
Symbolics Company Confidential Version Control Internals 1

DRAFT - Nov 87

Symbolics Version Control Design and Implementation

Preface: Purpose and Audience of this Document

The Version Control system is a package of programs that provide source manage-

ment for Symbolics’ software development. A functional description of the system

can be found in "Symbolics Internal Guide to Version Control," which is a prereq-

uisite to understanding the implementation. This document can be read on-line by

loading the system version-control-doc.

The audience of this document are the people working on the code of VC, either to

maintain and extend it, to design its successor, or just to understand it.

The purpose of this discussion is to lay out the gross modularity of the system and

to describe how its components work and fit together. It includes some information

on the design-space, but this is by no means a complete apologia for all of the de-

cisions that led to the current design. When discussing design alternatives, pride-

of-place is given to those choices which are the most likely candidates to be revis-

ited in the course of ongoing implementation.

� Overview of the Version Control Implementation

Version Control is modularized into a collection of top-level patchable SCT sys-

tems. The large number of independent systems was chosen to facilitate replace-

ment of large functional blocks. Some examples of this kind of replacement are:

Statice instead of text files for the underlying data store, or a ZMACS successor

instead of ZMACS as the editor interface. The current distribution of code amongst

the systems will not necessarily permit such replacements seamlessly. However, as

the design of such a replacement becomes clearer, the modularity can be honed.

The goal is to minimize the extra work involved in, say, developing the Statice-

based implementation while still maintaining and enhancing the file-based imple-

mentation.

Here is a list of the systems that make up the Version Control system:

vc-packages This contains all package declarations for all constituents.

While it would be desirable to maintain the packages for a ma-

jor part of the system along with the rest of the code for that

part, the requirement that packages and their exports all be

defined before any of their referenced can be compiled or load-

ed preempts that ambition.

vc-pathnames This contains the file access path that supports direct path-

name access to VC file versions.

vc-file-substrate This contains the file storage model. This includes parsing VC

files, creating and maintaining encached (in-virtual-memory)

files, and writing encached files out to VC files.

lock-simple This contains a network lock server, which is used for concur-

rency control on access to VC files. It has its own documenta-

2 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

tion, entitled "The Lock Simple Network Service," in

y:>version-control>design>lock-server-doc.sab.

compare-merge This contains substrate for an multi-way compare merge which

includes the ability to use a "common original" version to re-

solve divergent versions. This is included in VC because many

VC editor tools depend on it. Compare-merge, on the other

hand, does not depend on the rest of VC.

vc-editor-support This contains all the ZMACS interfaces to version control, in-

cluding VC buffers and all of the other user interfaces avail-

able in the editor.

vc-interfaces This contains high-level tools and interfaces, including the

tools for converting flat files to VC files. Some of these tools

either have interfaces in ZMACS, and perhaps those interfaces

should be moved to vc-editor-support at some point.

version-control-doc This contains the SAGE user documentation for version control

as well as the present document.

A chapter of this document is devoted to each of these systems except vc-packages

and version-control-doc. In addition, significant subtrate for version control is in-

cluded in Genera proper. The most significant parts of this support are described

along with the part of version control that is most relevant.

� VC Pathnames Design and Implementation

The vc-pathnames system contains the file access path for version control path-

names. Most of the support for version control pathnames is part of Genera.

The term "version control pathname" is a misnomer: all Genera pathnames except

dummies can store a VC file version in addition to the usual set of host, device,

directory, name, type, and version. The VC file version is stored as two additional

items: a branch name (fs:pathname-vc-branch) and a branch version

(fs:pathname-vc-version). The term "VC pathname" refers to any pathname which

has something other than nil in one of those slots.

VC pathnames exist for two reasons. First, study showed that any attempt to make

SCT support the compilation of source stored in VC files would be intractable un-

less the VC file version could be stored in the pathname. The alternative would

have been to change all of the code in SCT that passes pathnames around to pass

something else that could reference a pathname and a VC file version.

Second, its desirable for ordinary programs to be able to get a source image out of

a VC file without having their user interface changed to get a VC file version in

addition to a pathname and to call special interfaces to get the information.

VC Pathnames Architectural Model

Symbolics Company Confidential Version Control Internals 3

DRAFT - Nov 87

Version Control implements an abstract file system on top of any of our supported

file protocols. All it requires is simple character files. It makes no use of length

information, versions, or anything else. Independent of implementation considera-

tions, the pathname: sys:io;band.lisp◊IMach.12 means version 12 within branch

IMach of the file sys:io;band.lisp.newest.

Opening such a pathname gives a stream that read that particular version. Prob-

ing it reveals whether such a version existed. Some other operations are less well

defined, but then again, not all file system support all operations on ordinary files.

VC Pathnames Base Implementation

Since the Version Control model is build on top of the rest of the pathname model,

it conceptually encapsulates the rest of the flavor pathname. Thus, it can be im-

plemented as a series of whoppers on the pathname protocol.

The version control information in a pathname is stored in two new instance vari-

ables of the flavor pathname: vc-branch (a branch name) and vc-version (a

branch version number, including things like :newest). These will be treated just

like the existing pathname components, with important exceptions described below.

In addition to :oldest and :newest, the VC version can be :parent. This specifies

the version that is the parent version of the oldest version in the specified branch.

VC Pathnames Parsing and Printing

Parsing of VC information is simple. fs:parse-pathname looks for ◊ (Symbol Es-

cape) and treats anything following it as a specification of the vc-branch and/or vc-

version. The two are separated by the usual "." delimiter.

Printing is more complex. There are a wide variety of pathname messages which

return strings for various uses. Many of them are implemented in terms of each

other. For example, the default method for :string-for-readable-printing just turns

around and send :string-for-printing. For this reason, a straightforward scheme of

whoppers that append the ◊branch.version won’t work, because in some cases it

will happen twice. Teaching the bottom level methods that actually construct

strings to append the VC information would have meant sprinkling the VC support

over all of the per-host pathname support, which would have made maintenance

hard and the creation of new host support in the field even harder than it is al-

ready.

Instead, there are whoppers (actually whopper-substs, which are actually wrappers)

for all of the :string-for methods. These whoppers use a special variable (fs:*vc-

pathname-string-append-in-progress*) to make sure that the information is only

appended once.

String caching is another source of complexity. The :string-for-printing, is cached

in pathname instance variables for efficiency. Since the fs:*vc-pathname-string-

append-in-progress* can require the methods for :string-for-printing to return

strings both with and without VC information, there are two caches: one with VC,

and one without.

4 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

VC Pathname File Access Path

Genera includes (FLAVOR:WHOPPER :FILE-ACCESS-PATH FS:ACTIVE-

PATHNAME-HOST). This whopper signals an error on any attempt to get a file

access path for a VC pathname.

The vc-pathnames system patches out that whopper and replaces it by a file access

path for VC file versions. The file access path is an encapsulation: When an appli-

cation operates on it, it can turn around and operate on an ordinary file access

path to the host that stores the VC file.

The file access path is primarily concerned with open. It supports :input and

:probe openings in element-type character. Other directions or element types re-

sult in an error signal.

If, at open time, the desired file has already been read in an encached, the file ac-

cess path will return a stream that reads from the encached file. If not, it will re-

turn a stream that reads directly from the VC file, returning the text of a particu-

lar version.

To make some user interfaces work better, notably in the editor, the :directory-

list operation is "supported" by stripping off the VC information and passing the

result along.

There is a partial implementation of :complete-string. If the user has typed a

pathname ending with an ◊, indicating that they want to include VC information

present in the default, then the method obligingly appends the VC information and

passes the result along to the underlying file access path. Otherwise, the method

strips off the VC information from the default (or what the user typed) and passes

the result to the underlying file access path, and reduces the success of the com-

pletion from :old to :new. Since the code doesn’t look at the VC file to see if the

specified branch is already defined, it can’t legitimately return :old.

� VC File Substrate Design and Implementation

Version Control models each file as a tree of versions, with each version made up

of an ordered list of sections. All of the versions are stored in a single text file.

The file substrate provides an interface to manipulate these files. In theory, this

interface is independent of the stored representation. In practice, it probably in-

cludes some dependencies on the current text file representation which will have

to be ironed out in the process of designing a Statice representation.

The source files of the major components of the file substrate will be mentioned.

In addition, however, the file version-control:vc;defs.lisp contains common defi-

nitions for the file substrate.

Common Structures and Functions for the VC File Substrate

There are some structures and types that are used throughout the file substrate

and its applications. Note that some of these structures represent the "same" infor-

mation as other structures returned by the file parser. The parser representation

Symbolics Company Confidential Version Control Internals 5

DRAFT - Nov 87

is chosen to precisely reflect what’s in the file. These representations exists to

avoid dependencies between the current file format and the application interface to

encached files. See the section "VC File Parser".

vci:file-version Structure

This structure is the basic internal specification of a file version. it has two slots:

the branch name and the branch version. Branch names can be strings, and

branch versions can be positive integers or one of the following:

:newest the highest numbered version in the branch.

:oldest the lowest numbered version in the branch.

:parent the parent version of the oldest version in the branch. This

will be in a different branch. See the section "VC Pathnames

Base Implementation".

vci:file-versions-equal v1 v2 Function

Returns t if v1 and v2 name the same file version.

vci::file-version-lessp v1 v2 Function

Provides a standard sort order for file version. The ordering is string-lessp for the

branch name. Within the same branch, symbolic versions come first, and the nu-

meric versions sort in numeric order.

vci:file-version-info Structure

This structure includes version-control-internals::file-version and adds some addi-

tional information. Since it includes version-control-internals::file-version it is a

subtype of that, and so any interface that requires a version-control-

internals::file-version will also take one of these. The slots of this structure are

as follows:

parent-version for any version except the root version of the file, a version-

control-internals::file-version-info for the parent version.

trailer a reference to a version-control-internals::file-version-trailer

structure for this version. This can by nil if there was no trail-

er stored for the version in the file. Note that this is not the

same as a version-control-internals::parsed-file-trailer re-

turned by the file parser. See the method (flavor:method

:read-trailer-item vci::parser).

length the length, in bytes, of this file version as recorded by the

program that created it. This is not guaranteed to be accurate,

and is only maintained to allow for file stream progress notes.

See the section "VC File Header".

6 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

author The user who wrote the version, as recorded by the program

that created it. This is not guaranteed to be accurate. See the

section "VC File Header".

creation-date The creation date of this version as a universal time. See the

section "VC File Header".

vci::file-version-trailer Structure

This structure is the standard in-virtual-memory representation of a version trail-

er. Note that it is not the same as version-control-internals::parsed-file-trailer,

which is the representation returned by the parser. See the method

(flavor:method :read-trailer-item vci::parser).

description A string describing the entire file version. Generally it summa-

rizes all of the changes to sections in this version.

per-section-array An array of version-control-internals::file-version-trailer-per-

section structures. These are created at the discretion of the

program that creates the file version. In particular, there won’t

necessarily be a per-section structure for each changed struc-

ture. Typically, there is a per-section structure for each

changed section for which the user provided explicit modifica-

tion comments. See the structure vci::file-version-trailer-per-

section.

vci::file-version-trailer-per-section Structure

This structure represents trailer information in virtual memory for a single

changed section. Its conc-name is file-version-trailer-ps-.

The slots are as follows:

section-id The section number of the section.

description A string describing the changes to this section.

vci:section-boundary-blip Structure

This structure is used to represent a transition between two difference sections of

a file. Interfaces that return the text of a file version return these on request

from applications. The conc-name for this structure is sbb-.

The slots are as follows:

begin-section-id The section number of the section which starts with the next

text record returned.

Symbolics Company Confidential Version Control Internals 7

DRAFT - Nov 87

Common Conditions for the VC File Substrate

The file substrate conditions are important for two reasons. First, they allow code

that handles conditions for ordinary files (e.g. fs:file-not-found) to work on version

control files. Second, the interfaces to the substrate do not have keyword argu-

ments to return nil on errors. They just signal. Programs that want to tolerate er-

ror situations have to be prepared to handle conditions.

vci:non-version-controlled-file Flavor

This condition signalled whenever a function that operates on version controlled

files is called with an ordinary flat file.

The following methods are relevant:

version-control-internals::non-version-controlled-file-pathname

Returns the pathname of the offending file.

vci::undefined-file-version Flavor

This condition is signalled when a reference is made to an undefined version of a

version controlled file. It is based on fs:file-not-found.

The following methods are relevant:

sys:proceed method :new-version

 permits the handler to supply an alternative version.

version-control-internals::undefined-file-version-encached-file

returns the encached file or encached file header in question.

version-control-internals::undefined-file-version-undefined-version

returns the offending version.

vci::undefined-file-branch Flavor

This condition is signalled when a reference is made to an undefined branch of a

version controlled file. This is never used by interfaces that take file versions as

arguments, only by those that take branch names.

The following methods are relevant:

sys:proceed method :new-branch

permits the handler to supply an alternative branch.

version-control-internals::undefined-file-version-encached-file

returns the encached file or encached file header in question.

version-control-internals::undefined-file-version-undefined-branch

returns the offending version.

8 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

vci:duplicate-file-branch Flavor

This condition is signalled on an attempt to create a second branch with the same

name as an existing branch of a version controlled file.

The following methods are relevant:

version-control-internals::duplicate-file-branch-encached-file

returns the encached file.

version-control-internals::duplicate-file-branc-branch

returns the offending branch name.

VC File Format

A version control file is made of three parts: the header, the text, and the trailer.

The organization meets several requirements aimed at optimizing compiling

source. When compiling, the goal is to read the text of the newest version in some

branch as efficiently as possible in both space and time. This translates into the

following concrete requirements:

• A program can read out all of the text for an particular version while reading

the file in a strictly forward direction, that is, it should not be required to en-

cache any significant fraction of the file in virtual memory to read out one ver-

sion. This is intended

• A program can read only the beginning of the file and get enough information

to list its contents. This includes the author, creation date, and length of each

version.

• Any information not needed to compile any version must be at the end, and

must not need to be read at all when reading out a single version.

In addition, the file format is designed to be extensible. Specifically, the different

parts of the file are separated by delimiters with a standard format, so that a pro-

gram can extract one part without complete knowledge of the rest of the format.

The delimiters are lines that begin with the character π (pi). Doubling is used

when data could contain a π. There are three kinds of pi records:

π* - one liner a one liner is a control record that is self-contained.

πB TAG - begin group

a πB record begins a group which is ended by the matching πE.

πE TAG - end group

a πE record ends a group started with a πB.

The file format consists of three parts: the header, the text, and the trailer.

Symbolics Company Confidential Version Control Internals 9

DRAFT - Nov 87

In the file, this looks like:

-*- Version-Control: 2; -*-

πB VTB number_of_versions

version-table-entry-1

...

version-table-entry-N

πE VTB

π* PROPERTIES

#S(properties of this file.)

πB TEXT number-of-sections

file-body

πE TEXT

πB FTR

trailer blocks

πE FTR�

The header begins with the start of the file and ends with the beginning of the

text. Then comes the text, and then the file trailer.

VC File Header

The file header contains the attribute list, the version table, and the property list.

The Version-Control attribute identifies the file as a version controlled file. The

value of the attribute is the file format version, to allow upward compatible sup-

port of new file versions. No provisions have been made for downward compatibili-

ty of file versions. The code assumes that it cannot handle any version that it

dosen’t know about.

The version table is an ordered list of versions, with one line per version. Each

version is implicitly numbered by its position in the list, with the first version be-

ing version one. Version zero is reserved as a marker and is never used. These

versions are called internal versions to distinguish them from external versions like

"Initial.12".

Each version-table-entry looks like:

parent-version-number branch-name branch-version length author date

 or

*�

If the line contains only a *, that means that the version has been logically delet-

ed from the file. The placeholder keeps all the other versions in the same position

in the table, which simplifies the code that implements deletions.

The parent version number is zero for the root version of the file. If the branch

name is "", it means that this version is in the same branch as its parent. The

10 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

length, author, and (creation) date are present so that the stream that reads one

version out of a file can support the standard stream protocols which return those

items. The length is the length in bytes of this version’s text image. The file for-

mat dosen’t care what this length is; it has no effect on its operation. It is only

there to be returned when something sends a stream a :length message. It is not

guaranteed to be accurate, and is only maintained to allow for file stream progress

notes.

The property list follows the version table. The property list is an arbitrary lisp

property list. It is used to allow version control tools to record arbitrary informa-

tion about a file without having to make specific provisions in the file format.

While this is modular and convienient, it is a performance problem because the

lisp reader is extraordinarily slow.

For extensibility, the properties are not written as a simple list, but rather as the

structure version-control-internals::encached-file-properties-1. This structure has

a single slot which contains the property list itself. If the format of the property

list is ever changed, a different structure can be written without ambiguity.

VC File Text

The text section contains the images of all of the sections. The sections are stored

in the order that they are found in the file versions. What, you may ask, if the or-

der has changed from one version to another? Then the section will occur as many

times as needed so as to appear in the right place in all versions.

A section begins with:

πB FS section_number

and ends with

πE FS section_number

No well-formed file will ever have anything after a πE FS and before the next πB

FS. Within the section delimiter records are text records and control records. The

control records specify text to be inserted and/or deleted to construct a particular

version of the section.

insertions and deletions begin with:

 πB IN version_number πB DL version_number

and end with

 πE IN version_number πE DL version_number

Any text that is not inside any insertions or deletions is text for version 1, by con-

vention. To construct the text for a particular version v, a program proceeds as

follows, starting from the beginning of the section and considering each line in

turn:

Symbolics Company Confidential Version Control Internals 11

DRAFT - Nov 87

• Any text found before the first insert or delete is included, since version 1 is

the root of all versions in the file.

• At a πB IN, if the version_number is v or an ancestor of v, then continue pro-

cessing. Otherwise, skip everything (including π records) up to the matching πE

IN.

• At a πB DL, if the version_number is v or an ancestor of v, then skip everything

up to the matching πE DL. Otherwise continue processing.

• Ignore any πE IN or πE DL records found while not skipping for a match.

If the scan for text for the desired version finds all text for that section has been

deleted, then the section is ignored. For any particular version of the file, each

section will be nonempty no more than once, representing its position in the order

of sections for that version. It will be empty for all the places that it turns in

elsewhere in the order in other versions.

VC files are full character files. In general, this is transparent, with fat character

encoding handled at a lower level. One exception is diagram lines. The diagram

storage protocol returns diagram instances from :line-in. Programs that interpret

VC files have to enable diagram lines (with the :set-return-diagrams-as-lines

message) and pass them back as text lines.

VC File Trailer

The file trailer contains additional information about the file versions that is not

needed to reconstruct the text images of the versions. The trailer is organized as a

series of blocks, at most one per version.

The overall structure of the trailer section is:

 πB FTR

 file-version-trailer-1

 ...

 file-version-trailer-N

 πE FTR�

Each trailer consists of:

entry-length-in-chars

internal-version-number

"general description" n-sections

section-id-1 "per-section-comment-1"

...

section-id-n-sections "per-section-comments-n-sections"

π*�

12 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

Unlike the header and the text, the trailer is not purely organized by lines. Each

entry starts with a count of the characters in that entry. The π* lines allows for

consistency checking; if there isn’t a π* after the specified number of characters,

then the file is broken. The general description is user commentary on the entire

file version. Then there are zero or more per-section entries that contain com-

ments on individual sections.

VC File Parser

VC files are parsed by instances of the flavor version-control-internals::parser.

This flavor encapsulates a stream open to a file, and returns data structures built

from the contents of the file. The parser is not responsible for selecting the text

of a particular version from the file, because some applications need one version,

while others want all of them. Rather, the parser is concerned with translating

from text to lisp.

The parser is defined in version-control:vc;file-parser.lisp.

vci::parser Flavor

The parser flavor is initialized with two keyword arguments, :stream and :file-

version. The stream must be a stream open to a VC file positioned after the at-

tribute list. This is because typical applications of the parser open the file, read

the attribute list, and only call version control when the Version-Control attribute

is present.

The file-version must be the value of the Version-Control attribute. This permits

the parser to support multiple file versions. At this time, it only supports version

2.

Once the parser is instantiated, it supports a series of messages in order. First

:read-header reads the header. Then :read-text-item reads each record of the text

section. Finally, :read-trailer-item reads each trailer.

(flavor:method :read-header vci::parser) Method

This message returns a structure (version-control-internals::parsed-file-header)

containing the information read from the file header. This message must be the

first sent to the parser instance.

The structure returned is defined as follows:

(defstruct (parsed-file-header

 (:conc-name pf-header-)

 (:constructor make-pf-header)

 (:print-function print-pf-header)

)

 (version-info-array nil)

 (n-versions 0)

Symbolics Company Confidential Version Control Internals 13

DRAFT - Nov 87

 (n-sections 0)

 (properties nil))�

The version-control-internals::pf-header-version-info-array slot contains an array

of version-control-internals::parsed-file-version-info structures, one for each ver-

sion.

This structure is defined as follows:

(defstruct (parsed-file-version-info

 (:conc-name pf-version-info-)

 (:constructor make-pf-version-info)

)

 (deleted-p nil)

 (parent-version 0)

 (branch-name nil)

 (branch-version 0)

 (length 0)

 (author "")

 (creation-date 0)

)�

The slots in these structures correspond directly to the file format. Note that the

version-control-internals::pf-version-info-deleted-p slot indicates a version that

was marked with a *.

(flavor:method :read-text-item vci::parser) Method

This method may only be used after :read-header. It returns a single text section

record or :end-of-text. Text section records come in three Common Lisp types:

string an ordinary text record.

instance a diagram instance, treated as a text record.

version-control-internals::encached-control-record

a control record, either πB FS, πE FS, πB IN, πE IN, πB DL�

or πE DL. These are represented as encoded fixnums.

VC Encached Control Records

An encached control record is a fixnum that represents a control record in the text

section of a VC file. Fixnums are used to avoid consing a

structure for each record, of which there are many in each

file.

The top eight bits of the control record version-control-internals::cr-type repre-

sent the type of the record. Named constants are provided in

version-control:vc;defs.lisp for the types. The remaining 16

bits have different definitions depending on the type. For the

14 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

beginning and end of a section, those bits contain the section

number. For the beginning and end of inserts and deletes,

those bits are the relevant version number. Thus, version-

control-internals::cr-version and version-control-internals::cr-

section access the same bits of the fixnum.

(flavor:method :read-trailer-item vci::parser) Method

This method returns version-control-internals::parsed-file-trailer structures for

the trailer blocks in the file, and then :end-of-trailers after the last one.

version-control-internals::parsed-file-trailer is defined as follows:

(defstruct (parsed-file-trailer

 (:conc-name pf-trailer-)

 (:constructor make-pf-trailer))

 (version-number)

 (description)

 (per-section-list))

(defstruct (parsed-file-trailer-per-section

 (:conc-name pf-trailer-ps-)

 (:constructor make-pf-trailer-ps))

 (section-id)

 (description))�

These slots are parallel to the items in the textual file format.

VC Encached Files and Encached File Headers

Encached files are the interface to VC files for applications that do more than just

read the text of a single version of the file. An encached file is an in-virtual-

memory representation of the contents of a file. There are two kinds of encached

files: full encached files (called "encached files") and encached file headers. An en-

cached file header contains only the information from the header of the VC file.

A central registry of interned encached files and encached-file-headers is main-

tained for programs that want to share a cache. The editor always uses the reg-

istry, and other programs that want to permanently encache files use it as well.

Programs that read many VC files that the user is unlikely to edit any time soon

don’t use the cache to avoid filling virtual memory.

VC Encached File Headers

Encached file headers are used by programs that need to find out about the ver-

sions defined in a file but don’t expect to process more than one, or even any, of

the textual data. The flavor version-control-internals::encached-file-header pro-

vides the representation for encached file headers. See the flavor vci::encached-

Symbolics Company Confidential Version Control Internals 15

DRAFT - Nov 87

file-header. version-control-internals::encached-file-header has no init options.

Note that for many applications it is appropriate to use the function version-

control-internals::find-or-make-encached-file-header rather than to just (make-

instance ’vci:encached-file-header).

Functions for Use with Encached File Headers

vci:branch-defined-p encached-file-header branch-name Function

Given the name of a branch, returns T if there are any versions in the file whose

branch name the supplied name. Otherwise it returns NIL.

vci:branch-last-version encached-file-header branch-name Function

Given a branch name, returns the version-control-internals::file-version-info

structure for the newest version in the branch.

vci::encached-file-branch-parent-version encached-file-header branch-name

Function

Given a branch name, returns the version-control-internals::file-version-info

structure for the parent version of the first version in the branch. That is, if a

user started with version Main.12, read it into the editor, modified it, and saved it

out as Whatever.0 (a new branch), then the parent version of branch Main is 12.

vci:encached-file-header-merge-version encached-file-header version Function

Given a version-control-internals::file-version structure, returns a version-

control-internals::file-version-info structure with :newest, :oldest, or :parent re-

placed by the specific version referenced. In the case of :parent, the resulting ver-

sion will have a different branch name.

vci::encached-file-name encached-file Function

Returns the name of the encached file, if any. Usually this is its pathname.

vci:encached-file-pathname encached-file Function

Returns the pathname associated with the encached file, if any.

vci::encached-file-per-version-info encached-file-header internal-version Function

Returns the internal version-control-internals::per-version structure for the speci-

fied internal version. This is a side door that is used by parts of the file substrate

that aren’t methods of version-control-internals::encached-file-header. In fact,

16 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

the only caller is the flavor version-control-internals::encached-file-version-info,

whose independent existence is not necessarily a good thing.

vci::encached-file-read-header-from-parsed-header encached-file-header header

Function

Given a version-control-internals::parsed-file-header structure, initializes an

version-control-internals::encached-file-header structure to reflect that header.

This is used to reuse the same version-control-internals::encached-file-header in-

stance to process more than one file.

vci::encached-file-stored-property-list encached-file-header Function

This returns the stored property list for the file. It can be used with setf (and es-

pecially in cliches like (setf (getf (encached-file-stored-property-list ef) :foo)

:bar)) to side-effect the property list. Note that changing the property list has no

effect until and unless the encached file is written back out to the text file.

vci:encached-file-version-info encached-file-header version Function

Given a version-control-internals::file-version structure, returns a version-

control-internals::file-version-info structure for the version.

vci:encached-file-versions encached-file-header Function

This returns an array containing one version-control-internals::file-version-info

structure for each version defined in the file.

vci:leaf-file-version-p encached-file-header version Function

Returns T if the supplied version-control-internals::file-version is a leaf version

in the file. That is, if it is the newest version in its branch. Note that this func-

tion returns information based on the contents of the encached-file-header struc-

ture. It does not check to see if there are newer versions out on disk or in an edi-

tor buffer.

vci::version-defined-p encached-file-header version Function

Returns T if the specified version-control-internals::file-version is defined in the

file, and NIL otherwise.

vci:encached-file-ancestor-version-p encached-file-header version putative-ancestor-

version Function

Given a file-version and a file-version which might be its ancestor, returns t if the

putative ancestor is in fact an ancestor and nil otherwise.

Symbolics Company Confidential Version Control Internals 17

DRAFT - Nov 87

vci:encached-file-parent-version-p encached-file-header version putative-parent-

version Function

Given a file-version and a file-version which might be its parent, returns t if the

putative parent is in fact the parent and nil otherwise.

Implementation of VC Encached File Headers

Data Structures of VC Encached File Headers

There are two data structures relevant to encached file headers: the flavor

version-control-internals::encached-file-header itself, and the version-control-

internals::per-version structure.

vci::encached-file-header Flavor

This flavor encaches the header of a VC file. Unlike the defstruct version-control-

internals::parsed-file-header, this conses auxiliary information that accelerates

common operations, and provides methods for operations on the header.

The instance variables are as follows:

version-table The table describing all of the versions defined in the file. See

the section "VC Encached File Header Version Table".

stored-property-list The file’s stored property list, accessed with the function

version-control-internals::encached-file-stored-property-list.

See the function vci::encached-file-stored-property-list.

VC Encached File Header Version Table

An array of version-control-internals::per-version defstructs, one per version. In-

dex zero of this array always contains NIL, so that internal version n is always

found in (aref version-table n). See the structure vci::per-version.

vci::per-version Structure

This structure represents the data about each version of the file. Some of the

fields are unused within the flavor version-control-internals::encached-file-header

and only used by version-control-internals::encached-file. All of the fields are de-

scribed here. The conc-name of this structure is pv-. They are constructed with

the function version-control-internals::make-per-version.

The slots are as follows:

internal-version The internal version number. (pv-internal-version (aref

version-table n)) will always be n.

18 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

parent-version The internal version number parent version of this version.

The root version (currently always version 1) has zero in this

slot.

branch-name The string branch name of the external version.

branch-version The integer branch number of the external version.

ancestor-bitmap A boolean array. For version n, this array is of length n. For

each lower-numbered version, this array contains t if the ver-

sion is an ancestor of this version, and nil otherwise. This is

used when processing text information for the version to re-

solve insert and delete groups. This field is never used in

version-control-internals::encached-file-header, only in

version-control-internals::encached-file. This field is only

filled the first time that it is needed.

leaf-p t if this version is newest in its branch, nil otherwise.

trailer A version-control-internals::file-version-trailer structure for

this version. See the structure vci::file-version-trailer. This is

here to avoid consing a new one every time an application

asks.

version-info A version-control-internals::file-version-info structure for this

version. See the structure vci:file-version-info. This is here to

avoid consing a new one every time an application asks.

version-reconstruct-path

An array of version-control-internals::reconstruct-entry struc-

tures that represents the order of sections in this versions.

Internal Functions and Methods of VC Encached File Headers

An version-control-internals::encached-file-header is primarily a data structure.

The only code internal to it is the method that converts an external version to an

internal version number by searching the version table, version-control-

internals::lookup-external-version.

vci::lookup-external-version encached-file-header version &key error-p Function

Returns the internal version integer for a version-control-internals::file-version

structure. This is an internal interface of the encached-file-header, and should

probably be a defun-in-flavor.

(defun-in-flavor vci::consing-with-instance vci::encached-file-header) &body body�

Flavor Internal Macro

This macro is used throughout version-control-internals::encached-file-header

and version-control-internals::encached-file to maintain locality between the vari-

Symbolics Company Confidential Version Control Internals 19

DRAFT - Nov 87

ous structures that are allocated. This macro binds version-control-

internals::default-cons-area to the area of self.

VC Encached Files

Encached files provide the in-virtual-memory representation of an entire VC file.

They provide interfaces for extracting the text of version, creating new version,

and deleting versions.

Encached files are implemented by the flavor version-control-internals::encached-

file. Applications can create instances of version-control-internals::encached-file

with make-instance. However, for in many circumstances it is preferable to call

version-control-internals::find-or-make-locked-encached-file and interact with the

global interned cache of encached file.

Making a VC Encached File

To get an encached file for a VC file via the global cache, call version-control-

internals::find-or-make-locked-encached-file. To make an encached file instance

independent of the cache, make an instance with make-instance. The init options

for encached file are optional.

Once you have an instance, you use the function version-control-internals::read-

in-file to read a VC file into the instance. You can reuse the same instance over

and over again.

(flavor:method :pathname vci:encached-file) pathname Init Option

Supply a pathname for the encached file. For version-control-internals::encached-

file, this pathname is only used in the sys:print-self method to make it easier to

sort out different encached file.

(flavor:method :name vci:encached-file) name-string Init Option

This provides a name string for printing the encached file object. The default is to

use the pathname as the name.

Functions for Use with VC Encached Files

vci:add-new-version encached-file parent-version external-version δ-section-array

trailer Function

This method is the external interface to creating a new version in an existing file.

It cannot create new root version, but only versions that modify existing versions.

Thus it takes a parent-version. The external-version is a version-control-

internals::file-version for the version to be created. δ-section-array is an array of

20 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

version-control-internals::δ-section structures. There must be at least one for

each section in parent-version. See the structure vci:δ-section. trailer is a version-

control-internals::file-version-trailer structure, and is stored as the trailer for the

new version.

vci::clone-file-version encached-file old-external-version new-version-info trailer

Function

Creates a new version in which nothing has changed. This is used to establish a

new branch of the file independently of actually changing any text in the new

branch.

vci::delete-encached-file-branch encached-file branch-name Function

This removes all versions of a specified branch from the encached file. If any ver-

sions have parents that are deleted those versions are changed to use the parent

of the deleted branch as their parent, and their inserts and deleted are recalculat-

ed accordingly.

vci::delete-versions encached-file version-list Function

This function deletes all of a specified list of versions from the encached file. If

any version not deleted have one or more of the deleted versions as ancestors,

then they are changed to use the last un-deleted ancestor of the deleted version as

an ancestor. You can’t delete the root version of the file.

Note that this function does not provide concurrency control on version-control-

internals::locked-encached-files. It should be called from within a version-

control-internals::with-locked-encached-file-locked.

vci::encached-file-per-section-info encached-file section-x Function

Returns the version-control-internals::section-info structure for the specified sec-

tion number. This is a side-door interface used only for version-control-

internals::encached-file-version-info instances.

vci:encached-file-section-not-empty-for-version encached-file section-number ver-

sion Function

Returns T if the specified section has any text in it for the specified version. An

empty section is considered deleted by convention, however, in some circumstances

a section can be deleted from one version and then reappear in one of its succes-

sors.

vci::encached-file-truename encached-file Function

Symbolics Company Confidential Version Control Internals 21

DRAFT - Nov 87

If the encached file has a pathname, the truename is encached and available via

this function.

:initialize-from-δ-section δ-section-array version trailer Message

This message is used to initialize an empty encached file from scratch, as opposed

to from a VC file in the file system. version names the root version. δ-section-

array is an array of version-control-internals::δ-section structures that specifies

the initial contents. See the structure vci:δ-section. trailer is the trailer for the

root version. This should be converted to a generic function.

vci::make-retrieve-continuation encached-file version &key section-marks one-

section start-section end-section Function

This function is the fundamental interface for retrieving text from an encached

file. It returns a function which when called with no arguments returns each of

the lines of the text in turn. After the last line it returns :eof. There is a loop

path that provides a more convienient interface atop this one.

This design allocates a new closure on the heap every time that a program re-

trieves text from an encached file. The alternative would be an interface that

takes a downward function and calls it with each record in turn. One problem with

that is that the current loop implementation can’t handle it.

The arguments to the function are as follows:

version The version of the text to retrieve.

section-marks When retrieving text for more than one section, this controls

whether section boundary blips are returned to mark the

boundaries. If this is t, then a version-control-

internals::section-boundary-blip will be returned instead of a

record at each section boundary.

one-section If this is non-nil, it must be an integer section number. The

function returned will return each of the lines of that section.

start-section specifies the first section to return. If this is nil, the retrieval

starts at the beginning of the file.

end-section specifies the last section to return. If this is nil, the retrieval

continues through the last section of the file.

Loop Paths for Retrieving Information From VC Encached Files

There are two loop paths defined for retrieving text information from encached

files: text-records and text-and-section-records. text-records returns the lines

(and diagram lines) for one or more sections of a specified version. text-and-

section-records returns the lines (and diagram lines) for one or more sections of a

specified version, and inserts version-control-internals::section-boundary-blips to

22 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

indicate the transitions between sections. See the structure vci:section-boundary-

blip.

The loop keywords that control these paths are as follows:

of Specifies the encached file for the retrieval. This is required.

in-version Specifies the version-control-internals::file-version for the re-

trieval. This is required.

only-section Specified the section number for retrieval of the text for a sin-

gle section.

from-section Specifies the section number of the first section to be re-

trieved. The default is the first section defined in the file ver-

sion.

to-section Specifies the section number of the last section to be retrieved.

The default is the last section defined in the file version.

:number-of-sections Message

This message, sent to an encached file, returns the total number of sections de-

fined in all versions. It is the highest section number defined for any version.

vci::read-in-file encached-file stream Function

This function initializes an encached file by reading a VC file from the file system

and representing it in virtual memory. The stream should be an element type

character stream positioned at the beginning of the file.

vci::read-in-encached-file pathname &key area encached-file Function

This function reads a VC file from a file system file into an encached file. It pro-

vides standard proceed options for retry in case of network problems. If the en-

cached-file argument is nil, then a new encached file instance will be consed in

the area specified by the area argument, with the default of version-control-

internals::default-cons-area. Note that for many applications version-control-

internals::find-or-make-locked-encached-file is more appropriate.

:reconstruct-file stream Message

This message to an encached file writes out the current contents as a VC file to

the stream provided.

vci:encached-file-version-section-order encached-file version Function

This function returns a list of the section numbers of the sections defined in the

specified file version in order.

Symbolics Company Confidential Version Control Internals 23

DRAFT - Nov 87

Implementation of VC Encached Files

VC Encached File Data Structures

An encached file is an encached file header with additional information to repre-

sent the text and the trailers. The trailers are easy: they are represented by

version-control-internals::file-version-trailer structures referenced by the version-

control-internals::per-version structures in the version table.

The text is more complex. In the VC file, each section can occur more than once

so that any version can be read while reading the file monotonically. See the sec-

tion "VC File Text". In the encached file, all the occurrences of each section are

brought together into a single version-control-internals::section-info structure.

(Unfortunately, the word "occurrence" is mispelled "occurence" consistently in the

code.) The version-control-internals::section-info structures are organized in the

section-info instance variable of version-control-internals::encached-file. The or-

der of the occurrences in the VC file, and thus the order in which they must be

scanned to reconstruct the text of any particular version, is recorded in the recon-

stuct table.

vci:δ-section Structure

This structure is used to describe a section when creating a new version of an en-

cached file. The interfaces that make new versions take as a argument an array of

these structures. It specifies the disposition of each section in the parent file ver-

sion, plus any new sections, in order.

It has the following slots:

section-id The section number of the section under consideration. For

new sections, this is :new on input to the interfaces that create

new versions, and is changed to the assigned section number

on output.

new-version-interval

If the section is unchanged from the previous version, this con-

tains nil. If it has been changed, this contains a ZWEI interval

with the new text. If the section is deleted altogether, this con-

tains :deleted.

vci:encached-file Flavor

This flavor encaches the entire contents of a VC file. It is based on version-

control-internals::encached-file-header, and so inherits all of its methods.

The instance variables are as follows:

section-table an array of version-control-internals::per-section structures,

one for each section defined in the file, indexed by section

number.

24 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

reconstruct-table an array of version-control-internals::reconstruct-entry

structures, one for each occurrence of a section in the file.

queue a process queue, used to interlock modifications to the en-

cached file between processes.

name a string for sys:print-self, or nil.

pathname a pathname or nil. Used as the default name.

truename if the pathname is not nil, the truename.

In addition, the version-table instance variable is inherited from version-control-

internals::encached-file-header.

VC Encached File Header Version Table

An array of version-control-internals::per-version defstructs, one per version. In-

dex zero of this array always contains NIL, so that internal version n is always

found in (aref version-table n). See the structure vci::per-version.

vci::per-version Structure

This structure represents the data about each version of the file. Some of the

fields are unused within the flavor version-control-internals::encached-file-header

and only used by version-control-internals::encached-file. All of the fields are de-

scribed here. The conc-name of this structure is pv-. They are constructed with

the function version-control-internals::make-per-version.

The slots are as follows:

internal-version The internal version number. (pv-internal-version (aref

version-table n)) will always be n.

parent-version The internal version number parent version of this version.

The root version (currently always version 1) has zero in this

slot.

branch-name The string branch name of the external version.

branch-version The integer branch number of the external version.

ancestor-bitmap A boolean array. For version n, this array is of length n. For

each lower-numbered version, this array contains t if the ver-

sion is an ancestor of this version, and nil otherwise. This is

used when processing text information for the version to re-

solve insert and delete groups. This field is never used in

version-control-internals::encached-file-header, only in

version-control-internals::encached-file. This field is only

filled the first time that it is needed.

leaf-p t if this version is newest in its branch, nil otherwise.

Symbolics Company Confidential Version Control Internals 25

DRAFT - Nov 87

trailer A version-control-internals::file-version-trailer structure for

this version. See the structure vci::file-version-trailer. This is

here to avoid consing a new one every time an application

asks.

version-info A version-control-internals::file-version-info structure for this

version. See the structure vci:file-version-info. This is here to

avoid consing a new one every time an application asks.

version-reconstruct-path

An array of version-control-internals::reconstruct-entry struc-

tures that represents the order of sections in this versions.

vci::section-info Structure

This structure is an array leader. The body of the array is a sequence of text and

control records.

The slots are as follows:

n-records the number of text and control records in the section. This is

in fact the fill-pointer.

occurence-count the number of occurrences in the section. See the section "VC

Encached File Reconstruct Table".

In the VC file, a given section can occur more than once to represent the different

places that it appears in the order of sections in different versions. In the en-

cached file, each section has a single version-control-internals::section-info struc-

ture containing all of the occurrences. See the section "VC Encached File Recon-

struct Table".

VC Encached File Reconstruct Table

In the VC file, a given section can occur more than once to represent the different

places that it appears in the order of sections in different versions. In the en-

cached file, each section has a single version-control-internals::section-info struc-

ture containing all of the occurrences. The array will look like the following:

πB FS 1

πB DL 2

this is a line

this is another line

πE DL 2

πE FS 1

πB FS 1

πB IN 2

this is a line

this is another line

πB IN 2

πE FS 1�

26 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

Each BFS/EFS pair surrounds an occurence.

The reconstruct table is a sequence of version-control-internals::reconstruct-

entries that specifies the order that the sections’ occurrences appear in the VC

file. Since each section is only nonempty once per file version, walking the oc-

curences as specified by the reconstruct table will produce the text for the entire

file version in the correct order.

vci::reconstruct-entry Structure

This structure specified an entry in the reconstruct table. If has the following

slots:

section-number which section comes at this point in the reconstruct order.

occurence which occurrence of the section. The first occurrence is zero.

(The slot is in fact mispelled in the code.)

Initialization of VC Encached Files

Encached files are initialized in one of two ways: by reading a VC file, or by creat-

ing a new root version from a set of ZWEI intervals. The function version-

control-internals::read-in-file reads a VC file from a stream and initializes an en-

cached file to represent it. The message :initialize-from-δ-section initializes an en-

cached file from an array of version-control-internals::δ-section structures.

Retrievals from VC Encached Files

version-control-internals::make-retrieval-continuation implements retrieval. It

consists of two complex lexical closures. The simpler one returns the text lines of

a single section for a particular version. The complicated one works for multiple

versions.

The code structure is the co-routine that you would expect, with lexical state being

used to remember the location in the file/section of the last record returned.

This choice of implementation is questionable, since it forces consing of a lexical

closure for each retrieval. If they don’t get EGC’ed, then they could build up in a

hurry.

There is no interlocking to prevent some other process from modifying the file in

the middle. There are two bad reasons for this. First of all, the use of an upward

closure fails to provide a scope for locking. Second of all, there is no intra-machine

locking substrate with multi-reader locks.

Making New Versions of VC Encached Files

The most complex function of an encached file is to create a new version. The in-

terface for creating a new version is version-control-internals::add-new-version.

Symbolics Company Confidential Version Control Internals 27

DRAFT - Nov 87

It takes an encached file, a parent version, a specification of the new text, and the

trailer.

The specification of the new text is an array of version-control-internals::δ-

section structures. There must be one such structure for each section in the par-

ent version, plus additional structures for any new sections. The order of struc-

tures specifies the order of sections.

This interface makes no constraint on the origin of the text for the new version.

The text usually will come from some manipulation of the text of the parent ver-

sion, but it dosen’t have to. version-control-internals::add-new-version will match

up sections and compute text differences irregardless.

(flavor:method vci:add-new-version vci:encached-file) parent-version external-

version δ-section-array trailer Method

This function is the top-level driver for adding a new version to an existing file. It

is responsible for reconciling the order of sections in the parent version with that

specified for the new version.

Where a section is in the same place in the old version as the new version or is

deleted in the new version, it simply uses version-control-internals::δ-one-section

to do the work. When a section has moved, it has to delete the old occurence and

create a new one. version-control-internals::move-section makes the changes to

the section-info. When the relative order of two sections has changed, it moves the

one that move the smaller distance in the order, since that changes less.

(flavor:method vci::δ-one-section vci:encached-file) parent-version new-version

parent-re δ-section-info Method

This function is a subroutine of version-control-internals::add-new-version that

processes a single section. parent-re is the version-control-internals::reconstruct-

entry for this section in the parent version, and specifies the section and the oc-

curence in the section that is being changed. δ-section-info is the version-control-

internals::δ-section for this section by the caller of version-control-

internals::add-new-version.

If δ-section-info specifies that the section is to be deleted, ((eq (δ-section-new-

version-interval δ-section-info) :deleted)), then this calls version-control-

internals::delete-section to do the work. Otherwise, it walks down the text of the

old version in the encached file and the new version in the supplied interval, cre-

ating insert and delete groups as needed. Its comparison algorithm is simple: it

considers itself resynchronized when it finds one matching line for the two ver-

sions. There is no provision for deciding that the new version of a section is wildly

different from the old version, and just wrapping a delete around the entire old

copy and an insert around the new. This can lead to a proliferation of control

records, and is an area that needs work.

28 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

VC Locked Encached Files

A locked encached file is an encached file with network (inter-host) concurrency

control. The concurrency control serves two purposes:

File Update When adding to or deleting from a file, a locked encached file

locks out other hosts while it ensures that the most recent

copy is read in, adds the new version, and writes it out.

Branch Update As a service to the editor, a locked encached file will hold a

lock on a branch of the file. This allows one user to claim the

right to add the next version to a particular branch and pre-

vent any other user from doing the same thing.

All locked encached files have pathnames, since the pathname is used as a locking

handle amongst hosts.

Users of locked encached files must make provisions for the unreliability of the

lock-simple network lock server. If the file server containing the VC file crashes,

all of the locks are unlocked. This isn’t a problem for file updates, because if the

server is down you can’t write out the new copy. For branch locks, though, a user

can lock the branch and then silently loose the lock due to a file server crash. The

editor version control code detects this and signals takes corrective action.

Locked encached files are managed by the global interned file cache. Otherwise,

you could have two applications on the same host with different locked encached

file locking against each other, which would be a waste of time and virtual memo-

ry. To get a locked encached file for a VC file use the function version-control-

internals::find-or-make-locked-encached-file.

Functions for Use with VC Locked Encached Files

vci:with-locked-encached-file-locked (locked-encached-file) &body body Macro

• This macro works as follows:

• Gets a write (exclusive) lock on the entire file.

• Checks to see if the encached file contains the latest copy of the VC file. If not,

it reads it.

• Runs the body.

• Releases the lock.�

vci:make-new-version-from-δ-section-array locked-encached-file parent-version new-

version δ-section-array trailer Function

Symbolics Company Confidential Version Control Internals 29

DRAFT - Nov 87

This functions replaces the :initialize-from-δ-section message and version-control-

internals::add-new-version function on locked encached files. For new files, this

checks to make sure that no one else has created a file at the same pathname be-

fore proceeding. It should be called within a version-control-internals::with-

locked-encached-file-locked.

vci:write-out-new-file-version locked-encached-file author Function

This function replaces the :reconstruct-file message for locked encached files. It

writes out the encached file as a VC file to its pathname. The author argument is

provided so that the editor can use its usual zwei:non-daemon-user-id protocol to

avoid LISP-MACHINE as a author. Other applications can just use (send si:*user*

:pretty-name). This should be called inside the same version-control-

internals::with-locked-encached-file-locked as the call to version-control-

internals::make-new-version-from-δ-section-array, version-control-

internals::delete-versions, version-control-internals::delete-branch, or any other

operations that modify the encached file, including its stored property list.

vci:reread-encached-file locked-encached-file Function

This function rereads the encached file from the VC file. It is used to recover the

file to a clean state when a change is interrupted. Applications that modify en-

cached files should be written to be able to restart the modification from the be-

ginning, so that they can have an error recovery loop that rereads the file and

tries all over again.

vci:lock-branch-for-modification locked-encached-file version &key new-p Function

This functions gets a write (exclusive) lock on the a branch of the file. version

must be a version-control-internals::file-version. The lock is obtained for that

version’s branch. new-p should be t if the the lock is to prevent other users from

creating this branch, and nil if the branch exists and the lock is to prevent other

users from adding a new version to the end. No "with-branch-locked" macro is

provided, because branch locks are generally held for an extended period of time.

vci:ensure-encached-file-up-to-date encached-file Function

This function checks to see if a newer version of the VC file exists than the one

what was read into this encached file (or encached file header). If so, it reads it.

Note that unless this is called inside of a version-control-internals::with-locked-

encached-file-locked, there is no protection from races between applications. Note

that version-control-internals::with-locked-encached-file-locked always calls this

before running the body.

vci:unlock-branch locked-encached-file version Function

30 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

This function releases a lock on a branch obtained with version-control-

internals::lock-branch-for-modification.

vci:branch-lock-status locked-encached-file version Function

This function returns the current network lock status of the specified branch. See

the documentation for lock-simple::lock-status for the format of the information

returned.

VC Header Pseudo Encached Files

A version-control-internals::header-pseudo-encached-file is a particular flavor of

encached-file-header used in the global cache. The name was poorly chosen. The

differences between a header pseudo encached file and an encached-file-header are:

• it always has a pathname, which serves as the cache key.

• it has a version-control-internals::parser mixed in, so that it dosen’t have to

cons one when it is reread.

• it supports version-control-internals::ensure-encached-file-up-to-date, with the

semantics of rereading the header if a newer VC file has been written.

The Global Cache of VC Encached Files and Encached File Headers

Reading a VC file into an encached file or even an encached file header takes a

significant amount of time, and consumes a significant amount of virtual memory.

If there is any significant chance that a file will get used more than one, its worth

"interning" it when read so that it can be used again. This is the purpose of the

global caches.

There are two caches: one for headers, and one for full files. Since an encached

file is a perfectly valid encached file header, the functions that search for headers

search the cache of files as well. If an application searches for a full file and there

is a cached header, the cached header is removed in favor of the file.

The file cache stores version-control-internals::locked-encached-files. The header

cache stores version-control-internals::header-pseudo-encached-files.

Functions for Use with the VC File Cache

vci:find-or-make-encached-file-header &key stream pathname (make-ok t) (area

version-control-internals::*encached-file-area*) Function

Given a stream or a pathname, looks for an encached file header or file in the

global cache. If the file is not found in the cache, the result depends on make-ok.

If it is t, a new header will be added to the cache and the file read into it. If it is

nil, the function returns nil.

Symbolics Company Confidential Version Control Internals 31

DRAFT - Nov 87

If the file is not a version control file, then the condition version-control-

internals::non-version-controlled-file is signalled. See the flavor vci:non-version-

controlled-file.

vci:find-or-make-locked-encached-file &key stream pathname new-file-p (make-ok

t) (area version-control-internals::*encached-file-area*) Function

Given a stream or a pathname, looks for an encached file in the global cache. If

the file is not found in the cache, the result depends on make-ok. If it is t, a new

encached file will be added to the cache and the file read into it. If it is nil, the

function returns nil.

If the file is not a version control file, then the condition version-control-

internals::non-version-controlled-file is signalled. See the flavor vci:non-version-

controlled-file.

vci::unencache-file pathname Function

Removes a file, identified by pathname, from the cache of encached files. This

should be used with care, since some program (like the editor) can retain a refer-

ence to an encached file after it is removed. This function is intended for debug-

ging and recovery.

vci::unencache-header pathname Function

Removes a file, identified by pathname, from the cache of encached file headers.

This should be used with care, since some program (like the editor) can retain a

reference to an encached file header after it is removed. This function is intended

for debugging and recovery.

vci::unencache-all-files Function

Empties the caches of encached files and encached file headers. This should be

used with care, since some program (like the editor) can retain a reference to an

encached file after it is removed. This function is intended for debugging and re-

covery.

vci::*all-locked-encached-files* Variable

This variable contains the cache of locked encached files. It is an alist from path-

names to version-control-internals::locked-encached-files. The pathnames are

canonicalized as follows:

32 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

(let ((canonical-pathnane

 (send (send pathname :new-pathname :version :newest :vc-branch nil

 :vc-version nil))

 :translated-pathname))

�

 ...

)�

vci::*all-encached-file-headers* Variable

This variable contains the cache of encached file headers. It is an alist from path-

names to version-control-internals::header-pseudo-encached-filess. The path-

names are canonicalized as follows:

(let ((canonical-pathnane

 (send (send pathname :new-pathname :version :newest :vc-branch nil

 :vc-version nil))

 :translated-pathname))

�

 ...

)�

VC Encached File Branch Registry

The encached file format stores very little information about a branch: its name,

and any information in the trailer for its first version. Applications need more in-

formation to provide better interfaces for the user. This information is provided by

the branch registry.

The branch registry is just a list of version-control-internals::file-branch struc-

tures stored in the stored property list of the encached file. Each structure de-

scribes a branch.

No code in the file substrate demands that a version-control-internals::file-

branch be recorded for each branch defined in the file. It is up to applications to

maintain consistency. The advantage of this is that applications can hide informa-

tion in "unregistered" branches. The disadvantage is that inconsistencies are possi-

ble. It would be better all around if file branch recording was required for all new

branches, but with a more extensible data structure that could handle more kinds

of branches.

vci:file-branch Structure

This structure stores a description of a branch. It has the following slots:

name the name of the branch.

Symbolics Company Confidential Version Control Internals 33

DRAFT - Nov 87

private-user-name if the branch contains the private work of a particular users,

that user’s name is stored here. The intention is that user in-

terfaces will by default hide private branches from other users

to avoid clutter.

parent-file-version the file version of the parent version of the first version in the

branch.

new-versions-permitted-p

t is this branch is in active use. nil if it has been decomis-

sioned, and user interfaces should prevent or discourage users

from adding to it. Nothing uses this yet.

successor-version if new-versions-permitted-p is nil, then this has is the file ver-

sion that is the logical successor of the last version in the

branch. For example, if a branch has been merged into another

branch, this would indicate the version that resulted from the

merge.

author the author of the branch.

creation-date the creating date of the branch.

vci::update-file-branch encached-file file-branch Function

This function updates the data for a branch. All of the data in file-branch is

copied into the permanent copy on the file property list. This function assumes

that the branch has been previously registered, and signals an error otherwise.

vci:record-file-branch encached-file file-branch &key (update-ok nil) (new-ok t)

Function

adds a record of a branch to the registry. The data in the file-branch structure is

copied, so that later modifications to the structure have no effect on what is

recorded in the encached file.

If update-ok is nil, and the branch is already registered, an error is signalled.

If new-ok is nil, and the branch is not already registered, then an error is sig-

nalled.

vci:lookup-file-branch encached-file file-branch-name Function

This returns a file branch structure for the branch named by file-branch-name, or

nil if none is recorded. This returns a copy of the record in the registry, so that to

change the information recorded you must call version-control-internals::update-

file-branch.

vci::un-record-file-branch encached-file file-branch-name Function

34 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

Removes the record for a file branch from the registry.

vci:file-branch-name-alist encached-file Function

Returns an alist from names to file usuable in user interfaces that like alists. The

alist elements are conses, not lists, so the version-control-internals::file-branch

structure in each one is in the cdr, not second.

Streams for Reading VC File Text

Version control provides stream interfaces for reading the text of VC files. There

are two streams. Both read the text of a single file version from a VC file. One

reads the text directly from a VC file in the file system, and the other reads the

text from an encached file.

For an operation like compiling the file, it is not in general worth encaching the

file in the global cache. Many file compilations, such as those resulting from SCT

system compilation, compile files which are unlikely to be edited any time soon,

and reference many files. It is more important to read a single version fast than to

make all the version available in virtual memory. However, if some other applica-

tion has already encached the file, there is no reason not to just use the encached

copy.

Functions for Use with VC File Streams

The interfaces described here will open VC file streams. Calling open with a ver-

sion controlled pathname returns VC file streams.

vci::open-one-version-file-stream pathname &optional version &rest open-

arguments &key only-section &allow-other-keys Function

Returns a stream that reads the text of a file version of a VC file. Pathname

should be the pathname of the VC file, not a version controlled pathname. If your

application knows the file version in advance, it should supply a version-control-

internals::file-version in version. If not, it can use version-control-internals::vc-

file-stream-encached-file-header to get the encached file header, and use it to

choose the appropriate version, and then do: (setf (vc-file-version stream) version).

This exercise is slightly more efficient than calling version-control-internals::find-

or-make-encached-file-header for yourself, since it avoids opening the file twice.

Supplying only-section returns a stream that reads text from a single section. You

have to supply a version to use only-section.

vci:open-encached-file-stream &key encached-file (file-version nil) pathname only-

section return-boundary-blips Function

Returns a stream that reads the text of a file version from an encached file.

Symbolics Company Confidential Version Control Internals 35

DRAFT - Nov 87

If you supply a pathname instead of an encached-file, this will call version-

control-internals::find-or-make-locked-encached-file to find the encached file.

You must supply a version-control-internals::file-version with file-version.

only-section specifies that the stream only returns the text for the specified section

number.

If you specify return-boundary-blips non-nil, a version-control-internals::encached-

file-version-stream-blip is signalled at the beginning of each new section. Your ap-

plication should condition-bind for this condition. Since VC files are stored as

lines, this will only be signalled between lines.

vci:open-encached-or-file-stream vc-pathname &key only-section Function

This function is equivalent to calling open on vc-pathname, except that you can

supply only-section to read a single section.

If the file is encached, this returns a stream that reads the text from the encached

copy. Otherwise it returns a stream that reads the text from the VC file in the

file system.

vci::vc-file-version vc-file-stream Function

Returns the version-control-internals::file-version for a VC file stream.

vci::vc-file-stream-encached-file-header vc-file-stream Function

Returns the encached file header for a VC file stream.

vci:encached-file-version-stream-blip Flavor

This condition is signalled by version-control-internals::encached-file-version-

streams to indicate the transition to a new section. The function version-control-

internals::encached-file-version-stream-blip-blip returns the version-control-

internals::section-boundary-blip for the transition. The function version-control-

internals::encached-file-version-stream-blip-stream returns the stream that sig-

nalled the blip, so that handlers can avoid catching each other’s blips.

Implementation of VC File Streams

version-control-internals::one-version-file-stream and version-control-

internals::encached-file-version-stream implement the streams that read from file

system files and encached files, respectively.

They are built on some common mixins, which are described here before the

streams themselves.

36 Version Control Internals

Symbolics Company Confidential

DRAFT - Nov 87

vci::one-version-whole-file-p-mixin Flavor

This mixin provides the :whole-file-p message for the streams. It has an instance

variable initialized with :force-whole-file. The functions that create these streams

use that keyword depending on whether the stream will return an entire file ver-

sion or just one section.

vci::diagram-line-blip Flavor

This condition flavor is used with the version-control-internals::return-diagrams-

as-lines-mixin to implement support for the stored editor diagram line protocol.

The two streams signal this condition when they encounter an instance as a text

record. Then, whoppers on version-control-internals::return-diagrams-as-lines-

mixin catch the condition and either return or ignore the diagram, depending on

whether the application has enabled returning diagram instances.

vci::return-diagrams-as-lines-mixin Flavor

This flavor provides whoppers (actually whopper-substs) on the line input stream

methods that catch version-control-internals::diagram-line-blip conditions. The

instance variable return-diagrams-as-lines is :settable, since the global protocol for

controlling diagram lines is via the :set-return-diagrams-as-lines keyword mes-

sage.

Currently, the whoppers just ignore diagrams when return-diagrams-as-lines is nil.

They should return the string <<Diagram line>> for compatibility with ordinary file

streams.

vci:one-version-file-stream Flavor

This stream reads text from a VC file in the file system.

The instance variables are as follows:

internal-version the encached file numeric version for the text version being

read.

version the version-control-internals::file-version.

return-vc-pathnames

a flag. When t, the :pathname message returns a full VC

pathname as the stream pathname. When nil, it just returns a

flat pathname for the VC file.

pathname the correct VC pathname to return. This will retain :newest

and related items in the versions, as opposed to the truename.

encached-file-header

just what it says.

Symbolics Company Confidential Version Control Internals 37

DRAFT - Nov 87

parser the version-control-internals::parser instance used to read the

file.

stream the stream open to the VC file.

eof t if the last text has already been returned.

ancestors an ancestor bitmap for the version being read. This has the

same contents, and is used the same way, as the ancestor-

bitmap in the version-control-internals::per-version structure.

See the structure vci::per-version.

return-boundary-blips

this is intended to give VC file streams the same ability to sig-

nal blips at section transitions as encached file streams have.

It is not yet implemented.

only-section If the application specified that only text from one section

should be read, this contains the section number.

only-section-found a state variable. This starts at nil, and is set to t if the de-

sired section has been found in the file.

header the version-control-internals::parsed-file-header returned by

the parser.

input-buffer-outstanding

used to error-check on :discard-input-buffer.

Note that this stream mixes in the standard file stream mixin. This stream pro-

vides a si:pathname instance variable which it uses for the wholine. This is only

important for the file access path which registers streams for display in the who-

line. See the section "VC Pathname File Access Path".

The implementation of the stream is a straightforward buffered input stream.

Each text record is returned as an input buffer with a #\Return appended.

When a diagram line instance is encountered, the version-control-

internals::diagram-line-blip condition is signalled, leaving it to version-control-

internals::return-diagrams-as-lines-mixin to deal with them.

vci:encached-file-version-stream Flavor

This flavor implements the stream that reads the text of a file version out of an

encached file. It is a very simple buffered stream, since all of the hard work hap-

pens in the encached file. It has the same somewhat odd set of instance variables

for pathnames as version-control-internals::one-version-file-stream. For an expla-

nation: See the flavor vci:one-version-file-stream.

