
Symbolics X Window System User’s Guide

The Genera X Client

Configuring the Remote Screen Facility for the X Client

Before you configure the remote screen facility, restore the distribution tape as

follows:

1. Place the Symbolic’s X Window System tape in the tape drive

2. Specify Restore Distribution :menu Yes

3. Click on Initialize Restoration

4. Click on Perform Restoration�

Next you need to load the remote screen facility, as follows:

1. Be sure that you have the RPC, Embedding-Support, and IP-TCP systems

loaded in the world you are using. You can check by using the Show Herald

command. If any of these systems are not loaded, load them individually with

Load System.

2. Load the system X-Remote-Screen.�

Configuring the remote screen facility for the Symbolics X window system consists

of these steps:

• Installing Genera fonts for your X server.

• Providing X server access.�

Installing Genera Fonts for the X Client

The Genera X Client can make use of either the Genera X fonts or the the stan-

dard 75dpi X fonts. The easiest thing to do is to use the standard 75dpi X fonts

provided with the X Window server you are using. However, if you want your re-

mote X consoles to use the same fonts as local consoles, use the Genera fonts.

The next sections tell you how to install the Genera fonts for the X Window serv-

er you are using. Instructions are given here for users of the Sun Open Window

system and the M.I.T. X server.

Installing Genera Fonts for Open Windows

No documentation available for section Installing Genera Fonts for Open Windows.

Page 1265

Installing Genera Fonts for the M.I.T. X Server

For the M.I.T. X server, Genera fonts should be compiled by the bdftosnf program

from the X distribution and installed in the directory /usr/lib/X11/fonts/genera.

In this example, we assume that you are using the M.I.T. X server, that the UNIX

software tape was restored to /usr/share/local/ivory, that the bdftosnf program

is installed in the directory /usr/bin/X11, that the compiled fonts are to be in-

stalled in the directory /usr/lib/X11/fonts/genera, and that you are using the csh

shell. The example compiles each BDF file in /usr/share/local/ivory/fonts into

the corresponding SNF file in /usr/lib/X11/fonts/genera.

�

% cd /usr/share/local/ivory/fonts

% mkdir /usr/lib/X11/fonts/genera

% foreach font (*.bdf)

? /usr/bin/X11/bdftosnf $font > ‘echo $font \

 | sed -e ’s/bdf$/snf/’ \

 | awk ’{print "/usr/lib/X11/fonts/genera/" $1}’‘

? end

% cd /usr/lib/X11/fonts/genera

% /usr/bin/X11/mkfontdir

�

Once you have compiled the fonts, you must add the Genera fonts directory to

your X server’s font path.

No documentation available for section Example of Setting the Font Path for the

M.I.T. X Server.

Providing X Server Access to the Symbolics Machine

Because Genera needs access to the X display for its console screen, the X server

needs to be told to allow access from the Symbolics computer. Since X server ac-

cess control only lasts for the duration of an X session, you will have to do this

each time you log into your machine.

In the M.I.T. X Window System distribution, access can be enabled with the xhost

UNIX program. Use the xhost UNIX program to tell the X server to allow the

Symbolics computer to open connections to the display. See the UNIX manual page

for the xhost UNIX program for more information.

If you are using OpenWindows, use the newshost program.

Connecting to a Genera Application

The X Window System is a network protocol, and requires a rendezvous between a

client and server before communications can take place. In the X Window System,

the client is the application seeking to present a user interface, and the server is

a virtual console capable of doing so. In the case of the Symbolics UX, Genera

running on the coprocessor is the X client, and the host workstation (or any other

Page 1266

workstation on the network) is the X server. The Genera X client must be specifi-

cally requested to connect to a given X server.

When using the Genera X client from a non-UNIX workstation such as an X ter-

minal or a Symbolics workstation, you must independently connect to the Genera

Command Processor and use the Start X Screen command. You can also use TEL-

NET from a non-UNIX workstation. When using the Genera X client from a UNIX

workstation, use the genera UNIX program to establish and supervise the X con-

nection. The genera program uses a simple RPC protocol to contact Genera and in-

voke the Start X Screen command. See the section "genera UNIX Program".

The Genera X client supports multiple user interfaces simultaneously, possibly dis-

played on different consoles. This does not, however, make Genera a multiuser op-

erating system. The Genera operating system provides a single address space, or

environment, for all applications running within it. There are no mechanisms to

isolate multiple applications (or multiple copies of a single application) from each

other, so applications intended for use by multiple users must carefully define

which objects are shared among users and which are strictly per-user. dw:define-

program-framework encourages writing programs that can be used by several

users independently, by providing a per-invocation repository for application ob-

jects.

Start X Screen Command

Start X Screen host keywords�

Connects to an X server to present the Genera user interface. Start X Screen

takes a number of optional arguments, principally one to specify the activity which

is to run in the new screen. If no activity is specified, a generic Genera console

and user interface is presented, and various activities may be selected within it us-

ing the usual mechanisms.

The following arguments specify where the user interface is to be displayed:

host The name of the host on which to display the user interface. It

must be running an X server and provide X-WINDOW-

SYSTEM service.

:Display The number of the display (X terminology).

:Screen The number of the screen (X terminology).

The following keyword arguments specify the Genera application in the new

screen:

:Activity The name of the Genera activity to use.

:Program The name of the remote program to use.

:Protocol The network protocol to use for the connection.�

Page 1267

There are a number of arguments that specify visual characteristics of the new

screen. The default is to create a screen that covers most of the X server’s con-

sole, with a who line (also called a status line).

:Geometry An X geometry specification (for example, 785x800+100+100)

:Who Line A Boolean value indicating whether to append a status line to

the screen.

:Foreground The foreground color.

:Background The background color.

:Border Width The width of the screen border, in pixels.

:Border Color The color of the border.

:Compatible Color Whether or not the screen supports compatible color.

:Initial State :normal or :iconic, indicating whether the new window should

be initially iconified or not.

Start X Screen normally attempts to use the resources (screens, bitmaps, dynamic

window histories) of previously created screens that have been disconnected, by

Halt X Screen, warm booting Genera, or by a failure of the network connection.

This behavior may be disabled using the :reuse argument.

:Reuse A Boolean value indicating whether to reuse an old screen or

force a new one to be created.

The following example presents the user interface of a Genera main screen on the

primary console of host ENIAC, assuming that ENIAC is running an X server. The

window will appear with an image of a Dynamic Lisp Listener inside it; other Gen-

era activities may be selected and will appear within the window, as though it

were the console of a Symbolics workstation.

Start X Screen (host) ENIAC�

The following example presents the user interface of the Genera Zmacs editor on

the primary console of host ENIAC. The window will appear with Zmacs’ default

width of 785 pixels, and without a Genera status line.

Start X Screen (host) ENIAC :Activity Zmacs �

Halt X Screen Command

Halt X Screen screen�

Disconnects an established X connection, destroying the corresponding X window.

The screen argument defaults to the console from which the Halt X Screen com-

mand was executed, if that is an X screen. Otherwise, the screen argument is hard

to type: type help and use the mouse to indicate which of the possibilities you in-

tended.

Page 1268

Keyboard Support in the Genera X Client

Genera was designed for use with a keyboard that includes a rich selection of

modifier keys (CONTROL, META, SUPER, and so on) and a number of special-function

keys (HELP, COMPLETE, ABORT, SUSPEND, RESUME, and so on). This keyboard is ex-

emplified by the one shipped with Symbolics workstations. With the advent of re-

mote console support, such as the X Window System, Genera is increasingly used

from consoles with other, widely varying, types of keyboards.

Genera accommodates various other keyboards by translating keystrokes from the

physical keyboard into its own abstract set of keystrokes. The Genera X client re-

quires that the X server support the following keystrokes (which might be synthe-

sized by the X server if they are not present on the physical keyboard): full al-

phanumeric keys, control, meta, and alt modifiers, separate DELETE and BACKSPACE

keys, separate RETURN and LINEFEED keys, and twelve general-purpose function

keys. Every Genera keystroke may be specified using any keyboard that meets

these minimum requirements; the general-purpose function keys are translated into

the following Genera keystrokes:

Function Value without Value with

Key Shift Key Shift Key

F1 Select Square

F2 Network Circle

F3 Function Triangle

F4 Suspend Mode Lock

F5 Resume

F6 Abort

F7 Super (modifier)

F8 Hyper (modifier)

F9 Scroll Page

F10 Clear Input Refresh

F11 Complete End

F12 Help�

Some keyboards have more convenient locations for some of these keys. For exam-

ple, many keyboards have a HELP key somewhere. The Genera X client recognizes

certain popular keyboards, and customizes the keyboard layout for them. The cus-

tomization is done only by making copies of the keystrokes on the function keys,

never by moving them. So, on a keyboard with a HELP key, Genera’s Help gesture

may be invoked by pressing either HELP or F12. The "Show Keyboard Layout Com-

mand" will display the actual keyboard layout on the screen.

The Symbolics X Client software recognizes the Sun Type-3 and Type-4 keyboards,

and will customize the keyboard layout for them. See the section "Sun Keyboards".

Utilities provided with the X Window System running on your X Server (for exam-

ple, a UNIX machine or an NCD X Terminal) may be used to customize the key-

Page 1269

board layout. The Show X Keyboard Mapping command provides detailed informa-

tion about the translation of X keycodes to Genera keystrokes.

See the section "Show X Keyboard Mapping Command". Note that the recognition

algorithm tries to accommodate a certain amount of customization by the X server,

but heavily customized keyboards may cause the keyboard not to be recognized, in

which case only the standard function key mappings will be available.

Note: The customized keyboard layouts used by the Genera X client are not used

in the Symbolics UX cold load stream, only the standard function key bindings are

available. See the section "ASCII Keyboard Mappings".

The Symbolics keyboard control facility can be used by the Genera X Client. To ac-

cess it, use the Select Activity command from a Lisp Listener, specifying the argu-

ment Keyboard Control.

Some keyboards contain interesting keys that aren’t in the standard Genera char-

acter set. These keys are translated into a special character set called the Key-

board character set, so that commands may be attached to them. See the section

"The Keyboard Character Set".

Sun Keyboards

The Symbolics X Client software recognizes the Sun Type 3 and Type 4 keyboards,

and will customize the keyboard mapping for them as shown in 107 and 108 .

L1 L2

L4L3

L5 L6

L8L7

L9 L10

SELECT NETWORK FUNCTION

MODE

RESUME ABORT SUPER HYPER

PAGE

B.S

REFRESH END

R4 R5 R6

R7
R8

R9

R10
R11

R12

R14
SCROLL

~
‘

RUBOUT

RETURN

LINE
FEED

SYMBOL

A S D F G H J K L
:
; ’

’’

Q

ESC
1
!

2
@

3 4 5 6 7 8 9 0 -

$ % ^ & * ()
=
+

\
|

W E R T Y I O P
{ }
[]

U

Z

CTRL

TAB

X C V B N M , . /
< > ? SHIFTSHIFT

METAMETACAPS

COMPLETE

CLEAR
INPUT

HELP

END

SCROLLSUSPEND

LOCK

Figure 121. Genera Interpretation of the Sun Type 3 Keyboard

�

Note: On a UX with a Type 4 keyboard, Genera uses the F11 key as the COM-

PLETE key. However, the cold load window uses the R2 key for COMPLETE.

Default NCD N-101 to Symbolics Keyboard Mappings

Page 1270

A S D F G H J K L :

; ’

’’

Q

Esc

1

!

2

@

3 4 5 6 7 8 9 0 -

$ % ^ & * () =

+

\
|

~
‘

W E R T Y I O P { }
[]

U

Z

Ctrl

Tab

X C V B N M
, . /

< > ?Shift Line

Feed

Stop Again

UndoProps

Front Copy

PasteOpen

Find Cut

CapsHelp

Del

Return

Back Space

Shift

#

Alt

Num

Scroll

Lock
Scroll Com

pose

Home PgUp

Enter

End

DelIns

Pause NumPrSc

Lock Lock

Lock Lock

Caps

1 2 3

4 5 6

7 8 9

= / * -

+

SELECT NETWORK FUNCTION

MODE

RESUME ABORT SUPER HYPER

PAGE

SCROLL INPUT
CLEAR

REFRESH

COMPLETE

END

HELPLOCK

SUSPEND

SUPER HYPER

SCROLL

METAMETA

Figure 122. Genera Interpretation of the Sun Type 4 Keyboard

�

With the SHIFT key down:

Standard Function Keys:

Symbolics Key Mapping:

With the SYMBOL key down:

With SHIFT SYMBOL down:

Figure 123. Function keys

�

�

Page 1271

Standard Keypad Symbolics Key Mapping

Figure 124. The Keypad

�

�

With the SHIFT key down:

Figure 125. The Keypad with the Shift Key as Modifier

�

�

Show Keyboard Layout Command

Show Keyboard Layout keyboard-layout keywords �

Page 1272

With SYMBOL key down With SHIFT SYMBOL down

Figure 126. The with the Symbol Key as Modifier

�

�

Graphically displays the key mappings for the specified keyboard.

keyboard-layout The type of keyboard to display. Recognized keyboards are:�

Apple Mac 512K

Mac Portable ISO Sun Type 4

Apple Extended Mac 512K International

NCD N-101 Symbolics

Apple ISO Mac Plus

SGI Iris

Apple ISO Extended Mac Portable

Sun Type 3�

keywords :Include Codes, :Include Legends, :Include Mappings, :More

Processing, :Output Destination

:Include Codes {No, Octal, Decimal, Hex} Includes hardware mapping codes.

The default is No.

:Include Legends {Yes or No} Includes a page of the actual keytop legends. The

default is Yes.

:Include Mappings {Yes or No} Includes pictures of the variously shifted map-

pings. The default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

Page 1273

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Hardcopy Keyboard Layout from the Keyboard Control Activity (Select Activity

Keyboard Control) permits landscape printing. This is a simple way to make a key-

board template.

Show X Keyboard Mapping Command

Show X Keyboard Mapping screen keywords�

Displays detailed information about the translation between X Window System key-

codes and Genera keystrokes.

screen Specifies the screen.

keywords :All, :Match�

:All Shows all mappings, instead of just the nontrivial ones.

:Match Shows mappings for the Genera keystrokes matching the speci-

fied substring.

The Keyboard Character Set

Some keyboards contain interesting keys that aren’t in the standard Genera char-

acter set. For example, the Sun Type 4 keyboard contains keys labeled Undo, Cut,

Copy, Paste, and arrow keys. These keys and others are translated into a special

character set called the Keyboard character set, so that commands may be at-

tached to them. Characters in the keyboard character set may be referred to using

the #\Keyboard syntax (for example, #\Keyboard:Cut). This mechanism is used to

support the arrow keys in Dynamic Windows and Zmacs, to make the Undo, Cut,

Copy, and Paste keys perform their respective operations using the Cut Buffer fea-

ture of the X Window System, and to connect the PrintScreen key to the screen

hardcopy feature.

The keyboard character set currently contains the following characters:

Cut Paste Copy Undo

Again Find Print

Left Right Up

Back-Scroll Home Down�

Page 1274

Font Support in the Genera X Client

The Genera user interface can use either Genera fonts or the standard 75dpi X

fonts. If the Genera fonts are available on the X server, it uses them. If they are

not, but the standard 75dpi X fonts are available, it uses them. If neither the Gen-

era fonts nor the standard 75dpi X fonts are available, Genera fonts are used in

pixmap mode.

Using Genera Fonts in the Genera X Client

The Genera user interface can use the same character fonts whether it is dis-

played on the local console of a Symbolics workstation or on the console of another

host using the X Window System. In the X Window System, these fonts may be

displayed on the screen using two different mechanisms:

• The X server can be requested to draw a string using a native representation of

the Symbolics font.

• The glyph image of each character in the Symbolics font can be sent over to the

server as an X pixmap; the X server can be asked to copy that pixmap to the

screen.�

Both of these mechanisms provide the same results, but converting the fonts to

the native representation used by the X server host is generally much faster.

The Genera X client supports both of these techniques. If the X server has access

to a font of the same name as the corresponding Genera font, characters in that

font are drawn using native operations. Otherwise, a pixmap is constructed. The

Open Genera installation process installs native versions of Genera’s fonts in the

proper directory for access by the OSF X Server. The Symbolics software distribu-

tion includes BDF representations of all the Genera fonts, which may be compiled

into the server’s native format.

Using Standard 75dpi Fonts in the Genera X Client

The Genera user interface can use the standard 75dpi X fonts on X consoles. It

chooses the following X font families from the character styles:

Character style family X font families

FIX Courier

SWISS Helvetica

DUTCH Times

JESS Helvetica�

The Genera X Client automatically maps between the Genera character set and

the ISO8859 character set used by the stardard 75dpi X fonts, automatically choos-

ing alternate glyphs from either the Symbol X font family or the corresponding

Genera font drawn with pixmaps.

Page 1275

Color Support in the Genera X Client

If the X server host has color display hardware, you can draw in color by using

the :color or :gray-level arguments to the graphics:draw-xxx functions. The value

of :color is a symbol that names a color (one of :black, :red, :green, :blue, :cyan,

:yellow, :magenta, :white), a list (red green blue) where each element is a number

between 0 and 1, inclusive, or a color object created by color:make-color. The val-

ue of :gray-level is a number between 0 and 1, inclusive. See the section "Pattern

Options". See the option :color. See the option :gray-level.

See the function color:make-color.

Off-Screen Bitmaps in the Genera X Client

The Genera window system stores images in bitmaps: two-dimensional arrays of

bits. Sometimes these are called pixmaps (two-dimensional arrays of pixels), espe-

cially when there is more than one bit per pixel, as on color screens. Each bitmap

has a width, a height, and a depth; the depth is the number of bits per pixel.

A bitmap can be on the screen or off the screen. An on-screen bitmap is stored in

special memory associated with the display hardware, so its contents are visible on

the screen. The image of an exposed window resides in an on-screen bitmap so you

can see it.

All other bitmaps are off-screen. The Genera window system often uses an off-

screen bitmap to save the image of a deexposed window, so that the image can be

quickly restored when the window is exposed, by copying the off-screen bitmap into

an on-screen bitmap. This feature is under the control of the individual window,

through the :save-bits option; however, most standard windows enable it. The Gen-

era window system also uses an off-screen bitmap to save the image underneath a

temporary window, such as a pop-up menu. User programs can also use off-screen

bitmaps for their own purposes, using the facilities described below.

In platforms with remote window systems, such as MacIvory or the Symbolics UX,

bitmaps have one more degree of freedom: a bitmap can be in Ivory’s normal vir-

tual memory, or it can be in host memory. On-screen bitmaps are always in host

memory, because the host owns the display hardware. This is why the screen-array

bitmap of an exposed window generally cannot be directly accessed by an Ivory

program in an embedded system. Similar considerations apply to X Windows, sub-

stituting X Window Server memory for host memory.

Off-screen bitmaps can be in either Ivory memory or host memory. There are per-

formance tradeoffs associated with the decision of where to store an off-screen

bitmap. The principal constraints are the limited speed for copying images between

Ivory memory and host memory, and the limited size of host memory.

On the one hand, placing an off-screen bitmap in host memory yields the maxi-

mum speed when copying images to or from the screen. Making the window server

solely responsible for the copying is significantly faster than having to coordinate

two processors and copy through the communications medium.

Page 1276

On the other hand, placing an off-screen bitmap in Ivory memory avoids consum-

ing the limited amount of available server memory. The size of a bitmap depends

on the application and on the size and depth of the display monitor. Some hosts,

particularly X terminals or workstations with high-resolution color displays, may

not have enough memory to store more than a few off-screen bitmaps.

These considerations mean the decision of whether to place an off-screen bitmap in

Ivory memory or in host memory depends on the application and on the hardware

configuration. The Genera window system decides as follows: Off-screen bitmaps

for temporary use always go in host memory, unless not enough host memory is

available even after swapping out other bitmaps. In this case they go in Ivory

memory. Off-screen bitmaps for deexposed windows go in host memory or Ivory

memory depending on how much host memory is available.

For further information:

See the macro tv:with-off-screen-drawing.

See the function tv:%screen-allocate-sheet-temporary-bit-array.

See the function tv:%screen-deallocate-sheet-temporary-bit-array.

See the macro tv:with-temporary-sheet-bit-raster.�

Using Off-Screen Bitmaps in Your Application

Several interfaces are provided through which your application can use off-screen

bitmaps. In embedded systems, all of these interfaces can store the off-screen

bitmaps in host memory.

If you are presently doing things such as drawing to bit arrays and then bitblting

to the screen, you should seriously consider using off-screen bitmaps in host mem-

ory, due to the substantial performance advantage in embedded systems such as

MacIvory or the UX.

The available interfaces are:

tv:with-off-screen-drawing

tv:with-output-to-bitmap-stream

tv:with-output-to-bitmap

tv:allocate-bitmap-stream

tv:with-temporary-sheet-bit-raster�

Using Off-Screen Bitmaps for Instantaneous Updates

This simple interface gives the appearance of an instantaneous update, rather than

of each item appearing to be drawn separately. tv:with-off-screen-drawing works

by copying the contents of a window to an off-screen bitmap, drawing into the

bitmap, and copying back. In embedded systems, the off-screen bitmap always re-

sides in host memory, provided sufficient host memory is available.

For instance,

Page 1277

(defun off-screen-strings ()

 (tv:with-off-screen-drawing (*terminal-io*)

 (dotimes (i 15)

 (write-string "12345678901234567890")

 (terpri))))

�

(defun off-screen-graphics ()

 (tv:with-off-screen-drawing (*terminal-io*)

 (graphics:with-room-for-graphics ()

 (graphics:draw-circle 100 100 50)

 (graphics:draw-triangle 20 0 120 0 70 75 :alu :flip))))�

This involves some overhead in that you need to allocate and deallocate an off-

screen bitmap, and copy from the window to the bitmap and back, each time the

screen is visibly updated. In some cases the copy from the window to the bitmap is

unnecessary, because the entire contents of the window will be redrawn. The

:complete-redisplay option allows for optimization of this case. For example,

(defun off-screen-graphics-2 ()

 (tv:with-off-screen-drawing (*terminal-io*

 :complete-redisplay t)

 (graphics:with-room-for-graphics ()

 (graphics:draw-circle 100 100 50)

 (graphics:draw-triangle 20 0 120 0 70 75 :alu :flip))

 (send *terminal-io* :refresh-margins)))�

This is faster, but the previous content of the window is erased, where the previ-

ous example just scrolled it upwards.

Using Off-Screen Bitmap Streams

tv:with-output-to-bitmap-stream is a powerful interface that gives you an off-

screen bitmap that supports all of the stream output and graphical operations of

windows. The :host-allowed keyword controls whether the off-screen bitmap is

stored in host memory or Ivory memory. There is no automatic copying from a

window to the bitmap and back; you use the :bitblt and :bitblt-to-sheet messages

to do this if and when you need it. Note that :host-allowed t is ineffective unless

you also use :for-stream to specify a stream that leads to a screen; otherwise

tv:with-output-to-bitmap-stream doesn’t know which of potentially many hosts to

use.

For example,

Page 1278

(defun off-screen-lines-1 (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (tv:with-output-to-bitmap-stream (bitmap-stream

 :for-stream stream

 :host-allowed t)

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (send bitmap-stream :draw-line x 0 0 y)))

 (send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150))))))�

The previous example used a bitmap the full size of the window. We can improve

it by creating a bitmap only as large as we need:

(defun off-screen-lines-2 (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (tv:with-output-to-bitmap-stream (bitmap-stream

 :for-stream stream

 :host-allowed t

 :width 100 :height 101)�

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (send bitmap-stream :draw-line x 0 0 y)))

(send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150))))))�

If you specify values for :width and :height that are too small, the bitmap auto-

matically expands so it is at least large enough to hold all the bits drawn. Of

course the expansion takes time, so it is preferable to specify accurate values for

:width and :height.

We can further improve the speed by using :draw-multiple-lines in place of

:draw-line, to cut down on overhead. It speeds up this particular example by only

7 percent since the line-drawing speed of the Macintosh is the limiting factor in

either case.

Page 1279

(defun off-screen-lines-2-m (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (tv:with-output-to-bitmap-stream (bitmap-stream

 :for-stream stream

 :host-allowed t

 :width 100 :height 101)

 �

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (send bitmap-stream :draw-multiple-lines

 (loop for y downfrom (- 100 x) by 2 repeat 5

 nconc

 (loop for x from x by 2 repeat 5

 collect x collect 0

 collect 0 collect y)))

 (send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150))))))�

tv:with-output-to-bitmap is similar to tv:with-output-to-bitmap-stream with the

additional feature that it copies the off-screen bitmap into a Lisp array and re-

turns it. Use this when you wish to capture the result of some output operations

in an array of bits, rather than (or in addition to) displaying the result on the

screen.

If you need an off-screen bitmap stream with a more permanent lifetime, you can

use explicit allocation and deallocation. See the function

tv:allocate-bitmap-stream. See the function tv:deallocate-bitmap-stream. For ex-

ample,

(defun off-screen-lines-3 (&aux (stream *terminal-io*))

 (fresh-line stream)

 (multiple-value-bind (cx cy)

 (send stream :visible-cursorpos-limits)

 (let ((bitmap-stream (tv:allocate-bitmap-stream

 :for-stream stream

 :host-allowed t

 :width 100 :height 101)))�

 (loop for x below 100 by 10 do

 (send bitmap-stream :clear-window)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (send bitmap-stream :draw-line x 0 0 y)))

(send bitmap-stream :bitblt-to-sheet boole-xor 100 100 0 0

 stream (+ cx 150) (+ cy 150)))

 (tv:deallocate-bitmap-stream bitmap-stream))))�

In a more realistic example, the calls to tv:allocate-bitmap-stream and

tv:deallocate-bitmap-stream would be in two different functions; otherwise

tv:with-output-to-bitmap-stream would work just as well.

Page 1280

The bitmap stream can become invalid if the window system is shut down and

started again. It is best not to retain an off-screen bitmap stream permanently, but

only for the duration of one operation. To minimize the overhead of allocating and

deallocating a bitmap stream, you can allocate it when your application window is

exposed and deallocate it when your application window is deexposed.

Using Off-Screen Bitmaps with Low-level Drawing Primitives

If you only need a bitmap, without the stream output and graphical operations of

windows, either because you are using the low-level drawing primitives, or because

you only do bitblt’s, you can use the lower-level allocation primitives. Note that if

you are using sys:%draw-xxx, you need to switch to tv:sheet-draw-xxx, since the

system must be given a sheet in order to find the screen that connects to the host.

There is no significant overhead in this switch.

(defun off-screen-lines-4 (&aux (sheet *terminal-io*))

 (tv:with-temporary-sheet-bit-raster (bitmap sheet 100 100)

 (loop for x below 100 by 10 do

 (tv:sheet-force-access (sheet) ;Make sure has a screen array

(letf (((tv:sheet-screen-array sheet) bitmap)) ;Use this one temporarily

 (tv:sheet-draw-rectangle 100 100 0 0 boole-andc1 sheet)

 (loop for y downfrom (- 100 x) by 2 repeat 5 do

 (loop for x from x by 2 repeat 5 do

 (tv:sheet-draw-line x 0 0 y boole-ior nil sheet))))

(tv:sheet-bitblt boole-xor 100 100 bitmap 0 0 nil 200 200 sheet)))))

 �

If you need an off-screen bitmap with a more permanent lifetime, you can use ex-

plicit allocation and deallocation. Instead of using tv:with-temporary-sheet-bit-

raster, you can call tv:%screen-allocate-sheet-temporary-bit-array and

tv:%screen-deallocate-sheet-temporary-bit-array. Note that all these programs

work on the XL and the 3600 series as well.

tv:allocate-bitmap-stream &key :for-stream :host-allowed :width :height :bits-per-

pixel :graphics-transform Function

Allocates an off-screen bitmap stream. You can perform textual and graphic output

operations on the stream returned. The results will not be visible, since the

bitmap is off-screen. You can use the :bitblt-to-sheet message to make the result

visible by copying from the off-screen bitmap to a window.

The bitmap stream can become invalid if the window system is shut down and

started again. It is best not to retain an off-screen bitmap stream permanently, but

only for the duration of one operation. To minimize the overhead of allocating and

deallocating a bitmap stream, you can allocate it when your application window is

exposed and deallocate it when your application window is deexposed.

:for-stream A stream that outputs to a related window. This provides de-

faults for the width, height, depth, and coordinate transforma-

Page 1281

tion; if :host-allowed t is specified, the host owning the win-

dow’s screen will be used.

:host-allowed True if the off-screen bitmap should be stored in host memory

if possible. The default is false, which always uses Ivory mem-

ory. :host-allowed t only works if :for-stream is specified.

:width The initial width of the bitmap. It expands if necessary.

:height The initial height of the bitmap. It expands if necessary.

:bits-per-pixel The depth of the bitmap.

:graphics-transform

A coordinate transformation. The default is the stream’s trans-

form if :for-stream is specified. Otherwise, the identity trans-

form is the default.�

See the message :bitblt-to-sheet.

See the function tv:with-output-to-bitmap-stream.

tv:deallocate-bitmap-stream bitmap Function

Deallocates an off-screen bitmap stream when you are no longer using it. See the

function tv:allocate-bitmap-stream.

:bitblt-to-sheet alu width height x y sheet sheet-x sheet-y Message

Sends this message to an off-screen bitmap to copy its contents onto a window

where it will be visible. This performs a bitblt from the width by height rectangle

of the bitmap whose top-left corner is at (x,y) to the width by height rectangle of

the window sheet whose top-left corner is at (sheet-x,sheet-y).

See the function bitblt.

See the function tv:allocate-bitmap-stream.

See the function tv:with-output-to-bitmap-stream.

tv:with-output-to-bitmap (&optional stream &key :for-stream :graphics-transform)

&body body Function

stream The stream to which to return the bitmap.

:for-stream The stream for which the bitmap is intended.

:graphics-transform An optional transform to be applied.�

Returns a raster array and positions containing the image output by body.

Page 1282

(defun bitmap-example (&optional (stream *standard-output*))

 (graphics:with-room-for-graphics ()

 (graphics:draw-triangle 0 0 200 0 50 50

 :tile (tv:with-output-to-bitmap (bstream

 :for-stream stream)

 (graphics:draw-circle 0 0 10

 :gray-level .25 :stream bstream)

 (graphics:draw-regular-polygon 8 0 16 0 6

 :gray-level .75

 :stream bstream)))))

tv:with-output-to-bitmap-stream (bitmap-stream &rest args &key (for-stream nil)

&allow-other-keys) &body body Function

bitmap-stream A stream that is a raster array intended to hold the image

generated by body.

args :for-stream, the stream for which the bitmap is intended, and, op-

tionally, :graphics-transform, an optional transform to be applied.�

Binds bitmap-stream to a specially allocated stream that accepts the graphic output

during execution of body. At any time, the :bitmap-and-edges message to this

stream returns the current image.

The Genera X Server

Introduction to the X Server

The Symbolics X Server program handles X protocol output and input requests

from other systems on the network and performs the requested operations on the

local system’s screen. It allows you to operate X client applications (such as

"xterm") running on other systems from your Symbolics Computer’s console.

The Symbolics X Server is a port of version 4 of the standard MIT-supplied server,

which is written in C. Little work has been done to improve the performance of

the portable server.

Using the X Server

The X Server system defines an application called X11 Server, available by default

on Select Square. (See the section "Customizing the SELECT Key" for a discussion

of how to change this binding.) You can use the following commands to control the

X11 Server application:

Start Server X Server Command

Page 1283

Creates a background process to manage X network connections.

Halt Server X Server Command

Kills the background process that manages X network connections.

Switch Mode X Server Command

Passes control of the keyboard and mouse to the X Server. When the X Server has

control of the keyboard and mouse, all keystrokes and mouse motion will be passed

through to the appropriate X client program. Therefore, the normal Genera utili-

ties are unavailable until you exit this mode.

For example, if the current X application is the Remote Screen program, Select L

causes a Lisp Listener to be selected within the remote screen, rather than select-

ing your "local" Lisp Listener.

To return control to Genera (and get back to the command loop of the X11 Server)

you can press the Network key.

Halt X Server Command

Kills the background process that manages X network connections.

Start X Server Command

Creates a background process to manage X network connections.

Once you’ve started the X Server it is possible for remote applications to create

windows on your Symbolics Computer’s screen (within the X11 Server application’s

display area).

Compiling Fonts for the X Server

Normally you won’t need to compile any fonts, as the standard set of X fonts are

included in the X Server distribution, but if you have local fonts in Bitmap Distri-

bution Format, you can compile them to the Server Native Format used by the X

Server.

Compiling BDF Files to Symbolics X Server SNF Files

The BDFtoSNF program is used to convert X fonts from the standard Bitmap Dis-

tribution Format (BDF) to the Server Native Format (SNF) used by the X Server.

The BDFtoSNF system can be invoked through the "Compile File" command:

Command: Compile File (file) sys:x11;fonts;local;localfont.bdf�

Page 1284

Create X Font Directory Command

The MkFontDir program is used to build an X Server fonts.dir file for a directory

of SNF fonts. A new fonts.dir file has to be created every time a SNF font file is

created or deleted.

Use the "Create X Font Directory" command to invoke the MkFontDir program:

Command: Create X Font Directory (for directory) sys:x11;fonts;local;

�

You must use a logical pathname as the directory name for the Create X Font Di-

rectory command.

