located at this address range, (FFFC,FFFD) some means must be used to provide the processor with the start address of the reset routine. This is accomplished by the presence of the active-low $\overline{P O R}$ signal which is gated through $U 24$ to form the chip select for the socket U20 which contains the monitor RCM. This allows us to retrieve the reset vector from actual locations 8FFC and 8FFD instead of FFFC and FFFD. The reset vector obtained is 884 A , which is one of the addresses in the monitor ROM itself. Since this address in the program counter will cause the continued selection of the monitor ROM (thru pin 10 of U24) there is no further need for the $\overline{P O R}$ signal to be on pin 9 of U24. Output 1 or 2 of U10 will, at this point, maintain the chip select for U2O as it represents an active low $8 \times x x$ signal.

Since the $\overline{P O R}$ signal is no longer useful, we have to get rid of it. In fact, if it always stays active, we will always be selecting the monitor ROM even though we are trying to access another memory location as well. The POR line went active (low) in the first place when the RES pulse was received by 6522 \#1. This action caused all of the internal registers to be set to zero. This caused the CA2 line (in 39) to go high. This signal is combined with the $\overline{A A O}$ signal from U10 in one of the NAND gates of U8 to form POR in its active low state. At power-up, memory page A0xx is not selected, so AAD will be high.

At monitor location, 884 A , the sequence of events is first to initialize the stack pointer to a value of FF and then to inmediately store a value of CC into memory location $A O O C$. This had two specific actions. One, the presence of $A O O C$ on the address lines forces line $\overline{A A O}$ to go low. This, through the U8 NAND gate, forces the $\overline{P O R}$ signal to go high. Then when the data storage is completed, since AOOC represents the location which controls the CA2 output, the data CC into that location forces the CA2 line to be held low. This in turn, again through U8, maintains $\overline{P O R}$ in a disabled (high) state.

At this point, then, the program counter will still contain an address within the monitor circuits, so the program will continue nomally in the absence of the POR signal.

While we're on the subject of the power-on reset, the $\overline{P O R}$ signal serves one more useful purpose. In the SYM monitor the 128 bytes of RAM located within the 6532 device is initialized to hold a copy of the last 128 bytes of the monitor ROM itself. This includes the addresses required by the monitor vectors and such addresses as the reset routine, the $\overline{\bar{I} R Q}$ routine, NMI routine and so forth. These are copied from the monitor ROM during the power-on reset sequence. Because this is a RAM area (A600-A67F), the user may change the monitor to vector to a user-selected address instead of the monitor selected address during the execution of various monitor routines.

After the $\overline{P O R}$ has been disabled, access to locations F8xxFFFF will cause a selection of the monitor RAM circuit. The selection is accomplished when address decoder U11 applies a chip select to 6532, effectively translating address FFFF into A67F, FFFE into A67E and so forth. If we wanted to use a different
$\overline{I R Q}$ routine, we woul.d subsitute our routine address into locations $A 678$ and A679 in place of the monitor $\overline{\mathrm{IRQ}}$ routine address which is currently 800F.

During the power-up sequence, we are actually enabling the monitor ROM, and already doing a translation from FFFC to 8FFC for example, we must therefore inhibit the selection of the monitor RAM during the power up sequence. Therefore, the $\overline{P O R}$ signal is used as a gating signal into U7 (74LS10) to prevent the F8xx line from becoming active.

Addressing of the Monitor RAM

There may be some desire on the part of the user to avoid having the monitor RAM accessible at the upper addresses of the memory space. Therefore, a jumper has been provided at the intersection of the points U and 22. This may be removed,disabling this function. By removing the jumper, it enables the user to install 2 K of RAM in the memory space within the range of F800-FFFF. The chip select for this memory will be derived from the F8 line of the U11 decoder.

One of the reasons for considering adding the 2 K of RAM at this location rather than allowing access of the system RAM here might be the need to squeeze in additional memory space wherever available for larger systems. Specifically the use of the F8 decode as an alternate access point for the system RAM is an excellent idea for the basic SYM as delivered, however, it uses up the entire upper 2 K memory space with only 128 bytes of RAM.

To explain this further, the $\overline{\mathrm{FB}}$ decode is taken to mean any address greater than or equal to F 800 . This allows the monitor RAM to respond with its contents not only at FF80-FFFF, but also at F800-F87F, F880-F8FF and 13 other address ranges in 128 byte increments from F900-FF7F. This multiple address accessibility is caused by the use of only seven address lines (AO-A6) along with the $\overline{F 8}$ decode in the selection of this RAM area. This is known as "don't care" addressing, where it doesn't matter whether the unused address bits are high or low, since there is no other memory space utilized in the selected range.

There are other areas where limited address decoding has been used to simplify the construction of the SYM, and these items are shown in a separate table. If one decided to add extra RAM or I/O to the system, this table will indicate where additional address decoding will be required.

Before leaving the subject of the F800-FFFF address area, the use of FFFA thru FFFF must be mentioned. Specifically these addresses contain the $\overline{\mathrm{MII}}, \overline{\mathrm{RST}}$ and $\overline{\mathrm{IRQ}}$ vectors. If we disable the access to the monitor RAM by removing the U to 22 jumper, we lose access to these vectors located at A67A-A67F. Therefore, if we do add the memory as noted above (2 K from F800-FFFF), we must also add a routine to our extended monitor to initialize FFFAFFFF the same as A67A-A67F. . This will maintain compatibility with existing SYM software.

Now that we've got the power-on reset sequence down, lets begin the next section taking a look at the functions of each IC in detail. This is done in a tabular fashion for convenience.
I.C. No. Type
74LS138 U1
Provides decoding for the lowest 8 K of the address space. Decoding is accomplished in $1 K$ increments so that each of the 8 outputs (active low) can serve as a chip select enable line for a pair of 2114 static memory chips. This chip is enabled by the combination of address lines A15, A14, and A13 entering one sement of U3. Only when all three lines A15, A14, and Al3 are low is pin 12 of U3 high. Line 12 of U3 is used as the active-high enable input of U1, which defines this chip as a decoder for the lowest 8 K of the memory space. Address lines AlO, All, and A12, then, select which 1 K of the lowest 8 K is being selected. Schematic location: F-7
U2 7404 Hex inverter, provides buffer functions at pin 34 of the 6502 and signal inversion elsewhere. Schematic location: F-7, E-7(2), D-7(2)
74LS27 Triple 3-input NOR
One section provides address space segmentation as noted in the section on Ul above. Section two provides the write enable signal for all RAM in the system by combination of the phase 2 and the RW signals. This signal on U3 pin 8 is inverted and buffered by one section of U2. Section three of this IC inverts and converts to TIL levels the output of the Reset one-shot timer U6. Schematic location: F-7(2), E-7
Quad 2-input NAND
Section 1 is used as an enable input for IC U1O. See U1O section for further details. Sections 2,3 , and 4 are used for write protect of the first, second and third $1 K$ of memory beyond the initial 1K. The active high write signal output of U3 pin 8 is combined with the active low write protect signals WP1K, WP2K, WP3K. If both WPnK signal and the WRITE signal are high, the output of the respective NAND will be low, forming an active low write-enable for that memory area. WFIK refers to the memory 040007FF, WP2K to 0800-0BFF, and WP3K protects 0COO-OFFF.
Schematic locations: $\mathrm{F}-7(3), \mathrm{B}-8$.

I.C. No.	Type	FUNCTION PROVIDED
U5	6502	The CPU chip, refer to the SYM reference manual for complete data sheets and the SYM Hardware Manual for other details.
U6	555	Programmable timer. Set up as a one-shot multivibrator. Debounces the reset switch. Provides the appropriate rise-time for the reset function on the PCU and peripheral chips thru connection to U3.
U7	74LS 10	Triple 3-input NAND
		Section 1-serves to produce the enable signal
		for the output of U11. Specifically output
		pin 12 is connected to the D input of U11.
		See description of $\mathrm{U1O}$ and U 11 for further
		details of the use of this line as an enable.
		Section 2 combines the line A9, the read-write signal and the write-protect-monitor signal
		signal and the write-protect-monitor signal into a write-enable line for U27, which con-
		tains the monitor RAM. Section 3 combines
		the signals DBUG-ON (DBOUT) Not-Monitor ($\overline{R N}$)
		and SYNC to produce an active low NMI request.
		The combination of those signals forms the
		basis for the monitor trace routine function.
		For each op-code fetch, the SYNC line goes
		high. If the opcode is not being fetched
		from the monitor circuit, the $\overline{\mathrm{RN}}$ line will be
		high. If the DEBUG function is active, the
		DBOUT line will be high. This combination
		forces NMI to go low, causing the Nonmaskable
		Interrupt. Like all interrupts, this one
		saves the processor status, but also displays
		the current program counter contents in the
		left 4 digits of the disply and a '2' in digit
		5 which indicates this is a $\sqrt{\text { NMI }}$ interrupt.
		The reason for having the RN (Not-Monitor)
		signal here is to avoid trying to trace the
		operation of the processor while it is
		within the monitor itself. The primary pro-
		blem is that the monitor must store all of
		the CPU status and registers, then it must
		create and maintain the display. If the RN
		signal was not included, then for every
		opcode fetch, there would be new NMI request
		generated. In other words, we would be in an
		endless loop and could not perform the in-
		tended functions.
		Schematic locations: D-7, C-5, A-8

I.C. No. Type	FUNCTION PROVIDED.
	For U11, the D input is controlled by the
:	combined gating of A15, A14, and $\overline{P O R}$ into 3 -
	input NAND U7. When all 3 are high, D goes
	low, enabling this decoder as noted above,
	from COOO-FFFF. $\overline{P O R}$ is included here because
	the processor is trying to access locations
	FFFC and FFFD during power on reset, but we
	have ($\overline{P R}$) enabled the monitor ROM instead.
	Since we actually pick up the reset vector
	from the monitor (8FFC and 8FFD) there must
	no simultaneous access to fFFC and FFFD. So
	we use $\overrightarrow{P O R}$ to disable this upper 16K decoder
	at reset.
	Schematic Locations: U10-B-7
	U11-A-7

U12-19 $2114 \quad 1024$ by 4 Static RAM's
Each of these RAM's has connections to the 10 lowest order address lines A9-AO (allows for selection of 1024 different locations)
U12, 14, 16 and U18 provide data bits DO-D3
U13, 15, 17 and U19 provide data bits D4-D7

U12 and U13	occupy address	space	0000-03FF
U14 and U15			0400-07FF
U16 and U17	"		0800-OBFF
U18 and U19	" "		OCOO-OFFF

U12 and U13 cannot be write protected. The system
stack is located in this area and must be continuously writeable. .
U14 and U15 derive their write-enable signal from $U 4$ pin 6.
U16 and U17 derive their write-enable signal from U4 pin 11. U18 and U19 derive their write-enable signal from U4 pin 8.
Schematic locations: F-4 thru F-6

U20 2332 4K by 8 ROM OR
2364 8K by 8 ROM OR
2316B 2K by 8 ROM OR
$2716 \quad 2 \mathrm{~K}$ by 8 EPROM (UV Eraseable)
U2O normally contains the SYM monitor ROM: it is a 2332.

I.C. No. Type

U20-23 are all directly wired with low order address lines A10-AO. As such, each socket could address 8 K of ROM directly. Since U20
$\therefore \quad$ is a $4 K$ device, besides the enable line at pin 20, we also need on extra line to distinguish between the upper and lower 2 K of the 4 K contents of the ROM. Therefore, All is brought into pin 18 of U2O. This is the point A to point 1 jumper on the SYM board. Pin 21 of U2O is wired to ground. This is to activate CS2 (chip select 2) which is active low on the SYM monitor circuit. When an expanded version of the monitor is issued (8 K by 8), it will only be necessary to cut the connection from 3 to E and instead mount a jumper from 4 to E . Also jumper from 7 to 10 and 8 to 9 (the same effect as jumping from 9 to J and 10 to J). Then the expanded SUPERMON will be accessed from 8000-9FFF.

U21 is factory wired for a 2716 or 2316B Addressed as COOO-C7FF. U22 is factory wired for a 2716 or 2316B Addressed as C800-CFFF. U 23 is factory wired for a 2716 or 2316B Addressed as D000-D7FF. Schematic locations: D-4 to D-6

Quad 2-input AND Each of the 4 sections is used to provide the chip select for one of the 4 onboard ROM sockets U20-23. The power-on reset jump may be wired to any one of the 4 sockets by wiring point 19 to N, P, R, or S, with the remaining points (only one to 19) wired to 20. This arranges for the power-on jump into one of the ROM's only, with the others addressed normally.
Schematic locations: D-6, D-5(2), D-4

U25 SY6522 Versatile Interface Adaptor
Addressed at A000-A3FF (see address decoding charts for more data on addressing). This VIA takes part in the power-on reset sequence, which is explained elsewhere. CA2 (pin 39) is used for this function. It also controls the remote startstop function for the cassette tape unit thru CB2 (pin 19).
I.C. No. Type
:- FUNCTION PROVIDED
Interpretation of the data from the cassette tape is done by counting and timing the duration of pulses arriving at PB6 (pin 16) from the output of U25, pin 7.
Schematic locations: C-6 See SYM reference manual for complete data sheets on this device.
U26 LM311 Comparator. A reference voltage of +2.5 V derived from voltage divider R95-R126 is fed into the plus input of the comparator. The audio input from the output of the tape recorder is fed to the negative input of the 311. When the input level is above 2.5 V , the output of the 311 is near +5 V ; when the output of the tape is below 2.5 V , the output of the 311 is near ground. This circuit converts the tape waveform into square waves for more precise interpretation.
Schematic location: A-6
U27 SY6532 System RAM, I/O Combination
Address Space A400-A7FF
(See address charts for further details)
Port A, when used as an output by the monitor routines, controls the onboard display. One bit of output, when high, causes one segment of the display to light. This is a display which is multiplexed, which means that the buffered bit outputs from port A are connected to all 6 digits. (All segment A's connected together, all segment B's connected together, etc). But only one path to +5 V is provided at a time. The digit to light is chosen by Port B bits 0-3, into decoder-driver U37.
Port A, when used as an input, looks at the onboard keypad. Port B acts as an output in thise case, and the presence of a key closure is sensed on Port A, then interpreted by the monitor routines.
Port B, bits 4 and 7 serve as the CRT terminal output and input respectively.
Port B, bits 5 and 6 serve as the TTY output and input respectively.
For complete data sheets on this device, see SYM reference manula.
Schematic location: B-5

I.C. No.	Type	FUNCTION PROVIDED
U28	SY6522	Versatile Interface Adaptor, user supplied Address space A800-ABFF, (see address chart). Since it is user supplied, all functions of the 6522 are open to the users own applications. Schematic location: F-3
U29	SY6522	VIA, Address space ACOO-AFFF (see chart) Port A bits 0, 1, 2, and 3 are dedicated to writeprotecting the monitor RAM, areas from 400-7FF, from 800-BFF, and COO-FFF. If any one of these bits is set low, the system will be unable to write into the selected area. This function may be disabled by removal of the appropriate jumpers. Port A bits 4 and 5 enable the software to call for the DEBUG function, rather than always requiring access to the DEBUG keys. If bit 4 is set low and bit 5 is high, DEBUG will be on. If bit 5 is set low and 4 high, the DEBUG function will be disabled. The reason the DEBUG function does not come up "accidentally" during the power-up is that the reset pulse on the 6522 input sets all internal registers to zero which configures this port as an input. Only an intentional setting of port A bit 4 as an output and writing a low level there will cause DEBUG to come on. In addition the reset pulse is applied to the QEBUG flip-flop through one output of U38 to assure that DEBUG will be off as the monitor is initially selected. Output 1 ines CA2 and CB2 are reserved and buffered for use with the scope output. Finally, Port B, bits 4, 5, 6, and are buffered for uses as outputs. Schematic location: D-2
U30	7416	Hex Inverter Dedicated to driving the onboard display. Schematic location: D-2
U31-36	$\begin{aligned} & \text { HP5082- } \\ & \times 7730 \end{aligned}$	Seven segment displays, with decimal point. Schematic location: C-3(3), C-2(3)
U37	74145	BCD to decimal decoder driver. This one is not an "LS" type as is U1O and U11 because it is not connected to any of the chip (U4) address lines. We minimize the address line loading by the use of the "LS" circuits.

I.C. No. Type FUNCTION PROVIDED
Outputs 0-5 of this chip enable digits 1-6 of the display.
Output 7 is used to produce the audio outut to the input of the tape recorder. Outputs 8 and 9 are unused and represent the disabled state of the decoder when active. As with U 10 and U11, the D input of the device is used as the enable (low) or disable (high) for this decoder. Schematic location: B-3

U38 7416
Hex inverter. Two parts of this chip are dedicated to the operation of the hex display. One section inverts the reset signal to turn off the DEBUG function. The next two parts of the chip are dedicated to the CRT-IN and CRT-OUT circuitry. The last section (terminals 3 and 4) are unused. Schematic locations: C-3(2), A-4(2), D-7

ADDRESS SPACE ALLOCATIONS - SYM-1 (as delivered)

Due to the use of partial address decoding, the following segments of the memory space "repeat" themselves, that is, they are accessible at more than one physical address. In the memory map which follows, these address spaces will be referenced by the letter which is shown opposite each one. This will indicate, therefore, where extra address decoding would be required to expand the use of these repetitive memory segments.
> A. A000-AOOF (U25) Chip selected by address lines $A O$, A1, A2, A3, A10 and U10 selected line AAO.
> As a result of the limited address decoding, address AOOO is also accessible at A010, A020, A030. A100, A110, and so forth up to A3FO, for a total of 64 different locations. Similarly, any address within the range A000-A3FF is also accessible at any one of 64 different locations.
> B. A400-A41F (U27) Chip selected by address lines
> C. A600-A67F (U27) A0, A1, A2, A3, A4, A5, A6, A10 and A9 along with U10 select line $\overline{A A O}$. Address range A400-A41F also is accessible at A420-A43F A440-A45F etc A500-A51F A520-A53F

and so forth for a total of 16 areas of possible access.

Address range A600-A67F also is accessible at A680-A6FF
and $A 700-A 77 F$ and A780-A7FF
and if jumper $U-22$ is installed the monitor RAM is also accessible at:

F800-F87F
F880-F8FF
F900-F97F
etc
for a total of 20 different areas.
D. A800-A80F (U28). Chip selected by address line AO,Al, A2, A3, A1O and decoder U1O out-put line $\overline{A A B}$.As with range $A 000-A 00 F$ described above,each address in this range is alsoaccessible at 64 different locations.
E. ACOO-ACOF (U29) Chip selected by address lines AO,$A 1, A 2, A 3, A 10$, and decoder U10 out-put line $\overline{\mathrm{A} A 8}$.As with range A000-A00F described above,each address in this range is accessiblealso at 64 different locations.
l6 REPEATS OF
ADDRESS SPACE C \quad FFFF

EXAMPLE OF ADDING MORE 6522's IN THE ADDRESS SPACE A000-A3FF

SYM-1 IC INTERCONNECT REFERENCE LISTING

Notes: 1. In the listing which follows, UX-Y indicates IC number "X", pin number " Y ".
2. "E-NN" indicates expansion connector "E" and $N N$ is the pin number.
3. "AA-NN" indicates the "AA" connector, "NN" the pin number.
4. "A-NN" indicates the "A" connector, "NN" the pin number.
5. "AxX" (no hyphen) indicates a connection to an Address line.

IC/PIN* POINTS TO WHICH IT IS CONNECTED

U1.01	(U20:23	.19 U9	1 E*M		A10	
U1-02	U20.18	U10.15	U11-15	E-N	Al1	
U1.03	U10.14	U11:14	E•P		A12	
U1.04	GND				GND	
U1.05	GND				GNO	
U1.06	U3-12				$1 / 48 \mathrm{~K}$	SEL
U1.07	A-J				1 C	
U1-08	GND				GND	
U1.09	$A=K$	E-16			18	
U1:10	$A=H$				14	
U1-11	$A \bullet F$				10	
U1012	U18-8	U19-8	A-E		OC	
U1-13	U1608	U17*8	An ${ }^{\text {c }}$		08	
U1-14	U1488	U15-8	$A=C$		04	
U1=15	U12-8	U13-8	$A=8$		00	
U1.16	+5V				+5V	

U2-01 UNUSED
UZ-02 UNUSED
U2:03 U5:39
U2-04 U2.5
U2-05 U2-4
U2=06 E=U
U2-07 GMD
U2-08 E=V
U2-09 U2.10
U2•10 U2.9
U2:11 U5:34
U2.12 U12.10 U13.10 E:Z
U2.13 U3:8 U4=5
U2=14 $\rightarrow 5 V$

U3-0 2	U3-1	14.2	U7-1	E*T	115
U3-02	U9-13	U7-13	EsS		A14
U3-03	U3-4	U3-5	$46 \cdot 3$		RES
U3-04	U3-3	U3-5	U6-3		RES
U3.05	U3-3	U3.4	U6=3		RES
U3=06	U $5=40$	E=7			RESONOT
U3.07	GND				GND
U3:08	U4.5	U4-13	U4-10		WRITE
U3-09	E-Y				PHA SE:2-NOT
U3-10	U3-11	U2=8	E-V		RH
U3-11	U3:10	U2-8	E=V		RW
U3-12	U1-6				$1 / 48 \mathrm{KK} \mathrm{SEL}$
U3-13	U3-13	U10.13	U11-13	$E=R$	113
U3-14	+5V				+5V

$U 4001$	$U 9.12$		
$U 4002$	$U 3=1$	$U T=1$	$E \cdot T$
$U 4.03$	$U 10.12$		
$U 4.04$	$U 29.3$	$R 67$	AA-W

A14-NOT 115
3/4 8K SEL WPIK=NOT

$14=05$	$U 3=8$	$U 4=10$	$U 4=13$
$44=06$	$U 14=10$	$U 15=10$	
$4=07$	GND		
$44=08$	$U 18=10$	$U 19=10$	
$4=09$	$U 29=05$	$R 69$	$A A=18$
$4=10$	$U 3=8$	$U 4=5$	$U 4=13$
$4=11$	$U 16=10$	$U 17=10$	
$14=12$	$U 29=4$	$R 68$	$A A=X$
$4=13$	$U 3=8$	$U 4=5$	$U 4=10$
$4=14$	$+5 V$		

U6-01	GND			GND
U6-02	R72	C10	RSTESW	RST
U6.03	U3:3	U3.4	U3.5	TIMER=OU*
U6.04	R 70			
U6005	C11			
U6.06	U6-7	R71	C25	
U6.07	U6-6	R71	C25	
U6-08	+5V			+5V
U7001	U3-1	U4.2	Eat	415
U7-02	E-18	U2409	U8=3	POR -NOT
U7003	E-W			RW-NOT
U7-04	U9.10			WPM
U7-05	(412 -19)	-22	U909 Eal	
U7-06	U8-12			WRITE=MOA
U7-07	GND			GNO
U7-08	U5-6	E-6		NMI I NOT
U7-09	4808	U8.5	E-17	DEBUG•ON
U7-10	U5-7	E. 1		SYNC
U7-11	U24.8	U20-2		RN-NOT
U7-12	U11012			$4 / 48 K$ SEL
U7-13	U9.13	U3:2	E-S	A14
17.14	+5V			45 V

U8.01	U1005	U25-23	U27-37	R59	AAO N NOT
U8-02	U25:39				CA2-U25
U8.03	U7:2	U24.9	E-18		POR -NOT
U8.04	R76	12907	AA-20	U3 8-8	DBUGOFF
U8-05	U8-8	17-9	E-17		DBUGON
U8.06	U8-9				OBUGLATCF
48.07	GNO				GND
U8-08	U8-5	U7-9	E=17		DBUGON
U8-09	U8-6				DBUGLATCH
$U 8=10$	R75	U29:6	$A A=19$		DBUGON
U8=11	U27-35				RWEMON
U8-12	U7-6				WRITEAMON
U8-13	U2-10	42-9	E*W		RWO NOT
U8-14	+5V				+5V

U9.01 (U20.23)-19 E.M A10
U9002 U25024 U28-24 A10=NOT
U9.03 UNUSED
U9.04 UNUSED
U9.05 UNUSED
U9.06 UNUSED
U9.07 GNO

IC/PIN: POINTS TO WHICH IT IS CONNECTED

U9-08	U27-36		E-L
U9:09	1U12.	- 22	
U9-10	UT-4		
19-11	R8 3	U29-2	$A A \bullet V$
U9-12	U4-1		
$v 9=13$	U7-13	U3-2	$E-S$
$U 9=14$	45V		

U10001	U24.10	R79			$88 \times \mathrm{x}$
U10:02	U24:10	R79			$88 \times \mathrm{x}$
U10:03	UNUSED				$90 \times \mathrm{x}$
U10004	UNUSED				$98 \times \mathrm{x}$
U10005	U25-23	U27-37	R59		140
U10:06	U28.23	U29:23	R60		AAB
U10.07	UNUSED				$80 \times \mathrm{X}$
U10:08	GND				GND
U10009	U27-37	R98			88×1
U10. 10	UNUSED				di Sable
U10-11	UNUSED				Disable
U10-12	14.3				$3 / 486$ SEL
U10. 13	U3-13	U11013	E-R		113
U10.14	U11-14	U1-3	E-P		A12
U10-15	U20.18	U11.15	U1-2	$\mathbf{E}=\mathbf{N}$	A11
U10.16	45 V				+5V

U11.01	R80				cosx
U11:02	R81				C8xx
U11.03	882				00xx
U11.04	UNUSED				08xx
U11-05	UNUSED				E0xX
U11.06	UNUSED				E8XX
U11.07	UNUSED				FOXX
U11008	GNO				GND
U11:09	U27-37	R98			FBXX
U11=10	UNUSED				disable
U11-11	UNUSED				DISABLE
U11-12	U7-12				W4 8K SEL
U11-13	U3-13	U10.13	E®R		113
U11-14	U10:14	U103	$E=P$		412
U11.15	U20.18	U10.15	Ul-2	$\mathrm{E} \sim \mathrm{N}$	111
U11016	+5V				+5V

$(U 20=23)=2$	$U 27=40$	$E=H$		
$(U 20.23)=3$	$U 27=2$	$E=F$		$A 6$
$(U 20=23)=4$	$U 27=3$	$E=E$		$A 5$
$(U 20=23)=5$	$(U 25,28,29)=35$	$U 27=4$	$E=D$	$A 4$
$(U 20=23)=9$	$(U 25,28,29)=38$	$U 27=7$	$E=A$	$A O$
$(U 20.23)=7$	$(U 25,28,29)$	17	$U 27=6$	$E=B$

IU20.231.2 U27.40 E=H A6
(U20.23).3 U27:2 E=F A5
(U20:23):4 U27-3 E®E A4
(U20.23):5 (U25,28.29)=35 U27.4 E=D A3
(U20:23)=3 (U25,28,29)e38 U27-7 E-A AO
(U20:23): (U25,28.29) 17 U27-6 E=8 Al

ICIPIN* POINTS TO WHICH IT IS CONNECTED SIGNAL NAME

(U12-U19)=07	(U20-23)-6	$(425,28,29)$	36 U27.5	$E=C$	A2
(U12,U13)-08	U1:15				00
(U14, (15) 08	Ul=14				04
(U16, U17)-08	U1-13				08
(U18,1919)-08	U1-12				GC
(U12-U19)-09	GND				GND
(U12.U13)-10	E=2				RAMERW
(U14, U15)-10	U4.6				WR1=NOT
(U16,U17)-10	U4-11				WR2-NOT
(U18, U19)=10	$\mathrm{UK}_{4}=8$				WR3-NDT
(U12,14,16,18)-1	1 U U20	23)=13 (U2	, 27,28,291:30	1. $E=8$	03
$(\cup 12,14,16,18)=12$	2 U 20	23)-12 (U2	5,27,28,29)=31	1 E=9	02
(U12.14,16,18).13	3 UU20	23)-11 (U2	5,27,28,29)-32	2 E=10	01
($112,14,16,18)=14$	41420	23)-10 (U2	5, 27,28,29) 33	3 E-11	D0
(U13,15,17,19)-1	1 1 U20.	23).17 IU2	,27,28,29) 26	6 E-12	07
(U13,15,17,19) 1	2 UV20	23).16 UU2	, 27,28,29)=27	7 E=13	06
(U13,15,17,19)=13	3 IU20.	23)-15 (U2	,27,28,291-28	E E-14	D5
$(\mathrm{U13,15,17,19)=14}$	4 (U20	23)14 UU2	, 27,28,291-29	9 E-15	D4
(U12-U19)=15	(U12-19)-22	U9:9 E=L			19
(U12-U19)=16	(U12-19):16	(U20-23)-23	E-K		${ }^{18}$
(U12-U19)-17	(U12-19)-17	(U20-23)-1	E.J		A 7
(U12-U19)=18	+5V				+5V

(U20-23).01 (U20-23)=02 (U20.23).03 (U20-23):04 (U20-23):05 (U20-23).06 (U20-23).07 (U20-23):08 (U20-23)=09 (U20-23):10 (420 -23)-11 (U20-23)-12 (U20:23):13 (U20:23):14 (U20-23)-15
(U20.23)-16 (U20-23)-17 U20. 18
U21-18
U22.18
U23.18
U20: 21
U21-21
U22-21
U23. 21
(U20.23):22
(U20.23).23
(U20:23)-24

U24-01	U11-3	R82	U23 =SEL
U24:02	R78		
U24.03	U23:20		U23-SEL
U24-04	U17-1	R80	U21.SEL
U24:05	R78		
U24.06	U2 1-20		U21-SEL
U24=07	GND		GND
U24008	U7-11	U20-8	RNE KOT
U24009	U18:3	E. 18	POR ENOT
U24-10	U10-1	U10:2	8XXX
U24=11	U2 2: 20		U22-SEL
U24-12	R78		
U24e13	U1 102		U22-SEL
U24=14	$+5 \mathrm{~V}$		+5V

U25-37	(U12-19) 6	(U20:23)=7	1U28.291-37	U27.6	$E-B$	A1
U25-39	(U12-19)-5	(U2C*23)*8	(U28,29)=38	U27e7	E* ${ }^{\text {A }}$	40
U25.39	U8-2					
U25-40	GNO					GND

L26.01	GNO				
U2S.0:	CR23	CR 29	R93	R95	R126
U26.03	CR 28	CR29	R 93	R95	
U26.04	GND				
U26.05	UNUSED				
U26-06	UNUSED				
U25-07	U25-16				
U26-08	+5V				

GND
AUDIOREF ALDOIOIN GND

DATAIN $+5 \mathrm{~V}$

U27.0: GMD
U27.02 (U12.19) 2
U27:03 (U12•19):3
U27:04 (U12.19):4
U27:J5 (U12•19):7
U27:06 (U12:19):8
U27-07 (U12-19)-5
U27.08 U30.13
U27.09 U30-11
U27-10 U30.5
U27.11 U30.3
U27.12 U3001
U27-13 U30.9
U27-14 U38.11
U27.15 U38.13
U27=16 U38=0
U27:17 028
U27.18 RNI
U27:19 U38.1
U27=20 +5V
U27.21 U37-12
U27-22 U37:13
U27. 23 U37.14
U27:24 U37:15
U27.25 UNUSEC
U27:20 (U13.15,17.19):11 (U20.23)-17
U27.27 $\quad(113,15,17,19)=12 \quad(U 20-23)=16$
U27.28 (U13,15,17,19)=13
(U20.23)1015
(U20-23) 14
U27-29 (U13.15,17.19):14
j27.30 (U13,15,17,19):11
U27-3: (U13,15,17,191-12
(U20-23).13
(U20-23)=12
U27:32 \{U13,15,17,19\}:13 (U20.23):11
U27:33 (U13.15.17.19):14 (U20-23):10
U27.34 E. 7 U3:0 U5.40
U27.35 Ud-11
U27.30 U9:9
(U25,28,29):28
(U25,28,29)=27
(U25,28.29):28
(U25.28.29).29
(U25,28,29)=30
(U25,28,29)-31
(U25,28.29):32
(U25,28,29)-33

GND
A 5
A4
03
A.

A1
10
COLA
COL 8
COLC
COLD
COLE
CCLF
COLG
ROWO
CRTIN
TTYIN
TYYOUY
CRTOUT
45 V
OIS.ENA
ROW 3
ROW 2
ROW1
IRQ-NOT
07
$E=8$
EOQ DC
E. 10 DS

E=11 D4
$E=12$ D3
E-13 O2
E-14 01
E- 15 DO
RES:NCT
MONRAMPW
ASONOT
signal name
AAO ONOT
A10
PHASE: 2 16

U28-01 GND
$U 28=02 \quad A A=D$
U28-03 AA-3
U28-04 AA-C
U28-05 AA-12
U23.06 AA ON
U28-07 AADIL
U28:08 AA om
U28-09 AA=10
U28-10 AA=L
U28-11 AA-9
U28-12 AA $=1$
U28-13 AA-8
$U 28=14 \quad A A-J$
U28-15 AA 27
U28:16 AA-H
U28:17 AA 06
U28=18 AA OF^{2}
U28=19 AA=5
U28:20 +5V
$\begin{array}{lllll}U 28=21 & E \bullet 4 & U 5=4 & \\ U 28=22 & E \oplus V & U 2=8 & U 3-10 \quad U 3=11\end{array}$
U28-23 U10:6 R60
U28-24 U9:2 U25:24
U28-25 U2=6 E•U
U28:26 (U13,15,17,19)-11 (U20.23):17 (U25,27,29)=26
U28:27 (U13.15.17.19)=12 (U20-23):16 (U25,27.29)-27
U28-28 (U13,15,17,19)-13 (U20-23)-15 (U25,27,29):28
U28-29 (U13,15,17,19):14 (U20:23):14 (U25,27,29)=29
U28:30 (U13,15,17,19):11 (U20-23)=13 (U25,27,29)=30
U28:31 (U13,15,17,19):12 (U20:23):12 (U25,27,29):31
U28:32 (U13,15,17,19)=13 (U20:23)-11 (U25,27,29)-32
U28.33 (U13,15.17.19)=14 (U20-23):10 (U25,27,29)=33 $\mathrm{U} 28=34 \mathrm{U} 3=6 \quad \mathrm{U}=4 \mathrm{C}$ Ee7
U28-35 (U12-19)=4 (U20-23)-5 (U25.29)-35 U27-4
U28.36 (U12-19):7 (U20.23).6 (U25,29):36 U27.5
U28-37
U28:38
U28-39
(U12.19):6 (U20.23):7
(U12-19)-5 (U20-23)-8 (U25,29)-38 U27.7
U28:40 AA EE

E-8 DT
E-9
E-10
E=11
$E=12$
E. 13
E. 14 $E=15$

D7
D6
05
04
D3
02
01
DO

GND

IRQ CNOT
RW
AA 8 ENOT
A 10 eNOT PHASEE 2

RES ANOT
43
42
11
$A 0$
-
-

$U 29.01$	GND
$U 29.02$	$A A=V$
$U 29003$	$A A=W$
$J 29.04$	$A A=X$

IC/PIN\# POINTS TO WHICH IT IS CONNECTEO

U29.05 AA=18
U29. 06 AA. 19
U29.07 $A A=20$
U29.08 AAI?
U29-09 AA=U
U29:10 AA•16
U29-11 AAET
U29: 12 AA: 15
U29-13 AA:S
U29.14.AA-Y BUFFERED
U29-15 AA-21 BUFFERED
U29. 16 AA 2 BUFFERED
U29. 17 AA 22 BUFFERED
U29-18 AA•14
U29-19 SCOPE®OUT-BUFF
U29:21 E=4 U5e4 U25:21 U28: 21
U29:22 E•V U2•8 U3:10 U3:11
U29. 23 R60 U28:23
U29.24 (UZ0-23)-19 U9-1 E.M
U29:25 EeU U2.6
U29. 26
U29-27 (U13,15,17,19)=12
(U20:23):17
(U20.23):16
(U20.23):15
$\begin{array}{lll}(U 13,15,17,19)=14 & (U 20=23), 14 & (U 25,27,28)=29 \\ (U 13,15,17,19)=11 & (U 20=23): 13 & (U 25,27,28)=30\end{array}$
(U13.15,17.19)-12 (U20-23):12 (U25,27.28).31
(U13,15,17,19):13 (U20-23).11 (U25,27,28):32
(U13.15,17,19):14 (U2C=23)1010 (U25,27,28):33
E=7 U3-6 U5-40
(U12-19) e4 (U20:23)=
(U25,27,28):26
E•8
E-9 D6
E-10 D5
E=11 D4
EE 12 D3
E= 13 D2
Ee14 D1
00
RES ENOT
A3
12
42
$+5 V$
IRQ ONOT
RH
AAB NOT
410
PHA SE=2
07

1

2
(U25,28)-35 U27=4 E=D
EO 15
(U25,27,28):27
 E
(U25,28)-38 U27-7 EOA AO
(U25,28)=37 U27-6 E=B
(U20:23) ${ }^{(1)}$ U25.28).35 U2704 (U20:23):7 (U25,28)=37 U27-6 (U20-23)-8 (U25.28)-38 U27-7

U30-01	U2
U30.02	RN2-SEGEE
U30.03	U27011 A.22
U30.04	RN2-SEG=0
U30.05	U27-10 ADY
U30.06	RN20
U30.07	GND
U30:08	RN2-SEG*
U30-09	U27-13 A.18
U30-10	RN2-SEG- ${ }^{\text {- }}$
U30.11	U27-9 AE19
U30. 12	RN2.SEG
U30-13	U27-8 A 21
U3C=14	+5V

U30-01 U27•12 A-20
U30:02 RN2•SEGEE
U30.03 U27ell A-22
U30.04 RN2•SEG•D
U30.05 U27e10 A=Y
U30.06 RN2ESEGEC
U30.07 GND
U30:08 RN2•SEG•F
U30:09 U27-13 A.18
U30-10 RN2•SEG•B
U30.11 U27:9 AE19
U30-12 RN2:SEGEA
$U 3 C=14+5 V$

U29.39 SCOPE-OU TMBUFFER
U29-40 AA OP

J31:U36-01
J31-U36=02
131.03

J32=03
433-03
J34003
J35003
J36:03
J31-U36-04
J310436.05
J31-U36=06
J31-U36:07
J31-U36-08
J31:U36:09
131:U36.10
131 -U36-11
$1310436=12$
131 - U36-1.3
$131 \cdot U 36 \cdot 14$

137001
137-02
137=03
137.04
137.05
137.06
137.07
137-08 GND

137009 R61 R90
137-10 UNUSED
137-11 UNUSED
137.12 U27021

137=13 U27e22 AoV
137:14 U27:23 A=X
137-15 U27-24
137-16 $+5 V$

$A=V$
$A=X$

> SEGMENTAAAALLEWIRED-TOGETHER SEGMENT*FAALL•WIRED=TOGE THER BUFFER SSW-TO = 5V = FROM=U37=01 BUFFER : SWa TO. 5 VOFROME U37-02 BUFFER =SW-TOE $5 V=F R O M=U 37=03$ BUFFER ©SW=TO-5VAFROM-U37-04
> BUFFER = SW-TOE 5 V F FROM = U37-05
> BUFFER OSW-TO-5V-FROM-U37-06
> UNUSED
> UNUSED.
> LNUSED
> SEGMENT-EAALL-WIRED=TOGETHER SEGMENTAD-ALLEWIRED-TOGETHER DECIMALEPT•ALL•WIRED-TOGETHER SEGMENTAC=ALLEWIRED-TOGETHER SEGMENT-GのALL•HIRED-TOGETHER UNUSED
> SEGMENTAB-ALL WIRED-TOGETHER
> DIRECT-SHORT-TO-PIN-3=OF aRESPECTIVEEIC

BUFFER ©SWITCH•TO-U31-3.U31-14 BUFFER ©SWITCH•TO-U32-3.U32-14 BUFFER OSWITCHOTO-U33-3,U33-14 BUFFER ©SHITCH= TO-U3403,U34-14 BUFFER USWITCH•TO-U35-3,U35-14 BUFFERESWITCH•TO-U36.3,U36-14 BUFFER ©SWITCH- TO-SPEAKER $=S P=1$

DIS DENA
ROW3
ROW 2
ROW 1
45 V

$138-01$	U27-19		
138-02	RN1		
138.03	UNUSED		
$138 \cdot 04$	UNUSED		
138-05	029		
138.06	U27=16		
138.07	GND		
$138 \cdot 08$	U8-4 R76		
$138 \cdot 09$	U6-3 U3:3	U3-4	U3-5
$138 \cdot 10$	RN2-SEG=G		
$138 \cdot 11$	U27-14 A=W		

IC/PIN POINTS TO WHICH IT IS CONNECTED SIGNAL NAME
U38-12 RN2-SEG:DP
U38-13 U27. 15 $A \cdot 17$
U38-14 +5V

APPENDIX 2 -

SYM-1 SIGNAL NAME CROSS REFERENCE LISTING

Notes: 1. Signal source is shown by a single '*'. 2. Bidirectional (DATA) lines are shown by '**'.

SYM-1 SIGNAL NAME CROSS REFEREMCE LISTING

SIG. RIAME	WHERE IT OCCUR	THE BOARD
$+5 v$	U1-16	
+5V	U2 -14	
+5V	U3-14	
+5V	U4-14	
45 V	U5-08	
+5V	U6-08	
+5V	U7e14	
+5V	U8-14	
+5V	- 49.14	
+5V	U10016	
+5V	U11:16	
+5v	(U12-U19)-18	
45 V	(U20-23)=24	
45 V	U2 1=21	
+5V	U22:21	
45 V	U23-21	
+5V	U24814	
+5V	U25020	
+5V	U26008	
+5v	U27-20	
+5V	U28. 20	
+5V	U29020	
+5V	U37-16	
AAOENOT	U10-05*	When this line is low, the adores ses
ARO NOT	U8-01	AOOO-ATFF ARE BEING SELECTED.
AAOENOT	U25-23	
AAS ONOT	U27-37	
AAB = NOT	U1C-06*	WHEN THIS LINE IS LOW, THE ADDRESSES
$A A B=N O T$	U2 8. 23	A800-A PFF ARE BEING SELECTED.
AAB ONOT	U29-23	
AUDIOIN	U26003	.
AUD IOREF	U26.02	
AO	U5-09*	THIS IS ADDRESS LINE AO
10	(U12-U19)=05	
10	(U20-23)-08	
10	U25-38	
10	U27-07	
10	U28=38	
40	U29-38	
$A 1$	U5:10*	THIS IS ADDRESS LINE AI
A1	(U12-U19)-06	
$A 1$	(U20-23)-07	
11	U25:37	
A1	U27-06	
11	U28-37	
$A 1$	U29:37	
42	U5-11*	THIS IS ADDRESS LINE AZ
A2	(U12-U19)-07	
$A 2$	(U20-23)-06	
${ }^{2}$	U25036	
A2	U27005	
${ }^{12}$	U28-36	.
$A 2$	U29.36	
43	U5-12*	THIS IS ADDRESS LINE A3

SYM-1 SIGNAL NAME CROSS REFERENCE LISTING
SIG.NAME WHERE IT OCCURS ON THE BOARD

WHERE IT OCCURS ON THE BOARD

02
02
D2
02
D2
02
D3
D3
D3
D3
D3
03
D3
D4
04
D4
04
04
04
04
05
05
D5
05
D5
DS
D5
06
06
D6
06
06
06
D6
07
07
07
07
07
07
07
08xX
EOXX
E8XX
FOXX
FBXX
GND
GND
GND
GNE
GND
GND
GND
GND

$$
(\cup 12,14,16,18) \cdot 12 * *
$$

(U20:23)-11**

$$
U 25.31 *
$$

U27.31**

$$
U 28=31 * *
$$

U29:31*
U5-30** OATA LINE O3

$$
(112,14,16,18)=11 \neq *
$$

$$
(\cup 20.23)=13 * *
$$

U25.30\%

$$
U 27.30 \text { * }
$$

U28030

$$
U 29.30=
$$

US-29** DATA. LINE D4

$$
(\cup 13,15,17,19) \cdot 14 \neq *
$$

$$
(1420-23)-14 * *
$$

U25.29*
U27-29**
U2 8= 29**
U29.29**
U5-28* OATA LINE OS

$$
(U 13,15,17,19)=13 * *
$$

$$
(U 20-23)=15 \neq
$$

U25: 28*
U27•28*
U28-28**
U29.28*
U5:27** DATA LINE OS

$$
(413,15,17,19)=12^{* *}
$$

$$
(U 20=23) \cdot 16 \neq
$$

U25. 27**

$$
\text { U27-27 } \ddagger
$$

$$
\mathrm{U} 28=274 *
$$

U29.27**

$$
\text { U5-26丰 DATA LINE } 07
$$

$$
(413,15,17,19) \cdot 11 \text { * }
$$

$$
(\cup 20-23)-17 \neq
$$

U25.26**
U27e26**

$$
U 28=26 * *
$$

U29026**
U11004 WHEN LOW, ADORESSES D800•DFFF ARE SELECTED
U11005* WHEN LOW, ADDRESSES EOOOOETFF ARE SELECTED
U11-06* WHEN LOW, ADORESSES E8OO.EFFF ARE SELECTED
U11.07* WHEN LOW, AODRESSES FOOO-FTFF ARE SELECTED
U11-09* WHEN LOW, ADDRESSES F800-FFFF ARE SELECTED

GNO	U6-01	
GND	U7-07	
GND	U8-07	
GND	U9:07	
GND	U10008	
GND	U11008	
G:T	(U12-U19)=09	
GND	(U20-23)=12	
GND	U2 1018	
GND	U2 2-18	
GND	U2 3-18	
GND	-U20021	
GND	-U24007	
GND	U25040	
GND	U26001	
GND	U26004	
GND	U27-01	
GND	U28.01	
GND	U29001	
IRQ =NOT	U5 004	THE INTERRUPT REQUEST LINE, CAUSES AN IRQ
IRQ -NOT	U25-21*	INTERRUPT OF THE PROCESSOR WHEN LOW ONLY
IRQ-NOT	U27025*	If the interrupts are enabled at the time
IRQ -NOT	U28-21*	
IRQ - NOT	U29021*	
MONRAMRW	U27035	MONI TOR RAM RW LINE, WHEN LOW ALLOWS WRITE
NMI ©NOT	U5-06	MONMASKABLE INTERRUPT CAUSED WHEN LOW
NMI -NOT	U7-08*	
PHASE-1	U5 003*	PROCESSOR CLOCK PHASE 1
PHA SE-2	U2-03	PROCESSOR CLOCK PHASE 2
PHASEe2	U5-39*	
PHA SE=2	U2 53 25	
PHA SE-2	U27-39	
PHA SE-2	U28-25	
PHA SE-2	U29025	
PHASE-2 N	U2-04	INVERTED PHASE 2 CLOCK
PHASE-2 N	U2=05	
PHA SE-2 0	U2 006	BUFFERED OUTPUT DF PHASE 2 ClOCK
PHA SE-2-N	U3-09	
POR -NOT	U7-02	POWEREON RESET ACTIVE WHEN LOW
POR ONOT	U8-03*	
POR - NOT	U24009	
RAM RH $^{\text {d }}$	(U12,U13)-10	RAM REAOEWRITE
RAMARH	U2-12*	
ROY	U5-02*	PROCES SOR READY LINE
RES	U6-3*	RESET OUTPUT OF US, WHEN HIGH INITIALIZES
RES	U3=03	PROCESSOR AND PERIPHERAL PARTS
RES	U3-04	
RES	U3=05	
RES ENOT	U3.06*	
RES -NOT	U25034	
RES ONOT	U27-34	
RES ONOT	U28.34	
RES - NOT	U29*34	
RN=NOT	U7-11	MOT-MONITOR, IF HIGH, MON. IS NOT SELECTED

SIG.NAME	WHERE IT OCCUR	ON THE BOARD.	
RN=NOT	U24*08*		
RO	U5.38*	PROCESSOR RO LINE	
p.OWO	U27* 15*	ROW O OF THE ONBOARD KEYPAD	
ROW 1	U27-24*	ROW 1	
ROW 1	U37-15		
ROW 2	U27-23*	ROW 2	
ROW2	U37*14		
ROW3	U27822*	ROW 3	
ROW 3	U37013		
RST	U5-40	ON THE LEADING EDGE OF A HIGH SIGNAL	
RST	U6.02*	CAUSES THE PROCESSOR POWER=ON RESET SEQUENCE	
RH	U2-03		
RH	U2011	THE READ=WRITE LINE, READOHIGH, WITEOLON	
RH	U3-10		
R.W	U3-11		
RW	U5-34*		
RW	U25-22		
RW	U28:22		
RW	U29022		
RH-MON	U8-11	MONI TOR READOWRITE, READ HIGH, NR ITE-LOW	
RHONOT	U2-09		
RW-NOT	U2-10		
RH-NOT	U7-03		
RW- NOT	U8-13		
SYNC	U5 =07*	goes high for each access of an opcode	(
SYNC	U7-10		
TAPECNTL	U25-19*		
TIMER•OUT	U6-03*		
TTYIN	U27017*		
TTYOUT	U27-18*		
U21-SEL	U24006*	WHEN LOW, IC U21 IS SELECTED	
U21-SEL	U21020		
U22-SEL	U24*11*	WHEN LOW, IC U22 IS SELECTED	
U22-SEL	U22020		
U23-SEL	U24003*	WHEN LOW: IC U23 IS SELECTED	
U23-SEL	U230 20		
WPM-NOT	U7004	WHEN LON, MONITOR IS WRITEePROTECTED	
WPM $=$ NOT	U29-2*		
WPMANOT	U9-10		
WPM = NOT	U9.11		
WPIK=NOT	U4=04	WHEN LOW, 0400-0TFF ARE WRITE PROTECTED	
WP 2K=NOT	U4=12	WHEN LOW, $0800 \cdot 0 \mathrm{BFF}$ ARE WRITE PROTECTED	
WP3K=NOT	U4-09	WHEN LOW, OCOO=OFFF ARE WRITE PROTECTED	
WRITE	U2:13	WRITE LINE, WHEN HIGH, CPU DOING A WRITE	
WRITE	U3-08*		
WRITE	U4-05		
WRITE	U4.10		
WRITE	U4-13		
WRITEAMON	U7=06*	THE MONITOR WRITE LINE, WHEN HIGH,	
WPITE=MON	U8-12	WRITE INTO THE MONITOR RAM	
WRITE*NOT	U2-12	THIS IS THE ACTVE LOW WRITE POLSE FOR EXTERENA	RAM
WRI=NOT	U4-06*	WRITE CONTROL $0400=07 F F$, HRITES IF LOW	
WRI-NOT	(U14.U15) 10		
WR2 ENOT	U4-11*	WRITE CONTROL $0800 \cdot 0 B F F$, WRITES IF LOW	

SYM: 1 SIGNAL NAME CROSS REFERENCE LISTIR!G

SIG.NAME	WHERE IT OCCURS	ON THE	BOAR			
WP2enot	$(\cup 16 ; \cup 17)=10$					
WR3-NOT	U4-08	WRITE	CONTROL OCOO-OFFF.			WF.ITES IF LOW
WR3-NOT	(U18, U19)-10					
XTAL	U5 $=37$	TIMING		YSTAL, HEART	OF	THE SYSTEM
OC	U1:12*	WHEN	LOW.	CCOC= OFFF	ARE	SELECTED
0 O	(U18.U19)-08					
00	U1-15	WHEN	LOW.	0000-03FF	ARE	SELEC TED
00	(U12,U13)008					
04	U1 $=14$	WHEN	LOW.	0400.07FF	ARE	SELECTED
04	(U14,U15)=08					
08	U1 $=13$	WHEN	LOW,	0800-08FF	ARE	SELEC TED
08	(U16, U17)=08					
1/4 8K SEL	U1-06	WHEN	LOW,	0000.3FFF	ARE	SELECTED
$1 / 48 \mathrm{~K}$ SEL	U3-12*					
15	U1 007*	WHEN	LOW,	1C00.1FFF	ARE	SELECTED
10	U1-11*	WHEN	LOW.	1000-13FF	ARE	SELECTED
14	U1-10*	WHEN	LOW.	1400-17FF	ARE	SELECTED
18	U1-09*	WHEN	LOW,	1800-1BFF	ARE	SELEC TED
3/4 8K SEL	U4-03*	WHEN	LOW,	8000:8FFF	ARE	SELECTED
3/4 8K SEL	U1001					
$4 / 48 \mathrm{~K}$ SEL	U7-12*	WHEN	LOW.	COOO.FFFF	ARE	SELEC TED
$4 / 4$ 8K SEL	U11-12					
$80 \times \mathrm{x}$	U24.10	WHEN	LOW:	8000-87FF	ARE	SELEC TED
$88 \times \mathrm{X}$	U10.01*					
$88 \times x$	U1 C=02*	WHEN	LOW,	8300.8FFF	ARE	SELEC TED
$90 \times \mathrm{x}$	U10003*	WHEN	LOW.	9000-97FF	ARE	SELEC TED
98×X	U10-04*	WHEN	LOW.	9800:9FFF	ARE	SELECTED

APPENDIX 3 -

SYM-1 SCHEMATIC DIAGRAM*

*Permission to include in this volume provided courtesy of Synertek Systems Corp.

$(6 x)$ HP $5082 \cdot 7730$ (OR EQUVY)

