
Symbolics Common Lisp Dictionary

≠ number &rest numbers Function

In your new programs, we recommend that you use function =, which is the Com-

mon Lisp equivalent of ≠.

Returns t if number is not numerically equal to any of numbers, and nil otherwise.

Either argument can be of any numeric type. 

� ≤ number &rest more-numbers Function

In your new programs, we recommend that you use function <=, which is the Com-

mon Lisp equivalent of ≤.

≤ compares its arguments from left to right. If any argument is greater than the

next, ≤ returns nil. But if the arguments are monotonically increasing or equal,

the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

Examples:

(≤ 5) => T

(≤ 1 2 3) => T

(≤ 3 6 2 8) => NIL

(≤ 5 6.3) => T�

� ≥ number &rest more-numbers Function

In your new programs, we recommend that you use function >= which is the Com-

mon Lisp equivalent of ≥.

≥ compares its arguments from left to right. If any argument is less than the next,

≥ returns nil. But if the arguments are monotonically decreasing or equal, the re-

sult is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

Examples:

(≥ 8) => T

(≥ 3 2 2 1) => T

(≥ 5 4 6 2) => NIL

(≥ 6.02s23 6.02d23) => T�

+ &rest numbers Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which

is the identity for this operation. An error signals if any argument is a non-

number.
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If the arguments are of different numeric types, they are converted to a common

type, which is also the type of the result. See the section "Coercion Rules for

Numbers".

Examples:

(+) => 0

(+ -8) => -8

(+ 1 2 3 4) => 10

(+ 2 5.9) => 7.9

(+ 5/2 2 2/3) => 31/6�

When using Genera, the following functions are synonyms of + :

zl:plus

zl:+$

�

For a table of related items, see the section "Arithmetic Functions".

� + Variable

While a form is being evaluated by a read-eval-print loop, + is bound to the previ-

ous form that was read by the loop. Variable ++ is likewise bound to the penulti-

mate evaluated form, and +++ to the form whose evaluation is removed from the

form currently undergoing evaluation.

(floor 5 2) => 2 1

(eval +) => 2 1�

� ++ Variable

Holds the previous value of +, that is, the form evaluated two interactions ago. 

� +++ Variable

Holds the previous value of ++, that is, the form evaluated three interactions ago. 

� zl:+$ &rest args Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which

is the identity for this operation.

The following functions are synonyms of zl:+$ :

zl:plus

+�

� - number &rest more-numbers Function
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With only one argument, returns the negative of its argument. With more than

one argument, - returns its first argument minus all of the rest of its arguments.

In this way, - serves the dual function of a unary minus and polyadic minus.

However, this can cause confusion, particularly when used with apply or given an

unexpected number of arguments.

If the arguments are of different numeric types they are converted to a common

type, which is also the type of the result. See the section "Coercion Rules for

Numbers".

Examples:

(- 8) => -8

(- 9 3) => 6

(- 9 4 2 1) => 2

(- #C(3 4) 4) => #C(-1 4)

(- 9 5/6) => 49/6

(- 1 2 3 4) => -8�

When using Genera, the following function is a synonym of - :

zl:-$�

For a table of related items, see the section "Arithmetic Functions". 

� - Variable

While a form is being evaluated by a read-eval-print loop, - is bound to the form

itself.

(print -) prints: (print -)�

� zl:-$ arg &rest args Function

With only one argument, returns the negative of its argument. With more than

one argument, zl:-$ returns its first argument minus all the rest of its arguments.

The following function is a synonym of zl:-$ :

- �

� zl:/ number &rest more-numbers Function

In your new programs, we recommend that you use the function /, which is the

Common Lisp equivalent of the function /.

With more than one argument, / is the same as zl:quotient; it returns the first ar-

gument divided by all of the rest of its arguments. With only one argument, (/ x)

is the same as (/ 1 x). 

With integer arguments, / acts like truncate, except that it returns only a single

value, the quotient.
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Note that in Zetalisp syntax / is the quoting character and must therefore be dou-

bled. 

Examples:

(zl:/ 3 2) => 1       ;Integer division truncates.

(zl:/ 3 -2) => -1

(zl:/ -3 2) => -1

(zl:/ -3 -2) => 1

(zl:/ 3 2.0) => 1.5

(zl:/ 3 2.0d0) => 1.5d0

(zl:/ 4 2) => 2

(zl:/ 12. 2. 3.) => 2

(zl:/ 4.0) => .25�

The following function is a synonym of / :

zl:/$�

For a table of related items, see the section "Arithmetic Functions". 

� / number &rest more-numbers Function

With more than one argument, / successively divides the first argument by all the

others and returns the result. With one argument, / returns the reciprocal of the

argument: (/ x) is the same as (/ 1 x). If the arguments are of different numeric

types, they are converted to a common type, which is also the type of the result.

See the section "Coercion Rules for Numbers".

/ follows normal mathematical rules, so if the mathematical quotient of two inte-

gers is not an exact integer, the function returns a ratio. To obtain an integer re-

sult, use one of these functions: floor, ceiling, truncate, round.

(/ 4) => 1/4

(/ 4.0) => 0.25

(/ 9 3) => 3

(/ 18 4) => 9/2 ;returns rational number in canonical form

(/ 101 10.0) => 10.1    ;applies coercion rules

(/ 101 10) => 101/10

(/ 24 4 2) => 3

(/ 36. 4. 3.) => 3

(/ 36.0 4.0 3.0) => 3.0

(/ #c(1 1) #c(1 -1)) => #c(0 1)

(/ #c(3 4) 5) => #c(3/5 4/5)

�

For a table of related items, see the section "Arithmetic Functions". 

� zl:/$ arg &rest args Function

With more than one argument, zl-user:$ is the same as zl:quotient; it returns the

first argument divided by all of the rest of its arguments. With only one argu-

ment, (zl-user:$ x) is the same as (zl-user:$ 1 x).
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With integer arguments, zl-user:$ acts like truncate, except that it returns only a

single value, the quotient.

Note that in Zetalisp syntax zl:/ is the quoting character and must therefore be

doubled. 

The following function is a synonym of zl-user:$:

zl:/ �

� /= number &rest numbers Function

Returns t if all arguments are not equal, and nil otherwise. Arguments can be of

any numeric type; the rules of coercion are applied for arguments of different nu-

meric types.

Two complex numbers are considered = if their real parts are = and their imagi-

nary parts are =.

Examples:

(/= 4) => T

(/= 4 4.0) => NIL

(/= 4 #c(4.0 0)) => NIL

(/= 4 5) => T

(/= 4 5 6 7) => T

(/= 4 5 6 7 4) => NIL

(/= 4 5 4 7 4) => NIL

(/= #c(3 2) #c(2 3) #c(2 -3)) => T

(/= #c(3 2) #c(2 3) #c(2 -3) #c(2 3.0))  => NIL

�

When using Genera, the following function is a synonym of /= :

≠�

For a table of related items, see the section "Numeric Comparison Functions".

� / Variable

While a form is being evaluated by a read-eval-print loop, / is bound to a list of

the results printed the last time through the loop.

If you are using CLOE, variable / is bound to the list of values returned by the

last evaluated form. Variable // is bound to the list of values returned by the

penultimate evaluated form, and variable /// is bound to the list of values re-

turned by the form evaluated three before the current form.

(floor 5 2) => 2, 1

/ => (2 1)�

� // Variable
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Holds the previous value of user::////////////////, that is, the list of results printed two

times through the loop ago. 

� /// Variable

Holds the previous value of user::////////////////////////////////, that is, the list of results

printed three times through the loop ago. 

< number &rest more-numbers Function

Compares its arguments from left to right. If any argument is not less than the

next, < returns nil. But if the arguments are monotonically strictly increasing, the

result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

An error is returned if any of the arguments are complex or not numbers.

Examples:

(< 3 4) => T

(< 1 1.0)  => NIL

(< 0 1/2 2.0 3 4)  => T 

(< 0 1 3 2 4) => NIL

(< 5/2 5) => t

(< 3 3.12) => t�

When using Genera, the following function is a synonym of < :

zl:lessp �

For a table of related items, see the section "Numeric Comparison Functions".

� <= number &rest more-numbers Function

Compares its arguments from left to right. If any argument is greater than the

next, <= returns nil. But if the arguments are monotonically increasing or equal,

the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

An error is returned if any of the arguments are complex or not numbers.

Examples:

(<= 8) => T

(<= 3 4) => T

(<= 1 1) => T

(<= 1 1.0) => T

(<= 0 1/2 2.0 3 4) => T

(<= 0 1 3 2 4) => NIL

(<= 0 1 3 3 4) => T

(<= 5 5/2) => nil

(<= 3 3.0 3.5 4) => t�
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When using Genera, the following function is a synonym of <= :

≤�

For a table of related items, see the section "Numeric Comparison Functions".

� = number &rest more-numbers Function

Tests for numeric equality of numbers, and works for any type of number. Differs

from eq in that non-identical but numerically equal numbers will not be eq but

will be =. Differs from eql in that numerically equal numbers need not be of the

same type to be =. Returns t if all arguments are numerically equal. 

= takes arguments of any numeric type; the arguments can be of dissimilar numer-

ic types.

Examples:

(= 8) => T

(= 3 4) => NIL

(= 3 3.0 3.0d0) => T

(= 4 #C(4 0) #C(4.0 0.0) #C(4.0d0 0.0d0)) => T

(= 0 0.0) => t

(= #c(1 2) #c(1.0 2.0)) => t�

For a discussion of non-numeric equality predicates, see the section "Comparison-

performing Predicates".

For a table of related items, see the section "Numeric Comparison Functions". 

� > number &rest more-numbers Function

Compares its arguments from left to right. If any argument is not greater than

the next, > returns nil. But if the arguments are monotonically strictly decreasing,

the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

An error is returned if any of the arguments are complex or not numbers.

Examples:

(> 4 3.0)  => T

(> 4 3 2 1/2 0)   => T

(> 4 3 1 2 0)  => NIL

(> 4 3) => t

(> 3 3 2) => nil�

When using Genera, the following function is a synonym of > :

zl:greaterp �

For a table of related items, see the section "Numeric Comparison Functions".

� >= number &rest more-numbers Function
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Compares its arguments from left to right. If any argument is less than the next,

>= returns nil. But if the arguments are monotonically decreasing or equal, the re-

sult is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

An error is returned if any of the arguments are complex or not numbers.

Examples:

(>= 8) => T

(>= 4 3.0)  => T

(>= 4 3 2 1 0) => T

(>= 4 2 3 1 0) => NIL

(>= 4 3 3 2 1/2 0)  => T

(>= 4 3) => t

(>= 3 3 2) => t�

When using Genera, the following function is a synonym of >= :

≥�

For a table of related items, see the section "Numeric Comparison Functions".

zl:\\ x y Function

In your new programs, we recommend that you use either the function rem or

remainder which are the Common Lisp equivalents of the function zl-

user:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Returns the remainder of x divided by y. x and y must be integers.

zl-

user:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

acts like truncate, except that it returns only a single value, the remainder.
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Examples:

(zl:\\ 3 2) => 1

(zl:\\ -3 2) => -1

(zl:\\ 3 -2) => 1

(zl:\\ -3 -2) => -1�

The following functions are synonyms for zl-

user:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

rem

zl:remainder �

Note: In programs using the Zetalisp syntax you would represent zl-

user:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

as \. The function is represented here as zl-

user:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

because all objects in this manual are represented as if printed by prin1 with

*package* bound to the Common Lisp readtable. In Common Lisp, the backslash

character (\) is the escape character and must be doubled. 

� zl:\\ x y &rest args Function
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Returns the remainder of x divided by y. The arguments must be integers. 

The following functions are synonyms of \\:

zl:remainder

rem �

We recommend that you use rem in new programs.

Note: In programs using the Zetalisp syntax you would represent \\ as \. The func-

tion is represented here as \\ only because all objects in this manual are represent-

ed as if printed by prin1 with *package* bound to the Common Lisp readtable. In

Common Lisp, the backslash character (\) is the escape character and must be

doubled.

� zl:^ x y Function

Returns x raised to the yth power. The result is an integer if both arguments are

integers (even if y is negative!) and floating-point if either x or y or both is float-

ing-point. If the exponent is an integer a repeated-squaring algorithm is used,

while if the exponent is floating the result is (exp (* y (log x))).

The following functions are synonyms of zl:^ :

zl:expt

zl:^$

�

� zl:^$ x y Function

Returns x raised to the yth power. The result is an integer if both arguments are

integers (even if y is negative!) and floating-point if either x or y or both is float-

ing-point. If the exponent is an integer a repeated-squaring algorithm is used,

while if the exponent is floating the result is (exp (* y (log x))).

The following functions are synonyms of zl:^$ :

zl:expt

zl:^

�

* &rest numbers Function

Returns the product of its arguments. If there are no arguments, it returns 1,

which is the identity for this operation.

If the arguments are of different numeric types they are converted to a common

type, which is also the type of the result. See the section "Coercion Rules for

Numbers".

Examples:
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(*) => 1

(* 4 6) => 24

(* 1 2 3 4) => 24

(* 2.5 4) => 10.0

(* 3.0s4 10) => 300000.0

(* 1.0 2.0 3/2 4/3) => 4.0

(* #c(1.0 2.0) 3/2 #c(2 4/3)) => #c(-1.0 8.0)�

When using Genera, the following functions are synonyms of * :

zl:times

zl:*$ �

For a table of related items, see the section "Arithmetic Functions". 

� * Variable

While a form is being evaluated by a read-eval-print loop, * is bound to the result

printed the last time through the loop. If several values were printed (because of a

multiple-value return), * is bound to the first value. If no result was printed, * is

not changed. Variable ** is bound to the value returned by the penultimate evalu-

ated form, and *** is bound to the value returned by the form evaluated three be-

fore the current form. The star forms always return only a single value.

(floor 5 2) => 2, 1

* => 2�

� ** Variable

Holds the previous value of *, that is, the result of the form evaluated two interac-

tions ago. 

� *** Variable

Holds the previous value of **, that is, the result of the form evaluated three in-

teractions ago. 

� zl:*$ &rest args Function

Returns the product of its arguments. If there are no arguments, it returns 1,

which is the identity for this operation.

The following functions are synonyms of zl:*$ :

zl:times

* �

1+ number Function
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(1+ number) is the same as (+ number 1).

Examples:

(1+ 5) => 6

(1+ 3.0d0) => 4.0d0

(1+ 3/2) => 5/2

(1+ #C(4 5)) => #C(5 5) �

When using Genera, the following functions are synonyms of 1+ :

zl:add1

zl:1+$�

For a table of related items: See the section "Arithmetic Functions".

� zl:1+$ x Function

(zl:1+$ x) is the same as (+ x 1).

The following functions are synonyms of zl:1+$ :

zl:add1

1+�

� 1- number Function

(1- number) is the same as (- number 1). Note that this name might be confusing:

(1- number) does not mean 1 - number; rather, it means number - 1.

Examples:

(1- 9) => 8

(1- 4.0) => 3.0

(1- 4.0d0) => 3.0d0

(1- #C(4 5)) => #C(3 5)�

When using Genera, the following functions are synonyms of 1- :

zl:sub1

zl:1-$�

For a table of related items: See the section "Arithmetic Functions".

� zl:1-$ x Function

(zl:1-$ x) is the same as (- x 1).

The following functions are synonyms of zl:1-$ :

zl:sub1

1- �

� sys:%1d-aloc array index Function
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Returns a locative pointer to the array element-cell selected by the index. sys:%1d-

aloc is like zl:aloc, except that it ignores the the number of dimensions of the ar-

ray and acts as if it were a one-dimensional array by linearizing the multidimen-

sional elements.

Current style suggests that you should use (locf (sys:%1d-aref |...|)) instead of

sys:%1d-aloc.

When using sys:%1d-aloc it is necessary to understand how arrays are stored in

memory: See the section "Row-major Storage of Arrays".

For an example of accessing elements of a multidimensional array as if it were a

one-dimensional array: See the function sys:%1d-aref.

For a table of related items: See the section "Accessing Multidimensional Arrays

as One-dimensional". 

� sys:%1d-aref array index Function

Returns the element of array selected by the index. sys:%1d-aref is the same as

aref, except that it ignores the number of dimensions of the array and acts as if it

were a one-dimensional array by linearizing the multidimensional elements. copy-

array-portion uses this function.

For example:

(setq *array* (make-array ’(20 30 50))) => #<Art-Q-20-30-50 5023116>

(setf (aref *array* 5 6 7) ’foo) => FOO

�

;;; The following three forms have the same effect.

(aref *array* 5 6 7) => FOO

(sys:%1d-aref *array* (+ (* (+ (* 5 30) 6) 50) 7)) => FOO

(sys:%1d-aref *array* (array-row-major-index *array*)) => FOO

(sys:%1d-aref *array* (array-row-major-index *array* 5 6 7)) => FOO�

When using sys:%1d-aref it is necessary to understand how arrays are stored in

memory: See the section "Row-major Storage of Arrays".

For a table of related items: See the section "Accessing Multidimensional Arrays

as One-dimensional".

� sys:%1d-aset value array index Function

Stores a value into the specified array element, selected by the index. sys:%1d-aset

is the same as zl:aset, except that it ignores the number of dimensions of the ar-

ray and acts as if it were a one-dimensional array. 

copy-array-portion uses this function.

Current style suggests that you should use (setf (sys:%1d-aref |...|)) instead of

sys:%1d-aset.
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When using sys:%1d-aset it is necessary to understand how arrays are stored in

memory: See the section "Row-major Storage of Arrays".

For an example of accessing elements of a multidimensional array as if it were a

one-dimensional array: See the function sys:%1d-aref.

For a table of related items: See the section "Accessing Multidimensional Arrays

as One-dimensional". 

� 2d-array-blt alu nrows ncolumns from-array from-row from-column to-array to-row

to-column Function

Copies a rectangular portion of from-array into a portion of to-array. 2d-array-blt

is similar to bitblt but takes (row,column) style arguments on two-dimensional ar-

rays, while bitblt takes (x,y) arguments on rasters. 

The number of columns in from-array times the number of bits per element must

be a multiple of 32. The same is true for to-array.

This can be used on sys:art-fixnum or sys:art-1b, sys:art-2b,... sys:art-16b arrays.

It can also be used on sys:art-q arrays provided all the elements are fixnums.

For a table of related items: See the section "Copying an Array".

� sys:%32-bit-difference fixnum1 fixnum2 Function

Returns the difference of fixnum1 and fixnum2 in 32-bit two’s complement arith-

metic. Both arguments must be fixnums. The result is a fixnum.

For a table of related items, see the section "Machine-Dependent Arithmetic Func-

tions". 

� sys:%32-bit-plus fixnum1 fixnum2 Function

Returns the sum of fixnum1 and fixnum2 in 32-bit two’s complement arithmetic.

Both arguments must be fixnums. The result is a fixnum.

For a table of related items, see the section "Machine-Dependent Arithmetic Func-

tions". 

� abs number Function

Returns |number|, the absolute value of number. For noncomplex numbers, abs

could have been defined by:

(defun abs (number)

  (cond ((minusp number) (minus number))

(t number)))�

Note that if number is equal to negative zero in IEEE floating-point format the

above algorithm returns -0.0.
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For complex numbers, abs could have been defined by:

(defun abs (number)

  (sqrt (+ (^ (realpart number) 2) (^ (imagpart number) 2))))�

(abs 81) => 81

�

(abs -81.0) => 81.0

�

(abs #c(3 4)) => 5.0�

See the function phase.

For a table of related items, see the section "Arithmetic Functions". 

� acons key datum alist Function

Constructs a new association list by adding the pair (key . datum) onto the front of

alist. acons returns a new association list which has the new key and datum pair

added to it. See the section "Association Lists". This is equivalent to using the

cons function on key and datum, and consing it onto the old list as follows: 

(acons key datum alist) ≡ (cons (cons key datum) alist) 

Example:

(setq bird-alist ’((wader . heron) (raptor . eagle))) =>

((WADER . HERON) (RAPTOR . EAGLE))

�

(acons ’diver ’loon bird-alist) =>

((DIVER . LOON) (WADER . HERON) (RAPTOR . EAGLE))

�

bird-alist =>

((WADER . HERON) (RAPTOR . EAGLE))�

In the following example, acons updates the association list of tenured professors

and their classes.

(setq professors-with-tenure

  ’(("smith" . (CS202 CS231))

    ("parks" . (CS221))("hunter" . (CS216 CS232))))

�

(setq professors-with-tenure

  (acons "Jones" (list CS101 CS242)

         professors-with-tenure))

�

(professors-with-tenure

  ’(("Jones" . (CS101 CS242))("smith" . (CS202 CS231))

    ("parks" . (CS221))("hunter" . (CS216 CS232))))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists".
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� acos number Function

Computes and returns the arc cosine of the argument (that is, the angle whose co-

sine is equal to number). The result is in radians. 

The argument can be any noncomplex or complex number. Note that if the abso-

lute value of number is greater than one, the result is complex, even if the argu-

ment is not complex.

The arc cosine being a mathematically multiple-valued function, acos returns a

principal value whose range is that strip of the complex plane containing numbers

with real parts between 0 and π. The range excludes any number with a real part

equal to zero and a negative imaginary part, as well as any number with a real

part equal to π and a positive imaginary part.

Examples:

(acos 1) => 0.0

(acos 0) => 1.5707964 ; π/2 radians

(acos -1) => 3.1415927  ; π

(acos 2) => #C(0.0 1.3169578)

(acos -2) => #C(3.1415927 -1.316958)

(acos (/ (sqrt 2) 2)) => 0.785398�

For a table of related items, see the section "Trigonometric and Related

Functions".

� acosh number Function

Computes and returns the hyperbolic arc cosine of the argument (that is, the angle

whose cosh is equal to number). The result is in radians.

The argument can be any noncomplex or complex number, except -1. Note that if

the value of number is less than one, the result is complex, even if the argument

is not complex. The hyperbolic arc cosine being mathematically multiple-valued in

the complex domain, acosh returns a principal value whose range is that half-strip

of the complex plane containing numbers with a non-negative real part and an

imaginary part between -π and π (inclusive). A number with real part zero is in

the range if its imaginary part is between zero (inclusive) and π (inclusive).

Example:

(acosh 1) => 0.0 ;(cosh 0) => 1.0

(acosh -2)  => #c(1.316958 3.1415927)�

For a table of related items, see the section "Hyperbolic Functions".

� clos:add-method generic-function method Generic Function

Adds method to generic-function and returns the modified generic-function.

clos:add-method is the underlying mechanism of the clos:defmethod macro.

generic-function A generic function object.
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method A method object.�

If the generic function already has a method with the same parameter specializers

and qualifiers as method, then the existing method is replaced with method.

An error is signaled if:

• The lambda-list of the method is not congruent with the lambda-list of the

generic function.

• The method object is already attached to a different generic function object.

� zl:add1 x Function

(zl:add1 x) is the same as (+ x 1).

The following functions are synonyms of zl:add1:

1+

zl:1+$�

� adjoin item list &key (:test #’eql) :test-not (:key #’identity) (:area sys:default-cons-

area) :localize :replace�

Function

Adds an element to a set, provided it is not already a member. If item is added,

the noew cons is returned. Otherwise, list is returned. The keywords are: 

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. This func-

tion is applied to both item and members of list.

:localize Can be nil, t, or a positive integer when using Genera:

nil Does not localize the top level of the list

before returning the list.

t Localizes the top level of list structure, by

calling sys:localize-list or sys:localize-tree

on the list before returning it.
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integer Localizes integer levels of list structure, by

calling sys:localize-list or sys:localize-tree

on the list before returning it.�

:replace Destructively modifies the specified element (or elements) and

replaces it with the value provided. :replace’s value can be t

or nil. Not available in CLOE.�

Note that, since adjoin adds an element only if it is not already a member, the

sense of :test and :test-not have inverted effect: with :test, an item is added to

the list only if there is no element of the list for which the predicate returns t.

With :test-not, an item is added if there is no element for which the predicate re-

turns nil.

When :test is eql, the default, then:

(adjoin item list) ≡ (if (member item list) list (cons item list))�

Here are some examples:

(setq bird-list ’((loon . diver) (heron . wader))) =>

((LOON . DIVER) (HERON . WADER))

�

(setq bird-list (adjoin ’(eagle . raptor) bird-list :key #’car)) =>

((EAGLE . RAPTOR) (LOON . DIVER) (HERON . WADER))

�

(adjoin ’(eagle . oops) bird-list :key #’car) =>

((EAGLE . RAPTOR) (LOON . DIVER) (HERON . WADER))�

(setq add-to-list ’(j-jones "John Jones" "acct rep"))

�

(setq list (adjoin add-to-list list 

                   :test #’string-equal :key #’cadr))�

For a table of related items: See the section "Functions for Constructing Lists and

Conses".

Compatibility Note: The keywords :area, :localize, and :replace are Symbolics ex-

tension to Common Lisp, not available in CLOE.

� adjust-array array new-dimensions &key :element-type :initial-element :initial-

contents :fill-pointer :displaced-to :displaced-index-offset :displaced-conformally 

Function

Changes the dimensions of an array. It returns an array of the same type and

rank as array, but with the new-dimensions. The number of new-dimensions must

equal the rank of the array. All elements of array that are still in the bounds are

carried over to the new array. 

:element-type specifies that elements of the new array are required to be of a cer-

tain type. An error is signalled if array contains elements that are not of that

type. :element-type thus provides an error check. 
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:initial-element allows you to specify an initial element for any elements of the

new array that are not in the bounds of array. 

The :initial-contents and :displaced-to options have the same effect as they do for

make-array. If you use either of these options, none of the elements of array are

carried over to the new array. 

You can use the :fill-pointer option to reset the fill pointer of array. If array had

no fill pointer an error is signalled. 

If the size of the array is being increased, adjust-array might have to allocate a

new array somewhere. In that case, it alters array so that references to it are

made to the new array instead, by means of "invisible pointers" under Genera. See

the function structure-forward. adjust-array returns this new array if it creates

one, and otherwise it returns array. Be careful to be consistent about using the re-

turned result of adjust-array, because you might end up holding two arrays that

are not the same (that is, not eq), but that share the same contents.

Compatibility Note: :displaced-conformally is a Symbolics extension to Common

Lisp, and not available in CLOE. 

(setq *print-array* t)

(setq array-1 (make-array ’(2 3 2) :initial-element ’a :adjustable t))

 => #3A(((A A) (A A) (A A)) ((A A) (A A) (A A)))

�

(adjust-array array-1 ’(3 2 2) :initial-element ’b)

 => #3A(((A A) (A A)) ((A A) (A A)) ((B B) (B B)))�

(setq an-array (make-array 10 :element-type ’string-char :adjustable t

                          :initial-element #\x))

=> "xxxxxxxxxx"

�

(adjust-array an-array 15 :initial-element #\y)

=> "xxxxxxxxxxyyyyy"

�

(setq *print-array* t)

(setq an-array (make-array ’(2 3) :adjustable t

                          :initial-contents ’((1 2 3)(4 5 6))))

#2A((1 2 3)(4 5 6))

�

(adjust-array an-array ’(3 2) :initial-element #\y)

#2A((1 2)(4 5)(#\y #\y))�

� zl:adjust-array-size array new-size Function

If array is a one-dimensional array, its size is changed to be new-size. If array has

more than one dimension, its size is changed to new-size by changing only the first

dimension.

If array is made smaller, the extra elements are lost. If array .is made bigger, the

new elements are initialized in the same fashion as make-array would initialize

them: either to nil, 0 or (code-char 0), depending on the type of array.
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Example:

(setq a (make-array 5))

(setf (aref a 4) ’foo)

(aref a 4) => foo 

(zl:adjust-array-size a 2)

(aref a 4) => an error occurs�

See the function adjust-array.

The meaning of zl:adjust-array-size for conformal indirect arrays is undefined. 

� adjustable-array-p array Function

Returns t if array is adjustable, and nil if it is not. Lisp dialects supported by

Genera make most arrays adjustable even if the :adjustable option to make-array

is not specified; but to guarantee that an array can be adjusted after created, it is

necessary to use the :adjustable option. Under CLOE, arrays are adjustable only if

the :adjustable option is specified non-nil.

(setq foo (make-array (4 5))) 

(adjustable-array-p foo) => nil ;under CLOE

 => T   ;under Genera

(setq bar (make-array (4 5) :adjustable t))

(adjustable-array-p bar) => t  ;CLOE and Genera�

For a table of related items: See the section "Getting Information About an Array".

� :advance-input-buffer &optional new-pointer Message

If new-pointer is non-nil, it is the index in the buffer array of the next byte to be

read. If new-pointer is nil, the entire buffer has been used up. 

� sys:*all-flavor-names* Variable

This is a list of the names of all the flavors that have ever been created by

defflavor. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� &allow-other-keys Lambda List Keyword

In a lambda-list that accepts keyword arguments, specifies that keywords that are

not specifically listed after &key are allowed. They and their corresponding values

are ignored, as far as keywords arguments are concerned, but they do become part

of the &rest argument, if there is one. 

� zl:aloc array &rest subscripts Function
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Returns a locative pointer to the element of array selected by the subscripts. The

subscripts must be integers and their number must match the dimensionality of ar-

ray. See the section "Cells and Locatives".

Current style suggests using locf with aref instead of zl:aloc. For example: 

(locf (aref array subscripts))

� alpha-char-p char Function

Returns t if char is a letter of the alphabet. 

(alpha-char-p #\A) => T

(alpha-char-p #\1) => NIL�

For a table of related items, see the section "Character Predicates".

� alphalessp x y Function

(alphalessp x y) is equivalent to (string-lessp x y). If the arguments are not

strings, alphalessp compares numbers numerically, lists by element, and all other

objects by printed representation. alphalessp is a Maclisp all-purpose alphabetic

sorting function.

Examples:

(alphalessp "apple" "orange") => T

(alphalessp ’tom ’tim) => NIL

(alphalessp "same" "same") => NIL

(alphalessp ’symbol "string") => NIL

(alphalessp ’(a b c) ’(a b d)) => T�

� alphanumericp char Function

Returns t if char is a letter of the alphabet or a base-10 digit. 

(alphanumericp #\7) => T

(alphanumericp #\%) => NIL�

For a table of related items, see the section "Character Predicates".

� always keyword for loop

always expr

Causes the loop to return t if expr always evaluates non-null.

If expr evaluates to nil, the loop immediately returns nil, with-

out running the epilogue code (if any, as specified with the

finally clause); otherwise, t is returned when the loop finishes,

after the epilogue code has been run. If the loop terminates be-

fore expr is ever evaluated, the epilogue code is run and the

loop returns t.
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always expr is like (and expr1 expr2 ...), except that if no expr

evaluates to nil, always returns t and and returns the value

of the last expr. If the loop terminates before expr is ever eval-

uated, always is like (and).

If you want a similar test, except that you want the epilogue

code to run if expr evaluates to nil, use while.�

Examples:

(defun loop-always (my-list)

  (loop for x in my-list

finally (print  "what you going to do next ?")

do

    (princ x) (princ " ")

do

and always (equal x ’a)))  => LOOP-ALWAYS

�

(loop-always ’(b c a d)) => B NIL

�

(loop-always ’(a a)) => A A 

"what you going to do next ?" T

�

See the section "Aggregated Boolean Tests for loop".

� and &rest types Type Specifier

Allows the definition of data types that are the intersection of other data types

specified by types. As a type specifier, and can only be used in list form.

Examples:

(typep 89 ’(and integer number)) => T

(subtypep ’bit-vector ’(and vector array)) => T and T

(sys:type-arglist ’and) => (&REST TYPES) and T�

See the section "Data Types and Type Specifiers".

For a discussion of the function and: See the section "Flow of Control".

� and &rest forms Special Form

Evaluates each form one at a time, from left to right. If any form evaluates to nil,

and immediately returns nil without evaluating any other form. If every form eval-

uates to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can use it as a logical and function,

because it returns a true value only if all of its arguments are true. So you can

use it as a predicate:

Examples:
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(if (and ’this ’that) "reaches this point") => "reaches this point"�

(if (and (equal 1 1)(equal nil ’())) "equal") => "equal"�

(if (and socrates-is-a-person all-people-are-mortal) 

    (setq socrates-is-mortal t)) �

Because the order of evaluation is well-defined, you can do:

(if (and (boundp ’x)

         (eq x ’foo))

    (setq y ’bar)) => NIL�

knowing that the x in the eq form is not evaluated if x is found to be unbound.

You can also use and as a simple conditional form:

Examples:

(and) => T

�

(and t nil) => NIL

�

(and t ’hi (numberp 3.14)) => T

�

(when (and (setq temp (assq x y))

           (rplacd temp z)))

�

(when (and bright-day

           glorious-day

           (princ "It is a bright and glorious day.")))�

In the following example, very-expensive-function is not evaluated because a prior

form is false:

(setq foo 12 bar ’(3 4 5))

�

(if (and (eql 12 foo)

         (eql foo bar)

         (very-expensive-function bar))

  bar

  foo)�

Note: (and) => t , which is the identity for the and operation.

For a table of related items: See the section "Conditional Functions".

CLOE Note: This is a macro in CLOE. 

� zl:ap-1 array index Function

This is an obsolete version of zl:aloc that works only for one-dimensional arrays.

There is no reason ever to use it. 
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� zl:ap-2 array index1 index2 Function

This is an obsolete version of zl:aloc that works only for two-dimensional arrays.

There is no reason ever to use it. 

� zl:ap-leader array index Function

Returns a locative pointer to the indexed element of array’s leader. array should be

an array with a leader, and index should be an integer. See the section "Cells and

Locatives".

However, the preferred method is to use locf and array-leader as shown in the

following example:

(setq *array* 

  (make-array ’(2 3) :element-type ’character 

                     :leader-list ’(t nil)))

�

(locf (array-leader *array* 1))�

� append &rest lists Function

Concatenates lists, returning the resulting list. The arguments to append are lists.

They are not changed (see nconc). Example:

(append ’(a b c) ’(d e f) nil ’(g)) => (a b c d e f g)�

append makes copies of the top-level list structure of all the arguments it is

given, except for the last one. So the new list shares the conses of the last argu-

ment to append, but all the other conses are newly created. Only the lists are

copied, not the elements of the lists. The function concatenate can perform a sim-

ilar operation, but always copies all its arguments. See also nconc, which is like

append but destroys all its arguments except the last.

The last argument does not have to be a list, but can be any Lisp object, which

becomes the tail of the constructed list. For example,

(append ’(a b c) ’d) => (a b c . d)

A version of append that only accepts two arguments could have been defined by:

(defun append2 (x y)

    (cond ((atom x) y)

          ((cons (car x) (append2 (cdr x) y)) )))�

The generalization to any number of arguments could then be made (relying on

car of nil being nil):

(defun append (&rest args)

  (if (< (length args) 2) (car args)

      (append2 (car args)

       (apply (function append) (cdr args)))))�
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These definitions do not express the full functionality of append; the real defini-

tion under Genera minimizes storage utilization by cdr-coding the list it produces.

See the section "Cdr-Coding".

Example:

(setq a ’(1 2) b ’(3 4) c ’(5 6) d 7) => 7

(setq x (append a b c)) => (1 2 3 4 5 6)

(setf (car c) ’foo) (setf (car b) ’bar) x =>

(1 2 bar 4 foo 6)

(append a b c d) => (1 2 bar 4 foo 6 . 7)

a => (1 2)�

To copy a list, use copy-list; the old practice of using 

(append x ’())

to copy lists is unclear and obsolete.

For a table of related items: See the section "Functions for Constructing Lists and

Conses".

� append keyword for loop

append expr {into var}

Causes the values of expr on each iteration to be appended together. When the

epilogue of the loop is reached, var has been set to the accumulated result and

can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be

modified until the epilogue code for the loop is reached. 

The forms append and appending are synonymous.

Examples:

�

(defun splice-list (list1 list2)

  (loop for item1 in list1

        for item2 in list2

append (list item1) into result

append (list item2) into result

finally (return (append result )))) => SPLICE-LIST

(splice-list ’(Let not the of minds) ’(me to marriage true)) => 

(LET ME NOT TO THE MARRIAGE OF TRUE)

 �

Is equivalent to
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(defun splice-list (list1 list2)

  (loop for item1 in list1

        for item2 in list2

appending (list item1) into result

appending (list item2) into result

finally (return (append result ))))  => SPLICE-LIST

(splice-list ’(Let not the of minds) ’(me to marriage true)) => 

(LET ME NOT TO THE MARRIAGE OF TRUE) �

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. append, collect, and nconc are compatible.

See the section "Accumulating Return Values for loop".

� apply function argument &rest arguments�

Function

Applies the function function to arguments. function can be any function, but it

cannot be a special form or a macro. The arguments for function consist of the

last argument to apply appended to the end of the list of all other arguments to

apply except for function itself. It is as if all the arguments to apply except func-

tion were given to list* to create the argument list.

Examples:

(setq fred ’+) 

(apply fred ’(1 2)) => 3

(apply fred 1 2 ‘(3 4) => 10

(apply ’cons ’((+ 2 3) 4)) => ((+ 2 3) . 4) not (5 . 4)�

Note that if the function takes keyword arguments, you must put the keywords as

well as the corresponding values in the argument list.

(apply #’(lambda (&key a b) (list a b)) ’(:b 3) => (nil 3)�

Compatibility Note: In Symbolics Common Lisp, apply is extended to allow you to

call an array as a function.

See the section "Functions for Function Invocation". 

� zl:apply fn args Function

Applies the function fn to the list of arguments args. args must be a list; fn can

be any function, but it cannot be a special form or a macro. The arguments for fn

consist of the elements of the list args.

Examples:
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(setq fred ’+) 

(zl:apply fred ’(1 2)) => 3

(setq fred ’-) 

(zl:apply fred ’(1 2)) => -1

(zl:apply ’cons ’((+ 2 3) 4)) => ((+ 2 3) . 4) not (5 . 4)

�

Of course, args can be nil. Note: Unlike Maclisp, zl:apply never takes a third ar-

gument; there are no "binding context pointers" in Symbolics Common Lisp.

See the function funcall.

See the section "Functions for Function Invocation". 

� apropos string &optional package (do-inherited-symbols t) do-packages-used-by�

Function

Searches for all symbols whose print-names contain string as a substring. When it

finds a symbol, it prints out the symbol’s name; if the symbol is defined as a func-

tion and/or bound to a value, it tells you so, and prints the names of the argu-

ments (if any) to the function or the dynamic value of the symbol. If package is

specified, it only searches for symbols containing string in that package, otherwise

all packages are searched, as if by do-all-symbols. Because symbols can be avail-

able in more than one package by inheritance, apropos might print information

about the same symbol more than once.

Compatibility Note: Symbolics Common Lisp provides two additional optional ar-

guments, do-inherited-symbols and do-packages-used-by. If do-inherited-symbols is t,

the set of packages searched includes all packages that package uses. If do-

packages-used-by is t, the set also includes all packages that use package. You can-

not use these two optional arguments in CLOE runtime.

apropos prints its information to *standard-output*. It returns nil. 

� zl:apropos apropos-substring &optional pkg (do-packages-used-by t) do-packages-used�

Function

Searches for all symbols whose print-names contain apropos-substring as a sub-

string. When it finds a symbol, it prints out the symbol’s name; if the symbol is

defined as a function and/or bound to a value, it tells you so, and prints the names

of the arguments (if any) to the function. It checks all symbols in a certain set of

packages. The set always includes pkg. If do-packages-used-by is t, the set also in-

cludes all packages that use pkg. If do-packages-used is t, the set also includes all

packages that pkg uses. pkg defaults to the global package, so normally all pack-

ages are searched. apropos returns a list of all the symbols it finds. This is simi-

lar to the Find Symbol command, except that Find Symbol only searches the cur-

rent package unless you specify otherwise. 

� apropos-list string &optional package do-packages-used-by Function
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Searches for all symbols whose print-names contain string as a substring. If the

Symbolics Common Lisp optional argument package is specified, the function only

searches for symbols containing string in that package, otherwise all packages are

searched, as if by do-all-symbols. It returns a list of the symbols it finds.

Compatibility Note: Symbolics Common Lisp provides the additional optional argu-

ment do-packages-used-by. If do-packages-used-by is t, the set also includes all pack-

ages that use package. Package and do-packages-used-by may not work in other im-

plementations of Common Lisp and does not work in CLOE Runtime.

For more information, see the function apropos.

� zl:ar-1 array index Function

This is an obsolete version of aref that works only for one-dimensional arrays.

There is no reason ever to use it.

� zl:ar-2 array index1 index2 Function

This is an obsolete version of aref that works only for two-dimensional arrays.

There is no reason ever to use it. 

� aref array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-

tegers and their number must match the dimensionality of array.

�

(setq this-array (make-array ’(2 3) :initial-contents 

                             ’((a b c) (d e f))))

 

(aref this-array 0 0) => A

(aref this-array 0 1) => B

(aref this-array 0 2) => C

(aref this-array 1 0) => D�

setf can be used with aref to set the value of an array element. 

(setf (aref this-array 1 0) ’x) => X

(aref this-array 1 0) => X�

The subscripts can refer to an element beyond a fill pointer.

(setq this-array 

 (make-array ’(3 2 2) :element-type ’integer :initial-contents

  ’(((5 6) (12 8))

    ((7 8) (5 13))

    ((9 4) (22 6)))))

�

(aref this-array 1 0 0) => 7�

For a table of related items: See the section "Basic Array Functions".



Page 863

� zl:arg x Function

(zl:arg nil), when evaluated during the application of a lexpr, gives the number of

arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs

also receive their number of arguments as the value of their lambda-variable.

(zl:arg i), when evaluated during the application of a lexpr, gives the value of the

i’th argument to the lexpr. i must be an integer in this case. It is an error if i is

less than 1 or greater than the number of arguments supplied to the lexpr. Exam-

ple:

(defun foo nargs            ;define a lexpr foo.

    (print (arg 2))         ;print the second argument.

    (+ (arg 1)              ;return the sum of the first

       (arg (- nargs 1))))  ;and next to last arguments.�

zl:arg exists only for compatibility with Maclisp lexprs. To write functions that

can accept variable numbers of arguments, use the &optional and &rest keywords.

See the section "Evaluating a Function Form".

� arglist function &optional real-flag Function

Given an ordinary function, a generic function, or a function spec, returns a repre-

sentation of the function’s lambda-list. It can also return a second value that is a

list of descriptive names for the values returned by the function. The third value

is a symbol specifying the type of function:

Returned Value Function Type

nil ordinary or generic function

subst substitutable function

special special form

macro macro

si:special-macro both a special form and a macro

array array�

If function is a symbol, arglist of its function definition is used.

Some functions’ real argument lists are not what would be most descriptive to a

user. A function can take an &rest argument for technical reasons even though

there are standard meanings for the first element of that argument. For such cas-

es, the definition of the function can specify, with a local declaration, a value to be

returned when the user asks about the argument list. Example:

(defun foo (&rest rest-arg)

  (declare (arglist x y &rest z))

  .....)�

Note that since the declared argument list is supplied by the user, it does not nec-

essarily correspond to the function’s actual argument list.

real-flag allows the caller of arglist to say that the real argument list should be

used even if a declared argument list exists.
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If real-flag is t or a declared argument list does not exist, arglist computes its re-

turn value using information associated with the function. Normally the computed

argument list is the same as that supplied in the source definition, but occasional-

ly some differences occur. However, arglist always returns a functionally correct

answer in that the number and type of the arguments is correct.

When a function returns multiple values, it is useful to give the values names so

that the caller can be reminded which value is which. By means of a values decla-

ration in the function’s definition, entirely analogous to the arglist declaration

above, you can specify a list of mnemonic names for the returned values. This list

is returned by arglist as the second value.

(arglist ’arglist)

  => (function &optional real-flag) and (arglist values type)�

� args-info fcn Function

Returns an integer called the "numeric argument descriptor" of fcn, which de-

scribes the way the function takes arguments. This descriptor is used internally by

the microcode, the evaluator, and the compiler. fcn can be a function or a function

spec.

The information is stored in various bits and byte fields in the integer, which are

referenced by the symbolic names shown below. By the usual Symbolics convention,

those starting with a single "%" are bit-masks (meant to be bit-tested with the

number with logand or zl:bit-test), and those starting with "%%" are byte descrip-

tors (meant to be used with ldb or ldb-test).

Here are the fields: 

sys:%%arg-desc-min-args

This is the minimum number of arguments that can be passed to this

function, that is, the number of "required" parameters.

sys:%%arg-desc-max-args

This is the maximum number of arguments that can be passed to this

function, that is, the sum of the number of "required" parameters and the

number of "optional" parameters. If there is an &rest argument, this is not

really the maximum number of arguments that can be passed; an arbitrari-

ly large number of arguments is permitted, subject to limitations on the

maximum size of a stack frame (about 200 words).

sys:%%arg-desc-rest-arg

If this is nonzero, the function takes an &rest argument or &key argu-

ments. A greater number of arguments than sys:%%arg-desc-max-args can

be passed.

sys:%arg-desc-interpreted

This function is not a compiled-code object.

sys:%%arg-desc-interpreted

This is the byte field corresponding to the sys:%arg-desc-interpreted bit.
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sys:%%arg-desc-quoted

This is obsolete.�

� sys:%args-info function Function

An internal function; it is like args-info, but does not work for interpreted func-

tions. Also, function must be a function, not a function spec. 

� zl:argument-typecase arg-name &body clauses Special Form

A hybrid of zl:typecase and zl:check-arg-type. Its clauses look like clauses to

zl:typecase. zl:argument-typecase automatically generates an otherwise clause

which signals an error. The proceed types to this error are similar to those from

zl:check-arg; that is, you can supply a new value that replaces the argument that

caused the error.

For example, this:

(defun foo (x)

 (argument-typecase x

   (:symbol (print ’symbol))

   (:number (print ’number))))�

is the same as this:

(defun foo (x)

  (check-arg x

    (typecase x

      (:symbol (print ’symbol) t)

      (:number (print ’number) t)

      (otherwise nil))

   "a symbol or a number"))�

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� array &optional ( element-type ’* ) (dimensions ’* ) Type Specifier

array is the type specifier symbol for the Lisp data structure of that name.

The types array, cons, symbol, number, and character are pairwise disjoint.

The type array is a supertype of the types:

simple-array

vector�

This type specifier can be used in either symbol or list form. Used in list form,

array allows the declaration and creation of specialized arrays whose members are

all members of the type element-type and whose dimensions match dimensions.
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element-type must be a valid type specifier, or unspecified. For standard Symbolics

Common Lisp type specifiers: See the section "Type Specifiers".

dimensions can be a non-negative integer, which is the number of dimensions, or it

can be a list of non-negative integers representing the length of each dimension

(any of which can be an asterisk). dimensions can also be an asterisk.

Note that (array t) is a proper subset of (array *). This is because (array t) is

the set of arrays that can hold any Symbolics Common Lisp object (the elements

are of type t, which includes all objects). On the other hand, (array *) is the set

of all arrays whatsoever, including for example arrays that can hold only charac-

ters. (array character) is not a subset of (array t); the two sets are in fact dis-

joint because (array character) is not the set of all arrays that can hold charac-

ters, but rather the set of arrays that are specialized to hold precisely characters

and no other objects. To test whether an array foo can hold a character, you

should not use

(typep foo ’(array character))�

but rather

(subtypep ’character (array-element-type foo))�

Examples:

(setq example-array (make-array ’(3) :fill-pointer 2)) 

=> #<ART-Q-3 43063275>�

(typep example-array ’array) => T�

(typep example-array ’simple-array) => NIL

; simple arrays do not have fill-pointers.�

(zl:typep #*101) => :ARRAY�

(subtypep ’array t) => T and T�

(array-has-fill-pointer-p example-array) => T�

(arrayp example-array) => T�

(sys:type-arglist ’array)

 => (&OPTIONAL (ELEMENT-TYPE ’*) (DIMENSIONS ’*)) and T�

See the section "Data Types and Type Specifiers".

See the section "Arrays".

� zl:array x type &rest dimlist Macro

Creates an sys:art-q type array in sys:default-cons-area with the given dimen-

sions. (That is, dimlist is given to zl:make-array as its first argument.) type is ig-

nored. If x is nil, the array is returned; otherwise, the array is put in the function

cell of symbol, and symbol is returned. This exists for Maclisp compatibility.

Use the Common Lisp function make-array in your new programs. 

� zl:*array x type &rest dimlist Function
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Creates an sys:art-q type array in sys:default-cons-area with the given dimen-

sions, and evaluates all of the arguments. It exists for Maclisp compatibility. 

� zl:array-#-dims array Function

We recommend that you use the function array-rank, which is the Common Lisp

equivalent of zl:array-#-dims.

Returns the dimensionality of array. For example:

(zl:array-#-dims (make-array ’(3 5))) => 2�

For a table of related items: See the section "Getting Information About an Array".

� zl:array-active-length array Function

Returns the number of active elements in array. If array does not have a fill

pointer, this returns whatever (array-total-size array) would have. If array does

have a fill pointer that is a non-negative fixnum, zl:array-active-length returns it.

See the section "Array Leaders".

A general explanation of the use of fill pointers is in that section.

Note that length provides the same functionality for lists and vectors. 

� sys:array-bits-per-element Variable

The value of sys:array-bits-per-element is an association list that associates each

array type symbol with the number of bits of unsigned numbers (or fixnums) it

can hold, or nil if it can hold Lisp objects. This can be used to tell whether an ar-

ray can hold Lisp objects or not. See the section "Association Lists".

For a table of related items: See the section "Array Representation Tools". 

� sys:array-bits-per-element index Function

Given the internal array-type code numbers, returns the number of bits per cell

for unsigned numeric arrays, or nil for a type of array that can contain Lisp ob-

jects. 

� array-dimension array dimension-number Function

Returns the length of the dimension numbered dimension-number of array. dimen-

sion-number should be a non-negative integer less than the rank of array. 

(setq foo (make-array ’(3 2 4 6)))

(array-dimension foo 0) => 3

�

(array-dimension foo 3) => 6�

For a table of related items: See the section "Getting Information About an Array".
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� array-dimension-limit Constant

Represents the upper exclusive bound on each individual dimension of an array.

The value of this is 134217728 under Genera, and CLOE.

(when (> max-number-in-categories array-dimension-limit)

  (setq *number-of-arrays-needed*

    (ceiling max-number-in-categories array-dimension-limit)))�

For a table of related items: See the section "Basic Array Functions".

� zl:array-dimension-n n array Function

Returns the size for the specified dimension of the array. array can be any kind of

array, and n should be an integer. If n is between 1 and the dimensionality of ar-

ray, this returns the nth dimension of array. If n is 0, this returns the length of

the leader of array; if array has no leader it returns nil. If n is any other value,

this returns nil. Examples:

(setq a (make-array ’(3 5) :leader-length 7))

(zl:array-dimension-n 1 a) => 3

(zl:array-dimension-n 2 a) => 5

(zl:array-dimension-n 3 a) => nil

(zl:array-dimension-n 0 a) => 7�

We recommend that you use the function array-dimension, which is the Common

Lisp equivalent of zl:array-dimension-n. 

� array-dimensions array Function

Returns a list whose elements are the dimensions of array. Example:

(setq a (make-array ’(3 5)))

(array-dimensions a) => (3 5)�

For a table of related items: See the section "Getting Information About an Array".

� sys:array-displaced-p array Function

Tests whether the array is a displaced array. array can be any kind of array. This

predicate returns t if array is any kind of displaced array (including an indirect

array). Otherwise it returns nil.

For a table of related items: See the section "Getting Information About an Array".

� sys:array-element-byte-size array Function

Given an array, returns the number of bits that fit into an element of that array.

For arrays that can hold general Lisp objects, the result is 32; this assumes that

you are storing bits into the array with sys:%logdpb, rather than storing numbers

into the array with dpb.
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For a table of related items: See the section "Array Representation Tools". 

� sys:array-element-size array Function

Given an array, returns the number of bits that fit into an element of that array.

For arrays that can hold general Lisp objects, the result is 31; this assumes that

you are storing fixnums in the array and manipulating their bits with dpb (rather

than sys:%logdpb). You can store any number of bits per element in an array that

holds general Lisp objects, by letting the elements expand into bignums.

For a table of related items: See the section "Array Representation Tools". 

� array-element-type array Function

Returns the type specifier of the elements allowed in the array. In some cases this

may be different thatn the element-type specified in the call to make-array. Ex-

ample: 

(setq a (make-array ’(3 5)))

(array-element-type a) => T

(array-element-type "foo") => STRING-CHAR

(setq bar (make-array ’(3 2 4) :element-type ’bit))

(array-element-type bar) => (integer 0 (2))�

For a table of related items: See the section "Getting Information About an Array".

� sys:array-elements-per-q index Function

Given the internal array-type index, returns the number of array elements stored

in one word, for an array of that type. 

For a table of related items: See the section "Array Representation Tools". 

� sys:array-elements-per-q index Variable

This is an association list that associates each array type symbol with the number

of array elements stored in one word, for an array of that type. See the section

"Association Lists".

For a table of related items: See the section "Array Representation Tools". 

� zl:array-grow array &rest dimensions Function

Creates a new array of the same type as array, with the specified dimensions.

Those elements of array that are still in bounds are copied into the new array.

The elements of the new array that are not in the bounds of array are initialized

to nil or 0 as appropriate. If array has a leader, the new array has a copy of it.

zl:array-grow returns the new array and also forwards array to it, like adjust-

array.
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Unlike adjust-array, zl:array-grow usually creates a new array rather than grow-

ing or shrinking the array in place. (If the array is one-dimensional and it is being

shrunk, zl:array-grow does not create a new array.) zl:array-grow of a multidi-

mensional array can change all the subscripts and move the elements around in

memory to keep each element at the same logical place in the array.

� array-has-fill-pointer-p array Function

Returns t if the array has a fill pointer; otherwise it returns nil. array can be any

array. 

(setq foo (make-array 12 :element-type ’string-char :fill-pointer 0))

�

(array-has-fill-pointer-p foo) => t�

� array-has-leader-p array Function

Returns t if array has a leader; otherwise it returns nil. array can be any array.

For a table of related items: See the section "Operations on Array Leaders". Also:

See the section "Getting Information About an Array".

� array-in-bounds-p array &rest subscripts Function

Checks whether subscripts is a valid set of subscripts for array, and returns t if

they are; otherwise it returns nil.

In the following example, the second set of indices returns an out-of-bounds result

because Common Lisp arrays are zero based. Therefore, 2 is the highest allowable

index for a dimension of 3.

(setq foo (make-array ’(3 2 4 6)))

(array-in-bounds foo 2 1 3 5) => t

(array-in-bounds foo 3 1 3 5) => nil�

For a table of related items: See the section "Getting Information About an Array".

� sys:array-indexed-p array Function

Returns t if array is an indirect array with an index-offset. Otherwise it returns

nil. array can be any kind of array. Note, however, that displaced arrays with an

offset are not considered indexed. 

� sys:array-indirect-p array Function

Returns t if array is an indirect array. Otherwise it returns nil. array can be any

kind of array. 
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� array-leader array index Function

Returns the indexed element of array’s leader. array should be an array with a

leader, and index should be an integer. 

For a table of related items: See the section "Operations on Array Leaders".

� array-leader-length array Function

Returns the length of array’s leader if it has one, or nil if it does not. array can

be any array.

For a table of related items: See the section "Getting Information About an Array".

� array-leader-length-limit Variable

This is the exclusive upper bound of the length of an array leader. It is 1024 on

Symbolics 3600-family computers, 256 on Ivory-based machines. 

(condition-case (err)

     (make-array 4 :leader-length array-leader-length-limit)

   (error (princ err)))

 => Leader length specified (1024) is too large.

    #<FERROR 60065043>�

� zl:array-length array Function

We recommend that you use the function array-total-size, which is the Common

Lisp equivalent of zl:array-length. 

Returns the total number of elements in array. array can be any array. The total

size of a one-dimensional array is calculated without regard for any fill pointer.

For a one-dimensional array, zl:array-length returns one greater than the maxi-

mum allowable subscript. For example:

(zl:array-length (make-array 3)) => 3

(zl:array-length (make-array ’(3 5))) => 15�

Note that if fill pointers are being used and you want to know the active length of

the array, you should use length or zl:array-active-length instead of zl:array-

length.

zl:array-length does not return the same value as the product of the dimensions

for conformal arrays. 

For a table of related items: See the section "Getting Information About an Array".

� zl:array-pop array &optional (default nil) Function

We recommend that you use the function vector-pop, which is the Common Lisp

equivalent of the function zl:array-pop.
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Decreases the fill pointer by one and returns the array element designated by the

new value of the fill pointer. array must be a one-dimensional array that has a fill

pointer.

The second argument, if supplied, is the value to be returned if the array is emp-

ty. If zl:array-pop is called with one argument and the array is empty, it signals

an error.

The two operations (decrementing and array referencing) happen uninterruptibly.

If the array is of type sys:art-q-list, an operation similar to nbutlast has taken

place. The cdr coding is updated to ensure this.

See the function vector-pop.

� zl:array-push array x Function

Attempts to store x in the element of the array designated by the fill pointer and

increase the fill pointer by one. array must be a one-dimensional array that has a

fill pointer, and x can be any object allowed to be stored in the array. If the fill

pointer does not designate an element of the array (specifically, when it gets too

big), it is unaffected and zl:array-push returns nil; otherwise, the two actions

(storing and incrementing) happen uninterruptibly, and zl:array-push returns the

former value of the fill pointer, that is, the array index in which it stored x.

If the array is of type sys:art-q-list, an operation similar to nconc has taken

place, in that the element has been added to the list by changing the cdr of the

formerly last element. The cdr coding is updated to ensure this.

See the function vector-push.

� zl:array-push-extend array x &optional extension Function

Similar to zl:array-push except that if the fill pointer gets too large, the array is

grown to fit the new element; that is, it never "fails" the way zl:array-push does,

and so never returns nil. extension is the number of elements to be added to the

array if it needs to be grown. It defaults to something reasonable, based on the

size of the array. zl:array-push-extend returns the former value of the fill pointer,

that is, the array index in which it stored x.

See the function vector-push-extend. 

� zl:array-push-portion-extend to-array from-array &optional (from-start 0) from-end�

Function

We recommend that you use the function vector-push-portion-extend, which is

the Symbolics Common Lisp equivalent of the function zl:array-push-portion-

extend.

Copies a portion of one array to the end of another, updating the fill pointer of the

other to reflect the new contents. The destination array must have a fill pointer.

The source array need not. This is equivalent to numerous zl:array-push-extend
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calls, but more efficient. zl:array-push-portion-extend returns the to-array and the

index of the next location to be filled.

Example: 

(setq to-string

      (zl:array-push-portion-extend to-string 

                                    from-string 

                                    (or from 0) 

                                    to))�

This is similar to zl:array-push-extend except that it copies more than one ele-

ment and has different return values. The arguments default in the usual way, so

that the default is to copy all of from-array to the end of to-array.

zl:array-push-portion-extend adjusts the array size using adjust-array. It picks

the new array size in the same way that zl:array-push-extend does, making it big-

ger than needed for the information being added. In this way, successive additions

do not each end up consing a new array. zl:array-push-portion-extend uses copy-

array-portion internally.

See the function vector-push-portion-extend.

� array-rank array Function

Returns the number of dimensions of array. For example:

(array-rank (make-array ’(3 5))) => 2�

For a table of related items: See the section "Getting Information About an Array".

� array-rank-limit Constant

Represents the exclusive upper bound on the rank of an array. The value of this is

8 under Genera, and 256 under CLOE.

(when (> number-of-categories array-rank-limit)

  (setq *number-of-arrays-needed*

    (ceiling number-of-categories array-rank-limit)))�

For a table of related items: See the section "Basic Array Functions".

� array-row-major-index array &rest subscripts Function

Takes an array and valid subscripts for the array and returns a single positive in-

teger, less than the total size of the array, that identifies the accessed element in

the row-major ordering of the elements. The number of subscripts supplied must

equal the rank of the array. Each subscript must be a nonnegative integer less

than the corresponding array dimension. Like aref, array-row-major-index returns

the position whether or not that position is within the active part of the array.

For example:
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window is a conformal array whose 0,0 coordinate is at 256,256 of big-array. The

following code creates a 1/4 size portal into the center of big-array.

;;; -*- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -*-

(setq big-array (make-array ’(1024 1024) :type ’art-q

                                           :initial-value 0))

(setq window (make-array ’(512 512) :type ’art-q 

                         :displaced-to big-array

                         :displaced-index-offset 

                           (array-row-major-index big-array 256 256) 

                         :displaced-conformally t))�

For a one-dimensional array, the result of array-row-major-index equals the sup-

plied subscript.

An error is signalled if some subscript is not valid.

array-row-major-index can be used with the :displaced-index-offset option of

make-array to construct the desired value for multidimensional arrays.

(setq foo (make-array ’(2 3 3) :initial-contents

  ’(((0 1 2) (3 4 5) (6 7 8))

    ((9 10 11) (12 13 14) (15 16 17)))))

(array-row-major-index foo 0 2 2) => 8�

For a table of related items: See the section "Getting Information About an Array".

� sys:array-row-span array Function

Returns the number of array elements spanned by one of its rows, given a two-

dimensional array. Normally, this is just equal to the length of a row (that is, the

number of columns), but for conformally displaced arrays, the length and the span

are not equal.

(sys:array-row-span (make-array ’(4 5))) => 5

(sys:array-row-span (make-array ’(4 5)

:displaced-to (make-array ’(8 9))

:displaced-conformally t))

=> 9�

Note: If the array is conceptually a raster, it is better to use decode-raster-array

than sys:array-row-span.

For a table of related items: See the section "Getting Information About an Array".

See the section "Accessing Multidimensional Arrays as One-dimensional".

� array-total-size array Function

Returns the total number of elements in array. The total size of a one-dimensional

array is calculated without regard for any fill pointer. 

(array-total-size (make-array ’(3 5 2))) => 30�
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Note that if fill pointers are being used and you want to know the active length of

the array, you should use length or under Genera, zl:array-active-length. 

array-total-size does not return the same value as the product of the dimensions

for Genera conformal arrays. 

For a table of related items: See the section "Getting Information About an Array".

� array-total-size-limit Constant

Represents the exclusive upper bound on the number of elements of an array. The

value of this is 134217728 under Genera and CLOE.

(when (> number-of-data-elements array-total-size-limit)

  (setq *number-of-arrays-needed*

    (ceiling number-of-data-elements array-total-size-limit)))�

For a table of related items: See the section "Basic Array Functions".

sys:array-type array Function

Returns the symbolic type of array. Example:

(sys:array-type (make-array ’(3 5))) => SYS:ART-Q�

� sys:*array-type-codes* Variable

The value of sys:*array-type-codes* is a list of all of the array type symbols such

as sys:art-q, sys:art-4b, sys:art-string and so on. The values of these symbols are

internal array type code numbers for the corresponding type.

For a table of related items: See the section "Array Representation Tools".

� sys:array-types index Function

Returns the symbolic name of the array type. The index is the internal numeric

code stored in sys:*array-type-codes*. 

For a table of related items: See the section "Array Representation Tools". 

� zl:arraydims array Function

Returns a list whose first element is the symbolic name of the type of array, and

whose remaining elements are its dimensions. array can be any array; it also can

be a symbol whose function cell contains an array (for Maclisp compatibility).

Example:

(setq a (make-array ’(3 5)))

(zl:arraydims a) => (sys:art-q 3 5)�

Note: the list returned by (array-dimensions x) is equal to the cdr of the list re-

turned by (zl:arraydims x).
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See the function array-dimensions. 

� arrayp object Function

Returns t if its argument is an array, otherwise nil. Note that strings are arrays. 

(setq screen (make-array (640 350) :element-type ’bit))

(arrayp screen) => t

(arrayp "foo") => t

(arrayp ’((a b)(c d))) => nil�

� zl:as-1 value array index Function

This is an obsolete version of zl:aset that works only for one-dimensional arrays.

There is no reason ever to use it. 

� zl:as-2 value array index1 index2 Function

This is an obsolete version of zl:aset that works only for two-dimensional arrays.

There is no reason ever to use it. 

� zl:ascii n Function

Returns a symbol whose printname is the character n.

n can be an integer (a character code), a character, a string, or a symbol.

Examples: 

(zl:ascii 2) => α

(zl:ascii #\y) => |y|

(zl:ascii "Y") => Y

(zl:ascii ’a) => A�

The symbol returned is interned in the current package.

This function is provided for Maclisp compatibility only. 

� ascii-code spec Function

Returns an integer that is the ASCII code named by spec. If spec is a character,

char-to-ascii is called. Otherwise, spec can be a string or keyword that names one

of the ASCII special characters. 

ascii-code returns an integer, for example, (ascii-code #:|#\\RETURN|) => #o15.

ascii-code also recognizes strings and looks up the names of the ASCII "control"

characters. Thus (ascii-code "SOH") and (ascii-code #:|#\\↓|) return 1. (ascii-

code #\c-A) returns 65, not 1; there is no mapping between Symbolics character

set control characters and ASCII control characters.
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Valid ASCII special character names are listed below. All numbers are in octal.

NUL 000 HT 011 DC1 021 SUB 032

SOH 001 LF 012 DC2 022 ESC 033

STX 002 NL 012 DC3 023 ALT 033

ETX 003 VT 013 DC4 024 FS 034

EOT 004 FF 014 NAK 025 GS 035

ENQ 005 CR 015 SYN 026 RS 036

ACK 006 SO 016 ETB 027 US 037

BEL 007 SI 017 CAN 030 SP 040

BS 010 DLE 020 EM 031 DEL 177

TAB 011�

For a table of related items, see the section "ASCII Characters".

� ascii-to-char code Function

Converts code (an ASCII code) to the corresponding character. The caller must ig-

nore LF after CR if desired.

ascii-to-char performs an inverse mapping of the function char-to-ascii, and this

mapping embeds the ASCII character character set in the Symbolics character set.

There is no attempt to map more obscure ASCII control codes into the also ob-

scure and unrelated Symbolics control codes. For example, Escape, is a character

in the Symbolics character set corresponding to the key marked Escape. The ASCII

code Escape is not the same as the Symbolics Escape. See the function char-to-

ascii. See the function ascii-code. See the section "ASCII Conversion String Func-

tions".

The functions char-to-ascii and ascii-to-char provide the primitive conversions

needed by ASCII-translating streams. They do not translate the Return character

into a CR-LF pair; the caller must handle that. They just translate #\Return into

CR and #\Line into LF. Except for CR-LF, char-to-ascii and ascii-to-char are

wholly compatible with the ASCII-translating streams.

They ignore Symbolics control characters; the translation of #\c-G is the ASCII

code for G, not the ASCII code to ring the bell, also known as "control G." (ascii-

to-char (ascii-code "BEL")) is #\π, not #\c-G. The translation from ASCII to char-

acter never produces a Symbolics control character. 

For a table of related items, see the section "ASCII Characters". 

� ascii-to-string ascii-array Function

Converts ascii-array, an sys:art-8b array representing ASCII characters, into a

Lisp string. Note that the length of the string can vary depending on whether

ascii-array contained a Newline character or Carriage Return Line Feed charac-

ters. See the section "ASCII Characters".

Example:



Page 878

(setq a-string-array 

  (zl:make-array 5 :type zl:art-8b :initial-value (ascii-code #\x)))

 => #(120 120 120 120 120)

(ascii-to-string a-string-array)  => "xxxxx" �

For a table of related items: See the section "ASCII Conversion String Functions". 

� zl:aset element array &rest subscripts Function

Stores element into the element of array selected by the subscripts. The subscripts

must be integers and their number must match the dimensionality of array. The

returned value is element.

Current style suggests using setf and aref instead of zl:aset. For example:

(setf (aref array subscripts...) new-value)�

� ash number count Function

Shifts number arithmetically left count bits if count is positive, or right -count bits

if count is negative. Unused positions are filled by zeroes from the right, and by

copies of the sign bit from the left. Thus, unlike lsh, the sign of the result is al-

ways the same as the sign of number. If number is an integer, this is a shifting

operation. If number is a floating-point number in Genera, this does scaling (multi-

plication by a power of two), rather than actually shifting any bits. If you are us-

ing CLOE, it is an error for number to be a float.

Examples:

(ash 1 3) => 8

(ash 10 3) => 80

(ash 10 -3) => 1

(ash 1 -3) => 0

(ash 1.5 3) => 12.0

(ash -1 3) => -8

(ash -1 -3) => -1�

See the section "Functions Returning Result of Bit-wise Logical Operations".

For a table of related items: See the section "Functions Returning Result of Bit-

wise Logical Operations". 

� asin number Function

Computes and returns the arc sine of number. The result is in radians.

The argument can be any noncomplex or complex number. Note that if the abso-

lute value of number is greater than one, the result is complex, even if the argu-

ment is not complex.

The arc sine being a mathematically multiple-valued function, asin returns a prin-

cipal value whose range is that strip of the complex plane containing numbers
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with real parts between -π/2 and π/2. Any number with a real part equal to -π/2

and a negative imaginary part is excluded from the range. Also excluded from the

range is any number with real part equal to π/2 and a positive imaginary part.

Examples:

(asin 1) => 1.5707964 ;π/2 radians

(asin 0) => 0.0

(asin -1)  => -1.5707964   ;-π/2 radians

(asin 2)  => #c(1.5707964 -1.316958)

(asin -2)  => #c(-1.5707964 1.3169578) 

(asin (/ (sqrt 2) 2)) => 0.785398�

For a table of related items, see the section "Trigonometric and Related

Functions". 

� asinh number Function

Computes and returns the hyperbolic arc sine of number. The result is in radians.

The argument can be any noncomplex or complex number.

The hyperbolic arc sine being mathematically multiple-valued in the complex plane,

asinh returns a principal value whose range is that strip of the complex plane

containing numbers with imaginary parts between -π/2 and π/2. Any number with

an imaginary part equal to -π/2 is not in the range if its real part is negative; any

number with real part equal to π/2 is excluded from the range if its imaginary

part is positive.

Example:

(asinh 0) => 0.0 ;(sinh 0) => 0.0�

For a table of related items, see the section "Hyperbolic Functions".

� zl:ass pred item list Function

Looks up item in the association list list. Returns the first cons whose car matches

item according to pred, or nil if none does. (zl:ass ’eq a b) is the same as (zl:assq

a b). As with zl:mem, you can use noncommutative predicates; the first argument

to the predicate is item and the second is the indicator of the element of list. See

the function zl:mem.

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� assert test-form &optional references format-string &rest format-args Macro

Signals an error if the value of test-form is nil. It is possible to proceed from this

error; the function lets you change the values of some variables, and starts over,

evaluating test-form again.

assert returns nil.
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test-form is any form.

references is a list, each item of which must be a generalized variable reference

that is acceptable to the macro setf. These should be variables on which test-form

depends, whose values can sensibly be changed by the user in attempting to cor-

rect the error. Subforms of each of references are only evaluated if an error is sig-

nalled, and can be re-evaluated if the error is re-signalled (after continuing with-

out actually fixing the problem).

format-string is an error message string.

format-args are additional arguments; these are evaluated only if an error is sig-

nalled, and reevaluated if the error is signalled again.

The function format is applied in the usual way to format-string and and format-

args to produce the actual error message. 

If format-string (and therefore also format-args) are omitted, a default error mes-

sage is used.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� assoc item a-list &key (test #’eql) test-not (key #’identity) Function

Searches the association list a-list. The value returned is the first pair in a-list

whose car satisfies the predicate specified by :test, or nil if no such pair is found.

If nil is one of the elements in the association list, assoc passes over it. The key-

words are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

Example:

(assoc ’loon ’((eagle . raptor) (loon . diver))) =>

(LOON . DIVER)

�

(assoc ’diver ’((eagle . raptor) (loon . diver))) => NIL

�

(assoc ’2 ’((1 a b c) (2 b c d) (-7 x y z))) => (2 B C D)�

It is possible to rplacd the result of assoc (provided that it is non-nil) in order to

update a-list. 
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(setq values ’((x . 100) (y . 200) (z . 50))) =>

((X . 100) (Y . 200) (Z . 50))

�

(assoc ’y values) => (Y . 200)

�

(rplacd (assoc ’y values) 201) => (Y . 201)

�

(assoc ’y values) => (Y . 201)�

The two expressions:

(assoc item alist :test pred)�

and 

(find item alist :test pred :key #’car)�

are almost equivalent in meaning. The difference occurs when nil appears in a-list

in place of a pair, and the item being searched for is nil. In these cases, find com-

putes the car of the nil in a-list, finds that it is equal to item, and returns nil,

while assoc ignores the nil in a-list and continues to search for an actual cons

whose car is nil. See also, find and position.

It is often better to update an association list by adding new pairs to the front,

rather than altering old pairs. The following example demonstrates an association

list consisting of pairs of keys and association lists.

(setq financial-statement) 

  ’((MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))

    (MONTHLY-EXPENSE ((10 . 20) (11 . 21)))

    (MONTHLY-REVENUE ((10 . 31) (11 . 42))))�

In the following example, the first call to assoc extracts the monthly-cash-on-hand

association list. The second assoc extracts the monthly-cash-on-hand for the month

of November from monthly-cash-on-hand:

(setq monthly-cash-on-hand

      (assoc ’monthly-cash-on-hand financial-statement))

=> (MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))

(assoc ’11 (cdr monthly-cash-on-hand))

=>(11 . 52)�

In the next example, rplacd alters a value stored in the association list, and assoc

delivers the pointer for rplacd.

(assoc ’monthly-revenue financial-statement) 

=> (MONTHLY-REVENUE . ((10 . 31) (11 . 42)))

�

(setf (cdr (assoc ’11 (assoc ’monthly-revenue financial-statement)))

      22)

�

(assoc ’monthly-revenue financial-statement) 

=> (MONTHLY-REVENUE . ((10 . 31) (11 . 22)))�

Usually, association lists are updated by adding a new pair to the front of the list,

as shown in the following example:
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(acons ’11 ’22 (assoc ’monthly-revenue financial-statement))

�

(assoc ’monthly-revenue financial-statement) 

=> (MONTHLY-REVENUE . ((11 . 22)(10 . 31)(11 . 42)))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists".

� zl:assoc item in-list Function

Looks up item in the association list in-list. Returns the first cons whose car is

zl:equal to item, or nil if none is found. Example:

(zl:assoc ’(a b) ’((x . y) ((a b) . 7) ((c . d) .e)))

=> ((a b) . 7)�

zl:assoc could have been defined by:

(defun assoc (item list)

    (cond ((null list) nil)

          ((equal item (caar list)) (car list))

          ((assoc item (cdr list))) ))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� assoc-if predicate a-list &key :key Function

Searches the association list a-list. Returns the first pair in a-list whose car satis-

fies predicate, or nil if there is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. :key is a

Symbolics extension to Common Lisp.

Example:

(assoc-if #’integerp ’((eagle . raptor) (1 . 2))) =>

(1 . 2)

�

(assoc-if #’symbolp ’((eagle . raptor) (1 . 2))) =>

(EAGLE . RAPTOR)

�

(assoc-if #’floatp ’((eagle . raptor) (1 . 2))) =>

NIL�

In the following example, the function finds the largest numeric key in an associa-

tion list by repeating assoc-if with a test for a key greater than the greatest key

found so far.
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(defun find-largest-key (a-list &optional (start 0))

  (if (setq pair

            (assoc-if #’(lambda(x) (> x start)) a-list))

     (find-largest-key a-list (car pair))))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists".

Compatibility Note: :key is a Symbolics extension to Common Lisp, not available

in CLOE. 

� assoc-if-not predicate a-list &key :key Function

Searches the association list a-list. The value returned is the first pair in a-list

whose car does not satisfy predicate, or nil if there is no such pair in a-list. The

keyword is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. :key is a

Symbolics extension to Common Lisp.�

Example:

(assoc-if-not #’integerp ’((eagle . raptor) (1 . 2))) =>

(EAGLE . RAPTOR)

�

(assoc-if-not #’symbolp ’((eagle . raptor) (1 . 2))) =>

(1 . 2)

�

(assoc-if-not #’symbolp ’((eagle . raptor) (loon . diver))) =>

NIL�

In the following example, the callto assoc-if-not finds the first pair in a-list such

that its key is not string-equal to "salary".

(assoc-if-not #’(lambda(x) (string-equal "salary" x))

              a-list)�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists".

Compatibility Note: :key is a Symbolics extension to Common Lisp, not available

in CLOE. 

� zl:assq item in-list Function

Looks up item in the association list in-list. The value is the first cons whose car

is eq to item, or nil if none is found. Examples:

(zl:assq ’r ’((a . b) (c . d) (r . x) (s . y) (r . z)))

=>  (r . x)
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�

(zl:assq ’fooo ’((foo . bar) (zoo . goo))) 

=> nil

�

(zl:assq ’b ’((a b c) (b c d) (x y z))) 

=> (b c d)�

You can rplacd the result of zl:assq as long as it is not nil, if you want to update

the "table" in-list. Example:

(setq values ’((x . 100) (y . 200) (z . 50)))

(zl:assq ’y values) => (y . 200)

(rplacd (zl:assq ’y values) 201)

(zl:assq ’y values) => (y . 201) now�

A typical trick is to use (cdr (zl:assq x y)). Since the cdr of nil is guaranteed to

be nil, this yields nil if no pair is found (or if a pair is found whose cdr is nil.)

zl:assq could have been defined by:

(defun zl:assq (item list)

    (cond ((null list) nil)

          ((eq item (caar list)) (car list))

          ((zl:assq item (cdr list))) ))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� atan y &optional x Function

With two arguments, y and x, computes and returns the arc tangent of the quanti-

ty y/x. If either argument is a double-float, the result is also a double-float. In the

two argument case neither argument can be complex. The returned value is in ra-

dians and is always between -π (exclusive) and π (inclusive). The signs of y and x

determine the quadrant of the result angle.

Note that either y or x (but not both simultaneously) can be zero. The examples il-

lustrate a few special cases.

With only one argument y, atan computes and returns the arc tangent of y. The

argument can be any noncomplex or complex number. The result is in radians and

its range is as follows: for a noncomplex y the result is noncomplex and lies be-

tween -π/2 and π/2 (both exclusive); for a complex y the range is that strip of the

complex plane containing numbers with a real part between -π/2 and π/2. A num-

ber with real part equal to -π/2 is not in the range if it has a non-positive imagi-

nary part. Similarly, a number with real part equal to π/2 is not in the range if its

imaginary part is non-negative.

Examples:
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(atan 0) => 0.0

(atan 0 673) => 0.0       ;(atan (/ y x)) 

(atan 1 1) => 0.7853982               ;first quadrant

(atan 1 -1) => 2.3561945       ;second quadrant

(atan -1 -1) => -2.3561945       ;third quadrant

(atan -1 1) => -0.7853982       ;fourth quadrant

(atan 1 0)  => 1.5707964

�

(setq theta (/ pi 4)) → 0.785398

�

(atan (cos theta) (sin theta)) = theta => 0.785398�

When given a single argument, atan accepts a complex argument.

(atan (/ (cos theta) (sin theta))) = theta => 0.785398

�

(atan y) is the same as

  (* -1 (log (* (+ 1 (* i y))

                (sqrt (/ 1 (+ 1 (expt y 2)))))))�

For a table of related items, see the section "Trigonometric and Related

Functions".

� zl:atan y x Function

Returns the angle, in radians, whose tangent is y/x. zl:atan always returns a num-

ber between zero and 2π.

Examples:

(zl:atan 1 1) => 0.7853982

(zl:atan -1 -1) => 3.926991�

For a table of related items: See the section "Trigonometric and Related

Functions". 

� zl:atan2 y x Function

Returns the angle, in radians, whose tangent is y/x. zl:atan2 always returns a

number between -π and π.

Similar to zl:atan, except that it accepts only noncomplex arguments.

For a table of related items: See the section "Trigonometric and Related

Functions". 

� atanh number Function

Computes and returns the hyperbolic arc tangent of number. The result is in radi-

ans. The argument can be any noncomplex or complex number. Note that if the

absolute value of the argument is greater than one, the result is complex even if

the argument is not complex.
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The hyperbolic arc tangent being mathematically multiple-valued in the complex

plane, atanh returns a principal value whose range is that strip of the complex

plane containing numbers with imaginary parts between -π/2 and π/2. Any number

with an imaginary part equal to -π/2 is not in the range if its real part is non-

negative; any number with imaginary part equal to π/2 is excluded from the range

if its real part is non-positive.

Example:

(atanh 0) => 0.0�

For a table of related items, see the section "Hyperbolic Functions".

� atom object Function

Returns t if object is not a cons, otherwise nil.

Note that (atom ’()) is true because () is equivalent to nil.

(atom x)

is equivalent to 

(type x ’atom)

is equivalent to 

(not (typep x ’cons))

Note that arrays, strings, structures, vectors, numbers, and symbols are all atoms.

(atom ’()) => t

(setq foo (make-array ’(4 2)) bar "24" baz ’(a foo bar))

(atom foo) => t

(atom bar) => t

(atom baz) => nil�

For a table of related items, see the section "Predicates that Operate on Lists". 

� atom object Function

Returns t if object is not a cons, otherwise nil.

Note that (atom ’()) is true because () is equivalent to nil.

(atom x)

is equivalent to 

(type x ’atom)

is equivalent to 

(not (typep x ’cons))

Note that arrays, strings, structures, vectors, numbers, and symbols are all atoms.
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(atom ’()) => t

(setq foo (make-array ’(4 2)) bar "24" baz ’(a foo bar))

(atom foo) => t

(atom bar) => t

(atom baz) => nil�

For a table of related items, see the section "Predicates that Operate on Lists". 

� atom Type Specifier

atom is the type specifier symbol for the predefined Lisp object of that name.

atom ≡ (not cons).

Examples:

(typep ’a ’atom) => T�

(zl:typep ’a) => :SYMBOL�

(subtypep ’atom ’common) => NIL and NIL�

(atom ’a) => T�

(sys:type-arglist ’atom) => NIL and T�

See the section "Data Types and Type Specifiers".

See the section "Symbols, Keywords, and Variables".

� &aux Lambda List Keyword

Separates the arguments of a function from the auxiliary variables. If it is present,

all specifiers after it are entries of the form:

(variable initial-value-form)�

� zl:base Variable

The value of zl:base is a number that is the radix in which integers and ratios

are printed in, or a symbol with a si:princ-function property. The initial value of

zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base 10 is controlled by the

value of variable *print-radix*. See the section "Printed Representation of Rational

Numbers".

In your new programs use the Common Lisp variable *print-base*.

� beep &optional beep-type (stream zl:terminal-io) Function

Tries to attract the user’s attention by causing an audible beep, or flashing the

screen, or something similar. If the stream supports the :beep operation, this func-

tion sends it a :beep message, passing type along as an argument. Otherwise it
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just causes an audible beep on the terminal. type is a keyword selecting among

several different beeping noises. The allowed types have not yet been defined; type

is currently ignored and should always be nil. See the message :beep. 

� :beep &optional type Message

This is supported by interactive streams. It attracts the attention of the user by

making an audible beep and/or flashing the screen. type is a keyword selecting

among several different beeping noises. The allowed types have not yet been de-

fined; type is currently ignored and should always be nil. 

� bignum Type Specifier

bignum is the type specifier symbol for the predefined primitive Lisp object of

that name.

The types bignum and fixnum are an exhaustive partition of the type integer,

since integer ≡ (or bignum fixnum). These two types are internal representations

of integers used by the system for efficiency depending on integer size; in general,

bignums and fixnums are transparent to the programmer.

Examples:

(typep 1000000000000000000000000000000000 ’bignum) => T�

(typep ’1 ’bignum) => NIL�

(zl:typep ’10000000000000000000000000000000) => :BIGNUM�

(subtypep ’bignum ’integer) => T and T  ; subtype and certain�

(typep 565682366398848747848463539404874 ’common) => T�

(zl:bigp 444444444445555555555555555556666666666666) => T�

(sys:type-arglist ’bignum) => NIL and T�

(type-of 09889374897338373689484949494373639484099876) => BIGNUM�

See the section "Data Types and Type Specifiers".

See the section "Numbers".

� zl:bigp object Function

Returns t if object is a bignum, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates". 

� bit array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-

tegers and their number must match the dimensionality of array. The array must

be an array of bits.



Page 889

(setq foo (make-array (2 3) 

            :adjustable t

            :element-type ’bit 

            :initial-contents ’((1 1 1)

                                (1 0 1))))

�

(bit foo 1 1) => 0�

Note that the bit-array in the previous example is adjustable, and therfore not

simple. Therfore, we can not use sbit for foo. We could have used aref, but bit is

generally more efficient for bit-arrays.

For a table of related items: See the section "Arrays of Bits".

� bit Type Specifier

bit is equivalent to the type (integer 0 1) and (unsigned-byte 1). 

� bit-and first second &optional third Function

Performs logical and operations on bit arrays. The arguments must be bit arrays

of the same rank and dimensions. A new array is created to contain the result if

the third argument is nil or omitted. If the third argument is t, the first array is

used to hold the result.

For a table of related items: See the section "Arrays of Bits".

� bit-andc1 first second &optional third Function

Performs logical and operations on the complement of first with second on bit ar-

rays. The arguments must be bit arrays of the same rank and dimensions. A new

array is created to contain the result if the third argument is nil or omitted. If

the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� bit-andc2 first second &optional third Function

Performs logical and operations on first with the complement of second on bit ar-

rays. The arguments must be bit arrays of the same rank and dimensions. A new

array is created to contain the result if the third argument is nil or omitted. If

the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� bit-eqv first second &optional third Function

Performs logical exclusive nor operations on bit arrays. The arguments must be bit

arrays of the same rank and dimensions. A new array is created to contain the re-
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sult if the third argument is nil or omitted. If the third argument is t, the first

array is used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� bit-ior first second &optional third Function

Performs logical inclusive or operations on bit arrays. The arguments must be bit

arrays of the same rank and dimensions. A new array is created to contain the re-

sult if the third argument is nil or omitted. If the third argument is t, the first

array is used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� bit-nand first second &optional third Function

Performs logical not and operations on bit arrays. The arguments must be bit ar-

rays of the same rank and dimensions. A new array is created to contain the re-

sult if the third argument is nil or omitted. If the third argument is t, the first

array is used to hold the result. 

� bit-nor first second &optional third Function

Performs logical not or operations on bit arrays. The arguments must be bit arrays

of the same rank and dimensions. A new array is created to contain the result if

the third argument is nil or omitted. If the third argument is t, the first array is

used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� bit-not source &optional destination Function

Returns a bit-array of the same rank and dimensions that contains a copy of the

argument with all the bits inverted. source must be a bit-array. If destination is nil

or omitted, a new array is created to contain the result. If destination is t, the re-

sult is destructively placed in the source array.

(bit-not #*1001) => #*0110�

For a table of related items:

See the section "Arrays of Bits". 

bit-orc1 first second &optional third Function

Performs logical or operations on the complement of first with second on bit ar-

rays. The arguments must be bit arrays of the same rank and dimensions. A new

array is created to contain the result if the third argument is nil or omitted. If

the third argument is t, the first array is used to hold the result.
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For a table of related items: See the section "Arrays of Bits". 

� bit-orc2 first second &optional third Function

Performs logical or operations on first with the complement of second on bit ar-

rays. The arguments must be bit arrays of the same rank and dimensions. A new

array is created to contain the result if the third argument is nil or omitted. If

the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� zl:bit-test x y Function

In your new programs, we recommend that you use the function logtest, which is

the Common Lisp equivalent of the function zl:bit-test.

zl:bit-test is a predicate that returns t if any of the bits designated by the 1’s in x

are 1’s in y.

For a table of related items: See the section "Predicates for Testing Bits in Inte-

gers". 

� bit-vector &optional ( size ’* ) Type Specifier

bit-vector is the type specifier symbol for the Lisp data structure of that name.

The type bit-vector is a subtype of the type vector; (bit-vector) means (vector

bit).

The type bit-vector is a supertype of the type simple-bit-vector.

The types (vector t), string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list form,

bit-vector allows the declaration and creation of specialized types of bit vectors

whose size is restricted to the specified size. (bit-vector size) means the same as

(array bit (size)): the set of bit-vectors of the indicated size.

Examples:

(setq array-bit-vector 

      (make-array ’(3) :element-type ’bit :fill-pointer 2))

    => #<ART-1B-3 43015121>�

(typep #*10110 ’bit-vector) => T�

(typep #*101 ’(bit-vector 3)) => T�

(typep array-bit-vector ’bit-vector) => T�

(subtypep ’bit-vector ’vector) => T and T�

(bit-vector-p #*) => T ;empty bit vector�

(sys:type-arglist ’bit-vector) => (&OPTIONAL (SIZE ’*)) and T�

See the section "Data Types and Type Specifiers".
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See the section "Arrays".

� bit-vector-cardinality bit-vector &key (:start 0) :end Function

Counts how many of the bits in the range are one’s and returns the number

found.

bit-vector is a one-dimensional array whose elements are required to be bits. See

the type specifier bit-vector.

:start and :end must be non-negative integer indices into the bit-vector. :start

must be less than or equal to :end, or else an error is signalled. :start defaults to

zero (the start of the bit vector).

:start indicates the start position for the operation within the bit-vector. :end is

the position of the first element in the bit-vector beyond the end of the operation. 

For example:

(bit-vector-cardinality #*11111)

 => 5

 

(bit-vector-cardinality #*11100)

 => 3

�

(bit-vector-cardinality #*1110011 :start 0 :end 5)

 => 3

�

For a table of related items: See the section "Operations on Vectors". 

� bit-vector-disjoint-p bit-vector-1 bit-vector-2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

Tests two bit vectors to see if they are disjoint (have no common positions contain-

ing 1’s) in a range specified by :start1, :end1, :start2, and :end2.

bit-vector-1 and bit-vector-2 are one-dimensional arrays whose elements are required

to be bits.See the type specifier bit-vector.

:start1, :end1, :start2, and :end2 must be non-negative integer indices into bit-

vector1 and bit-vector-2. :start1 and :start2 must be less than or equal to :end1 and

:end2, or else an error is signalled. :start1 and :start2 default to zero (the start of

the bit vector). If :end is unspecified or nil, the length bit-vector is used.

:start1 and :start2 indicate the start positions for the operation within the bit-

vector. :end1 and :end2 are the position of the first element in the bit-vector be-

yond the end of the operation.

For example:
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(bit-vector-disjoint-p #*001000001 #*001000001)

 => NIL

�

(bit-vector-disjoint-p #*1110010000 #*1110010011)

 => NIL

 

(bit-vector-disjoint-p #*1110010000 #*1110010011 :start1 1 :end1 6 :start2 6 :end2 8)

 => T

For a table of related items: See the section "Operations on Vectors".

� bit-vector-p object Function

Tests whether the given object is a bit vector. A bit vector is a one-dimensional ar-

ray whose elements are required to be bits. See the type specifier bit-vector.

(bit-vector-p (make-array 3 :element-type ’bit :fill-pointer 2)) 

 => T

 

(bit-vector-p (make-array 5 :element-type ’string-char)) 

 => NIL�

For a table of related items: See the section "Operations on Vectors".

� bit-vector-position bit bit-vector &key (:start 0) :end Function

If bit-vector contains an element matching bit, returns the index within the bit vec-

tor of the leftmost such element as a non-negative integer; otherwise nil is re-

turned.

bit is either 0 or 1.

bit-vector is a one-dimensional array whose elements are required to be bits. See

the type specifier bit-vector.

:start and :end must be non-negative integer indices into the bit-vector. :start

must be less than or equal to :end , or else an error is signalled. :start defaults to

zero (the start of the bit vector). If :end is unspecified or nil, the length bit-

vector is used.

:start indicates the start position for the operation within the bit vector. :end is

the position of the first element in the bit-vector beyond the end of the operation. 

For example:

(bit-vector-position  1 #*11111)

 => 0

 

(bit-vector-position 1 #*0011111)

 => 2
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�

(bit-vector-position 1 #*0011111 :start 3 :end 5)

=> 3

�

(bit-vector-position 0 #*111) 

=> NIL�

For a table of related items: See the section "Operations on Vectors". 

� bit-vector-subset-p bit-vector-1 bit-vector-2 &key (:start1 0) :end1 (:start2 0) :end2 

Function

Tests if one bit vector is a subset of another bit vector (subset means that for

each position of bit-vector-2 that contains a one, the same position in bit-vector-1

also contains a 1) in a range specified by :start1, :end1, :start2, and :end2.

bit-vector-1 and bit-vector-2 are one-dimensional arrays whose elements are required

to be bits.See the type specifier bit-vector.

:start1, :end1, :start2, and :end2 must be non-negative integer indices into bit-

vector1 and bit-vector-2. :start1 and :start2 must be less than or equal to :end1 and

:end2, else an error is signalled. :start1 and :start2 default to zero (the start of

the bit vector). If :end is unspecified or nil, the length bit-vector is used.

:start1 and :start2 indicate the start position for the operation within the bit vec-

tor. :end1 and :end2 are the positions of the first element in the bit-vector beyond

the end of the operation.

For example:

(bit-vector-subset-p #*00100100111 #*00100100111)

 => T

�

(bit-vector-subset-p #*1110010011 #*0010010011)

 => NIL

 

(bit-vector-subset-p #*11100000 #*11100011 :start1 0 :end1 6 :start2 0 :end2 6)

=> T

�

(bit-vector-subset-p #*11100000 #*11100011 :start1 0 :end1 8 :start2 0 :end2 8)

 => NIL

�

For a table of related items: See the section "Operations on Vectors".

� bit-vector-zero-p bit-vector &key (:start 0) :end Function

Tests if bit-vector is a bit vector of zeros in the range specified by :start and :end.

bit-vector is a one-dimensional array whose elements are required to be bits. 

:start and :end must be non-negative integer indices into the bit-vector. :start

must be less than or equal to :end, or else an error is signalled. :start defaults to

zero (the start of the bit vector).
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:start indicates the start position for the operation within the bit vector. :end is

the position of the first element in the bit-vector beyond the end of the operation.

See the type specifier bit-vector.

For example:

(bit-vector-zero-p #*00000 :start 0 :end 5) 

 => T

 

(bit-vector-zero-p #*00011)

 => NIL

�

(bit-vector-zero-p #*00011 :start 0 :end 3) 

 => T

�

For a table of related items: See the section "Operations on Vectors". 

bit-xor first second &optional third Function

Performs logical exclusive or operations on bit arrays. The arguments must be bit

arrays of the same rank and dimensions. A new array is created to contain the re-

sult if the third argument is nil or omitted. If the third argument is t, the first

array is used to hold the result.

For a table of related items: See the section "Arrays of Bits". 

� bitblt alu width height from-raster from-x from-y to-raster to-x to-y Function

Copies a rectangular portion of from-raster into a rectangular portion of to-raster.

from-raster and to-raster must be two-dimensional arrays of bits or bytes (sys:art-

1b, sys:art-2b, sys:art-4b, sys:art-8b, sys:art-16b, or sys:art-fixnum). The value

stored can be a Boolean function of the new value and the value already there, un-

der the control of alu. This function is most commonly used in connection with

raster images for TV displays.

The top-left corner of the source rectangle is: 

(raster-aref from-raster from-x from-y)�

The top-left corner of the destination rectangle is: 

(raster-aref to-raster to-x to-y)�

width and height are the dimensions of both rectangles. If width or height is zero,

bitblt does nothing.

from-raster and to-raster are allowed to be the same array. bitblt normally travers-

es the arrays in increasing order of x and y subscripts. If width is negative,

(abs width) is used as the width, but the processing of the x direction is done

backwards, starting with the highest value of x and working down. If height is

negative it is treated analogously. When bitblting an array to itself, when the two

rectangles overlap, it might be necessary to work backwards to achieve the desired
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effect, such as shifting the entire array upwards by a certain number of rows.

Note that negativity of width or height does not affect the (x,y) coordinates speci-

fied by the arguments, which are still the top-left corner even if bitblt starts at

some other corner.

If the two arrays are of different types, bitblt works bit-wise and not element-wise.

That is, if you bitblt from an sys:art-2b raster into an sys:art-4b raster, then two

elements of the from-raster correspond to one element of the to-raster. width is in

units of elements of the to-raster. Note that the width and heigth arguments are

relative to the to-raster array, not the from-raster array. 

If bitblt goes outside the bounds of the source array, it wraps around. This allows

such operations as the replication of a small stipple pattern through a large array.

If bitblt goes outside the bounds of the destination array, it signals an error.

If src is an element of the source rectangle, and dst is the corresponding element

of the destination rectangle, then bitblt changes the value of dst to (boole alu src�

dst). The following are the symbolic names for some of the most useful alu func-

tions:

tv:alu-seta plain copy

tv:alu-setz set destination to 0

tv:alu-ior inclusive or

tv:alu-xor exclusive or

tv:alu-andca and with complement of source�

For a chart of more alu possibilities: See the function boole.

bitblt is written in highly optimized microcode and goes very much faster than the

same thing written with ordinary raster operations would. Unfortunately this caus-

es bitblt to have a couple of strange restrictions. Wraparound does not work cor-

rectly if from-raster is an indirect array with an index offset. On black-and-white

screens, bitblt signals an error if the widths of from-raster and to-raster are not

both integral multiples of the machine word length. On color screens, the product

of the number of bits per raster element and the width must be an integral multi-

ple of 32. You can determine the number of bits per raster element by the number

of bits which correspond to a single pixel on the screen. For sys:art-1b arrays,

width must be a multiple of 32., for sys:art-2b arrays it must be a multiple of 16.,

and so on. Use :draw-1-bit-raster rather than bitblt in programs that run without

modification on color screens.

For a table of related items: See the section "Operations on Rasters". Also: See the

section "Copying an Array".

� block name &body body�

Special Form

Provides an exit context for the evaluation of its body argument. Evaluates each

form in sequence and normally returns the (possibly multiple) values of the last

form. However, (return-from name value) or (return or (return (values-list list))
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form) might be evaluated during the evaluation of some form. In that case, the

(possibly multiple) values that result from evaluating value are immediately re-

turned from the innermost block that has the same name and that lexically con-

tains the return-from form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside the

block itself (or inside a block that that block lexically contains), not inside a func-

tion called from the block.

do, prog, and their variants establish implicit blocks around their bodies; you can

use return-from to exit from them. These blocks are named nil unless you specify

a name explicitly.

Examples:

(block nil

  (print "clear")

  (return)

  (print "open")) => "clear" NIL

�

(let ((x 2400))

  (block time-x

    (when (= x 2400)

      (return-from time-x "time to go"))

    ("time time time"))) => "time to go"

�

(defun bar ()

  (princ "zero ")

  (block a 

    (princ "one ") (return-from a "two ")

    (princ "three "))

  (princ "four ")

  t) => BAR

(bar) => zero one four T

�

(block negative

  (mapcar (function (lambda (x) 

      (cond ((minusp x)

     (return-from negative  x))

    (t (f x))) ))

  y))�

(block foo

  (let ((num *a-number*)

(result 0))

    (dotimes (i num result)

      (if (= i 20) (return-from foo result))

      (setq result (+ result (expt i 2))))))�

defun establishes an implicit block whose name is the same as that of the defined
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function.

(defun matrix-find (elt matrix)

  (dotimes (i (array-dimension matrix 0))

    (dotimes (j (array-dimension matrix 1))

      (if (eql elt (aref matrix i j))

(return-from matrix-find (values i j))))))�

The following two forms are equivalent:

(cond ((predicate x)

       (do-one-thing))

      (t

       (format t "The value of X is ~S~%" x)

       (do-the-other-thing)

       (do-something-else-too)))

�

(block deal-with-x

  (when (predicate x)

    (return-from deal-with-x (do-one-thing)))

  (format t "The value of X is ~S~%" x)

  (do-the-other-thing)

  (do-something-else-too))�

The interpreter and compiler generate implicit blocks for functions whose name is

a list (such as methods) just as they do for functions whose name is a symbol. You

can use return-from for methods. The name of a method’s implicit block is the

name of the generic function it implements. If the name of the generic function is

a list, the block name is the second symbol in that list. 

For a table of related items: See the section "Blocks and Exits Functions and Vari-

ables".

� &body Lambda List Keyword

This keyword is used with macros only. It is identical in function to &rest, but it

informs output-formatting and editing functions that the remainder of the form is

treated as a body, and should be indented accordingly.

Note that either &body or &rest, but not both, should be used in any definition. 

� boole op integer1 &rest more-integers Function

This function is the generalization of logical functions such as zl:logand, zl:logior

and zl:logxor. It performs bit-wise logical operations on integer arguments return-

ing an integer which is the result of the operation.

The argument op specifies the logical operation to be performed; sixteen operations

are possible. These are listed and described in the table below which also shows

the truth tables for each value of op.
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op can be specified by writing the name of one of the constants listed below which

represents the desired operation, or by using an integer between 0 and 15 inclusive

which controls the function that is computed. If the binary representation of op is

abcd (a is the most significant bit, d the least) then the truth table for the

Boolean operation is as follows:

              integer2

             | 0  1

            ---------

integer1     0| a  c

            1| b  d

�

Examples:

(boole 6 0 0) => 0 ; a=0

(boole 11 1 0) => -2 ; a=1 and b=0

(boole 2 6 9) => 9 ; a=b=d=0 c=1 therefore 1’s appear only

; when integer1 is 0 and integer2 is 1

�

With two arguments, the result of boole is simply its second argument. At least

two arguments are required.

If boole has more than three arguments, it is associated left to right; thus,

(boole op x y z) = (boole op (boole op x y) z)

(boole boole-and 0 1 1) => 0�

For the basic case of three arguments, the results of boole are shown in the table

below. This table also shows the value of bits abcd in the binary representation of

op for each of the sixteen operations. (For example, boole-clr corresponds to

#b0000, boole-and to #b0001, and so on.) As the table shows,

op = (boole op #b0101 #b0011) = (boole op 5 3)

a b c d

Integer1  0 1 0 1

op Integer2  0 0 1 1 Operation Name

boole-clr 0 0 0 0 clear, always 0

boole-and 0 0 0 1 and

boole-andc1 0 0 1 0 and complement of integer1

with integer2

boole-2 0 0 1 1 last of more-integers

boole-andc2 0 1 0 0 and integer1 with complement

of integer2

boole-1 0 1 0 1 integer1

boole-xor 0 1 1 0 exclusive or

boole-ior 0 1 1 1 inclusive or

boole-nor 1 0 0 0 nor (complement of

inclusive or)

boole-eqv 1 0 0 1 equivalence (exclusive nor)
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boole-c1 1 0 1 0 complement of integer1

boole-orc1 1 0 1 1 or complement of integer1

with integer2

boole-c2 1 1 0 0 complement of integer2

boole-orc2 1 1 0 1 or integer1 with complement

of integer2

boole-nand 1 1 1 0 nand (complement of and)

boole-set 1 1 1 1 set, always 1

Examples:

(boole boole-clr 3) => 3  ;with two arguments always returns 

                          ;integer1

(boole boole-set 7) => 7  

�

(boole boole-1 1 0) => 1

(boole boole-2 1 0) => 0

�

(boole boole-orc2 1 4) => -5

�

(boole (if flag then boole-xor boole-ior) int1 int2)�

As a matter of style the explicit logical functions such as logand, logior, and

logxor are usually preferred over the equivalent forms of boole. boole is useful,

however, when you want to generalize a procedure so that it can use one of sever-

al logical operations.

For a table of related items: See the section "Functions Returning Result of Bit-

wise Logical Operations".

� boole-1 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical operation that returns the first integer argument of boole.

� boole-2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical operation that returns the last integer argument of boole.

� boole-and Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical and operation to be performed on the integer arguments of boole.

� boole-andc1 Constant
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Can be used as the first argument to the function boole; it specifies a logical op-

eration to be performed on the integer arguments of boole, namely, a bit-wise logi-

cal and of the complement of the first integer argument with the next integer ar-

gument.

� boole-andc2 Constant

Can be used as the first argument to the function boole; it specifies a logical op-

eration to be performed on the integer arguments of boole, namely, a bit-wise logi-

cal and of the first integer argument with the complement of the next integer ar-

gument.

� boole-c1 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical operation that returns the complement of the first integer argument of boole. 

� boole-c2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical operation that returns the complement of the last integer argument of boole.

� boole-clr Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical clear operation to be performed on the integer arguments of boole.

� boole-eqv Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical equivalence operation to be performed on the integer arguments of boole.

� boole-ior Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical inclusive or operation to be performed on the integer arguments of boole.

� boole-nand Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical not-and operation to be performed on the integer arguments of boole.

� boole-nor Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical not-or operation to be performed on the integer arguments of boole.
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� boole-orc1 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical operation to be performed on the integer arguments of boole, namely, the logi-

cal or of the complement of the first integer argument with the next integer ar-

gument.

� boole-orc2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical operation to be performed on the integer arguments of boole, namely, the logi-

cal or of the first integer argument with the complement of the next integer ar-

gument.

� boole-set Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical set operation to be performed on the integer arguments of boole.

� boole-xor Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-

ical exclusive or operation to be performed on the integer arguments of boole.

� both-case-p char Function

Returns t if char is a letter that exists in another case. 

(both-case-p #\M) => T

(both-case-p #\m) => T�

Returns T if char is an uppercase character and a lowercase character analog can

be obtained by using char-downcase, or if char is a lowercase character and an up-

percase character analog can be obtained by using char-upcase.

(both-case-p #\$) => nil

(both-case-p #\a) => t�

For a table of related items, see the section "Character Predicates". 

� boundp symbol Function

Returns t if the dynamic (special) variable symbol is bound; otherwise, it returns

nil.

(defvar *alarms*)

�

(boundp ’*alarms*) => nil



Page 903

�

(setq *alarms* 20)

�

(boundp ’*alarms*) => t�

See the section "Functions Relating to the Value of a Symbol".

� boundp-in-closure closure symbol Function

Returns t if symbol is bound in the environment of closure; that is, it does what

boundp would do if you restored the value cells known about by closure. If symbol

is not closed over by closure, this is just like boundp. See the section "Dynamic

Closure-Manipulating Functions". 

� boundp-in-instance instance symbol Function

Returns t if the instance variable symbol is bound in the given instance.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� break &optional format-string &rest format-args Function

Like zl:dbg, when evaluated, causes entry to the Debugger (a Debugger Break).

However, break takes a format-string and format-args instead of a process.

The format-string is a user-written error message that is printed in the Debugger’s

Break message whenever break is encountered and you enter the Debugger. for-

mat-args are the zl:format-style arguments to zl:format directives in format-string.

break is a temporary way to insert Debugger breakpoints into your program while

you are debugging it. It is not designed for permanent use in your program as a

way of signalling errors. Therefore, you would use this function only for the dura-

tion of your debugging session. Continuing from break will not trigger any unusu-

al recovery action.

� zl:break &optional tag (conditional t) Special Form

Enters a breakpoint loop, which is similar to a Lisp top-level loop. (zl:break tag)

always enters the loop; (zl:break tag conditional) evaluates conditional and only

enter the break loop if it returns non-nil. If the break loop is entered, zl:break

prints out:

;Breakpoint tag; Resume to continue, Abort to quit.�

The standard values for any variables are checked. If zl:break rebinds any of

these standard variables, it warns you that it has done so. zl:break then enters a

loop reading, evaluating, and printing forms. A difference between a break loop

and the top-level loop is that when reading a form, zl:break checks for the follow-

ing special cases: If the ABORT key is pressed, control is returned to the previous
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break or Debugger, or to top level if there is none. If the RESUME key is pressed,

zl:break returns nil. If the list (return form) is typed, zl:break evaluates form

and returns the result.

Inside the zl:break loop, the streams zl:standard-output, zl:standard-input, and

zl:query-io are bound to be synonymous to zl:terminal-io; zl:terminal-io itself is

not rebound. Several other internal system variables are bound, and you can add

your own symbols to be bound by pushing elements onto the value of the variable

sys:*break-bindings*. (See the variable sys:*break-bindings*.)

If tag is omitted, it defaults to nil.

There are two easy ways to write a breakpoint into your program: (zl:break) gets

a read-eval-print loop, and (zl:dbg) gets the Debugger. (These are the programmat-

ic equivalents of the SUSPEND and m-SUSPEND keys on the keyboard.)

� sys:*break-bindings* Variable

When zl:break is called, it binds some special variables under control of the list

that is the value of sys:*break-bindings*. Each element of the list is a list of two

elements: a variable and a form that is evaluated to produce the value to bind it

to. The bindings happen sequentially. You can push things on this list (adding to

the front of it), but should not replace the list wholesale since several of the vari-

able bindings on this list are essential to the operation of zl:break. 

� *break-on-warnings* Variable

This variable controls the action of the function warn. If *break-on-warnings* is

nil, warn prints a warning message without signalling.

If *break-on-warnings* is not nil, warn enters the Debugger and prints the warn-

ing message. The default value is nil.

This flag is intended primarily for use when you are debugging programs that is-

sue warnings.

Note that this flag is still supported but is considered obsolete.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables".

� breakon &optional function (condition t)�

Function

With no arguments, returns a list of all functions with breakpoints set by

breakon.

breakon sets a trace-style breakpoint for the function. Whenever the function

named by function is called, the condition dbg:breakon-trap is signalled, and the

Debugger assumes control. At this point, you can inspect the state of the Lisp en-

vironment and the stack. Proceeding from the condition then causes the program

to continue to run.
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The first argument can be any function, so that you can trace methods and other

functions not named by symbols. See the section "Function Specs".

condition can be used for making a conditional breakpoint. condition should be a

Lisp form. It is evaluated when the function is called. If it returns nil, the func-

tion call proceeds without signalling anything. condition arguments from multiple

calls to breakon accumulate and are treated as an or condition. Thus, when any

of the forms becomes true, the breakpoint "goes off". condition is evaluated in the

dynamic environment of the function call. You can inspect the arguments of func-

tion by looking at the variable arglist.

For a table of related items: See the section "Breakpoint Functions". 

� dbg:bug-report-description condition stream nframes Generic Function

Called by the :Mail Bug Report (c-M) command in the Debugger to print out the

text that is the initial contents of the mail-sending buffer. The handler should sim-

ply print whatever information it considers appropriate onto stream. nframes is the

numeric argument given to c-M. The Debugger interprets nframes as the number

of frames from the backtrace to include in the initial mail buffer. A nframes of nil

means all frames.

The compatible message for dbg:bug-report-description is:

:bug-report-description

For a table of related items: See the section "Debugger Bug Report Functions". 

� dbg:bug-report-recipient-system condition Generic Function

Called by the :Mail Bug Report (c-M) command in the Debugger to find the mail-

ing list to which to send the bug report mail. The mailing list is returned as a

string.

The default method (the one in the condition flavor) returns "lispm", and this is

passed as the first argument to the zl:bug function.

The compatible message for dbg:bug-report-recipient-system is:

:bug-report-recipient-system

For a table of related items: See the section "Debugger Bug Report Functions". 

� clos:built-in-class Class

The class of many of the predefined classes corresponding to Common Lisp types,

such as list and t. 

These classes (objects whose class is clos:built-in-class) are provided so users can

define methods that specialize on them. They do not support the full behavior of

user-defined classes (whose class is clos:standard-class). For example, you cannot

use clos:make-instance to create instances of these classes. 
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� butlast x &optional (n 1) Function

Creates and returns a list with the same elements as x, excepting the last element.

Examples:

(butlast ’(a b c d)) => (a b c)

(butlast ’((a b) (c d))) => ((a b))

(butlast ’(a)) => nil

(butlast nil) => nil

(setq a ’(1 2 3 4 5 6 7))

(butlast a) => (1 2 3 4 5 6)

(butlast a 4) => (1 2 3)

a => (1 2 3 4 5 6 7)�

The name is from the phrase "all elements but the last".

For a table of related items: See the section "Functions for Modifying Lists".

� byte size position Function

Creates a byte specifier for a byte size bits wide, position bits from the right-hand

(least-significant) end of the word. The arguments size and position must be inte-

gers greater than or equal to zero.

The byte specifier so created serves as an argument to various byte manipulation

functions. 

Examples:

(ldb (byte 2 1) 9) => 0

(ldb (byte 3 4) #o12345) => 6

(setq byte-spec (byte 5 2))

(byte-size byte-spec) => 5

(byte-position byte-spec) => 2�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".

� byte-position bytespec Function

Extracts the position field of bytespec. 

bytespec is built using function byte with bit size and position arguments.

Example:

(byte-position (byte 3 4)) => 4�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".

� byte-size bytespec Function

Extracts the size field of bytespec.
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bytespec is built using function byte with bit size and position arguments.

Example:

(byte-size (byte 3 4)) => 3

�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".

� caaaar x Function

(caaaar x) is the same as (car (car (car (car x))))�

� caaadr x Function

(caaadr x) is the same as (car (car (car (cdr x))))�

� caaar x Function

(caaar x) is the same as (car (car (car x)))�

� caadar x Function

(caadar x) is the same as (car (car (cdr (car x))))�

� caaddr x Function

(caaddr x) is the same as (car (car (cdr (cdr x))))�

� caadr x Function

(caadr x) is the same as (car (car (cdr x)))�

� caar x Function

(caar x) is the same as (car (car x))�

� cadaar x Function

(cadaar x) is the same as (car (cdr (car (car x))))�

� cadadr x Function
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(cadadr x) is the same as (car (cdr (car (cdr x))))�

� cadar x Function

(cadar x) is the same as (car (cdr (car x)))�

� caddar x Function

(caddar x) is the same as (car (cdr (cdr (car x))))�

� cadddr x Function

(cadddr x) is the same as (car (cdr (cdr (cdr x))))�

� caddr x Function

(caddr x) is the same as (car (cdr (cdr x)))�

� cadr x Function

(cadr x) is the same as (car (cdr x))�

� call-arguments-limit Constant

A positive integer that is the upper exclusive bound on the number of arguments

that can be passed to a function. The current value is 128 for 3600-series ma-

chines, 50 for Ivory-based machines, and 256 for CLOE.

For example, let’s assume that we have two functions, process-elements-pairwise

and process-elements-atonce. The first takes the elements of an array and oper-

ates on them by repeatedly calling a subordinate function of two variables. The

second function atonce calls a subordinate function that takes each element of the

array as arguments. Then we might use the following code to call the appropriate

function:

(if (> (array-total-size array) call-arguments-limit)

  (process-elements-pairwise array)

  (process-elements-atonce array))�

� flavor:call-component-method function-spec &key apply arglist Function

Produces a form that calls function-spec, which must be the function-spec for a

component method. If no keyword arguments are given to flavor:call-component-
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method, the method receives the same arguments that the generic function re-

ceived. That is, the first argument to the generic function is bound to self inside

the method, and succeeding arguments are bound to the argument list specified

with defmethod. Additional internal arguments are passed to the method, but the

user never needs to be concerned about these.

arglist is a list of forms to be evaluated to supply the arguments to the method,

instead of simply passing through the arguments to the generic function. 

When arglist and apply are both supplied, :apply should be followed by t or nil. If

:apply t is supplied, the method is called with apply instead of funcall. :apply nil

causes the method to be called with funcall.

When arglist is not supplied, the value following :apply is the argument that

should be given to apply when the method is called. (Certain internal arguments

are also included in the apply form.) For example: 

(flavor:call-component-method function-spec :apply list)�

Results in: 

(apply #’function-spec internal arguments list)�

In other words, the following two forms have the same effect: 

(flavor:call-component-method function-spec :apply list)

(flavor:call-component-method function-spec :arglist (list list) 

                                           :apply t) �

If function-spec is nil, flavor:call-component-method produces a form that returns

nil when evaluated. 

For examples, see the section "Examples of define-method-combination".

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� flavor:call-component-methods function-spec-list &key (operator ’progn) Function

Produces a form that invokes the function or special form named operator. Each

argument or subform is a call to one of the methods in function-spec-list. operator

defaults to progn. 

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� clos:call-method method &optional next-method-list Macro

Used within effective method forms (forms returned by the body of clos:define-

method-combination) to call a method. The macro clos:call-method calls the

method and supplies it with the arguments that were supplied to generic function.

The next-method-list argument to clos:call-method defines the "next method" for

clos:call-next-method and clos:next-method-p. That is, if clos:call-next-method is
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called within the method, the first method in next-method-list will be called; if

clos:call-next-method is called within that method, the second method in next-

method-list will be called, and so on. 

method A method object, or a list such as (clos:make-method form).

Such a list specifies a method object whose method function

has a body that is the given Lisp form. 

next-method-list A list of method objects. Each element is either a method ob-

ject or a list such as (clos:make-method form), as described

above.�

clos:call-method returns the value or values returned by the method.

When clos:call-method is called and the next-method-list argument is unsupplied,

it means that semantically there is no such thing as a "next method"; for example,

this is true for before-methods and after-methods in clos:standard method combi-

nation. Thus, when the next-method-list is unsupplied, clos:call-next-method is not

allowed inside the method, and the behavior of clos:next-method-p is undefined. If

the next-method-list argument is supplied as nil, and the method uses clos:call-

next-method, then clos:no-next-method is called. 

� clos:call-next-method &rest args Function

Used within a method body to call the "next method". clos:call-next-method re-

turns the value or values returned by the method it calls. 

args Arguments to be passed to the next method. If any args are

provided, the following condition must hold: the ordered set of

methods applicable for args must be the same as the ordered

set of methods applicable for the arguments that were passed

to the generic function. If this requirement is not satisfied, an

error is signaled.

If no args are provided, clos:call-next-method passes the

method’s original arguments on to the next method. 

The method-combination type in use determines which kinds of methods can use

clos:call-next-method, and defines the meaning of "next method". The

clos:standard method-combination type supports clos:call-next-method in around-

methods and primary methods, but not in before-methods or after-methods. It de-

fines the next method as follows:

• If clos:call-next-method is called in an around-method, the next method is the

next most specific around-method, if one is applicable.

• If clos:call-next-method is called in the least specific applicable around-method,

the next method consists of the following:

° All the before-methods in most-specific-first order.
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° The most specific primary method. If clos:call-next-method is called in the

primary method, then the next method is the next most specific primary

method.

° All the after-methods in most-specific-last order.�

If clos:call-next-method is called and there is no next method, then clos:no-next-

method is called. The default method for clos:no-next-method signals an error.

If clos:call-next-method is called with arguments but omits optional arguments,

the next method called defaults those arguments.

clos:call-next-method has lexical scope and indefinite extent.

You can use clos:next-method-p to test whether the next method exists. 

If clos:call-next-method is called in a method that does not support it, an error is

signaled. The method-combination type in use controls which kinds of methods sup-

port clos:call-next-method. 

� car x Function

Returns the head (car) of list or cons x. Example:

(car ’(a b c)) => a�

(setq a ’(first second third))=> 

(FIRST SECOND THIRD)

(car a)=> 

FIRST

(car (cdr a))=> 

SECOND�

Officially car is applicable only to conses and locatives. However, as a matter of

convenience, car of nil returns nil.

For a table of related items: See the section "Functions for Extracting from Lists".

� zl:car-location cons Function

Returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; since the cons itself can be used as a loca-

tive to its cdr.

For a table of related items: See the section "Functions for Finding Information

About Lists and Conses". 

� case test-object &body clauses Special Form

This is a conditional that chooses one of its clauses to execute by comparing a val-

ue to various constants. The constants can be any object. 
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Its form is as follows:

(case test-object

  (keylist consequent consequent ...)

  (keylist consequent consequent ...)

  (keylist consequent consequent ...)

  ...)�

Structurally case is much like cond, and it behaves like cond in selecting one

clause and then executing all consequents of that clause. However, case differs in

the mechanism of clause selection.

The first thing case does is to evaluate test-object, to produce an object called the

key object. Then case considers each of the clauses in turn. If key is eql to any

item in the test list of a clause, case evaluates the consequents of that clause as

an implicit progn.

If no clause is satisfied, case returns nil.

case returns the value of the last consequent of the clause evaluated, or nil if

there are no consequents to that clause.

The keys in the clauses are not evaluated; they must be literal key values. It is an

error for the same key to appear in more than one clause. The order of the claus-

es does not affect the behavior of the case construct.

Instead of a test, one can write one of the symbols t and otherwise. A clause with

such a symbol always succeeds and must be the last clause; this is an exception to

the order-independence of clauses. 

If there is only one key value for a clause, that key value can be written in place

of a list of that key, provided that no ambiguity results. Such a "singleton key" can

not be nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

Examples:

(let ((num 69))

  (case num

    ((1 2) "math...ack")

    ((3 4) "great now we can count"))) => NIL�

(let ((num 3))

  (case num

    ((1 2) "one two")

    ((3 4 5 6) (princ "numbers") (princ " three") (fresh-line) )

    (t "not today"))) => numbers three

T�

(let ((object-one ’candy))

  (case object-one

    (apple (setq class ’health) "weekdays")

    (candy (setq class ’junk) "weekends")

    (otherwise (setq class ’unknown) "all week long")))  => "weekends"

class => JUNK�
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For a table of related items: See the section "Conditional Functions".

(defun print-field (object)

  (when (consp object)

    (case (list-length object)

      (1 (print (car object)))

      ((2 3 4 5) (print (cadr object)))

      (otherwise (print "too large to print")))))�

� zl:caseq test-object &body clauses Special Form

Provided for Maclisp compatibility; it is exactly the same as zl:selectq. This is not

perfectly compatible with Maclisp, because zl:selectq accepts otherwise as well as

t where zl:caseq would not accept otherwise, and because Maclisp accepts a more

limited set of keys then zl:selectq does. Maclisp programs that use zl:caseq work

correctly as long as they do not use the symbol otherwise as the key.

Examples:

(let (( a ’big-bang))

  (caseq a

 (light "day")

 (dark  "night"))) => NIL�

(setq a 3) => 3

(caseq a

       (1 "one")

       (2 "two")

       (t "not one or two")) => "not one or two" �

(let (( a ’big-bang))

  (caseq a

 (light "day")

 (dark  "night")

 (otherwise "night and day"))) => "night and day"�

For a table of related items: See the section "Conditional Functions". 

� catch tag &body body Special Form

Provides an environment for evaluating its argument forms as an implicit progn

with dynamic exit capability throw. Although throw need not be in the lexical

scope of catch, it must be in the dynamic scope.

Used with throw for nonlocal exits. catch first evaluates tag to obtain an object

that is the "tag" of the catch. Then the body forms are evaluated in sequence, and

catch returns the (possibly multiple) values of the last form in the body.

However, a throw (or in Genera, a *throw) form might be evaluated during the

evaluation of one of the forms in body. In that case, if the throw "tag" is eq to the

catch "tag" and if this catch is the innermost catch with that tag, the evaluation
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of the body is immediately aborted, and catch returns values specified by the

throw or zl:*throw form.

If the catch exits abnormally because of a throw form, it returns the (possibly

multiple) values that result from evaluating throw’s second subform. If the catch

exits abnormally because of a zl:*throw form, it returns two values: the first is

the result of evaluating zl:*throw’s second subform, and the second is the result

of evaluating zl:*throw’s first subform (the tag thrown to).

(catch ’foo form) catches a (throw ’foo form) but not a (throw ’bar form). It is

an error if throw is done when no suitable catch exists.

The scope of the tags is dynamic. That is, the throw does not have to be lexically

within the catch form; it is possible to throw out of a function that is called from

inside a catch form.

For example:

(catch ’done

  (ask-database <pattern>

#’(lambda (x) (when (nice-p x)

(throw ’done x)))))�

The throw to ’done returns x, the pattern searched for in the database. The sec-

ond example that follows acts as a somewhat extended example of a tiny parser. 

(catch ’foo (list ’a (catch ’bar (throw ’foo ’b)))) → B

�

(defvar *input-buffer* nil)

�

(defun parse (*input-buffer*)

  (catch ’parse-error

    (list ’s (parse-np) (parse-vp))))

�

(defun parse-np (&aux (item (pop *input-buffer*)))

  (if (member item ’(a an the))

    ‘(np (det item) (n ,(pop *input-buffer*)))

    (throw ’parse-error

           (format t "Problem with ~A in noun phrase.~%" item))))

�

(defun parse-vp (&aux (item (pop *input-buffer*)))

  (if (member item ’(eats sleeps runs))

    ’(vp (v item))

    (throw ’parse-error

           (format t "Problem with ~A in verb phrase.~%" item))))

�

(parse ’(a man eats)) => (S (NP (DET A) (N MAN)) (VP (V EATS)))

�

(parse ’(a man walks)) => NIL

  prints: Problem with WALKS in verb phrase.�

For a table of related items, see the section "Nonlocal Exit Functions".
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� zl:*catch tag &body body Special Form

An obsolete version of catch that is supported for compatibility with Maclisp. It is

equivalent to catch except that if zl:*catch exits normally, it returns only two

values: the first is the result of evaluating the last form in the body, and the sec-

ond is nil. If zl:*catch exits abnormally, it returns the same values as catch when

catch exits abnormally: that is, the returned values depend on whether the exit re-

sults from a throw or a zl:*throw. See the special form catch.

For a table of related items, see the section "Nonlocal Exit Functions". 

� catch-error form &optional (printflag t)�

Macro

Evaluates form, trapping all errors.

form can be any Lisp expression.

printflag controls the printing or suppression of an error message by catch-error.

If an error occurs during the evaluation of form, catch-error prints an error mes-

sage if the value of printflag is not nil. The default value of printflag is t.

catch-error returns two values: if form evaluated without error, the value of form

and nil are returned. If an error did occur during the evaluation of form, t is re-

turned.

Only the first value of form is returned if it was successfully evaluated.

� catch-error-restart (flavors description &rest args) &body body�

Special Form

Establishes a restart handler for flavors and then evaluates the body. If the han-

dler is not invoked, catch-error-restart returns the values produced by the last

form in the body, and the restart handler disappears. If a condition is signalled

during the execution of the body and the restart handler is invoked, control is

thrown back to the dynamic environment of the catch-error-restart form. In this

case, catch-error-restart also returns nil as its first value and something other

than nil as its second value. Its format is:

(catch-error-restart (flavors description) 

  form-1

  form-2

  ...)�

flavors is either a condition or a list of conditions that can be handled. description�

is a list of arguments to be passed to format to construct a meaningful description

of what would happen if the user were to invoke the handler. The Debugger uses

these values to create a message explaining the intent of the restart handler.

The conditional variant of catch-error-restart is the form:
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catch-error-restart-if

For a table of related items: See the section "Restart Functions". 

� catch-error-restart-if cond (flavors description &rest args) &body body 

Special Form

Establishes its restart handler conditionally. In all other respects, it is the same as

catch-error-restart. Its format is:

(catch-error-restart-if cond

    (flavors description)

  form-1

  form-2

  ...)�

catch-error-restart-if first evaluates cond. If the result is nil, it evaluates body as

if it were a progn but does not establish any handlers. If the result is not nil, it

continues just like catch-error-restart, establishing the handlers and executing

body.

For a table of related items: See the section "Restart Functions". 

� ccase object &body body Special Form

The name of this function stands for "continuable exhaustive case".

Structurally ccase is much like case, and it behaves like case in selecting one

clause and then executing all consequents of that clause. However, ccase does not

permit an explicit otherwise or t clause. The form of ccase is as follows:

(ccase key-form

  (test consequent consequent ...)

  (test consequent consequent ...)

  (test consequent consequent ...)

  ...)�

object (which serves as the key-form) must be a generalized variable reference ac-

ceptable to setf.

The first thing ccase does is to evaluate key-form, to produce an object called the

key object. 

Then ccase considers each of the clauses in turn. If key is eql to any item in the

test list of a clause, ccase evaluates the consequents of that clause as an implicit

progn.

ccase returns the value of the last consequent of the clause evaluated, or nil if

there are no consequents to that clause.

The test lists in the clauses are not evaluated; literal key values must appear in

test. It is an error for the same key value to appear in more than one clause. The

order of the clauses does not affect the behavior of the ccase construct.
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If there is only one key value for a clause, that key value can be written in place

of a list of that key, provided that no ambiguity results. Such a "singleton key" can

not be nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

If no clause is satisfied, ccase uses an implicit otherwise clause to signal an error

with a message constructed from the clauses. To continue from this error supply a

new value for object argument, causing ccase to store that value and restart the

clause tests. Subforms of object can be evaluated multiple times.

Examples:

(let ((num 24))

  (ccase num

    ((1 2 3) "integer less then 4")

    ((4 5 6) "integer greater than 3"))) =>

Error: The value of NUM is SI:*EVAL, 24, was of the wrong type.

       The function expected one of 1, 2, 3, 4, 5, or 6.

�

SI:*EVAL:

   Arg 0 (SYS:FORM): (DBG:CHECK-TYPE-1 ’NUM NUM ’#)

   Arg 1 (SI:ENV): ((# #) NIL (#) (#) ...)

   --defaulted args:--

   Arg 2 (SI:HOOK): NIL

s-A, <RESUME>:  Supply a replacement value to be stored into NUM

s-B, <ABORT>:   Return to Lisp Top Level in dynamic Lisp Listener 1

→ Supply a replacement value to be stored into NUM:

4

"integer greater than 3"

�

(let ((num 3))

  (ccase num

    ((1 2) "one two")

    ((3 4 5 6) (princ "numbers") (princ " three") (terpri) )

    (t "not today"))) => numbers three

T�

(let ((Dwarf ’Sleepy))

  (ccase Dwarf

    ((Grumpy Dopey) (setq class "confused"))

    ((Bilbo Frodo) (setq class "Hobbits not Dwarfs"))

    (otherwise (setq class ’unknown) "talk to Snow White"))) 

=> "talk to Snow White" 

class => UNKNOWN�

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� cdaaar x Function
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(cdaaar x) is the same as (cdr (car (car (car x))))�

� cdaadr x Function

(cdaadr x) is the same as (cdr (car (car (cdr x))))�

� cdaar x Function

(cdaar x) is the same as (cdr (car (car x)))�

� cdadar x Function

(cdadar x) is the same as (cdr (car (cdr (car x))))�

� cdaddr x Function

(cdaddr x) is the same as (cdr (car (cdr (cdr x))))�

� cdadr x Function

(cdadr x) is the same as (cdr (car (cdr x)))�

� cdar x Function

(cdar x) is the same as (cdr (car x))�

� cddaar x Function

(cddaar x) is the same as (cdr (cdr (car (car x))))�

� cddadr x Function

(cddadr x) is the same as (cdr (cdr (car (cdr x))))�

� cddar x Function

(cddar x) is the same as (cdr (cdr (car x)))�

� cdddar x Function
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(cdddar x) is the same as (cdr (cdr (cdr (car x))))�

� cddddr x Function

(cddddr x) is the same as (cdr (cdr (cdr (cdr x))))�

� cdddr x Function

(cdddr x) is the same as (cdr (cdr (cdr x)))�

� cddr x Function

(cddr x) is the same as (cdr (cdr x))�

� cdr x Function

Returns the tail (cdr) of list or cons x. Example:

(cdr ’(a b c)) => (b c)�

(setq a ’(1 (first second third) c d)=> 

=> (1 (FIRST SECOND THIRD) C D))

(setq b (cdr a))

=> ((FIRST SECOND THIRD) C D)

(cdr (car b)) 

=> (SECOND THIRD)�

Officially cdr is applicable only to conses and locatives. However, as a matter of

convenience, cdr of nil returns nil.

For a table of related items: See the section "Functions for Extracting from Lists".

� ceiling number &optional (divisor 1) Function

Divides number by divisor, and truncates the result toward positive infinity. The

truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a divisor is

exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, (+ (* Q divisor) R) equals number. If divi-

sor is 1, then Q and R add up to number. If divisor is 1 and number is an integer,

then the returned values are number and 0.

The first returned value is always an integer. The second returned value is inte-

gral if both arguments are integers, is rational if both arguments are rational, and

is floating-point if either argument is floating-point. If only one argument is speci-

fied, then the second returned value is always a number of the same type as the

argument.
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Examples:

(ceiling 5) => 5 and 0�

(ceiling -5) => -5 and 0�

(ceiling 5.2) => 6 and -0.8000002�

(ceiling -5.2) => -5 and -0.19999981�

(ceiling 5.8) => 6 and -0.19999981�

(ceiling -5.8) => -5 and -0.8000002�

(ceiling 5 3) => 2 and -1�

(ceiling -5 3) => -1 and -2�

(ceiling 5 4) => 2 and -3�

(ceiling -5 4) => -1 and -1�

(ceiling 5.2 3) => 2 and -0.8000002�

(ceiling -5.2 3) => -1 and -2.1999998�

(ceiling 5.2 4) => 2 and -2.8000002�

(ceiling -5.2 4) => -1 and -1.1999998�

(ceiling 5.8 3) => 2 and -0.19999981�

(ceiling -5.8 3) => -1 and -2.8000002�

(ceiling 5.8 4) => 2 and -2.1999998�

(ceiling -5.8 4) => -1 and -1.8000002�

For a table of related items: See the section "Functions that Divide and Convert

Quotient to Integer".

� cerror optional-condition-name continue-format-string error-format-string &rest args 

Function

Signals proceedable (continuable) errors. Like error, it signals an error and enters

the Debugger. However, cerror allows the user to continue program execution

from the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns nil. The

code following the call to cerror is then executed. This code should correct the

problem, perhaps by accepting a new value from the user if a variable was invalid.

If the code that corrects the problem interacts with the program’s use and might

possibly be misleading, it should make sure the error has really been corrected be-

fore continuing. One way to do this is to put the call to cerror and the correction

code in a loop, checking each time to see if the error has been corrected before

terminating the loop.

Compatibility Note: Optional-condition-name is a Symbolics Common Lisp exten-

sion, which allows you to specify a particular flavor error.

The continue-format-string argument, like the error-format-string argument, is given

as a control string to format along with args to construct a message string. The

error message string is used in the same way that error uses it. The continue

message string should describe the effect of continuing. The message is displayed

as an aid to the user in deciding whether and how to continue. For example, it

might be used by an interactive debugger as part of the documentation of its

"continue" command.
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The content of the continue message should adhere to the rules of style for error

messages. 

In complex cases where the error-format-string uses some of the args and the con-

tinue-format-string uses others, it may be necessary to use the format directives ~*

and ~�

to skip over unwanted arguments in one or both of the format control strings.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables".

� clos:change-class instance new-class Generic Function

Changes the class of the existing instance to new-class, and returns the modified

instance. The modified instance is eq to the original instance.

instance The instance whose class is to be changed.

new-class The desired class of the instance. This can be the name of a

class or a class object.�

clos:change-class modifies the structure of the instance to be correct for the new

class. It does the following:

• Adds local slots: For any local slot defined by the new class that is not defined

by the previous class, that slot is added to the instance.

• Deletes local slots: For any local slot defined by the previous class that is not

defined by the new class, that slot is deleted from the instance.

• Retains the values of local slots: For any local slot defined by both the previous

and the new class, the instance retains the value of that slot. If the slot was

unbound, it remains unbound.

• Retains the values of slots defined as shared in the previous class and local in

the new class.

• Replaces the values of slots defined as local in the previous class and shared in

the new class; the instance now "sees" the value of the shared slot. �

Next, clos:change-class initializes newly added slots according to their initforms

by calling clos:update-instance-for-different-class with two arguments: a copy of

the instance before its class was changed (which enables methods to access the

slot values), and the modified instance. clos:change-class does not provide any ini-

tialization arguments in its call to clos:update-instance-for-different-class.

You can customize the behavior of this step by defining an after-method for

clos:update-instance-for-different-class. 

See the section "Changing the Class of a CLOS Instance".
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� change-instance-flavor instance new-flavor Function

Changes the flavor of an instance to another flavor. The result is a modified in-

stance, which is eq to the original.

For those instance variables in common (contained in the definition of the old fla-

vor and the new flavor), the values of the instance variables remain the same

when the instance is changed to the new format. New instance variables (defined

by the new flavor but not the old flavor) are initialized according to any defaults

contained in the definition of the new flavor. 

Instance variables contained by the old flavor but not the new flavor are no longer

part of the instance, and cannot be accessed once the instance is changed to the

new format. 

Instance variables are compared with eq of their names; if they have the same

name and are defined by both the old flavor (or any of its component flavors) and

the new flavor (or any of its component flavors), they are considered to be "in

common".

If you need to specify a different treatment of instance variables when the in-

stance is changed to the new flavor, you can write code to be executed at the time

that the instance is changed. See the generic function flavor:transform-instance.

Note: There are two possible problems that might occur if you use change-

instance-flavor while a process (either the current process or some other process)

is executing inside of a method. The first problem is that the method continues to

execute until completion even if it is now the "wrong" method. That is, the new

flavor of the instance might require a different method to be executed to handle

the generic function. The Flavors system cannot undo the effects of executing the

wrong method and cause the right method to be executed instead.

The second problem is due to the fact that change-instance-flavor might change

the order of storage of the instance variables. A method usually commits itself to a

particular order at the time the generic function is called. If the order is changed

after the generic function is called, the method might access the wrong memory

location when trying to access an instance variable. The usual symptom is an ac-

cess to a different instance variable of the same instance or an error "Trap: The

word #<DTP-HEADER-I nnnn> was read from location nnnn". If the garbage collector

has moved objects around in memory, it is possible to access an arbitrary location

outside of the instance.

When a flavor is redefined, the implicit change-instance-flavor that happens nev-

er causes accesses to the wrong instance variable or to arbitrary locations outside

the instance. But redefining a flavor while methods are executing might leave

those methods as no longer valid for the flavor.

We recommend that you do not use change-instance-flavor of self inside a

method. If you cannot avoid it, then make sure that the old and new flavors have

the same instance variables and inherit them from the same components. You can

do this by using mixins that do not define any instance variables of their own, and

using change-instance-flavor only to change which of these mixins are included.

This prevents the problem of accessing the wrong location for an instance variable,
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but it cannot prevent a running method from continuing to execute even if it is

now the wrong method.

A more complex solution is to make sure that all instance variables accessed after

the change-instance-flavor by methods that were called before the change-

instance-flavor are ordered (by using the :ordered-instance-variables option to

defflavor), or are inherited from common components by both the old and new

flavors. The old and new flavors should differ only in components more specific

than the flavors providing the variables. 

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� :change-properties error-p &rest properties Message

Changes the file properties of the file open on this stream. You should not use

:change-properties. Instead, use fs:change-file-properties.

If the error-p argument is t, a Lisp error is signalled. If error-p is nil and an error

occurs, the error object is returned. 

� char string index Function

Returns the character at position index of string. The count is from zero. The

character is returned as a character object; it will necessarily satisfy the predicate

string-char-p.

string must be a string.

index must be a non-negative integer less than the length of string.

Note that the array-specific function aref, and the general sequence function elt

also work on strings.

To destructively replace a character within a string, use char in conjunction with

the function setf.

Examples:

(char "a string" 1) => #\Space

(string-char-p (char "a string" 3)) => T

�

(char (make-array 4 :element-type ’character 

    :initial-element #\y) 3) => #\y

(string-char-p (char (make-array 4 :element-type ’character 

   :initial-element #\.) 2)) => T

�

(char (make-array 4 :element-type ’character 

    :initial-element #\.

    :fill-pointer 2) 1) => #\.

�
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(defvar a-string

        (make-array 10

                    :element-type ’string-char

                    :fill-pointer t

                    :initial-element #\a))

 => "aaaaaaaaaa"

�

(char a-string 0) => #\a

�

(setf (char a-string 1) #\b) => #\b

�

a-string => "abaaaaaaaa"

�

(char a-string 1) => #\b�

Because a-string is not a simple string, char rather than schar is used to access

elements of the string.

For a table of related items: See the section "String Access and Information". 

� char≠ char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If all of the arguments are

equal, nil is returned, otherwise t. 

(char/= #\A #\A #\A) => NIL

(char/= #\A #\B #\C) => T�

char≠ can be used in place of user::char////=.

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

� char≤ char &rest chars Function

This predicate compares characters exactly, depending on all fields including code,

bits, character style, and alphabetic case. If each of the arguments is equal to or

less than the next, t is returned, otherwise nil. 

(char<= #\A #\B #\C)  => T

(char<= #\C #\B #\A) => NIL

(char<= #\A #\A) => T�

char≤ can be used instead of char<=. 

� char≥ char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If each of the arguments is

equal to or greater than the next, t is returned, otherwise nil. 
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(char>= #\C #\B #\A) => T

(char>= #\A #\A) => T

(char>= #\A #\B #\C)  => NIL�

char≥ can be used instead of char>=.

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

� char/= char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If all of the arguments are

equal, nil is returned, otherwise t. 

(char/= #\A #\A #\A) => NIL

(char/= #\A #\B #\C) => T�

char≠ can be used in place of user::char////=.

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

� char< char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If all of the arguments are

ordered from smallest to largest, t is returned, otherwise nil. 

(char< #\A #\B #\C) => T

(char< #\A #\A) => NIL

(char< #\A #\C #\B) => NIL�

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

� char<= char &rest chars Function

This predicate compares characters exactly, depending on all fields including code,

bits, character style, and alphabetic case. If each of the arguments is equal to or

less than the next, t is returned, otherwise nil. 

(char<= #\A #\B #\C)  => T

(char<= #\C #\B #\A) => NIL

(char<= #\A #\A) => T�

char≤ can be used instead of char<=. 

� char= char &rest chars Function
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This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If all of the arguments are

equal, t is returned, otherwise nil. 

(char= #\A #\A #\A) => T

(char= #\A #\B #\C) => NIL�

For a table of related items, see the section "Character Comparisons Affected by

Case and Style".

� char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If all of the arguments are

ordered from largest to smallest, t is returned, otherwise nil. 

(char> #\C #\B #\A) => T

(char> #\A #\A) => NIL

(char> #\A #\B #\C) => NIL�

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

� char>= char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-

cluding code, bits, character style, and alphabetic case. If each of the arguments is

equal to or greater than the next, t is returned, otherwise nil. 

(char>= #\C #\B #\A) => T

(char>= #\A #\A) => T

(char>= #\A #\B #\C)  => NIL�

char≥ can be used instead of char>=.

For a table of related items, see the section "Character Comparisons Affected by

Case and Style". 

� character Type Specifier

character is the type specifier symbol for the the predefined Lisp character data

type.

The types character, cons, symbol, and array are pairwise disjoint.

The type character is a supertype of the type string-char.

Examples:
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(typep #\0 ’character) => T

(zl:typep #\~) => :CHARACTER

(characterp #\A) => T

(characterp (character "l")) => T

(sys:type-arglist ’character) => NIL and T�

See the section "Data Types and Type Specifiers". See the section "Characters".

� character x�

Function

Coerces x to a single character. If x is a character, it is returned. If x is a string,

an array, or a symbol, an error is returned. If x is a number, the number is con-

verted to a character using int-char. See the section "The Character Set".

For a table of related items, see the section "Character Conversions".

� characterp object Function

Returns t if object is a character object. See the section "Type Specifiers and Type

Hierarchy for Characters".

(setq foo ’(#\c 44 "h"))

(characterp foo) => nil

(characterp (car foo)) => t

(characterp (cadr foo)) => nil

(characterp (caddr foo)) => nil�

Note in the previous example that "h" is not a character, but a string.

(characterp (aref "h" 0)) => t�

For a table of related items: See the section "Character Predicates". 

� :characters Message

Returns t if the stream is a character stream, nil if it is a binary stream. 

� dbg:*character-style-for-bug-mail-prologue* Variable

Creates the bug-report banner inserted into the text of bug messages, enabling you

to choose the font. The default is NIL.NIL.TINY, specifying a small font for the

bug-report banner.

To display a bug-report banner in a small font you can type the following:

  (setq dbg:*character-style-for-bug-mail-prologue*

        (si:character-style-for-device-font ’fonts:quantum si:*b&w-screen*))  

To display a bug-report banner in a large font you can type the following:

  (setq dbg:*character-style-for-bug-mail-prologue*

        (si:parse-character-style ’(nil nil :huge)))
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You can also type the following to specify a particular font:

  (setq dbg:*character-style-for-bug-mail-prologue* ’(nil nil :huge))

� char-bit char name Function

Returns t if the bit specified by name is set in char; otherwise it returns nil. name

can be :control, :meta, :super, or :hyper. You can use setf on char-bit access-

form name.

(char-bit #\c-A :control) => T

(char-bit #\h-c-A :hyper) => T

(char-bit #\h-c-A :meta) => NIL

(setq char #\D)

(char-bit (set-char-bit char :control t) :control) => t

(char-bit char :control) => nil�

For a table of related items, see the section "Character Fields".

� char-bits char Function

Returns the bits field of char. You can use setf on (char-bits access-form). 

(char-bits #\c-A) => 1

(char-bits #\h-c-A) => 9

(char-bits #\m-c-A) => 3

(char-bits #\Control-D) => 1

(char-bits #\D) => 0�

For a table of related items, see the section "Character Fields".

� char-bits-limit Constant

The value of char-bits-limit is a non-negative integer that is the upper limit for

the value in the bits field. Its value is 16.

(if (= char-bits-limit 1)

  (setq *no-bits* t)

  (setq *no-bits* nil))�

For a table of related items: See the section "Character Attribute Constants".

� char-code char Function

Returns the code field of char.

(char-code #\A) => 65

(char-code #\&) => 38�

For a table of related items, see the section "Character Fields".
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� char-code-limit Constant

The value of char-code-limit is a non-negative integer that is the upper limit for

the number of character codes that can be used. Its value is 65536.

(let ((intnum (read stream))

      (bits (read stream)))

  (if (> intnum char-code-limit)

    (error "Cannot make ~A a character code" intnum)

    (code-char intnum bits)))�

For a table of related items: See the section "Character Attribute Constants".

� char-control-bit Constant

The value of char-control-bit is the weight of the control bit, which is 1. 

For a table of related items: See the section "Character Bit Constants".

� char-downcase char Function

If char is an uppercase alphabetic character in the standard character set, char-

downcase returns its lowercase form; otherwise, it returns char. If character style

information is present it is preserved. In no case will the font or bits attribute val-

ues differ from those of char.

(char-downcase #\A) => #\a

(char-downcase #\A) => #\a

(char-downcase #\3) => #\3

(char-downcase #\a) => #\a�

For a table of related items, see the section "Character Conversions".

� char-equal char &rest chars Function

This is the primitive for comparing characters for equality; many of the string

functions call it. char and chars must be characters; they cannot be integers. char-

equal compares code and bits, ignores case and character style, and returns t if

the characters are equal. Otherwise it returns nil.

(char-equal #\A #\A) => T

(char-equal #\A #\Control-A) => NIL

(char-equal #\A #\B #\A) => NIL�

Compatibility Note: Common Lisp specifies that char-equal should ignore bits.

This difference is incompatible. Under CLOE, lisp:char-equal ignores the bits at-

tribute of the character arguments. 

For a table of related items, see the section "Character Comparisons Ignoring Case

and Style".
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� char-fat-p char Function

Returns t if char is a fat character, otherwise nil. char must be a character object.

A character that contains non-zero bits or style information is called a fat charac-

ter. See the section "Type Specifiers and Type Hierarchy for Characters".

(char-fat-p #\A) => NIL

(char-fat-p #\c-A) => T

(char-fat-p (make-character #\A :style ’(nil :bold nil))) => T�

For a table of related items: See the section "Character Predicates". 

� char-flipcase char Function

If char is a lowercase alphabetic character in the standard character set, char-

flipcase returns its uppercase form. If char is an uppercase alphabetic character in

the standard character set, char-flipcase returns its lowercase form. Otherwise, it

returns char. If character style information is present it is preserved.

(char-flipcase #\X) => #\x

(char-flipcase #\b) => #\B�

For a table of related items, see the section "Character Conversions".

� char-font char Function

Returns the font field of the character object specified by char. Genera characters

do not have a font field so char-font always returns zero for character objects.

Genera does not support the Common Lisp concept of fonts, but supports the char-

acter style system instead. See the section "Character Styles". To find out the

character style of a character, use si:char-style: See the function si:char-style.

The only reason to use char-font would be when writing a program intended to be

portable to other Common Lisp systems.

(char-font #\A) => 0�

For a table of related items: See the section "Character Fields".

� char-font-limit Constant

The value of char-font-limit is the upper exclusive limit for the value of values of

the font bit. Genera characters do not have a font field so the value of char-font-

limit is 1. Genera does not support the Common Lisp concept of fonts, but sup-

ports the y character style system instead. See the section "Character Styles".

(if (= char-font-limit 1)

  (setq *no-fonts* t)

  (setq *no-fonts* nil))�

For a table of related items: See the section "Character Attribute Constants".
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� char-greaterp char &rest chars Function

Compares characters for order; many of the string functions call it. char and chars

must be characters; they cannot be integers. The result is t if char comes after

chars ignoring case and style, otherwise nil. See the section "The Character Set".

Details of the ordering of characters are in that section.

This function compares the code and bits fields and ignores character style and

distinctions of alphabetic case. 

(char-greaterp #\A #\B #\C) => NIL 

(char-greaterp #\A #\B #\B) => T�

Compatibility Note: Common Lisp specifies that char-greaterp should ignore bits.

This difference is incompatible. 

For a table of related items, see the section "Character Comparisons Ignoring Case

and Style". 

� char-hyper-bit Constant

The name for the hyper bit attribute. The value of char-hyper-bit is 8.

For a table of related items: See the section "Character Bit Constants". 

� char-int char Function

Returns the character as an integer, including the fields that contain the charac-

ter’s code (which itself contains the character’s set and subindex into that charac-

ter set), bits, and style.

(char-int #\a) => 97 

(char-int #\8) => 56

(char-int #\c-m-A) => 50331713 ;under Genera 

(char-int 

   (make-character #\a :style ’(nil :bold nil))) => 65633 ;under Genera

�

(char-int #\A) => 65

�

(eq (< (char-int char1) (char-int char2))

    (char< char1 char2))

�

 => T

�

(defvar char-arr (make-array 512))

(setf (elt char-arr (char-int #\a)) ’first)�

For a table of related items, see the section "Character Conversions".

� char-lessp char &rest chars Function
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This primitive compares characters for order; many of the string functions call it.

char and chars must be characters; they cannot be integers. The result is t if char

comes before chars ignoring case and style, otherwise nil. See the section "The

Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character

style and distinctions of alphabetic case. 

(char-lessp #\A #\B #\C) => T 

(char-lessp #\A #\B #\B) => NIL �

Compatibility Note: Common Lisp specifies that char-lessp should ignore bits.

This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case

and Style". 

� char-meta-bit Constant

The name for the meta bit attribute. The value of char-meta-bit is 2.

For a table of related items: See the section "Character Bit Constants". 

� char-mouse-button char Function

Returns the number corresponding to the mouse button that would have to be

pushed to generate char. 0, 1, and 2 correspond to the Left, Middle, and Right

mouse buttons, respectively.

Example:

(char-mouse-button #\m-mouse-m) ==>

1�

The complementary function is make-mouse-char. 

� char-mouse-equal char1 char2 Function

Returns t if the mouse characters char1 and char2 are equal, nil otherwise. char-

mouse-equal checks that its arguments are really mouse characters and signals an

error otherwise. You can also use eql, which is slightly faster, to compare mouse

characters, when you do not require the argument checking. 

� char-name char Function

char must be a character object. char-name returns the name of the object (a

string) if it has one. If the character has no name, or if it has non-zero bits or a

character style other than NIL.NIL.NIL, nil is returned. 

(char-name #\Tab) => "Tab"

(char-name #\Space) => "Space"

(char-name #\A) => NIL �



Page 933

For a table of related items, see the section "Character Names".

� char-not-equal char &rest chars Function

This primitive compares characters for non-equality; many of the string functions

call it. char and chars must be characters; they cannot be integers. char-equal

compares code and bits, ignores case and character style, and returns t if the

characters are not equal. Otherwise it returns nil.

(char-not-equal #\A #\B) => T

(char-not-equal #\A #\c-A) => T

(char-not-equal #\A #\A) => NIL

(char-not-equal #\a #\A) => NIL�

Compatibility Note: Common Lisp specifies that char-not-equal should ignore

bits. This difference is incompatible. 

For a table of related items, see the section "Character Comparisons Ignoring Case

and Style".

� char-not-greaterp char &rest chars Function

This primitive compares characters for order; many of the string functions call it.

char and chars must be characters; they cannot be integers. The result is t if char

does not come after chars ignoring case and style, otherwise nil. See the section

"The Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character

style and distinctions of alphabetic case. 

(char-not-greaterp #\A #\B) => T

(char-not-greaterp #\a #\A) => T

(char-not-greaterp #\A #\a) => T 

(char-not-greaterp #\A #\A) => T �

For a table of related items, see the section "Character Comparisons Ignoring Case

and Style". 

� char-not-lessp char &rest chars Function

This primitive compares characters for order; many of the string functions call it.

char and chars must be characters; they cannot be integers. The result is t if char

does not come before chars ignoring case and style, otherwise nil. See the section

"The Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character

style and distinctions of alphabetic case. 

(char-not-lessp #\A #\B) => NIL

(char-not-lessp #\B #\b) => T

(char-not-lessp #\A #\A) => T �
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For a table of related items, see the section "Character Comparisons Ignoring Case

and Style". 

� si:char-style char Function

Returns the character style of the character object specified by char. The returned

value is a character style object. 

(si:char-style #\a) 

=> #<CHARACTER-STYLE NIL.NIL.NIL 204004146>

�

(si:char-style (make-character #\a :style ’(:swiss :bold nil)))

=> #<CHARACTER-STYLE SWISS.BOLD.NIL 116035602>�

For a table of related items: See the section "Character Fields". 

� sys:char-subindex char Function

Returns the subindex field of char as an integer.

For a table of related items, see the section "Character Fields". 

� char-super-bit Constant

The name for the super bit attribute. The value of char-super-bit is 4.

For a table of related items: See the section "Character Bit Constants". 

� char-to-ascii ch Function

Converts the character object ch to the corresponding ASCII code. This function

works only for characters with neither bits nor style.

char-to-ascii performs an inverse mapping of the function ascii-to-char, and this

mapping embeds the ASCII character character set in the Symbolics character set

in an invertible way. There is no attempt to map more obscure ASCII control

codes into the also obscure and unrelated Symbolics control codes. For example,

Escape, is a character in the Symbolics character set corresponding to the key

marked Escape. The ASCII code Escape is not the same as the Symbolics Escape.

See the function ascii-to-char. See the function ascii-code. See the section "ASCII

Conversion String Functions".

It is an error to give char-to-ascii anything other than one of the 95 standard

ASCII printing characters. To get the ASCII code of one of the other characters,

use ascii-code, and give it the correct ASCII name. 

The functions char-to-ascii and ascii-to-char provide the primitive conversions

needed by ASCII-translating streams. They do not translate the Return character

into a CR-LF pair; the caller must handle that. They just translate #\Return into

CR and #\Line into LF. Except for CR-LF, char-to-ascii and ascii-to-char are

wholly compatible with the ASCII-translating streams.



Page 935

They ignore Symbolics control characters; the translation of #\c-G is the ASCII

code for G, not the ASCII code to ring the bell, also known as "control G." (ascii-

to-char (ascii-code "BEL")) is #\π, not #\c-G. The translation from ASCII to char-

acter never produces a Symbolics control character. 

For a table of related items, see the section "ASCII Characters". 

� char-upcase char Function

If char, which must be a character, is a lowercase alphabetic character in the

standard character set, char-upcase returns its uppercase form; otherwise, it re-

turns char. In Genera, if character style information is present, it is preserved. In

no case will the font or bits attribute values differ from those of char.

(char-upcase #\a) => #\A

(char-upcase #\a) => #\A

(char-upcase #\3) => #\3

(char-upcase #\A) => #\A�

For a table of related items, see the section "Character Conversions".

� zl:check-arg arg-name predicate-or-form type-string�

Macro

Checks arguments to make sure that they are valid. A simple example is:

(zl:check-arg foo stringp "a string")�

foo is the name of an argument whose value should be a string. stringp is a pred-

icate of one argument, which returns t if the argument is a string. "A string" is

an English description of the correct type for the variable.

The general form of zl:check-arg is

(zl:check-arg var-name

           predicate

           description)�

var-name is the name of the variable whose value is of the wrong type. If the er-

ror is proceeded this variable is setq’ed to a replacement value. predicate is a test

for whether the variable is of the correct type. It can be either a symbol whose

function definition takes one argument and returns non-nil if the type is correct,

or it can be a nonatomic form which is evaluated to check the type, and presum-

ably contains a reference to the variable var-name. description is a string which

expresses predicate in English, to be used in error messages.

The predicate is usually a symbol such as zl:fixp, stringp, zl:listp, or zl:closurep,

but when there isn’t any convenient predefined predicate, or when the condition is

complex, it can be a form. For example:
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(defun test1 (a)

  (zl:check-arg a

     (and (numberp a) (≤ a 10.) (> a 0.))

     "a number from one to ten")

  ...)�

If test1 is called with an argument of 17, the following message is printed:

The argument A to TEST1, 17, was of the wrong type.

The function expected a number from one to ten.�

In general, what constitutes a valid argument is specified in two ways in a

zl:check-arg. description is human-understandable and predicate is executable. It is

up to the user to ensure that these two specifications agree.

zl:check-arg uses predicate to determine whether the value of the variable is of

the correct type. If it is not, zl:check-arg signals the sys:wrong-type-argument

condition. See the flavor sys:wrong-type-argument.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� zl:check-arg-type arg-name type &optional type-string Macro

A useful variant of the zl:check-arg form. A simple example is:

(zl:check-arg-type foo :number)�

foo is the name of an argument whose value should be a number. :number is a

value which is passed as a second argument to zl:typep; that is, it is a symbol

that specifies a data type. The English form of the type name, which gets put into

the error message, is found automatically.

The general form of zl:check-arg-type is:

(zl:check-arg-type var-name

                   type-name

                   description)�

var-name is the name of the variable whose value is of the wrong type. If the er-

ror is proceeded this variable is setq’ed to a replacement value. type-name de-

scribes the type which the variable’s value ought to have. It can be exactly those

things acceptable as the second argument to zl:typep. description is a string which

expresses predicate in English, to be used in error messages. It is optional. If it is

omitted, and type-name is one of the keywords accepted by zl:typep, which de-

scribes a basic Lisp data type, then the right description is provided correctly. If it

is omitted and type-name describes some other data type, then the description is

the word "a" followed by the printed representation of type-name in lowercase.

The Common Lisp equivalent of zl:check-arg-type is the macro:

check-type

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 
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� check-type place type &optional (type-string ’nil) Macro

Signals an error if the contents of place are not of the desired type. If you contin-

ue from this error, you will be asked for a new value; check-type stores the new

value in place and starts over, checking the type of the new value and signalling

another error if it is still not of the desired type. Subforms of place can be evalu-

ated multiple times because of the implicit loop generated. check-type returns nil.

place must be a generalized variable reference acceptable to the macro setf.

type must be a type specifier; it is not evaluated. For standard Symbolics Common

Lisp type specifiers, see the section "Type Specifiers".

type-string should be an English description of the type, starting with an indefinite

article ("a" or "an"); it is evaluated. If type-string is not supplied, it is computed

automatically from type. This optional argument is allowed because some applica-

tions of check-type may require a more specific description of what is wanted

than can be generated automatically from the type specifier.

The error message mentions place, its contents, and the desired type.

Examples:

(setq bees ’(bumble wasp jacket)) => (BUMBLE WASP JACKET)

(check-type bees (vector integer )) 

=> Error : The value of BEES in SI:*EVAL, (BUMBLE WASP JACKET), 

             was of the wrong type.

           The function expected a vector whose typical element 

             is an integer.

(setq naards ’foo) => FOO

(check-type naards (integer 0 *) "a positive integer")

=> Error : The value of NAARDS in SI:*EVAL, FOO, was of the wrong 

             type.

           The function expected a positive integer.�

In CLOE, if a condition is signalled, handlers of this condition can use the func-

tions type-error-object and type-error-expected-type to access the contents of

place and the typespec, respectively.

Compatibility Note: In Zetalisp, the equivalent facility is called user::check-arg-

type.

See the section "Data Types and Type Specifiers". 

Using check-type in CLOE

In CLOE, if store-value is called, check-type will store the new value which is

the argument to store-value (or which is prompted for interactively by the debug-

ger) in place and start over, checking the type of the new value and signalling an-

other error if it is still not the desired type. Subforms of place may be evaluated

multiple times because of the implicit loop generated. check-type returns nil.

Here’s an example of using check-type in CLOE:
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 Lisp> (SETQ AARDVARKS ’(SAM HARRY FRED))

 → (SAM HARRY FRED)

 Lisp> (CHECK-TYPE AARDVARKS (ARRAY * (3)))

 Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a 3-long array.

  1: Specify a value to use instead.

  2: Return to Lisp Toplevel.

 Debug> :1

 Use Value: #(SAM FRED HARRY)

 → NIL

 Lisp> AARDVARKS

 → #<ARRAY-T-3 13571>

 Lisp> (MAP ’LIST #’IDENTITY AARDVARKS)

 → (SAM FRED HARRY)

 Lisp> (SETQ AARDVARK-COUNT ’FOO)

 → FOO

 Lisp> (CHECK-TYPE AARDVARK-COUNT (INTEGER 0 *) "a positive integer")

 Error: The value of AARDVARK-COUNT, FOO, is not a positive integer.

  1: Specify a value to use instead.

  2: Return to Lisp Toplevel.

 Debug> :2

 Lisp> �

� circular-list &rest args Function

Constructs a circular list whose elements are args, repeated infinitely. circular-list

is the same as list except that the list itself is used as the last cdr, instead of nil.

circular-list returns a circular list, repeating its elements infinitely. circular-list

is especially useful with mapcar, as in the expression:

(mapcar (function +) foo (circular-list 5))�

which adds each element of foo to 5. circular-list could have been defined by:

(defun circular-list (&rest elements)

  (setq elements (copylist* elements))

  (rplacd (last elements) elements)

  elements)�

circular-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� cis radians Function

This function can be defined by:

(defun cis (radians)

  (complex (cos radians) (sin radians)))�
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radians must be a noncomplex number.

(signum #c(x y)) → (cis (phase #c(x y)))�

Mathematically, this is equivalent to ei * radians.

For a table of related items: See the section "Trigonometric and Related

Functions".

� clos:class-name class-object Generic Function

Returns the name of the class object. You can use setf with clos:class-name to set

the name of the class object.

class-object A class object.�

If the class object has no name, nil is returned. 

� clos:class-of object Function

Returns the class of the given object. The returned value is a class object.

object Any Lisp object.�

� (flavor:method :clear si:heap) Method

Remove all of the entries from the heap.

For a table of related items: See the section "Heap Functions and Methods". 

� :clear-hash Message

Removes all of the entries from the hash table. This message is obsolete; use

clrhash instead. 

� clear-input &optional input-stream Function

Clears any buffered input associated with input-stream. It is primarily useful for

removing type-ahead from keyboards when some kind of asynchronous error has

occurred. If this operation doesn’t make sense for the stream involved, then clear-

input does nothing. clear-input returns nil.

(let ((c (read-char)))

  (list (peek-char)

(progn (clear-input) (read-char-no-hang))))xy

=> (#\x NIL)�

� :clear-input Message
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The stream clears any buffered input. If the stream does not handle this, the de-

fault handler ignores it. 

� clear-output &optional output-stream Function

Some streams are implemented in an asynchronous, or buffered, manner. clear-

output attempts to abort any outstanding output operation in progress in order to

allow as little output as possible to continue to the destination. This is useful, for

example, to abort a lengthy output to the terminal when an asynchronous error

occurs. clear-output returns nil.

output-stream, if unspecified or nil, defaults to *standard-output*, and if t, is

*terminal-io*.

� :clear-output Message

The stream clears any buffered output. If the stream does not handle this, the de-

fault handler ignores it. 

� :clear-rest-of-line Message

Erases from the current position to the end of the current line. This message is

supported by all terminal streams and windows.

:clear-rest-of-line replaces the obsolete message :clear-eol. 

� :clear-rest-of-window Message

Erases from the current position to the end of the current window. This message

is supported by all windows. Non-window streams do not support this operation. 

� :clear-window Message

Erases the window on which this stream displays. Non-window streams do not sup-

port this operation.

:clear-window replaces the obsolete message :clear-screen. 

� :close &optional mode Message

The stream is "closed", and no further operations should be performed on it; you

can, however, :close a closed stream. If the stream does not handle :close, the de-

fault handler ignores it.

The mode argument is normally not supplied. If it is :abort, we are abnormally ex-

iting from the use of this stream. If the stream is outputting to a file, and has not

been closed already, the stream’s newly created file is deleted, as if it were never

opened in the first place. Any previously existing file with the same name remains,

undisturbed. 
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� zl:closure symbol-list function Function

Use the Symbolics Common Lisp function make-dynamic-closure, which is equiva-

lent to the function zl:closure.

zl:closure creates and returns a dynamic closure of function over the variables in

symbol-list. Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use the zl:closurep predicate. See

the section "Predicates". The typep function returns the symbol zl:closure if given

a dynamic closure. (typep x :closure) is equivalent to (zl:closurep x).

See the section "Dynamic Closure-Manipulating Functions". 

� zl:closure-alist closure Function

Use the Symbolics Common Lisp function dynamic-closure-alist, which is equiva-

lent to the function zl:closure-alist.

Returns an alist of (symbol . value) pairs describing the bindings which the dy-

namic closure performs when it is called. This list is not the same one that is ac-

tually stored in the closure; that one contains pointers to value cells rather than

symbols, and zl:closure-alist translates them back to symbols so you can under-

stand them. As a result, clobbering part of this list does not change the closure.

If any variable in the closure is unbound, this function signals an error.

See the section "Dynamic Closure-Manipulating Functions". 

� closure-function closure Function

Returns the closed function from the dynamic closure closure. This is the function

that was the second argument to zl:closure when the dynamic closure was created.

See the section "Dynamic Closure-Manipulating Functions". 

� zl:closure-variables closure Function

Use the Symbolics Common Lisp function function dynamic-closure-variables,

which is equivalent to the function zl:closure-variables.

Creates and returns a list of all of the variables in the dynamic closure closure. It

returns a copy of the list that was passed as the first argument to zl:closure when

closure was created.

See the section "Dynamic Closure-Manipulating Functions". 

� zl:closurep x Function

Returns t if its argument is a closure, otherwise nil. 

� clrhash table Function
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Removes all of the entries from table and returns the hash table itself.

(hash-table-count (clrhash old-hash-table)) => 0�

For a table of related items: See the section "Table Functions".

� zl:clrhash-equal hash-table Function

Removes all of the entries from hash-table. This function is obsolete; use clrhash

instead. 

� sys:cl-structure-printer structure-name object stream depth Macro

Expands into an efficient function that prints a given structure object of type struc-

ture-name to the specified stream in #S format. It depends on the information cal-

culated by defstruct, and so is only useful after the defstruct form has been com-

piled. This macro enables a structure print function to respect the variable *print-

escape*. 

(defstruct (foo

     (:print-function foo-printer))

  a b c)

�

(defun foo-printer (object stream depth)

  (if *print-escape* 

      (sys:cl-structure-printer foo object stream depth) 

      other-printing-strategy))�

For a table of related items: See the section "Functions Related to defstruct Struc-

tures". 

� code-char code &optional (bits 0) (font 0) Function

Constructs a character given its code field. code, bits, and font must be non-

negative integers. If code-char cannot construct a character given its arguments,

it returns nil. 

To set the bits of a character, supply one of the character bits constants as the

bits argument. See the section "Character Bit Constants".

For example: 

(code-char 65 char-control-bit) => #\c-A

(char-code 65) => #\A

(char-code 65 4) => #\Super-A�

Since the value of char-font-limit is 1, the only valid value of font is 0. The only

reason to use the font option would be when writing a program intended to be

portable to other Common Lisp systems.

In Genera, to construct a new character that has character style other than

NIL.NIL.NIL, use make-character. See the function make-character.
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For a table of related items, see the section "Making a Character".

� coerce object result-type Function

Converts an object to an equivalent object of another type.

object is a Lisp object.

result-type must be a type-specifier; object is converted to an equivalent object of

the specified type. If object is already of the specified type, as determined by

typep, it is returned.

If the coercion cannot be performed, an error is signalled. In particular, (coerce x

nil) always signals an error.

Example:

(coerce ’x nil)

  => Error: I don’t know how to coerce an object to nothing�

It is not generally possible to convert any object to be of any type whatsoever; only

certain conversions are allowed:

Any sequence type can be converted to any other sequence type, provided the new

sequence can contain all actual elements of the old sequence (it is an error if it

cannot). If the result-type is specified as simply array, for example, then array t is

assumed. A specialized type such as string or (vector (complex short-float)) can

be specified;

Examples:

(coerce ’(a b c) ’vector) => #(A B C)

(coerce ’(a b c) ’array) => #(A B C)

(coerce #*101 ’(vector (complex short-float))) => #(1 0 1)

(coerce #(4 4) ’number) 

 => Error: I don’t know how to coerce an object to a number�

Elements of the new sequence will be eql to corresponding elements of the old se-

quence. Note that elements are not coerced recursively. If you specify sequence as

the result-type, the argument can simply be returned without copying it, if it al-

ready is a sequence.

Examples:

(coerce #(8 9) ’sequence) => #(8 9)

(eql (coerce #(1 2) ’sequence) #(1 2)) => NIL

(equalp (coerce #(1 2) ’sequence) #(1 2)) => T�

In this respect, (coerce sequence type) differs from (concatenate type sequence),

since the latter is required to copy the argument sequence. 

Some strings, symbols, and integers can be converted to characters. If object is a

string of length 1, the sole element of the string is returned. If object is a symbol

whose print name is of length 1, the sole element of the print name is returned. If

object is an integer n, (int-char n) is returned.
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Examples:

(coerce "b" ’character)  => #\b

(coerce "ab" ’character)

=> Error: "AB" is not one character long.

(coerce ’a ’character) => #\A

(coerce ’ab ’character) 

 => Error: "AB" is not one character long.

(coerce 65 ’character) => #\A

(coerce 150 ’character) => #\Circle�

Any non-complex number can be converted to a short-float, single-float double-

float, or long-float. If simply float is specified as the result-type and if object is

not already a floating-point number of some kind, object is converted to a single-

float.

Examples:

(coerce 0 ’short-float) => 0.0

(coerce 3.5L0 ’float) => 3.5d0

(coerce 7/2 ’float) => 3.5�

Any number can be converted to a complex number. If the number is not already

complex, a zero imaginary part is provided by coercing the integer zero to the type

of the given real part. If the given real part is rational, however, the rule of

canonicalization for complex rational numbers results in the immediate reconver-

sion of the the result type from type complex back to type rational.

Examples:

(coerce 4.5s0 ’complex) => #C(4.5 0.0)

(coerce 7/2 ’complex) => 7/2

(coerce #C(7/2 0) ’(complex double-float))

 => #C(3.5d0 0.0d0)�

Any object can be coerced to type t.

Example:

(coerce ’house ’t) => HOUSE�

is equivalent to 

(identity ’house) => HOUSE�

Coercions from floating-point numbers to rational numbers, and of ratios to inte-

gers are not supported because of rounding problems. Use one of the specialized

functions such as rational, rationalize, floor, and ceiling instead. See the section

"Numeric Type Conversions".

Similarly, coerce does not convert characters to integers; use the specialized func-

tions char-code or char-int instead.

See the section "Data Types and Type Specifiers".

� collect keyword for loop
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collect expr {into var}

Causes the values of expr on each iteration to be collected into a list. When the

epilogue of the loop is reached, var has been set to the accumulated result and

can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be

modified until the epilogue code for the loop is reached. 

The forms collect and collecting are synonymous.

Examples:

�

(defun loop1 (start end)

  (loop for x from start to end

collect x)) => LOOP1

(loop1 0 4) => (0 1 2 3 4)

�

(defun loop2 (small-list)

  (loop for x from 0

for item in small-list

collect (list x item))) => LOOP2

(loop2 ’("one" "two" "three" "four")) 

  => ((0 "one") (1 "two") (2 "three") (3 "four"))�

The following examples are equivalent.

�

(defun loop3 (small-list)

  (loop for x from 0

for item in small-list

collect x into result-1

collect item into result-2

finally (print (list result-1 result-2)))) => LOOP3

(loop3 ’(a b c d e f))  => 

((0 1 2 3 4 5) (A B C D E F)) NIL

�

(defun loop3 (small-list)

  (loop for x from 0

for item in small-list

collecting x into result-1

collecting item into result-2

finally (print (list result-1 result-2)))) => LOOP3

(loop3 ’(a b c d e f))  => 

((0 1 2 3 4 5) (A B C D E F)) NIL

�

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. collect, nconc, and append are compatible.

See the section "Accumulating Return Values for loop".
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� zl:comment Special Form

Ignores its form and returns the symbol zl:comment. Example:

(defun foo (x)

    (cond ((null x) 0)

          (t (comment x has something in it)

             (1+ (foo (cdr x))))))�

Usually it is preferable to comment code using the semicolon-macro feature of the

standard input syntax. This allows you to add comments to your code that are ig-

nored by the Lisp reader. Example:

(defun foo (x)

    (cond ((null x) 0)

          (t (1+ (foo (cdr x))))     ;x has something in it

      ))�

A problem with such comments is that they are discarded when the form is read

into Lisp. If the function is read into Lisp, modified, and printed out again, the

comment is lost. However, this style of operation is hardly ever used; usually the

source of a function is kept in an editor buffer and any changes are made to the

buffer, rather than the actual list structure of the function. Thus, this is not a

real problem.

See the section "Functions and Special Forms for Constant Values".

� common Type Specifier

This is the type specifier symbol denoting an exhaustive union of the following

Common Lisp data types:

cons, symbol

(array x), where x is either t or a subtype of common

string, fixnum, bignum, ratio, short-float,

single-float, double-float long-float

(complex x) where x is a subtype of common

standard-char, hash-table, readtable, package,

pathname, stream, random-state

and all types created by the user with defstruct, or defflavor.�

The type common is a subtype of type t. 

Examples:

(typep ’#c(3 4) ’common)  => T

�

(subtypep ’common t) => T and T

 

(commonp ’cons) => T

�

(sys:type-arglist ’common) => NIL and T
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�

(setq four

    (let ((x 4))

      (closure ’(x) ’zerop))) => #<DTP-CLOSURE 1510647>

�

(typep four ’sys:dynamic-closure) => T

�

(subtypep ’sys:dynamic-closure ’common) => NIL and NIL

�

See the section "Data Types and Type Specifiers".

� commonp object�

Function

Returns true if object is a standard Common Lisp data object; otherwise, returns

false. However, some standard Common Lisp data objects (such as characters with

one or more bits attributes set) and function objects are not included in type

common. All structure objects are of type common, even though their types are

defined by the user with defstruct.

(commonp x) ≡ (typep x ’common)

Examples:

(commonp 1.5d9) => T

(commonp 1.0) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T  is equivalent to  (typep 4 ’common) => T�

See the section "Data Types and Type Specifiers".

See the section "Predicates".

� commonp object�

Function

Returns true if object is a standard Common Lisp data object; otherwise, returns

false. However, some standard Common Lisp data objects (such as characters with

one or more bits attributes set) and function objects are not included in type

common. All structure objects are of type common, even though their types are

defined by the user with defstruct.

(commonp x) ≡ (typep x ’common)

Examples:
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(commonp 1.5d9) => T

(commonp 1.0) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T  is equivalent to  (typep 4 ’common) => T�

See the section "Data Types and Type Specifiers".

See the section "Predicates".

� compile-flavor-methods flavor1 flavor2... Macro

Causes the combined methods of a program to be compiled at compile-time, and

the data structures to be generated at load-time, rather than both happening at

run-time. compile-flavor-methods is thus a very good thing to use, since the need

to invoke the compiler at run-time slows down a program using flavors the first

time it is run. (The compiler is still called if incompatible changes have been

made, such as addition or deletion of methods that must be called by a combined

method.)

It is necessary to use compile-flavor-methods when you use the :constructor op-

tion for defflavor, to ensure that the constructor function is defined.

Generally, you use compile-flavor-methods by including the forms in a file to be

compiled. (The compile-flavor-methods forms can also be interpreted.) This causes

the compiler to include the automatically generated combined methods for the

named flavors in the resulting binary file, provided that all of the necessary flavor

definitions have been made. Furthermore, when the binary file is loaded, internal

data structures (such as the list of all methods of a flavor) are generated.

You should use compile-flavor-methods only for flavors that will be instantiated.

For a flavor that will never be instantiated (that is, one that only serves to be a

component of other flavors that actually do get instantiated), it is almost always

useless. The one exception is the unusual case where the other flavors can all in-

herit the combined methods of this flavor instead of each having its own copy of a

combined method that happens to be identical to the others.

The compile-flavor-methods forms should be compiled after all of the information

needed to create the combined methods is available. You should put these forms af-

ter all of the definitions of all relevant flavors, wrappers, and methods of all com-

ponents of the flavors mentioned.

In general, Flavors cannot guarantee that defmethod macro-expands correctly un-

less the flavor (and all of its component flavors) have been compiled. Therefore,

the compiler gives a warning when you try to compile a method before the flavor

and its components have been compiled. 

If you see this warning and no other warnings, it is usually the case that the fla-

vor system did compile the method correctly. 
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In complicated cases, such as a regular function and an internal flavor function

(defined by defun-in-flavor or the related functions) having the same name, the

flavor system cannot compile the method correctly. In those cases it is advisable to

compile all the flavors first, and then compile the method. 

See the function flavor:print-flavor-compile-trace.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� compiled-function Type Specifier

This is the type specifier symbol for the predefined Lisp data type compiled-

function.

Examples:

(typep (compile nil ’(lambda (a b) (+ a b))) ’compiled-function)

 => T�

(zl:typep (compile nil ’(lambda (a b) (+ a b))))

 => :COMPILED-FUNCTION�

(sys:type-arglist ’compiled-function) => NIL and T�

(compiled-function-p (compile nil ’(lambda (a) (+ a a)))) => T�

See the section "Data Types and Type Specifiers".

See the section "Functions".

� compiled-function-p x Function

Returns t if its argument is any compiled code object. 

� compiler-let bindlist &body body�

Special Form

When interpreted, a compiler-let form is equivalent to let with all variable bind-

ings declared special. When the compiler encounters a compiler-let, however, it

performs the bindings specified by the form (no compiled code is generated for the

bindings) and then compiles the body of the compiler-let with all those bindings in

effect. In particular, macros within the body of the compiler-let form are expanded

in an environment with the indicated bindings. See the section "Nesting Macros".

compiler-let allows compiler switches to be bound locally at compile time, during

the processing of the body forms. Value forms are evaluated at compile time. See

the section "Compiler Switches". In the following example the use of compiler-let

prevents the compiler from open-coding the map.

�

(compiler-let ((compiler:open-code-map-switch nil))           

  (map (function (lambda (x) ...)) foo)) �
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The body of the compiler-let form is an implicit progn; thus, the forms are evalu-

ated sequentially, and the value of the last evaluated form is returned. The differ-

ence between compiler-let and let is that the former use the bindings at the time

of semantic analysis, rather than use the bindings at execution time. For example,

causing the compiler to use the bindings while generating code for the body,

rather than generate code for the bindings. Of course, another difference is the

implicit special declaration of the bindings. In general, only embedded macrolet

and compiler-let forms can reliably recognize the bindings (though in some di-

alects these bindings may coincidentally be visible in interpreted code).

In the following example, compiler-let enables two macros which are used together

for effective communication. First, the macro with-end-push establishes a context

that points to the end of a list. Second macro push-onto-end uses the pointer to

add items to the end of the list, much as push adds to the beginning of a list. The

special variable *end-ptr* is bound to the pointer. Therefore, when push-onto-end

is expanded in the context of that binding, the appropriate pointer is employed.

(defvar *end-ptr* nil)

�

(defmacro with-end-push (list &body body)

  (let ((lastptr (gensym)))

    ‘(let ((,lastptr (last ,list)))

       (compiler-let ((*end-ptr* ’,lastptr))

 ,body))))

�

(defmacro push-onto-end (val)

  ‘(setf ,*end-ptr* (setq ,*end-ptr* (cons ,val nil))))

�

(let ((mylist (list 1 2 3))

      (a-list (list ’a ’b ’c ’d)))

  (with-end-push mylist

    (dolist (l a-list mylist)

      (push-onto-end l))))

�

 => (1 2 3 A B C D)�

The difference between compiler-let and let is only relevant when the actual code

that contains the macro with compiler-let is compiled.

See the section "Special Forms for Binding Variables".

� :complete-connection &key (timeout (* 60. 6.)) Message

This message is sent to a new stream created by :start-open-auxiliary-stream, in

order to wait for the connection to be fully established. :complete-connection is

used whether or not this side is active. 

Timeout is interpreted as the number of sixtieths of a second to wait before timing

out. 
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When :complete-connection returns, the stream is fully connected to an active

network connection. At this point, :connected-p to that stream returns t. 

:complete-connection signals an error if the connection times out or does not

complete for another reason. 

� complex &optional ( type ’* ) Type Specifier

complex is the type specifier symbol for the predefined Lisp complex number type.

The types complex, rational, and float are pairwise disjoint subtypes of the type

number.

This type specifier can be used in either symbol or list form. Used in list form,

complex allows the declaration and creation of complex numbers, whose real part

and imaginary part are each of type type.

Examples:

(typep #c(3 4) ’complex) => T�

(subtypep ’complex ’number) => T and T ;subtype and certain�

(typep ’(complex 3 4) ’common) => T  �

The expression

(complexp #c(4/5 7.0)) => T�

Is equivalent to

(typep #c(4/5 7.0) ’complex) => T�

Here is an example of using the type argument for complex:

(typep #c(3.0 4.0) ’complex) => T

�

(typep #c(3.0 4.0) ’(complex integer)) => NIL

�

(typep #c(3.0 4.0) ’(complex float)) => T

�

(typep #c(3 4) ’(complex integer)) => T

See the section "Data Types and Type Specifiers".

See the section "Numbers".

� complex realpart &optional imagpart Function

Constructs a complex number from real and imaginary noncomplex parts, applying

complex canonicalization.

If the types of the real and imaginary parts are different, the coercion rules are

applied to make them the same. If imagpart is not specified, a zero of the same

type as realpart is used. If realpart is an integer or a ratio, and imagpart is 0, the

result is realpart.

Examples:
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(complex 7) => 7

(complex 4.3 0) => #C(4.3 0.0)

(complex 2 0) => 2

(complex 3 4) => #C(3 4)

(complex 3 4.0) => #C(3.0 4.0)

(complex 3.0d0 4) => #C(3.0d0 4.0d0)

(complex 5/2 4.0d0) => #C(2.5d0 4.0d0)�

Related Functions:

realpart

imagpart�

For a table of related items: See the section "Functions that Decompose and Con-

struct Complex Numbers". 

� complexp object Function

Returns t if object is a complex number, otherwise nil. The following code tests

whether a and b are numbers. If numbers, they are added. Otherwise, we attempt

to extract complex numbers that are then tested by complexp.

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (consp a)

   (complexp (cadr a))

   (consp b)

           (complexp (cadr b)))

    (+ (cadr a) (cadr b))

    (error  "couldn’t extract complexs from ~a and ~a" a b)))�

For a table of related items, see the section "Numeric Type-checking Predicates".

� complexp object Function

Returns t if object is a complex number, otherwise nil. The following code tests

whether a and b are numbers. If numbers, they are added. Otherwise, we attempt

to extract complex numbers that are then tested by complexp.

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (consp a)

   (complexp (cadr a))

   (consp b)

           (complexp (cadr b)))

    (+ (cadr a) (cadr b))

    (error  "couldn’t extract complexs from ~a and ~a" a b)))�

For a table of related items, see the section "Numeric Type-checking Predicates".

� flavor:compose-handler generic flavor-name &key env Function
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Finds the methods that handle the specified generic operation on instances of the

specified flavor. Four values are returned:

handler-function-spec

The name of the handler, which can be a combined method, a

single method, or an instance-variable accessor.

combined-method-list

A list of function specs of all the methods called, in order of

execution; the order is approximate because of wrappers.

method-combination A list of the method combination type and parameters to it.

error nil normally, otherwise a string describing an error that oc-

curred.�

For example, to use flavor:compose-handler on the generic function change-

status for the flavor box-with-cell:

(flavor:compose-handler ’change-status ’box-with-cell)

-->(FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)

   ((FLAVOR:METHOD CHANGE-STATUS CELL) 

    (FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL)) 

   (:AND :MOST-SPECIFIC-LAST)

   NIL�

The generic function change-status and the methods for the flavors box-with-cell

and cell are defined elsewhere. See the section "Example of Programming with

Flavors: Life".

In the second return value of sample output here, we put each method on one line,

for readability. This is not done by flavor:compose-handler.

For documentation of the env parameter, see the function flavor:compose-handler-

source.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� flavor:compose-handler-source generic flavor-name &key env Function

Finds the methods that handle the specified generic operation on instances of the

flavor specified by flavor-name, and finds the source code of the combined method

(if any). Seven values are returned:

form A Lisp form which is the body of the combined method. If

there isn’t actually a combined method, this is nil.

handler-function-spec

The name of the handler, which can be a combined method, a

single method, or an instance-variable accessor.
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combined-method-list

A list of function specs of all the methods called, in order of

execution; the order is approximate because of wrappers.

wrapper-sources Information that the combined method requires so that Flavors

knows when it needs to be recompiled. 

lambda-list A list describing what the arguments of the combined method

should be (not including the three interal arguments automati-

cally given to all methods). 

method-combination A list of the method combination type and parameters to it.

error nil normally, otherwise a string describing an error that oc-

curred.�

flavor:compose-handler-source is generally slower than flavor:compose-handler,

since the latter function can usually take advantage of pre-computed information

present in virtual memory.

The env parameter to flavor:compose-handler and flavor:compose-handler-source

can be used to insert hypotheses into their computations. If env is nil, the gener-

ics, flavors, and methods in the running world are used. env can be an alist of

modifications to the running world; each element takes the form:

(name flavor-structure generic-structure (method definition)...)�

Everything except name can be nil. name is the name of a generic, or a flavor, or

both. flavor-structure is nil or the internal structure that describes the flavor.

generic-structure is nil or the internal structure that describes the generic function.

The remaining elements of an alist element refer to methods of the flavor named

name; method is a function spec and definition is nil if that method is to be ig-

nored, t if the method is to be assumed to exist, or the actual definition (expander

function) in the case of a wrapper.

env can also be the symbol compile, which is used internally to access the com-

pile-time environment.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� si:compress-who-calls-database Function

Makes the who-calls database more compact and efficient. Call this function after

si:enable-who-calls. With the function (si:enable-who-calls ’:all), the function

si:compress-who-calls-database takes a long time to complete its job. However, it

is faster than using si:full-gc, and you can perform an Incremental Disk Save

(IDS) afterwards. See the section "Using the Incremental Disk Save (IDS) Facility".

� clos:compute-applicable-methods generic-function function-arguments Function



Page 955

Returns the set of methods that are applicable for function-arguments; the methods

are sorted according to precedence order.

generic-function A generic function object.

function-arguments A list of the arguments to the generic function.�

� concatenate result-type &rest sequences Function

Combines the elements of the sequences in the order the sequences were given as

arguments. Returns the new, combined sequence.

The result does not share any structure with any of the argument sequences. The

type of the result is specified by result-type, which must be a subtype of type se-

quence. It must be possible for every element of the argument sequences to be an

element of a sequence of type result-type.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

�

(concatenate ’vector "abc" #(ab) "gh") => #(#\a #\b #\c AB #\g #\h)

�

(setq vector (vector ’a ’b ’1 ’2)) => #(A B 1 2)

�

(setq list (make-list 3 :initial-element ’blah))

 => (BLAH BLAH BLAH)

�

(concatenate ’list vector list) 

 => (A B 1 2 BLAH BLAH BLAH)

�

(concatenate ’vector list vector)  => #(BLAH BLAH BLAH A B 1 2)

�

(concatenate ’string ’(#\a #\b #\c)) => "abc"�

If only one sequence argument is provided and it has the type specified by result-

type, concatenate is required to to copy the argument rather than simply return-

ing it. If a copy is not required, but only possible type-conversion, then the func-

tion coerce can be appropriate.

For a table of related items: See the section "Sequence Construction and Access".

� cond &rest clauses Special Form

Consists of the symbol cond followed by several clauses. Each clause consists of a

predicate form, called the antecedent, followed by zero or more consequent forms.
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(cond (antecedent consequent consequent...)

      (antecedent)

      (antecedent consequent ...)

      ... )�

Each clause represents a case that is selected if its antecedent is satisfied and the

antecedents of all preceding clauses were not satisfied. When a clause is selected,

its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the

current clause is evaluated. If the result is nil, cond advances to the next clause.

Otherwise, the cdr of the clause is treated as a list of consequent forms that are

evaluated in order from left to right. After evaluating the consequents, cond re-

turns without inspecting any remaining clauses. The value of the cond special

form is the value of the last consequent evaluated, or the value of the antecedent

if there were no consequents in the clause. If cond runs out of clauses, that is, if

every antecedent evaluates to nil, and thus no case is selected, the value of the

cond is nil. 

Examples:

(cond) => NIL

�

(cond ((= 2 3) (print "2 equals 3, new math"))

      ((< 3 3) (print "3 < 3, not yet !"))) => NIL

�

(cond ((equal ’Becky ’Becky) "Girl")

      ((equal ’Tom ’Tom)     "Boy")) => "Girl"

�

(cond ((equal ’Rover ’Red) "dog")

      ((equal ’Pumpkin ’Pickles)   "cat")

      (t     "rat")) => "rat"

�

(cond ((zerop x)      ;First clause:

       (+ y 3))       ;(zerop x) is the antecedent.

                      ;(+ y 3) is the consequent.

      ((null y)       ;A clause with 2 consequents:

       (setq y 4)     ;this

       (cons x z))    ;and this.

      (z)             ;A clause with no consequents: the antecedent

                      ;is just z.  If z is non-nil, it is returned.

      (t              ;An antecedent of t

       105)           ;is always satisfied.

      )               ;This is the end of the cond.�

For a table of related items: See the section "Conditional Functions". The following

is an approximate possible implementation of zl-user:constantp using cond:
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(defun constantp (object)

  (cond ((consp object)(eq (car object) (quote quote)))

        ((not (symbolp object)) t)

        ((defined-constant-p object) t)

        ((or (null object) (eq object t) t)

        ((keywordp object) t)

        (t nil)))         �

� cond-every &body clauses Special Form

Has the same syntax as cond, but executes every clause whose predicate is satis-

fied, not just the first. If a predicate is the symbol otherwise, it is satisfied if and

only if no preceding predicate is satisfied. The value returned is the value of the

last consequent form in the last clause whose predicate is satisfied. Multiple val-

ues are not returned.

Examples:

(cond-every) => NIL

�

(cond-every ((> 2 3) (print "sister"))

            ((= 2 3) (print "brother"))) => NIL

�

(cond-every ((equal ’mom ’mom) (princ "mother "))

            ((equal ’dog ’cat) (princ "pet dog"))

            ((equal ’dad ’dad) (princ "father")))

=> mother father"father"

�

(cond-every ((= 1 1) t) ((= 2 2) "yes!") 

            (otherwise "no")) => "yes!"

�

For a table of related items: See the section "Conditional Functions". 

� condition-bind list &body body�

Special Form

Binds handlers for conditions and then evaluates its body with those handlers

bound. One of the handlers might be invoked if a condition is signalled while the

body is being evaluated. The handlers bound have dynamic scope.

The following simple example sets up application-specific handlers for two standard

error conditions, fs:file-not-found and fs:delete-failure.

(condition-bind ((fs:file-not-found ’my-fnf-handler)

 (fs:delete-failure ’my-delete-handler))

  (deletef pathname))�

The format for condition-bind is:
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(condition-bind ((condition-flavor-1 handler-1)

                 (condition-flavor-2 handler-2)

                 ...

                 (condition-flavor-m handler-m))

  form-1

  form-2

  ...

  form-n)�

condition-flavor The name of a condition flavor or a list of names of condition

flavors. condition-flavor need not be unique or mutually exclu-

sive. (See the section "Finding a Handler". Search order is ex-

plained in that section.)

handler A form that is evaluated to produce a handler function. One

handler is bound for each condition flavor clause in the list.

The forms for binding handlers are evaluated in order from

handler-1 to handler. All the handler-j forms are evaluated and

then all handlers are bound.

When handler is a lambda-expression, it is compiled. The han-

dler function is a lexical closure, capable of referring to the

lexical variables of the containing block.

Note: handler must have one argument, which is the condition

object. Otherwise, an error is signalled.

form A body, constituting an implicit progn. The forms are evaluat-

ed sequentially. The condition-bind form returns whatever val-

ues form returns (nil when the body contains no forms). The

handlers that are bound disappear when the condition-bind

form is exited.�

If a condition signal occurs for one of the condition-flavors during evaluation of

the body, the signalling mechanism examines the bound handlers in the order in

which they appear in the condition-bind form, invoking the first appropriate han-

dler. You can think of the mechanism as being analogous to typecase or case. It

invokes the handler function with one argument, the condition object. The handler

runs in the dynamic environment in which the error occurred; no throw is per-

formed.

Any handler function can take one of three actions: 

• It can return nil to indicate that it does not want to handle the condition after

all. The handler is free to decide not to handle the condition, even though the

condition-flavors matched. (In this case the signalling mechanism continues to

search for a condition handler.)

• It can throw to some outer catch-form, using throw.
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• If the condition has any proceed types, it can proceed from the condition by call-

ing the sys:proceed generic function on the condition object and returning the

resulting values. In this case, signal returns all of the values returned by the

handler function. (Proceed types are not available for conditions signalled with

error. See the section "Proceeding".)

The conditional variant of condition-bind is the form:

condition-bind-if �

For a table of related items, see the section "Basic Forms for Bound Handlers". 

� condition-bind-default list &body body Special Form

Binds its handlers on the default handler list instead of the bound handler list.

See the section "Finding a Handler". In other respects condition-bind-default is

just like condition-bind. The default handlers are examined by the signalling

mechanism only after all of the bound handlers have been examined. Thus, a

condition-bind-default can be overridden by a condition-bind outside of it. This

advanced feature is described in more detail in another section. See the section

"Default Handlers and Complex Modularity".

The conditional variant of condition-bind-default is the form:

condition-bind-default-if�

For a table of related items, see the section "Basic Forms for Default Handlers".

� condition-bind-default-if cond list &body body Special Form

Binds its handlers on the default handler list instead of the bound handler list.

See the section "Finding a Handler". In other respects condition-bind-default-if is

just like condition-bind-if. The default handlers are examined by the signalling

mechanism only after all of the bound handlers have been examined. Thus, a

condition-bind-default-if can be overridden by a condition-bind outside of it. This

advanced feature is described in more detail in another section. See the section

"Default Handlers and Complex Modularity".

For a table of related items, see the section "Basic Forms for Default Handlers". 

� condition-bind-if cond list &body body�

Special Form

Binds its handlers conditionally. In all other respects, it is just like

condition-bind. It has an extra subform called cond, for the conditional. Its format

is:
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(condition-bind-if cond

   ((condition-flavor-1 handler-1)

                    (condition-flavor-2 handler-2)

                    ...

                    (condition-flavor-m handler-m))

  form-1

  form-2

  ...

  form-n)�

condition-bind-if first evaluates cond. If the result is nil, it evaluates the handler

forms but does not bind any handlers. It then executes the body as if it were a

progn. If the result is not nil, it continues just like condition-bind binding the

handlers and executing the body.

For a table of related items: See the section "Basic Forms for Bound Handlers". 

� condition-call (&rest varlist) form &body clauses Special Form

Binds handlers for conditions, expressing the handlers as clauses of a case-like

construct instead of as functions. These handlers have dynamic scope. 

condition-call and condition-case have similar applications. The major distinction

is that condition-call provides the mechanism for using a complex conditional cri-

terion to determine whether or not to use a handler. condition-call clauses have

the ability to decline to handle a condition because the clause is selected on the

basis of the predicate, rather than on the basis of the type of a condition. 

The format is:

(condition-call (var)

    form

  (predicate-1 form-1-1 form-1-2 ... form-1-n)

  (predicate-2 form-2-1 form-2-2 ... form-2-n)

  ...

  (predicate-m form-m-1 form-m-2 ... form-m-n))�

Each predicate must be a function of one argument. The predicates are called,

rather than evaluated. The form-m-n are a body, a list of forms constituting an im-

plicit progn. The handler clauses are bound simultaneously.

When a condition is signalled, each predicate in turn (in the order in which they

appear in the definition) is applied to the condition object. The corresponding han-

dler clause is executed for the first predicate that returns a value other than nil.

The predicates are called in the dynamic environment of the signaller.

condition-call takes the following actions when it finds the right predicate: 

1. It automatically performs a throw to unwind the dynamic environment back

to the point of the condition-call. This discards the handlers bound by the

condition-call.
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2. It executes the body of the corresponding clause.

3. It makes condition-call return the values produced by the last form in the

clause.�

During the execution of the clause, the variable var is bound to the condition ob-

ject that was signalled. If none of the clauses needs to examine the condition ob-

ject, you can omit var:

(condition-call () ...)

condition-call and :no-error

As a special case, predicate-m (the last one) can be the special symbol :no-error. If

form is evaluated and no error is signalled during the evaluation, condition-case

executes the :no-error clause instead of returning the values returned by form.

The variables vars are bound to the values produced by form, in the style of

multiple-value-bind, so that they can be accessed by the body of the :no-error

case. Any extra variables are bound to nil. 

Some limitations on predicates: 

• Predicates must not have side effects. The number of times that the signalling

mechanism chooses to invoke the predicates and the order in which it invokes

them are not defined. For side effects in the dynamic environment of the signal,

use condition-bind.

• The predicates are not lexical closures and therefore cannot access variables of

the lexically containing form, unless those variables are declared special.

• Lambda-expression predicates are not compiled.�

The conditional variant of condition-call is the form:

condition-call-if�

For a table of related items: See the section "Basic Forms for Bound Handlers". 

� condition-call-if cond (&rest varlist) form &body clauses Special Form

Binds its handlers conditionally. In all other respects, it is just like condition-call.

Its format includes cond, the subform that controls binding handlers:

(condition-call-if cond (var)

  form

  (predicate-1 form-1-1 form-1-2 ... form-1-n)

  (predicate-2 form-2-1 form-2-2 ... form-2-n)

  ...

  (predicate-m form-m-1 form-m-2 ... form-m-n))�
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condition-call-if first evaluates cond. If the result is nil, it does not set up any

handlers; it just evaluates the form. If the result is not nil, it continues just like

condition-call, binding the handlers and evaluating the form.

The :no-error clause applies whether or not cond is nil.

For a table of related items: See the section "Basic Forms for Bound Handlers". 

� condition-case (&rest varlist) form &rest clauses�

Special Form

Binds handlers for conditions, expressing the handlers as clauses of a case-like

construct instead of as functions. The handlers bound have dynamic scope. 

Examples:

(condition-case ()

    (time:parse string)

  (time:parse-error *default-time*))

�

(condition-case (e)

    (time:parse string)

  (time:parse-error

   (format *error-output* "~A, using default time instead." e)

   *default-time*))

�

(do () (nil)

  (condition-case (e)

      (return (time:parse string))

    (time:parse-error

      (setq string

    (prompt-and-read

      :string

      "~A~%Use what time instead? " e)))))�

The format is:

(condition-case (var1 var2 ...)

    form

  (condition-flavor-1 form-1-1 form-1-2 ... form-1-n)

  (condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

  ...

  (condition-flavor-m form-m-1 form-m-2 ... form-m-n))�

Each condition-flavor-j is either a condition flavor, a list of condition flavors, or

:no-error. If :no-error is used, it must be the last of the handler clauses. The re-

mainder of each clause is a body, a list of forms constituting an implicit progn.

condition-case binds one handler for each clause. The handlers are bound simul-

taneously.
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If a condition is signalled during the evaluation of form, the signalling mechanism

examines the bound handlers in the order in which they appear in the definition,

invoking the first appropriate handler.

condition-case normally returns the values returned by form. If a condition is sig-

nalled during the evaluation of form, the signalling mechanism determines whether

the condition is one of the condition-flavor-j. If so, the following actions occur: 

1. It automatically performs a throw to unwind the dynamic environment back

to the point of the condition-case. This discards the handlers bound by the

condition-case.

2. It executes the body of the corresponding clause.

3. It makes condition-case return the values produced by the last form in the

handler clause.�

While the clause is executing, var1 is bound to the condition object that was sig-

nalled and the rest of the variables (var2, ...) are bound to nil. If none of the

clauses needs to examine the condition object, you can omit var1.

(condition-case () ...)

As a special case, condition-flavor-m (the last one) can be the special symbol :no-

error. If form is evaluated and no error is signalled during the evaluation,

condition-case executes the :no-error clause instead of returning the values re-

turned by form. The variables var1, var2, and so on are bound to the values pro-

duced by form, in the style of multiple-value-bind, so that they can be accessed by

the body of the :no-error case. Any extra variables are bound to nil.

When an event occurs that none of the cases handles, the signalling mechanism

continues to search the dynamic environment for a handler. You can provide a case

that handles any error condition by using error as one condition-flavor-j.

The conditional variant of condition-case is the form:

condition-case-if �

For a table of related items: See the section "Basic Forms for Bound Handlers". 

� condition-case-if cond (&rest varlist) form &rest clauses Special Form

Binds its handlers conditionally. In all other respects, it is just like

condition-case. Its syntax includes cond, a subform that controls binding handlers:

(condition-case-if cond (var)

    form

  (condition-flavor-1 form-1-1 form-1-2 ... form-1-n)

  (condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

  ...

  (condition-flavor-m form-m-1 form-m-2 ... form-m-n))�
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condition-case-if first evaluates cond. If the result is nil, it does not set up any

handlers; it just evaluates the form. If the result is not nil, it continues just like

condition-case, binding the handlers and evaluating the form.

The :no-error clause applies whether or not cond is nil.

For a table of related items: See the section "Basic Forms for Bound Handlers". 

� dbg:condition-handled-p condition Function

Searches the bound handler list and the default handler list to see whether a han-

dler exists for the condition object, condition. This function should be called only

from a condition-bind handler function. It starts looking from the point in the

lists from which the current handler was invoked and proceeds to look outwards

through the bound handler list and the default handler list. It returns a value to

indicate what it found: 

Value Meaning

:maybe condition-bind handlers for the flavor exist. These handlers

are permitted to decline to handle the condition. You cannot

determine what would happen without actually running the

handler.

nil No handler exists.

t A handler exists.�

� conjugate number Function

Returns the complex conjugate of number. If number is complex, then conjugate re-

turns a complex with the same real part as number, and with imaginary part the

negation of number’s imaginary part. A non-complex argument number is returned.

The conjugate of a noncomplex number is itself. conjugate could have been de-

fined by:

(defun conjugate (number)

  (complex (realpart number) (- (imagpart number))))�

For a table of related items, see the section "Arithmetic Functions".

� :connected-p Message

Returns t if the stream is fully connected to an active network connection, nil

otherwise. If the stream is in a transitory state that is not completely connected,

:connected-p returns nil.

:connected-p must be callable in a scheduler context. That is, it cannot call

:process-wait.

� cons x y Function
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Creates a new cons whose car is x and whose cdr is y.

cons can be thought of as creating a cons or a list, or as adding a new element to

the front of a list.

Examples:

(cons ’a ’b) => (a . b)

(cons ’a (cons ’b (cons ’c nil))) => (a b c)

(cons ’a ’(b c d)) => (a b c d)

�

For a table of related items: See the section "Functions for Constructing Lists and

Conses".

� cons Type Specifier

This is the type specifier symbol for the predefined Lisp object cons .

The types cons and null form an exhaustive partition of the type list.

The types cons, symbol, array, number, and character are pairwise disjoint.

Examples:

(typep ’(a.b) ’cons) => T�

(typep ’(a b c) ’cons) => T�

(zl:listp ’(a b c)) => T  �

(subtypep ’cons ’list) => T and T�

(subtypep ’list ’cons) => NIL and T�

(sys:type-arglist ’cons) => NIL and T�

(consp ’(a b c)) => T�

(type-of ’(signed-byte 3)) => CONS�

See the section "Data Types and Type Specifiers". See the section "Type Specifiers

and Type Hierarchy for Lists".

� cons-in-area x y area Function

Creates a cons, whose car is x and whose cdr is y, in the specified area. (Areas are

an advanced feature of storage management. See the section "Areas".)

Example:

(cons-in-area ’a ’b my-area) => (a . b)�

cons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� consp object Function
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Returns t if its argument is a cons and nil otherwise. Thus, consp is the direct

inverse of atom , that is, (consp X) if and only if (not (atom X)). (consp nil)

returns nil since nil is the empty list but not a cons. For this reason, listp should

be used to determine whether or not an object is a list. If consp returns true for

object, the use of various functions that require a cons object, such as car and

cdr, is legitimate.

For a table of related items: See the section "Predicates that Operate on Lists".

� constantp object Function

This predicate is t if object, when considered as a form to be evaluated, always

evaluates to the same thing. This includes self-evaluating objects such as numbers,

characters, strings, bit-vectors and keywords, as well as all constant symbols de-

clared by defconstant, such as nil, t, and pi. In addition, a list whose car is

quote, such as (quote rhumba) also returns t when it is given as object to

constantp.

This predicate is nil if object, considered as a form, may or may not always evalu-

ate to the same thing.

If you are using CLOE, consider the following example: 

(constantp ’(quote foo)) => t

(constantp ’foo) => nil

(constantp (make-array foo ’(2 3))) => t�

� continue-whopper &rest args Special Form

Calls the combined method for the generic function that was intercepted by the

whopper. Returns the values returned by the combined method. 

args is the list of arguments passed to those methods. This function must be

called from inside the body of a whopper. Normally the whopper passes down the

same arguments that it was given. However, some whoppers might want to change

the values of the arguments and pass new values; this is valid.

For more information on whoppers, including examples: See the section "Wrappers

and Whoppers".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� copy-alist al &optional area Function

Returns an association list that is equal to al, but is not eq. See the section "As-

sociation Lists". Only the top level of list structure is copied; that is, copy-alist

copies in the cdr direction, but not in the car direction. Each cons of al is replaced

in the copy by a new cons with the same car and cdr. See the function copy-seq.

See the function copy-tree.
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Here is an example of copy-alist:

(copy-alist ’((canoe.paddle) (rowboat.oar)))�

returns the following association list, which is equal to the original association

list:

((canoe.paddle) (rowboat.oar))�

The optional area argument is the number of the area in which to create the new

list. (Areas are an advanced feature of storage management. See the section

"Areas".) 

Compatibility Note: area is a Symbolics extension to Common Lisp. It is not sup-

ported under CLOE.

Example:

(setq alist-1 (pairlis ’(a b c d) ’(1 2 3 4)))

=> ((A . 1)(B . 2)(C . 3)(D . 4))

�

(setq alist-2 (copy-alist alist))

=> ((A . 1)(B . 2)(C . 3)(D . 4))

�

(setf (cdr (assoc ’a alist-1)) 42)

=> 42

�

(assoc ’a alist-1)

=> (A . 42)

�

(assoc ’a alist-2)

=> (A . 1)�

This function is specifically intended for copying association lists, that is, a-lists

consisting of a list of conses.

For a table of related items: See the section "Functions for Copying Lists".

� copy-array-contents from-array to-array Function

Copies the contents of from-array into the contents of to-array, element by element.

from-array and to-array must be arrays. If to-array is shorter than from-array, the

rest of from-array is ignored. If from-array is shorter than to-array, the rest of to-

array is filled with nil if it is a general array, or 0 if it is a numeric array or

(code-char 0) for strings. This function always returns t. 

Note that even if from-array or to-array has a leader, the whole array is used; the

convention that leader element 0 is the "active" length of the array is not used by

this function. The leader itself is not copied.

copy-array-contents works on multidimensional arrays. from-array and to-array

are "linearized" and row-major order is used. See the section "Row-major Storage

of Arrays".

copy-array-contents does not work on conformally displaced arrays. 
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� copy-array-contents-and-leader from-array to-array Function

Copies the contents and leader of from-array into the contents of to-array, element

by element. copy-array-contents copies only the main part of the array.

copy-array-contents-and-leader does not work on conformally displaced arrays.

For a table of related items: See the section "Copying an Array". 

� copy-array-portion from-array from-start from-end to-array to-start to-end Function

Copies the portion of the array from-array with indices greater than or equal to

from-start and less than from-end into the portion of the array to-array with in-

dices greater than or equal to to-start and less than to-end, element by element. If

there are more elements in the selected portion of to-array than in the selected

portion of from-array, the extra elements are filled with the default value as by

copy-array-contents. If there are more elements in the selected portion of from-

array, the extra ones are ignored. Multidimensional arrays are treated the same

way as copy-array-contents treats them. This function always returns t.

copy-array-portion does not work on conformally displaced arrays.

This function copies one element at a time in increasing order of subscripts. This

means that when copying from and to the same array, the results might be unex-

pected if from-start is less than to-start. You can safely copy from and to the same

array as long as from-start >= to-start.

For a table of related items: See the section "Copying an Array".

� zl:copy-closure closure Function

Use the Symbolics Common Lisp function copy-dynamic-closure, which is equiva-

lent to the function zl:copy-closure.

Creates and returns a new closure by copying the dynamic closure closure. zl:copy-

closure generates new external value cells for each variable in the closure and ini-

tializes their contents from the external value cells of closure.

See the section "Dynamic Closure-Manipulating Functions". 

� copy-dynamic-closure closure Function

Creates and returns a new closure by copying the dynamic closure closure. copy-

dynamic-closure generates new external value cells for each variable in the clo-

sure and initializes their contents from the external value cells of closure.

See the section "Dynamic Closure-Manipulating Functions".

� sys:copy-if-necessary thing &optional (default-cons-area sys:working-storage-area)�

Function
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Moves thing from a temporary storage area, or stack list, to a permanent area.

Thing can be a string, symbol, list, tree, or &rest argument. sys:copy-if-necessary

checks whether thing is in a temporary area of some kind, and moves it if it is. If

thing is not in a temporary area, it is simply returned. The copy has the same

type and dimensionality as the source.

This function is used especially for &rest arguments, which are not guaranteed to

be in permanent storage. Sometimes the rest-argument list is stored in the func-

tion-calling stack, and loses its validity when the function returns. If you wish to

return a rest-argument or make it part of a permanent list structure, you must

copy it first, as you must always assume that it is one of these special lists.

Use sys:copy-if-necesary to copy a list if your only purposes are: 

• To preserve a (possibly) stack-consed list outside of its stack extent.

• To copy an object in storage with dynamic extent, thus it is not suitable for

guaranteeing that a given list does not share structure with any other list.�

In all other cases, you should use copy-list, which copies unconditionally, thus it is

suitable for making a private copy of a list. copy-list copies only lists, while

sys:copy-if-necessary copies trees of conses as well as copying several other object

types.

See the section "Lambda-List Keywords".

sys:copy-if-necessary is a Symbolics extension to Common Lisp.

For more information on stack lists: See the section "Consing Lists on the Control

Stack". See the function with-stack-list.

For more information on temporary storage areas, see the :gc keyword of make-

area. See the function make-area.

For a table of related items: See the section "Functions for Copying Lists".

� copy-list list &optional area force-dotted Function

Returns a list that is equal to list, but not eq. Under Genera, the returned list is

fully cdr-coded, to minimize storage. (See the section "Cdr-Coding".)

Only the top level of the list structure is copied; that is, copy-list copies in the

cdr direction, but not in the car direction. Each element of list that is a cons is

replaced in the copy by a new cons with the same car and cdr. See also:

copy-alist

copy-seq

copy-tree

copy-tree-share�

Compatibility Note: The optional arguments area and forced-dotted are Symbolics

extensions to Common Lisp. Area is the number of the area in which to create the
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new list. (Areas are an advanced feature of storage management. See the section

"Areas".) Note that these options are not supported under CLOE.

Example:

(copy-list ’(heron loon sandpiper))�

Returns the following list, which is equal to list, but not eq:

(heron loon sandpiper)�

Example:

(setq a ’(one (two-a two-b)))

(setq b (list 1 a ’three)) 

=> (1 (ONE (TWO-A TWO-B)) THREE)

(setq c (copy-list b))  

=> (1 (ONE (TWO-A TWO-B)) THREE)

(eq (last b) (last c)) => nil

(eq (cdr b) (cdr c)) => nil

(eq (cadr b) (cadr c)) => t�

For a table of related items: See the section "Functions for Copying Lists".

� copy-list* list &optional area Function

Returns a list that is equal to list, but not eq, and whose last cons is never cdr-

coded.

See the function copy-list. See the section "Cdr-Coding". This increases efficiency

if you add something onto the list later with nconc.

The optional area argument is the number of the area in which to create the new

list. (Areas are an advanced feature of storage management. See the section

"Areas".)

copy-list* is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists". 

� copy-readtable &optional (from-readtable *readtable*) to-readtable Function

A copy is made of from-readtable, which defaults to the current readtable (the val-

ue of the global variable *readtable*). If from-readtable is nil, then a copy of a

standard Common Lisp readtable is made. For example,

(setq *readtable* (copy-readtable nil))�

will restore the input syntax to standard Common Lisp syntax, even if the original

readtable has been clobbered.

If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise, to-readtable

must be a readtable, which is destructively copied into.
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(let* ((foo "zzz\"zzz")

       (newrt (copy-readtable))

       (*readtable* newrt)

       (result (read-from-string foo)))

  (set-syntax-from-char #\" #\%)

  (setq result (cons result (read-from-string foo))))

�

 => (ZZZ . |ZZZ"ZZZ|)�

� zl:copy-readtable &optional from-readtable to-readtable Function

from-readtable, which defaults to the current readtable, is copied. If to-readtable is

unsupplied or nil, a fresh copy is made. Otherwise to-readtable is clobbered with

the copy. Use zl:copy-readtable to get a private readtable before using the other

readtable functions to change the syntax of characters in it. The value of

zl:readtable at the start of a session is the initial standard readtable, which usual-

ly should not be modified. 

copy-seq sequence &optional area�

Function

Non-destructively copies the argument sequence. Returns a new sequence which is

equalp to the argument, but not eq. The function copy-seq returns the same re-

sult as the function subseq, when the value of the start argument of subseq is 0.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(setq name "Bill") => "Bill"

�

(setq a-copy (copy-seq name)) => "Bill"

�

a-copy => "Bill"

�

name => "Bill"

�

(equalp a-copy name) => T

�

(eq a-copy name) => NIL�

Compatibility Note: The optional area argument is the number of the area in

which to create the new alist. (Areas are an advanced feature of storage manage-

ment.) area is a Symbolics extension to Common Lisp and is not supported by

CLOE. See the section "Areas".

In the following example, copy-seq makes a copy of a sequence before destructive-

ly operating with replace.
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(setq dated-copy (vector (get-name) (get-date) 123 456 987))

�

 => (SALLY 1-AUG-89 123 456 987)

�

(replace (copy-seq dated-copy) #((get-date) 321 654 789)

         :start1 1)

�

 => (SALLY 2-AUG-89 321 654 789)

�

dated-copy => (SALLY 1-AUG-89 123 456 987)�

For a table of related items: See the section "Sequence Construction and Access".

� copy-symbol symbol &optional copyprops Function

Returns a new uninterned symbol with the same print-name as symbol. If copy-

props is non-nil, then the value and function-definition of the new symbol are the

same as those of sym, and the property list of the new symbol is a copy of

symbol’s. If copyprops is nil (the default), then the new symbol is unbound and un-

defined, and its property list is empty.

�

(copy-symbol symbol nil) = (make-symbol (symbol-name symbol))�

See the section "Functions for Creating Symbols".

� copy-tree tree &optional area Function

Copies a tree of conses. The argument tree can be any Lisp object. If it is not a

cons, it is returned; otherwise the result is a new cons made from the results of

calling copy-tree on the car and cdr of the argument. In other words, all conses in

the tree are copied recursively, stopping only when non-conses are encountered.

Circularities and the sharing of substructure are not preserved. The optional area

argument is the number of the area in which to create the new tree. (Areas are

an advanced feature of storage management. See the section "Areas".) 

area is a Symbolics extension to Common Lisp, and is not available in CLOE. 

Example:

(copy-tree ’((freesia) (carnation) (rose)))�

returns the following tree:

((freesia) (carnation) (rose))�

In the following example, we have an association list whose components are pairs

of keys and association lists. A call to copy-alist only provides a true copy of the

top level association list and not of the lower level a-list.
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(setq keys ’(monthly-cash-on-hand monthly-expense monthly-revenue))

(setq data ’((pairlis ’(11 12) ’(52 73))

             (pairlis ’(10 11) ’(20 21))

             (pairlis ’(10 11) ’(31 42))))

(setq financial-statement (pairlis keys data))�

The function what-if, defined in the following example, executes coordinated

changes in the low-level association lists. These changes are made on a trial basis,

and copy-tree allows the changes to occur in a copy of the data-base rather than

the data base itself. 

(defun what-if (a-list, revenue)

  (let ((november-cash-on-hand

         (assoc ’11 (assoc ’monthly-cash-on-hand a-list)))

        (november-expense

         (assoc ’11 (assoc ’monthly-expense a-list)))

        (november-revenue revenue)

        (december-cash-on-hand 0))

    (setf (cdr (assoc ’11 (assoc ’monthly-revenue a-list)))

          november-revenue)

    (setq december-cash-on-hand

          (+ november-cash-on-hand (- november-revenue november-expense)))

    (setf (cdr (assoc ’12 (assoc ’monthly-cash-on-hand a-list)))

          december-cash-on-hand)

    december-cash-on-hand))

�

(what-if (copy-tree financial-statement) 40) => 71

�

(assoc ’12 (assoc ’monthly-cash-on-hand financial-statement))

 => (12 . 73)�

For a definition and diagram of a tree: See the section "Overview of Lists".

For a table of related items: See the section "Functions for Copying Lists".

� copy-tree-share tree &optional area (hash (make-hash-table :test #’zl:equal)) cdr-

code Function

Similar to copy-tree, it makes a copy of an arbitrary structure of conses, copying

at all levels, and optimally cdr-coding. However, it also assures that all lists, or

tails of lists, are optimally shared when equal.

The arguments for copy-tree-share are: the tree to be copied, and an optional

storage area, an externally created hash table to be used for the equality testing

and a cdr-code, which is the storage location of the conses that compose a tree or

list. The default storage area for the new list is the area occupied by the old list.

If cdr-code is t, lists will never be "forked" to enable sharing a tail. This wastes

space, but improves locality.

Note: copy-tree-share might be very slow, in the general case, for long lists. How-

ever, applying it at the appropriate level of a specific structure-copying routine
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(furnishing a common, externally created hash table) is likely to yield all the shar-

ing possible, at a much lower computational cost. For example, copy-tree-share

could be applied only to the branches of a long association list.

Example: 

(copy-tree-share ’((1 2 3) (1 2 3) (0 1 2 3) (0 2 3)))�

If x = ’(1 2 3), the above returns (roughly):

‘(,x ,x (0 . ,x) (0 . ,(cdr x)))�

copy-tree-share is a Symbolics extension to Common Lisp.

� zl:copyalist al &optional area Function

In your new programs, we recommend that you use the function copy-alist which

is the Common Lisp equivalent of the function zl:copyalist.

Copies an association list. Returns a list that is zl:equal to al, but not eq. Each

element of al that is a cons is replaced in the copy by a new cons with the same

car and cdr. You can optionally specify the area in which to create the new copy.

The default is to copy the new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists". 

� zl:copylist list &optional area force-dotted Function

In your new programs we recommend that you use the function copy-list which is

the Common Lisp equivalent of the function zl:copylist.

Returns a list that is zl:equal to list, but not eq. zl:copylist does not copy any ele-

ments of the list: only the conses of the list itself. The returned list is fully cdr-

coded, to minimize storage. See the section "Cdr-Coding". If the list is "dotted",

that is, (cdr (last list)) is a non-nil atom, this is true of the returned list also. You

can specify the area in which to create the new copy. The default is to copy the

new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists". 

� zl:copylist* list &optional area Function

Use the Common Lisp function copy-list*, which is equivalent to zl:copylist*.

Returns a list that is zl:equal to list, but not eq. zl:copylist* does not copy any el-

ements of the list: only the conses of the list. The last cons of the resulting list is

never cdr-coded. See the function zl:copylist. See the section "Cdr-Coding". This

increases efficiency, if you add something onto the list later using nconc.

For a table of related items: See the section "Functions for Copying Lists". 

� zl:copysymbol symbol &optional copyprops�
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Function

Use the Common Lisp function copy-symbol, which is equivalent to

zl:copysymbol. 

Returns a new uninterned symbol with the same print-name as symbol. If copy-

props is non-nil, then the value and function-definition of the new symbol are the

same as those of sym, and the property list of the new symbol is a copy of

symbol’s. If copyprops is nil (the default), then the new symbol is unbound and un-

defined, and its property list is empty.

�

(copy-symbol symbol nil) = (make-symbol (symbol-name symbol))�

See the section "Functions for Creating Symbols". 

� zl:copytree tree &optional area Function

In your new programs, we recommend that you use the function copy-tree, which

is the Common Lisp equivalent of the function zl:copytree.

Copies all the conses of a tree and makes a new tree with the same fringe. You

can specify the area in which to create the new copy. The default is to copy the

new list into the area occupied by the old list.

For a table of related items: See the section "Functions for Copying Lists". 

� zl:copytree-share tree &optional area (hash (cl:make-hash-table :test #’equal

:locking nil :number-of-values 0)) cdr-code Function

Use the Symbolics Comon Lisp function copy-tree-share, which is equivalent to

zl:copytree-share.

zl:copytree-share is similar to zl:copytree; it makes a copy of an arbitrary struc-

ture of conses, copying at all levels, and optimally cdr-coding. However, it also as-

sures that all lists or tails of lists are optimally shared when zl:equal. 

zl:copytree-share takes as arguments the tree to be copied, and optionally a stor-

age area, an externally created hash table to be used for the equality testing and a

cdr-code, which is the storage location of the conses that compose a tree or list.

The default storage area for the new list is the area occupied by the old list. If

cdr-code is t, lists will never be "forked" to enable sharing a tail. This wastes

space, but improves locality.

Note: zl:copytree-share might be very slow, in the general case, for long lists.

However, applying it at the appropriate level of a specific structure-copying routine

(furnishing a common, externally created hash table) is likely to yield all the shar-

ing possible, at a much lower computational cost. For example, zl:copytree-share

could be applied only to the branches of a long alist.

Example: 

(zl:copytree-share ’((1 2 3) (1 2 3) (0 1 2 3) (0 2 3)))�



Page 976

If x = ’(1 2 3), the above returns (roughly):

‘(,x ,x (0 . ,x) (0 . ,(cdr x)))�

For a table of related items: See the section "Functions for Copying Lists". 

� si:coroutine-bidirectional-stream Flavor

A flavor implementing bidirectional coroutine streams. Defines :next-input-buffer,

:new-output-buffer, and :send-output-buffer methods. Use this to construct a

bidirectional stream to a function written in terms of input and output operations. 

� si:coroutine-input-stream Flavor

A flavor implementing input coroutine streams. Defines a :next-input-buffer

method. Use this to construct an input stream from a function written in terms of

output operations. 

� si:coroutine-output-stream Flavor

A flavor implementing output coroutine streams. Defines :new-output-buffer and

:send-output-buffer methods. Use this to construct an output stream to a function

written in terms of input operations. 

� cos radians Function

Returns the cosine of radians. radians can be of any numeric type.

Examples:

(cos 0) => 1.0

(cos (/ pi 2)) => -0.0d0

(cos (/ pi 4)) => 0.70710677�

For a table of related items: See the section "Trigonometric and Related

Functions".

� cosd degrees Function

Returns the cosine of degrees. degrees can be of any numeric type.

Examples:

(cosd 90) => -0.0

(cosd 45) => 0.7071068

(cosd 36.2) => 0.80696034�

For a table of related items: See the section "Trigonometric and Related

Functions". 

� cosh radians Function
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Returns the hyperbolic cosine of radians.

Example:

(cosh 0) => 1.0�

For a table of related items: See the section "Hyperbolic Functions".

� count item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end�

Function

Counts the number of elements in a subsequence of sequence satisfying the predi-

cate specified by the :test keyword. count returns a non-negative integer, which

represents the number of elements in the specified subsequence of sequence.

item is matched against the elements specified by the test keyword. item can be

any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true, where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(count ’a ’(a b c d) :test-not #’eql)  => 3�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element. For example:

(count ’a ’((a b) (a b)  (b c)) :key #’car) => 2

�

(count 1 #(1 2 3 1 4 1) :key #’(lambda (x) (- x 1))) => 1�

The :from-end argument does not affect the result returned; it is accepted purely

for compatibility with other sequence functions. For example:

(count ’a ’(a a a b c d) :from-end t :start 3) => 0

�

(count ’a ’(a a a b c d) :from-end nil :start 3) => 0�

For the sake of efficiency, you can delimit the portion of the sequence to be oper-

ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).
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:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(count ’a ’(a b a)) => 2

(count ’heron ’(heron loon heron pelican heron stork)) => 3

(count ’a ’(a a b b a a)  :start 1 :end 5) => 2

(count ’a ’(a a b b a a)  :start 1 :end 6) => 3 

(count ’a #(a b b b a) ) => 2�

For a table of related items: See the section "Searching for Sequence Items".

� count keyword for loop

count expr {into var} {data-type}

If expr evaluates non-nil, a counter is incremented. The data-type defaults to

fixnum. When the epilogue of the loop is reached, var has been set to the accu-

mulated result and can be used by the epilogue code. 

It is safe to reference the values in var during the loop, but they should not be

modified until the epilogue code for the loop is reached. 

The forms count and counting are synonymous.

Examples:

(defun num-entry (small-list)

  (loop for x in small-list

        count t into num

        finally (return num))) => NUM-ENTRY

(num-entry ’(a  b c  d)) => 4

�

is equivalent to

(defun num-entry (small-list)

  (loop for x in small-list

        counting t into num

        finally (return num))) => NUM-ENTRY

(num-entry ’(a  b c  d)) => 4

�

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. count and sum are compatible.

See the section "Accumulating Return Values for loop".
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� count-if predicate sequence &key :key :from-end (:start 0) :end�

Function

Returns a non-negative integer, which represents the number of elements in the

specified subsequence of sequence satisfying the predicate. 

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(count-if #’atom ’((a b) ((a) b) (nil nil)) :key #’car) => 2

�

(count-if #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => 2�

The :from-end argument does not affect the result returned; it is accepted purely

for compatibility with other sequence functions.

For example:

(count-if #’oddp ’(1 1 2 2) :start 2 :from-end t)  => 0

�

(count-if #’oddp ’(1 1 2 2) :start 2 :from-end nil) => 0�

For the sake of efficiency, you can delimit the portion of the sequence to be oper-

ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(count-if #’oddp ’(1 2 1 2)) => 2

(count-if #’oddp ’(1 1 1 2 2 2) :start 2 :end 4) => 1

(count-if #’numberp ’(heron 1.0 a 2 #\Space)) => 2

�

(setq pressure-readings ’(1230 1400 :over-limit 1687))

(count-if #’(lambda(x) (eq x :over-limit)) pressure-readings) => 1�

For a table of related items: See the section "Searching for Sequence Items".

� count-if-not predicate sequence &key :key :from-end (:start 0) :end�
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Function

Returns a non-negative integer, which represents the number of elements in the

specified subsequence of sequence that do not satisfy the predicate.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(count-if-not #’atom ’((a b) ((a) b) (nil nil)) :key #’car) => 1

�

(count-if-not #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => 1�

The :from-end argument does not affect the result returned; it is accepted purely

for compatibility with other sequence functions.

For example:

(count-if-not #’oddp ’(1 1 2 2) :start 2 :from-end t) => 2

�

(count-if-not #’oddp ’(1 1 2 2) :start 2 :from-end nil) => 2 �

For the sake of efficiency, you can delimit the portion of the sequence to be oper-

ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(count-if-not #’numberp ’(heron 1.0 a 2 #\Space)) => 3

(count-if-not #’oddp ’(3 4 3 4)) => 2

�

(setq pressure-readings ’(1230 1400 :over-limit 1687))

(count-if-not #’(lambda(x) (numberp x)) pressure-readings)

�

 => 1�

For a table of related items: See the section "Searching for Sequence Items".

� :creation-date Message
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Returns the creation date of the file, as a number which is a universal time. See

the section "Dates and Times". See the function fs:directory-list.

� ctypecase object &body body Special Form

ctypecase is similar to typecase, except that it does not allow an explicit

otherwise or t clause, and if no clause is satisfied it signals a proceedable error

instead of returning nil.

ctypecase is a conditional that chooses one of its clauses by examining the type of

an object. Its form is as follows:

(ctypecase form

   (types consequent consequent ...)

   (types consequent consequent ...)

   ...

   )�

First ctypecase evaluates form, producing an object. ctypecase then examines

each clause in sequence. types in each clause is a type specifier in either symbol or

list form, or a list of type specifiers. The type specifier is not evaluated. If the ob-

ject is of that type, or of one of those types, then the consequents are evaluated

and the result of the last one is returned (or nil if there are no consequents in

that clause). Otherwise, ctypecase moves on to the next clause. 

If no clause is satisfied, ctypecase signals an error with a message constructed

from the clauses. To continue from this error, supply a new value for object, caus-

ing ctypecase to store that value and restart the type tests. Subforms of object can

be evaluated multiple times.

For an object to be of a given type means that if typep is applied to the object

and the type, it returns t. That is, a type is something meaningful as a second ar-

gument to typep. See the section "Data Types and Type Specifiers".

It is permissible for more than one clause to specify a given type, particularly if

one is a subtype of another; the earliest applicable clause is chosen. Thus, for

ctypecase, the order of the clauses can affect the behavior of the construct.

Examples:

(defun tell-about-car (x)

  (ctypecase (car x)

    (string "string")))=> TELL-ABOUT-CAR

(tell-about-car ’("word" "more"))  => "string"

(tell-about-car ’(a 1)) => proceedable error is signalled�
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�

(defun tell-about-car (x) ; see typecase

  (ctypecase (car x)

    (fixnum  "number.")

    ((or string symbol) "string or symbol.")

    (otherwise "I don’t know.")))  => TELL-ABOUT-CAR 

(tell-about-car ’(1 a))  => "number."

(tell-about-car ’(a 1))  => "string or symbol."

(tell-about-car ’("word" "more"))  => "string or symbol."

(tell-about-car ’(1.0))   => "I don’t know."

�

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� zl:cursorpos &rest args Function

This function exists primarily for Maclisp compatibility. It performs operations re-

lated to the cursor position, such as returning the position, moving the position, or

performing another cursor operation.

zl:cursorpos normally operates on the zl:standard-output stream; however, if the

last argument is a stream or t (meaning zl:terminal-io), zl:cursorpos uses that

stream and ignores it when doing the operations described below. Note that

zl:cursorpos works only on streams that are capable of these operations, such as

windows. A stream is taken to be any argument that is not a number and not a

symbol, or a symbol other than nil with a name more than one character long.

(zl:cursorpos) => (line . column), the current cursor position.

(cursorpos line column) moves the cursor to that position. It returns t if it suc-

ceeds and nil if it does not.

(cursorpos op) performs a special operation coded by op and returns t if it suc-

ceeds and nil if it does not. op is tested by string comparison, is not a keyword

symbol, and can be in any package. 

F Moves one space to the right.

B Moves one space to the left.

D Moves one line down.

U Moves one line up.

T Homes up (moves to the top left corner). Note that t as the last argument

to zl:cursorpos is interpreted as a stream, so a stream must be specified if

the t operation is used.

Z Homes down (moves to the bottom left corner).

A Advances to a fresh line. See the :fresh-line stream operation.
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C Clears the window.

E Clears from the cursor to the end of the window.

L Clears from the cursor to the end of the line.

K Clears the character position at the cursor.

X B then K.�

� sys:debug-instance instance Function

Enters the Debugger in the lexical environment of instance. This is useful in de-

bugging. You can examine and alter instance variables, and run functions that use

the instance variables. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� *debug-io* Variable

The value of *debug-io* is a stream to be used for interactive debugging purposes.

In CLOE-Runtime, *debug-io* is initially a synonym stream of *terminal-io*. 

(format *debug-io* "Return to top level?")

(if (positive-response (read *debug-io*)))

    ... �

� zl:debug-io Variable

In your new programs, we recommend that you use the variable *debug-io*, which

is the Common Lisp equivalent of zl:debug-io.

If not nil, this is the stream that the Debugger should use. The default value is a

synonym stream that is synonymous with zl:terminal-io. If the value of

dbg:*debug-io-override* is not nil, the Debugger uses the value of that variable

as the stream instead of the value of zl:debug-io.

The value of zl:debug-io can also be a string. This causes the Debugger to use

the cold-load stream; the string is the reason why the cold-load stream should be

used.

No program other than the Debugger should do stream operations on the value of

zl:debug-io, since the value cannot be a stream. Other programs should use

zl:query-io, zl:error-output, or zl:trace-output. zl:debug-io is equivalent to

*debug-io*. 

� dbg:*debugger-bindings* Variable
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When the Debugger is entered, it binds some special variables under control of the

list that is the value of dbg:*debugger-bindings*. Each element of the list is a

list of two elements: a variable and a form that is evaluated to produce the value

to bind it to. The bindings happen sequentially. You can push things on this list

(adding to the front of it), but should not replace the list wholesale since several

of the variable bindings on this list are essential to the operation of the Debugger.

� debugging-info function Function

Returns the debugging info alist of function. Most of the elements of this alist are

an internal interface between the compiler and the Debugger. 

� decf access-form &optional amount Macro

Decrements the value of a generalized variable. (decf ref) decrements the value of

ref by 1. (decf ref amount) subtracts amount from ref and stores the difference

back into ref. It returns the new value of ref.

access-form can be any form acceptable to setf.

(decf (car (mumble)))�

is almost equivalent to

(setf (car (mumble)) (1- (car (mumble))))�

except that while the latter would evaluate mumble twice, decf actually expands

into a let and mumble is evaluated only once.

(setq arr (make-array (4) :element-type ’integer

                      :initial-element 5))

�

(decf (aref arr 3) 4) => #(5 5 5 1)�

See the section "Generalized Variables".

� declaration name1 name2 ... Declaration

Tells the compiler that the names given are valid but non-standard declarations so

the compiler does not issue warnings about them. This allows you to put declara-

tions meant for another compiler or another program processor into your program.

declaration can only be used with proclaim.

See the section "Declaration Specifiers".

� declare &rest forms Special Form

Provides additional information to the Lisp system (interpreter and compiler).

The declare special form can be used in two ways: at top level or within function

bodies. For information on top-level declare forms: See the section "How the

Stream Compiler Handles Top-level Forms".
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declare forms that appear within function bodies provide information to the Lisp

system (for example, the interpreter and the compiler) about this particular func-

tion. Expressions appearing within the function-body declare are declarations; they

are not evaluated. declare forms must appear at the front of the body of certain

special forms, such as let and defun. Some declarations apply to function defini-

tions and must appear as the first forms in the body of that function; otherwise

they are ignored.

See the section "Function-body Declarations".

The compiler also recognizes any number of declare forms as the first forms in

the bodies of the following macros and special forms. This means that you can

have special declarations that are local to any of these blocks. In addition, declara-

tions can appear at the front of the body of a function definition, like defun,

defmacro, defsubst, and so on.

destructuring-bind multiple-value-bind

let let*

do do*

zl:do-named (not in CLOE) zl:do*-named (not in CLOE)

prog prog*

lambda�

See the section "Operators for Making Declarations".

� decode-float float Function

Determines and returns the significand, the exponent, and the sign corresponding

to the floating-point argument float. The argument float is equal to:

(* sign significand (expt (float-radix sign) exponent))

�

The significand is returned as a floating-point number of the same format as float.

It is obtained by dividing the argument by an integral power of 2, the radix of the

floating-point representation, so as to bring its value between 1/2 (inclusive) and 1

(exclusive). The quotient is then returned as the significand.

The second result of decode-float is the integer exponent e to which 2 must be

raised to produce the appropriate power for the division.

The third result is a floating-point number, of the same format as the argument,

whose absolute value is one and whose sign matches that of the argument.

Examples:
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(decode-float 2.0) => 0.5 and 2 and 1.0

(decode-float -2.0) => 0.5 and 2 and -1.0

(decode-float 4.0) => 0.5 and 3 and 1.0

(decode-float 8.0) => 0.5 and 4 and 1.0

(decode-float 3.0) => 0.75 and 2 and 1.0

(decode-float 0.0) => 0.0 and 0 and 1.0

(decode-float -0.0) => 0.0 and 0 and -1.0

(decode-float 5.06) → .06325 3 1.0

;;;; a possible use of decode-float  

;;;; (log-abs float)≡(log (abs float))

�

(defun log-abs (float)

  (multiple-value-bind (significand exponent)

      (decode-float float)

    (+ (log significand) ;log ab= log a + log b

       (* exponent (log 2))))) ;log (expt x y)= ylogx

�

(log-abs 2.0) => 0.6931472 ;(log 2) => 0.6931472�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".

� decode-raster-array raster Function

Returns the following attributes of the raster as values: width, height, and span-

ning width. In a row-major implementation, width and height are the second and

first dimensions, respectively. The spanning width is the number of linear array el-

ements needed to go from (x,y) to (x,y+1). For nonconformal arrays, this is the

same as the width. For conformal arrays, this is the width of the underlying array

that provides the storage adjusted for possibly differing numbers of bits per ele-

ment.

decode-raster-array should be used rather than array-dimensions, zl:array-

dimension-n, or sys:array-row-span for the following reasons. 

• decode-raster-array does error checking by ensuring that the array is two-

dimensional.

• A single call to decode-raster-array is faster than any non-null combination of

the alternatives.

• decode-raster-array always returns the width and height, which are not the

first and second dimensions as returned by array-dimensions or zl:array-

dimension-n.

For a table of related items: See the section "Operations on Rasters".

� math:decompose a &optional lu ps ignore Function
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Computes the LU decomposition of matrix a. If lu is non-nil, stores the result into

it and returns it; otherwise it creates an array to hold the result, and returns that.

The lower triangle of lu, with ones added along the diagonal, is L, and the upper

triangle of lu is U, such that the product of L and U is a. Gaussian elimination

with partial pivoting is used. The lu array is permuted by rows according to the

permutation array ps, which is also produced by this function. If the argument ps

is supplied, the permutation array is stored into it; otherwise, an array is created

to hold it. This function returns two values: the LU decomposition and the permu-

tation array. 

� def function &rest defining-forms Special Form

If a function is created in some strange way, wrapping a def special form around

the code that creates it informs the editor of the connection. The form:

(def function-spec

  form1 form2...)�

simply evaluates the forms form1, form2, and so on. It is assumed that these forms

create or obtain a function somehow, and make it the definition of function-spec.

Alternatively, you could put (def function-spec) in front of or anywhere near the

forms that define the function. The editor only uses it to tell which line to put the

cursor on. 

� clos:defclass class-name superclasses slot-specifiers &rest class-options Macro

Defines a class named class-name, and returns the class object. 

If a class already exists with that name, then the existing class is redefined. A re-

defined class is eq to the original class. See the section "Redefining a CLOS

Class".

class-name A symbol naming the class.

superclasses A list of class names. The new class inherits slots and other

characteristics from each of its superclasses. See the section

"CLOS Inheritance".

slot-specifiers Each slot-specifier is one of the following:

slot-name

(slot-name slot-options...)�

The slot-options are:

:reader reader-name

Defines a method for a reader generic function named

reader-name. The reader takes a single argument (an ob-

ject that is a member of this class), and returns the val-

ue of this slot. 
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:writer writer-name

Defines a method for a writer generic function named

writer-name. The writer takes two arguments (the new

value, and an object that is a member of this class), and

sets the value of this slot. writer-name can be a symbol

or a list of the form (future-common-lisp:setf symbol).

The following examples show the calling syntax in the

two cases:

;;; if the CLOS writer’s name is a symbol

(writer-name new-value instance)

�

;;; if the CLOS writer’s name is (clos:setf symbol)

(setf (symbol instance) new-value)�

Note that when defining a writer method in CLOS to

use the setf syntax, the function spec must be (future-

common-lisp:setf symbol). However, when calling the

writer generic function, you can use either setf or

future-common-lisp:setf.

:accessor reader-name

Defines a method for a reader generic function named

reader-name, and a method for a writer named (future-

common-lisp:setf reader-name). 

:locator locator-name

This is a Symbolics CLOS extension, which is supported

on 3600-family and Ivory-based machines only. This op-

tion defines a method for a locator generic function

which enables you to get a locative pointer to the cell in-

side an instance that contains the value of a slot. locator-

name can be a symbol or a list of the form (locf

symbol). In the latter case, the locator is called with locf

syntax:

(locf (symbol object))�

:allocation allocation-type

Defines the allocation type of the slot. If allocation-type

is :instance, then a local slot is defined. If allocation-type

is :class, then a shared slot is defined. If the :allocation

option is not provided, the slot will be a local slot.

A local slot means that each instance of the class stores

its own value for the slot. In other words, the storage

for the slot is allocated on a per-instance basis.

A shared slot means that all members of the class share

the value of the slot. The storage for the slot is allocat-

ed only once. 
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Both local and shared slots are inherited: See the section

"Inheritance of Slots and clos:defclass Options".

:initform form

Provides a default initial value for the slot. When a new

instance is created, the initform is used if the slot is not

initialized in some other way, such as by providing an

initialization argument in the call to clos:make-instance

that initializes the slot. The form is evaluated each time

it is used, in the same lexical environment in which the

clos:defclass form was evaluated. For local slots, the

form is evaluated in the dynamic environment in which

clos:make-instance was called; for shared slots, it is

evaluated in the dynamic environment in which the

clos:defclass form was evaluated. 

:initarg initarg-name

Provides a means to initialize the slot in a call to

clos:make-instance. This slot option declares the initarg-

name as a valid initialization argument to clos:make-

instance. If you provide the initarg-name and a value in

a call to clos:make-instance, the slot is initialized with

that value. This overrides the slot’s initform. 

:type type-specifer

Declares that the value of the slot is of the type type-

specifier. Symbolics CLOS ignores this option.

:documentation string

Provides a documentation string describing the slot.

The following slot options may be given more than once for a

single slot: :reader, :writer, :accessor, :locator, and :initarg.

If any other slot option is given more than once for a single

slot, an error is signaled.

class-options Options that pertain to the class as a whole. The class-options

are:

(:default-initargs initarg-list)

The initarg-list is a list of alternating initialization argu-

ment names and default initial value forms. If an initial-

ization argument name is not provided in a call to

clos:make-instance, and it does appear in the :default-

initargs initarg-list, the default value form is evaluated

and used. The form is evaluated in the same lexical en-

vironment as that in which the clos:defclass was evalu-

ated, and in the same dynamic environment in which

clos:make-instance was called. An error is signaled if

an initialization argument name appears more than once

in the initarg-list. 
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(:documentation string)

Provides a documentation string describing the class.

You can get the documentation string of a class as fol-

lows:

(documentation class-name ’type)�

(:metaclass class-name)

Specifies the class of the class being defined. The default

is clos:standard-class. In Symbolics CLOS, the effects

are undefined if any other value is given to this option.�

The :default-initargs, :documentation, and :metaclass class

options may not be given more than once. 

See the section "Inheritance of Slots and clos:defclass Options".

See the section "CLOS Class Precedence List".

� zl:defconst variable initial-value &optional documentation Special Form

The same as defvar, except that variable is always set to initial-value regardless of

whether variable is already bound. The rationale for this is that defvar declares a

global variable, whose value is initialized to something but is then changed by the

functions that use it to maintain some state. On the other hand, zl:defconst de-

clares a constant, whose value is never changed by the normal operation of the

program, only by changes to the program. zl:defconst always sets the variable to

the specified value so that if, while developing or debugging the program, you

change your mind about what the constant value should be, and you then evaluate

the zl:defconst form again, the variable gets the new value. It is not the intent of

zl:defconst to declare that the value of variable never changes; for example,

zl:defconst is not license to the compiler to build assumptions about the value of

variable into programs being compiled. See defconstant for that.

See the section "Special Forms for Defining Special Variables".

� defconstant variable initial-value &optional documentation Special Form

Declares the use of a named constant in a program. Additionally, defconstant indi-

cates that the value of the constant remains the same. initial-value is evaluated

and variable set to the result. The value of variable is then fixed. It is an error if

variable has any special bindings at the time the defconstant form is executed.

Once a special variable has been declared constant by defconstant, any further as-

signment to or binding of that variable is an error.

The compiler is free to build assumptions about the value of the variable into pro-

grams being compiled. If the compiler does replace references to the name of the

constant by the value of the constant in code to be compiled, the compiler takes

care that such "copies" appear to be eql to the object that is the actual value of

the constant. For example, the compiler can freely make copies of numbers, but it

exercises care when the value is a list.
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In Symbolics Common Lisp, defconstant and zl:defconst are essentially the same

if the value is other than a number, a character, or an interned symbol. However,

if the variable being declared already has a value, zl:defconst freely changes the

value, whereas defconstant queries before changing the value. defconstant’s

query offers three choices: Y, N, and P.

• The Y option changes the value.

• The N option does not change the value. 

• The P option changes the value and when you change any future value, prints a

warning rather than a query.�

The P option sets sys:inhibit-fdefine-warnings to :just-warn. defconstant obeys

that variable, just as query-about-redefinition does. Use (setq sys:inhibit-fdefine-

warnings nil) to revert to the querying mode.

When the value of a constant is changed by a patch file, a warning is printed.

defconstant assumes that changing the value is dangerous because the old value

might have been incorporated into compiled code, which is out of date if the value

changed.

In general, you should use defconstant to declare constants whose value is a

number, character, or interned symbol and is guaranteed not to change. An exam-

ple is π. The compiler can optimize expressions that contain references to these

constants. If the value is another type of Lisp object or if it might change, you

should use zl:defconst instead.

documentation, if provided, should be a string. It is accessible to the

documentation function.

For example:

�

(defvar *max-alarms* 1000

  "The maximum number of times alarms can be sounded.")�

For more information see the section "Special Forms for Defining Special

Variables".

� deff function definition Special Form

This is a simplified version of def. It evaluates the form definition, which should

produce a function, and makes that function the definition of function, which is not

evaluated. deff is used for giving a function spec a definition that is not obtain-

able with the specific defining forms such as defun and macro. For example:

(deff foo ’bar)�

makes foo equivalent to bar, with an indirection so that if bar changes, foo like-

wise changes;

(deff foo (function bar))�
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copies the definition of bar into foo with no indirection, so that further changes to

bar have no effect on foo. 

� defflavor name instance-variables component-flavors &rest options Special Form

name is a symbol that is the name of this flavor. 

defflavor defines the name of the flavor as a type name in both the Common Lisp

and Zetalisp type systems; for further information, see the section "Flavor In-

stances and Types". defflavor also defines the name of the flavor as a presentation

type name; for further information, see the section "User-defined Data Types as

Presentation Types".

instance-variables is a list of the names of the instance variables containing the lo-

cal state of this flavor. Each element of this list can be written in two ways: ei-

ther the name of the instance variable by itself, or a list containing the name of

the instance variable and a default initial value for it. Any default initial values

given here are forms that are evaluated by make-instance if they are not overrid-

den by explicit arguments to make-instance.

If you do not supply an initial value for an instance variable as an argument to

make-instance, and there is no default initial value provided in the defflavor

form, the value of an instance variable remains unbound. (Another way to provide

a default is by using the :default-init-plist option to defflavor.)

component-flavors is a list of names of the component flavors from which this fla-

vor is built. 

Each option can be either a keyword symbol or a list of a keyword symbol and its

arguments. The syntax of the defflavor options is given below, and the semantics

of the options are described in detail elsewhere: See the section "Summary of

defflavor Options". See the section "Complete Options for defflavor".

Several options affect instance variables, including:

:initable-instance-variables

:gettable-instance-variables

:locatable-instance-variables (not available in CLOE)

:readable-instance-variables

:settable-instance-variables

:special-instance-variables (not available in CLOE)

:writable-instance-variables

The options listed above can be given in two ways: 

keyword The keyword appearing by itself indicates that the option ap-

plies to all instance variables listed at the top of this defflavor

form. 

(keyword var1 var2 ...)

A list containing the keyword and one or more instance vari-

ables indicates that this option refers only to the instance vari-

ables listed here. �
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Briefly, the syntax of the other options is as follows:

:abstract-flavor

(:area-keyword symbol) (not available in CLOE)

(:component-order args...)

(:conc-name symbol)

(:constructor args...)

(:default-handler function-name)

(:default-init-plist plist)

(:documentation string)

(:functions internal-function-names)

(:init-keywords symbols...)

(:method-combination symbol)

(:method-order generic-function-names)

(:mixture specs...)

:no-vanilla-flavor (not available in CLOE)

(:ordered-instance-variables symbols)

(:required-flavors flavor-names)

(:required-init-keywords init-keywords)

(:required-instance-variables symbols)

(:required-methods generic-function-names)

(:special-instance-variables-binding-methods generic-function-names)

   (not available in CLOE)

The following form defines a flavor wink to represent tiddly-winks. The instance

variables x and y store the location of the wink. The default initial value of both x

and y is 0. The instance variable color has no default initial value. The options

specify that all instance variables are :initable-instance-variables; x and y are

:writable-instance-variables; and color is a :readable-instance-variable. 

(defflavor wink ((x 0) (y 0) color) ;x and y represent location

   () ;no component flavors

  :initable-instance-variables

  (:writable-instance-variables x y) ;this implies readable

  (:readable-instance-variables color))�

You can specify that an option should alter the behavior of instance variables in-

herited from a component flavor. To do so, include those instance variables explic-

itly in the list of instance variables at the top of the defflavor form. In the follow-

ing example, the variables x and y are explicitly included in this defflavor form,

even though they are inherited from the component flavor, wink. These variables

are made initable in the defflavor form for big-wink; they are made writable in

the defflavor form for wink.

(defflavor big-wink (x y size)

   (wink)         ;wink is a component

  (:initable-instance-variables x y))�

If you specify a defflavor option for an instance variable that is not included in

this defflavor form, an error is signalled. Flavors assumes you misspelled the

name of the instance variable. 
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For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� format:defformat directive (arg-type) arglist body ... Function

Defines a new format directive.

directive is a symbol that names the directive. If directive is longer than one char-

acter, the user must enclose it in backslashes in calls to format. For example:

(format t "~\\foo\\" ...)�

directive is usually in the format package; if it is in another package, the user

must specify the package in calls to format. For example, we’ve defined a format

directive called si:keystroke that prints out the short names for all characters.

(defun gtest ()

  (loop for (name char) in ’(("Space" #\space)

     ("c-Space" #\c-space)

     ("Tab" #\tab)

     ("Page" #\page)

     ("Left" #\mouse-L)

     ("c-Left" #\c-mouse-L)

     ("A" #\A)

     ("c-A" #\c-A))

do

(format t "~%~A: ~C, ~\\si:keystroke\\" name char char))) =>

Space:  , Space

c-Space: c- , c-Space

Tab: , Tab

Page: , Page

Left: Mouse-L, Mouse-L

c-Left: c-Mouse-L, c-Mouse-L

A: A, A

c-A: c-A, c-A

NIL�

format:defformat defines a function to be called when format is called using di-

rective. body is the body of the function definition. arg-type is a keyword that deter-

mines the arguments to be passed to the function as arglist:

:no-arg The directive uses no arguments. The function is passed one

argument, a list of parameters to the directive. The value re-

turned by the function is ignored.

:one-arg The directive uses one argument. The function is passed two

arguments: the argument associated with the directive and a

list of parameters to the directive. The value returned by the

function is ignored.
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:multi-arg The directive uses a variable number of arguments. The func-

tion is passed two arguments. The first is a list of the first ar-

gument associated with the directive and all the remaining ar-

guments to format. The second is a list of parameters to the

directive. The function should cdr down the list of arguments,

using as many as it wants, and return the tail of the list so

that the remaining arguments can be given to other directives.�

The function can examine the values of format:colon-flag and format:atsign-flag.

If format:colon-flag is not nil, the directive was given a : modifier. If

format:atsign-flag is not nil, the directive was given an @ modifier.

The function should send its output to the stream that is the value of

format:*format-output*.

Here is an example of a format directive that takes one argument and prints a

number in base 7: 

(format:defformat format:base-7 (:one-arg) (argument parameters)

  parameters ;ignored

  (let ((*print-base* 7))

    (princ argument format:*format-output*)))�

Now:

(format nil "> ~\\base-7\\ <" 8) => "> 11 <"�

� deffunction fspec lambda-type lambda-list &body rest Special Form

Defines a function using an arbitrary lambda macro in place of lambda. A

deffunction form is like a defun form, except that the function spec is immediate-

ly followed by the name of the lambda macro to be used. deffunction expands the

lambda macro immediately, so the lambda macro must already be defined before

deffunction is used. For example, suppose the ilisp lambda macro were defined as

follows:

(lambda-macro ilisp (x)

  ‘(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))�

Then the following example would define a function called new-list that would use

the lambda macro called ilisp:

(deffunction new-list ilisp (x y z)

  (list x y z))�

new-list’s arguments are optional, and any extra arguments are ignored. Examples:

(new-list 1 2) => (1 2 nil)

(new-list 1 2 3 4) -> (1 2 3)�

� defgeneric name arglist &body options Special Form
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Defines a generic function named name that accepts arguments defined by arglist,

a lambda-list. arglist is required unless the :function option is used to indicate

otherwise. arglist represents the object that is supplied as the first argument to

the generic function. The flavor of the first element of arglist determines which

method is appropriate to perform this generic function on the object.

The semantics of the options for defgeneric are described elsewhere: See the sec-

tion "Options for defgeneric". The syntax of the options is summarized here:

(:compatible-message symbol)

(declare declaration)

(:dispatch flavor-name)

(:documentation string)

(:function body...)

:inline-methods

(:inline-methods :recursive)

(:method (flavor options...) body...)

(:method-arglist args...)

(:method-combination name args...)

(:optimize speed)

For example, to define a generic function total-fuel-supply that works on in-

stances of army and navy, and takes one argument (fuel-type) in addition to the

object itself, we might supply military-group as arg1:

(defgeneric total-fuel-supply (military-group fuel-type) 

  "Returns today’s total supply 

    of the given type of fuel 

    available to the given military group."

  (:method-combination :sum))    �

The generic function is called as follows: 

(total-fuel-supply blue-army ’:gas)

The argument blue-army is known to be of flavor army. Therefore, Flavors choos-

es the method that implements the total-fuel-supply generic function on instances

of the army flavor. That method takes only one argument, fuel-type:

(defmethod (total-fuel-supply army) (fuel-type) 

   body of method)�

The arguments to defgeneric are displayed when you give the Arglist (m-X) com-

mand or press c-sh-A while this generic function is current. 

It is not necessary to use defgeneric to set up a generic function. For further dis-

cussion: See the section "Use of defgeneric".

The function spec of a generic function is described elsewhere: See the section

"Function Specs for Flavor Functions".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".



Page 997

� clos:defgeneric function-specifier lambda-list &rest options Macro

Defines a generic function and returns the generic function object. It is not always

necessary to use clos:defgeneric, because using clos:defmethod will automatically

create a generic function, if it does not already exist. However, clos:defgeneric is

useful for defining the interface of the generic function, and for specifying options

that pertain to the generic function as a whole, such as the method-combination

type. 

The arguments to clos:defgeneric are:

function-specifier The name of the generic function, which is either a symbol or

a list of the form (future-common-lisp:setf symbol). An error

is signaled if the function-specifier indicates an ordinary Lisp

function, a macro, or a special form. In other words, you can-

not use clos:defgeneric to redefine an ordinary function,

macro, or special form to be a generic function.

lambda-list Specifies the lambda-list of the generic function. This is an or-

dinary lambda-list with some exceptions. Default values for op-

tional and keyword parameters may not be provided, and &aux

parameters may not be specified. 

options One or more of the following options:

(:argument-precedence-order {parameter-name}+)

Specifies the precedence order of the required parame-

ters, which is used when ordering methods from most

specific to least specific. The default argument prece-

dence order is left to right, such that the leftmost pa-

rameter is considered first, followed by the parameters

to its right. The name of each required parameter must

be given.

(declare {declaration}+)

Specifies one or more declarations that pertain to the

generic function. CLOS recognizes the optimize declara-

tion, which declares whether method selection should be

optimized for speed or space. Symbolics CLOS recognizes

the following declarations as well: arglist, values,

sys:downward-funarg, and sys:function-parent.

(:documentation string)

Provides a documentation string describing the generic

function. You can get the documentation string of a class

as follows:

(documentation class-name ’type)�

(:method-combination symbol {arg}*)

Specifies the method-combination type to be used by the

generic function, and any arguments to the method-
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combination type. The args are not evaluated. The de-

fault method-combination type is clos:standard. 

(:method {method-qualifier}* specialized-lambda-list &body

body)

Enables you to define one or more methods for this

generic function in the clos:defgeneric form, rather than

having separate clos:defmethod forms. Sometimes it is

convenient to define default methods within the

clos:defgeneric form. For information on the arguments

to the :method option, see the macro clos:defmethod.

(:generic-function-class class-name)

Specifies the class of the generic function. The default is

clos:standard-generic-function. In Symbolics CLOS, the

effects are undefined if any other value is given to this

option. 

(:method-class class-name)

Specifies the class of the methods for this generic func-

tion. The default is clos:standard-method. In Symbolics

CLOS, the effects are undefined if any other value is

given to this option. 

� zl:@define &rest ignore Macro

This macro turns into nil, doing nothing. It exists for the sake of the @ listing

generation program, which uses it to declare names of special forms that define

objects (such as functions) that @ should cross-reference. 

� si:define-character-style-families device character-set &rest plists Function

The mechanism for defining new character styles, and for defining which font

should be used for displaying characters from character-set on the specified device.

plists contain the actual mapping between character styles and fonts.

It is necessary that a character style be defined in the world before you access a

file that uses the character style. You should be careful not to put any characters

from a style you define into a file that is shared by other users, such as

sys.translations.

It is possible for plists to map from a character style into another character style;

this usage is called logical character styles. It is expected that the logical style

used has its own mapping, in this si:define-character-style-families form or an-

other such form, that eventually is resolved into an actual font.

plists is a nested structure whose elements are of the form:
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(:family family

         (:size size

                (:face face target-font

                 :face face target-font

                 :face face target-font)

          :size size

                (:face face target-font

                 :face face target-font)))�

Each target-font is one of:

• A symbol such as fonts:cptfont, which represents a font for a black and white

Symbolics console. 

• A string such as "furrier7", which represents a font for an LGP2 or LGP3

printer. 

• A list whose car is :font and whose cadr is an expression representing a font,

such as (:font ("Furrier" "B" 9 1.17)). This is also a font for an LGP2/LGP3

printer. 

• A list whose car is :style and whose cdr is a character style, such as: (:style�

family face size). This is an example of using a logical character style (see

ahead for more details). �

Each size is either a symbol representing a size, such as :normal, or an asterisk *

used as a wildcard to match any size. The wildcard syntax is supported for the

:size element only. When you use a wildcard for size the target-font must be a

character style. The size element of target-font can be :same to match whatever

the size of the character style is, or :smaller or :larger. 

If you define a new size, that size cannot participate in the merging of relative

sizes against absolute sizes. The ordered hierarchy of sizes is predefined. See the

section "Merging Character Styles".

The elements can be nested in a different order, if desired. For example:

(:size size

       (:face face

              (:family target-font)))�

The first example simply maps the character style BOX.ROMAN.NORMAL into the

font fonts:boxfont for the character set si:*standard-character-set* and the de-

vice si:*b&w-screen*. The face ROMAN and the size NORMAL are already valid

faces and sizes, but BOX is a new family; this form makes BOX one of the valid

families. 

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -*-

(define-character-style-families *b&w-screen* *standard-character-set* 

  ’(:family :box

    (:size :normal (:face :roman fonts:boxfont))))�
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Once you have compiled this form, you can use the Zmacs command Change Style

Region (invoked by c-X c-J) and enter BOX.ROMAN.NORMAL. This form does not

make any other faces or sizes valid for the BOX family. 

The following example uses the wildcard syntax for the :size, and associates the

faces :italic, :bold, and :bold-italic all to the same character style of

BOX.ROMAN.NORMAL. This is an example of using logical character styles. This

form has the effect of making several more character styles valid; however, all

styles that use the BOX family are associated with the same logical character

style, which uses the same font. 

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -*-

(define-character-style-families *b&w-screen* *standard-character-set*

  ’(:family :box

    (:size * (:face :italic (:style :box :roman :normal)

    :bold (:style :box :roman :normal)

    :bold-italic (:style :box :roman :normal)))))�

For lengthier examples: See the section "Examples of si:define-character-style-

families".

For related information: See the section "Mapping a Character Style to a Font".

� define-global-handler name conditions arglist &body body Function

name is a symbol, and a handler function by that name is defined.

conditions is a condition name, or a list of condition names.

arglist is a list of one element, the name of the argument (a symbol) which is

bound to the condition object.

A global handler is like a bound handler with an important exception: unlike a

bound handler which is of dynamic extent, a global handler is of indefinite extent.

Once defined, a global handler must therefore be specifically removed with

undefine-global-handler.

Similarly, since a global handler could be called in any process by any program, it

cannot use a throw the way a bound handler can. Instead it should return nil

(keep searching for another handler), or return multiple values where the first one

is the name of a proceed-type, as with bound handlers.

A note of caution: The global handler functions do not maintain the order of the

global handler list in any way. If there are two handlers whose conditions overlap

each other in such a way that some instantiable condition could be handled by ei-

ther, then either handler might run, depending on the order in which they were

defined. When there is more experience with use of global handlers we will try to

develop a good approach to this problem.

Example:
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(define-global-handler infinity-is-three sys:divide-by-zero

    (error)

  (values :return-values ’(3)))

  

(/ 1 0) ==> 3

�

For a table of related items, see the section "Basic Forms for Global Handlers". 

� define-loop-macro keyword Macro

Can be used to make keyword, a loop keyword (such as for), into a Lisp macro

that can introduce a loop form. For example, after evaluating:

(define-loop-macro for) => T�

you can now write an iteration as:

(for i from 1 below n do ...)

�

(for i from 1 to 5 

     do 

     (print i)) => 

1 

2 

3 

4 

5 NIL

�

This facility exists primarily for diehard users of a predecessor of loop. Its uncon-

strained use is not recommended, as it tends to decrease the transportability of the

code and needlessly uses up a function name.

See the macro loop.

� define-loop-path Macro

Allows a function to generate code for a path to be declared to loop:

(define-loop-path path-name-or-names path-function

     list-of-allowable-prepositions

     datum-1 datum-2 ...)�

This defines path-function to be the handler for the path(s) path-name-or-names,

which can be either a symbol or a list of symbols. Such a handler should follow

the conventions described below. The datum-i are optional; they are passed in to

path-function as a list.

path-name The name of the path that caused the path function to be in-

voked.
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variable The "iteration variable".

data-type The data type supplied with the iteration variable, or nil if

none was supplied.

prepositional-phrases

A list with entries of the form (preposition expression), in the

order in which they were collected. This can also include some

supplied implicitly (for example, an of phrase when the itera-

tion is inclusive, and an in phrase for the default-loop-path

path); the ordering shows the order of evaluation that should

be followed for the expressions.

inclusive? t if variable should have the starting point of the path as its

value on the first iteration (by virtue of being specified with

syntax like for var being expr and its path-name, nil other-

wise. When t, expr appears in prepositional-phrases with the of

preposition; for example, for x being foo and its cdrs gets

prepositional-phrases of ((of foo)).

allowed-prepositions The list of allowable prepositions declared for the path-name

that caused the path function to be invoked. It and data can be

used by the path function such that a single function can han-

dle similar paths.

data The list of "data" declared for the path-name that caused the

path function to be invoked. It might, for instance, contain a

canonicalized path-name, or a set of functions or flags to aid

the path function in determining what to do. In this way, the

same path function might be able to handle different paths.�

The handler should return a list of either six or ten elements:

variable-bindings

A list of variables that need to be bound. The entries in it can be of the

form variable, (variable expression), or (variable expression data-type). Note

that it is the responsibility of the handler to make sure the iteration vari-

able gets bound. All of these variables are bound in parallel; if initialization

of one depends on others, it should be done with a setq in the prologue-

forms. Returning only the variable without any initialization expression is

not allowed if the variable is a destructuring pattern.

prologue-forms

A list of forms that should be included in the loop prologue.

the four items of the iteration specification

The four items: pre-step-endtest, steps, post-step-endtest, and pseudo-steps. See

the section "The Iteration Framework".

another four items of iteration specification

If these four items are given, they apply to the first iteration, and the pre-

vious four apply to all succeeding iterations; otherwise, the previous four

apply to all iterations.�
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See the section "Iteration Paths for loop".

� define-loop-sequence-path path-name-or-names fetchfun sizefun &optional sequence-

type element-type Macro

One very common form of iteration is that over the elements of some object that

is accessible by means of an integer index. loop defines an iteration path function

for doing this in a general way, and provides a simple interface to allow users to

define iteration paths for various kinds of "indexable" data.

path-name-or-names is either an atomic path name or list of path names. 

fetchfun is a function of two arguments: the sequence, and the index of the item to

be fetched. (Indexing is assumed to be zero-origined.) 

sizefun is a function of one argument, the sequence; it should return the number

of elements in the sequence. sequence-type is the name of the data-type of the se-

quence, and element-type the name of the data-type of the elements of the se-

quence. These last two items are optional.

Examples:

�

(define-loop-sequence-path ascii-char

   (lambda (string i)    

     (ascii-code (aref string i)))

  length) => NIL

�

(loop for x being the ascii-char of "ABC"

      doing 

  (print x)) => 

65 

66 

67 NIL ; 65 is the ascii equivalent of "A"�

The Symbolics Common Lisp implementation of loop utilizes the Symbolics Com-

mon Lisp array manipulation primitives to define both array-element and array-

elements as iteration paths:

(define-loop-sequence-path (array-element array-elements)

    aref array-active-length)�

Then, the loop clause:

for var being the array-elements of array�

steps var over the elements of array, starting from 0. The sequence path function

also accepts in as a synonym for of.

The range and stepping of the iteration can be specified with the use of all the

same keywords that are accepted by the loop arithmetic stepper (for var from ...);

they are by, to, downto, from, downfrom, below, and above, and are interpreted

in the same manner. Thus:
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(loop for var being the array-elements of array

  from 1 by 2

  ...)�

steps var over all of the odd elements of array, and:

(loop for var being the array-elements of array

  downto 0

  ...)�

steps in "reverse" order.

All such sequence iteration paths allow you to specify the variable to be used as

the index variable, by use of the index keyword with the using prepositional

phrase. You can also use the sequence keyword with the using prepositional

phrase to specify the variable to be bound to the sequence.

See the section "Iteration Paths for loop".

� define-method-combination name parameters method-patterns &body body Function

Provides a rich declarative syntax for defining new types of method combination.

This is more flexible and powerful than define-simple-method-combination. 

name is a symbol that is the name of the new method combination type. parame-

ters resembles the parameter list of a defmacro; it is matched against the parame-

ters specified in the :method-combination option to defgeneric or defflavor.

method-patterns is a list of method pattern specifications. Each method pattern se-

lects some subset of the available methods and binds a variable to a list of the

function specs for these methods. Two of the method patterns select only a single

method and bind the variable to the chosen method’s function spec if a method is

found and otherwise to nil. The variables bound by method patterns are lexically

available while executing the body forms. See the section "Method-Patterns Option

to define-method-combination". Each option is a list whose car is a keyword.

These can be inserted in front of the body forms to select special options. See the

section "Options Available in define-method-combination". The body forms are

evaluated to produce the body of a combined method. Thus the body forms of

define-method-combination resemble the body forms of defmacro. Backquote is

used in the same way. The body forms of define-method-combination usually pro-

duce a form that includes invocations of flavor:call-component-method and/or

flavor:call-component-methods. These functions hide the implementation-

dependent details of the calling of component methods by the combined method.

Flavors performs some optimizations on the combined method body. This makes it

possible to write the body forms in a simple and easy-to-understand style, without

being concerned about the efficiency of the generated code. For example, if a com-

bined method chooses a single method and calls it and does nothing else, Flavors

implements the called method as the handler rather than constructing a combined

method. Flavors removes redundant invocations of progn and multiple-value-prog1

and performs similar optimizations.
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The variables flavor:generic and flavor:flavor are lexically available to the body

forms. The values of both variables are symbols:

flavor:generic value is the name of the generic operation whose handler is

being computed.

flavor:flavor value is the name of the flavor.�

The body forms are permitted to setq the variables defined by the method-patterns,

if further filtering of the available methods is required, beyond the filtering pro-

vided by the built-in filters of the method-patterns mechanism. It is rarely neces-

sary to resort to this. Flavors assumes that the values of the variables defined by

the method patterns (after evaluating the body forms) reflect the actual methods

that will be called by the combined method body.

body forms must not signal errors. Signalling an error (such as a complaint about

one of the available methods) would interfere with the use of flavor examining

tools, which call the user-supplied method combination routine to study the struc-

ture of the erroneous flavor. If it is absolutely necessary to signal an error, the

variable flavor:error-p is lexically available to the body forms; its value must be

obeyed. If nil, errors should be ignored.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� clos:define-method-combination name &rest rest Macro

Defines a new method-combination type. There are two forms of clos:define-

method-combination: a short form, for defining simple method-combination types;

and a long form, for defining more complex method-combination types.

clos:define-method-combination returns the new method-combination object.

Short-form Syntax�

clos:define-method-combination name short-form-option*

None of the subforms are evaluated. The arguments are: 

name The name of the method-combination type, a symbol. If the

:operator option is not provided, the name of the method-

combination type must also name a Lisp operator, such as a

function, macro, or special form. The new method-combination

type combines applicable primary methods in a call to this op-

erator:

(operator (primary-method-1 args)

(primary-method-2 args)

...)�

short-form-option These options are:
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(:documentation string)

Provides a documentation string for the method-

combination type.

(:identity-with-one-argument boolean)

If true, then an optimization is enabled for the case

where there is only one applicable method, and it is a

primary method. In that case, the operator is not called,

and the value of the method is returned as the value of

the generic function. This optimization makes sense for

operators such as progn, +, and, max, and others.

(:operator operator)

This option is used when you want the name of the

method-combination type to be different than the name

of the operator. �

None of these options may be given more than once.

A simple method-combination type defined by the short form of clos:define-

method-combination has the same semantics as the simple built-in method-

combination types. For more information, see the section "CLOS Built-in Method-

Combination Types".

Long-form Syntax�

clos:define-method-combination name lambda-list

                          ({method-group-specifier}*)

                          [(:arguments . lamba-list)]

                          [(:generic-function generic-function-symbol)]

                          {declaration | doc-string}*

                          {form}*

Each method-group-specifier is of the form:

   (variable {{qualifier-pattern}+ | predicate} {option}*)

The options are:

    :description format-string

    :order order

    :required boolean�

name is the name of the method-combination type, a symbol. 

The lambda-list argument is an ordinary lambda-list. It receives any arguments

provided after the name of the method-combination type in the :method-

combination option to clos:defgeneric.

The next argument is a list of method-group-specifiers. Each method group specifi-

er selects a subset of the applicable methods to play a particular role, either by



Page 1007

matching their qualifiers against some patterns or by testing their qualifiers with

a predicate. These method group specifiers define all the method qualifiers that

can be used with this type of method combination. If an applicable method does

not fall into any method group, the system signals the error that the method is in-

valid for the kind of method combination in use.

Each method group specifier names a variable. During the execution of the forms

in the body of clos:define-method-combination, this variable is bound to a list of

the methods in the method group. The order of the methods in this list is most-

specific-first, unless this is changed by :order.

A qualifier pattern is a list or the symbol *. A method matches a qualifier pattern

if the method’s list of qualifiers is equal to the qualifier pattern (except that the

symbol * in a qualifier pattern matches anything). Thus a qualifier pattern can be

one of the following: 

• The empty list (), which matches unqualified methods.

• The symbol *, which matches all methods.

• A true list, which matches methods with the same number of qualifiers as the

length of the list when each qualifier matches the corresponding list element.

• A dotted list that ends in the symbol *. The * matches any number of additional

qualifiers.

Each applicable method is tested against the qualifier patterns and predicates in

left-to-right order. As soon as a qualifier pattern matches or a predicate returns

true, the method becomes a member of the corresponding method group and no

further tests are made. Thus if a method could be a member of more than one

method group, it joins only the first such group. If a method group has more than

one qualifier pattern, a method need only satisfy one of the qualifier patterns to be

a member of the group.

The name of a predicate function can appear instead of qualifier patterns in a

method group specifier. The predicate is called for each method that has not been

assigned to an earlier method group; it is called with one argument, the method’s

qualifier list. The predicate should return true if the method is to be a member of

the method group. A predicate can be distinguished from a qualifier pattern be-

cause it is a symbol other than nil or *.

If there is an applicable method whose qualifiers are not valid for the method-

combination type (that is, the qualifiers do not match any qualifier patterns, nor

do they satisfy any predicate, nor do they fit any method group), the function

clos:invalid-method-error is called. 

Method group specifiers can have keyword options following the qualifier patterns

or predicate. Keyword options can be distinguished from additional qualifier pat-

terns because they are neither lists nor the symbol *. Note that none of these op-

tions may appear more than once in a method group specifier. The keyword op-

tions are as follows:
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:description format-string

Provides a description of the role of methods in the method

group. Programming environment tools use

(apply #’format stream format-string (method-qualifiers method))�

to print this description, which is expected to be concise. This

keyword option allows the description of a method qualifier to

be defined in the same module that defines the meaning of the

method qualifier. In most cases, format-string will not contain

any format directives, but they are available for generality. If

:description is not specified, a default description is generated

based on the variable name and the qualifier patterns and on

whether this method group includes the unqualified methods.

The argument format-string is not evaluated.

:order order Specifies the order of methods. The order argument is a form

that evaluates to :most-specific-first or :most-specific-last. If

it evaluates to any other value, an error is signaled. This key-

word option is a convenience and does not add any expressive

power. If :order is not specified, it defaults to :most-specific-

first.

:required boolean Specifies whether at least one method in this method group is

required. If the boolean argument is non-nil and the method

group is empty (that is, no applicable methods match the quali-

fier patterns or satisfy the predicate), an error is signaled.

This keyword option is a convenience and does not add any ex-

pressive power. If :required is not specified, it defaults to nil.

The boolean argument is not evaluated.

The use of method group specifiers provides a convenient syntax to select methods,

to divide them among the possible roles, and to perform the necessary error

checking. It is possible to perform further filtering of methods in the body forms

by using normal list-processing operations and the functions clos:method-

qualifiers and clos:invalid-method-error. It is permissible to use setq on the vari-

ables named in the method group specifiers and to bind additional variables. It is

also possible to bypass the method group specifier mechanism and do everything in

the body forms. This is accomplished by writing a single method group with * as

its only qualifier pattern; the variable is then bound to a list of all of the applica-

ble methods, in most-specific-first order.

The body forms compute and return the Lisp form that specifies how the methods

are combined, that is, the effective method. The effective method uses the macro

clos:call-method. This macro has lexical scope and is available only in an effective

method form. Given a method object in one of the lists produced by the method

group specifiers and a list of next methods, the macro clos:call-method will invoke

the method such that clos:call-next-method has available the next methods.

When clos:call-method is called and the next-method-list argument is unsupplied,

it means that semantically there is no such thing as a "next method"; for example,
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this is true for before-methods and after-methods in clos:standard method combi-

nation. Thus, when the next-method-list is unsupplied, clos:call-next-method is not

allowed inside the method, and the behavior of clos:next-method-p is undefined. If

the next-method-list argument is supplied as nil, and the method uses clos:call-

next-method, then clos:no-next-method is called.

When an effective method has no effect other than to call a single method, CLOS

can employ an optimization that uses the single method directly as the effective

method, thus avoiding the need to create a new effective method. This optimization

is active when the effective method form consists entirely of an invocation of the

clos:call-method macro whose first subform is a method object and whose second

subform is nil. Each clos:define-method-combination body is responsible for strip-

ping off redundant invocations of progn, and, multiple-value-prog1, and the like,

if this optimization is desired.

The list (:arguments . lambda-list) can appear before any declarations or documen-

tation string. This form is useful when the method-combination type performs

some specific behavior as part of the combined method and that behavior needs ac-

cess to the arguments to the generic function. Each parameter variable defined by

lambda-list is bound to a form that can be inserted into the effective method.

When this form is evaluated during execution of the effective method, its value is

the corresponding argument to the generic function. 

The arguments to the generic function might not match the lambda-list. If there

are too few arguments, nil is assumed for missing arguments. If there are too

many arguments, the extra arguments are ignored. If there are unhandled keyword

arguments, they are ignored. Supplied-p parameters work in the normal fashion.

Default value forms are evaluated in the null lexical environment (except for bind-

ings of :arguments parameters to their left).

If the effective method form returned by the body forms includes (setq ,variable

...), or (setf ,variable ...), or (future-common-lisp:setf ,variable ...), and variable is

one of the :arguments parameters, the consequences are undefined.

Erroneous conditions detected by the body should be reported with clos:method-

combination-error or clos:invalid-method-error; these functions add any neces-

sary contextual information to the error message and will signal the appropriate

error.

The body forms are evaluated inside of the bindings created by the lambda-list and

method group specifiers. Declarations at the head of the body are positioned direct-

ly inside of bindings created by the lambda-list and outside of the bindings of the

method group variables. Thus method group variables cannot be declared.

If the list (:generic-function generic-function-symbol) is provided, then within the

body forms, generic-function-symbol is bound to the generic function object.

If a doc-string argument is present, it provides the documentation for the method-

combination type.

The functions clos:method-combination-error and clos:invalid-method-error can

be called from the body forms or from functions called by the body forms. 
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Examples�

;;; Examples of the short form of define-method-combination

�

(define-method-combination and :identity-with-one-argument t) 

�

(defmethod func and ((x class1) y) ...)

�

;;; The equivalent of this example in the long form is:

�

(define-method-combination and 

        (&optional (order ’:most-specific-first))

        ((around (:around))

         (primary (and) :order order :required t))

  (let ((form (if (rest primary)

                  ‘(and ,@(mapcar #’(lambda (method)

                                      ‘(call-method ,method ())

                                  primary))

                  ‘(call-method ,(first primary) ()))))

    (if around

        ‘(call-method ,(first around)

                      (,@(rest around)

                       (make-method ,form)))

        form)))

�

;;; Examples of the long form of define-method-combination
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�

;The default method-combination technique

(define-method-combination standard ()

        ((around (:around))

         (before (:before))

         (primary () :required t)

         (after (:after)))

  (flet ((call-methods (methods)

           (mapcar #’(lambda (method)

                       ‘(call-method ,method)))

                   methods)))

    (let ((form (if (or before after (rest primary))

                    ‘(multiple-value-prog1

                       (progn ,@(call-methods before)

                              (call-method ,(first primary)

                                           ,(rest primary)))

                       ,@(call-methods (reverse after)))

                    ‘(call-method ,(first primary)))))

      (if around

          ‘(call-method ,(first around)

                        (,@(rest around)

                         (make-method ,form)))

          form))))

�

;A simple way to try several methods until one returns non-nil

(define-method-combination or ()

        ((methods (or)))

  ‘(or ,@(mapcar #’(lambda (method)

                     ‘(call-method ,method))

                 methods)))
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�

;A more complete version of the preceding

(define-method-combination or 

        (&optional (order ’:most-specific-first))

        ((around (:around))

         (primary (or)))

  ;; Process the order argument

  (case order

    (:most-specific-first)

    (:most-specific-last (setq primary (reverse primary)))

    (otherwise (method-combination-error "~S is an invalid order.~@

    :most-specific-first and :most-specific-last are the possible values."

                                         order)))

  ;; Must have a primary method

  (unless primary

    (method-combination-error "A primary method is required."))

  ;; Construct the form that calls the primary methods

  (let ((form (if (rest primary)

                  ‘(or ,@(mapcar #’(lambda (method)

                                     ‘(call-method ,method))

                                 primary))

                  ‘(call-method ,(first primary)))))

    ;; Wrap the around methods around that form

    (if around

        ‘(call-method ,(first around)

                      (,@(rest around)

                       (make-method ,form)))

        form)))

�

;The same thing, using the :order and :required keyword options

(define-method-combination or 

        (&optional (order ’:most-specific-first))

        ((around (:around))

         (primary (or) :order order :required t))

  (let ((form (if (rest primary)

                  ‘(or ,@(mapcar #’(lambda (method)

                                     ‘(call-method ,method))

                                 primary))

                  ‘(call-method ,(first primary)))))

    (if around

        ‘(call-method ,(first around)

                      (,@(rest around)

                       (make-method ,form)))

        form)))
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�

;This short-form call is behaviorally identical to the preceding

(define-method-combination or :identity-with-one-argument t)

 

;Order methods by positive integer qualifiers

;:around methods are disallowed to keep the example small

(define-method-combination example-method-combination ()

        ((methods positive-integer-qualifier-p))

  ‘(progn ,@(mapcar #’(lambda (method)

                        ‘(call-method ,method))

                    (stable-sort methods #’<

                      :key #’(lambda (method)

                               (first (method-qualifiers method)))))))

�

(defun positive-integer-qualifier-p (method-qualifiers)

  (and (= (length method-qualifiers) 1)

       (typep (first method-qualifiers) ’(integer 0 *))))

�

;;; Example of the use of :arguments

(define-method-combination progn-with-lock ()

        ((methods ()))

  (:arguments object)

  ‘(unwind-protect

       (progn (lock (object-lock ,object))

              ,@(mapcar #’(lambda (method)

                            ‘(call-method ,method))

                        methods))

     (unlock (object-lock ,object))))�

� define-modify-macro name args function &rest documentation-and-declarations 

Macro

Defines a read-modify-write macro named name. An example of such a macro is

incf. The first subform of the macro will be a generalized-variable reference. The

function is literally the function to apply to the old contents of the generalized-

variable to get the new contents; it is not evaluated. args describes the remaining

arguments for the name; these arguments come from the remaining subforms of

the macro after the generalized-variable reference. args may contain &optional and

&rest markers. (The &key marker is not permitted here; &rest suffices for the pur-

poses of define-modify-macro.) documentation-and-declarations is documentation

for the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following, except that

it generates code that follows the semantic rules outlined above.
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(defmacro name (reference . lambda-list)

  documentation-and-declarations

  ‘(setf ,reference

         (function ,reference ,arg1 ,arg2 ...)))�

where arg1, arg2, ..., are the parameters appearing in args; appropriate provision is

made for a &rest parameter.

As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)�

A similar read-modify-write macro for the logior operation of taking the logical

and of a number can be created by

�

(define-modify-macro logiorf (arg2) logior)

�

(setq first 5 second 6)

�

(logiorf first second) => 7

�

first => 7�

In the previous example, the lambda list only refers to the second argument to

logior because these macros are presumed to take at least one argument, and only

additional arguments require specification. The unspecified first argument is up-

dated by the macro.

� define-setf-method access-function subforms &body body Macro

In this context, the word "method" has nothing to do with flavors.

This macro defines how to setf a generalized-variable reference that is of the form

(access-function . . .). The value of the generalized-variable reference can always be

obtained by evaluating it, so access-function should be the name of a function or a

macro.

subforms is a lambda list that describes the subforms of the generalized-variable

reference, as with defmacro. The result of evaluating body must be five values

representing the setf method. (The five values are described in detail at the end of

this discussion.) Note that define-setf-method differs from the complex form of

defsetf in that while the body is being executed the variables in subforms are

bound to parts of the generalized-variable reference, not to temporary variables

that will be bound to the values of such parts. In addition, define-setf-method

does not have the defsetf restriction that access-function must be a function or a

function-like macro. An arbitrary defmacro destructuring pattern is permitted in

subforms. 

By definition, there are no good small examples of define-setf-method because the

easy cases can all be handled by defsetf. A typical use is to define the setf method

for ldb. 



Page 1015

;;; SETF method for the form (LDB bytespec int).

;;; Recall that the int form must itself be suitable for SETF.

�

(define-setf-method ldb (bytespec int)

  (multiple-value-bind (temps vals stores

                        store-form accessform)

      (get-setf-method int) ;Get SETF method for int.

    (let ((btemp (gensym))              ;Temp var for byte specifier.

          (store (gensym))              ;Temp var for byte to store.

          (stemp (first stores)))       ;Temp var for int to store.

      ;; Return the SETF method for LDB as five values.

      (values (cons btemp temps)        ;Temporary variables.

              (cons bytespec vals)      ;Value forms.

              (list store)              ;Store variables.

              ‘(let ((,stemp (dpb ,store ,btemp ,access-form)))

                 ,store-form

                 ,store)                ;Storing form.

              ‘(ldb ,btemp ,access-form);Accessing form.

))))

�

Here are the five values that express a setf method for a given access form.

• A list of temporary variables.

• A list of value forms (subforms of the given form) to whose values the tempo-

rary variables are to be bound.

• A second list of temporary variable, called store variables.

• A storing form.

• An accessing form.

The temporary variables are bound to the value forms as if by let*; that is, the

value forms are evaluated in the order given and may refer to the values of earlier

value forms by using the corresponding variable.

The store variables are to be bound to the values of the newvalue form, that is,

the values to be stored into the generalized variable. In almost all cases, only a

single value is stored, and there is only one store variable.

The storing form and the accessing form may contain references to the temporary

variables (and also, in the case of the storing form, to the store variables). The ac-

cessing form returns the value of the generalized variable. The storing form modi-

fies the value of the generalized variable and guarantees to return the values of

the store variables as its values. These are the correct values for setf to return.

(Again, in most cases there is a single store variable and thus a single value to be

returned.) The value returned by the accessing form is, of course, affected by exe-

cution of the storing form, but either of these forms may be evaluated any number
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of times, and therefore should be free of side effects (other than the storing action

of the storing form).

The temporary variables and the store variables are generated names, as if by

gensym or gentemp, so that there is never any problem of name clashes among

them, or between them and other variables in the program. This is necessary to

make the special forms that do more than one setf in parallel work properly.

These are psetf, shiftf and rotatef. 

Here are some examples of setf methods for particular forms: 

• For a variable x:

()

()

(g0001)

(setq x g0001)

x�

• For (car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)

(car g0002)�

• For (subseq seq s e):

(g0004 g0005 g0006)

(seq s e)

(g0007)

(progn (replace g0004 g0007 :start1 g0005 :end1 g0006)

       g0007)

(subseq g0004 g0005 g0006)�

� define-simple-method-combination name operator &optional single-arg-is-value

pretty-name Special Form

Defines a new type of method combination that simply calls all the methods, pass-

ing the values they return to the function named operator. 

It is also legal for operator to be the name of a special form. In this case, each

subform is a call to a method. It is legal to use a lambda expression as operator.

name is the name of the method-combination type to be defined. It takes one op-

tional parameter, the order of methods. The order can be either :most-specific-

first (the default) or :most-specific-last.

When you use a new type of method combination defined by define-simple-

method-combination, you can give the argument :most-specific-first or :most-
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specific-last to override the order that this type of method combination uses by

default. 

If single-arg-is-value is specified and not nil, and if there is exactly one method, it

is called directly and operator is not called. For example, single-arg-is-value makes

sense when operator is +.

pretty-name is a string that describes how to print method names concisely. It de-

faults to (string-downcase name). 

Most of the simple types of built-in method combination are defined with define-

simple-method-combination. For example: 

(define-simple-method-combination :and and t)

(define-simple-method-combination :or or t)

(define-simple-method-combination :list list)

(define-simple-method-combination :progn progn t)

(define-simple-method-combination :append append t)�

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� define-symbol-macro name form Special Form

Defines a symbol macro. name is a symbol to be defined as a symbol macro. form

is a Lisp form to be substituted for the symbol when the symbol is evaluated. A

symbol macro is more like an inline function than a macro: form is the form to be

substituted for the symbol, not a form whose evaluation results in the substitute

form.

Example:

(define-symbol-macro foo (+ 3 bar))

(setq bar 2)

foo => 5�

A symbol defined as a symbol macro cannot be used in the context of a variable.

You cannot use setq on it, and you cannot bind it. You can use setf on it: setf

substitutes the replacement form, which should access something, and expands into

the appropriate update function.

For example, suppose you want to define some new instance variables and methods

for a flavor. Then, you want to test the methods using existing instances of the

flavor. For testing purposes, you might use hash tables to simulate the instance

variables, using one hash table per instance variable with the instance as the key.

You could then implement an instance variable x as a symbol macro:

(defvar x-hash-table (make-hash-table))

(define-symbol-macro x (gethash self x-hash-table)

To simulate setting a new value for x, you could use (setf x value), which would

expand into (setf (gethash self x-hash-table) value). 
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� deflambda-macro name pattern &body body Function

Like defmacro, but defines a lambda macro instead of a normal macro.

name is the name of the lambda macro to be defined; it can be any function spec.

See the section "Function Specs". The pattern can be anything made up out of sym-

bols and conses. It is matched against the body of the lambda macro form; both

pattern and the form are car’ed and cdr’ed identically, and whenever a non-nil

symbol occurs in pattern, the symbol is bound to the corresponding part of the

form. If the corresponding part of the form is nil, it goes off the end of the form.

&optional, &rest, &key, and &body can be used to indicate where optional pat-

tern elements are allowed.

All of the symbols in pattern can be used as variables within body. 

body is evaluated with these bindings in effect, and its result is returned to the

evaluator as the expansion of the macro.

Here is an example of deflambda-macro used to define a lambda macro:

(deflambda-macro ilisp (arglist &rest body)

    ‘(lambda (&optional ,@arglist) ,@body))

This defines a lambda macro called ilisp. After it has been defined, the following

list is a valid Lisp function:

(ilisp (x y z) (list x y z))

� zl:deflambda-macro-displace name pattern &body body Special Form

Like zl:defmacro-displace, but defines a displacing lambda macro instead of a dis-

placing normal macro. 

� deflocf access-function locate-function-or-subforms &body body Function

Defines how locf creates a locative pointer to a cell referred to by access-function,

similar to the way defsetf defines how setf sets a generalized-variable. See the

macro defsetf.

Subforms of the access-function are evaluated exactly once and in the proper left-

to-right order. A locf of a call on access-function will also evaluate all of access-

function’s arguments; it cannot treat any of them specially.

A deflocf function has two forms: a simple case and a slightly more complicated

one. In the simplest case, locate-function-or-subforms is the name of a function or

macro. In the more complicated case, locate-function-or-subforms is a lambda list of

arguments.

The simple form of deflocf is

(deflocf array-leader ap-leader)�

This says that the form to create a locative pointer to array-leader is the function

ap-leader.
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If the access-function and the locate-function-or-subforms take their arguments in a

different order or do anything special with their arguments, the more complicated

form must be used, for example:

(deflocf fs:pathname-property-list (pathname)

  ‘(send ,pathname :property-list-location))�

� defmacro name pattern &body body Macro

A general-purpose macro-defining macro. A defmacro form looks like:

(defmacro name pattern . body)�

name is the name of the macro to be defined; it can be any function spec. See the

section "Function Specs". Specifies the expansion of forms characterized by calling

name with arguments as indicated in pattern. The expansion function is stored as

the macro definition associated with name. The macro definition is evaluated in the

context of the global environment. (To establish macros in the current lexical en-

vironment, macrolet may be used instead of defmacro). The pattern argument

specifies an extension to Common Lisp syntax by characterizing a structured form

whose car is name. The chief distinction between macro lambda-lists and those

used in function definitions is that macro lambda-lists recursively specify list-forms

(also lambda-lists) that represent list forms actually appearing in the call. Consider

the macro do in the following example:

(do ((i 0 (+ i 1))

     (j 10 (- j 2)))

    ((<= j 0) j)

  (setf (aref *glob* i) j))�

The outer parentheses in the variable initialization and step form 

(i 0 (+ i 1)) �

are explicitly represented in the lambda-list of the do definition. The inner set sur-

rounding the + form is simply an argument form for the step parameter. This is

similar to a form argument paired to a defun parameter. However, in the latter

case the form is evaluated to produce a value for the parameter, while in the

macro case the form represents a textual replacement for the step parameter.

The pattern can be anything made up out of symbols and conses. It is matched

against the body of the macro form; both pattern and the form are car’ed and

cdr’ed identically, and whenever a non-nil symbol occurs in pattern, the symbol is

bound to the corresponding part of the form. If the corresponding part of the form

is nil, it goes off the end of the form. &optional, &rest, &key, and &body can be

used to indicate where optional pattern elements are allowed.

Of the existing limitations on this extension to the lambda-list function called de-

structuring, most notable is that a lambda-list-form may not be used where a list-

form appears in a defun-style lambda-list. For example, following the &optional

lambda-list keyword. All of the symbols in pattern can be used as variables within

body.



Page 1020

body is evaluated with these bindings in effect, and its result is returned to the

evaluator as the expansion of the macro. Macro lambda-lists may also contain

three additional lambda-list keywords: &body, &environment, and &whole.

defmacro could have been defined in terms of destructuring-bind as follows, ex-

cept that the following is a simplified example of defmacro showing no error-

checking and omitting the &environment and &whole features.

(defmacro defmacro (name pattern &body body)

  ‘(macro ,name (form env)

     (destructuring-bind ,pattern (cdr form)

,@body)))�

The pattern in a defmacro is like the lambda-list of a normal function. defmacro

is allowed to contain certain &-keywords.

defmacro destructures all levels of patterns in a consistent way. The inside pat-

terns can also contain &-keywords and there is checking of the matching of

lengths of the pattern and the subform. See the special form destructuring-bind.

This behavior exists for all of defmacro’s parameters, except for &environment,

&whole, and &aux.

You must use &optional in the parameter list if you want to call the macro with

less than its full complement of subforms. There must be an exact one-to-one cor-

respondence between the pattern and the data unless you use &optional in the pa-

rameter destructuring pattern.

(defmacro nand (&rest args) ‘(not (and ,&args)))�

(defmacro with-output-to-string 

  ((var &optional string &key index) &body body)

  ‘(let ((with-output-to-string-internal-string

   ,(or string ‘(make-array 100 :type ’art-string)))

 ...)

     ...

     ,@body))�

defmacro accepts these keywords:

&optional &optional is followed by variable, (variable), (variable default),

or (variable default present-p), exactly the same as in a func-

tion. Note that default is still a form to be evaluated, even

though variable is not being bound to the value of a form. vari-

able does not have to be a symbol; it can be a pattern. In this

case the first form is disallowed because it is syntactically am-

biguous. The pattern must be enclosed in a singleton list.

&rest The same as using a dotted list as the pattern, except that it

might be easier to read and leaves a place to put &aux.

&key Separates the positional parameters and rest parameter from

the keyword parameters. See the section "Evaluating a Func-

tion Form".
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&allow-other-keys In a lambda-list that accepts keyword arguments, says that

keywords that are not specifically listed after &key are al-

lowed. They and the corresponding values are ignored, as far

as keyword arguments are concerned, but they do become part

of the rest argument, if there is one.

&aux The same in a macro as in a function, and has nothing to do

with pattern matching. It separates the destructuring pattern

of a macro from the auxiliary variables. Following &aux you

can put entries of the form:

(variable initial-value-form)�

or just variable if you want it initialized to nil or do not care

what the initial value is.

&body Identical to &rest except that it informs the editor and the

grinder that the remaining subforms constitute a "body" rather

than "arguments" and should be indented accordingly. The

&body keyword should be used when the body is an implicit

progn to signal printing routines to indent the body of macro

calls as in an implicit progn. 

&whole For macros defined by defmacro or macrolet only. &whole is

followed by variable, which is bound to the entire macro-call

form or subform. variable is the value that the macro-expander

function receives as its first argument. &whole is allowed only

in the top-level pattern, not in inside patterns.

(defmacro abc (&whole form arg1 arg2)

  (if (and arg2 (not arg1))

    ‘(cde ,(cdr form) ,arg2)

    ‘(efg ,arg1 ,arg2)))�

&environment For macros defined by defmacro or macrolet only.

&environment is followed by variable, which is bound to an

object representing the lexical environment where the macro

call is to be interpreted. This environment might not be the

complete lexical environment. It should be used only with the

macroexpand function for any local macro definitions that the

macrolet construct might have established within that lexical

environment. &environment is allowed only in the top-level

pattern, not in inside patterns. See the section "Lexical Envi-

ronment Objects and Arguments". See the macro defmacro.�

&list-of is not supported as a result of making defmacro Common-Lisp compatible.

Use zl:loop or mapcar instead of &list-of. 

See the special form destructuring-bind. 

� zl:defmacro-displace name pattern &body body Macro
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Like defmacro, except that it defines a displacing macro, using the zl:displace

function. 

� defmacro-in-flavor (function-name flavor-name) arglist body...) Function

Defines a macro inside a flavor. Functions inside the flavor can use this macro,

but the macro is not accessible in the global environment.

See the section "Defining Functions Internal to Flavors".

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� defmethod Special Form

A method is the code that performs a generic function on an instance of a particu-

lar flavor. It is defined by a form such as: 

(defmethod (generic-function flavor options...) (arg1 arg2...) 

  body...)�

The method defined by such a form performs the generic function named by gener-

ic-function, when that generic function is applied to an instance of the given

flavor. (The name of the generic function should not be a keyword, unless you

want to define a message to be used with the old send syntax.) You can include a

documentation string and declare forms after the argument list and before the

body. 

A generic function is called as follows: 

(generic-function g-f-arg1 g-f-arg2...)�

Usually the flavor of g-f-arg1 determines which method is called to perform the

function. When the appropriate method is called, self is bound to the object itself

(which was the first argument to the generic function). The arguments of the

method are bound to any additional arguments given to the generic function. A

method’s argument list has the same syntax as in defun.

The body of a defmethod form behaves like the body of a defun, except that the

lexical environment enables you to access instance variables by their names, and

the instance by self. 

For example, we can define a method for the generic function list-position that

works on the flavor wink. list-position prints the representation of the object and

returns a list of its x and y position. 

(defmethod (list-position wink) () ; no args other than object

  "Returns a list of x and y position."

  (print self)    ; self is bound to the instance 

  (list x y))    ; instance vars are accessible �

The generic function list-position is now defined, with a method that implements

it on instances of wink. We can use it as follows:
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(list-position my-wink)

--> #<WINK 61311676>

=>  (4 0)�

If no options are supplied, you are defining a primary method. Any options given

are interpreted by the type of method combination declared with the :method-

combination argument to either defgeneric or defflavor. See the section "Defin-

ing Special-Purpose Methods". For example, :before or :after can be supplied to

indicate that this is a before-daemon or an after-daemon. For more information:

See the section "Defining Before- and After-Daemons".

If the generic function has not already been defined by defgeneric, defmethod

sets up a generic function with no special options. If you call defgeneric for the

name generic-function later, the generic function is updated to include any new op-

tions specified in the defgeneric form.

Several other sections of the documentation contain information related to

defmethod: See the section "defmethod Declarations". See the section "Writing

Methods for make-instance". See the section "Function Specs for Flavor

Functions". See the section "Setter and Locator Function Specs". See the section

"Implicit Blocks for Methods". See the section "Variant Syntax of defmethod". See

the section "Defining Methods to Be Called by Message-Passing".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� clos:defmethod function-specifier {method-qualifier}* specialized-lambda-list &body

body Macro

Defines a method for a generic function and returns the method object. 

If the generic function has not been defined, then clos:defmethod defines the

generic function with the default argument precedence order, method-combination

type, method class, and generic function class. The lambda-list of the generic func-

tion is congruent with that of the method. If the method’s lambda-list has keyword

parameters, then the generic function’s lambda-list will specify &key, but not name

any keyword parameters.

If the generic function has a method with the same parameter specializers and

qualifiers, then that method is redefined.

CLOS requires that the lambda-lists of a generic function and all its methods must

be congruent. If a method violates the congruency pattern of its generic function,

an error is signaled. 

The arguments to clos:defmethod are:

function-specifier The name of the generic function, which is either a symbol or

a list of the form (future-common-lisp:setf symbol). An error

is signaled if the function-specifier indicates an ordinary Lisp

function, a macro, or a special form. In other words, you can-

not use clos:defmethod to redefine an ordinary function,

macro, or special form to be a generic function.
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method-qualifier The method’s qualifier or qualifiers state the role of this

method in performing the work of the generic function. They

are non-nil atoms that are used by the method-combination

type. The clos:standard method-combination type supports the

qualifiers :around, :before, and :after, as well as unqualified

methods.

specialized-lambda-list

A specialized lambda-list is an extension of an ordinary lamb-

da-list that can specialize any of its required parameters. The

specialized lambda-list states the set of arguments for which

this method will be applicable, as described below.

A specialized parameter is a list in one of the following for-

mats:

(variable-name (eql form))

(variable-name class-name)�

An unspecialized parameter appears as a variable name; this is

the same as if the parameter were specialized on the class

named t. 

When a generic function is called with a set of arguments,

CLOS determines which methods are applicable, based on the

required arguments and the lambda-lists of the methods for

the generic function. For a method to be applicable, each re-

quired argument must satisfy the corresponding parameter in

the method’s lambda-list. 

When a parameter is specialized with (eql form), the form is

evaluated once, at the time that the clos:defmethod form is

evaluated. The form is not evaluated each time the generic

function is called.

If the value of form is object, then the argument satisfies the

specialized parameter if the following form returns true:

(eql argument ’object)�

When a parameter is specialized with a class name, the argu-

ment satisfies the specialized parameter if the following form

returns true:

(typep argument ’class-name)�

When a parameter is unspecialized (the variable-name appears

as a lone symbol which is not enclosed within a list), any argu-

ment satisfies the parameter.

Note that if you are defining a future-common-lisp:setf

method, then the order of parameters in the specialized lamb-

da-list is as shown:

(new-value args...)�
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As in other methods, in future-common-lisp:setf methods, any

of the required parameters may be specialized. 

declarations, documentation

The clos:defmethod syntax allows for declarations and/or docu-

mentation strings to appear after the specialized-lambda-list

and before the body.

body The body contains forms that do the work of the generic func-

tion. When methods are defined to work together (via different

roles), each method implements some portion of the work of

the generic function. Often the body needs to access slots of

instances that are given as arguments to the generic function.

There are several ways to access slots: using reader or writer

generic functions, using clos:with-accessors, or using

clos:with-slots. 

The body has an implicit block around it. If the generic

function’s name is a symbol, the block has the same name as

the generic function. If the generic function’s name is (future-

common-lisp:setf symbol), the block has the name symbol.

Examples�

The following examples show the applicability of methods:

;;; Applicable when first arg is a ship, second arg is a plane

(clos:defmethod collide ((s ship) (p plane) location)

  body)

�

;;; Applicable when first arg is a plane, second arg is a plane

(clos:defmethod collide :after ((p plane) (p plane) location)

  body)

�

;;; Applicable when second arg is a plane

(clos:defmethod collide (vehicle (p plane) location)

  body)

�

;;; Applicable when first arg is eql to the value of *Enterprise*

(clos:defmethod collide ((ent (eql *Enterprise*)) vehicle location)

  body)�

The :accessor and :writer options to clos:defclass enable you to define future-

common-lisp:setf methods for slots automatically, but you can also do it by using

clos:defmethod, as shown in this example:

(clos:defclass boat () (speed location))

�

(clos:defmethod (future-common-lisp:setf ’speed) (new-value (b boat))

  (setf (slot-value b) new-value))�
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� defpackage name options... Special Form

Defines a package named name; the name must be a symbol so that the source file

name of the package can be recorded and the editor can correctly sectionize the

definition. If no package by that name already exists, a new package is created ac-

cording to the specified options. If a package by that name already exists, its char-

acteristics are altered according to the options specified. If any characteristic can-

not be altered, an error is signalled. If the existing package was defined by a dif-

ferent file, you are queried before it is changed, as with any other type of defini-

tion.

Each option is a keyword or a list of a keyword and arguments. A keyword by it-

self is equivalent to a list of that keyword and one argument, t; this syntax really

only makes sense for the :external-only and :hash-inherited-symbols keywords.

Wherever an argument is said to be a name or a package, it can be either a sym-

bol or a string. Usually symbols are preferred, because the reader standardizes

their alphabetic case and because readability is increased by not cluttering up the

defpackage form with string quote (") characters.

None of the arguments are evaluated. The keywords arguments, most of which are

identical to make-package’s, are:

(:nicknames name name...) for defpackage

:nicknames ’(name name...) for make-package

The package is given these nicknames, in addition to its primary name. 

(:prefix-name name) for defpackage

:prefix-name name for make-package

This name is used when printing a qualified name for a symbol in this

package. You should make the specified name one of the nicknames of the

package or its primary name. If you do not specify :prefix-name, it defaults

to the shortest of the package’s names (the primary name plus the nick-

names). 

(:use package package...)

External symbols and relative name mappings of the specified packages are

inherited. If this option is not specified, it defaults to (:use CL) ((:use

global) in Zetalisp). To inherit nothing, specify (:use). 

(:shadow name name...) for defpackage

:shadow ’(name name...) for make-package

Symbols with the specified names are created in this package and declared

to be shadowing. 

(:export name name...) for defpackage

:export ’(name name...) for make-package

Symbols with the specified names are created in this package, or inherited

from the packages it uses, and declared to be external. 

(:import symbol symbol...) for defpackage
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:import ’(name name...) for make-package

The specified symbols are imported into the package. Note that unlike

:export, :import requires symbols, not names; it matters in which package

this argument is read. 

(:shadowing-import symbol symbol...) for defpackage

:shadowing-import ’(symbol symbol...) for make-package

The same as :import but no name conflicts are possible; the symbols are

declared to be shadowing. 

(:import-from package name name...) for defpackage

:import-from ’(package name name...) for make-package

The specified symbols are imported into the package. The symbols to be im-

ported are obtained by looking up each name in package. 

(defpackage only) This option exists primarily for system bootstrapping,

since the same thing can normally be done by :import. The difference be-

tween :import and :import-from can be visible if the file containing a

defpackage is compiled; when :import is used the symbols are looked up at

compile time, but when :import-from is used the symbols are looked up at

load time. If the package structure has been changed between the time the

file was compiled and the time it is loaded, there might be a difference.�

(:relative-names (name package) (name package)...) - defpackage

:relative-names ’((name package) ...) - make-package

Declares relative names by which this package can refer to other packages.

The package being created cannot be one of the packages, since it has not

been created yet. For example, to be able to refer to symbols in the

common-lisp package print with the prefix lisp: instead of cl: when they

need a package prefix (for instance, when they are shadowed), you would

use :relative-names like this:

(defpackage my-package (:use cl)

                       (:shadow error)

                       (:relative-names (lisp common-lisp)))

�

(let ((*package* (find-package ’my-package)))

  (print (list ’my-package::error ’cl:error)))�

(:relative-names-for-me (package name) ...) for defpackage

:relative-names-for-me ’((package name) ...) for make-package

Declares relative names by which other packages can refer to this package.

(defpackage only) It is valid to use the name of the package being created

as a package here; this is useful when a package has a relative name for

itself. 

(:size number) for defpackage

:size number for make-package

The number of symbols expected in the package. This controls the initial

size of the package’s hash table. You can make the :size specification an

underestimate; the hash table is expanded as necessary. 
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(:hash-inherited-symbols boolean) for defpackage

:hash-inherited-symbols boolean for make-package

If true, inherited symbols are entered into the package’s hash table to

speed up symbol lookup. If false (the default), looking up a symbol in this

package searches the hash table of each package it uses. 

(:external-only boolean) for defpackage

:external-only boolean for make-package

If true, all symbols in this package are external and the package is locked.

This feature is only used to simulate the old package system that was used

before Release 5.0. See the section "External-only Packages and Locking". 

(:include package package...) for defpackage

:include ’(package package...) for make-package

Any package that uses this package also uses the specified packages. Note

that if the :include list is changed, the change is not propagated to users

of this package. This feature is used only to simulate the old package sys-

tem that was used before Release 5.0. 

(:new-symbol-function function) for defpackage

:new-symbol-function function for make-package

function is called when a new symbol is to be made present in the package.

The default is si:pkg-new-symbol unless :external-only is specified. Do not

specify this option unless you understand the internal details of the package

system. 

(:colon-mode mode) for defpackage

:colon-mode mode for make-package

If mode is :external, qualified names mentioning this package behave dif-

ferently depending on whether ":" or "::" is used, as in Common Lisp. ":"

names access only external symbols. If mode is :internal, ":" names access

all symbols. :external is the default. See the section "Specifying Internal

and External Symbols in Packages".�

(:prefix-intern-function function) for defpackage

:prefix-intern-function function for make-package

The function to call to convert a qualified name referencing this package

with ":" (rather than "::") to a symbol. The default is intern unless (:colon-

mode :external) is specified. Do not specify this option unless you under-

stand the internal details of the package system. 

� defparameter variable initial-value &optional documentation Special Form

The same as defvar, except that variable is always set to initial-value regardless of

whether variable is already bound. The rationale for this is that defvar declares a

global variable, whose value is initialized to something but is then changed by the

functions that use it to maintain some state. On the other hand, defparameter de-
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clares a constant, whose value is never changed by the normal operation of the

program, only by changes to the program. defparameter always sets the variable

to the specified value so that if, while developing or debugging the program, you

change your mind about what the constant value should be, and you then evaluate

the defparameter form again, the variable gets the new value. It is not the intent

of defparameter to declare that the value of variable never changes; for example,

defparameter is not a license to the compiler to build assumptions about the val-

ue of variable into programs being compiled. See defconstant for that.

For example:

(defparameter *alarms-limit* 10

  "The number of alarms allowed to sound before

   a special message is printed.")�

See the section "Special Forms for Defining Special Variables".

� defprop sym value indicator Special Form

Gives sym’s property list an indicator-property corresponding to value. After this is

done, (get sym indicator) returns value. See the section "Property Lists".

defprop is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions That Operate on Property

Lists". 

� defselect fspec &body methods Special Form

Defines a function that is a select-method. This function contains a table of sub-

functions; when it is called, the first argument, a symbol on the keyword package

called the message name, is looked up in the table to determine which subfunction

to call. Each subfunction can take a different number of arguments, and have a

different pattern of &optional and &rest arguments. defselect is useful for a vari-

ety of "dispatching" jobs. By analogy with the more general message passing facili-

ties in flavors, the subfunctions are sometimes called methods and the first argu-

ment is sometimes called a message.

The special form looks like:

(defselect (function-spec default-handler no-which-operations)

  (message-name (args...)

   body...)

  (message-name (args...)

   body...)

  ...)�

function-spec is the name of the function to be defined. default-handler is optional;

it must be a symbol and is a function that gets called if the select-method is

called with an unknown message. If default-handler is unsupplied or nil, then an

error occurs if an unknown message is sent. If no-which-operations is non-nil, the

:which-operations method that would normally be supplied automatically is sup-
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pressed. The :which-operations method takes no arguments and returns a list of

all the message names in the defselect.

The :operation-handled-p and :send-if-handles methods are automatically sup-

plied. See the message :operation-handled-p. See the message :send-if-handles.

If function-spec is a symbol, and default-handler and no-which-operations are not

supplied, then the first subform of the defselect can be just function-spec by itself,

not enclosed in a list.

The remaining subforms in a defselect define methods. message-name is the mes-

sage name, or a list of several message names if several messages are to be han-

dled by the same subfunction. args is a lambda-list; it should not include the first

argument, which is the message name. body is the body of the function.

A method subform can instead look like:

(message-name . symbol)�

In this case, symbol is the name of a function that is called when the message-

name message is received. It is called with the same arguments as the select-

method, including the message symbol itself. 

� defsetf access-function storing-function-or-args &optional store-variables &body body 

Macro

Defines how to setf a generalized-variable reference of the form (access-function . .

.). The value of a generalized-variable reference can always be obtained by evaluat-

ing it, so access-function should be the name of a function or macro that evaluates

its arguments, behaving like a function.

The user of defsetf provides a description of how to store into the generalized-

variable reference and return the value that was stored (because setf is defined to

return this value). Subforms of the reference are evaluated exactly once and in the

proper left-to-right order. A setf of a call on access-function will also evaluate all

of access-function’s arguments; it cannot treat any of them specially. This means

that defsetf cannot be used to describe how to store into a generalized variable

that is a byte, such as (ldb field reference). To handle situations that do not fit

the restrictions of defsetf, use define-setf-method, which gives the user additional

control at the cost of additional complexity.

A defsetf function can take two forms, simple and complex. In the simple case,

storing-function-or-args is the name of a function or macro. In the complex case,

storing-function-or-args is a lambda list of arguments.

The simple form of defsetf is

�

(defsetf access-function storing-function-or-args)

�

storing-function-or-args names a function or macro that takes one more argument

than access-function takes. When setf is given a place that is a call on access-

function, it expands into a call on storing-function-or-args that is given all the ar-
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guments to access-function and also, as its last argument, the new value (which

must be returned by storing-function-or-args as its value).

For example, the effect of 

�

(defsetf symbol-value set)

�

is built into the Common Lisp system. This causes the form (setf (symbol-value

foo) fu) to expand into (set foo fu). Note that

�

(defsetf car rplaca)

�

would be incorrect because rplaca does not return its last argument.

The complex form of defsetf looks like

�

(defsetf access-function storing-function-or-args

(store-variables) .  body)

�

and resembles defmacro. The body must compute the expansion of a setf of a call

on access-function. storing-function-or-args is a lambda list that describes the argu-

ments of access-function and may include &optional, &rest, and &key markers.

Optional arguments can have defaults and "supplied-p" flags. store-variables de-

scribes the value to be stored into the generalized-variable reference. 

The body forms can be written as if the variables in storing-function-or-args were

bound to subforms of the call on access-function and the store-variables were bound

to the second subform of setf. However, this is not actually the case. During the

evaluation of the body forms, these variables are bound to names of temporary

variables, generated as if by gensym or gentemp, that will be bound by the expan-

sion of setf to the values of those subforms. This binding permits the body forms

to be written without regard for order of evaluation. defsetf arranges for the tem-

porary variables to be optimized out of the final results in cases where that is

possible. In other words, an attempt is made by defsetf to generate the best code

possible. 

Note that the code generated by the body forms must include provision for return-

ing the correct value (the value of store-variables). This is handled by the body

forms rather than by defsetf because in many cases this value can be returned at

no extra cost, by calling a function that simultaneously stores into the generalized

variable and returns the correct value. 

Here is an example of the complex form of defsetf.
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�

(defsetf subseq (sequence start &optional end) (new-sequence)

‘(progn (replace ,sequence ,new-sequence

                  :start1 ,start :end1 ,end)

        ,new-sequence))

�

For even more complex operations on setf: See the macro define-setf-method.

� defstruct options &body items Macro

Defines a record-structure data type. A call to defstruct looks like: 

(defstruct (name option-1 option-2 ...)

   slot-description-1

   slot-description-2

   ...)�

name must be a symbol; it is the name of the structure. It is given a si:defstruct-

description property that describes the attributes and elements of the structure;

this is intended to be used by programs that examine other Lisp programs and

that want to display the contents of structures in a helpful way. name is used for

other things; for more information, see the section "Named Structures".

Because evaluation of a defstruct form causes many functions and macros to be

defined, you must take care not to define the same name with two different

defstruct forms. A name can only have one function definition at a time. If a

name is redefined, the later definition is the one that takes effect, destroying the

earlier definition. (This is the same as the requirement that each defun that is in-

tended to define a distinct function must have a distinct name.)

Each option can be either a symbol, which should be one of the recognized option

names, or a list containing an option name followed by the arguments to the op-

tion. Some options have arguments that default; others require that arguments be

given explicitly. For more information about options, see the section "Options for

defstruct".

Each slot-description can be in any of three forms:

1:   slot-name

2:   (slot-name default-init)

3:   ((slot-name-1 byte-spec-1 default-init-1)

      (slot-name-2 byte-spec-2 default-init-2)

...)�

Each slot-description allocates one element of the physical structure, even though

several slots may be in one form, as in form 3 above.

Each slot-name must always be a symbol; an accessor function is defined for each

slot.

In the example above, form 1 simply defines a slot with the given name slot-name.

An accessor function is defined with the name slot-name. The :conc-name option

allows you to specify a prefix and have it concatenated onto the front of all the
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slot names to make the names of the accessor functions. Form 2 is similar, but al-

lows a default initialization for the slot. Form 3 lets you pack several slots into a

single element of the physical underlying structure, using the byte field feature of

defstruct.

For a table of related items: See the section "Functions Related to defstruct Struc-

tures".

 

� future-common-lisp:defstruct name-and-options &body slot-descriptions Macro

Defines a record-structure data type, and a corresponding class of the same name.

You can define methods that specialize on structure classes. 

The syntax and semantics of future-common-lisp:defstruct adhere to the draft

ANSI Common Lisp specification. 

� zl:defstruct Macro

Defines a record-structure data type. Use the Common lisp macro defstruct.

defstruct accepts all standard Common Lisp options, and accepts several additional

options. zl:defstruct is supported only for compatibility with pre-Genera 7.0 re-

leases. See the section "Differences Between defstruct and zl:defstruct".

The basic syntax of zl:defstruct is the same as defstruct: See the macro

defstruct.

For information on the options that can be given to zl:defstruct as well as

defstruct: See the section "Options for defstruct".

The :export option is accepted by zl:defstruct but not by defstruct. Stylistically, it

is preferable to export any external interfaces in the package declarations instead

of scattering :export options throughout a program’s source files. 

:export

Exports the specified symbols from the package in which the

structure is defined. This option accepts as arguments slot

names and the following options: :alterant, :accessors,

:constructor, :copier, :predicate, :size-macro, and :size-

symbol.

The following example shows the use of :export.
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(zl:defstruct (2d-moving-object

              (:type :array)

              :conc-name

              ;; export all accessors and the 

              ;; make-2d-moving-object constructor

              (:export :accessors :constructor))

  mass

  x-pos

  y-pos

  x-velocity

  y-velocity)�

See the section "Importing and Exporting Symbols". 

� defstruct-define-type type &body options Macro

Teaches defstruct and zl:defstruct about new types that it can use to implement

structures.

The body of this function is shown in the following example:

(defstruct-define-type type

option-1

option-2

...)�

where each option is either the symbolic name of an option or a list of the form

(option-name . rest). See the section "Options to defstruct-define-type".

Different options interpret rest in different ways. The symbol type is given an

si:defstruct-type-description property of a structure that describes the type com-

pletely.

For a table of related items: See the section "Functions Related to defstruct Struc-

tures". 

� defsubst function lambda-list &body body Special Form

Defines inline functions. It is used just like defun and does almost the same thing.

(defsubst name lambda-list . body)�

defsubst defines a function that executes identically to the one that a similar call

to defun would define. The difference comes when a function that calls this one is

compiled. Then, the call is open-coded by substituting the inline function’s defini-

tion into the code being compiled. Such a function is called an inline function. For

example, if we define:

(defsubst square (x) (* x x))

�

(defun foo (a b) (square (+ a b)))�

then if foo is used interpreted, square works just as if it had been defined by

defun. If foo is compiled, however, the squaring is substituted into it and it com-
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piles just like:

(defun foo (a b) (* (+ a b) (+ a b)))�

square could have been defined as:

�

(defun square (x) (* x x))

�

(proclaim ’(inline square))

�

(defun foo ...)

�

See the declaration inline.

A similar square could be defined as a macro, with:

(defmacro square (x) ‘(* ,x ,x))�

When the compiler open-codes an inline function, it binds the argument variables

to the argument values with let, so they get evaluated only once and in the right

order. Then, when possible, the compiler optimizes out the variables. In general,

anything that is implemented as an inline function can be reimplemented as a

macro, just by changing the defsubst to a defmacro and putting in the appropri-

ate backquote and commas, except that this does not get the simultaneous guaran-

tee of argument evaluation order and generation of optimal code with no unneces-

sary temporary variables. The disadvantage of macros is that they are not func-

tions, and so cannot be applied to arguments. Their advantage is that they can do

much more powerful things than inline functions can. This is also a disadvantage

since macros provide more ways to get into trouble. If something can be imple-

mented either as a macro or as an inline function, it is generally better to make it

an inline function.

As with defun, name can be any function spec, but you get the "subst" effect only

when name is a symbol.

The difference between an inline function and one not declared inline is the way

the calls to them are handled by the compiler. A call to a normal function is com-

piled as a closed subroutine; the compiler generates code to compute the values of

the arguments and then apply the function to those values. A call to an inline

function is compiled as an open subroutine; the compiler incorporates the body

forms of the inline function into the function being compiled, substituting the ar-

gument forms for references to the variables in the function’s lambda-list. 

� defsubst-in-flavor (function-name flavor-name) arglist &body body Function

Defines a function inside a flavor to be inline-coded in its callers. There is no

analogous form for methods, since the caller cannot know at compile-time which

method is going to be selected by the generic function mechanism.

See the section "Defining Functions Internal to Flavors".
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For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� defun Special Form

Defines a function that is part of a program. A defun form looks like:

(defun name lambda-list

  body...)�

name is the function spec you wish to define as a function. The lambda-list is a

list of the names to give to the arguments of the function. Actually, it is a little

more general than that; it can contain lambda-list keywords such as &optional and

&rest. (Keywords are explained elsewhere. See the section "Evaluating a Function

Form". See the section "Lambda-List Keywords".) Additional syntactic features of

defun are explained elsewhere. See the section "Function-Defining Special Forms".

In Genera, defun creates a list which looks like:

(si:digested-lambda...)�

and puts it in the function cell of name. name is now defined as a function and

can be called by other forms.

Examples:

(defun addone (x)

  (1+ x))

�

(defun add-a-number (x &optional (inc 1))

  (+ x inc))

�

(defun average (&rest numbers &aux (total 0))

  (loop for n in numbers

do (setq total (+ total n)))

  (// total (length numbers)))�

addone is a function that expects a number as an argument, and returns a num-

ber one larger. add-a-number takes one required argument and one optional argu-

ment. average takes any number of additional arguments that are given to the

function as a list named numbers.

If you are using Genera, a declaration (a list starting with declare) can appear as

the first element of the body. It is equivalent to a zl:local-declare surrounding the

entire defun form. For example:

(defun foo (x)

  (declare (special x))

  (bar))             ;bar uses x free.�

is equivalent to and preferable to:

(zl:local-declare ((special x))

  (defun foo (x)

    (bar)))�
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(It is preferable because the editor expects the open parenthesis of a top-level

function definition to be the first character on a line, which isn’t possible in the

second form without incorrect indentation.)

A documentation string can also appear as the first element of the body (following

the declaration, if there is one). (It shouldn’t be the only thing in the body; other-

wise it is the value returned by the function and so is not interpreted as docu-

mentation. A string as an element of a body other than the last element is only

evaluated for side effect, and since evaluation of strings has no side effects, they

are not useful in this position to do any computation, so they are interpreted as

documentation.) This documentation string becomes part of the function’s debug-

ging info and can be obtained with the function documentation. The first line of

the string should be a complete sentence that makes sense read by itself, since

there are two editor commands to get at the documentation, one of which is "brief"

and prints only the first line. Example:

(defun my-append (&rest lists)

  "Like append but copies all the lists.

This is like the Lisp function append, except that

append copies all lists except the last, whereas

this function copies all of its arguments

including the last one."

  ...)�

If you are using CLOE, consider this example:

(defun new-function (arg1 arg2 arg3)

  "returns substring of arg1 from position arg2+1 to position arg3-1."

  (declare (string arg1))

  (subseq arg1 (+ arg2 1) (- arg3 1)))�

� defun-in-flavor (function-name flavor-name) arglist &body body Function

Defines an internal function of a flavor. The syntax of defun-in-flavor is similar

to the syntax of defmethod; the difference is the way the function is called and

the scoping of function-name.

See the section "Defining Functions Internal to Flavors".

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� zl:defunp Macro

Usually when a function uses prog, the prog form is the entire body of the func-

tion; the definition of such a function looks like (defun name arglist (prog varlist

...)). Although the use of prog is generally discouraged, prog fans might want to

use this special form. For convenience, the zl:defunp macro can be used to pro-

duce such definitions. A zl:defunp form such as:



Page 1038

(zl:defunp fctn (args)

  form1

  form2

  ...

  formn)�

expands into:

(zl:defun fctn (args)

  (prog ()

     form1

     form2

     ...

(return formn)))�

You can think of zl:defunp as being like defun except that you can return out of

the middle of the function’s body. 

� defvar name &optional initial-value documentation-or-first-key &key :documentation

:localize Special Form

Declares name special and records its location for the sake of the editor so that

you can ask to see where the variable is defined. This is the recommended way to

declare the use of a global variable in a program. If a second subform is supplied,

(defvar name initial-value)�

name is initialized to the result of evaluating the form initial-value unless it al-

ready has a value, in which case it keeps that value. initial-value is not evaluated

unless it is used; this is useful if it does something expensive like creating a large

data structure. See the special form sys:defvar-resettable. See the special form

sys:defvar-standard.

defvar should be used only at top level, never in function definitions, and only for

global variables (those used by more than one function). (defvar foo ’bar) is

roughly equivalent to:

(declare (special foo))

(if (not (boundp ’foo))

    (setq foo ’bar))�

(defvar variable initial-value "documentation string")�

allows you to include a documentation string that describes what the variable is

for or how it is to be used. Using such a documentation string is even better than

commenting the use of the variable, because the documentation string is accessible

to system programs that can show the documentation to you while you are using

the machine.

(defvar variable initial-value :documentation "string")�

is an alternate syntax for defvar. The :localize keyword is used for optimizing

memory usage at the time of Symbolics distribution world building and is reserved

for Symbolics use only.
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If defvar is used in a patch file or is a single form (not a region) evaluated with

the editor’s compile/evaluate from buffer commands, if there is an initial-value the

variable is always set to it regardless of whether it is already bound. See the sec-

tion "Patch Facility". See the section "Special Forms for Defining Special

Variables".

� sys:defvar-resettable name initial-value &optional warm-boot-value documentation 

Special Form

Like defvar, except that it also maintains a warm-boot value. During a warm-boot,

the system sets the variable to its warm-boot value. You can use this function to

assure that a variable is at a pre-determined state even after warm booting. See

the section "Warm Booting". 

� sys:defvar-standard name initial-value &optional ignore standard-value validation-

predicate documentation�

Special Form

Like sys:defvar-resettable, except that it also defines a standard value that the

variable should be bound to in command and breakpoint loops. For example, the

standard values of zl:base and zl:ibase are 10. The validation-predicate is used to

ensure that the value of the variable is valid when it is bound in command loops.

For example, zl:base is defined like this:

(sys:defvar-standard zl:base 10. 10. 10. validate-base)

(defun validate-base (b)

   (and (fixnump b) (< 1 b 37.)))�

See the section "Standard Variables".

� defwhopper Special Form

The following form defines a whopper for a given generic-function when applied to

the specified flavor: 

(defwhopper (generic-function flavor) (arg1 arg2..)

body)�

The arguments should be the same as the arguments for any method performing

the generic function. 

When a generic function is called on an object of some flavor, and a whopper is

defined for that function, the arguments are passed to the whopper, and the code

of the whopper is executed. 

Most whoppers run the methods for the generic function. To make this happen,

the body of the whopper calls one of the following two functions: continue-

whopper or lexpr-continue-whopper. At that point, the before daemons, primary

methods, and after daemons are executed. Both continue-whopper and lexpr-

continue-whopper return the values returned by the combined method, so the rest

of the body of the whopper can use those values. 
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If the whopper does not use continue-whopper or lexpr-continue-whopper, the

methods themselves are never executed, and the result of the whopper is returned

as the result of calling the generic function. 

Whoppers return their own values. If a generic function is called for value rather

than effect, the whopper itself takes responsibility for getting the value back to

the caller. 

For more information on whoppers, including examples: See the section "Wrappers

and Whoppers".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� defwhopper-subst (flavor generic-function) lambda-list &body body Macro

Defines a wrapper for the generic-function when applied to the given flavor by com-

bining the use of defwhopper with the efficiency of defwrapper. 

The following example shows the use of defwhopper-subst.

(defwhopper-subst (xns add-checksum-to-packet) 

                  (checksum &optional (bias 0))

   (when (= checksum #o177777)

    (setq checksum 0))

   (continue-whopper checksum bias))�

The body is expanded in-line in the combined method, providing improved time ef-

ficiency but decreased space efficiency, unless the body is small.

See the section "Wrappers and Whoppers".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� defwrapper Macro

Offers an alternative to the daemon system of method combination, for cases in

which :before and :after daemons are not powerful enough. 

defwrapper defines a macro that expands into code that is wrapped around the in-

vocation of the methods. defwrapper is used in forms such as: 

(defwrapper (generic-function flavor) ((arg1 arg2) form)

body...)�

The wrapper created by this form is wrapped around the method that performs

generic-function for the given flavor. body is the code of the wrapper; it is analo-

gous to the body of a defmacro. During the evaluation of body, the variable form

is bound to a form that invokes the enclosed method. The result returned by body

should be a replacement form that contains form as a subform. During the evalua-

tion of this replacement form, the variables arg1, arg2, and so on are bound to the

arguments given to the generic function when it is called. As with methods, self is

implied as the first argument.
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The symbol ignore can be used in place of the list (arg1 arg2) if the arguments to

the generic function do not matter. This usage is common.

For more information on wrappers, including examples: See the section "Wrappers

and Whoppers".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� zl:del pred item list &optional (ntimes -1) Function

Returns the list with all occurrences of item removed. pred is used to match ele-

ments of the list against item. The argument list is actually modified (rplacded)

when instances of item are spliced out. zl:del should be used for value, not for ef-

fect. 

For a table of related items: See the section "Functions for Modifying Lists". 

� delete item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end :count Function

Removes a sequence of those items in the subsequence of sequence delimited by

:start and :end which satisfy the predicate specified by the :test keyword argu-

ment. This is a destructive operation. The argument sequence can be destroyed and

used to construct the result; however, the returned form may or may not be eq to

sequence. The elements that are not deleted occur in the same order in the result

that they did in the argument.

For example:

(setq nums ’(1 2 3)) => (1 2 3) 

(delete 1 nums) => (2 3)

nums => (1 2 3)�

However,

nums => (1 2 3)

(delete 2 nums) => (1 3)

nums => (1 3)�

item is matched against the elements specified by the test keyword. The item can

be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(delete 4 ’(6 1 6 4) :test #’>) => (6 6 4)�
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:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

Example:

(delete 0 ’((0 1) (0 1) (1 0)) :key #’second) => ((0 1) (0 1))

(delete 0 #(1 2 1) :key #’(lambda (x) (- x 1))) => #(2)�

If the value of the :from-end argument is non-nil, it only affects the result when

the :count argument is specified. In that case only the rightmost :count elements

that satisfy the predicate are deleted. 

For example:

(delete 4 ’(4 2 4 1) :count 1 )  => (2 4 1)

(delete 4 #(4 2 4 1) :count 1 :from-end t) => #(4 2 1)�

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

�

(delete ’a #(a b c a)) => #(B C)

(delete 4 ’(4 4 1)) => (1)

(delete 4 ’(4 1 4) :start 1 :end 2) => (4 1 4)

(delete 4 ’(4 1 4) :start 0 :end 3) => (1)�

The :count argument, if supplied, limits the number of elements deleted. If more

than :count elements of sequence satisfy the predicate, then only the leftmost

:count of those elements are deleted. A negative :count argument is equivalent to

a :count of 0.

For example:

(delete 4 ’(4 2 4 1) :count 1 )  => (2 4 1)�

delete is the destructive version of remove.

For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification".

� :delete Message
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Deletes the file open on this stream. The file does not really go away until the

stream is closed. You should not use :delete. Instead, use delete-file. 

� zl:delete item list &optional (ntimes -1) Function

Returns list with all occurrences of item removed. zl:equal is used for the compar-

ison. The argument list is actually modified (rplacd’ed) when instances of item are

spliced out. zl:delete should be used for value, not effect. That is, use:

(setq a (delete ’b a))

rather than:

(delete ’b a)

ntimes instances of item are deleted. ntimes is allowed to be zero. If ntimes is

greater than or equal to the number of occurrences of item in the list, all oc-

curences of item in the list are deleted.

Use the Common Lisp function, delete.

For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification". 

� delete-duplicates sequence &key (:test #’eql) :test-not (:start 0) :end :from-end :key

:replace Function

Compares the elements of sequence pairwise, and if any two match, the one occur-

ring earlier in the sequence is discarded. The returned form is sequence, with

enough elements removed such that no two of the remaining elements match.

delete-duplicates is a destructive function.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(delete-duplicates ’(1 1 1 2 2 2 3 3 3) :test #’>)  => (1 1 1 2 2 2 3 3 3)

(delete-duplicates ’(1 1 1 2 2 2 3 3 3) :test #’=) => (1 2 3)�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).
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:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(delete-duplicates ’(a a b b c c)) => (A B C)

(delete-duplicates #(1 1 1 1 1 1)) => #(1)

(delete-duplicates #(1 1 1 2 2 2) :start 3) => #(1 1 1 2)

(delete-duplicates #(1 1 1 2 2 2) :start 2 :end 4) => #(1 1 1 2 2 2)�

The function normally processes the sequence in the forward direction, but if a

non-nil value is specified for :from-end, processing starts from the reverse direc-

tion. If the :from-end argument is true, then the one later in the sequence is dis-

carded.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(delete-duplicates ’((Smith S) (Jones J) (Taylor T) (Smith S)) :key #’second) 

 => ((JONES J) (TAYLOR T) (SMITH S))�

When the :replace keyword is specified, elements that stay are moved up to the

position of elements that are deleted. :replace is not meaningful if the value of

:from-end is t.

Compatibility Note: :replace is a Symbolics extension to Common Lisp, and is not

available in CLOE.

For example:

  (delete-duplicates ’((1 a) (2 b) (3 c) (1 d) (4 e) (3 f))

     :key #’car :replace t)  =>

   ((1 d) (2 b) (3 f) (4 e))

�

  (delete-duplicates ’((1 a) (2 b) (3 c) (1 d) (4 e) (3 f))

     :key #’car :replace nil) =>

  ((2 b) (1 d) (4 e) (3 f))

�

  (delete-duplicates ’((1 a) (2 b) (3 c) (1 d) (4 e) (3 f))

     :key #’car :replace nil :from-end t) =>

  ((1 a) (2 b) (3 c) (4 e))

�

delete-duplicates is the destructive version of remove-duplicates. 

For a table of related items: See the section "Sequence Modification".

� (flavor:method :delete-by-item si:heap) item &optional (equal-predicate #’=) 

Method
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Finds the first item that satisfies equal-predicate, and deletes it, returning the

item and key if it was found, otherwise it signals si:heap-item-not-found. equal-

predicate should be a function that takes two arguments. The first argument to

equal-predicate is the current item from the heap and the second argument is item.

For a table of related items: See the section "Heap Functions and Methods". 

� (flavor:method :delete-by-key si:heap) key &optional (equal-predicate #’=) Method

Finds the first item whose key satisfies equal-predicate and deletes it, returning

the item and key if it was found; otherwise it signals si:heap-item-not-found.

equal-predicate should be a function that takes two arguments. The first argument

to equal-predicate is the current key from the heap and the second argument is

key.

For a table of related items: See the section "Heap Functions and Methods". 

� delete-if predicate sequence &key :key :from-end (:start 0) :end :count Function

Removes a sequence of those items in the subsequence of sequence delimited by

:start and :end which satisfy predicate. The elements that are not deleted occur in

the same order in the result that they did in the argument. This is a destructive

operation. The argument sequence can be destroyed and used to construct the re-

sult; however, the returned form may or may not be eq to sequence.

For example:

(setq a-list ’(1 a b c)) => (1 A B C)

(delete-if #’numberp a-list) => (A B C)

a-list => (1 A B C)�

However,

(setq my-list ’(0 1 0)) => (0 1 0)

(delete-if #’zerop my-list)  => (1)

my-list => (0 1)�

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(delete-if #’atom ’((book 1) (math (room c)) (text 3)) :key #’second)

 => ((MATH (ROOM C)))

�

(delete-if #’zerop #(1 2 1) :key #’(lambda (x) (- x 1)))

 => #(2)�
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If the value of the :from-end argument is non-nil, it only affects the result when

the :count argument is specified. In that case only the rightmost :count elements

that satisfy the predicate are deleted. 

For example:

(delete-if #’numberp ’(4 2 4 1) :count 1 ) => (2 4 1)

(delete-if #’numberp ’(4 2 4 1) :count 1 :from-end t)  => (4 2 4)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on. 

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

�

(delete-if #’atom ’(’a 1 "list")) => (’A)

(delete-if #’numberp ’(4 1 4) :start 1 :end 2) => (4 4)

(delete-if #’evenp ’(4 1 4) :start 0 :end 3)  => (1)�

The :count argument, if supplied, limits the number of elements deleted. If more

than :count elements of sequence satisfy the predicate, then only the leftmost

:count of those elements are deleted. A negative :count argument is equivalent to

a :count of 0.

For example:

(delete-if #’oddp ’(1 1 2 2) :count 1 ) => (1 2 2)�

(setq text "Some, text; with too, much punctuation!.?")

(delete-if #’(lambda (x)(member x ’(#\, #\? #\! #\;))) text)

a => "Some text with too much punctuation."�

delete-if is the destructive version of remove-if.

For a table of related items: See the section "Sequence Modification".

� delete-if-not predicate sequence &key :key :from-end (:start 0) :end :count�

Function

Removes a sequence of those items in the subsequence of sequence delimited by

:start and :end which satisfy predicate. The elements that are not deleted occur in

the same order in the result that they did in the argument. This is a destructive

operation. The argument sequence can be destroyed and used to construct the re-

sult; however, the returned form may or may not be eq to sequence.
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For example:

(setq a-list ’(’s a b c))  => (’S A B C)

(delete-if-not #’atom a-list) => (A B C) 

a-list => (’S A B C)�

However,

(setq my-list ’(0 1 0)) => (0 1 0)

(delete-if-not #’zerop my-list)  => (0 0)

my-list => (0 1)�

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(delete-if-not #’atom ’((book 1) (math (room c)) (text 3)) :key #’second)

 => ((BOOK 1) (TEXT 3))

�

(delete-if-not #’zerop #(1 2 1) :key #’(lambda (x) (- x 1))) => #(1 1)�

If the value of the :from-end argument is non-nil, it only affects the result when

the :count argument is specified. In that case only the rightmost :count elements

that satisfy the predicate are deleted. 

For example:

(delete-if-not #’oddp ’(4 2 4 1) :count 1 )  => (2 4 1) 

(delete-if-not #’oddp ’(4 2 4 1) :count 1 :from-end t)  => (4 2 1) �

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on. 

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

�

(delete-if-not #’atom ’(’a 1 "list"))  => (1 "list")

(delete-if-not #’numberp ’(4 1 4) :start 1 :end 2) => (4 1 4)

(delete-if-not #’evenp ’(4 1 4) :start 0 :end 3) => (4 4)�
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The :count argument, if supplied, limits the number of elements deleted. If more

than :count elements of sequence satisfy the predicate, then only the leftmost

:count of those elements are deleted. A negative :count argument is equivalent to

a :count of 0.

For example:

(delete-if-not #’oddp ’(1 1 2 2) :count 1 ) => (1 1 2)�

delete-if-not is the destructive version of remove-if-not.

For a table of related items: See the section "Sequence Modification".

� zl:del-if pred list Function

Makes a modified list is made by applying pred (a function of one argument) to all

the elements of list and removing the ones for which the predicate returns non-nil.

zl:del-if is the destructive version of zl:rem-if, without the extra-lists &rest argu-

ment.

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:del-if-not pred list Function

Applies pred to all elements of list and removes those for which the pred returns

nil. Returns the modified list. zl:del-if-not is the destructive version zl:rem-if-not,

without the extra-lists &rest argument.

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:delq item list &optional (ntimes -1) Function

Returns list with all occurrences of item removed. eq is used to match the ele-

ments of list against item. The argument list is actually modified (rplacd’ed) when

instances of item are spliced out. zl:delq should be used for value, not for effect. 

For a table of related items: See the section "Functions for Modifying Lists". 

� denominator rational Function

If rational is a ratio, denominator returns the denominator of rational. If rational

is an integer, denominator returns 1.

Examples:

(denominator 4/5) => 5

(denominator 3) => 1

(denominator 4/8) => 2

(denominator (/ 12 -17)) => 17

(denominator (rational 0.200)) => 67108864�

For a table of related items: See the section "Functions that Extract Components

From a Rational Number".
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� deposit-byte into-value position size byte-value Function

Like dpb, except that instead of using a byte specifier, the bit position and size

are passed as separate arguments. The argument order is not analogous to that of

dpb so that deposit-byte can be compatible with older versions of Lisp.

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions". 

� deposit-field newbyte bytespec integer Function

Returns an integer that is the same as integer except for the bits specified by byte-

spec which are taken from newbyte.

This is like function dpb ("deposit byte"), except that newbyte is not taken to be

right-justified; the bytespec bits of newbyte are used for the bytespec bits of the re-

sult, with the rest of the bits taken from integer. integer must be an integer.

bytespec is built using function byte with bit size and position arguments.

deposit-field could have been defined as follows:

(deposit-field newbyte bytespec integer) ==>

                         (dpb (ldb bytespec newbyte) bytespec integer)

�

(deposit-field 320 (byte 3 6) 1088) => (+ 1088 256) => 1344

�

(setq place-numb #b100) => 4

(deposit-field #b100111 (byte 8 3) place-numb) => 36

place-numb => 4�

Example:

(deposit-field #o230 (byte 6 3) #o4567) => #o4237�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".

� describe anything &optional no-complaints�

Function

Provides all the interesting information about any object (except array contents).

describe knows about arrays, symbols, all types of numbers, packages, stack

groups, closures, instances, structures, compiled functions, and locatives, and prints

out the attributes of each in human-readable form. For example, 

(describe 5)  5 is an odd fixnum�

Sometimes it describes something that it finds inside something else; such recur-

sive descriptions are indented appropriately. For instance, describe of a symbol

tells you about the symbol’s value, its definition, and each of its properties.

describe of a floating-point number shows you its internal representation in a way

that is useful for tracking down roundoff errors and the like.
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If anything is a named-structure, describe handles it specially. To understand this:

See the section "Named Structures". First it gets the named-structure symbol, and

sees whether its function knows about the :describe operation. If the operation is

known, it applies the function to two arguments: the symbol :describe, and the

named-structure itself. Otherwise, it looks on the named-structure symbol for infor-

mation that might have been left by defstruct; this information would tell it the

symbolic names for the entries in the structure. describe knows how to use the

names to print out each field’s name and contents.

describe describes an instance by sending it the :describe message. The default

method prints the names and values of the instance variables.

This is the same as the Show Object command.

describe always returns its argument, in case you want to do something else to it.

Compatibility Note: The optional argument no-complaints is an extension to Com-

mon Lisp, which might not work in other implementations of Common Lisp. 

� :describe Message

The object that receives this message should describe itself, printing a description

onto the *standard-output* stream. The describe function sends this message

when it encounters an instance.

The :describe method of flavor:vanilla calls flavor:describe-instance, which

prints the following information onto the *standard-output* stream: a description

of the instance, the name of its flavor, and the names and values of its instance

variables. It returns the instance. For example:

(send cell-object :describe)

-->#<CELL 1160762135>, an object of flavor CELL,

     has instance variable values:

      X:                       24

      Y:                       3

      STATUS:                  :ALIVE

      NEXT-STATUS:             unbound

      NEIGHBORS:               unbound

=> #<CELL 1160762135>�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� (flavor:method :describe si:heap) &optional (stream zl:standard-output) Method

Describes the heap, giving the predicate, number of elements, and optionally the

contents. If stream is given, the output of :describe is printed on stream.

For a table of related items: See the section "Heap Functions and Methods". 

� describe-defstruct instance &optional name Function
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Takes an instance of a structure and prints out a description of the instance, in-

cluding the contents of each of its slots. name should be the name of the struc-

ture; you must provide this name so that describe-defstruct can know of what

structure instance is an instance, and thus figure out the names of instance’s slots.

If instance is a named structure, you do not have to provide name, since it is just

the named structure symbol of instance. Normally the describe function calls

describe-defstruct if it is asked to describe a named structure; however, some

named structures have their own idea of how to describe themselves. See the sec-

tion "Named Structures".

For a table of related items: See the section "Functions Related to defstruct Struc-

tures". 

� describe-function fspec &key (stream *standard-output*) Function

Shows the arglist, values and proclaims for the compiled function fspec. The

:stream argument enables you to output the description to any stream.

(describe-function ’locativep) =>

Debugging info:

  ARGLIST (OBJECT)

  SYS:FUNCTION-PARENT (LOCATIVEP DEFINE-TYPE-PREDICATE)

Proclaimed properties:

  NOTINLINE

NIL�

See the section "Operations the User Can Perform on Functions".

� dbg:describe-global-handlers Function

Displays the list of conditions for which global handlers have been defined, as well

as a list of these handlers. 

� flavor:describe-instance instance Function

Prints the following information onto the *standard-output* stream: a description

of the instance, the name of its flavor, and the names and values of its instance

variables. It returns the instance. For example:

(flavor:describe-instance cell-object) 

-->#<CELL 1160762135>, an object of flavor CELL,

     has instance variable values:

      X:                       24

      Y:                       3

      STATUS:                  :ALIVE

      NEXT-STATUS:             unbound

      NEIGHBORS:               unbound

=>  #<CELL 1160762135>�
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When you use describe on an instance, a default method (implemented for

flavor:vanilla) performs the flavor:describe-instance function. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� clos:describe-object object stream Generic Function

Provides a mechanism for users to control what happens when describe is called

for instances of a class. clos:describe-object is called by describe and should not

be called by users.

object Any Lisp object.

stream A stream (this cannot be t or nil).�

The default method lists the slot names and values.

The stream argument passed to clos:describe-object is not necessarily the same as

the stream passed to describe (it might be an intermediate stream that imple-

ments parts of describe). Therefore, methods for clos:describe-object should not

depend on the identity of the stream. 

� describe-package package Function

Print a description of package’s attributes and the size of its hash table of symbols

on *standard-output*. package can be a package object or the name of a package.

The describe function calls describe-package when its argument is a package. 

� zl:desetq {variable-pattern value-pattern}... Special Form

Lets you assign values to variables through destructuring patterns. In place of a

variable to be assigned, you can provide a tree of variables. The value to be as-

signed must be a tree of the same shape. The trees are destructured into their

component parts, and each variable is assigned to the corresponding part of the

value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is set to the

result of evaluating value-pattern. If variable-pattern is a tree, the result of evaluat-

ing value-pattern should be a tree of the same shape. The trees are destructured,

and each variable that is a component of variable-pattern is set to the value that is

the corresponding element of the tree that results from evaluating value-pattern.

This process is repeated for each pair of variable-pattern and value-pattern.

zl:desetq returns the last value. Example:

(desetq (a b) ’((x y) z) c b)

�

=>z�

a is set to (x y), b is set to z, and c is set to z. The form returns the value of the

last form, which is the symbol z. 
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� destructuring-bind pattern datum &body body Special Form

Binds variables to values, using defmacro’s destructuring facilities, and evaluates

the body forms in the context of those bindings.

First datum is evaluated. If pattern is a symbol, it is bound to the result of evalu-

ating datum. If pattern is a tree, the result of evaluating data should be a tree of

the same shape. It signals an error if the trees do not match. The trees are disas-

sembled, and each variable that is a component of pattern is bound to the value

that is the corresponding element of the tree that results from evaluating datum.

Finally, the body forms are evaluated sequentially, the old values of the variables

are restored, and the result of the last body form is returned.

As with the pattern in a defmacro form, pattern actually resembles the lambda-

list of a function; it can have &-keywords. See the macro defmacro.

Example:

(destructuring-bind (a (b) &optional (c ’d))

    ’((x y) (z))

  (values a b c))

�

=> (x y) z d�

Under Genera, zl:destructuring-bind also exists. It is the same as destructuring-

bind except that it does not signal an error if the trees datum and pattern do not

match. If not enough values are supplied, the remaining variables are bound to nil.

If too many values are supplied, the excess values are ignored.

� math:determinant matrix Function

Returns the determinant of matrix. matrix must be a two-dimensional square ma-

trix. 

� zl:dfloat x Function

Converts any noncomplex number to a double-precision floating-point number.

For a table of related items: See the section "Functions that Convert Numbers to

Floating-point Numbers". 

� zl:difference arg &rest args Function

Returns its first argument minus the sum of the rest of its arguments. Arguments

of different numeric types are converted to a common type, which is also the type

of the result. See the section "Coercion Rules for Numbers".

zl:difference is similar to the function - used with more than one argument.

For a table of related items, see the section "Arithmetic Functions". 
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� digit-char weight &optional (radix 10) (style-index 0) Function

Returns the character that represents a digit with a specified weight weight. Re-

turns nil if weight is not between 0 and (1- radix) or radix is not between 2 and

36.

See the function digit-char-p.

For a table of related items, see the section "Character Conversions". 

� digit-char-p char &optional (radix 10) Function

char must be a character object. digit-char-p returns the weight of that digit char-

acter (a number from zero to one less than the radix) if it is a valid digit in the

specified radix. It returns nil if char is not a valid digit in the specified radix; it

cannot return t.

(digit-char-p #\Q) => nil

(digit-char-p #\8) => 8

(digit-char-p (character ’b) 16) => 11�

See the function digit-char.

For a table of related items, see the section "Character Predicates". 

� :direction Message

Returns one of the keyword symbols :input, :output, or :bidirectional.

� disassemble function &optional from-pc to-pc Function

Prints out a human-readable version of the macroinstructions in function. function

is either a compiled function, or a symbol or function spec whose definition is a

compiled function.

Compatibility Note: The optional arguments from-pc and to-pc, are Symbolics ex-

tensions to Common Lisp, which might not work in other implementations of Com-

mon Lisp. Note that they are not available if you are using CLOE on a 386 based

machine.

The CLOE primitive takes a name, a lambda expression, or a compiled function ob-

ject as an argument. The function definition is retrieved and compiled if not al-

ready compiled. The compiled function object is then disassembled, and pretty

printed. 

� zl:dispatch ppss word &body clauses Special Form

(zl:dispatch byte-specifier number clauses...) is the same as select (not zl:selectq),

but the key is obtained by evaluating (ldb byte-specifier number). byte-specifier and

number are both evaluated. See the section "Byte Manipulation Functions". Byte

specifiers and ldb are explained in that section. Example:
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(princ (dispatch 0202 cat-type

 (0 "Siamese.")

 (1 "Persian.")

 (2 "Alley.")

 (3 (ferror nil

    "~S is not a known cat type."

    cat-type))))�

It is not necessary to include all possible values of the byte that is dispatched on.

For a table of related items: See the section "Conditional Functions". 

� zl:displace form expansion Function

Replaces the car and cdr of form so that it looks like:

(si:displaced original-form expansion)�

form must be a list. original-form is equal to form but has a different top-level

cons so that the replacing mentioned above does not affect it. si:displaced is a

macro, which returns the caddr of its own macro form. So when the si:displaced

form is given to the evaluator, it "expands" to expansion. zl:displace returns ex-

pansion. 

� zl:dlet ((variable-pattern value-pattern)...) body... Special Form

Binds variables to values, using destructuring, and evaluates the body forms in the

context of those bindings. In place of a variable to be assigned, you can provide a

tree of variables. The value to be assigned must be a tree of the same shape. The

trees are destructured into their component parts, and each variable is assigned to

the corresponding part of the value tree.

First the variable-pattern is evaluated. If variable-pattern is a symbol, it is bound to

the result of evaluating the corresponding value-pattern. If variable-pattern is a

tree, the result of evaluating value-pattern should be a tree of the same shape. The

trees are destructured, and each variable that is a component of variable-pattern is

bound to the value that is the corresponding element of the tree that results from

evaluating value-pattern. The bindings happen in parallel; all the value-patterns are

evaluated before any variables are bound. Finally, the body forms are evaluated

sequentially, the old values of the variables are restored, and the result of the last

body form is returned. Example:

(zl:dlet (((a b) ’((x y) z))

(c ’d))

(values a b c))

�

=> (x y) z d�

� zl:dlet* ((variable-pattern value-pattern)...) body... Special Form
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Binds variables to values, using destructuring, and evaluates the body forms in the

context of those bindings. In place of a variable to be assigned, you can provide a

tree of variables. The value to be assigned must be a tree of the same shape. The

trees are destructured into their component parts, and each variable is assigned to

the corresponding part of the value tree.

The first value-pattern is evaluated. If variable-pattern is a symbol, it is bound to

the result of evaluating value-pattern. If variable-pattern is a tree, the result of

evaluating value-pattern should be a tree of the same shape. The trees are de-

structured, and each variable that is a component of variable-pattern is bound to

the value that is the corresponding element of the tree that results from evaluat-

ing value-pattern. The process is repeated for each pair of variable-pattern and val-

ue-pattern. The bindings happen sequentially; the variables in each variable-pattern

are bound before the next value-pattern is evaluated. Finally, the body forms are

evaluated sequentially, the old values of the variables are restored, and the result

of the last body form is returned. Example:

(zl:dlet* (((a b) ’((x y) z)) (c b)) (values a b c))

�

=> (x y) z z�

� do vars endtest &body body�

Special Form

Provides a simple generalized iteration facility, with an arbitrary number of "index

variables" whose values are saved when the do is entered and restored when it is

left, that is, they are bound by the do. The index variables are used in the itera-

tion performed by do. At the beginning, they are initialized to specified values,

and then at the end of each trip around the loop the values of the index variables

are changed according to specified rules. do allows you to specify a predicate that

determines when the iteration terminates. The value to be returned as the result

of the form can, optionally, be specified.

do looks like this:

(do ((var init repeat) ...)

  (end-test exit-form ...)

  body...)�

The first item in the form is a list of zero or more index variable specifiers. Each

index variable specifier is a list of the name of a variable var, an initial value

form init, which defaults to nil if it is omitted, and a repeat value form repeat. If

repeat is omitted, the var is not changed between repetitions. If init is omitted, the

var is initialized to nil.

An index variable specifier can also be just the name of a variable, rather than a

list. In this case, the variable has an initial value of nil, and is not changed be-

tween repetitions.

All assignment to the index variables is done in parallel. At the beginning of the

first iteration, all the init forms are evaluated, then the vars are bound to the val-
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ues of the init forms, their old values being saved in the usual way. The init forms

are evaluated before the vars are bound, that is, lexically outside of the do. At the

beginning of each succeeding iteration those vars that have repeat forms get set to

the values of their respective repeat forms. All the repeat forms are evaluated be-

fore any of the vars is set.

The second element of the do-form is a list of an end-testing predicate form end-

test, and zero or more forms, called the exit-forms. This resembles a cond clause.

At the beginning of each iteration, after processing of the variable specifiers, the

end-test is evaluated. If the result is nil, execution proceeds with the body of the

do. If the result is not nil, the exit-forms are evaluated from left to right and then

do returns. The value of the do is the value of the last exit-form, or nil if there

were no exit-forms (not the value of the end-test as you might expect by analogy

with cond).

Note that the end-test gets evaluated before the first time the body is evaluated.

do first initializes the variables from the init forms, then it checks the end-test,

then it processes the body, then it deals with the repeat forms, then it tests the

end-test again, and so on. If the end-test returns a non-nil value the first time,

then the body is never processed.

If the second element of the form is (nil), the end-test is never true and there are

no exit-forms. The body of the do is executed over and over. The infinite loop can

be terminated by use of return or throw.

Example:

(do ((count 1 (+ count 1)))

    (nil) ; Do forever.

  (let ((item (read) ))

    (if (null item) (return) (princ item)))) => ABCDEFGNIL

      ;typed - abcdefg()�

If a return special form is evaluated inside the body of a do, the do immediately

stops, unbinds its variables, and returns the values given to return. See the spe-

cial form return.

return and its variants are explained in more detail in that section. go special

forms and prog-tags can also be used inside the body of a do and they mean the

same thing that they do inside prog forms, but we discourage their use since they

make your program complicated and hard to understand.

Examples:
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(setq foo-array (make-array ’(2 2) :initial-element ’a))

 => #2A((A A) (A A))

(do ((x 0 (+ x 1)) ; prints out array  

     (n (array-dimension foo-array 0) ))

    ((= x n)) 

  (do ((y 0 (+ y 1))          

       (n (array-dimension foo-array 1) ))

      ((= y n))

    (princ (aref foo-array x y)))) => AAAA

NIL�

(arglist ’cl:array-dimensions) => (ARRAY) and NIL and NIL

(setq a-vector #(1 2 3)) => #(1 2 3)

(do ((i 0 (+ i 1))      ; changes every 2 in vector into a 0

     (n (length a-vector)))

    ((= i n))

  (if (= 2 (aref a-vector i))

      (setf (aref a-vector i) 0))) => NIL

A-VECTOR => #(1 0 3)

    

(do ((z list (cdr z))   ;z starts as list and is cdr’ed each time.

     (y other-list)     ;y starts as other-list, and is unchanged by the do.

     (x)         ;x starts as nil and is not changed by the do.

     w)         ;w starts as nil and is not changed by the do.

    (nil)         ;The end-test is nil, so this is an infinite loop.

  body)                 ;Presumably the body uses return somewhere.�

The following construction exploits parallel assignment to index variables:

(do ((x e (cdr x))

     (oldx x x))

    ((null x))

  body)�

On the first iteration, the value of oldx is whatever value x had before the do was

entered. On succeeding iterations, oldx contains the value that x had on the previ-

ous iteration.

body can contain no forms at all. Very often an iterative algorithm can be most

clearly expressed entirely in the repeats and exit-forms of a new-style do, and the

body is empty.

The following example is like (maplist ’f x y). (See the section "Mapping".)

(do ((x x (cdr x))

     (y y (cdr y))

     (z nil (cons (f x y) z))) ;exploits parallel assignment.

    ((or (null x) (null y))

     (nreverse z))             ;typical use of nreverse.

    ))                         ;no do-body required.�

For information about a general iteration facility based on a keyword syntax rather

than a list-structure syntax: 
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See the section "The loop Iteration Macro". See the section "The CLOE Loop Iter-

ation Macro".

Zetalisp Note: Zetalisp supports another, "old-style" version of do. This form is in-

compatible with the language specification presented in Guy Steele’s Common

Lisp: the Language.

The older do looks like this:

(do var init repeat end-test body...)�

The first time through the loop var gets the value of the init form; the remaining

times through the loop it gets the value of the repeat form, which is reevaluated

each time. Note that the init form is evaluated before var is bound, that is, lexical-

ly outside of the do. Each time around the loop, after var is set, end-test is evalu-

ated. If it is non-nil, the do finishes and returns nil. If the end-test evaluated to

nil, the body of the loop is executed.

If the second element of the form is nil, there is no end-test nor exit-forms, and the

body of the do is executed only once. In this type of do it is an error to have re-

peats. This type of do is no more powerful than let; it is obsolete and provided on-

ly for Maclisp compatibility.

return and go can be used in the body. It is possible for body to contain no forms

at all.

Examples:

�

(do ( (i 0 (+ 1 i)) ; searches list for Dan.

     (names ’(Adam Brian Carla Dan Eric Fred) (cdr names)))

    ((null names))

  (if  (equal ’Dan (car names))

       (princ "Hey Danny Boooooy ")))  => Hey Danny Boooooy NIL

  

(do ((zz x (cdr zz))) 

    ((or (null zz)

 (zerop (f (car zz))))))

                   ;this applies f to each element of x

                   ;continuously until f returns zero.

   ;Note that the do has no body.

�

(defun list-splice (a b)

  (do ((x a (cdr x))

       (y b (cdr y))

       (xy ’() (append xy (list (car x) (car y)))) )

      ((endp x) (endp y)  (append xy x y) )))  => LIST-SPLICE

(list-splice ’(1 2 3) ’(a b c))  => (1 A 2 B 3 C)

(list-splice ’(1 2 3) ’(a b c d e)) => (1 A 2 B 3 C D E)

�

return forms are often useful to do simple searches:
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(setq a-vector #(1 2 3)) => #(1 2 3)

(do ((i 0 (+ i 1)))   ; Iterate over the length of vector

    ((and (= 3 (aref a-vector i)) ; If we find a element that = 3

          (return i))))           ;then return its index.

  => 2  ;note (aref a-vector 2) => 3

�

Example:

(do ((i 5 (+ i 1))

     (list (cdr *data-list*) (cdr list))

     (item (car *data-list*) (car list)))

    ((>= i (length *data-vector*)) t)

    (unless (= (aref *data-vector* i) item)

      (return nil)))�

For a table of related items: See the section "Iteration Functions". 

� do keyword for loop

do expression

expression is evaluated each time through the loop, as shown in the follow-

ing example:

(defun print-elements-of-list (list-of-elements)

  (loop for element in list-of-elements

do (print element)))

 => PRINT-ELEMENTS-OF-LIST�

print-elements-of-list prints each element in its argument, which should be

a list. It returns nil.

The forms do and doing are synonymous. Examples

�

(defun print-list (small-list)

  (loop for element in small-list

do

    (princ element)

    (princ " A "))) => PRINT-LIST

(print-list ’(1 2 3)) => 1 A 2 A 3 A NIL�

This is equivalent to

�

(defun print-list (small-list)

  (loop for element in small-list

doing

    (princ element)

    (princ " A "))) => PRINT-LIST

(print-list ’(1 2 3)) => 1 A 2 A 3 A NIL�

See the macro loop.
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� do* vars endtest &body body Special Form

Just like do, except that the variable clauses are evaluated sequentially rather

than in parallel. When a do starts, all the initialization forms are evaluated before

any of the variables are set to the results; when a do* starts, the first initializa-

tion form is evaluated, then the first variable is set to the result, then the second

initialization form is evaluated, and so on. The stepping forms work analogously.

Examples:

(do ( (i 0 (+ 1 i))

     (i 0 (+ 1 i)))

    ((= i 10))

  (princ i)) => 0123456789NIL

�

(do* ( (i 0 (+ 1 i))

      (i 0 (+ 1 i)))

     ((= i 10))

  (princ i)) => 02468NIL�

Provides a comprehensive iteration control construct, and is a powerful analog to

iteration control loops as found in Algol derivative languages. composed of zero or

more variable specifiers, an end test and zero or more result forms, zero or more

declarations, and a body.

The variable specifier is a list of variable bindings, including optional initialization

values and an optional step form. All the variable binding initializations are execut-

ed sequentially, as are evaluation of the step forms. During initialization, later

variable specifiers and evaluation of step forms have the ability to refer to the

most current value of pre-specified variables. If init is omitted, then the variable is

bound to nil; if step is omitted, the variable value is not automatically changed

during do* iterations. Declarations may apply to any of the other three major parts

of the do* form.

The body of the do* form is an implicit tagbody that contains both statement

forms and tags that are targets of go statements in the body. The Go statements

that refer to tags in the body of the do* are not allowed in the variable specifiers,

end-test, or result forms.

After the variable specifiers are initialized, and after each variable specifier step

form evaluation (but before the body forms are evaluated) end-test is evaluated. If

the result is nil, the body of the do is evaluated. If the result is not nil, the result

forms of the do* are evaluated, and the value of the last one is returned as the

value of the do* form. No returns is nil. 

The do* form is wrapped in an implict block whose name is nil, so that values

can be explicitly returned from do*, using return.
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(do* ((i 5 (+ i 1))

      (list *data-list* (cdr list))

      (item (car list) (car list)))

    ((or (endp list)(>= i (length *data-vector*))) t)

    (unless (= (aref *data-vector* i) item)

      (return nil)))�

For a table of related items: See the section "Iteration Functions".

� do-all-symbols (var &optional result-form) &body body Special Form

Evaluates the body forms repeatedly with var bound to each symbol present in any

package (excluding invisible packages).

When the iteration terminates, result-form is evaluated and its values are returned.

The value of var is nil during the evaluation of result-form. If result-form is not

specified, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

The following code uninterns all the symbols accessible in my-package, and re-

turns the list of symbols:

(let ((symbol-list nil))

  (do-symbols (symbol my package symbol-list)

    (unintern symbol)

    (setq symbol-list (cons symbol symbol-list))))�

� do-external-symbols (var &optional pkg result-form) &body body Special Form

Evaluates the body forms repeatedly with var bound to each external symbol ex-

ported by pkg. pkg can be a package object or a string or symbol that is the name

of a package, or it can be omitted, in which case the value of *package* is used

by default.

When the iteration terminates, result-form is evaluated and its values are returned.

The value of var is nil during the evaluation of result-form. If result-form is not

specified, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

The following code makes all the external symbols of the turbine-package accessi-

ble in the generator-package.

(do-external-symbols (symbol ’turbine-package)

  (import symbol ’generator-package))�

do-external-symbols has an implicit tagbody.

CLOE Note: This is a macro in CLOE. 

� do-local-symbols (var &optional pkg result-form) &body body Special Form
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Evaluates the body forms repeatedly with var bound to each symbol present in

package. pkg can be a package object or a string or symbol that is the name of a

package, or it can be omitted, in which case the value of *package* is used by

default.

When the iteration terminates, result-form is evaluated and its values are returned.

The value of var is nil during the evaluation of result. If result-form is not speci-

fied, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

� zl:do-named block-name vars endtest &body body Special Form

Sometimes one do is contained inside the body of an outer do. The return func-

tion always returns from the innermost surrounding do, but sometimes you want

to return from an outer do while within an inner do. You can do this by giving

the outer do a name. You use zl:do-named instead of do for the outer do, and use

return-from, specifying that name, to return from the zl:do-named.

The syntax of zl:do-named is like do except that the symbol do is immediately fol-

lowed by the name, which should be a symbol. Example:

(zl:do-named out 

     ((x 1 (+ x 1)))

     ((= x 4))

  (do ((y 1 (+ 1 y)))

      ((= y 4))

    (if (= y 2) (zl:return-from out (values x y))) )) => 1 and 2

�

(zl:do-named george ((a 1 (1+ a))

  (d ’foo))

 ((> a 4) 7)

  (do ((c b (cdr c)))

      ((null c))

    ...

    (return-from george (cons b d))

    ...))�

If the symbol t is used as the name, it is made "invisible" to returns; that is,

returns inside that zl:do-named return to the next outermost level whose name is

not t. (return-from t ...) returns from a zl:do-named named t. You can also make

a zl:do-named invisible to returns by including immediately inside it the form

(declare (si:invisible-block t)). This feature is not intended to be used by user-

written code; it is for macros to expand into.

If the symbol nil is used as the name, it is as if this were a regular do. Not hav-

ing a name is the same as being named nil.

progs and zl:loops can have names just as dos can. Since the same functions are

used to return from all of these forms, all of these names are in the same name-

space; a return returns from the innermost enclosing iteration form, no matter
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which of these it is, and so you need to use names if you nest any of them within

any other and want to return to an outer one from inside an inner one.

For a table of related items: See the section "Iteration Functions". 

� zl:do*-named block-name vars endtest &body body Special Form

Just like zl:do-named, except that the variable clauses are evaluated sequentially,

rather than in parallel. See the special form do*.

Examples:

(zl:do-named who-do

     ( (i 0 (+ 1 i))

      (i 0 (+ 1 i)))

     ((= i 10))

  (princ i)) => 0123456789NIL

�

(zl:do*-named who-do

      ( (i 0 (+ 1 i))

       (i 0 (+ 1 i)))

      ((= i 10))

  (princ i)) => 0123456789NIL�

For a table of related items: See the section "Iteration Functions". 

� do-symbols (var &optional pkg result-form) &body body Special Form

Evaluates the body forms repeatedly with var bound to each symbol accessible in

pkg. pkg can be a package object or a string or symbol that is the name of a

package, or it can be omitted, in which case the value of *package* is used by

default.

When the iteration terminates, result-form is evaluated and its values are returned.

The value of var is nil during the evaluation of result. If result-form is not speci-

fied, the value returned is nil.

The return special form can be used to cause a premature exit from the iteration.

� dbg:document-proceed-type condition proceed-type stream Generic Function

Prints out a description of what it means to proceed, using the given proceed-type,

from this condition, on stream. This is used mainly by the Debugger to create its

prompt messages. Phrase such a message as an imperative sentence, without any

leading or trailing #\return characters. This sentence is for the human users of

the machine who read this when they have just been dumped unexpectedly into the

Debugger. It should be composed so that it makes sense to a person to issue that

sentence as a command to the system.

The compatible message for dbg:document-proceed-type is:
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:document-proceed-type

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� dbg:document-special-command condition special-command�

Generic Function

Prints the documentation of special-command onto stream. If you don’t provide

your own method explicitly, the default handler uses the documentation string

from the dbg:special-command method. You can, however, provide this method in

order to print a prompt string that has to be computed at run-time. This is analo-

gous to dbg:document-proceed-type. The syntax is:

(defmethod (dbg:document-special-command my-flavor :my-command-keyword)

           (stream)

  body...)�

The compatible message for dbg:document-special-command is:

:document-special-command

For a table of related items: See the section "Debugger Special Command Func-

tions". 

� documentation name &optional (type ’defun) Function

Finds the documentation string of the symbol, name, which is stored in various

different places depending on the symbol type. If there is no documentation, nil is

returned.

Symbolics Common Lisp provides the optional argument type. type can be variable,

function, structure, type, or setf, according to the construct represented by name.

Type is a required argument in other implementations of Common Lisp, including

CLOE Runtime. 

If you are using CLOE, consider the following example:

(defstruct person "The physical parts of a person"

  (head *default-head*)

  (right-arm *default-right-arm*)

  (left-arm *default-left-arm*)

  (right-leg *default-right-leg*)

  (left-leg *default-left-leg*)

  (other ’() :type list))

�

(documentation ’person ’structure)

 => "The physical parts of a person"�

� dolist (var listform &optional resultform) &body forms�
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Special Form

A convenient abbreviation for the most common list iteration.

dolist performs forms once for each element in the list that is the value of list-

form, with var bound to the successive elements.

You can use return and go and prog-tags inside the body, as with do.

dolist returns nil, or the value of resultform, if the latter is specified.

Examples:

�

(dolist (people ’(mary ann claire cindy) 4) (print people ))  => 

MARY 

ANN 

CLAIRE 

CINDY 4

�

(dolist (z ’(1 2 3 4) "hi") (princ (+ z 2))) => 3456"hi" 

�

(dolist (j ’(1 2 3 4) t) (princ (- 1 j)) (if (= j 3)(return)))

=> 0-1-2NIL

�

For a table of related items: See the section "Iteration Functions". 

� zl:dolist (var form) &body body�

Special Form

A convenient abbreviation for the most common list iteration. zl:dolist performs

body once for each element in the list that is the value of form, with var bound to

the successive elements.

Examples:

(zl:dolist (people ’(mary ann claire cindy)) (print people )) => 

MARY 

ANN 

CLAIRE 

CINDY NIL

�

(zl:dolist (z ’(1 2 3 4)) (princ (+ z 2))) => 3456NIL

�

(zl:dolist (j ’(1 2 3 4)) (princ (- 1 j)) (if (= j 3)(return))) 

=> 0-1-2NIL

�

Where

(zl:dolist (item (frobs foo))

  (mung item))�
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is equivalent to:

(do ((lst (frobs foo) (cdr lst))

     (item))

    ((null lst))

  (setq item (car lst))

  (mung item))�

except that the name lst is not used. You can use return and go and prog-tags in-

side the body, as with do. zl:dolist forms return nil unless returned from explicitly

with return.

See the special form dolist.

For a table of related items: See the section "Iteration Functions".

Provides a control device for iteration over the elements of a list, and is com-

posed of a single variable specifier, zero or more declarations, and an implicit

tagbody.

The variable specifier binds a variable to a form that must evaluate to a list. A

single, optional result form is permitted and is the value returned by the dolist.

If result is omitted, dolist returns nil (unless an explicit return is executed).

Declarations may apply to either of the other major parts of the dolist form.

The body of the dolist form is an implicit tagbody that contains both statement

forms and tags that are targets of go statements in the body. The go statements

referring to tags in the body of the dolist are not allowed in the variable speci-

fier. The body of the dolist is evaluated once for each element of the list. When

the end of the list is reached, the value of the specified variable is nil, and re-

sult form is evaluated.

The dolist form is wrapped in an implict block whose name is nil, so that val-

ues can be explicitly returned from dolist, using return.

(let ((i 5))

  (dolist (item *data-list* t)

    (unless (= (aref *data-vector* i) item)

      (return nil))

    (setq i (+ i 1))))�

See Also: CLtL 126, do, do*, loop, tagbody, dotimes 

� dotimes (var countform &optional resultform) &body forms Special Form

A convenient abbreviation for the most common integer iteration.

dotimes performs forms the number of times given by the value of countform, with

var bound to 0, 1, and so forth on successive iterations.

You can use return and go and prog-tags inside the body, as with do.

The function returns nil, or the value of resultform if the latter is specified.

Examples:
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(dotimes (i 5 10)

  (princ i)(princ " ")) => 0 1 2 3 4 10

�

(dotimes (j 5 t)

  (princ j)(if (= j 3) (return))) => 0123NIL�

Note that in CLOE, the iteration control variable var is required to take on only

fixnum values.

For a table of related items: See the section "Iteration Functions". 

� zl:dotimes (var form) &body body Special Form

A convenient abbreviation for the most common integer iteration. zl:dotimes per-

forms body the number of times given by the value of count, with index bound to

0, 1, and so forth on successive iterations. 

Example:

(zl:dotimes (i 5)

  (princ i)(princ " ")) => 0 1 2 3 4 NIL

�

(zl:dotimes (j 5)

  (princ j)(if (= j 3) (return))) => 0123NIL�

Where

(zl:dotimes (i (// m n))

  (frob i))�

is equivalent to:

(do ((i 0 (1+ i))

     (count (// m n)))

    ((≥ i count))

  (frob i))�

except that the name count is not used. Note that i takes on values starting at 0

rather than 1, and that it stops before taking the value (/ m n) rather than after.

You can use return and go and prog-tags inside the body, as with do. zl:dotimes

forms return nil unless returned from explicitly with return. For example:

(zl:dotimes (i 5)

  (if (eq (aref a i) ’foo)

      (return i)))�

This form searches the array that is the value of a, looking for the symbol foo. It

returns the fixnum index of the first element of a that is foo, or else nil if none

of the elements are foo.

See the special form dotimes.

For a table of related items: See the section "Iteration Functions".
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provides an control device for iteration over a sequence of natural numbers. It is

composed of a single variable specifier, zero or more declarations, and an implicit

tagbody.

The variable specifier is composed a binding of a variable to zero, and specifica-

tion of a form, countform which must evaluate to an integer. If countform is neg-

ative or zero, result is evaluated and dotimes exits. After each iteration, the value

of the control variable is incremented by one. A single, optional result form is

permitted, and is the value returned by dotimes. If result is omitted, dotimes re-

turns nil (unless an explicit return is done).

Declarations may apply to either of the other major parts of the dotimes form.

The body of the dotimes form is an implicit tagbody, containing both statement

forms, and tags which are targets of go statements in the body. Go statements re-

ferring to tags in the body of the dotimes are not allowed in the variable specifi-

er. The body of the dotimes is evaluated once for each integer value of the con-

trol variable, up to but not including the number returned by countform. After

the last iteration, and during the evaluation of result, the control variable count-

form has a value, which is the number of times the body was evaluated.

The dotimes form is wrapped in an implict block whose name is nil, so that val-

ues can be explicitly returned from dotimes, using return.

(dotimes (i 20 t)

  (unless (= (aref *data-vector-a* i) (aref *data-vector-b* i))

    (return nil)))�

See Also: CLtL 126, do, do*, loop, tagbody, dolist 

� double-float Type Specifier

double-float is the type specifier symbol for the predefined Lisp double-precision

floating-point number type.

The type double-float is a subtype of the type float. In Symbolics Common Lisp,

the type double-float is equivalent to the type long-float.

The type double-float is disjoint with the types short-float, and single-float.

Examples:

(typep -13D2 ’double-float) => T�

(zl:typep -12D4) => :DOUBLE-FLOAT�

(subtypep ’double-float ’float) => T and T ;subtype and certain�

(commonp 0d0) => T�

(sys:double-float-p 6.03e23) => NIL�

(sys:double-float-p 1.5d9) => T�

(equal-typep ’double-float ’long-float) => T�

(sys:type-arglist ’double-float)  => NIL and T�

See the section "Data Types and Type Specifiers".
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See the section "Numbers".

� double-float-epsilon Constant

The value of this constant is the smallest positive floating-point number e of a for-

mat such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e)))�

The current value of double-float-epsilon is: 1.1102230246251568d-16.

� double-float-negative-epsilon Constant

The value of this constant is the smallest positive floating-point number e of a for-

mat such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e)))�

The current value of double-float-negative-epsilon is: 5.551115123125784d-17

� sys:double-float-p object Function

Returns t if object is a double-precision floating-point number, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates". 

� dpb newbyte bytespec integer Function

The name of this function stands for "Deposit byte".

Returns a number that is the same as integer except in the bits specified by byte-

spec.

bytespec is built using function byte with bit size and position arguments. Here

size indicates the number of low bits of newbyte to be placed in the result.

newbyte is interpreted as being right-justified, as if it were the result of ldb ("load

byte").

integer must be an integer.

Examples:

(dpb 1 (byte 1 2) 1) => 5

(dpb 0 (byte 1 31.) -1_31.) => -4294967296. ;; a bignum (-1_32)

(dpb -1 (byte 40. 0) -1_32.) => -1.

(dpb #o230 (byte 6 3) #o4567) => #o4307

(dpb 320 (byte 7 0) 1024) = (dbp (logior 256 64) (byte 7 0) 1024)

�

 = (dpb #b101000000 (byte 7 0) #b1000000000) = (logior 1024 64) => 1088�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".
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� dribble &optional pathname editor-p Function

Opens pathname as a "dribble file". It rebinds *standard-input*, *standard-

output*, *trace-output*, *error-output*, and *query-io* so that all of the termi-

nal interaction is directed to the file as well as to the terminal. If editor-p is

non-nil, it does not open pathname on the file computer, instead it directs the ter-

minal interaction into a Zmacs buffer whose name is pathname, creating it if it

does not exist.

To terminate the recording, reset the I/O streams, and close the file (if any), call

dribble again with no arguments:

(dribble)

Compatibility Note: The optional argument editor-p is a Symbolics extension to

Common Lisp which might not work in other implementations of Common Lisp,

and does not work in CLOE Runtime. 

� zl:dribble-end Function

Closes the file opened by zl:dribble-start and resets the I/O streams. 

� zl:dribble-start pathname &optional editor-p (concatenate-p t) (debugger-p nil) 

Function

Opens pathname as a "dribble file". It rebinds *standard-input*, *standard-

output*, *trace-output*, *error-output*, and *query-io* so that all of the termi-

nal interaction is directed to the file as well as to the terminal. If editor-p is

non-nil, it does not open pathname on the file computer, instead it directs the ter-

minal interaction into a Zmacs buffer whose name is pathname, creating it if it

does not exist. 

� sys:dynamic-closure Type Specifier

sys:dynamic-closure is the type specifier symbol for the predefined Lisp object of

that name.

See the section "Data Types and Type Specifiers". See the section "Scoping".

Examples:

(setq four

    (let ((x 4))

      (closure ’(x) ’zerop))) => #<DTP-CLOSURE 1510647>

�

(typep four ’sys:dynamic-closure) => T

�

(subtypep ’sys:dynamic-closure ’common) => NIL and NIL�

� dynamic-closure-alist closure Function
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Returns an alist of (symbol . value) pairs describing the bindings which the dy-

namic closure performs when it is called. This list is not the same one that is ac-

tually stored in the closure; that one contains pointers to value cells rather than

symbols, and dynamic-closure-alist translates them back to symbols so you can

understand them. As a result, clobbering part of this list does not change the clo-

sure.

If any variable in the closure is unbound, this function signals an error. See the

section "Dynamic Closure-Manipulating Functions".

� dynamic-closure-variables closure Function

Creates and returns a list of all of the variables in the dynamic closure closure. It

returns a copy of the list that was passed as the first argument to make-dynamic-

closure when closure was created. See the section "Dynamic Closure-Manipulating

Functions".

� ecase object &body body Special Form

The name of this function stands for "exhaustive case" or "error-checking case".

Structurally ecase is much like case, and it behaves like case in selecting one

clause and then executing all consequents of that clause. However, ecase does not

permit an explicit otherwise or t clause. The form of ecase is as follows:

(ecase key-form

  (test consequent consequent ...)

  (test consequent consequent ...)

  (test consequent consequent ...)

  ...)�

The first thing ecase does is to evaluate object, to produce an object called the key

object. 

Then ecase considers each of the clauses in turn. If key is eql to any item in the

clause, ecase evaluates the consequents of that clause as an implicit progn.

ecase returns the value of the last consequent of the clause evaluated, or nil if

there are no consequents to that clause.

The keys in the clauses are not evaluated; literal key values must appear in the

clauses. It is an error for the same key to appear in more than one clause. The or-

der of the clauses does not affect the behavior of the ecase construct.

If there is only one key for a clause, that key can be written in place of a list of

that key, provided that no ambiguity results. Such a "singleton key" can not be nil

(which is confusable with nil, a list of no keys), t, otherwise, or a cons.

If no clause is satisfied, ecase uses an implicit otherwise clause to signal an error

with a message constructed from the clauses. It is not permissible to continue

from this error. To supply your own error message, use case with an otherwise

clause containing a call to error. 
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Examples:

(let ((num 24))

  (ecase num

    ((1 2 3) "integer")

    ((4 5 6) "integer"))) => non-proceedable error is signalled�

(let ((num 3))

  (ecase num

    ((1 2) "one two")

    ((3 4 5 6) (princ "numbers") (princ " three") (terpri) )

    (t "not today"))) => numbers three

T�

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� eighth list Function

Returns the eighth element of the list list. eighth is equivalent to

(nth 7 list)�

For example:

(setq letters ’(a b c d e f g h i j)) =>

(A B C D E F G H I J)

�

(eighth letters) => H�

This function is provided because it makes more sense than using nth when you

are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

� elt sequence index�

Function

Extracts an element from sequence at position index. Returns a new sequence.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

index must be a non-negative integer less than the length of sequence as returned

by length. The first element of a sequence has index 0. 

For example:

(setq bird-list ’(heron stork pelican turkey)) =>

(HERON STORK PELICAN TURKEY)
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�

(elt bird-list 2) => PELICAN

�

(equalp (elt bird-list 2) (third bird-list)) => T�

Note that elt observes the fill pointer in those vectors that have fill pointers. The

array-specific function aref can be used to access vector elements that are beyond

the vector’s fill pointer.

setf can be used with elt to destructively replace a sequence element with a new

value. For example:

(setf (elt bird-list 2) ’hawk) => HAWK

�

bird-list => (HERON STORK HAWK TURKEY)�

The following example demonstrats the use of elt to reference array components

of either type list or type vector. 

(setq seqarr

      (make-array 5 :element-type ’sequence

  :initial-contents

  ‘((a b c)

    ,(vector ’d ’e ’f)

    (x y)

                    (y z)

                    (z))))

�

(elt (aref seqarr 0) 1) => B

�

(elt (aref seqarr 1) 1) => E

�

(setf (elt (aref seqarr 0) 1) ’g) => G

�

(aref seqarr 1) => #(D G F)�

For a table of related items: See the section "Sequence Construction and Access".

� (flavor:method :empty-p si:heap) Method

Returns t if the heap is empty, otherwise returns nil.

For a table of related items: See the section "Heap Functions and Methods". 

� si:enable-who-calls &optional mode Function

mode describes how the who-calls database should record the callers of any func-

tion. For more information about the who-calls database, see the section "Enabling

the Who-Calls Database".

:all If you want to include callers of the Symbolics-supplied soft-

ware (that is, software contained in the distribution world) in
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the database, use :all. This enables you to create the database

once and then save it when you save the world. (When used

with this argument, si:full-gc would discard the existing

database and then remake it).

:all-remake Includes callers of the Symbolics-supplied and site-specific soft-

ware in the database. Use this if you do not want to perform a

si:full-gc. (When used with this argument, si:full-gc would dis-

card the existing database and then remake it).

:new Enables the who-calls database to record the callers in any

layered products, special software, or programs loaded into the

world (after the site has been set). The Set Site command uses

this argument by default. :new does not cause the callers of

software in the distribution world to be recorded.

:all-no-make Enables the who-calls database to record the callers in any

layered products, special software, or programs loaded into the

world (after the site has been set), and does not cause the

callers of software in the distribution world to be recorded un-

til si:full-gc is performed. Once si:full-gc is performed, those

callers (for software in the distribution world) are recorded.

:explicit If you want only explicitly-named files to be in the database,

use the function si:enable-who-calls with the argument

:explicit.

Note: Creating a full database takes a long time and about 2000 pages of storage. 

� si:encapsulate function outer-function type body &optional extra-debugging-info 

Macro

A call to si:encapsulate looks like:

(si:encapsulate function-spec outer-function type

     body-form

     extra-debugging-info)�

All the subforms of this macro are evaluated. In fact, the macro could almost be

replaced with an ordinary function, except for the way body-form is handled.

function-spec evaluates to the function spec whose definition the new encapsulation

should become. outer-function is another function spec, which should often be the

same one. Its only purpose is to be used in any error messages from

si:encapsulate.

type evaluates to a symbol that identifies the purpose of the encapsulation; it says

what the application is. For example, it could be advise or trace. The list of possi-

ble types is defined by the system because encapsulations are supposed to be kept

in an order according to their type. See the variable si:encapsulation-standard-

order. type should have an si:encapsulation-grind-function property that tells

grindef what to do with an encapsulation of this type.
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body-form is a form that evaluates to the body of the encapsulation-definition, the

code to be executed when it is called. Backquote is typically used for this expres-

sion. See the section "Backquote-Comma Syntax". si:encapsulate is a macro be-

cause, while body is being evaluated, the variable si:encapsulated-function is

bound to a list of the form (function uninterned-symbol), referring to the unin-

terned symbol used to hold the prior definition of function-spec. If si:encapsulate

were a function, body-form would just get evaluated normally by the evaluator be-

fore si:encapsulate ever got invoked, and so there would be no opportunity to bind

si:encapsulated-function. The form body-form should contain

(apply si:encapsulated-function arglist) somewhere if the encapsulation is to live

up to its name and truly serve to encapsulate the original definition. (The variable

arglist is bound by some of the code that the si:encapsulate macro produces auto-

matically. When the body of the encapsulation is run, arglist’s value is the list of

the arguments that the encapsulation received.)

extra-debugging-info evaluates to a list of extra items to put into the debugging in-

fo alist of the encapsulation function (besides the one starting with

si:encapsulated-definition that every encapsulation must have). Some applications

find this useful for recording information about the encapsulation for their own

later use.

When a special function is encapsulated, the encapsulation is itself a special func-

tion with the same argument quoting pattern. (Not all quoting patterns can be

handled; if a particular special form’s quoting pattern cannot be handled,

si:encapsulate signals an error.) Therefore, when the outermost encapsulation is

started, each argument has been evaluated or not as appropriate. Because each en-

capsulation calls the prior definition with apply, no further evaluation takes place,

and the basic definition of the special form also finds the arguments evaluated or

not as appropriate. The basic definition can call eval on some of these arguments

or parts of them; the encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the defini-

tion of function-spec is a macro, then si:encapsulate automatically encapsulates the

expander function instead. In this case, the definition of the uninterned symbol is

the original macro definition, not just the original expander function. It would not

work for the encapsulation to apply the macro definition. So during the evaluation

of body-form, si:encapsulated-function is bound to the form (cdr (function unin-

terned-symbol)), which extracts the expander function from the prior definition of

the macro.

Because only the expander function is actually encapsulated, the encapsulation

does not see the evaluation or compilation of the expansion itself. The value re-

turned by the encapsulation is the expansion of the macro call, not the value com-

puted by the expansion. 

� si:encapsulation-standard-order Variable

The value of this variable is a list of the allowed encapsulation types, in the order

that the encapsulations are supposed to be kept in (innermost encapsulations first).

If you want to add new kinds of encapsulations, you should add another symbol to
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this list. Initially its value is:

(advise breakon trace si:rename-within)�

advise encapsulations are used to hold advice. breakon and trace encapsulations

are used for implementing tracing. si:rename-within encapsulations are used to

record the fact that function specs of the form (:within within-function altered-

function) have been defined. The encapsulation goes on within-function. See the

section "Rename-Within Encapsulations". 

� endp object Function

Tests for the end of a list. Returns nil when applied to a cons, and t when it is

applied to nil. endp signals an error when object is not a cons or nil.

Example:

(endp ’(heron loon sandpiper))�

returns nil, since endp here is applied to a list. But:

(endp ())�

returns t, since endp is applied to an empty list.

Under Cloe on the 386, endp signals an error, when the safety level is three, for

an atomic argument other than nil. If the safety level is less than three, endp, de-

pending upon the values of other optimization parameters, might signal an error

when given inappropriate arguements. 

(setq a ’(a1 a2 a3 a4)) => (A1 A2 A3 A4)

(endp a) => NIL

(endp (cdddr a)) => NIL

(endp (cddddr a)) => T�

Because of its type checking properties, endp is the preferred predicate when test-

ing for the end of a list. 

(proclaim ’(optimize (safety 3)))

(defun my-reverse-list( list )

"reverses a true list, endp signals error"

" if arg is not true list."

  (let ((curcon nil)

        (ptr list))

    (tagbody loop

      (unless (endp ptr)

        (setq curcon (cons (car ptr) curcon))

        (setq ptr (cdr ptr))

        (go loop)))

    curcon))

�

(my-reverse-list ’(a b c d)) => (D C B A)

�

=> (my-reverse-list ’abcd)

ERROR: ARGUMENT NOT A LIST�
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For a table of related items: See the section "Predicates that Operate on Lists".

� clos:ensure-generic-function function-specifier &key :lambda-list :argument-

precedence-order :declare :documentation :generic-function-class :method-combination

:method-class :environment Function

Defines a new generic function, or modifies an existing one. This function is part

of the underlying implementation of clos:defgeneric and clos:defmethod.

clos:ensure-generic-function returns the generic function object.

function-specifier Either a symbol or a list of the form (future-common-lisp:setf

symbol); this names the generic function.

keywords The keywords have the same semantics as the options docu-

mented in clos:defgeneric. 

The :method-class and :generic-function-class keywords can

be either class objects or names (in clos:defgeneric, they must

be names). Symbolics CLOS supports only the value

clos:standard-method for :method-class and the value

clos:standard-generic-function for :generic-function-class. 

There is an additional keyword, :environment, which is the

same as the &environment argument to macro expansion

functions. It is typically used to distinguish between compile-

time and run-time environments.

If function-specifier does not name a generic function (or any other kind of func-

tion), then a new generic function is created. If function-specifier names an ordi-

nary Lisp function, a macro, or a special form, an error is signaled. 

If function-specifier names an existing generic function, then that generic function

is modified, according to the keyword arguments :argument-precedence-order,

:declare, :documentation, :generic-function-class, :method-combination, and

:method-class. If any of those keyword values differ from the corresponding op-

tions in the generic function, then the keyword value replaces the existing option.

If the :lambda-list keyword is unsupplied and the generic function already exists,

then the existing lambda-list is left alone. If the :lambda-list keyword is unsup-

plied and the generic function does not already exist, then the generic function is

created with no lambda-list; the lambda-list will be created from the first method

defined for the generic function. If the :lambda-list keyword is supplied with a

value of nil, then the generic function accepts no arguments. 

An error is signaled if the value of :lambda-list is not congruent with the lambda-

lists of all existing methods. 

� &environment Lambda List Keyword

This keyword is used with macros only. It should be followed by a single variable

that is bound to an environment representing the lexical environment in which the
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macro call is to be interpreted. This environment is not required to be the com-

plete lexical environment; it should be used only with the function macroexpand

for the sake of any local macro definitions that the macrolet construct may have

established within that lexical environment. &environment is useful primarily in

the rare cases where a macro definition must explicitly expand any macros in a

subform of the macro call before computing its own expansion. 

� :eof Message

Indicates the end of data on an output stream. This is different from :close be-

cause some devices allow multiple data files to be transmitted without closing.

:close implies :eof when the stream is an output stream and the close mode is not

:abort. 

� eq x y Function

Returns t if and only if x and y are the same object. Note that things that print

the same are not necessarily eq to each other. In particular, numbers with the

same value need not be eq, and two similar lists are usually not eq. Examples:

(eq ’a ’b) => nil

(eq ’a ’a) => t

(eq (cons ’a ’b) (cons ’a ’b)) => nil

(setq x (cons ’a ’b)) (eq x x) => t�

Note that in Symbolics Common Lisp and CLOE equal fixnums are eq; this is not

true in Maclisp. Equality does not imply eqness for other types of numbers. To

compare numbers, use =.

eq is implemented by comparing pointers. Certain datatypes, such as small inte-

gers and characters, can be stored locally in a pointer space. For these data ob-

jects, the same number or character object will yield true when compared by eq.

However, numbers with the same value are usually not the same object. Exercise

caution in these cases. Consider this function when comparing numbers and char-

acters.

See the section "Numeric Comparisons".

� si:eq-hash-table Flavor

Creates an old style Zetalisp hash table using the eq function for comparison of

the hash keys. This flavor is superseded by table:basic-table. It accepts the follow-

ing init options:

:size Sets the initial size of the hash table in entries, as an integer.

The default is 100 (decimal). The actual size is rounded up

from the size you specify to the next size that is good for the

hashing algorithm. An automatic rehash of the hash table

might occur before this many entries are stored in the table

depending upon the keys being stored.
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:area Specifies the area in which the hash table should be created.

This is just like the :area option to zl:make-array. See the

function zl:make-array. The default is sys:working-storage-

area.

:growth-factor Specifies how much to increase the size of the hash table when

it becomes full. If it is an integer, the hash table is increased

by that number. If it is a floating-point number greater than

one, the new size of the hash table is the old size multiplied

by that number.

:rehash-before-coldCauses zl:disk-save to rehash this hash table if its hashing

has been invalidated. (This is part of the before-cold initial-

izations.) Thus every user of the saved world does not have to

waste the overhead of rehashing the first time they use the

hash table after cold booting.

For eq hash tables, the hashing is invalidated whenever

garbage collection or world compression occurs because the

hash function is sensitive to addresses of objects, and those op-

erations move objects to different addresses. For equal hash

tables, the hash function is not sensitive to addresses of ob-

jects that sxhash knows how to hash but it is sensitive to ad-

dresses of other objects. The hash table remembers whether it

contains any such objects.

Normally a hash table is automatically rehashed "on demand"

the first time it is used after the hashing has become invali-

dated. This first :get-hash operation is therefore much slower

than normal.

The :rehash-before-cold option should be used on hash tables

that are a permanent part of your world, likely to be saved in

a world saved by zl:disk-save, and to be touched by users of

that world. This applies both to hash tables in Genera and to

hash tables in user-written subsystems saved in a world.

� eql x y Function

Returns t if its arguments are eq, if they are numbers of the same type with the

same value, or if they are character objects that represent the same character.

The predicate = compares the values of two numbers even if the numbers are of

different types.

Examples:
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(eql ’a ’a) => t

(eql 3 3)   => t

(eql 3 3.0) => nil

(eql 3.0 3.0) => t

(eql #/a #/a) => t

(eql (cons ’a ’b) (cons ’a ’b)) => nil

(eql "foo" "FOO") => nil�

The following expressions might return either t or nil:

(eql ’(a . b) ’(a . b))

(eql "foo" "foo")�

In Symbolics Common Lisp:

(eql 1.0s0 1.0d0) => nil

(eql 0.0 -0.0) => nil�

� equal x y�

Function

Returns t if its arguments are structurally similar (isomorphic) objects. If the two

objects are eql, then they are also equal. If the objects are of different data types,

then they are not equal.

Objects of each data type are compared differently for equal. equal returns t in

the following cases:

Conses The two cars are equal and the two cdrs are equal.

Strings The strings are of the same length, and corresponding charac-

ters of each string are char=.

Bit-vectors The vectors are of the same length, and corresponding ele-

ments of each vector are =.

Numbers The numbers are eql; that is, they must have the same type

and the same value.

Characters The characters are eql; that is, they must be character objects

representing the same character. The code and bits information

are taken into account for equal, but font information is not.

Symbols The symbols are eq; that is, they must be addressing the same

memory location.

Arrays The arrays are eq; that is, they must be addressing the same

array in memory.

Pathnames The pathname objects are equivalent; that is, all of the corre-

sponding components (host, device, directory name, and so on)

are the same. The sensitivity of the case of the pathname ob-

ject is dependent on the file naming conventions of the file

system the pathname object resides in.�
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For example:

(equal ’a ’a) => T

(equal ’a ’b) => NIL

(equal 3.0 3.0) => T

(equal 3 3.0) => NIL

(equal #c(3 -4.0) #c(3 -4)) => NIL

(equal ’(a . b) ’(a . b)) => T

(equal (cons ’a ’b) (cons ’a ’c)) => NIL

(progn (setq x ’(a . b)) (equal x x )) => T

(equal #\A #\a) => NIL

(equal #\A #\A) => T

(equal #\c-A #\A) => NIL

(equal "Foo" "Foo") => T

(equal "FOO" "foo") => NIL�

An intuitive definition, which is not quite correct, is that two objects are equal if

their printed representation is the same. For example:

(setq a ’(1 2 3))

(setq b ’(1 2 3))

(eq a b) => NIL

(equal a b) => T

�

(setq a ’a) => A

(setq b a) => A

(equal a b) => T�

� zl:equal x y Function

Returns t if its arguments are similar (isomorphic) objects. See the function eq.

Two numbers are zl:equal if they have the same value and type (for example, a

flonum is never zl:equal to an integer, even if = is true of them). For conses,

zl:equal is defined recursively as the two cars being zl:equal and the two cdrs be-

ing equal. Two strings are zl:equal if they have the same length, and the charac-

ters composing them are the same. See the function string-equal. Alphabetic case

is ignored. All other objects are zl:equal if and only if they are eq. Thus zl:equal

could have been defined by:

(defun zl:equal (x y)

  (cond ((eq x y) t)

((neq (typep x) (typep y)) nil)

((numberp x) (= x y))

((stringp x) (string-equal x y))

((listp x) (and (equal (car x) (car y))

(equal (cdr x) (cdr y))))))�

As a consequence of the above definition, it can be seen that zl:equal may com-

pute forever when applied to looped list structure. In addition, eq always implies

zl:equal; that is, if (eq a b) then (zl:equal a b). An intuitive definition of
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zl:equal (which is not quite correct) is that two objects are zl:equal if they look

the same when printed out. For example:

(setq a ’(1 2 3))

(setq b ’(1 2 3))

(eq a b) => nil

(zl:equal a b) => t

(zl:equal "Foo" "foo") => t�

� si:equal-hash x Function

Computes a hash code of an object, and returns it as an integer. A property of

si:equal-hash is that (equal x y) always implies (= (si:equal-hash x) (si:equal-

hash y)). The number returned by si:equal-hash is always a nonnegative integer,

possibly a large one. si:equal-hash tries to compute its hash code in such a way

that common permutations of an object, such as interchanging two elements of a

list or changing one character in a string, always changes the hash code.

si:equal-hash uses %pointer to define the hash key for data types such as arrays,

stack groups, or closures. This means that some of the hash keys in equal hash

tables are based on a virtual memory address. Hash tables that are at all depen-

dent on memory addresses are rehashed when the garbage collector flips. 

si:equal-hash returns a second value (t, :dynamic or nil), if it has used %pointer

to define the hash key.

Value meaning

nil Returned if the hash does not depend on the virtual address of

the object being hashed.

:dynamic Returned if the hash depends on the virtual address, but none

of the dependent addresses are ephemeral. That is, if :dynamic

is returned, future calls to si:equal-hash for the same object

might not return the same number if an intervening dynamic

GC occurs.

t Returned if the hash depends on the virtual address and at

least one of the virtual addresses is ephemeral. That is, if t is

returned, future calls to si:equal-hash for the same object

might not return the same number if an intervening ephemeral

GC occurs. The value t is the strongest and must be preserved

when merging more than one result.�

For example, if running-flag is the merged flag that will eventually be returned,

the following form will efficiently do a hash/merge step:

(multiple-value-bind (hash flag) (si:equal-hash object)

;; t is strongest, :dynamic next, do it fast

(setq running-flag (or (eq flag ’t) running-flag flag))

hash)�
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Here is an example of how to use si:equal-hash in maintaining hash tables of ob-

jects:

�

(defun knownp (x &aux i bkt) ;look up x in the table

    (setq i (remainder (si:equal-hash x) 176))       

      ;The remainder should be reasonably randomized.      

    (setq bkt (aref table i))       

      ;bkt is thus a list of all those expressions that

      ;hash into the same number as does x.      

    (memq x bkt))�

To write an "intern" for objects, one could:

(defun sintern (x &aux bkt i tem)

    (setq i (remainder (si:equal-hash x) 2n-1))

;2n-1 stands for a power of 2 minus one.

;This is a good choice to randomize the

;result of the remainder operation.

    (setq bkt (aref table i))

    (cond ((setq tem (memq x bkt))

   (car tem))

  (t (aset (cons x bkt) table i)

     x)))�

For a table of related items: See the section "Table Functions". 

� si:equal-hash-table Flavor

Creates an old style Zetalisp hash table using the zl:equal function for comparison

of the hash keys. This flavor is superseeded by table:basic-table. It accepts the

following init option as well as those described for eq hash tables. See the flavor

si:eq-hash-table. 

:rehash-threshold Specifies how full the table can be before it must grow. This is

typically a flonum. The default is 0.8, which represents 80

percent. �

� equal-typep type1 type2 Function

Returns t if type1 and type2 are equivalent and denote the same data type. For the

standard type specifiers in Symbolics Common Lisp, see the section "Type Specifier

Symbols".

Examples:
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(equal-typep ’bit ’(unsigned-byte 1)) => T

(equal-typep ’double-float ’long-float) => T

(equal-typep ’bit ’(integer 0 1)) => T

(equal-typep ’short-float ’single-float) => T

(equal-typep ’pathname ’complex) => NIL�

� equalp x y Function

Two objects are equalp if they are equal. Objects that have components are

equalp if they are of the same type and corresponding components are equalp.

equalp differs from equal when it compares characters, strings and arrays. equalp

returns t for character objects when they satisfy char-equal. char-equal ignores

case, as well as font information. For example:

(equalp #\A #\a) => T

(equalp #\A #\A) => T

(equalp #\c-A #\A) => NIL�

equalp returns t for arrays when they have the same dimensions, the dimensions

match, and the corresponding elements are equalp. A string and a general array

that happens to contain some characters will be equalp even though it is not

equal. If either argument has a fill pointer, the fill pointer limits the number of

elements examined by equalp. Because equalp performs element-by-element com-

parisons of strings and ignores the alphabetic case of characters, case distinctions

are also ignored when equalp compares strings. For example:

(setq string "Any Random String") => "Any Random String"

(setq array (make-array 17 :initial-contents "any random string"))

  => #<ART-Q-17 40102625>

(equalp string array) => T�

(equalp 3 3.0) => t

�

(equalp "Abc" "abc") => t�

� error format-string &rest format-args Function

Signals conditions that are not proceedable. 

error takes three possible argument lists, as follows:

error {format-string &rest format-args}

or

error {condition &rest init-options}

or

error {condition-object}�

Case 1:
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When error is called with format-string and format-args, under Genera it signals a

zl:ferror condition. Under CLOE Runtime system, it signals simple-error created

by the following code:

 (MAKE-CONDITION ’SIMPLE-ERROR

   :FORMAT-STRING    datum

   :FORMAT-ARGUMENTS arguments)�

format-string is given as a control string to format along with format-args to con-

struct an error message string.

Case 2:

When called with the arguments condition and init-options, a condition of type con-

dition with init options as specified by init-options is created and is signalled.

condition is the name of a condition flavor.

init-options are the init options specified when the error object is created; they are

passed in the :init message. 

Used this way, error is similar to signal but restricted as follows: 

• error sets the proceed types of the error object to nil so that it cannot be pro-

ceeded.

• If no handler exists, the Debugger assumes control, whether or not the object is

an error object.

• error never returns to its caller.�

Compatibility Note: The arguments condition and init-options are Symbolics exten-

sions to Common Lisp.

Case 3:

In the third and more advanced form of error, condition-object can be a condition

object that has been created with make-condition but not yet signalled. In this

case, init-options is ignored. 

Note: The argument condition-object is a Symbolics extension to Common Lisp.

For compatibility with the old Maclisp error function, error tries to determine

that it has been called with Maclisp-style arguments and turns into an zl:fsignal

or zl:ferror as appropriate. If condition is a string or a symbol that is not the

name of a flavor, and error has no more than three arguments, error assumes it

was called with Maclisp-style arguments.

Note that in CLOE, if typep condition cloe::*break-on-signals* is true, then the

debugger will be entered prior to beginning the signalling process. The signalling

process can be continued using the continue restart. This is true also for all other

functions and macros which signal errors, such as cerror, assert, and check-type.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables".
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� *error-message-hook* Variable

This variable lets you customize the error message printed by the Debugger.

You can bind *error-message-hook* to a one-argument function. Before printing

an error message the Debugger checks the value of *error-message-hook*; if this

variable is bound to a non-nil value, the Debugger evaluates it and displays the re-

sult at the end of the Debugger message.

Examples:

(defun my-error-hook ()

  (format t "This is the error hook"))

(setq dbg:*error-message-hook* ’dbg:my-error-hook)

�

 

(defun get-plists (list-of-objects)

  (let ((dbg:*error-message-hook*

  (lambda ()

    (format t "While getting properties of ~S" list-of-objects))))

    (symbol-plist list-of-objects))) => GET-PLISTS

�

(get-plists ’(a b c))

�

�

Trap: The argument given to the SYS:PROPERTY-CELL-LOCATION instruction, (A B C), 

 was not a symbol.

While getting properties of (A B C)

�

SYMBOL-PLIST:

   Arg 0 (SYMBOL): (A B C)

s-A, <RESUME>:   Supply replacement argument

s-B:             Return a value from the PROPERTY-CELL-LOCATION instruction

s-C:             Retry the PROPERTY-CELL-LOCATION instruction

s-D: <ABORT>:    Return to Lisp Top Level in Dynamic Lisp Listener 1

→ Resume Proceed

Supply replacement argument

Form to evaluate and use as replacement argument:

’integer

(ZWEI:ZMACS-BUFFERS ((:SAGE-TYPE-SPECIFIER-RECORD #<SECTION-NODE Sage Type 

 Specifier Record INTEGER 254116776>))

.

.

.�

� *error-output* Variable

The value is a stream to which error messages should be sent. Normally, this is

the same as *standard-output*, but *standard-output* might be bound to a file

and *error-output* left going to the terminal or a separate file of error messages.
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(with-open-stream (outstream "myfile" :direction :output)

  (let ((*standard-output* outstream)

        (*error-output* outstream))  ;redirects *error-output* to myfile.lisp

    (fun-likely-to-signal-an-error)) ;capture any error messages in file

                                     ;end of let restores *error-output*, etc.

   ...                               ;more forms

)                              ;end of with-open-file closes file�

� zl:error-output Variable

In your new programs, we recommend that you use the variable *error-output*

which is the Common Lisp equivalent of zl:error-output. See *error-output*.

� error-restart (flavors description &rest args) &body body Special Form

This form establishes a restart handler for flavors and then evaluates body. If the

handler is not invoked, error-restart returns the values produced by the last form

in body and the restart handler disappears. When the restart handler is invoked,

control is thrown back to the dynamic environment inside the error-restart form

and execution of body starts all over again. The format is:

(error-restart (flavors description)

  form-1

  form-2

  ...)�

flavors is either a condition or a list of conditions that can be handled. description�

is a list of arguments to be passed to format to construct a meaningful description

of what would happen if the user were to invoke the handler. args are evaluated

when the handler is bound. The Debugger uses these values to create a message

explaining the intent of the restart handler.

For a table of related items: See the section "Restart Functions". 

� error-restart-loop (flavors description &rest args) &body body�

Special Form

Establishes a restart handler for flavors and then evaluates the body. If the han-

dler is not invoked, error-restart-loop evaluates the body again and again, in an

infinite loop. Use the return function to leave the loop. This mechanism is useful

for interactive top levels.

If a condition is signalled during the execution of the body and the restart handler

is invoked, control is thrown back to the dynamic environment inside the error-

restart-loop form and execution of the body is started all over again. The format

is:
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(error-restart-loop (flavors description)

  form-1

  form-2

  ...)�

flavors is either a condition or a list of conditions that can be handled. description

is a list of arguments to be passed to format to construct a meaningful description

of what would happen if the user were to invoke the handler. The Debugger uses

these values to create a message explaining the intent of the restart handler.

For a table of related items: See the section "Restart Functions". 

� errorp thing�

Function

Determines if thing is an error object; returns t if it is, and nil otherwise.

(errorp x) <=> (typep x ’error)�

For a table of related items, see the section "Condition-Checking and Signalling

Functions and Variables". 

� errorp thing�

Function

Determines if thing is an error object; returns t if it is, and nil otherwise.

(errorp x) <=> (typep x ’error)�

For a table of related items, see the section "Condition-Checking and Signalling

Functions and Variables". 

� etypecase object &body body Special Form

The name of this function stands for "exhaustive type case" or "error-checking type

case". etypecase is similar to typecase, except that it does not allow an explicit

otherwise or t clause, and it signals a non-continuable error instead of returning

nil if no clause is satisfied.

etypecase is a conditional that chooses one of its clauses by examining the type of

an object. Its form is as follows:

(etypecase form

   (types consequent consequent ...)

   (types consequent consequent ...)

   ...

   )�

First etypecase evaluates form, producing an object. etypecase then examines

each clause in sequence. types in each clause is a type specifier in either symbol or

list form, or a list of type specifiers. The type specifier is not evaluated. If the ob-
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ject is of that type, or of one of those types, then the consequents are evaluated

and the result of the last one is returned (or nil if there are no consequents in

that clause). Otherwise, etypecase moves on to the next clause. 

If no clause is satisfied, etypecase signals an error with a message constructed

from the clauses. It is not permissible to continue from this error. To supply your

own error message, use typecase with an otherwise clause containing a call to

error.

For an object to be of a given type means that if typep is applied to the object

and the type, it returns t. That is, a type is something meaningful as a second ar-

gument to typep. 

See the section "Data Types and Type Specifiers".

It is permissible for more than one clause to specify a given type, particularly if

one is a subtype of another; the earliest applicable clause is chosen. Thus, for

etypecase, the order of the clauses can affect the behavior of the construct.

Examples:

(defun tell-about-car (x) 

  (etypecase (car x)

    (string "string")))  => TELL-ABOUT-CAR

(tell-about-car ’("word" "more"))  => "string"

(tell-about-car ’(a 1)) => non-proceedable error is signalled�

 

(defun tell-about-car (x)

  (etypecase (car x)

    (fixnum "The car is a number.")

    ((or string symbol) "symbol or string")

    (otherwise "I don’t know.")))  => TELL-ABOUT-CAR

(tell-about-car ’(1 a)) => "The car is a number."

(tell-about-car ’(a 1)) => "symbol or string"

(tell-about-car ’("word" "more"))  => "symbol or string"

(tell-about-car ’(1.0)) => "I don’t know."�

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� eval form &optional env Function

Evaluates form, and returns the result. Example:

(setq x 43 foo ’bar)

(eval (list ’cons x ’foo))

    => (43 . bar)�

It is unusual to explicitly call eval, since usually evaluation is done implicitly. If

you are writing a simple Lisp program and explicitly calling eval, you are probably

doing something wrong. eval is primarily useful in programs that deal with Lisp

itself.
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Also, if you are only interested in getting at the value of a symbol (that is, the

contents of the symbol’s value cell), then you should use the primitive function

symbol-value.

The actual name of the compiled code for eval is "si:*eval" because use of the

evalhook feature binds the function cell of eval.

Compatibility Note: The optional argument env, which defaults to the null lexical

environment, is a Symbolics extension to Common Lisp. You cannot use Env in

most other implementations of Common Lisp including CLOE Runtime. See the

section "Some Functions and Special Forms".

� sys:eval-in-instance instance form Function

Evaluates form in the lexical environment of instance. The following form returns

the sum of the instance variables x and y of the instance this-box-with-cell: 

(sys:eval-in-instance this-box-with-cell ’(+ x y))

=> 6�

You can use setq to modify an instance variable; this is often useful in debugging.

If you need to evaluate more than one form in the lexical environment of the in-

stance, you can use sys:debug-instance: See the function sys:debug-instance.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� eval-when times-list &body forms Function

Allows you to tell the compiler exactly when the body forms should be evaluated.

times-list can contain one or more of the symbols load, compile, or eval, or can be

nil.

The interpreter evaluates the body forms only if the times-list contains the symbol

eval; otherwise eval-when has no effect in the interpreter.

If symbol is present Then forms are

load Written into the compiled code file to be evaluated when

the compiled code file is loaded, with the exception that

defun forms put the compiled definition into the compiled

code file.

compile Evaluated in the compiler. 

eval Ignored by the compiler, but evaluated when read into the

interpreter (because eval-when is defined as a special

form there).�

Example 1: Normally, top-level special forms such as defprop are evaluated at load

time. If some macro expansion depends on the existence of some property, for ex-

ample, constant-value, the definition of that property must be wrapped inside an



Page 1092

(eval-when (compile) ...) so that the property is available at compile (macro ex-

pansion) time.

(eval-when (compile load eval)

  (defprop three 3 constant-value))�

Example 2: eval-when should be used around defconstants of complex expressions.

This is because the compiler does not maintain an environment acceptable to eval

containing defconstants 

(eval-when (compile load eval)

  (defconstant name expr))�

In other words, if you are sure that (1) evaluating the expr in the global environ-

ment gives the correct results, and (2) that no harm is done by changing the cur-

rent environment to have the (possibly new) value of name, then you can use the

global environment as a substitute for the compilation environment.

� evenp integer Function

Returns t if integer is even, otherwise nil. If integer is not an integer, evenp sig-

nals an error.

(evenp 1) => nil

(evenp 0) => t

(evenp (* 2 (random n))) => t�

See the section "Numeric Property-checking Predicates".

For a table of related items, see the section "Numeric Property-checking Predi-

cates". 

� every predicate sequence &rest more-sequences Function

Returns nil as soon as any invocation of predicate returns nil. predicate must take

as many arguments as there are sequences provided. predicate is first applied to

the elements of the sequences with an index of 0, then with an index of 1, and so

on, until a termination criterion is reached or the end of the shortest of the se-

quences is reached. If the end of a sequence is reached, every returns a non-nil

value. Thus considered as a predicate, it is true if every invocation of predicate is

true.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(every #’oddp ’(1 3 5)) => T

�

(every #’equal ’(1 2 3) ’(3 2 1)) => NIL

�

(setq limit-value 1024 sequence (vector 16 64 512 128 32))
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�

(every #’(lambda(x) (<= x limit-value)) sequence) => t�

If predicate has side effects, it can count on being called first on all those ele-

ments with an index of 0, then all those with an index of 1, and so on.

For a table of related items: See the section "Predicates that Operate on Lists".

For a table of related items: See the section "Predicates that Operate on Se-

quences".

� zl:every list pred &optional (step #’cdr) Function

Returns t if pred returns non-nil when applied to every element of list, or nil if

pred returns nil for some element. If step-function is specified, it replaces # ’cdr as

the function used to get to the next element of the list; # ’cddr is a typical func-

tion to use here. For example:

(zl:every ’(1 3 5) #’oddp) => T

�

(zl:every ’(1 2 3 4 5) #’oddp) => NIL

�

(zl:every ’(1 2 3 4 5) #’oddp #’cddr) => T�

For a table of related items: See the section "Predicates that Operate on Lists".

For a table of related items: See the section "Predicates that Operate on Se-

quences". 

� exp number Function

Returns e raised to the numberth power, where e is the base of natural logarithms.

If number is an integer or a single-float, the result is converted to a single-float; if

it is a double-float, the result is double-float.

Examples:

(exp 1) => 2.7182817

(exp #c(0 -3)) => #C(-0.9899925 -0.14112002)

(exp 0.08) => 1.083

(exp 2) => 7.389�

For a table of related items: See the section "Powers of e and Log Functions".

� zl:explode x Function

Returns a list of characters represented by symbols that are the characters that

would be typed out by (prin1 x) (that is, the slashified printed representation of x).

Example:

(zl:explode ’(+ /12 3)) => (|(| + | | /| |1| |2| /| | | |3| |)|)�

(Note that there are slashified spaces in the above list.) 
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� zl:explodec x Function

Returns a list of characters represented by symbols that are the characters that

would be typed out by (princ x) (that is, the unslashified printed representation of

x). Example:

(zl:explodec ’(+ /12 3)) => (|(| + | | |1| |2| | | |3| |)|)�

� zl:exploden x Function

Returns a list of characters (as integers) that are the characters that would be

typed out by (princ x) (that is, the unslashified printed representation of x). Ex-

ample:

(zl:exploden ’(+ /12 3)) => (#/( #/+ #/Space #/1 #/2 #/Space #/3 #/))�

� export symbols &optional package Function

The symbols argument should be a list of symbols or a single symbol. If symbols is

nil, it is treated like an empty list. These symbols become available as external

symbols in package. package can be a package object or the name of a package (a

symbol or a string). If unspecified, package defaults to the value of *package*. Re-

turns t. The :export option to defpackage and make-package is equivalent.

The following bit of code uses intern with multiple-value-bind to create a new

symbol or determine the status of an old one. If the status of the interned symbol

is :internal, then the symbols is exported.

=> (multiple-value-bind (symbol status) (intern "new-symbol")

      (when (or (null status) (eq status ’:internal))

        (export symbol)))

=> T�

If "new-symbol" is truly a new symbol, then intern would have made it an internal

symbol. If we now execute the following code on "new-symbol", we will see that it

is now an external symbol, since it has been exported.

=> (multiple-value-bind (symbol status) (find-symbol "new-symbol")

      status)

=> :EXTERNAL�

� expt base-number power-number Function

Computes and returns base-number raised to the power power-number. If the base-

number is of type rational and the power-number is an integer, the calculation is

exact (using the rule of rational canonicalization where applicable), and the result

is of type rational; otherwise, a floating-point approximation may result.

If power-number is zero of type integer, the result is the value one in the type of

base-number. This is true even if base-number is zero of any type. If power-number

is a zero of any other data type, the result is the value one, in the type of the ar-
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guments after the application of the coercion rules, except as follows. An error re-

sults if the base-number is zero and the power-number is a zero not of type integer.

If base-number is negative and power-number is not an integer, the result of expt

can be complex, even though neither argument is complex. expt always returns the

principal complex value.

Complex canonicalization is applied to complex results.

Examples:

(expt 2 3) => 8

(expt .5 3) => 0.125

(expt -49 1/2) => #c(0 7) ;the principal value

(expt 1/2 -2) => 4

(expt 2. 0) => 1

(expt 0 56) => 0

(expt 0 3/2) => 0

(expt 0.0 5) => 0.0

(expt 0.0 #c(3 4)) => 0.0

(expt #c(0 7) 2) => -49

�

For a table of related items, see the section "Arithmetic Functions". 

� zl:expt num expt Function

Returns num raised to the exptth power. The result is an integer if both argu-

ments are integers (even if expt is negative!) and floating-point if either num or

expt or both is floating-point. If the exponent is an integer a repeated-squaring al-

gorithm is used, while if the exponent is floating the result is (zl:exp (* expt (log

num))).

(expt 3/5 2) → 9/25

�

(expt 4 3) → 64

�

(expt (exp 1) 2) → 7.389�

The following functions are synonyms of zl:expt:

zl:^

zl:^$�

For a table of related items: See the section "Arithmetic Functions" and see CLtL

203. 

� sys:external-symbol-not-found Flavor

A ":" qualified name referenced a name that had not been exported from the speci-

fied package.
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The :string message returns the name being referenced (no symbol by this name

exists yet). The :package message returns the package.

The :export proceed type exports a symbol by that name and uses it. 

� false &rest ignore Function

Takes no arguments and returns nil. See the section "Functions and Special Forms

for Constant Values". 

� fboundp symbol Function

Returns t if symbol’s function cell contains a function definition, or if symbol

names a special form or a macro. Otherwise it returns nil. Since fboundp returns

t for special forms and macros, if you want to check for these cases use special-

form-p or macro-function.

(fboundp alarm-handler) => nil

�

(defun alarm-handler ()

  (setq *alarms* 0))

�

(fboundp ’alarm-handler) => t�

See the section "Functions Relating to the Function Cell of a Symbol". 

� fceiling number &optional (divisor 1) Function

Like ceiling, except that the first returned value is always a floating-point number

instead of an integer. The second returned value is the remainder. If number is a

floating-point number and divisor is not a floating-point number of longer format,

then the first returned value is a floating-point number of the same type as num-

ber.

Returns the floating point equivalent of the least integer greater than or equal to

number; or, in the case of a supplied second argument, returns the floating point

equivalent of the least integer greater than or equal to number divided by divisor.

A second value, the remainder, is also returned. The remainder returned is the

same as that returned by ceiling applied to the same arguments.

Examples:

(fceiling 5) => 5.0 and 0�

(fceiling -5) => -5.0 and 0�

(fceiling 5.2) => 6.0 and -0.8000002�

(fceiling -5.2) => -5.0 and -0.19999981�

(fceiling 5 3) => 2.0 and -1�

(fceiling -5 3) => -1.0 and -2�

(fceiling 5.2 4) => 2.0 and -2.8000002�
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(fceiling -5.2 4) => -1.0 and -1.1999998�

(fceiling 4.2d0) => 5.0d0 and -0.7999999999999998d0�

(fceiling -4.2d0) => -4.0d0 and -0.20000000000000018d0�

For a table of related items: See the section "Functions that Divide and Return

Quotient as Floating-point Number".

� fdefine function-spec definition &optional carefully-flag no-query-flag Function

The primitive that defun and everything else in the system use to change the def-

inition of a function spec. If carefully is non-nil, which it usually should be, only

the basic definition is changed, the previous basic definition is saved if possible

(see undefun), and any encapsulations of the function such as tracing and advice

are carried over from the old definition to the new definition. carefully also causes

the user to be queried if the function spec is being redefined by a file different

from the one that defined it originally. However, this warning is suppressed if ei-

ther the argument no-query is non-nil, or if the global variable sys:inhibit-fdefine-

warnings is t.

If fdefine is called while a file is being loaded, it records what file the function

definition came from so that the editor can find the source code.

If function-spec was already defined as a function, and carefully is non-nil, the

function-spec’s :previous-definition property is used to save the previous defini-

tion. If the previous definition is an interpreted function, it is also saved on the

:previous-expr-definition property. These properties are used by the undefun

function, which restores the previous definition, and the uncompile function,

which restores the previous interpreted definition. The properties for different

kinds of function specs are stored in different places; when a function spec is a

symbol its properties are stored on the symbol’s property list.

defun and the other function-defining special forms all supply t for carefully and

nil or nothing for no-query. Operations that construct encapsulations, such as

trace, are the only ones that use nil for carefully. 

� sys:fdefine-file-pathname Variable

While loading a file, this is the generic pathname for the file. The rest of the time

it is nil. fdefine uses this to remember what file defines each function. 

� fdefinedp function-spec Function

This returns t if function-spec has a definition, or nil if it does not. 

� fdefinition function-spec Function

Returns function-spec’s definition. If it has none, an error occurs. You can use setf

with fdefinition. 
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� sys:fdefinition-location function-spec &optional for-compiler Function

Returns a locative pointing at the cell that contains function-spec’s definition. For

some kinds of function specs, though not for symbols, this can cause data struc-

ture to be created to hold a definition. For example, if function-spec is of the

:property kind, then an entry might have to be added to the property list if it

isn’t already there. In practice, you should write (locf (fdefinition function-spec))

instead of calling this function explicitly. 

� *features* Variable

Returns a list of symbols indicating features of the Lisp environment. The default

list for Genera is:

(:DEFSTORAGE :DEBUG-SCHEDULER-QUEUES :NEW-SCHEDULER :LOOP

:DEFSTRUCT :LISPM :SYMBOLICS :GENERA :ROW-MAJOR machine-type

:CHAOS :IEEE-FLOATING-POINT :SORT :FASLOAD :STRING :NEWIO

:ROMAN :TRACE :GRINDEF :GRIND)

�

The value of this list is kept up to date as features are added or removed from the

Genera system. Most important is the symbol machine-type; this is either 3600 or

:imach and indicates on which type of Symbolics machine the program is running.

The order of this list should not be depended on, and might not be the same as

shown above.

Features SYMBOLICS and CLOE are present in both the CLOE Developer and the

CLOE Application Generator. Feature CLOE-DEVELOPER is present only in the CLOE

Developer, and feature CLOE-RUNTIME is present only in the Application Generator.

*features* =>

(:CLOE-RUNTIME :LOOP :INTEL-386 :UNIX-V3 :CLOE :IEEE-FLOATING-POINT

:SYMBOLICS) �

� zl:ferror format-string &rest format-args Function

Signals when you do not care what the condition is. zl:ferror signals the condition

zl:ferror. (See the flavor zl:ferror.) The arguments are passed as the :format-

string and :format-args init keywords to the error object.

The old (zl:ferror nil ...) syntax continues to be accepted for compatibility reasons

indefinitely; the nil is ignored. An error is signalled if the first argument is a

symbol other than nil; the first argument must be nil or a string.

Note: zl:ferror is an obsolete function. Use error instead in your new programs.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� ffloor number &optional (divisor 1) Function
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Like floor, except that the first returned value is always a floating-point number

instead of an integer. The second returned value is the remainder. If number is a

floating-point number and divisor is not a floating-point number of longer format,

then the first returned value is a floating-point number of the same type as num-

ber.

Examples:

(ffloor 5) => 5.0 and 0

(ffloor -5) => -5.0 and 0

(ffloor 5.2) => 5.0 and 0.19999981

(ffloor -5.2) => -6.0 and 0.8000002

(ffloor 5 3) => 1.0 and 2

(ffloor -5 3) => -2.0 and 1

(ffloor 5.2 4) => 1.0 and 1.1999998

(ffloor -5.2 4) => -2.0 and 2.8000002

(ffloor 4.2d0) => 4.0d0 and 0.20000000000000018d0

(ffloor -4.2d0) => -5.0d0 and 0.7999999999999998d0�

For a table of related items: See the section "Functions that Divide and Return

Quotient as Floating-point Number".

� fifth list Function

Returns the fifth element of the list list. fifth is equivalent to:

(nth 4 list)

For example:

(setq letters ’(a b c d e f g i j)) =>

(A B C D E F G I J)

�

(fifth letters) => E�

For a table of related items: See the section "Functions for Extracting from Lists".

� file-position stream &optional position Function

Returns or sets the current position in a random-access file. When only stream is

specified, returns a non-negative integer that indicates the current position within

stream, or nil if this cannot be determined. (The file position at the start of a file

is zero.) Ordinarily, the value returned by file-position increases by one each time

an input or output operation is performed; however, performing a single read-char

or write-char operation on a character file might increment the file position by

more than one because of character-set translations. For a binary file, each read-

byte or write-byte operation increases the file position by one.

position sets the position in stream to position. position can be an integer, :start

for the beginning of the stream, or :end for the end of the stream. An error is

signalled if the integer is too large for the file. (An integer returned by (file-

position stream) should be usable as a value of position.) When position is speci-

fied, file-position returns t if the repositioning was successful, nil if it was not. 
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(with-open-file (myfile "myfile.lisp" :direction :io)

  (file-position myfile :end)

  (format myfile "This string is appended at the end of: ~A.~%"

          (namestring myfile)))�

� fill sequence item &key (:start 0) :end�

Function

Destructively modifies sequence by replacing each element of the subsequence spec-

ified by the :start (which defaults to zero) and :end (which defaults to the length

of the sequence) arguments with item. 

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

item can be any be any Lisp object, but must be a suitable element for sequence. 

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence, up to but

not including the one specified by the :end index (defaults to length of sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(setq a-vector (vector ’a ’b ’c ’d ’e)) => #(A B C D E)

�

(fill a-vector ’z :start 1 :end 3) => #(A Z Z D E)

�

a-vector => #(A Z Z D E)

�

(fill a-vector ’rah) => #(RAH RAH RAH RAH RAH)

�

a-vector => #(RAH RAH RAH RAH RAH)�

For a table of related items: See the section "Sequence Modification".

� math:fill-2d-array array list Function

The opposite of math:list-2d-array. list should be a list of lists, with each element

being a list corresponding to a row. array’s elements are stored from the list. Un-

like zl:fillarray, if list is not long enough, math:fill-2d-array "wraps around",

starting over at the beginning. The lists that are elements of list also work this

way. 



Page 1101

� fill-pointer array Function

Returns the value of the fill pointer. array must have a fill pointer. setf can be

used on a fill-pointer form to set the value of the fill pointer. 

Under CLOE, if the new value of fill pointer in a setf command is greater thatn

the array-total-size, a continuable error signals. 

Some other functions, notably vector-push and vector-pop, alter the value of the

fill pointer. The value of the fill pointer can be set at the time the array is creat-

ed by specifying a non-negative integer as the value of the keyword argument :fill-

pointer.

(setq astring (make-array 12 :element-type ’string-char :fill-pointer 0))

�

(fill-pointer astring) => 0

(vector-push #\a astring) => 0

astring => "a"

(fill-pointer astring) => 1

�

(setf (fill-pointer astring) 0)

astring => ""

(aref astring 0) => #\a

�

(vector-push #\b astring) => 0

astring => "b"

aref astring 0) => #\b

(fill-pointer astring) => 1�

� zl:fillarray array source Function

Fills up array with the elements of source. array can be any type of array or a

symbol whose function cell contains an array. Two forms of this function exist, de-

pending on whether the type of source is a list or an array.

If source is a list, then zl:fillarray fills up array with the elements of list. If

source is too short to fill up all of array, then the last element of source is used to

fill the remaining elements of array. If source is too long, the extra elements are

ignored. If source is nil (the empty list), array is filled with the default initial val-

ue for its array type (nil or 0).

If source is an array (or a symbol whose function cell contains an array), the ele-

ments of array are filled up from the elements of source. If source is too small,

then the extra elements of array are not affected. zl:fillarray returns array.

If array is multidimensional, the elements are accessed in row-major order: the

last subscript varies the most quickly. The same is true of source if it is an array.

� :filled-elements Message
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Returns the number of entries in the hash table that have an associated value.

This message is obsolete; use hash-table-count instead. 

� finally keyword for loop

finally expression

Puts expression into the epilogue of the loop, which is evaluated when the

iteration terminates (other than by an explicit return). For stylistic rea-

sons, then, this clause should appear last in the loop body. Note that cer-

tain clauses can generate code that terminates the iteration without run-

ning the epilogue code; this behavior is noted with those clauses. See the

section "Aggregated Boolean Tests for loop". This clause can be used to

cause the loop to return values in a nonstandard way:

(loop for n in l ; l is a list

      sum n into the-sum

      count t into the-count

      finally (return (quotient the-sum the-count)))�

�

(defun sum-series (limit)

  (loop for num from 0 to limit

with sum-of-series = 0

initially (print "The sum of this series is :")

do

    (setq sum-of-series (+ sum-of-series num))

finally (prin1 sum-of-series))) => SUM-SERIES

(sum-series 9)  => 

"The sum of this series is :" 45

NIL

�

(defun over-the-top (num)

  (loop for i from 1 to 10

        when (= i num) return i

        finally (print "Finally triggered"))) => OVER-THE-TOP

(over-the-top 5) => 5

(over-the-top 20) => 

"Finally triggered" NIL�

See the macro loop.

� find item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end�

Function

If sequence contains an element satisfying the predicate specified by the :test key-

word argument, returns the leftmost, otherwise returns nil. 
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item is matched against the elements specified by the test keyword. The item can

be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

For example:

(find ’a ’(a b c d) :test-not #’eql) => B�

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(find ’a ’((a b) (a d)  (b c)) :key #’car) => (A B)

(find ’a #((a b) (a d) (b a)) :key #’cadr) => (B A)�

If the value of the :from-end keyword is non-nil, the result is the rightmost ele-

ment satisfying the test. 

For example:

(find 3 ’((right 3) (west 2) (south 3)) :key #’cadr :from-end t) => (SOUTH 3)�

You can delimit the portion of the sequence to be operated on by the keyword ar-

guments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(find ’A ’(b c a)) => A

(find ’a ’(a b b)  :start 1 :end 3)  => NIL

(find ’a ’(a b b )  :start 0 :end 3) => A

(find 1 #(2 3 4 1) :end 4) => 1

(find 1 #(2 3 4 1) :end 3) => NIL�

For a table of related items: See the section "Searching for Sequence Items".



Page 1104

� find-all-symbols string Function

Searches all packages for symbols named string and returns a list of them. Dupli-

cates are removed from the list; if a symbol is present in more than one package,

it only appears once in the list. The global package is searched first, and so global

symbols appear earlier in the list than symbols that shadow them. In general pack-

ages are searched in the order that they were created.

string can be a symbol, in which case its name is used. This is primarily for user

convenience when calling find-all-symbols directly from the read-eval-print loop.

Under Genera, invisible packages are not searched.

The where-is function under Genera is a more user-oriented version of find-all-

symbols; it returns information about string, rather than just a list. For example: 

0

=> (make-symbol ’foo)

#:FOO

=> (make-symbol ’foo)

#:FOO

=> (setq x (make-symbol ’foo))

#:FOO

=> (setq foo-list (find-all-symbols x)

(#:FOO #:FOO #:FOO)

=> (list-length foo-list)

3�

Note that find-all-symbols is not in CLOE Runtime.

For more information: See the section "Mapping Names to Symbols".

� (flavor:method :find-by-item si:heap) item &optional (equal-predicate #’=) Method

Finds the first item that satisfies equal-predicate and returns the item and key if it

was found; otherwise it signals si:heap-item-not-found. equal-predicate should be a

function that takes two arguments. The first argument to equal-predicate is the

current item from the heap and the second argument is item.

For a table of related items: See the section "Heap Functions and Methods". 

� (flavor:method :find-by-key si:heap) key &optional (equal-predicate #’=) Method

Finds the first item whose key satisfies equal-predicate and returns the item and

key if it was found; otherwise it signals si:heap-item-not-found. equal-predicate

should be a function that takes two arguments. The first argument to equal-

predicate is the current key from the heap and the second argument is key.

For a table of related items: See the section "Heap Functions and Methods". 

� clos:find-class class-name &optional errorp environment Function
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Returns the class object named by class-name in the given environment. You can

use setf with clos:find-class to change the class associated with the symbol class-

name. 

class-name A symbol to be the name of the class, or nil to remove the as-

sociation between a class name and a symbol.

errorp A boolean value indicating what to do if there is no class ob-

ject named class-name. A value of t causes an error to be sig-

naled; this is the default. A value of nil causes nil to be re-

turned.

environment The same as the &environment argument to macro expansion

functions. It is typically used to distinguish between compile-

time and run-time environments.

� flavor:find-flavor flavor-name &optional (error-p t) Function

Determines whether a flavor is defined in the world. Returns non-nil if the flavor

is defined. 

If the flavor is not defined and error-p is non-nil (or not supplied), flavor:find-

flavor returns nil. However, if the flavor is not defined and error-p is nil,

flavor:find-flavor signals an error.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� clos:find-method generic-function method-qualifiers specializers &optional errorp 

Generic Function

Returns the method object that is identified by generic-function, method-qualifiers,

and specializers.

generic-function A generic function object.

method-qualifiers A list of the method’s qualifiers. The order of method-qualifiers

is significant.

specializers A list of the method’s parameter specializers. This list must

contain an element for each required argument to the generic

function or else an error is signaled. The parameter specializer

for any unspecialized parameter is the class named t.

Note that CLOS distinguishes between a parameter specializer

name (these appear in the clos:defmethod lambda-list) and the

corresponding parameter specializer object. The specializers ar-

gument consists of parameter specializer objects. There are two

cases: the parameter specializer name is either a class name or

a list such as (eql form). When the parameter specializer name

is a class name, the corresponding object is the class object of
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that name. When the parameter specializer name is a list such

as (eql form), the corresponding object is the list (eql object),

where object is the result of evaluating form.

errorp A boolean value indicating what to do if there is no method. A

value of t causes an error to be signaled; this is the default. A

value of nil causes nil to be returned.

� find-if predicate sequence &key :key :from-end (:start 0) :end�

Function

If sequence contains an element satisfying predicate, the leftmost such element is

returned; otherwise nil is returned. 

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(find-if #’atom ’((a (b)) ((a) b) (nil nil)) :key #’second) 

=> ((A) B)�

If the value of the :from-end keyword is non-nil, the result is the rightmost ele-

ment satisfying the test. 

For example:

(find-if #’numberp ’(1 1 2 2) :from-end t)  => 2

(find-if #’numberp ’(1 1 2 2) :from-end nil) => 1�

You can delimit the portion of the sequence to be operated on by the keyword ar-

guments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(find-if #’oddp ’(1 2 1 2))  => 1

(find-if #’oddp ’(1 1 1 2 2 2) :start 3 :end 4)  => NIL�

For a table of related items: See the section "Searching for Sequence Items".
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� find-if-not predicate sequence &key :key :from-end (:start 0) :end Function

If sequence contains an element that does not satisfy predicate, the leftmost such

element is returned; otherwise nil is returned.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(find-if-not #’atom ’((a (b)) ((a) b) (nil nil)) :key #’second) 

 => (A (B))�

If the value of the :from-end keyword is non-nil, the result is the rightmost ele-

ment satisfying the test. 

For example:

(find-if-not #’evenp ’(3 2 1) :from-end t) => 1

(find-if-not #’evenp ’(3 2 1) :from-end nil)  => 3�

For the sake of efficiency, you can delimit the portion of the sequence to be oper-

ated on by the keyword arguments :start and :end.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(find-if-not #’oddp ’(3 5 4 3 5)) => 4

�

(find-if-not #’oddp ’(3 5 4 3 5) :start 3 :end 4)  => NIL

�

(find-if-not #’evenp ’(3 5 4 3 5) :start 3 :end 4) => 3

 

(find-if-not #’oddp a :start 1 :key #’car) => (4 3)

�

(setq text "It was the height, of folly; Was it not?")

�

(find-if-not #’(lambda(x)(or (alpha-char-p x)(char= x #\Space))) text)

�

 => #\,�

For a table of related items: See the section "Searching for Sequence Items".
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� find-package name Function

Returns the package whose string name is name or the print name of name, if

name is a symbol. Case is considered, and if no matching package exits, nil is re-

turned. This allows you to locate the actual package object for use with those

functions that take a package (not the name of the package) as an argument, such

as package-name and package-nicknames.

(find-package ’common-lisp-user) =>

   #<Package USER (really COMMON-LISP-USER) 71733245>

(package-nicknames *) => ("CL-USER")�

In the following example, the current package is set to the package named

turbine-controller if there is such a package. If no such package exists, a file

which presumably contains its definition is loaded, and then the current package is

set to that package.

(setq *package*

      (or (find-package ’turbine-controller)

  (progn (load "turbcont.lsp")

 (find-package ’turbine-controller))

  (error "Couldn’t find package TURBINE-CONTROLLER.")))�

For more information, see the section "Mapping Between Names and Packages". 

� zl:find-position-in-list item list Function

Looks down list for an element that is eq to item, like zl:memq. However, it re-

turns the position (numeric index) in the list at which it found the first occur-

rence of item, or nil if it did not find it at all. This function is sort of the comple-

ment of nth; like nth, it is zero-based. See the function nth. Examples:

(zl:find-position-in-list ’a ’(a b c)) => 0

(zl:find-position-in-list ’c ’(a b c)) => 2

(zl:find-position-in-list ’e ’(a b c)) => nil�

For a table of related items: See the section "Functions for Finding Information

About Lists and Conses". 

� zl:find-position-in-list-equal item list Function

Looks down list for an element that is eql to item. However, it returns the position

(numeric index) in the list at which it found the first occurrence of item, or nil if

it did not find it at all. This function is sort of the complement of nth; like nth, it

is zero-based.

For a table of related items: See the section "Functions for Finding Information

About Lists and Conses". 

� find-symbol string &optional (pkg *package*)�

Function
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Searches pkg for the symbol string. It behaves like intern except that it never cre-

ates a new symbol. If it finds a symbol named string, it returns that symbol as its

first value. The second value is one of the following: 

:internal The symbol is present in pkg as an internal symbol.

:external The symbol is present in pkg as an external symbol.

:inherited The symbol is an internal symbol in pkg inherited by way of

use-package. �

If it is unable to find a symbol named string in the specified packages, it returns

nil nil. 

In the following example, find-symbol is used to determine the status of a

prospective internal symbol. If a symbol with the specified print name already ex-

ists, it is uninterned unless it is inherited from another package. A new symbol

with the specified print name is then interned.

(multiple-value-bind (symbol status) (find-symbol new-symbol)

  (if symbol

    (unless (eq status ’:inherited)

      (unintern symbol)

      (intern new-symbol))

    (intern new-symbol)))�

� :finish Message

Does a :force-output to a buffered asynchronous device, such as the Chaosnet,

then waits until the currently pending I/O operation has been completed. If the

stream does not handle this, the default handler ignores it.

For file output streams, :finish finalizes file content. It ensures that all data have

actually been written to the file, and sets the byte count. It converts non-direct

output openings into append openings. It allows other users to access the data that

have been written before the :finish message was sent.

� finish-output &optional output-stream Function

Some streams are implemented in an asynchronous, or buffered, manner. finish-

output attempts to ensure that all output sent to output-stream has reached its

destination, and only then returns nil. Output-stream if unspecified or nil, defaults

to *standard-output*, and if t, is *terminal-io*.

� first list Function

Returns the first element of the list list. first is equivalent to car. This function is

provided because it makes more sense when you are thinking of the argument as a

list rather than just as a cons. For example:
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(setq letters ’(a b c d)) => (A B C D)

�

(first letters) => A�

For a table of related items: See the section "Functions for Extracting from Lists".

� zl:firstn n list Function

Returns the list of length n, whose elements are the first n elements of list. If list

is fewer than n elements long, zl:firstn fills out the list with elements of the val-

ue nil. Example:

(zl:firstn 2 ’(a b c d)) => (a b)

(zl:firstn 0 ’(a b c d)) => nil

(zl:firstn 6 ’(a b c d)) => (a b c d nil nil)�

For a table of related items: See the section "Functions for Extracting from Lists".

� zl:fix number Function

Converts number from a floating-point or rational number to an integer, truncating

towards negative infinity. If number is already an integer, it is returned un-

changed.

zl:fix is similar to floor, except that it returns only the first value of floor.

See the section "Functions that Divide and Convert Quotient to Integer".

For a table of related items: See the section "Functions that Divide and Convert

Quotient to Integer". 

� fixnum Type Specifier

fixnum is the type specifier symbol for the predefined primitive Lisp object of that

name.

The types fixnum and bignum are an exhaustive partition of the type integer,

since integer ≡ (or bignum fixnum). These are internal representations of integers

used by the system for efficiency depending on integer size; in general, fixnums

and bignums are transparent to the programmer.

Examples:

(typep 4 ’fixnum) => T�

(zl:typep ’1 )  => :FIXNUM�

(subtypep ’fixnum ’number) => T and T ; subtype and certain�

(commonp most-positive-fixnum) => T�

(zl:fixnump 90) => T�

(type-of 8654) => FIXNUM�

See the section "Data Types and Type Specifiers". See the section "Numbers".
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� sys:fixnump object Function

Returns t if its argument is a fixnum, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates". 

� zl:fixp object Function

In your new programs, we recommend that you use the function integerp which is

the Common Lisp equivalent of the function zl:fixp.

zl:fixp returns t if its argument is an integer, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates". 

� zl:fixr x Function

Converts x from a floating-point number to an integer, rounding to the nearest in-

teger. zl:fixr is similar to round, except when x is exactly halfway between two

integers. In this case, zl:fixr rounds up (towards positive infinity), while round

rounds to an even integer.

zl:fixr could have been defined by:

(defun zl:fixr (x)

  (if (zl:fixp x) x (zl:fix (+ x 0.5))))�

For a table of related items: See the section "Functions that Divide and Convert

Quotient to Integer". 

� sys:flatc x Function

Returns the number of characters in the unslashified printed representation of x.

Example:

(flatsize ’(+ /12 3)) => 10�

� sys:flatsize x Function

Returns the number of characters in the slashified printed representation of x.

Example:

(flatsize ’(+ /12 3)) => 12�

� flavor:flavor-allowed-init-keywords flavor-name Function

Returns an alphabetically sorted list of all symbols that are valid init options for

the flavor named flavor-name. Valid init options are allowed keyword arguments to

make-instance.
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This function is primarily useful for people, rather than programs, to call to get

information. You can use this to help remember the name of an init option or to

help write documentation about a particular flavor.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� flavor-allows-init-keyword-p flavor-name keyword Function

Returns non-nil if the keyword is a valid init option for the flavor named flavor-

name, or nil if it does not. Valid init options are allowed keyword arguments to

make-instance. The non-nil value is the name of the component flavor that con-

tributes the support of that keyword.

This function is primarily useful for people, rather than programs, to call to get

information.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� flavor:*flavor-compile-trace-list* Variable

Value is a list of structures, each of which describes the compilation of a combined

method into the run-time (not the compile-time) environment, in newest-first order.

The function flavor:print-flavor-compile-trace lets you selectively access the in-

formation saved in this variable. See the function flavor:print-flavor-compile-

trace.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� flavor:flavor-default-init-get flavor property Function

Similar to get, except that its first argument is either a flavor structure or the

name of a flavor. It retrieves the property from the default init-plist of the speci-

fied flavor. You can use setf with it:

(setf (flavor:flavor-default-init-get f p) x)�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� flavor:flavor-default-init-putprop flavor value property Function

Like zl:putprop, except that its first argument is either a flavor structure or the

name of a flavor. It puts the property on the default-init-plist of the specified fla-

vor.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".
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� flavor:flavor-default-init-remprop flavor property Function

Similar to remprop, except that its first argument is either a flavor structure or

the name of a flavor. It removes the property from the default init-plist of the

specified flavor.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� flet functions &body body Special Form

Defines named internal functions. flet (function let) defines a lexical scope, body,

in which these names can be used to refer to these functions. functions is a list of

clauses, each of which defines one function. Each clause of the flet is identical to

the cdr of a defun special form; it is a function name to be defined, followed by

an argument list, possibly declarations, and function body forms. flet is a mecha-

nism for defining internal subroutines whose names are known only within some

local scope.

Functions defined by the clauses of a single flet are defined "in parallel", similar

to let. The names of the functions being defined are not defined and not accessible

from the bodies of the functions being defined. The labels special form is used to

meet those requirements. See the special form labels.

Here is an example of the use of flet:

(defun triangle-perimeter (p1 p2 p3)

  (flet ((squared (x) (* x x)))

    (flet ((distance (point1 point2)

     (sqrt (+ (squared (- (point-x point1) 

  (point-x point2)))

      (squared (- (point-y point1) 

  (point-y point2)))))))

      (+ (distance p1 p2)

 (distance p2 p3)

 (distance p1 p3)))))�

flet is used twice here, first to define a subroutine squared of triangle-perimeter,

and then to define another subroutine, distance. Note that since distance is de-

fined within the scope of the first flet, it can use squared. distance is then called

three times in the body of the second flet. The names squared and distance are

not meaningful as function names except within the bodies of these flets.

Note that functions defined by flet are internal, lexical functions of their contain-

ing environment. They have the same properties with respect to lexical scoping

and references as internal lambdas. They can make free lexical references to vari-

ables of that environment and they can be passed as funargs to other procedures.

Functions defined by flet, when passed as funargs, generate closures. The alloca-

tion of these closures, that is, whether they appear on the stack or in the heap, is

controlled in the same way as for internal lambdas. See the section "Funargs and

Lexical Closure Allocation".
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Here is an example of the use, as a funarg, of a closure of a function defined by

flet.

(defun sort-by-closeness-to-goal (list goal)

  (flet ((closer-to-goal (x y)

   (< (abs (- x goal)) (abs (- y goal)))))

    (sort list #’closer-to-goal)))�

This function sorts a list, where the sort predicate of the (numeric) elements of

the list is their absolute distance from the value of the parameter goal. That pred-

icate is defined locally by flet, and passed to sort as a funarg.

Note that flet (as well as labels) defines the use of a name as a function, not as a

variable. Function values are accessed by using a name as the car of a form or by

use of the function special form (usually expressed by the reader macro #’).

Within its lexical scope, flet can be used to redefine names that refer to globally

defined functions, such as sort or cdar, though this is not recommended for stylis-

tic reasons. This feature does, however, allow you to bind names with flet in an

unrestricted fashion, without binding the name of some other function that you

might not know about (such as number-into-array), and thereby causing other

functions to malfunction. This occurs because flet always creates a lexical binding,

not a dynamic binding. Contrast this with let, which usually creates a lexical

binding, unless the variable being bound is declared special, in which case it cre-

ates a dynamic binding.

flet can also be used to redefine function names defined by enclosing uses of flet

or labels.

In the following example, eql is redefined to a more liberal treatment for charac-

ters. Note that the global definition of eql is used in the local definition (this

would not be possible with labels). Note also that member uses the global defini-

tion of eql.

(flet ((eql (x y)

         (if (characterp x)

           (equalp x y)

           (eql x y))))

  (if (member foo bar-list)              ;uses global eql

    (adjoin ’baz bar-list :test #’eql)   ;uses flet’d eql

    (eql foo (car bar-list))))�

� float &optional ( low ’*) ( high ’*) Type Specifier

float is the type specifier symbol for the predefined Lisp floating-point number

type.

The types float, rational, and complex are pairwise disjoint subtypes of number.

The float data type is a supertype of the types:
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short-float

single-float

long-float

double-float�

This type specifier can be used in either symbol or list form. Used in list form,

float allows the declaration and creation of specialized floating-point numbers,

whose range is restricted to low and high. 

low and high must each be a floating-point number, a list of floating-point number,

or unspecified; in floating-point number form the limits are inclusive; in list form

they are exclusive, and * means that a limit does not exist and so effectively de-

notes minus or plus infinity, respectively.

Examples:

(typep 20.4e-2 ’float) => T

(typep (/ (float 14) (float 4)) ’float) => T

 ;note the use of float the function and float the type

(subtypep ’float ’number) => T and T ;subtype and certain

(subtypep ’single-float ’float) => T and T

(commonp (float 3)) => T

(floatp 989.e-3) => T�

See the section "Data Types and Type Specifiers".

See the section "Numbers".

� float number &optional other Function

Converts any noncomplex number to a floating-point number. With no second ar-

gument, if number is already a floating-point, number is returned. If number is not

of floating-point type, a single-float is produced and returned. 

If the second argument other is provided, it must be of floating-point type, and

number is converted to the same format as other.

Examples:

(float 3) => 3.0

(float 3 1.0d0) => 3.0d0�

For a table of related items, see the section "Functions that Convert Numbers to

Floating-point Numbers".

� zl:float x Function

Converts any noncomplex number to a single-precision floating-point number. Note

that zl:float reduces a double-precision argument to single precision. 

Examples:

(zl:float 3) => 3.0

(zl:float 6.02d23) => 6.02e23�
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See the section "Functions that Convert Numbers to Floating-point Numbers".

For a table of related items: See the section "Functions that Convert Numbers to

Floating-point Numbers". 

� float-digits float Function

Returns, as a non-negative integer, the number of binary digits used in the binary

representation of its floating-point argument (including the implicit "hidden bit"

used in IEEE standard floating-point representation).

Genera examples:

(float-digits 0.0) => 24

(float-digits 3.0s5) => 24

(float-digits pi) => 53 ;pi is a long float when using Genera

(float-digits 1.0s-40) => 24�

In CLOE, returns a non-negative integer that provides the number of digits in the

radix of float (two in CLOE implementations) used to represent float. For normal-

ized floats, this function will produce the same result as float-precision.

(float-digits 5.06s2) => 22�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers". 

� float-precision float Function

Returns, as a non-negative integer, the number of significant binary digits present

in the binary representation of the floating-point argument. Note that if the argu-

ment is (a floating-point) zero, the result is an (integer) zero. For normalized float-

ing-point numbers, float-digits and float-precision return identical results. For a

denormalized or zero number, the precision is smaller than the number of repre-

sentation digits (that is, float-precision returns a smaller number).

Examples:

(float-precision 0.0) => 0

(float-precision 1.6s-19) => 24

(float-precision 1.6l-19) => 53

(float-precision 1.0s-40) => 17�

Under CLOE, returns a non-negative integer that provides the number of signifi-

cant digits in the radix of float used in the representation of float. For floating

point zeroes, this function returns zero. For normalized floats, this function pro-

duces the same result as float-digits.

(float-precision 4.5) => 22�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".
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� float-radix float Function

Returns the integer 2 denoting the radix of the internal IEEE floating-point repre-

sentation in Symbolics Common Lisp under Genera.

In CLOE implementations, float-radix returns the constant 2, but Common Lisp

permits implementations to have an alternate float radix, or even different radices

for different floats.

Examples:

(float-radix pi) => 2

(float-radix 5.0l0) => 2�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".

� float-sign float1 &optional float2 Function

Returns a floating-point number, z, which has the same sign as float1 and the

same absolute value and format as float2. The second argument defaults to the val-

ue of (float 1 float1), that is, it is a floating-point 1 of the same type as float1.

Both arguments must be floating-point numbers.

Examples:

(float-sign 3.0) => 1.0

(float-sign -7.9) => -1.0

(float-sign -2.0 pi) => -3.141592653589793d0�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".

� floatp object Function

Returns t if its argument is a (single- or double-precision) floating-point number.

Otherwise it returns nil. The following code tests whether a and b are numbers. If

numbers, they are added. Otherwise, we attempt to extract floats that are then

tested by floatp.

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (consp a)

   (floatp (car a))

   (consp b)

           (floatp (car b)))

    (+ (car a) (car b))

    (error  "couldn’t extract floats from ~a and ~a" a b)))�

For a table of related items, see the section "Numeric Type-checking Predicates". 

� floatp object Function
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Returns t if its argument is a (single- or double-precision) floating-point number.

Otherwise it returns nil. The following code tests whether a and b are numbers. If

numbers, they are added. Otherwise, we attempt to extract floats that are then

tested by floatp.

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (consp a)

   (floatp (car a))

   (consp b)

           (floatp (car b)))

    (+ (car a) (car b))

    (error  "couldn’t extract floats from ~a and ~a" a b)))�

For a table of related items, see the section "Numeric Type-checking Predicates". 

� zl:flonump object Function

Returns t if object is a single-precision floating-point number, otherwise it returns

nil.

The following function is a synonym of zl:flonump:

sys:single-float-p�

For a table of related items, see the section "Numeric Type-checking Predicates". 

� floor number &optional (divisor 1) Function

Divides number by divisor, and truncates the result toward negative infinity. The

truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a divisor is

exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals number. If

divisor is 1, then Q and R add up to number. If divisor is 1 and number is an inte-

ger, then the returned values are number and 0.

The first returned value is always an integer. The second returned value is inte-

gral if both arguments are integers, is rational if both arguments are rational, and

is floating-point if either argument is floating-point. If only one argument is speci-

fied, then the second returned value is always a number of the same type as the

argument.

Examples: 

(floor 5)  => 5 and 0        �

(floor -5) => -5 and 0�

(floor 5.2) => 5 and 0.19999981    �

(floor -5.2) => -6 and 0.8000002�

(floor 5.8) => 5 and 0.8000002�
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(floor -5.8) => -6 and 0.19999981�

(floor 5 3) => 1 and 2�

(floor -5 3) => -2 and 1�

(floor 5 4) => 1 and 1       �

(floor -5 4) => -2 and 3�

(floor 5.2 3) => 1 and 2.1999998      �

(floor -5.2 3) => -2 and 0.8000002�

(floor 5.2 4) => 1 and 1.1999998  �

(floor -5.2 4) => -2 and 2.8000002�

(floor 5.8 3) => 1 and 2.8000002 �

(floor -5.8 3) => -2 and 0.19999981�

(floor 5.8 4) => 1 and 1.8000002      �

(floor -5.8 4) => -2 and 2.1999998�

Using floor with one argument is the same as the zl:fix function, except that

zl:fix returns only the first value of floor.

See the section "Comparison of floor, ceiling, truncate and round".

For a table of related items: See the section "Functions that Divide and Convert

Quotient to Integer". 

� fmakunbound symbol Function

Causes symbol to be undefined, that is, its function cell to be empty. It returns

symbol.

Because symbol no longer has a function definition, function invocation results in

an error after applying fmakunbound, unless later redefined.

(fboundp ’alarm-handler) => nil

�

(defun alarm-handler ()

  (setq *alarms* 0))

�

(fboundp ’alarm-handler) => t

�

(fmakunbound ’alarm-handler)

�

(fboundp ’alarm-handler) => nil�

See the section "Functions Relating to the Function Cell of a Symbol".

� future-common-lisp:fmakunbound function-name Function

Removes the definition of function-name and returns function-name.

Note that future-common-lisp:fmakunbound is just like fundefine.

If the function is encapsulated, future-common-lisp:fmakunbound removes both

the basic definition and the encapsulations. Some types of function specs (:location

for example) do not implement future-common-lisp:fmakunbound. Using future-
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common-lisp:fmakunbound on a :within function spec removes the replacement

of function-to-affect, putting the definition of within-function back to its normal

state. Using future-common-lisp:fmakunbound on a method’s function spec re-

moves the method completely, so that future messages or generic functions will be

handled by some other method. 

for keyword for loop

for is one of the iteration driving clauses for loop. As described below, there are

numerous variants for this keyword.

The optional argument, data-type is reserved for data type declarations. It is cur-

rently ignored.

for var {data-type} from expr1 {to expr2} {by expr3} 

To iterate upward. Performs numeric iteration. 

var is initialized to expr1, and on each succeeding iteration is incremented

by expr3 (default 1). If the to phrase is given, the iteration terminates when

var becomes greater than expr2. Each of the expressions is evaluated only

once, and the to and by phrases can be written in either order. 

Note that the to variant appropriate for the direction of stepping must be

used for the endtest to be formed correctly; that is, the code does not work

if expr3 is negative or 0. 

data-type defaults to fixnum. The keyword as is equivalent to the keyword

for.

Examples:

�

(defun loop1 ()

  (loop for i from 1 to 10 

collect i)) => LOOP1

(loop1) => (1 2 3 4 5 6 7 8 9 10)

�

(defun loop2 ()

  (loop for i from 0 to 5 by 1

do

    (princ i))) => LOOP2

(loop2) => 012345NIL

�

(defun loop3(inc)

  (loop as x from 0 by inc to (+ inc 4) 

do

    (princ x)

    (setq x (+ x 1))))  => LOOP3

(loop3 1) => 024NIL�

for var {data-type} from expr1 downto expr2 {by expr3}
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To iterate downward. Performs numeric iteration. var is initialized to expr1,

and on each succeeding iteration is decremented by expr3, and the endtest

is adjusted accordingly.

Examples:

�

(defun loop3 ()

  (loop for my-number from 7 by 2 downto -2 

do

    (princ my-number)(princ " "))) => LOOP3

(loop3) => 7 5 3 1 -1 NIL�

for var {data-type} from expr1 {below expr2} {by expr3}

Loop will terminate when the variable of iteration, expr1, is greater than or

equal to some terminal value, expr2.

Examples:

�

(defun loop1 ()

  (loop for i from 0 below 10

do

    (princ i))) => LOOP1

(loop1) => 0123456789NIL

�

(defun loop2 ()

  (loop for my-number from 7.5 by .5 below 12

do

    (princ my-number)(princ " ")))  => LOOP2

(loop2) => 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 NIL

�

for var {data-type} from expr1 {above expr2} {by expr3}

Loop will terminate when the variable of iteration is less than or equal to

some terminal value.

Examples:
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�

(defun loop1 ()

  (loop for my-number from 12 by .5 above 7.5 

        do

    (print my-number)))  => LOOP1

(loop1) => 

12 

11.5 

11.0 

10.5 

10.0 

9.5 

9.0 

8.5 

8.0 NIL�

for var {data-type} downfrom expr1 {by expr2}

Used to iterate downward with no limit.

Examples:

�

(defun loop-downfrom (num)

  (loop for x downfrom 8 by num

do

    (print x))) => LOOP-DOWNFROM

(loop-downfrom 1)

8

7

6

5... ;infinite�

for var {data-type} upfrom expr1 {by expr2}

Used to iterate upward with no limit.

Examples:

�

(defun loop-upfrom ()

  (loop for x upfrom -2 by 2

        do

    (print x))) => LOOP-UPFROM

(loop-upfrom)

-2

0

2

4... ;infinite �

for var {data-type} in expr1 {by expr2}



Page 1123

Iterates over each of the elements in the list expr1. If the by subclause is

present, expr2 is evaluated once on entry to the loop to supply the function

to be used to fetch successive sublists, instead of cdr.

Examples:

(defun loop1 (input-list)

  (loop for x in input-list

for i from 0

        do

    (princ (list i x)))) => LOOP1

(loop1 ’(a b (c d) e)) => (0 A)(1 B)(2 (C D))(3 E)NIL�

for var {data-type} on expr1 {by expr2}

Like the previous for format, except that var is set to successive sublists of

the list instead of successive elements. Note that since var is always a list,

it is not meaningful to specify a data-type unless var is a destructuring pat-

tern, as described in the section on destructuring. Note also that loop uses

a null rather than an atom test to implement both this and the preceding

clause.

Example:

(defun loop1 (input-list)

  (loop for sub1 on input-list

do

    (print sub1))) => LOOP1

(loop1 ’(a b c (k c) d)) => 

(A B C (K C) D) 

(B C (K C) D) 

(C (K C) D) 

((K C) D) 

(D) NIL

�

In contrast to what in would do

(defun loop1 (input-list)

  (loop for sub1 in input-list

do

    (print sub1))) => LOOP1

(loop1 ’(a b c (k c) d)) => 

A 

B 

C 

(K C) 

D NIL�

for var {data-type} = expr

On each iteration, expr is evaluated and var is set to the result.

for var {data-type} = expr1 then expr2
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var is bound to expr1 when the loop is entered, and set to expr2 (reevaluat-

ed) at all but the first iteration. Since expr1 is evaluated during the binding

phase, it cannot reference other iteration variables set before it; for that,

use the following:

Examples:

(defun loop1 (x)

  (loop for stepper = x then (* stepper x)

do

    (print stepper))) => LOOP1

(loop1 3)

3

9

27

81... ; infinite loop�

for var {data-type} first expr1 then expr2

Sets var to expr1 on the first iteration, and to expr2 (reevaluated) on each

succeeding iteration. The evaluation of both expressions is performed inside

of the loop binding environment, before the loop body. This allows the first

value of var to come from the first value of some other iteration variable,

allowing such constructs as:

(loop for term in poly

      for ans first (car term) then (gcd ans (car term))

      finally (return ans))�

for var {data-type} being expr and its path ...

for var {data-type} being {each|the} path ...

This provides a user-definable iteration facility. path names the manner in

which the iteration is to be performed. The ellipsis indicates where various

path-dependent preposition/expression pairs can appear.

See the section "Iteration Paths for loop".

Examples:

�

(define-loop-sequence-path ascii-char

   (lambda (string i)    

     (ascii-code (aref string i)))

  length) => NIL

�

(loop for x being the ascii-char of "ABC"

      doing 

  (print x)) => 

65 

66 

67 NIL ; 65 is the ascii equivalent of "A"
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�

(loop for a being the array-elements of q using (index ai)

      collecting (lambda (x)

   when (> x a)

   (aset x q ai))))�

See the section "Iteration-Driving Clauses".

� force-output &optional output-stream Function

Some streams are implemented in an asynchronous, or buffered, manner. force-

output initiates the emptying of any internal buffers, but returns nil without wait-

ing for completion or acknowledgment. Output-stream if unspecified or nil, defaults

to *standard-output*, and if t, is *terminal-io*.

� :force-output Message

Causes any buffered output to be sent to a buffered asynchronous device, such as

the Chaosnet. It does not wait for it to complete; use :finish for that. If a stream

supports :force-output, then :tyo, :string-out, and :line-out might have no visible

effect until a :force-output is done. If the stream does not handle this, the default

handler ignores it. 

� fourth list Function

Returns the fourth element of the list. fourth is equivalent to:

(nth 3 list)

(setq letters ’(a b c d e f)) => (A B C D E F)

�

(fourth letters) => D�

For a table of related items: See the section "Functions for Extracting from Lists".

� dbg:frame-active-p frame Function

Indicates whether frame is an active frame. 

Value Meaning

nil Frame is not active

not nil Frame is active�

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 
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� dbg:frame-arg-value frame arg-name-or-number &optional callee-context no-error-p�

Function

Returns the value of the nth argument to frame. Returns a second value, which is

a locative pointer to the word in the stack that holds the argument. If n is out of

range, it takes action based on no-error-p: if no-error-p is nil, it signals an error,

otherwise it returns nil. n can also be the name of the argument (a symbol, but it

need not be in the right package). Each argument passed for an &rest parameter

counts as a separate argument when n is a number. dbg:frame-arg-value controls

whether you get the caller or callee copy of the argument (original or possibly

modified.)

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-local-value frame local-name-or-number &optional no-error-p�

Function

Returns the value of the nth local variable in frame. n can also be the name of the

local variable (a symbol, but it need not be in the right package). It returns a sec-

ond value, which is a locative pointer to the word in the stack that holds the local

variable. If n is out of range, then the action is based on no-error-p: if no-error-p is

nil, it signals an error, otherwise it returns nil.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-next-active-frame frame Function

Returns a frame pointer to the next active frame following frame. If frame is the

last active frame on the stack, it returns nil.

"Next" means the frame of a procedure that was invoked more recently (the frame

called by this one; toward the top of the stack). 

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-next-interesting-active-frame frame Function
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Returns a frame pointer to the next interesting active frame following frame. If

frame is the last interesting active frame on the stack, it returns nil.

"Next" means the frame of a procedure that was invoked more recently (the frame

called by this one; toward the top of the stack). 

"Interesting active frames" include all of the active frames except those that are

parts of the internals of the Lisp interpreter, such as the frames for eval,

zl:apply, funcall, let, and other basic Lisp special forms. The list of such func-

tions is the value of the system constant, dbg:*uninteresting-functions*.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-next-nth-active-frame frame &optional (count 1) skip-invisible�

Function

Goes up the stack by count active frames from frame and returns a frame pointer

to that frame. It returns a second value that is not nil. When count is positive,

this is like calling dbg:frame-next-active-frame count times; count can also be

negative or zero. If either end of the stack is reached, it returns a frame pointer

to the first or last active frame and nil.

"Next" means the frame of a procedure that was invoked more recently (the frame

called by this one; toward the top of the stack). 

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-next-nth-interesting-active-frame frame &optional (count 1) skip-

invisible�

Function

Goes up the stack by count interesting active frames from frame and returns a

frame pointer to that frame. It returns a second value that is not nil. When count

is positive, this is like calling dbg:frame-next-interesting-active-frame count

times; count can also be negative or zero. If either end of the stack is reached, it

returns a frame pointer to the first or last active frame and nil.

"Next" means the frame of a procedure that was invoked more recently (the frame

called by this one; toward the top of the stack). 

"Interesting active frames" include all of the active frames except those that are

parts of the internals of the Lisp interpreter, such as the frames for eval,

zl:apply, funcall, let, and other basic Lisp special forms. The list of such func-

tions is the value of the system constant, dbg:*uninteresting-functions*.



Page 1128

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-next-nth-open-frame frame &optional (count 1) skip-invisible�

Function

Goes up the stack by count open frames from frame and returns a frame pointer to

that frame. It returns a second value that is not nil. When count is positive, this

is like calling dbg:frame-next-open-frame count times; count can also be negative

or zero. If either end of the stack is reached, it returns a frame pointer to the

first or last active frame and nil.

"Next" means the frame of a procedure that was invoked more recently (the frame

called by this one; toward the top of the stack). 

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-next-open-frame frame Function

Returns a frame pointer to the next open frame following frame-pointer. If frame is

the last open frame on the stack, it returns nil.

"Next" means the frame of a procedure that was invoked more recently (the frame

called by this one; toward the top of the stack). 

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-number-of-locals frame Function

Returns the number of local variables allocated for frame.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-number-of-spread-args frame &optional (type :supplied)�

Function
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Returns the number of "spread" arguments that were passed in frame. (These are

the arguments that are not part of a &rest parameter.) Sending a message to an

instance results in two implicit arguments being passed internally along with the

other arguments. These implicit arguments are included in the count.

type requests more specific definition of the number: 

Value Meaning

:supplied Returns the number of arguments that were actually passed by

the caller, except for arguments that were bound to a &rest

parameter. This is the default.

:expected Returns the number of arguments that were expected by the

function being called.

:allocated Returns the number of arguments for which stack locations

have been allocated. In the absence of a &rest parameter, this

is the same as :expected for compiled functions, and the same

as :supplied for interpreted functions. If stack locations were

allocated for arguments that were bound to a &rest parameter,

they are included in the returned count.�

These values would all be the same except in cases where a wrong-number-of-

arguments error occurred, or where there are optional arguments (expected but

not supplied).

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-out-to-interesting-active-frame frame Function

Returns either frame (if it points to an interesting active frame) or the previous

interesting active frame before frame-pointer. (This is what the :Previous Frame

command c-m-U in the Debugger does.)

"Interesting active frames" include all of the active frames except those that are

parts of the internals of the Lisp interpreter, such as the frames for eval,

zl:apply, funcall, let, and other basic Lisp special forms. The list of such func-

tions is the value of the system constant, dbg:*uninteresting-functions*.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-previous-active-frame frame Function

Returns a frame pointer to the previous active frame before frame. If frame is the

first active frame on the stack, it returns nil.
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"Previous" means the frame of a procedure that was invoked less recently (the

caller of this frame; towards the base of the stack).

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-previous-interesting-active-frame frame Function

Returns a frame pointer to the previous interesting active frame before frame. If

frame is the first interesting active frame on the stack, it returns nil.

"Previous" means the frame of a procedure that was invoked less recently (the

caller of this frame; towards the base of the stack).

"Interesting active frames" include all of the active frames except those that are

parts of the internals of the Lisp interpreter, such as the frames for eval,

zl:apply, funcall, let, and other basic Lisp special forms. The list of such func-

tions is the value of the system constant, dbg:*uninteresting-functions*.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-previous-open-frame frame Function

Returns a frame pointer to the previous open frame before frame. If frame is the

first open frame on the stack, it returns nil.

"Previous" means the frame of a procedure that was invoked less recently (the

caller of this frame; towards the base of the stack).

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-real-function frame Function

Returns either the function object associated with frame or the value of self when

the frame was the result of sending a message to an instance.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 
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� dbg:frame-real-value-disposition frame Function

Returns a symbol indicating how the calling function is going to handle the values

to be returned by this frame. If the calling function just returns the values to its

caller, then the symbol indicates how the final recipient of the values is going to

handle them. 

Value Meaning

:ignore The values would be ignored; the function was called for ef-

fect.

:single The first value would be received and the rest would not; the

function was called for value.

:multiple All the values would be received; the function was called for

multiple values. It returns a second value indicating the num-

ber of values expected. nil indicates an indeterminate number

and is always returned.�

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:frame-self-value frame &optional instance-frame-only�

Function

Returns the value of self in frame, or nil if self does not have a value. If instance-

frame-only is not nil then it returns nil unless this frame is actually a message-

sending frame created by send.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� fresh-line &optional output-stream Function

Outputs a newline only if the stream is not already at the start of a line. If for

any reason this cannot be determined, then a newline is output anyway. This guar-

antees that the stream will be on a fresh line while consuming as little vertical

space as possible. fresh-line returns t if it output a newline, otherwise it returns

nil. output-stream, which, if unspecified or nil, defaults to *standard-output*, and

if t, is *terminal-io*.

(progn (princ ’foo) (terpri) (princ ’bar) (fresh-line) (princ ’baz) nil)

FOO

BAR

BAZ

=> NIL



Page 1132

�

(progn (princ ’foo) (terpri) (fresh-line)

       (princ ’bar) (fresh-line) (terpri)

       (princ ’baz) nil)

FOO

BAR

�

BAZ

=> NIL

�

� :fresh-line Message

Tells the stream to position itself at the beginning of a new line. If the stream is

already at the beginning of a fresh line it does nothing; otherwise it outputs a car-

riage return. For streams that do not support this, the default handler always out-

puts a carriage return. 

� fround number &optional (divisor 1) Function

Like round, except that the first returned value is always a floating-point number

instead of an integer. The second returned value is the remainder. If number is a

floating-point number and divisor is not a floating-point number of longer format,

then the first returned value is a floating-point number of the same type as num-

ber.

Round returns the floating point equivalent of the integer nearest to number, or

nearest to the quotient of number divided by divisor. If number is exactly 0.5

greater than an integer, the even floating point equivalent of the two integers

closest to number, or closest to the quotient of number divided by divisor is re-

turned. A second value, the remainder, is also returned. The remainder returned is

the same as that returned by round applied to the same arguments.

Examples:

(fround 5) => 5.0 and 0�

(fround -5) => -5.0 and 0�

(fround 5.2) => 5.0 and 0.19999981�

(fround -5.2) => -5.0 and -0.19999981�

(fround 5 3) => 2.0 and -1�

(fround -5 3) => -2.0 and 1�

(fround 5.2 4) => 1.0 and 1.1999998�

(fround -5.2 4) => -1.0 and -1.1999998�

(fround 4.2d0) => 4.0d0 and 0.20000000000000018d0�

(fround -4.2d0) => -4.0d0 and -0.20000000000000018d0�

For a table of related items: See the section "Functions that Divide and Return

Quotient as Floating-point Number".
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� zl:fset sym definition Function

Stores definition, which can be any Lisp object, into sym’s function cell. It returns

definition.

See the section "Functions Relating to the Function Cell of a Symbol".

� zl:fset-carefully function-spec definition &optional no-query-flag Function

This function is obsolete. It is equivalent to:

(fdefine symbol definition t force-flag)�

� zl:fsignal format-string &rest format-args Function

This is a simple function for signalling when you do not care to use a particular

condition. zl:fsignal signals dbg:proceedable-ferror. (See the flavor

dbg:proceedable-ferror.) The arguments are passed as the :format-string and

:format-args init keywords to the error object.

Note: zl:fsignal is now obsolete. Use cerror in your new programs instead.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� zl:fsymeval symbol Function

In your new programs, we recommend that you use the function symbol-function,

which is the Common Lisp equivalent of the function zl:fsymeval.

Returns symbol’s definition, the contents of its function cell. If the function cell is

empty, zl:fsymeval signals an error.

See the section "Functions Relating to the Function Cell of a Symbol".

� ftruncate number &optional (divisor 1) Function

Like truncate, except that the first returned value is always a floating-point num-

ber instead of an integer. The second returned value is the remainder. If number

is a floating-point number and divisor is not a floating-point number of longer for-

mat, then the first returned value is a floating-point number of the same type as

number.

Returns the floating point equivalent of the integer nearer to zero of the two inte-

gers closest to number, or closest to the quotient of number divided by divisor. A

second value, the remainder, is also returned. The remainder returned is the same

as that returned by truncate applied to the same arguments.

Examples:

(ftruncate 5) => 5.0 and 0�
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(ftruncate -5) => -5.0 and 0�

(ftruncate 5.2) => 5.0 and 0.19999981�

(ftruncate -5.2) => -5.0 and -0.19999981�

(ftruncate 5 3) => 1.0 and 2�

(ftruncate -5 3) => -1.0 and -2�

(ftruncate 5.2 4) => 1.0 and 1.1999998�

(ftruncate -5.2 4) => -1.0 and -1.1999998�

(ftruncate 4.2d0) => 4.0d0 and 0.20000000000000018d0�

(ftruncate -4.2d0) => -4.0d0 and -0.20000000000000018d0�

For a table of related items: See the section "Functions that Divide and Return

Quotient as Floating-point Number".

� funcall fn &rest args Function

(funcall fn a1 a2 ... an) applies the function fn to the arguments a1, a2, ..., an. fn

cannot be a special form nor a macro; this would not be meaningful. Example:

(cons 1 2) => (1 . 2)

(setq cons ’+) => +

(funcall cons 1 2) => 3

(cons 1 2) => (1 . 2)�

This shows that the use of the symbol cons as the name of a variable and the use

of that symbol as the name of a function do not interact. The funcall form evalu-

ates the variable and gets the symbol +, which is the name of a different function.

The cons form invokes the function named cons.

Note: The Maclisp functions subrcall, lsubrcall, and zl:arraycall are not needed

in Symbolics Common Lisp; funcall is just as efficient. zl:arraycall is provided for

compatibility; it ignores its first subform (the Maclisp array type) and is otherwise

identical to aref. subrcall and lsubrcall are not provided.

(setq + subfn (symbol-function ’-))

�

(defun subfn(x y) (+ x y))

�

(subfn 2 1) => 3

�

(funcall subfn 2 1) => 1

�

(defun size-of-form (form print-function)

  "print-function should be princ-to-string or prin1-to-string"

  (length (funcall print-function form)))�

In the previous example, the print length of a form is determined by using funcall

on one of two print functions.

See the section "Functions for Function Invocation".

� function name arglist result-type1 result-type2 ... Declaration
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Equivalent to ftype type function-name-1 function-name-2, but might be more con-

venient.

� function function Special Form

Means different things, depending on whether function is a function or the name

of a function. (Note that in neither case is function evaluated.) The name of a

function is a symbol or a function-spec list. See the section "Function Specs". A

function is typically a list whose car is the symbol lambda; however, there are

several other kinds of functions available. See the section "Kinds of Functions".

If you want to pass an anonymous function as an argument to a function, you

could just use quote. For example:

(mapc (quote (lambda (x) (car x))) some-list)�

The compiler and interpreter cannot tell that the first argument is going to be

used as a function; for all they know, mapc treats its first argument as a piece of

list structure, asking for its car and cdr and so forth. The compiler cannot com-

pile the function; it must pass the lambda-expression unmodified. This means that

the function does not get compiled, which makes it execute more slowly than it

might otherwise. The interpreter cannot make references to free lexical variables

work by making a lexical closure; it must pass the lambda-expression unmodified.

The function special form is the way to say that a lambda-expression represents a

function rather than a piece of list structure. You just use the symbol function in-

stead of quote:

(mapc (function (lambda (x) (car x))) some-list)�

To ease typing, the reader converts #’thing into (function thing). So #’ is similar

to ’ except that it produces a function form instead of a quote form. So the above

form could be written as:

(mapc #’(lambda (x) (car x)) some-list)�

If function is not a function but the name of a function (typically a symbol, but in

general any kind of function spec), function returns the definition of function; it is

like fdefinition except that it is a special form instead of a function, and so

(function fred) �

is like

(fdefinition ’fred)�

which is like

(fsymeval ’fred)�

since fred is a symbol. Note that you cannot use fsymeval in CLOE.

If function is the name of a local function defined with flet or labels, then

(function function) produces a lexical closure of function, just like (function

(lambda...)).

Another way of explaining function is that it causes function to be treated the

same way as it would as the car of a form. Evaluating the form (function arg1�
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arg2...) uses the function definition of function if it is a symbol, and otherwise ex-

pects function to be a list that is a lambda-expression. Note that the car of a form

cannot be a nonsymbol function spec, to avoid difficult-to-read code. This can be

written as:

(funcall (function spec) args...)�

You should be careful about whether you use #’ or ’. Suppose you have a program

with a variable x whose value is assumed to contain a function that gets called on

some arguments. If you want that variable to be the car function, there are two

things you could say:

(setq x ’car)

or

(setq x #’car)�

The former causes the value of x to be the symbol car, whereas the latter causes

the value of x to be the function object found in the function cell of car. When

the time comes to call the function (the program does (funcall x ...)), either of

these two work because if you use a symbol as a function, the contents of the

symbol’s function cell are used as the function. The former case is a bit slower,

because the function call has to indirect through the symbol, but it allows the

function to be redefined, traced, or advised. (See the special form trace. See the

special form advise.) The latter case, while faster, picks up the function definition

out of the symbol car and does not see any later changes to it.

� function (( arg1-type arg2-type ... ) value-type ) Type Specifier

function is the type specifier for the predefined Lisp object of that name.

The list syntax is for declaration. Every element of this type is a function that ac-

cepts arguments at least of the types specified by the argj-type forms, and returns

a value that is a member of the types specified by the value-type form.

Examples:

(defun fun-example (num) (+ num num)) => FUN-EXAMPLE

(typep ’fun-example ’function) => T

(sys:type-arglist ’function) => NIL and T

(functionp ’fun-example) => T�

See the section "Data Types and Type Specifiers".

See the section "Functions".

� sys:function-cell-location sym Function

Returns a locative pointer to sym’s function cell. See the section "Cells and Loca-

tives". It is preferable to write:

(locf (zl:fsymeval sym))�

rather than calling this function explicitly. See the section "Functions Relating to

the Function Cell of a Symbol".
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� si:function-encapsulated-p function-spec�

Function

Looks at the debugging info alist to check whether function-spec is an encapsula-

tion. 

� clos:function-keywords method Generic Function

Returns a list of the keywords for method as its first value, and a boolean indicat-

ing whether &allow-other-keys was specified as its second value.

method A method object.�

� sys:function-parent function-spec &optional definition-type Function

When a symbol’s definition is produced as the result of macro expansion of a

source definition, so that the symbol’s definition does not appear textually in the

source, the editor cannot find it. The accessor, constructor, and alterant macros

produced by a defstruct are an example of this. The sys:function-parent declara-

tion can be inserted in the source definition to record the name of the outer defi-

nition of which it is a part.

The declaration consists of the following:

(sys:function-parent name type)�

name is the name of the outer definition. type is its type, which defaults to defun.

See the section "How Programs Manipulate Definitions". Declarations are explained

in another section. See the section "Declarations".

sys:function-parent is a function related to the declaration. It takes a function

spec and returns nil or another function spec. The first function spec’s definition

is contained inside the second function spec’s definition. The second value is the

type of definition.

Two examples:

(defsubst foo (x y)

  (declare (sys:function-parent bar))

  ...)

�

(defmacro defxxx (name ...)

  ‘(zl:local-declare ((sys:function-parent ,name defxxx))

 (defmacro ...)

 (defmacro ...)

 ))�

� si:function-spec-get function-spec indicator Function



Page 1138

Returns the value of the indicator property of function-spec, or nil if it doesn’t

have such a property. 

� si:function-spec-putprop function-spec value indicator Function

Gives function-spec an indicator property whose value is value. 

� functionp x &optional allow-special-forms�

Function

Returns t if its argument x is a function (essentially, something that is acceptable

as the first argument to apply), otherwise it returns nil. Under Genera, in addi-

tion to interpreted, compiled, and built-in functions, functionp is true of closures,

select-methods, and symbols whose function definition is functionp. See the section

"Other Kinds of Functions". functionp is not true of objects that can be called as

functions but are not normally thought of as functions: arrays, stack groups, enti-

ties, and instances.

Compatibility Note: Symbolics Common Lisp (but not CLOE) provides the optional

argument allow-special-forms. If allow-special-forms is specified and non-nil, then

functionp is true of macros and special-form functions (those with quoted argu-

ments). Normally functionp returns nil for these since they do not behave like

functions. allow-special-forms might not work in other implementations of Common

Lisp. functionp returns nil when it is called on a symbol that does not have a

function definition, although Common Lisp specifies that functionp of a symbol is

always t.

As a special case, functionp of a symbol whose function definition is an array re-

turns t, because in this case the array is being used as a function rather than as

an object.

Under CLOE, closures (results of the function special form), lambda expressions,

and names of functions are all considered functions by functionp. When applied to

symbols, functionp always returns true, regardless of whether or not they are cur-

rently fboundp.

(functionp #’eql) => t

(functionp ’eql) => t

(functionp ’(lambda (x) (+ 5 x))) => t�

� fundefine function-spec Function

Removes the definition of function-spec and returns function-spec. For symbols this

is equivalent to fmakunbound. If the function is encapsulated, fundefine removes

both the basic definition and the encapsulations. Some types of function specs

(:location for example) do not implement fundefine. Using fundefine on a :within

function spec removes the replacement of function-to-affect, putting the definition

of within-function back to its normal state. Using fundefine on a method’s func-
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tion spec removes the method completely, so that future messages or generic func-

tions will be handled by some other method. 

� g-l-p array Function

If array has a fill pointer, g-l-p returns a list that stops at the fill pointer, if you

never modify the fill-pointer except with zl:array-push, zl:array-pop and so on.

array must be a general (sys:art-q-list) array. Example: 

(setq a (zl:make-array 4 :type ’art-q-list))

(aref a 0) => nil

(setq b (g-l-p a)) => (nil nil nil nil)

(setf (car b) t)

b => (t nil nil nil)

(aref a 0) => t

(setf (aref a 2) 30)

b => (t nil 30 nil)�

� gcd &rest integers Function

If one argument is given, the absolute value is returned. If there are no argu-

ments, the returned value is 0.

Examples:

(gcd) => 0

(gcd -9) => 9

(gcd 36 48) => 12

(gcd 16 72 40 24) => 8�

For a table of related items, see the section "Arithmetic Functions". 

� zl:gcd integer1 integer2 &rest more-integers Function

Returns the greatest common divisor of all its arguments. The arguments must be

integers. With oneargument integer, it returns the absolute value of integer, and

with no arguments, it returns 0. The result returned is always returns a non-

negative integer.

(gcd -15 105) → 15

�

(gcd 15 12 9) → 3

�

(gcd 5 7 11 18) → 1

�

(gcd) → 0 �

The following function is a synonym of zl:gcd:

zl:\\ �
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For a table of related items: See the section "Arithmetic Functions".

� flavor:generic generic-function-name Special Form

Evaluates to the generic function object for generic-function-name (which is not

evaluated). This is used when there is a prologue function so that the function def-

inition of generic-function-name is not itself the generic function. This is used in

conjunction with the :function option to defgeneric. For example:

(apply (flavor:generic make-instance) new-instance init-options)�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� clos:generic-flet Special Form

Symbolics CLOS does not support clos:generic-flet. 

� clos:generic-function Macro

Symbolics CLOS does not support clos:generic-function. 

� sys:generic-function Type Specifier

� clos:generic-labels Special Form

Symbolics CLOS does not support clos:generic-labels. 

� gensym &optional arg Function

Invents a print-name, and creates a new symbol with that print-name. It returns

the new, uninterned symbol.

The invented print-name is a character prefix (the value of *gensym-prefix*) fol-

lowed by the decimal representation of a number (the value of *gensym-counter*),

for example, "G0001". The number is increased by 1 every time gensym is called.

If the argument arg is present and is a fixnum, then *gensym-counter* is set to

arg. If arg is a string or a symbol, then *gensym-prefix* is set to the string or

the symbol’s print-name. After handling the argument, gensym creates a symbol

as it would with no argument. Examples:

if (gensym) =>#:G3310

then (gensym "foo") => #:|foo3311|

(gensym 32) => #:|foo32|

(gensym) => #:|foo33|�

gensym is usually used to create a symbol that should not normally be seen by the

user, and whose print-name is unimportant, except to allow easy distinction by eye
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between two such symbols. The optional argument is rarely supplied because it

changes the default prefix for future calls to gensym. To create a symbol with a

particular prefix when using Genera, use sys:gensymbol. See the function

sys:gensymbol.

The name gensym comes from "generate symbol", and the symbols produced by it

are often called "gensyms". This function is also useful for obtaining anonymous,

locally bound variables created by macros at compile time. In the following exam-

ple, macro do-vector is created by using gensym. This form is similar to dolist

because var is successively bound to vector elements.

 (defmacro do-vector((var vector &optional result) &body forms)

  (let ((genvar1 (gensym))

        (genvar2 (gensym)))

    ‘(do ((,genvar1 (length ,vector))

  (,genvar2 0 (+ 1 ,genvar2)))

         ((>= ,genvar2 ,genvar1) ,result)

(let ((,var (elt ,vector ,genvar2)))

          ,@forms))))

�

(do-vector (element ’#(foo bar baz)) (print element)) 

FOO

BAR

BAZ�

For a list of related functions: See the section "Functions for Creating Symbols".

� zl:gensym &optional x Function

Invents a print-name, and creates a new symbol with that print-name. It returns

the new, uninterned symbol.

If the argument x is present and is a fixnum, then future-common-lisp:*gensym-

counter* is set to x and incremented. If x is a string or a symbol, then

cli::*gensym-prefix* is set to the first character of the string or of the symbol’s

print-name. After handling the argument, gensym creates a symbol as it would

with no argument. Examples:

if (zl:gensym) =>#:G3310

then (zl:gensym "foo") => #:F3311

(zl:gensym 32) => #:F0033

(zl:gensym) => #:F0034�

Note that the number is in decimal and always has four digits, and the prefix is

always one character.

See the function gensym.

See the section "Functions for Creating Symbols".

� sys:gensymbol &optional (prefix "G") count Function
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Like gensym, invents a print-name and creates a new symbol with that print-

name. It returns the new, uninterned symbol. Unlike gensym, however, if a prefix�

is given, it does not become the default for future calls to sys:gensymbol. For ex-

ample:

if (sys:gensymbol) => #:G0035

then (sys:gensymbol "foo") => #:|foo36|

(sys:gensymbol) => #:G0037

Contrasted with:

if (gensym) => #:G0038

then (gensym "foo") => #:|foo39|

(gensym) => #:|foo40|

sys:gensymbol is the recommended way to get symbols with a specific prefix.

For a list of related functions: See the section "Functions for Creating Symbols". 

� gentemp &optional (prefix "T") package Function

Creates and returns a new symbol as gensym does, but gentemp interns the sym-

bol in package. Package defaults to the current package, that is, the value of

*package*. gentemp guarantees that the generated symbol is a new one not al-

ready existing in package. There is no provision for resetting the gentemp counter

and the prefix is not remembered from one call to the next. If prefix is omitted,

"T" is used.

 (gentemp) => T1

�

(defparameter T2 42)

�

(gentemp) => T3

�

(gentemp "FOO") => FOO4 �

See the section "Functions for Creating Symbols".

� get symbol indicator &optional default Function

Searches the property list of symbol for an indicator that is eq to indicator. (See

the section "Property Lists".) The first argument must be a symbol. If a matching

indicator is found, the corresponding value is returned; otherwise default is re-

turned. If default is not specified, nil is used. Note that there is no way to distin-

guish an absent property from one whose value is default.

To give a symbol a property, use:

 (setf (get symbol indicator) value)

Suppose that the property list of eagle is

(color (brown white) food snakes seed-eater nil)�

Then, for example:
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(get ’eagle ’color) => (BROWN WHITE)

(get ’eagle ’food) => SNAKES

(get ’eagle ’seed-eater) => NIL

(get ’eagle ’beak "No such indicator") => "No such indicator"�

setf can be used with get to create a new property-value pair, possibly replacing

an old pair with the same name. For example:

(setf (get ’eagle ’food) ’(mice snakes)) => (MICE SNAKES)�

For a table of related items: See the section "Functions That Operate on Property

Lists".

� zl:get symbol indicator Function

Looks up symbol’s indicator property. (See the section "Property Lists".) If it finds

such a property, it returns the value; otherwise, it returns nil. zl:get uses the

symbol’s associated property list. For example, if the property list of foo is (baz

3), then:

(zl:get ’foo ’baz) => 3

(zl:get ’foo ’zoo) => nil�

For a table of related items: See the section "Functions That Operate on Property

Lists". 

� flavor:get-all-flavor-components flavor-name &optional env Function

Returns a list of the components of the flavor flavor-name, in the sorted ordering

of flavor components. Any duplicate flavors are eliminated from this list by the fla-

vor ordering mechanism. See the section "Ordering Flavor Components".

For example:

(flavor:get-all-flavor-components ’tv:minimum-window)

=>(TV:MINIMUM-WINDOW TV:ESSENTIAL-EXPOSE TV:ESSENTIAL-ACTIVATE 

   TV:ESSENTIAL-SET-EDGES TV:ESSENTIAL-MOUSE TV:ESSENTIAL-WINDOW 

   TV:SHEET SI:OUTPUT-STREAM SI:STREAM FLAVOR:VANILLA) �

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� get-dispatch-macro-character disp-char sub-char &optional (a-readtable

*readtable*) Function

Returns the macro-character function for sub-char under disp-char, or nil if there

is no function associated with sub-char. If sub-char is one of the ten decimal dig-

its, get-dispatch-macro-character always returns nil. If sub-char is a lowercase

character, its uppercase equivalent is always used instead.

An error is signalled if the specified disp-char is not a dispatch character in the

specified readtable.
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(get-dispatch-macro-character #\# #\’) =>

#<LEXICAL-CLOSURE (:INTERNAL GET-DISPATCH-MACRO-CHARACTER 0)

     36057616>

�

(get-dispatch-macro-character #\# #\1) => NIL�

Note that because get-dispatch-macro-character returns a lexical closure, subse-

quent calls will not necessarily return the same object. This may be changed in a

future release.

(let ((*readtable* (copy-readtable nil)))

  (get-dispatch-macro-character #\# #\\) 

  (get-dispatch-macro-character #\# #\Q))

 => NIL�

� zl:get-flavor-handler-for flavor-name operation Function

Given a flavor-name and an operation (a function spec that names a generic func-

tion or a message), zl:get-flavor-handler-for returns the flavor’s method for the

operation or nil if it has none.

For example:

(zl:get-flavor-handler-for ’box-with-cell ’find-neighbors)

=>#<DTP-COMPILED-FUNCTION 

    (FLAVOR:METHOD FIND-NEIGHBORS CELL) 20740320> 

�

(zl:get-flavor-handler-for ’cell ’:print-self)

=>#<DTP-COMPILED-FUNCTION 

    (FLAVOR:METHOD SYS:PRINT-SELF FLAVOR:VANILLA DEFAULT) 42456350>�

Although operation is usually a symbol (naming a generic function) or a keyword

(naming a message), it is occasionally a list. For example, names of some generic

functions are lists, such as (setf function).

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� si:get-font device character-set style &optional (error-p t) inquiry-only Function

Given a device, character-set and style, returns a font object that would be used to

display characters from that character set in that style on the device. This is use-

ful for determining whether there is such font mapping for a given device/set/style

combination. 

A font object may be various things, depending on the device.

If error-p is non-nil, this function signals an error if no mapping to a font is

found. If error-p is nil and no font mapping is found, si:get-font returns nil.
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If inquiry-only is provided, the returned value is not a font object, but some other

representation of a font, such as a symbol in the fonts package (for screen fonts)

or a string (for printer fonts). 

(si:get-font si:*b&w-screen* si:*standard-character-set* 

             ’(:jess :roman :normal))

�

=> #<FONT JESS13 154102066>

�

(si:get-font lgp:*lgp2-printer* si:*standard-character-set* 

             ’(:swiss :roman :normal) nil t)

�

=> "Helvetica10"�

For related information: See the section "Mapping a Character Style to a Font".

� dbg:get-frame-function-and-args frame Function

Returns a list containing the name of the function for frame-pointer and the values

of the arguments.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� get-handler-for object operation Function

Given an object and an operation (a function spec that names a generic function or

a message), returns that object’s method for the operation, or nil if it has none.

When object is an instance of a flavor, this function can be useful to find which of

that flavor’s components supplies the method. If a combined method is returned,

you can use the Zmacs command List Combined Methods (m-X) to find out what it

does.

For example:

(get-handler-for this-box-with-cell ’count-live-neighbors)

=>#<DTP-COMPILED-FUNCTION 

    (FLAVOR:METHOD ’COUNT-LIVE-NEIGHBORS CELL) 42456350>

�

(get-handler-for this-box-with-cell ’:print-self)

=>#<DTP-COMPILED-FUNCTION 

    (FLAVOR:METHOD SYS:PRINT-SELF FLAVOR:VANILLA DEFAULT) 42456350>�

Because it is a generic function, you can define methods for get-handler-for. The

syntax of this is: 

(defmethod (get-handler-for flavor) (operation)

   body)�
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In most cases you should use :or method combination (by supplying the :method-

combination option for defflavor) so your method need not know what the

flavor:vanilla method does. 

Although operation is usually a symbol (naming a generic function) or a keyword

(naming a message), it is occasionally a list. For example, names of some generic

functions are lists, such as (setf function).

Note that get-handler-for does not work on named-structures or non-instance

streams. You might consider using :operation-handled-p instead. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� :get-hash key Message

Find the entry in the hash table whose key is key, and return three values. The

first returned value is the associated value of key, or nil if there is no such entry.

The second value is t if an entry was found or nil if there is no entry for key in

this table. The third value is key, or nil if there was no such key.

This message is obsolete; use zl:gethash instead. 

� get-macro-character char &optional (a-readtable *readtable*) Function

Returns two values: the function associated with char, and the value of the non-

terminating-p flag. It returns just the symbol nil if char does not have macro-

character syntax. For example:

(get-macro-character #\’) =>

#<LEXICAL-CLOSURE (INTERNAL GET-MACRO-CHARACTER 0) 16433170>

NIL

�

(get-macro-character #\-) => NIL�

Note that because get-macro-character returns a lexical closure, subsequent calls

will not necessarily return the same object. This may be changed in a future re-

lease.

(let ((*readtable* (copy-readtable nil)))

  (get-macro-character #\_))

 => NIL�

� :get-output-buffer Message

Returns an array and starting and ending indices. 

� get-output-stream-string stream Function
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Returns a string containing all of the characters output to stream so far. Works in

conjunction with make-string-output-stream. stream is reset after each call, thus

each call to get-output-stream-string gets only the characters that have been out-

put to the stream since the last such call (or the creation of stream, if no such

previous call has been made).

(setq s (make-string-output-stream))

  => #<LEXICAL-CLOSURE CLI::STRING-OUTPUT-STREAM 10602460>

�

(write-string "Hello" s) => "Hello"

�

(get-output-stream-string s) => "Hello"

�

(write-string "Goodbye" s) => "Goodbye"

�

(get-output-stream-string s) => "Goodbye"�

(defvar *heading* ’("Name " "Rank " "Serial-number "))

(defvar *number-of-names* 3)

�

(let ((my-stream (make-string-output-stream))

      (list-of-strings *heading*))

  (dolist (str list-of-strings)

    (princ str my-stream))

  (get-output-stream-string my-stream))

  (dotimes (i *number-of-names*)

    (print (+ i 1) my-stream))

  (get-output-stream-string my-stream))

�

 =>

"

1.

2.

3. "�

� zl:get-pname symbol Function

Returns the print-name of the symbol symbol. Example:

(zl:get-pname ’xyz) => "xyz"�

In your new programs, we recommend that you use the function symbol-name

which is the Common Lisp equivalent of the function zl:get-pname. See the sec-

tion "Functions Relating to the Print Name of a Symbol".

� get-properties plist indicator-list Function

Searches the property list stored in plist for any of the indicators in indicator-list.
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get-properties returns three values. If none of the indicators is found, all three

values are nil. If the search is successful, the first two values are the property

found and its value and the third value is the tail of the property list whose car is

the property found. Thus the third value serves to indicate success or failure and

also allows you to restart the search after the property found, if you so desire.

In the following example, note that although COLOR does not precede SPEED in

the indicator-list, it does precede SPEED in the property list. Therefore, COLOR

is located before SPEED.

(defvar ’*some-symbol*

        (list ’COLOR ’RED ’SPEED ’MYSTICAL ’HIT-POINTS ’60))

�

(get-properties *some-symbol* ’(magic speed color)) =>

COLOR

RED

(COLOR RED SPEED MYSTICAL HIT-POINTS 60)�

See the section "Functions Relating to the Property List of a Symbol".

� get-setf-method reference &optional for-effect Function

In this context, the word "method" has nothing to do with flavors. 

Returns five values constituting the setf method for reference, which is a general-

ized-variable reference. (The five values are described in detail at the end of this

discussion.) get-setf-method takes care of error-checking and macro expansion and

guarantees to return exactly one store-variable.

Compatibility Note: The optional argument for-effect is a Symbolics extension to

Common Lisp. If for-effect is t, you are indicating that you don’t care about the

evaluation of store-forms (one of the five values), which allows the possibility of

more efficient code. In other words, for-effect is an optimization. for-effect might

not work in other implementations of Common Lisp, in particular, it is not imple-

mented for CLOE.

As an example, an extremely simplified version of setf, allowing no more and no

fewer than two subforms, containing no optimization to remove uncessary vari-

ables, and not allowing storing of multiple values, could be defined by:

(defmacro setf (reference value)

   (multiple-value-bind (vars vals stores store-form access-form)

       (get-setf-method reference)

     (declare (ignore access-form))

     ‘(let* ,(mapcar #’list

                     (append vars stores)

                     (append vals (list value)))

       ,store form)))�

For more information, see the macro define-setf-method. 
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� get-setf-method-multiple-value reference &optional for-effect Function

Returns five values constituting the setf method for reference, which is a general-

ized-variable reference. (The five values are described in detail at the end of this

discussion.) This is the same as get-setf-method, except that it does not check the

number of store-variables (one of the five values). Use get-setf-method-multiple-

value in cases that allow storing multiple values into a generalized variable. This

is not a common need.

Compatibility Note: The optional argument for-effect is a Symbolics extension to

Common Lisp, which might not work in other implementations of Common Lisp.

Here are the five values that express a setf method for a given access form.

• A list of temporary variables.

• A list of value forms (subforms of the given form) to whose values the tempo-

rary variables are to be bound.

• A second list of temporary variable, called store variables.

• A storing form.

• An accessing form.

The temporary variables are bound to the value forms as if by let*; that is, the

value forms are evaluated in the order given and may refer to the values of earlier

value forms by using the corresponding variable.

The store variables are to be bound to the values of the newvalue form, that is,

the values to be stored into the generalized variable. In almost all cases, only a

single value is stored, and there is only one store variable.

The storing form and the accessing form may contain references to the temporary

variables (and also, in the case of the storing form, to the store variables). The ac-

cessing form returns the value of the generalized variable. The storing form modi-

fies the value of the generalized variable and guarantees to return the values of

the store variables as its values. These are the correct values for setf to return.

(Again, in most cases there is a single store variable and thus a single value to be

returned.) The value returned by the accessing form is, of course, affected by exe-

cution of the storing form, but either of these forms may be evaluated any number

of times, and therefore should be free of side effects (other than the storing action

of the storing form).

The temporary variables and the store variables are generated names, as if by

gensym or gentemp, so that there is never any problem of name clashes among

them, or between them and other variables in the program. This is necessary to

make the special forms that do more than one setf in parallel work properly.

These are psetf, shiftf and rotatef. 

Here are some examples of setf methods for particular forms: 
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• For a variable x:

()

()

(g0001)

(setq x g0001)

x�

• For (car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)

(car g0002)�

• For (supseq seq s e):

(g0004 g0005 g0006)

(seq s e)

(g0007)

(progn (replace g0004 g0007 :start1 g0005 :end1 g0006)

       g0007)

(subseq g0004 g0005 g0006)�

� zl:getchar s i Function

Returns the i (indexth) character of s (string) as a symbol. Note that 1-origin in-

dexing is used. This function is mainly for Maclisp compatibility; aref should be

used to index into strings (however, aref does not coerce symbols into strings).

Examples:

(zl:getchar "string" 1) => |s|

(zl:getchar ’symbol 2) => Y

(zl:getchar "STRING" 1) => S

(zl:getchar "ORANGE" 0) => NIL ;1-origin indexing is used�

� zl:getcharn s i Function

Returns the i (indexth) character of s (string) as a character. Note that 1-origin in-

dexing is used. This function is mainly for Maclisp compatibility; aref should be

used to index into strings (however, aref does not coerce symbols or numbers into

strings).

Examples:
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(zl:getcharn "string" 1) => #\s

(zl:getcharn ’symbol 2) => #\Y

(zl:getcharn "STRING" 1) => #\S

(zl:getcharn "ORANGE" 0) => 0 ;1-origin indexing is used�

� getf plist indicator &optional default Function

Searches for the property indicator on plist. If indicator is found, the corresponding

value is returned. If getf cannot find indicator, default is returned. If default is not

specified, nil is used. Note that there is no way to distinguish between a property

whose value is default and a missing property.

This function differs from function get in that it takes a place rather than a sym-

bol as its first argument.

�

(getf (symbol-plist ’some-symbol) ’color) => RED

�

(getf (symbol-plist ’some-symbol) ’size ’moderate) => MODERATE

�

(defvar *my-plist* ’())

(setf (getf *my-plist* ’mode) ’auto-fill)

*my-plist* => (MODE AUTO-FILL)

�

(getf *my-plist* ’mode) => AUTO-FILL�

See the section "Functions Relating to the Property List of a Symbol".

� gethash key table &optional default Function

Finds the entry in table whose key is key and returns the associated value. If there

is no such entry, gethash returns default, which is nil if not specified. It returns

three values; the value associated with key, whether or not the key was found (t or

nil), and the found key if one exists, or nil if not.

setf is used with gethash to make new entries in the table. If an entry with the

specified key exists, it is removed before the new entry is added.

Compatibility Note: Under Genera, gethash is extended to return an extra value:

it returns the value of the found key. The reason for this extension is that the

:test function, in general, matches non-eq keys with the key stored in the table. In

some situations, you might want to know the actual stored key. CLOE returns two

values, as specified in CLtL.

(setf (gethash a-key my-table) a-value)�

The default argument to gethash can be specified in a very useful way with relat-

ed functions like incf.

(incf (gethash b-key my-table 0) b-value)

is a shorthand for

(setf (gethash b-key my-table) (+ (gethash b-key my-table) b-value))�
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For a table of related items: See the section "Table Functions". 

� zl:gethash key hash-table Function

Finds the entry in table whose key is key and returns the associated value. This

function is obsolete; use gethash instead. 

� zl:gethash-equal key hash-table Function

Finds the entry in table whose key is key and returns the associated value. This

function is obsolete; use gethash instead. 

� zl:getl symbol indicator-list Function

Searches down symbol for any of the indicators in indicator-list until it finds a

property whose indicator is one of the elements of indicator-list. zl:getl uses the

symbol’s associated property list. (See the section "Property Lists".) zl:getl returns

the portion of the list inside symbol that begin with the first such property it

finds. So the car of the returned list is an indicator, and the cdr is the property

value. If none of the indicators on indicator-list are on the property list, zl:getl re-

turns nil. For example, if the property list of foo were:

(bar (1 2 3) baz (3 2 1) color blue height six-two)�

then:

(zl:getl ’foo ’(baz height))

  => (baz (3 2 1) color blue height six-two)�

When more than one of the indicators in indicator-list is present in indicator-list,

which one zl:getl returns depends on the order of the properties. This is the only

thing that depends on that order. 

For a table of related items: See the section "Functions That Operate on Property

Lists". 

� globalize name &optional package Function

Establishes a symbol named name in package and exports it. If this causes any

name conflicts with symbols with the same name in packages that use package, in-

stead of signalling an error globalize makes an attempt to resolve the name con-

flict automatically and prints an explanation of what is being done on zl:error-

output.

globalize is useful for patching up an existing package structure. For example, if

a new function is added to the Lisp language globalize can be used to add its

name to the global package and hence make it accessible to all packages. Symbols

with the desired name might already exist, either by coincidence or because the

function was already defined or already called. globalize makes all such symbols

have the new function as their definition.
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package can be a package object or the name of a package, as a symbol or a

string. It defaults to the global package. globalize is the only function that does

not care whether package is locked.

name can be a symbol or a string. If package already contains a symbol by that

name, that symbol is chosen. Otherwise, if name is a symbol, it is chosen. If name

is a string and any of the packages that use package contains a nonshadowing

symbol by that name, one such symbol is chosen. Otherwise, a new symbol named

name is created. Whichever symbol is chosen this way is made present in package

and exported from it. If the home package of the chosen symbol is a package that

uses package, then the home package is set to package; in other words, the symbol

is "promoted" to a "higher" package. If the home package of the chosen symbol is

some other package, it is not changed. This case typically occurs when the chosen

symbol is inherited by package from some package it uses.

The above rules for choosing a symbol to export ensure that no name conflict oc-

curs if at all possible. If any nonshadowing symbols exist named name but that are

distinct from the chosen symbol present in the packages that use package, then a

name conflict occurs. globalize does its best to resolve the name conflict by merg-

ing together the values, function definitions, and properties of all the symbols in-

volved. After merging, all the symbols have the same value, the same function

definition, and the same properties. The value cells, function cells, and property

list cells of all the symbols are forwarded to the corresponding cells of the chosen

symbol, using sys:dtp-one-q-forward. This ensures that any future change to one

of the symbols is reflected by all of the symbols.

The merging operation consists simply of making sure that there are no conflicts.

If more than one of the symbols has a value (is boundp), all the values must be

eql or an error is signalled. Similarly, all the function definitions of symbols that

are fboundp must be eql and all the properties with any particular indicator must

be eql. If an error occurs, you must manually resolve it by removing the unwanted

value, definition, or property (using makunbound, fmakunbound, or zl:remprop)

then try again.

Note that if name is a symbol, globalize attempts to use that symbol, but there is

no guarantee that it will not use some other symbol. If name is in a package that

does not use package, and globalize does not use name as the symbol (because an-

other symbol by that name already exists in package or in some package that uses

package), name is not merged with the chosen symbol. It is generally more pre-

dictable to use a string, rather than a symbol, for name.

Of course, globalize cannot cause two distinct symbols to become eq. Its conflict

resolution techniques are useful only for symbols that are used as names for

things like functions and variables, not for symbols that are used for their own

sake. You can sometimes get the desired effect by using one of the conflicting

symbols as the first argument to globalize, rather than using a string.

For example, suppose a program in the color package deals with colors by symbol-

ic names, perhaps using zl:selectq to test for such symbols as red, green, and

yellow. Suppose there is also a function named red in the math package and

someone decides that this function is generally useful and should be made global.
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Doing (globalize ’color:red) ensures that the exported symbol is the one that the

color program is looking for; this means that every package except the math pack-

age sees the right symbol to use if it wants to call the color program. Programs

that call the red function do not care which of the two symbols they use as the

name of the function, since both symbols have the same definition. Usually the sit-

uation described in this example would not arise, because standard programming

style dictates that the color program should have been using keywords for this ap-

plication.

globalize returns two values. The first is the chosen symbol and the second is a

(possibly empty) list of all the symbols whose value, function, and property cells

were forwarded to the cells of the chosen symbol.

To disable the messages printed by globalize, bind zl:error-output to a null

stream (one that throws away all output). For example:

(let ((zl:error-output ’si:null-stream))

  (globalize ’rumpelstiltskin))�

� go tag Special Form

Transfers control within a tagbody form or a construct like do or prog that uses

an implicit tagbody.

The tag can be a symbol or an integer. It is not evaluated. go transfers control to

the tag in the body of the tagbody that is eql to the tag in the go form. If the

body has no such tag, the bodies of any lexically containing tagbody forms are ex-

amined as well. If no tag is found, an error is signalled.

The scope of tag is lexical. That is, the go form must be inside the tagbody con-

struct itself (or inside a tagbody form that that tagbody lexically contains), not

inside a function called from the tagbody, but defined outside the tagbody.

Examples:

(tagbody

  (let ((z 5))

    (unwind-protect

(if (= 5 z) (go out))

      (print z)))

  out

   (princ "4 3 and then there were none")(terpri)) => 

5 4 3 and then there were none

NIL
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�

(prog (x y z)

  (setq x some frob)

loop

  do something

  (if some predicate (go endtag))

  do something more

  (if (minusp x) (go loop))

endtag

  (return z))�

(let ((i 0)

      (result t))

  (tagbody loop

    (when (and (< i 20) result)

      (unless (= (aref *data-vector* i) i)

        (setq result nil))

      (go loop))))�

For a table of related items: See the section "Transfer of Control Functions". 

� graphic-char-p char Function

Returns t if char does not have any control bits set and is not a format effector.

(graphic-char-p #\A) => T

(graphic-char-p #\c-A) => NIL

(graphic-char-p #\Space) => T�

For a table of related items, see the section "Character Predicates".

� zl:greaterp number &rest more-numbers Function

In your new programs, we recommend that you use the function >, which is the

Common Lisp equivalent of zl:greaterp.

zl:greaterp compares its arguments from left to right. If any argument is not

greater than the next, zl:greaterp returns nil. But if the arguments are monotoni-

cally strictly decreasing, the result is t. Examples:

(zl:greaterp 4 3) => t

(zl:greaterp 4 3 2 1 0) => t

(zl:greaterp 4 3 1 2 0) => nil�

� zl:grind-top-level exp &optional si:grind-width (si:grind-real-io zl:standard-output)

si:grind-untyo-p (si:grind-displaced ’si:displaced) (terpri-p t) si:grind-notify-fun (loc

(ncons exp)) Function

Pretty-prints exp on stream, inserting up to si:grind-width characters per line. This

is the primitive interface to the pretty-printer. Note that it does not support vari-
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able-width fonts. If the si:grind-width argument is supplied, it is how many charac-

ters wide the output is to be. If si:grind-width is unsupplied or nil, zl:grind-top-

level tries to determine the "natural width" of the stream by sending a :size-in-

characters message to the stream and using the first returned value. If the

stream does not handle that message, a width of 95 characters is used instead.

The remaining optional arguments activate various features and usually should not

be supplied. These options are for internal use by the system, and are documented

here only for completeness. If untyo-p is t, the :untyo and :untyo-mark operations

are used on stream, speeding up the algorithm somewhat. displaced controls the

checking for displacing macros; it is the symbol that flags a place that has been

displaced, or nil to disable the feature. If terpri-p is nil, zl:grind-top-level does not

advance to a fresh line before printing.

If si:grind-notify-fun is non-nil, it is a function of three arguments and is called

for each "token" in the pretty-printed output. Tokens can be atoms, open and close

parentheses, and reader macro characters such as ’. The arguments to si:grind-

notify-fun are the token, its "location" (see next paragraph), and t if it is an atom

or nil if it is a character.

loc is the "location" (typically a cons) whose car is exp. As the grinder recursively

descends through the structure being printed, it keeps track of the location where

each thing came from, for the benefit of the si:grind-notify-fun, if any. This makes

it possible for a program to correlate the printed output with the list structure.

The "location" of a close parenthesis is t, because close parentheses have no asso-

ciated location. 

� grindef &rest fcns Special Form

Prints the definitions of one or more functions, with indentation to make the code

readable. Certain other "pretty-printing" transformations are performed: 

• The quote special form is represented with the ’ character. 

• Displacing macros are printed as the original code rather than the result of

macro expansion.

• The code resulting from the backquote (‘) reader macro is represented in terms

of ‘.�

The subforms to grindef are the function specs whose definitions are to be print-

ed; ordinarily, grindef is used with a form such as (grindef foo) to print the defi-

nition of foo. When one of these subforms is a symbol, if the symbol has a value

its value is prettily printed also. Definitions are printed as defun special forms,

and values are printed as setq special forms.

If a function is compiled, grindef says so and tries to find its previous interpreted

definition by looking on an associated property list. See the function uncompile.

This works only if the function’s interpreted definition was once in force; if the

definition of the function was simply loaded from a binary file, grindef does not

find the interpreted definition and cannot do anything useful.
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With no subforms, grindef assumes the same arguments as when it was last

called. 

� zl:haipart x n Function

Returns the high n bits of the binary representation of |x|, or the low -n bits if n

is negative. x must be an integer; its sign is ignored. zl:haipart could have been

defined by:

(defun zl:haipart (x n)

  (setq x (abs x))

  (if (minusp n)

      (logand x (1- (ash 1 (- n))))

      (ash x (min (- n (zl:haulong x)) 0))))�

For a table of related items: See the section "Functions Returning Components or

Characteristics of Argument". 

� :handle-condition cond ignore Message

An interactive handler message to instances of dbg:basic-handler.

cond is a condition object. You should handle this condition, ignoring the second

argument. :handle-condition can return values or throw in the same way that

condition-bind handlers can. See the message :handle-condition-p.

� :handle-condition-p cond Message

An interactive handler message to Restart Handlers instances of dbg:basic-

handler. This message examines cond which is a condition object. It returns nil it

if declines to handle the condition and something other than nil when it is pre-

pared to handle the condition. See the message :handle-condition. 

� hash-table Type Specifier

hash-table is the type specifier symbol for the predefined Lisp data structure of

that name.

The types hash-table, readtable, package, pathname, stream and random-state

are pairwise disjoint.

Examples:
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(setq a-hash-table (make-hash-table)) 

=> #<EQL-BLOCK-ARRAY-PROCESS-LOCKING-DUMMY

        -GC-LOCKING-ASSOCIATION-MUTATING-TABLE 16126776>

(setf (gethash ’color a-hash-table) ’red) => RED

(setf (gethash ’name a-hash-table) ’Ron) => RON

(typep ’hash-table ’common) => T

(subtypep ’hash-table ’t) => T and T

(sys:type-arglist ’hash-table) => NIL and T

(hash-table-p a-hash-table) => T�

See the section "Data Types and Type Specifiers". See the section "Table Manage-

ment".

� hash-table-count table Function

Returns the number of entries in table. When a table is first created or has been

cleared, the number of entries is zero.

(hash-table-count (setq new-hash-table (make-hash-table :size 5000)))

 => 0�

For a table of related items: See the section "Table Functions".

� hash-table-p object Function

Returns true if and only if object is a hash table. Under Genera, hash-table-p re-

turns t for old Zetalisp hash tables also.

(hash-table-p (make-hash-table)) => T�

For a table of related items: See the section "Table Functions".

� zl:haulong x Function

Returns the number of significant bits in |x|. x must be an integer. Its sign is ig-

nored. The result is the least integer strictly greater than the base-2 logarithm of

|x|.

zl:haulong is similar to integer-length.

Examples:

(zl:haulong 0) => 0

(zl:haulong 3) => 2

(zl:haulong -7) => 3�

For a table of related items: See the section "Functions Returning Components or

Characteristics of Argument". 

� :home-cursorpos Message
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This operation is supported by the same streams that support :read-cursorpos. It

sets the position of the cursor. It puts the cursor back at the begining of the

stream. For window streams, it puts the cursor at the upper left edge of the win-

dow. 

� zl:hostat &rest hosts Function

Asks each of the hosts for its status, and prints the results. If no hosts are speci-

fied, asks all hosts on the Chaosnet. Hosts can be specified by either name or octal

number.

For each host, a line is displayed that either says that the host is not responding

or gives metering information for the host’s network attachments. If a host is not

responding, probably it is down or there is no such host at that address. A Symbol-

ics host can fail to respond if it is looping inside without-interrupts or paging ex-

tremely heavily, such that it is simply unable to respond within a reasonable

amount of time. 

See the section "Show Hosts Command".

To abort the host status report produced by zl:hostat or FUNCTION H, press

c-ABORT. 

� zl:ibase Variable

In your new programs, we recommend that you use the variable *read-base*,

which is the Common Lisp equivalent of zl:ibase.

The value of zl:ibase is a number that is the radix in which integers and ratios

are read. The initial value of zl:ibase is 10. zl:ibase should not be greater than

36.

When zl:ibase is set to a value greater than ten, the reader interprets the token

as a symbol, unless control variable si:*read-extended-ibase-signed-number* or

si:*read-extended-ibase-unsigned-number* is set to t. 

� identity object Function

Always returns object as its value. Sometimes functions require a second function

as an argument, and identity is useful in those situations. 

� if condition true &rest false�

Special Form

The simplest conditional form. The "if-then" form looks like:

(if predicate-form then-form)�

predicate-form is evaluated, and if the result is non-nil, the then-form is evaluated

and its result is returned. Otherwise, nil is returned.
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Examples:

(if (numberp ’a) "never reaches this point") => NIL

�

(if (not nil) "A Word") => "A Word"

�

(if ’not-nil "reaches this point") => "reaches this point"�

In the "if-then-else" form, it looks like:

(if predicate-form then-form else-form)�

predicate-form is evaluated, and if the result is non-nil, the then-form is evaluated

and its result is returned. Otherwise, the else-form is evaluated and its result is

returned.

Examples:

(if (equal ’boy ’girl)  "same" "different") => "different"�

(if (not nil) ’A ’B) => A�

(if ’word "reaches this point" "never reaches this point") 

=> "reaches this point"�

(defun make-even (integer)

  (if (oddp integer) (+ integer 1) integer))

�

(make-even 5) => 6

(make-even 2) => 2�

Common Lisp Compatibility Note: The Symbolics Common Lisp version of if is

extended to allow you to supply more than three arguments; the CLtL version re-

quires two or three arguments, and signals an error if additional arguments are

supplied. 

Zetalisp Note: Zetalisp supports multiple else clauses: if there are more than three

subforms, if assumes you want more than one else-form; these are evaluated se-

quentially and the result of the last one is returned, if the predicate returns nil.

CLOE Note: In CLOE, if signals a warning if you use multiple else forms. Multi-

ple else clauses are incompatible with the language specification presented in Guy

Steele’s Common Lisp: the Language.

For a table of related items: See the section "Conditional Functions".

� if keyword for loop

if expr

If expr evaluates to nil, the following clause is skipped, otherwise not.

Examples
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�

(defun print-odd (list-of-nums)

  (loop for num in list-of-nums

  if (oddp num)

  collect num and do (print num)))  => PRINT-ODD

(print-odd ’(2 3 49 2 3 4))  => 

3 

49 

3 (3 49 3)�

if-then-else conditionals can be written using the else keyword, as in:

(defun print-odd-else (list-of-nums)

  (loop for num in list-of-nums

if (oddp num)

  collect num and do (print num)

else 

  do (print "An even number !"))) => PRINT-ODD-ELSE

(print-odd-else ’(4 3 2 9 7)) => 

"An even number !" 

3 

"An even number !" 

9 

7 (3 9 7)�

Multiple clauses can appear in an else-phrase using and to join them.

In the typical format of a conditionalized clause such as

when expr1 keyword expr2�

expr2 can be the keyword it. If that is the case, a variable is generated to hold the

value of expr1, and that variable gets substituted for expr2. Thus, the composition:

when expr return it�

is equivalent to the clause:

thereis expr�

and you can collect all non-null values in an iteration by saying:

when expression collect it�

If multiple clauses are joined with and, the it keyword can only be used in the

first. If multiple whens, unlesses, and/or ifs occur in sequence, the value substi-

tuted for it is that of the last test performed. The it keyword is not recognized in

an else-phrase.

Conditionals can be nested.

See the section "loop Conditionalization".

� ignore var1 var2 ... Declaration
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Specifies that bindings of the vars are never used.

See the section "Declaration Specifiers".

� ignore &rest ignore Function

Takes any number of arguments and returns nil. This is often useful as a "dum-

my" function; if you are calling a function that takes a function as an argument,

and you want to pass one that does not do anything and does not mind being

called with any argument pattern, use this.

ignore is also used to suppress compiler warnings for ignored arguments. For ex-

ample:

(defun foo (x y)

  (ignore y)

  (sin x))�

See the section "Functions and Special Forms for Constant Values". 

� ignore-errors &body body Special Form

Sets up a very simple handler on the bound handlers list that handles all error

conditions. Normally, it executes body and returns the first value of the last form

in body as its first value and nil as its second value. If an error signal occurs

while body is executing, ignore-errors immediately returns with nil as its first

value and something not nil as its second value.

ignore-errors replaces zl:errset and catch-error. 

For a table of related items, see the section "Basic Forms for Bound Handlers".

� imagpart number Function

If number is a complex number, imagpart returns the imaginary part of number.

If number is a noncomplex number, imagpart returns a zero of the same type as

number.

Examples:

(imagpart #c(3 4)) => 4

(imagpart 4) => 0�

Related Functions:

complex

realpart

�

For a table of related items: See the section "Functions that Decompose and Con-

struct Complex Numbers".

� zl:implode x Function
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Similar to zl:maknam, except that the returned symbol is interned in the current

package. This function is provided mainly for Maclisp compatibility.

Example:

(zl:implode ’(a #\b "C" #\4 5)) => |AbC4¬|�

� import symbols &optional package Function

symbols should be a list of symbols or a single symbol. If symbols is nil, it is treat-

ed like an empty list. These symbols become internal symbols in package, and can

therefore be referred to without a colon qualifier. import signals a correctable er-

ror if any of the imported symbols has the same name as some distinct symbol al-

ready available in the package.

=> *package*

TURBINE-PACKAGE

=> (export valve-pressure)

T

=> (import generator:valve-pressure)

ERROR: GENERATOR:VALVE-PRESSURE WILL SHADOW VALVE-PRESSURE�

package can be a package object or the name of a package (a symbol or a string).

If unspecified, package defaults to the value of *package*. Returns t.

The following code makes all the external symbols of the turbine-package accessi-

ble in the generator-package.

(do-external-symbols (symbol ’turbine-package)

  (import symbol ’generator-package))�

Of course, the following call to use-package inside of generator-package would

accomplish the same thing:

(use-package ’turbine-package)�

� in-package package-name &rest make-package-keywords Function

Intended to be placed at the start of a file containing a subsystem that is to be

loaded into some package other than user. If there is not already a package named

package-name, this function acts like make-package, except that after the new

package is created, *package* is set to it. This binding remains until changed by

the user, or until the *package* variable reverts to its old value at the completion

of a load operation.

If there is a package named package-name, the assumption is that the user is

reloading a file after making some changes. The existing package is augmented to

reflect any new nicknames or new packages in the :use list, and *package* is

then set to this package. 

� incf access-form &optional amount Macro
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Increments the value of a generalized variable. (incf ref) increments the value of

ref by 1. (incf ref amount) adds amount to ref and stores the sum back into ref. It

returns the new value of ref.

access-form can be any form acceptable to setf.

(incf (car (mumble)))�

is almost equivalent to

(setf (car (mumble)) (1+ (car (mumble))))�

except that while the latter would evaluate mumble twice, incf actually expands

into a let and mumble is evaluated only once.

(setq arr (make-array (4) :element-type ’integer

                      :initial-element 5))

�

(incf (aref arr 3) 4) => #(5 5 5 9)�

See the section "Generalized Variables".

� :increment-cursorpos x y &optional (units ’:pixel) Message

This operation is supported by the same streams that support :read-cursorpos. It

sets the position of the cursor. x and y are the amounts to increment the current x

and y coordinates. units is the same as the units argument to :read-cursorpos. 

� :info Message

Returns a cons of the truename and creation date of the file. The creation date is

a number that is a universal time. This can be used to tell if the file has been

modified between two opens. For an output stream the info is not meaningful un-

til after the stream has been closed, at least on an ITS file server. 

� sys:inhibit-fdefine-warnings Variable

Controls printing of warnings when functions are redefined. This variable is nor-

mally nil. Setting it to t prevents fdefine from warning you and asking about

questionable function definitions such as a function being redefined by a different

file than defined it originally, or a symbol that belongs to one package being de-

fined by a file that belongs to a different package. Setting it to :just-warn allows

the warnings to be printed out, but prevents the queries from happening; it as-

sumes that your answer is "yes", that is, that it is all right to redefine the func-

tion.

Note: The preferred way of associating the definition of a function with its source

file is by using record-source-file-name: See the function record-source-file-name.

� clos:initialize-instance instance &rest initargs Generic Function
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Calls clos:shared-initialize to initialize the instance, and returns the initialized

instance. This generic function is intended to be specialized by programmers, but

not to be called directly. It is called by clos:make-instance.

instance The instance to initialize.

initargs Alternating initialization argument names and values. �

The default primary method for clos:initialize-instance calls the clos:shared-

initialize generic function with the instance, t, and the initialization arguments

provided to clos:initialize-instance.

Note that the usual way for users to customize the initialization behavior is to

specialize clos:initialize-instance by writing after-methods. Any applicable after-

methods for clos:initialize-instance are called after the primary method for

clos:initialize-instance. A user-defined primary method would override the default

method, and thus could prevent the usual slot-filling behavior. 

� si:initial-readtable Variable

The value of si:initial-readtable is the initial standard readtable. You should never

change the contents of either this readtable or si:initial-readtable; only examine

it, by using it as the from-readtable argument to zl:copy-readtable or zl:set-

syntax-from-char. Change zl:readtable instead. 

� dbg:initialize-special-commands condition Generic Function

The Debugger calls dbg:initialize-special-commands after it prints the error mes-

sage. The methods are combined with :progn combination, so that each one can do

some initialization. In particular, the methods for this generic function can remove

items from the list dbg:special-commands in order to decide not to offer these

special commands.

The compatible message for dbg:initialize-special-commands is:

:initialize-special-commands

For a table of related items: See the section "Debugger Special Command Func-

tions". 

� initially keyword for loop

initially expression

Puts expression into the prologue of the iteration. It is evaluated before any

other initialization code other than the initial bindings. For the sake of

good style, the initially clause should therefore be placed after any with

clauses but before the main body of the loop.

Examples
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(defun sum-it (limit)

  (loop with sum-of-series = 0

initially (print "The sum of this series is :")

for num from 0 to limit

do

    (setq sum-of-series (+ sum-of-series num))

finally (prin1 sum-of-series))) => SUM-IT

(sum-it 9)  => 

"The sum of this series is :" 45

NIL�

See the macro loop.

� inline Declaration

(inline function1 function2 ... ) specifies that it is desirable for the compiler to

open-code calls to the specified functions; that is, the code for a specified function

should be integrated into the calling routine, appearing "in line" in place of a pro-

cedure call. This may achieve extra speed at the expense of debuggability (calls to

functions compiled in-line cannot be traced, for example). This declaration is per-

vasive, that is it affects all code in the body of the form. The compiler is free to

ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned

has a lexically apparent local definition (as made by flet or labels), the declaration

applies to that local definition and not to the global function definition.

See the section "Declaration Specifiers".

� :input-editor function &rest arguments Message

This is supported by interactive streams such as windows. It is described in its

own section (see the section "The Input Editor Program Interface").

Most programs should not send this message directly. See the function with-input-

editing. 

� input-stream-p stream Function

Returns t if stream can handle input operations, otherwise returns nil.

(streamp *standard-input*) => T

(setq file-stream

      (open "foo" :direction :output :element-type ’character))

�

(input-stream-p file-stream) => NIL�

� :input-wait &optional whostate function &rest arguments Message
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This message to an input stream causes the stream to process-wait with whostate

until either of the following conditions is met:

• Applying function to arguments returns non-nil.

• The stream enters a state in which sending it a :tyi message would immediately

return a value or signal an error.�

When either of these conditions is met, :input-wait returns. If the stream enters a

state in which sending it a :tyi message would signal an error, :input-wait returns

instead of signalling the error. The returned value is not defined.

whostate is what to display in the status line while process-waiting. It can be a

string or nil. A value of nil means to use the normal whostate for this stream,

such as "Tyi", "Net In", or "Serial In". For interactive streams, the default

whostate is "Tyi".

function can be a function or nil. A value of nil means that the stream just waits

until sending it a :tyi message would immediately return a value or signal an er-

ror.

This message is intended for programs that need to wait until either input is

available from some interactive stream or some other condition, such as the arrival

of a notification, occurs. Any stream that can become the value of zl:terminal-io

must support :input-wait.

Following is a simple example of the use of :input-wait to wait for input or a noti-

fication to an interactive stream. The function just displays notifications and prints

representations of characters or blips received as input.

(defun my-top-level (stream)

  (error-restart-loop ((error sys:abort) "My top level")

    (send stream :input-wait nil

  #’(lambda (note-cell)

      (not (null (location-contents note-cell))))

  (send stream :notification-cell))

    (let ((note (send stream :receive-notification)))

      (if note

  (sys:display-notification stream note :stream)

  (let ((char (send stream :any-tyi-no-hang)))

    (cond ((null char))

  ((characterp char)

   (format stream "~&Character: ~C" char))

  ((listp char)

   (format stream "~&Blip: ~S" char))

  (t (format stream "~&Unknown object: ~S" char))))))))�

� (flavor:method :insert si:heap) item key Method

Inserts item into the heap based on key, and returns item and key.
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For a table of related items: See the section "Heap Functions and Methods". 

� inspect &optional object Function

A window-oriented version of describe.

Note: While the Symbolics Common Lisp version of this function does not require

the argument object, the function as specified in Common LISP: The Language

does. See the section "How the Inspector Works".

� instance &optional (flavor ’*) Type Specifier

Denotes flavor instances. When a new flavor is defined with defflavor, the name

of the flavor becomes a valid type symbol, and individual instances of that flavor

become valid types of instance that can be tested with typep.

instance is a subtype of t.

Examples:

(defflavor ship

  (name x-velocity y-velocity z-velocity mass)

   ()    ; no component flavors

  :readable-instance-variables

  :writable-instance-variables

  :initable-instance-variables) => SHIP

�

(setq my-ship

  (make-instance ’ship :name "Enterprise"

                       :mass 4534

                       :x-velocity 24

                       :y-velocity 2

                       :z-velocity 45)) => #<SHIP 43100701>

�

(ship-name my-ship) => "Enterprise"

�

(typep my-ship ’instance) => T

�

(typep my-ship ’(instance ship)) => T

 

(zl:typep my-ship) => SHIP

�

(type-of my-ship) => SHIP

�

(type-of ’ship) => SYMBOL

�

(sys:type-arglist ’instance) => (&OPTIONAL (FLAVOR ’*)) and T�

See the section "Data Types and Type Specifiers".
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For a discussion of flavors: See the section "Flavors".

� instancep object Function

Returns t if the object is a flavor instance, otherwise nil. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� int-char integer Function

Accepts a non-negative integer argument and returns a character if integer is in

the range of char-int. Especially useful for converting an integer returned by a

call to char-int back into a character.

(int-char 65) => #\A

�

(defvar char-arr (make-array 512))

(setf (elt char-arr (char-int #\a)) ’first)

�

(dotimes (i 512)

  (if (eq (elt char-arr i) ’first)

      (return (int-char i))))�

In the current Unix implementation of CLOE, integer arguments in the range of 1

to 4096 return unique character objects. A larger integer argument returns one of

the characters returned by an argument less than 4096. Arguments above 4096 re-

turn #\undefined-lozenge as defined under Genera.

For information on characters, see the section "The Character Set".

For a table of related items, see the section "Character Conversions". 

� integer &optional ( low ’*) ( high ’*) Type Specifier

integer is the type specifier symbol for the predefined Lisp integer number type.

The types integer and ratio are an exhaustive partition of the type rational, since

rational ≡ (or integer ratio).

This type specifier can be used in either symbol or list form. Used in list form,

integer allows the declaration and creation of specialized integer numbers, whose

range is restricted to low and high.

low and high must each be an integer, a list of an integer, or unspecified. If these

limits are expressed as integers, they are inclusive; if they are expressed as a list

of an integer, they are exclusive; * means that a limit does not exist, and so effec-

tively denotes minus or plus infinity, respectively.

The type fixnum is simply a name for (integer smallest largest) for the values of

most-negative-fixnum and most-positive-fixnum. The type (integer 0 1) is so use-

ful that it has the special name bit.
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Examples:

(typep 4 ’integer) => T

(subtypep ’integer ’rational) => T and T ;subtype and certain

(subtypep ’(integer *) ’rational) => T and T

(subtypep ’signed-byte ’integer) => T and T

(subtypep ’fixnum ’integer) => T and T

(subtypep ’bignum ’integer) => T and T

(commonp 23.) => T

(integerp 23.) => T

(integerp -3_78) => T

(integerp most-positive-fixnum) => T

(integerp most-negative-fixnum) => T

(integerp -2147483648) => T

(equal-typep ’bit ’(integer 0 1)) => T

(equal-typep ’(integer  -2147483648 2147483647) ’fixnum) => T

(sys:type-arglist ’integer) => (&OPTIONAL (LOW ’*) (HIGH ’*)) and T�

See the section "Data Types and Type Specifiers".

See the section "Numbers". 

� integer-decode-float float Function

Returns three values, representing: the significand (scaled so as to be an integer),

the exponent, and the sign of the floating-point argument, float, as described be-

low. Scaling the significand essentially means interpreting the bit field of the man-

tissa as an integer. 

For an argument f, the first result is an integer which is strictly less than (expt 2

(float-precision f)), but no less than (expt 2 (-(float-precision f) 1)) except that if

f is zero, the returned integer value is zero.

The second value returned is an integer e such that the first result (the signifi-

cand) times 2 raised to the power e is equal to the absolute value of the argument

float.

The final value of integer-decode-float represents the sign of float and is 1 or -1.

Examples:

(integer-decode-float 2.0) => 8388608 and -22 and 1

(integer-decode-float -2.0) => 8388608 and -22 and -1

(integer-decode-float 4.0) => 8388608 and -21 and 1

(integer-decode-float 8.0) => 8388608 and -20 and 1

(integer-decode-float 3.0) => 12582912 and -22 and 1�

The exact values produced by the following functions serve illustrative purposes,

and might vary between CLOE implementations or within an implementation over

time.
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                                 significand   exponent   sign

(integer-decode-float 4.5)         9437184       -21       1

(decode-float 4.5)                  0.5625         3       1

(integer-decode-float 4.0)         8388608       -21       1

(decode-float 4.0)                     0.5         3       1

(integer-decode-float 1.0)         8388608       -23       1

(decode-float 1.0)                     0.5         1       1

(* 0.5625 (expt 2 3)) → 4.5�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".

� integer-length integer Function

Returns the result of the following computation:

(values (ceiling (log (if (minusp integer)(- integer)(1+ integer)) 2))))�

If integer is non-negative, the result represents the number of significant bits in

the unsigned binary representation of integer. More generally, regardless of the

sign of integer, the result denotes the number of significant bits needed to repre-

sent integer in unsigned binary two’s-complement form. (To get the number of bits

needed for a signed binary two’s complement representation, add 1 bit to the result

of integer-length).

Examples:

(integer-length 0)  => 0 (integer-length -0)  => 0

(integer-length 1)  => 1 (integer-length -1)  => 0

(integer-length 2)  => 2 (integer-length -2)  => 1

(integer-length 8)  => 4 (integer-length -8)  => 3

(integer-length 15) => 4 (integer-length -15) => 4

�

;;; A possible use of integer-length 

;;; The function trailing-zeros returns the number of

;;; consecutive zeros starting at the least significant

;;; bit of the binary representation of an integer 

�

(defun trailing-zeros (integer)

  (1- (integer-length (logand integer (- integer)))))

�

(trailing-zeros 0) => -1

;;; An adequate result since there are an undefined amount 

;;; of trailing zeros in 0

(trailing-zeros 1) => 0

(trailing-zeros 4) => 2 ; 4 is #b100

(trailing-zeros 9) => 0 ; 9 is #b1001�

For a table of related items, see the section "Functions Returning Components or

Characteristics of Argument".
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� integerp object Function

This predicate returns t if its argument is an integer; otherwise it returns nil.

Examples:

(integerp 7) => T

(integerp 4.0) => NIL

(integerp #c(2 0)) => T ;#c(2 0) is coerced to an integer

(integerp "not a number") => NIL�

The following code tests whether a and b are numbers. If they are numbers, they

are added. Otherwise, we attempt to extract integers that are then tested by

integerp:

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (consp a)

   (integerp (car a))

   (consp b)

           (integerp (car b)))

    (+ (car a) (car b))

    (error "couldn’t extract integers from ~a and ~a" a b)))�

For a table of related items, see the section "Numeric Type-checking Predicates".

� :interactive Message

Returns t if the stream is interactive and nil if it is not. Interactive streams, built

on si:interactive-stream, are streams designed for interaction with human users.

They support input editing. Use the :interactive message to find out whether a

stream supports the :input-editor message. 

� intern string &optional (pkg *package*) Function

Finds or creates a symbol named string in pkg. Inherited symbols in pkg are in-

cluded in the search for a symbol named string. If a symbol named string is found,

it is returned. If no such symbol is found, one is created and installed in pkg as

an internal symbol (if pkg is the keyword package, the symbol is installed as an

external symbol).

intern returns two values. The first is the symbol that was found or created. The

second value is nil for newly created symbols. If the symbol returned is a pre-

existing symbol, this second value is one of the following: 

:internal The symbol is present in pkg as an internal symbol.

:external The symbol is present in pkg as an external symbol.

:inherited The symbol is an internal symbol in pkg inherited by way of

use-package. �

intern is sensitive to case and under Genera, style. If a string contains character
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styles, use the function string-thin on its arguments. See the function string-thin.

The following code uses intern with multiple-value-bind to capture both returned

values. If the status of the interned symbol is :internal, then the symbols is ex-

ported.

(multiple-value-bind (symbol status) (intern new-symbol)

  (when (eq status ’:internal)

    (export symbol)))�

For more information: See the section "Mapping Names to Symbols".

� zl:intern sym &optional pkg Function

Finds or creates a symbol named sym accessible to the package pkg, either directly

present in pkg or inherited from a package it uses.

See the function intern. 

� intern-local string &optional pkg Function

Finds or creates a symbol named string directly present in pkg. Symbols inherited

by pkg from packages it uses are not considered, thus intern-local can cause a

name conflict. intern-local is considered to be a low-level primitive, and indiscrim-

inate use of it can cause undetected name conflicts. Use import, shadow, or

shadowing-import for normal purposes.

If string is not a string but a symbol, and no symbol with that print name is al-

ready interned in pkg, intern-local interns string  rather than a newly created

symbol  in pkg (even if it is also interned in some other package) and returns it.

For more information: See the section "Mapping Names to Symbols". 

� intern-local-soft string &optional pkg Function

Find a symbol named string directly present in pkg. Symbols inherited by pkg from

packages it uses are not considered. If no symbol is found, the two values nil nil

are returned.

intern-local-soft is a good low-level primitive for when you want complete control

of what packages to search and when to add new symbols.

For more information: See the section "Mapping Names to Symbols".

� intern-soft string &optional pkg Function

Finds a symbol named string accessible to pkg, either directly present in pkg or in-

herited from a package it uses. If no symbol is found, the two values nil nil are

returned. 

� intersection list1 list2 &key (test #’eql) test-not (key #’identity) Function
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Returns a new list containing everything that is an element of both list1 and list2,

as checked by the :test and :test-not keywords. If either list has duplicate entries,

the redundant entries may or may not appear in the result. For example:

(intersection ’(a b c) ’(f a d)) => (A)

�

(intersection ’(a b c a d) ’(f a d)) => (A A D)

�

(intersection ’(a b c) ’(a f a d)) => (A)�

There is no guarantee that the order of elements in the result will reflect the or-

dering of the arguments in any particular way.

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For all possible ordered pairs consisting of one element from list1 and one element

from list2, the test is used to determine whether they match. For every matching

pair, the element from list1 is put in the result.

In the following example, intersection finds the new tenured professor:

(setq professors-with-tenure

  ’(("Jones" CS101 CS242)("smith" CS202 CS231)

    ("parks" CS221)("hunter" CS216 CS232)))

(setq new-professors

  ’(("Able" CS101 CS244)("Cain" CS101 CS331)

    ("Parks" CS221)("adams" CS215 CS222)))

�

(intersection professors-with-tenure new-professors

              :test #’string-equal :key #’car)

 =>

(("parks" CS221))�

For a table of related items: See the section "Functions for Comparing Lists". 

� zl:intersection &rest lists Function

Takes any number of lists that represent sets and returns a new list that repre-

sents the intersection of all the sets it is given. zl:intersection uses eq for its

comparisons. You cannot change the function used for the comparison. If no argu-

ments are supplied, (zl:intersection) returns nil.

For a table of related items: See the section "Functions for Comparing Lists". 
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� clos:invalid-method-error method format-string &rest args Function

Within method combination, signals an error when the method qualifiers of an ap-

plicable method are not valid for the method-combination type; it should be called

only within the dynamic extent of a method-combination function.

clos:invalid-method-error is called automatically when a method fails to satisfy

any qualifier pattern or predicate in a clos:define-method-combination-type form.

A method-combination function that imposes additional restrictions should call

clos:invalid-method-error explicitly if it encounters an invalid method.

method The method object that is invalid.

format-string A control string that can be given to format.

args Arguments required by the format-string.�

� math:invert-matrix matrix &optional into-matrix Function

Computes the inverse of matrix. If into-matrix is supplied, stores the result into it

and returns it; otherwise it creates an array to hold the result, and returns that.

matrix must be two-dimensional and square. The Gauss-Jordan algorithm with par-

tial pivoting is used. Note: If you want to solve a set of simultaneous equations,

you should not use this function; use math:decompose and math:solve.

math:invert-matrix does not work on conformally displaced arrays. 

� dbg:invoke-restart-handlers condition &key (flavors nil flavors-specified) Function

Searches the list of restart handlers to find a restart handler for condition. The

flavors argument controls which restart handlers are examined. flavors is a list of

condition names. When flavors is omitted, the function examines every restart

handler. When flavors is provided, the function examines only those restart han-

dlers that handle at least one of the conditions on the list.

The first restart handler that it finds to handle the condition is invoked and given

condition. It returns nil if no appropriate restart handler is found. 

� isqrt integer Function

Integer square root. integer must be a non-negative integer; the result is the great-

est integer less than or equal to the exact square root of integer.

Examples:

(isqrt 4) => 2

(isqrt 5) => 2

(isqrt 8) => 2

(isqrt 9) => 3

(isqrt 81) => 9

(isqrt 42) => 6�
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For a table of related items: See the section "Arithmetic Functions".

� &key Lambda List Keyword

If the lambda-list keyword &key is present, all specifiers up to the next lambda-

list keyword, or the end of the list, are keyword parameter specifiers. The keyword

parameter specifiers can be followed by the lambda-list keyword

&allow-other-keys, if desired. 

� keyword Type Specifier

keyword is the type specifier symbol for the predefined Lisp object of that name.

Examples:

(typep ’:list ’keyword) => T

(subtypep ’keyword ’t) => T and T

(subtypep ’keyword ’common) => NIL and NIL

(sys:type-arglist ’keyword) => NIL and T

(keywordp ’:fixnum) => T

�

See the section "Data Types and Type Specifiers".

See the section "Symbols, Keywords, and Variables".

� zl:keyword-extract keylist keyvar keywords &optional flags &body otherwise 

Special Form

Aids in writing functions that take keyword arguments in the standard fashion.

You can also use the &key lambda-list keyword to create functions that take key-

word arguments. &key is preferred and is substantially more efficient;

zl:keyword-extract is obsolete. See the section "Evaluating a Function Form".

The form:

(zl:keyword-extract key-list iteration-var

keywords flags other-clauses...)�

parses the keywords out into local variables of the function. key-list is a form that

evaluates to the list of keyword arguments; it is generally the function’s &rest ar-

gument. iteration-var is a variable used to iterate over the list; sometimes other-

clauses uses the form:

(car (setq iteration-var (cdr iteration-var)))�

to extract the next element of the list. (Note that this is not the same as pop, be-

cause it does the car after the cdr, not before.)

keywords defines the symbols that are keywords to be followed by an argument.

Each element of keywords is either the name of a local variable that receives the

argument and is also the keyword, or a list of the keyword and the variable, for

use when they are different or the keyword is not to go in the keyword package.
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Thus, if keywords is (a (b c) d) the keywords recognized are :a, b, and :d. If :a is

specified, its argument is stored into a. If :d is specified, its argument is stored

into d. If b is specified, its argument is stored into c.

Note that zl:keyword-extract does not bind these local variables; it assumes you

have done that somewhere else in the code that contains the zl:keyword-extract

form.

flags defines the symbols that are keywords not followed by an argument. If a flag

is seen its corresponding variable is set to t. (You are assumed to have initialized

it to nil when you bound it with let or &aux.) As in keywords, an element of flags

can be either a variable from which the keyword is deduced, or a list of the key-

word and the variable.

If there are any other-clauses, they are zl:selectq clauses selecting on the keyword

being processed. These clauses are for handling any keywords that are not handled

by the keywords and flags elements. These can be used to do special processing of

certain keywords for which simply storing the argument into a variable is not good

enough. Unless the other-clauses include an otherwise (or t) clause after them,

there is an otherwise clause to complain about any unhandled keywords found in

key-list. If you write your own otherwise clause, it is up to you to take care of any

unhandled keywords.

For a table of related items, see the section "Iteration Functions". 

� keywordp object Function

A predicate that is true if object is a symbol and its home package is the keyword

package, and false otherwise.

(keywordp ’key) => NIL

�

(keywordp ’:key) => T�

See the section "The Package Cell of a Symbol".

� labels functions &body body Special Form

Identical to flet in structure and purpose, but has slightly different scoping rules.

It, too, defines one or more functions whose names are made available within its

body. In labels, unlike flet, however, the functions being defined can refer to each

other mutually, and to themselves, recursively. Any of the functions defined by a

single use of labels can call itself or any other; there is no order dependence. Al-

though flet is analogous to let in its parallel binding, labels is not analogous to

let*.

labels is in all other ways identical to flet. It defines internal functions that can

be called, redefined, passed as funargs, and so on.

Functions defined by labels, when passed as funargs, generate closures. The allo-

cation of these closures, that is, whether they appear on the stack or in the heap,

is controlled in the same way as for internal lambdas. See the section "Funargs

and Lexical Closure Allocation".
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Here is an example of the use of labels:

(defun combinations (total-things at-a-time)

  ;; This function computes the number of combinations of

  ;; total-things things taken at-a-time at a time.

  ;; There are more efficient ways, but this is illustrative.

  (labels ((factorial (x)

             (permutations x x))

   (permutations (x n) ;x things n at a time

     (if (= n 1)

 x

 (* x (permutations (1- x) (1- n))))))

    (/ (permutations total-things at-a-time)

(factorial at-a-time))))�

In the following example, we use labels to locally define a function that calls it-

self. If we instead use flet, an error will result because the call to my-adder in

the body would refer to an outer (presumably non-existent) my-adder instead of

the local one.

(defun example-labels (operand-a operand-b)

  (labels ((my-adder (accumulator counter)

     (if (= counter 0)

         accumulator

         (my-adder (incf accumulator) (decf counter)))))

    (my-adder operand-a operand-b)))

�

(example-labels 6 4)  => 10�

� lambda lambda-list &rest body Special Form

Provided as a convenience, to obviate the need for using the function special form

when the latter is used to name an anonymous (lambda) function. When lambda is

used as a special form, it is treated by the evaluator and compiler identically to

the way it would have been treated if it appeared as the operand of a function

special form. For example, the following two forms are equivalent:

(my-mapping-function (lambda (x) (+ x 2)) list)

�

(my-mapping-function (function (lambda (x) (+ x 2))) list)�

Note that the form immediately above is usually written as:

(my-mapping-function #’(lambda (x) (+ x 2)) list)�

The first form uses lambda as a special form; the latter two do not use the

lambda special form, but rather, use lambda to name an anonymous function.

See the section "Functions and Special Forms for Constant Values".

Using lambda as a special form is incompatible with Common Lisp. 
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� lambda-list-keywords Constant

A list of all of the allowed "&" keywords. Some of these are obsolete and should

not be used in new code.

For more information on lambda-list keywords: See the section "Lambda-List Key-

words". See the section "Evaluating a Function Form".

&optional

Declares the following arguments to be optional. See the section "Evaluat-

ing a Function Form". 

&rest Declares the following argument to be a rest argument. There can be only

one &rest argument.

Under Genera, it is important to realize that the list of arguments to which

a rest-parameter is bound is set up in whatever way is most efficiently im-

plemented, rather than in the way that is most convenient for the function

receiving the arguments. It is not guaranteed to be a "real" list. Sometimes

the rest-args list is stored in the function-calling stack, and loses its validi-

ty when the function returns. If a rest-argument is to be returned or made

part of permanent list-structure, it must first be copied, as you must always

assume that it is one of these special lists. See the function sys:copy-if-

necessary.

The system does not detect the error of omitting to copy a rest-argument;

you simply find that you have a value that seems to change behind your

back. At other times the rest-args list is an argument that was given to

apply; therefore it is not safe to rplaca this list, because you might modify

permanent data structure. An attempt to rplacd a rest-args list is unsafe in

this case, while in the first case it causes an error, since lists in the stack

are impossible to rplacd.

Under CLOE, rest arguments are not typically stack-consed. You can move

a rest-arg consed on the stack using the declaration (sys:downward-rest-

argument). 

&key Separates the positional parameters and rest parameter from the keyword

parameters. See the section "Evaluating a Function Form". 

&allow-other-keys

In a lambda-list that accepts keyword arguments, says that keywords that

are not specifically listed after &key are allowed. They and the correspond-

ing values are ignored, as far as keyword arguments are concerned, but

they do become part of the rest argument, if there is one. 

&aux Separates the arguments of a function from the auxiliary variables. Follow-

ing &aux you can put entries of the form:

(variable initial-value-form)�

or just variable if you want it initialized to nil or do not care what the ini-

tial value is. 
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&body For macros defined by defmacro or macrolet only. &body is similar to

&rest, but declares to grindef and the code-formatting module of the editor

that the body forms of a special form follow and should be indented accord-

ingly. See the macro defmacro. 

&whole

For macros defined by defmacro or macrolet only. &whole is followed by

variable, which is bound to the entire macro-call form or subform. variable

is the value that the macro-expander function receives as its first argu-

ment. &whole is allowed only in the top-level pattern, not in inside pat-

terns. See the macro defmacro. 

&environment

For macros defined by defmacro or macrolet only. &environment is fol-

lowed by variable, which is bound to an object representing the lexical envi-

ronment where the macro call is to be interpreted. This environment might

not be the complete lexical environment. It should be used only with the

macroexpand function for any local macro definitions that the macrolet

construct might have established within that lexical environment.

&environment is allowed only in the top-level pattern, not in inside pat-

terns. See the section "Lexical Environment Objects and Arguments". See

the macro defmacro. 

zl:&special

Declares the following arguments and/or auxiliary variables to be special

within the scope of this function. zl:&special can appear anywhere in the

lambda-list any number of times. Note that you cannot use this keyword if

you are using CLOE. 

zl:&local

Turns off a preceding zl:&special for the variables that follow. zl:&local

can appear anywhere in the lambda-list any number of times. Note that you

cannot use this keyword if you are using CLOE. 

zl:&quote

Using zl:&quote is an obsolete way to define special functions. zl:&quote

declares that the following arguments are not to be evaluated. You should

implement language extensions as macros rather than through special

functions, because macros directly define a Lisp-to-Lisp translation and

therefore can be understood by both the interpreter and the compiler.

Special functions, on the other hand, only extend the interpreter. The com-

piler has to be modified to understand each new special function so that

code using it can be compiled. Since all real programs are eventually com-

piled, writing your own special functions is strongly discouraged. Note that

you cannot use this keyword in CLOE. 

zl:&eval

This is obsolete. Use macros instead to define special functions. zl:&eval
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turns off a preceding zl:&quote for the arguments which follow. Note that

if you are using CLOE, you cannot use this keyword. 

zl:&list-of

This is not supported. Use loop or mapcar instead of zl:&list-of. 

� lambda-macro function lambda-list &body body Function

Like macro, defines a lambda macro to be called name. lambda-list should be a list

of one variable, which is bound to the function being expanded. The lambda macro

must return a function. Example:

(lambda-macro ilisp (x)

  ‘(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))�

This defines a lambda macro called ilisp. After it has been defined, the following

list is a valid Lisp function:

(ilisp (x y z) (list x y z))�

The above function takes three arguments and returns a list of them, but all of

the arguments are optional and any extra arguments are ignored. (This shows how

to make functions that imitate Interlisp functions, in which all arguments are al-

ways optional and extra arguments are always ignored.) So, for example:

(funcall #’(ilisp (x y z) (list x y z)) 1 2)  =>  (1 2 nil)�

� lambda-parameters-limit Constant

A positive integer that is the upper exclusive bound on the number of distinct pa-

rameter names that can appear in a single lambda-list. The value is currently 128

for 3600-series machines and 50 for Ivory-based machines, and CLOE. If you are

using CLOE, consider this example:

(if (> (length keyword-pair-list) lambda-parameter-limit)

  (handle-too-many-keywords keyword-pair-list))�

� last x 1, x 0, x n Function

Using last with the arguments x 1 returns the last cons of list x. If x 1 is nil, it

returns nil. Note that last is not analogous to first (first returns the first element

of a list, but last does not return the last element of a list); this is a historical

artifact. Example:

(setq x ’(a b c d))

(last x) => (d)

(rplacd (last x) ’(e f))

x => ’(a b c d e f)�

Using last with the arguments x 0 returns the cdr of the last cons of the list. Us-

ing last with the arguments x n returns the list of the last n conses of the list. 
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last could have been defined by:

(defun last (x)

    (cond ((atom x) x)

          ((atom (cdr x)) x)

          ((last (cdr x))) ))�

(setq b ’(q r s t)) =≥ (QRST)

(Q R S T)

(last b) => (T)

(setq a (cons (cons ’first ’cons) (cons ’second ’cons)) =>

((FIRST . CONS) SECOND . CONS))

(last a) => (second.cons)

(SECOND . CONS)�

In the following example, last is used in the body of the do* to locate the cons for

operation on by rplacd:

(defun my-nconc( &rest lists )

  (setq lists (remove nil lists :test #’eq))

  (do* ((segment1 (first lists) segment2)

        (segment2 (second lists) (first list))

        (result segment1)

        (list (rest (rest lists)) (rest list)))

       ((null segment2) result)

     (rplacd (last segment1) segment2)))�

For a table of related items: See the section "Functions for Extracting from Lists".

� lcm &rest integers Function

Computes and returns the least common multiple of the absolute values of its ar-

guments. All the arguments must be integers, and the result is always a non-

negative integer.

For one argument, lcm returns the absolute value of that argument. If one or

more of the arguments is zero, lcm returns zero. If there are no arguments, the

returned value is 1.

Examples:

(lcm) => 1

(lcm -6) => 6 ;absolute value of only one argument

(lcm 6 15) => 30

(lcm 0 6) => 0

(lcm 2 3 4 5) => 60

(lcm -15 105) => 105

(lcm 15 12 9) => 180 

(lcm 5 7 11 18) => 6930�

For a table of related items, see the section "Arithmetic Functions".
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� ldb bytespec integer Function

"Load byte."

Returns a byte extracted from integer as specified by bytespec.

bytespec is built using function byte with bit size and position arguments.

ldb extracts from integer size contiguous bits starting at position and returns this

value. integer must be an integer.

The result is right-justified: the size bits are the lowest bits in the returned value

and the rest of the returned bits are zero. ldb always returns a nonnegative inte-

ger. This function has a setf method. However, in order to use zl:setf on an ldb

form, the integer argument must suit the zl:setf operation. Examples:

�

(ldb (byte 1 2) 5) => 1

(ldb (byte 32. 0) -1) => (1- 1_32.)  ;;a positive bignum

(ldb (byte 16. 24.) -1_31.) => #o177600 

(ldb (byte 6 3) #o4567) => #o56

(setq eight-x-seven 56)

(setf (ldb (byte 3 3) eight-x-seven) 4) => 4

eight-x-seven => 32

(ldb (byte 7 0) 257) => 1�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".

� ldb-test bytespec integer Function

Returns t if any of the bits designated by the byte specifier bytespec are 1’s in inte-

ger. That is, it returns t if the designated field is nonzero. ldb-test could have

been defined as follows:

(ldb-test bytespec integer) ==> (not (zerop (ldb bytespec integer)))�

Examples:

(ldb-test (byte 2 1) 6) => T

(ldb-test (byte 2 3) #o542) => NIL�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions". 

� ldiff list sublist Function

Returns a new list, whose elements are those elements of list that appear before

sublist. list should be a list, and sublist should be eq one of the conses that make

up list.

Examples:
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(setq x ’(a b c d e))

(setq y (cdddr x)) => (d e)

(ldiff x y) => (a b c)

(ldiff ’(a b c d) ’(c d)) => (a b c d)

�

For a table of related items: See the section "Functions for Comparing Lists"

� least-negative-double-float Constant

The negative floating-point number in double-float format which is closest in value

(but not equal to) zero.

� least-negative-long-float Constant

The negative floating-point number in long-float format closest in value (but not

equal to) zero. In Symbolics Common Lisp this constant has the same value as

least-negative-double-float.

� least-negative-normalized-double-float Constant

The normalized negative floating-point number in double-float format which is

closest in value (but not equal to) zero. Its value is -2.2250738585072014d-308. 

� least-negative-normalized-long-float Constant

The normalized negative floating-point number in long-float format which is clos-

est in value (but not equal to) zero. Its value is the same as least-negative-

normalized-double-float, -2.2250738585072014d-308. 

� least-negative-normalized-short-float Constant

The normalized negative floating-point number in short-float format which is clos-

est in value (but not equal to) zero. Its value is the same as least-negative-

normalized-single-float, -1.1754944e-38. 

� least-negative-normalized-single-float Constant

The normalized negative floating-point number in single-float format which is clos-

est in value (but not equal to) zero. Its value is -1.1754944e-38. 

� least-negative-short-float Constant

The negative floating-point number in short-float format closest in value (but not

equal to) zero. In Symbolics Common Lisp this constant has the same value as

least-negative-single-float.
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� least-negative-single-float Constant

The negative floating-point number in single-float format that is closest in value

(but not equal to) zero. 

� least-positive-double-float Constant

The positive floating-point number in double-float format closest in value (but not

equal to) zero.

� least-positive-long-float Constant

The positive floating-point number in single-float format closest in value (but not

equal to) zero. In Symbolics Common Lisp this constant has the same value as

least-positive-double-float.

� least-positive-normalized-double-float Constant

The normalized positive floating-point number in double-float format closest in val-

ue (but not equal to) zero. Its value is 2.2250738585072014d-308. 

� least-positive-normalized-long-float Constant

The normalized positive floating-point number in long-float format closest in value

(but not equal to) zero. Its value is the same as least-positive-normalized-double-

float, 2.2250738585072014d-308. 

� least-positive-normalized-short-float Constant

The normalized positive floating-point number in short-float format closest in value

(but not equal to) zero. Its value is the same as least-positive-normalized-single-

float, 1.1754944e-38. 

� least-positive-normalized-single-float Constant

The normalized positive floating-point number in single-float format closest in val-

ue (but not equal to) zero. Its value is 1.1754944e-38. 

� least-positive-short-float Constant

The positive floating-point number in short-float format closest in value (but not

equal to) zero. In Symbolics Common Lisp this constant has the same value as

least-positive-single-float.

� least-positive-single-float Constant
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The positive floating-point number in single-float format closest in value (but not

equal to) zero.

� length sequence Function

Returns the number of elements in sequence as a non-negative integer. If the se-

quence is a vector with a fill pointer, the "active length" as specified by the fill

pointer, is returned.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(length ’()) => 0

�

(length ’(a b c)) => 3

�

(length ’(a (b c) d e)) => 4

�

(length (vector ’a ’b ’c ’d ’e)) => 5�

The following example defines a simplified replacement function. This function us-

es length to ensure that the end values default to the length of the sequences.

(defun my-replace (sequence1 sequence2 &key start1 end1 start2 end2)

  "real replace must do some extra work"

  (unless end1 (setq end1 (length sequence1)))

  (unless end2 (setq end2 (length sequence2)))

  (setf (subseq sequence1 start1 end1)

(subseq sequence2 start2 end2))

  sequence1)�

See the section "Array Leaders".

For a table of related items: See the section "Functions for Finding Information

About Lists and Conses".

For a table of related items: See the section "Sequence Construction and Access".

Also: See the section "Getting Information About an Array". 

� :length Message

Returns the length of the file, in bytes or characters. For text files on PDP-10 file

servers, this is the number of PDP-10 characters, not Symbolics characters. The

numbers are different because of character-set translation. (See the section "The

Character Set".) For an output stream the length is not meaningful until after the

stream has been closed, at least on an ITS file server. 

� zl:length x Function
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Returns the length of x. The length of a list is the number of elements in it. Ex-

amples:

(zl:length nil) => 0

(zl:length ’(a b c d)) => 4

(zl:length ’(a (b c) d)) => 3�

zl:length could have been defined by:

(defun zl:length (x)

    (cond ((atom x) 0)

          ((1+ (zl:length (cdr x)))) ))�

or by:

(defun zl:length (x)

    (do ((n 0 (1+ n))

         (y x (cdr y)))

        ((atom y) n) ))�

except that it is an error to take zl:length of a non-nil atom.

For a table of related items: See the section "Functions for Finding Information

About Lists and Conses".

For a table of related items: See the section "Sequence Construction and Access".

� zl:lessp number &rest more-numbers Function

In your new programs, we recommend that you use function <, which is the Com-

mon Lisp equivalent of zl:lessp.

zl:lessp compares its arguments from left to right. If any argument is not less

than the next, zl:lessp returns nil. But if the arguments are monotonically strictly

increasing, the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.

Examples:

(zl:lessp 3 4) => t

(zl:lessp 1 1) => nil

(zl:lessp 0 1 2 3 4) => t

(zl:lessp 0 1.0 5/2 3 2 4) => nil�

� let bindings &body body Special Form

Binds some variables to some objects and evaluates some forms (the "body") in the

context of those bindings. A let form looks like this:
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(let ((var1 vform1)

      (var2 vform2)

      ...)

  bform1

  bform2

  ...)�

When this form is evaluated, first the vforms (the values) are evaluated. Then the

variables are bound to the values returned by the corresponding vforms. Thus the

bindings happen in parallel; all the vforms are evaluated before any of the vari-

ables are bound. Finally, the bforms (the body) are evaluated sequentially, the old

values of the variables are restored, and the result of the last bform is returned.

The body of the let form is an implicit progn.

You can omit the vform from a let clause, in which case it is as if the vform were

nil: the variable is bound to nil. Furthermore, you can replace the entire clause

(the list of the variable and form) with just the variable, which also means that

the variable gets bound to nil. It is customary to write just a variable, rather than

a clause, to indicate that the value to which the variable is bound does not matter,

because the variable is setq’ed before its first use. Example:

(let ((a (+ 3 3))

      (b ’foo)

      (c)

      d)

  ...)�

Within the body, a is bound to 6, b is bound to foo, c is bound to nil, and d is

bound to nil.

The values of any special variables bound by let are restored upon returned value

of let.

(setq a ’(1 2 3) b ’(3 4 5))

(let ((one a)

      (two (cdr b)))

  (append one two))

 => (1 2 3 4 5)�

The special form let and its companion let* are most useful for providing a con-

text with local variables for temporary storage during a computation. For example:�

(let ((list arg1)

      (ptr (car arg1))

      (rest (cdr arg1)))

  (lisp:loop

    (process ptr)

    (unless rest (return))

    (setq list rest)

    (setq ptr (car list))

    (setq rest (cdr rest))))�

Nesting of let forms is also possible, for example, to avoid use of let*:
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(let ((*print-escape* nil)

      (array (get-my-array)))

  (let ((message (format nil "~A" array)))

    (my-process message)))�

See the section "Special Forms for Binding Variables".

� let* bindings &body body Special Form

Binds some variables to some objects, sequentially, and evaluates some forms (the

"body") in the context of those bindings. let* is the same as let, except that the

binding is sequential. Each variable is bound to the value if its vform before the

next vform is evaluated. This is useful when the computaton of a vform depends

on the value of a variable bound in an earlier vform. Example:

(let* ((a (+ 1 2))

       (b (+ a a)))

 ...)�

Within the body, a is bound to 3 and b is bound to 6.

The body of the let* form is an implicit progn. Therefore, the forms are evaluated

sequentially, and let* returns the value of the last form evaluated. The values of

any special variables bound by let* are restored upon the returned value of the

let*.

(setq a ’(1 2 3) b ’(3 4 5))

(let* ((one (append a b))

       (two (remove-duplicates one)))

  two)

 => (1 2 3 4 5)�

Special forms let* and let provide a local variable context for temporary storage

during a computation. For example:

(let* ((list arg1)

       (ptr (car list))

       (rest (cdr list)))

  (tagbody loop

    (process ptr)

    (when rest

      (setq list rest)

      (setq ptr (car list))

      (setq rest (cdr rest))

      (go loop))))�

See the section "Special Forms for Binding Variables".

� let-and-make-dynamic-closure vars &body body Function

When using dynamic closures, it is very common to bind a set of variables with

initial values, and then make a closure over those variables. Furthermore, the vari-
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ables must be declared as "special". let-and-make-dynamic-closure is a special

form that does all of this. It is best described by example:

(let-and-make-dynamic-closure ((a 5) b (c ’x))

   (function (lambda () ...)))

�

macro-expands into

�

(let ((a 5) b (c ’x))

  (declare (special a b c ))

  (make-dynamic-closure ’(a b c)

   (function (lambda () ...)))))

�

See the section "Dynamic Closure-Manipulating Functions".

� zl:let-closed vars &body body Special Form

When using dynamic closures, it is very common to bind a set of variables with

initial values, and then make a closure over those variables. Furthermore, the vari-

ables must be declared as "special". zl:let-closed is a special form that does all of

this. It is best described by example:

(zl:let-closed ((a 5) b (c ’x))

   (function (lambda () ...)))

�

macro-expands into

�

(zl:let ((a 5) b (c ’x))

  (declare (special a b c ))

  (closure ’(a b c)

   (function (lambda () ...)))))

�

The Symbolics Common Lisp equivalent of this function is let-and-make-dynamic-

closure. See the section "Dynamic Closure-Manipulating Functions". 

� let-globally varlist &body body�

Special Form

Similar in form to letf. The difference is that let-globally does not bind the vari-

ables; instead, it saves the old values and sets the variables, and sets up an

unwind-protect to set them back. The important difference between let-globally

and letf is that when the current stack group calls some other stack group, the old

values of the variables are not restored. Thus, let-globally makes the new values

visible in all stack groups and processes that do not bind the variables themselves,

not just the current stack group.

See the section "Special Forms for Binding Variables".
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� let-globally-if cond varlist &body body�

Special Form

Similiar to let-globally. It takes a cond form as its first argument. It binds the

variables only if cond evaluates to something other than nil. body is evaluated in

either case. 

� let-if cond bindings &body body�

Special Form

A variant of let in which the binding of variables is conditional. The variables

must all be special variables. The let-if special form, typically written as:

(let-if cond

((var-1 val-2) (var-1 val-2)...)

  body-form1 body-form2...)�

first evaluates the predicate form cond. If the result is non-nil, bindings (in the

example above, val-1, val-2, and so on, are evaluated and then the variables var-1,

var-2, and so on, are bound to them). If the result is nil, bindings are ignored. Fi-

nally the body forms are evaluated.

See the section "Special Forms for Binding Variables".

� letf places-and-values &body body�

Special Form

Just like let, except that it can bind any storage cells rather than just variables.

The cell to be bound is specified by an access form that must be acceptable to

locf. For example, letf can be used to bind slots in a structure. letf does parallel

binding.

Given the following structure, letf calls do-something-to with ship’s x position

bound to zero.

(defstruct ship position-x position-y) => SHIP

(setq QE2 (make-ship)) => #S(SHIP :POSITION-X NIL :POSITION-Y NIL)

�

(letf (((ship-position-x QE2) 0))

  (do-something-to QE2))�

It is preferable to use letf instead of the sys:%bind-location and sys:%with-

binding-stack-level subprimitives. 

See the section "Special Forms for Binding Variables".

� letf* places-and-values &body body�

Special Form
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Just like let*, except that it can bind any storage cells rather than just variables.

The cell to be bound is specified by an access form that must be acceptable to

locf. For example, letf* can be used to bind slots in a structure. letf* does sequen-

tial binding.

Given the following structure, letf* calls do-something-to with ship’s x position

bound to 0 and y position bound to 5.

(defstruct ship position-x position-y) => SHIP

(setq QE2 (make-ship)) => #S(SHIP :POSITION-X NIL :POSITION-Y NIL)

�

(letf* (((ship-position-x QE2) 0)

        ((ship-position-y QE2) (+ (ship-position-x QE2) 5)))

  (do-something-to QE2))

�

It is preferable to use letf* instead of the zl:bind subprimitive.

See the section "Special Forms for Binding Variables". 

� sys:lexical-closure Type Specifier

sys:lexical-closure is the type specifier symbol for the predefined Lisp object of

that name.

Examples:

(typep *standard-output* ’sys:lexical-closure) => T

(zl:typep *standard-output*) => :LEXICAL-CLOSURE

(sys:type-arglist ’sys:lexical-closure) => NIL and T�

See the section "Data Types and Type Specifiers".

See the section "Scoping".

� lexpr-continue-whopper &rest args Special Form

Calls the methods for the generic function that was intercepted by the whopper in

the same way that continue-whopper does, but the last element of args is a list of

arguments to be passed. This is useful when the arguments to the intercepted

generic function include an &rest argument. Returns the values returned by the

combined method.

For more information on whoppers, including examples: See the section "Wrappers

and Whoppers".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� lexpr-send object message-name &rest arguments Function

Sends the message named message-name to the object. arguments are the argu-

ments passed, except that the last element of arguments should be a list, and all

the elements of that list are passed as arguments. For example:
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(send some-window :set-edges 10 10 40 40)�

does the same thing as these forms do:

(lexpr-send some-window :set-edges 10 ’(10 40 40))

(lexpr-send some-window :set-edges 10 10 ’(40 40))

(lexpr-send some-window :set-edges 10 10 40 ’(40))�

lexpr-send is to send as zl:lexpr-funcall is to funcall.

lexpr-send is supported for compatibility with previous versions of the flavor sys-

tem. When writing new programs, it is good practice to use generic functions in-

stead of message-passing. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� lexpr-send-if-handles object message &rest arguments Function

object performs the operation indicated by message with the given arguments, if it

has a method for the operation. If no method for the operation is available, nil is

returned.

object is a Lisp object, usually a flavor instance. message is a message name or a

generic function object, such as the result of evaluating the form (flavor:generic

generic-function-name). arguments are the arguments for the operation.

The difference between lexpr-send-if-handles and send-if-handles is that for

lexpr-send-if-handles, the last element of arguments is a list of arguments, all of

which are used as arguments to the operation.

lexpr-send-if-handles is to send-if-handles as lexpr-send is to send.

For information on restrictions in using lexpr-send-if-handles with generic func-

tions: See the function send-if-handles.

Note that lexpr-send-if-handles works by sending the :send-if-handles message.

You can customize the behavior of lexpr-send-if-handles by defining a method for

the :send-if-handles message.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� :line-in &optional leader Message

The stream should input one line from the input source and return it as a string

with the carriage return character stripped off. Despite its name, this operation is

not much like the zl:readline function.

Many streams have a string that is used as a buffer for lines. If this string itself

were returned, there would be problems if the caller of the stream attempted to

save the string away somewhere, because the contents of the string would change

when the next line was read in. To solve this problem, the string must be copied.

On the other hand, some streams do not reuse the string, and it would be wasteful
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to copy it on every :line-in operation. This problem is solved by using the leader

argument to :line-in. If leader is nil (the default), the stream does not copy the

string, and the caller should not rely on the contents of that string after the next

operation on the stream. If leader is t, the stream makes a copy. If leader is an in-

teger then the stream makes a copy with an array-leader leader elements long.

(This is used by the editor, which represents lines of buffers as strings with addi-

tional information in their array-leaders, to eliminate an extra copy operation.)

If the stream reaches the end-of-file while reading in characters, it returns the

characters it has read in as a string, and returns a second value of t. The caller

of the stream should therefore arrange to receive the second value, and check it to

see whether the string returned was an whole line or only the trailing characters

after the last carriage return in the input source.

The :line-in message can be sent to windows. It interacts correctly with the input

editor, including correct handling of activation characters. 

� :line-out string &optional start end Message

Outputs the characters of string, followed by a carriage return character, to the

stream. start and end optionally specify a substring, as with :string-out. If the

stream does not support :line-out itself, the default handler converts it to :tyos. 

� lisp-implementation-type Function

Returns a string that is the name of the Lisp system running on your machine.

(lisp-implementation-type) => "Symbolics Common Lisp"�

or

(lisp-implementation-type) => "Symbolics CLOE"�

� lisp-implementation-version Function

Returns a string that identifies the current version of the system running on your

machine, including the patch level and microcode.

(lisp-implementation-version) 

 => "System 424.207 3640-MIC microcode 428"�

For the CLOE Developer,

(lisp-implementation-version)

=>"1.1, Cloe Developer 318.0"�

and for the CLOE Application Generator,

=>(lisp-implementation-version)

"CLOE Application Generator 1.1"�

� si:lisp-top-level1 &optional (stream zl:terminal-io) Function
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This is the actual top-level loop. It reads a form from *standard-input*, evaluates

it, prints the result (with slashification) to *standard-output*, and repeats indefi-

nitely. If several values are returned by the form, all of them will be printed. The

values of *, +, -, /, ++, **, +++, and *** are maintained. 

� list Type Specifier

list is the type specifier symbol for the predefined Lisp data structure of that

name.

The types list and vector are an exhaustive partition of the type sequence, since

sequence ≡ (or list vector).

Examples:

(typep ’(a b c) ’list) => T

(zl:typep ’(a b (d c) e)) => :LIST

(subtypep ’list ’sequence) => T and T

(sys:type-arglist ’list) => NIL and T

(listp ()) => T

(listp ’(2.0s0 (a 1) #\*)) => T

(listp ’(\A|b|)) => T�

See the section "Data Types and Type Specifiers". See the section "Lists".

� list &rest elements�

Function

Constructs and returns a list of its arguments. Example:

(list 3 4 ’a (car ’(b . c)) (+ 6 -2)) => (3 4 a b 4)�

list could have been defined by:

(defun list (&rest args)

    (let ((list (make-list (length args))))

      (do ((l list (cdr l))

   (a args (cdr a)))

  ((null a) list)

(rplaca l (car a)))))�

Using list helps avoid clumsy nesting callsto cons by providing a clean construc-

tor for lists (as opposed to trees).

(list ’a ’b) = (cons ’a (cons ’b nil)) => (A B)

�

(list ’a ’b ’c ’d (cons ’e ’f) ’g)=> 

(A B C D (E . F) G)

�

(list ’a ’b ’c ’d) = (list*’a ’b ’c ’d ’())�

For a table of related items: See the section "Functions for Constructing Lists and

Conses".
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� list* &rest args Function

Constructs and returns a list of its arguments, whose last cons is "dotted". It must

be given at least one argument. Example: 

�

(list* ’a ’b ’c ’d) => 

(a b c . d) �

This is like 

�

(cons ’a (cons ’b (cons ’c ’d))) �

More examples: 

�

(list* ’a ’b) => 

(a . b) 

(list* ’a) => a �

list* is like list, except thatthe last argument is not consed with nil. When applied

to one argument, list* simply returns the argument. A true list is returned when

the last argument of list* is a true list, such as nil. Using list* also helps avoid

clumsy nesting calls to cons.

(list* ’a ’b ’c) = (cons ’a (cons ’b ’c))

 =. (A B . C)

�

(list* ’temp) => temp

�

(list* ’temp nil) = (list ’temp) => (temp)�

When using list to create a new list from given elements, list* is the preferred

function for adding a number of new elements to an already existing list:

(setq my-friends (list ’jim ’fred)) => (JIM FRED)

�

(setq my-friends

      (list* ’jack ’john ’bill my-friends))

 => (JACK JOHN BILL JIM FRED)�

For a table of related items: See the section "Functions for Constructing Lists and

Conses".

� math:list-2d-array array Function

Returns a list of lists containing the values in array, which must be a two-

dimensional array. There is one element for each row; each element is a list of the

values in that row. 

� list-all-packages Function

Returns a list of all the packages that exist in Genera or CLOE.
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The following example shows the definition of a macro similar to do-all-symbols,

but which touches only external symbols.

(defmacro do-all-external-symbols ((variable) &body forms)

  (let ((package-variable (gensym)))

    ‘(dolist (,package-variable (list-all-packages))

       (do-external-symbols (,variable ,package-variable)

         ,forms))))�

� list-array-leader array &optional limit Function

Creates and returns a list whose elements are those of array’s leader. array can be

any type of array or a symbol whose function cell contains an array. 

If limit is present, it should be an integer, and only the first limit (if there are

more than that many) elements of array’s leader are used, and so the maximum

length of the returned list is limit. If array has no leader, nil is returned.

For a table of related items: See the section "Copying an Array". 

� list-in-area area &rest elements Function

Constructs and returns a list of its arguments, and takes an area number argu-

ment, and creates the list in that area. See the section "Areas".

list-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� list*-in-area area &rest args Function

Constructs and returns a list of its arguments, whose last cons is "dotted", and

takes an area number argument, and creates the list in that area.

See the section "Areas".

list*-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� list-length list Function

Returns, as an integer, the length of list. list-length differs from length when list

is circular. In these cases, length can fail to return, whereas list-length returns

nil. For example:

(list-length ’()) => 0
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�

(list-length ’(a b c d)) => 4

�

(list-length ’(a (b c) d))  => 3

�

(let ((x (list ’a ’b ’c)))

   (rplacd (last x) x)

   (list-length x)) => NIL�

If the argument is known to be non-circular, list-length is less efficient than

length because it performs significantly more work to determine the existence of

circularities.

(setq *print-circle* t)

(setq a ’(1 2 3 4 5))

(list-length a) => 5

(rplacd (last a) (cddr a))

a => (1 2 . #1=(3 4 5 . #1#))

(list-length a) => nil�

See the function length.

For a table of related items: See the section "Functions for Finding Information

About Lists and Conses". 

� zl:listarray array &optional limit Function

Creates and returns a list whose elements are those of array. array can be any

type of array or a symbol whose function cell contains an array.

If limit is present, it should be an integer, and only the first limit (if there are

more than that many) elements of array are used, and so the maximum length of

the returned list is limit.

If array is multidimensional, the elements are accessed in row-major order: the

last subscript varies the most quickly.

� listen &optional input-stream Function

The predicate listen returns t if there is a character immediately available from

input-stream, and otherwise it returns nil. This is particularly useful when the

stream obtains characters from an interactive device such as a keyboard. A call to

read-char would simply wait until a character was available, but listen can sense

whether or not to attempt input. On a non-interactive stream, the general rule is

that listen returns t except when it’s at EOF.

(listen)

=> NIL
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�

(let ((c (read-char)))

  (list c 

(listen)

(progn (unread-char c) (listen))

(progn (peek-char) (listen))

(progn (read-char) (listen))))x

=> (#\x NIL T T NIL)�

� :listen Message

Tests whether the user has pressed a key, perhaps trying to stop a program in

progress. :listen does not err; it returns either non-nil or nil. This makes it useful

as a wait function.

On an interactive device, :listen returns non-nil if any input characters are imme-

diately available, or nil if not, which implies that :tyi would hang. If :tyi would

err, that is not considered hanging, and :listen returns non-nil in this case. 

On a noninteractive device, the operation always returns non-nil except at end-of-

file, by virtue of the default handler. 

� zl:listify n Function

Manufactures a list of n of the arguments of a lexpr. With a positive argument n,

it returns a list of the first n arguments of the lexpr. With a negative argument

n, it returns a list of the last (abs n) arguments of the lexpr. Basically, it works

as if defined as follows:

(defun zl:listify (n)

     (cond ((minusp n)

    (listify1 (arg nil) (+ (arg nil) n 1)))

   (t

    (listify1 n 1)) ))

�

(defun listify1 (n m)      ; auxiliary function.

     (do ((i n (1- i))

  (result nil (cons (arg i) result)))

 ((< i m) result) ))�

zl:listify exists only for compatibility with Maclisp lexprs. To write functions that

can accept variable numbers of arguments, use the &optional and &rest keywords.

See the section "Evaluating a Function Form".

� listp object Function

Returns t if its argument is a list, otherwise nil. This means (listp nil) is t. Note

this distinction between listp and zl:listp. (zl:listp nil) is nil, since zl:listp returns

t if its argument is a cons.
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(listp object) = (or (consp object) (null object))�

Example:

(listp ’(5 9 12 16 8))�

returns t, since the argument is a list. But:

(listp ’5)�

returns nil, since the argument is not a list.

(listp (cons ’a ’b)) => t

�

(listp 24) => nil

�

(if (listp object)

  (my-function (car object) (cdr object))

  (alt-function (test-for-type object)))�

For a table of related items: See the section "Predicates that Operate on Lists". 

� listp object Function

Returns t if its argument is a list, otherwise nil. This means (listp nil) is t. Note

this distinction between listp and zl:listp. (zl:listp nil) is nil, since zl:listp returns

t if its argument is a cons.

(listp object) = (or (consp object) (null object))�

Example:

(listp ’(5 9 12 16 8))�

returns t, since the argument is a list. But:

(listp ’5)�

returns nil, since the argument is not a list.

(listp (cons ’a ’b)) => t

�

(listp 24) => nil

�

(if (listp object)

  (my-function (car object) (cdr object))

  (alt-function (test-for-type object)))�

For a table of related items: See the section "Predicates that Operate on Lists". 

� zl:listp object Function

In your new programs, we recommend that you use the function consp, which is

the Common Lisp equivalent of zl:listp.

Returns t if its argument is anything (for example, a symbol, array, or flavor in-

stance, etc.) except nil. If its argument is nil, zl:listp returns nil. Note that this

means (zl:listp nil) is nil even though nil is the empty list.
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For a table of related items, see the section "Predicates that Operate on Lists". 

� load-byte from-value position size Function

Like ldb, except that instead of using a byte specifier, the bit position and size are

passed as separate arguments. The argument order is not analogous to that of ldb

so that load-byte can be compatible with older versions of Lisp.

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions". 

� sys:local-declarations Variable

A list of local declarations. Each declaration is itself a list whose car is an atom

which indicates the type of declaration. The meaning of the rest of the list de-

pends on the type of declaration. For example, in the case of special and

zl:unspecial the cdr of the list contains the symbols being declared.

The compiler is interested only in special, zl:unspecial, macro, and arglist decla-

rations.

Local declarations are added to sys:local-declarations in two ways: 

• Inside a zl:local-declare, the specified declarations are bound onto the front.

• If sys:undo-declarations-flag is t, some kinds of declarations in a file that is

being compiled are consed onto the front of the list; they are not popped until

sys:local-declarations is unbound at the end of the file. 

Note: zl:local-declare and sys:local-declarations are available in Genera, but

should not be used for new code. See the section "Lexical Scoping".

� zl:local-declare declarations &body body Special Form

This function, while available in Genera, should not be used for new code. See the

section "Lexical Scoping". See the section "Operators for Making Declarations".

A zl:local-declare form looks like this:

(zl:local-declare (declaration declaration ...)

   form1

   form2

   ...)�

Example:
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(zl:local-declare ((special foo1 foo2))

(defun larry ()

     )

(defun george ()

     )

  ); end of zl:local-declare�

zl:local-declare understands the same declarations as declare.

Each local declaration is consed onto the list sys:local-declarations while the

forms are being evaluated (in the interpreter) or compiled (in the compiler). This

list has two uses. First, it can be used to pass information from outer macros to

inner macros. Secondly, the compiler specially interprets certain declarations as lo-

cal declarations, which apply only to the compilation of the forms.

� sys:localize-list list &optional area Function

Improves locality of incrementally constructed lists and association lists.

sys:localize-list returns either list or a copy of list, depending on how sparsely it

is stored in virtual memory.

The optional area argument is the number of the area in which to create the new

list. (Areas are an advanced feature of storage management. See the section

"Areas".)

sys:localize-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists". 

� sys:localize-tree tree &optional (n-levels 100) area Function

Improves locality of incrementally constructed lists and trees. sys:localize-tree re-

turns either tree or a copy of tree, depending on how sparsely it is stored in virtual

memory.

The optional argument n-levels is the number of levels of list structure to localize.

This is especially useful for association lists, where the value of n-levels is set to

2.

The optional area argument is the number of the area in which to create the new

tree. (Areas are an advanced feature of storage management. See the section

"Areas".)

sys:localize-tree is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Copying Lists". 

� locally &body body Macro

Makes local pervasive declarations wherever you need them (wherever you can

legally place a form). No variables are bound by this form, and no declarations in

this form alter enclosing bindings. You can use the special declaration to perva-

sively affect references to, rather than bindings of, variables. For example:
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�

(locally (declare (inline floor) (notinline car cdr))

         (declare (optimize space))

  (floor (car x) (cdr y)))

�

In the following example, we call a value swapping function within the scope of a

locally call, and use a declaration that calls for optimization with respect to execu-

tion speed:

(locally (declare (optimize speed))

  (swap-values item-a item-b))�

Special declarations are allowed only to affect references.

See the section "Operators for Making Declarations".

� zl:locate-in-closure closure symbol Function

This returns the location of the place in the dynamic closure closure where the

saved value of symbol is stored. An equivalent form is (locf (zl:symeval-in-closure

closure symbol)). See the section "Dynamic Closure-Manipulating Functions". 

� zl:locate-in-instance instance symbol Function

Returns a locative pointer to the cell inside instance that holds the value of the in-

stance variable named symbol, regardless of whether the instance variable was de-

clared a :locatable-instance-variable. 

In Symbolics Common Lisp, this operation is performed by:

(locf (scl:symbol-value-in-instance instance symbol))�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� location-boundp location Function

Takes a locative pointer to designate the cell rather than a symbol. It returns t if

the cell at location is bound to a value, and otherwise it returns nil.

location-boundp is a version of boundp that can be used on any cell.

The following two calls are equivalent:

(location-boundp (locf a))

(variable-boundp a)�

The following two calls are also equivalent. When a is a special variable, they are

also the same as the two calls in the preceding example.

(location-boundp (value-cell-location ’a))

(boundp ’a)�
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� location-contents locative Function

Returns the contents of the cell at which locative points. For example:

(location-contents (value-cell-location x))�

is the same as:

(symeval x)�

To store objects into the cell at which a locative points, you should use (setf

(location-contents x) y) as shown in the following example:

(setf (location-contents (value-cell-location x)) y)�

This is the same as:

(set x y)�

Note that location-contents is not the right way to read hardware registers, since

cdr (which is called by location-contents) will in some cases start a block-read

and the second read could easily read some register you didn’t want it to. There-

fore, you should use car or sys:%p-ldb as appropriate for these operations. 

� location-makunbound loc &optional variable-name Function

Takes a locative pointer to designate the cell rather than a symbol. (makunbound

is restricted to use with symbols.)

location-makunbound is a version of makunbound that can be used on any cell

in the Symbolics Lisp Machine. 

location-makunbound takes a symbol as an optional second argument: variable-

name of the location that is being made unbound. It uses variable-name to label

the null pointer it stores so that the Debugger knows the name of the unbound lo-

cation if it is referenced. This is particularly appropriate when the location being

made unbound is really a variable value cell of one sort or another, for example,

closure or instance. 

� locative Type Specifier

� locativep x Function

Returns t if its argument is a locative, otherwise nil. 

� locf reference Macro

Takes a form that accesses some cell and produces a corresponding form to create

a locative pointer to that cell. Examples:

(locf (array-leader foo 3)) ==> (ap-leader foo 3)

(locf a) ==> (variable-location ’a)

(locf (plist ’a)) ==> (property-cell-location ’a)

(locf (aref q 2)) ==> (aloc q 2)�



Page 1205

If access-form invokes a macro or a substitutable function, locf expands the access-

form and starts over again. This lets you use locf together with zl:defstruct ac-

cessors.

If access-form is (cdr list), locf returns the list itself instead of a locative.

See the section "Generalized Variables".

For a table of related items: See the section "Basic Array Functions". 

� log number &optional base Function

Computes and returns the logarithm of number in the base base, which defaults to

e, the base of the natural logarithms. Note that the result can be a complex num-

ber even when the argument is noncomplex. This occurs if the argument is nega-

tive. 

The range of the one-argument log function is that strip of the complex plane con-

taining numbers with imaginary parts between -π (exclusive) and π (inclusive).

The range of the two-argument log function is the entire complex plane. It is an

error if number or base is zero. Both arguments can be numbers of any type.

The result is always in complex or noncomplex floating-point format. Numeric type

coercion is applied to the arguments where proper.

Examples:

(log 2) => 0.6931472

(log 16 2) => 4.0

(log -1.0)  => #C(0.0 3.1415927)

(log -1 #C(0 1)) => #C(2.0 0.0)

�

For a table of related items, see the section "Powers of e and Log Functions".

� zl:log n Function

Returns the natural logarithm of n. n must be positive, and can be of any numeric

data type. 

Example:

(zl:log 2) => 0.6931472

(log 81 3) → 4.0

(log (exp 4)) → 4.0

(log -1) → #C(0.0 3.1415927)�

For a table of related items: See the section "Powers of e and Log Functions" and

see CLtL 204.

� logand &rest integers Function
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Returns the bit-wise logical and of its arguments. If no argument is given the re-

sult is -1, which is an identity for this operation.

Examples:

(logand) => -1

(logand 8) => 8

(logand 9 15) => 9

(logand 9 15 12) => 8�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations".

� zl:logand number &rest more-numbers Function

Returns the bit-wise logical and of its arguments. At least one argument is re-

quired. Examples:

(zl:logand #o3456 #o707) => #o406

(zl:logand #o3456 #o-100) => #o3400�

For a table of related items: See the section "Functions Returning Result of Bit-

wise Logical Operations" and see CLtL 221. 

� logandc1 integer1 integer2 Function

This is a non-associative bit-wise logical operation and takes exactly two argu-

ments. It returns the bit-wise logical and of the complement of integer1 with inte-

ger2.

Examples:

(logandc1 15 8) => 0

(logandc1 8 15) => 7

(logandc1 1 4) => 4

(logandc1 2 6) => 4�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� logandc2 integer1 integer2 Function

This is a non-associative bit-wise logical operation and takes exactly two argu-

ments. It returns the bit-wise logical and of integer1 with the complement of inte-

ger2.

Examples:
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(logandc2 15 8) => 7

(logandc2 8 15) => 0

(logandc2 1 4) => 1

(logandc2 2 6) => 0�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� logbitp index integer Function

If index is a non-negative integer j, the predicate logbitp is true if bit j in integer

(that bit whose weight is 2j) is a one-bit; otherwise it is false.

Examples:

(logbitp 1 8) => NIL

(logbitp 1 10) => T

(logbitp 0 6) => nil

(logbitp 1 6) => T

(logbitp 2 6) => T�

For a table of related items, see the section "Predicates for Testing Bits in Inte-

gers".

� logcount integer Function

If integer is positive, determines and returns the number of one-bits in the binary

representation of integer. If integer is negative, logcount determines and returns

the number of 0 bits in the two’s-complement binary representation of integer. The

result is always a non-negative integer.

Examples:

�

(logcount 0) => 0

(logcount 6) => 2

(logcount -1) => 0

(logcount -5) => 1 ;-5 is #b ...11011

(logcount 7) => 3

(logcount -11) => 2�

For a table of related items, see the section "Functions Returning Components or

Characteristics of Argument".

� sys:%logdpb newbyte bytespec integer Function

Like dpb, except that it only returns fixnums, while dpb would produce a bignum

result for arithmetic correctness. If the sign-bit (bit-32) changes, the result reflects

the changed sign.
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sys:%logdpb is good for manipulating fixnum bit-masks such as are used in some

internal system tables and data structures.

The behavior of sys:%logdpb depends on the size of fixnums, so functions using it

might not work the same way on future implementations of Symbolics Common

Lisp. Its name starts with "%" because it is more like machine-level subprimitives

than other byte manipulation functions.

For a table of related items: See the section "Machine-Dependent Arithmetic Func-

tions". 

� logeqv &rest integers Function

Returns the bit-wise logical equivalence (also known as exclusive nor) of its argu-

ments interpreted as bit vectors. If no argument is given, the result is -1, which is

an identity for this operation. If the integers (bit-vectors) are interpreted as sets,

this operation represents iterated pairwise equivalence. Thus, an even number of

small positive integer arguments returns a negative integer, and an odd number of

small positive arguments returns a positive integer.

Examples:

(logeqv) => -1

(logeqv 5) => 5

(logeqv -3 4) => 6 ;-3 is #b11101 and 4 is #b00100

(logeqv 9 2) => -12

(logeqv -3 4 9 2) => 13 ;(logeqv 6 -12) => 13

(logeqv 1) => 1

(logeqv 1 2) => -4

(logeqv 1 2 4) => 7�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� logior &rest integers Function

Returns the bit-wise logical inclusive or of its arguments.

If no argument is given, the result is zero. This is an identity for this operation.

Examples:

(logior) => 0

(logior -5) => -5

(logior 3 10) => 11

(logior 4 8 2) => 14�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations".



Page 1209

� zl:logior number &rest more-numbers Function

Returns the bit-wise logical inclusive or of its arguments. At least one argument is

required. Example:

(zl:logior #o4002 #o67) => #o4067�

For a table of related items: See the section "Functions Returning Result of Bit-

wise Logical Operations".

� sys:%logldb bytespec integer Function

Like ldb, except that it loads out of fixnums, allowing a byte size of 32 bits of the

fixnum, including the sign bit. sys:%logldb also loads out of bignums, allowing a

byte size of 32 bits, including the sign bit. The result of sys:%logldb can be nega-

tive when the size of the byte specified by bytespec is 32.

The behavior of sys:%logldb depends on the size of fixnums, so functions using it

might not work the same way on future implementations of Symbolics Common

Lisp. Its name starts with "%" because it is more like machine-level subprimitives

than other byte manipulation functions.

For a table of related items: See the section "Machine-Dependent Arithmetic Func-

tions". 

� lognand integer1 integer2 Function

This is a non-associative bit-wise logical operation and takes exactly two argu-

ments. It returns the logical not-and of its two arguments interpreted as bit vec-

tors. 

Examples:

(lognand 6 12) => -5 ;(lognot 4) => -5

(lognand 1 4) => -1

(lognand 1 -4) => -1

(lognand -1 4) => -5

(lognand -1 -4) => 3

(lognand 2 6) => -3�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� lognor integer1 integer2 Function

This is a non-associative bit-wise logical operation and takes exactly two argu-

ments. It returns the logical not-or of its two arguments.

Example:
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(lognor 3 10) => -12

(lognor 1 4) => -6

(lognor 2 6) => -7�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� lognot integer Function

Returns the logical complement of integer interpreted as a bit vector. This is the

same as logxoring integer with -1. If integer is interpreted as a set, this operation

represents complementation.

Example:

(lognot 3456) => -3457

(lognot 0) => -1

(lognot 1) => -2

(lognot -1) => 0

(lognot -2) => 1�

For a table of related items: See the section "Functions Returning Result of Bit-

wise Logical Operations".

� logorc1 integer1 integer2 Function

This is a non-associative bit-wise logical operation and takes exactly two argu-

ments. It returns the logical or of the complement of integer1 with integer2.

Examples:

(logorc1 -1 11) => 11

(logorc1 11 -1) => -1

(logorc1 1 4) => -2

(logorc1 2 6) => -1�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� logorc2 integer1 integer2 Function

This is a non-associative bit-wise logical operation and takes exactly two argu-

ments. It returns the logical or of integer1 with the complement of integer2.

Examples:
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(logorc2 -1 11) => -1

(logorc2 11 -1) => 11

(logorc2 1 4) => -5

(logorc2 2 6) => -5�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� logtest integer1 integer2 Function

Returns t if any of the bits designated by the 1’s in integer1 are 1’s in integer2

(that is, if there exists at least one non-negative integer j, such that bit j in inte-

ger1 and bit j in integer2 are both 1’s).

Examples:

(logtest 10 4) => NIL

(logtest 9 1) => T

(logtest 11 3) => T�

For a table of related items, see the section "Predicates for Testing Bits in Inte-

gers".

� logxor &rest integers Function

Returns the bit-wise logical exclusive or of its arguments. If no argument is given,

the result is zero. This is an identity for this operation.

Examples:

(logxor) => 0

(logxor 5) => 5

(logxor 3 4) => 7

(logxor 9 2) => 11

(logxor 3 4 9 2) => 12 ;(logxor 7 11) => 12�

See the function boole.

For a table of related items, see the section "Functions Returning Result of Bit-

wise Logical Operations". 

� zl:logxor integer &rest more-integers Function

Returns the bit-wise logical exclusive or of its arguments. At least one argument is

required.

Example:

(zl:logxor #o2531 #o7777) => #o5246�

For a table of related items: See the section "Functions Returning Result of Bit-

wise Logical Operations" and see CLtL 221. 
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� long-float Type Specifier

long-float is the type specifier symbol for the predefined Lisp double-precision

floating-point number type.

The type long-float is a subtype of the type float. In Symbolics Common Lisp, the

type long-float is identical to the type double-float.

The type long-float is disjoint with the types short-float, and single-float.

Examples:

(typep 0d0 ’long-float) => T�

(subtypep ’long-float ’double-float) 

=> T and T ;subtype and certain�

(commonp 1.5d9) => T�

(equal-typep ’long-float ’double-float) => T�

(sys:double-float-p 1.5d9) => T�

See the section "Data Types and Type Specifiers".

See the section "Numbers".

� long-float-epsilon Constant

The value of this constant is the smallest positive floating-point number e of a for-

mat such that it satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e)))�

In Symbolics Common Lisp long-float-epsilon has the same value as double-float-

epsilon, namely: 1.1102230246251568d-16.

� long-float-negative-epsilon Constant

The value of this constant is the smallest positive floating-point number e of a for-

mat such that it satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e)))�

In Symbolics Common Lisp the value of long-float-negative-epsilon is the same as

that of double-float-negative-epsilon, namely: 5.551115123125784d-17.

� long-site-name Function

Returns a string that is the full name of your site. This is the contents of the

Pretty-name field in your site’s namespace object.

The CLOE Runtime environment does not provide a uniform way to obtain a "site"

designation. If the value of the variable cloe::*long-site-name* is nil, you are

prompted to enter the correct values for your site. Initially, cloe::*long-site-name*

is set to "CLOE-USER-SITE". 
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� loop &rest forms Macro

loop is a Lisp macro that provides a programmable iteration facility. The Symbol-

ics Common Lisp implementation of loop is an extension of the Common Lisp spec-

ification for this macro in Guy L. Steele’s Common Lisp: the Language. The Sym-

bolics Common Lisp version, loop is similar to the Zetalisp version, except that

loop allows its body to be a sequence of lists, for example:

(let ((i 0))

  (loop

   (print i)

   (incf i)

   (when (> i 1) (return (values)))))�

The general approach is that a form introduced by the word loop generates a sin-

gle program loop, into which a large variety of features can be incorporated. The

loop consists of some initialization (prologue) code, a body that can be executed

several times, and some exit (epilogue) code. Variables can be declared local to the

loop. The features are concerned with loop variables, deciding when to end the it-

eration, putting user-written code into the loop, returning a value from the con-

struct, and iterating a variable through various real or virtual sets of values.

The loop form consists of a series of clauses, each introduced by a keyword sym-

bol. Forms appearing in or implied by the clauses of a loop form are classed as

those to be executed as initialization code, body code, and/or exit code; within each

part of the template that loop fills in, they are executed strictly in the order im-

plied by the original composition. Thus, just as in ordinary Lisp code, side effects

can be used, and one piece of code might depend on following another for its prop-

er operation.

If entries are added to or deleted from the loop macro while loop is in progress,

the results are unpredictable, with one exception: if the function calls remhash to

remove the entry currently being processed by the body, or performs a setf of

gethash on that entry to change the associated value, then those operations will

have the intended effect.

Note that loop forms are intended to look like stylized English rather than Lisp

code. There is a notably low density of parentheses, and many of the keywords are

accepted in several synonymous forms to allow writing of more euphonious and

grammatical English. 

Compatibility Note: The Symbolics Common Lisp version of this function allows

you to control its iteration by using keywords. The version of loop as specified in

CltL does not allow atoms in the body of the loop.

� zl:loop x &optional ignore Macro

A Lisp macro that provides a programmable iteration facility. zl:loop is obsolete;

use loop instead.

The general approach is that a form introduced by the word zl:loop generates a

single program loop, into which a large variety of features can be incorporated.



Page 1214

The loop consists of some initialization (prologue) code, a body that can be execut-

ed several times, and some exit (epilogue) code. Variables can be declared local to

the loop. The features are concerned with loop variables, deciding when to end the

iteration, putting user-written code into the loop, returning a value from the con-

struct, and iterating a variable through various real or virtual sets of values.

The zl:loop form consists of a series of clauses, each introduced by a keyword

symbol. Forms appearing in or implied by the clauses of a zl:loop form are classed

as those to be executed as initialization code, body code, and/or exit code; within

each part of the template that zl:loop fills in, they are executed strictly in the or-

der implied by the original composition. Thus, just as in ordinary Lisp code, side

effects can be used, and one piece of code might depend on following another for

its proper operation.

Note that zl:loop forms are intended to look like stylized English rather than Lisp

code. There is a notably low density of parentheses, and many of the keywords are

accepted in several synonymous forms to allow writing of more euphonious and

grammatical English. 

Here are some examples to illustrate the use of zl:loop.

print-elements-of-list prints each element in its argument, which should be a list.

It returns nil.

(defun print-elements-of-list (list-of-elements)

  (zl:loop for element in list-of-elements

do (print element))) => PRINT-ELEMENTS-OF-LIST�

gather-alist-entries takes an association list and returns a list of the "keys"; that

is, (gather-alist-entries ’((foo 1 2) (bar 259) (baz))) returns (foo bar baz).

(defun gather-alist-entries (list-of-pairs)

  (zl:loop for pair in list-of-pairs

collect (car pair))) => GATHER-ALIST-ENTRIES�

extract-interesting-numbers takes two arguments, which should be integers, and

returns a list of all the numbers in that range (inclusive) that satisfy the predicate

interesting-p.

�

(defun extract-interesting-numbers (start-value end-value)   

  (zl:loop for number from start-value to end-value 

when (interesting-p number) collect number)) 

 => EXTRACT-INTERESTING-NUMBERS�

find-maximum-element returns the maximum of the elements of its argument, a

one-dimensional array. For Maclisp, aref could be a macro that turns into either

funcall or zl:arraycall depending on what is known about the type of the array.

(defun find-maximum-element (an-array)

  (zl:loop for i from 0 below (array-dimension-n 1 an-array)

maximize (aref an-array i)))

 => FIND-MAXIMUM-ELEMENT�
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my-remove is like the Lisp function zl:delete, except that it copies the list rather

than destructively splicing out elements. This is similar, although not identical, to

the zl:remove function.

(defun my-remove (object list)

  (zl:loop for element in list

unless (equal object element) collect element))

 => MY-REMOVE�

find-frob returns the first element of its list argument that satisfies the predicate

frobp. If none is found, an error is generated.

(defun find-frob (list)

  (loop for element in list

when (frobp element) return element

finally (ferror nil "No frob found in the list ~S" list)))

 => FIND-FROB�

In many of the clause descriptions, an optional data-type is shown. This is a slot

reserved for data type declarations; it is currently ignored.

� future-common-lisp:loop &rest keywords-and-forms Macro

The macro future-common-lisp:loop performs iteration by executing a series of

forms one or more times. Loop keywords are symbols recognized by future-

common-lisp:loop. The provide such capabilites as control of direction of iteration,

accumulation of values inside the loop body, and evaluation of expressions that pre-

cede or follow the loop body.

For future-common-lisp:loop without clauses, each form is evaluated in turn from

left to right. When the last form has been evaluated, then the first form is evalu-

ated again, and so on, in a never-ending cycle. future-common-lisp:loop establish-

es an implicit block named nil. The execution of future-common-lisp:loop can be

terminated explicitly, by using return, throw or return-from, for example. 

The syntax and usage of future-common-lisp:loop is relatively complex. For com-

plete information, see the section "Using future-common-lisp:loop".

� loop-finish Macro

(loop-finish) causes the iteration to terminate "normally", the same as implicit ter-

mination by an iteration-driving clause, or by the use of while or until  the epi-

logue code (if any) is run, and any implicitly collected result is returned as the

value of the loop. For example:

(loop for x in ’(1 2 3 4 5 6)

      collect x

      do (cond ((= x 4) (loop-finish))))

 => (1 2 3 4)�

This particular example would be better written as until (= x 4) in place of the do

clause.
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See the section "End Tests for loop".

� si:loop-named-variable keyword Function

Used when an iteration path function desires to make an internal variable accessi-

ble to the user. Call this function only from within an iteration path function. If

keyword has been specified in a using phrase for this path, the corresponding vari-

able is returned; otherwise, gensym is called and that new symbol returned. With-

in a given path function, this routine should only be called once for any given

keyword.

If you specify a using preposition containing any keywords for which the path

function does not call si:loop-named-variable, loop informs you of the error. See

the section "Iteration Paths for loop". 

� si:loop-tassoc token keyword-alist Function

The assoc variant of si:loop-tequal.

See the section "Defining Iteration Paths".

� si:loop-tequal token keyword Function

The loop token comparison function. 

token is any Lisp object. keyword must be an atomic symbol. The function returns

t if token and keyword represent the same token, comparing them in a manner ap-

propriate for the implementation.

See the section "Defining Iteration Paths".

� si:loop-tmember token keyword-list Function

The member variant of si:loop-tequal.

See the section "Defining Iteration Paths".

� lower-case-p char Function

Returns t if char is a lowercase letter. 

(lower-case-p #\a) => T

(lower-case-p #\A) => NIL�

For a table of related items, see the section "Character Predicates". 

� lsh number count Function

Returns number shifted left count bits if count is positive or zero, or number shift-

ed right |count| bits if count is negative. Zero bits are shifted in (at either end) to
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fill unused positions. number and count must be fixnums. Since the result is also a

fixnum, bits shifted off either end are lost. (In some applications you might find

ash useful for shifting bignums.)

Note that like the Zetalisp functions whose name begins with the percent-sign (%),

lsh is machine-dependent.

Examples:

(lsh 4 1) => #o10

(lsh #o14 -2) => #o3

(lsh -1 1) => #o-2

(lsh -100 27) => -536870912 ;(ash -100 27) => -13421772800�

For a table of related items: See the section "Machine-Dependent Arithmetic Func-

tions". 

� machine-instance Function

Returns a string that is the name of your machine.

(machine-instance) => "WOMBAT"�

This is the contents of the Host field in your machine’s namespace object. See the

section "Why do you name machines and printers?".

� machine-type Function

Returns a string that identifies the kind of hardware you are using.

(machine-type) => "Symbolics 3620"�

For the CLOE Developer,

(machine-type)

=>"Symbolics"�

and for the CLOE Application Generator,

(machine-type)

=>"Intel"�

� machine-version Function

Under Genera, returns the board-level hardware information about your machine.

This is the same as the information displayed by the Show Machine Configuration

command for your machine.

Under CLOE, returns a string indicating the current version of the machine for

current implementation. For example, for the CLOE Developer you might get

something like the following:

(machine-version)

=>"3640"�

and for the CLOE Application Generator
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(machine-version)

=>"386"�

� macro name lambda-list &body body Special Form

The primitive special form for defining macros. A macro definition looks like this:

(macro name (form env)

    body)�

name can be any function spec. form and env must be variables. body is a se-

quence of Lisp forms that expand the macro; the last form should return the ex-

pansion. defmacro is usually preferred in practice. 

� macroexpand macro-call &optional env dont-expand-special-forms for-declares 

Function

If macro-call is a macro form, macroexpand expands it repeatedly by making as

many repeated calls to macroexpand-1 as required until it is not a macro form,

and returns two values: the final expansion and t. Otherwise, it returns macro-call

and nil. The optional env environment parameter conveys information about local

macro definitions that are defined via macrolet. (See the section "Lexical Environ-

ment Objects and Arguments".)

Compatibility Note: The optional argument dont-expand-special-forms, is a Symbol-

ics extension to Common Lisp, which prevents macro expansion of forms that are

both special forms and macros. dont-expand-special-forms will not work in other im-

plementations of Common Lisp including CLOE.

(defmacro nand (&rest args) ‘(not (and ,args)))

�

(macroexpand ’(nand foo (eq bar baz)(> foo bar)))

�

 ==> (not (and foo (eq bar baz)(> foo bar)))�

The following example shows the probable results of three calls to macroexpand-1

from within a call to macroexpand:

(defmacro and-op (op &rest args) ‘(,op ,args))

�

(macroexpand ’(and-op or (eq bar baz)(> foo bar))) =

�

     (macroexpand-1 (and-op or (eq bar baz) (> foo bar)))

      ==> (or (eq bar baz) (> foo bar)) t

�

     (macroexpand-1 (or (eq bar baz) (> foo bar)))

      ==> (cond ((eq bar baz)) (t (> foo bar))) t
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�

     (macroexpand-1 (cond ((eq bar baz)) (t (> foo bar))))

      ==> (if (eq bar baz) (eq bar baz) (> foo bar)) t

�

      ==> (if (eq bar baz) (eq bar baz) (> foo bar)) t�

� macroexpand-1 macro-call &optional env dont-expand-special-forms Function

If macro-call is a macro form, macroexpand-1 expands it (once) and returns the

expanded form and t. Otherwise, it returns macro-call and nil. The optional env

environment parameter is conveys information about local macro definitions as de-

fined via macrolet. 

(defmacro nand (&rest args) ‘(not (and ,args)))

�

(macroexpand-1 ’(nand foo (eq bar baz)(> foo bar)))

�

 ==> (not (and foo (eq bar baz)(> foo bar))) T

�

(defmacro and-op (op &rest args) ‘(,op ,args))

�

(macroexpand-1 ’(and-op or (eq bar baz)(> foo bar)))

�

 ==> (or (eq bar baz) (> foo bar)) T�

(See the section "Lexical Environment Objects and Arguments".)

Compatibility Note: The optional argument dont-expand-special-forms, is a Symbol-

ics extension to Common Lisp, which prevents macro expansion of forms that are

both special forms and macros. dont-expand-special-forms will not work in other im-

plementations of Common Lisp including CLOE. See the variable *macroexpand-

hook*.

� *macroexpand-hook* Variable

The value is used as the expansion interface hook by macroexpand-1. When

macroexpand-1 determines that a symbol names a macro, it obtains the expansion

function for that macro. The value of *macroexpand-hook* is called as a function

of three arguments: the expansion function, form, and env. The value returned

from this call is the expansion of the macro call.

The initial value of *macroexpand-hook* is funcall, and the net effect is to in-

voke the expansion function, giving it form and env as its two arguments.

This special variable allows for more efficient interpretation of code, for example,

by allowing caching of macro expansions. Such efficiency measures are unneces-

sary in compiled environments such as the CLOE runtime system.

� macro-function function�
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Function

Tests whether its argument is the name of a macro. function should be a symbol.

If function has a global function definition that is a macro definition, the expan-

sion function (a function of two arguments, the macro-call form and an environ-

ment) is returned. The function macroexpand is the best way to invoke the expan-

sion function.

If function has no global function definition, or has a definition as an ordinary

function or as a special form but not as a macro, then nil is returned. In the fol-

lowing example, macro-function (before using funcall) tests an argument intended

as a function .

(defun foo (function-arg arg-arg)

  (if (macro-function function-arg)

    (do-something-else arg-arg)

    (funcall function-arg arg-arg (cadr arg-arg))))�

Usually, macroexpand is used to expand a macro. However, in the following exam-

ple of a highly simplified definition of macroexpand-1, we see how to expand a

macro by using macro-function.

 (defun simple-macroexpand-1(form)

  (let ((name (first form))

        (expander (macro-function name)))

    (if expander

      (values (funcall expander form) t)

      (values form nil))))�

It is possible for both macro-function and special-form-p to be true of a symbol.

This is so because it is permitted to implement any macro also as a special form

for speed.

macro-function cannot be used to determine whether a symbol names a locally de-

fined macro established by macrolet; macro-function can examine only global def-

initions.

zl:setf can be used with macro-function to install a macro as a symbol’s global

function definition:

For example:

(zl:setf (macro-function symbol) fn)�

The value installed must be a function that accepts two arguments, an entire

macro call and an environment, and computes the expansion for that call. Perform-

ing this operation causes the symbol to have only that macro definition as a global

function definition; any previous definition, whether as a macro or as a function, is

lost.

� macrolet macros &body body Special Form

Defines, within its scope, a macro. It establishes a symbol as a name denoting a

macro, and defines the expander function for that macro. defmacro does this
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globally; macrolet does it only within the (lexical) scope of its body. A macro so

defined can be used as the car of a form within this scope. Such forms are expand-

ed according to the definition supplied when interpreted or compiled.

The syntax of macrolet is identical to that of flet or labels: it consists of clauses

defining local, lexical macros, and a body in which the names so defined can be

used. macros a list of clauses each of which defines one macro. Each clause is

identical to the cdr of a defmacro form: it has a name being defined (a symbol), a

macro pseudo-argument list, and an expander function body.

The pseudo-argument list is identical to that used by defmacro. It is a pattern,

and can use appropriate lambda-list keywords for macros, including &environment.

See the section "Lexical Environment Objects and Arguments".

The following example of macrolet is for demonstration only. If the macro square

needed to be open-coded, was long and cumbersome, or was used many times, then

the use of macrolet would be suggested.

(defun square-coordinates (point)

  (macrolet ((square (x) ‘(* ,x ,x)))

    (setf (point-x point) (square (point-x point))

  (point-y point) (square (point-y point)))))

�

(defstruct point x y) => POINT

(setq p1 (make-point :x 3 :y 4)) => #S(POINT :X 3 :Y 4)

(square-coordinates p1) => 16

�

(defun foo (x)

  (macrolet ((do-it (var n)

       ‘(case ,var

  ,(do ((i 0 (+ i 1))

 (l ’()))

((= i n)(nreverse l))

      (push (list i (format nil "~R" i))

    l)))))

    (do-it x 100)))

�

(foo 12) => "twelve"�

The following example implements a macro to establish a context where items can

be added to the end of list. This is similar to the way push adds to the beginning

of a list. We use macrolet to ensure that push-onto-end has access to the pointer

until the last cons of the list.
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(defmacro with-end-push2 (list &body body)

  (let ((lastptr (gensym)))

    ‘(let ((,lastptr (last ,list)))

       (macrolet ((push-onto-end (val)

    ‘(rplacd ,’,lastptr

     (setq ,’,lastptr (cons ,val nil)))))

 ,body))))

�

(defun example-3 ()

  (let ((mylist (list 1 2 3))

(a-list (list ’a ’b ’c ’d)))

    (with-end-push2 mylist

      (dolist (l a-list mylist)

(push-onto-end l)))))

�

(example-3)�

It is important to realize that macros defined by macrolet are run (when the com-

piler is used) at compile time, not run-time. The expander functions for such

macros, that is, the actual code in the body of each macrolet clause, cannot at-

tempt to access or set the values of variables of the function containing the use of

macrolet. Nor can it invoke run-time functions, including local functions defined

in the lexical scope of the macrolet by use of flet or labels. The expander func-

tion can freely generate code that uses those variables and/or functions, as well as

other macros defined in its scope, including itself.

There is an extreme subtlety with respect to expansion-time environments of

macrolet. It should not affect most uses. The macro-expander functions are closed

in the global environment; that is, no variable or function bindings are inherited

from any environment. This also means that macros defined by macrolet cannot

be used in the expander functions of other macros defined by macrolet within the

scope of the outer macrolet. This does not prohibit either of the following:

• Generation of code by the inner macro that refers to the outer one.

• Explicit expansion (by macroexpand or macroexpand-1), by the inner macro, of

code containing calls to the outer macro. Note that explicit environment man-

agement must be utilized if this is done. See the section "Lexical Environment

Objects and Arguments".�

� make-array dimensions &key (:element-type t) :initial-element :initial-contents :ad-

justable :fill-pointer :displaced-to :displaced-index-offset :displaced-conformally :area

:leader-list :leader-length :named-structure-symbol Function

Creates and returns a new array. dimensions is the only required argument. di-

mensions is a list of integers that are the dimensions of the array; the length of

the list is the dimensionality, or rank of the array. 
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;; Create a two-dimensional array 

(make-array ’(3 4) :element-type ’string-char) �

You can use these element types: bit, string-char, (unsigned-byte 8), (unsigned-

byte 16), (signed-byte 8), and (signed-byte 16). 

For convenience when making a one-dimensional array, the single dimension can

be provided as an integer rather than a list of one integer.

;; Create a one-dimensional array of five elements.

(make-array 5)�

The initialization of the elements of the array depends on the element type. By

default, the array is a general array, the elements can be any type of Lisp object,

and each element of the array is initially nil. However, if the :element-type option

is supplied, and it constrains the array elements to being integers or characters,

the elements of the array are initially 0 or characters whose character code is 0

and style is NIL.NIL.NIL. You can specify initial values for the elements by using

the :initial-contents or :initial-element options.

Compatibility Note: The optional arguments :displaced-conformally, :area,

:leader-list, :leader-length, and :named-structure-symbol are Symbolics exten-

sions to Common Lisp, and are not available in CLOE.

For a table of related items: See the section "Basic Array Functions".

See the section "Examples of make-array".

If you are using CLOE, see the section "Keyword Options for make-array". 

� zl:make-array dimensions &key :area :type :displaced-to :displaced-index-offset :dis-

placed-conformally :adjustable :leader-list :leader-length :named-structure-symbol :ini-

tial-value :fill-pointer Function

We recommend using make-array instead of zl:make-array. See the function

make-array.

Creates and returns a new array. dimensions is the only required argument. di-

mensions is a list of integers that are the dimensions of the array; the length of

the list is the dimensionality, or rank of the array. For the one-dimensional case

you can just give the integer.

zl:make-array returns two values: the newly created array, and the number of

words allocated in the process of creating the array. The second value is the

sys:%structure-total-size of the array. Note that make-array returns only one

value, the newly created array.

Most of the keyword options to zl:make-array have the same meaning as the key-

word options with the same name that can be given to make-array. See the sec-

tion "Keyword Options for make-array".

:initial-value The :initial-value keyword for zl:make-array has the same

meaning as the :initial-element keyword for make-array. 
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:type The :type option for zl:make-array is used for the same pur-

pose as is the :element-type option for make-array; that is, to

specify that the elements of the array should be of a certain

type. The value of the :type option is the symbolic name of

one of the Zetalisp array types, which include:

sys:art-q

sys:art-q-list

sys:art-nb

sys:art-string

sys:art-fat-string

sys:art-boolean

sys:art-fixnum�

The default type of array is sys:art-q, a general array. See the

section "Zetalisp Array Types".�

The initialization of the elements of the array depends on the type of array. If the

array is of a type whose elements can only be integers or characters, element of

the array are initially 0 or character code 0. Otherwise, each element is initially

nil. 

� zl:make-array-into-named-structure array Function

Turns array into a named structure, and returns it. 

� make-char char &optional (bits 0) (font 0)�

Function

Takes the argument char, which must be a character object. bits and font must be

non-negative integers. make-char sets the bits field to bits and returns the new

character. If make-char cannot construct a character given its arguments, it re-

turns nil. 

To set the bits of the character, supply one of the character bits constants as the

bits argument. See the section "Character Bit Constants".

(make-char #\A char-meta-bit) => #\m-A�

Since the value of char-font-limit is 1, the only valid value of font is 0, since Sym-

bolics does not support font numbers. The only reason to use the font option would

be when writing a program intended to be portable to other Common Lisp systems.

Common Lisp supports font attributes for character objects, Symbolics Common

Lisp does not.

In Genera, make-char does not change character styles. If you want to construct a

new character with a specified character style, use make-character. See the func-

tion make-character.

For a table of related items, see the section "Making a Character".
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� make-character char &key (bits 0) (style nil) Function

Takes an argument char, which must be a character object, and returns a new

character with the same code, but having the specified bits and style.

To set the bits of the character, supply one of the character bits constants as the

value of the :bits keyword. See the section "Character Bit Constants". For example:

(make-character #\1 :bits char-control-bit) => #\c-1�

To set the character style of the character, use the :style keyword and supply a

list of the form (:family :face :size). Any of the elements of this list can be nil. For

example:

(make-character #\A :style ’(nil :italic nil)) => #\A�

For a table of related items, see the section "Making a Character".

� make-concatenated-stream &rest streams Function

Returns a stream that only works in the input direction. Input is taken from the

first of the streams until it reaches EOF (end-of-file); then that stream is discard-

ed, and input is taken from the next of the streams, and so on. If no arguments

are given, the result is a stream with no content; any input attempt will result in

EOF.

In the following example, three file input streams are created using open. These

streams are read from inside a loop by using make-concatenated-stream.

(with-open-file (stream1 *stream-name1* :direction :input)

  (with-open-file (stream2 *stream-name2* :direction :input)

    (with-open-file (stream3 *stream-name3* :direction :input)

      (let ((input ’())

            (cat-stream (make-concatenated-stream stream1

                                                   stream2 

                                                   stream3)))

        (loop

          (setq input (read cat-stream nil :eof))

          (unless (and input (not (eq input :eof)))

            (return t))

          (process-input input))))))�

� make-condition condition-name &rest init-options�

Function

Creates a condition object of the specified condition-name with the specified init-

options. This object can then be signalled by passing it to signal or error. Note

that you are not supposed to design functions that indicate errors by returning er-

ror objects; functions should always indicate errors by signalling error objects.

This function makes it possible to build complex systems that use subroutines to

generate condition objects so that their callers can signal them.
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For a table of related items available in Genera: See the section "Condition-

Checking and Signalling Functions and Variables". 

� sys:make-coroutine-bidirectional-stream function &rest arguments Function

This function is obsolete. See the function sys:open-coroutine-stream. 

� sys:make-coroutine-input-stream function &rest arguments Function

This function is obsolete. See the function sys:open-coroutine-stream. 

� sys:make-coroutine-output-stream function &rest arguments Function

This function is obsolete. See the function sys:open-coroutine-stream.

� make-dispatch-macro-character char &optional non-terminating-p (a-readtable

*readtable*) Function

Causes char to be a dispatching macro character in readtable. If non-terminating-p

is non-nil (it defaults to nil), it will be a non-terminating macro character, which

means that it may be embedded within extended tokens. make-dispatch-macro-

character returns t.

Initially, every character in the dispatch table has a character-macro function that

signals an error. Use set-dispatch-macro-character to define entries in the dis-

patch table.

(let ((*readtable* (copy-readtable nil))

      (macfun (get-dispatch-macro-character #\# #\\)))

  (set-syntax-from-char #\[ #\#)

  (make-dispatch-macro-character #\[ t *readtable*)

  (set-dispatch-macro-character #\[ #\\ macfun)

  (values (read-from-string "[\+")))

 => #\+�

� make-dynamic-closure symbol-list function Function

Creates and returns a dynamic closure of function over the variables in symbol-list.

Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use (typep x :closure). (typep x

:closure) is equivalent to (zl:closurep x). See the section "Dynamic Closure-

Manipulating Functions".

� make-echo-stream input-stream output-stream Function
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This function, which is part of the Common Lisp standard, is not currently avail-

able in the Symbolics implementation of Common Lisp under Genera.

In CLOE, make-echo-stream creates and returns an input/output stream that

takes input from input-stream, echoes the input to output-stream, and sends output

to output-stream.

(with-open-file (instream "foo" :direction :input)

  (with-open-file (outstream "bar.out" :direction :output)

    (let ((my-io-stream (make-echo-stream instream outstream)))

      ...

      (my-decide *decider* (read my-io-stream))  ; these reads are echoed

      (if (eq *decision* ’sell)

(sell-action (read my-io-stream))        ;  to outstream.

)))�

The function make-echo-stream is thus handy for implementing ‘dribble’ facilities,

to record interactions.

� zl:make-equal-hash-table &rest options Function

Creates a new hash table using the equal function for comparison of the keys.

This function calls make-instance using the si:equal-hash-table flavor, passing

options to make-instance as init options. See the flavor si:equal-hash-table. This

function is obsolete; use make-hash-table with the :test keyword instead. 

� make-hash-table &key :name (:test ’eql) (:size cli:*default-table-size*) (:area

sys:default-cons-area) :hash-function :rehash-before-cold :rehash-after-full-gc (:num-

ber-of-values 1) :store-hash-code (:gc-protect-values t) (:mutating t) :initial-contents

:optimizations (:locking :process) :ignore-gc (:growth-factor cli::*default-table-

growth-factor*) (:growth-threshold cli::*default-table-growth-threshold*) :rehash-

size :rehash-threshold Function

Creates and returns a new table object. This function calls make-instance using a

basic table flavor and mixins for the necessary additional flavors as specified by

the options.

make-hash-table takes the following keyword arguments: 

:name A symbol that identifies the table in progress notes.

:test Determines how keys are compared. Its argument can be any

function; eql is the default. If you supply one of the following

values or predicates the hash table facility automatically sup-

plies a :hash-function: eq, eql, equal, char-equal, char=,

string-equal, #’string-equal, string=, zl:equal, zl:string-equal,

zl:string=. If you supply a value or predicate that is not on

this list, you must supply a :hash-function explicitly. Note: the

:test and :hash-function interact closely, and must agree with

each other.
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:size An integer representing the initial size of the table. The table

will be made large enough to hold this many entries without

growing.

:area If :area is nil (the default), the *default-cons-area* is used.

Otherwise, the number of the area that you wish to use. This

keyword is a Symbolics extension to Common Lisp.

:hash-function Specifies a replacement hashing function. The default is based

on the :test predicate. This keyword is a Symbolics extension

to Common Lisp.

:rehash-before-coldCauses a rehash whenever the hashing algorithm has been in-

validated, during a Save World operation. Thus every user of

the saved world does not have to waste the overhead of rehash-

ing the first time they use the table after cold booting.

For eq tables, hashing is invalidated whenever garbage collec-

tion or world compression occurs because the hash function is

sensitive to addresses of objects, and those operations move ob-

jects to different addresses. For equal tables, the hash function

is sensitive to addresses of some objects, but not to others. The

table remembers whether it contains any such objects.

Normally a table is automatically rehashed "on demand" the

first time it is used after hashing has become invalidated. This

first gethash operation is therefore much slower than normal.

The :rehash-before-cold keyword should be used on tables that

are a permanent part of your world, likely to be saved in a

world saved by Save World, and to be touched by users of that

world. This applies both to tables in Genera and to tables in

user-written subsystems saved in a world.

This keyword is a Symbolics extension to Common Lisp.

:rehash-after-full-gc

Similar to :rehash-before-cold. Causes a rehash whenever the

garbage collector performs a full gc. This keyword is a Symbol-

ics extension to Common Lisp.

:entry-size This keyword is obsolete. :entry-size 2 is equivalent to

:number-of-values 1. :entry-size 1 is equivalent to :number-of-

values 0. This keyword is a Symbolics extension to Common

Lisp.

:number-of-values Specifies the number of values associated with the key to be

stored in the table. Currently, the only valid values are 0 and

1. If 0 is specified, the table functions return t for the value of

the entry. This keyword is a Symbolics extension to Common

Lisp.

:store-hash-code Specifies that the table system store the hash code for each

key with the key. This keyword makes make-hash-table run
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faster, since its use avoids the need to run a test function, un-

less the hash codes are the same. Use of this keyword increas-

es the size of the table. Since gethash searches for keys equiv-

alent to the supplied key under the supplied value of the :test

argument, :store-hash-code t improves performance if the :test

function pages or is slow. This keyword is a Symbolics exten-

sion to Common Lisp.

:mutating Turns mutation on and off. The overhead involved with specify-

ing this keyword is relatively higher for small tables than for

large ones. The default value is t. This keyword is a Symbolics

extension to Common Lisp.

:initial-contents Set the initial contents for the new table. It can be either a ta-

ble object to be copied, or a sequence of keys and values, for

example:

’(KEY1 VALUE1 ... KEYn VALUEn)

This keyword is a Symbolics extension to Common Lisp.

:locking One of the following locking strategies: :process, :without-

interrupts, nil, or a cons consisting of a lock and an unlock

function. The default is to lock against other processes. This

keyword is a Symbolics extension to Common Lisp.

:ignore-gc By default, if the hash function is sensitive to the garbage col-

lector, the table is protected against GC flip. If you supply this

keyword, the table is not protected.

If the hash function utilizes the address of a Lisp object that

might be changed by the GC, the hash function must recom-

pute the hash code if that address is changed. :ignore-gc as-

serts that the hash function never uses such addresses, so that

it need not recompute the codes. The default depends on the

hash function: if it’s one of a small set of functions that Lisp

knows do not depend on addresses, this defaults to t (meaning

yes, it can ignore the GC). Otherwise, it chooses nil, which is

always safe. t might make your program run faster (avoiding

rehashes at GC time) but might also break your program (if

the hash function depends on address values). This keyword is

a Symbolics extension to Common Lisp.

:gc-protect-values The default is t. If nil, table entries are automatically deleted

if a value becomes unreachable other than through the table.

This keyword is a Symbolics extension to Common Lisp.

:growth-factor A synonym for :rehash-size. If the keyword is an integer, it is

the number of entries to add, and if it is a floating-point num-

ber, it is the ratio of the new size to the old size. If the value

is neither an integer or a floating-point number, an error is

signalled. This keyword is a Symbolics extension to Common

Lisp.
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:growth-threshold A synonym for :rehash-threshold. If it is an integer greater

than zero and less than the :size, it is related to the number

of entries at which growth should occur. The threshold is the

current size minus the :growth-threshold. If it is a floating-

point number between zero and one, it is the percentage of en-

tries that can be filled before growth will occur. If the value is

neither an integer or a floating-point number, an error is sig-

nalled. This keyword is a Symbolics extension to Common Lisp.

:rehash-size The growth factor of the table when it becomes full. If the val-

ue of the keyword is an integer, it is the number of entries to

add, and if it is a floating-point number, it is the ratio of the

new size to the old size. If the value is neither an integer or a

floating-point number, an error is signalled.

:rehash-threshold How full the table can become before it must grow. If it is an

integer greater than zero and less than the value of :size, it is

related to the number of entries at which growth should occur.

The threshold is the current size minus the :growth-threshold.

If it is a floating-point number between zero and one, it is the

percentage of entries that can be filled before growth will oc-

cur. If the value is neither an integer nor a floating-point

number, an error is signalled.

If you are using CLOE, zl:make-hash-table returns a newly created hash table

with size entries. Argument test must be eq, eq1 or equal expressed as either sym-

bols or as the function-quoted objects. Argument rehash-size can be an integer that

provides the number of entries to add, or a floating point number that indicates

the portion of the previous size to grow the hash table. Argument rehash-threshold

also may be an integer or floating point number, and indicates the maximum ca-

pacity of the hash table before it should grow.

(setq hash-table-1 (make-hash-table))

�

(setq hash-table-2

      (make-hash-table :size (* number-of-my-symbols 100)

                       :rehash-size 2.0

                       :rehash-threshold 0.8

                       :test ’eq))�

Compatibility Note: The following keywords are Symbolics extensions to Common

Lisp: :area, :hash-function, :rehash-before-cold, :rehash-after-full-gc, :entry-size,

:number-of-values: :store-hash-code:, :mutating, :initial-contents, :optimizations,

:locking, :ignore-gc, :gc-protect-values, :growth-factor, and :growth-threshold.

For a table of related items: See the section "Table Functions". 

� zl:make-hash-table &key :size :area :rehash-before-cold :initial-data :growth-factor 

Function
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Creates a new hash table using the eq function for comparison of the keys. This

function calls make-instance using the si:eq-hash-table flavor, passing options to

make-instance as init options. See the flavor si:eq-hash-table.

This is obsolete; use make-hash-table with the :test keyword instead.

� make-heap (&key (:size 100) (:predicate #’<) (:growth-factor 1.5) :interlocking) 

Function

Creates a new heap. :predicate, :size, and :growth-factor are passed as init op-

tions to make-instance when the heap is created.

make-heap takes the following keyword arguments:

:size The default is 100.

:predicate An ordering predicate that is applied to each key. The default

is #’<.

:growth-factor A number or nil. If it is an integer, the heap is increased by

that number. If it is a floating-point number greater than one,

the new size of the heap is the old size multiplied by that

number. If it is nil, the condition si:heap-overflow is signalled

instead of growing the heap.

:interlocking

:without-interruptsCauses make-heap to create a kind of heap

that can be interlocked for use by multiple

processes, using without-interrupts to per-

form the interlocking.

t Causes make-heap to create a kind of heap

that can be interlocked for use by multiple

processes, using process-lock to perform

the interlocking.

nil Causes make-heap to create a heap that

uses no locking at all. This is the default.�

For a table of related items: See the section "Heap Functions and Methods". 

� make-instance flavor-name &rest init-options Function

Creates and returns a new instance of the flavor named flavor-name, initialized ac-

cording to init-options, which are alternating keywords and arguments. All init-

options are passed to any methods defined for make-instance. 

If compile-flavor-methods has not been done in advance, make-instance causes

the combined methods of a program to be compiled, and the data structures to be

generated. This is sometimes called composing the flavor. make-instance also

checks that the requirements of the flavor are met. Requirements of the flavor are
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set up with these defflavor options: :required-flavors, :required-methods,

:required-init-keywords, and :required-instance-variables. 

init-options can include:

:initable-instance-variable value

You can supply keyword arguments to make-instance that

have the same name as any instance variables specified as

:initable-instance-variables in the defflavor form. Each key-

word must be followed by its initial value. This overrides any

defaults given in defflavor forms. 

:init-keyword valueYou can supply keyword arguments to make-instance that

have the same name as any keywords specified as :init-

keywords in the defflavor form. Each keyword must be fol-

lowed by a value. This overrides any defaults given in

defflavor forms.

:allow-other-keys t Specifies that unrecognized keyword arguments are to be ig-

nored. 

:allow-other-keys :return

Specifies that a list of unrecognized keyword arguments are to

be the second return value of make-instance. Otherwise only

one value is returned, the new instance. 

:area number Specifies the area number in which the new instance is to be

created. Note that you can use the :area-keyword option to

defflavor to change the :area keyword to make-instance to a

keyword of your choice, such as :area-for-instances.

Any ancillary values constructed by make-instance (other than

the instance itself) are constructed in whatever area you speci-

fy for them; this is not affected by using the :area keyword.

For example, if you supply a variable initialization that causes

consing, that allocation is done in whatever area you specify

for it, not in this area. For example:

(defflavor foo ((foo-1 (make-array 100)))

           ())�

In this example the array is consed in sys:default-cons-area. 

:area nil Specifies that the new instance is to be created in the

sys:default-cons-area. This is the default, unless the :default-

init-plist option is used to specify a different default for :area.

�

If not supplied in the init-options argument to make-instance, the :default-init-

plist option to the defflavor form is consulted for any default values for initable

instance variables, init keywords, and the :area and :allow-other-keys options. 
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An alternative way to make instances is to use constructors. One advantage in us-

ing constructor functions is that they are much faster than using make-instance.

You can define constructors by using the :constructor option; for more informa-

tion, see the section "Complete Options for defflavor".

If you want to know what the allowed keyword arguments to make-instance are,

use the Show Flavor Initializations command. See the section "Show Flavor Com-

mands". c-sh-A works too, if the flavor name is constant. 

You can define a method to run every time an instance of a certain flavor is cre-

ated. For information, see the section "Writing Methods for make-instance".

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".



Page 1234

Creates and returns a new instance of the flavor named flavor-name, initialized

according to init-options, which are alternating keywords and arguments. All init-

options are passed to any methods defined for make-instance. 

If compile-flavor-methods has not been done in advance, make-instance causes

the combined methods of a program to be compiled, and the data structures to be

generated. This is sometimes called composing the flavor. make-instance also

checks that the requirements of the flavor are met. Requirements of the flavor

are set up with these defflavor options: :required-flavors, :required-methods,

:required-init-keywords, and :required-instance-variables. 

init-options can include:

:initable-instance-variable value

You can supply keyword arguments to make-instance that

have the same name as any instance variables specified as

:initable-instance-variables in the defflavor form. Each key-

word must be followed by its initial value. This overrides any

defaults given in defflavor forms. 

:init-keyword value You can supply keyword arguments to make-instance that

have the same name as any keywords specified as :init-

keywords in the defflavor form. Each keyword must be fol-

lowed by a value. This overrides any defaults given in

defflavor forms.

:allow-other-keys t Specifies that unrecognized keyword arguments are to be ig-

nored. 

:allow-other-keys :return

Specifies that a list of unrecognized keyword arguments are

to be the second return value of make-instance. Otherwise

only one value is returned, the new instance. 

If not supplied in the init-options argument to make-instance, the :default-init-

plist option to the defflavor form is consulted for any default values for initable

instance variables, init keywords, and the :allow-other-keys options. 

If you want to know what the allowed keyword arguments to make-instance are,

use the Show Flavor Initializations command. 

You can define a method to run every time an instance of a certain flavor is

created:

� clos:make-instance class &rest initargs Generic Function

Creates, initializes, and returns a new instance of the given class.

class The name of the class, or a class object. 

initargs Alternating initialization argument names and values. The ini-

targs are used to initialize the new instance. The set of valid

initialization argument names includes:
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• clos-internals:storage-area, which specifies the area in

which to create the instance. The value should be an area

number. The default is sys:default-cons-area.

• Symbols declared by the :initarg slot option to clos:defclass,

which are used to initialize the value of a slot. 

• Keyword arguments accepted by any applicable methods for

clos:initialize-instance and clos:shared-initialize.

• The keyword :allow-other-keys. The default value for

:allow-other-keys is nil. If you provide t as its value, then

all keyword arguments are valid.�

clos:make-instance does the following:

1. Checks the validity of the initargs and signals an error if an invalid initializa-

tion argument name is detected. See the section "Declaring Initargs for a

Class".

2. Creates a new instance.

3. Calls the clos:initialize-instance generic function with the instance, and the

initialization arguments provided to clos:make-instance followed by the de-

fault initialization arguments of the class. (This order of initialization argu-

ments ensures that all initialization arguments provided to clos:make-

instance are used to fill slots first, and then the default initialization argu-

ments are used to fill slots that are still unbound.)

4. Fills any unbound slots with values according to the default initialization ar-

guments of the class. The default initialization arguments are specified by the

:default-initargs class option to clos:defclass. 

5. When finished, returns the initialized instance.�

The default primary method for clos:initialize-instance calls the clos:shared-

initialize generic function with the instance, t, and the initialization arguments

provided to clos:initialize-instance.

Note that the usual way for users to customize the initialization behavior is to

specialize clos:initialize-instance by writing after-methods. Any applicable after-

methods for clos:initialize-instance are called after the primary method for

clos:initialize-instance. A user-defined primary method would override the default

method, and thus could prevent the usual slot-filling behavior. 

The default primary method for clos:shared-initialize does the following: 

1. Fills slots with values according to the initargs. That is, for any initialization

argument name that is associated with a slot, the value of the slot is initial-

ized according to the argument given to clos:make-instance.
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2. Fills any unbound slots indicated by the second argument to clos:shared-

initialize with values according to the initform of the slot. The initform is

specified by the :initform slot option to clos:defclass. 

Users can define after-methods for clos:shared-initialize, to customize the initial-

ization behavior that occurs in several cases. Note that a user-defined primary

method for clos:shared-initialize would override the default method, and thus

could prevent the usual slot-filling behavior. The clos:shared-initialize generic

function is called in these cases:

• When an instance is first created; that is, when clos:make-instance is called. 

• When an instance is reinitialized; that is, when clos:reinitialize-instance is

called. 

• When the class of an instance is changed; that is, when clos:update-instance-

for-different-class is called.

• When a class is redefined; that is, when clos:update-instance-for-redefined-

class is called.

Any slot that is not filled by clos:shared-initialize is left unbound.

The generic function clos:make-instance itself is not intended to be specialized by

applications programmers. (Instead, it is intended to be specialized by meta-object

programmers who wish to customize the behavior of clos:make-instance for a

metaclass other than clos:standard-class). 

� clos:make-instances-obsolete class Generic Function

Called automatically when a class is redefined to trigger the updating of instances.

Users can call clos:make-instances-obsolete to trigger the class redefinition pro-

cess without actually redefining the class; the purpose of this would be to invoke

the clos:update-instance-for-redefined-class generic function.

class The class whose instances should be updated. This can be the

name of a class or a class object.�

The modified class is returned. 

� make-list size &key :initial-element :area Function

Creates and returns a list containing size elements, each of which is initialized to

the value supplied for the :initial-element keyword. The value of size should be a

non-negative integer. For example:

(make-list 5) => (NIL NIL NIL NIL NIL)

�

(make-list 3 :initial-element ’rah) => (RAH RAH RAH)�
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:initial-element The value to be assigned to each element of the created list.

The default is nil).

:area optional argument that is the number of the area in which to

create the new list. (Areas are an advanced feature of storage

management, and are not available in CLOE. See the section

"Areas".) 

Compatibility Note: :area is a Symbolics extension to Common Lisp and is not

available in CLOE. �

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� zl:make-list length &key :area :initial-value Function

Creates and returns a list containing length elements. length should be an integer.

The keywords can be either of the following: 

:area Either an area number (an integer), or nil to mean the default area. The

value specifies in which area the list should be created. Note that you can-

not use this option in Cloe. See the section "Areas".

:initial-value

The initial value of all elements of the list. It defaults to nil.

zl:make-list always creates a cdr-coded list. See the section "Cdr-Coding". Exam-

ples:

(zl:make-list 3) => (nil nil nil)

(zl:make-list 4 :initial-value 7) => (7 7 7 7)�

When zl:make-list was originally implemented, it took exactly two arguments: area

and length. This obsolete form is still supported so that old programs will continue

to work, but the new keyword-argument form is preferred.

For a table of related items: See the section "Functions for Constructing Lists and

Conses" and see CLtL 267. 

� clos:make-load-form object Generic Function

Provides a way to use an instance of a user-defined CLOS class (that is, an in-

stance whose metaclass is clos:standard-class or clos:structure-class) as a con-

stant in a program compiled with compile-file. Users can define a method for

clos:make-load-form that describes how an equivalent object can be reconstructed

when the compiled-code file is loaded.

compile-file calls clos:make-load-form on an object needed at load time, if the

object’s metaclass is clos:standard-class. compile-file will call clos:make-load-

form only once for any given object (compared with eq) within a single file. If

clos:make-load-form is called and no user-defined method is applicable, an error

is signaled.
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The argument object is an object needed at load-time.

clos:make-load-form returns two values. The first value, called the "creation

form", is a form that, when evaluated at load time, should return an object that is

equivalent to object.

The second value, called the "initialization form", is a form that, when evaluated

at load time, should perform further initialization of the object. The value returned

by the initialization form is ignored. If the clos:make-load-form method returns

only one value, the initialization form is nil, which has no effect. If the object used

as the argument to clos:make-load-form appears as a constant in the initialization

form, at load time it will be replaced by the equivalent object constructed by the

creation form; this is how the further initialization gains access to the object.

Both the creation form and the initialization form can contain references to in-

stances of user-defined CLOS classes. However, there must not be any circular de-

pendencies in creation forms. An example of a circular dependency is when the

creation form for the object X contains a reference to the object Y, and the cre-

ation form for the object Y contains a reference to the object X. A simpler example

would be when the creation form for the object X contains a reference to X itself.

Initialization forms are not subject to any restriction against circular dependencies,

which is the entire reason that initialization forms exist. See the example of circu-

lar data structures below.

The creation form for an object is always evaluated before the initialization form

for that object. When either the creation form or the initialization form references

other objects of user-defined types that have not been referenced earlier in the

compile-file, the compiler collects all of the creation and initialization forms. Each

initialization form is evaluated as soon as possible after its creation form, as deter-

mined by data flow. If the initialization form for an object does not reference any

other objects of user-defined types that have not been referenced earlier in the

compile-file, the initialization form is evaluated immediately after the creation

form. If a creation or initialization form F references other objects of user-defined

types that have not been referenced earlier in the compile-file, the creation forms

for those other objects are evaluated before F, and the initialization forms for

those other objects are also evaluated before F whenever they do not depend on

the object created or initialized by F. Where the above rules do not uniquely deter-

mine an order of evaluation, which of the possible orders of evaluation is chosen is

unspecified.

While these creation and initialization forms are being evaluated, the objects are

possibly in an uninitialized state, analogous to the state of an object between the

time it has been created and it has been processed fully by

clos:initialize-instance. Programmers writing methods for clos:make-load-form

must take care in manipulating objects not to depend on slots that have not yet

been initialized.

Examples:
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;; Example 1

(defclass my-class ()

   ((a :initarg :a :reader my-a)

    (b :initarg :b :reader my-b)

    (c :accessor my-c)))

�

(defmethod shared-initialize ((self my-class) ignore &rest ignore)

  (unless (slot-boundp self ’c)

    (setf (my-c self) (some-computation (my-a self) (my-b self)))))

�

(defmethod make-load-form ((self my-class))

  ‘(make-instance ’,(class-name (class-of self))

                  :a ’,(my-a self) :b ’,(my-b self)))�

In this example, an equivalent instance of my-class is reconstructed by using the

values of two of its slots. The value of the third slot is derived from those two

values.

Another way to write the last form in the above example is to use clos:make-load-

form-saving-slots:

(defmethod make-load-form ((self my-class))

   (make-load-form-saving-slots self ’(a b)))�

;; Example 2

(defclass my-frob ()

   ((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob))

  ‘(find-my-frob ’,(my-name self) :if-does-not-exist :create))�

In this example, instances of my-frob are "interned" in some way. An equivalent

instance is reconstructed by using the value of the name slot as a key for search-

ing existing objects. In this case the programmer has chosen to create a new ob-

ject if no existing object is found; an alternative would be to signal an error in

that case.

;; Example 3

(defclass tree-with-parent () 

   ((parent :accessor tree-parent)

    (children :initarg :children)))

(defmethod make-load-form ((x tree-with-parent))

  (values

    ;; creation form

    ‘(make-instance ’,(class-of x) 

                    :children ’,(slot-value x ’children))

    ;; initialization form

    ‘(setf (tree-parent ’,x) ’,(slot-value x ’parent))))�

In this example, the data structure to be dumped is circular, because each parent

has a list of its children and each child has a reference back to its parent. Sup-

pose clos:make-load-form is called on one object in such a structure. The creation

form creates an equivalent object and fills in the children slot, which forces cre-
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ation of equivalent objects for all of its children, grandchildren, and so on. At this

point none of the parent slots have been filled in. The initialization form fills in

the parent slot, which forces creation of an equivalent object for the parent if it

was not already created. Thus the entire tree is recreated at load time. At compile

time, clos:make-load-form is called once for each object in the tree. All the cre-

ation forms are evaluated, in unspecified order, and then all of the initialization

forms are evaluated, also in unspecified order.

� clos:make-load-form-saving-slots object &optional save-slots Function

Used in the bodies of methods for clos:make-load-form. The argument object is an

object needed at load-time. The argument save-slots is a list of the names of the

slots to preserve; it defaults to all of the local slots.

clos:make-load-form-saving-slots returns forms that construct an equivalent ob-

ject using clos:make-instance and setf of clos:slot-value for slots with values, or

clos:slot-makunbound for slots without values, or other functions of equivalent

effect.

clos:make-load-form-saving-slots returns two values, thus it can deal with circu-

lar structures. clos:make-load-form-saving-slots works for instances of user-

defined classes; that is, instances whose metaclass is clos:standard-class or

clos:structure-class.

See the generic function clos:make-load-form.

� clos:make-method form Macro

A list such as (#:make-method form) can be used instead of a method object as

the first subform of clos:call-method or as an element of the second subform of

clos:call-method. 

form Specifies a method object whose method function has a body

that is the given form. Note that form is not evaluated. �

� make-package name &key :nicknames :prefix-name :use :shadow :export :import

:shadowing-import :import-from :relative-names :relative-names-for-me :size :external-

only :new-symbol-function :hash-inherited-symbols :invisible :colon-mode :prefix-

intern-function :include�

Function

Makes a new package and returns it. make-package is the primitive subroutine

called by defpackage. An error is signalled if the package name or nickname con-

flicts with an existing package. make-package takes the same arguments as

defpackage except that standard &key syntax is used, and there is one additional

keyword, :invisible.
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When an argument is called a name, it can be either a symbol or a string. When

an argument is called a package, it can be the name of the package as a symbol or

a string, or the package itself.

The keyword arguments are:

:use ’(package package...)

External symbols and relative name mappings of the specified packages are

inherited. If only a single package is to be used, the name rather than a

list of the name can be passed. If no package is to be used, specify nil. The

default value for :use is cl. 

(:nicknames name name...) for defpackage

:nicknames ’(name name...) for make-package

The package is given these nicknames, in addition to its primary name. 

Compatibility Note: Symbolics Common Lisp under Genera provides additional

functionality with these keywords, which are extensions to Common Lisp:

(:prefix-name name) for defpackage

:prefix-name name for make-package

This name is used when printing a qualified name for a symbol in this

package. You should make the specified name one of the nicknames of the

package or its primary name. If you do not specify :prefix-name, it defaults

to the shortest of the package’s names (the primary name plus the nick-

names). 

:invisible boolean

If true, the package is not entered into the system’s table of packages, and

therefore cannot be referenced via a qualified name. This is useful if you

simply want a package to use as a data structure, rather than as the pack-

age in which to write a program. 

(:shadow name name...) for defpackage

:shadow ’(name name...) for make-package

Symbols with the specified names are created in this package and declared

to be shadowing. 

(:export name name...) for defpackage

:export ’(name name...) for make-package

Symbols with the specified names are created in this package, or inherited

from the packages it uses, and declared to be external. 

(:import symbol symbol...) for defpackage

:import ’(name name...) for make-package

The specified symbols are imported into the package. Note that unlike

:export, :import requires symbols, not names; it matters in which package

this argument is read. 

(:shadowing-import symbol symbol...) for defpackage
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:shadowing-import ’(symbol symbol...) for make-package

The same as :import but no name conflicts are possible; the symbols are

declared to be shadowing. 

(:import-from package name name...) for defpackage

:import-from ’(package name name...) for make-package

The specified symbols are imported into the package. The symbols to be im-

ported are obtained by looking up each name in package. 

(defpackage only) This option exists primarily for system bootstrapping,

since the same thing can normally be done by :import. The difference be-

tween :import and :import-from can be visible if the file containing a

defpackage is compiled; when :import is used the symbols are looked up at

compile time, but when :import-from is used the symbols are looked up at

load time. If the package structure has been changed between the time the

file was compiled and the time it is loaded, there might be a difference.�

(:relative-names (name package) (name package)...) - defpackage

:relative-names ’((name package) ...) - make-package

Declares relative names by which this package can refer to other packages.

The package being created cannot be one of the packages, since it has not

been created yet. For example, to be able to refer to symbols in the

common-lisp package print with the prefix lisp: instead of cl: when they

need a package prefix (for instance, when they are shadowed), you would

use :relative-names like this:

(defpackage my-package (:use cl)

                       (:shadow error)

                       (:relative-names (lisp common-lisp)))

�

(let ((*package* (find-package ’my-package)))

  (print (list ’my-package::error ’cl:error)))�

(:relative-names-for-me (package name) ...) for defpackage

:relative-names-for-me ’((package name) ...) for make-package

Declares relative names by which other packages can refer to this package.

(defpackage only) It is valid to use the name of the package being created

as a package here; this is useful when a package has a relative name for

itself. 

(:size number) for defpackage

:size number for make-package

The number of symbols expected in the package. This controls the initial

size of the package’s hash table. You can make the :size specification an

underestimate; the hash table is expanded as necessary. 

(:hash-inherited-symbols boolean) for defpackage

:hash-inherited-symbols boolean for make-package

If true, inherited symbols are entered into the package’s hash table to

speed up symbol lookup. If false (the default), looking up a symbol in this

package searches the hash table of each package it uses. 
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(:external-only boolean) for defpackage

:external-only boolean for make-package

If true, all symbols in this package are external and the package is locked.

This feature is only used to simulate the old package system that was used

before Release 5.0. See the section "External-only Packages and Locking". 

(:include package package...) for defpackage

:include ’(package package...) for make-package

Any package that uses this package also uses the specified packages. Note

that if the :include list is changed, the change is not propagated to users

of this package. This feature is used only to simulate the old package sys-

tem that was used before Release 5.0. 

(:new-symbol-function function) for defpackage

:new-symbol-function function for make-package

function is called when a new symbol is to be made present in the package.

The default is si:pkg-new-symbol unless :external-only is specified. Do not

specify this option unless you understand the internal details of the package

system. 

(:colon-mode mode) for defpackage

:colon-mode mode for make-package

If mode is :external, qualified names mentioning this package behave dif-

ferently depending on whether ":" or "::" is used, as in Common Lisp. ":"

names access only external symbols. If mode is :internal, ":" names access

all symbols. :external is the default. See the section "Specifying Internal

and External Symbols in Packages".�

(:prefix-intern-function function) for defpackage

:prefix-intern-function function for make-package

The function to call to convert a qualified name referencing this package

with ":" (rather than "::") to a symbol. The default is intern unless (:colon-

mode :external) is specified. Do not specify this option unless you under-

stand the internal details of the package system. 

� make-plane rank &key (:type ’sys:art-q) :default-value (:extension 32) :initial-

dimensions :initial-origins Function

Creates and returns a plane. rank is the number of dimensions. options is a list of

alternating keyword symbols and values. The allowed keywords are:

:type The array type symbol (for example, sys:art-1b) specifying the type of the

array out of which the plane is made.

:default-value

The default component value.
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:extension

The amount by which to extend the plane. See the section "Planes".

:initial-dimensions

A list of dimensions for the initial creation of the plane. You might want to

use this option to create a plane whose first dimension is a multiple of 32,

so you can use bitblt on it. The default is 1 in each dimension. 

:initial-origins

A list of origins for the initial creation of the plane. The default is all zero.�

Example:

(make-plane 2 :type sys:art-4b :default-value 3)�

creates a two-dimensional plane of type sys:art-4b, with default value 3.

For a table of related items, see the section "Operations on Planes".

� make-random-state &optional state Function

Returns a new object of type random-state, which the function random can use

as its state argument.

If state is nil or omitted, make-random-state returns a copy of the current ran-

dom-number state object (the value of variable *random-state*).

If state is a state object, a copy of that state object is returned.

If state is t, the function returns a new state object that has been "randomly" ini-

tialized.

Examples:

(setq x (make-random-state)) => #.(RANDOM-STATE 71 1695406379...)

;;; the value of x is now a random state

(setq copy-x (make-random-state x)) => #.(RANDOM-STATE 71...)

;;; this makes a copy of random state x 

;;; a way to get reproducibly random numbers�

(equalp (make-random-state t) *random-state*) => nil�

For a table of related items, see the section "Random Number Functions".

� make-raster-array width height &key (:element-type t) :initial-element :initial-

contents :adjustable :fill-pointer :displaced-to :displaced-index-offset :displaced-

conformally :area :leader-list :leader-length :named-structure-symbol Function

Makes rasters; this should be used instead of make-array when making arrays

that are rasters. make-raster-array is similar to make-array, but make-raster-

array takes width and height as separate arguments instead of taking a single di-

mensions argument. If the raster is to be used with bitblt, the width times the

number of bits per array element must be a multiple of 32.
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The make-array-options are the options that can be given to make-array. For in-

formation on those options: See the section "Keyword Options for make-array".

When you cannot use make-raster-array, for example from the :make-array op-

tion to defstruct contructors, you should use raster-width-and-height-to-make-

array-dimensions instead.

For a table of related items: See the section "Operations on Rasters". 

� zl:make-raster-array width height &rest make-array-options Function

This function is provided for compatibility with previous releases. Use the Common

Lisp function, make-raster-array. 

� make-sequence type size &key :initial-element :area�

Function

Returns a sequence of type type and of length size, each of whose elements has

been initialized to the value of the :initial-element argument (or nil if none is

specified). If :initial-element is specified, the value must be an object that can be

an element of a sequence of type type. For example:

(make-sequence ’(vector double-float) 5 :initial-element 1d0)

 => #(1.0d0 1.0d0 1.0d0 1.0d0 1.0d0)

�

(make-sequence ’list 4 :initial-element ’a) => (a a a a)

�

(make-sequence ’string 4 :initial-element #\a) => "aaaa"�

If :initial-element is a fat character, under Genera, make-sequence makes a fat

string (a string of element type character).

The keyword :area is the number of the area in which to create the new alist.

(Areas are an advanced feature of storage management.) :area is a Symbolics ex-

tension to Common Lisp, and is not supported in CLOE. See the section "Areas".

See the function vector. See the function make-list.

For a table of related items: See the section "Sequence Construction and Access"

� make-string size &key :initial-element :element-type :area Function

Returns a simple string of length size. It constructs a one-dimensional array with-

out fill pointer or displacement, to hold elements of type character, or any of its

subtypes, that is, string-char, or standard-char. Depending on their character

type, Genera strings created with make-string can therefore be either fat or thin.

When using CLOE, strings made with make-string always have elements of type

string-char. 

The ability to create fat as well as thin strings represents an extension of the

make-string function as presented in Guy L. Steele’s Common Lisp: the Language.
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The optional keywords are as follows:

:initial-element Each element of the new array is initialized to the character

specified by this keyword; this character must correspond to

the type specified by :element-type, if any. If no initial ele-

ment is specified, array elements are initialized to characters

with a char-code of 0, whose type corresponds to the type

specified by :element-type; if :element-type is also unspeci-

fied, make-string builds a thin string.

:element-type Specifies the type of characters in the string and if you are

using Genera, must be of type character, or any of its sub-

types. If this keyword is left unspecified, the string type cor-

responds to the type of the character specified in :initial-

element. If both keywords are omitted, make-string builds a

thin string. :element-type is a Symbolics extension to Com-

mon Lisp, and not available when using CLOE.

:area Specifies the area in which to create the array. :area should

be an integer or nil to mean the default area. :area is a

Symbolics extension to Common Lisp, and not available under

CLOE.�

The examples below show the interaction of the keywords :initial-element and

:element-type.

Since make-string only lets you build simple character arrays, you must use the

array-specific function make-array to build more complex character arrays.

Examples:

�

; :initial-element and :element-type are omitted. String is thin.

(string-char-p (char (make-string 5) 1)) => T

�

; :initial-element and :element-type specify a thin string.

(string-char-p (char (make-string 5 :initial-element #\C

                                    :element-type ’string-char) 0)) => T

�

; :initial-element and :element-type specify a fat string.

(string-fat-p (make-string 5 :initial-element #\hyper-C

                             :element-type ’character)) => T

�

; :element-type is omitted, and :initial-element

; is a standard character. String is thin.

(string-char-p (char (make-string 5 :initial-element #\a) 2)) => T

�

; :element-type is omitted, and  :initial-element

; is a fat character.  String is fat.

(string-fat-p (make-string 3 :initial-element #\hyper-super-a)) => T�
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�

; :initial-element is omitted and

; :element-type is a subtype of character. String is thin.

(string-fat-p (make-string 4 :element-type ’string-char)) => NIL

�

; :initial-element is omitted and

; :element-type is of type character. String is fat.

(string-fat-p (make-string 4 :element-type ’character)) => T

�

(make-array 5 :element-type ’string-char) => "DDDDD"

          ;returns a simple, thin string

�

(make-array 3 :element-type ’character :initial-element #\hyper-super-q) 

=> "<H-S-Q><H-S-Q-><H-S-Q>"    ;returns a fat, simple string

�

(make-string 4 :area working-storage-area)  => "DDDD"

�

Under CLOE, make-string always creates a simple string. If an adjustable string

or a string with a fill-pointer is required, use make-array instead of make-string.

The following call to make-array creates a non-simple string.

(setq str (make-array 10

                      :element-type ’string-char 

                      :fill-pointer 0

                      :adjustable t))

�

 => ""

�

(push #\a str)

(push #\b str)

(push #\c str)

�

(char str 2) => #\c�

For a table of related items: See the section "String Construction".

� make-string-input-stream string &optional (start 0) end�

Function

Returns an input stream. The input stream will supply, in order, the characters in

the substring of string delimited by start and end. After the last character has

been supplied, the stream will then be at end-of-file.

(make-string-input-stream "Hello")

  => #<LEXICAL-CLOSURE CLI::STRING-INPUT-STREAM 10223204>

�

(make-string-input-stream "Hello" 1 3)

  => #<LEXICAL-CLOSURE CLI::STRING-INPUT-STREAM 10224324>�
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(defvar input-string "   foo bar baz")

(let ((my-stream

       (make-string-input-stream

         input-string

         (position-if #’alphanumericp input-string))))

  (read-char my-stream))

�

 => #\f�

Often it is preferable to use with-input-from-string.

� make-string-output-stream Function

Returns an output stream that will accumulate all string output given it for the

benefit of the function get-output-stream-string.

(setq stream (make-string-output-stream))

  => #<LEXICAL-CLOSURE CLI::STRING-OUTPUT-STREAM 44310040>

�

(setq output-string ’hello) => HELLO

�

(write output-string :stream stream) => HELLO

�

(get-output-stream-string stream) => "HELLO"�

(defvar *heading* ’("Name " "Rank " "Serial-number "))

�

(let ((my-stream (make-string-output-stream))

      (list-of-strings *heading*))

  (dolist (str list-of-strings)

    (princ str my-stream))

  (get-output-stream-string my-stream))

�

 => "Name Rank Serial-number "�

Often it is more convenient to use with-output-to-string.

� make-symbol print-name &optional permanent-p Function

Creates a new uninterned symbol whose print-name is the string print-name. The

value and function bindings are unbound and the property list is empty.

Symbolics Common Lisp provides the optional argument permanent-p. If

permanent-p is specified, it is assumed that the symbol is going to be interned and

probably kept around forever; in this case it and its print-name are put in the

proper areas. If permanent-p is nil (the default), the symbol goes in the default

area and print-name is not copied. permanent-p is mostly for the use of intern it-

self and might not work in other implementations of Common Lisp. 

Examples:
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(make-symbol "FOO") => FOO

(make-symbol "Foo") => |Foo|�

Note that the symbol is not interned; it is simply created and returned.

If a symbol has lowercase characters in its print-name, the printer quotes the

name using slashes or vertical bars. The vertical bars inhibit the Lisp reader’s

normal action, which is to convert a symbol to uppercase upon reading it. See the

section "What the Printer Produces".

Example:

(setq a (make-symbol "Hello"))    ; => |Hello|

(princ a)                         ; prints out Hello�

See the section "Functions for Creating Symbols".

� zl:make-syn-stream symbol Function

Creates and returns a "synonym stream" (syn for short). symbol can be either a

symbol or a locative.

If symbol is a symbol, the synonym stream is actually an uninterned symbol named

#:symbol-syn-stream. This generated symbol has a property that declares it to be a

legitimate stream. This symbol is the value of symbol’s si:syn-stream property,

and its function definition is forwarded to the value cell of symbol using a sys:dtp-

external-value-cell-pointer. Any operations sent to this stream are redirected to

the stream that is the value of symbol.

If symbol is a locative, the synonym stream is an uninterned symbol named #:syn-

stream. This generated symbol has a property that declares it to be a legitimate

stream. The function definition of this symbol is forwarded to the cell designated

by symbol. Any operations sent to this stream are redirected to the stream that is

the contents of the cell to which symbol points.

Synonym streams should not be passed between processes, since the streams to

which they redirect operations are specific to a process. 

� make-synonym-stream stream-symbol Function

Creates and returns a new stream that reads or writes indirectly to the stream de-

noted by stream-symbol. If the dynamic variable stream-symbol is rebound to a new

stream, the operations of the synonym stream are redirected to the newly bound

stream.

Under CLOE, the following streams are initially all bound to synonym-streams

which do input or output via *terminal-io*, *standard-input*, *standard-output*,

*error-output*, *trace-output*, *query-io*, and *debug-io*. 

Under CLOE-Runtime, in the following example, my-output-stream is bound to a

synonym stream using the variable *file-stream*. This variable is initially bound

to *standard-output*. As the value of *file-stream* changes, the output of the

synonym stream is directed to the stream currently the value of *file-stream*.
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(defvar *file-stream* *standard-output*)

(setq my-output-stream

      (make-synonym-stream ’*file-stream*))

�

(with-open-file (*file-stream* *out-file-name1* :direction :output)

  (process data)

  (format my-output-stream stuff))

�

(setq *file-stream* *standard-output*)

(format my-output-stream more-stuff)

�

(with-open-file (*file-stream* *out-file-name2* :direction :output)

  (process data)

  (format my-output-stream other-stuff))�

� make-two-way-stream input-stream output-stream Function

Returns a bidirectional stream that gets its input from input-stream and sends its

output to output-stream.

(with-open-stream (stream1 *stream-name1*

                   :direction :input

                   :element-type ’character)

  (with-open-stream (stream2 *stream-name2*

                     :direction :output

                     :element-type ’character)

     (let ((input ’())

           (two-way (make-two-way-stream stream1 stream2)))

       (loop

         (setq input (read-char two-way nil :eof))

         (unless (and input (not (eq input :eof)))

           (return t))

         (write-char input two-way)))))�

� zl:maknam charl Function

Returns an uninterned symbol whose print-name is a string made up of the char-

acters in charl. This function is provided mainly for Maclisp compatibility.

Examples:

(zl:maknam ’(a b #\0 d)) => #:AB0D

(zl:maknam ’(1 2 #\h "b")) => #:|↓αhb|�

� makunbound symbol Function

Causes symbol to become unbound, and returns its argument. Example:
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(setq a 1)

a => 1

(makunbound ’a)

a => causes an error.�

Other examples:

(defvar *alarms*)

(boundp ’*alarms*) => nil

(setq *alarms* 20)

(boundp ’*alarms*) => t

(makunbound ’*alarms*)

(boundp ’*alarms*) => nil�

See the section "Functions Relating to the Value of a Symbol".

� makunbound-globally var Function

Works like makunbound but sets the global value regardless of any bindings cur-

rently in effect.

makunbound-globally operates on the global value of a special variable; it bypass-

es any bindings of the variable in the current stack group. It resides in the global

package.

makunbound-globally does not work on local variables. See the section "Functions

Relating to the Value of a Symbol".

� makunbound-in-closure closure symbol Function

Makes symbol be unbound in the environment of closure; that is, it does what

makunbound would do if you restored the value cells known about by closure. If

symbol is not closed over by closure, this is just like makunbound. See the section

"Dynamic Closure-Manipulating Functions". 

� map result-type function sequence &rest more-sequences Function

Applies function to sequences, and returns a new sequence such that element j of

the new sequence is the result of applying function to element j of each of the ar-

gument sequences. The returned sequence is as long as the shortest of the input

sequences. function must take at least as many arguments as there are sequences

provided, and at least one sequence must be provided.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(map ’list #’- ’(4 3 2 1) ’(3 2 1 0)) => (1 1 1 1)

�

(map ’string #’(lambda (x) (if (oddp x) #\1 #\0)) ’(1 2 3 4)) =>

"1010"�
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If function has side effects, it can count on being called first on all of the ele-

ments with index 0, then on all of those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type (which

must be a subtype of the type sequence), as for the function coerce. In addition,

you can specify nil for the result type, meaning that no result sequence is to be

produced. In this case function is invoked only for effect, and map returns nil.

This gives an effect similar to mapc.

In the following example, map is used to define a function which works like

pairlis, but takes vectors as input.

(defun make-alist-from-vectors (vector1 vector2)

  (map ’list #’cons vector1 vector2))

�

(make-alist-from-vectors ’#(first second third) ’#(1 2 3))

�

 => ((FIRST . 1) (SECOND . 2) (THIRD . 3))�

For a table of related items: See the section "Mapping Functions".

For a table of related items: See the section "Mapping Sequences". 

� zl:map fcn list &rest more-lists Function

The Common Lisp function, mapl, is preferred.

Applies fcn to list and to successive sublists of that list. If all the lists are not of

the same length, the iteration terminates when the shortest list runs out, and ex-

cess sublists of it are ignored.

zl:map works like maplist, except that it does not construct a list to return. Use

zl:map when the fcn is being called merely for its side effects, rather than its re-

turned values.

Examples:

(zl:map #’equal ’(2 3 4) ’(2 3 4)) => (2 3 4)

(zl:map #’(lambda (x y) (if (equal x y)(princ "equal ")))

’(2 3 4) ’(2 3 4))

 => equal equal equal 

(2 3 4)

(zl:map #’(lambda (x) (if (member (car x) (cdr x)) nil 

                          (princ (car x)) (princ " ")))

’(a b a c b)) => A C B (A B A C B)�

For a table of related items: See the section "Mapping Functions".

For a table of related items: See the section "Mapping Sequences".

� :map-hash function &rest args Message



Page 1253

For each entry in the hash table, calls function on the key of the entry and the

value of the entry. If args are supplied, they are passed along to function following

the value of the entry argument. This message is obsolete; use maphash instead. 

� map-into result-sequence function sequence &rest more-sequences Function

Destructively modifies the result-sequence to contain the results of applying func-

tion to each element in the argument sequences in turn. The modified result-

sequence is returned.

map-into differs from map in that it modifies an existing sequence rather than

creating a new one.

The arguments result-sequence and sequences can be either a list or a vector (one-

dimensional array). Note that nil is considered to be a sequence, of length zero.

function must take at least as many arguments as there are sequences provided,

and at least one sequence must be provided.

For example:

(setf n-list (list  "12345"))

=> ("12345")

�

(map-into n-list #’parse-integer n-list)

=> (12345)�

If function has side effects, it can count on being called first on all of the ele-

ments with index 0, then on all of those numbered 1, and so on.

The function is applied to the minimum of the length of result-sequence and the

shortest sequence, and if the result is longer than the shortest sequence, the re-

maining elements are not changed.

For tables of related items: 

See the section "Mapping Functions".

See the section "Mapping Sequences".�

� zl:mapatoms function &optional (pkg *package*) (inherited-p t)�

Function

Applies function to each of the symbols in package. function should be a function of

one argument. If inherited-p is t, this is all symbols accessible to package, includ-

ing symbols it inherits from other packages. If inherited-p is nil, function only sees

the symbols that are directly present in package.

Note that when inherited-p is t symbols that are shadowed but otherwise would

have been inherited are seen; this slight blemish is for the sake of efficiency. If

this is a problem, function can try zl:intern in package on each symbol it gets, and

ignore the symbol if it is not eq to the result of zl:intern; this measure is rarely

needed. 
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� zl:mapatoms-all function Function

Applies function to all of the symbols in all of the packages in existence, except for

invisible packages. function should be a function of one argument. Note that sym-

bols that are present in more than one package are seen more than once.

Example:

(zl:mapatoms-all

  (function

    (lambda (x)

      (and (alphalessp ’z x)

           (print x)))))�

� mapc fcn list &rest more-lists Function

Like mapcar, except that it does not return any useful value. 

mapc applies fcn to successive elements of the argument lists. If the lists are not

of the same length, the iteration terminates when the shortest list runs out.

fcn must take take as many arguments as there are lists.

mapc is used when fcn is being called merely for its side effects, rather than its

returned values.

Examples:

(mapc #’set ’(A B C) ’(11 22 33))

 => (A B C)

�

(mapc #’(lambda (x y) (if (= (+ x y) 3) (princ "three "))) 

      ’(1 2 3) ’(2 1 3))

 => three three (1 2 3)�

(mapc #’(lambda (x) (setf (get x ’color) t)) ’(red blue green yellow))

�

(get ’red ’color) => T�

For a table of related items: See the section "Mapping Functions".

� mapcan fcn list &rest more-lists Function

Applies fcn to list and to successive elements of that list. This function is like

mapcar, except that it combines the results of the function using nconc instead of

list.

fcn must take as many arguments as there are lists.

Examples:
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(mapcan #’(lambda (x) (if (equal x 3) nil (princ x))) ’(1 2 3 4)) 

 => 124NIL

�

(mapcan #’(lambda (x) (and (integerp x) (list x)))

        ’(1 2.3 3. 4 ’d 0))

 => (1 3 4 0)�

If mapcar were used for the above example, the result would be as follows:

(mapcar #’(lambda (x) (if (equal x 3) nil (princ x))) ’(1 2 3 4))

 => 124(1 2 NIL 4) 

�

(mapcar #’(lambda (x) (and (integerp x) (list x)))

        ’(1 2.3 3. 4 ’d 0)) => ((1) NIL (3) (4) NIL (0))�

(mapcan #’(lambda (x) (if (integerp x) (cons x nil)) (list ’a 3 ’b 4 2))

�

 => (3 4 2)�

For a table of related items: See the section "Mapping Functions".

� mapcar fcn list &rest more-lists Function

fcn is a function that takes as many arguments as there are lists in the call to

mapcar. For example, since expt takes two arguments the following use of

mapcar is incorrect:

Wrong:

(mapcar #’expt ’(1 2 3 4 5) ’(43 2 1 4 2) ’(2 3 2 3 2))�

Right:

(mapcar #’expt ’(1 2 3 4 5) ’(43 2 1 4 2))�

In the correct example, mapcar calls expt repeatedly, each time using successive

elements of the first list as its first argument and successive elements of the sec-

ond list as its second argument. Thus, mapcar calls expt with the arguments 1

and 43, 2 and 2, 3 and 1, 4 and 4, and 5 and 2 and returns a list of the five re-

sults.

Examples:

(mapcar #’- ’(3 4 2 5) ’(1 1 2 3)) => (2 3 0 2)

�

(mapcar #’= ’(1 2 3 4) ’(1 2 3 8)) => (T T T NIL)

�

(mapcar #’(lambda (x) (if (numberp x) 0 1)) ’(1 2 3 ’k "hi" ’fly)) 

=> (0 0 0 1 1 1)

�

(mapcar #’list ’(’hot ’cat ’sam ’new) ’(’dog ’hat ’man ’york))  

=> ((’HOT ’DOG) (’CAT ’HAT) (’SAM ’MAN) (’NEW ’YORK))  
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�

(mapcar #’+ ’(1 2 3 4) (circular-list 1)) => (2 3 4 5)

�

(mapcar #’= ’(1 2 3 3 45) ’(2 2)) => (NIL T)

�

(mapcar #’1+ ’(5 25 33)) => (6 26 34)�

For a table of related items: See the section "Mapping Functions".

� mapcon fcn list &rest more-lists�

Function

Applies fcn to list and to successive sublists of that list rather than to successive

elements.

This function is like maplist, except that it combines the results of the function

using nconc instead of list.

fcn must take as many arguments as there are lists.

mapcon could have been defined by:

(defun mapcon (f x y)

  (apply ’nconc (maplist f x y)))�

Of course, this definition is less general than the real one.

Examples:

(mapcon #’(lambda (x y) (and (equal y x)(list x)) )

        ’(’yo ’ho ’woo ’wa) ’(’hi ’ho ’woo ’wa))  

=> ((’HO ’WOO ’WA) (’WOO ’WA) (’WA))�

If maplist were used for the above example the result would look as follows:

(maplist #’(lambda (x y) (and (equal y x)(list x)) )

         ’(’yo ’ho ’woo ’wa) ’(’hi ’ho ’woo ’wa)) 

=> (NIL ((’HO ’WOO ’WA)) ((’WOO ’WA)) ((’WA)))�

(mapcon #’(lambda (x) (list (length x) x) (list ’a ’b ’c))

=> (3 (A B C) 2 (B C) 1 (C))�

For a table of related items: See the section "Mapping Functions".

� maphash function table Function

For each entry in table, calls function on the key of the entry and the value of the

entry. If entries are added to or deleted from the hash table while a maphash is

in progress, the results are unpredictable, with one exception: if the function calls

remhash to remove the entry currently being processed by the function, or per-

forms a setf of gethash on that entry to change the associated value, then those

operations will have the intended effect. In the following example, maphash re-

turns nil.
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;; alter every entry in MY-HASH-TABLE, replacing the value with

;; its square root.  Entries with negative values are removed.

(maphash #’(lambda (key val)

     (if (minusp val)

                 (remhash key my-hash-table)

        (setf (gethash key my-hash-table)

               (sqrt val))))

          

         my-hash-table)�

The following example illustrates a maphash call that removes all entries whose

keys equal their corresponding values.

(maphash #’(lambda (key val)

             (if (eq key val) (remhash key ’my-hash-table)))

         ’my-hash-table)�

For a table of related items: See the section "Table Functions".

� zl:maphash-equal function hash-table &rest args Function

For each entry in hash-table, calls function on the key of the entry and the value

of the entry. If args are supplied, they are passed along to function following the

value of the entry. This message is obsolete; use maphash instead. 

� mapl fcn list &rest more-lists Function

Applies fcn to list and to successive sublists of that list. If all the lists are not of

the same length the iteration terminates when the shortest list runs out and ex-

cess sublists of it are ignored.

mapl works like maplist, except that it does not accumulate the results of calling

fcn. Use mapl when fcn is being called merely for its side effects, rather than its

returned value.

(mapl #’print ’(a b c))

 =>

(A B C)

(B C)

(C)

(A B C)�

For a table of related items: See the section "Mapping Functions".

� maplist fcn list &rest more-lists Function

Applies fcn to list and to successive sublists of that list rather than to successive

elements as does mapcar. It returns a list that accumulates the results of the suc-

cessive calls to fcn.

fcn must take as many arguments as there are lists.
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Examples:

�

(maplist #’append ’(a b c d) ’(1 2 3 4))

=> ((A B C D 1 2 3 4) (B C D 2 3 4) (C D 3 4) (D 4))

�

(maplist #’(lambda (a-list) (cons ’twiddle a-list))

         ’(blank dee dumb)) 

  => ((TWIDDLE BLANK DEE DUMB) (TWIDDLE DEE DUMB) (TWIDDLE DUMB))

�

(maplist #’equal ’("car" "house" "door" "barn") 

 ’(’cat ’hat "door" "barn")) 

 => (NIL NIL T T)�

(maplist #’length ’(a b c d)) => (4 3 2 1)

�

(maplist #’identity ’(a b c)) => ((a b c) (b c) (c))�

For a table of related items: See the section "Mapping Functions".

� mask-field bytespec integer Function

Similar to ldb ("load byte"), but the specified byte of integer is returned as a num-

ber in the position specified by bytespec in the returned word, instead of in position

0 as with ldb. integer must be an integer.

bytespec is built using function byte with bit size and position arguments. This

function can be used with setf and a suitable integer to update the place. The re-

sult of a deposit-field operation on the value is stored in the updated place. Ex-

ample:

(mask-field (byte 8 1) 257) => 256

(mask-field (byte 6 3) #o4567) => #o560

(setq place-numb #b100 new-byte #b100111) => 39

(setf (mask-field (byte 8 3) place-numb) new-byte) => 39 

(format nil "~D #b~B" place-numb place-numb) => 36 #b100100�

For a table of related items: See the section "Summary of Byte Manipulation Func-

tions".

� max number &rest numbers Function

Returns the largest of its arguments. At least one argument is required. The argu-

ments can be of any noncomplex numeric type. The result type is the type of the

largest argument. An error is returned if any of the arguments are complex or not

numbers.

Example:

(max 1 3 2) => 3

(max 5.0 42 6.7 8 3.2 12) => 42�
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For a table of related items, see the section "Numeric Comparison Functions".

� maximize keyword for loop

maximize expr {data-type} {into var}

Computes the maximum of expr over all iterations. data-type defaults to number.

Note that if the loop iterates zero times, or if conditionalization prevents the code

of this clause from being executed, the result is meaningless. If loop can deter-

mine that the arithmetic being performed is not contagious (by virtue of data-type

being fixnum or flonum), it can choose to code this by doing an arithmetic com-

parison rather than calling max. As with the sum clause, specifying data-type im-

plies that both the result of the max operation and the value being maximized is

of that type. When the epilogue of the loop is reached, var has been set to the ac-

cumulated result and can be used by the epilogue code. 

It is safe to reference the values in var during the loop, but they should not be

modified until the epilogue code for the loop is reached. 

Examples:

�

(defun maxi (my-list)

  (loop for x from 0

for item in my-list

maximize item into result1

finally (return result1))) => MAXI

(maxi ’(1 2 4 5 8 7 6)) => 8�

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. maximize and minimize are compatible.

See the section "Accumulating Return Values for loop".

� zl:mem pred item list Function

Returns nil if item is not one of the elements of list. Otherwise, it returns the

sublist of list beginning with the first occurrence of item; that is, it returns the

first cons of the list whose car is item. The comparison is made by pred. Because

zl:mem returns nil if it does not find anything, and something non-nil if it finds

something, it is often used as a predicate.

zl:mem is the same as zl:memq except that it takes a predicate of two arguments,

which is used for the comparison instead of eq. (zl:mem ’eq a b) is the same as

(zl:memq a b). (zl:mem ’equal a b) is the same as (member a b).

zl:mem is usually used with equality predicates other than eq and equal, such as

=, char-equal or string-equal. It can also be used with noncommutative predi-

cates. The predicate is called with item as its first argument and the element of
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list as its second argument, so:

(zl:mem #’< 4 list)�

finds the first element in list for which (< 4 x) is true; that is, it finds the first el-

ement greater than 4.

For a table of related items: See the section "Functions for Searching Lists". 

� zl:memass pred item list Function

Looks up item in the association list list. The value returned is the portion of the

list beginning with the first pair whose car matches item, according to pred. Re-

turns nil if none matches.

(car (zl:memass x y z)) = (zl:ass x y z).

See the function zl:mem. As with zl:mem, you can use noncommutative predicates;

the first argument to the predicate is item and the second is the indicator of the

element of list.

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� member &rest list Type Specifier

Allows the definition of a data type consisting of objects that are elements of list.

An object is of this type if it is eql to one of the objects specified in list. As a type

specifier, member can only be used in list form.

Examples:

(typep 3 ’(member 1 2 3)) => T

(typep ’a ’(member a b c)) => T

(subtypep ’(member one two three) ’(member one two three four))

 => T and T

(sys:type-arglist ’member) => (&REST LIST) and T�

See the section "Data Types and Type Specifiers". See the section "Lists".

� member item list &key (:test #’eql) :test-not (:key #’identity) Function

Searches list for an element that matches item according to the predicate supplied

for :test. In no element matches item, nil is returned; otherwise the tail of list, be-

ginning with the first element that satisfied the predicate, is returned. The key-

words are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.
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:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

The list is searched on the top level only. For example:

(member ’item ’(a b c)) => NIL

�

(member ’item ’(a #\Space item 5/3)) => (ITEM 5/3)�

member can be used as a predicate, since the value it returns is eq to the portion

of the list it matches. This implies that rplaca or rplacd can be used to alter the

found list element, as long as a check is made first that member did not return

nil. For example:

(setq list ’(loon eagle heron)) => (LOON EAGLE HERON)

�

(if (member ’eagle list)

    (rplaca (member ’eagle list) ’hawk)) => (HAWK HERON)

�

list => (LOON HAWK HERON)�

In the following example, member implements the Common Lisp function union: 

(defun my-union( list1 list2 &key (test #’eql) 

                       (test-not nil) (key #’identity) )

  (let ((result list2)

(element nil))

    (if list2

       (dolist (element list1)

         (unless (member element list2 :test test

                         :test-not test-not :key key)

           (setq result (cons element result))))

       (setq result list1))

    result))�

For a table of related items: See the section "Functions for Searching Lists".

� zl:member item in-list Function

Returns nil if item is not one of the elements of in-list. Otherwise, it returns the

sublist of in-list that begins with the first occurrence of item; that is, it returns

the first cons of the list whose car is item. The comparison is made by zl:equal. 

zl:member could have been defined by:

(defun zl:member (item list)

  (cond ((null list) nil)

((equal item (car list)) list)

(t (zl:member item (cdr list))) ))�
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For a table of related items: See the section "Functions for Searching Lists". 

� member-if predicate list &key :key Function

Searches for an element in list that satisfies predicate. If none is found, member-if

returns nil; otherwise it returns the tail of list beginning with the first element

that satisfied the predicate. The list is searched on the top level only. member-if

is similar to member. For example:

(member-if #’numberp ’(a #\Space 5/3 item)) => (5/3 ITEM)�

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

The following example defines a retrieval function thatsearches an association list.

This function returns the tail of the list, beginning with the pair that matches the

key. Non-public data is not retrieved when stored before the pair with the appro-

priate key.

(defun secure-retrieve( alist )

  (member-if #’(lambda(x)(string= "NAME" x))

             alist :key #’car))

(setq jones

      ’((SALARY . 23000)(NAME . "John Jones")

        (TITLE . "Account rep")(HIRE-DATE . 3-3-76)))

(secure-retrieve jones) =>

((NAME . "John Jones")(TITLE . "Account rep")

 (HIRE-DATE . 3-3-76))�

Note that the :key argument of #’car extracts the matching field designator from

the a-list pair.

For a table of related items: See the section "Functions for Searching Lists".

� member-if-not predicate list &key key Function

Searches for the first element in list that does not satisfy predicate. If every ele-

ment satisfies the predicate, member-if-not returns nil; otherwise it returns the

tail of list, beginning with the first element that did not satisfy the predicate. The

list is searched on the top level only. member-if-not is similar to member. For

example:

(member-if-not #’numberp ’(4.0 #\Space 5/3 item)) =>

(#\Space 5/3 ITEM)

�

(member-if-not #’numberp ’(5/3 4.0)) => NIL�

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

The following example defines a retrieval function thatsearches an association list.
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This function returns the tail of the list, beginning with the first pair that does

not match a particular key. Non-public data is not retrieved when stored before

the pair with the appropriate key.

(defun secure-retrieve( alist )

  (member-if-not

       #’(lambda(x)(or (string= "SALARY" x)

                       (string= "RELIGION" x)))

       alist :key #’car))

(setq jones

      ’((SALARY . 23000)(NAME . "John Jones")

        (TITLE . "Account rep")(HIRE-DATE . 3-3-76)))

(secure-retrieve jones) =>

((NAME . "John Jones")(TITLE . "Account rep")

 (HIRE-DATE . 3-3-76))�

For a table of related items: See the section "Functions for Searching Lists".

� zl:memq item in-list Function

Returns nil if item is not one of the elements of in-list. Otherwise, it returns the

sublist of in-list that begins with the first occurrence of item; that is, it returns

the first cons of the list whose car is item. The comparison is made by eq. Be-

cause zl:memq returns nil if it does not find anything, and something non-nil if it

finds something, it is often used as a predicate. Examples:

(zl:memq ’a ’(1 2 3 4)) => nil

(zl:memq ’a ’(g (x a y) c a d e a f)) => (a d e a f)�

Note that the value returned by zl:memq is eq to the portion of the list beginning

with a. Thus you can use rplaca on the result of zl:memq, if you first check to

make sure zl:memq did not return nil. Example:

(let ((sublist (zl:memq x z)))     ;search for x in the list z.

  (if (not (null sublist))      ;if it is found,

      (rplaca sublist y)))      ;replace it with y.�

zl:memq could have been defined by:

(defun zl:memq (item list)

    (cond ((null list) nil)

          ((eq item (car list)) list)

          (t (zl:memq item (cdr list))) ))�

zl:memq is hand-coded in microcode and therefore especially fast.

For a table of related items: See the section "Functions for Searching Lists". 

� merge result-type sequence1 sequence2 predicate &key key Function

Destructively merges the sequences according to an order determined by predicate.

The result is a sequence of type result-type, which must be a subtype of sequence,

as for the function coerce. 
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Sequence1 and sequence2 can be either a list or a vector (one-dimensional array).

Note that nil is considered to be a sequence, of length zero.

predicate should take two arguments and return a non-nil value if and only if the

first argument is strictly less than the second (in some appropriate sense). If the

first argument is greater than or equal to the second (the the appropriate sense),

then predicate should return nil.

The merge function determines the relationship between two elements by giving

keys extracted from the elements to predicate. The :key function, when applied to

an element, should return the key for that element. The :key function defaults to

the identity function, thereby making the element itself be the key.

The :key function should not have any side effects. A useful example of a :key

function would be a component selector function for a defstruct structure, used to

merge a sequence of structures.

If the :key and predicate functions always return, the merging function will always

terminate. The result of merging two sequences x and y is a new sequence z, such

that the length of z is the sum of the lengths of x and y, and z contains all of the

elements of x and y. If x1 and x2 are two elements of x, and x1 precedes x2 in x,

then x1 precedes x2 in z, and similarly for the elements of y. In short, z is an in-

terleaving of x and y.

Moreover, if x and y were correctly sorted according to predicate, then z will also

be correctly sorted. For example:

(merge ’list ’(1 3 4 6 7) ’(2 5 8) #’<) => (1 2 3 4 5 6 7 8)�

If x or y is not so sorted, then z will not be sorted, but will nevertheless be an in-

terleaving of x and y. For example:

(merge ’list ’(3 6 4 1 7) ’(2 5 8) #’<) => (2 3 5 6 4 1 7 8)�

�

(setq a (vector 1 2 5) b (vector 2 3 4))

�

(merge ’list a  b #’<) => (1 2 2 3 4 5)�

Note in the previous example that the input sequences are vectors, but merge pro-

duces the requested list. In the following example, input sequences are of different

types. This generally results in reduced efficiency. Also, the result is not complete-

ly in order because the sequence c is not sorted according to #’<.

(setq c (3 2 1) d #(1 2 4))

�

(merge c d #’<) =>’(1 2 3 2 1 4)

                        _____

            items from c /�

In the previous example, the elements from c are the elements in positions 2

through 4 in the merged list.

The merging operation is guaranteed to be stable, that is, if two or more elements

are considered equal by predicate, then the elements from sequence1 will precede
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those from sequence2 in the result. The predicate is assumed to consider two ele-

ments from x and y to be equal if (funcall predicate x y) and

(funcall predicate y x) are both false. For example:

(merge ’string "BOY" "nosy" #’char-lessp) => "BnOosYy"�

The result can not be "BnoOsYy", "BnOosyY", or "BnoOsyY", because the function

char-lessp ignores case, and so considers the characters Y and y to be equal.

Since Y and y are equal, the stability property then guarantees that the character

from the first argument (Y) must precede the one from the second argument (y).

For a table of related items: See the section "Sorting and Merging Sequences".

� clos:method-combination-error format-string &rest args Function

Signals an error within method combination; it should be called only within the dy-

namic extent of a method-combination function.

format-string A control string that can be given to format.

args Arguments required by the format-string.�

� flavor:method-options function-spec Function

Returns the (options...) portion of the function-spec. options is the options argument

that was given in the defmethod form for this method, such as :before or :progn.

See the section "Function Specs for Flavor Functions".

The (options... portion is the cdddr of the function-spec. Functions specs for meth-

ods are in the form: 

(type generic flavor options...)�

type is typically flavor:method. 

This is useful in the bodies of define-method-combination forms. The definition

of the :case method combination type provides a good example of the use of

flavor:method-options. See the section "Examples of define-method-combination".

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� clos:method-qualifiers method Generic Function

Returns a list of the qualifiers of the method.

method A method object.�
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� mexp (repeat nil) (compile nil) (do-style-checking nil) (do-macro-expansion t) (do-

named-constants nil) (do-inline-forms t) (do-optimizers nil) (do-constant-folding nil)

(do-function-args nil) Function

This special form goes into a loop in which it reads forms and sequentially ex-

pands them, printing out the result of each expansion (using the grinder to im-

prove readability). See the section "Functions for Formatting Lisp Code". It termi-

nates when you press the END key. If you type in a form that is not a macro form,

there are no expansions and so it does not type anything out, but just prompts you

for another form. This allows you to see what your macros are expanding into,

without actually evaluating the result of the expansion.

For example:

(mexp)

Type End to stop expanding forms

�

Macro form → (loop named t until nil return 5)

(ZL:LOOP NAMED T UNTIL NI RETURN 5) →

(PROG T NIL

SI:NEXT-LOOP AND NIL

         (GO SI:END-LOOP))

      (RETURN 5)

      (GO SI:NEXT-LOOP)

SI:END-LOOP)

�

Macro form → (defparameter foo bar) →

(PROGN (EVAL-WHEN (COMPILE)

         (COMPILER:SPECIAL-2 ’FOO))

       (EVAL-WHEN (LOAD EVAL)

         (SI:DEFCONST-1 FOO BAR NIL)))�

See the section "Expanding Lisp Expressions in Zmacs". That section describes two

editor commands that allow you to expand macros  c-sh-M and m-sh-M. There is

also the Command Processor command, Show Expanded Lisp Code. See the docu-

ment Genera User’s Guide.

� min number &rest numbers Function

Returns the smallest of its arguments. At least one argument is required. The ar-

guments can be of any noncomplex numeric type. The result type is the type of

the smallest argument. An error is returned if any of the arguments are complex

or not numbers.

Example:

(min 1 3 2) => 1

(min 5.0 42 6.7 8 3.2 12) => 3.2�

For a table of related items, see the section "Numeric Comparison Functions".
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� minimize keyword for loop

minimize expr {data-type} {into var}

Computes the minimum of expr over all iterations. data-type defaults to number.

Note that if the loop iterates zero times, or if conditionalization prevents the code

of this clause from being executed, the result is meaningless. If loop can deter-

mine that the arithmetic being performed is not contagious (by virtue of data-type

being fixnum or flonum), it can choose to code this by doing an arithmetic com-

parison rather than calling min. As with the sum clause, specifying data-type im-

plies that both the result of the min operation and the value being minimized is of

that type. When the epilogue of the loop is reached, var has been set to the accu-

mulated result and can be used by the epilogue code.

It is safe to reference the values in var during the loop, they should not be modi-

fied until the epilogue code for the loop is reached. 

Examples:

�

(defun mini (my-list)

  (loop for x from 0

for item in my-list

minimize item into result1

finally (return result1)))  => MINI

(mini ’(3 4 5 6 0 8 7)) => 0�

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. minimize and maximize are compatible.

See the section "Accumulating Return Values for loop".

� zl:minus x Function

Returns the negative of x. zl:minus is similar to - used with one argument.

Examples:

(zl:minus 1) => -1

(zl:minus -3.0) => 3.0�

For a table of related items, see the section "Arithmetic Functions". 

� minusp number Function

Returns t if its argument is a negative number, strictly less than zero. Otherwise

it returns nil. If number is not a noncomplex number, minusp signals an error.

Examples:
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(minusp -5)  => T

(minusp 0)  => NIL

(minusp 0.0d0)  => NIL

(minusp -0.0)  => NIL

(minusp -0) => nil

(minusp least-negative-single-float) => t

(minusp least-positive-single-float) => nil�

For a table of related items, see the section "Numeric Property-checking Predi-

cates".

� mismatch sequence1 sequence2 &key :from-end (:test #’eql) :test-not :key (:start1 0)

(:start2 0) :end1 :end2 Function

Compares the specified subsequences of sequence1 and sequence2 element-wise. If

they are of equal length and match in every element, the result is nil. Otherwise,

the result is a non-negative integer representing the index within sequence1 of the

leftmost position at which the two subsequences fail to match, or, if one subse-

quence is shorter than and a matching prefix of the other, the result is the index

relative to sequence1 beyond the last position tested. 

For example:

(mismatch ’(loon heron stork) ’(loon heron stork)) => NIL

�

(mismatch ’(hawk loon owl pelican) ’(hawk loon eagle pelican)) => 2

�

(mismatch ’(1 2 3) ’(1 2 3 4 5)) => 3�

If the value of the :from-end keyword is non-nil, one plus the index of the right-

most position in which the sequences differ is returned. In effect, the

(sub)sequences are aligned at their right-hand ends and the last elements are

compared, then the ones before, and so on. The index returned is again an index

relative to sequence1. For example:

(mismatch ’(hawk loon owl pelican) ’(hawk loon eagle pelican)

  :from-end t) => 3�

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the sequence.

The default test is eql. 

For example:

(mismatch  ’(2 3 4) ’(1 2 3) :test #’>) => NIL�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.
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For example:

(mismatch ’((north 1)(south 2)) ’((right 1)(left 2)) :key #’second)

 => NIL�

For a table of related items: See the section "Searching for Sequence Items".

� mod number divisor Function

Divides number by divisor, converting the quotient into an integer and truncating

the result toward negative infinity. Returns the remainder. This is the same as the

second value of (floor number divisor).

When there is no remainder, the returned value is 0.

The arguments can be integers or floating-point numbers.

Examples:

(mod 3 2) => 1

(mod -3 2)  => 1

(mod 3 -2)  => -1

(mod -3 -2) => -1

(mod 4 -2)  => 0

(mod 3.8 2) => 1.8

(mod -3.8 2) => 0.20000005�

Related Functions:

floor

rem �

For a table of related items, see the section "Arithmetic Functions".

� mod n Type Specifier

Defines the set of non-negative integers less than n. This is equivalent to (integer

0 n-1), or to (integer 0 (n)).

As a type specifier, mod can only be used in list form.

Examples:

�

(typep 3 ’(mod 4)) => T

(typep 5 ’(mod 4)) => NIL

(typep 4 ’(mod 4)) => NIL

(subtypep ’bit ’(mod 2)) => T and T

(sys:type-arglist ’mod) => (N) and T�

See the section "Data Types and Type Specifiers". For a discussion of the function

mod: See the section "Numbers".

� :modify-hash key function &rest args Message
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Combines the actions of :get-hash and :put-hash. It lets you both examine the val-

ue for a particular key and change it. It is more efficient because it does the hash

lookup once instead of twice.

It finds value, the value associated with key, and key-exists-p, which indicates

whether the key was in the table. It then calls function with key, value,

key-exists-p, and other-args. If no value was associated with the key, then value is

nil and key-exists-p is nil. It puts whatever value function returns into the hash

table, associating it with key.

(send new-coms ’:modify-hash k foo a b c) =>

(funcall foo k val key-exists-p a b c)  

This function is obsolete; use modify-hash instead. 

� modify-hash table key function�

Function

Combines the action of setf of gethash into one call to modify-hash. It lets you

both examine the value of key and change it. It is more efficient because it does

the lookup once instead of twice.

Finds the value associated with key in table, then calls function with key, this val-

ue, a flag indicating whether or not the value was found. Puts whatever is re-

turned by this call to function into table, associating it with key. Returns the new

value and the key of the entry. Note: The actual key stored in table is the one

that is used on function, not the one you supply with key.

For a table of related items: See the section "Table Functions". 

� *modules* Variable

This special variable has as its value a list of names of the modules that have

been loaded into the lisp system.

=> *modules*

(TURBINE-PACKAGE GENERATOR-PACKAGE LISP)�

� most-negative-double-float Constant

The floating-point number in double-float format closest in value (but not equal to)

negative infinity.

� most-negative-fixnum Constant

The fixnum closest in value to negative infinity.

� most-negative-long-float Constant
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The floating-point number in long-float format closest in value (but not equal to)

negative infinity. In Symbolics Common Lisp this constant has the same value as

most-negative-double-float.

� most-negative-short-float Constant

The floating-point number in short-float format closest in value (but not equal to)

negative infinity. In Symbolics Common Lisp this constant has the same value as

most-negative-single-float.

� most-negative-single-float Constant

The floating-point number in single-float format closest in value (but not equal to)

negative infinity. 

� most-positive-double-float Constant

The floating-point number in double-float format which is closest in value (but not

equal to) positive infinity.

� most-positive-fixnum Constant

The value of most-positive-fixnum is that fixnum closest in value to positive in-

finity.

� most-positive-long-float Constant

The value of most-positive-long-float is that floating-point number in long-float

format which is closest in value (but not equal to) positive infinity. In Symbolics

Common Lisp this constant has the same value as most-positive-double-float.

� most-positive-short-float Constant

The value of most-positive-short-float is that floating-point number in short-float

format which is closest in value (but not equal to) positive infinity. In Symbolics

Common Lisp this constant has the same value as most-positive-single-float.

� most-positive-single-float Constant

The value of most-positive-single-float is that floating-point number in single-float

format which is closest in value (but not equal to) positive infinity.

� mouse-char-p char Function

Returns t if char is a mouse character, nil otherwise. 
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� zl:multiple-value vars value Special Form

Used for calling a function that is expected to return more than one value. This is

the Zetalisp name for multiple-value-setq. See the section "Special Forms for Re-

ceiving Multiple Values".

� multiple-value-bind vars value &body body &whole form &environment env 

Special Form

Similar to multiple-value-setq, but locally binds the variables that receive the val-

ues, rather than setting them, and has a body  a set of forms that are evaluated

with these local bindings in effect. First form is evaluated. Then the variables are

bound to the values returned by form. Then the body forms are evaluated sequen-

tially, the bindings are undone, and the result of the last body form is returned.

(let ((ret1 ’())

       (ret2 nil))

  (multiple-value-setq (ret1 ret2) (subtypep type-1 type-2))

  (if ret2

    (values ret1 ret2)

    (and (multiple-value-setq (ret1 ret2)

                              (my-even-more-expensive-subtype type-1 type-2))

         (if ret2

           (values ret1 ret2)

           (error "Could not determine if ~A is a subtype of ~A." type-1 type-2)))))�

See the section "Special Forms for Receiving Multiple Values".

CLOE Note: This is a macro in CLOE. 

� multiple-value-call 

function &rest args Special Form

First evaluates function to obtain a function. It then evaluates all the forms in

args, gathering together all the values of the forms (not just one value from each).

It gives these values as arguments to the function and returns whatever the func-

tion returns.

For example, suppose the function frob returns the first two elements of a list of

numbers:

(multiple-value-call #’+ (frob ’(1 2 3)) (frob ’(4 5 6)))

   <=> (+ 1 2 4 5) => 12.�

(defmacro get-values (form)

  ‘(multiple-value-call #’(lambda (&rest args) (format nil "~{~a~^, }" args))

        ,form))

�

(get-values (get-decoded-time)) => "40, 58, 8, 25, 8, 1984, 1, T, 5"
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�

(get-values (floor 9 2)) => "4, 1"

�

(get-values (+ 9 2)) => "11"�

See the section "Special Forms for Receiving Multiple Values".

� multiple-value-list form Special Form

Evaluates form and returns a list of the values it returned. This is useful for

when you do not know how many values to expect. 

Examples:

(setq a (multiple-value-list (intern "goo")))

a => (goo nil)�

This is similar to the example of multiple-value-setq; a is set to a list of two ele-

ments, the two values returned by intern.

In this example, multiple-value-list implements a very simplistic trace function

(traces functions that return multiple values).

(defun trace-function (function-name &rest args)

  (let ((fundef (symbol-function function-name))

        (result ’()))

    (format *trace-output*

            "~&Entering ~a with arguments ~{ ~a~}"

            function-name args)

    (setq result (multiple-value-list (apply fundef args)))

    (format *trace-output*

            "~&Exiting ~a with values ~{ ~a~}"

            function-name result)

    (values-list result)))�

CLOE Note: This is a macro in CLOE. 

� multiple-value-prog1 value &body body Special Form

Evaluates its first form argument and saves the values produced. Then evaluates

the remaining forms and discards the returned values. The values saved from eval-

uating the first form are returned. This special form is like prog1 except that its

first form returns multiple values, multiple-value-prog1 returns those values. In

certain cases, prog1 is more efficient than multiple-value-prog1, which is why

both special forms exist.

See the section "Special Forms for Receiving Multiple Values".

� flavor:multiple-value-prog2 before result &rest after Function
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Evaluates the forms and returns all the values of the second form. This is similar

to multiple-value-prog1.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� multiple-value-setq vars value Function

Used for calling a function that is expected to return more than one value. value

is evaluated, and the vars are set (not lambda-bound) to the values returned by

value. If more values are returned than there are variables, the extra values are

ignored. If there are more variables than values returned, extra values of nil are

supplied. If nil appears in the var-list, then the corresponding value is ignored (you

can’t use nil as a variable.) Example:

(multiple-value-setq (symbol already-there-p)

(intern "goo"))�

In addition to its first value (the symbol), intern returns a second value, which is

nil if the symbol returned as the first value was created by intern. If the symbol

was already interned, the value is :internal, :external, :inherited, depending on

the symbol found. (See the function intern.)

So if the symbol goo was already known and an internal symbol in the package,

the variable already-there-p is set to :internal, if goo is unknown, the value of

already-there-p is nil.

multiple-value-setq is usually used for effect rather than for value; however, its

value is defined to be the first of the values returned by form.

Evaluates form and sets the variables in the list variables to those values. Excess

values are discarded, and excess variables are set to nil. Returns the first value

obtained from evaluating form. If no values are produced, nil is returned.

(multiple-value-setq (quotient remainder) (truncate 13 5))  �

The function multiple-value-setq can be used to obtain multiple values, each of

which is used in further computation.

(let ((ret1 ’())

      (ret2 nil))

  (multiple-value-setq (ret1 ret2) (subtypep type-1 type-2))

  (if ret2

    (values ret1 ret2)

    (and (multiple-value-setq (ret1 ret2)

                              (my-even-more-expensive-subtype type-1 type-2))

         (if ret2

           (values ret1 ret2)

           (error "Could not determine if ~A is a subtype of ~A." type-1 type-2)))))�

See the section "Special Forms for Receiving Multiple Values".

CLOE Note: This is a macro in CLOE. 
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� multiple-values-limit Constant

A positive integer that is the upper exclusive bound on the number of values that

can be returned from a function. The current value is 128 for 3600-series ma-

chines, 50 for Ivory-based machines, and 128 for CLOE.

� math:multiply-matrices matrix-1 matrix-2 &optional matrix-3 Function

Multiplies matrix-1 by matrix-2. If matrix-3 is supplied, math:multiply-matrices

stores the results into matrix-3 and returns matrix-3; otherwise it creates an array

to contain the answer and returns that. All matrices must be two-dimensional ar-

rays, and the first dimension of matrix-2 must equal the second dimension of ma-

trix-1. 

� (flavor:method :remove si:heap) Method

Removes the top item from the heap and returns it and its key as values. The

third value is nil if the heap was empty; otherwise it is t.

For a table of related items: See the section "Heap Functions and Methods". 

� (flavor:method :top si:heap) Method

Returns the value and key of the top item on the heap. The third value is nil if

the heap was empty; otherwise it is t.

For a table of related items: See the section "Heap Functions and Methods". 

� name-char name Function

Accepts a string, or a string coercible object, as an argument. If name is the same

as the name of a character object, that object is returned; otherwise nil is re-

turned. name-char does not recognize names with modifier bit prefixes such as

"hyper-space". 

(name-char "Tab") => #\Tab

(name-char "Newline") => #\Newline

�

(char-code (name-char "Space")) => 32�

For a table of related items, see the section "Character Names".

� sys:name-conflict Flavor

Any sort of name conflict occurred (there are specific flavors, built on sys:name-

conflict, for each possible type of name conflict). The following proceed types

might be available, depending on the particular error:

The :skip proceed type skips the operation that would cause a name conflict.



Page 1276

The :shadow proceed type prefers the symbols already present in a package to

conflicting symbols that would be inherited. The preferred symbols are added to

the package’s shadowing-symbols list.

The :export proceed type prefers the symbols being exported (or being inherited

due to a use-package) to other symbols. The conflicting symbols are removed if

they are directly present, or shadowed if they are inherited.

The :unintern proceed type removes the conflicting symbol.

The :shadowing-import proceed type imports one of the conflicting symbols and

makes it shadow the others. The symbol to be imported is an optional argument.

The :share proceed type causes the conflicting symbols to share value, function,

and property cells. It as if globalize were called.

The :choose proceed type pops up a window in which the user can choose between

the above proceed types individually for each conflict. 

� named Keyword for loop

named name

Gives the prog that loop generates a name of name, so that you can use the

return-from form to return explicitly out of that particular loop:

(loop named sue

        ...

      do (loop  ... do (return-from sue value) .... )

        ...)�

The return-from form shown causes value to be immediately returned as the value

of the outer loop. Only one name can be given to any particular loop construct.

This feature does not exist in the Maclisp version of loop, since Maclisp does not

support "named progs".

See the section "loop Clauses".

� named-structure-invoke operation structure &rest args Function

Calls the the handler function of the named structure symbol, found as the value

of the named-structure-invoke property of the symbol, with the appropriate argu-

ments. Operation should be a keyword symbol, and structure should be a named

structure.

� named-structure-p structure Function

This semi-predicate returns nil if structure is not a named structure; otherwise it

returns structure’s named structure symbol. 

� named-structure-symbol named-structure Function
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Returns named-structure’s named structure symbol: if named-structure has an array

leader, element 1 of the leader is returned, otherwise element 0 of the array is re-

turned. Named-structure should be a named structure. 

� nbutlast list &optional (n 1) Function

Destructive version of butlast; it changes the cdr of the second-to-last cons of the

list to nil. If there is no second-to-last cons (that is, if the list has fewer than two

elements) it returns nil. nbutlast returns all the conses in the list except for the

last one. Examples:

(setq foo ’(a b c d))

(nbutlast foo) => (a b c)

foo => (a b c)

(nbutlast ’(a)) => nil

(setq a ’(1 2 3 4 5 6 7))

(nbutlast a) => (1 2 3 4 5 6)

(nbutlast a 4) => (1 2)

a => (1 2)�

For a table of related items: See the section "Functions for Modifying Lists".

� nconc &rest arg Function

Concatenates its arguments and returns the resulting list. The arguments are

changed, rather than copied. Example:

(setq x ’(a b c))

(setq y ’(d e f))

(nconc x y) => (a b c d e f)

x => (a b c d e f)�

Note that the value of x is now different, since its last cons has been changed (by

rplacd) to the value of y. If 

(nconc x y)�

were evaluated again, it would yield a piece of "circular" list structure, whose

printed representation would be (a b c d e f d e f d e f ...), repeating forever.

nconc could have been defined by:

(defun nconc (x y)               ;for simplicity, this definition

    (cond ((null x) y)           ;only works for 2 arguments.

          (t (rplacd (last x) y) ;hook y onto x

     x)))                ;and return the modified x.�

nconc performs destructive operations on lists except if the first argument to the

function is nil. For example:
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(defvar *g* nil)

(defvar *h* ’(a))

(defvar *i* ’(b c))

  

(nconc *g* *i*) => (B C)

*g* => NIL

�

(nconc *h* *i*) => (A B C)

*h* => (A B C)�

But:

(setq *g* (nconc *g* *i*)) => (B C)

*g* => (B C)�

Do not use nconc for destructive operations with t or nil. For example:

(nconc nil (ncons ’b)) => (B)

The following does not signal an error:

(nconc ’a (ncons ’b)) => (B)

In the following example, push and nreverse sort queued entries in order of pri-

ority, and nconc resets the queue.

(defun sort-queue-2 (in-queue)

"Sorts arg first by priorities (car element), then by original order."

  (let ((for-queue1 ’())

        (for-queue2 ’())

        (for-queue3 ’()))

    (dolist (queue-element in-queue)

      (case (car queue-element)

        (1 (push queue-element for-queue1))

        (2 (push queue-element for-queue2))

        (3 (push queue-element for-queue3))))

  ;; reverse the temporary lists

  ;;  that were built by push

    (nconc (nreverse for-queue1)

           (nreverse for-queue2)

           (nreverse for-queue3))))�

(setq queue-all

 ’((1 element-a) (2 element-b) (3 element-c) (2 element-d) (1 element-e)))

(sort-queue queue-all) =>

((1 ELEMENT-A) (1 ELEMENT-E) (2 ELEMENT-B) (2 ELEMENT-D) (3 ELEMENT-C))�

For a table of related items: See the section "Functions for Constructing Lists and

Conses".

� nconc keyword for loop

nconc expr {into var}
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Causes the values of expr on each iteration to be nconced together, for example:

(loop for i from 1 to 3

      nconc (list i (* i i))) 

=> (1 1 2 4 3 9)�

When the epilogue of the loop is reached, var has been set to the accumulated re-

sult and can be used by the epilogue code. 

It is safe to reference the values in var during the loop, but they should not be

modified until the epilogue code for the loop is reached. 

The forms nconc and nconcing are synonymous.

Examples:

�

(defun indexing (small-list)

  (loop for x from 0

for item in small-list

nconc (list x item))) => INDEXING

(indexing ’(a b c d )) => (0 A 1 B 2 C 3 D)�

is equivalent to

(defun indexing (small-list)

  (loop for x from 0

for item in small-list

nconcing (list x item)))  => INDEXING

(indexing ’(a b c d )) => (0 A 1 B 2 C 3 D)�

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. nconc, collect, and append are compatible.

See the section "Accumulating Return Values for loop".

� ncons x Function

Creates a new cons, whose car is x (where x can be anything) and whose cdr is

nil. (ncons x) is the same (cons x nil). The name of the function is from "nil-

cons".

Example:

(ncons ’(5))�

returns a new cons whose cdr is nil:

((5))�

To test if a cons has been created, apply the predicate endp to the new cons:

(endp ’(5))�

This returns nil, since endp returns nil when applied to a cons.

ncons is a Symbolics extension to Common Lisp.
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For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� ncons-in-area x area Function

Creates a cons, whose car is x and whose cdr is nil, in the specified area. (Areas

are an advanced feature of storage management. See the section "Areas".)

ncons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� neq x y Function

(neq x y) = (not (eq x y)). This is provided simply as an abbreviation for typing

convenience. 

� never keyword for loop

never expr

Causes the loop to return t if expr never evaluates non-null. This is equivalent to

always (not expr). If the loop terminates before expr is ever evaluated, the epi-

logue code is run and the loop returns t.

never expr is like (and (not expr1) (not expr2) ...). If the loop terminates before

expr is ever evaluated, never is like (and).

If you want a similar test, except that you want the epilogue code to run if expr

evaluates non-null, use until.

Examples:

(defun loop-never(my-list)

  (loop for x in my-list

finally (print  "what you going to do next ?")

do

    (princ x) (princ " ")

do

and never (equal x ’a))) => LOOP-NEVER

�

(loop-never ’(b c a e) => (B C A E)

�

(loop-never ’(a a)) => A NIL

�

See the section "Aggregated Boolean Tests for loop".
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� clos:next-method-p Function

Called within the body of a method to determine whether a next method exists; re-

turns true if a next method exists, otherwise returns false.

clos:next-method-p has lexical scope and indefinite extent. 

� nintersection list1 list2 &key (:test #’eql) :test-not (:key #’identity) Function

The destructive version of intersection. It takes list1 and list2 and returns a new

list containing everything that is an element of both lists, using the cells of list1

to construct the result. The value of list2 is not altered. The keywords are:

:test Any predicate that spedifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

See the function intersection. For example:

(setq a-list ’(a b c)) => (A B C)

�

(setq b-list ’(f a d)) => (F A D)

�

(nintersection a-list b-list) => (A)

�

a-list => (A)

�

b-list => (F A D)�

In the following example, we want the list chips-32-data, to include only chips on

the approved list. We use nintersection to destructively alter chips-32-data.

(setq chips-approved

      ’(68000 68010 68020 80186 80286 80386))

(setq chips-32-data ’(68020 32032 80386))

�

(setq chips-32-data

      (nintersection chips-32-data chips-approved))

�

chips-32-data => (68020 80386)

�

chips-approved =>

(68000 68010 68020 80186 80286 80386)�
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For a table of related items: See the section "Functions for Comparing Lists".

� zl:nintersection &rest lists Function

Takes any number of lists that represent sets and returns a new list that repre-

sents the intersection of all the sets it is given, by destroying any of the lists

passed as arguments and reusing the conses. zl:nintersection uses eq for its com-

parisons. You cannot change the function used for the comparison.

(zl:nintersection) returns nil.

For a table of related items: See the section "Functions for Comparing Lists". 

� ninth list Function

Takes a list as an argument, and returns the ninth element of list. ninth is identi-

cal to

(nth 8 list)�

For example:

(setq letters ’(a b c d e f g h i j k l)) =>

(A B C D E F G H I J K L)

�

(ninth letters) => I�

This function is provided because it makes more sense than using nth when you

are thinking of the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

� nleft n l &optional tail Function

Returns a "tail" of l consisting of the last n elements of l, that is, one of the cons-

es that makes up l, or nil. If n is too large, nleft returns l. Example:

(nleft 2 ’(bass bluefish tuna))�

returns the last 2 conses:

(bluefish tuna)�

(nleft n l tail) takes the cdr of the original l and returns a list such that taking n

more cdrs of it would yield tail. You can see that when tail is nil, this is the same

as the two-argument case. If tail is not eq to any tail of l, nleft returns nil. Ex-

ample:

(setq z ’(a b c d e)) =>  (A B C D E)

(setq y (cdddr z)) => (D E)

(nleft 2 z y) => (B C D E)�

nleft is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Extracting from Lists".
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� nlistp x Function

Returns t if its argument x is not a list, otherwise nil. This means (nlistp nil) is

nil. nlistp can be thought of as (not-listp). Note this distinction between nlistp

and zl:nlistp. (zl:nlistp nil) is t, since zl:nlistp returns nil if its argument is a

cons.

Example:

(nlistp ’(heron sandpiper bluejay))�

returns nil, since this argument is a list.

But:

(nlistp ’"sss")�

returns t since its argument is not a list.

nlistp is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Predicates that Operate on Lists". 

� zl:nlistp x Function

Equivalent to atom, so it returns t. 

� nodeclare keyword for loop

nodeclare variable-list

The variables in variable-list are noted by loop as not requiring local type

declarations. Consider the following:

(declare (special k) (fixnum k))

(defun foo (l)

  (loop for x in l as k fixnum = (f x) ...))�

If k did not have the fixnum data-type keyword given for it, then loop

would bind it to nil, and some compilers would complain. On the other

hand, the fixnum keyword also produces a local fixnum declaration for k;

since k is special, some compilers complain (or error out). The solution is

to do:

(defun foo (l)

  (loop nodeclare (k)

for x in l as k fixnum = (f x) ...))�

which tells loop not to make that local declaration. The nodeclare clause

must come before any reference to the variables so noted. Positioning it in-

correctly causes this clause to not take effect, and cannot be diagnosed. See

the macro loop.

This exists for compatibility with other implementations of loop.�
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� not x Function

Returns t if x is nil, otherwise returns nil. null is the same as not; both functions

are included for the sake of clarity. Use null to check whether something is nil;

use not to invert the sense of a logical value. Even though Lisp uses the symbol

nil to represent falseness, you should not make understanding of your program de-

pend on this. For example, one often writes:

(cond ((not (null lst)) ... )

      ( ... ))

rather than

(cond (lst ... )

      ( ... ))�

There is no loss of efficiency, since these compile into exactly the same instruc-

tions.

The following example searches a list:

(defun my-search(l key)

  (if (null l)

    nil

    (or (equal (car l) key)

        (search (cdr l) key))))�

See the function null. 

� not type Type Specifier

Defines the set of objects that are not of the specified type. As a type specifier,

not can only be used in list form.

Examples:

(typep "music" ’(not integer)) => T

(subtypep ’nil ’(not t)) => T and T

(subtypep ’nil ’(not integer)) => T and T

(subtypep ’bit (not nil)) => T and T

(equal-typep t (not nil)) => T

(sys:type-arglist ’not) => (TYPE) and T�

See the section "Data Types and Type Specifiers". See the section "Predicates".

� notany predicate sequence &rest more-sequences Function

Returns nil as soon as any invocation of predicate returns a non-nil value. predi-

cate must take as many arguments as there are sequences provided. predicate is

first applied to the elements of the sequences with an index of 0, then with an in-

dex of 1, and so on, until a termination criterion is reached or the end of the

shortest of the sequences is reached. If the end of a sequence is reached, notany

returns a non-nil value. Thus considered as a predicate, it is true if no invocation

of predicate is true.
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sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(notany #’oddp ’(1 2 5)) => NIL

�

(notany #’equal ’(0 1 2 3) ’(3 2 1 0)) => T�

If predicate has side effects, it can count on being called first on all those ele-

ments with an index of 0, then all those with an index of 1, and so on.

The following example demonstrates how notany implements a test to determine if

an element of a sequence exceeds a critical value.

(setq limit-value 1024 sequence (vector 16 64 512 128 32))

�

(notany #’(lambda(x) (> x limit-value)) sequence) => t�

For a table of related items: See the section "Predicates that Operate on Se-

quences".

� notevery predicate sequence &rest more-sequences Function

Returns a non-nil value as soon as any invocation of predicate returns nil. predi-

cate must take as many arguments as there are sequences provided. predicate is

first applied to the elements of the sequences with an index of 0, then with an in-

dex of 1, and so on, until a termination criterion is reached or the end of the

shortest of the sequences is reached. If the end of a sequence is reached, notevery

returns nil. Thus considered as a predicate, it is true if not every invocation of

predicate is true.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(notevery #’oddp ’(1 2 5)) => T

�

(notevery #’equal ’(1 2 3) ’(1 2 3)) => NIL

�

(setq limit-value 212 sequence (vector 16 64 512 128 32))

�

(notevery #’(lambda(x) (<= x limit-value)) sequence) => t�

If predicate has side effects, it can count on being called first on all those ele-

ments with an index of 0, then all those with an index of 1, and so on.

For a table of related items: See the section "Predicates that Operate on Se-

quences".

� notinline Declaration
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(notinline function1 function2 ... ) specifies that it is undesirable to compile the

specified functions in-line. This declaration is pervasive, that is, it affects all code

in the body of the form.

Note that rules of lexical scoping are observed; if one of the functions mentioned

has a lexically apparent local definition (as made by flet or labels), then the decla-

ration applies to that local definition and not to the global function definition.

See the section "Declaration Specifiers".

� clos:no-next-method generic-function calling-method &rest args Generic Function

Provides a mechanism for users to control what happens when clos:call-next-

method is called, and no next method exists. The default method for clos:call-

next-method signals an error. 

The typical way to specialize clos:call-next-method is to define a primary method,

which would override the default primary method. 

This generic function is called automatically, and is not intended to be called by

users.

generic-function The generic function of method.

calling-method The method whose call to clos:call-next-method resulted in

this call to clos:no-next-method.

args A list of arguments to clos:call-next-method.�

� nreconc l tail Function

Reverses the elements of l, concatenates them with the elements of tail, and re-

turns the resulting list. Modifies both arguments. (nreconc l tail) is exactly the

same as (nconc (zl:nreverse l) tail) except that it is more efficient. Both l and tail

should be lists. Example:

(setq x ’(a b c))

(setq y ’(d e f))

(nreconc x y) => (c b a d e f)

x => undefined�

nreconc could have been defined by:

(defun nreconc (l tail)

    (cond ((null l) tail)

          ((nreverse1 l tail)) ))

�

(defun nreverse1 (l tail) ; auxiliary function

    (cond ((null (cdr l)) (rplacd l tail))

          ((nreverse1 (cdr l) (rplacd l tail)))))

          ;; this last call depends on order of argument evaluation.�
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Note: nreconc actually works differently, and uses both rplacd and element shuf-

fling. It therefore rarely causes rplacd-forwarding.

In the following example, nreconc sorts queued entries in order of priority. 

(defun sort-queue( in-queue )

"Sorts arg first by priorities (car element), then by original order."

  (let ((for-queue1 ’())

        (for-queue2 ’())

        (for-queue3 ’()))

    (dolist (queue-element in-queue)

      (case (car queue-element)

        (1 (push queue-element for-queue1))

        (2 (push queue-element for-queue2))

        (3 (push queue-element for-queue3))))

  ;; reverse the temporary lists

  ;;  that were built by push

    (nreconc for-q1

             (nreconc for-q2 (nreverse for-q3)))))�

(setq queue-all

 ’((1 element-a) (2 element-b) (3 element-c) (2 element-d) (1 element-e)))

(sort-queue queue-all) =>

((1 ELEMENT-A) (1 ELEMENT-E) (2 ELEMENT-B) (2 ELEMENT-D) (3 ELEMENT-C))�

See the section "Cdr-Coding".

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� nreverse sequence Function

Returns a sequence containing the same elements as sequence, but in reverse or-

der. The result may or may not be eq to the argument, so it is usually wise to say

something like (setq x (nreverse x)), because (nreverse x) is not guaranteed to

leave the reversed value in x. 

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(setq item-list ’(heron stork loon owl)) => (HERON STORK LOON OWL)

�

(nreverse item-list) => (OWL LOON STORK HERON)

�

item-list => (HERON)�

When used on a list, nreverse reverses the list by shuffling list elements or by

calling rplacd on conses making up the list, or both. nreverse rarely causes

rplacd-forwarding. For example, under Genera, this usually returns a cdr-coded

list:

(nreverse (list ’a ’b ’c))
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Note: The exact list destruction which occurs when using nreverse is undefined.

It depends on the the cdr-coding of the list and the machine type. See the section

"Cdr-Coding".

nreverse is the destructive version of reverse.

The following example creates a list of primes from 2 to 100, and demonstrates

how nreverse restores a list of elements, built by push, to source order:

 (do ((i 2 (+ i 1))

     (return-list ’()))

    ((= i 100)(nreverse return-list))

  (if (primep i)

    (push i return-list)))�

Generally, use nreverse only with recently consed lists, or lists that are known to

be dispensable. In other cases, reverse might be more appropriate.

For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification". 

� zl:nreverse l Function

Reverses its argument, which should be a list, by shuffling list elements or by call-

ing rplacd on conses making up the list, or both. zl:nreverse rarely causes

rplacd-forwarding. The following usually returns a cdr-coded list:

(nreverse (list 1 2 3))

Here is an example of zl:nreverse:

(zl:nreverse ’(a b c)) => (c b a)

Note: The exact list destruction which occurs when using zl:nreverse is undefined.

It depends on the the cdr-coding of the list and the machine type. See the section

"Cdr-Coding".

For a table of related items: See the section "Functions for Modifying Lists". 

� nset-difference list1 list2 &key (test #’eql) test-not (key #’identity) Function

Returns a new list of elements of list1 that do not appear in list2, using the cells

of list1 to construct the result. The value of list2 is not altered. Destructive ver-

sion of set-difference. The keywords are:

:test Any predicate that spedifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.
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:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

See the function set-difference. For example:

(setq a-list ’(eagle hawk loon pelican)) =>

(EAGLE HAWK LOON PELICAN)

�

(setq b-list ’(owl hawk stork)) => (OWL HAWK STORK)

�

(nset-difference a-list b-list) => (EAGLE LOON PELICAN)

�

a-list => (EAGLE LOON PELICAN)

�

b-list => (OWL HAWK STORK)�

In the following example, we no longer want the list of approved chips chips-

approved to include any chips with a 32 bit data path. We use nset-difference to

destructively alter chips-approved:

(setq chips-approved

      ’(68000 68010 68020 80186 80286 80386))

(setq chips-32-data ’(68020 32032 80386))

(setq chips-approved

      (nset-difference chips-approved chips-32-data))

�

chips-32-data => (68020 32032 80386)

chips-approved => (68000 68010 80186 80286)�

For a table of related items: See the section "Functions for Comparing Lists".

� nset-exclusive-or list1 list2 &key (:test #’eql) :test-not (:key #’identity) Function

Destructive version of set-exclusive-or. It returns a list of elements that appear in

exactly one of list1 and list2, and alters values of the list arguments during the

operation. The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

See the function set-exclusive-or. For example:
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(setq a-list ’(eagle hawk loon pelican)) =>

(EAGLE HAWK LOON PELICAN)

�

(setq b-list ’(owl hawk stork)) => (OWL HAWK STORK)

�

(nset-exclusive-or a-list b-list) =>

(EAGLE LOON PELICAN OWL STORK)

�

a-list => (EAGLE HAWK LOON PELICAN)

�

b-list => (OWL STORK)�

For a table of related items: See the section "Functions for Comparing Lists".

� nstring-capitalize string &key (:start 0) :end Function

Returns string modified such that for every word in string, the initial character, if

case-modifiable, is uppercased. All other case-modifiable characters in the word are

lowercased. This function is the destructive version of string-capitalize. 

For the purposes of string-capitalize, a word is defined as a consecutive subse-

quence of alphanumeric characters or digits, delimited at each end either by a

non-alphanumeric character, or by an end of string.

The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The entire argument, string, is returned, however. 

If string is not a string, an error is signalled.

:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the operation. Default is nil, that is, the operation continues to the end of

the string.

Examples:

�

(nstring-capitalize " a bUNch of WOrDs" :start 0 :end 3)

=> " A bUNch of WOrDs"

�

(nstring-capitalize " a bUNch of WOrDs" :start 8)

=> " a bUNch Of Words"

�

(nstring-capitalize " 1234567 a bunch of numbers" :start 1 :end 5)

=> " 1234567 a bunch of numbers" 

�
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(setq a-string "poppy SEED")

�

(nstring-capitalize a-string) 

=> "Poppy Seed"

�

a-string => "Poppy Seed"�

For a table of related items: See the section "String Conversion".

� nstring-capitalize-words string &key (start 0) (end nil) Function

The destructive version of string-capitalize-words.

nstring-capitalize-words returns string, modified such that hyphens are changed

to spaces and initial characters of each word are capitalized if they are case-

modifiable. 

If string is not a string, an error is signalled. See the function string.

The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The entire argument, string, is returned, however.

:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the uppercasing operation. Default is nil, that is, the operation continues to

the end of the string.

Examples:

(nstring-capitalize-words "three-hyphenated-words")

 => "Three Hyphenated Words"

�

(nstring-capitalize-words  "three-hyphenated-words" :end 5) 

 => "Three-hyphenated-words"

�

(nstring-capitalize-words  "three-hyphenated-words" :start 6) 

 => "three-Hyphenated Words"

�

For a table of related items: See the section "String Conversion". 

� nstring-downcase string &key (start 0) (end nil) Function

Returns string, modified to replace its uppercase alphabetic characters by the cor-

responding lowercase characters. This function is the destructive version of the

function string-downcase.

If string is not a string, an error is signalled.
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See the function string.

The keywords let you select portions of the string argument for lowercasing. These

keyword arguments must be non-negative integer indices into the string array. The

entire argument, string, is returned, however.

:start Specifies the position within string from which to begin lowercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the lowercasing operation. Default is nil, that is, the operation continues to

the end of the string.

Examples:

(nstring-downcase "WHAT TIME IS IT !!!!") => "what time is it !!!!"

(nstring-downcase "A BUNCH OF WORDS" :start 2 :end 7) => "A bunch OF WORDS"

(nstring-downcase "A BUNCH OF WORDS" :start 11)  => "A BUNCH OF words"

(setq string "THREE UPPERCASE WORDS") => "THREE UPPERCASE WORDS"

(nstring-downcase string :start 0 :end 5 )  => "three UPPERCASE WORDS"

(nstring-downcase string :start 16 :end nil) => "three UPPERCASE words"

string => "three UPPERCASE words"

�

For a table of related items: See the section "String Conversion".

� nstring-upcase string &key (start 0) (end nil) Function

Returns string, modified by replacing its lowercase alphabetic characters by the

corresponding uppercase characters. This function is the destructive version of the

function string-upcase.

If string is not a string, an error is signalled. See the function string.

The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The entire string argument is returned, however.

:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the uppercasing operation. Default is nil, that is, the operation continues to

the end of the string.

Characters not in the standard character set are unchanged.

Examples:
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(nstring-upcase "a four word string" :start 2 :end 6) 

  => "a FOUR word string"

(nstring-upcase "a four word string" :start 12) 

  => "a four word STRING"�

(setq a-string "poppy SEED")

�

(nstring-upcase a-string) 

=> "POPPY SEED"

�

a-string => "POPPY SEED"�

For a table of related items: See the section "String Conversion".

� nsublis alist tree &rest args &key (:test #’eql) :test-not (:key #’identity)�

Function

Destructive version of sublis. It makes substitutions for objects in a tree, altering

the relevant parts of tree. See the function sublis.

The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

Example:

(setq exp ’((* x y) (+ x y))) => ((* X Y) (+ X Y))

�

(nsublis ’((x . 100)) exp) => ((* 100 Y) (+ 100 Y))

�

exp => ((* 100 Y) (+ 100 Y))�

Thus, nsublis is comparable to several nsubst operations in parallel. The following

example shows that sequential calls to nsubst can not replace every nsublis.

(setq alist (pairlis ’(monkey zebra) ’(zebra monkey)))

(setq newthing ’(is-taller monkey zebra))

�

(nsublis alist newthing) => (IS-TALLER ZEBRA MONKEY)�

For a table of related items: See the section "Functions for Modifying Lists".
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� zl:nsublis alist form Function

Destructive version of sublis. Makes substitutions for symbols in a tree, but

changes the original tree instead of creating a new tree.

zl:nsublis could have been defined by:

(defun zl:nsublis (alist tree)

  (cond ((atom tree)

 (let ((tem (assq tree alist)))

   (if tem (cdr tem) tree)))

(t (rplaca tree (zl:nsublis alist (car tree)))

   (rplacd tree (zl:nsublis alist (cdr tree)))

   tree)))�

In your new programs, we recommend that you use the function nsublis, which is

the Common Lisp equivalent of zl:nsublis.

For a table of related items: See the section "Functions for Modifying Lists". 

� nsubst new old tree &rest args &key (:test #’eql) :test-not (:key #’identity) Function

Destructive version of subst. It changes tree by substituting new for every subtree

or leaf of tree that matches old according to :test. See the function subst. The

keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For example:

(setq bird-list ’(waders (flamingo stork) raptors (eagle hawk))) =>

(WADERS (FLAMINGO STORK) RAPTORS (EAGLE HAWK))

�

(nsubst ’heron ’stork bird-list) =>

(WADERS (FLAMINGO HERON) RAPTORS (EAGLE HAWK))

�

bird-list => (WADERS (FLAMINGO HERON) RAPTORS (EAGLE HAWK))�

(setq sentence

  ’((SUB (PN . Avery)) (PRED (V . was) (ADJ . cool))

    (SUB (RPN . he)) (PRED (V . was) (ADJ . calm))

    (SUB (RPN . he)) (PRED (V . was) (ADJ . suave))))
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�

(nsubst ’(PN . Avery) ’RPN sentence :key #’(lambda(x)(and (consp x)(car x))))

 =>

  ((SUB (PN . Avery)) (PRED (V . was) (ADJ . cool))

   (SUB (PN . Avery)) (PRED (V . was) (ADJ . calm))

   (SUB (PN . Avery)) (PRED (V . was) (ADJ . suave)))�

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:nsubst new old s-exp Function

Destructive version of subst. Changes s-exp by replacing each element occurence of

old with new. zl:nsubst could have been defined as

(defun nsubst (new old tree)

    (cond ((eq tree old) new)   ;if item eq to old, replace.

          ((atom tree) tree)      ;if no substructure, return arg.

  (t                      ;otherwise, recurse.

     (rplaca tree (nsubst new old (car tree)))

     (rplacd tree (nsubst new old (cdr tree)))

     tree)))�

� nsubst-if new predicate tree &rest args &key :key�

Function

Destructive version of subst-if. It change tree by substituting new for every sub-

tree or leaf of tree that satisfies predicate. See the function subst-if. The keyword

is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For example:

(setq item-list ’(numbers (1.0 2 5/3) symbols (foo bar)))

  => (NUMBERS (1.0 2 5/3) SYMBOLS (FOO BAR))

�

(nsubst-if ’3.1415 #’numberp item-list)

  => (NUMBERS (3.1415 3.1415 3.1415) SYMBOLS (FOO BAR))

�

item-list => (NUMBERS (3.1415 3.1415 3.1415) SYMBOLS (FOO BAR))�

(setq b ’(1 2 (AA BB (3 BB)) CC DD 4))

�

(nsubst-if ’ZZ #’numberp b)

 => (ZZ ZZ (AA BB (ZZ BB)) CC DD ZZ)

�

b => (ZZ ZZ (AA BB (ZZ BB)) CC DD ZZ)�
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The following call to nsubst-if uses an anonymous function. After the call, a is al-

tered according to the results returned by nsubst-if.

(setq a ’("In" "our" "prairie" "home" "we" "read"

  "The" "Prairie" "Home" "Companion"))

�

(nsubst-if "Gopher"

           #’(lambda (comparator)(string= comparator "Prairie"))

 =>

("In" "our" "prairie" "home" "we" "read"

  "The" "Gopher" "Home" "Companion")�

For a table of related items: See the section "Functions for Modifying Lists".

� nsubst-if-not new predicate tree &rest args &key :key�

Function

Destructive version of subst-if-not. It changes tree by substituting new for every

subtree or leaf of tree that does not satisfy predicate. See the function subst-if-not.

The keyword is: 

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For example:

(setq item-list ’(numbers 1.0 2 5/3 symbols foo bar))

 => (NUMBERS 1.0 2 5/3 SYMBOLS FOO BAR)

�

(nsubst-if-not ’3.1415 #’ ’(numbers 1.0 2 5/3 symbols foo bar))

�

item-list�

In the following example, the key function ensures that the test is not applied to

the entire list.

(setq prop-results ’(integer nil nil float))

�

(nsubst-if-not t #’null prop-results

               :key #’(lambda(x)(and (atom x) x)))

 => (t nil nil t)

�

prop-results => (t nil nil t)�

For a table of related items: See the section "Functions for Modifying Lists".

� nsubstitute newitem olditem sequence &key (:test #’eql) :test-not (:key #’identity)

:from-end (:start 0) :end :count Function

Returns a sequence of the same type as the argument sequence which has the

same elements, except that those in the subsequence delimited by :start and :end
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and satisfying the predicate specified by the :test keyword have been replaced by

newitem. The argument sequence is destroyed during construction of the result, but

the result may or may not be eq to sequence.

For example:

(setq letters ’(a b c)) => (A B C)

(nsubstitute ’a ’b ’(a b c)) => (A A C)

letters => (A B C)�

However,

letters => (A B C)

(nsubstitute ’b ’c letters) => (A B B)

letters => (A B B)�

newitem and olditem can be any Symbolics Common Lisp object but newitem must

be a suitable element for sequence.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(nsubstitute 0 3 ’(1 1 4 4 2) :test #’<) => (1 1 0 0 2)�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(nsubstitute 1 2 ’((1 1) (1 2) (4 3)) :key #’second) => ((1 1) 1 (4 3))

(nsubstitute ’a ’b ’((a b) (b c) (b b)) :key #’second) => (A (B C) A)�

A non-nil :from-end specification matters only when the :count argument is pro-

vided; in that case only the rightmost :count elements satisfying the test are re-

placed.

For example:

(nsubstitute ’hi ’b ’(b a b) :from-end t :count 1 )

 => (B A HI)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).
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:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(nsubstitute ’a ’B ’(b a b) :start 1 :end 3)  => (B A A)

(nsubstitute ’a ’b ’(b a b) :end 2) => (A A B)

(nsubstitute ’a ’b ’(b a b) :end 3) => (A A A)�

A non-nil :count, if supplied, limits the number of elements altered; if more than

:count elements satisfy the test, then of these elements only the leftmost are re-

placed, as many as specified by :count. A negative :count argument is equivalent

to a :count of 0.

For example:

(nsubstitute ’a ’b ’(b b a b b) :count 3) => (A A A A B)�

To perform destructive substitutions throughout a tree: See the function nsubst.

nsubstitute is case-insensitive.

nsubstitute is the destructive version of substitute.

For a table of related items: See the section "Sequence Modification".

� nsubstitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count�

Function

Returns a sequence of the same type as the argument sequence which has the

same elements, except that those in the subsequence delimited by :start and :end

and satisfying predicate have been replaced by newitem. The argument sequence is

destroyed during construction of the result, but the result may or may not be eq

to sequence. 

For example:

(setq numbers ’(a b)) => (A B)

(nsubstitute-if 3 #’numberp numbers) => (A B)

numbers => (A B)�

However,

numbers => (1 1 19)

(nsubstitute-if 2 #’numberp numbers) => (2 2 2)

numbers => (2 2 2)�

newitem can be any Symbolics Common Lisp object but must be a suitable element

for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.
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The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(nsubstitute-if 1 #’oddp ’((1 1) (1 2) (4 3)) :key #’second)

 => (1 (1 2) 1)�

A non-nil :from-end specification matters only when the :count argument is pro-

vided; in that case only the rightmost :count elements satisfying the test are re-

placed.

For example:

(nsubstitute-if ’hi #’atom ’(b ’a b) :from-end t :count 1 )

 => (B ’A HI)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(nsubstitute-if 1 #’zerop ’(0 1 0) :start 1 :end 3) => (0 1 1)

(nsubstitute-if 1 #’zerop ’(0 1 0) :start 0 :end 2)  => (1 1 0)

(nsubstitute-if 1 #’zerop ’(0 1 0)  :end 1)  => (1 1 0)�

A non-nil :count, if supplied, limits the number of elements altered; if more than

:count elements satisfy the test, then of these elements only the leftmost are re-

placed, as many as specified by :count. A negative :count argument is equivalent

to a :count of 0.

For example:

(nsubstitute-if ’see ’atom  ’(b b a b b) :count 3)

 => (SEE SEE SEE B B)  �

(setq alist (pairlis ’(second third start end) ’(11 21 13 43)))

�

(nsubstitute-if ’(boundary 42) #’(lambda(x)(member x ’(start end middle)))

alist :key #’car))

�

alist => ((BOUNDARY 42)(BOUNDARY 42)(THIRD 21)(SECOND 11))�

nsubstitute-if is the destructive version of substitute-if.

For a table of related items: See the section "Sequence Modification".
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� nsubstitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count�

Function

Returns a sequence of the same type as the argument sequence which has the

same elements, except that those in the subsequence delimited by :start and :end

which do not satisfy predicate have been replaced by newitem. The argument se-

quence is destroyed during construction of the result, but the result may or may

not be eq to sequence. 

For example:

(setq numbers ’(0 0 0)) => (0 0 0)

(nsubstitute-if-not 1 #’numberp numbers) => (0 0 0) 

numbers => (0 0 0)�

However,

numbers => (1 0 0)

(nsubstitute-if-not 2 #’consp numbers)  => (2 2 2) 

numbers => (2 2 2) �

newitem can be any Symbolics Common Lisp object but must be a suitable element

for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(nsubstitute-if-not 1 #’oddp ’((1 1) (1 2) (4 3)) :key #’second)

 => ((1 1) 1 (4 3))�

A non-nil :from-end specification matters only when the :count argument is pro-

vided; in that case only the rightmost :count elements satisfying the test are re-

placed.

For example:

(nsubstitute-if-not ’hi #’atom ’(’b a ’b) :from-end t :count 1 )

 => (’B A HI)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).
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If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(nsubstitute-if-not 1 #’zerop ’(3 0 2) :start 1 :end 3) => (3 0 1) 

(nsubstitute-if-not 1 #’zerop ’(3 0 2) :start 0 :end 2)  => (1 0 2) 

(nsubstitute-if-not 1 #’zerop ’(3 0 2)  :end 1) => (1 0 2) �

A non-nil :count, if supplied, limits the number of elements altered; if more than

:count elements satisfy the test, then of these elements only the leftmost are re-

placed, as many as specified by :count. A negative :count argument is equivalent

to a :count of 0.

For example:

(nsubstitute-if-not ’see ’consp  ’(b b a b b) :count 3)

=> (SEE SEE SEE B B)�

(setq alist (pairlis ’(second third start end) ’(11 21 13 43)))

�

(nsubstitute-if-not ’(inner 24) #’(lambda(x)(member x ’(start end middle)))

    alist :key #’car))

�

alist => ((END 43)(START 13)(INNER 24)(INNER 24))�

nsubstitute-if-not is the destructive version of substitute-if-not.

For a table of related items: See the section "Sequence Modification".

� nsubstring string from &optional to (area nil) Function

Destructive form of the function substring. Instead of copying the substring, the

system creates an indirect array that shares part of the argument string. See the

section "Indirect Arrays". Modifying one string modifies the other.

string is a string or an object that can be coerced to a string. Since nsubstring is

destructive, coercion should be used with care since a string internal to the object

might be modified. See the function string.

Note that nsubstring does not necessarily use less storage than substring; an

nsubstring of any length uses at least as much storage as a substring four char-

acters long. So you should not use this just "for efficiency"; it is intended for uses

in which it is important to have a substring that, if modified, causes the original

string to be modified too.

Examples:

(setq a "Aloysius") => "Aloysius"

a => "Aloysius"

(setq b (nsubstring a 2 4)) => "oy"

(nstring-upcase b) => "OY"

a => "AlOYsius"�

For a table of related items: See the section "String Access and Information". 
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� nsymbolp arg Function

Returns nil if its argument is a symbol, otherwise t. 

� nth n list Function

Returns the nth element of list, where the zeroth element is the car of the list.

Examples:

(nth 1 ’(foo bar gack)) => bar

(nth 3 ’(foo bar gack)) => nil�

Returns nil if n is greater than the length of the list.

Note: this is not the same as the Interlisp function called nth, which is similar to,

but not exactly the same as, the Symbolics Common Lisp function nthcdr. 

nth could have been defined by:

(defun nth (n list)

  (do ((i n (1- i))

       (l list (cdr l)))

      ((zerop i) (car l))))�

The relationship between nth and lists is similar to that of svref and simple vec-

tors. However, references beyond the end of the vector are not considered errors

by nth.

(nth 0 ’(a b c)) = (first ’(a b c)) => a

(nth 2 ’(a b c)) = (third ’(a b c)) => c

(nth 3 ’(a b c)) = (fourth ’(a b c)) => nil�

This function allows selection beyond the cadddr, or even the zl-user:tenth ele-

ment of a list.

For a table of related items: See the section "Functions for Extracting from Lists".

� nthcdr n list Function

Performs n cdr operations on list, and returns the result. Examples:

(nthcdr 0 ’(a b c)) => (a b c)

(nthcdr 2 ’(a b c)) => (c)�

In other words, it returns the nth cdr of the list. Returns nil if n is greater than

the length of the list.

This is similar to Interlisp’s function nth, except that the Interlisp function is one-

based instead of zero-based; see the Interlisp manual for details. nthcdr could have

been defined by:

(defun nthcdr (n list)

    (do ((i 0 (1+ i))

 (list list (cdr list)))

((= i n) list)))�

This selector function allows selection beyond the cddddr. Though the numeric ar-
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gument is evaluated, it allows parameterization of the selected position. Compare

the following two forms, and their results, in the following example.

(let ((foo joblist))

  (dotimes (i *times* foo) (setq foo (cdr foo))))

(nthcdr *times* joblist)�

For a table of related items: See the section "Functions for Extracting from Lists".

� null Type Specifier

null is the type specifier symbol for the predefined Lisp null data type.

The type null is a subtype of the type symbol; the only object of type null is nil.

The types null and cons form an exhaustive partition of the type list.

Examples:

(typep nil ’null) => T 

(null ()) => T

(subtypep ’null ’t) => T and T

(subtypep ’null ’symbol) => T and T

(equal-typep (null ()) (not ())) => T

(sys:type-arglist ’null) => NIL and T�

See the section "Data Types and Type Specifiers". See the section "Predicates".

� null x Function

Returns t if x is nil, otherwise returns nil. null is the same as not; both functions

are included for the sake of clarity. Use null to check whether something is nil;

use not to invert the sense of a logical value. Even though Lisp uses the symbol

nil to represent falseness, you should not make understanding of your program de-

pend on this. For example, one often writes:

(cond ((not (null lst)) ... )

      ( ... ))

rather than

(cond (lst ... )

      ( ... ))�

There is no loss of efficiency, since these compile into exactly the same instruc-

tions.

The following example searches a list:

(defun my-search(l key)

  (if (null l)

    nil

    (or (equal (car l) key)

        (search (cdr l) key))))�
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� sys:null-stream op &rest args Function

Can be used as a dummy stream object. As an input stream, it immediately reports

end-of-file; as an output stream, it absorbs and discards arbitrary amounts of out-

put. Note: sys:null-stream is not a variable; it is defined as a function. Use its

definition (or the symbol itself) as a stream, not its value. Examples:

(stream-copy-until-eof a ’si:null-stream)

(stream-copy-until-eof a #’si:null-stream)�

Either of the above two forms reads characters out of the stream that is the value

of a and throws them away, until a reaches the end-of-file.

� number &optional (low-limit ’*) (high-limit ’*) Type Specifier

number is the type specifier symbol for the predefined Lisp data type, number.

The type number is a supertype of the following types, which are themselves pair-

wise disjoint:

rational

float

complex

�

The types number, cons, symbol, array, and character are pairwise disjoint. 

In addition to a symbol form, Symbolics Common Lisp provides a list form for

number. Used in list form, number allows the declaration and creation of special-

ized numbers whose range is restricted to the limits specified in the arguments

low-limit and high-limit. The list form might not work in other implementations of

Common Lisp. 

low-limit and high-limit must each be an integer, a list of an integer, or unspeci-

fied. If these limits are expressed as integers, they are inclusive; if they are ex-

pressed as a list of an integer, they are exclusive; * means that a limit does not

exist, and so effectively denotes minus or plus infinity, respectively.

Examples:

(typep ’1 ’number) => T �

(typep 1 ’(number 1 3)) => T�

(typep 0 ’(number 1 3)) => NIL�

(typep 4 ’(number 5 *)) => NIL�

(typep 5 ’(number 5 *)) => T�

(subtypep ’bit ’(number 0 4))  => T and T�

(commonp 3.14) => T�

(numberp ’16) => T�

(numberp most-positive-long-float) => T�

(subtypep ’rational ’number) => T and T�

(subtypep ’float ’number) => T and T�
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(subtypep ’complex ’number) => T and T�

(sys:type-arglist ’number) 

=> (&OPTIONAL (LOW-LIMIT ’*) (HIGH-LIMIT ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Numbers".

� sys:number-into-array array n &optional (radix zl:base) (at-index 0) (min-columns

0) Function

Deposits the printed representation of n into array, which must be a string, which

is an integer. sys:number-into-array is the inverse of zl:parse-number. It has

three optional arguments:

radix The radix to use when converting the number into its printed

representation. It defaults *print-base*.

at-index The character position in the array to start putting the num-

ber. 

min-columns The minimum number of characters required for the printed

representation of the number. If the number contains fewer

characters than min-columns, the number is right-justified

within the array. If the number contains more characters than

min-columns, min-columns is ignored. An error is signalled if

the number contains more characters than the length of the

array minus at-index. The default is the first position, position

0.

The following example puts 23453243 into string starting at character position 5.

Since min-columns is 10, the number is preceded by two spaces.

(let ((string (make-array 20. :type ’art-string :initial-value #\X)))

  (zl:number-into-array string 23453243. 10. 5. 10.)

    string)             

�

=>  "XXXXX  23453243XXXXX"�

For a table of related items: See the section "String Access and Information". 

� numberp object Function

Returns t if its argument is any kind of number, otherwise nil.

The following code first tests whether a and b are numbers. If numbers, they are

added, if strings, they are concatenated.

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (stringp a) (stringp b))

    (concatenate ’string a b)

    (error "couldn’t combine ~a and ~a" a b)))�
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For a table of related items, see the section "Numeric Type-checking Predicates". 

� numerator Function

If rational is a ratio, numerator returns the numerator of rational. If rational is

an integer, numerator returns rational.

Examples:

(numerator 4/5) => 4

(numerator 3) => 3

(numerator 4/8) => 1

(numerator (/ 12 -17)) => -12

(numerator (rational 0.200)) => 13421773�

Related Functions:

denominator�

For a table of related items: See the section "Functions that Extract Components

From a Rational Number".

� nunion list1 list2 &key (test #’eql) test-not (key #’identity) Function

Destructive version of union. It takes two lists and returns a new list containing

everything that is an element of either of the lists, and destroys the values of the

list arguments. See the function union. The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For example:

(setq a-list ’(a b c)) => (A B C)

�

(setq b-list ’(f a d)) => (F A D)

�

(nunion a-list b-list) => (A B C F D)

�

a-list => (A B C F D)

�

b-list => (F D)�

In the following example, nunion updates the list of tenured professors by combin-
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ing the list of tenured professors with the list of newly tenured professors. 

(setq professors-with-tenure

  ’(("Jones" CS101 CS242)("smith" CS202 CS231)

    ("hunter" CS216 CS232)))

(setq new-tenured-professors

  ’(("parks" CS221)))

�

(setq professors-with-tenure

  (nunion professors-with-tenure new-tenured-professors

          :test #’string-equal :key #’car))

�

professors-with-tenure =>

(("Jones" CS201 CS242)("smith" CS202 CS231)

 ("hunter" CS216 CS232)("parks" CS221))�

For a table of related items: See the section "Functions for Comparing Lists".

� zl:nunion &rest lists Function

Takes any number of lists that represent sets and returns a new list that is the

union of all those sets. Destroys the arguments and reuses their conses. zl:nunion

uses eq for its comparisons. You cannot change the function used for the compari-

son. Given no arguments, (nunion) returns nil.

For a table of related items: See the section "Functions for Comparing Lists". 

� oddp integer Function

Returns t if integer is odd, otherwise nil. If integer is not an integer, oddp signals

an error.

(oddp 1) => t

(oddp (* 2 (random n))) => nil�

For a table of related items, see the section "Numeric Property-checking Predi-

cates".

� once-only (variable-name ... &environment environment) &body body�

Macro

A once-only form looks like this:

(once-only (variable-name &environment environment)

  form1

  form2

  ...)�

variable-name is a list of variables. once-only is usually used in macros where the

variables are Lisp forms. &environment should be followed by a single variable

that is bound to an environment representing the lexical environment in which the
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macro is to be interpreted. Typically this comes from the &environment parame-

ter of a macro. The forms are a Lisp program that presumably uses the values of

the variables to construct a new form to be the value of the macro. When a call to

the macro that includes the once-only form is macroexpanded, the form produced

by that expansion will be evaluated.

The macro that includes the once-only form will be macroexpanded. The form pro-

duced by that expansion is then evaluated. In the process, the values of each of

the variables in variable-name are first inspected. These variables should be bound

to subforms, that probably originated as arguments to the defmacro or similar

form, and will be incorporated in the macro expansion, possibly in more than one

place.

Each variable is then rebound either to its current value, if the current value is a

trivial form, or to a generated symbol. Next, once-only evaluates the forms, in this

new binding environment, and when they have been evaluated it undoes the bind-

ings. The result of the evaluation of the last form is presumed to be a Lisp form,

typically the expansion of a macro. If all of the variables had been bound to trivial

forms, then once-only just returns that result. Otherwise, once-only returns the

result wrapped in a lambda-combination that binds the generated symbols to the

result of evaluating the respective nontrivial forms.

The effect is that the program produced by evaluating the once-only form is coded

in such a way that it only evaluates each of the forms that are the values of vari-

ables in variable-name once, unless evaluation of the form has no side effects. At

the same time, no unnecessary lambda-binding appears in the program. The body

of the once-only is not cluttered up with extraneous code to decide whether or not

to introduce lambda-binding in the program it constructs.

Note well: once-only can be used only with an &environment keyword argument.

If this argument is not present, a compiler warning will result.

For more information about using once-only with &environment: See the lambda

list keyword &environment. Also, refer to the definitions of the macro defining

forms: defmacro, macrolet, and defmacro-in-flavor.

(defmacro double (x &environment env)

  (once-only (x &environment env)

    ‘(+ ,x ,x)))

=> DOUBLE

�

(double 5)

==> (+ 5 5)

�

(double var)

==> (+ VAR VAR)

�

(double (compute-value var))

==> (LET ((#:ONCE-ONLY-X-3553 (COMPUTE-VALUE VAR)))

      (+ #:ONCE-ONLY-X-3553 #:ONCE-ONLY-X-3553))

Note that in the first three examples, when the argument is simple, it is duplicat-
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ed. In the last example, when the argument is complicated and the duplication

could cause a problem, it is not duplicated.

For information about avoiding problems with evaluation: See the section "Avoiding

Multiple and Out-of-Order Evaluation".

once-only evaluates its subforms in the order they are presented. If it finds any

form which is non-trivial, it rebinds the earlier variables to temporaries, and eval-

uates them first. In the following example, the order of evaluation is x, then y,

even though the y appears before the x in the body of the once-only:

(defmacro my-progn (x y &environment env)

  (once-only (x y &environment env)

    ;; We willfully try to make it evaluate in the wrong order.

    ‘(progn ,y ,x))) => MY-PROGN

�

;;Macro expansion shows code that would be produced by the

;; once-only form in the macro.

�

(my-progn (print x) (setq x ’foo)) =>

(LET ((#:ONCE-ONLY-X-7614 (PRINT X))) 

(PROGN (VALUES (SETQ X ’FOO)) #:ONCE-ONLY-X-7614))

In the next example, once-only evaluates y, then x, because y appears before x in

once-only’s variable list. In actuality, this style is an example of poor program-

ming practice as it is confusing. Always list variables in the order in which the

forms they are bound to appear in the source that produced them. In a macro, this

is normally the order they appear in the macro’s argument list. 

(defmacro backward-progn (x y &environment env)

  (once-only (y x &environment env)

    ;; We willfully try to make it evaluate in the wrong order. 

    ;; But this time we tell once-only to evaluate y before x.

    ‘(progn ,y ,x))) => BACKWARD-PROGN

�

    (backward-progn (print x) (setq x ’foo)) => FOO

                FOO

�

    (PROGN (VALUES (SETQ X ’FOO)) (VALUES (PRINT X))) => FOO

 FOO

� sys:open-coroutine-stream function &key (:direction :input) (:buffer-size 1000) (:ele-

ment-type ’character) Function

Creates either input streams, output streams, or bidirectional streams, each with a

shared buffer, depending on the argument given to :direction. For examples of

coroutine streams, see the section "Coroutine Streams".

Using the functions read-char and write-char on the stream returned by

sys:open-coroutine-stream cause the new stack group to be resumed and function
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to be called from that stack group. The argument to function is the second stream

created by sys:open-coroutine-stream. The first stream is the one returned. func-

tion should use read-char or write-char on the stream that is its argument. These

functions resume the stack group in which sys:open-coroutine-stream was called.

In this way function and the caller of sys:open-coroutine-stream communicate

through the shared buffers; output from one function becomes input to the other.

function takes a single argument, stream, which is the "other end" of the stream

returned to the caller by this function. (Note: If more than one argument to func-

tion is needed, use lexical scoping.)

:direction can be :input, :output, or :io. To create input coroutine streams use

:input; to create output coroutine streams use :output; and to create bidirectional

coroutine streams use :io. These are the values accepted by open as specified in

Common Lisp: the Language.

:element-type can be any element type acceptable to open.

:buffer-size is the size of the buffer of the intermediate buffer. The value should

usually be set to the default size.

• Creating input coroutine streams:

Give :direction the argument :input to create two coroutine streams, an input

stream and an output stream, with a shared buffer. sys:open-coroutine-stream

returns the input stream. The output stream is associated with a new stack

group and the input stream with the stack group that is current when sys:open-

coroutine-stream is called. :tyi messages to the input stream cause the new

stack group to be resumed and function to be called from that stack group.

• Creating output coroutine streams:

Give :direction the argument :output to create two coroutine streams, an input

stream and an output stream, with a shared buffer. sys:open-coroutine-stream

returns the output stream. The input stream is associated with a new stack

group and the output stream with the stack group that is current when

sys:open-coroutine-stream is called. Using the cl:write-char function on the

output stream causes the new stack group to be resumed and function to be

called from that stack group.

• Creating two bidirectional coroutine streams.

Give :direction the argument :io to create two bidirectional coroutine streams.

The input buffer of each stream is the output buffer of the other. One stream is

associated with a new stack group and the other with the stack group that is

current when sys:open-coroutine-stream is called. sys:open-coroutine-stream

returns the stream associated with the current stack group.
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� operation-handled-p object operation Function

Returns non-nil if the flavor associated with object has a method defined for opera-

tion and nil otherwise. operation is a message or the name of a generic function.

Note that operation-handled-p works by sending the :operation-handled-p mes-

sage. You can customize the behavior of operation-handled-p by defining a

method for the :operation-handled-p message.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� :operation-handled-p operation Message

operation is a message or the name of a generic function. The object should return

non-nil if it has a handler for the operation, and nil if it does not.

flavor:vanilla provides a method for :operation-handled-p. 

Instead of sending this message, you can use the operation-handled-p function.

See the function operation-handled-p.

Note that operation-handled-p works by sending the :operation-handled-p mes-

sage. You can customize the behavior of operation-handled-p by defining a

method for the :operation-handled-p message.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� optimize (option1 value1) (option2 value2) ... Declaration

Advises the compiler to give attention to each option according to its associated

value. value should be an integer between 0 and 3, where 0 means that option is

totally unimportant and 3 means that it is extremely important. 1 and 2 are inter-

mediate, with 1 being the usual or normal value. You may abbreviate (option 3) to

option.

compilation-speed Option

Speed of the compilation process. 

safety Option

Run time error-checking. 

space Option

Code size and run-time space. 
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speed Option

How fast the object code runs. 

See the section "Declaration Specifiers".

� lt:optimize-state name &optional env Function

Returns the value of the optimization quality name in the given environment. If

env is omitted, the current environment is used.

See the section "Declarations".

� &optional Lambda List Keyword

If the lambda-list keyword &optional is present, all specifiers up to the next lamb-

da-list keyword, or the end of the list, are optional parameter specifiers. 

� or Type Specifier

� or &rest forms Special Form

Evaluates each form one by one, from left to right. If a form evaluates to nil, or

proceeds to evaluate the next form. If there is no other form, or returns nil. But if

a form evaluates to a non-nil value, or immediately returns that value without

evaluating any other form.

As with and, or can be used either as a logical or function, or as a conditional.

Examples:

(or) => NIL�

(or ’start ’finish ’middle) => START�

(or (> 3 4))  => NIL�

(or (numberp ’arg) "not a number")  => "not a number"�

(or it-is-fish

    it-is-fowl

    (print "It is neither fish nor fowl."))�

In the following example, very-expensive-function is not evaluated because a prior

form is true:

(setq foo 12 bar ’(3 4 5))

�

(if (or (eql foo bar)

        (eql 12 foo)

        (very-expensive-function bar))

  bar

  foo)
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Note: (or) => nil , the identity for this operation.

For a table of related items: See the section "Conditional Functions".

CLOE Note: This is a macro in CLOE. 

� output-stream-p stream Function

Returns t if stream can handle output operations, and otherwise it returns nil.

(streamp *standard-output*) => T

�

(setq file-stream

      (open "foo" :direction :output :element-type ’character))

�

(output-stream-p file-stream) => T�

� package Type Specifier

package is the type specifier symbol for the predefined Lisp data type of that

name.

The types package, hash-table, readtable, pathname, stream, and random-state

are pairwise disjoint.

Examples:

(typep *package* ’package) => T

(typep (in-package ’example) ’package) => T

(typep (in-package ’cl-user) ’package) => T

(typep (find-package ’cl-user) ’package) => T

(zl:typep *package*) => ZL:PACKAGE

(sys:type-arglist ’package) => NIL and T�

See the section "Data Types and Type Specifiers". See the section "Packages".

� *package* Variable

The value is the current package; many functions that take packages as optional

arguments default to the value of *package*, including intern and related func-

tions. The reader and the printer deal with printed representations that depend on

the value of *package*. Hence, under Genera, the current package is part of the

user interface and is displayed in the status line at the bottom of the screen.

It is often useful to bind *package* to a package around some code that deals

with that package. The operations of loading, compiling, and editing a file all bind

*package* to the package associated with the file.

� zl:package Variable
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See *package*. 

� sys:package-cell-location symbol Function

Returns a locative pointer to symbol’s package cell. It is preferable to write the

following, rather than calling this function explicitly.

(locf (symbol-package symbol))�

See the section "The Package Cell of a Symbol".

� sys:package-error Flavor

All package-related error conditions are built on sys:package-error. 

� package-external-symbols package Function

A list of all the external symbols exported by package. package can be a package

object or the name of a package (a symbol or a string). 

� sys:package-locked Flavor

There was an attempt to intern a symbol in a locked package.

The :symbol message returns the symbol. The :package message returns the

package.

The :no-action proceed type interns the symbol just as if the package had not

been locked. Other proceed types are also available when interning the symbol

would cause a name conflict. 

� package-name pkg Function

Returns the name of pkg as a string. pkg must be a package object.

(find-package ’cl-user) 

  => #<Package USER (really COMMON-LISP-USER) 32720604>

(package-name *) => "USER"�

=> (package-name (find-package "cloe"))

"cloe"�

See the section "Mapping Between Names and Packages".

� package-nicknames pkg Function

Returns the acceptable nickname strings for pkg. pkg must be a package object.

(find-package "common-lisp") => #<Package COMMON-LISP 35553744>

(package-nicknames *) => ("COMMON-LISP-GLOBAL" "CL" "LISP")�

In the following example, the name of a package is compared forlength with the
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nicknames of the package and the shortest name is returned.

(defun short-package-name (package)

  (let ((short-name (package-name package)))

    (dolist (nickname (package-nicknames package))

      (if (< (length nickname) (length short-name))

          (setq short-name nickname)))

    short-name))�

� sys:package-not-found Flavor

A package-name lookup did not find any package by the specified name.

The :name message returns the name. The :relative-to message returns nil if only

absolute names are being searched, or else the package whose relative names are

also searched.

The :no-action proceed type can be used to try again. The :new-name proceed

type can be used to specify a different name or package. The :create-package pro-

ceed type creates the package with default characteristics. 

� package-shadowing-symbols package Function

The list of symbols that have been declared as shadowing symbols in this package

by shadow or shadowing-import. All symbols on this list are present in the speci-

fied package. package can be a package object or the name of a package (a symbol

or a string).

The following function checks if a list of symbols has already been made shadow-

ing symbols of the indicated package, and if not, calls shadow.

(defun show-shadowed-symbols (package)

  (let ((shadowing-symbols (package-shadowing-symbols package)))       

    (format t "~&The package ~A has ~D shadowing symbol~:P.~%"

    (package-name package) (length shadowing-symbols))

    (dolist (symbol shadowing-symbols)

      (let ((shadowed-symbols ’())

    (name (symbol-name symbol)))

(dolist (package (package-use-list package))

          (let ((shadowed-symbol (find-symbol name package)))

    (if (and shadowed-symbol (not (eq shadowed-symbol symbol)))

(pushnew shadowed-symbol shadowed-symbols))))

(format t "~S shadows~:[ no symbols~;~:*: ~{~S~^, ~}~].~%"

symbol shadowed-symbols)))))�

� package-use-list pkg Function

The list of other packages used by the argument package. pkg must be a package

object. The elements of the list returned are package objects.
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See the section "Interpackage Relations".

� package-used-by-list pkg Function

The list of other packages that use the argument package. pkg can be a package

object or the name of a package (a symbol or a string). The elements of the list

returned are package objects.

The following example defines a function which prints information about the pack-

ages used by its argument package.

(defun show-packages-using (package)

  (format t "~&The package ~A is used by: ~{~A~^, ~}~%"

  (package-name package)

  (mapcar #’package-name (package-used-by-list package))))�

See the section "Interpackage Relations".

� packagep object Function

Returns t if object is a package. (packagep x) is equivalent to (typep x ’package).

(setq foo (make-package ’turbine-package))

�

(packagep foo) => t�

In the next example, the argument to packagep is a package name rather than a

package object.

(packagep (find-package ’turbine-package)) => t

�

(packagep "turbine-package") => nil�

� sys:page-in-raster-array raster &optional from-x from-y to-x to-y (hang-p

si:*default-page-in-hang-p*) (normalize-p t)�

Function

Ensures that the storage that represents raster is in main memory. from-x and

from-y can be specified as nil, meaning the lower limit for that item. to-x and to-y

can be specified as nil, meaning the upper limit for that item.

This, rather than sys:page-in-array, should be used on rasters.

For a table of related items: See the section "Operations on Rasters". 

� sys:page-in-table table &key :type :hang-p Function

Brings back into main memory any swapped pages in table that have been swapped

out to disk.

:type defaults to page-in-type.
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If hang-p is t, the function waits for the disk reads to finish before returning.

Otherwise, the function returns immediately after requesting the disk reads, which

might still be in progress. Thus, hang-p causes the process to hang until the

input/output is complete, that is, until all the requested pages are there. The de-

fault value, page-in-hand-p is t by default. 

sys:page-out-raster-array array &optional from-x from-y to-x to-y (hang-p

si:*default-page-in-hang-p*) Function

Takes the pages that represent raster out of main memory. from-x and from-y can

be specified as nil, meaning the lower value for that item. to-x and to-y can be

specified as nil, meaning the upper limit for that item.

This, rather than sys:page-out-array, should be used on rasters.

For a table of related items: See the section "Operations on Rasters". 

� sys:page-out-table table &key :write-modified :reuse Function

Takes all swapped pages in table out of main memory.

:write-modified defaults to write-modified. 

:reuse defaults to reuse. 

pairlis keys data &optional a-list Function

Takes two lists and associates elements of the first list to corresponding elements

of the second list, creating an association list. pairlis signals an error if the two

lists, keys and data, are not of the same length. If the optional argument a-list is

provided, then the new pairs are added to the front of a-list.

The new pairs can appear in the resulting association list in any order; in particu-

lar, either forward or backward order is permitted. Therefore, the result of the fol-

lowing call might be either of the two results.

(pairlis ’(one two) ’(1 2) ’((three . 3) (four . 4))) =>

((TWO . 2) (ONE . 1) (THREE . 3) (FOUR . 4))

or

((ONE . 1) (TWO . 2) (THREE . 3) (FOUR . 4))�

The following example demonstrates an association list consisting of pairs of keys

and association lists.

(setq keys ’(monthly-cash-on-hand monthly-expense monthly-revenue))

�

(setq data ‘(,(pairlis ’(11 12) ’(52 73))

             ,(pairlis ’(10 11) ’(20 21))

             ,(pairlis ’(10 11) ’(31 42))))
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�

(setq financial-statement (pairlis keys data)) =>

((MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))

 (MONTHLY-EXPENSE ((10 . 20) (11 . 21)))

 (MONTHLY-EXPENSE ((10 . 31) (11 . 42))))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists".

� zl:pairlis vars vals Function

Takes two lists and makes an association list which associates elements of the first

list with corresponding elements of the second list. Example:

(zl:pairlis ’(beef clams chicken) ’(roast fried yu-hsiang))

   => ((beef . roast) (clams . fried) (chicken . yu-hsiang))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� zl:parse-ferror format-string &rest format-args Function

Signals an error of flavor zl:parse-ferror. format-string and format-args are passed

as the :format-string and :format-args init options to the error object.

See the flavor zl:parse-ferror.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� parse-integer string &key (:start 0) :end (:radix 10) :junk-allowed (:sign-allowed t)�

Function

Examines the substring of string delimited by :start and :end (which default to

the beginning and end of the string). It skips over whitespace and then attempts

to parse an integer. The :radix argument defaults to 10, and must be an integer

between 2 and 36.

If :junk-allowed is nil (the default), then the entire substring is scanned. The re-

turned value is the value of the number parsed as an integer. An error is sig-

nalled if the substring does not consist entirely of the representation of an integer,

possibly surrounded on either side by whitespace characters.

If :junk-allowed is non-nil, the first value returned is the value of the number

parsed as an integer, or nil if no syntactically correct integer was seen.

In either case, the second value returned is the index into the string of the delim-

iter that terminated the parse, or it is the index beyond the substring if the parse

terminated at the end of the substring (as will be the case of :junk-allowed is

nil).
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Note that parse-integer does not recognize the syntactic radix-specifier prefixes

#o, #b, #x, and #nR, nor does it recognize a trailing decimal point. It permits only

an optional sign (+ or -) followed by a non-empty sequence of digits in the speci-

fied radix. For example:

(parse-integer " -1234567890 " :start 3) => 234567890 and 13�

(parse-integer "345")

=> 345 3

�

(parse-integer "345" :radix 8)

=> 229 3

�

(parse-integer "345a")

Error: Garbage character a seen while parsing integer in "345a"

�

(parse-integer "345a" :junk-allowed t)

=> 345 3

�

(parse-integer "345a" :radix 16)

=> 13402 4�

For a table of related items: See the section "String Access and Information".

� zl:parse-number string &optional (from 0) to radix fail-if-not-whole-string Function

Takes a string and "reads" a number from it. The function currently does not han-

dle anything but integers.

string must be a string. It returns two values: the number found (or nil) and the

character position of the next unparsed character in the string. It returns nil

when the first character that it looks at cannot be part of a number. (read-from-

string is a more general function that uses the Lisp reader; prompt-and-read

reads a number from the keyboard.) Four optional arguments: 

from The character position in the string to start parsing. The de-

fault is the first one, position 0.

to The character position past the last one to consider. The de-

fault, nil, means the end of the string.

radix The radix to read the string in. The default, nil, means base

10.

fail-if-not-whole-string

The default is nil. nil means to read up to the first character

that is not a digit and stop there, returning the result of the

parse so far. t means to stop at the first nondigit and to re-

turn nil and 0 length if that is not the end of the string. �

Examples:
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(zl:parse-number "123    ") => 123 and 3

(zl:parse-number "   123") => NIL and 0

(zl:parse-number "-123") => -123 and 4

(zl:parse-number "25.3") => 25 and 2

(zl:parse-number "$$$123" 3 4) => 1 and 4

(zl:parse-number "123$$$" 0 nil nil nil) => 123 and 3

(zl:parse-number "123$$$" 0 nil nil t) => NIL and 0�

The Common Lisp equivalent of zl:parse-number is parse-integer.

For a table of related items: See the section "String Access and Information". 

� pathname Type Specifier

pathname is the type specifier symbol for the predefined Lisp data type of that

name.

The types pathname, hash-table, readtable, package, stream, and random-state

are pairwise disjoint.

Examples:

(typep (pathname "apple") ’pathname) => T

(type-of (pathname "bubbles")) => FS:LMFS-PATHNAME

(sys:type-arglist ’pathname) => NIL

(pathnamep *default-pathname-defaults*) => T�

See the section "Data Types and Type Specifiers". See the section "Files".

� :pathname Message

Returns the pathname that was opened to get this stream. This might not be iden-

tical to the argument to open, since missing components will have been filled in

from defaults, and the pathname might have been replaced wholesale if an error

occurred in the attempt to open the original pathname. 

� phase number Function

Returns a single-precision result, unless number is a double-precision complex

number. The phase of a number is the angle part, in radians, of its polar represen-

tation as a complex number. The phase of zero is arbitrarily defined to be zero.

phase could have been defined as:

(defun phase (number)

  (atan (imagpart number) (realpart number)))�

Thus, the phase of any non-negative non-complex number is zero, and the phase of

any non-complex negative number is ∂. Complex values of number can result in

other values in the range of -∂ to ∂.

See the function abs.
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For a table of related items: See the section "Trigonometric and Related

Functions". 

� pi Constant

The value of constant pi is the best possible approximation to π in double floating-

point format.

To obtain an approximation to π in some other precision, use (float pi x) where x

is a floating-point number of the desired precision; or use (coerce pi type) where

type is the name of a valid floating-point precision type.

Note that in CLOE, pi has single-float precision. Examples:

�

pi => 3.141592653589793d0

�

(float pi 1.0) => 3.1415927

(float pi 1.0L0)  => 3.141592653589793d0

(coerce pi ’single-float) => 3.1415927�

� pkg-add-relative-name from-pkg name to-pkg Function

Adds a relative name named name, a string or a symbol, that refers to to-pkg.

From now on, qualified names using name as a prefix, when the current package

is from-package or a package that uses from-pkg, refer to to-pkg.

from-pkg and to-pkg can be packages or names of packages. 

It is an error if from-pkg already defines name as a relative name for a package

different from to-pkg.

See the section "Interpackage Relations".

� zl:pkg-bind pkg body... Macro

Evaluates the forms of the body with the variable *package* bound to the package

named by pkg. Returns the values of the last form. pkg can be a package or a

package name.

Example:

(zl:pkg-bind "zwei"

  (read-from-string function-name))�

The difference between zl:pkg-bind and a simple let of the variable *package* is

that zl:pkg-bind ensures that the new value for *package* is actually a package;

it coerces package names (strings or symbols) into actual package objects. 

� pkg-delete-relative-name from-pkg name &optional to-pkg Function
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If from-pkg defines name as a relative name, it is removed. from-pkg can be a

package or the name of a package. name can be a symbol or a string. It is not an

error if from-pkg does not define name as a relative name.

See the section "Interpackage Relations". 

� pkg-find-package thing &optional (create-p ’:error) relative-to syntax Function

Tries to interpret thing as a package. Most of the functions whose descriptions say

"... can be either a package or the name of a package" call pkg-find-package to

interpret their package argument.

If thing is a package, pkg-find-package returns it.

If thing is a symbol or a string, it is interpreted as the name of a package. If rela-

tive-to is specified and non-nil, then it must be a package or the name of a pack-

age. If relative-to or one of the packages it uses has a relative name of thing, the

package named by that relative name is used. If the relative name search fails, or

if no relative name search is called for (that is, relative-to is nil, which is the de-

fault), then if a package with a primary name or nickname of thing exists it is re-

turned.

If thing is a list, it is presumed to have come from a file attribute line. pkg-find-

package is done on the car of the list. If that fails, a new package is created with

that name, according to the specifications in the rest of the list. See the section

"Specifying Packages in Programs".

If no package is found, the create-p argument controls what happens. Note that

this can only happen if thing is a symbol or a string. The possible values for cre-

ate-p are:

:error or nil A sys:package-not-found error is signalled. See the flavor

sys:package-not-found. The error can be continued by defin-

ing the package manually, creating it automatically with de-

fault attributes, or using a different package name instead.

:error is the default. nil is accepted as a synonym for :error

for backwards compatibility.

:find Just returns nil.

:ask Asks the user whether to create it. Replying No to the :ask

query is the same as :error, a sys:package-not-found error is

signalled.

t Creates a package with the specified name with attributes de-

termined by relative-to and syntax. If relative-to and syntax are

omitted, the new package inherits from global but not from

any other packages.�

relative-to is a package object, or a string or symbol that names a package object

syntax is a Lisp syntax object, obtained by using si:lisp-syntax-from-keyword. See

the function si:lisp-syntax-from-keyword.
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(pkg-find-package "my-package" t "cl-user"

                  (si:lisp-syntax-from-keyword :common-lisp))�

The package name search is independent of alphabetic case. However, it is not

considered good style to have two distinct packages whose names differ only in al-

phabetic case. 

� zl:pkg-global-package Variable

The global package. 

� zl:pkg-goto &optional pkg globally Function

pkg can be a package or the name of a package. pkg is made the current package;

in other words, the variable *package* is set to the package named by pkg.

zl:pkg-goto can be useful to "put the keyboard inside" a package when you are de-

bugging.

pkg defaults to the user package.

If globally is specified non-nil, *package* is set with zl:setq-globally instead of

setq. This is useful mainly in an init file, where you want to change the default

package for user interaction, and a simple setq of *package* does not work be-

cause it is bound by load when it loads the init file.

*package* is equivalent to zl:package. 

� sys:pkg-keyword-package Variable

The keyword package. 

� pkg-kill package Function

Kills package by removing it from all package system data structures. The name

and nicknames of package cease to be recognized package names. If package is

used by other packages, it is un-used, causing its external symbols to stop being

accessible to those packages. If other packages have relative names for package,

the names are deleted.

Any symbols in package still exist and their home package is not changed. If this

is undesirable, evaluate (zl:mapatoms #’zl:remob package nil) first.

package can be a package or the name of a package. 

� zl:pkg-name package Function

Returns the (primary) name of package as a string. package should be a package

object. However, zl:pkg-name is a structure-accessing function and does not check

that its argument is a package object, only that it is some kind of an array with a

leader. If the argument is not a package object, the results are unpredictable.
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The Common Lisp equivalent of zl:pkg-name is package-name. package-name

does check that its argument is a package object. See the function package-name.)

See the section "Mapping Between Names and Packages".

� zl:pkg-system-package Variable

The system package. 

� plane-aref plane &rest point Function

Returns the contents of a specified element of a plane. plane-aref takes the sub-

scripts as arguments. setf of plane-aref is allowed.

For a table of related items, see the section "Operations on Planes". 

� zl:plane-aset datum plane &rest point Function

Stores datum into the specified element of a plane, extending it if necessary, and

returns datum. zl:plane-aset differs from zl:plane-store in the way it takes its ar-

guments; zl:plane-aset takes the subscripts as arguments, while zl:plane-store

takes a list of subscripts.

setf of plane-aref is preferred. 

� plane-default plane Function

Returns the contents of the infinite number of plane elements that are not actual-

ly stored.

For a table of related items, see the section "Operations on Planes". 

� plane-extension plane Function

Returns the amount to extend the plane by in any direction when zl:plane-store is

done outside of the currently stored portion.

For a table of related items, see the section "Operations on Planes". 

� zl:plane-origin plane Function

Returns a list of numbers, giving the lowest coordinate values actually stored. 

� zl:plane-ref plane point Function

Returns the contents of a specified element of a plane. It differs from plane-aref

in the way that it takes its arguments; plane-aref takes the subscripts as argu-

ments, while zl:plane-ref takes a list of subscripts. 
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� zl:plane-store datum plane point Function

Stores datum into the specified element of a plane, extending it if necessary, and

returns datum. zl:plane-store differs from zl:plane-aset in the way it takes its ar-

guments; zl:plane-aset takes the subscripts as arguments, while zl:plane-store

takes a list of subscripts. 

� zl:plist symbol Function

Returns the list that represents the property list of symbol. Note that this is not

the property list itself; you cannot do get on it.

The Common Lisp equivalent of this function is symbol-plist. See the section

"Functions Relating to the Property List of a Symbol".

� zl:plus &rest args Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which

is the identity for this operation.

The following functions are synonyms of zl:plus:

+

zl:+$�

� plusp number Function

Returns t if its argument is a positive number, strictly greater than zero. Other-

wise it returns nil. If number is not a noncomplex number, plusp causes an error.

(plusp 1.0) => t

(plusp 0) => nil

(plusp -3) => nil

(plusp least-negative-single-float) => nil

(plusp least-positive-single-float) => t�

For a table of related items, see the section "Numeric Property-checking Predi-

cates".

� pop list Function

Returns the car of the contents of list, and as a side effect, the cdr of contents is

stored back into list. The form list can be any form acceptable as a generalized

variable to setf. If list is viewed as a push-down stack, pop can be thought of as

popping an element from the top of the stack and returning it. For example:

(setq stack ’(a b c)) => (A B C)

�

(pop stack) => A
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�

stack => (B C)�

For a table of related items: See the section "Functions for Extracting from Lists".

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:pop list &optional dest Function

Returns the car of the contents of list, and as a side effect, the cdr of contents is

stored back into list. The form list can be any form acceptable as a generalized

variable to setf. If list is viewed as a push-down stack, pop can be thought of as

popping an element from the top of the stack and returning it. For example:

(setq stack ’(a b c)) => (A B C)

�

(pop stack) => A

�

stack => (B C)�

For a table of related items: See the section "Functions for Extracting from Lists".

For a table of related items: See the section "Functions for Modifying Lists". 

The caveat that applies to incf also applies to zl:pop as well: zl:pop does not eval-

uate any part of the ref more than once.

� position item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start

0) :end Function

If sequence contains an element satisfying the predicate specified by the :test key-

word, position returns the index within the sequence of the leftmost such element

as a non-negative integer; otherwise nil is returned. 

item is matched against the elements specified by the test keyword. The item can

be any Symbolics Common Lisp object but must be a suitable element for the se-

quence.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(position 1 #(3 2 1 2) :test #’eq) => 2�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.
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For example:

(position ’c #((1 a) (2 b) (3 c)) :key #’second) => 2�

If the value of the :from-end argument is non-nil, the result is the index of the

rightmost element that satisfies the predicate, however, the index is still computed

from the left-hand end of the sequence.

For example:

(position 3 #(2 2 3 4 4 3) :from-end ’non-nil) => 5

(position 3 #(2 2 3 4 4 3) :from-end nil) => 2�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence). 

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence). If :end is unspecified or nil,

the length sequence is used.

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(position ’a #(b b a b b)) => 2

(position ’a #(b b a b b)) => 2

(position 2 #(2 3 3 2 3) :start 2) => 3

(position 3 #(2 1 1 1 2) :start 1 :end 4) => NIL

(setq vector-1 (vector ’foo ’bar ’baz ’boz)

      vector-2 (vector 3 2 4 5 1 7 6))

(replace vector-1 vector-2 :start2 (position 4 vector-2))

 => #(4 5 1 7)�

For a table of related items: See the section "Searching for Sequence Items".

� position-if predicate sequence &key :key :from-end (:start 0) :end Function

If sequence contains an element satisfying predicate, then position returns the in-

dex within the sequence of the leftmost such element as a non-negative integer;

otherwise nil is returned. 

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:
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(position-if #’zerop #((1 a)(0 b)(3 c)) :key #’car) 

 => 1�

If the value of the :from-end argument is non-nil, then the result is the index of

the rightmost element that satisfies the predicate, however, the index is still com-

puted from the left-hand end of the sequence.

For example:

(position-if #’numberp #(1 a b c 3) :from-end ’non-nil) => 4

�

(position-if #’numberp #(a 1 b c 3) :from-end nil) => 1�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(position-if #’numberp  #(2 a b c 3) :start 2) => 4

(position-if #’numberp #(2 a b c 2) :start 1 :end 4) => NIL

�

(setq text "It was the height, of folly; Was it not?")

(setq pos (position-if #’upper-case-p text :start 1)) => 29

(setf (elt text pos) (char-downcase (elt text pos))) => #\w

text => "It was the height, of folly; was it not?" �

For a table of related items: See the section "Searching for Sequence Items".

� position-if-not predicate sequence &key :key :from-end (:start 0) :end Function

If sequence contains an element that does not satisfy predicate, position returns

the index within the sequence of the leftmost such element as a non-negative in-

teger; otherwise nil is returned.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:



Page 1329

(position-if-not #’zerop #((1 a)(0 b)(3 c)) :key #’car) 

 => 0�

If the value of the :from-end argument is non-nil, the result is the index of the

rightmost element that satisfies the predicate, however, the index is still computed

from the left-hand end of the sequence.

For example:

(position-if-not #’numberp #(1 a b c 3) :from-end ’non-nil)  => 3

(position-if-not #’numberp #(a 1 b c 3) :from-end nil) => 0�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(position-if-not #’numberp  #(2 a b c 3) :start 2) => 2

(position-if-not #’numberp #(a 1 2 3 a) :start 1 :end 4) => NIL

�

(setq text "It was the height, of folly; was it not?")

�

(setq pos (position-if-not

            #’(lambda(x)(or (alpha-char-p x)(char= x #\Space))) text))

�

(replace text text :start1 pos :start2 (+ pos 1))

�

 => "It was the height of folly; was it not??"�

For a table of related items: See the section "Searching for Sequence Items".

� pprint object &optional output-stream Function

Writes the printed representation of object to the output-stream using the pretty

printer. The printed representation is preceded by a newline and escape characters

are used as appropriate. pprint returns no values. For example:

(pprint "A simple string") => 

"A simple string"�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

defaults to *terminal-io*.
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(PPRINT (LOOP FOR I FROM 1 TO 5 COLLECT

  (LOOP FOR I FROM 1 TO 10 COLLECT #\X)))

might print something like

((#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X)

 (#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X)

 (#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X)

 (#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X)

 (#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X))�

� prin1 Variable

The value of this variable is normally nil. If it is non-nil, then the read-eval-print

loop uses its value instead of the definition of prin1 to print the values returned

by functions. This hook lets you control how things are printed by all read-eval-

print loops  the Lisp top level and any utility programs that include a read-eval-

print loop. It does not affect output from programs that call the prin1 function or

any of its relatives such as print and format; to do that, you need more informa-

tion on customizing the printer. See the section "Output Functions". If you set

prin1 to a new function, remember that the read-eval-print loop expects the func-

tion to print the value but not to output a Return character or any other delim-

iters. 

� prin1 object &optional output-stream Function

Outputs the printed representation of object to stream, with slashification. Roughly

speaking, the output from prin1 is suitable for input to the function zl:read. prin1

returns object.

output-stream, if unspecified or nil, defaults to *standard-input*, and if t, defaults

to *terminal-io*.

See the section "What the Printer Produces".

For example:

(prin1 "A simple string") => "A simple string"

"A simple string"�

 (prin1 ’foo)  prints FOO

 (prin1 "foo") prints "foo"

 (prin1 #\c)   prints #\c�

� zl:prin1-then-space object &optional output-stream Function

Like prin1 except that output is followed by a space. zl:prin1-then-space returns

object. For example:

(zl:prin1-then-space "A simple string") => "A simple string"

 "A simple string"�
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� prin1-to-string object Function

The object is printed as if by prin1, and the characters that would be output are

made into a string, which is returned. For example:

(prin1-to-string ’|red|) => "\"|red|\""�

(prin1-to-string #\A)

=> "#\A"

�

(let ((*print-escape* t))

  (list (prin1-to-string #\A)

(progn (setq *print-escape* nil) (prin1-to-string #\A))))

=> ("#\\A" "#\\A")�

� princ object &optional output-stream Function

Like prin1 except that the output is not slashified. A symbol is printed as simply

the characters of its print name, a string is printed without surrounding double

quotes, and so on. The general rule is that output from princ is intended to look

good to people, while output from prin1 is intended to be acceptable to the func-

tion read. princ returns object.

(princ "A simple string") => A simple string

"A simple string"�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

is *terminal-io*.

 (princ ’foo)  prints FOO

 (princ "foo") prints foo

 (princ #\c)   prints c�

� princ-to-string object Function

The object is printed as if by princ, and the characters that would be output are

made into a string, which is returned. For example:

(princ-to-string ’|red|) => "|red|"�

(let ((*print-escape* t))

  (list (princ-to-string #\A)

(progn (setq *print-escape* nil) (princ-to-string #\A))))

=> ("A" "A")�

� zl:prinlength Variable

Can be set to the maximum number of list elements to be printed before the print-

er just prints "...". If it is nil, which it is initially, a list of any length can be

printed. Otherwise, the value of zl:prinlength must be an integer. This variable is

superseded by *print-length*. 
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� zl:prinlevel Variable

Can be set to the maximum number of nested lists to be printed before the printer

just prints "**". If it is nil, which it is initially, any number of nested lists can be

printed. Otherwise, the value of zl:prinlevel must be an integer. This variable is

superseded by *print-level*. 

� print object &optional output-stream Function

Like prin1 except that output is preceded by a Newline and followed by a space.

print returns object. For example:

(print "A simple string") => 

"A simple string"

 "A simple string"�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

defaults to *terminal-io*.

(PRINT (LOOP FOR I FROM 1 TO 5 COLLECT

 (LOOP FOR I FROM 1 TO 10 COLLECT #\X)))

would print something like

((#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X) (#\X #\X #\X #\X #\X

#\X #\X #\X #\X #\X) (#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X)

(#\X #\X #\X #\X #\X #\X #\X #\X #\X #\X) (#\X #\X #\X #\X #\X

#\X #\X #\X #\X #\X))

�

(PROGN (PRIN1 ’A) (PRIN1 ’B) (PRIN1 ’C)

       (PRINT ’D) (PRINT ’E) (PRINT ’F))

prints

ABC

D

E

F�

� *print-abbreviate-quote* Variable

Provides a way to print quoted forms in their short form. It is incorporated into

*print-pretty*, so the value of *print-pretty* must be nil in order for *print-

abbreviate-quote* to have any effect.

Examples:

(let ((*print-abbreviate-quote* nil)

      (*print-pretty* nil))

(print ’(quote foo)) nil) => (QUOTE FOO) NIL
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�

(let ((*print-abbreviate-quote* t)

      (*print-pretty* nil))

(print ’(quote foo)) nil) => ’FOO NIL

�

(let ((*print-abbreviate-quote* t)

      (*print-pretty* nil))

(print ’(function foo)) nil) => #’FOO NIL

�

(let ((*print-abbreviate-quote* t)

      (*print-pretty* nil))

(print ’‘(foo ,@bar ,baz)) nil)

  => ‘(FOO ,@BAR ,BAZ) NIL�

� *print-array* Variable

A boolean which controls whether the contents of arrays other than strings are

printed. If the value of *print-array* is nil, the array’s structure name is printed

in a concise form, such as #<ART-Q-4-2 270017201>, that identifies the array and

gives the dimensions. If the value is t, non-string arrays are printed using #(, #*,

or #nA syntax.

This variable replaces si:prinarray, which is obsolete.

(let ((*print-array* t)

      (foo (vector 1 2 3 4 5)))

  (print foo)

  (setq *print-array* nil)

  (print foo)

  nil)

�

prints:

#(1 2 3 4 5) 

#<ART-Q-5 104311373> �

� *print-array-length* Variable

Controls the number of objects in the array that will be printed. Its value can be

either nil (the default), or any positive integer up to 231-1.

The entire array prints if 

• The value of *print-array-length* is nil

• The value of *print-array-length* is equal to or greater than the length of the

array to be printed�
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This variable is dependent on the value of the variable *print-array*. If the value

of *print-array* is nil, the array’s structure name (which includes the array’s

length) is printed, no matter what the value of *print-array-length* is. The ar-

ray’s structure name is also printed when the array is longer than the integer val-

ue of *print-array-length*.

Examples:

(setq array (make-array ’(4 2) :initial-contents

’((a b)

(1 2)

("foo" "bar")

(#\a #\b))))

  => #2A((A B) (1 2) ("foo" "bar") (#\a #\b))

�

(let ((*print-array-length* nil))

     (print array) nil)

  => #2A((A B) (1 2) ("foo" "bar") (#\a #\b)) NIL

�

(let ((*print-array-length* 2)) 

     (print array) nil)

  => #<ART-Q-4-2 10004306> NIL

�

(let ((*print-array-length* 8)) 

     (print array) nil)

 => #2A((A B) (1 2) ("foo" "bar") (#\a #\b)) NIL�

� *print-base* Variable

The value of this variable determines the radix in which the printer prints ra-

tional numbers (integers and ratios).

*print-base* can have any integer value from 2 to 36, inclusive; its default value

is 10 (decimal radix). For values above 10, letters of the alphabet are used to rep-

resent digits above 9.

If no radix specifier is set (see *print-radix*), integers in base ten are printed

without a trailing decimal point.

If the value of *print-base* is a symbol that has a si:princ-function property

(such as :roman or :english), the value of the property is applied to two argu-

ments: 

• - of the number to be printed

• the stream to which to print it

This allows output in roman numerals and the like.

Examples:
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(setq *print-base* ’:roman)

(* 5 5) ==> XXV

�

(setq *print-base* ’:english)

(* 5 5) ==> twenty-five

�

(let ((*print-base* 8))

  (print (read-from-string "10"))

  nil)

�

prints: 12�

� *print-bit-vector-length* Variable

Controls the number of objects in the bit vector that will be printed. Its value can

be either nil (the default), or any positive integer up to 231-1.

When the value of *print-bit-vector-length* is nil, *print-bit-vector-length* inter-

acts with *print-array*. Here is a table that shows the interactions:

*print-bit- *print-array* Result

vector-length*

t * always prints the bit vector

integer * prints the bit vector if the value of

*print-bit-vector-length* is equal

to or greater than the length of the

bit vector to be printed 

nil t always prints the bit vector

nil nil never prints the bit vector

* means that the value of this variable does not affect the result

�

Examples:

(setq bit-vector (make-array 5 :element-type ’bit

:initial-contents ’(1 0 0 1 0))) => #*10010

�

(let ((*print-bit-vector-length* 2)

      (*print-array* t)) 

     (print bit-vector) nil)

  => #<ART-1B-5 10052423> NIL
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�

(let ((*print-bit-vector-length* 5)

      (*print-array* t)) 

     (print bit-vector) nil)

  => #*10010 NIL�

� *print-case* Variable

Controls the case in which to print any uppercase characters in the names of sym-

bols when vertical-bar syntax is not used. The zl:read function normally converts

lowercase characters appearing in symbol names to their corresponding uppercase

characters. This means that normally internal print names contain only uppercase

letters. However, users might prefer to see output using lowercase or mixed case

letters.

Lowercase characters in the internal print name are always printed in lowercase

and are preceded by a single escape character or enclosed by multiple escape

characters. Uppercase characters in the internal print name are printed in upper-

case, lowercase, or in mixed case so as to capitalize words, according to the value

of *print-case*. The convention for what constitutes a "word" is the same as for

the function string-capitalize.

The value of *print-case* must be one of the keywords :upcase (the default),

:downcase, or :capitalize. This variable replaces si:princase, which is obsolete.

(let ((*print-case* :capitalize))

  (print (read-from-string "foo"))

  nil)

�

prints: Foo�

� *print-circle* Variable

Controls whether or not the printer tries to detect cycles in the structure to be

printed. When the value of *print-circle* is nil (the default), the printing process

proceeds by recursive descent. Attempts to print a circular structure can lead to

looping behavior and failure to terminate.

When the value is non-nil, the printer tries to detect cycles in the structure to be

printed, and uses #n= and #n# syntax to indicate the circularities.

(let* ((*print-circle* t)

       (foo (list 1 2 3))

       (foo (rplacd (cddr foo) foo)))

  (princ foo) nil)

�

prints: #1=(3 1 2 . #1)�
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� sys:print-cl-structure object stream depth Function

Intended for use in a defstruct :print-function option. It prints the structure ob-

ject to the specified stream using the standard #S syntax. It enables a print func-

tion to respect the variable *print-escape*.

(defstruct (foo :print-function 

(lambda (object stream depth)

  (if *print-escape*

      (sys:print-cl-structure object stream depth)

      other-printing-strategy)))

  a b c)�

For a table of related items: See the section "Functions Related to defstruct Struc-

tures". 

� *print-escape* Variable

Controls whether or not the printer outputs escape characters. When the value of

*print-escape* is nil, escape characters are not output when an expression is

printed. In particular, a symbol is printed by simply printing the characters of its

print name. The function princ effectively binds *print-escape* to nil.

When the value is t (the default), an attempt is made to print an expression in

such a way that it can be read again to produce an zl:equal structure. The func-

tion prin1 effectively binds *print-escape* to t.

The following example will print foo first with, then without quotation marks.

(let ((*print-escape* t))

  (write "foo")

  (terpri)

  (setq *print-escape* nil)

  (write "foo")

  (terpri)

  nil)

�

"foo"

foo  �

� *print-exact-float-value* Variable

When set to t, prints the exact number represented by a floating-point number,

not the rounded version, which is normally printed by the printer. The default is

nil.

For information on floating-point numbers: See the section "Floating-Point Num-

bers". 
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� flavor:print-flavor-compile-trace &key flavor generic newest oldest newest-first 

Function

Enables you to view information on the compilation of combined methods that have

been compiled into the run-time environment. You can supply keywords to filter

the output and control the order of the combined methods displayed: 

flavor Argument is a symbol that names a flavor of interest; all com-

pilations of combined methods for that flavor are displayed. If

the argument to flavor is nil, all flavors are displayed. 

generic Argument is a generic function or message of interest; all com-

pilations of combined methods for that generic functin are dis-

played. If the argument to generic is nil, all generic functions

are displayed. 

newest Argument is an integer greater than or equal to 1, or nil. If an

integer is given, it selects the number of compilations to dis-

play, starting from the most recent. If nil is given, all compila-

tions are displayed. The order of combined methods displayed

depends on the keyword newest-first. 

oldest Argument is an integer greater than or equal to 1, or nil. If an

integer is given, it selects the number of compilations to dis-

play, starting from the oldest. If nil is given, all compilations

are displayed. The order of combined methods displayed de-

pends on the keyword newest-first. 

newest-first Argument is either non-nil or nil. nil causes the display to be

ordered from oldest compilation to newest. A non-nil value

causes the order to be from newest to oldest. By default, com-

bined methods are displayed in oldest-first order. �

The output of this function is mouse-sensitive. When you position the mouse over

the name of a method or flavor, the menu offers several options that enable you to

request more information. Pathnames are also mouse-sensitive. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� dbg:print-frame-locals frame local-start &optional (indent 0) n-args-and-locals�

Function

Prints the names and values of the local variables of frame. local-start is the first

local slot number to print; the value returned by dbg:print-function-and-args is

often suitable for this. indent is the number of spaces to indent each line; the de-

fault is no indentation.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.
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For a table of related items: See the section "Functions for Examining Stack

Frames". 

� dbg:print-function-and-args frame &optional show-pc-p show-source-file-p show-

local-if-different�

Function

Prints the name of the function executing in frame and the names and values of

its arguments, in the same format as the Debugger uses. If show-pc-p is true, the

program counter value of the frame, relative to the beginning of the function, is

printed in octal. dbg:print-function-and-args returns the number of local slots oc-

cupied by arguments.

Caution: Use this function only within the context of the dbg:with-erring-frame

macro.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� *print-gensym* Variable

Controls whether the prefix #: is printed before symbols that have no home pack-

age. The prefix is printed if the value of *print-gensym* is non-nil. The initial

value is t.

When not nil, causes the prefix #: to be printed before symbols with no home

package.

(let ((foo (gensym))

      (*print-gensym* t))

  (print foo)

  (setq *print-gensym* nil)

  (print foo)

  nil)

�

prints:

#:G8063

G8063�

� *print-integer-length* Variable

Controls the printing of bignums. The default is to print every digit, but for very

large bignums that can take prohibitively long. Setting *print-integer-length* to

an integer, n, allows you to see the first n/2 digits and the last n/2 digits and the

magnitude of the number without printing the entire number.

(let ((*print-integer-length* 20))(print (expt 10 30))) =>
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�

#<INTEGER (31 digits) 1000000000...0000000000> 

1000000000000000000000000000000

�

� *print-length* Variable

Controls how many elements at a given level are printed. Its value can be either

nil (the default) or any positive integer up to 231-1. This variable replaces

zl:prinlength, which is obsolete.

The entire object prints if 

• The value of *print-length* is nil

• The value of *print-length* is equal to or greater than the number of of compo-

nents in any given level of the object�

If *print-length* is an integer, it indicates the maximum number of components to

be printed. If the object to be printed has components at or greater than the value

of *print-level*, then the object’s structure name is printed. 

Examples:

(setq list ’(a b (c) (d (e f) g))) => (A B (C) (D (E F) G))

�

(let ((*print-length* nil))

(print list) nil) => (A B (C) (D (E F) G)) NIL

�

(let ((*print-length* 2))

(print list) nil) => (A B ...) NIL

�

(let ((*print-length* 4))

(print list) nil) => (A B (C) (D (E F) G)) NIL�

(let (( a ’(1 (+ (+ 0 1) 2 3 4) 2 3 4 5 6 7 8))

      (*print-length* 0))

  (print a)

  (setq *print-length* 2)

  (print a)

  (setq *print-length* nil)

  (print a)

  nil)

�

prints:

(1 ...) 

(1 (+ (+ 0 1) ...) ...) 

(1 (+ (+ 0 1) 2 3 4) 2 3 4 5 6 7 8) �
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� *print-level* Variable

Controls how many levels of a nested data object will be printed. Its value can be

either nil (the default), or any positive integer up to 231-1. This variable replaces

zl:prinlevel, which is obsolete.

The entire object prints if 

• The value of *print-level* is nil

• The value of *print-level* is equal to or greater than the number of levels in

the object�

If *print-level* is an integer, it indicates the maximum level to be printed. The

object itself is level 0; its components (as for a list or vector) are level 1; and so

on. If any part the object to be printed has components at or greater than the val-

ue of *print-level*, that part of the object is printed as simply #.

Examples:

(setq list ’(a (b c) (d (e f) g))) => (A (B C) (D (E F) G))

�

(let ((*print-level* nil))

(print list) nil) => 

(A (B C) (D (E F) G)) NIL

�

(let ((*print-level* 2))

(print list) nil) => 

(A (B C) (D # G)) NIL

�

(let ((*print-level* 3))

(print list) nil) => 

(A (B C) (D (E F) G)) NIL�

(let (( a ’(setq *print-level* (+ (+ 0 1) 2)))

      (*print-level* 0))

  (print a)

  (setq *print-level* 1)

  (print a)

  (setq *print-level* nil)

  (print a)

  nil)

�

prints:

# 

(SETQ *PRINT-LEVEL* #) 

(SETQ *PRINT-LEVEL* (+ (+ 0 1) 2)) �
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� format:print-list destination element-format-string list &optional (separator-format-

string ", ") (start-line-format-string " ") (tilde-brace-options "") Function

Provides a simpler interface for the specific purpose of printing comma-separated

lists where no element from the list is broken at the end of a line.

The destination argument tells where to send the output, as with format; it can be

t, nil, a string suitable for string-nconc, or a stream. See the function string-

nconc.

element-format-string is a format control string that specifies how to print each el-

ement of list. It is used as the body of an iteration construction (as in ~{element-

format-string~}). See the section "~{str~}".

separator-format-string, which defaults to ", " (comma, space), is a string that is

placed after each element, except the last. format control directives are allowed in

this string but should not take arguments from list.

start-line, which defaults to three spaces, is a format control string that is used as

a prefix at the beginning of each line of output, except the first.

tilde-brace-options is a string inserted before the opening brace ({) of the iteration

construct. It defaults to the null string but allows you to insert a colon or at-sign.

The line width of the stream is computed in the same way as with the ~{str~}

format directive. It is not possible to override the natural line width of the

stream.

� si:print-list list prindepth slashify-p stream which-operations Function

The part of the Lisp printer that prints lists. A stream’s :print handler can call

this function, passing along its own arguments and its own which-operations, to ar-

range for a list to be printed the normal way and the stream’s :print hook to get

a chance at each of the list’s elements. 

� zl:print-notifications &optional (from 0) (to (1- (zl:length tv:notification-history)))�

Function

Reprints any notifications that have been received. The difference between notifica-

tions and sends is that sends come from other users, while notifications are asyn-

chronous messages from Genera itself. If from or to is specified, prints only part of

the notifications list.

Example: (zl:print-notifications 0 4) prints the five most recent notifications.

This is the same as the "Show Notifications Command". 

� clos:print-object object stream Generic Function

Provides a mechanism for users to control the printed representation of instances

of a class. clos:print-object is called by the print system and should not be called

by users.
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clos:print-object returns the object.

object Any Lisp object.

stream A stream (this cannot be t or nil).�

The default method uses the #<...> syntax.

Methods on clos:print-object must obey the print control special variables as fol-

lows:

• Each method must implement *print-escape* and *print-readably*. 

• The *print-pretty* and *print-abbreviate-quote* control variables can be ig-

nored by most methods other than the one for lists.

• The *print-circle* and *print-pretty-printer* control variables are handled by

the printer and can be ignored by methods.

• Each method for clos:print-object is expected to handle exactly one level of

structure, and should call write (or an equivalent function) recursively to handle

any more structural levels. If this rule is followed, then the printer takes care

of *print-level* automatically.

• Methods that produce output of indefinite length must obey *print-length*, but

most methods other than the one for lists can ignore it.

• The following control variables apply to specific types of objects and are handled

by the methods for those objects: *print-array*, *print-array-length*, *print-

base*, *print-bit-vector-length*, *print-case*, *print-exact-float-value*, *print-

gensym*, *print-integer-length*, *print-radix*, *print-string-length*, and

*print-structure-contents*�

The stream argument passed to clos:print-object is not necessarily the same as

the original stream (it might be an intermediate stream that implements part of

the printer). Therefore, methods for clos:print-object should not depend on the

identity of the stream.

� si:print-object object prindepth slashify-p stream &optional which-operations 

Function

Outputs the printed representation of object to stream, as modified by prindepth

and slashify-p. This is the guts of the Lisp printer. When a stream’s :print han-

dler calls this function, it should supply the list (:string-out) for which-operations,

to prevent itself from being called recursively. It can supply nil if it does not want

to receive :string-out messages.

Advising this function is the way to customize the behavior of all printing of Lisp

objects. See the special form advise.
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� *print-pretty* Variable

Controls the amount of whitespace output when printing an expression. When the

value of *print-pretty* is nil, only a small amount of whitespace is output. When

the value is non-nil, the output is adjusted to be more readable. Common Lisp uses

only the values t and nil. Symbolics has added the values :code, :data, :plist and

:alist.

The permissible values are: 

Value Effect

nil Disables pretty printing

t Prints in the default format (the default is :code)

:code Prints lists as if they were Lisp code (SCL extension)

:data Prints lists with a format based on the first element (SCL ex-

tension)

:plist Prints lists as property lists, with two elements per line (SCL

extension)

:alist Prints lists as association lists, giving a dotted cdr for each

sublist, even when there is a proper list (SCL extension)�

Examples:

(write ’(defun defvar defparameter defflavor) :pretty t)

  => (DEFUN DEFVAR DEFPARAMETER

      DEFFLAVOR)

�

(write ’(defun defvar defparameter defflavor) :pretty :data)

  => (DEFUN DEFVAR DEFPARAMETER DEFFLAVOR)

�

(write ’((defun function)

 (defvar variable)

 (defflavor flavor))

       :pretty t)

  => ((DEFUN FUNCTION) (DEFVAR VARIABLE) (DEFFLAVOR FLAVOR))

�

(write ’((defun function)

 (defvar variable)

 (defflavor flavor))

       :pretty :alist)

  => ((DEFUN . (FUNCTION))

      (DEFVAR . (VARIABLE))

      (DEFFLAVOR . (FLAVOR)))�

� *print-pretty-printer* Variable
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Allows wholesale replacement of the pretty printer used by Common Lisp. Its value

is a function, which will be called with three arguments: the object to be printed,

the value of *pretty-printer*, and the output stream. The default is the Common

Lisp pretty printer. 

� *print-radix* Variable

If set to t, rational numbers are printed with a radix specifier indicating what

radix the printer is using. (The current radix is controlled by the value of variable

*print-base*).

The default value of *print-radix* is nil.

The radix specifier has the general format

#nnrddddd�

where n is an unsigned decimal integer in the range 2 - 36 (inclusive) represent-

ing the radix, and ddddd denotes the number in radix n.

When the value of *print-base* is 2, 8, or 16 (that is, binary, octal, or hexadeci-

mal) the radix specifier is printed in the abbreviated form, #b, #o, #x, using lower

case letters.

For printing integers, base ten is indicated by a trailing decimal instead of a lead-

ing radix specifier; for ratios, however, the specifier #10r is printed.

For example, the number ten (10) in radix elevenis 

#11rA

where the 11 indicates the radix, and the A indicates the digit whose base ten

equivalent is the number 10. The lower case letters #b, #o, #x may be used as the

radix specifier for a *print-base* of 2, 8, or 16. For example, 

#o10 = 8

where integer radix 10 is indicated by the decimal point.

(let ((*print-base* 8)

      (*print-radix* t))

  (print (read-from-string "10"))

  nil)

�

prints: #o12�

� *print-readably* Variable

A boolean that signals an error if the object to be printed is not in a form that

the reader will accept. This is useful for objects such as arrays and flavor in-

stances that are not forms the reader accepts.

(defflavor food () ()) => FOOD
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�

(setq apple (make-instance ’food)) => #<FOOD 10074402>

�

(let ((*print-readably* nil)) (print apple) nil) => 

#<FOOD 10074402> NIL

�

(let ((*print-readably* t)) (print apple) nil)

Rebinding the following specials;

use Show Standard Value Warnings for details:

  *PRINT-PRETTY*, *PRINT-READABLY*, and GPRINT:*INSPECTING*

�

Error: Can’t print #<FOOD 10074402> readably

�

SYS:PRINT-NOT-READABLE:

   Arg 0 (SI:OBJECT): #<FOOD 43123626>

s-A, �:   Proceed without any special action

s-B, �:    Return to Lisp Top Level in Dynamic Lisp Listener 1

→ Abort Abort

Return to Lisp Top Level in Dynamic Lisp Listener 1

Back to Lisp Top Level in Dynamic Lisp Listener 1.

�

� si:print-readably Variable

A boolean that signals an error if the object to be printed is not in a form that

the reader will accept. The *print-readably* variable is preferred; it is the mod-

ern equivalent of this variable.

When si:print-readably is bound to t, the printer signals an error if there is an

attempt to print an object that cannot be interpreted by zl:read. When the printer

sends a :print-self or a :print message, it assumes that this error checking is done

for it. Thus it is possible for these messages not to signal an error, if they see fit.

� sys:print-self object stream print-depth slashify-p Generic Function

The object should output its printed representation to the stream. print-depth is the

current depth in list-structure (for comparison with *print-level*). slashify-p indi-

cates whether slashification is enabled (prin1 versus princ). The printer calls this

generic function when it encounters an instance.

The sys:print-self method of flavor:vanilla ignores the last two arguments and

prints something like #<flavor-name octal-address>. The flavor-name tells you the

type of object, and octal-address lets you tell different objects apart (provided the

garbage collector does not move them). For example:

#<CELL 1160762135>�

The vast majority of objects that define sys:print-self methods have much in com-

mon. A macro is provided for convenience, so that users do not have to write out

that repetitious code: See the macro sys:printing-random-object.
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The compatible message for sys:print-self is :print-self. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� *print-string-length* Variable

Controls the number of string characters that will print. Its value can be either

nil (the default), or any positive integer up to 231-1.

The entire string prints if 

• The value of *print-string-length* is nil

• The value of *print-string-length* is equal to or greater than the length of the

string to be printed�

Only the structure name (which includes the string’s length) is printed when the

string is longer than the integer value of *print-string-length*.

Examples:

�

(let ((*print-string-length* nil))

     (print "This is a very long string") nil)

  => "This is a very long string" NIL

�

(let ((*print-string-length* 4)) 

     (print "This is a very long string") nil)

  => #<ART-STRING-26 36450275> NIL

�

(let ((*print-string-length* 4))

     (print "chip") nil) => "chip" NIL

�

� *print-structure-contents* Variable

Controls how structures are printed. The default is t, which uses the #S conven-

tion, printing the structure with all its slots filled in.

For example:

(defstruct (cat :name ’Endor

        :age 17

        :sex nil

                :color ’black))
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�

#S(CAT :NAME ENDOR

       :AGE 17

       :SEX NIL

       :COLOR BLACK)

�

If *print-structure-contents* is set to nil, the structure just prints as using the

#< representation. For example:

#<CAT 40124014>

� sys:printing-random-object (object stream &rest either of: :no-pointer or :typep)

&body body (object stream . keywords) body... Macro

The vast majority of objects that define sys:print-self methods have much in com-

mon. See the generic function sys:print-self.

This macro is provided for convenience, so that users do not have to write out that

repetitious code. It is also the preferred interface to *print-readably*. With no

keywords, sys:printing-random-object checks the value of *print-readably* and

signals an error if it is not nil. It then prints a number sign and a less-than sign,

evaluates the forms in body, then prints a space, the octal machine address of the

object, and a greater-than sign. A typical use of this macro might look like:

(sys:printing-random-object (ship stream)

  (princ (typep ship) stream)

  (tyo #\space stream)

  (prin1 (ship-name ship) stream))�

This might print #<ship "ralph" 23655126>.

The following keywords can be used to modify the behavior of sys:printing-

random-object:

:no-pointer This suppresses printing of the octal address of the object.

:typep This prints the result of (typep object) after the less-than sign.

In the example above, this option could have been used instead

of the first two forms in the body.�

� sys:proceed condition proceed-type &rest args Generic Function

Causes a program to continue execution after an error condition has been sig-

nalled.

To proceed from a condition, a handler function calls the sys:proceed generic

function with one or more arguments. The first argument is the condition object.

The second argument is the proceed type, and any remaining arguments are the

arguments for that proceed type.
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The condition flavor defined by the program signalling the error defines the pro-

ceed types that are available to sys:proceed for a particular condition. You can al-

so define a method that creates a new proceed type.

The way to define a method that creates a new proceed type is somewhat unusual

in that it uses a style of method combination called :case combination. Here’s an

example from the system:

(defmethod (sys:proceed sys:subscript-out-of-bounds :new-subscript)

   (&optional (sub (prompt-and-read :number

    "Subscript to use instead: ")))

  "Supply a different subscript."

  (values :new-subscript sub))�

This code fragment creates a proceed type called :new-subscript for the condition

flavor sys:subscript-out-of-bounds. New proceed types are always defined by

adding a sys:proceed method to the condition flavor, which is defined (in the

defflavor for condition) to be combined using the :case method combination. The

method must always return values rather than throwing.

In :case method combination, the first argument to the sys:proceed function is

like a subsidiary message name, causing a further dispatch just as the original

message name caused a primary dispatch. The method from the example is invoked

whenever you call the sys:proceed generic function with a condition object:

(sys:proceed  obj :new-subscript new-sub)�

The variables in the lambda list for the method come from the rest of the argu-

ments of the send.

All of the arguments to a sys:proceed method must be optional arguments. The

sys:proceed method should provide default values for all its arguments. One use-

ful way of doing this is to prompt a user for the arguments using the *query-io*

stream. The example uses prompt-and-read. If all the optional arguments were

supplied, the sys:proceed method must not do any input or output using *query-

io*.

This facility has been defined assuming that condition-bind handlers would supply

all the arguments for the method themselves. The Debugger runs this method and

does not supply arguments, relying on the method to prompt the user for the ar-

guments.

As in the example, the method should have a documentation string as the first

form in its body. The dbg:document-proceed-type generic function to a proceed-

able condition object displays the string. This string is used by the Debugger as a

prompt to describe the proceed type. For example, the subscript example might re-

sult in the following Debugger prompt:

s-A: Supply a different subscript�

The string should be phrased as a one-line description of the effects of proceeding

from the condition. It should not have any leading or trailing newlines. (You can

use the messages that the Debugger prints out to describe the effects of the s-

commands as models if you are interested in stylistic consistency.)



Page 1350

Sometimes a simple fixed string is not adequate. You can provide a piece of Lisp

code to compute the documentation text at run time by providing your own method

for sys:document-proceed-type. This method definition takes the following form:

(defmethod (dbg:document-proceed-type condition-flavor proceed-type)

           (stream)

  body...)�

The body of the method should print documentation for proceed-type of condition-

flavor onto stream.

The body of the sys:proceed method can do anything it wants. In general, it tries

to repair the state of things so that execution can proceed past the point at which

the condition was signalled. It can have side-effects on the state of the environ-

ment, it can return values so that the function that called signal can try to fix

things up, or it can do both. Its operation is invisible to the handler; the signaller

is free to divide the work between the function that calls signal and the

sys:proceed method as it sees fit. When the sys:proceed method returns, signal

returns all of those values to its caller. That caller can examine them and take ac-

tion accordingly.

The meaning of these returned values is strictly a matter of convention between

the sys:proceed method and the function calling signal. It is completely internal

to the signaller and invisible to the handler. By convention, the first value is often

the name of a proceed type. See the section "Signallers".

A sys:proceed method can return a first value of nil if it declines to proceed from

the condition. If a nil returned by a sys:proceed method becomes the return value

for a condition-bind handler, this signifies that the handler has declined to handle

the condition, and the condition continues to be signalled. When the sys:proceed

function is called by the Debugger, the Debugger prints a message saying that the

condition was not proceeded, and it returns to its command level. This might be

used by an interactive sys:proceed method that gives the user the opportunity ei-

ther to proceed or to abort; if the user aborts, the method returns nil. Returning

nil from a sys:proceed method should not be used as a substitute for detecting

earlier (such as when the condition object is created) that the proceed type is inap-

propriate for that condition. 

Condition objects created with error instead of signal do not have any proceed

types.

See the section "Proceeding".

The compatible message for sys:proceed is:

:proceed 

� dbg:proceed-type-p condition proceed-type Generic Function

Returns t if proceed-type is one of the valid proceed types of this condition object.

Otherwise, returns nil.

The compatible message for dbg:proceed-type-p is:
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:proceed-type-p

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� dbg:proceed-types condition Generic Function

Returns a list of all the valid proceed types for this condition.

The compatible message for dbg:proceed-types is:

:proceed-types

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� (flavor:method :proceed-types condition) Init Option

Defines the set of proceed types to be handled by this instance. proceed-types is a

list of proceed types (symbols); it must be a subset of the set of proceed types un-

derstood by this flavor. If this option is omitted, the instance is able to handle all

of the proceed types understood by this flavor in general, but by passing this op-

tion explicitly, a subset of acceptable proceed types can be established. This is

used by signal-proceed-case.

If only one way to proceed exists, proceed-types can be a single symbol instead of a

list.

If you pass a symbol that is not an understood proceed type, it is ignored. It does

not signal an error because the proceed type might become understood later when

a new defmethod is evaluated; if not, the problem is caught later.

The order in which the proceed types occur in the list controls the order in which

the Debugger displays them in its list. Sometimes you might want to select an or-

der that makes more sense for the user, although usually this is not important.

The most important thing is that the RESUME command in the Debugger is as-

signed to the first proceed type in the list.

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� dbg:*proceed-type-special-keys* Variable

The value should be an alist associating proceed types with characters. When an

error supplies any of these proceed types, the Debugger assigns that proceed type

to the specified key. For example, this is the mechanism by which the :store-new-

value proceed type is offered on the s-sh-C keystroke.

For a table of related items, see the section "Debugger Special Key Variables". 

� proclaim declaration Function
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Puts the declaration specifier declaration into effect globally.

Each declaration is a list whose car is a symbol that indicates the kind of declara-

tion and whose cdr is a list of objects to which the declaration applies.

(proclaim ’(inline my-function))�

Declarations made with proclaim are referred to as proclamations and are always

global. Any variable mentioned in a proclamation refers to the dynamic binding of

the variable and any function mentioned refers to its global function definition. A

proclamation is always in force unless overridden locally. See the macro locally.

In addition to the declaration specifiers used with declare, the declaration specifi-

er declaration can also be used with proclaim. The declaration declaration speci-

fier is a list of the symbol declaration and one or more declaration specifier sym-

bols. Any declarations that are not standard Common Lisp declarations must be

listed in a proclamation of declaration. If any declarations are not recognized by

the compiler and not so listed are encountered, an error will be signaled.

See the section "Operators for Making Declarations".

� prog vars-and-vals &body body Special Form

Provides temporary variables, sequential evaluation of forms, and a "goto" facility.

A typical prog looks like:

(prog (var1 var2 (var3 init3) var4 (var5 init5))

 tag1

     statement1

     statement2

 tag2

     statement3

     . . .

    )�

The first subform of a prog is a list of variables, each of which can optionally

have an initialization form. The first thing evaluation of a prog form does is to

evaluate all of the init forms. Then each variable that had an init form is bound to

its value, and the variables that did not have an init form are bound to nil. Exam-

ple:

(prog ((a t)  b  (c 5)  (d (car ’(zz . pp))))

  <body>

  )�

The initial value of a is t, that of b is nil, that of c is the integer 5, and that of d

is the symbol zz. The binding and initialization of the variables is done in parallel;

that is, all the initial values are computed before any of the variables are changed.

prog* is the same as prog except that this initialization is sequential rather than

parallel.

The part of a prog after the variable list is called the body. Each element of the

body is either a symbol or an integer, in which case it is called a tag, or anything

else (almost always a list), in which case it is called a statement.
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After prog binds the variables, it processes each form in its body sequentially.

Anything that is a tag is skipped over. statements are evaluated, and their returned

values discarded. If the end of the body is reached, the prog returns nil. However,

two special forms can be used in prog bodies to alter the flow of control. If (re-

turn x) is evaluated, prog stops processing its body, evaluates x, and returns the

result. If (go tag) is evaluated, prog jumps to the part of the body labelled with

the tag, where processing of the body is continued. tag is not evaluated. 

The compiler requires that go and return forms be lexically within the scope of

the prog; it is not possible for a function called from inside a prog body to return

to the prog. That is, the return or go must be inside the prog itself, not inside a

function called by the prog. 

See the special form do. That uses a body similar to prog. The do, catch, and

throw special forms are included as an attempt to encourage goto-less program-

ming style, which often leads to more readable, more easily maintained code. You

should use these forms instead of prog wherever reasonable. Moreover, since prog

is a combination of block, tagbody, and let, it is often better to use these con-

structs as needed. This is especially true in the case of macros with bodies where

the unintended inclusion of a block might overshadow the user’s use of block.

If the first subform of a prog is a non-nil symbol (rather than a variable list), it

is the name of the prog, and return-from can be used to return from it. In Zetal-

isp, see the special form zl:do-named.

Examples:

(defun t-test (choice)

  (prog classic (pep coca) ; Initialize  pep, coca to nil.

(if (equal choice "left") (go left) )

     right

(princ  "pep is it")

(terpri)

(return t)

     left

(princ "coca is it")

(terpri)

(return))) => T-TEST

(t-test "left")  => coca is it

NIL

(t-test "right") => pep is it

T�
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�

(prog (x y z) ;x, y, z are prog variables  - temporaries.

      (setq y (car w) z (cdr w))  ;w is a free variable.

   loop

   (cond ((null y) (return x))

         ((null z) (go err)))

rejoin

   (setq x (cons (cons (car y) (car z))

                 x))

   (setq y (cdr y)

         z (cdr z))

   (go loop)

err

   (break "are-you-sure?")

   (setq z y)

   (go rejoin))�

(defun factorial (x)

 "uses prog to implement an iterative factorial"

  (prog (i n)

    (if (minusp x) (error "Negative argument ~D to FACTORIAL" x))

    (setq n 1 i x)

   lp

    (if (zerop i)(return n))

    (setq n (* n i) i (- i 1))

    (go lp)))�

prog, do, and their variants are effectively constructed out of let, block, and

tagbody forms. prog could have been defined as the following macro (except for

processing of local declare, which has been omitted for clarity):

(defmacro prog (&rest x)

  (let ((block-name (and (symbolp (car x))

 (neq (car x) nil)

 (pop x)))

(variables (car x))

(tagbody (cdr x)))

    (if block-name

‘(block ,block-name

   (block nil

     (let ,variables

       (tagbody ,@tagbody))))

‘(block nil

   (let ,variables

     (tagbody ,@tagbody)))))) �

For a table of related items, see the section "Iteration Functions".

� prog* vars-and-vals &body body Special Form
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The same as prog, except that the binding and initialization of the temporary vari-

ables is done sequentially, so each one can depend on the previous ones. 

For example:

(prog* ((y z) (x (car y)))

       (return x))�

returns the car of the value of z. 

Examples:

(prog ( (x 1) (y (+ x 1)) z)

      (princ x)(princ " ")

      (princ y)(princ " ")

      (princ z)(princ " ")

      (terpri)) => Error: The variable X is unbound.

�

(prog* ( (x 1) (y (+ x 1)) z)

       (princ x)(princ " ")

       (princ y)(princ " ")

       (princ z)(princ " ")

       (terpri)) => 1 2 NIL 

NIL�

prog* is a synthesis of let*, block and tagbody. The tagbody, which is the body

of tags and statements, is executed in the context of the variable bindings specified

in the initial list argument to prog*. The specified bindings are computed sequen-

tially, and the new bindings are in effect when computing values to the right in

the binding list. This macro has an implicit block name of nil, and can be exited

by return or return-from.

The implicit tagbody allows the successive evaluation of a number of forms in a

context that permits the use of a go statement. Elements of the tagbody may be

either tags, which are integers or symbols having lexical scope and dynamic extent,

or they may be statements, which are lists. The tags are ignored except as targets

of the (go tag) statement, which transfers control to the first list following the

tag. The lists are evaluated, and prog* returns nil.

(prog* ((i 5) 

        (list (reverse *data-list*))

        (item (car list)))

  loop

    (when (or (endp list)(>= i (length *data-vector*)))

      (return t))

    (unless (= (aref *data-vector* i) item)

      (return nil))

    (setq i (+ i 1))

    (setq list (cdr list))

    (setq item (car list))

    (go loop))�

For a table of related items, see the section "Iteration Functions".
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� prog1 value &rest ignore Special Form

Similar to progn, but returns value (its first form) rather than its last. It is most

commonly used to evaluate an expression with side effects, and return a value that

must be computed before the side effects happen. 

Example:

(setq x (prog1 y (setq y x)))�

interchanges the values of the variables x and y.

Example:

(setf (aref array index) 5)

(prog1

  (aref array index)

  (incf (aref array index) 2)) => 5

�

(aref array index) => 7�

prog1 never returns multiple values. See the special form multiple-value-prog1.

See the section "Special Forms for Sequencing".

CLOE Note: prog1 is a macro in CLOE. 

� prog2 ignore value &rest ignore Special Form

Similar to progn and prog1, but returns its second form. It is included largely for

compatibility with old programs. See the section "Special Forms for Sequencing".

Example:

In the following code, message printing brackets the second form.

(prog2

  (print prompt)

  (read-and-evaluate)

  (print pause-message))

CLOE Note: prog2 is a macro in CLOE. 

� progn &body body Special Form

Evaluates the body forms in order from left to right and returns the value of the

last one. progn is the primitive control structure construct for "compound state-

ments". Although lambda-expressions, cond forms, do forms, and many other con-

trol structure forms use progn implicitly, that is, they allow multiple forms in

their bodies, there are occasions when you need to evaluate a number of forms for

their side effects and make them appear to be a single form. Example:
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(foo (cdr a)

     (progn (setq b (extract frob))

    (car b))

     (cadr b))�

Note that in some cases where only a single form is allowed, semantically equiva-

lent alternate forms accepting multiple forms are also available.

For example, the if form can be replaced by cond; thus, allowing multiple forms in

each branch. The cond form, however, still allows only one form in the test part.

The protected form in an unwind-protect and the init forms of a do or let are

other examples of single forms lacking alternate multiple forms.

(let ((ptr (car list)))

  (if (eq (car ptr) x)

    (progn

      (setf (cdr ptr) (find-value (cdr ptr)))

      (setq list ptr))

    (progn

      (setf (car ptr) x)

      (setf (cdr ptr) nil)

      (setf (cdr list) nil)))

  list)�

Here is another example involving unwind-protect.

(let ((old-indentation) (indentation stream))

  (unwind-protect

    (progn

      (incf (indentation stream) 2)

      (do-something-indented))

    (setf (indentation stream) old-indentation))�

See the section "Special Forms for Sequencing".

� progv vars vals &body body Special Form

Provides the user with extra control over binding. It binds a list of special vari-

ables to a list of values, and then evaluates some forms. The lists of special vari-

ables and values are computed quantities; this is what makes progv different from

let, prog, and do.

progv first evaluates vars and vals, and then binds each symbol to the correspond-

ing value. If too few values are supplied, the remaining symbols are bound to nil.

If too many values are supplied, the excess values are ignored.

After the symbols have been bound to the values, the body forms are evaluated,

and finally the symbols’ bindings are undone. The result returned is the value of

the last form in the body. Example:

(setq a ’foo b ’bar)
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�

(progv (list a b ’b) (list b)

  (list a b foo bar))

    => (foo nil bar nil)�

During the evaluation of the body of this progv, foo is bound to bar, bar is bound

to nil, b is bound to nil, and a retains its top-level value foo.

(setq win-list ’(*current-window* *cursor-pos*))

(progv win-list

       (list (make-window)(cursor-reset)))

  (initialize-pop-up *current-window*)

  (process-user-input))�

See the special form progw.

For other related functions, see the section "Special Forms for Sequencing". 

� progw vars-and-vals &body body Special Form

A somewhat modified version of progv; like progv, it only works for special vari-

ables. First, vars-and-vals-form is evaluated. Its value should be a list that looks

like the first subform of a let*:

  ((var1 val-form-1)

   (var2 val-form-2)

   ...)�

Each element of this list is processed in turn, by evaluating the val-form, and

binding the var to the resulting value. Finally, the body forms are evaluated se-

quentially, the bindings are undone, and the result of the last form is returned.

Note that the bindings are sequential, not parallel.

This is a very unusual special form because of the way the evaluator is called on

the result of an evaluation. Thus, progw is mainly useful for implementing special

forms and for functions part of whose contract is that they call the interpreter.

For an example of the latter, see sys:*break-bindings*; break implements this by

using progw.

See the special form progv.

For other related functions, see the section "Special Forms for Sequencing". 

� :properties Message

Returns two values:

• A list whose car is the pathname of the file and whose cdr is a list of the prop-

erties of the file; thus the element is a "disembodied" property list and zl:get

can be used to access the file’s properties.

• A list of what properties of this file are "changeable".
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� sys:property-cell-location symbol Function

Returns a locative pointer to the location of sym’s property-list cell. This locative

pointer is as valid as sym itself as a handle on sym’s property list.

See the section "Functions Relating to the Property List of a Symbol".

� sys:property-list-mixin Flavor

Provides methods that perform the generic functions on property lists.

sys:property-list-mixin provides methods for the following generic functions: 

:get indicator Message

Looks up the object’s indicator property. If it finds such a property, it returns the

value; otherwise it returns nil. 

:getl indicator-list Message

Like the :get message, except that the argument is a list of indicators. The :getl

message searches down the property list for any of the indicators in indicator-list

until it finds a property whose indicator is one of those elements. It returns the

portion of the property list beginning with the first such property that it found. If

it does not find any, it returns nil. 

:putprop property indicator Message

Gives the object an indicator-property of property. 

:remprop indicator Message

Removes the object’s indicator property by splicing it out of the property list. It re-

turns that portion of the list inside the object of which the former indicator-

property was the car. 

:push-property value indicator Message

The indicator-property of the object should be a list (note that nil is a list and an

absent property is nil). This message sets the indicator-property of the object to a

list whose car is value and whose cdr is the former indicator-property of the list.

Executing the form

(send object :push-property value indicator)�

is analogous to doing

(zl:push value (send object :get indicator))�

See the function zl:push. 
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:property-list Message

Returns the list of alternating indicators and values that implements the property

list. 

:set-property-list list Message

Sets the list of alternating indicators and values that implements the property list

to list. 

(flavor:method :property-list sys:property-list-mixin) list Init Option

Initializes the list of alternating indicators and values that implements the proper-

ty list to list. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� provide module-name�

Function

Adds module-name to the list in *modules* to indicate that the module has been

loaded.

In the following code, the call to require loads the turbine-package module, and

if turbine-speed were a constant in turbine-package, then its value would be

available at this point. The following call to provide adds the name to the special

variable *modules*. Generally, the call to provide would be made within the file

containing the module to be loaded.

0

=> *modules*

(GENERATOR-PACKAGE LISP)

=> (require ’turbine-package)

TURBINE-PACKAGE

=> turbine-package:turbine-speed

3600

=> (provide ’turbine-package)

TURBINE-PACKAGE

=> *modules*

(TURBINE-PACKAGE GENERATOR-PACKAGE LISP)�

� psetf &rest pairs Macro

Similar to setf, but performs all the assignments in parallel, that is, simultaneous-

ly, instead of from left to right. A generalization of parallel variable assignment,

psetf is to setf what psetq is to setq. Allows the update of a wide variety of stor-

age locations, such as structure components, vector elements, or elements of a list.
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The &rest argument indicates that psetf expects 0 or more pairs on which to per-

form assignment operations. In each pair, a new value is assigned to a place. Eval-

uations are still performed from left to right, but assignments are parallel. psetf

always returns the value nil.

(setq a (cons ’foo ’bar))

(FOO . BAR)

(psetf (car a) (cdr a) (cdr a) (car a))

a => (BAR . FOO)�

A large number of place forms are predefined, and additions can be made via

defsetf or define-setf-method. See the macro setf.

� psetq &rest rest Macro

Similar to setq, but performs all the assignments in parallel, that is, simultane-

ously, instead of from left to right. The &rest argument indicates that psetq ex-

pects 0 or more pairs which to perform assignment operations. In the arglist,

these pairs are represented by rest. In each pair, a form is assigned to a variable.

Evaluations are still performed from left to right, but assignments are parallel.

psetq always returns the value nil.

Returns nil, and takes alternating variables and values as arguments. The even ar-

guments are evaluated, and assigned as the value of the preceding variables. Be-

cause the evaluations are executed first, followed by the assignments, the assign-

ments are effectively executed in parallel. This function is acceptable for both spe-

cial and lexical variables.

(setq a 3 b 4) => 4

(setq a b b a) => 4

a => 4

b => 4

�

(setq a 3 b 4) => 4

(psetq a b b a) => NIL

a => 4

b => 3�

� zl:psetq &rest rest Special Form

Just like a setq form, except that the variables are set "in parallel"; first all the

value forms are evaluated, and then the variables are set to the resulting values.

Example:

(setq a 1)

(setq b 2)

(psetq a b b a)

a => 2

b => 1�
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� push item reference &key :area :localize Function

If the list held in reference is viewed as a push-down stack, push can be thought

of as pushing an element onto the top of the stack. item can be any Lisp object.

reference can be the name of any generalized variable containing a list, that is, any

form acceptable as a generalized variable to setf. push conses item onto the front

of the list, and the augmented list is stored back into reference and returned.

Compatibility Note: The optional keyword arguments :area and :localize are Sym-

bolics extensions to Common Lisp, and cannot be used in CLOE.

:area An integer that specifies the area in which to store the aug-

mented list. See the section "Areas".

:localize Can be nil, t, or a positive integer:

nil Does not change the behavior of push.

t Localizes the top level of list structure, by

calling sys:localize-list or sys:localize-tree

on the list before returning it.

integer Localizes integer levels of list structure, by

calling sys:localize-list or sys:localize-tree

on the list before returning it.�

Examples:

(setq alist ’((a . b) (c . d))) => ((A . B) (C . D))

�

(push ’(1 . 2) (cdr alist)) => ((1 . 2) (C . D))

�

alist => ((A . B) (1 . 2) (C . D))

�

(push ’(3 . 4) alist :localize 2) =>

((3 . 4) (A . B) (1 . 2) (C . D))

�

alist => ((3 . 4) (A . B) (1 . 2) (C . D))�

Note: If you try to push an item onto a list that is already a member of that list,

with push, it adds that item to the list. This in contrast to pushnew, which does

not add the item to the list. See the function pushnew.

(setq alist ’((9 . 10) (11 . 12)))

�

(pushnew ’(9 . 10) alist) =>

((9 . 10) (9 . 10) (11 . 12))

�

alist => ((9 . 10) (9 . 10) (11 . 12))

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 
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� zl:push item list Function

Adds item to the front of a list, which should be stored in a generalized variable.

(zl:push item list) creates a new cons whose car is the result of evaluating item

and whose cdr is the contents of list, and stores the new cons into list.

The form:

(zl:push (new-function x y z) variable)�

replaces the commonly used construct:

(setq variable (cons (new-function x y z) variable))�

and is intended to be more explicit and aesthetic.

The caveat that applies to incf also applies to zl:push: this function does not eval-

uate any part of ref more than once.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� zl:push-in-area item list area Function

Adds item to the front of a list, which should be stored in a generalized variable.

(zl:push-in-area item list area) creates a new cons in area whose car is the result

of evaluating item and whose cdr is the contents of list, and stores the new cons

into list. See the section "Areas".

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� pushnew item reference &key :test :test-not :key :area :localize :replace�

Function

If the list held in reference is viewed as a push-down stack, pushnew can be

thought of as pushing item onto the top of the stack, unless it is already a mem-

ber of the list. item can be any Lisp object. reference can be the name of any gen-

eralized variable containing a list, that is any form acceptable as a generalized

variable to setf.

item is checked for membership in the list, as determined by the :test predicate,

which defaults to eql. If item is not a member of the list, it is consed onto the

front of the list, and the augmented list is stored back into reference and returned.

If item is a member of the list, the unaugmented list is returned.

Compatibility Note: The optional keyword arguments :area, :localize, and

:replace are Symbolics extensions to Common Lisp, and cannot be used in CLOE.

:area An integer that specifies the area in which to store the aug-

mented list. See the section "Areas".

:localize Can be nil, t, or a positive integer, which specify the following:
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nil Does not change the behavior of pushnew.

t Localizes the top level of list structure, by

calling sys:localize-list or sys:localize-tree

on the list before returning it.

integer Localizes integer levels of list structure, by

calling sys:localize-list or sys:localize-tree

on the list before returning it.�

:replace Destructively modifies the specified element (or elements) and

replaces it with the value provided. :replace’s value can be t

or nil. For example:

(setq l ’((a 1) (b 2) (c 3))) => ((A 1) (B 2) (C 3))

�

(pushnew ’(a 10) l :key ’first :replace t) =>

((A 10) (B 2) (C 3))�

Examples:

(setq alist ’((a . b) (c . d))) => ((A . B) (C . D))

�

(pushnew ’(1 . 2) (cdr alist) :localize nil) => ((1 . 2) (C . D))

�

alist => ((A . B) (1 . 2) (C . D))

�

(pushnew ’(C . D) (cdr alist) :test #’equal :localize 2) =>

((1 . 2) (C . D))

�

alist => ((A . B) (1 . 2) (C . D))

�

Note: If you use pushnew to try to push an item onto a list that is already a

member of that list, it has no effect on the list. This is in contrast to push, which

pushes the item on the list. See the function push. For example:

(setq alist ’((5 . 6) (7 . 8)))

�

(pushnew ’(5 . 6) alist :test #’equal) =>

((5 . 6) (7 . 8))

�

alist => (5 . 6) (7 . 8))�

CLOE users: one possible implementation of provide employs pushnew, as demon-

strated in the following example.

(defun provide(module-name)

   (pushnew (string module-name) *modules* :test #’string=))�

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 
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� :put-hash key value Message

Creates an entry in the hash table associating key to value. If there is an existing

entry for key, it replaces the value of that entry with value and returns value. The

hash table automatically grows if necessary. 

This message is obsolete; use setf in conjunction with the gethash function in-

stead. 

� zl:puthash key value hash-table Function

Creates an entry in hash-table associating key to value. If there is an existing en-

try for key, it replaces the value of that entry with value and return value. hash-

table grows automatically if necessary. This function is obsolete; use setf in con-

junction with the gethash function instead. 

� zl:puthash-equal key value hash-table Function

Creates an entry in hash-table associating key to value. If there is an existing en-

try for key, it replaces the value of that entry with value and return value. hash-

table grows automatically if necessary. This function is obsolete; use setf in con-

junction with the gethash function instead. 

� zl:putprop sym value indicator Function

Gives sym an indicator-property of value. After this is done, (zl:get symbol indica-

tor) returns value. zl:putprop uses its associated property list. zl:putprop returns

its second argument. See the section "Property Lists".

Example:

(zl:putprop ’Nixon ’not ’crook) => NOT�

For a table of related items: See the section "Functions That Operate on Property

Lists". 

� *query-io* Variable

The value is a stream to be used when asking questions of the user. The question

should be output to this stream, and the answer read from it. When the normal in-

put to a program comes from a file, questions such as "Do you really want to

delete all of the files in your directory?" should be sent directly to the user and

the answer should come from the user also, not from the data file. For these pur-

poses, *query-io* should be used instead of *standard-input* and *standard-

output*. *query-io* is used by such functions as yes-or-no-p.

In the following example, *standard-input* and *standard-output* are bound to

files. Actions with severe consequences were requested, possibly by the input

stream from the input file. In order to obtain confirmation and further information

from the user, *query-io* is used instead of the file.
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(with-open-file (outstream "myfile" :direction :output)

  (with-open-file (instream "infile.txt" :direction :input)

    (let ((*standard-output* outstream)

          (*standard-input* instream))

      ...

      (format *query-io* "You are requesting permanent destruction of data~%")

      (format *query-io* "Which records should be destroyed? ")

      (build-record-list (read *query-io*)) 

      ...                              

))�

zl:query-io Variable

In your new programs, we recommend that you use the variable *query-io*, which

is the Common Lisp equivalent of zl:query-io.

The value of zl:query-io is a stream that should be used when asking questions of

the user. The question should be output to this stream, and the answer read from

it. The reason for this is that when the normal input to a program might be com-

ing from a file, questions such as "Do you really want to delete all of the files in

your directory?" should be sent directly to the user, and the answer should come

from the user, not from the data file. zl:query-io is used by fquery and related

functions. 

quote object Special Form

Returns object. It is useful specifically because object is not evaluated; the quote is

how you make a form that returns an arbitrary Lisp object. quote is used to in-

clude constants in a form. Examples:

(quote x) => x

(setq x (quote (some list)))   x => (some list)

(setq foo (+ 1 2))

foo => 3

(setq foo (quote (+ 1 2)))

foo => (+ 1 2)�

Since quote is so useful but somewhat cumbersome to type, the reader normally

converts any form preceded by a single quote (’) character into a quote form. Ex-

ample:

(setq x ’(some list))�

is converted by read into

(setq x (quote (some list)))�

See the section "Functions and Special Forms for Constant Values".

� zl:quotient number &rest more-numbers Function
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Returns the first argument divided by all of the rest of its arguments.

With more than one argument, zl:quotient is the same as zl:/;

With integer arguments, zl:quotient acts like truncate, except that it returns only

a single value, the quotient.

For a table of related items, see the section "Arithmetic Functions". 

� random number &optional (state *random-state*) Function

Generates numbers from a uniform distribution over [0, number) (meaning the in-

terval including 0, and up to but excluding number.)

random generates and returns an integer if number is an integer, returns a sin-

gle-precision floating-point number if number is single-precision, and returns a

double-precision number if number is double-precision.

number must be positive and can either be an integer or a floating-point number.

If number is an integer, each of the possible results occurs with probability very

close to 1/number.

The optional argument state must be an object of type random-state. It defaults to

the current value of the variable *random-state* which is used to maintain the

state of the pseudorandom number generator between calls. The value of *random-

state* changes as a side effect of the random operation.

For example:

(defun executive-decision-maker (question &optional (choices ’(yes no)))

  (declare (ignore question))

  (sleep 5)

  (nth (random (length choices)) choices))

�

(executive-decision-maker "Should I buy a new car?") => YES

�

(executive-decision-maker "Where should we eat lunch?"

  ’(deli woven-hose mary-chung)) => MARY-CHUNG

(list (random 25) (random 25) (random 25)) => (16 5 8)�

For a table of related items, see the section "Random Number Functions" and see

CLtL 228. 

� zl:random &optional arg random-array Function

Returns a random integer, positive or negative. If arg is present, an integer be-

tween 0 and arg minus 1 inclusive is returned. If random-array is present, the

given array is used instead of the default one. Otherwise, the default random-array

is used (and is created if it does not already exist). The algorithm is executed in-

side a without-interrupts so two processes can use the same random-array without

colliding.
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For a table of related items, see the section "Random Number Functions". 

� si:random-create-array length offset seed &optional (area nil) Function

Creates, initializes, and returns a random-array. length is the length of the array.

offset is the distance between the pointers and should be an integer less than

length. seed is the initial value of the seed, and should be an integer. This calls

si:random-initialize on the random array before returning it.

For a table of related items, see the section "Random Number Functions". 

� si:random-initialize array &optional new-seed Function

Reinitializes the contents of the array from the seed (calling zl:random changes

the contents of the array and the pointers, but not the seed).

array must be a random-array, such as is created by si:random-create-array. If

new-seed is provided, it should be an integer, and the seed is set to it. 

For a table of related items, see the section "Random Number Functions". 

� random-normal &optional (mean 0.0) (standard-deviation 1.0) (state *random-

state*) Function

Generates random numbers from the normal (Gaussian) distribution with mean

mean and standard deviation standard-deviation.

Returns a double-precision floating-point answer if either mean or standard-

deviation is double-precision. Otherwise, it returns a single-precision floating-point

answer.

The optional argument state must be an object of type random-state. It defaults to

the current value of the variable *random-state* which is used to maintain the

state of the pseudorandom number generator between calls. The value of *random-

state* changes as a side effect of the random-normal operation.

You can use this function on items that are normally distributed, such as heights

and weights. For example, to assign grades for a group of students:

(defun assign-grade (student class-average class-standard-deviation)

  (declare (ignore student))

  ;; pick grades from a "bell curve", or normal distribution

  (let ((raw-grade (random-normal class-average class-standard-deviation)))

    ;; make sure the output falls in the range for grades

    (max 0 (min (round raw-grade) 100))))

�

(loop for student in (sort ’("Ron" "Dave" "Sue" "Jackie" "Fred" "Mary")

   #’string-lessp)

      do (format t "~&~10A~3D" student (assign-grade student 75 10)))
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�

Dave       66

Fred       88

Jackie     90

Mary       85

Ron        91

Sue        72

For a table of related items, see the section "Random Number Functions". 

� *random-state* Variable

This variable holds a data structure, an object of type random-state which the

function random uses by default to encode the internal state of the random-

number generator. 

This data structure can be printed and successfully read back in. Each call to

random performs a side effect on *random-state*. *random-state* can be lambda-

bound to a different random-number state object to save and restore the old state

object.

(random-state-p *random-state*) => t�

� random-state-p object Function

This predicate is true if the argument is an object of type random-state; it is

false otherwise.

Examples:

(setq x (make-random-state)) => #.(RANDOM-STATE 71 1695406379...)

(setq copy-x (make-random-state x)) => #.(RANDOM-STATE 71...)

(random-state-p x) => T

(random-state-p copy-x) => T

(random-state-p *random-state*) => T ;always true

(random-state-p (random 10))  => NIL�

For a table of related items, see the section "Random Number Functions".

� zl:rass pred item in-list Function

Looks up item in the association list in-list. The value is the first cons whose cdr

matches item, according to pred or nil if none matches. You can use noncommuta-

tive predicates; the first argument to the predicate is pred, the second is item, and

the third is the cdr of the element of in-list.

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� rassoc item a-list &key (test #’eql) test-not (key #’identity) Function
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Searches the association list a-list. Returns the first pair in a-list whose cdr satis-

fies the predicate specified by :test. Returns nil if none does. rassoc is the reverse

form of assoc. The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

If a-list is considered to be a mapping, rassoc treats the a-list as representing the

inverse mapping. For example:

(rassoc ’diver ’((eagle . raptor) (loon . diver))) =>

(LOON . DIVER)

�

(rassoc ’loon ’((eagle . raptor) (loon . diver))) => NIL�

The two expressions

(rassoc item a-list :test pred)�

and 

(find item a-list :test pred :key #’cdr)�

are almost equivalent in meaning. The difference occurs when nil appears in a-list

in place of a pair, and the item being searched for is nil. In these cases, find com-

putes the cdr of the nil in a-list, finds that it is equal to item, and returns nil,

while assoc ignores the nil in a-list and continues to search for an actual cons

whose cdr is nil.

(setq family-list

  ’((name . "Larry")(spouse . "Mary")

    (children . ("larry" "fred" "sue"))))�

We can then use rassoc to find the pair whose datum is string-equal to larry:

(rassoc "larry" family-list :test #’string-equal)

 => (name . "Larry")�

Or, we could add a :key function, as follows:

(rassoc "larry" family-list :test #’string-equal

                            :key #’car)

 => (children ("larry" "fred" "sue"))�

See the function assoc.

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 



Page 1371

� zl:rassoc item in-list Function

Looks up item in the association list in-list. Returns the first cons whose cdr is

zl:equal to item, or nil if there is none such.

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� rassoc-if predicate a-list &key :key Function

Searches the association list a-list and returns the first pair in a-list whose cdr

satisfies predicate, nil if none does. The keyword is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. :key is a

Symbolics extension to Common Lisp.

Example:

(rassoc-if #’integerp ’((eagle . raptor) (1 . 2))) => (1 . 2)

�

(rassoc-if #’symbolp ’((eagle . raptor) (1 . 2))) =>

(EAGLE . RAPTOR)

�

(rassoc-if #’floatp ’((eagle . raptor) (1 . 2))) => NIL�

The function in the following example findsthe largest numeric value in an associ-

ation list by repeating rassoc-if with a test for a datum greater than the greatest

datum found so far.

(defun find-largest-datum( a-list, &optional (start 0) )

  (if (setq pair

            (rassoc-if #’(lambda(x) (> x start))

                       a-list))

      (find-largest-datum a-list (car pair))))�

In the following example, we have an association list consisting of pairs of keys

and association lists.

(setq financial-statement 

  ’(MONTHLY-CASH-ON-HAND ((10 . 41)(11 . 52)(12 . 73)))

    (MONTHLY-EXPENSE ((9 . 22)(10 . 20)(11 . 21)))

    (MONTHLY-REVENUE ((9 . 34)(10 . 31)(11 . 42))))

(setq monthly-cash-on-hand (assoc ’monthly-cash-on-hand financial-statement))�

We can then use rassoc-if to find the first pair whose cash-on-hand is greater

than 50:

(rassoc-if #’(lambda(x) (> x 50)) monthly-cash-on-hand) =>

(11 . 52)�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists".
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Compatibility Note: :key is a Symbolics extension to Common Lisp not available

in CLOE. 

� rassoc-if-not predicate a-list &key :key Function

Searches the association list a-list, and returns the first pair in a-list whose cdr

does not satisfy predicate, nil if predicate is satisfied. The keyword is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. :key is a

Symbolics extension to Common Lisp.

Example:

(rassoc-if-not #’integerp ’((eagle . raptor) (1 . 2))) =>

(EAGLE . RAPTOR)

�

(rassoc-if-not #’symbolp ’((eagle . raptor) (1 . 2))) => (1 . 2)

�

(rassoc-if-not #’symbolp ’((eagle . raptor) (loon . diver))) => NIL�

In the following example,rassoc-if-not finds the first pair in a-list whose datum is

not a list: 

(setq foo ’((a . (1 4 7))(b . (3 5 8))(c . 100)))

(rassoc-if-not #’listp foo) => (c . 100)�

Compatibility Note: :key is a Symbolics extension to Common Lisp and is not

available in CLOE. For a table of related items: See the section "Functions that

Operate on Association Lists".

� zl:rassq item in-list Function

Looks up item in the association list in-list. Returns the first cons whose cdr is eq

to item. Returns nil if none does. zl:rassq means "reverse assq". zl:rassq could

have been defined by:

(defun zl:rassq (item in-list) 

    (do l in-list (cdr l) (null l) 

      (and (eq item (cdar l)) 

   (return (car l)))))�

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� raster-aref raster x y Function

Accesses the (x,y) graphics coordinate of raster. Use this instead of aref when ac-

cessing rasters. 

For a table of related items: See the section "Operations on Rasters". 
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� raster-index-offset raster x y Function

Returns a linear index of the array element referenced by the (x,y) coordinate of

the raster. This can be used as the index to sys:%1d-aref or as the :displaced-

index-offset argument to make-array. 

raster-index-offset is preferred over manual computation and over array-row-

major-index when the array is conceptually a raster.

For information about rasters: See the section "Rasters".

For a table of related items: See the section "Operations on Rasters". 

� raster-width-and-height-to-make-array-dimensions width height Function

Creates an argument that can be used to call make-array. You would use this in

circumstances in which it is not possible to call zl:make-raster-array, for example

from the :make-array option to defstruct contructors.

For a table of related items: See the section "Operations on Rasters". 

� ratio &optional (low ’*) (high ’*) Type Specifier

ratio is the type specifier symbol for the predefined Lisp ratio number type.

The types ratio and integer are disjoint subtypes of the type rational.

In addition to a symbol form, Symbolics Common Lisp provides a list form for

ratio. Used in list form, ratio allows the declaration and creation of a specialized

set of ratios whose range is restricted to the limits specified in the arguments low

and high. low and high must each be an integer, a list of an integer, or unspeci-

fied. If these limits are expressed as integers, they are inclusive; if they are ex-

pressed as a list of an integer, they are exclusive; * means that a limit does not

exist, and so effectively denotes minus or plus infinity, respectively. The list form

might not work in other implementations of Common Lisp. 

Examples:

(typep -5/2 ’ratio) => T�

(typep 4/5 ’(ratio 0 1)) => T�

(typep 2/1 ’(ratio 0 1)) => NIL�

(typep 2 ’(ratio 3 *)) => NIL�

(subtypep ’ratio ’rational) => T and T ; subtype and certain�

(subtypep ’(ratio 2 9) ’rational) => T and T�

(subtypep ’(ratio 3.2/3 *) ’rational) => T and T�

(commonp 15/5) => T�

(zl:rationalp #3r120/21) => T�

(sys:type-arglist ’ratio) => (&OPTIONAL (LOW ’*) (HIGH ’*)) and T�

(subtypep ’(ratio 0 9) ’(rational 0 9)) => T and T�

See the section "Data Types and Type Specifiers". See the section "Numbers".
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� rational number Function

Accepts any non-complex number and converts it to a rational number in canonical

form. If the argument is already rational, it is returned. If number is in floating-

point form, it is assumed to be completely accurate, and rational returns a ra-

tional number mathematically equal to the precise value of the floating-point num-

ber. Note that:

(float (rational x) x) ≡ x�

Examples:

(rational 0.2) => 13421773/67108864

(rational 3.95) => 16567501/4194304

(rational 6/2) => 3

(rational 0.203) => 13623099/67108864

(rational 0.000015) => 8246337/549755813888�

For a table of related items, see the section "Functions that Convert Noncomplex

to Rational Numbers".

� rational &optional ( low ’*) ( high ’*) Type Specifier

rational is the type specifier symbol for the predefined Lisp rational number type.

The types rational, float, and complex are pairwise disjoint subtypes of the type

number.

The type rational is a supertype of the following types which are an exhaustive

partition of it:

integer

ratio �

This type specifier can be used in either symbol or list form. Used in list form,

rational allows the declaration and creation of specialized rational numbers, whose

range is restricted to low and high.

low and high must each be a rational, a list of rational numbers, or unspecified. If

these limits are expressed as rationals, they are inclusive; if they are expressed as

a list of rationals, they are exclusive; * means that a limit does not exist, and so

effectively denotes minus or plus infinity, respectively.

Examples:

(typep #3r102/21 ’rational) => T�

(typep 4 ’(rational 3 4)) => T�

(typep 5 ’(rational 3 4)) => NIL�

(typep 2354 ’(rational *)) => T�

(zl:typep 2/3 ) => :RATIONAL�

(subtypep ’rational ’number) => T and T  ;subtype and certain�

(subtypep ’integer ’rational) => T and T�

(subtypep ’ratio ’rational) => T and T�
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(subtypep ’(rational -4 98) ’(rational *)) => T and T�

(typep 17/89 ’common) => T�

(rationalp 6/3) => T�

(rationalp (+ #2r101 #2r11)) => T�

(sys:type-arglist ’:rational) => NIL�

(sys:type-arglist ’rational) 

=> (&OPTIONAL (LOW ’*) (HIGH ’*)) and T�

(subtypep ’(rational 0 9) ’rational) => T and T�

See the section "Data Types and Type Specifiers". See the section "Numbers".

� zl:rational number Function

In your new programs, we recommend that you use the function rationalize, which

is the Common Lisp equivalent of the function zl:rational.

Converts any noncomplex number to an equivalent rational number. If number is a

floating-point number, zl:rational returns the rational number of least denomina-

tor, which when converted back to the same floating-point precision, is equal to

number.

For a table of related items: See the section "Functions that Convert Noncomplex

to Rational Numbers". 

� rationalize number Function

Accepts any non-complex number and converts it to a rational number in canonical

form. If the argument is already rational, it is returned. If number is in floating-

point form, rationalize assumes that it is accurate only to the precision of the

floating-point representation. Hence the returned value can be any rational number

for which the floating-point argument is the best available approximation. The aim

is to keep both numerator and denominator as small as possible. rationalize is

guaranteed to return the number with the smallest denominator, such that the fol-

lowing expression is true:

(float (rationalize x) x) ≡ x�

Examples:

(rationalize 0.2) => 1/5

(rationalize 3.95) => 79/20

(rationalize 0.203) => 203/1000

(rationalize 0.000015) => 3/200000�

For a table of related items, see the section "Functions that Convert Noncomplex

to Rational Numbers".

� rationalp object Function

This predicate is true if object is a rational number (a ratio or an integer) after

conversion to canonical form; it is false otherwise.
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Examples:

(rationalp 3.0) => NIL

(rationalp 2) => T

(rationalp #c(3 4)) => NIL

(rationalp (/ 22 7)) => T

(rationalp #c(4 0)) => T  ;complex canonicalization

�

The following code tests whether a and b are numbers. If they are numbers, they

are added. Otherwise, we attempt to extract rationals that are then tested by

rationalp.

(if (and (numberp a) (numberp b))

  (+ a b)

  (if (and (consp a)

   (rationalp (car a))

   (consp b)

           (rationalp (car b)))

    (+ (car a) (car b))

    (error  "couldn’t extract rationals from ~a and ~a" a b)))�

For a table of related items, see the section "Numeric Type-checking Predicates". 

� zl:rationalp object�

Function

Returns t if object is a ratio. Returns nil if object is an integer or other type of

object.

Examples:

(zl:rationalp (/ 8 7)) => T

(zl:rationalp 9/16) => T

(zl:rationalp 4) => NIL

(zl:rationalp (/ 9 3)) => NIL

(zl:rationalp 16/4) => NIL�

For a table of related items, see the section "Numeric Type-checking Predicates". 

� read &optional input-stream (eof-error-p t) eof-value recursive-p Function

Reads in the printed representation of a Lisp object from stream, builds a corre-

sponding Lisp object, and returns the object.

The optional arguments input-stream, eof-error-p, eof-value and recursive-p affect

how read reads and interprets the incoming information. input-stream is the

stream from which to obtain input. If unsupplied or nil, it defaults to the value of

the special variable *standard-input*. If t, it becomes the value of the special

variable *terminal-io*.
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eof-error-p controls what happens if input is from a file (or any other input source

that has a definite end) and the end of file is reached. If eof-error-p is t (the de-

fault), an error is signalled at the end of file (EOF). If it is nil, then no error is

signalled, and instead read returns eof-value.

Because read reads the representation of an object rather than a single character,

it always signals an error, regardless of eof-error-p, if the file ends in the middle

of an object representation. For example, if a file does not contain enough right

parentheses to balance the left parentheses in it, read will complain. If a file ends

in a symbol or a number, immediately followed by EOF, read will read the symbol

or number successfully and when called again will see the EOF and only then act

according to eof-error-p. If a file contains ignorable text at the end, such as blank

lines and comments, read will not consider it to end in the middle of an object.

Thus an eof-error-p argument controls what happens when the file ends between

objects.

If recursive-p is specified and non-nil, this argument specifies that this call is not

a top-level call to read, but an imbedded call. This typically happens from the

function for a macro character.

(+ (READ) (READ))37 42

=> 79

�

(DEFUN LOAD-A-STREAM (STREAM)

  (LET ((EOF-MARKER (GENSYM)))

    (DO ((FORM (READ STREAM NIL EOF-MARKER)

       (READ STREAM NIL EOF-MARKER)))

((EQ FORM EOF-MARKER))

      (FORMAT T "~&Q: ~S~%" FORM)

      (FORMAT T "~&A: ~S~%" (EVAL FORM)))))

=> LOAD-A-STREAM

�

(WITH-INPUT-FROM-STRING (S "(+ 3 2) (* 5 4)")

  (LOAD-A-STREAM S))

Q: (+ 3 2)

A: 5

Q: (* 5 4)

A: 20

=> NIL�

For more information on how recursive-p affects input functions: See the section

"Input Functions".

The corresponding output function is write. 

� zl:read &optional (stream zl:standard-input) eof-option Function

Reads in the printed representation of a Lisp object from stream, builds a corre-

sponding Lisp object, and returns the object. For details, see the section "Input

Functions".
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(This function can take its arguments in the other order, for Maclisp compatibility

only.) 

� zl:read-and-eval &optional stream (catch-errors t) Function

Calls zl:read-expression to read a form, without completion. It then evaluates the

form and returns the result. If catch-errors is not nil, it calls zl:parse-ferror if an

error occurs during the evaluation (but not the reading) so that the input editor

catches the error.

stream defaults to zl:standard-input. This function is intended to read only from

interactive streams. 

� *read-base* Variable

The value of *read-base* is a number controlling the radix in which integers and

ratios are read. Valid values are between 2 and 36, inclusive; the default is 10

(decimal radix).

The value of *read-base* does not affect rational numbers whose radix is explicitly

indicated by a radix specifier, or by a trailing decimal point. See the section

"Radix Specifier Format".

The reader uses letters to represent digits greater than 10. Thus, when *read-

base* is greater than 10 and no radix specifier is present, some tokens could be

read as either integers, floating-point numbers, or symbols. Under Genera the

reader’s action on such tokens is determined by the value of si:*read-extended-

ibase-unsigned-number* and si:*read-extended-ibase-signed-number*. Setting

these variables to t causes the tokens to be always interpreted as numbers.

Compatibility Note: This is an incompatible difference from the language specifi-

cation in Steele’s Common Lisp manual. CLOE, however, is compatible with CLtL.

(setq foo "23")

�

(let ((*read-base* 8))

  (values (read-from-string foo)))

 => 19

�

(let ((*read-base* 10))

  (values (read-from-string foo)))

 => 23�

For documentation of related variables, see the section "Control Variables for

Reading Numbers".

� read-byte binary-input-stream &optional (eof-error-p t) eof-value Function

Reads one byte from binary-input-stream and returns it in the form of an integer.

The corresponding output function is write-byte.
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(with-open-file (s "data.file" 

   :direction :output

   :element-type ’(unsigned-byte 2))

  (write-byte 1 s)

  (write-byte 3 s)

  (write-byte 2 s))

=> 2

�

(with-open-file (s "data.file" 

   :direction :input

           :element-type ’(unsigned-byte 2))

  (list (read-byte s) (read-byte s) (read-byte s)))

=> (1 3 2)�

� :read-bytes n-bytes file-position Message

Sent to a direct access input or bidirectional file stream, requests the transfer of

n-bytes bytes from position file-position of the file. The message itself does not re-

turn any data to the caller. It causes the stream to be positioned to that point in

the file, and the transfer of n-bytes bytes to begin. An EOF is sent following the

requested bytes. The bytes can then be read using :tyi, :string-in, or any of the

standard input messages or functions. An EOF is sent following the requested

bytes.

The stream enforces the byte limit, and presents an EOF if you attempt to read

bytes beyond that limit. You must actually read all the bytes and read past (that

is, consume from the stream) the EOF.

It is also possible, before all the bytes have been read, to perform stream opera-

tions other than reading bytes. For example, an application might read several

records at a time, to optimize transfer and buffering, and decide, after reading the

first record, to position somewhere else. Direct access file streams handle this

properly. Nevertheless, network and buffering resources allocated to the stream

(both on the local machine and server machine) are not freed unless all the re-

quested bytes (of the last :read-bytes request) and the EOF following them are

read.

If you request more bytes than remain in the file, you receive the remaining bytes

followed by EOF.

� read-char &optional input-stream (eof-errorp t) eof-value recursive-p Function

Reads and returns a character from input-stream, or if unspecified or nil,

*standard-input*. A value of t for input-stream indicates *terminal-io*.

The arguments eof-error-p and eof-value control what happens when the function is

called at the end of input-source. If the first argument, eof-error-p is nil, then

nothing is done, otherwise an end-of-file error is signalled, and the value returned

is eof-value.
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The recursive-p argument is used to signal that the call to read-char is not at the

top level.

(list (read-char) (read-char) (read-char) (read))abcdef

=> (#\a #\b #\c DEF)�

Note that the character objects produced in response to keyboard input differ be-

tween Genera and CLOE 386. Specifying CTRL-A in response to a read-char pro-

duces #\c-a under Genera, and \soh under CLOE. char-int of these is different al-

so. In the CLOE Developer, specifying control characters in response to read-char

results in translation to the char with the appropriate ASCII code, where in the

context of :run-program or :run-expression, the variable that controls this behav-

ior is zl:::si*translate-input-to-ascii*. It can assume values of :never, t (meaning

always), or the default nil. 

� read-char-no-hang &optional input-stream (eof-error-p t) eof-value recursive-p 

Function

Performs the same operation as read-char, but if it would be necessary to wait in

order to get a character (as from a keyboard), it returns nil immediately, without

waiting. This allows you to check for input availability and get the input, if it is

available, in the same operation. This is different from the listen operation in two

ways. First, read-char-no-hang potentially reads a character, whereas listen never

inputs a character. Second, listen does not distinguish between end-of-file (EOF)

and no input being available, whereas read-char-no-hang does make that distinc-

tion. read-char-no-hang returns eof-value at EOF (or signalling an error of no eof-

error-p is true), and always returns nil if no input is available.

A value of t for input-stream indicates *terminal-io*. If input-stream is unspecified

or nil, *standard-input* is used. After reading in the printed representation, read-

char-no-hang constructs the Lisp object, and returns it. If unable to complete

parsing an entire Lisp object, because of end of file or any other reason, read-

char-no-hang generates an error.

The arguments eof-error-p and eof-value control what happens when read-char-no-

hang is called at the end of input-source. If the first argument, eof-error-p is nil,

then nothing is done, otherwise an end-of-file error is signalled, and the value re-

turned is eof-value.

The recursive-p argument signals that the call to read-char-no-hang is not at the

top level, and is used to provide the correct behavior in such cases as recursive

calls to read-char-no-hang to evaluate read macros.

(let ((c (read-char)))

  (list c 

(read-char-no-hang)

(progn (unread-char c) (read-char-no-hang))))x

=> (#\x NIL #\x)�

Note that under CLOE, read-char-no-hang does hang, unless it is in the scope of

a with-input-editing form. 
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� sys:read-character &optional stream &key (fresh-line t) (any-tyi nil) (eof nil) (noti-

fication t) (prompt nil) (help nil) (refresh t) (suspend t) (abort t) (status nil) presen-

tation-context Function

Reads and returns a single character from stream. This function displays notifica-

tions and help messages and reprompts at appropriate times. It is used by fquery

and the :character option for prompt-and-read.

stream must be interactive. It defaults to zl:query-io.

Following are the permissible keywords:

:fresh-line If not nil, the function sends the stream a :fresh-line message

before displaying the prompt. If nil, it does not send a :fresh-

line message. The default is t.

:any-tyi If not nil, the function returns blips. If nil, blips are treated as

the :tyi message to an interactive stream treats them. The de-

fault is nil.

:eof If not nil and the function encounters end-of-file, it returns

nil. If nil and the function encounters end-of-file, it beeps and

waits for more input. The default is nil.

:notification If not nil and a notification is received, the function displays

the notification and reprompts. If nil and a notification is re-

ceived, the notification is ignored. The default is t.

:prompt If nil, no prompt is displayed. Otherwise, the value should be a

prompt option to be displayed at appropriate times. See the

section "Displaying Prompts in the Input Editor". The default

is nil.

:help If not nil, the value should be a help option. See the section

"Displaying Help Messages in the Input Editor". Then, when

the user presses HELP, the function displays the help option

and reprompts. If nil and the user presses HELP, the function

just returns #\help. The default is nil.

:refresh If not nil and the user presses REFRESH, the function sends the

stream a :clear-window message and reprompts. If nil and the

user presses REFRESH, the function just returns #\refresh. The

default is t.

:suspend If not nil and the user types one of the sys:kbd-standard-

suspend-characters, a zl:break loop is entered. If nil and the

user types a suspend character, the function just returns the

character. The default is t.

:abort If not nil and the user types one of the sys:kbd-standard-

abort-characters, sys:abort is signalled. If nil and the user

types an abort character, the function just returns the charac-

ter. The default is t.
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:status This option takes effect only if the stream is a window. If the

value is :selected and the window is no longer selected, the

function returns :status. If the value is :exposed and the win-

dow is no longer exposed or selected, the function returns

:status. If the value is nil, the function continues to wait for

input when the window is deexposed or deselected. The default

is nil.

:presentation-context

If this is not nil, the presentation system is enabled, that is,

presentations that are targets of existing mouse handlers will

be sensitive.

� :read-cursorpos &optional (units ’:pixel) Message

This operation is supported by windows. It returns two values, the current x and y

coordinates of the cursor. It takes one optional argument, which is a symbol indi-

cating in what units x and y should be; the symbols :pixel and :character are un-

derstood. :pixel means that the coordinates are measured in display pixels (bits),

while :character means that the coordinates are measured in characters horizon-

tally and lines vertically.

This operation and :set-cursorpos are used by the zl:format ~T request, which is

why ~T does not work on all streams. Any stream that supports this operation

must support :set-cursorpos as well. 

� *read-default-float-format* Variable

Controls the printing and reading of floating-point numbers. This variable takes on

one of four possible values, namely short-float, single-float, long-float, or double-

float.

For printing floating-point numbers:

The printer checks the value of *read-default-float-format* and applies the follow-

ing rules to decide whether to print an exponent character with the number, and

if so, which character.

Notation Does number’s format Exponent 

used match current value of marker

 *read-default-float-format*  

Ordinary Yes Don’t print 

  marker

 No Print marker

  and zero               

Exponential Yes Print e

 No Print marker
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See the section "Printed Representation of Floating-point Numbers".

For reading floating-point numbers:

*read-default-float-format* controls how floating-point numbers with no exponent

or an exponent preceded by "E" or "e" are read. Following is a summary of the

way possible values cause these numbers to be read.

Value Floating-point precision

single-float single-precision

short-float single-precision

double-float double-precision

long-float double-precision�

The default value is single-float.

See the section "How the Reader Recognizes Floating-Point Numbers".

� read-delimited-list char &optional stream recursive-p Function

Reads objects from stream until the next character after an object’s representation

(ignoring whitespace characters and comments) is char. read-delimited-list returns

a list of the objects read.

To be more precise, read-delimited-list looks ahead at each step for the next non-

whitespace character and peeks at it as if with peek-char. If it is char, the char-

acter is consumed, and the list of objects is returned. If it is a constituent or es-

cape character, read is used to read an object, which is added to the end of the

list. If it is a macro character, the associated macro function is called, and if that

function returns a value, the returned value is added to the list. Then, the peek-

ahead process is repeated.

This function is particularly useful for defining new macro characters. Usually it

is desirable for the terminating character char to be a terminating macro charac-

ter, so that it may be used to delimit tokens. However, read-delimited-list makes

no attempt to alter the syntax specified for char by the current readtable. You

must make any necessary changes to the readtable syntax explicitly. The following

example illustrates this.

Suppose you wanted #{a b c ... z} to read as a list of all pairs of the elements a,

b, c, ... z. For example:

#{p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a))�

This can be done by specifying a macro-character definition for #{ that does two

things: reads in all of the items up to the }, and constructs the pairs. read-

delimited-list performs the first task.
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(defun |#{-reader| (stream char arg)

  (declare (ignore char arg))

  (mapcon #’(lambda (x)

              (mapcar #’(lambda (y) (list (car x) y)) (cdr x)))

          (read-delimited-list #\} stream t)))

�

(set-dispatch-macro-character #\# #{ #’|#{-reader|)

�

(set-macro-character #\} (get-macro-character #\) nil)�

It is necessary to give a macro definition to the character } as well, to prevent it

from being a constituent, as discussed above. Without the definition, the } in the

input expression would be considered a constituent character; part of the symbol

named a}. You could correct for this by putting a space before the }, but it is

cleaner to simply use the call to set-macro-character.

Giving } the same definition as the standard definition of the character ) has the

twin benefit of making it terminate tokens for use with read-delimited-list, and al-

so making it illegal for use in any other context. This means that attempting to

read a stray } will signal an error.

� read-delimited-string delimiters &optional stream eof-error-p eof-value &rest make-

array-args Function

delimiters is either a character or a list of characters. Characters are read from

stream until one of the delimiter characters is encountered. The characters read

up to the delimiter are returned as a string. This function can be invoked from in-

side or outside the input editor. If invoked from outside the input editor, the de-

limiter characters are set up as activation characters. make-array-args are argu-

ments to be passed to make-array when constructing the string to return.

eof-error-p controls what happens if input is from a file (or any other input source

that has a definite end) and the end of file is reached. If eof-error-p is t (the de-

fault), an error is signalled at the end of file (EOF). If it is nil, no error is sig-

nalled, and instead read returns eof-value.

read-delimited-string returns four values:

• The string

• An eof-value, if the eof-error-p parameter was nil

• The character that delimited the string

• Any numeric argument given the delimiter character�

This function is used by readline and the :delimited-string option for prompt-

and-read.

Examples:

The following reads characters until END is pressed and returns a string at least

200 characters long with a leader-length of 3:
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(read-delimited-string #\end *standard-input* nil nil

                        200. :leader-length 3)�

The following is the same as (readline), except that it does not echo a Newline af-

ter the string is activated: 

(read-delimited-string ’(#\return #\line #\end))�

A simple word parser:

(read-delimited-string ’(#\space #/, #/. #/?))�

� zl:read-delimited-string &optional (delimiters #\end) (stream standard-input) (eof

nil) (input-editor-options nil) &rest (make-array-args ’(100 :type sys:art-string)) 

Function

delimiters can be either a character or a list of characters. Characters are read

from stream until one of the delimiter characters is encountered. The characters

read up to the delimiter are returned as a string. This function can be invoked

from inside or outside the input editor. If invoked from outside the input editor,

the delimiter characters are set up as activation characters. The eof argument is

treated the same way as the eof argument to the :tyi message to non-interactive

streams. input-editor-options are passed on as the first argument to the :input-

editor message, after having an :activation entry prepended. make-array-args are

arguments to be passed to zl:make-array when constructing the string to return.

zl:read-delimited-string returns four values:

• The string

• An eof flag, if the eof parameter was nil

• The character that delimited the string

• Any numeric argument given the delimiter character�

This function is used by readline, zl:qsend, and the :delimited-string option for

prompt-and-read. 

Examples:

The following reads characters until END is pressed and returns a string at least

200. characters long with a leader-length of 3:

(read-delimited-string #\end standard-input nil nil 200. :leader-length 3)�

The following is the same as (readline), except that it does not echo a Newline af-

ter the string is activated: 

(zl:read-delimited-string ’(#\return #\line #\end))�

A simple word parser:

(zl:read-delimited-string ’(#\space #/, #/. #/?))�

For a more complex example of a sentence parser that uses zl:read-delimited-

string: See the section "Examples of Use of the Input Editor". 
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� zl:read-expression &optional stream &key (completion-alist nil) (completion-

delimiters nil) Function

Like sys:read-for-top-level except that if it encounters a top-level end-of-file, it

just beeps and waits for more input. This function is used by the :expression op-

tion for prompt-and-read.

stream defaults to zl:standard-input. This function is intended to read only from

interactive streams.

If completion-alist is not nil, this function also sets up COMPLETE and c-? as input

editor commands. When the user presses COMPLETE, the input editor tries to com-

plete the current symbol over the set of possibilities defined by completion-alist.

When the user presses c-?, the input editor displays the possible completions of

the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist can be

nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered.

alist The car of each alist element is a string representing one pos-

sible completion.

array Each element is a list whose car is a string representing one

possible completion. The array must be sorted alphabetically on

the cars of the elements.

keyword If the symbol is :zmacs, completion is offered over the defini-

tions in Zmacs buffers. If the symbol is :flavors, completion is

offered over all flavor names. If the symbol is :documentation,

completion is offered over all documentation topics available to

Document Examiner.�

The default for completion-alist is nil.

completion-delimiters is nil or a list of characters that delimit "chunks" for com-

pletion. As in Zwei, completion works by matching initial substrings of "chunks" of

text. If completion-delimiters is nil, the entire text of the current symbol is a sin-

gle "chunk". The default is nil.

� si:*read-extended-ibase-signed-number* Variable

Controls how a token that could be an integer, floating-point number, or symbol

and starts with a + or - sign, is interpreted when *read-base* (or zl:ibase) is

greater than ten. Here are the possible values of this variable and their effect on

the token read.

nil It is never an integer.

t It is always an integer.
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:sharpsign It is a symbol or floating-point number at top level, but an in-

teger after #x or #nR.

:single It is a symbol or floating-point number except immediately af-

ter #x or #nR.�

The default value is :sharpsign.

In the table below, the token FACE for each case could be a symbol or a hexadeci-

mal number. :single makes it an integer on the second line, but a symbol on the

first and third lines. :sharpsign makes it an integer on both the second and third

lines.

nil t :single :sharpsign

+FACE symbol integer symbol symbol

#x+FACE symbol integer integer integer

#x(+FACE +FF 1234 +5C00) symbol integer symbol integer

+1d0 float integer float float�

Related Topics:

si:*read-extended-ibase-unsigned-number* �

� si:*read-extended-ibase-unsigned-number* Variable

Controls how a token that could be an integer, floating-point number, or symbol

and does not start with a + or - sign, is interpreted when *read-base* (or

zl:ibase) is greater than ten. Here are the possible values of this variable and the

their effect on the token read.

nil It is never an integer.

t It is always an integer.

:sharpsign It is a symbol or floating-point number at top level, but an in-

teger after #X or #nR.

:single It is a symbol or floating-point number except immediately af-

ter #X or #nR.�

The default value is :single.

In the table below, the token FACE for each case could be a symbol or a hexadeci-

mal number. :single makes it an integer on the second line, but a symbol on the

first and third lines. :sharpsign makes it an integer on both the second and third

lines.
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nil t :single :sharpsign

FACE symbol integer symbol symbol

#xFACE symbol integer integer integer

#x(FACE FF 1234 5C00) symbol integer symbol integer

1d0 float integer float float�

Related Topics:

si:*read-extended-ibase-signed-number*�

� sys:read-for-top-level &optional (stream zl:standard-input) eof-option Function

Like zl:read but ignores close parentheses seen at top level, and it returns the

symbol si:eof if the stream reaches end-of-file if you have not supplied an eof-

option (instead of signalling an error as zl:read would). This version of zl:read is

used in the system’s "read-eval-print" loops. 

� zl:read-form &optional stream &key (edit-trivial-errors-p zl:*read-form-edit-trivial-

errors-p*) (completion-alist zl:*read-form-completion-alist*) (completion-delimiters

zl:*read-form-completion-delimiters*) Function

Like zl:read-expression, but assumes that the returned value will be given imme-

diately to eval. This function is used by the Lisp command loop and by the :eval-

form and :eval-form-or-end options for prompt-and-read.

stream defaults to zl:standard-input. This function is intended to read only from

interactive streams.

If edit-trivial-errors-p is not nil, the function checks for two kinds of errors. If a

symbol is read, it checks whether the symbol is bound. If a list whose first ele-

ment is a symbol is read, it checks whether the symbol has a function definition.

If it finds an unbound symbol or undefined function, it offers to use a lookalike

symbol in another package or calls zl:parse-ferror to let the user correct the in-

put. edit-trivial-errors-p defaults to the value of zl:*read-form-edit-trivial-errors-p*.

The default value is t.

If completion-alist is not nil, this function also sets up COMPLETE and c-? as input

editor commands. When the user presses COMPLETE, the input editor tries to com-

plete the current symbol over the set of possibilities defined by completion-alist.

When the user presses c-?, the input editor displays the possible completions of

the current symbol.

The style of completion is the same as that offered by Zwei. completion-alist can be

nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered.
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alist The car of each alist element is a string representing one pos-

sible completion.

array Each element is a list whose car is a string representing one

possible completion. The array must be sorted alphabetically on

the cars of the elements.

keyword If the symbol is :zmacs, completion is offered over the defini-

tions in Zmacs buffers. If the symbol is :flavors, completion is

offered over all flavor names. If the symbol is :documentation,

completion is offered over all documentation topics available to

Document Examiner.

The default for completion-alist is the value of zl:*read-form-completion-alist*.

The default value is :zmacs.

completion-delimiters is nil or a list of characters that delimit "chunks" for com-

pletion. As in Zwei, completion works by matching initial substrings of "chunks" of

text. If completion-delimiters is nil, the entire text of the current symbol is a sin-

gle "chunk". The default is the value of zl:*read-form-completion-delimiters*. The

default value is (#\- #\: #\space).

� zl:*read-form-completion-alist* Variable

If not nil, zl:read-form sets up COMPLETE and c-? as input editor commands.

When the user presses COMPLETE, the input editor tries to complete the current

symbol over the set of possibilities defined by completion-alist. When the user

presses c-?, the input editor displays the possible completions of the current sym-

bol.

The style of completion is the same as that offered by Zwei. zl:*read-form-

completion-alist* can be nil, an alist, an sys:art-q-list array, or a keyword:

nil No completion is offered.

alist The car of each alist element is a string representing one pos-

sible completion.

array Each element is a list whose car is a string representing one

possible completion. The array must be sorted alphabetically on

the cars of the elements.

keyword If the symbol is :zmacs, completion is offered over the defini-

tions in Zmacs buffers. If the symbol is :flavors, completion is

offered over all flavor names. If the symbol is :documentation,

completion is offered over all documentation topics available to

Document Examiner.�

The default value is :zmacs. 

� zl:*read-form-completion-delimiters* Variable
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The value is nil or a list of characters that delimit "chunks" for completion in

zl:read-form. As in Zwei, completion works by matching initial substrings of

"chunks" of text. If zl:*read-form-completion-delimiters* is nil, the entire text of

the current symbol is a single "chunk". The default value is (#\- #\: #\space).

� zl:*read-form-edit-trivial-errors-p* Variable

If not nil, zl:read-form checks for two kinds of errors. If a symbol is read, it

checks whether the symbol is bound. If a list whose first element is a symbol is

read, it checks whether the symbol has a function definition. If it finds an un-

bound symbol or undefined function, it offers to use a lookalike symbol in another

package or calls zl:parse-ferror to let the user correct the input. The default is t. 

� read-from-string string &optional (eof-errorp t) eof-value &key (:start 0) :end :pre-

serve-whitespace Function

Gives the characters of string successively to the reader, until a Lisp object can be

built.

read-from-string returns two values: The first is the object that was read and the

second is the index of the first character in string not read. If the entire string is

read, the second object is the length of the string. Macro characters and so on all

take effect. If string has a fill-pointer it controls how much can be read.

Note: The eof-error-p and eof-value arguments are optional and must be passed val-

ues if the keyword parameters are to be used.

The optional arguments are:

eof-error-p Indicates whether or not to signal an error at the end of a file.

A value of t causes the error to be signalled. The default is t.

eof-value Value to be returned if eof-error-p is nil and the end of a file

is encountered. The default is nil.�

The keywords are:

:start Index of first character to be read from string. The default is

0.

:end Index of first character not to be read from string.

:preserve-whitespace 

If t, flags the reader to preserve whitespace. The default is nil.

For example:

(read-from-string "a b c" t nil :preserve-whitespace nil) 

==> A and 2

The expression above returned a value of 2 as an index of the

first character not read. The whitespace was ignored.
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(read-from-string "a b c" t nil :preserve-whitespace t) 

==> A and 1

This expression returned a value of 1 as an index. The whites-

pace was not ignored.�

Example:

(read-from-string "(a b c)") ==> (A B C) and 7

(read-from-string "(A B)(C D)")

=> (A B) 5

�

(read-from-string "(A B)(C D)" nil nil :start 5)

=> (C D) 10�

� zl:read-from-string string &optional (eof-option ’si:no-eof-option) (start 0) end (pre-

serve-whitespace zl:read-preserve-delimiters) Function

The characters of string are given successively to the reader, and the Lisp object

built by the reader is returned. Macro characters and so on all take effect. If

string has a fill-pointer it controls how much can be read.

eof-option is what to return if the end of the string is reached, as with other read-

ing functions. start is the index in the string of the first character to be read. end,

if given, is used instead of (zl:array-active-length string) as the integer that is

one greater than the index of the last character to be read.

The flag :preserve-whitespace, if provided and non-nil, indicates that the opera-

tion should preserve whitespace as for read-preserving-whitespace. It defaults to

nil.

zl:read-from-string returns two values: The first is the object read and the second

is the index of the first character in the string not read. If the entire string was

read, this is the length of the string.

Example:

(read-from-string "(a b c)") => (A B C) and 7�

� :read-input-buffer &optional eof no-hang-p Message

Returns three values: a buffer array, the index in that array of the next input

byte, and the index in that array just past the last available input byte. These val-

ues are similar to the string, start, end arguments taken by many functions and

stream operations.

If the end of the file has been reached and no input bytes are available, the

stream returns nil or signals an error, based on the eof argument, just like the

:tyi message. If the argument no-hang-p is t and no input is available, the call re-

turns nil and nil.
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After reading as many bytes from the array as you care to, you must send the

:advance-input-buffer message. The data in the buffer is valid only until the

:advance-input-buffer message is given. At that point, the stream may reuse the

buffer for other storage. 

� read-line &optional input-stream (eof-error-p t) eof-value recursive-p Function

Reads in a line of text. This function is usually used to get a line of input from

the user. It returns the line of input and some other values according to the fol-

lowing rules.

read-line and read-line-trim return from one to four values, depending on the

kind of input and the values of the eof-errorp, eof-value, and recursive-p arguments:

Compatibility Note: The read-line function is an extension of the Common Lisp

function read-line. The Symbolics version of read-line returns up to four values;

the version as described in CLtL returns two values.

See the section "CLtL Compatibility: Input from Character Streams".

1. A string representing the input. When eof-errorp is nil and an empty line is

terminated by end-of-file, the first value is eof-value.

2. A flag indicating whether or not end-of-file occurs while reading the line. No

second value is returned when an empty line is terminated by end-of-file.

3. The character that terminates the line, or nil if a nonempty line is terminat-

ed by end-of-file. This is meaningful only when reading from interactive

streams. No third value is returned when an empty line is terminated by end-

of-file.

4. Any numeric argument given to the termination character, or nil if no argu-

ment is given or if a nonempty line is terminated by end-of-file. This is mean-

ingful only when reading from interactive streams. No fourth value is re-

turned when an empty line is terminated by end-of-file.�

Input Values Returned

A (possibly empty) line 1. The line as a (possibly

terminated by a character empty) string without the

termination character.  

read-line-trim trims

leading and trailing whitespace.

2. nil

3. The character that terminates

the line

4. Any numeric argument given

to the termination character;

nil if no numeric argument
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is given

A nonempty line terminated 1. The line as a string.

by end-of-file 2. t

3. nil

4. nil

An empty line terminated by If eof-errorp is not nil, an

end-of-file error is signalled.  The error is

interpreted as occurring at top

level if recursive-p is nil and as

occurring in the middle of an

expression if recursive-p is not nil.

If eof-errorp is nil, the only

value returned is eof-value.�

In the following examples, executed in a Lisp Listener, the terminator character,

such as RETURN, is explicitly shown. Likewise, the end-of-file is inserted by means

of FUNCTION END and the numeric argument to the termination character is insert-

ed by means of CONTROL and a number and also explicitly shown.

Examples:

(read-line)fuel consumption way too fastRETURN

"fuel consumption way too fast"

NIL

#\Return

NIL�

(read-line)Morgan Le FayFUNCTION END

"Morgan Le Fay"

T

NIL

NIL�

(read-line)RETURN

""

NIL

#\Return

NIL�

(read-line nil nil 365.25)20,000 Leagues Under the SeaFUNCTION END

"20,000 Leagues Under the Sea"

T

NIL

NIL�
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(read-line)Captain NemoCONTROL-3

"Captain Nemo"

NIL

#\Return

3�

See the function read-line-trim.

See the section "Input Functions". 

� read-line-no-echo &optional stream &rest keywords &key (:terminators ’(#\Return

#\Line #\End)) :full-rubout (:notification t) :prompt :help Function

Reads a line of input from stream without echoing the input, and returns the input

as a string, without the terminating character. This function is used to read pass-

words and encryption keys. It does not use the input editor but does allow input to

be edited using RUBOUT.

stream must be interactive. It defaults to zl:query-io.

Following are the permissible keywords:

:terminators A list of characters that terminate the input. If the user types

#:|#\return|, #:|#\line|, or #:|#\end| as a terminator, the

function echoes a Newline. If the user types any other charac-

ter as a terminator, the function echoes that character. The

default is (#:|#\return| #:|#\line| #:|#\end|).

:full-rubout If not nil and the user rubs out all characters on the line, the

function returns nil. If nil and the user rubs out all characters

on the line, the function waits for more input. The default is

nil.

:notification If not nil and a notification is received, the function displays

the notification and reprompts. If nil and a notification is re-

ceived, the notification is ignored. The default is t.

:prompt If nil, no prompt is displayed. Otherwise, the value should be a

prompt option to be displayed at appropriate times. See the

section "Displaying Prompts in the Input Editor". The default

is nil.

:help If not nil, the value should be a help option. See the section

"Displaying Help Messages in the Input Editor". Then, when

the user presses HELP, the function displays the help option

and reprompts. If nil and the user presses HELP, the function

just returns #:|#\help|. The default is nil.�

� read-line-trim &optional input-stream (eof-errorp t) eof-value recursive-p Function
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Reads in a line of text and returns it as the first value after trimming leading and

trailing whitespace, that is, spaces and tabs. read-line-trim takes the same argu-

ments as read-line and returns the same values. For a discussion of these values:

See the function read-line.

(read-line-trim)  itchy thumb and fingers   RETURN 

"itchy thumb and fingers"

NIL

#\Return

NIL�

See the function read-line-trim.

See the section "Input Functions".

See the function zl:readline-trim.

See the function zl:readline.

� si:*read-multi-dot-tokens-as-symbols* Variable

In Zetalisp, when this function is set to t, it reads tokens containing more than

one dot (but no other characters) as symbols. In Common Lisp, when this function

is set to nil, it signals an error when it reads tokens containing more than one dot

(but no other characters).

� zl:read-or-character &optional delimiters stream reader Function

Like zl:read-expression, except that if it is reading from an interactive stream

and the user types one of the delimiters as the first character or the first charac-

ter after only whitespace characters, it returns four values: nil, :character, the

character code of the delimiter, and any numeric argument to the delimiter. If it

encounters any nonwhitespace characters, it calls the reader function with an argu-

ment of stream to read the input.

delimiters is a character, a list of characters, or nil. The default is nil. reader de-

faults to zl:read-expression. stream defaults to zl:standard-input. This function is

intended to read only from interactive streams. 

� read-or-end &optional (stream zl:standard-input) reader Function

Like zl:read-expression except that if it is reading from an interactive stream and

the user presses END as the first character or the first character after only whites-

pace characters, it returns two values, nil and :end. If it encounters any non-

whitespace characters, it calls the reader function with an argument of stream to

read the input. reader defaults to zl:read-expression. stream defaults to

zl:standard-input.

The :expression-or-end and :eval-form-or-end options for prompt-and-read invoke

read-or-end.
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This function is intended to read only from interactive streams. 

� :read-pointer Message

Returns the current position within the file, in characters (bytes in fixnum mode).

For text files on PDP-10 file servers, this is the number of Symbolics characters,

not PDP-10 characters. The numbers are different because of character-set trans-

lation. 

� zl:read-preserve-delimiters Variable

Certain printed representations given to zl:read, notably those of symbols and

numbers, require a delimiting character after them. (Lists do not, because the

matching close parenthesis serves to mark the end of the list.) Normally zl:read

throws away the delimiting character if it is "whitespace", but preserves it (with a

:untyi stream operation) if the character is syntactically meaningful, since it

might be the start of the next expression.

If zl:read-preserve-delimiters is bound to t around a call to zl:read, no delimiting

characters are thrown away, even if they are whitespace. This might be useful for

certain reader macros or special syntaxes. 

� read-preserving-whitespace &optional input-stream (eof-error-p t) eof-value recur-

sive-p Function

Certain printed representations given to read, notably those of symbols and num-

bers, require a delimiting character after them. (Lists do not, because the close

parenthesis marks the end of the list.) Normally, read will throw away the delimit-

ing character if it is a whitespace character, but will preserve the character of the

next expression.

read-preserving-whitespace is provided for some specialized situations where it is

desirable to determine precisely what character terminated the extended token. For

example, consider this macro-character definition:

(defun slash-reader (stream char)

  (declare (ignore char))

    (do ((path (list (read-preserving-whitespace stream))

               (cons (progn (read-char stream nil nil t)

                            (read-preserving-whitespace stream))

                      path)))

        ((not (char= (peek-char nil stream nil nil t) #\/))

         (cons ’path (nreverse path)))))

�

(set-macro-character #\/ #’slash-reader)�

Consider calling read now on this expression:

(zyedh /usr/games/zork /usr/games/boggle)�
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The / macro reads objects separated by more / characters, thus /usr/games/zork is

intended to read as (path usr games zork). The entire example expression should

therefore be read as:

(zyedh (path usr games zork) (path usr games boggle))�

However, if read had been used instead of read-preserving-whitespace, after

reading the symbol zork the following space would have been discarded, and the

next call to peek-char would see the following /. Since the / had already been

read, the loop would continue, producing the expression:

(zyedh (path usr games zork usr games boggle))�

Note that read-preserving-whitespace behaves exactly like read when the recur-

sive-p argument is non-nil. The distinction is established only by calls with recur-

sive-p equal to nil or omitted.

Note also that this is actually a rather dangerous definition to make, because ex-

pressions such as (/ x 3) will no longer read properly. The ability to reprogram the

reader syntax is very powerful, and must be used with caution. This redefinition of

/ is shown here purely for the sake of example.

(list (read) (read-char) (read))foo bar

=> (FOO #\b AR)

�

(list (read-preserving-whitespace) (read-char) (read))foo bar

=> (FOO #\Space BAR)�

� si:read-recursive stream Function

Should be called by reader macros that need to call a function to read. It is impor-

tant to call this function instead of zl:read in macros that are written in Zetalisp

but used by the Common Lisp readtable. In particular, this function must be called

by macros used in conjunction with the Common Lisp #n= and #n# syntaxes.

stream is the stream from which to read. This function can be called only from in-

side a zl:read.

For example, this is the reader macro called when the reader sees a quote (’):

si:(defun xr-quote-macro (list-so-far stream)

     list-so-far ;not used

     (values (list-in-area read-area

   ’quote (read-recursive stream))

     ’list))�

� *read-suppress* Variable

When the value is nil, the Lisp reader operates normally. When it is non-nil, most

of the interesting operations of the reader are suppressed; input characters are

parsed, but much of what is read is not interpreted.
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The primary purpose of *read-suppress* is to support the operation of the read-

time conditional constructs #+ and #-. See the section "Sharp-sign Reader Macros".

It is important for these constructs to be able to skip over the printed representa-

tion of a Lisp expression despite the possibility that the syntax of the skipped ex-

pression may not be legal for the current implementation. This is especially useful

because a primary application of #+ and #- is to allow the same program to be

shared among several Lisp implementations despite small incompatibilities of syn-

tax.

A non-nil value of *read-suppress* has the following specific effects on the Lisp

reader:

• All extended tokens are completely uninterpreted; they are discarded and treated

as if they were nil. It does not matter whether a token looks like a valid num-

ber or whether the package markers are correct. One consequence of this is that

the error concerning improper dotted-list syntax will not be signalled.

• Any standard # macro-character construction that requires, permits, or disallows

an infix numerical argument, such as #nr, will not enforce any constraint on the

presence, absence, or value of such an argument.

• The #\ construction always produces the value nil. It will not signal an error

even if an unknown character name is seen.

• Each of the #b, #o, #x, and #r constructions always scans over a following token

and produces the value nil. It will not signal an error even if the token does not

have the syntax of a rational number.

• The #* construction always scans over a following token and produces the value

nil. It will not signal an error even if the token does not consist solely of the

characters 0 and 1.

• Each of the #. and #, constructions reads the following form in suppressed mode

but does not evaluate it. The form is discarded and nil is produced.

• Each of the #a, #s, and #: constructions reads the following form in suppressed

mode but does not interpret it in any way. It need not be a list in the case of

#s, or a symbol in the case of #:. The form is discarded and nil is produced.

• The #= construction is totally ignored. It does not read a following form. It pro-

duces no object, but is treated as whitespace.

• The ## construction always produces nil.�

Note that, no matter what the value of *read-suppress* is, parentheses continue

to delimit (and construct) lists, the #( construction continues to delimit vectors,

and comments, strings, and the quote and backquote constructions continue to be

interpreted properly. Furthermore, such illegal constructions as ’), #<, #), and

#<space> continue to signal errors.
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In some cases, it may be appropriate for a user-written macro-character definition

to check the value of *read-suppress* and avoid certain computations or side ef-

fects if its value is not nil.

(setq foo "23")

�

(let ((*read-suppress* t))

  (read-from-string "foo"))

 => nil 3�

� zl:readch &optional stream eof-option Function

Provided for Maclisp compatibility only. zl:readch is just like zl:tyi, except that in-

stead of returning a character object, it returns a symbol whose print name is the

character read in. The symbol is interned in the current package. This is just like

a Maclisp "character object". (This function can take its arguments in the other

order, for Maclisp compatibility only.) 

� zl:readline &optional (stream zl:standard-input) eof-option Function

Reads in a line of text. This function is usually used to get a line of input from

the user. The line of text is normally terminated by RETURN, LINE, or END. If the

line of text is being read from a file stream, it is terminated by a Newline charac-

ter  a Return, or Carriage-Return/Line-Feed, for example  or by end-of-file. 

zl:readline, zl:readline-trim, and zl:readline-or-nil return four values, which de-

pend on the kind of input and whether or not the eof-option argument is supplied:

1. A string representing the input. When eof-option is supplied and an empty

line is terminated by end-of-file, the first value is eof-option. When an empty

line is terminated by a character, zl:readline-or-nil returns nil.

2. A flag indicating whether or not end-of-file occurred while reading the line.

3. The character that terminates the line, or nil if the line is terminated by

end-of-file. This is meaningful only when reading from interactive streams.

4. Any numeric argument given to the termination character, or nil if no argu-

ment is given or if the line is terminated by end-of-file. This is meaningful

only when reading from interactive streams.�

Input Values Returned

A nonempty line terminated 1. The line as a string without the

by a character termination character.

zl:readline-trim and 

zl:readline-or-nil trim 

leading and trailing whitespace
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from the string.

2. nil

3. The character that terminates the

line

4. Any numeric argument given to the

termination character; nil if

no numeric argument is given

An empty line terminated by 1. zl:readline and zl:readline-trim

a character return the empty string.

zl:readline-or-nil returns nil.

2. nil

3. The character that terminates the

line

4. Any numeric argument given to the

termination character; nil if

no numeric argument is given

A nonempty line terminated 1. The line as a string.  

by end-of-file zl:readline-trim and

zl:readline-or-nil trim leading

and trailing whitespace.

2. t

3. nil

4. nil

An empty line terminated by If eof-option is supplied:

end-of-file 1. eof-option

2. t

3. nil

4. nil

If no eof-option is supplied, an

error is signalled.�

In the following examples, executed in a Lisp Listener, the terminator character,

such as RETURN, is explicitly shown. Likewise, the end-of-file is inserted by means

of FUNCTION END and the numeric argument to the termination character is insert-

ed by means of CONTROL and a number and also explicitly shown.

Examples:

(zl:readline)Bo Diddley caught a bear catRETURN

"Bo Diddley caught a bear cat"

NIL

#\Return

NIL�
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(zl:readline)To make his pretty baby a Sunday hatCONTROL-3 RETURN

"To make his pretty baby a Sunday hat"

NIL

#\Return

3�

(zl:readline)Warren G. HardingEND

"Warren G. Harding"

NIL

#\End

NIL�

(zl:readline)FUNCTION END

Error: READLINE encountered an EOF in #:TERMINAL-IO-SYN-STREAM

�

SI:READLINE-EOF:

   Arg 0 (SI:STREAM): #:TERMINAL-IO-SYN-STREAM

   Arg 1 (SI:EOF-OPTION): SI:NO-EOF-OPTION

s-A, ABORT: Return to Lisp Top Level in Dynamic Lisp Listener 2

s-B:            Restart process Dynamic Lisp Listener 2

→ �

(zl:readline nil (+ 54 65))FUNCTION END

119

T

NIL

NIL�

(zl:readline nil nil)FUNCTION END

NIL

T

NIL

NIL�

For more information on the handling of end-of-line characters, such as the Car-

riage-Return/Line-Feed combination, see the section "The Character Set".

See the section "Input Functions".

See the function zl:read-delimited-string.

See the function zl:readline-or-nil.

See the function zl:readline-trim.

� zl:readline-no-echo &optional stream &key (terminators ’(#\return #\line #\end))

(full-rubout nil) (notification t) (prompt nil) (help nil) Function

Reads a line of input from stream without echoing the input, and returns the input

as a string, without the terminating character. This function is used to read pass-

words and encryption keys. It does not use the input editor but does allow input to

be edited using RUBOUT.
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stream must be interactive. It defaults to zl:query-io.

Following are the permissible keywords:

:terminators A list of characters that terminate the input. If the user types

#\return, #\line, or #\end as a terminator, the function echoes

a Newline. If the user types any other character as a termina-

tor, the function echoes that character. The default is

(#\return #\line #\end).

:full-rubout If not nil and the user rubs out all characters on the line, the

function returns nil. If nil and the user rubs out all characters

on the line, the function waits for more input. The default is

nil.

:notification If not nil and a notification is received, the function displays

the notification and reprompts. If nil and a notification is re-

ceived, the notification is ignored. The default is t.

:prompt If nil, no prompt is displayed. Otherwise, the value should be a

prompt option to be displayed at appropriate times. See the

section "Displaying Prompts in the Input Editor". The default

is nil.

:help If not nil, the value should be a help option. See the section

"Displaying Help Messages in the Input Editor". Then, when

the user presses HELP, the function displays the help option

and reprompts. If nil and the user presses HELP, the function

just returns #\help. The default is nil.�

� zl:readline-or-nil &optional (stream zl:standard-input) eof-option Function

Reads in a line of text. It is like zl:readline except that zl:readline-or-nil returns

a first value of nil instead of the empty string if the input string is empty. In oth-

er respects, it is like zl:readline-trim in that it trims leading and trailing whites-

pace  spaces and tabs  from string input. It takes the same arguments as

zl:readline and zl:readline-trim and returns the same four values. For a discus-

sion of these values: See the function zl:readline.

Example:

(zl:readline-or-nil)RETURN

NIL

NIL

#\Return

NIL�

For more examples: See the function zl:readline.

See the section "Input Functions".
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The :string-or-nil option for prompt-and-read and the :string-or-nil tv:choose-

variable-values keyword use zl:readline-or-nil.

See the function zl:readline-trim. 

� zl:readline-trim &optional (stream zl:standard-input) eof-option Function

Reads in a line of text. It is like zl:readline except that zl:readline-trim trims

leading and trailing whitespace  spaces and tabs  from string input. It takes

the same arguments as zl:readline and zl:readline-or-nil and returns the same

four values. For a discussion of these values, see the function zl:readline.

Example:

(zl:readline-trim)   exciting option   RETURN

"exciting option"

NIL 

#\Return

NIL�

For more examples, see the function zl:readline.

The :string-trim option for prompt-and-read and the :string-trim tv:choose-

variable-values keyword use zl:readline-trim.

See the section "Input Functions".

See the function zl:readline-or-nil.

� zl:readlist char-list Function

Provided mainly for Maclisp compatibility. char-list is a list of characters. The

characters can be represented by anything that the function character accepts:

integers, strings, or symbols. The characters are given successively to the reader,

and the Lisp object built by the reader is returned. Macro characters and so on all

take effect.

If there are more characters in char-list beyond those needed to define an object,

the extra characters are ignored. If there are not enough characters, an "eof in

middle of object" error is signalled. 

� *readtable* Variable

The value is the current readtable. The initial value of this is a readtable set up

for standard Common Lisp syntax. You can bind this variable to temporarily

change which readtable is being used.

� readtable Type Specifier

A datastructure called a readtable is the type specifier symbol for the predefined

Lisp data structure of that name.
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The types readtable, hash-table, package, pathname, stream and random-state

are pairwise disjoint.

Examples:

(typep *readtable* ’readtable) => T

(zl:typep *readtable*) => ZL:READTABLE

(subtypep ’readtable ’common) => T and T

(sys:type-arglist ’readtable) => NIL and T

(readtablep *readtable*) => T�

See the section "Data Types and Type Specifiers". See the section "The Readtable".

� zl:readtable Variable

In your new programs, we recommend that you use the variable *readtable*,

which is the Common Lisp equivalent of zl:readtable.

The value of zl:readtable is the current readtable. This starts out as a copy of

si:initial-readtable. You can bind this variable to temporarily change the readtable

being used.

� readtablep object Function

Returns t if object is a readtable, otherwise returns nil.

(readtablep (copy-readtable)) => t�

� realpart number Function

If number is a complex number, returns the real part of number. If number is a

noncomplex number, returns number.

Examples:

(realpart #c(3 4)) => 3

(realpart 4) => 4�

Related Functions:

complex

imagpart�

For a table of related items: See the section "Functions that Decompose and Con-

struct Complex Numbers".

� recompile-flavor flavor &key generic ignore-existing-methods (do-dependents t) 

Function

Updates the internal data of flavor and any flavors that depend on it, such as re-

generating inherited information about methods. Normally the Flavors system does

the equivalent of recompile-flavor whenever it is needed.
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recompile-flavor is provided so you can recover from unusual situations where the

Flavors system does not automatically update the inherited information. These sit-

uations include: redefining a function called as part of expanding a wrapper, and

recovering from a bug in a method combination routine. If for any reason you sus-

pect that the inherited methods have not been calculated and combined properly,

you can use recompile-flavor.

If you supply a non-nil value to generic, only the methods for that generic function

are changed. The system does this when you define a new method or redefine a

wrapper (when the new definition is not equal to the old). Otherwise, all generic

functions are updated.

do-dependents controls whether flavors that depend on the given flavor are also re-

compiled. By default, all flavors that depend on it are recompiled. You can specify

nil for do-dependents to prevent the dependent flavors from being recompiled. 

If you supply a non-nil value to ignore-existing-methods, all combined methods are

regenerated. Otherwise, new combined methods are generated only if the set of

methods to be called has changed. This is the default.

One example of the need for supplying t to ignoring-existing-methods is when you

change the way a defwrapper expands, but there is no visible change to the body

of the defwrapper. Typically this happens when the wrapper expansion invokes a

macro or a subst whose definition has been changed. The same situation can hap-

pen for defwhopper-subst, and defmethod and defwhopper when the :inline-

methods option to defgeneric is used. The Flavors system does not know that any-

thing has changed, and recompiling the wrapper (or whopper or method) does not

recompile any combined methods that exists. However, if you supply t to ignore-

existing-methods, all combined methods are regenerated. 

recompile-flavor affects only flavors that have already been compiled. Typically

this means it affects flavors that have been instantiated, and does not affect mix-

ins.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� record-source-file-name function-spec &optional (type ’defun) (no-query (eq�

sys:inhibit-fdefine-warnings t)) Function

Associates the definition of a function with its source files, so that tools such as

Edit Definition (m-.) can find the source file of a function. It also detects when

two different files both try to define the same function, and warns the user.

record-source-file-name is called automatically by defun, defmacro, defstruct,

defflavor, and other such defining special forms. Normally you do not invoke it

explicitly. If you have your own defining macro, however, that does not expand into

one of the above, you can make its expansion include a record-source-file-name

form.

Normally, record-source-file-name returns t. If a definition of the same name and

type was already made by another file, the user is asked whether the definition
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should be performed. If the user answers "no", record-source-file-name returns

nil. When nil is returned the caller should not perform the definition.

function-spec The function spec for the entity being defined.

type The type of entity being defined, with defun as the default.

type can be any symbol, typically the name of the correspond-

ing special form for defining the entity. Some standard exam-

ples:

defun

defvar

defflavor

defstruct�

Both macros and substs are subsumed under the type defun,

because you cannot have a function named x in one file and a

macro named x in another file.

no-query Controls queries about redefinitions. t means to suppress

queries about redefining. The default value of no-query depends

on the value of sys:inhibit-fdefine-warnings. When

sys:inhibit-fdefine-warnings is t, no-query is t; otherwise it is

nil. Regardless of the value for no-query, queries are sup-

pressed when the definition is happening in a patch file.�

You cannot specify the source file name with this function. The function is always

associated with the pathname for the file being loaded (sys:fdefine-file-pathname).

When redefining functions, some users try to avoid redefinition warnings and

queries by using the form (remprop symbol :source-file-name). The preferred way

to do this is to use the form (record-source-file-name ’function-spec ’defun t). The

former method causes the system to forget both the original definition and other

definitions for the same symbol (as a variable, flavor, structure, and so forth).

record-source-file-name lets the system know that the function is defined in two

places, and it avoids redefinition warnings and queries.

Of course, if you are redefining something other than a function, use the appropri-

ate definition type symbol instead of defun as the second argument to record-

source-file-name. For example, if you are redefining a flavor, use defflavor as the

second argument. See the section "How Programs Manipulate Definitions". 

� reduce function sequence &key :from-end (:start 0) :end :initial-value (:key

#’identity) Function

Combines all of the elements of a sequence using a binary operation, for example,

using + to sum all of the elements.

sequence is combined or "reduced" using function, which must accept two argu-

ments. The reduction is left-associative, unless the value of the :from-end keyword

argument is t, in which case it is right-associative. The first two elements of the

indicated subsequence of sequence are combined by using function. The result is
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combined with the next element of the subsequence, and so forth, until the subse-

quence is exhausted, and the result is returned. If the :initial-value argument is

specified, it is logically placed before sequence (or after, if the value of the :from-

end argument is t) and it is included in the reduction operation.

If the specified subsequence contains exactly one element and no :initial-value ar-

gument is specified, that element is returned and function is not called. If the

:start and :end arguments are specified and the subsequence is empty, and the

:initial-value argument is specified, the :initial-value is returned and function is

not called. If the subsequence is empty and no :initial-value is specified, function

is called with zero arguments, and reduce returns whatever the function returns.

(This is the only case where function is called with other than two arguments.)

If a :key argument is supplied, its value must be a function of one argument

which will be used to extract the values to reduce. The :key function will be ap-

plied exactly once to each element of the sequence in the order implied by the re-

duction order but not to the value of the :initial-value argument, if any.

Example:

Using reduce to obtain the total of the ages of the possibly empty sequence of as-

tronauts astros:

(reduce #’+ astros :key #’person-age)�

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(reduce #’+ ’(1 2 3 4)) => 10

�

(reduce #’- ’(1 2 3 4) :from-end t) => -2

�

(reduce #’+ ’()) => 0

�

(reduce #’+ #(1 1 1 1 1) :start 2 :end 5) => 3

�

(reduce #’list ’(1 2 3 4)) => (((1 2) 3) 4)

�

(reduce #’list ’(1 2 3 4) :initial-value ’foo :from-end t) =>

(1 (2 (3 (4 FOO))))�

In the previous example, + accepts an arbitrary number of arguments; thus, apply

could be used instead of reduce. However, apply can not be used in the following

examples because oddadd accepts exactly two arguments.

(defun oddadd (x y)

  (if (and (oddp x) (oddp y))

    (+ x y) 1))
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�

(reduce #’oddadd ’(1 2 3 4 5))

 = (oddadd (oddadd (oddadd (oddadd 1 2) 3) 4) 5)

 => 6

�

(reduce #’oddadd ’(1 2 3 4 5) :from-end t)

 = (oddadd 1 (oddadd 2 (oddadd 3 (oddadd 4 5))))

 => 2�

The following example illustrates the difference between apply and reduce. Because

< is an arbitrary function, apply returns true. However, reduce returns an error

because the result of an application of < is not of a suitable type for an argument

to <.

(reduce #’< ’(1 2 3 4 5)) is erroneous

�

(apply #’< ’(1 2 3 4 5)) => t�

For a table of related items: See the section "Mapping Sequences".

� clos:reinitialize-instance instance &rest initargs Generic Function

Reinitializes an existing instance according to initargs (by calling clos:shared-

initialize) and returns the initialized instance. This generic function is intended

both to be called by users, and to be specialized by users.

instance The instance to initialize.

initargs Alternating initialization argument names and values. The set

of valid initialization argument names includes:

• Symbols declared by the :initarg slot option to clos:defclass,

which are used to initialize the value of a slot. 

• Keyword arguments accepted by any applicable methods for

clos:reinitialize-instance or clos:shared-initialize.

• The keyword :allow-other-keys. The default value for

:allow-other-keys is nil. If you provide t as its value, then

all keyword arguments are valid.�

The default primary method for clos:reinitialize-instance does the following: 

1. Checks the validity of the initargs and signals an error if an invalid initializa-

tion argument name is detected. 

2. Calls the clos:shared-initialize generic function with the instance, nil, and

the initialization arguments provided to clos:reinitialize-instance. The second

argument is nil to indicate that no slots are to be initialized from their init-

forms. �
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Note that the usual way for users to customize the reinitialization behavior is to

specialize clos:reinitialize-instance by writing after-methods. A user-defined pri-

mary method would override the default method, and thus could prevent the usual

slot-filling behavior.

See the section "Reinitializing a CLOS Instance". 

� rem number divisor Function

Divides number by divisor, truncating the quotient toward zero, and returns the

remainder. This is the same as the second value of (truncate number divisor). If q

and r denote, respectively, the quotient and remainder, then: q * divisor + r =

number.

The arguments can be rational or floating-point numbers. The returned value, r, is

rational if both arguments are rational; it is floating-point if either argument is

floating-point.

Examples:

(rem 3 2) => 1

(rem 3 -2) => 1

(rem -3 2) => -1

(rem -3 -2) => -1

(rem 4 2) => 0

(rem 3.8 2) => 1.8

(rem -3.8 2) => -1.8

(rem 19/5 2) => 9/5�

When using Genera, the following functions are synonyms of rem:

zl:\\

zl:remainder �

Related Functions:

truncate

mod �

For a table of related items, see the section "Arithmetic Functions". 

� zl:rem pred item list &optional (times most-positive-fixnum) Function

Returns a copy of list with all occurrences of item removed. pred is used to match

the elements of list against item. (zl:rem ’eq a b) is the same as (zl:remq a b). 

(rem 25 12) → 1

�

(rem -25 12) → -1

�

(rem 25 -12) → 1

�

(rem 4.5 2.2) → 0.1�
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For a table of related items: See the section "Functions for Modifying Lists". and

see CLtL 217. 

� :rem-hash key Message

Removes any entry for key in the hash table. Returns t if there was an entry or

nil if there was not. This message is obsolete; use remhash instead. 

� zl:rem-if pred list &rest extra-lists Function

Removes from list those elements that satisfy pred. A new list is made by applying

pred to all the elements of list and removing the ones that satisfy it. zl:rem-if does

the same thing, but is used if list does not represent a mathematical set.

zl:subset-not and zl:rem-if do the same thing, but they are used in different con-

texts. zl:subset-not refers to the function’s action if list is considered to represent

a mathematical set.

pred should be a function of one argument, if there are no extra-lists arguments. If

extra-lists is present, each element of extra-lists (that is, each further argument to

zl:subset-not or zl:rem-if) is a list of objects to be passed to pred as pred’s second

argument, third argument, and so on. The reason for this is that pred might be a

function of many arguments; extra-lists lets you control what values are passed as

additional arguments to pred. However, the list returned by zl:subset-not or

zl:rem-if is still a "subset" of the first argument in the various calls to pred.

For a table of related items: See the section "Functions for Modifying Lists". 

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:rem-if-not pred list &rest extra-lists Function

Removes from list those elements that do not satisfy pred. That is, it keeps the el-

ements for which pred is true. zl:subset does the same thing, but is used if list

does not represent a mathematical set.

pred should be a function of one argument, if there are no extra-lists arguments. If

extra-lists is present, each element of extra-lists (that is, each further argument to

zl:rem-if-not) is a list of objects to be passed to pred as pred’s second argument,

third argument, and so on. The reason for this is that pred might be a function of

many arguments; extra-lists lets you control what values are passed as additional

arguments to pred. However, the list returned by zl:rem-if-not is still a "subset" of

the first argument in the various calls to pred.

� zl:remainder x y Function

Returns the remainder of x divided by y. x and y must be integers. The exact rules

for the meaning of the quotient and remainder of two integers in Zetalisp are

given in another section. See the section "Integer Division in Zetalisp".
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Examples:

(zl:remainder 3 2) => 1

(zl:remainder -3 2) => -1

(zl:remainder 3 -2) => 1

(zl:remainder -3 -2) => -1�

The following functions are synonyms of zl:remainder:

rem

zl:\\ �

� remf place indicator Macro

Searches property list place for a property with an indicator eq to indicator, re-

moves indicator and its value from the property list via splicing, and returns a

non-nil value. Otherwise, nil is returned. This macro differs from function

remprop in that it takes a place rather than a symbol to indicate the appropriate

property list.

In the following example, assume that symbol-plist returns the indicated property

list: 

(defvar *some-symbol* (list ’COLOR ’RED ’SPEED ’MYSTICAL ’HIT-POINTS ’60))�

Then the following calls to remprop give the indicated results:

(remf *some-symbol* ’speed)

�

(getff *some-symbol* ’speed ’default-val) => DEFAULT-VAL

�

(remf *some-symbol* ’magic-user) => nil�

See the section "Functions Relating to the Property List of a Symbol".

� remhash key table Function

Removes any entry for key in table. Returns t if there was an entry or nil if there

was not.

(setq company (pop recent-payments))

�

(unless (remhash company payment-overdue-hash-table)

        (setf (gethash company slow-payers-hash-table)

              ’max-days-late-unknown))�

For a table of related items: See the section "Table Functions".

� zl:remhash-equal key hash-table Function

Removes any entry for key in hash-table. Returns t if there was an entry or nil if

there was not. This function is obsolete; use remhash instead. 
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� zl:remob symbol &optional package Function

In your new programs, we recommend that you use the function unintern which is

the Common Lisp equivalent of the function zl:remob.

zl:remob removes symbol from package (the name is historical and means "RE-

Move from OBlist"). symbol itself is unaffected, but intern no longer finds it in

package. Removing a symbol from its home package sets its home package to nil;

removing a symbol from a package different from its home package leaves the

symbol’s home package unchanged.

zl:remob returns t if the symbol was found and removed, or nil if it was not

found.

zl:remob is always "local", in that it removes only from the specified package and

not from any other packages. Thus zl:remob has no effect unless the symbol is

present in the specified package, even if it is accessible from that package via in-

heritance.

If package is unspecified it defaults to the symbol’s home package. Note this excep-

tion well: the default value of zl:remob’s package argument is not the current

package.

� remove item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end :count�

Function

Returns a sequence of the same type as sequence that has the same elements, ex-

cept that those in the subsequence delimited by :start and :end and satisfying the

predicate specified by the :test keyword have been removed. This is a non-

destructive operation. The returned sequence is a copy of sequence, save that some

elements are not copied. Elements that are not removed occur in the same order

in the result as they did in sequence.

For example:

(setq nums ’(1 2 3)) => (1 2 3) 

(remove 1 nums) => (2 3)

nums => (1 2 3)

�

(remove 2 nums) => (1 3)

nums  => (1 2 3)�

item is matched against the elements specified by the test keyword. The item can

be any Symbolics Common Lisp object.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero. Here is an example of remove used

with a list: 



Page 1413

(setq list ’(a b c)) => (A B C) 

(remove b list)=> (A C)

list => (A B C)

�

(remove c list) => (A B)

list  => (A B C) �

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(remove 4 #(6 1 6 4) :test #’>) => #(6 6 4)�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(remove 0 ’((0 1) (0 1) (1 0)) :key #’second) 

=> ((0 1) (0 1))�

If the value of the :from-end argument is non-nil, it only affects the result when

the :count argument is specified. In that case only the rightmost :count elements

that satisfy the predicate are removed. 

For example:

(remove 4 ’(4 2 4 1) :count 1) => (2 4 1)

�

(remove 4 #(4 2 4 1) :count 1 :from-end t) => #(4 2 1)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on. 

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(remove ’a #(b a a c)) => #(B C)

 

(remove 4 ’(4 4 1)) => (1)
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�

(remove 4 ’(4 1 4) :start 1 :end 2) => (4 1 4)

�

(remove 4 ’(4 1 4) :start 0 :end 3) => (1)�

The :count argument, if supplied, limits the number of elements removed. If more

than :count elements of sequence satisfy the predicate, then only the leftmost

:count of those elements are deleted. A negative :count argument is equivalent to

a :count of 0.

For example:

(remove 4 ’(4 2 4 1) :count 1) => (2 4 1)�

remove is the non-destructive version of delete. The following example uses the

key function to obtain a value for comparison with item by adding one to each ele-

ment of the sequence. The item 3 is passed as the x parameter of the anonymous

comparison function, and one plus the current sequence element is passed as the y

parameter. After count elements are removed, the value is returned.

Additional examples:

�

(setq a #(1 2 3 4 5 6 7))

�

(remove 3 a :test #’=) 

=> #(1 2 4 5 6 7)

�

(remove 3 a :start 1 :key #’1+ :count 3

        :test #’(lambda (x y) (x y)))

=> #(1 2 6 7)�

For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification".

� zl:remove item list &optional (times most-positive-fixnum) Function

Returns a copy of list with all occurrences of item removed. zl:equal is used to

match elements of list against item. zl:remove is the non-destructive version of

zl:delete.

For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification". 

� remove-duplicates sequence &key :from-end (:test #’eql) :test-not (:start 0) :end :key�

Function

Compares the elements of sequence pairwise, and if any two match, discards the

one occurring earlier in the sequence. The returned form is sequence, with enough

elements removed such that no two of the remaining elements match. remove-

duplicates is a non-destructive function.
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sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The function normally processes the sequence in the forward direction, but if a

non-nil value is specified for :from-end, processing starts from the reverse direc-

tion. If the :from-end argument is true, then the one later in the sequence is dis-

carded.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(remove-duplicates ’(1 1 1 2 2 2 3 3 3) :test #’>)  => (1 1 1 2 2 2 3 3 3)

(remove-duplicates ’(1 1 1 2 2 2 3 3 3) :test #’=) => (1 2 3)�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(remove-duplicates ’(a a b b)) => (A B)

(remove-duplicates #(1 1 1 1 1 1)) => #(1)

(remove-duplicates #(1 1 1 2 2 2) :start 3) => #(1 1 1 2)

(remove-duplicates #(1 1 1 2 2 2) :start 2 :end 4) => #(1 1 1 2 2 2)�

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(remove-duplicates ’((Smith S) (Jones J) (Taylor T) (Smith S)) :key #’second) 

 => ((JONES J) (TAYLOR T) (SMITH S))�

The value returned by remove-duplicates can share elements with sequence. A list

can share a tail with an input list, and the result can be eq to the input sequence

if no elements are removed.

In the following example, the key function defines duplicates as a number with the

same square as another, or as any other object eql to another. The eql function is

the default test. Note that 7 is not removed because it is not duplicated within the
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subsequence delimited by start and end.

(setq set-a ’#(1 2 1 -2 7 4 5 6 7))

�

(remove-duplicates set-a :end 4 :key #’(lambda(x)(if (numberp x) x 0)) 

 :from-end t)

�

 => #(1 2 7 4 5 6 7)�

remove-duplicates is the non-destructive version of delete-duplicates. 

For a table of related items: See the section "Sequence Modification".

� flavor:remove-flavor flavor-name Function

Removes the definition of the flavor named by flavor-name. Any accessor functions

are also removed from the world.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� remove-if predicate sequence &key :key :from-end (:start 0) :end :count�

Function

Returns a sequence of the same type as sequence that has the same elements, ex-

cept that those in the subsequence delimited by :start and :end and satisfying

predicate have been removed. This is a non-destructive operation. The returned se-

quence is a copy of sequence, save that some elements are not copied. Elements

that are not removed occur in the same order in the result as they did in sequence.

For example:

(setq a-list ’(1 a b c)) => (1 A B C)

(remove-if #’numberp a-list)  => (A B C)

a-list => (1 A B C)

�

(setq my-list ’(0 1 0)) => (0 1 0)

(remove-if #’zerop my-list)  => (1)

my-list  => (0 1 0)�

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(remove-if #’atom ’((book 1) (math (room c)) (text 3)) :key #’second)

 => ((MATH (ROOM C)))�
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If the value of the :from-end argument is non-nil, it only affects the result when

the :count argument is specified. In that case only the rightmost :count elements

that satisfy the predicate are deleted. 

For example:

(remove-if #’numberp ’(4 2 4 1) :count 1 )  => (2 4 1)

�

(remove-if #’numberp ’(4 2 4 1) :count 1 :from-end t) => (4 2 4)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on. 

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

�

(remove-if #’atom ’(’a 1 "list")) => (’A)

�

(remove-if #’numberp ’(4 1 4) :start 1 :end 2)  => (4 4)

�

(remove-if #’evenp ’(4 1 4) :start 0 :end 3)  => (1)�

The :count argument, if supplied, limits the number of elements deleted. If more

than :count elements of sequence satisfy the predicate, then only the leftmost

:count of those elements are deleted. A negative :count argument is equivalent to

a :count of 0.

For example:

(remove-if #’oddp ’(1 1 2 2) :count 1 ) => (1 2 2)�

In the following example, vector elements lists are removed from the result vector

if their second element is an odd number:

(setq sequence ’#((A 1 2) (B 2 5) (C 3 10) (D 4 17)))

�

(remove-if #’oddp sequence :key #’second)

�

 => #((B 2 5) (D 4 17))�

remove-if is the non-destructive version of delete-if.

For a table of related items: See the section "Sequence Modification".

� remove-if-not predicate sequence &key :key :from-end (:start 0) :end :count Function
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Returns a sequence of the same type as sequence that has the same elements, ex-

cept that those in the subsequence delimited by :start and :end which do not sat-

isfy predicate have been removed. The returned sequence is a copy of sequence,

save that some elements are not copied. Elements that are not removed occur in

the same order in the result as they did in sequence. This is a non-destructive op-

eration.

For example:

(setq a-list ’(1 a b c)) => (1 A B C)

(remove-if-not #’numberp a-list) => (1)

a-list  => (1 A B C)

�

(setq my-list ’(0 1 0)) => (0 1 0)

(remove-if-not #’zerop my-list) => (0 0)

my-list => (0 1 0)�

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(remove-if-not #’atom ’((book 1) (math (room c)) (text 3)) :key #’second)

 => ((BOOK 1) (TEXT 3))�

If the value of the :from-end argument is non-nil, it affects the result only when

the :count argument is specified. In that case only the rightmost :count elements

that satisfy the predicate are removed. 

For example:

(remove-if-not #’numberp ’(4 ’a ’b 1) :count 1 ) 

 => (4 ’B 1)

�

(remove-if-not #’numberp ’(’c 4 2 4 ’a) :count 1 :from-end t) 

 => (’C 4 2 4)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on. 

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.
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For example:

�

(remove-if-not #’atom ’(’a 1 "list"))  => (1 "list")

(remove-if-not #’numberp ’(’a ’b ’c) :start 1 :end 2) => (’A ’C)

(remove-if-not #’evenp ’(1 2 3 5) :start 0 :end 3)  => (2 5)

 �

The :count argument, if supplied, limits the number of elements deleted. If more

than :count elements of sequence satisfy the predicate, then only the leftmost

:count of those elements are deleted. A negative :count argument is equivalent to

a :count of 0.

For example:

(remove-if-not #’oddp ’(1 1 2 2) :count 1 ) => (1 1 2)�

remove-if-not is the non-destructive version of delete-if-not.

For a table of related items: See the section "Sequence Modification".

� clos:remove-method generic-function method Generic Function

Removes a method from a generic function and returns the modified generic func-

tion.

generic-function A generic function object.

method A method object.�

If the method is not one of the methods on the generic function, no action is taken

and no error is signaled. 

� remove-proclaims fspec Function

Removes any proclamations associated with fspec. This function is a Symbolics ex-

tension to Common Lisp.

See the function proclaim.

� remprop symbol indicator Function

Removes from the property list in symbol a property with an indicator eq to indi-

cator. For example, if the property list of foo was:

(color blue height six-three near-to bar)�

then:

(remprop ’foo ’height) => (six-three near-to bar)�

and foo’s property list would be:

(color blue near-to bar)�
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If the property list has no indicator-property, then remprop has no side-effect and

returns nil.

See the section "Functions Relating to the Property List of a Symbol".

For a table of related items: See the section "Functions That Operate on Property

Lists".

� zl:remprop sym indicator Function

Removes sym’s indicator property, by splicing it out of the property list. It returns

that portion of the list inside sym of which the former indicator-property was the

car. The car of what zl:remprop returns is what zl:get would have returned with

the same arguments. zl:remprop uses the property lists associated with the sym-

bol. For example, if the property list of foo was:

(color blue height six-three near-to bar)�

then:

(zl:remprop ’foo ’height) => (six-three near-to bar)�

and foo’s property list would be:

(color blue near-to bar)�

If sym has no indicator-property, then zl:remprop has no side-effect and returns

nil.

For a table of related items: See the section "Functions That Operate on Property

Lists".

Searches the property list of symbol for a property with an indicator eq to indi-

cator, removes the indicator value pair from the property list via splicing, and re-

turns a non-nil value. Otherwise, nil is returned.

In the following example, assume that symbol-plist returns the indicated proper-

ty list:

(setf (get ’some-symbol ’hit-points) ’60)

(setf (get ’some-symbol ’speed) ’mystical)

(setf (get ’some-symbol ’size) ’large)

(setf (get ’some-symbol ’color) ’red)

�

(symbol-plist ’some-symbol)

 → (COLOR RED SIZE LARGE SPEED MYSTICAL HIT-POINTS 60)�

The following calls to remprop produce the results as indicated:

(get ’some-symbol ’size) → LARGE

�

(remprop ’some-symbol ’size)

�

(get ’some-symbol ’size) → NIL
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�

(remprop ’some-symbol ’speed)

�

(get ’some-symbol ’speed) → NIL

�

(symbol-plist ’some-symbol)

�

 → (COLOR RED  HIT-POINTS 60)�

See Also: CLtL 166, get

� zl:remq item list &optional (times most-positive-fixnum) Function

Returns a copy of list with all occurrences of item removed. eq is used for the

comparison. zl:remq is the non-destructive version of zl:delq. Examples:

(setq x ’(a b c d e f))

(zl:remq ’b x) => (a c d e f)

x => (a b c d e f)

(zl:remq ’b ’(a b c b a b) 2) => (a c a b)�

For a table of related items: See the section "Functions for Modifying Lists". 

� :rename new-name Message

Renames the file open on this stream. You should not use :rename. Instead, use

rename-file. 

� flavor:rename-instance-variable flavor-name old new Function

Renames an instance variable old to a new name new for the given flavor-name.

When this is done, the value of the old instance variable is carried over to the

new instance variable. Any old instances are updated to reflect the new name of

the instance variable. Often you use flavor:rename-instance-variable first, which

ensures that the value of the instance variable is carried over. You might then use

defflavor to add options such as :readable-instance-variables, or change the de-

fault initial value. 

(flavor:rename-instance-variable ’ship ’captain ’skipper)�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� rename-package pkg new-name &optional new-nicknames Function

Replaces the old name and all old nicknames of pkg with new-name and new-

nicknames. new-name is a string or a symbol. new-nicknames is a list of strings or

symbols. new-nicknames defaults to nil.
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In the following example, package-nicknames is used to retrieve the current list

of nicknames for an existing package and then rename-package is used to add a

new nickname to that package.

(defun add-nickname (package new-nickname)

  (rename-package package (package-name package)

                  :nicknames (cons new-nickname (package-nicknames package))))�

See the section "Mapping Between Names and Packages".

� si:rename-within-new-definition-maybe function definition Function

Given new-structure that is going to become a part of the definition of

function-spec, performs on it the replacements described by the si:rename-within

encapsulation in the definition of function-spec, if there is one. The altered (copied)

list structure is returned.

It is not necessary to call this function yourself when you replace the basic defini-

tion because fdefine with carefully supplied as t does it for you. si:encapsulate

does this to the body of the new encapsulation. So you only need to call si:rename-

within-new-definition-maybe yourself if you are rplac’ing part of the definition.

For proper results, function-spec must be the outer-level function spec. That is, the

value returned by si:unencapsulate-function-spec is not the right thing to use. It

has had one or more encapsulations stripped off, including the si:rename-within

encapsulation if any, and so no renamings are done. 

� repeat Keyword for loop

Repeat is one of the iteration-driving clauses for loop.

repeat expression

Evaluates expression (during the variable-binding phase), and causes the

loop to iterate that many times. expression is expected to evaluate to an in-

teger. If expression evaluates to a 0 or negative result, the body code is not

executed.

Examples:

(defun loop1 (how-far)

  (loop repeat how-far

for x from 1 to 1000 by 2

        do

    (princ x)(princ " ")))   => LOOP1

(loop1 5) => 1 3 5 7 9 NIL

(loop1 9) => 1 3 5 7 9 11 13 15 17 NIL

�

See the section "Iteration-Driving Clauses". 
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� replace sequence1 sequence2 &key (:start1 0) :end1 (:start2 0) :end2 Function

Destructively modifies sequence1 by copying into it successive elements from se-

quence2. 

sequences can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero. The elements of sequence2 must be of

a type that can be stored into sequence1.

The keyword arguments :start1, :end1, :start2, and :end2 are used to specify sub-

sequences of sequence1 and sequence2.

:start1 and :end1 must be non-negative integer indices into the sequence. :start1

must be less than or equal to :end1, else an error is signalled. It defaults to zero

(the start of the sequence).

:start1 indicates the start position for the operation within the sequence. :end1 in-

dicates the position of the first element in the sequence beyond the end of the op-

eration. It defaults to nil (the length of the sequence). If both :start1 and :end1

are omitted, the entire sequence is processed by default.

:start2 and :end2 operate the same as :start1 and :end1.

If the subsequences delimited by :start1, :start2, :end1 and :end2 are not of the

same length, the shorter length determines how many elements are copied. The ex-

tra elements near the end of the longer subsequence are not involved in the oper-

ation. The number of elements copied can be expressed as:

(min (- end1 start1) (- end2 start2))�

If sequence1 and sequence2 are the same (eq) object and the region being modified

overlaps the region being copied from, it is as if the entire source region were

copied to another place, and only then copied back into the target region. However,

if sequence1 and sequence2 are not the same, but the region begin modified over-

laps the region being copied from, after the replace operation the subsequence of

sequence1 being modified will have unpredictable contents. 

For example:

(setq bird-list ’(heron flamingo loon owl)) =>

(HERON FLAMINGO LOON OWL)

�

(replace bird-list bird-list :start2 2 :end2 3) =>

(LOON FLAMINGO LOON OWL)

�

bird-list => (LOON FLAMINGO LOON OWL)

�

(setq bird-list ’(heron flamingo loon owl)) =>

(HERON FLAMINGO LOON OWL)

�

(replace bird-list ’(hawk turkey) :start1 1 :end1 3) =>

(HERON HAWK TURKEY OWL)�



Page 1424

(setq a #(1 2 3 4 5) b #*1001010100110)

�

(replace a b :start1 1 :end1 3 :start2 3 :end2 9)

=> #(1 1 0 4 5)�

In the previous example, only the second and third vector elements are replaced

because

(< (- end1 start1) (- end2 start2))�

For a table of related items: See the section "Sequence Modification". Also: See the

section "Copying an Array".

� dbg:report condition stream Generic Function

Prints the text message associated with this object onto stream. The condition fla-

vor does not support this itself, but you must provide a handler, and any flavor

built on condition that is instantiated must support this function.

The compatible message for dbg:report is:

:report

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� dbg:report-string condition Generic Function

Returns a string containing the report message associated with this object. It

works by sending :report to the object.

The compatible message for dbg:report-string is:

:report-string

For a table of related items: see the section "Basic Condition Methods and Init Op-

tions". 

� require module-name &optional pathname Function

Checks the list in *modules* to see if module-name is already loaded; if it is not,

require loads the appropriate file or set of files. module-name can be a string or a

symbol representing a module. pathname can be a single pathname or a list of

pathnames to be loaded in order, left to right.

In the following code, the call to require loads the turbine-package module, and

if turbine-speed were a constant in turbine-package, then its value would be

available at this point.
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=> *modules*

(GENERATOR-PACKAGE LISP)

=> (require ’turbine-package)

TURBINE-PACKAGE

=> turbine-package:turbine-speed

3600�

� si:resource-error Flavor

All resource-related error conditions are built on si:resource-error. Used primarily

for zl:typep. 

� si:resource-extra-deallocation Flavor

Detects situations where there is extra deallocation, and enters the Debugger. Ex-

tra deallocation occurs when deallocate-resource is called more than one time on

an object.

Use the :no-action message to ignore this error. The :object message returns the

object. The :resource message returns the resource.

� si:resource-object-not-found Flavor

Signifies an error in the client and gives the error message "Object not found in

resource". This occurs when a deallocated object was not found in the resource.

This situation can be created in two ways: 

• Not creating the object on the resource with the following:

    (si:allocate-resource <resource name>...) 

• Executing the following form between the original allocation, and the dealloca-

tion:

    (si:clear-resource <resource name>) 

Use the :no-action proceed type to ignore this error. The :object message returns

the object. The :resource message returns the resource.

� rest x Function

Returns the tail (cdr) of list or cons x, and mnemonically complements the func-

tion first. setf can be used with rest to replace the cdr of a list with a new value.

For example:

(setq item-list ’(loon eagle)) => (LOON EAGLE)
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�

(setf (rest item-list) ’heron) => HERON

�

item-list => (LOON . HERON)�

In many cases, rest is stylistically preferable to cdr for readability.

(let ((element (first elementlist))

      (details (rest elementlist)))

  (if (member element goodlist :test #’eq)

    (do-something details)))�

For a table of related items: See the section "Functions for Extracting from Lists".

� &rest Lambda List Keyword

If present, the following specifier is a single rest parameter specifier. There can

only be one &rest argument.

It is important to realize that the list of arguments to which a rest-parameter is

bound is set up in whatever way is most efficiently implemented, rather than in

the way that is most convenient for the function receiving the arguments. It is not

guaranteed to be a "real" list. Sometimes the rest-args list is stored in the func-

tion-calling stack, and loses its validity when the function returns. If a rest-

argument is to be returned or made part of permanent list-structure, it must first

be copied, as you must always assume that it is one of these special lists. See the

function sys:copy-if-necessary.

The system does not detect the error of omitting to copy a rest-argument; you sim-

ply find that you have a value that seems to change behind your back. At other

times the rest-args list is an argument that was given to apply; therefore it is not

safe to rplaca this list, as you might modify permanent data structure. An attempt

to rplacd a rest-args list is unsafe in this case, while in the first case it causes an

error, since lists in the stack are impossible to rplacd. 

� zl:rest1 list Function

Returns the rest of the elements of a list, starting with element 1 (counting the

first element as the zeroth). Thus, zl:rest1 is equivalent to cdr; the reason this

function is provided is that it makes more sense when you are thinking of the ar-

gument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

� zl:rest2 list Function

Returns the rest of the elements of a list, starting with element 2 (counting the

first element as the zeroth). Thus, zl:rest2 is equivalent to cddr; the reason this

function is provided is that it makes more sense when you are thinking of the ar-

gument as a list rather than just as a cons.
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For a table of related items: See the section "Functions for Extracting from Lists".

� zl:rest3 list Function

Returns the rest of the elements of a list, starting with element 3 (counting the

first element as the zeroth). Thus, zl:rest2 is equivalent to cdddr. The reason this

function is provided is that it makes more sense when you are thinking of the ar-

gument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

� zl:rest4 list Function

Returns the rest of the elements of a list, starting with element 4 (counting the

first element as the zeroth). Thus, zl:rest4 is equivalent to cdddr. The reason this

function is provided is that it makes more sense when you are thinking of the ar-

gument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

� return &optional result Special Form

Returns control and a result value (or values) from an unnamed block. Such blocks

are established by (block nil ...). Among the macro constructs which establish

such blocks are do, dolist, dotimes, unnamed prog, and loop.

To return more than one result value, use values. For example, (return (values ’A

’B)) will return two values, and (return (values)) will return no values.

It is also permissible to omit the result, as in (return). This notation is functional-

ly the same as (return nil), but is usually used to emphasize the fact that the re-

sulting value is not important. If the resulting value is significant in any way, it is

recommended that you write (return nil) explicitly to emphasize the fact.

(return result) is functionally equivalent to (return-from nil result). See the spe-

cial form return-from.

Examples:

;; find first even element

(dolist (j ’(3 7 22 9 7)) (when (evenp j) (return j)))

=> 22
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�

;; find position and value of first duplicated element

(let ((v ’#(2 7 16 61 7 4 4 9)) (n 0))

  (dotimes (j (length v))

    (let ((x (aref v j)))

      (when (= x n) (return (values (- j 1) x)))

      (setq n x))))

=> 5 

   4

�

;; one way to select a substring (there are much better ways)

(with-output-to-string (stream)

  (do ((string "To be or not to be?  That is the question.")

       (index 0 (+ index 1)))

      ((= index 5))

    (when (= index 5) (return))

    (write-char (char string index) stream)))

=> "To be"�

Note that if you are using Genera, the function zl:break, the read-eval-print loop

you enter recognizes the typed-in form (return result) specially. If this form is

typed at such a breakpoint, result is evaluated and returned as the value of

zl:break. If the result form itself returns multiple values, they are all returned as

the value of zl:break. See the special form zl:break. Note that this special case

relating to breakpoints does not exist in the CLOE Runtime system.

If not specially recognized by zl:break and not inside a block, return signals an

error.

Zetalisp Note: In a past release, (return form1 form2 ...) meant what (return

(values form1 form2 ...)) means now. In most cases, the compiler will warn you if

you use the old syntax, and try to correct your error. In the case of (return), the

compiler cannot be sure of your intent and so will normally assume that you mean

(return nil), which is the modern interpretation. If you think you have old code

which intends (return (values)) instead, you can set the variable

compiler:*return-style-checker-on* to t in order to cause the compiler to warn

you about this construct as well.

See the section "Blocks and Exits Functions and Variables".

� sys:return-array array Function

Attempts to return array to free storage. It is is a subtle and dangerous feature

that should be avoided by most users. If it is displaced, this returns the displaced

array itself, not the data that the array points to. Because of the way storage allo-

cation works, sys:return-array does nothing if the array is not at the end of its

region, that is, if it was not the most recently allocated non-list object in its area.

sys:return-array returns t if storage was really reclaimed, or nil if it was not.
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It is the responsibility of any program that calls sys:return-array to ensure that

there are no references to array anywhere in the Lisp world. This includes locative

pointers to array elements, such as you might create with zl:aloc. The results of

attempting to use such a reference to the returned array are unpredictable. Simply

holding such a reference in a local variable, without attempting to access it or to

print it out, is allowed, although it might thwart the garbage collector.

Other tools are available for manually allocating and freeing arrays. See the spe-

cial form sys:with-stack-array.

� return-from block-name &optional result Special Form

Exits from a block or a construct such as do or prog that establishes an implicit

block around its body.

The value subforms are optional. Any value subforms are evaluated, and the result-

ing values (either multiple, or none) are returned from the innermost block that

has the same name and that lexically contains the return-from form. The returned

values depend on how many value subforms are provided and on the syntax used

as shown below:

Value Values returned

subforms Syntax from block

None (return-from name) nil

None (return-from name (values)) None

1 (return-from name value) All values that result

from evaluating

the value subform  

>1 (return-from name (values value)) One value from each

value subform

 �

Zetalisp Note: The form (return form1 form2 form3...) is no longer valid, and gen-

erates a compiler message to that effect. Use the form (return (values form1 form2

form3...)) to have multiple values returned.

Similarly, if you omit value, return now defaults to nil, rather than returning with

zero values as formerly; the compiler generates a message to that effect also. Use

(return (values)) if you want zero values returned.

The variable compiler:*return-style-checker-on* controls compiler messages for

these invalid formats of return. To disable the compiler messages specify a nil val-

ue for compiler:*return-style-checker-on*.



Page 1430

block-name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside the

block itself (or inside a block that that block lexically contains), not inside a func-

tion called from the block.

When a construct like do or an unnamed prog establishes an implicit block, its

name is nil. You can use either (return-from nil value...) or the equivalent (re-

turn value...) to exit from such a construct.

The return-from form is unusual: It never returns a value itself, in the conven-

tional sense. It is not useful to write (setq a (return-from name 3)), because

when the return-from form is evaluated, the containing block is immediately exit-

ed, and the setq never happens.

Examples:

(block foo

  (print "enter foo")

  (when (< 1 2)

    (return-from foo (values 1 2 3 4)))

  (print "leave foo")) => "enter foo" 1 and 2 and 3 and 4

�

(block state-of

  (princ "H-2-O ")

  (return-from state-of (values-list ’(Ice Water Steam)))

  (princ "ice-cream")) => H-2-O ICE and WATER and STEAM

�

(setq stuff ’(north east south west right left up down)) 

  => (NORTH EAST SOUTH WEST RIGHT LEFT UP DOWN)

�

(defun index-of-thing (thing stuff)

  (do ( (count 1 (+ count 1)) )

      ((= count (length stuff)))

    (if (eq thing (car stuff))

(return-from index-of-thing count))

    (setq stuff (cdr stuff)))) => INDEX-OF-THING

(index-of-thing ’south stuff) => 3

�

(do ((j 0 (+ 1)))

    (nil) ; Do forever

  (format t "~%Input ~D: " j)

  (let ((item (read)))

    (if (null item)(return-from nil) ;Process items until nil seen.

(format t "~&Output ~D: ~S" j (print item)))))

=> Input 0: 

   ABCDEF 

   Output 0: ABCDEF

   Input 1: NIL�
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For an explanation of named dos and progs in Zetalisp: See the special form

zl:do-named.

Following is an example, returning a single value from an implicit block named

nil:

Examples:

(do ((x x (cdr x))

     (n 0 (* n 2)))

    ((null x) n)

  (cond ((atom (car x))

 (setq n (1+ n)))

((memq (caar x) ’(sys boom bleah))

 (return-from nil n))))�

Or

(block nil

  (print "rivers hills")

  (if (= 3 3.) (return-from nil "five"))

  (print "water trees")) => "rivers hills" "five"�

Following is another example, returning multiple values. The function below is like

assoc, but it returns an additional value, the index in the table of the entry it

found:

(defun assocn (x table)

  (do ((l table (cdr l))

       (n 0 (1+ n)))

      ((null l) nil)

    (if (eql (caar l) x)

(return-from nil (values (car l) n)))))�

In the second example that follows, defun establishes an implicit block nmed foo

around the defined function.

(block foo

  (block bar

    (let ((fred (my-compute *input-data*)))

      (if (symbolp fred) (return-from foo fred))

      (if (numberp fred) (return-from bar fred))

      (setq *in-process* (my-process-data fred))))

  (if (numberp *in-process*)

    (my-select-version-from-number *in-process*)

    (if (symbolp *in-process*) *in-process* nil)))
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�

(defun foo (a-number)

  (if (not (numberp a-number)) (return-from foo nil))

  (let ((num a-number)

(result 0))

    (dotimes (i num result)

      (if (= i 20) (return result))

      (setq result (+ result (expt i 2))))))�

For a table of related items: See the section "Blocks and Exits Functions and Vari-

ables".

� return Keyword for loop

return expression

Immediately returns the value of expression as the value of the loop, without run-

ning the epilogue code. This is most useful with some sort of conditionalization, as

discussed in the previous section. Unlike most of the other clauses, return is not

considered to "generate body code", so it is allowed to occur between iteration

clauses, as in:

(loop for entry in list

      when (not (numberp entry))

return (error...)

      as from = (times entry 2)

 ... )�

If you instead want the loop to have some return value when it finishes normally,

you can place a call to the return function in the epilogue (with the finally

clause).

See the section "loop Clauses".

� zl:return-list form Special Form

An obsolete function supported for compatibility with earlier releases. It is like

return except that the block returns all of the elements of form as multiple val-

ues. This means that the following two forms are equivalent:

(return-list form)

(return (values-list form)) �

Examples:
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(block nil

  (print "enter foo")

  (when (< 1 2)

    (zl:return-list ’(1 2 3 4)))

  (print "leave foo")) => "enter foo" 

1

2

3

4�

�

(block nil

  (print "enter foo")

  (when (< 1 2)

    (return (values-list ’(1 2 3 4)) ))

  (print "leave foo")) => "enter foo" 

1

2

3

4

�

The latter form is the preferred way to return list elements as multiple values

from a block named nil. To direct the returned values to a named block, use:

(return-from name (values-list form)).�

Example:

(block state-of

  (princ "H-2-O ")

  (return-from state-of (values-list ’(Ice Water Steam)))

  (princ "ice-cream")) => H-2-O 

ICE  

WATER  

STEAM�

For a table of related items: See the section "Blocks and Exits Functions and Vari-

ables". 

� compiler:*return-style-checker-on* Variable

This style-checker variable is associated with the functions return and return-

from and controls the display of compiler messages for invalid formats of these

functions. The documentation for return and return-from describes the specific

formats activating the style-checker.

compiler:*return-style-checker-on* is set to t by default; set it to nil to disable

the compiler messages.

For a table of related items: See the section "Blocks and Exits Functions and Vari-

ables". 
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� revappend x y Function

Reverse the elements of list x and appends x to y, returning the resulting new list.

(revappend x y) is functionally the same as (append (reverse x) y), except that it

is potentially more efficient. The values of both x and y should be lists. The value

of the x argument is copied, not destroyed. For example:

(setq a-list ’(a b c)) => (A B C)

�

(setq b-list ’(x y z)) => (X Y Z)

�

(revappend a-list b-list) => (C B A X Y Z)

�

a-list => (A B C)�

(setq back ’(c b a))

(revappend back ’(d e f)) => (A B C D E F)�

In the following example, revappend sorts queued entries in order of priority. 

(defun sort-queue-1( in-queue )

"Sorts arg first by priorities (car element), then by original order."

  (let ((for-queue1 ’())

        (for-queue2 ’())

        (for-queue3 ’()))

    (dolist (queue-element in-queue)

      (case (car queue-element)

        (1 (push queue-element for-queue1))

        (2 (push queue-element for-queue2))

        (3 (push queue-element for-queue3))))

  ;; reverse the temporary lists

  ;;  that were built by push

    (revappend for-queue1

               (revappend for-queue2

                          (reverse for-queue3))))�

(setq queue-all

 ’((1 element-a) (2 element-b) (3 element-c) (2 element-d) (1 element-e)))

(sort-queue queue-all) =>

((1 ELEMENT-A) (1 ELEMENT-E) (2 ELEMENT-B) (2 ELEMENT-D) (3 ELEMENT-C))�

For a table of related items: See the section "Functions for Constructing Lists and

Conses".

� reverse sequence Function

Returns a new sequence of the same type as sequence, containing the same ele-

ments in reverse order. This operation is non-destructive. 

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:
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(reverse ’(heron flamingo loon)) => (LOON FLAMINGO HERON)

�

(reverse #(1 2 3)) => #(3 2 1)�

For a table of related items: See the section "Functions for Modifying Lists".

For a table of related items: See the section "Sequence Modification". 

� zl:reverse list Function

Creates a new list whose elements are the elements of list taken in reverse order.

zl:reverse does not modify its argument, unlike zl:nreverse, which is faster but

does modify its argument. The list created by zl:reverse is not cdr-coded. Example:

(zl:reverse ’(a b (c d) e)) => (e (c d) b a)�

zl:reverse could have been defined by:

(defun zl:reverse (x)

    (do ((l x (cdr l))         ; scan down argument,

         (r nil                ; putting each element

            (cons (car l) r))) ; into list, until

        ((null l) r)))         ; no more elements.�

For a table of related items: See the section "Functions for Modifying Lists". 

� rot x y Function

Returns x rotated left y bits if y is positive or zero, or x rotated right |y| bits if y

is negative. The rotation considers x as a 32-bit number. x and y must be fixnums.

(There is no function for rotating bignums.)

Examples:

(rot 1 2)  => #o4

(rot 1 -2) => #o10000000000

(rot -1 7) => #o-1

(rot #o15 32.) => #o15�

For a table of related items: See the section "Machine-Dependent Arithmetic Func-

tions". 

� rotatef &rest references Macro

Exchanges two references. Each of the references can be any form acceptable as a

generalized variable to setf. All the references form an end-around shift register

that is rotated one place to the left, with the value of reference1 being shifted

around to references. rotatef always returns nil.

Here is an example as seen in a Lisp Listener:
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(setq circus (list ’ringling-brothers ’barnum ’bailey))

=> (RINGLING-BROTHERS BARNUM BAILEY)

(rotatef (first circus) (second circus) (third circus))

=> NIL

circus

=> (BARNUM BAILEY RINGLING-BROTHERS)�

Here is another example as seen in a Lisp Listener:

(setq alpha (list ’able ’baker ’charlie ’dog ’easy ’fox))

=> (ABLE BAKER CHARLIE DOG EASY FOX)

(rotatef (first alpha) (third alpha) (fifth alpha))

=> NIL

alpha

=> (CHARLIE BAKER EASY DOG ABLE FOX)�

Finally:

(setq trio (list ’adam ’eve ’pinch-me-tight))

=> (ADAM EVE PINCH-ME-TIGHT)

(rotatef (first trio) (third trio))

=> NIL

trio

=>(PINCH-ME-TIGHT EVE ADAM)�

See the section "Generalized Variables".

� round number &optional (divisor 1) Function

When supplied with one-argument, converts its argument number (which must not

be complex) to be an integer. If the argument is already an integer, it is returned

directly. If the argument is a ratio or floating-point number, round converts its ar-

gument by rounding to the nearest integer; if number is exactly halfway between

two integers (that is, of the form integer +0.5), then it is rounded to the one that

is even (divisible by two.) 

The arguments number and divisor must each be a non-complex number. Not spec-

ifying a divisor is exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals number. If

divisor is 1, then Q and R add up to number. If divisor is 1 and number is an inte-

ger, then the returned values are number and 0.

The first returned value is always an integer. The second returned value is inte-

gral if both arguments are integers, is rational if both arguments are rational, and

is floating-point if either argument is floating-point. If only one argument is speci-

fied, then the second returned value is always a number of the same type as the

argument.

Examples:

(round 5) => 5 and 0�
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(round -5) => -5 and 0�

(round 5.2) => 5 and 0.19999981�

(round -5.2) => -5 and -0.19999981�

(round 5.8) => 6 and -0.19999981�

(round -5.8) => -6 and 0.19999981�

(round 5 3) => 2 and -1�

(round -5 3) => -2 and 1�

(round 5 4) => 1 and 1�

(round -5 4) => -1 and -1�

(round 5.2 3) => 2 and -0.8000002�

(round -5.2 3) => -2 and 0.8000002�

(round 5.2 4) => 1 and 1.1999998�

(round -5.2 4) => -1 and -1.1999998�

(round 5.8 3) => 2 and -0.19999981�

(round -5.8 3) => -2 and 0.19999981�

(round 5.8 4) => 1 and 1.8000002�

(round -5.8 4) => -1 and -1.8000002�

For a table of related items: See the section "Functions that Divide and Convert

Quotient to Integer".

� rplaca x y Function

Changes the car of x to y and returns (the modified) x. x must be a cons or a

locative. Note that CLOE does not support locatives. y can be any Lisp object. Ex-

ample:

(setq z ’(e f)) => (E F)

(replaca ’f g) => (G F)�

Here is another example:

(setq g ’(a b c))

(rplaca (cdr g) ’d) => (d c)

Now g => (a d c)�

In the following example, rplaca modifies an association list.

(defun exchange-rank( alist datum1 datum2 )

  (let* ((element1 (rassoc datum1 alist))

         (element2 (rassoc datum2 alist))

         (tmprank (car element2)))

    (rplaca element2 (car element1))

    (rplaca element1 tmprank)

    alist))

=> EXCHANGE-RANK

�

(setq ranked-list (pairlis ’(2 1 3) ’(mary jane freda)))

=> ((2 . MARY)(1 . JANE)(3 . FREDA))
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�

(exchange-rank ranked-list ’jane ’freda)

=> ((2 . MARY)(3 . JANE)(1 . FREDA))�

Using the setf macro with car achieves the same effect on the list argument as

rplaca, and is considered preferable except in cases using the returned value.

(setf (car list) object) => object

(rplaca list object) => list�

For a table of related items: See the section "Functions for Modifying Lists".

� rplacd x y Function

Changes the cdr of x to y and returns (the modified) x. x must be a cons or a

locative. y can be any Lisp object. Example:

(setq x ’(a b c))

(rplacd x ’d) => (a . d)

Now x => (a . d)�

When x and y are cdr-coded and are at consecutive addresses, rplacd returns a

cdr-coded list. Otherwise, rplacd forwards x to a new cons before modifying the

cdr. For information on rplacd-forwarding: See the section "Cdr-Coding". The fol-

lowing usually returns a cdr-coded list:

(rplacd (list ’a) (list ’b))

In the following example, rplacd modifies an association list and returns two val-

ues, the two exchanged items. Because setf does not directly return the values we

desire, we use rplacd instead of setf of cdr

�

(defun exchange-name( alist key1 key2 )

  (let* ((element1 (assoc key1 alist))

         (element2 (assoc key2 alist))

         (tmpname (cdr element2)))

    (values (rplacd element2 (cdr element1))

            (rplacd element1 tmpname))))

=>EXCHANGE-NAME�

(setq ranked-list (pairlis ’(2 1 3) ’(mary jane freda)) a-large-alist)

=> ((2 . MARY)(1 . JANE)(3 . FREDA) (9 . CHARLEY) (4 . FRED) ...)

�

(exchange-name ranked-list 1 3)

=> (3 . JANE)

(1 . FREDA)�

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:samepnamep x y Function

Returns t if the two symbols x and y have string= print-names, that is, if their

printed representation is the same. If either or both of the arguments is a string
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instead of a symbol, that string is used in place of the print-name. zl:samepnamep

is useful for determining if two symbols would be the same except that for being

in different packages. Examples:

(zl:samepnamep ’xyz (maknam ’(x y z)) => t

�

(zl:samepnamep ’xyz (maknam ’(w x y)) => nil

�

(zl:samepnamep ’xyz "xyz") => t�

This is the same function as string=. zl:samepnamep is provided mainly for com-

patibility with older dialects of Lisp. In new programs, you just use string=.

See the section "Functions Relating to the Print Name of a Symbol".

� zl:sassoc item in-list else Function

Looks up item in the association list in-list. Returns the first cons whose car is

zl:equal to x. zl:sassoc could have been defined by:

(defun zl:sassoc (item alist function)

    (or (assoc item alist)

        (apply function nil)))�

zl:sassoc is of limited use. It is primarily a leftover from earlier implementations

of Lisp.

For a table of related items: See the section "Functions that Operate on Associa-

tion Lists". 

� zl:sassq item in-list else Function

Looks up item in the association list in-list.

The argument else is a function. 

zl:sassq returns the first cons whose car is eq to x, or, if none is, calls function

with no arguments. zl:sassq could have been defined by:

(defun zl:sassq (item alist function)

    (or (assq item alist)

        (apply function nil)))�

zl:sassq is of limited use. It is primarily a leftover from earlier implementations of

Lisp. 

� satisfies Type Specifier

� sbit array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-

tegers and their number must match the dimensionality of array. sbit is like bit,

but for sbit, the array must be a simple array of bits.
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(setq foo (make-array ’(2 3)

             :adjustable nil

             :element-type ’bit

             :initial-contents ’((1 1 1)

                                 (1 0 1))))

�

(sbit foo 1 1) => 0�

Note that the bit-array in the previous example is simple. Therefore, we can use

sbit, which is more efficient than either aref or bit.

For a table of related items: See the section "Arrays of Bits".

� scale-float float integer Function

Computes and returns (* float 2integer).

Although the same result can be obtained by using exponentiation and multiplica-

tion, the use of scale-float can be much more efficient and avoids the intermediate

overflow and underflow if the final result is representable.

Examples:

(scale-float .5 2) => 2.0

(scale-float .5 3) => 4.0

(scale-float .5 4) => 8.0

(scale-float .75 2) => 3.0�

For a table of related items, see the section "Functions that Decompose and Con-

struct Floating-point Numbers".

� schar string index�

Function

Returns the character at position index of string. The count is from zero. The

character is returned as a character object.

string must be a string.

index must be a non-negative integer less than the length of string.

Note that the array-specific function aref and the general sequence function elt al-

so work on strings.

To destructively replace a character within a string, use schar in conjunction with

the generic function setf.

(schar "a string" 0) => #\a

(string-char-p (schar "a string" 3)) => T

�

(schar "a string" 1) => #\Space



Page 1441

�

(schar (make-array 4 :element-type ’character 

    :initial-element #\y) 3) => #\y

(string-char-p (schar (make-array 4 :element-type ’character 

   :initial-element #\.) 2))  => T

�

(string-char-p (schar (make-array 4 :element-type ’character 

    :initial-element #\.

    :fill-pointer 2) 1)) => T

�

(defvar a-simple-string

        (make-array 10

                    :element-type ’string-char

                    :initial-element #\a))

 => "aaaaaaaaaa"

�

(schar a-simple-string 0) => #\a

�

(setf (schar a-simple-string 1) #\b) => #\b

�

(schar a-simple-string 1) => #\b�

For a table of related items: See the section "String Access and Information".

� search sequence1 sequence2 &key :from-end (:test #’eql) :test-not :key (:start1 0)

(:start2 0) :end1 :end2�

Function

Looks for a subsequence of sequence2 that element-wise matches sequence1. If no

such subsequence exists, search returns nil. If such a subsequence exists, search

returns the index into sequence2 of the leftmost element of the leftmost such

matching subsequence.

sequence1 and sequence2 can be either a list or a vector (one-dimensional array).

Note that nil is considered to be a sequence, of length zero.

If the value of the :from-end keyword is non-nil, the index of the leftmost element

of the rightmost matching subsequence is returned. For example:

(search ’(1 2) ’(3 4 1 2 6 1 2 5)) => 2

�

(search ’(1 2) ’(3 4 1 2 6 1 2 5) :from-end t) => 5�

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.
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For example:

(search ’(2) ’(1 2 2 3) :test-not #’>) => 1�

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

The keyword arguments :start1, :end1, :start2, and :end2 are used to specify sub-

sequences for each separate sequence 

:start1 and :end1 must be non-negative integer indices into the sequence. :start

must be less than or equal to :end1, else an error is signalled. It defaults to zero

(the start of the sequence).

:start1 indicates the start position for the operation within the sequence. :end1 in-

dicates the position of the first element in the sequence beyond the end of the op-

eration. It defaults to nil (the length of the sequence). If both :start1 and :end1

are omitted, the entire sequence is processed by default.

:start2 and :end2 operate the same as :start1 and :end1.

For example:

(search #(a b) #(a b c d a b) :start2 3)

 => 4

�

(search #(1 2 3) #(1 2 3 1 2 3 1 2 3) :start1 2 :start2 4)

 => 5

�

(search #(1 2 3) #(1 2 3 1 2 3 1 2 3) :start1 2 :end1 3 :start2 4 :end2 9)

 => 5

�

(search "of" "string of text") => 7�

For a table of related items: See the section "Searching for Sequence Items".

� second list Function

Takes a list as an argument, and returns the second element of the list. second is

identical to cadr. It is also identical to: 

(nth 1 list)

For example:

(setq letters ’(a b c d)) =>

(A B C D)

�

(second letters) =>

B�

This function is provided because it makes more sense when you are thinking of

the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".
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� select test-object &body clauses Special Form

A conditional that chooses one of its clauses to execute by comparing the value of

a form against various other forms. Its form is as follows: 

(select key-form

  (test consequent consequent ...)

  (test consequent consequent ...)

  (test consequent consequent ...)

  ...)�

The first thing select does is to evaluate key-form; call the resulting value key.

Then select considers each of the clauses in turn. If key matches the clause’s test,

the consequents of this clause are evaluated, and select returns the value of the

last consequent. If there are no matches, select returns nil.

A test can be any of the following: 

A symbol If the key is eq to the symbol, it matches.

A number If the key is eq to the number, it matches. Only small num-

bers (integers) work.

A list If the key is eq to one of the elements of the list, then it

matches. The elements of the list should be symbols or inte-

gers.

t or otherwise The symbols t and otherwise are special keywords that match

anything. Either symbol can be used; t is mainly for compati-

bility with Maclisp’s caseq construct. To be useful, this should

be the last clause in the select.�

select is the same as zl:selectq, except that the test elements are evaluated before

they are used.

This creates a syntactic ambiguity: if (bar baz) is seen the first element of a

clause, is it a list of two forms, or is it one form? select interprets it as a list of

two forms. If you want to have a clause whose test is a single form, and that form

is a list, you have to write it as a list of one form.

Examples:

(select (+ 1 2)

  ("four"  "four")

  ((5 6 7) "five six seven")

  (3 "three")

  (t "drop out")) => "three"�

Where

(select (frob x)

  (foo 1)

  ((bar baz) 2)

  (((current-frob)) 4)

  (otherwise 3))�
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is equivalent to:

(let ((var (frob x)))

  (cond ((eq var foo) 1)

        ((or (eq var bar) (eq var baz)) 2)

   ((eq var (current-frob)) 4)

(t 3)))�

For a table of related items: See the section "Conditional Functions". 

� selector test-object test-function &body clauses Special Form

A conditional that chooses one of its clauses to execute by comparing the value of

a form against various constants, which are typically keyword symbols. Its form is

as follows:

(selector key-form test-function

  (test consequent consequent ...)

  (test consequent consequent ...)

  (test consequent consequent ...)

  ...)�

The first thing selector does is to evaluate key-form; call the resulting value key.

Then selector considers each of the clauses in turn. If test-function applied to key

satisfies the clause’s test, the consequents of this clause are evaluated, and

selector returns the value of the last consequent. If no clause is satisfied, selector

returns nil.

test can be a symbol, a number, or a list whose elements are symbols or numbers.

In place of a test selector also accepts a t or otherwise clause. t is mainly for

compatibility with Maclisp’s caseq construct. To be useful, this should be the last

clause in the selector.

test-function can be any user-specified function.

selector is the same as select, except that you get to specify the function used for

the comparison instead of eq. 

Examples:

(let ((arg -14))

  (selector (abs arg) >

    (10 "greater than 10")

    (1 "greater than 1"))) => "greater than 10" �

Where

(selector (frob x) equal

  ((’(one . two)) (frob-one x))

  ((’(three . four)) (frob-three x))

  (otherwise (frob-any x)))�

is equivalent to:
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(let ((var (frob x)))

  (cond ((equal var ’(one . two)) (frob-one x))

((equal var ’(three . four)) (frob-three x))

(t (frob-any x))))�

For a table of related items: See the section "Conditional Functions". 

� zl:selectq test-object &body clauses Special Form

A conditional that chooses one of its clauses to execute by comparing the value of

a form against various constants, which are typically keyword symbols. Its form is

as follows:

(zl:selectq key-form

  (test consequent consequent ...)

  (test consequent consequent ...)

  (test consequent consequent ...)

  ...)�

The first thing zl:selectq does is to evaluate key-form; call the resulting value key.

Then zl:selectq considers each of the clauses in turn. If key matches the clause’s

test, the consequents of this clause are evaluated, and zl:selectq returns the value

of the last consequent. If there are no matches, zl:selectq returns nil.

A test can be any of the following: 

A symbol If the key is eq to the symbol, it matches.

A number If the key is eq to the number, it matches. Only small num-

bers (integers) work.

A list If the key is eq to one of the elements of the list, then it

matches. The elements of the list should be symbols or inte-

gers.

t or otherwise The symbols t and otherwise are special keywords that match

anything. Either symbol can be used; t is mainly for compati-

bility with Maclisp’s caseq construct. To be useful, this should

be the last clause in the zl:selectq.�

Note that the test elements are not evaluated; if you want them to be evaluated,

use select rather than zl:selectq.

Examples:

(let ((voice ’tenor))

  (zl:selectq voice

    (bass "Barber of Seville")

    (Mezzo "Carmen"))) => NIL�
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(setq a 2)  => 2

(zl:selectq a

  (1 "one")

  (2 "two")

  ((one two) "1 2")

  (otherwise "not one or two")) => "two"�

(let (( a ’big-bang))

   (zl:selectq a

       (light "day")

       (dark  "night")

       (t "night and day"))) => "night and day"�

Where

(let ((x ’Bird))

  (zl:selectq x

    (foo (do-this))

    (bar (do-that))

    ((baz quux mum) (do-the-other-thing))

    (otherwise (zl:ferror nil "Hey there, never heard of ~S" x))))

=> Error: Hey there, never heard of BIRD�

is equivalent to:

(let ((x ’Bird))

  (cond ((eq x ’foo) (do-this))

((eq x ’bar) (do-that))

((zl:memq x ’(baz quux mum)) (do-the-other-thing))

(t (zl:ferror nil "Hey there, never heard of ~S" x))))

=> Error: Hey there, never heard of BIRD�

For a table of related items: See the section "Conditional Functions". 

� selectq-every obj &body clauses Special Form

A conditional that chooses one of its clauses to execute by comparing the value of

a form against various constants, which are typically keyword symbols. Its form is

as follows:

(selectq-every key-form

  (test consequent consequent ...)

  (test consequent consequent ...)

  (test consequent consequent ...)

  ...)�

The first thing selectq-every does is to evaluate key-form; call the resulting value

key. Then selectq-every considers each of the clauses in turn. If key matches the

clause’s test, the consequents of this clause are evaluated, and selectq-every re-

turns the value of the last consequent. If there are no matches, selectq-every re-

turns nil.

A test can be any of the following: 
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A symbol If the key is eq to the symbol, it matches.

A number If the key is eq to the number, it matches. Only small num-

bers (integers) work.

A list If the key is eq to one of the elements of the list, then it

matches. The elements of the list should be symbols or inte-

gers.

t or otherwise The symbols t and otherwise are special keywords that match

anything. Either symbol can be used; t is mainly for compati-

bility with Maclisp’s caseq construct. To be useful, this should

be the last clause in the zl:selectq.�

selectq-every is like zl:selectq, but like cond-every, selectq-every executes every

selected clause, instead of just the first one. If an otherwise clause is present, it

is selected if and only if no preceding clause is selected. The value returned is the

value of the last form in the last selected clause. Multiple values are not returned.

Note that the test elements are not evaluated.

Examples:

(let ((book ’Lisp))

  (selectq-every book

    ((mystery fantasy science-fiction) (setq type ’fun))

    ((Lisp Pascal Fortran APL) (setq type ’Languages))

    ((Lisp History Math) (setq school ’homework))

    (otherwise (setq type ’unknown)))) => HOMEWORK

type => LANGUAGES�

(selectq-every animal

  ((cat dog) (setq legs 4))

  ((bird man) (setq legs 2))

  ((cat bird) (put-in-oven animal))

  ((cat dog man) (beware-of animal)))�

For a table of related items: See the section "Conditional Functions". 

� self Variable

When a generic function is called on an object, the variable self is automatically

bound to that object. This enables the methods to lexically manipulate the object

itself (as opposed to its instance variables).

Note that since the compiler has a special way of dealing with variables named

self, users should not name arguments or variables self.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� send object message-name &rest arguments Function
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Sends the message named message-name to the object. arguments are the argu-

ments passed. send does exactly the same thing as funcall. For stylistic reasons, it

is preferable to use send instead of funcall when sending messages because send

clarifies the programmer’s intent.

(send some-window :set-edges 10 10 40 40)�

send is supported for compatibility with previous versions of the flavor system.

When writing new programs, it is good practice to use generic functions instead of

message-passing. See the section "Generic Functions".

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� :send-if-handles message &rest arguments Message

The object that receives this message performs the operation indicated by message

with the given arguments, if it has a method for the operation. If no method for

the operation is available, nil is returned.

message is a message name or a generic function object, such as the result of eval-

uating the form (flavor:generic generic-function-name). arguments are the argu-

ments for the operation.

For example:

;;; using :send-if-handles with a message

(send *cell-instance* :send-if-handles :describe)   

�

;;; using :send-if-handles with a generic function

(send *cell-instance* :send-if-handles (flavor:generic aliveness))�

flavor:vanilla provides a method for :send-if-handles. 

Instead of sending this message, you can use the send-if-handles function. For in-

formation on restrictions in using :send-if-handles with generic functions, see the

function send-if-handles.

Note that send-if-handles works by sending the :send-if-handles message. You can

customize the behavior of send-if-handles by defining a method for the :send-if-

handles message.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� send-if-handles object message &rest arguments Function

The object performs the operation indicated by message with the given arguments,

if it has a method for the operation. If no method for the operation is available,

nil is returned.

object is a Lisp object, usually a flavor instance. message is a message name or a

generic function object, such as the result of evaluating the form (flavor:generic

generic-function-name). arguments are the arguments for the operation. 



Page 1449

For example:

;;; using send-if-handles with a message

(send-if-handles *cell-instance* :describe)   

�

;;; using send-if-handles with a generic function 

(send-if-handles *cell-instance* (flavor:generic aliveness))�

Note that send-if-handles works by sending the :send-if-handles message. You can

customize the behavior of send-if-handles by defining a method for the :send-if-

handles message.

Note that send-if-handles, :send-if-handles, and lexpr-send-if-handles were origi-

nally designed to work in the message-passing paradigm, and their use does not fit

cleanly into the generic function paradigm. Any generic function that uses the

:function, :dispatch, or :compatible-message option for defgeneric, or that uses

the flavor:solitary-method declaration in defmethod, will not work as expected

with these operations.

Instead of using these operations with generic functions, we suggest avoiding the

need for the caller to test whether the generic function is handled before calling

it, by ensuring that the generic function works for all arguments without sig-

nalling the sys:unclaimed-message error. For example, you could provide default

handling by using the :function option to defgeneric, or by defining a method on

a very general flavor. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� sequence &optional (type ’*) Type Specifier

sequence is the type specifier symbol for the predefined Lisp structure of that

name.

The type sequence is a supertype of the types vector and list. These two types are

an exhaustive partition of the type sequence.

In addition to a symbol form, Symbolics Common Lisp provides a list form for

sequence. Used in list form, sequence defines the set of sequences whose ele-

ments are of type type. type must be one of the standard data types. The list form

might not work in other implementations of Common Lisp. For standard Symbolics

Common Lisp type specifiers, see the section "Type Specifiers".

Examples:

(typep ’(a b c d e) ’sequence) => T

(typep ’(mom 25 dad 28) ’(sequence list)) => T

(subtypep ’list ’sequence) => T and T

(subtypep ’vector ’sequence) => T and T

(sys:type-arglist ’sequence) => (&OPTIONAL (TYPE ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Sequences".



Page 1450

� set symbol value Function

The primitive for assignment of a value to a dynamic (special) variable. The sym-

bol’s value is changed to value; value can be any Lisp object. set only changes the

value of the current dynamic binding. If symbol has no current binding in effect,

its most global value is changed. set returns value. Example:

(set (cond ((eq a b) ’c)

            (t ’d))

     ’foo)�

either sets c to foo or sets d to foo.

set does not work on local (lexically bound) variables.

(proclaim ’(special *foo*))

*foo*

(TERMINAL-IO LISP)

(let ((*foo* ’(foo lisp)))

      (set ’*foo* (cons ’bar *foo*))

      (print *foo*)

      nil)

(BAR FOO LISP)

NIL

*foo*

(TERMINAL-IO LISP)

(set *foo* (cons ’bar *foo*))

(BAR TERMINAL-IO LISP)�

See the section "Functions Relating to the Value of a Symbol".

� set-char-bit char name value Function

Changes the bit named name in char and returns the new character. value is nil

to clear the bit or non-nil to set it. 

(set-char-bit #\A :meta T) => #\m-A

(set-char-bit #\h-c-A :control NIL) => #\h-A�

(setq char #\D)

(char-bit (set-char-bit char :control t) :control) => T

(char-bit char) => nil �

For a table of related items, see the section "Making a Character".

� set-character-translation from-char to-char &optional readtable Function

Changes readtable so that from-char is translated to to-char when read in, when

readtable is the current readtable. This is normally used only for translating lower-

case letters to uppercase. Character translations are turned off by slash, string

quotes, and vertical bars. readtable defaults to the current readtable. 
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� :set-cursorpos x y &optional (units ’:pixel) Message

This operation is supported by the same streams that support :read-cursorpos. It

sets the position of the cursor. x and y are the new coordinates of the cursor and

units is the same as the units argument to :read-cursorpos. 

� set-difference list1 list2 &key (test #’eql) test-not (key #’identity) Function

Returns a list of elements of list1 that do not appear in list2. Does not change the

arguments. Note that there is no guarantee that the order of elements in the re-

sult will reflect the ordering of the arguments in any particular way. The key-

words are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For all possible ordered pairs consisting of one element from list1 and one element

from list2, the predicate is used to determine whether they match. An element of

list1 appears in the result if and only if it does not match any element of list2. For

example:

(setq a-list ’(eagle hawk loon pelican)) =>

(EAGLE HAWK LOON PELICAN)

�

(setq b-list ’(owl hawk stork)) => (OWL HAWK STORK)

�

(set-difference a-list b-list) => (EAGLE LOON PELICAN)

�

(set-difference b-list a-list) => (OWL STORK)�

You can use set-difference to do things such as removing from a list of strings all

of those strings containing one of a given list of characters. In this example, we

remove all flavor names that contain the characters "c" or "w".

(set-difference ’("strawberry" "chocolate" "banana" "lemon"

  "pistachio" "rhubarb") ’(#\c #\w)

:test #’(lambda (s c) (find c s))) =>

("banana" "lemon" "rhubarb")�

In the following example, set-difference returns the list of lists of all tenured pro-

fessors who are not new.
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(setq professors-with-tenure

  ’(("Jones" CS101 CS242)("smith" CS202 CS231)

    ("parks" CS221)("hunter" CS216 CS232)))

(setq new-professors

  ’(("Able" CS101 CS244)("Cain" CS101 CS331)

    ("Parks" CS221)("adams" CS215 CS222)))

�

(set-difference professors-with-tenure new-professors

                :test #’string-equal :key #’car)

 =>

(("Jones" CS201 CS242)("smith" CS202 CS231)

 ("hunter" CS216 CS232))�

For a table of related items: See the section "Functions for Comparing Lists".

� set-dispatch-macro-character disp-char sub-char function &optional (a-readtable

*readtable*) Function

Causes function to be called when the disp-char followed by sub-char is read. func-

tion is called with three arguments, a stream, sub-char, and the non-negative inte-

ger whose decimal representation appears between disp-char and sub-char, or nil if

no decimal integer appeared there. set-dispatch-macro-character returns t. 

An error is signalled if sub-char is one of the ten decimal digits, since they are re-

served for specifying an infix integer argument. Moreover, if sub-char is a lower-

case character, its uppercase equivalent is used instead. This is how the rule is

enforced that the case of a dispatch sub-character doesn’t matter.

An error is also signalled if the specified disp-char is not a dispatch character in

the specified readtable. It is necessary to use make-dispatch-macro-character to

set up the dispatch character before specifying its sub-characters.

As an example, the definition of the sharp-sign single-quote dispatch macro charac-

ter is: 

(defun sharp-single-quote-reader (stream sub-char arg)

  (declare (ignore char arg))

  (list-in-area ’sys:read-area ’function

    (read stream t nil t)))

�

(set-dispatch-macro-character #\# #\’  #’sharp-single-quote-reader)�

sharp-single-quote-reader reads an object following the single-quote and returns a

list of the symbol function and that object. The char and arg arguments are ig-

nored for this function. Note that the recursive-p argument to read is t, which

means that this call to read is imbedded, not top-level.
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(let ((*readtable* (copy-readtable nil))

      (macfun (get-dispatch-macro-character #\# #\\))) 

  (set-dispatch-macro-character #\# #\Q macfun)

  (values (read-from-string "#Q+")))

 => #\+�

� set-exclusive-or list1 list2 &key (test #’eql) test-not (key #’identity) Function

Returns a list of elements that appear in exactly one of list1 and list2. Does not

change the arguments. Note that there is no guarantee that the order of elements

in the result will reflect the ordering of the arguments in any particular way. The

keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For all possible ordered pairs consisting of one element from list1 and one element

from list2, the predicate is used to determine whether they match. The result con-

tains precisely those elements of list1 and list2 which appear in no matching pair.

For example:

(setq a-list ’(eagle hawk loon pelican)) =>

(EAGLE HAWK LOON PELICAN)

�

(setq b-list ’(owl hawk stork)) => (OWL HAWK STORK)

�

(set-exclusive-or a-list b-list) => (EAGLE LOON PELICAN OWL STORK)�

In the following example, > is the test. Each element of list-a is considered an ele-

ment of list-b, in case it is greater than some element of list-b, and vice versa for

the elements of list-b in relation to those of list-a. Thus, set-exclusive-or with :test

> returns a list of the elements of one set, all of which are less than any element

of the other set.

(setq list-a ’(23 12 17 10))

(setq list-b ’(42 16 31))

�

(set-exclusive-or list-a list-b :test #’>) => (12 10)�

For a table of related items: See the section "Functions for Comparing Lists".
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� zl:set-globally var value Function

Works like set but sets the global value regardless of any bindings currently in

effect.

zl:set-globally operates on the global value of a special variable; it bypasses any

bindings of the variable in the current stack group. It resides in the global pack-

age.

zl:set-globally does not work on local variables.

See the section "Functions Relating to the Value of a Symbol". 

� zl:set-in-closure closure symbol value Function

Sets the binding of symbol in the environment of closure to value; that is, it does

what would happen if you restored the value cells known about by closure and then

set symbol to value. This allows you to change the contents of the value cells

known about by a dynamic closure. If symbol is not closed over by closure, this is

just like set. See the section "Dynamic Closure-Manipulating Functions". 

� zl:set-in-instance instance symbol value Function

Alters the value of an instance variable inside a particular instance, regardless of

whether the instance variable was declared a :writable-instance-variable or a

:settable-instance-variable. instance is the instance to be altered, symbol is the in-

stance variable whose value should be set, and value is the new value. If there is

no such instance variable, an error is signalled.

In Symbolics Common Lisp, this operation is performed by:

(setf (scl:symbol-value-in-instance instance symbol) value)�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� :set-input-interrupt-function function &rest args Message

Assigns a function to be applied to any args whenever input becomes available on

the connection, or the connection goes into an unusable state. The function is

called in a non-simple process, and therefore can use :process-wait.

� set-macro-character char function &optional non-terminating-p (a-readtable

*readtable*) Function

Causes char to be a macro character that causes function to be called when it is

seen by the reader. If non-terminating-p is not nil (it defaults to nil), it will be a

non-terminating macro character, which means that it may be embedded within ex-

tended tokens. set-macro-character returns t.
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function is called with two arguments, stream and char. stream is the input stream,

and char is the macro character itself. In the simplest case, function returns a

Lisp object. This object is taken to be that whose printed representation was the

macro character and any following characters read by the function. As an example,

the definition of the single-quote macro character is:

(defun single-quote-reader (stream char)

  (declare (ignore char))

  (list-in-area ’sys:read-area ’quote (read stream t nil t)))

�

(set-macro-character #\’ #’single-quote-reader)�

single-quote-reader reads an object following the single-quote and returns a list of

the symbol quote and that object. The char argument is ignored for this function.

Note that the recursive-p argument to read is t, which means that this call to

read is embedded, not top-level.

function should not have any side effects other than on stream. Because of back-

tracking and restarting of the read operation, front ends to the reader, such as ed-

itors and rubout handlers, can cause function to be called repeatedly during the

reading of a single expression in which the macro character only appears once.

In the following example, square brackets are given a reader syntax which uses

them to denote vectors.

(defvar *square-bracket-depth* 0)

�

(defun square-bracket-vector-reader (stream char)

  (if (and (= *square-bracket-depth* 0) (char= char #\[))

    (progn

      (set-syntax-from-char #\] #\[)

      (set-macro-character #\] #’square-bracket-vector-reader)))

  (incf *square-bracket-depth*)

  (do ((result ’()))

      ((char= (peek-char t stream nil #\] t) #\])

       (if (= *square-bracket-depth* 0)

 (if result result (values))

 (progn

   (read-char stream)

   (decf *square-bracket-depth*)

   (coerce (nreverse result) ’vector))))

    (push (read stream t nil t) result))) 
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�

(let ((*readtable* (copy-readtable))

      (str "123 foobar [12 34 [56 78] 9] foobar")

      (result ’()))

  (set-macro-character #\[ #’square-bracket-vector-reader)

  (with-input-from-string (stream str)

    (dotimes (i 4) (push (read stream) result)))

  (set-syntax-from-char #\[ #\_)

  (set-syntax-from-char #\] #\_)

  (nreverse result))

�

 => (123 FOOBAR #(12 34 #(56 78) 9) FOOBAR) �

� :set-pointer new-pointer Message

Sets the reading position within the file to new-pointer (bytes in fixnum mode). For

text files on PDP-10 file servers, this does not do anything reasonable unless new-

pointer is 0, because of character-set translation.

See the section "Direct Access Output File Streams".

See the section "Direct Access Bidirectional File Streams". 

� dbg:set-proceed-types condition new-proceed-types Generic Function

Sets the list of valid proceed types for this condition to new-proceed-types.

The compatible message for dbg:set-proceed-types is:

:set-proceed-types

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� zl:set-syntax-#-macro-char char function &optional readtable Function

Causes function to be called when #char is read. readtable defaults to the current

readtable. The function’s arguments and return values are the same as for normal

macro characters. When function is called, the special variable si:xr-sharp-

argument contains nil or a number that is the number or special bits between the

# and char. 

� set-syntax-from-char to-char from-char &optional (to-readtable *readtable*) from-

readtable Function

This makes the syntax of to-char in to-readtable be the same as the syntax of from-

char in from-readtable. The to-readtable defaults to the current readtable (the value

of the global variable *readtable*), and from-readtable defaults to nil, meaning to

use the syntaxes from the standard Lisp readtable.
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The attributes whitespace, constituent, macro and escape are copied. If a macro

character is copied, the macro definition is also copied. The attributes alphabetic

and alphadigit, as well as marker characteristics such as plus sign, dot and float

exponent marker, are not copied, since they are "hard-wired" into the extended-

token parser. For example, if the definition of s is copied to *, * will become a

constituent that is alphabetic but cannot be used as an exponent indicator for

short-format floating-point number syntax.

You can copy a macro definition from a character such as " to another character

and expect it to work properly, since the standard definition for " looks for anoth-

er character that is the same as the character that invoked it. You probably don’t

want to copy the definition of ( to {, since it lets you write lists in the form

{a b c), not {a b c}, because the definition always looks for a closing parenthesis,

not a closing brace.

(let* ((foo "%zzz%zzz))")

       (newrt (copy-readtable))

       (*readtable* newrt)

       (result ’()))

  (push (read-from-string foo) result)

  (set-syntax-from-char #\% #\")

  (push (read-from-string foo) result)

  (set-syntax-from-char #\% #\()

  (push (read-from-string foo) result)

  (nreverse result))

�

 => (%ZZZ%ZZZ "zzz" (ZZZ (ZZZ)))�

� zl:set-syntax-from-char to-char from-char &optional to-readtable from-readtable 

Function

Makes the syntax of to-char in to-readtable be the same as the syntax of from-char

in from-readtable. to-readtable defaults to the current readtable, and from-readtable

defaults to the initial standard readtable. 

� zl:set-syntax-from-description char description &optional readtable Function

Sets the syntax of char in readtable to be that described by the symbol description.

The following descriptions are defined in the standard readtable: 

si:alphabetic An ordinary character such as "a".

zl:break A token separator such as "(". (Of course, left parenthesis has

other properties besides being a break.)

si:whitespace A token separator that can be ignored, such as "@".

si:single A self-delimiting single-character symbol. The initial readtable

does not contain any of these.
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si:slash The character quoter. In the initial readtable this is "/".

si:verticalbar The symbol print-name quoter. In the initial readtable this is

"|".

si:doublequote The string quoter. In the initial readtable this is ‘"’.

macro A macro character. Do not use this; use zl:set-syntax-macro-

char.

si:circlecross The octal escape for special characters. In the initial readtable

this is "⊗". (si:circlecross exists only in the standard Zetalisp

readtable, not the Symbolics Common Lisp readtable.)

si:bitscale A character that causes the integer to its left to be doubled

the number of times indicated by the integer to its right. In

the initial readtable this is "_". See the section "What the

Reader Recognizes".

si:digitscale A character that causes the integer to its left to be multiplied

by zl:ibase the number of times indicated by the integer to its

right. In the initial readtable this is "^". See the section "What

the Reader Recognizes".

si:non-terminating-macro

A macro character that is not a token separator. This is a

macro character if seen alone but is just a symbol constituent

inside a symbol. You can use it as a character of a symbol oth-

er than the first without slashing it. (# would be one of these

if it were not built into the reader.)�

readtable defaults to the current readtable. 

� zl:set-syntax-macro-char char function &optional readtable non-terminating-p 

Function

Changes readtable so that char is a macro character. When char is read, function

is called. readtable defaults to the current readtable.

function is called with two arguments: list-so-far and the input stream. When a list

is being read, list-so-far is that list (nil if this is the first element). At the "top

level" of zl:read, list-so-far is the symbol :toplevel. After a dotted-pair dot, list-so-

far is the symbol :after-dot. function can read any number of characters from the

input stream and process them however it likes.

function should return three values, called thing, type, and splice-p. thing is the ob-

ject read. If splice-p is nil, thing is the result. If splice-p is non-nil, when reading a

list thing replaces the list being read  often it is list-so-far with something else

nconc’ed onto the end. At top level and after a dot if splice-p is non-nil the thing

is ignored and the macro character does not contribute anything to the result of

zl:read. type is a historical artifact and is not really used; nil is a safe value. Most

macro character functions return just one value and let the other two default to

nil.
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function should not have any side effects other than on the stream and list-so-far.

Because of the way the input editor works, function can be called several times

during the reading of a single expression in which the macro character only ap-

pears once.

char is given the same syntax that single-quote, backquote, and comma have in the

initial readtable (it is called :macro syntax).

If non-terminating-p is nil (the default), zl:set-syntax-macro-char makes a normal

macro character. If it is t, zl:set-syntax-macro-char makes a nonterminating

macro character. A nonterminating macro character is a character that acts as a

reader macro if seen between tokens, but if seen inside a token it acts as an ordi-

nary letter; it does not terminate the token.

� zl:setarg i x Function

Used only during the application of a lexpr. (zl:setarg i x) sets the lexpr’s i’th ar-

gument to x. i must be greater than zero and not greater than the number of ar-

guments passed to the lexpr. After (zl:setarg i x) has been done, (zl:arg i) returns

x.

zl:setarg exists only for compatibility with Maclisp lexprs. To write functions that

can accept variable numbers of arguments, use the &optional and &rest keywords.

See the section "Evaluating a Function Form". 

� setf reference value &rest more-pairs Macro

Takes a form that accesses something, and "inverts" it to produce a corresponding

form to update the thing. A setf expands into an update form, which stores the re-

sult of evaluating the form value into the place referenced by the reference. If you

supply more than one reference value pair, the pairs are processed sequentially.

The form of reference can be any of the following: 

• The name of a variable (either local or global).

• A function call to any of the following functions:

aref car svref

nth cdr get

elt caar getf symbol-value

rest cadr gethash symbol-function

first cdar documentation symbol-plist

second cddr fill-pointer macro-function

third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr



Page 1460

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr �

• A function call whose first element is the name of a selector function created by

defstruct.

• A function call to one of the following functions paired with a value of the spec-

ified type so that it can be used to replace the specified "place":

Function name Required type

char string-char

schar string-char

bit bit

sbit bit

subseq sequence�

In the case of subseq, the replacement value must be a sequence whose ele-

ments can be contained by the sequence argument to subseq. If the length of

the replacement value does not equal the length of the subsequence to be re-

placed, then the shorter length determines the number of elements to be stored.

See the function replace.

• A function call to any of the following functions with an argument to that func-

tion in turn being a "place" form. The result of applying the specified update

function is then stored back into this new place.

Function name Argument that is a place Update function used

char-bit first set-char-bit

ldb second dpb

mask-field second deposit-field �

• A the type declaration form, in which case the declaration is transferred to the

value form and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were

(setf (cadr x) (the integer (+ y 3)))�

See the section "Generalized Variables".

For a table of related items: See the section "Basic Array Functions".

� future-common-lisp:setf reference value &rest more-pairs Macro

Expands the same as does setf. Calling future-common-lisp:setf has the same ef-

fect as calling setf.
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Because the argument order in defining setf methods and generic functions is dif-

ferent in CLOS and Flavors, the two symbols setf and future-common-lisp:setf

are used in function specs for setf generic functions, to indicate which argument

order is being used. The Flavors lambda-lists have the new-value parameter last,

preceded by other arguments. The CLOS lambda-lists have the new-value parame-

ter first, followed by other arguments. 

;;; Flavors

(defgeneric (setf symbol) (instance args... new-value)

  options...) 

�

(defmethod ((setf symbol) flavor) (args... new-value)

  body)�

;;; CLOS

(clos:defgeneric (future-common-lisp:setf symbol) 

                 (new-value instance args...)

  options...) 

�

(clos:defmethod (future-common-lisp:setf symbol) 

                (new-value (instance class) args...)

  body)�

The symbols setf and future-common-lisp:setf are used in function specs for setf

generic functions, to indicate which argument order is being used.

The :writable-instance-variables option to defflavor creates a method for a gener-

ic function whose function spec is of the form: (setf symbol). 

The :accessor option to clos:defclass creates a method for a generic function

whose function specs are of the form: (future-common-lisp:setf symbol).

For reasons of flexibility, it is possible to use either future-common-lisp:setf or

setf with both the Flavors and CLOS forms of defmethod and defgeneric. By con-

vention, however, Flavors programs use the Flavors argument order and create

function specs with setf; CLOS programs use the CLOS argument order and create

function specs with future-common-lisp:setf. 

� zl:setf access-form value Macro

Takes a form that accesses something, and "inverts" it to produce a corresponding

form to update the thing. A zl:setf expands into an update form, which stores the

result of evaluating the form value into the place referenced by the access-form.

Examples:

(zl:setf (array-leader foo 3) ’bar)

==> (store-array-leader ’bar foo 3)

(zl:setf a 3) ==> (setq a 3)

(zl:setf (plist ’a) ’(foo bar)) ==> (setplist ’a ’(foo bar))

(zl:setf (aref q 2) 56) ==> (aset 56 q 2)

(zl:setf (cadr w) x) ==> (rplaca (cdr w) x)�
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If access-form invokes a macro or a substitutable function, zl:setf expands the ac-

cess-form and starts over again. This lets you use zl:setf together with zl:defstruct

accessors.

For the sake of efficiency, the code produced by zl:setf does not preserve order of

evaluation of the argument forms. This is only a problem if the argument forms

have interacting side effects. For example, if you evaluate:

(setq x 3)

(setf (aref a x) (setq x 4))�

the form might set element 3 or element 4 of the array. We do not guarantee

which one it will do; do not just try it and see and then depend on it, because it is

subject to change without notice.

Furthermore, the value produced by zl:setf depends on the structure type and is

not guaranteed; zl:setf should be used for side effect only. If you want well-defined

semantics, you can use setf in your Symbolics Common Lisp programs.

See the section "Generalized Variables".

A generalization of variable assignment, this macro allows the update of a wide

variety of storage locations, such as structure components, vector elements, or el-

ements of a list. With place as a selector function, psetf uses the update form

appropriate to the selector form to change the value at the accessed location to

newvalue. The place/newvalue pairs are processed in order from left to right.�

(setf a ’(1 2 3)) is equivalent to  (setq a ’(1 2 3))

�

a → (1 2 3)

�

(setf (cddr a) ’(buckle my shoe))

 is equivalent to (progn (rplacd (cdr a) ’(buckle my shoe)) (cddr a))

�

a → (1 2 buckle my shoe)�

A large number of place forms are predefined, (see CLtL pages 94-97), and addi-

tions can be made via defsetf or define-setf-method.

See Also: CLtL 94, psetf, defsetf, define-setf-method

� zl:setplist symbol list Function

Sets the list that represents the property list of symbol to list. Use zl:setplist with

extreme caution, since property lists sometimes contain internal system properties,

which are used by many useful system functions. Also, it is inadvisable to have the

property lists of two different symbols be eq, since the shared list structure causes

unexpected effects on one symbol if zl:putprop or remprop is done to the other.

See the section "Functions Relating to the Property List of a Symbol".
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� setq &rest vars-and-vals Special Form

Used to set the value of one or more variables. The first variable is evaluated, and

the first value is set to the result. Then the second variable is evaluated, the sec-

ond value is set to the result, and so on for all the variable/value pairs. setq re-

turns the last value, that is, the result of the evaluation of its last subform. Ex-

ample:

(setq x (+ 3 2 1) y (cons x nil))�

x is set to 6, y is set to (6), and the setq form returns (6). Note that the first

variable was set before the second value form was evaluated, allowing that form to

use the new value of x.

This function is acceptable for both special and lexical variables.

(setq a ’(1 2 3) b ’((4 5) 6) c (cons 0 a))

=> (0 1 2 3)

a => (1 2 3)

b => ((4 5) 6)

c => (0 1 2 3)�

� zl:setq-globally &rest vars-and-vals Function

Use the Symbolics Common Lisp function symbol-value-globally instead of this.

You use setf with symbol-value-globally to set global values in your init file. 

� zl:setq-standard-value name form &optional (setq-p t) (globally-p t) (error-p t) 

Special Form

Sets the standard value of name to the value of form. If you want to change your

default zl:base to 8 (octal), do this:

(zl:setq-standard-value zl:base 8)

(zl:setq-standard-value zl:ibase 8)�

zl:setq-standard-value runs the validation function associated with the symbol and

signals an error if the validation function fails. You can use only zl:setq-standard-

value on symbols defined with sys:defvar-standard. zl:setq-standard-value and

zl:setq-globally work with login-forms and are recommended for use in init files

where you want your customizations to be undone when you log out.

For programs, zl:setq-standard-value has been superseded by setf of

sys:standard-value.

� zl:setsyntax character arg2 arg3 Function

Exists only for Maclisp compatibility. The other readtable functions are preferred

in new programs. The syntax of character is altered in the current readtable, ac-

cording to arg2 and arg3. character can be an integer, a symbol, or a string, that

is, anything acceptable to the character function. arg2 is usually a keyword; it can

be in any package since this is a Maclisp compatibility function. The following val-

ues are allowed for arg2: 
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:macro The character becomes a macro character. arg3 is the name of

a function to be invoked when this character is read. The func-

tion takes no arguments, can zl:tyi or zl:read from

zl:standard-input (that is, can call zl:tyi or zl:read without

specifying a stream), and returns an object that is taken as the

result of the read.

:splicing Like :macro, but the object returned by the macro function is

a list that is nconced into the list being read. If the character

is read not inside a list (at top level or after a dotted-pair dot),

then it can return nil, which means it is ignored, or (obj),

which means that obj is read.

:single The character becomes a self-delimiting single-character sym-

bol. If arg3 is an integer, the character is translated to that

character.

nil The syntax of the character is not changed, but if arg3 is an

integer, the character is translated to that character.

a symbol The syntax of the character is changed to be the same as that

of the character arg2 in the standard initial readtable. arg2 is

converted to a character by taking the first character of its

print name. Also if arg3 is an integer, the character is trans-

lated to that character.�

� zl:setsyntax-sharp-macro character type function &optional readtable Function

Exists only for Maclisp compatibility. zl:set-syntax-#-macro-char is preferred. If

function is nil, #character is turned off, otherwise it becomes a macro that calls

function. type can be :macro, :peek-macro, :splicing, or :peek-splicing. The splic-

ing part controls whether function returns a single object or a list of objects. Spec-

ifying peek causes character to remain in the input stream when function is called;

this is useful if character is something like a left parenthesis. function gets one

argument, which is nil or the number between the # and the character. 

� seventh list Function

Takes a list as an argument, and returns the seventh element of the list. seventh

is identical to: 

(nth 6 list)

For example:

(setq letters ’(a b c d e f g h i)) =>

(A B C D E F G H I)

�

(seventh letters) => G�

This function is provided because it makes more sense when you are thinking of

the argument as a list rather than just as a cons.
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For a table of related items: See the section "Functions for Extracting from Lists".

� shadow symbols &optional package Function

symbols should be a list of symbols or a single symbol. If symbols is nil, it is treat-

ed like an empty list. The name of each symbol is extracted, and package is

searched for a symbol of that name. If no such symbol is present in this package

(directly, not by inheritance), a new symbol is created with this name and inserted

in package as an internal symbol. The symbol is also placed on the shadowing-

symbols list of package.

package can be a package object or the name of a package (a symbol or a string).

If unspecified, package defaults to the value of *package*. Returns t.

shadow should be used with caution. It changes the state of the package system

in such a way that the consistency rules do not hold across the change. 

The following function checks if a list of symbols has already been made shadow-

ing symbols of the indicated package, and if not, calls shadow.

(defun my-shadow( symbols &optional (package *package*))

  (let ((shadowing-symbols (package-shadowing-symbols package)))

    (dolist (symbol symbols)

      (unless (member symbol shadowing-symbols)

        (shadow symbol package)))))�

� shadowing-import symbols &optional package Function

Like import, but does not signal an error even if the importation of a symbol

would shadow some symbol already available in the package. If a distinct symbol

with the same name is already present in the package, it is removed (using

unintern). The imported symbol is placed on the shadowing-symbols list of

package.

The symbols argument should be a list of symbols or a single symbol. If symbols is

nil, it is treated like an empty list. package can be a package object or the name

of a package (a symbol or a string). If unspecified, package defaults to the value of

*package*. Returns t.

shadowing-import should be used with caution. It changes the state of the pack-

age system in such a way that the consistency rules do not hold across the change.

=> *package*

TURBINE-PACKAGE

=> (export valve-pressure)

T

=> (shadowing-import generator:valve-pressure)�

� clos:shared-initialize instance slot-names &rest initargs Generic Function
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Initializes the instance according to the initargs, then initializes any unbound slots

in slot-names according to their initforms, and returns the initialized instance.

This generic function is intended to be specialized by programmers, but not to be

called directly. 

instance The instance to initialize.

slot-names A list of slot names, or nil, or t. This specifies which slots

should be initialized according to their initforms, if no initial-

ization arguments are provided that initialize the slot. nil spec-

ifies no slots; t specifies all slots; and a list of slot names spec-

ifies the just the slots named. 

initargs Alternating initialization argument names and values. �

The default primary method for clos:shared-initialize does the following: 

1. Fills slots with values according to the initargs. That is, for any initialization

argument name that is associated with a slot, the value of the slot is initial-

ized according to the argument given to clos:make-instance.

2. Fills any unbound slots indicated by the second argument to clos:shared-

initialize with values according to the initform of the slot. The initform is

specified by the :initform slot option to clos:defclass. 

Users can define after-methods for clos:shared-initialize, to customize the initial-

ization behavior that occurs in several cases. Note that a user-defined primary

method for clos:shared-initialize would override the default method, and thus

could prevent the usual slot-filling behavior. The clos:shared-initialize generic

function is called in these cases:

• When an instance is first created; that is, when clos:make-instance is called. 

• When an instance is reinitialized; that is, when clos:reinitialize-instance is

called. 

• When the class of an instance is changed; that is, when clos:update-instance-

for-different-class is called.

• When a class is redefined; that is, when clos:update-instance-for-redefined-

class is called.

� shiftf &rest references-and-values Macro

Each references-and-values can be any form acceptable as a generalized variable to

setf. All the forms are treated as a shift register; the last references-and-values is

shifted in from the right, all values shift over to the left one place, and the value

shifted out of the first references-and-values position is returned.
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For example, as seen in a Lisp Listener:

(setq forces (list army navy air-force marines))

=> (ARMY NAVY AIR-FORCE MARINES)

�

(shiftf (car forces) (cadr forces) ’new-york-cops)

=> ARMY

�

forces

=> (NAVY NEW-YORK-COPS AIR-FORCE MARINES)

�

(shiftf (cadr forces) (cddr forces) ’monterey-lifeguards)

=> NEW-YORK-COPS

�

forces

=> (NAVY (AIR-FORCE MARINES) . MONTEREY-LIFEGUARDS)�

A large number of place forms are predefined, and additions can be made via

defsetf or define-setf-method. See the macro setf.

The following example illustrates the use of shiftf in scrolling a line-segment of

bits, such as for a portion of a bit-mapped display.

(setq s #*10011101)

#*10011101

(setq carry-bit

      (shiftf (bit s 0) (bit s 1) (bit s 2) (bit s 3)

              (bit s 4) (bit s 5) (bit s 6) (bit s 7)

              0))

1

s

#*00111010�

� short-float Type Specifier

short-float is the type specifier symbol for the predefined Lisp single-precision

floating-point number type.

The type short-float is a subtype of the type float. In Symbolics Common Lisp

short-float is identical with single-float.

The type short-float is disjoint with the types long-float and double-float.

Examples:

(typep 0.0 ’short-float) => T 

�

(subtypep ’short-float ’float) => T and T ;subtype and certain

�

(commonp 1.0) => T
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�

(equal-typep ’short-float ’single-float) => T

�

See the section "Data Types and Type Specifiers". See the section "Numbers".

� short-float-epsilon Constant

The value is the smallest positive floating-point number e of a format such that it

satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e)))�

In Symbolics Common Lisp short-float-epsilon has the same value as single-float-

epsilon, namely: 5.960465e-8.

� short-float-negative-epsilon Constant

The value is the smallest positive floating-point number e of a format such that it

satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e)))�

In Symbolics Common Lisp the value of short-float-negative-epsilon is the same

as that of single-float-negative-epsilon, namely: 2.9802326e-8.

� short-site-name Function

Returns a string that is the name of your site. This is the contents of the Site

field in your site’s namespace object.

The CLOE Runtime environment does not provide a uniform way to obtain a "site"

designation. If the value of the variable cloe::*short-site-name* is nil, you are

prompted to enter the correct values for your site. Initially, cloe::*short-site-

name* is set to "CLOE-USER-SITE."

� si:show-login-history &optional (whole-history si:login-history) Function

Prints one line for each time the login command has been used since the world

was last cold booted. See the section "Show Login History Command". 

� signal flavor &rest init-options Function

The primitive function for signalling a condition. The argument flavor is a condi-

tion flavor symbol. The init-options are the init options when the condition-object

is created; they are passed in the :init message to the instance. (See the function

make-instance.) signal creates a new condition object of the specified flavor, and

signals it. If no handler handles the condition and the object is not an error object,

signal returns nil. If no handler handles the condition and the object is an error

object, the Debugger assumes control.
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In a more advanced form of signal, flavor can be a condition object that has been

created with make-condition but not yet signalled. In this case, init-options is ig-

nored.

Note that in CLOE, if typep condition cloe::*break-on-signals* is true, then the

debugger will be entered prior to beginning the signalling process. The continue

restart may be used to continue with the signalling process. This is true also for

all other functions and macros which signal conditions, such as warn, error,

cerror, assert, and check-type.

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� signal-proceed-case Special Form

Signals a proceedable condition. It has a clause to handle each proceed type of the

condition. It has a slightly more complicated syntax than most special forms: you

provide some variables, some argument forms, and some clauses:

(signal-proceed-case ((var1 var2 ...) arg1 arg2 ...)

   (proceed-type-1 body1...)

   (proceed-type-2 body2...)

   ...)�

The first thing this form does is to call signal, evaluating each arg form to pass

as an argument to signal. In addition to the arguments you supply, signal-

proceed-case also specifies the dbg:proceed-types init option, which it builds

based on the proceed-type-i clauses.

When signal returns, signal-proceed-case treats the first returned value as the

symbol for a proceed type. It then picks a proceed-type-i clause to run, based on

that value. It works in the style of case: each clause starts with a proceed type (a

keyword symbol), or a list of proceed types, and the rest of the clause is a list of

forms to be evaluated. signal-proceed-case returns the values produced by the last

form.

var1, var2, and so on, are bound to successive values returned from signal for use

in the body of the proceed-type-i clause selected.

One proceed-type-i can be nil. If signal returns nil, meaning that the condition was

not handled, signal-proceed-case runs the nil clause if one exists, or simply re-

turns nil itself if no nil clause exists. Unlike case, no otherwise clause is available

for signal-proceed-case.

The value passed as the dbg:proceed-types option to signal lists the various pro-

ceed types in the same order as the clauses, so that the Debugger displays them in

that order to the user and the RESUME command runs the first one. 

� signed-byte Type Specifier

signed-byte is the type specifier denoting the set of integers that can be repre-

sented in two’s-complement form in a byte of n bits. It is the same as the type

specifier integer. 
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� zl:signp test x Special Form

Tests the sign of a number. It is present only for compatibility with older versions

of Lisp, and is not recommended for use in new programs. zl:signp returns t if x

is a number that satisfies the test, nil if it is not a number or does not meet the

test. test is not evaluated, but x is. test can be one of the following: 

l x < 0

le x ≤ 0

e x = 0

n x ≠ 0

ge x ≥ 0

g x > 0�

Examples:

(zl:signp ge 12) => t

(zl:signp le 12) => nil

(zl:signp n 0) => nil

(zl:signp g ’foo) => nil�

For a table of related items, see the section "Numeric Property-checking Predi-

cates". 

� signum number Function

Determines the sign of its argument. 

For a rational argument, signum returns -1, 0, or 1, depending on whether the ar-

gument is negative, zero, or positive. 

If the argument is a floating-point number, the result is a floating-point number of

the same format whose value is minus one, zero, or one.

For a non-zero complex argument z, (signum z) returns a complex number of the

same phase as z but with unit magnitude. If z is a complex zero, signum returns

zero.

Examples:

(signum -2.5)  =>  -1.0

(signum 3.9)  =>  1.0

(signum 0)  =>  0

(signum 59)  =>  1

(signum #C(3 4)) => #C(0.6 0.8)�

For a table of related items: See the section "Arithmetic Functions".

� simple-array &optional ( element-type ’* ) ( dimensions ’* ) Type Specifier

simple-array is the type specifier symbol for the Lisp data structure of that name.
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The type simple-array is a subtype of the type array.

The types simple-vector, simple-string, and simple-bit-vector are disjoint subtypes

of the type simple-array: simple-vector means (simple-array t (*)); simple-

string means (simple-array string-char) or (simple-array character); simple-

vector means (simple-array bit (*)).

This type specifier can be used in either symbol or list form. Used in list form,

simple-array allows the declaration and creation of specialized simple arrays

whose members are all members of the type element-type and whose dimensions

match dimensions. This is equivalent to 

(array element-type dimensions)�

except that it additionally specifies that objects of the type are simple arrays. (A

simple array is an array that has no fill pointer, whose contents are not shared

with another array, and whose size is not adjusted dynamically after creation.)

element-type must be a valid type specifier, or unspecified. For standard Symbolics

Common Lisp type specifiers: See the section "Type Specifiers".

dimensions can be a non-negative integer, which is the number of dimensions, or it

can be a list of non-negative integers representing the length of each dimension

(any of which can be unspecified). dimensions can also be unspecified.

Examples:

(setq example-array (make-array ’(3) :fill-pointer 2)) 

=> #<ART-Q-3 1321277>�

(setq example-simple-array (make-array ’(3))) => #<ART-Q-3 1330466>�

(typep example-simple-array ’simple-array) => T �

(zl:typep example-simple-array) => :ARRAY�

(subtypep ’simple-array ’array) => T and T�

(sys:type-arglist ’simple-array) 

=> (&OPTIONAL (ELEMENT-TYPE ’*) (DIMENSIONS ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Arrays".

� simple-bit-vector &optional ( size ’* ) Type Specifier

simple-bit-vector is the type specifier symbol for the Lisp data structure of that

name.

simple-vector, simple-string, and simple-bit-vector are disjoint subtypes of the

type simple-array: simple-vector means (simple-array t (*)); simple-string

means (simple-array string-char) or (simple-array character); simple-bit-vector

means (simple-array bit (*)).

This type specifier can be used in either symbol or list form. Used in list form,

simple-bit-vector defines the set of bit-vectors of the indicated size. This means

the same as (simple-array bit (size)).

Examples:
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(setq array-bit-vector-not-simple 

      (make-array ’(3) :element-type ’bit :fill-pointer 2))

   => #<ART-1B-3 43035106>�

(setq array-bit-vector-simple 

      (make-array ’(3) :element-type ’bit))

   => #<ART-1B-3 43054543>�

(typep array-bit-vector-simple ’simple-array) => T�

(typep array-bit-vector-not-simple ’simple-array) => NIL�

(typep #*1 ’(simple-bit-vector 1)) => T�

(subtypep ’simple-bit-vector ’simple-array) => T and T�

(subtypep ’simple-bit-vector ’bit-vector) => T and T�

(simple-bit-vector-p array-bit-vector-simple) => T�

(sys:type-arglist ’simple-bit-vector) 

=> (&OPTIONAL (SIZE ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Arrays".

� simple-bit-vector-p object Function

Tests whether the given object is a simple bit vector. A simple bit vector is a one-

dimensional array whose elements are required to be bits; the array is not dis-

placed to another array and has no fill pointer. See the type specifier simple-bit-

vector. Under CLOE, a simple bit vector has no fill pointer, and is not adjustable

or displaced.

(setq foo (make-array ’(5) :element-type ’bit))

(setq bar (make-array ’(5) :element-type ’bit

                          :adjustable t))

�

(simple-bit-vector-p foo) => t

(simple-bit-vector-p bar) => nil�

(simple-bit-vector-p

 (make-array 3 :element-type ’bit)) 

 => T

�

(simple-bit-vector-p 

  (make-array 5 :element-type ’bit :fill-pointer 2)) 

 => NIL�

For a table of related items: See the section "Operations on Vectors". 

� simple-string &optional ( size ’* ) Type Specifier

simple-string is the type specifier symbol for the predefined Lisp data type, simple

string.

The type simple-string is a subtype of the type string.
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Note: Although string is a subtype of vector, simple-string is not a subtype of

simple-vector.

The types simple-vector, simple-string, and simple-bit-vector are disjoint subtypes

of the type simple-array: simple-vector means (simple-array t (*)); simple-

string means (simple-array string-char) or (simple-array character); simple-bit-

vector means (simple-array bit (*)).

This type specifier can be used in either symbol or list form. Used in list form,

simple-string defines the set of simple strings whose size is restricted to size. This

means the same as (simple-array string-char (size)), or (simple-array character

(size)).

Examples:

(setq string-one (make-string 5 :initial-element #\.))  => "....."

  ; a thin, simple string

�

(setq string-two (make-array 3 :element-type ’character

                               :initial-element #\x))  => "xxx"

  ; a fat, simple string�

�

(typep string-one ’simple-string) => T

(typep string-two ’simple-string) => T

�

(simple-string-p string-one) => T

(simple-string-p string-two) => T

�

(subtypep ’simple-string ’string) => T and T

(subtypep ’simple-string ’vector) => T and T

(subtypep ’simple-string ’simple-array) => T and T

�

(commonp string-two) => T

�

(sys:type-arglist ’simple-string) => (&OPTIONAL (SIZE ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Strings".

� simple-string-p object Function

Determines if object is a simple string array (one with no fill pointer and no dis-

placement), returning t if it is, and nil otherwise. Accepts any object as an argu-

ment. A simple string is a one-dimensional array; under Genera, its elements can

be characters of type string-char or character. Under CLOE, its elements must

be of type string-char. In both CLOE and Genera, the array must have no fill

pointer or displacement. Additionally, in CLOE the string must not be adjustable. 

simple-string is a subtype of type string. simple-string-p is always t for strings

built with make-string.

Examples:
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(simple-string-p "fred") => T

�

(simple-string-p (make-string 3 :initial-element #\z)) => T

�

(simple-string-p (make-string 4 :initial-element #\hyper-a)) => T

�

(simple-string-p (make-array 5 :element-type ’string-char 

       :fill-pointer t))  => NIL

�

(simple-string-p (make-array 2 :element-type ’character

                               :initial-element #\b)) => T

�

(setq foo (make-array ’(5) :element-type ’character))

(setq bar (make-array ’(5) :element-type ’character

                          :adjustable t))

�

(simple-string-p foo) => t

(simple-string-p bar) => nil�

For a table of related items: See the section "String Type-Checking Predicates".

� simple-vector &optional ( size ’* ) Type Specifier

simple-vector is the type specifier symbol for the Lisp data structure of that

name.

The type simple-vector is a subtype of the types:

vector

(vector t)

�

Note: Although string is a subtype of vector, simple-string is not a subtype of

simple-vector.

The types simple-vector, simple-string, and simple-bit-vector are disjoint subtypes

of the type simple-array: simple-vector means (simple-array t (*)); simple-

string means (simple-array string-char) or (simple-array character); simple-bit-

vector means (simple-array bit (*)).

This type specifier can be used in either symbol or list form. Used in list form,

simple-vector defines the set of specialized one-dimensional arrays of size size.

This is the same as (vector t size), except that it additionally specifies that its ele-

ments are simple general vectors.

Examples:

(typep #(13 3 0) ’simple-vector) => T�

(subtypep ’simple-vector ’vector) => T and T�

(sys:type-arglist ’simple-vector) => (&OPTIONAL (SIZE ’*)) and T�

(simple-vector-p #(a b c)) => T�
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(typep #(1 1 2) ’(simple-vector 3)) => T�

See the section "Data Types and Type Specifiers". See the section "Arrays".

� simple-vector-p object Function

Tests whether the given object is a simple general vector. A simple general vector

is a one-dimensional array whose elements have no type constraints; the array is

not displaced to another array and has no fill pointer. Additionally, in CLOE it

cannot be adjustable. See the type specifier simple-vector.

(simple-vector-p (make-array 3)) 

 => T

�

(simple-vector-p 

 (make-array 5 :element-type ’bit :fill-pointer 2)) 

 => NIL�

(setq foo (make-array ’(5) :initial-element 12))

(setq bar (make-array ’(5) :initial-element 12

                          :adjustable t))

�

(simple-vector-p foo) => t

(simple-vector-p bar) => nil�

For a table of related items: See the section "Operations on Vectors". 

� sin radians Function

Returns the sine of radians. Examples:

(sin 0) => 0.0

(sin (/ pi 2)) => 0.9999999999999999d0�

For a table of related items: See the section "Trigonometric and Related

Functions".

� sind degrees Function

Returns the sine of degrees. degrees can be any numeric type.

Examples:

(sind #C(30 40))  => #C(0.62687695 0.65492296)

(sind 30.0)  => 0.5

(sind 30)  => 0.5

(sind #C(0.0 30.0))  => #C(0.0 0.5478535)�

For a table of related items: See the section "Trigonometric and Related

Functions". 
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� single-float Type Specifier

single-float is the type specifier symbol for the predefined Lisp single-precision

floating-point number type.

The type single-float is a subtype of the type float. In Symbolics Common Lisp

single-float is equivalent to short-float.

The type single-float is disjoint with the types long-float and double-float.

Examples:

(typep .00700 ’single-float) => T�

(subtypep ’single-float ’float) => T and T ;subtype and certain�

(zl:typep .123456 ) => :SINGLE-FLOAT�

(typep -0.3 ’common) => T�

(sys:single-float-p 1.e3) => T�

(equal-typep ’single-float ’short-float) => T�

(sys:type-arglist ’single-float) => NIL and T�

(type-of 63e8) => SINGLE-FLOAT�

See the section "Data Types and Type Specifiers". See the section "Numbers".

� single-float-epsilon Constant

The value is the smallest positive floating-point number e of a format such that it

satisfies the expression:

(not (= (float 1 e) (+ (float 1 e) e)))�

The current value of single-float-epsilon is: 5.960465e-8.

� single-float-negative-epsilon Constant

The value is the smallest positive floating-point number e of a format such that it

satisfies the expression:

(not (= (float 1 e) (- (float 1 e) e)))�

The current value of single-float-negative-epsilon is: 2.9802326e-8 

sys:single-float-p object Function

Returns t if object is a single-precision floating-point number, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates". 

� sinh radians Function

Returns the hyperbolic sine of radians. Example:

(sinh 0) => 0.0�
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For a table of related items: See the section "Hyperbolic Functions".

� sixth list Function

Takes a list as an argument, and returns the sixth element of the list. sixth is

identical to: 

(nth 5 list)

For example:

(setq letters ’(a b c d e f g)) => (A B C D E F G)

�

(sixth letters) => F�

This function is provided because it makes more sense when you are thinking of

the argument as a list rather than just as a cons.

For a table of related items: See the section "Functions for Extracting from Lists".

� clos:slot-boundp instance slot-name Function

Returns true if the given slot has a value, otherwise returns false.

instance The instance.

slot-name The name of the slot of interest. This can be a local or shared

slot. �

One use for clos:slot-boundp is in writing after-methods for clos:initialize-

instance in order to initialize unbound slots.

If there is no slot of the given name accessible to the instance, clos:slot-missing

is called. The default method for clos:slot-missing signals an error. 

� clos:slot-exists-p object slot-name Function

Returns true if the object has a slot named slot-name, otherwise returns false.

object Any Lisp object.

slot-name The name of the slot of interest. �

� clos:slot-makunbound instance slot-name Function

Makes the given slot unbound. Returns the instance.

instance An instance.

slot-name The name of the slot that should be made unbound. This can

be a local or shared slot. �
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If there is no slot of the given name accessible to the instance, clos:slot-missing

is called. The default method for clos:slot-missing signals an error.

� clos:slot-missing class instance slot-name operation &optional new-value 

Generic Function

Provides a mechanism for users to control what happens when a slot’s value is de-

sired for access (when clos:slot-value is called, among other operations), and there

is no slot of the given name accessible to the instance. The default method for

clos:slot-missing signals an error. 

The typical way to specialize clos:slot-missing is to define a primary method,

which would override the default primary method. 

This generic function is called automatically, and is not intended to be called by

users.

class The class of the instance whose slot value is desired for ac-

cess.

instance The instance whose slot value is desired for access.

slot-name The name of the slot desired for access.

operation The operation that caused clos:slot-missing to be invoked. This

can be one of the following symbols: 

clos:slot-value 

clos:slot-boundp

clos:slot-makunbound

future-common-lisp:setf, indicating that 

  (setf clos:slot-value) was called�

new-value This argument is the new value which is to be written into the

slot, when (setf clos:slot-value) is called. This argument is

provided only if the operation argument is future-common-

lisp:setf.

If a method for clos:slot-missing returns values, these values are returned as the

values of the function that caused clos:slot-missing to be called. 

� clos:slot-unbound class instance slot-name Generic Function

Provides a mechanism for users to control what happens when a slot’s value is de-

sired for access and the slot is unbound. This generic function is called automati-

cally in that case, and is not intended to be called by users. 

The default primary method signals an error.

The typical way to specialize clos:slot-unbound is to define a primary method,

which would override the default primary method. 

class The class of the instance. 
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instance The instance whose slot is unbound.

slot-name The name of the unbound slot.�

If a method for clos:slot-unbound returns a value, this value is returned as the

value of the function that caused clos:slot-unbound to be called. 

� clos:slot-value instance slot-name Function

Returns the value of a given slot. You can use setf with clos:slot-value to change

the value of a slot. You can use locf with clos:slot-value to get a locative pointer

to the cell inside an instance that contains the value of a slot.

instance The instance whose slot is desired.

slot-name The name of the slot whose value is desired. This can be a lo-

cal or a shared slot.�

If there is no slot of the given name accessible to the instance, then clos:slot-

missing is called. The default method for clos:slot-missing signals an error. 

If the slot is unbound, then clos:slot-unbound is called. The default method for

clos:slot-unbound signals an error. 

If you use location-contents on a shared slot which is unbound, the system has no

way of knowing which instance you are interested in. Thus, clos:slot-unbound is

called with an instance, but that instance is not necessarily the one of interest to

you.

Note that you cannot use clos:slot-value on a class defined by defstruct. 

� software-type Function

Returns a string that is the name of the operating system Lisp is running in.

(software-type) => "Lisp Machine"�

For the CLOE Developer

(software-type) =>"Genera"�

and for the CLOE Application Generator

(software-type) =>"UNIX" or "MS-DOS"�

� software-version Function

Returns a string that represents the versions of all the systems running in your

world. This includes any local systems you have loaded. This is similar to the in-

formation displayed by the Show Herald command.

For the CLOE Developer

(software-version) =>"8.0"�
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and for the CLOE Application Generator

(software-version) =>"V.3" or "3.1"�

� math:solve lu ps b &optional x Function

Takes the LU decomposition and associated permutation array produced by

math:decompose, and solves the set of simultaneous equations defined by the orig-

inal matrix a and the right-hand sides in the vector b. If x is supplied, the solu-

tions are stored into it and it is returned; otherwise, an array is created to hold

the solutions and that is returned. b must be a one-dimensional array. 

� some predicate sequence &rest more-sequences Function

Returns a non-nil value as soon as any invocation of predicate returns a non-nil

value. predicate must take as many arguments as there are sequences provided.

predicate is first applied to the elements of the sequences with an index of 0, then

with an index of 1, and so on, until a termination criterion is reached or the end

of the shortest of the sequences is reached. If the end of a sequence is reached,

some returns nil. Thus considered as a predicate, it is true if some invocation of

predicate is true.

If predicate has side effects, it can count on being called first on all those ele-

ments with an index of 0, then all those with an index of 1, and so on.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(some #’oddp ’(1 2 5)) => T

�

(some #’equal ’(0 1 2 3) ’(3 2 1 0)) => NIL�

However, since some returns whatever the predicate returns, it does not have to

be t.

For example:

(some #’(lambda (x) (if (oddp x) x)) ’(2 4 3))  => 3�

By using an anonymous function, the following example demonstrates how some im-

plements a test to determine whether any element of a sequence exceeds a limit-

ing value.

(setq limit-value 212 sequence (vector 16 64 512 128 32))

 

(some #’(lambda(x) (> x limit-value)) sequence) => t�

For a table of related items: See the section "Predicates that Operate on Lists".

For a table of related items: See the section "Functions for Extracting from Lists".

For a table of related items: See the section "Predicates that Operate on Se-

quences".
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� zl:some list pred &optional (step #’cdr)�

Function

Returns a tail of list, such that the car of the tail is the first element that satis-

fies pred. Returns nil if pred returns nil for every element. Example:

(setq list ’(a b 1 2)) => (A B 1 2)

(zl:some list #’numberp) => (1 2)�

For a table of related items: See the section "Predicates that Operate on Se-

quences". 

� sort sequence predicate &key key Function

Destructively modifies sequence by sorting it according to an order determined by

predicate. predicate should take two arguments and return a non-nil value if and

only if the first argument is strictly less than the second (in some appropriate

sense). If the first argument is greater than or equal to the second (in the appro-

priate sense), predicate should return nil.

The sort function determines the relationship between two elements by giving keys

extracted from the elements to predicate. The :key argument, when applied to an

element, should return the key for that element. It defaults to the identity func-

tion, thereby making the element itself the key.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The :key function should not have any side effects. A useful example of a :key

function would be a component selector function for a defstruct structure, used in

sorting a sequence of structures.

If the :key and predicate functions always return, the sorting operation will always

terminate, producing a sequence containing the same elements as the original se-

quence (that is, the result is a permutation of sequence). This is guaranteed even

if predicate does not really consistently represent a total order (in which case the

elements will be scrambled in some unpredictable way, but no element will be

lost). If the :key function consistently returns meaningful keys, and the predicate

does reflect some total ordering criterion on those keys, the elements of the result

sequence will be properly sorted according to that ordering.

For example:

(sort #(1 3 2 4 3 5) #’>) => #(5 4 3 3 2 1)

�

(sort ’((up 2)(down 1)(west 4)(south 3)) #’< :key #’cadr)

 => ((DOWN 1) (UP 2) (SOUTH 3) (WEST 4))�

The sorting operation performed by sort is not guaranteed stable. Elements consid-

ered equal by predicate may or may not stay in their original order. predicate is as-

sumed to consider two elements x and y to be equal if (funcall predicate x y) and

(funcall predicate y x) are both false. The function stable-sort guarantees stability,

but can be slower than sort in some situations.
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The sorting operation is destructive, so in the cases where the argument should

not be destroyed, you must sort a copy of the argument. When the argument is an

vector, the sort is accomplished by permuting the elements in place. When the ar-

gument is a list, the sort is accomplished by destructive reordering in the same

manner as nreverse.

If the execution of either the :key or predicate functions causes an error, the state

of the list or vector being sorted is undefined. However, if the error is corrected,

the sort will proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to predi-

cate, sorting will be much faster if predicate is a compiled function rather than in-

terpreted.

For example:

(setq bird-list ’(heron stork loon owl flamingo turkey)) =>

(HERON STORK LOON OWL FLAMINGO TURKEY)

�

(sort bird-list #’string-lessp) =>

(FLAMINGO HERON LOON OWL STORK TURKEY)

�

(setq a (vector 1 2 3 4 5))

�

(setq a (sort a #’>)) => #(5 4 3 2 1)

For a table of related items: See the section "Functions for Sorting Lists".

For a table of related items: See the section "Sorting and Merging Sequences".

� zl:sort x sort-lessp-predicate Function

Sorts the contents of the one-dimensional array or list x, under the ordering im-

posed by sort-lessp-predicate, and returns the array or list modified into sorted or-

der. Note that since sorting requires many comparisons, and thus many calls to

the predicate, sorting is much faster if the predicate is a compiled function rather

than interpreted. 

The first argument to zl:sort, x, is a one-dimensional array or a list. The second,

sort-lessp-predicate, is a predicate, which must be applicable to all the objects in

the array or list. The predicate should take two arguments, and return non-nil if

and only if the first argument is strictly less than the second (in some appropriate

sense). The predicate should return nil if its arguments are equal. For example, to

sort in the opposite direction from <, use >, not ≥. This is because the quicksort

algorithm used to sort arrays and cdr-coded lists becomes very much slower if

predicate has to return non-nil for equal elements. Example:

(defun mostcar (x)

    (cond ((symbolp x) x)

          ((mostcar (car x)))))
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�

(zl:sort fooarray

      (function (lambda (x y)

  (alphalessp (mostcar x) (mostcar y)))))�

If fooarray contained these items before the sort:

(Tokens (The lion sleeps tonight))

(Carpenters (Close to you))

((Rolling Stones) (Brown sugar))

((Beach Boys) (I get around))

(Beatles (I want to hold your hand))�

after the sort fooarray would contain:

((Beach Boys) (I get around))

(Beatles (I want to hold your hand))

(Carpenters (Close to you))

((Rolling Stones) (Brown sugar))

(Tokens (The lion sleeps tonight))�

When zl:sort is given a list, it can change the order of the conses of the list (us-

ing rplacd), and so it cannot be used merely for side effect; only the returned val-

ue of zl:sort is the sorted list. This changes the original list; if you need both the

original list and the sorted list, you must copy the original and sort the copy. See

the function copy-list.

Sorting an array just moves the elements of the array into different places, and so

sorting an array only for side effect is all right.

If the x argument to zl:sort is an array with a fill pointer, note that, like most

functions, zl:sort considers the active length of the array to be the length, and so,

only the active part of the array is sorted. See the function zl:array-active-length.

For a table of related items: See the section "Functions for Sorting Lists".

For a table of related items: See the section "Sorting and Merging Sequences". 

� sort-grouped-array a gs sort-lessp-predicate Function

Sorts the records (units of gs elements each) of a with respect to one another. The

sort-lessp-predicate is applied to the first element of each record, so the first ele-

ments act as the keys, on which the records are sorted.

sort-grouped-array is a Symbolics extension to Common Lisp. 

� sort-grouped-array-group-key a gs sort-lessp-predicate Function

Sorts the records (units of gs elements each) of a with respect to one another.

sort-lessp-predicate is applied to four arguments: an array, an index into that array,

a second array, and an index into the second array. sort-lessp-predicate should con-

sider each index as the subscript of the first element of a record in the corre-

sponding array, and compare the two records. This is more general than sort-
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grouped-array, since the function can get at all of the elements of the relevant

records, instead of only the first element.

sort-grouped-array-group-key is a Symbolics extension to Common Lisp. 

� zl:sortcar x sort-lessp-predicate-on-car Function

Same as zl:sort, except that the sort-lessp-predicate-on-car is applied to the cars of

the elements of x, instead of directly to the elements of x. Example:

(zl:sortcar ’((3 . dog) (1 . cat) (2 . bird)) #’<)

                   =>   ((1 . cat) (2 . bird) (3 . dog))�

Remember that zl:sortcar, when given a list, can change the order of the conses

of the list (using rplacd), and so it cannot be used merely for side effect; only the

returned value of zl:sortcar is the sorted list.

For a table of related items: See the section "Functions for Sorting Lists". 

� special var1 var2 ... Declaration

Specifies that vars are to be considered special.

See the section "Declaration Specifiers".

� dbg:special-command condition &rest per-command-args Generic Function

Sent when the user invokes the special command. It uses :case method-

combination and dispatches on the name of the special command. No arguments

are passed. The syntax is:

(defmethod (dbg:special-command my-flavor :my-command-keyword) ()

   "documentation"

   body...)�

Any communication with the user should take place over the *query-io* stream.

The method can return nil to return control to the Debugger or it can return the

same thing that any of the sys:proceed methods would have returned in order to

proceed in that manner.

The compatible message for dbg:special-command is:

:special-command

For a table of related items: See the section "Debugger Special Command Func-

tions". 

� dbg:special-command-p condition special-command Function

Returns t if command-type is a valid Debugger special command for this condition

object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:
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:special-command-p

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� dbg:special-commands condition Generic Function

Returns a list of all Debugger special commands for this condition. See the section

"Debugger Special Commands".

The compatible message for dbg:special-commands is:

:special-commands

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

� dbg:*special-command-special-keys* Variable

The value should be an alist associating names of special commands with charac-

ters. When an error supplies any of these special commands, the Debugger assigns

that special command to the specified key. For example, this is the mechanism by

which the :package-dwim special command is offered on the c-sh-P keystroke.

For a table of related items, see the section "Debugger Special Key Variables". 

� special-form-p function Function

If function globally names a special form, returns a non-nil value, otherwise re-

turns nil.

It is possible for both special-form-p and macro-function to be true for a given

symbol. This is possible because implementors of Common Lisp dialects are permit-

ted to implement any macro as a special form for speed.

This function is useful in writing code walking functions. 

(special-form-p special-form-p)

NIL

(special-form-p ’quote)

#<function:542324>�

� sqrt number Function

Computes and returns the principal square root of number. If number is not com-

plex but is negative, the result will be a complex number.

Examples:
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(sqrt 16) => 4

(sqrt -16) => #C(0 4)

(sqrt 2) => 1.4142135

(sqrt 2.0d0) => 1.414213562373095d0

(sqrt #C(3 4))  => #C(2.0 1.0)

�

For a table of related items, see the section "Arithmetic Functions". 

� zl:sqrt n Function

Returns the square root of n. n must be a non-negative number.

Example:

(zl:sqrt 4) => 2.0

(sqrt 81) → 9.0

(sqrt -4) → #c(0.0 2.0)

(sqrt #c(-5.0 12.0)) → #c(2.0 3.0)�

For a table of related items: See the section "Arithmetic Functions" and see CLtL

205. 

� zl:sstatus status-function item Special Form

The zl:status and zl:sstatus special forms exist for compatibility with Maclisp.

Programs that are designed to run in both Maclisp and Zetalisp can use zl:status

to determine in which one they are running. Also, (zl:sstatus feature ...) can be

used as it is in Maclisp.

(zl:sstatus feature symbol) adds symbol to the list of features.

(zl:sstatus nofeature symbol) removes symbol from the list of features. 

� stable-sort sequence predicate &key key Function

Destructively modifies sequence by sorting it according to an order determined by

predicate. stable-sort is the stable version of sort. stable-sort guarantees that ele-

ments considered equal by predicate will remain in their original order. predicate is

assumed to consider two elements x and y to be equal if (funcall predicate x y)

and (funcall predicate y x) are both false. stable-sort can be slower than sort in

some situations.

See the function sort.

In the following example, although considered equal by char-lessp, #\A and #\a re-

main in their original order.

(stable-sort (vector #\b #\A #\a #\c) #’char-lessp)

=> (#\A #\a #\b #\c)�

For a table of related items: See the section "Functions for Sorting Lists".
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For a table of related items: See the section "Sorting and Merging Sequences". 

� zl:stable-sort x lessp-predicate Function

Like zl:sort, but if two elements of x are equal, that is, lessp-predicate returns nil

when applied to them in either order, those two elements remain in their original

order.

For a table of related items: See the section "Functions for Sorting Lists".

For a table of related items: See the section "Sorting and Merging Sequences". 

� zl:stable-sortcar x sort-lessp-predicate-on-car Function

Like zl:sortcar, but if two elements of x are equal, that is, sort-lessp-predicate-on-

car returns nil when applied to their cars in either order, then those two elements

remain in their original order.

For a table of related items: See the section "Functions for Sorting Lists". 

� standard-char Type Specifier

This is the type specifier symbol for the predefined Lisp standard character data

type standard-char.

The type standard-char is a subtype of the type string-char.

Examples:

(setq a-string (make-array 4 :element-type ’standard-char 

                             :initial-element #\∞)) => "∞∞∞∞"

(typep #\> ’standard-char) => T

(subtypep ’standard-char ’string-char) => T and T

(string-char-p (char a-string 1)) => T

(standard-char-p ’#\!) => T

(sys:type-arglist ’standard-char) => NIL and T�

See the section "Data Types and Type Specifiers". See the section "Characters".

� standard-char-p char Function

Returns t if char is one of the Common Lisp standard characters. char must be a

character object.

The Common Lisp standard character set includes: 

! " # $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _

a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~�

See the section "Type Specifiers and Type Hierarchy for Characters".
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(standard-char-p #\C) => t

�

(standard-char-p #\Control-C) => nil�

For a table of related items: See the section "Character Predicates".

� clos:standard-class Class

The default class of classes defined by clos:defclass.

The term "user-defined class" means a class whose class is clos:standard-class.

You can define methods that specialize on these classes; you can use clos:make-

instance to create instances of these classes; and you can redefine these classes. 

� clos:standard-generic-function Class

The default class of generic function objects. By default, the class of a generic

function object created by clos:defgeneric is clos:standard-generic-function. 

� *standard-input* Variable

In the normal Lisp top-level loop, input is read from whatever stream is the value

of *standard-input*. Many input functions, including read and read-char, take a

stream argument that defaults to *standard-input*.

(read) = (read *standard-input*)�

� zl:standard-input Variable

In your new programs, we recommend that you use the variable *standard-input*,

which is the Common Lisp equivalent of zl:standard-input.

In the normal Lisp top-level loop, input is read from zl:standard-input (that is,

whatever stream is the value of zl:standard-input). Many input functions, includ-

ing zl:tyi and zl:read, take a stream argument that defaults to zl:standard-input. 

� clos:standard-method Class

The default class of method objects. By default, the class of a method object creat-

ed by clos:defmethod is clos:standard-method. 

� *standard-output* Variable

In the normal Lisp top-level loop, output is sent to whatever stream is the value of

*standard-output*. Many input functions, including write and write-char, take a

stream argument that defaults to *standard-output*.

(print ’foo) = (print ’foo *standard-output*)�
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The variable *standard-output* may be set to a file, for example, rather than an

interactive stream, thus redirecting subsequent output to the file:

(setq outstream

      (open "myfile" :direction :output))  ;opens myfile.lisp

(setq old-standard-out *standard-output*)  ;save old value

(setq *standard-output* outstream)         ;redirects output

(print ’foo)                               ;prints ’foo in myfile.lisp

(setq *standard-output* old-standard-out)  ;restore *standard-output*�

It is much better, however, to use let to temporarily bind the stream:

(with-open-file (outstream "myfile" :direction :output)

  (let ((*standard-output* outstream))  ;redirects output

    (print ’foo))                       ;end of let form restores

                                        ; *standard-output*

   ...                                  ;more forms

)                              ;end of with-open-file closes file�

By setting *standard-output* to a synonym-stream of *terminal-io*, *standard-

output* can resume writing to the user console.

� zl:standard-output Variable

In your new programs, we recommend that you use the variable *standard-

output*, which is the Common Lisp equivalent of zl:standard-output. See the

variable *standard-output*. 

� si:standard-readtable Variable

The value is that readtable to use when typing forms interactively to the Lisp in-

terpreter. When a distribution world is cold booted, the value of si:standard-

readtable is a copy of si:initial-readtable. If you wish to customize the syntax of

forms typed to the Lisp interpreter, you should make your customizations to

si:standard-readtable. *readtable* is bound to si:standard-readtable whenever a

break loop or debug loop is entered. *readtable* is set to si:standard-readtable

using the standard variable mechanism whenever the machine is warm booted.

If warm booting the machine were impossible, si:standard-readtable would not be

necessary. The top-level value of *readtable* could be used instead. However, if

the machine is warm booted while *readtable* is bound, the top-level value of

*readtable* is lost.

Examples: 

• This example illustrates the use of binding *readtable* in order to implement a

special syntax. Forms are to be read from a file while preserving the case of

symbols.

(defvar *case-sensitive-readtable* (copy-readtable))
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�

(loop for code from (char-code #/a) to (char-code #/z)

      as char = (code-char code)

      do (setf (si:rdtbl-trans *case-sensitive-readtable* code) char))

�

(defun read-case-sensitive-file (file)

  (with-open-file (stream file :direction :input)

    (let ((*readtable* *case-sensitive-readtable*))

      (loop do (process-form (read stream))))))�

In case an error occurs while inside process-form or inside a reader macro in-

voked by read, *readtable* is bound to si:standard-readtable, which is most

useful for debugging.

• This example illustrates the use of si:standard-readtable and si:initial-

readtable to customize the environment for typing expressions interactively. "@"

is defined as an abbreviation for location-contents, in the same manner that "’"

is an abbreviation for quote.

(defun at-sign-macro (ignore stream)

  (values (list ’location-contents (read stream)) ’list))

�

(defvar *my-readtable* (copy-readtable))

(set-syntax-macro-char #/@ ’at-sign-macro *my-readtable*)

�

(defun enable-my-readtable ()

  (setq si:standard-readtable *my-readtable*)

  (setq *readtable* *my-readtable*))

�

(defun disable-my-readtable ()

  (setq si:standard-readtable si:initial-readtable)

  (setq *readtable* si:initial-readtable))�

While it is useful for the user to set the values of *readtable* and si:standard-

readtable, the value of si:initial-readtable should never be changed. In addition,

the readtable that is the value of si:initial-readtable should never be modified,

modifications should be made only to the readtable that is the value of

si:standard-readtable. See the function copy-readtable.

See the section "The Readtable". 

� sys:standard-value symbol &key (listener nil) (global-p nil) Function

Returns the standard value associated with symbol. If global-p is t, it returns the

standard value independent of any standard value bindings made with

sys:standard-value-let or sys:standard-value-progv. If listener is non-nil, it must

be a flavor instance that supports the standard value binding environment proto-

col. The value returned will be the binding specific to that environment.
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You change the standard value of symbol with (setf (sys:standard-value symbol

&key (listener nil) (global-p nil) (setq-p nil))). Note that if there is a standard value

binding for symbol, only the bound value is changed. The usual constraints apply

to the values of listener.

If setq-p is t, the value cell of symbol is set to the same value as the standard val-

ue.

If global-p is t, both the standard value setting and the value cell setting, if any,

are set in the global environment rather than in any exisitng binding environment.

Ordinary Symbol Standard Value Symbol

(setq foo t) (setf (sys:standard-value foo :setq-p t) t)

(zl:set-globally ’foo t) (setf (sys:standard-value foo :global-p t :setq-p t)

t)�

See the section "Standard Variables". 

� sys:standard-value-let vars-and-vals &body body Macro

Like let except that it also pushes the values in vals onto the si:*interactive-

bindings* alist, causing them to become the new standard bindings. All the sym-

bols in vars are then bound to vals (with a let) and body is executed in this con-

text.

Example:

(defun octal-top-level ()

  (sys:standard-value-let

    ((base 8)

     (ibase 8)

     (package (pkg-find-package ’new-command-loop)))

    (let ((standard-io ’terminal-io))

(loop

     as form = (read)

     do (print (eval form))))))�

See the section "Standard Variables".

� sys:standard-value-let* vars-and-vals &body body Macro

Like let* except that it also pushes the values in vals onto the si:*interactive-

bindings* alist, causing them to become the new standard bindings. All the sym-

bols in vars are then bound to vals (with a let*) and body is executed in this con-

text. See the section "Standard Variables".

� sys:standard-value-p symbol Function

Returns t if symbol has a standard value. See the section "Standard Variables".
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� sys:standard-value-progv vars vals &body body Macro

Causes all of the symbols in vars to have their corresponding value in vals pushed

onto the si:*interactive-bindings* alist (that is, those values become the new stan-

dard bindings). All the symbols in vars are then bound to vals (with a progv) and

body is executed in this context. This is useful for writing Lisp-style command

loops. See the section "Standard Variables".

� :start-open-auxiliary-stream active-p &key local-id foreign-id stream-options appli-

cation-id Message

Sent to a stream to establish another stream, via another connection, over the

same network medium, to the same host. It is used for either end of the connec-

tion. 

If active-p is t, it means this side will connect and the remote side should listen; if

active-p is nil, the remote side will connect and this side will listen.

If this side is active, foreign-id is the foreign contact identifier to connect to. 

If this side is not active, local-id is the local identifier to listen on. The content of

foreign-id and local-id depends on the network implementation. If this side is not

active, and no local-id is supplied, application-id must be supplied. application-id is

a string that the network uses as part of the the contact identifier it will create

and return. 

:start-open-auxiliary-stream returns two argufments, stream and contact-identifier.

stream is a new stream. It is not yet usable. You can do one of two things with it: 

• Terminate the establishment of the new connection by sending the message

:close :abort or :close-with-reason :abort to the stream.

• Wait for the connection to be fully established, by sending :complete-connection

to the stream.�

contact-identifier is a string representing the contact name actually being listened

to, in the case that this side is not active. This is the string to convey to the other

side, so that the other side can supply it as the foreign-id argument of :start-open-

auxiliary-stream, to connect back to this side.

� zl:status status-function &optional item Special Form

The zl:status and zl:sstatus special forms exist for compatibility with Maclisp.

Programs that are designed to run in both Maclisp and Zetalisp can use zl:status

to determine in which one they are running. Also, (zl:sstatus feature ...) can be

used as it is in Maclisp.

(zl:status features) returns a list of symbols indicating features of the Lisp envi-

ronment. The default list for 3600-family machines is:
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(:DEFSTORAGE :LOOP :DEFSTRUCT :LISPM :SYMBOLICS :ROW-MAJOR 3600

:CHAOS :IEEE-FLOATING-POINT :SORT :FASLOAD :STRING :NEWIO :ROMAN

:TRACE :GRINDEF :GRIND)�

The value of this list will be kept up to date as features are added or removed

from the Genera system. Most important is the symbol :lispm; this indicates that

the program is executing on a Symbolics 3600-family machine. The order of this

list should not be depended on, and might not be the same as shown above.

The following symbols in the features list can be used to distinguish different Lisp

implementations, using the #+ and #- reader syntax.

Three symbols indicate which Lisp Machine hardware is running: 

:lispm Any kind of Lisp Machine, as opposed to Maclisp

:cadr An M.I.T. CADR

3600 A 3600-family machine�

One symbol indicates which kind of Lisp Machine software is running: 

:symbolics Symbolics software

See the section "Sharp-sign Reader Macros".

(zl:status feature symbol) returns t if symbol is on the (zl:status features) list,

otherwise nil.

(zl:status nofeature symbol) returns t if symbol is not on the (zl:status features)

list, otherwise nil.

(zl:status userid) returns the name of the logged-in user.

(zl:status tabsize) returns the number of spaces per tab stop (always 8). Note that

this can actually be changed on a per-window basis: however, the zl:status func-

tion always returns the default value of 8.

(zl:status opsys) returns the name of the operating system, always the symbol

:lispm.

(zl:status site) returns the name of the local machine, for example, "WOMBAT".

Note that this is not the same as the value of zl:site-name.

(zl:status zl:status) returns a list of all zl:status operations.

(zl:status zl:sstatus) returns a list of all zl:sstatus operations.

Some of these zl:status functions are subsumed by the Common Lisp variable

*features* and the functions software-type, short-site-name, and long-site-name.

step form Special Form

Evaluates form with single stepping. It returns the value of form.

For example, if you have a function named foo, and typical arguments to it might

be t and 3, you could say
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(step (foo t 3))

See the section "Stepping Through an Evaluation".

Note that at deep levels of recursion, the indentation of the step output is reset to

column 0, so the output is more readable to the user, instead of running into the

right margin of the screen. The variable si:*step-indentation-restart-fraction*

controls when the indentation is set back to 0. Its value is a non-zero fraction of

the screen size after which the stepper should go back to column 0 for its inden-

tation, or nil to prevent the stepper from ever resetting to column 0. 

� zl:step form Function

Evaluates form with single stepping. It returns the value of form.

For example, if you have a function named foo, and typical arguments to it might

be t and 3, you could say

(step (foo t 3))

See the section "Stepping Through an Evaluation".

Note that at deep levels of recursion, the indentation of the step output is reset to

column 0, so the output is more readable to the user, instead of running into the

right margin of the screen. The variable si:*step-indentation-restart-fraction*

controls when the indentation is set back to 0. Its value is a non-zero fraction of

the screen size after which the stepper should go back to column 0 for its inden-

tation, or nil to prevent the stepper from ever resetting to column 0. 

� step-form Variable

Holds the current form when you are using step. 

� step-value Variable

Holds the first returned value when you are using step 

� step-values Variable

Holds the list of returned values when you are using step. 

� zl:store-array-leader value array index Function

Stores value in the indexed element of array’s leader. array should be an array

with a leader, and index should be an integer. value can be any object. zl:store-

array-leader returns value.

However, the preferred method is to use setf and array-leader, as shown in the

following example:
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(make-array ’(2 3) :leader-list ’(t nil))

(setf (array-leader array 1) ’x)�

� stream Type Specifier

� stream-copy-until-eof from-stream to-stream &optional leader-size Function

Inputs characters from from-stream and outputs them to to-stream until it reaches

the end-of-file on the from-stream. For example, if x is bound to a stream for a file

opened for input, (stream-copy-until-eof x zl:terminal-io) prints the file on the

console.

If from-stream supports the :line-in operation and to-stream supports the :line-out

operation, stream-copy-until-eof uses those operations instead of :tyi and :tyo, for

greater efficiency. leader-size is passed as the argument to the :line-in operation. 

� sys:stream-default-handler stream op arg1 rest Function

Tries to handle the op operation on stream, given arguments of arg1 and the ele-

ments of rest. The action taken for each of the defined operations is explained with

the documentation on that operation. The handler sends the :any-tyi message for

:line-in messages to streams that do not handle :line-in themselves.

For examples of the use of this function, see the section "Examples of Making

Your Own Stream". 

� stream-element-type stream Function

Returns a type specifier which indicates what objects can be read from or written

to stream. Streams created by open will have an element type restricted to a sub-

set of character or integer, but in principle a stream may transfer any Lisp ob-

ject.

(setq file-stream

      (open "foo" :direction :output :element-type ’character))

�

(stream-element-type file-stream) => CHARACTER�

� streamp x Function

Returns t if x is a stream, otherwise returns nil.

(streamp *standard-output*) => T

(streamp ’*standard-output*) => NIL

(streamp t) => NIL

(streamp nil) => NIL

(streamp 3) => NIL�
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string &optional ( size ’* ) Type Specifier

string is the type specifier symbol for the predefined Lisp string data type.

This type specifier can be used in either symbol or list form. Used in list form,

string allows the declaration and creation of specialized types of strings whose size

is restricted to size.

The type string is a subtype of the type vector; string means (vector string-

char) or (vector character).

The types string, (vector t), and bit-vector are disjoint.

The type string is a supertype of the type simple-string.

typep returns t for both thin strings (vector string-char), and fat strings (vector

character). For example:

(equal-typep ’string ’(vector string-char)) => T

�

(typep (make-array 1 :element-type ’character 

                     :initial-element #\control-a) ’string) => T�

subtypep on the other hand, currently recognizes only (vector string-char) as a

string. 

(subtypep ’string ’(vector string-char)) => T and T

(subtypep ’string ’(vector character)) => NIL and NIL

�

Examples:

                 

(typep "1;oi498f" ’string) => T

(typep "123" ’(string 3)) => T

(typep "123" ’(string 5)) => NIL

(zl:typep "U.S. Telephone Area Codes") => :STRING

(subtypep ’string ’vector) => T and T

(stringp "artificial intelligence") => T

(stringp (make-array 3 :element-type ’string-char 

                       :initial-element #\s

                       :fill-pointer 2)) => T

(sys:type-arglist ’string) => (&OPTIONAL (SIZE ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Strings".

� string x Function

Coerces x into a string. Most of the string functions apply this to their string ar-

guments. 

If x is a string, it is returned.

If x is a symbol, its print name is returned.

If x is a character, a string containing that character is returned.
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If x is a pathname, under Genera the "string for printing" is returned. See the

section "Pathname Messages: Naming of Files". Under CLOE, the name-string of

x is returned.

If x is any instance that handles the :string-for-printing message, a "string for

printing" is returned. This is incompatible with Common Lisp, which requires that

string signal an error if its argument is neither a string, a symbol, nor a string-

char. See the section "Pathname Messages: Naming of Files".

string does not convert a list or other sequence of characters to be a string. Use

the function coerce for that purpose. (Unlike string, coerce does not work for

symbols, though.)

If you want to get the string representation of a number or any other Lisp object,

string is not what you should use. You can use format, passing a first argument

of nil. You might also want to use with-output-to-string, prin1-to-string, or princ-

to-string.

Examples:

(string "a string") => "a string"

(string ’symbol) => "SYMBOL"

(string #\c) => "c"�

The following are equivalent:

(string (si:patch-system-pathname "LMFS" :system-directory)) 

=> "SYS:LMFS;PATCH;LMFS.SYSTEM-DIR.NEWEST" 

�

(send

 (si:patch-system-pathname "LMFS" :system-directory ) :string-for-printing)

 => "SYS:LMFS;PATCH;LMFS.SYSTEM-DIR.NEWEST"�

For a table of related items: See the section "String Construction".

� string≠ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string≠ returns nil unless string1 is not equal to string2. If the condition is satis-

fied, string≠ returns the position within the strings of the first character at which

the strings fail to match; this index is equivalent to the length of the longest com-

mon portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.



Page 1498

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string≠ is the function string-not-equal.

Examples:

(string≠ "apple" "apple") => NIL

(string≠ "apple" ’apple) => 0

(string≠ "apple" "apply") => 4

(string≠ "apple" "apropos") => 2

(string≠ "banana" "anachronism" :start1 1 :end1 4) => 3

(string≠ "banana" "anachronism" :start1 1 :end1 4 :end2 3) => NIL�

The following function is a synonym of string≠:

string/=�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� zl:string≠ string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including bits, style, and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:
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(zl:string≠ "apple" "apple")  => NIL

(zl:string≠ "apple" ’apple) => T

(zl:string≠ "apple" "apply") => T

(zl:string≠ "apple" "apropos") => T

(zl:string≠ "banana" "anachronism"  1 0 4) => T

(zl:string≠ "banana" "anachronism" 1 0 4 3) => NIL�

The following functions are synonyms of zl:string≠:

string≠

user::string////////////////=�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� string≤ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string≤ returns nil unless string1 is less than or equal to string2. If the condition

is satisfied, string≤ returns the position within the strings of the first character at

which the strings fail to match; this index is equivalent to the length of the

longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string≤ is the predicate string-not-greaterp.
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�

(string≤ "apple" "apple") => 5

(string≤ "apple" ’apple) => NIL

(string≤ "sneeze" "snow") => 2

(string≤ "elephant" "aardvark") => NIL

(string≤ "ZY" "ab") => 0

(string≤ "painting" "interest" :start1 2 :end1 5) => 5�

The following function is a synonym of string≤:

string<=�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� zl:string≤ string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including bits, style, and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string≤ "apple" "apple") => T

(zl:string≤ "apple" ’apple) => NIL

(zl:string≤ "sneeze" "snow") => T

(zl:string≤ "elephant" "aardvark") => NIL

(zl:string≤ "ZY" "ab") => T

(zl:string≤ "painting" "interest" 2 0 5) => T

�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� string≥ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function
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A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string≥ returns nil unless string1 is greater than or equal to string2. If the condi-

tion is satisfied, string≥ returns the position within the strings of the first charac-

ter at which the strings fail to match; this index is equivalent to the length of the

longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1. 

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string≥ is the predicate string-not-lessp.

Examples:

(string≥ "apple" "apple") => 5

(string≥ "dog" "DOG") => 0

(string≥ "flat" "flush") => NIL

(string≥ "ab" "ZY") => 0

(string≥ "detonate" "unnatural" :start1 4 :start2 2 :end2 5) => 7

(string≥ "dog" "elephant" :start2 3) => NIL

�

The following function is a synonym of string≥:

string>=�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

� zl:string≥ string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including bits, style, and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.
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idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string≥ "apple" "apple") => T

(zl:string≥ "dog" "DOG") => T

(zl:string≥ "flat" "flush") => NIL

(zl:string≥ "ab" "ZY") => T

(zl:string≥ "detonate" "unnatural" 4 2 nil 5) => T

(zl:string≥ "dog" "elephant" 0 3) => NIL�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� string/= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string/= returns nil unless string1 is not equal to string2. If the condition is satis-

fied, user::string////////////////= returns the position within the strings of the first

character at which the strings fail to match; this index is equivalent to the length

of the longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.
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The case-insensitive version of user::string////////////////= is the function string-not-

equal.

Examples:

(string/= "apple" "apple") => NIL

(string/= "apple" ’apple) => 0

(string/= "apple" "apply") => 4

(string/= "apple" "apropos") => 2

(string/= "banana" "anachronism" :start1 1 :end1 4) => 3

(string/= "banana" "anachronism" :start1 1 :end1 4 :end2 3) => NIL�

The following function is a synonym of user::string////////////////=:

string≠

�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

� string< string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string< returns nil unless string1 is less than string2. If the condition is satisfied,

string< returns the position within the strings of the first character at which the

strings fail to match; this index is equivalent to the length of the longest common

portion of the strings.

string1 is less than string2 if the first characters that differ satisfy char<, or if

string1 is a proper subset of string2 (of shorter length and matches in all charac-

ters of string1).

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.
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:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string< is the function string-lessp.

Examples:

(string< "ostrich" "giraffe") => NIL

(string< "demo" "demonstrate") => 4

(string< "abcd" "bazy") => 0

(string< "fred" "Fred") => NIL

(string< "Chicken" "chicken") => 0

(string< "apple" "nap" :start2 1) => NIL

(string< "test" "overestimate" :start1 1 :start2 4) => 5�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that you cannot use thise extension with CLOE.

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

� zl:string< string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including bits, style, and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.�

Examples:
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(zl:string< "ostrich" "giraffe") => NIL

(zl:string< "demo" "demonstrate") => T

(zl:string< "abcd" "bazy") => T

(zl:string< "fred" "Fred") => NIL

(zl:string< "Chicken" "chicken") => T

(zl:string< "apple" "nap" 0 1) => NIL

(zl:string< "test" "overestimate" 1 4) => T�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� string<= string1 string2 &key (start1 0) (end1 nil) (start2 0) (end2 nil) Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string<= returns nil unless string1 is less than string2. If the condition is satisfied,

string<= returns the position within the strings of the first character at which the

strings fail to match; this index is equivalent to the length of the longest common

portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string<= is the predicate string-not-greaterp.

(string<= "apple" "apple") => 5

(string<= "apple" ’apple) => NIL

(string<= "sneeze" "snow") => 2

(string<= "elephant" "aardvark") => NIL

(string<= "ZY" "ab") => 0

(string<= "painting" "interest" :start1 2 :end1 5) => 5

�

The following function is a synonym of string<=:

string≤�

Compatibility Note: In the Genera implementation this function is extended to ac-
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cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

� string= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

Compares two strings or substrings of them, exactly. string= returns t if corre-

sponding characters in the two strings are identical in all character fields, includ-

ing modifier bits, character set, character style, and alphabetic case; otherwise re-

turns nil.

If the (sub)strings compared are of unequal length, string= is false.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string= is the function string-equal.

Example:

(string= ’symbol "SYMBOL") => T

(string= "apple" "orange") => NIL

(string= "apple" "please" :start1 2 :end2 3) => T

(string= "apple" "APPLE") => NIL

(string= "apple" "apply") => NIL

(string= "apple" "applesauce") => NIL�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that this extension is not available under

CLOE.

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".
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� sys:%string= string1 index1 string2 index2 count�

Function

Performs a low-level string comparison, possibly more efficiently than the other

comparisons. Its only current efficiency advantages are its simplified arguments

and minimized type-checking.

The function compares two strings or substrings of them, exactly. sys:%string= re-

turns t if corresponding characters in the two strings are identical in all character

fields, including modifier bits, character set, character style, and alphabetic case;

otherwise it returns nil.

If the (sub)strings compared are of unequal length, sys:%string= is false.

string1 and string2 must be strings.

index1 and index2 specify the starting position for the search within string1 and

string2 respectively.

count specifies the number of characters to be compared in both strings.

Examples:

(sys:%string= "apple" 0 "apple" 0 nil) => T

(sys:%string= "apple" 0 "APPLE" 0 nil) => NIL

(sys:%string= "ccc" 0 "cccc" 0 nil)  => NIL

(sys:%string= "ccc" 0 "cccc" 0 3) => T

(sys:%string= "anything" 3 "third" 0 3) => T

(sys:%string= "anything" 3 "third" 1 3) => NIL

(sys:%string= "moooo" 3 (make-array 5 

:element-type ’character 

:initial-element #\o) 3 nil) => T�

The case-insensitive version of sys:%string= is the function 

sys:%string-equal �

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� zl:string= string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including bits, style, and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.
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lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string= ’symbol "SYMBOL") => T

(zl:string= "apple" "orange") => NIL

(zl:string= "apple" "please" 2 0 nil 3) => T

(zl:string= "apple" "APPLE") => NIL

(zl:string= "apple" "apply") => NIL�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

The Common Lisp equivalent to zl:string= is the function:

string=�

� string> string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.

string> returns nil unless string1 is greater than string2. If the condition is satis-

fied, string> returns the position within the strings of the first character at which

the strings fail to match; this index is equivalent to the length of the longest com-

mon portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string> is the predicate string-greaterp.
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Examples:

(string> "apple" "apple") => NIL

(string> "true" "TRUE") => 0

(string> "arm" "aim") => 1

(string> "puppet" "puzzle") => NIL

(string> "book" "ball" :start1 1 :start2 2 :end2 3) => 1�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

� zl:string> string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including bits, style, and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string> "apple" "apple") => NIL

(zl:string> "true" "TRUE") => T

(zl:string> "arm" "aim") => T

(zl:string> "puppet" "puzzle") => NIL

(zl:string> "book" "ball" 1 2 nil 3) => T�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� string>= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including modifier bits, character set, character style, and

alphabetic case.
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string>= returns nil unless string1 is greater than or equal to string2. If the condi-

tion is satisfied, string>= returns the position within the strings of the first char-

acter at which the strings fail to match; this index is equivalent to the length of

the longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-insensitive version of string>= is the predicate string-not-lessp.

Examples:

(string>= "apple" "apple") => 5

(string>= "dog" "DOG") => 0

(string>= "flat" "flush") => NIL

(string>= "ab" "ZY") => 0

(string>= "detonate" "unnatural" :start1 4 :start2 2 :end2 5) => 7

(string>= "dog" "elephant" :start2 3) => NIL�

The following function is a synonym of string>=:

string≥�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates".

� string-a-or-an string &optional (both-words t) (case :downcase) Function

Computes whether the article "a" or "an" is used when introducing a noun. If both-

words is true, the result is the concatenation of the article, a space, and the noun;

otherwise, the article is returned. The case argument controls the case of the arti-

cle. For example:
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(string-a-or-an ’rock)           => "a ROCK"

(string-a-or-an ’rock t :upcase) => "A ROCK"

(string-a-or-an "egg")  => "an egg"

� string-append &rest strings Function

Copies and concatenates any number of strings into a single string.

strings are strings or objects that can be coerced to strings. See the function

string.

With a single argument, string-append simply copies it.

string-append returns an array of the same type as the argument with the great-

est number of bits per element. For example, if the arguments are arrays with ele-

ments of type string-char and of type character, an array with elements of type

character is returned. 

The destructive version of string-append is the function string-nconc.

Example:

(string-append "Hell" "o") => "Hello"

(string-append #\! "foo" #\!) => "!foo!"

(string-append #\! ’foo #\!) => "!FOO!"

(string-append #\1 "2") => "12"

(string-append) => ""

�

(setq string (make-array 5 :element-type ’string-char

:initial-contents "hello" :fill-pointer t)) => "hello"

(string-append string " there") => "hello there"

(string-append string #\!) => "hello!"

�

(setq thin-string (make-string 3)) => "•••"

(setq fat-string (make-array 3 :element-type ’character

        :initial-element #\A)) => "AAA"

(setq new (string-append thin-string fat-string)) => "•••AAA"

(string-fat-p new) => T

�

For a table of related items: See the section "String Construction". 

� string-capitalize string &key (start 0) (end nil) Function

Returns a copy of string; for every word in the copy, the initial character, if case-

modifiable, is uppercased. All other case-modifiable characters in the word are

lowercased. s For the purposes of string-capitalize, a word is defined as a consec-

utive subsequence of alphanumeric characters or digits, delimited at each end ei-

ther by a non-alphanumeric character, or by an end of string.
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The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the uppercasing operation. Default is nil, that is, the operation continues to

the end of the string.

The destructive version of string-capitalize is the function nstring-capitalize.

Examples:

(string-capitalize "lexington") => "Lexington"

(string-capitalize ’symbol) => "Symbol"

(string-capitalize "one two three" :start 5) => "one tWo Three"

(string-capitalize "a MIxeD-Up sTrinG" :start 2) => "a Mixed-Up String"

(string-capitalize "a MIxeD-Up sTrinG" :start 2 :end 10) => "a Mixed-Up sTrinG"

(string-capitalize "tom&jerry aren’t in room 15d")

=> "Tom&Jerry Aren’T In Room 15d"�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that you cannot use this extension in CLOE.

For a table of related items: See the section "String Conversion".

� string-capitalize-words string &key (:start 0) :end Function

Returns a copy of string, such that hyphens are changed to spaces and initial char-

acters of each word are capitalized if they are case-modifiable.

string is a string or a object that can be coerced to a string. See the function

string.

The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the uppercasing operation. Default is nil, that is, the operation continues to

the end of the string.

The destructive version of string-capitalize-words is the function nstring-

capitalize-words.
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Examples:

(string-capitalize-words "string-capitalize-words") 

=> "String Capitalize Words"

�

(string-capitalize-words "three-hyphenated-words" :start 6 :end 8)

=> "three-Hyphenated-words"�

For a table of related items: See the section "String Conversion". 

� zl:string-capitalize-words string &optional (copy-p t) keep-hyphen Function

Changes hyphens to spaces and capitalizes each word in the argument string. The

effect on the original argument depends on the value of copy-p: if copy-p is not nil,

a copy of string is returned; this is the default; if copy-p is nil, string itself is mod-

ified and returned.

If string is not a string, an error is signalled. See the function string.

You can retain hyphens in string by setting keep-hyphen to a non-nil value. 

Examples:

(zl:string-capitalize-words "Lisp-listener")

=> "Lisp Listener"

�

(zl:string-capitalize-words "LISP-LISTENER") 

=> "Lisp Listener"

�

(zl:string-capitalize-words "lisp--listener") 

=> "Lisp  Listener"

�

(zl:string-capitalize-words "symbol-processor-3" t t)

=> "Symbol-Processor-3"

�

(zl:string-capitalize-words "use--some-hyphens" nil) 

=> "Use  Some Hyphens"

�

(zl:string-capitalize-words "use--some-hyphens" nil t)

=> "Use  Some Hyphens"�

The Symbolics Common Lisp equivalent to zl:string-capitalize-words are the

functions:

nstring-capitalize-words

string-capitalize-words�

For a table of related items: See the section "String Conversion". 

� string-char Type Specifier
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string-char is the type specifier symbol for the predefined Lisp string character

data type.

The type string-char is a subtype of the type character. Characters that are in

the Symbolics standard character set with bits field of zero and style of

NIL.NIL.NIL are of type string-char.

The type string-char is a supertype of the type standard-char.

Examples:

(setq a-string (make-array 3 :element-type ’string-char 

                      :initial-element #\,))  => ",,,"

�

(typep (char a-string 2) ’string-char) => T

�

(setq b-string (make-string 9 :initial-element #\.)) => "........."

�

(typep (char b-string 4) ’string-char) => T

�

(subtypep ’string-char ’character) => T and T

�

(subtypep ’standard-char ’string-char) => T and T

�

(sys:type-arglist ’string-char) => NIL and T

�

(string-char-p #\g) => T�

For more information about type specifiers for characters: See the section "Type

Specifiers and Type Hierarchy for Characters". See the section "Data Types and

Type Specifiers". For a discussion of characters: See the section "Characters". For

a discussion of strings: See the section "Strings".

� string-char-p char Function

Determines if char can be stored into a thin string (that is, if it is a standard

character), returning t if it can, and nil otherwise. Accepts a character argument

only. Any character that is a standard character satisfies this test.

Examples:

(string-char-p "r") ;signals an error; char must be a character

(string-char-p #\∞) => T

(string-char-p #\meta-m) => NIL�

(setq string-var (make-string 10 :initial-element #\m))

�

(string-char-p (char string-var 4)) => T�

For a table of related items: See the section "String Type-Checking Predicates".See

the section "Character Predicates".
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� string-compare string1 string2 &key (:start1 0) (:start2 0) :end1 :end2 Function

Compares two strings, or substrings of them. The comparison is case-insensitive,

ignoring character style and alphabetic case.

string-compare returns:

• a positive number if string1 > string2

• zero if string1 = string2

• a negative number if string1 < string2�

If the strings are not equal, the absolute value of the number returned is one

more than the index (in string1) at which the difference occurred.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1. If the

value of :start1 is non-zero, the magnitude of the answer

is relative to the beginning of string1, not to the begin-

ning of the substring being compared.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

Examples:

(string-compare "one" "one") => 0

(string-compare "puppet" "puppet" :start1 3 :start2 3) => 0

(string-compare "puppet" "PUPPET") => 0

(string-compare ’symbol ’foo) => 1

(string-compare "alabaster" "alas!") => -4

(string-compare "george" "forgery" :start1 2 :start2 1 :end2 5) 

 => 0

�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates".

The case-sensitive version of string-compare is the function:

string-exact-compare�

� sys:%string-compare string1 index1 string2 index2 count Function

Performs a low-level, case-insensitive string comparison, possibly more efficiently

than the other comparisons. Its only current efficiency advantage is its simplified

arguments and minimized type-checking.
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index1 and index2 specify the starting position for the search within string1 and

string2 respectively.

If the value of index1 is non-zero, the sign of the result is meaningful, but the

magnitude of the result is not.

count specifies the number of characters to be compared in both strings. If count

is nil (unspecified), the entire length of the (sub)strings is compared.

sys:%string-compare returns: 

• 0 if string1 is equal to string2

• a positive number if string1 > string2

• a negative number if string1 < string2�

If the strings are not equal, the absolute value of the number returned is one

more than the index in string1 at which the difference occurred.

Examples:

(sys:%string-compare "tom" 0 "toM" 0 nil) => 0

(sys:%string-compare "feeding" 3 "dinner" 0 3) => 0

(sys:%string-compare "b" 0 "a" 0 nil) => 1

(sys:%string-compare "a" 0 "b" 0 nil) => -1

(sys:%string-compare "word" 0 "words" 0 nil) => -5

(sys:%string-compare "words" 0 "word" 0 nil) => 5

(sys:%string-compare "...." 0 (make-array 4 

:element-type ’character 

           :initial-element #\.) 0 nil)  => 0�

The case-sensitive version of sys:%string-compare is sys:%string-exact-compare.

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� zl:string-compare string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

Compares the characters of string1 starting at idx1 and ending just below lim1

with the characters of string2 starting at idx2 and ending just below lim2. The

comparison is in alphabetical order. string1 and string2 are strings or objects that

can be coerced to strings.

If the value of idx1 is non-zero, the sign of the result is meaningful, but the mag-

nitude of the result is not.

See the function string. lim1 and lim2 default to the lengths of the strings.

string-compare returns:

• a positive number if string1 > string2

• zero if string1 = string2

• a negative number if string1 < string2�
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If the strings are not equal, the absolute value of the number returned is one

more than the index (in string1) at which the difference occurred.

Examples:

(zl:string-compare "one" "one") => 0

(zl:string-compare "puppet" "puppet"  3  3)  => 0

(zl:string-compare "puppet" "PUPPET") => 0

(zl:string-compare ’symbol ’foo) => 1 

(zl:string-compare "alabaster" "alas!") => -4

(zl:string-compare "abcd" "abce" 1 1) => -3�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates".

The Symbolics Common Lisp equivalent to zl:string-compare is the function:

string-compare �

� string-downcase string &key (start 0) (end nil) Function

Returns a copy of string, with uppercase alphabetic characters replaced by the cor-

responding lowercase characters. (char-downcase is applied to each character of

string.)

string is a string or an object that can be coerced to a string.

See the function string.

The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The result is always the same length as string, however.

:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end.

:end Specifies the position within string of the first character beyond the end of

the uppercasing operation. Default is nil, that is, the operation continues to

the end of the string.

Examples:

(string-downcase "A TITLE") => "a title"

(string-downcase "A BUNCH OF WORDS" :start 10) => "A BUNCH OF words"

(string-downcase "A BUNCH OF WORDS" :start 0 :end 1) 

=> "a BUNCH OF WORDS"

(setq string "THREE UPPERCASE WORDS") => "THREE UPPERCASE WORDS"

(string-downcase string :start 0 :end 5 ) => "three UPPERCASE WORDS"

(string-downcase string :start 16 :end nil) => "THREE UPPERCASE words"

string => "THREE UPPERCASE WORDS"

�

The destructive version of string-downcase is the function nstring-downcase.
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Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that you cannot use this extension in CLOE.

For a table of related items: See the section "String Conversion".

� zl:string-downcase string &optional (from 0) to (copy-p t) Function

Replaces uppercase alphabetic characters in argument string with the correspond-

ing lowercase characters. The effect on the original argument depends on the val-

ue of copy-p: if copy-p is not nil, a copy of string is returned; if copy-p is nil, string

itself is modified and returned.

If string is not a string, an error is signalled. See the function string.

from is the index in string at which to begin lowercasing characters. If to is sup-

plied, it is used in place of (array-active-length string) as the index one greater

than the last character to be lowercased.

Examples:

(zl:string-downcase "A TITLE") => "a title"

(zl:string-downcase "A BUNCH OF WORDS" 10) => "A BUNCH OF words"

(zl:string-downcase "A BUNCH OF WORDS" 0 1) => "a BUNCH OF WORDS"

(setq string "THREE UPPERCASE WORDS") => "THREE UPPERCASE WORDS"

(zl:string-downcase string 0 5 nil) => "three UPPERCASE WORDS"

(zl:string-downcase string 16 nil nil)  => "three UPPERCASE words"

string => "three UPPERCASE words"

�

The Common Lisp equivalents to zl:string-downcase are the functions:

nstring-downcase

string-downcase�

For a table of related items: See the section "String Conversion". 

� string-equal string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 Function

Compares two strings, or substrings of them. The comparison ignores the charac-

ter fields for character style and alphabetic case. Two characters are considered to

be the same if char-equal is true of them.

string-equal returns t if the strings are the same, and nil otherwise. If the

(sub)strings compared are of unequal length, string-equal is false.

string1 and string2 are strings or objects that can be coerced to strings. See the

function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.
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:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-equal is the predicate string=.

Examples:

(string-equal ’symbol "SYMBOL") => T

(string-equal "apple" "orange") => NIL

(string-equal "apple" "please" :start1 2 :end2 3) => T

(string-equal "apple" "APPLE") => T

(string-equal "apple" "apply") => NIL

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that you can not use this extension with CLOE.

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates".

� sys:%string-equal string1 index1 string2 index2 count Function

Performs a low-level, case-insensitive string comparison, possibly more efficiently

than the other comparisons. Its only current efficiency advantage is its simplified

arguments and minimized type-checking. sys:%string-equal returns t if the count

characters of string1 starting at idx1 are char-equal to the count characters of

string2 starting at idx2, or nil if the characters are not equal or if count runs off

the length of either array.

Instead of an integer, count can also be nil. In this case, sys:%string-equal com-

pares the substring from idx1 to (string-length string1) against the substring from

idx2 to (string-length string2). If the lengths of these substrings differ, then they

are not equal and nil is returned.

Note that string1 and string2 must really be strings; the usual coercion of symbols

and characters to strings is not performed. This function is documented because

certain programs that require high efficiency and are willing to pay the price of

less generality might want to use sys:%string-equal in place of string-equal.

Examples:

To compare the two strings "hat" and "hat":

(sys:%string-equal "hat" 0 "hat" 0 nil) => T�

To see if the string "Dante" starts with the characters "dan":
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(sys:%string-equal "Dante" 0 "dan" 0 3)  => T

�

(setq fat-string (make-array 4 :element-type ’character 

       :initial-element #\a)) => "aaaa"

(sys:%string-equal fat-string 0 "aaaa" 0 nil) => T�

The case-sensitive version of sys:%string-equal is the function:

sys:%string=�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates".

� zl:string-equal string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

Compares two strings, returning t if they are equal and nil if they are not. The

comparison ignores character fields for character style and alphabetic case.

zl:equal calls zl:string-equal if applied to two strings. string1 and string2 are

strings or objects that can be coerced to strings. See the function string.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string-equal "Foo" "foo") => T

(zl:string-equal "foo" "bar") => NIL

(zl:string-equal "element" "select" 0 1 3 4) => T

(zl:string-equal ’symbol "SYMBOL") => T

(zl:string-equal "apple" "orange") => NIL

(zl:string-equal "apple" "please" 2 0 nil 3) => T

(zl:string-equal "apple" "APPLE") => T

(zl:string-equal "apple" "apply") => NIL

�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates".

The Common Lisp equivalent to zl:string-equal is the function:

string-equal�
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� string-exact-compare string1 string2 &key (:start1 0) (:start2 0) :end1 :end2�

Function

A comparison predicate that compares two strings or substrings of them, exactly

including the character fields for character style and alphabetic case.

string-exact-compare returns:

• a positive number if string1 > string2

• zero if string1 = string2

• a negative number if string1 < string2�

If the strings are not equal, the absolute value of the number returned is one

more than the index (in string1) at which the difference occurred.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1. If the

value of :start1 is non-zero, the magnitude of the answer

is relative to the beginning of string1, not to the begin-

ning of the substring being compared.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

Examples:

(string-exact-compare "aaa" "aaa") => 0

�

(string-exact-compare "yo" "YO") => 1

�

(string-exact-compare "this is it" "This Is it") => 1

�

(setq fat-string (make-string 3 :initial-element #\k

                                :element-type ’character)) => "kkk"

(string-exact-compare fat-string "kkk") => 0

(string-exact-compare fat-string "asdjf") => 1

�

(string-exact-compare #\d "mmmm..") => -1

�

The case-insensitive version of string-exact-compare is the predicate:

string-compare�
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For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� sys:%string-exact-compare string1 index1 string2 index2 count Function

Performs a low-level string comparison, possibly more efficiently than the other

comparisons. Its only current efficiency advantage is its simplified arguments and

minimized type-checking.

sys:%string-exact-compare returns: 

• a positive number if string1 > string2

• zero if string1 = string2

• a negative number if string1 < string2�

string1 and string2 must be strings.

index1 and index2 specify the starting position for the search within string1 and

string2 respectively.

If the value of index1 is non-zero, the sign of the result is meaningful, but the

magnitude of the result is not.

count specifies the number of characters to be compared in both strings.

Examples:

(sys:%string-exact-compare "apple" 0 "apple" 0 nil) => 0

(sys:%string-exact-compare "apple" 0 "APPLE" 0 nil) => 1

(sys:%string-exact-compare "orange" 0 "organ" 0 nil) => -3

(sys:%string-exact-compare "orange" 1 "organ" 0 3) => 1

(sys:%string-exact-compare "hello" 1 "yelp!" 1 2) => 0

(sys:%string-exact-compare "hello" 1 "yelp!" 1 3) => -3

(sys:%string-exact-compare "aaaa" 0 (make-array 4 

:element-type ’character 

:initial-element #\a) 0 nil) => 0�

The case-insensitive version of sys:%string-exact-compare is the function

sys:%string-compare.

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� zl:string-exact-compare string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2�

Function

A comparison predicate that compares two strings or substrings of them, exactly,

depending on all fields including character style and alphabetic case. 

zl:string-exact-compare returns: 

• a positive number if string1 > string2
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• zero if string1 = string2

• a negative number if string1 < string2�

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string. If the

value of idx1 is non-zero, the sign of the result is meaningful, but the

magnitude of the result is not.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string-exact-compare "apple" "apple") => 0

(zl:string-exact-compare "APPLE" "apple") => -1

(zl:string-exact-compare "orange" "organ") => -3

(zl:string-exact-compare "airplane" "aardvark") => 2

(zl:string-exact-compare "baseball" "seven" 2) => -3

(zl:string-exact-compare "flight" "salient" 1 2 nil 5) => 3

�

For a table of related items: See the section "Case-Sensitive String Comparison

Predicates". 

� string-fat-p string Function

Determines if string is an array of fat characters, returning t if it is, and nil oth-

erwise. Accepts a string argument only. Array-elements of type character are

wider characters with bits holding information about modifier bits, character set,

and character style.

It is an error if the argument is not a string.

Examples:

(string-fat-p "string") => NIL

�

(string-fat-p "string") => T
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�

(string-fat-p (string-append "fred" #\meta-q)) => T

�

(string-fat-p (make-string 3 :initial-element #\hyper-super-a)) => T

�

(string-fat-p (make-string 3 :element-type ’character)) => T

�

(string-fat-p (make-array 4 :element-type ’character

                            :initial-element #\a)) => T

�

(string-fat-p 4) => NIL�

For a table of related items: See the section "String Type-Checking Predicates". 

� string-flipcase string &key (start 0) (end nil) Function

Returns a copy of string, with uppercase alphabetic characters replaced by the cor-

responding lowercase characters, and with lowercase alphabetic characters replaced

by the corresponding uppercase characters.

string is a string or an object that can be coerced to a string. See the function

string.

The keywords let you select portions of the string argument for case changing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The result is always the same length as string, however.

:start Specifies the position within string from which to begin case changing

(counting from 0). Default is 0, the first character in the string. :start

must be ≤ :end.

:end Specifies the position within string of the first character beyond the end of

the case changing operation. Default is nil, that is, the operation continues

to the end of the string.

Examples:

(string-flipcase "a sTrANGe UsE OF CaPitalS") 

=> "A StRangE uSe of cApITALs"

�

(string-flipcase ’symbol) => "symbol"

(string-flipcase ’symbol :start 2 :end 4) => "SYmbOL"

(string-flipcase "End" :start 2) => "EnD"

(string-flipcase "STRing") => "strING"

�

The destructive version of string-flipcase is the function:

nstring-flipcase�

For a table of related items: See the section "String Conversion". 
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� zl:string-flipcase string &optional (from 0) to (copy-p t) Function

Reverses the alphabetic case in its argument: it changes uppercase alphabetic

characters to lowercase and lowercase characters to uppercase. The effect on the

original argument depends on the value of copy-p: if copy-p is not nil, a copy of

string is returned; this is the default; if copy-p is nil, string itself is modified and

returned.

If string is not a string, an error is signalled. See the function string.

from is the index in string at which to begin exchanging the case of characters. If

to is supplied, it is used in place of (array-active-length string) as the index one

greater than the last character whose case is to be exchanged.

Examples:

�

(zl:string-flipcase "small LARGE") => "SMALL large"

(zl:string-flipcase "small LARGE" 6) => "small large"

(zl:string-flipcase "small LARGE" 1 3) => "sMAll LARGE"

(setq string "STRing") => "STRing"

(zl:string-flipcase string 0 nil nil) => "strING"

(zl:string-flipcase string 0 nil nil) => "STRing"�

The Symbolics Common Lisp equivalents to zl:string-flipcase are the functions:

string-flipcase

nstring-flipcase�

For a table of related items: See the section "String Conversion". 

� string-greaterp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings, or substrings of them. The

comparison ignores character fields for character style and alphabetic case. 

string-greaterp returns nil unless string1 is greater than string2. If the condition

is satisfied, string-greaterp returns the position within the strings of the first

character at which the strings fail to match; this index is equivalent to the length

of the longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.
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:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-greaterp is the predicate string>.

Examples:

(string-greaterp "apple" "apple") => NIL

(string-greaterp "true" "TRUE") => NIL

(string-greaterp "arm" "aim") => 1

(string-greaterp "puppet" "puzzle") => NIL

(string-greaterp "book" "ball" :start1 1 :start2 2 :end2 3) => 1

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� zl:string-greaterp string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

Compares two strings or substrings of them. The comparison ignores the character

fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string-greaterp "apple" "apple") => NIL

(zl:string-greaterp "true" "TRUE") => NIL

(zl:string-greaterp "arm" "aim") => T

(zl:string-greaterp "puppet" "puzzle") => NIL

(zl:string-greaterp "book" "ball" 1 2 0 3) => T

�
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For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� :string-in eof-option vector &optional (start 0) end Message

Reads characters from an input stream into vector, using the sub-vector delimited

by start and end.

start defaults to 0 and end defaults to the length of the vector. The difference be-

tween end and start constitutes a character count for this operation.

eof-option specifies stopping actions. 

Value Meaning

nil Reading characters into the vector stops either when it has

transferred the specified character count or when it reaches

end-of-file, whichever happens first. For vectors with a fill

pointer, it sets the fill pointer to point to the location following

the last one filled by the read.

not nil If the end-of-file is encountered while trying to transfer a spe-

cific number of characters, it signals sys:end-of-file, with the

value of eof as the report string.�

:string-in accepts a string for some input streams, and an array for others.

:string-in returns two values. The first value is one greater than the last location

of vector into which it stored a character. The second value is t if it reached end-

of-file and nil if it did not. Using :string-in at the end of a file returns 0 and t

and sets the fill pointer of vector to start (if vector has a fill pointer).

For example, suppose the file my-host:>george>tiny.text contains "Here is some

tiny text.".

(setq string (make-array 100 :element-type ’string-char))

""

�

(with-open-file (stream "my-host:>george>tiny.text")

  (send stream ’:string-in nil string))

23

�

string => "Here is some tiny text."�

If vector has an array-leader, the fill pointer is adjusted to start plus the number of

characters stored into vector.

vector can be any type of vector that will hold the elements being read from the

stream.

The :string-in message can be sent to windows. It interacts correctly with the in-

put editor, including correct handling of activation characters.
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The interface to this method for windows and the returned value is exactly the

same as the equivalent methods for si:input-stream and si:unbuffered-line-input-

stream.

� string-left-trim char-set string Function

Strips the characters in char-set of the beginning of string. Returns a substring of

string. Under CLOE, if no characters require trimming, string is returned rather

than a copy.

string is a string or an object that can be coerced to a string. See the function

string.

char-set is a set of characters that can be represented as a list of characters, an

array of characters, or a string of characters.

Examples:

(string-left-trim ’(#\p) "pop") => "op"

(string-left-trim #(#\sp) "  spaces   ") => "spaces   "

(string-left-trim "atn" "attack at dawn") => "ck at dawn"�

(string-left-trim "abcxyz" "abcdefg...uvwxyz") 

=> "defg...uvwxyz"

�

(string-left-trim (vector #\Newline #\Space) "  a b c  ") 

=> "a b c  "�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "String Manipulation".

� zl:string-left-trim char-set string Function

Strips the characters in char-set off the beginning of string. Returns a substring of

string.

string is a string or an object that can be coerced to a string. See the function

string.

char-set is a set of characters that can be represented as a list of characters, or a

string of characters.

Examples:

(zl:string-left-trim ’(#/p) "pop") => "op"

(zl:string-left-trim "atn" "attack at dawn") => "ck at dawn"�

The Common Lisp equivalent to zl:string-left-trim is the function:

string-left-trim �

For a table of related items: See the section "String Manipulation". 
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� string-length string Function

Returns the number of characters in string.

string must be a string or an object that can be coerced into a string. See the

function string.

string-length returns the zl:array-active-length if string is a string, or the

zl:array-active-length of the print name if string is a symbol.

Examples:

(string-length "mississippi") => 11

(string-length ’alabama) => 7

(string-length

  (make-array 10 :element-type ’string-char :fill-pointer 7)) => 7

(string-length #\4) => 1�

For a table of related items: See the section "String Access and Information". 

� string-lessp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

Compares two strings, or substrings of them. The comparison ignores character

fields for character style and alphabetic case.

string-lessp returns nil unless string1 is less than string2. If the condition is sat-

isfied, string-lessp returns the position within the strings of the first character at

which the strings fail to match; this index is equivalent to the length of the

longest common portion of the strings.

string1 is less than string2 if the first characters that differ satisfy char-lessp, or

if string1 is a proper subset of string2 (of shorter length and matches in all char-

acters of string1).

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-lessp is the predicate string<.

Examples:
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(string-lessp "ostrich" "giraffe") => NIL

(string-lessp "demo" "demonstrate") => 4

(string-lessp "abcd" "bazy") => 0

(string-lessp "fred" "Fred") => NIL

(string-lessp "Chicken" "chicken") => NIL

(string-lessp "apple" "nap" :start2 1) => NIL

(string-lessp "test" "overestimate" :start1 1 :start2 4) => 5

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� zl:string-lessp string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

Compares two strings using alphabetical order (as defined by char-lessp). The re-

sult is t if string1 is the lesser, or nil if they are equal or string2 is the lesser.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string-lessp "ostrich" "giraffe") => NIL

(zl:string-lessp "demo" "demonstrate") => T

(zl:string-lessp "abcd" "bazy") => T

(zl:string-lessp "fred" "Fred") => NIL

(zl:string-lessp "Chicken" "chicken") => NIL

(zl:string-lessp "apple" "nap" 0 1) => NIL

(zl:string-lessp "test" "overestimate" 1 4) => T

�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� :string-line-in eof string &optional (start 0) end Message
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A combination of :string-in and :line-in that reads many lines successively into the

same buffer without creating strings. :string-line-in reads a line from a file into a

string (or other array) supplied by the user. It returns the array index plus one,

whether an eof was encountered and whether the entire line was read into the

buffer.

This message fills up a string as does :string-in, but reads only one line, as does

:line-in. As with :line-in, the carriage return character at the end of the line is

not stored into your buffer. :line-in reads a line from a stream and creates a

string with that line in it. :string-line-in is given a string; it fills in the string (or

other array) that you give it from the stream.

:string-line-in reads a line from a stream and fills the supplied array with that

line. As with :string-in, if the string (or other array) has a fill pointer, it is set to

the number of characters placed into the buffer plus the start offset.

:string-line-in returns three values:

• The number of active characters in the string or array. The number is calculat-

ed as one plus the array index into the buffer of the last item added to the

string by this call.

• Whether the end of the input stream was encountered while trying to read in

the string. eof is identical to the eof-option argument in :string-in.

• nil if the entire line fit in the buffer supplied, otherwise t. If t is returned for

this value, as much of the line as could fit was stored in the buffer and more of

the line is waiting to be read.

If the second and third values are both nil, a carriage return was read. If either is

t, no carriage return was read from the stream. 

� string-nconc modified-string &rest strings Function

The destructive version of string-append. Instead of making a new string contain-

ing the concatenation of its arguments, string-nconc modifies its first argument.

modified-string must be a string with a fill-pointer so that additional characters

can be tacked onto it.

The value of string-nconc is modified-string or a new, longer copy of it if the

strings don’t fit; in the latter case the original copy is forwarded to the new copy.

If string is not a string, an error is signalled. See the function adjust-array.

Unlike nconc, string-nconc with more than two arguments modifies only its first

argument, not every argument but the last.

Examples:
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(setq string (make-array 5 :element-type ’string-char

:initial-contents "hello" :fill-pointer 5)) => "hello"

(string-nconc string " there")  => "hello there"

(string-nconc string #\!) => "hello there!"

string => "hello there!"�

For a table of related items: See the section "String Construction". 

� zl:string-nconc to-string &rest strings Function

Like string-append, except that instead of making a new string containing the

concatenation of its arguments, zl:string-nconc modifies its first argument.

to-string must be a string with a fill-pointer so that additional characters can be

tacked onto it. See the function zl:array-push-extend.

The value of zl:string-nconc is to-string or a new, longer copy of it; in <the latter

case the original copy is forwarded to the new copy. See the function zl:adjust-

array-size.

Unlike nconc, zl:string-nconc with more than two arguments modifies only its

first argument, not every argument but the last.

The Symbolics Common Lisp equivalent to zl:string-nconc is the function: 

string-nconc�

For a table of related items: See the section "String Construction". 

� string-nconc-portion to-string {from-string from to} ... Function

Adds information onto a string without allocating intermediate substrings.

to-string must be a string with a fill-pointer so that additional characters can be

added onto it. The remaining arguments can be any number of "string portion

specs", which are string/from/to triples. from and to are required but can be nil

and nil. Even though the arguments are called strings, they can be anything that

can be coerced to a string with string (for example, symbols or characters).

The value of string-nconc-portion is to-string or a new, longer copy of it; in the

latter case the original copy is forwarded to the new copy (see

zl:adjust-array-size).

string-nconc-portion is like string-nconc except that it takes parts of strings

without consing substrings. 

Example:

(let ((a (make-array 10 :element-type ’string-char :fill-pointer 0)))

  (zl:string-nconc-portion a ’xxxfoobar 3 nil 

                                  #\sp nil nil 

                                  "tempstuff" 0 4)) => "FOOBAR temp"

�

string-nconc-portion uses zl:array-push-portion-extend internally, which uses

zl:adjust-array-size to take care of growing the to-string if necessary.
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For a table of related items: See the section "String Construction". 

� string-not-equal string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

Compares two strings, or substrings of them. The comparison ignores character

fields for character style and alphabetic case.

string-not-equal returns nil unless string1 is not equal to string2. If the condition

is satisfied, string-not-equal returns the position within the strings of the first

character at which the strings fail to match; this index is equivalent to the length

of the longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-not-equal is the predicate string≠.

Examples:

(string-not-equal "apple" "apple") => NIL

(string-not-equal "apple" ’apple) => NIL

(string-not-equal "apple" "apply") => 4

(string-not-equal "apple" "apropos") => 2

(string-not-equal "banana" "anachronism" :start1 1 :end1 4) => 3

(string-not-equal "banana" "anachronism" :start1 1 :end1 4 :end2 3) => NIL

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� zl:string-not-equal string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function
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Compares two strings or substrings of them. The comparison ignores character

fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string-not-equal "apple" "apple") => NIL

(zl:string-not-equal "apple" ’apple) => NIL

(zl:string-not-equal "apple" "apply") => T

(zl:string-not-equal "apple" "apropos") => T

(zl:string-not-equal "banana" "anachronism" 1 0 4) => T

(zl:string-not-equal "banana" "anachronism" 1 0 4 3) => NIL

�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� string-not-greaterp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2�

Function

A comparison predicate that compares two strings, or substrings of them. The

comparison ignores character fields for character style and alphabetic case.

string-not-greaterp returns nil unless string1 is less than or equal to string2. If

the condition is satisfied, string-not-greaterp returns the position within the

strings of the first character at which the strings fail to match; this index is

equivalent to the length of the longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.
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:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-not-greaterp is the predicate string≤.

Examples:

(string-not-greaterp "apple" "apple") => 5

(string-not-greaterp "apple" ’apple) => 5

(string-not-greaterp "sneeze" "snow") => 2

(string-not-greaterp "elephant" "aardvark") => NIL

(string-not-greaterp "ZY" "ab") => NIL

(string-not-greaterp "painting" "interest" :start1 2 :end1 5) => 5

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� zl:string-not-greaterp string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 

Function

Compares two strings or substrings of them. The comparison ignores character

fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:
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(zl:string-not-greaterp "apple" "apple") => T

(zl:string-not-greaterp "apple" ’apple) => T

(zl:string-not-greaterp "sneeze" "snow") => T

(zl:string-not-greaterp "elephant" "aardvark") => NIL

(zl:string-not-greaterp "ZY" "ab") => NIL

(zl:string-not-greaterp "painting" "interest" 2 0 5) => T

�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� string-not-lessp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 Function

A comparison predicate that compares two strings, or substrings of them. The

comparison ignores character fields for character style and alphabetic case.

string-not-lessp returns nil unless string1 is greater than or equal to string2. If

the condition is satisfied, string-not-lessp returns the position within the strings

of the first character at which the strings fail to match; this index is equivalent to

the length of the longest common portion of the strings.

string1 and string2 must be strings, or objects that can be coerced to strings. See

the function string.

The keywords let you specify substrings of the two string arguments for compari-

son. These keyword arguments must be non-negative integer indices into the

string array.

:start1 Specifies the position within string1 from which to begin

the comparison (counting from 0). Default is 0, the first

character in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within string1 of the first character

beyond the end of the comparison. Default is nil, that is,

the operation continues to the end of the string.

:start2 and :end2 Work in analogous fashion for string2.

The case-sensitive version of string-not-lessp is the predicate string≥.

Examples:

(string-not-lessp "apple" "apple") => 5

(string-not-lessp "dog" "DOG") => 3

(string-not-lessp "flat" "flush") => NIL

(string-not-lessp "ab" "ZY") => NIL

(string-not-lessp "detonate" "unnatural" :start1 4 :start2 2 :end2 5) => 7

(string-not-lessp "dog" "elephant" :start2 3) => NIL

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL.
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For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� zl:string-not-lessp string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 Function

A comparison predicate that compares two strings, or substrings of them. The

comparison ignores character fields for character style and alphabetic case.

The optional arguments let you specify substrings of the two string arguments for

comparison.

idx1 Specifies the position within string1 from which to begin the comparison

(counting from 0). Default is 0, the first character in the string.

idx2 Specifies the position within string2 from which to begin the compari-

son. Default is 0.

lim1 Specifies the position within string1 of the first character beyond the

end of the comparison. Default is nil, that is, the operation continues to

the end of the string.

lim2 Specifies the position within string2 of the first character beyond the

end of the comparison. Default is nil.

Examples:

(zl:string-not-lessp "apple" "apple") => T

(zl:string-not-lessp "dog" "DOG") => T

(zl:string-not-lessp "flat" "flush") => NIL

(zl:string-not-lessp "ab" "ZY") => NIL

(zl:string-not-lessp "detonate" "unnatural" 4 2 0 5) => NIL

(zl:string-not-lessp "dog" "elephant" 0 3) => NIL�

For a table of related items: See the section "Case-Insensitive String Comparison

Predicates". 

� string-nreverse string &key (start 0) (end nil) Function

Returns string with the order of characters reversed, modifying the original string,

rather than creating a new one. This reverses a one-dimensional array of any type.

If string is a character, it is simply returned.

string is a string, a one-dimensional array, or an object that can be coerced to a

string. Since string-nreverse is destructive, coercion should be used with care

since a string internal to the object might be modified. See the function string.

The keywords let you select portions of the string argument for reversing. These

keyword arguments must be non-negative integer indices into the string array. The

entire argument, string, is returned, however.

:start specifies the position within string from which to begin reversing (counting

from 0). Default is 0, the first character in the string. :start must be ≤ :end.
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:end specifies the position within string of the first character beyond the end of

the reversing operation. Default is nil, that is, the operation continues to the end

of the string.

The nondestructive version of string-nreverse is the function string-reverse.

Examples:

(setq a "bloom") => "bloom"

(string-nreverse a) => "moolb"

a => "moolb"

(string-nreverse "mysbolics" :start 0 :end 3) => "symbolics"�

For a table of related items: See the section "String Manipulation". 

� zl:string-nreverse string Function

Returns string with the order of characters reversed, modifying the original string,

rather than creating a new one. This reverses a one-dimensional array of any type.

If string is a character, it is simply returned. 

If string is not a string, an error is signalled.

See the function string.

Examples:

(zl:string-nreverse ’symbol)

;signals an error: "illegal to modify the pname of a symbol"

(zl:string-nreverse "word") => "drow"

(setq string "two words") => "two words"

(zl:string-nreverse string) => "sdrow owt"

string  => "sdrow owt"�

The Symbolics Common Lisp equivalent to zl:string-nreverse is the function:

string-nreverse �

For a table of related items: See the section "String Manipulation". 

� :string-out string &optional start end Message

Outputs the characters of string successively to the stream. This operation is pro-

vided for two reasons: it saves the writing of a frequently used loop, and many

streams can perform this operation much more efficiently than the equivalent se-

quence of :tyo operations. If the stream does not support :string-out itself, the de-

fault handler converts it to :tyos.

If start and end are not supplied, the entire string is output. Otherwise a substring

is output; start is the index of the first character to be output (defaulting to 0),

and end is one greater than the index of the last character to be output (default-

ing to the length of the string). Callers need not pass these arguments, but all

streams that handle :string-out must check for them and interpret them appropri-

ately. 
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� string-pluralize string Function

Returns a copy of its string argument containing the plural of the word in string.

Any added characters go in the same case as the last character of string.

string is a string or an object that can be coerced to a string. See the function

string.

Examples:

(string-pluralize "event") => "events"

(string-pluralize "Man") => "Men"

(string-pluralize "Can") => "Cans"

(string-pluralize "key") => "keys"

(string-pluralize "TRY") => "TRIES"

(string-pluralize ’part) => "PARTS"�

For words with multiple plural forms depending on the meaning, string-pluralize

cannot always do the right thing.

For a table of related items: See the section "String Conversion". 

� zl:string-pluralize string Function

Returns a copy of its string argument containing the plural of the word in string.

Any added characters go in the same case as the last character of string.

string is a string or an object that can be coerced to a string. See the function

string.

Examples:

(zl:string-pluralize "event") => "events"

(zl:string-pluralize "Man") => "Men"

(zl:string-pluralize "Can") => "Cans"

(zl:string-pluralize "key") => "keys"

(zl:string-pluralize "TRY") => "TRIES"

(zl:string-pluralize "child") => "children"�

For words with multiple plural forms depending on the meaning, zl:string-

pluralize cannot always do the right thing.

The Symbolics Common Lisp equivalent to zl:string-pluralize is the function:

string-pluralize �

� string-reverse string &key (start 0) (end nil) Function

Creates and returns a copy of string with the order of characters reversed. This

reverses a one-dimensional array of any type. If string is not a string or another

one-dimensional array, it is coerced into a string. See the function string.

The keywords let you select portions of the string argument for reversing. These

keyword arguments must be non-negative integer indices into the string array. The

entire argument, string, is returned, however.
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:start specifies the position within string from which to begin reversing (counting

from 0). Default is 0, the first character in the string. :start must be ≤ :end.

:end specifies the position within string of the first character beyond the end of

the reversing operation. Default is nil, that is, the operation continues to the end

of the string.

The generic function reverse also works on strings.

The destructive version of string-reverse is string-nreverse.

Examples:

(string-reverse #\a) => "a"

(string-reverse ’symbol) => "LOBMYS"

(string-reverse "a string") => "gnirts a"

(string-reverse "end" :start 1) => "edn"

(string-reverse "start" :end 3) => "atsrt"

(string-reverse "middle" :start 1 :end 5) => "mlddie"�

For a table of related items: See the section "String Manipulation". 

� zl:string-reverse string Function

Creates and returns a copy of string with the order of characters reversed. This

reverses a one-dimensional array of any type. If string is not a string or another

one-dimensional array, it signals an error. See the function string.

Examples:

(zl:string-reverse #/a) => "a"

(zl:string-reverse ’symbol) => "LOBMYS"

(zl:string-reverse "a string") => "gnirts a"

(zl:string-reverse "end" 1) ;signals an error�

The Symbolics Common Lisp equivalent to zl:string-reverse is the function:

string-reverse �

For a table of related items: See the section "String Manipulation". 

� zl:string-reverse-search key string &optional from (to 0) (key-start 0) key-end 

Function

Searches for the string key in the string string, using string-equal to do the com-

parison. The search proceeds in reverse order, starting from the index one less

than from, which defaults to the length of string, and returns the index of the first

(leftmost) character of the first instance found, or nil if none is found. Note that

the index returned is from the beginning of the string, although the search starts

from the end. The from condition, restated, is that the instance of key found is the

rightmost one whose rightmost character is before the from’th character of string.

If the to argument is supplied, it limits the extent of the search. string is a string

or an object that can be coerced to a string. See the function string. Example:
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(zl:string-reverse-search "na" "banana") => 4�

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-reverse-search-char char string &optional from (to 0) Function

Searches through string in reverse order, starting from the index one less than

from, which defaults to the length of string, and returns the index of the first

character that is char-equal to char, or nil if none is found. Note that the index

returned is from the beginning of the string, although the search starts from the

end. If the to argument is supplied, it limits the extent of the search. string is a

string or an object that can be coerced to a string. See the function string. Exam-

ple:

(zl:string-reverse-search-char #/n "banana") => 4�

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-reverse-search-exact key string &optional from (to 0) (key-start 0) key-end�

Function

Searches one string for another, comparing characters exactly and depending on

all fields including bits, style, and alphabetic case. Substrings of either argument

can be specified.

For a table of related items: See the section "Case-Sensitive String Searches". 

� zl:string-reverse-search-exact-char char string &optional from (to 0) Function

Searches a string or a substring for the specified character, starting from the end

of the string. In other words, it searches the string for the last occurrence of the

specified character. It compares all fields of the character, including bits, style,

and alphabetic case. Use the optional from argument to end the search at the

specified position.

zl:string-reverse-search-exact-char returns: 

• The position of the last occurrence of the character if the character is found.

• nil if the character is not contained within the string.�

For example:

    

(zl:string-reverse-search-exact-char #/a "bbab") => 2

�

(zl:string-reverse-search-exact-char #/a "bbaba") => 4

�

(zl:string-reverse-search-exact-char #/a "bbb") => NIL
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�

(zl:string-reverse-search-exact-char #/a "bAcBA") => NIL

�

For a table of related items: See the section "Case-Sensitive String Searches". 

� zl:string-reverse-search-not-char char string &optional from (to 0) Function

Searches through string in reverse order, starting from the index one less than

from, which defaults to the length of string, and returns the index of the first

character that is not char-equal to char, or nil if none is found. Note that the in-

dex returned is from the beginning of the string, although the search starts from

the end. If the to argument is supplied, it limits the extent of the search. string is

a string or an object that can be coerced to a string. See the function string. Ex-

ample:

(zl:string-reverse-search-not-char #/a "banana") => 4�

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-reverse-search-not-exact-char char string &optional from (to 0) Function

Searches a string or a substring for occurrences of any character other than the

specified character, starting from the end of the string. It compares all fields of

the character, including bits, style, and alphabetic case. Use the optional from ar-

gument to end the search at the specified position.

zl:string-reverse-search-not-exact-char returns: 

• The position of the last occurrence of a character that does not match the speci-

fied character.

• nil if the string contains only the specified character.�

For example:

(zl:string-reverse-search-not-exact-char #/a "aaa") => nil

�

(zl:string-reverse-search-not-exact-char #/a "bbab") => 3

�

(zl:string-reverse-search-not-exact-char #/a "bbaba") => 3

�

(zl:string-reverse-search-not-exact-char #/a "bbb") => 2

�

(zl:string-reverse-search-not-exact-char #/a "bAcBA") => 4

�

For a table of related items: See the section "Case-Sensitive String Searches". 

� zl:string-reverse-search-not-set char-set string &optional from (to 0) Function
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Searches through string in reverse order, starting from the index one less than

from, which defaults to the length of string, and returns the index of the first

character that is not char-equal to any element of char-set, or nil if none is found.

Note that the index returned is from the beginning of the string, although the

search starts from the end. If the to argument is supplied, it limits the extent of

the search. char-set is a set of characters, which can be represented as a list of

characters or a string of characters. string is a string or an object that can be co-

erced to a string. See the function string.

(zl:string-reverse-search-not-set ’(#/a #/n) "banana") => 0�

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-reverse-search-set char-set string &optional from (to 0) Function

Searches through string in reverse order, starting from the index one less than

from, which defaults to the length of string, and returns the index of the first

character that is char-equal to some element of char-set, or nil if none is found.

Note that the index returned is from the beginning of the string, although the

search starts from the end. If the to argument is supplied, it limits the extent of

the search. char-set is a set of characters, which can be represented as a list of

characters or a string of characters. string is a string or an object that can be co-

erced to a string. See the function string.

(zl:string-reverse-search-set "ab" "banana") => 5�

For a table of related items: See the section "Case-Insensitive String Searches". 

� string-right-trim char-set string Function

Strips the characters in char-set off the end of string. Returns a substring of

string. Under CLOE, if no characters require trimming, string is returned, rather

than a copy.

string is a string or an object that can be coerced to a string. See the function

string.

char-set is a set of characters, that can be represented as a list of characters, an

array of characters, or a string of characters.

Examples:

(string-right-trim ’(#\4) "456454") => "45645"

(string-right-trim #(#\t #\h) "that tooth") => "that too"

(string-right-trim "o" "otto") => "ott"�

Related Functions:

string-trim

string-left-trim

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that you cannot use this extension in CLOE.
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(string-right-trim "abcxyz" "abcdefg...uvwxyz") 

=> "abcdefg...uvw"

�

(string-right-trim (vector #\Newline #\Space) "  a b c  ") 

=> "  a b c"�

For a table of related items: See the section "String Manipulation".

� zl:string-right-trim char-set string Function

Strips the characters in char-set from the end of string. Returns a substring of

string.

string is a string or an object that can be coerced to a string. See the function

string.

char-set is a set of characters that can be represented as a list of characters or a

string of characters.

Examples:

(zl:string-right-trim ’(#/4) "456454") => "45645"

(zl:string-right-trim "o" "otto") => "ott"�

The Common Lisp equivalent to zl:string-right-trim is the function:

string-right-trim�

For a table of related items: See the section "String Manipulation". 

� string-search key string &key :from-end (:start1 0) :end1 (:start2 0) :end2�

Function

Searches string looking for occurrences of key. The search uses char-equal which

ignores character fields for character style and alphabetic case.

string-search returns nil, or the position of the first character of key occurring in

the (sub)string. To reverse the search, returning the position of the last occur-

rence of the initial key character in the (sub)string searched, specify a non-nil val-

ue for :from-end.

key and string must be strings, or objects that can be coerced to a string. See the

function string.

The keywords let you specify the parts of string to be searched, as well as the

parts of key to search for. These keyword arguments must be non-negative integer

indices into the string array.

:from-end If a non-nil value is specified, returns the position of the

first character of the last occurrence of key in the string

or the specified substring.

:start1 Specifies the position within key from which to begin the

search (counting from 0). Default is 0, the first character

in the string. :start1 must be ≤ :end1.
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:end1 Specifies the position within key of the first character be-

yond the end of the search. Default is nil, that is the en-

tire length of key is used.

:start2 and :end2 Work analogously for string.�

Examples:

(string-search "es" "witches") => 5

(string-search "es" "tresses") => 2

(string-search "es" "tresses" :from-end t) => 5

(string-search "er" "tresses") => NIL

(string-search "er" "tresses" :from-end t) => NIL

(string-search "es" "tresses" :start2 3) => 5

�

(string-search #\a "banana") => 1

�

(string-search ’symbol "abolish" :start1 3) => 1

(string-search ’symbol "abolish" :start1 3 :end2 3) => NIL�

The case-sensitive version of string-search is the function:

string-search-exact �

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-search key string &optional (from 0) to (key-start 0) key-end Function

Searches for the string key in the string string, using string-equal to do the com-

parison. The search begins at from, which defaults to the beginning of string. The

value returned is the index of the first character of the first instance of key, or nil

if none is found. If the to argument is supplied, it is used in place of (string-

length string) to limit the extent of the search. string is a string or an object that

can be coerced to a string. See the function string. Example:

(zl:string-search "an" "banana") => 1

(zl:string-search "an" "banana" 2) => 3

(zl:string-search "es" "witches") => 5

(zl:string-search "es" "tresses")  => 2

(zl:string-search "er" "tresses")  => NIL�

The Symbolics Common Lisp equivalent to zl:string-search is the function:

string-search �

For a table of related items: See the section "Case-Insensitive String Searches". 

� string-search-char char string &key :from-end (:start 0) :end Function

Searches string looking for the character char. The search uses char-equal, which

ignores the character fields for character style and alphabetic case.
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string-search-char returns nil if it does not find char; if successful, it returns the

position of the first occurrence of char. To reverse the search, returning the posi-

tion of the last occurrence of char in the (sub)string searched, set :from-end to t.

char must be a character object.

string must be a string, or an object that can be coerced to a string. See the func-

tion string.

The keywords let you specify the parts of string to be searched. These keyword ar-

guments must be non-negative integer indices into the string array.

:from-end If set to a non-nil value, returns the position of the last

occurrence of char in the string or the specified sub-

string.

:start Specifies the position within string from which to begin

the search (counting from 0). Default is 0, the first char-

acter in the string. :start must be ≤ :end.

:end Specifies the position within string of the first character

beyond the end of the search. Default is nil, that is the

entire length of string is searched.

Examples:

(string-search #\? "banana") => NIL

(string-search-char #\a "banana") => 1

(string-search-char #\a "banana" :from-end t) => 5

(string-search-char #\a "banana" :start 1 :end 3) => 1

(string-search-char #\a "banana" :start 1 :end 4 :from-end t) => 3

(string-search-char #\A "banana" ) => 1

�

The case-sensitive version of string-search-char is the function:

string-search-exact-char�

For a table of related items: See the section "Case-Insensitive String Searches". 

� sys:%string-search-char char string start end�

Function

Performs a low-level string search, possibly more efficiently than the other search-

ing functions. Its only current efficiency advantage is its simplified arguments and

minimized type-checking.

string must be an array;

char must be a character;

start, and end must be integers.

Except for this lack of type-coercion, and the fact that none of the arguments is

optional, sys:%string-search-char is the same as zl:string-search-char. This func-
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tion is documented for the benefit of those who require the maximum possible effi-

ciency in string searching.

Examples:

(sys:%string-search-char #\a 

    (make-array 4 :element-type ’character 

  :initial-element #\a) 2 4)  => 2

(sys:%string-search-char #\p "zippy" 0 90) => 2 �

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-search-char char string &optional (from 0) to Function

Searches through string starting at the index from, which defaults to the begin-

ning, and returns the index of the first character that is char-equal to char, or nil

if none is found. If the to argument is supplied, it is used in place of (string-

length string) to limit the extent of the search. string is a string or an object that

can be coerced to a string. See the function string.

Example:

(zl:string-search #\? "banana") => NIL

(zl:string-search-char #\a "banana") => 1

(zl:string-search-char #\a "banana") => 1

(zl:string-search-char #\a "banana"  1  3) => 1

(zl:string-search-char #\a "banana" 1 4 ) => 1�

The Symbolics Common Lisp equivalent to zl:string-search-char is the function:

string-search-char �

For a table of related items: See the section "Case-Insensitive String Searches". 

� string-search-exact key string &key :from-end (:start1 0) :end1 (:start2 0) :end2�

Function

Searches string looking for occurrences of key. The search compares all characters

exactly, using all character fields including character style and alphabetic case.

string-search-exact returns nil, or the position of the first character of key occur-

ring in the (sub)string. To reverse the search, returning the position of the last

occurrence of the initial key character in the (sub)string searched, specify a

non-nil value for :from-end.

key and string must be strings, or objects that can be coerced to a string. See the

function string.

The keywords let you specify the parts of string to be searched, as well as the

parts of key to search for. These keyword arguments must be non-negative integer

indices into the string array.
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:from-end If a non-nil value is specified, returns the position of the

first character of the last occurrence of key in the string

or the specified substring.

:start1 Specifies the position within key from which to begin the

search (counting from 0). Default is 0, the first character

in the string. :start1 must be ≤ :end1.

:end1 Specifies the position within key of the first character be-

yond the end of the search. Default is nil, that is the en-

tire length of key is used.

:start2 and :end2 Work analogously for string.�

Examples:

�

(setq a-string (make-string 3 :initial-element #\a))  => "aaa"

(string-search-exact #\a a-string) => 0

�

(string-search-exact #\a "AAA") => NIL

�

(string-search-exact #\a "bbbabba") => 3

�

(string-search-exact #\a "aaabAcBA") => 0

�

(string-search-exact #\a "abbbacccbaddda" :from-end 2 )  => 13�

The case-insensitive version of string-search-exact is the function:

string-search�

For a table of related items: See the section "Case-Sensitive String Searches". 

� zl:string-search-exact key string &optional (from 0) to (key-start 0) key-end 

Function

Searches one string for another, comparing characters exactly and depending on

all fields including bits, style, and alphabetic case. Substrings of either argument

can be specified.

Examples:

�

(setq a-string (make-string 3 :initial-element #\a))  => "aaa"

(zl:string-search-exact #\a a-string) => 0

�

(zl:string-search-exact #\a "AAA") => NIL 

�

(zl:string-search-exact #\a "bbbabba") => 3

�

(zl:string-search-exact #\a "aaabAcBA") => 0

�
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The Symbolics Common Lisp equivalent to zl:string-search-exact is the function:

string-search-exact �

For a table of related items: See the section "Case-Sensitive String Searches". 

� string-search-exact-char char string &key :from-end (:start 0) :end Function

Searches string looking for the character, char. The search compares all characters

exactly, using all character fields including character style and alphabetic case.

string-search-exact-char returns nil if it does not find char; if successful, it re-

turns the position of the first occurrence of char in the string or substring

searched. To reverse the search returning the position of the last occurrence of

char in the (sub)string searched, specify a non-nil value for the keyword

:from-end. 

char must be a character object.

string must be a string, or an object that can be coerced to a string. See the func-

tion string.

The keywords let you specify the parts of string to be searched. These keyword ar-

guments must be non-negative integer indices into the string array.

:from-end If set to a non-nil value, returns the position of the last

occurrence of char in the string or the specified sub-

string.

:start Specifies the position within string from which to begin

the search (counting from 0). Default is 0, the first char-

acter in the string. :start must be ≤ :end.

:end Specifies the position within string of the first character

beyond the end of the search. Default is nil, that is the

entire length of string is searched.

Examples:

(string-search-exact-char #\a "bbab") => 2

�

(string-search-exact-char #\a "abbaba") => 0

�

(string-search-exact-char #\a "bbAAaAAab") => 4 

�

(string-search-exact-char #\a "bAcBA")  => NIL

�

(string-search-exact-char #\a "abbababba" 

:from-end 2 :start 3 :end 9) => 8

�

The case-insensitive version of string-search-exact-char is the function:

string-search-char �
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For a table of related items: See the section "Case-Sensitive String Searches". 

� sys:%string-search-exact-char char string start end�

Function

Performs a low-level string search, possibly more efficient than the other search-

ing functions. Its only current efficiency advantage is its simplified arguments and

minimized type-checking.

The function returns nil if unsuccessful, or the position in the string of the char-

acter sought for. Count starts at zero.

Examples:

(sys:%string-search-exact-char #\a 

  (make-array 4 :element-type ’character :initial-element #\a) 0 9)

 => 0

�

(sys:%string-search-exact-char #\i "Garfield" 0 6)  => 4

�

(sys:%string-search-exact-char #\I "Garfield" 0 6)  => NIL

�

For a table of related items: See the section "Case-Sensitive String Searches". 

� zl:string-search-exact-char char string &optional (from 0) to�

Function

Searches a string or a substring for the specified character, comparing all fields of

the character, including, style, and alphabetic case. Use the optional to argument

to end the search at the specified position.

zl:string-search-exact-char returns: 

• The position of the first occurrence of the character in the string.

• nil if the character is not contained within the string.�

For example:

(zl:string-search-exact-char #\a "bbab") => 2 

(zl:string-search-exact-char #\A "abattoir") => NIL

�

(zl:string-search-exact-char #\a "abbaba") => 0 

�

(zl:string-search-exact-char #\a "bbAAaAAab") => 4

�

(zl:string-search-exact-char #\meta-A "bAcBA")  => NIL

�

The Symbolics Common Lisp equivalent to zl:string-search-exact-char is the func-
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tion:

string-search-exact-char�

For a table of related items: See the section "Case-Sensitive String Searches". 

� string-search-not-char char string &key :from-end (:start 0) :end�

Function

Searches string looking for occurrences of any character other than char. The

search uses char-equal, which ignores the character fields for character style and

alphabetic case.

string-search-not-char returns nil, or the position of the first occurrence of any

character that is not char. To reverse the search, returning the position of the last

occurrence of a character other than char in the (sub)string searched, specify t for

the keyword argument :from-end.

char must be a character object.

string must be a string, or an object that can be coerced to a string. See the func-

tion string.

The keywords let you specify the parts of string to be searched. These keyword ar-

guments must be non-negative integer indices into the string array.

:from-end If it has a non-nil value, returns the position of the last

occurrence of a character that does not match char in the

string or the specified substring.

:start Specifies the position within string from which to begin

the search (counting from 0). Default is 0, the first char-

acter in the string. :start must be ≤ :end.

:end Specifies the position within string of the first character

beyond the end of the search. Default is nil, that is the

entire length of string is searched.

Examples:

(string-search-not-char #\E "eel") => 2

(string-search-not-char #\l "oscillate") => 0

(string-search-not-char #\l "oscillate" :start 5) => 6

(string-search-not-char #\l "oscillate" :start 5 :from-end t) => 8

(string-search-not-char #\l "oscillate" :start 2 :end 5 :from-end t) => 3�

The case-sensitive version of string-search-not-char is the function:

string-search-not-exact-char�

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-search-not-char char string &optional (from 0) to Function
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Searches through string starting at the index from, which defaults to the begin-

ning, and returns the index of the first character which is not char-equal to char,

or nil if none is found. If the to argument is supplied, it is used in place of

(string-length string) to limit the extent of the search. string is a string or an ob-

ject that can be coerced to a string. See the function string. Example:

(zl:string-search-not-char #\b "banana") => 1

(zl:string-search-not-char #\n "banana" 2) => 3

(zl:string-search-not-char #\n "banana" 2 3) => NIL

(zl:string-search-not-char #\E "eel") => 2 

(zl:string-search-not-char #\l "oscillate") => 0

(zl:string-search-not-char #\l "oscillate" 5) => 6

(zl:string-search-not-char #\l "oscillate" 2  5 ) => 2�

The Symbolics Common Lisp equivalent to zl:string-search-not-char is the func-

tion:

string-search-not-char�

For a table of related items: See the section "Case-Insensitive String Searches". 

� string-search-not-exact-char char string &key :from-end (:start 0) :end�

Function

Searches string looking for occurrences of any character other than char. The

search compares all characters exactly, using all character fields including charac-

ter style and alphabetic case.

string-search-not-exact-char returns nil, or the position of the first occurrence of

any character that is not char. To reverse the search, returning the position of the

last occurrence of a character other than char in the (sub)string searched, specify

t for the keyword argument :from-end.

char must be a character object.

string must be a string, or an object that can be coerced to a string. See the func-

tion string.

The keywords let you specify the parts of string to be searched. These keyword ar-

guments must be non-negative integer indices into the string array.

:from-end If it has a non-nil value, returns the position of the last

occurrence of a character that does not match char in the

string or the specified substring.

:start Specifies the position within string from which to begin

the search (counting from 0). Default is 0, the first char-

acter in the string. :start must be ≤ :end.

:end Specifies the position within string of the first character

beyond the end of the search. Default is nil, that is the

entire length of string is searched.
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Examples:

�

(setq a-string (make-string 3 :initial-element #\a)) => "aaa"

(string-search-not-exact-char #\a a-string) => NIL

�

(string-search-not-exact-char #\a "AAA") => 0

�

(string-search-not-exact-char #\a "bbba") => 0

�

(string-search-not-exact-char #\a "aaabAcBA") => 3

�

(string-search-not-exact-char #\a 

"abbacccaccca" :from-end 3 :start 2 :end 9) => 8�

The case-insensitive version of string-search-not-exact-char is the function:

string-search-not-char�

For a table of related items: See the section "Case-Sensitive String Searches". 

� zl:string-search-not-exact-char char string &optional (from 0) to Function

Searches a string or a substring for the first occurrence of any character other

than the specified character. It compares all fields of the character, including bits,

style, and alphabetic case. Use the optional to argument to end the search at the

specified position.

zl:string-search-not-exact-char returns: 

• The position of the first character in the string that does not match the speci-

fied character.

• nil if the string contains only the specified character.�

For example:

(setq a-string (make-string 3 :initial-element #\a))  => "aaa"

(zl:string-search-not-exact-char #\a a-string) => NIL

�

(zl:string-search-not-exact-char #\a "AAA")  => 0

�

(zl:string-search-not-exact-char #\a "bbba") => 0

�

(zl:string-search-not-exact-char #\a "aaabAcBA") => 3

�

The Symbolics Common Lisp equivalent to zl:string-search-not-exact-char is the

function:

string-search-not-exact-char�

For a table of related items: See the section "Case-Sensitive String Searches". 
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� string-search-not-set char-set string &key :from-end (:start 0) :end�

Function

Searches string looking for a character that is not in char-set. The search uses

char-equal, which ignores the character fields for character style and alphabetic

case.

string-search-not-set returns nil, or the position of the first character that is not

char-equal to some element of the char-set. To reverse the search, returning the

position of the last occurrence of a character not in char-set in the (sub)string

searched, specify t for the keyword argument :from-end.

char-set is a set of characters which can be represented as a list of characters, an

array of characters, or a string of characters.

string must be a string, or an object that can be coerced to a string. See the func-

tion string.

The keywords let you specify the parts of string to be searched. These keyword ar-

guments must be non-negative integer indices into the string array.

:from-end If a non-nil value is specified, returns the position of the

last occurrence of a character not in char-set in the

(sub)string searched.

:start Specifies the position within string from which to begin

the search (counting from 0). Default is 0, the first char-

acter in the string. :start must be ≤ :end.

:end Specifies the position within string of the first character

beyond the end of the search. Default is nil, that is the

entire length of string is searched.

Examples:

(string-search-not-set #(#\a) "aaa") => NIL

(string-search-not-set ’(#\h #\i) "hi") => NIL 

(string-search-not-set ’(#\a) "bcaa")  => 0

(string-search-not-set ’(#\a #\b #\c) "abcdefabc") => 3�

For a table of related items: See the section "Case-Insensitive String Searches". 

� zl:string-search-not-set char-set string &optional (from 0) to Function

Searches through string looking for a character that is not in char-set. The search

begins at the index from, which defaults to the beginning. It returns the index of

the first character that is not char-equal to any element of char-set, or nil if none

is found. If the to argument is supplied, it is used in place of (string-length�

string) to limit the extent of the search. char-set is a set of characters, which can

be represented as a list of characters or a string of characters. string is a string

or an object that can be coerced to a string. See the function string. Example:
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(zl:string-search-not-set ’(#\a #\b) "banana") => 2

(zl:string-search-not-set ’(#\h #\i) "hi")  => NIL 

(zl:string-search-not-set ’(#\a) "bcaa")  => 0

(zl:string-search-not-set ’(#\a #\b #\c) "abcdefabc") => 3�

The Symbolics Common Lisp equivalent to zl:string-search-not-set is the function:

string-search-not-set�

For a table of related items: See the section "Case-Insensitive String Searches". 

� string-search-set char-set string &key :from-end (:start 0) :end�

Function

Searches string looking for a character that is in char-set. The search uses char-

equal, which ignores the character fields for character style and alphabetic case.

string-search-set returns nil, or the position of the first character that is char-

equal to some element of the char-set. To reverse the search, returning the posi-

tion of the last occurrence of the initial character of char-set in the (sub)string

searched, set :from-end to t.

char-set is a set of characters which can be represented as a list of characters, an

array of characters, or a string of characters.

string must be a string, or an object that can be coerced to a string. See the func-

tion string.

The keywords let you specify the parts of string to be searched. These keyword ar-

guments must be non-negative integer indices into the string array.

:from-end If set to a non-nil value, returns the position of the last

occurrence of the first character of char-set in the string

or the specified substring.

:start Specifies the position within string from which to begin

the search (counting from 0). Default is 0, the first char-

acter in the string. :start must be ≤ :end.

:end Specifies the position within string of the first character

beyond the end of the search. Default is nil, that is, the

entire length of string is searched.

Examples:

�

(string-search-set #(#\a) "aaa") => 0

(string-search-set ’(#\h #\i) "hi") => 0 

(string-search-set ’(#\a) "bcaa") => 2

(string-search-set ’(#\a #\b #\c) "abcdefabc") => 0

(string-search-set #(#\a #\. #\h) "ping...ahh...haaa") => 4�

For a table of related items: See the section "Case-Insensitive String Searches". 
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� zl:string-search-set char-set string &optional (from 0) to Function

Searches through string looking for a character that is in char-set. The search be-

gins at the index from, which defaults to the beginning. It returns the index of the

first character that is char-equal to some element of char-set, or nil if none is

found. If the to argument is supplied, it is used in place of (string-length string)

to limit the extent of the search.

char-set is a set of characters, which can be represented as a list of characters or

a string of characters.

string is a string or an object that can be coerced to a string. See the function

string. Example:

(zl:string-search-set ’(#\h #\i) "hi") => 0  

(zl:string-search-set ’(#\a) "bcaa") => 2 

(zl:string-search-set ’(#\a #\b #\c) "abcdefabc") => 0

�

The Symbolics Common Lisp equivalent to zl:string-search-set is the function:

string-search-set�

For a table of related items: See the section "Case-Insensitive String Searches". 

� string-thin string &key (:start 0) :end (:remove-style t) :remove-bits :error-if :area 

Function

Strips the specified character-style information and modifier bits from string, and

returns the resulting substring. (Hyper, meta, super, and control are bits.) String

is an array of characters. See the function string.

:remove-style removes all of the character-style, but not character-set, information.

The default is t.

:remove-bits removes all of the bits.

:error-if is either :fat or :bits. If, after the string has been "thinned" there are

still fat characters, and if :error-if :fat is specified, an error is signalled. If, after

the string has been "thinned" there are still bits, and if :error-if :bit is specified,

an error is signalled.

:area is nil, an area, or :stack.

:start specifies the position within string from which to begin to remove the char-

acter-style information (counting from 0). Default is 0, the first character in the

string. :start must be ≤ :end.

:end specifies the position within string of the first character beyond character be-

yond the end of the character-style removing operation. Default is nil, that is, the

operation continues to the end of the string.

Examples:

(setq string *) => "This is a bold string"
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�

(string-thin string :remove-style t) => "This is a bold string"

�

(string-thin string :start 0 :end 4 :remove-style t) => 

"This"

�

For a table of related items: See the section "String Manipulation".

� string-to-ascii lispm-string Function

Converts lispm-string to an sys:art-8b array containing ASCII character codes. See

the section "ASCII Characters".

Example:

(string-to-ascii "hello") => #<ART-8B-5 24443106>�

For a table of related items: See the section "ASCII Conversion String Functions". 

� string-trim char-set string Function

Strips the characters char-set off the beginning and end of string, and returns the

resulting substring. string itself is not modified. Under CLOE, string is returned

(rather than a copy) if no characters need trimming. In Genera, a copy is always

returned.

string is a string or an object that can be coerced to a string. char-set is a set of

characters, that can be represented as a list of characters, an array of characters,

or a string of characters. See the function string.

Examples:

�

(string-trim ’(#\sp) "  Dr. No  ") => "Dr. No"

(string-trim #(#\a #\b) "abbafooabb") => "foo"

(string-trim "ab" "abbafooabb") => "abbafooabb"�

(string-trim "abcxyz" "abcdefg...uvwxyz") 

=> "defg...uvw"

�

(string-trim (vector #\Newline #\Space) "  abc  ") 

=> "abc"

�

(string-trim (list #\Newline #\Space) "  abc  ") 

=> "abc"

�

(setq a-str "abcde")

�

(setf (aref (string-trim "ae" a-str) 1) #\Q) 

=> #\Q
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�

a-str => "abcde"

�

(setf (aref (string-trim "gh" a-str) 1) #\Q) 

=> #\Q

�

a-str => "aQcde"�

Note in the last example that a-str is altered by setf because string-trim returned

a-str itself. This behavior is not a guaranteed in the definition of Common Lisp, is

subject to change in CLOE and is not true in Genera.

For a table of related items: See the section "String Manipulation".

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol,

which are specified by CLtL. Note that this extension is not available under

CLOE.

� zl:string-trim char-set string Function

Strips the characters in char-set off the beginning and end of string, and returns

the resulting substring. string itself is not modified.

string is a string or an object that can be coerced to a string. See the function

string.

char-set is a set of characters that can be represented as a list of characters, or a

string of characters.

Examples:

(zl:string-trim ’(#\sp) "    blank    ") => "blank"

(zl:string-trim "ab" "abbafooabb") => "foo"�

The Common Lisp equivalent to zl:string-trim is the function:

string-trim�

For a table of related items: See the section "String Manipulation". 

� string-upcase string &key (start 0) (end nil) Function

Returns a copy of string, with lowercase alphabetic characters replaced by the cor-

responding uppercase characters. (char-upcase is applied to each character of

string.)

string is a string or an object that can be coerced to a string. See the function

string.

The keywords let you select portions of the string argument for uppercasing.

These keyword arguments must be non-negative integer indices into the string ar-

ray. The result is always the same length as string, however.
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:start Specifies the position within string from which to begin uppercasing (count-

ing from 0). Default is 0, the first character in the string. :start must be ≤

:end. 

:end Specifies the position within string of the first character beyond the end of

the uppercasing operation. Default is nil, that is, the operation continues to

the end of the string.

The destructive version string-upcase is the function nstring-upcase.

Examples:

(string-upcase ’fred) => "FRED"

(string-upcase "window") => "WINDOW"

(string-upcase "miXEd-uP") => "MIXED-UP"

(string-upcase "") => ""

(string-upcase "17.‘≤αh") => "17.‘≤αH"

(string-upcase "end" :start 1) => "eND"

(string-upcase "middle" :start 2 :end 4) => "miDDle"

(zl:string-upcase a 2 4) => "a STring"

(zl:string-upcase a 5 7) => "a strINg"

(zl:string-upcase a 2 4 nil) => "a STring"

(zl:string-upcase a 5 7 nil) => "a STrINg"

(setq a "a string")  => "a string"

(string-upcase a :start 2 :end 4) => "a STring"

�

Compatibility Note: In the Genera implementation this function is extended to ac-

cept character arguments, in addition to the argument types string and symbol

which are specified by CLtL. Note that you cannot use this extension in CLOE.

For a table of related items: See the section "String Conversion".

� zl:string-upcase string &optional (from 0) to (copy-p t) Function

Replaces lowercase alphabetic characters in argument string with the correspond-

ing uppercase characters. The effect on the original argument depends on the val-

ue of copy-p: if copy-p is not nil, a copy of string is returned; if copy-p is nil, string

itself is modified and returned.

string is a string, or if copy-p is t, an object that can be coerced to a string. See

the function string.

from is the index in string at which to begin uppercasing characters. If to is sup-

plied, it is used in place of (array-active-length string) as the index one greater

than the last character to be uppercased.

Examples:
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(zl:string-upcase ’fred) => "FRED"

(zl:string-upcase "window") => "WINDOW"

(zl:string-upcase "miXEd-uP") => "MIXED-UP"

(zl:string-upcase "") => ""

(zl:string-upcase "17.‘≤αh") => "17.‘≤αH"

(zl:string-upcase "end" 1) => "eND"

(zl:string-upcase "middle" 2 4) => "miDDle"

(zl:string-upcase "mixed up fonts") => "MIXED UP FONTS"

(setq a "a string") => "a string"

(zl:string-upcase a 2 4) => "a STring"

(zl:string-upcase a 5 7) => "a strINg"

(zl:string-upcase a 2 4 nil) => "a STring"

(zl:string-upcase a 5 7 nil) => "a STrINg"

�

The Common Lisp equivalent to zl:string-upcase are the functions:

string-upcase

nstring-upcase�

For a table of related items: See the section "String Conversion". 

� stringp object�

Function

Under Genera, determines if object is either type of string, returning t if it is, and

nil otherwise. Accepts any object as an argument.

A string is a one-dimensional array whose elements can be of type string-char or

character; since stringp is a supertype of simple-string-p, it always returns t for

any object of which simple-string-p is t.

Unlike arrays of type simple-string, an array of type string can have a fill pointer

and displacement (that is, it can be extended, and its contents can be shared with

other array objects).

The function stringp is an extension of its Common Lisp counterpart, since it re-

turns t for arrays with elements of type character as well as for arrays of type

string-char. In CLOE on the 386, stringp is true only of arrays with elements of

type string-char.

Examples:
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(stringp "string") => T

(stringp ’symbol) => NIL

(stringp 123) => NIL

(stringp (make-string 3 :initial-element #\a)) => T

(stringp (make-string 3 :initial-element #\a

                        :element-type ’character)) => T

(stringp (make-array 5 :element-type ’string-char

                       :fill-pointer 8) => T

(stringp (make-array 4 :element-type ’character

                       :fill-pointer 3)) => T

(simple-string-p (make-array 5 :element-type ’string-char

                               :fill-pointer 8)) => NIL

�

Under CLOE, 

(stringp "hello") => t

(stringp ’#(#\h #\e #\l #\l #\o)) => nil

(stringp "h") => t�

In the previous example, the value of the second call to stringp is nil because a

vector of characters is not a string. Instead, strings are vectors whose element

type is string-char.

(stringp (make-array 3 :element-type ’string-char)) => t

(stringp (make-array 3 :element-type ’character)) => nil�

For a table of related items, see the section "String Type-Checking Predicates". 

� structure &optional (name ’*) Type Specifier

This is the type specifier symbol denoting instances of a structure. When a new

structure is defined with defstruct, the name of the structure type becomes a

valid type symbol, and individual instances of that structure become valid types of

structure that can be tested with typep.

structure is a subtype of t.

Examples:

(defstruct ship

   x-position

   y-position) => SHIP

(setq my-boat (make-ship)) => #S(SHIP :X-POSITION NIL

                                      :Y-POSITION NIL)

(typep my-boat ’(structure ship)) => T

(zl:typep my-boat) => SHIP

(type-of my-boat) => SHIP

(sys:type-arglist ’structure) => (&OPTIONAL (NAME ’*)) and T�

See the section "Data Types and Type Specifiers". See the section "Structure

Macros".
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� clos:structure-class Class

The class of classes defined by defstruct. 

These classes (objects whose class is class:structure-class) are provided so users

can define methods that specialize on them. They do not support the full behavior

of user-defined classes (whose class is clos:standard-class). For example, you can-

not use clos:make-instance to create instances of these classes. 

� zl:sub1 x Function

(zl:sub1 x) is the same as (- x 1).

The following functions are synonyms of zl:sub1:

1-

zl:1-$�

� sublis alist tree &rest args &key (:test #’eql) :test-not (:key #’identity)�

Function

Makes non-destructive substitutions for objects in a tree (a structure of conses).

Returns a tree with the substitutions made. The first argument to sublis is an as-

sociation list alist. The second argument is the tree in which the substitutions are

to be made, as for subst. sublis looks at all the subtrees and leaves of the tree. If

a subtree or leaf appears as a key in the association list (that is, the key and the

subtree or leaf satisfy the predicate specified by the :test keyword), it is replaced

by the datum associated with it. The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

(setq exp ’((* x y) (+ x y))) => ((* X Y) (+ X Y))

�

(sublis ’((x . 100)) exp) => ((* 100 Y) (+ 100 Y))�

The result may share structure with tree.

(setq alist (pairlis ’(1 2 3) ’(giraffe zebra monkey)))

(setq thing ’(spotted 1 (striped 2) fast 3))

�

(sublis alist thing)

 => (SPOTTED GIRAFFE (STRIPED ZEBRA) FAST MONKEY)�
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Thus, sublis is comparable to several subst operations in parallel. The following

example simulates the previous example by executing three sequential subst oper-

ations.

(setq tmp (subst ’giraffe 1 thing))

(setq tmp (subst ’zebra 2 tmp))

(subst ’monkey 3 tmp)�

However, not every sublis call can be replaced by sequential calls to subst, as

demonstrated in the following example:

(setq alist (pairlis ’(monkey zebra) ’(zebra monkey)))

(setq newthing ’(is-taller monkey zebra))

�

(sublis alist newthing) => (IS-TALLER ZEBRA MONKEY)�

For a table of related items: See the section "Functions for Modifying Lists".

� zl:sublis alist form Function

Makes substitutions for symbols in a tree. The first argument to zl:sublis is an as-

sociation list alist. The second argument is the tree in which substitutions are to

be made. zl:sublis looks at all symbols in the fringe of the tree; if a symbol ap-

pears in the association list, occurrences of it are replaced by the object associated

with it. The argument is not modified; new conses are created where necessary

and only where necessary, so the newly created tree shares as much of its sub-

structure as possible with the old. For example, if no substitutions are made, the

result is just the old tree. Example:

(zl:sublis ’((x . 100) (z . zprime))

        ’(plus x (minus g z x p) 4))

   => (plus 100 (minus g zprime 100 p) 4)�

zl:sublis could have been defined by:

(defun zl:sublis (alist sexp)

  (cond ((symbolp sexp)

 (let ((tem (assq sexp alist)))

   (if tem (cdr tem) sexp)))

((listp sexp)

 (let ((car (sublis alist (car sexp)))

       (cdr (sublis alist (cdr sexp))))

   (if (and (eq (car sexp) car) (eq (cdr sexp) cdr))

       sexp

       (cons car cdr))))

(t

 (sexp))))�

In your new programs, we recommend that you use the function sublis, which is

the Common Lisp equivalent of zl:sublis.

For a table of related items: See the section "Functions for Modifying Lists". 
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� zl:subrp x Function

In your new programs we recommend that you use the function compiled-

function-p, which is the Common Lisp equivalent of the function zl:subrp.

zl:subrp returns t if its argument is any compiled code object, otherwise nil. Sym-

bolics Common Lisp does not use the term "subr"; the name of this function comes

from Maclisp. 

� subseq sequence start &optional end�

Function

Returns the subsequence of sequence specified by start and end. subseq always al-

locates a new sequence for a result, and never shares storage with an old se-

quence. The result subsequence is always of the same type as sequence.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

For example:

(subseq #(1 2 3 4 5) 3 5) => #(4 5)�

Note start and end are not keywords, since you must specify start in order to use

the function.

setf can be used with subseq to destructively replace a subsequence with a se-

quence of new values. See the function replace. See the function substitute. For

example:

(setq num-list ’(1 2 3 4 5)) => (1 2 3 4 5)

�

(setf (subseq num-list 2 4) ’(0 0)) => (0 0)

�

num-list => (1 2 0 0 5)�

The following example demonstrates a simplified subsequence replacement function

defined in terms of subseq:

(setq seq1 #(a b c d e))

(setq seq2 #(1 2 3 4))

�

(defun my-replace (sequence1 sequence2 &key start1 end1 start2 end2)

  "real replace must do some extra work"

  (setf (subseq sequence1 start1 end1)

(subseq sequence2 start2 end2))

  sequence1)

�

(my-replace seq1 seq2 :start1 1 :end1 4 :start2 0 :end2 3)

�

  => #(a 1 2 3 E)�

For a table of related items: See the section "Sequence Construction and Access".
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� zl:subset pred list &rest extra-lists�

Function

Removes from list those elements that do not satisfy pred. That is, it keeps the el-

ements for which pred is true. zl:subset does the same thing, but is used if list

does not represent a mathematical set.

pred should be a function of one argument, if there are no extra-lists arguments. If

extra-lists is present, each element of extra-lists (that is, each further argument to

zl:subset or zl:rem-if-not) is a list of objects to be passed to pred as pred’s second

argument, third argument, and so on. The reason for this is that pred might be a

function of many arguments; extra-lists lets you control what values are passed as

additional arguments to pred. However, the list returned by zl:subset or zl:rem-if-

not is still a "subset" of the first argument in the various calls to pred.

For a table of related items: See the section "Functions for Modifying Lists". 

� zl:subset-not pred list &rest extra-lists Function

Removes from list those elements that satisfy pred. A new list is made by applying

pred to all the elements of list and removing the ones that satisfy it. zl:rem-if does

the same thing, but is used if list does not represent a mathematical set.

zl:subset-not and zl:rem-if do the same thing, but they are used in different con-

texts. zl:subset-not refers to the function’s action if list is considered to represent

a mathematical set.

pred should be a function of one argument, if there are no extra-lists arguments. If

extra-lists is present, each element of extra-lists (that is, each further argument to

zl:subset-not or zl:rem-if) is a list of objects to be passed to pred as pred’s second

argument, third argument, and so on. The reason for this is that pred might be a

function of many arguments; extra-lists lets you control what values are passed as

additional arguments to pred. However, the list returned by zl:subset-not or

zl:rem-if is still a "subset" of the first argument in the various calls to pred.

For a table of related items: See the section "Functions for Modifying Lists". 

� subsetp list1 list2 &key (:test #’eql) :test-not (:key #’identity) Function

A predicate that is true if every element of list1 appears in list2, and false other-

wise.

(setq a-list ’(loon stork heron)) => (LOON STORK HERON)

�

(setq b-list ’(loon owl stork eagle heron)) =>

(LOON OWL STORK EAGLE HERON)

�

(subsetp a-list b-list) => T

�

(subsetp b-list a-list) => NIL�
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The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

In the following example, subsetp determines whether or not elements are ap-

proved for storage.

(unless (subsetp elements-to-be-stored

                 elements-checked-ok-for-storage)

  (setq elements-to-be-checked-for-storage

        (set-difference elements-to-be-stored

                        elements-checked-ok-for-storage)))�

For a table of related items: See the section "Predicates that Operate on Lists".

� subst new old tree &rest args &key (:test #’eql) :test-not (:key #’identity)�

Function

Makes a copy of tree, substituting new for every subtree or leaf of tree (whether

the subtree or leaf is a car or cdr of its parent), such that old and the subtree or

leaf satisfy the predicate specified by the :test keyword. It returns the modified

copy of tree, and the original tree is unchanged, although it can share with parts

of the result tree. For example:

(setq bird-list ’(waders (flamingo stork) raptors (eagle hawk))) =>

(WADERS (FLAMINGO STORK) RAPTORS (EAGLE HAWK))

�

(subst ’heron ’stork bird-list) =>

(WADERS (FLAMINGO HERON) RAPTORS (EAGLE HAWK))�

The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.
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:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

In Common Lisp (unlike Maclisp and Zetalisp), subst does not execute a full copy-

tree. If a full copy is necessary, copy-tree may be called before, after, or instead

of subst.

The following example uses subst in a parsed English sentence to replace relative

pronouns with the appropriate proper nouns. The :key function, car, finds the

s-expressions that need replacement.

(setq sentence

  ’((SUB (PN . Mork)) (PRED (V . was) (ADJ . young))

    (SUB (RPN . he)) (PRED (V . was) (ADJ . excited))

    (SUB (RPN . he)) (PRED (V . was) (ADJ . happy))))

(subst ’(PN . Mork) ’RPN sentence :key #’(lambda(x)(and (consp x)(car x))))

 =>

  ((SUB (PN . MORK)) (PRED (V . WAS) (ADJ . YOUNG))

   (SUB (PN . MORK)) (PRED (V . WAS) (ADJ . EXCITED))

   (SUB (PN . MORK)) (PRED (V . WAS) (ADJ . HAPPY)))�

For a table of related items: See the section "Functions for Modifying Lists".

� zl:subst new old s-exp Function

Substitutes new for all occurrences of old in s-exp, and returns the modified copy

of s-exp. The original s-exp is unchanged, as zl:subst recursively copies all of s-exp

replacing elements that are equal to old as it goes. Example:

(zl:subst ’Tempest ’Hurricane

       ’(Shakespeare wrote (The Hurricane)))

=> (Shakespeare wrote (The Tempest))�

zl:subst could have been defined by:

(defun zl:subst (new old tree)

    (cond ((equal tree old) new) ;if item equal to old, replace.

          ((atom tree) tree)     ;if no substructure, return arg.

          ((cons (subst new old (car tree))  ;otherwise recurse.

                 (subst new old (cdr tree))))))�

Note that this function is not "destructive"; that is, it does not change the car or

cdr of any existing list structure.

The old practice of using zl:subst to copy trees is unclear and obsolete. In your

new programs use the Common Lisp version of this function, which is subst.

For a table of related items: See the section "Functions for Modifying Lists". 

� subst-if new predicate tree &rest args &key :key Function

Makes a copy of tree, substituting new for every subtree or leaf of tree, such that

the subtree or leaf satisfies predicate. It returns the modified copy of tree; the orig-
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inal tree is unchanged, although it can share with parts of the result tree. For ex-

ample:

(setq item-list ’(numbers (1.0 2 5/3) symbols (foo bar))) =>

(NUMBERS (1.0 2 5/3) SYMBOLS (FOO BAR))

�

(subst-if ’3.1415 #’numberp item-list) =>

(NUMBERS (3.1415 3.1415 3.1415) SYMBOLS (FOO BAR))

�

item-list => (NUMBERS (1.0 2 5/3) SYMBOLS (FOO BAR))�

The keyword is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

The following two calls to subst-if use two anonymous functions. The different re-

sults are due to the case sensitivity of string=.

(setq a ’("In" "our" "prairie" "home" "we" "read"

  "The" "Prairie" "Home" "Companion"))

�

(subst-if "Gopher"

          #’(lambda (comparator)(string= comparator "Prairie")))

 =>

("In" "our" "prairie" "home" "we" "read"

  "The" "Gopher" "Home" "Companion")

�

(subst-if "Gopher"

          #’(lambda (comparator)(string-equal comparator "Prairie")))

 =>

("In" "our" "Gopher" "home" "we" "read"

  "The" "Gopher" "Home" "Companion")�

For a table of related items: See the section "Functions for Modifying Lists".

� subst-if-not new predicate tree &rest args &key :key�

Function

Makes a copy of tree, substituting new for every subtree or leaf of tree such that

old and the subtree or leaf do not satisfy predicate. It returns the modified copy of

tree; the original tree is unchanged, although it can share with parts of the result

tree. For example:

(setq item-list ’(numbers (1.0 2 5/3) symbols (foo bar))) =>

(NUMBERS (1.0 2 5/3) SYMBOLS (FOO BAR))

�

(subst-if-not ’3.1415 #’numberp item-list) =>

(3.1415 (1.0 2 5/3) 3.1415 (3.1415 3.1415))
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�

item-list => (NUMBERS (1.0 2 5/3) SYMBOLS (FOO BAR))�

The keyword is:

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.�

For a table of related items: See the section "Functions for Modifying Lists". 

� substitute newitem olditem sequence &key (:test #’eql) :test-not (:key #’identity)

:from-end (:start 0) :end :count Function

Returns a sequence of the same type as sequence that has the same elements, ex-

cept that those in the subsequence delimited by :start and :end and satisfying the

predicate specified by the :test keyword are replaced by newitem. This is a non-

destructive operation, and the result is a copy of sequence with some elements

changed.

For example:

(setq letters ’(a b c))  => (A B C)

(substitute ’a ’b ’(a b c)) => (A A C) 

letters => (A B C)

�

(substitute ’b ’c letters) => (A B B)

letters  => (A B C)�

newitem and olditem can be any Symbolics Common Lisp object but must be a suit-

able element for the sequence.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

:test specifies the test to be performed. An element of sequence satisfies the test if

(funcall testfun item (keyfn x)) is true. Where testfun is the test function specified

by :test, keyfn is the function specified by :key and x is an element of the se-

quence. The default test is eql. 

For example:

(substitute 0 3 ’(1 1 4 4 2) :test #’<)  => (1 1 0 0 2)�

:test-not is similar to :test, except that the sense of the test is inverted. An ele-

ment of sequence satisfies the test if (funcall testfun item (keyfn x)) is false.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(substitute 1 2 ’((1 1) (1 2) (4 3)) :key #’second)  => ((1 1) 1 (4 3))

�

(substitute ’a ’b ’((a b) (b c) (b b)) :key #’cadr)  => (A (B C) A)�
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A non-nil :from-end specification matters only when the :count argument is pro-

vided; in that case only the rightmost :count elements satisfying the test are re-

placed.

For example:

(substitute ’hi ’b ’(b a b) :from-end t :count 1 )

 => (B A HI)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(substitute ’a ’b ’(b a b) :start 1 :end 3) => (B A A)

�

(substitute ’a ’b ’(b a b) :end 2) => (A A B)

�

(substitute ’a ’b ’(b a b) :end 3) => (A A A)�

The :count argument, if specified, limits the number of elements altered. If more

than :count elements satisfy the predicate, then only the leftmost :count elements

are replaced. A negative :count argument is equivalent to a :count of 0.

For example:

(substitute ’a ’b ’(b b a b b) :count 3)  => (A A A A B)�

The result of the substitute function can share cells with the argument sequence.

A list can share a tail with an input list, and the result can be eq to the input se-

quence if no elements need to be changed.

See the function subst.

(setq realtor-list (list ’lot11 ’lot21 ’lot34 ’lot42 ’lot56))

�

(substitute ’taken "21" realtor-list :test #’string-equal

    :key #’(lambda(x)(subseq (string x) 3)))

�

 => (LOT11 TAKEN LOT34 LOT42 LOT56)�

substitute is the non-destructive version of nsubstitute.

For a table of related items: See the section "Sequence Modification".
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� substitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count 

Function

Returns a sequence of the same type as sequence that has the same elements, ex-

cept that those in the subsequence delimited by :start and :end and satisfying

predicate are replaced by newitem. This is a non-destructive operation, and the re-

sult is a copy of sequence with some elements changed.

For example:

(setq numbers ’(0 1 19))  => (0 1 19)

(substitute-if 1 #’zerop numbers) => (1 1 19) 

numbers  => (0 1 19)

�

(substitute-if 2 #’numberp numbers)  => (2 2 2)

numbers  => (0 1 19)�

newitem can be any Symbolics Common Lisp object but must be a suitable element

for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:

(substitute-if 1 #’oddp ’((1 1) (1 2) (4 3)) :key #’second)

 => (1 (1 2) 1)�

A non-nil :from-end specification matters only when the :count argument is pro-

vided; in that case only the rightmost :count elements satisfying the test are re-

placed.

For example:

(substitute-if ’hi #’atom ’(b ’a b) :from-end t :count 1 )

 => (B ’A HI)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:
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(substitute-if 1 #’zerop ’(0 1 0) :start 1 :end 3)

 => (0 1 1)

�

(substitute-if 1 #’zerop ’(0 1 0) :start 0 :end 2)  

=> (1 1 0)

�

(substitute-if 1 #’zerop ’(0 1 0)  :end 1)  

=> (1 1 0)�

A non-nil :count, if supplied, limits the number of elements altered; if more than

:count elements satisfy the test, then of these elements only the leftmost are re-

placed, as many as specified by :count. A negative :count argument is equivalent

to a :count of 0.

For example:

(substitute-if ’see ’atom  ’(b b a b b) :count 3)

 => (SEE SEE SEE B B)  �

substitute-if is the non-destructive version of nsubstitute-if.

For a table of related items: See the section "Sequence Modification".

� substitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count�

Function

Returns a sequence of the same type as sequence that has the same elements, ex-

cept that those in the subsequence delimited by :start and :end that do not satisfy

predicate are replaced by newitem. This is a non-destructive operation, and the re-

sult is a copy of sequence with some elements changed.

For example:

(setq numbers ’(0 0 0))=> (0 0 0)

(substitute-if-not 1 #’numberp numbers) => (0 0 0) 

numbers => (0 0 0)

�

(substitute-if-not 2 #’consp numbers)  => (2 2 2) 

numbers => (0 0 0)�

newitem can be any Symbolics Common Lisp object but must be a suitable element

for the sequence.

predicate is the test to be performed on each element.

sequence can be either a list or a vector (one-dimensional array). Note that nil is

considered to be a sequence, of length zero.

The value of the keyword argument :key, if non-nil, is a function that takes one

argument. This function extracts from each element the part to be tested in place

of the whole element.

For example:
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(substitute-if-not 1 #’oddp ’((1 1) (1 2) (4 3)) :key #’second)

 => ((1 1) 1 (4 3))�

A non-nil :from-end specification matters only when the :count argument is pro-

vided; in that case only the rightmost :count elements satisfying the test are re-

placed.

For example:

(substitute-if-not ’hi #’atom ’(’b a ’b) :from-end t :count 1 )

=> (’B A HI)�

Use the keyword arguments :start and :end to delimit the portion of the sequence

to be operated on.

:start and :end must be non-negative integer indices into the sequence. :start

must be less than or equal to :end, else an error is signalled. It defaults to zero

(the start of the sequence).

:start indicates the start position for the operation within the sequence. :end indi-

cates the position of the first element in the sequence beyond the end of the oper-

ation. It defaults to nil (the length of the sequence).

If both :start and :end are omitted, the entire sequence is processed by default.

For example:

(substitute-if-not 1 #’zerop ’(3 0 2) :start 1 :end 3) 

=> (3 0 1) 

�

(substitute-if-not 1 #’zerop ’(3 0 2) :start 0 :end 2)  

=> (1 0 2) 

�

(substitute-if-not 1 #’zerop ’(3 0 2)  :end 1) 

=> (1 0 2) �

A non-nil :count, if supplied, limits the number of elements altered; if more than

:count elements satisfy the test, only the leftmost are replaced, as many as speci-

fied by :count. A negative :count argument is equivalent to a :count of 0.

For example:

(substitute-if-not ’see ’consp  ’(b b a b b) :count 3)

=> (SEE SEE SEE B B)�

substitute-if-not is the non-destructive version of nsubstitute-if-not.

For a table of related items: See the section "Sequence Modification".

� substring string from &optional to (area nil) Function

Extracts a substring of string, starting at the character specified by from and go-

ing up to but not including the character specified by to.

string is a string or an object that can be coerced to a string. See the function

string.
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from and to are 0-origin indices. The length of the returned string is to minus

from. If to is not specified it defaults to the length of string. The area in which

the result is to be consed can be optionally specified.

The destructive version of substring is the function nsubstring.

Examples:

(substring "Nebuchadnezzar" 4 8) => "chad"

(substring "Nebuchadnezzar" 4) => "chadnezzar"

(substring ’string 1 4) => "TRI"

(setq a "Aloysius") => "Aloysius"

(setq b (substring a 2 4)) => "oy"

(nstring-upcase b) => "OY"

(substring a 0) => "Aloysius"�

For a table of related items: See the section "String Access and Information". 

� subtypep type1 type2�

Function

Compares the two type specifiers, type1 and type2. subtypep is true if type1 is defi-

nitely a subtype of type2. If the result is nil, however, type1 may or may not be a

subtype of type2 (sometimes it is impossible to tell, especially when satisfies type

specifiers are involved). A second returned value indicates the certainty of the re-

sult; if it is true, then the first value is an accurate indication of the subtype re-

lationship. Thus, subtypep returns one of three possible result combinations:

t t type1 is definitely a subtype of type2.

nil t type1 is definitely not a subtype of type2.

nil nil subtypep could not determine the relationship.

The arguments type1 and type2 must be type specifiers that are acceptable to

typep. For standard Symbolics Common Lisp type specifiers, see the section "Type

Specifiers".

Examples:

(subtypep ’single-float ’float) => T and T ; subtype and certain

(subtypep ’bit ’(number 0 4)) => T and T

(subtypep ’array t) => T and T

(subtypep ’common t) => T and T

(subtypep ’signed-byte ’bit) => NIL and T�

(subtypep ’(integer 0 (8)) ’integer) => t t

(subtypep ’integer ’float) => nil t�

The following example illustrates a second returned value of nil. Note that

subtypep can not determine the requirements for a user-defined predicate. 
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(subtypep ’(satisfies my-confusing-predicate-p)

          ’(or integer simple-vector))

=> nil nil�

See the section "Data Types and Type Specifiers".

� sum keyword for loop

sum expr {data-type} {into var}

Evaluates expr on each iteration, and accumulates the sum of all the values. data-

type defaults to number, which for all practical purposes is notype. Note that

specifying data-type implies that both the sum and the number being summed (the

value of expr) is of that type. When the epilogue of the loop is reached, var has

been set to the accumulated result and can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be

modified until the epilogue code for the loop is reached. 

The forms sum and summing are synonymous.

Examples:

�

(defun geometric-s (num)

  (loop for i from 1 to num

sum i into sum-var

finally (print sum-var)))  => GEOMETRIC-S

(geometric-s 5) => 

15 NIL�

Is equivalent to

(defun geometric-s (num)

  (loop for i from 1 to num

summing i into sum-var

finally (print sum-var))) => GEOMETRIC-S

(geometric-s 5) => 

15 NIL�

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form, if the types of the col-

lections are compatible. sum and count are compatible.

See the section "Accumulating Return Values for loop".

� svref array &rest subscript Function

Returns the element of the vector selected by subscript. The first argument must

be a simple vector. The subscript must be an integer.
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A vector is simple if non-adjustable, has no fill pointer, and can hold elements of

any type (that is, has an element-type of t).

(svref ’#(2 4 6 8) 3) => 8�

� :swap-hash key value Message

Does the same thing as zl:puthash, but returns different values. If there was an

existing entry in the hash table whose key was key, it returns the old associated

value as its first returned value, and t as its second returned value. Otherwise it

returns two values, nil and nil. This message is obsolete; use swaphash instead. 

� zl:swapf a b Macro

Exchanges the value of one generalized variable with that of another. a and b are

access-forms suitable for zl:setf. The returned value is not defined. zl:swapf ex-

pands into a rotatef, which expands into a progn, so there is no danger of the ac-

cess-forms being evaluated more than once.

Examples:

(zl:swapf a b)

 ==> (rotatef a b)

 ==> (progn (setq a (values (prog1 b (setq b a)))) nil)

�

(zl:swapf (car (foo)) (car (bar)))

 ==> (rotatef (car (foo)) (car (bar)))

 ==> (progn (let* ((#:g1849 (foo))

                   (#:g1851 (bar)))

      (sys:rplaca2 #:g1849

   (values

                             (prog1 (car #:g1851)

    (sys:rplaca2 #:g1851

                                      (values (car #:g1849))))))

    nil)

�

See the section "Generalized Variables".

� swaphash key value hash-table Function

Does the same thing as zl:puthash, but returns different values. If there was an

existing entry in hash-table whose key was key, it returns the old associated value

as its first returned value, and t as its second returned value. Otherwise it returns

two values, nil and nil.

For a table of related items: See the section "Table Functions". 
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� zl:swaphash-equal key value hash-table Function

Does the same thing as zl:puthash, but returns different values. If there was an

existing entry in hash-table whose key was key, it returns the old associated value

as its first returned value, and t as its second returned value. Otherwise it returns

two values, nil and nil. This function is obsolete; use swaphash instead. 

� sxhash x Function

Computes a hash code of an object, and returns it as a fixnum. A property of

sxhash is that (equal x y) always implies (= (sxhash x) (sxhash y)). The number

returned by sxhash is always a nonnegative fixnum, possibly a large one. sxhash

tries to compute its hash code in such a way that common permutations of an ob-

ject, such as interchanging two elements of a list or changing one character in a

string, always changes the hash code.

Under Genera, sxhash is the same as si:equal-hash, except that sxhash returns 0

as the hash value for objects with data types like arrays, stack groups, or closures.

As a result, hashing such structures could degenerate to the case of linear search.

(sxhash ’key) => 158428288�

� symbol Type Specifier

� symbol-function symbol Function

Returns the current global function definition named by symbol. If symbol has no

function definition, signals an error. The definition can be a function or an object

representing a special form or macro. If the definition is an object representing

special form or a macro, it is an error to try to invoke the object as a function.

Lexically scoped function definitions, produced by flet or labels, can not be ac-

cessed by symbol-function. Only the global value of a named function can be ac-

cessed.

(defun foo(x y) (list x ’foo y))

FOO

(symbol-function ’foo)

#<function:1547434>

�

(funcall (symbol-function ’foo) ’bar ’baz)

(BAR FOO BAZ)�

See the section "Functions Relating to the Function Cell of a Symbol".

� clos:symbol-macrolet symbols-and-expressions &body body Special Form

Provides the underlying mechanism for substituting expressions for variable names

within a lexical scope; both clos:with-accessors and clos:with-slots are implement-

ed via clos:symbol-macrolet.
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symbols-and-expressions

A list made up of sublists of the form:

(symbol expression)�

The symbol specifies a symbol associated with the form expres-

sion.

declarations The clos:symbol-macrolet syntax allows declarations to appear

before the body.

body Within the body, the symbols are associated with the expres-

sions in the following way: each reference to a symbol as a

variable is replaced by expression (not the result of evaluating

expression).

When the body of the clos:symbol-macrolet form is expanded, any use of setq to

set the value of one of the specified variables is converted to a use of setf. 

The values of clos:symbol-macrolet are whatever values are returned by the body.

� symbol-name symbol Function

Returns the print name of symbol. Example:

(symbol-name ’xyz) => "xyz"�

See the section "Functions Relating to the Print Name of a Symbol".

� symbol-package symbol Function

Returns the contents of symbol’s package cell, which is the package that owns

symbol, or nil if symbol is uninterned.

(symbol-package ’equal) => #<PACKAGE:LISP>�

See the section "The Package Cell of a Symbol".

� symbol-plist symbol Function

Returns the list that represents the property list of symbol. Note that this is not

the property list itself; you cannot do get on it. You must give the symbol itself to

get or use getf.

You can use setf to destructively replace the entire property list of a symbol; how-

ever, this is potentially dangerous since it may destroy information that the Lisp

system has stored on the property list. You also must be careful to make the new

property list a list of even length.

This function isprimarily for debugging purposes. We do not recommend the use of

setf with symbol-plist unless you recognize the consequences of rendering the old

property list inaccessbile.
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(symbol-plist ’some-symbol)

�

 => (COLOR RED SPEED MYSTICAL HIT-POINTS 60)�

See the section "Functions Relating to the Property List of a Symbol".

� symbol-value symbol Function

Returns the current value of the dynamic (special) variable named symbol. This is

the function called by eval when it is given a symbol to evaluate. If the symbol is

unbound, symbol-value causes an error. Constant symbols are really variables

whose values cannot be changed. You can use symbol-value to get the value of

such a constant. symbol-value of a keyword returns that keyword.

symbol-value works only on special variables. It cannot find the value of a lexical

variable.

(defconstant *max-alarms* 1000)

�

(symbol-value ’*max-alarms*) => 1000�

See the section "Functions Relating to the Value of a Symbol".

� symbol-value-globally var Function

Works like symbol-value but returns the global value of a special variable regard-

less of any bindings currently in effect (in the current stack group).

symbol-value-globally does not work on local (lexical) variables.

You can use setf with symbol-value-globally to bind the global value of a special

variable. (setf (symbol-value-globally var)) ... ) is the same as zl:set-globally and

supersedes zl:setq-globally.

See the section "Functions Relating to the Value of a Symbol".

� symbol-value-in-closure closure ptr Function

Returns the binding of symbol in the environment of closure; that is, it returns

what you would get if you restored the value cells known about by closure and

then evaluated symbol. This allows you to "look around inside" a dynamic or lexical

closure. If symbol is not closed over by closure, this is just like symbol-value.

See the section "Dynamic Closure-Manipulating Functions". 

� symbol-value-in-instance instance symbol &optional no-error-p Function

Reads, alters, or locates an instance variable inside a particular instance, regard-

less of whether the instance variable was declared in the defflavor form to be a

:readable-instance-variable, :gettable-instance-variable, :writable-instance-

variable, :settable-instance-variable, or a :locatable-instance-variable.
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instance is the instance to be examined, and symbol is the instance variable. If

there is no such instance variable, an error is signalled, unless no-error-p is

non-nil, in which case nil is returned.

To read the value of an instance variable: 

(symbol-value-in-instance instance symbol))�

To alter the value of an instance variable: 

(setf (symbol-value-in-instance instance symbol) value)�

To get a locative pointer to the cell inside an instance that holds the value of an

instance variable:

(locf (symbol-value-in-instance instance symbol))�

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� symbolp arg Function

Returns t if its argument is a symbol, otherwise nil.

For example: 

(symbolp nil) => t

(setq foo 12 bar ’foo)

(symbolp ’foo) => t

(symbolp foo) => nil

(symbolp bar) => t�

� zl:symeval symbol Function

In your new programs, we recommend that you use the function symbol-value,

which is the Common Lisp equivalent of the function zl:symeval.

zl:symeval is the basic Zetalisp primitive for retrieving a symbol’s value.

(zl:symeval symbol) returns symbol’s current binding. This is the function called

by eval when it is given a symbol to evaluate. If the symbol is unbound, then

zl:symeval causes an error.

See the section "Functions Relating to the Value of a Symbol".

� zl:symeval-globally var Function

In your new programs, we recommend that you use the function symbol-value-

globally, which is the Symbolics Common Lisp equivalent of the function

zl:symeval-globally.

Works like zl:symeval but returns the global value regardless of any bindings cur-

rently in effect.
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zl:symeval-globally operates on the global value of a special variable; it bypasses

any bindings of the variable in the current stack group. It resides in the global

package.

zl:symeval-globally does not work on local variables.

See the section "Functions Relating to the Value of a Symbol".

� zl:symeval-in-closure closure symbol Function

Use the Symbolics Common Lisp function symbol-value-in-closure, which is equiv-

alent to the function zl:symeval-in-closure.

This returns the binding of symbol in the environment of closure; that is, it re-

turns what you would get if you restored the value cells known about by closure

and then evaluated symbol. This allows you to "look around inside" a dynamic or

lexical closure. If symbol is not closed over by closure, this is just like zl:symeval.

See the section "Dynamic Closure-Manipulating Functions". 

� zl:symeval-in-instance instance symbol &optional no-error-p Function

In your new programs, we recommend that you use the function symbol-value-in-

instance, which is the Symbolics Common Lisp equivalent of the function

zl:symeval-in-instance.

Finds the value of an instance variable inside a particular instance, regardless of

whether the instance variable was declared a :readable-instance-variable or a

:gettable-instance-variable. instance is the instance to be examined, and symbol is

the instance variable whose value should be returned. If there is no such instance

variable, an error is signalled, unless no-error-p is non-nil, in which case nil is re-

turned.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� t Type Specifier

t is the type specifier symbol for the predefined Lisp data type of that name.

The type t is a supertype of every type whatsoever. Every Lisp object belongs to

type t.

Examples:

(typep nil ’t) => T

(typep 12 ’t) => T

(constantp t) => T

(equal-typep (not nil) t) => T

(subtypep nil ’t) => T

(subtypep ’character ’t) => T

(subtypep ’null ’t) => T�
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See the section "Data Types and Type Specifiers".

� table-size table Function

Returns the total number of entries in table. Note that this does not include the

number of entries that are deleted but not removed from the table.

For a table of related items: See the section "Table Functions". 

� tagbody &body forms Special Form

The body of a tagbody form is a series of tags or statements. A tag can be a sym-

bol or an integer; a statement is a list. tagbody processes each element of the

body in sequence. It ignores tags and evaluates statements, discarding the results.

If it reaches the end of the body, it returns nil.

If a (go tag) form is evaluated during evaluation of a statement, tagbody searches

its body and the bodies of any tagbody forms that lexically contain it. Control is

transferred to the innermost tag that is eql to the tag in the go form. Processing

continues with the next tag or statement that follows the tag to which control is

transferred.

The scope of the tag is lexical. That is, the go form must be inside the tagbody

construct itself (or inside a tagbody form that that tagbody lexically contains),

not inside a function called from the tagbody.

do, prog, and their variants use implicit tagbody constructs. You can provide tags

within their bodies and use go forms to transfer control to the tags.

Examples:

(let ((x ’hello))  

  (tagbody

    (catch ’stuff 

      (if (numberp x)

          (princ "a number")

          (go trouble)))

    (return)

 trouble

    (princ "trouble trouble") (terpri))) => trouble trouble

NIL�

The following two forms are equivalent:

(dotimes (i n) (print i))
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�

(let ((i 0))

  (when (plusp n)

    (tagbody

      loop

      (print i)

      (setq i (1+ i))

      (when (< i n) (go loop)))))�

�

(let ((i 0)

      (result t))

  (tagbody loop

    (when (and (< i 20) result)

      (unless (= (aref *data-vector-a* i) (aref *data-vector-b* i))

        (setq result nil))

      (go loop))))�

For a table of related items: See the section "Transfer of Control Functions".

� tailp tail list Function

Returns t if tail is an ending sublist of list (that is, one of the conses that make

up list), otherwise returns nil. Another way to look at this is that tailp returns t

if (nthcdr n list) returns tail for some n. For example: 

(setq item-list ’(a b c)) => (A B C)

(tailp (cdr item-list) item-list) => T

(tailp (car item-list) item-list) => NIL

(tailp (nthcdr 2 item-list) item-list) => T

(tailp nil item-list) => T�

tailp could have been defined by:

(defun tailp (tail list)

  (do () ((eq tail list) t)

    (if (atom list)

(return nil)

(setf list (cdr list)))))�

The following definition returns nil if the second argument is not a sublist of the

first argument; otherwise, a copy of the prefix portion of the first argument is re-

turned. This example illustrates how tailp determines whether or not the second

argument is actually a sublist of the first argument.

(defun ldiff-if-sublist (list sublist)

  (if (tailp sublist list)

     (do ((old-list list (cdr old-list))

          (new-list nil (cons (car old-list) new-list)))

         ((eq old-list sublist) (nreverse new-list)))))
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�

(setq a ’(1 2 3 4 5 6 7))

(setq b (cddddr a))

�

(ldiff-if-sublist a b) => (1 2 3 4)�

In the following example, tailp checks that the setf of cdr of one list will not af-

fect another.

(if (tailp list1 list2)

   (setf (cdr (setq list1 (copy-list list1))) foo)

   (setf (cdr list1) foo))    �

For a table of related items: See the section "Predicates that Operate on Lists".

� tan radians Function

Returns the tangent of radians. Examples:

(tan 0) => 0.0

(tan (/ pi 4)) => 1.0d0�

For a table of related items: See the section "Trigonometric and Related

Functions".

� tand degrees Function

Returns the tangent of degrees.

For a table of related items: See the section "Trigonometric and Related

Functions". 

� tanh radians Function

Returns the hyperbolic tangent of radians. Example:

(tanh 0) => 0.0�

For a table of related items: See the section "Hyperbolic Functions".

� tenth list Function

Returns the tenth element of list. tenth is equivalent to

(nth 9 list)�

Example:

(setq letters ’(a b c d e f g h i j k l)) =>

(A B C D E F G H I J K L)

�

(tenth letters) => J

�
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For a table of related items: See the section "Functions for Extracting from Lists".

� *terminal-io* Variable

The value of is ordinarily the stream that connects to the user’s console. Under

Genera in an "interactive" program, it is the window from which the program is

being run; I/O on this stream reads from the keyboard and displays on the termi-

nal. However, in a "background" program that normally does not talk to the user,

*terminal-io* defaults to a stream that does not expect to be used. If it is used,

perhaps by an error notification, it turns into a "background" window and requests

the user’s attention.

Although it is common practice to redirect *terminal-io* in Genera, this variable

should not be redirected in a CLOE environment. Redirecting some, or even all of

the following variables is usually sufficient: *standard-input*, *standard-output*,

*error-output*, *trace-output*, *query-io*, and *debug-io*. If the values of any of

these variables are changed, they can be restored to write to or get input from the

user console by setting their values to synonym streams of *terminal-io*. System

and other clean-up functions for CLOE assume that *terminal-io* has not been

redirected.

(setq *standard-output* *terminal-io*)�

� zl:terminal-io Variable

In your new programs, we recommend that you use the variable *terminal-io*,

which is the Common Lisp equivalent of zl:terminal-io.

The value of zl:terminal-io is the stream that connects to the user’s console. In an

"interactive" program, it is the window from which the program is being run; I/O

on this stream reads from the keyboard and displays on the terminal. However, in

a "background" program that does not normally talk to the user, zl:terminal-io de-

faults to a stream that does not ever expect to be used. If it is used, perhaps by

an error notification, it turns into a "background" window and requests the user’s

attention. 

� terpri &optional output-stream Function

Outputs a newline to output-stream, and returns nil. It is identical in effect to:

(write-char #\Newline output-stream)�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

is *terminal-io*.

(progn (princ ’a) (princ ’b) (terpri) (princ ’c) nil)

AB

C

=> NIL�
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� zl:terpri &optional stream Function

Outputs a carriage return character to stream. 

� the type form Special Form

Declares that the value of form is of type type. This allows you to declare the type

of a value returned by an unnamed form.

(the string (copy-seq x)) ;the result will be a string.

(the integer (+ x 3)) ;the result of + will be an integer.

(+ (the integer x) 3) ;the value of x will be an integer.�

See the section "Operators for Making Declarations".

The type specifier values can be used to indicate the types of a form that returns

multiple values.

(the (values integer integer)(floor x y))�

� thereis keyword for loop

thereis expr If expr evaluates non-null, the iteration is terminated and that

value is returned, without running the epilogue code. If the

loop terminates before expr is ever evaluated, the epilogue code

is run and the loop returns nil.

thereis expr is like (or expr1 expr2 ...). If the loop terminates

before expr is ever evaluated, thereis is like (or).

If you want a similar test, except that you want the epilogue

code to run if expr evaluates non-null, use until.

Examples:

(defun loop-thereis (my-list)

  (loop for x in my-list

finally (print  "what are you going to do next ?")

do

    (princ x) (princ " ")

do

and thereis (equal x ’a))) => LOOP-THEREIS

�

(loop-thereis ’(b c a e)) => B C A T

�

(loop-thereis ’(a a)) => A T

�

See the section "Aggregated Boolean Tests for loop".
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� third list Function

Takes a list as an argument, and returns the third element of list. third is identi-

cal to: 

(nth 2 list)

Example:

(setq letters ’(a b c d e f g)) =>

(A B C D E F G)

�

(third letters) =>

C�

For a table of related items: See the section "Functions for Extracting from Lists".

� throw tag value Special Form

Used with catch to make nonlocal exits. It first evaluates tag to obtain an object

that is the "tag" of the throw. It next evaluates form and saves the (possibly mul-

tiple) values. It then finds the innermost catch (or in Genera, *catch) whose "tag"

is eq to the "tag" that results from evaluating tag. It causes the catch (or

zl:*catch) to abort the evaluation of its body forms and to return all values that

result from evaluating form. In the process, dynamic variable bindings are undone

back to the point of the catch, and any unwind-protect cleanup forms are execut-

ed. An error is signalled if no suitable catch is found.

The scope of the tags is dynamic. That is, the throw does not have to be lexically

within the catch form; it is possible to throw out of a function that is called from

inside a catch form.

The value of tag cannot be the symbol sys:unwind-protect-tag; that is reserved

for internal use.

For example:

(catch ’done

  (ask-database <pattern>

#’(lambda (x) (when (nice-p x)

(throw ’done x)))))�

Additionally, consider this example: 

(catch ’foo (list ’a (catch ’bar (throw ’foo ’b)))) => B

�

(defvar *input-buffer* nil)

�

(defun parse (*input-buffer*)

  (catch ’parse-error

    (list ’s (parse-np) (parse-vp))))
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�

(defun parse-np (&aux (item (pop *input-buffer*)))

  (if (member item ’(a an the))

    ‘(np (det item) (n ,(pop *input-buffer*)))

    (throw ’parse-error

           (format t "Problem with ~A in noun phrase.~%" item))))

�

(defun parse-vp (&aux (item (pop *input-buffer*)))

  (if (member item ’(eats sleeps runs))

    ’(vp (v item))

    (throw ’parse-error

           (format t "Problem with ~A in verb phrase.~%" item))))

�

(parse ’(a man eats)) => (S (NP (DET A) (N MAN)) (VP (V EATS)))

�

(parse ’(a man walks)) =>  NIL

  prints: Problem with WALKS in verb phrase.�

For more information, see the section "Nonlocal Exit Functions".

� zl:*throw tag value Function

An obsolete version of throw that is supported for compatibility with Maclisp. It is

equivalent to throw except that it causes the catch or zl:*catch to return only

two values: the first is the result of evaluating form, and the second is the result

of evaluating tag (the tag thrown to). See the special form throw.

For a table of related items, see the section "Nonlocal Exit Functions". 

� zl:times &rest args Function

Returns the product of its arguments. If there are no arguments, it returns 1,

which is the identity for this operation.

The following functions are synonyms of zl:times:

*

zl:*$ �

� sys:trace-conditions Variable

The value of this variable is a condition or a list of conditions. It can also be t,

meaning all conditions, or nil, meaning none.

If any condition is signalled that is built on the specified flavor (or flavors), the

Debugger immediately assumes control, before any handlers are searched or called.

If the user proceeds, by using RESUME, signalling continues as usual. This might in

fact revert control to the Debugger again. This variable is provided for debugging

purposes only. It lets you trace the signalling of any condition so that you can fig-
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ure out what conditions are being signalled and by what function. You can set this

variable to error to trace all error conditions, for example, or you can be more

specific.

This variable replaces the zl:errset variable. 

� *trace-output* Variable

The value of *trace-output* is the stream on which the trace function prints its

output.

(trace function-likely-to-cause-error)  ;trace a function

�

(with-open-file (outstream "myfile" :direction :output)

  (let ((*standard-output* outstream)

        (*trace-output* outstream))  ;redirects *trace-output* to myfile.lisp

    ...

    (function-likely-to-cause-error));capture trace information in file

                                     ;end of let restores *trace-output*, etc.

   ...                               ;more forms

)                              ;end of with-open-file closes file�

� zl:trace-output Variable

In your new programs, we recommend that you use the variable *trace-output*,

which is the Common Lisp equivalent of zl:trace-output.

The value of zl:trace-output is the stream on which the trace function prints its

output. 

� flavor:transform-instance Generic Function

Offers a way for you to specify code that should be run when an instance is

changed to new-flavor. Because flavor:transform-instance is a generic function,

you can write a method for it. This generic function is not intended to be called

directly; instead, you take advantage of it by writing methods for it. If any meth-

ods for the flavor:transform-instance generic function are defined for a given fla-

vor, those methods are applied to an instance in two cases:

• When the function change-instance-flavor is used on the instance. 

• When the flavor of the instance has been redefined (with defflavor) and the

stored representation of the instance is changed.�

It is sometimes desirable to perform some action to update each instance as it is

transformed to the new flavor (when change-instance-flavor is used) or as it is

transformed to the new definition of the flavor (when defflavor is used to redefine

a flavor), beyond the actions the system ordinarily takes. For example, newly added



Page 1590

instance variables are initialized to the same values they would receive in newly

created instances. Sometimes this is not the appropriate value, and you need to

compute a value for the variable. To do this, you can define a method for the

generic function flavor:transform-instance, with no arguments. 

Note that methods for flavor:transform-instance cannot access any instance vari-

ables that are deleted. By the time the methods are run, any deleted instance vari-

ables have been removed from the instance. In this example, the "old" instance

variables are ones that existed both in the the old and the new format of the in-

stance. 

(defmethod (flavor:transform-instance my-flavor) ()

  (unless (variable-boundp new-instance-variable)

    (setq new-instance-variable

          (f old-instance-variable-1 old-instance-variable-2)))) �

By default, flavor:transform-instance uses :daemon method combination. You can

specify a different type of method combination for this generic function by giving

the :method-combination option to the defflavor of the flavor involved. If you

want all the methods defined by the various component flavors to run, you can ei-

ther specify :progn method combination or use :after methods with the default

:daemon method combination. 

Note: You should be careful to allow for your method being called more than once,

if the flavor is redefined several times. A method intended to be used for one par-

ticular redefinition of the flavor remains in the system and is used for all future

redefinitions, unless you use Kill Definition (m-X) or fundefine to remove the defi-

nition of the method.

Depending on the purpose of the method, it might be necessary to redefine the fla-

vor before compiling the method for flavor:transform-instance. For example, a

method that initializes a new instance variable cannot be compiled until the flavor

is redefined to contain that instance variable. 

Note that if an instance is accessed after its flavor has been redefined and before

you have defined a method for flavor:transform-instance, the method is not exe-

cuted on that instance. 

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� math:transpose-matrix matrix &optional into-matrix Function

Transposes matrix. If into-matrix is supplied, stores the result into it and returns

it; otherwise it creates an array to hold the result, and returns that. matrix must

be a two-dimensional array. into-matrix, if provided, must be two-dimensional and

must be the size of the transpose of matrix. 

� tree-equal x y &key test test-not Function
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Returns t if x and y are isomorphic trees with identical leaves, that is, if x and y

are atoms that satisfy the predicate specified by the :test keyword, or if they are

both conses and their cars are tree-equal and their cdrs are tree-equal. Thus

tree-equal recursively compares conses, but not any other objects that have com-

ponents. The equal function compares certain other structured objects, such as

strings. For example:

(tree-equal ’(a b c) ’(a b c)) => T

�

(tree-equal ’(a b c) ’(b c a)) => NIL�

The keywords are:

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.�

(tree-equal 1 1) => (eql 1 1) => t

(tree-equal 1 ’(1)) => nil�

The second form in the previous example is false because the structure of the two

arguments to tree-equal are different. For the next few examples, we define a, b

and c as follows:

(setq a ’("root" ("leaf1" "leaf2")))

(setq b ’("root" ("leaf1" "leaf2")))

(setq c ’("Root" ("Leaf1" "Leaf2")))�

The first of the following forms is false, because the leaves are not eql. The sec-

ond form is true because the test changed to string=. The third form is false, be-

cause string= is case sensitive, and the fourth is true because string-equal ig-

nores case differences.

(tree-equal a b) => nil

(tree-equal a b :test #’string=) => t

(tree-equal a c :test #’string=) => nil

(tree-equal a b :test #’string-equal) => t�

For a table of related items: See the section "Predicates that Operate on Lists".

� true &rest ignore Function

Takes no arguments and returns t. See the section "Functions and Special Forms

for Constant Values". 

� :truename Message
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Returns the pathname of the file actually open on this stream. This can be differ-

ent from what :pathname returns because of file links, logical devices, mapping of

"newest" version to a particular version number, and so on. For some systems

(such as ITS) the truename of an output stream is not meaningful until after the

stream has been closed, at least on an ITS file server.

� truncate number &optional (divisor 1) Function

Divides number by divisor, and truncates the result toward zero. The truncated re-

sult and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a divisor is

exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, then (+ (* Q divisor) R) equals number. If

divisor is 1, then Q and R add up to number. If divisor is 1 and number is an inte-

ger, then the returned values are number and 0.

The first returned value is always an integer. The second returned value is inte-

gral if both arguments are integers, is rational if both arguments are rational, and

is floating-point if either argument is floating-point. If only one argument is speci-

fied, the second returned value is always a number of the same type as the argu-

ment.

Examples:

(truncate 5) => 5 and 0

(truncate -5) => -5 and 0

(truncate 5.2) => 5 and 0.19999981

(truncate -5.2) => -5 and -0.19999981

(truncate 5.8) => 5 and 0.8000002�

(truncate -5.8) => -5 and -0.8000002

(truncate 5 3) => 1 and 2

(truncate -5 3) => -1 and -2

(truncate 5 4) => 1 and 1

(truncate -5 4) => -1 and -1

(truncate 5.2 3) => 1 and 2.1999998�

(truncate -5.2 3) => -1 and -2.1999998

(truncate 5.2 4) => 1 and 1.1999998 

(truncate -5.2 4) => -1 and -1.1999998

(truncate 5.8 3) => 1 and 2.8000002 

(truncate -5.8 3) => -1 and -2.8000002

(truncate 5.8 4) => 1 and 1.8000002 

(truncate -5.8 4) => -1 and -1.8000002�

For a table of related items: See the section "Functions that Divide and Convert

Quotient to Integer".

� :tyi &optional eof Message
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Gets the next character from the stream and returns it. For example, if the next

character to be read in by the stream is a "C", the following form returns #\C:

(send s :tyi)�

Note that the :tyi operation does not "echo" the character in any fashion; it only

does the input. The zl:tyi function echoes when reading from the terminal.

The optional eof argument to the :tyi message tells the stream what to do if it

reaches the end of the file. If the argument is not provided or is nil, the stream

returns nil at the end of file. Otherwise it signals an error and prints out the ar-

gument as the error message. Note that this is not the same as the eof-option ar-

gument to read, zl:tyi, and related functions.

The :tyi operation on a binary input stream returns a nonnegative number, not

necessarily to be interpreted as a character.

An EOF can be forced into the currently selected I/O buffer with the keystrokes

FUNCTION END. The next :tyi message sent to a window taking input from that I/O

buffer will return nil.

The EOF indicator is not "sticky", in that the next :tyi will take the next charac-

ter from the I/O buffer. The reason for this is that some programs which read on-

ly from the terminal might not be prepared to encounter an EOF, and might loop

trying to read input. 

This EOF feature makes it possible to fully test programs which use the :line-in,

:string-in, and :string-line-in operations by taking input from a window instead of

from a file. Typing FUNCTION END causes each of these operations to return. This

is especially important when debugging programs which use the :string-in opera-

tion, since :string-in returns only when its buffer is full or an EOF is encoun-

tered.

FUNCTION END activates any input buffered in the input editor, since there is no

representation for the EOF indicator within text strings. 

� zl:tyi &optional stream eof-option Function

Inputs one character from stream and returns it. The character is echoed if stream

is interactive, except that Rubout is not echoed. The Control, Meta, and so on

shifts echo as prefix c-, m-, and so on.

The :tyi stream operation is preferred over the zl:tyi function for some purposes.

Note that it does not echo. See the message :tyi.

(This function can take its arguments in the other order, for Maclisp compatibility

only) 

� :tyi-no-hang &optional eof Message

Identical to :tyi except that if it would be necessary to wait in order to get the

character, returns nil instead. This lets the caller efficiently check for input being

available and get the input if there is any. :tyi-no-hang is different from :listen
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because it reads a character and because it is not simulated by the default handler

for streams that do not support it. 

� :tyipeek &optional eof Message

On an input stream, returns the next character that is about to be read, or nil if

the stream is at end-of-file. The eof argument has the same meaning as it does for

:tyi. :tyipeek is defined to have the same effect as a :tyi operation, followed by a

:untyi operation if end-of-file is not reached. Note that this means that you cannot

read some character, do a :tyipeek to look at the next character, and then :untyi

the original character. 

� zl:tyipeek &optional peek-type stream eof-option Function

Provided mainly for Maclisp compatibility; the :tyipeek stream operation is usually

preferred.

What zl:tyipeek does depends on the peek-type, which defaults to nil. With a peek-

type of nil, zl:tyipeek returns the next character to be read from stream, without

actually removing it from the input stream. The next time input is done from

stream the character is still there; in general, (= (zl:tyipeek) (zl:tyi)) is t. See the

message :tyipeek.

If peek-type is an integer less than 1000 octal, zl:tyipeek reads characters from

stream until it gets one equal to peek-type. That character is not removed from the

input stream.

If peek-type is t, zl:tyipeek skips over input characters until the start of the print-

ed representation of a Lisp object is reached. As above, the last character (the one

that starts an object) is not removed from the input stream.

The form of zl:tyipeek supported by Maclisp, in which peek-type is an integer not

less than 1000 octal, is not supported, since the readtable formats of the Maclisp

reader and the Symbolics Common Lisp reader are quite different.

Characters passed over by zl:tyipeek are echoed if stream is interactive. 

� :tyo char Message

Puts the char into the stream. For example, if s is bound to a stream, then the

following form will output a "B" to the stream:

(send s :tyo #\B)�

For binary output streams, the argument is a nonnegative number rather than

specifically a character. 

� zl:tyo char &optional stream Function

Outputs the character char to stream. 
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� sys:type-arglist type Function

Takes a data type as its argument and checks whether type is a defined Common

Lisp type.

sys:type-arglist returns two values: if type is a defined Common Lisp type, the

first value is the lambda-list for specifiers for that type, if any, or nil; the second

value is t. If type is not a defined Common Lisp type, both values are nil.

sys:type-arglist is useful if you are building software to run on top of the Com-

mon Lisp type system.

Examples:

(sys:type-arglist ’integer)

  => (&OPTIONAL (LOW ’*) (HIGH ’*)) and T

(sys:type-arglist ’array)  

 => (&OPTIONAL (ELEMENT-TYPE ’*) (DIMENSIONS ’*)) and T

(sys:type-arglist ’single-float) => NIL and T

(sys:type-arglist ’foo)  => NIL�

See the section "Data Types and Type Specifiers".

� type-of object Function

Returns a type of which object is a member. type-of returns the most specific type

that can be conveniently computed and is likely to be useful to the user. If the ar-

gument is a user-defined structure created by defstruct, then type-of returns the

name of that structure. If the argument is a user-created structure created by

defflavor then type-of returns the type symbol. (type-of instance) returns the

symbol that is the name of the instance’s flavor.

Examples:

(type-of 4) => FIXNUM

(type-of "Ariadne’s thread") => STRING

(type-of 5/7) => RATIO

�

The following CLOE Runtime example begins with a request to make a 10 element

vector of floats. Then, the type of new-array, and its initialized elements, is re-

quested.

(setq new-array (make-array 10 :element-type ’float))

(type-of new-array) => ARRAY

(type-of (aref new-array 0)) => NULL

(array-element-type new-array) => T�

The returned type specifier is simply array, rather than (array float (10)), and

the array elements were initialized to nil. Application of array-element-type on

new-array reveals that there is no restriction on the type of the contents.

See the section "Data Types and Type Specifiers".
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� typecase object &body body Special Form

This is a conditional that chooses one of its clauses by examining the type of an

object. Structurally typecase is much like cond or case, and it behaves like them

in selecting one clause and then executing all consequences of that clause. It dif-

fers in the mechanism of clause selection.

Its form is as follows:

(typecase form

   (type consequent consequent ...)

   (type consequent consequent ...)

   ...

   )�

The following example approximates a possibleimplementation of zl-user:constantp

using zl:typecase.

�

(defun constantp (object)

  (typecase object

    (consp (eq (car object) ’quote))

    ((not symbol) t)

    (null t)

    ((satisfies #’(lambda(x)(eq x t))) t)

    ((satisfies keywordp) t)

    ((satisfies defined-constant-p) t)

    (otherwise nil)))         �

First typecase evaluates form, producing an object. typecase then examines each

clause in sequence. The type that appears in each clause is a type specifier, which

is not evaluated. If the object is of that type, the consequents are evaluated and

the result of the last one is returned (or nil if there are no consequents in that

clause). Otherwise, typecase moves on to the next clause. If no clause is satisfied,

typecase returns nil.

For an object to be of a given type means that if typep is applied to the object

and the type, it returns t. That is, a type is something meaningful as a second ar-

gument to typep. To specify more than one type in a clause, use the type specifier

or:

(typecase form

   (type consequent consequent ...)

   ((or type type ...) consequent consequent ...)

   ...

   )�

See the section "Data Types and Type Specifiers".

As a special case, the type can be otherwise; in this case, the clause is always ex-

ecuted, so this should be used only in the last clause.

It is permissible for more than one clause to specify a given type, particularly if

one is a subtype of another; the earliest applicable clause is chosen. Thus, for

typecase, the order of the clauses can affect the behavior of the construct. 



Page 1597

For a table of related items: See the section "Conditional Functions".

CLOE Note: zl:typecase is a macro in CLOE. 

� zl:typecase object &body body Special Form

Selects various forms to be evaluated depending on the type of some object. It is

something like select. A zl:typecase form looks like:

(zl:typecase form

   (types consequent consequent ...)

   (types consequent consequent ...)

   ...

   )�

form is evaluated, producing an object. zl:typecase examines each clause in se-

quence. types in each clause is either a single type (if it is a symbol) or a list of

types. If the object is of that type, or of one of those types, the consequents are

evaluated and the result of the last one is returned. Otherwise, zl:typecase moves

on to the next clause. As a special case, types can be otherwise; in this case, the

clause is always executed, so this should be used only in the last clause. For an

object to be of a given type means that if zl:typep is applied to the object and the

type, it returns t. That is, a type is something meaningful as a second argument

to zl:typep.

Examples:

(defun tell-about-car (x)

  (zl:typecase (car x)

    (string "string"))) => TELL-ABOUT-CAR

(tell-about-car ’("word" "more")) => "string"  

(tell-about-car ’(a 1)) => NIL�

�

(defun tell-about-car (x)

  (zl:typecase (car x)

    (fixnum  "number.")

    ((or string symbol) "string or symbol.")

    (otherwise "I don’t know.")))  => TELL-ABOUT-CAR

(tell-about-car ’(1 a))  => "number."

(tell-about-car ’(a 1))  => "string or symbol."

(tell-about-car ’("word" "more")) => "string or symbol." 

(tell-about-car ’(1.0))  => "I don’t know."

�

For a table of related items: See the section "Conditional Functions".

See the special form typecase.

� typep object type Function
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The predicate is true if object is of type type, and is false otherwise. Note that an

object can be "of" more than one type, since one type can include another, or the

types can overlap without inclusion.

type can be any of the type specifiers discussed in the chapter on Data Types. See

the section "Type Specifiers". The exception is that type cannot be or contain a

type specifier list whose first element is function or values. A specifier of the

form (satisfies fn) is handled simply by applying the function fn to object (see

funcall); the object is considered to be of the specified type if the result is not nil.

(typep instance ’flavor-name) returns t if the flavor of instance is named flavor-

name or contains that flavor as a direct of indirect component; it returns nil oth-

erwise.

Examples:

(typep ’my-dog-rover ’common) => T

(typep ’a ’atom) => T

(typep 0 ’bit) => T

�

(defstruct ship

  x-postion

  y-postion)  => SHIP

�

(setq my-boat (make-ship)) => #S (SHIP :X-POSTION NIL

                                       :Y-POSTION NIL)

�

(typep my-boat ’(structure ship)) => T

(typep my-boat ’vector) => T

�

(typep #(a b c) ’vector) => T

(typep #*1010 ’bit-vector) => T

(typep 4 ’number) => T

(typep #c(3 4) ’complex) => T

(typep 4 ’bit-vector) => NIL�

(typep 12 ’integer) => t

(typep 12 ’(integer 0 7)) => nil

(typep 12 ’(satisfies integerp)) => t 

(typep "a" ’character) => nil

(typep "a" ’string) => t

(typep #\a ’character) => t

(typep "a" ’array) => t�

See the section "Type-checking Differences Between Symbolics Common Lisp and

Zetalisp". See the section "Data Types and Type Specifiers".

� zl:typep x &optional type�

Function
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This function is really two different functions. With one argument, zl:typep is not

really a predicate; it returns a symbol describing the type of its argument. With

two arguments, zl:typep is a predicate that returns t if x is of type type, and nil

otherwise. Note that an object can be "of" more than one type, since one type can

be a subset of another.

The symbols that can be returned by zl:typep of one argument are:

:symbol x is a symbol.

:fixnum x is a fixnum (not a bignum).

:bignum x is a bignum.

:rational x is a ratio.

:single-float x is a single-precision floating-point number.

:double-float x is a double-precision floating-point number.

:complex x is a complex number.

:list x is a cons.

:locative x is a locative pointer. 

:compiled-function x is the machine code for a compiled function.

:closure x is a closure. 

:select-method x is a select-method table. 

:stack-group x is a stack-group. 

:character x is a character.

:string x is a string.

:array x is an array that is not a string.

:random Returned for any built-in data type that does not fit into one of

the above categories.

foo An object of user-defined data type foo (any symbol). The prim-

itive type of the object could be array, or instance.�

(zl:typep instance) returns the symbol that is the name of the instance’s flavor.

(zl:typep instance ’flavor-name) returns t if the flavor of instance is named flavor-

name or contains that flavor as a direct or indirect component, nil otherwise.

Examples:



Page 1600

(zl:typep ’common :SYMBOL) => T

(zl:typep 4 ) => :FIXNUM 

(zl:typep .00001) => :SINGLE-FLOAT

(zl:typep 0d0 :DOUBLE-FLOAT) => T

(zl:typep #c(1.2 3.3)) => :COMPLEX

(zl:typep "good day sunshine" :STRING) => T

(zl:typep #(a b c)) => :ARRAY�

The type argument to zl:typep of two arguments can be any of the above keyword

symbols (except for :random), the name of a user-defined data type (either a

named structure or a flavor), or one of the following additional symbols:

:atom Any atom (as determined by the atom predicate).

:fix Any kind of fixed-point number (fixnum or bignum).

:float Any kind of floating-point number (single- or double-precision). 

:number Any kind of number.

:non-complex-number

Any noncomplex number.

:instance An instance of any flavor. 

:null nil is the only value that has this type.

:list-or-nil A cons or nil.

Examples:

(zl:typep 3 :number) => T

(zl:typep nil :null) => T

(zl:typep ’(a b c) :list-or-nil) => T�

Note that (zl:typep nil) => :symbol, and (zl:typep nil :list) => nil; the latter

might be changed.

(zl:typep nil :list) => NIL�

(defflavor ship

  (name x-velocity y-velocity z-velocity mass)

   ()    ; no component flavors

  :readable-instance-variables

  :writable-instance-variables

  :initable-instance-variables) => SHIP

(setq my-ship

  (make-instance ’ship :name "Enterprise"

                       :mass 4534

                       :x-velocity 24

                       :y-velocity 2

                       :z-velocity 45)) => #<SHIP 43004623>

(zl:typep my-ship :instance) => T

(zl:typep my-ship) => SHIP

(type-of my-ship) => SHIP�
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See the section "Type-checking Differences Between Symbolics Common Lisp and

Zetalisp".

� unbreakon &optional function (condition t) Function

Turns off a breakpoint set by breakon. If function is not provided, all breakpoints

set by breakon are turned off. If condition is provided, it turns off only that con-

dition, leaving any others. If condition is not provided, the entire breakpoint is

turned off for that function.

For a table of related items: See the section "Breakpoint Functions". 

� :unclaimed-message operation &rest arguments Message

When an operation is performed on a flavor instance, whether the operation is a

generic function or a message, the Flavors system checks to be sure that a method

exists for performing the operation on the object. If no method is found, it checks

for a method for the :unclaimed-message message. If such a method exists, it is

invoked with arguments operation and any arguments that were given to the oper-

ation.

This is equivalent to using the :default-handler option to defflavor.

flavor:vanilla does not provide a method for :unclaimed-message. If no method

for :unclaimed-message exists, and the :default-handler option was not used,

then the default action of the Flavors system is to signal an error. 

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� undefine-global-handler name�

Function

Removes a global handler defined with define-global-handler.

name is the name of the global handler to be removed.

undefine-global-handler returns t if it finds the named handler. Otherwise it sig-

nals a proceedable error, and, if the condition proceeds, returns nil.

Examples:

�

(define-global-handler infinity-is-three sys:divide-by-zero

    (error)

  (values :return-values ’(3)))

�

(undefine-global-handler infinity-is-three)�

For a table of related items: See the section "Basic Forms for Global Handlers". 
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� undefun function-spec Function

Undoes the definition of function-spec and returns function-spec. If function-spec has

a saved previous basic definition, this interchanges the current and previous basic

definitions, leaving the encapsulations alone. This undoes the effect of a defun,

compile, and so on. (See the function uncompile.) If function-spec has no previous

definition, undefun is equivalent to fundefine. If undefun does not find a defini-

tion for function-spec, it returns nil. 

� si:unencapsulate-function-spec function-spec &optional encapsulation-types 

Function

Takes one function spec and returns another. If the original function spec is unde-

fined, or has only a basic definition (that is, its definition is not an encapsulation),

then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation, its debugging info is exam-

ined to find the uninterned symbol that holds the encapsulated definition, and also

the encapsulation type. If the encapsulation is of a type that is to be skipped over,

the uninterned symbol replaces the original function spec and the process repeats.

The value returned is the uninterned symbol from inside the last encapsulation

skipped. This uninterned symbol is the first one that does not have a definition

that is an encapsulation that should be skipped. Or the value can be function-spec

if function-spec’s definition is not an encapsulation that should be skipped.

The types of encapsulations to be skipped over are specified by encapsulation-types.

This can be a list of the types to be skipped, or nil, meaning skip all encapsula-

tions (this is the default). Skipping all encapsulations means returning the unin-

terned symbol that holds the basic definition of function-spec. That is, the defini-

tion of the function spec returned is the basic definition of the function spec sup-

plied. Thus:

(fdefinition (si:unencapsulate-function-spec ’foo))�

returns the basic definition of foo, and:

(fdefine (si:unencapsulate-function-spec ’foo) ’bar)�

sets the basic definition (just like using fdefine with carefully supplied as t).

encapsulation-types can also be a symbol, which should be an encapsulation type;

then we skip all types that are supposed to come outside of the specified type. For

example, if encapsulation-types is trace, we skip all types of encapsulations that

come outside trace encapsulations, but we do not skip trace encapsulations them-

selves. The result is a function spec that is where the trace encapsulation ought

to be, if there is one. Either the definition of this function spec is a trace encap-

sulation, or there is no trace encapsulation anywhere in the definition of function-

spec, and this function spec is where it would belong if there were one. For exam-

ple:

(let ((tem (si:unencapsulate-function-spec spec ’trace)))

  (and (eq tem (si:unencapsulate-function-spec tem ’(trace)))

       (si:encapsulate tem spec ’trace ‘(...body...))))�
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finds the place where a trace encapsulation ought to go, and makes one unless

there is already one there.

(let ((tem (si:unencapsulate-function-spec spec ’trace)))

  (fdefine tem (fdefinition (si:unencapsulate-function-spec

      tem ’(trace)))))�

eliminates any trace encapsulation by replacing it by whatever it encapsulates. (If

there is no trace encapsulation, this code changes nothing.)

These examples show how a subsystem can insert its own type of encapsulation in

the proper sequence without knowing the names of any other types of encapsula-

tions. Only the si:encapsulation-standard-order variable, which is used by

si:unencapsulate-function-spec, knows the order. 

� unexport symbols &optional package Function

symbols should be a list of symbols or a single symbol. If symbols is nil, it is treat-

ed like an empty list. These symbols become internal symbols in package. package

can be a package object or the name of a package (a symbol or a string). If un-

specified, package defaults to the value of *package*. Returns t. It is an error to

unexport a symbol from the keyword package.

=> (multiple-value-bind (symbol status) (find-symbol "exp-symbol")

      (when (eq status ’:external))

        (unexport symbol)))

=> T�

� unintern sym &optional (pkg (symbol-package si:sym)) Function

Removes sym from pkg and from pkg’s shadowing-symbols list. If pkg is the home

package for sym, sym is made to have no home package. In some circumstances,

sym may continue to be accessible by inheritance. unintern returns t if it removes

a symbol and nil if it fails to remove a symbol. unintern should be used with cau-

tion since it changes the state of the package system and affects the consistency

rules. (See the section "Consistency Rules for Packages".)

Compatibility Note: Symbolics Common Lisp under Genera specifies that this

function’s second argument defaults to symbol-package; CLtL and CLOE specify

that this function’s second argument defaults to *package*.

In the following example, the symbol whose print name is "one-symbol" is

uninterned. In the second attempt to unintern the symbol, it is not found, and nil

is returned.

=> (setq symbol (find-symbol "one-symbol"))

ONE-SYMBOL

=> (unintern symbol)

T

=> (unintern symbol)

nil�
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� union list1 list2 &key (test #’eql) test-not (key #’identity) Function

Takes two lists and returns a new list containing everything that is an element of

either list1 or list2. If there is a duplication between the two lists, only one of the

duplicate instances is in the result. If either of the arguments has duplicate en-

tries within it, the redundant entries may or may not appear in the result. There

is no guarantee that the order of the elements in the result will reflect the order-

ing of the arguments in any particular way. The keywords are

:test Any predicate that specifies a binary operation on a supplied

argument and an element of a target list. The item matches

the specification only if the predicate returns t. If :test is not

supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only

if there is an element of the list for which the predicate re-

turns nil.�

For all possible ordered pairs consisting of one element from list1 and one element

from list2, the predicate is used to determine whether they match. For every

matching pair, at least one element of the pair will be in the result. Moreover, any

element from either list that matches no element of the other will appear in the

result.

(union ’(a b c) ’(f a d a)) => (D F A B C)

�

(union ’((x 5) (y 6) (x 3)) ’((z 2) (x 4)) :key #’car) =>

((Z 2) (X 5) (Y 6) (X 3))�

In thefollowing example, union returns the list of lists of all new and tenured pro-

fessors and the courses they are teaching.

(setq professors-with-tenure

  ’(("Jones" CS101 CS242)("smith" CS202 CS231)

    ("parks" CS221)("hunter" CS216 CS232)))

(setq new-professors

  ’(("Able" CS101 CS244)("Cain" CS101 CS331)

    ("Parks" CS221)("adams" CS215 CS222)))

�

(union professors-with-tenure new-professors

       :test #’string-equal :key #’car)

 =>

(("Jones" CS201 CS242)("smith" CS202 CS231)

 ("hunter" CS216 CS232)("Able" CS203 CS244)

 ("Cain" CS212 CS331)("Parks" CS221)

 ("adams" CS215 CS222))�

For a table of related items: See the section "Functions for Comparing Lists".

� zl:union &rest lists Function
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Takes any number of lists that represent sets and returns a new list that repre-

sents the union of all the sets. zl:union uses eq for its comparisons. You cannot

change the function used for the comparison. zl:union with no arguments returns

nil.

For a table of related items: See the section "Functions for Comparing Lists". 

� unless condition &rest body Macro

The forms in body are evaluated when condition returns nil. It returns the value

of the last form evaluated. When condition returns something other than nil,

unless returns nil.

Examples:

(unless) => error�

(unless nil "rain, rain, rain") => "rain, rain, rain"�

(unless (eq 1 1) (setq a b) "foo") => NIL�

(unless (eq 1 2) (setq a 4) "foo") => "foo"

a => 4�

(defun make-even (integer)

  (unless (evenp integer) (setf integer (+ integer 1))))

�

(defvar *my-int* 5)

(make-even *my-int*) => 6

(make-even *my-int*) => nil�

Note that the following forms are equivalent, and that the unless version of these

may be more readable:

(if test nil (progn form1 form2 form3))

(when (not test) form1 form2 form3)

(unless test form1 form2 form3)�

When body is empty, unless always returns nil.

For a table of related items: See the section "Conditional Functions".

See the section "loop Conditionalization".

� unless keyword for loop

unless expr

If expr evaluates to t, the following clause is skipped, otherwise not. This

is equivalent to when (not expr).

Examples:
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�

(defun loop1 ()

  (loop for i from 0 to 9

        unless (> i 5) collect i

        finally (print " so long, goodbye....")))  => LOOP1

(loop1) => 

"so long, goodbye...." (0 1 2 3 4 5) �

While the keyword when would do the following.

�

(defun loop1 ()

  (loop for i from 0 to 9

        when (> i 5) collect i

        finally (print " so long, goodbye...."))) => LOOP1

(loop1) => 

" so long, goodbye...." (6 7 8 9)�

Multiple conditionalization clauses can appear in sequence. If one test fails, any

following tests in the immediate sequence, and the clause being conditionalized,

are skipped.

In the typical format of a conditionalized clause such as

when expr1 keyword expr2�

expr2 can be the keyword it. If that is the case, then a variable is generated to

hold the value of expr1, and that variable gets substituted for expr2. Thus, the

composition:

when expr return it�

is equivalent to the clause:

thereis expr�

and you can collect all non-null values in an iteration by saying:

when expression collect it�

If multiple clauses are joined with and, the it keyword can only be used in the

first. If multiple whens, unlesses, and/or ifs occur in sequence, the value substi-

tuted for it is that of the last test performed. The it keyword is not recognized in

an else-phrase.

Conditionals can be nested.

See the section "loop Conditionalization".

� unread-char character &optional input-stream Function

Puts character onto the front of input-stream. character must be the same character

that was most recently read from input-stream. input-stream backs up over this

character, so that when a character is next read from input-stream it will be the

specified character. Successive calls to read-char will pick up the previous con-

tents of input-stream, as it was before the call to unread-char. unread-char re-

turns nil. 
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You can apply unread-char only to the character most recently read from input-

stream. Moreover, you can not invoke unread-char twice consecutively without an

intervening read-char operation. The result is that you can back up only by one

character, and you can not insert any characters into the input stream that were

not already there.

If unspecified or nil, input-stream defaults to *standard-input*. A value of t for

input-stream indicates *terminal-io*.

(let ((c (read-char)))

  (unread-char c)

  (list c (read)))abc

=> (#\a ABC)�

� unsigned-byte Type Specifier

unsigned-byte is the type specifier denoting the set on non-negative intergers that

can be represented in a byt of size n bits. It is the same as the type (integer 0 *),

the set of non-negative integers. 

� until Keyword for loop

until expr

If expr evaluates to t, the loop is exited, performing exit code (if any), and

returning any accumulated value. The test is placed in the body of the loop

where it is written. It can appear between sequential for clauses.

Examples:

�

(defun trivial-loop ()

  (loop for i from 0 until (= i 12)

do 

    (princ i)(princ " "))) => TRIVIAL-LOOP

(TRIVIAL-LOOP) => 0 1 2 3 4 5 6 7 8 9 10 11 NIL

�

See the section "End Tests for loop".

� :untyi char Message

The stream will remember the character char, and the next time a character is

input, it will return the saved character. In other words, :untyi means "put this

character back into the input source". For example:
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(setq *my-stream* (make-string-input-stream "This is a test"))

(send *my-stream* :tyi) ==> #\T

(setq *char* (send *my-stream* :tyi)) ==> #\h

(send *my-stream* :untyi *char*) ==> 1

(send *my-stream* :tyi) ==> #\h

This operation is used by read, and any stream that supports :tyi must support

:untyi as well. Note that you are allowed to :untyi only one character before doing

a :tyi, and you can :untyi only the last character you read from the stream. Some

streams implement :untyi by saving the character, while others implement it by

backing up the pointer to a buffer. You also cannot :untyi after you have peeked

ahead with :tyipeek. 

� :untyo mark Message

Used by the grinder in conjunction with :untyo-mark. It takes one argument,

which is something returned by the :untyo-mark operation of the stream. The

stream should back up output to the point at which the object was returned. 

� :untyo-mark Message

Used by the grinder if the output stream supports it. See the special form grindef.

It takes no arguments. The stream should return some object that indicates where

output has reached in the stream. 

� unuse-package packages &optional pkg Function

packages should be a list of packages or package names, or a single package or

package name. These packages are removed from the use-list of pkg, and their ex-

ternal symbols are no longer accessible, unless they are accessible through another

path. pkg can be a package object or the name of a package (a symbol or a string).

If unspecified, pkg defaults to the value of *package*. Returns t.

=> (package-use-list *package*)

(TURBINE-PACKAGE GENERATOR-PACKAGE LISP)

=> (unuse-package ’turbine-package)

T

=> (package-use-list *package*)

(GENERATOR-PACKAGE LISP)�

See the section "Interpackage Relations".

� unwind-protect protected-form &rest cleanup-forms�

Special Form

Sometimes it is necessary to evaluate a form and make sure that certain side-

effects take place after the form is evaluated. A typical example is:
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(progn

  (turn-on-water-faucet)

  (hairy-function 3 nil ’foo)

  (turn-off-water-faucet))�

The nonlocal exit facility of Lisp creates a situation in which the above code does

not work. However, if hairy-function should do a throw to a catch that is outside

of the progn form, (turn-off-water-faucet) is never evaluated (and the faucet is

presumably left running). This is particularly likely if hairy-function gets an error

and the user tells the Debugger to give up and abort the computation.

In order to allow the above program to work, it can be rewritten using unwind-

protect as follows:

(unwind-protect

    (progn (turn-on-water-faucet)

   (hairy-function 3 nil ’foo))

  (turn-off-water-faucet))�

If hairy-function does a throw that attempts to quit out of the evaluation of the

unwind-protect, the (turn-off-water-faucet) form is evaluated in between the time

of the throw and the time at which the catch returns. If the progn returns nor-

mally, then the (turn-off-water-faucet) is evaluated, and the unwind-protect re-

turns the result of the progn.

Examples:

(tagbody

  (let ((num 4))

    (unwind-protect

        (if (= num 4) (go home))

      (princ "reach out")))

home

   (princ " and "))  => reach out and NIL

�

(unwind-protect

    (progn (start-car)

   (drive-car))

  (stop-car))�

The general form of unwind-protect looks like:

(unwind-protect protected-form

    cleanup-form1

    cleanup-form2

    ...)�

protected-form is evaluated, and when it returns or when it attempts to quit out of

the unwind-protect, the cleanup-forms are evaluated. To ensure that unwind-

protect does not return without completely executing its cleanup forms, the macro

sys:without-aborts is automatically and atomically wrapped around all cleanup-

forms, preventing them from being aborted by user action. (To cancel out the ef-

fect of a sys:without-aborts invocation, see the macro sys:with-aborts-enabled.) 
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unwind-protect catches exits caused by return-from or go as well as those caused

by throw. The value of the unwind-protect is the value of protected-form. Multiple

values returned by the protected-form are propagated back through the unwind-

protect.

The cleanup forms are run in the variable-binding environment that you would ex-

pect: that is, variables bound outside the scope of the unwind-protect special form

can be accessed, but variables bound inside the protected-form cannot be. In other

words, the stack is unwound to the point just outside the protected-form, then the

cleanup handler is run, and then the stack is unwound some more.

Note: It is almost never adequate to do something of the form

(unwind-protect (progn (foo) ... code ...)

  (undo-foo))�

Nearly always you should write

(let ((old-foo-state (read-foo-state)))

  (unwind-protect (progn (foo) ... code ...)

    (set-foo-state old-foo-state)))�

You should also consider that other processes may see your data structure in the

modified state. If you have a shared structure, you may need to use a lock to only

allow one process to use it while it is modified.

(defmacro bind ((form value) &body body)

 "a powerful binding primitive guarranteed to restore the old value"

  (let ((old-value-var (gensym)))

    ‘(let ((,old-value-var ,form))

       (unwind-protect (progn (setf ,form ,value)

                              ,body)

                       (setf ,form ,old-value-var)))))�

For a table of related items, see the section "Nonlocal Exit Functions".

� unwind-protect-case (&optional aborted-p-var) body-form &rest cleanup-clauses�

Macro

body-form is executed inside an unwind-protect form. The cleanup forms of the un-

wind-protect are generated from cleanup-clauses. Each cleanup-clause is considered

in order of appearance and has the form (keyword forms ...). keyword can be

:normal, :abort or :always. The forms in a :normal clause are executed only if

body-form finished normally. The forms in an :abort clause are executed only if

body-form exited before completion. The forms in an :always clause are always ex-

ecuted. The values returned are the values of body-form, if it completed normally. 

To ensure that unwind-protect-case does not return without completely executing

its cleanup forms, the macro sys:without-aborts is automatically and atomically

wrapped around all cleanup-forms, preventing them from being aborted by user ac-

tion.
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aborted-p-var, if supplied, is t if the body-form was aborted, and nil if it finished

normally. aborted-p-var can be used in forms within cleanup-clauses as a condition

for executing abort instead of normal cleanup code. It can be set within body-form,

but should be done so with great care. It should only be set to nil if the remaining

subforms of body-form do not need protecting.

For a table of related items, see the section "Nonlocal Exit Functions". 

� clos:update-instance-for-different-class previous current &rest initargs 

Generic Function

Provides a mechanism for users to specialize the behavior of updating an instance

when its class is changed by clos:change-class. This generic function is called by

clos:change-class and should not be called by users. 

Note that the usual way for users to customize the behavior of updating an in-

stance for a different class is to specialize clos:update-instance-for-different-class

by writing after-methods. A user-defined primary method would override the de-

fault method, and thus could prevent the usual slot-filling behavior.

The value of clos:update-instance-for-different-class is ignored by its caller,

clos:change-class.

previous A copy of the instance before its class was changed. The pur-

pose of this argument is to enable methods to access the old

slot values. It has dynamic extent within clos:change-class.

current The instance whose class has been changed. 

initargs Alternating initialization argument names and values. Note

that no initialization arguments are provided by the caller,

clos:change-class. They can be supplied by one method to an-

other method, using clos:call-next-method. 

The set of valid initialization argument names includes:

• Symbols declared by the :initarg slot option to clos:defclass,

which are used to initialize the value of a slot. 

• Keyword arguments accepted by any applicable methods for

clos:update-instance-for-different-class or clos:shared-

initialize.

• The keyword :allow-other-keys. The default value for

:allow-other-keys is nil. If you provide t as its value, then

all keyword arguments are valid.�

The default method for clos:update-instance-for-different-class does the following:

1. Checks the validity of the initargs and signals an error if an invalid initializa-

tion argument name is detected. 
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2. Calls the clos:shared-initialize generic function with the instance, a list of

the newly added local slots, and any initialization arguments provided. The

second argument indicates that only the newly added local slots are to be ini-

tialized from their initforms. 

See the section "Changing the Class of a CLOS Instance". 

� clos:update-instance-for-redefined-class instance added-slots discarded-slots proper-

ty-list &rest initargs Generic Function

Provides a mechanism for users to specialize the behavior of updating instances

when a class is redefined.

This generic function should not be called directly by users; it is called by the sys-

tem when a class is redefined or when clos:make-instances-obsolete is called. It

is not necessarily called immediately in these cases; it is called at some time be-

fore a slot of that instance is read or written.

Note that the usual way for users to customize the behavior of updating instances

when a class is redefined is to specialize clos:update-instance-for-redefined-class

by writing after-methods. A user-defined primary method would override the de-

fault method, and thus could prevent the usual slot-filling behavior.

The value of clos:update-instance-for-redefined-class is ignored by its caller.

instance The instance being updated due to class redefinition.

added-slots A list of the names of slots added to the instance. An added

slot is a local slot defined by the new class for which there

was no slot of the same name defined in the previous class.

discarded-slots A list of the names of slots removed from the instance. A dis-

carded slot is a slot that was defined by the previous class but

not by the new class. Included in this list are slots defined as

local in the previous class and shared in the new class. 

property-list A property list containing the slot names and values for each

discarded slot that had a value.

initargs Alternating initialization argument names and values. Note

that no initialization arguments are provided by the caller.

They can be supplied by one method to another method, using

clos:call-next-method. 

The set of valid initialization argument names includes:

• Symbols declared by the :initarg slot option to clos:defclass,

which are used to initialize the value of a slot. 

• Keyword arguments accepted by any applicable methods for

clos:update-instance-for-redefined-class or clos:shared-

initialize.
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• The keyword :allow-other-keys. The default value for

:allow-other-keys is nil. If you provide t as its value, then

all keyword arguments are valid.�

The default method for clos:update-instance-for-redefined-class does the follow-

ing: 

1. Checks the validity of the initargs and signals an error if an invalid initializa-

tion argument name is detected. 

2. Calls the clos:shared-initialize generic function with the instance, the added-

slots, and any initialization arguments provided. The second argument indi-

cates that only the newly added local slots are to be initialized from their

initforms. 

See the section "Redefining a CLOS Class".

� upper-case-p char Function

Returns t if char is an uppercase letter. 

(upper-case-p #\A) => T

(upper-case-p #\a) => T�

For a table of related items, see the section "Character Predicates". 

� use-package packages &optional pkg Function

packages should be a list of packages or package names, or a single package or

package name. These packages are added to the use-list of pkg if they are not

there already. All external symbols in the packages to use become accessible in

pkg. pkg can be a package object or the name of a package (a symbol or a string).

If unspecified, pkg defaults to the value of *package*. Returns t.

The following function first checks if a package to be added to the use-list of an-

other package is already on the list, before calling use-package.

(defun add-to-use-list( package package-to-use )

  (unless (member package-to-use

                  (package-use-list package))

    (use-package package package-to-use)))�

See the section "Interpackage Relations".

� zl:value-cell-location sym Function

This function is obsolete on local and instance variables; use sys:variable-location

instead.

zl:value-cell-location returns a locative pointer to sym’s internal value cell. See

the section "Cells and Locatives". It is preferable to write:
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(locf (zl:symeval sym))�

instead of calling this function explicitly.

(zl:value-cell-location ’a) is still useful when a is a special variable. It behaves

slightly differently from the form (sys:variable-location a), in the case that a is a

variable "closed over" by some closure. See the section "Dynamic Closures".

zl:value-cell-location returns a locative pointer to the internal value cell of the

symbol (the one that holds the invisible pointer, which is the real value cell of the

symbol), whereas sys:variable-location returns a locative pointer to the external

value cell of the symbol (the one pointed to by the invisible pointer, which holds

the actual value of the variable).

See the section "Functions Relating to the Value of a Symbol".

� values &rest args Function

Returns values, its arguments. This is the primitive function for controlling return

values. It returns exactly one value for each form in its argument list. In this way

you can assure that a function returns only one value. For example,

(floor 9 2) => 4 1

�

(values (floor 9 2)) => 4�

floor returns two values. However, values returns only the first value produced by

each form, so it returns the 4 and ignores the 2.

It is valid to call values with no arguments; it returns no values in that case. 

(defstruct foo x y)

�

(defun foo-pos (foo) (values (foo-x foo)(foo-y foo)))�

In the next example, the call to add-to-end-just-for-effect returns no values. 

(defun add-at-end-just-for-effect (list item)

  (setf (cdr (last list)) (cons item nil))

  (values))

�

(setq x ’(a b c))

�

(add-to-end-just-for-effect x ’d)

�

x => (A B C D)

�

(defun add-at-end-return-old-and-new (list item &aux (old-list (copy-list list)))

  (setf (cdr (last list)) (cons item nil))

  (values list old-list))

�

(add-at-end-return-old-and-new x ’e)

 => (A B C D E) (A B C D)�

See the section "Primitives for Producing Multiple Values".
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� values Type Specifier

� values-list list Function

Returns multiple values, the elements of the list. (values-list ’(a b c)) is the same

as (values ’a ’b ’c). list can be nil, the empty list, which causes no values to be

returned.

In the following example,the let returns as many values as original-list con-

tained numbers greater than 5.

�

(let ((mylist ’()))

  (dolist (item original-list)

    (when (> item 5) (push item mylist)))

  (values-list mylist))      �

See the section "Primitives for Producing Multiple Values".

� flavor:vanilla Flavor

This flavor is included in all flavors by default. flavor:vanilla has no instance

variables, but it provides several basic useful methods, some of which are used by

the Flavor tools.

Every flavor has flavor:vanilla as a component flavor, unless you specify not to in-

clude flavor:vanilla by providing the :no-vanilla-flavor option to defflavor. It is

unusual to exclude flavor:vanilla.

For a summary of all functions, macros, special forms, and variables related to

Flavors: See the section "Summary of Flavor Functions and Variables".

� variable-boundp variable Special Form

Returns t if the variable is bound and nil if the variable is not bound. variable

should be any kind of variable (it is not evaluated): local, special, or instance.

Note: local variables are always bound; if variable is local, the compiler issues a

warning and replaces this form with t.

If a is a special variable, (boundp ’a) is the same as (variable-boundp a). See

the section "Functions Relating to the Value of a Symbol".

� sys:variable-location variable Special Form

Returns a locative pointer to the memory cell that holds the value of the variable.

variable can be any kind of variable (it is not evaluated): local, special, or instance.

sys:variable-location should be used in almost all cases instead of zl:value-cell-

location; zl:value-cell-location should only be used when referring to the internal

value cell. For more information on internal value cells: See the section "What is a

Dynamic Closure?".
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You can also use locf on variables. (locf a) expands into (sys:variable-location a).

See the section "Functions Relating to the Value of a Symbol". 

� variable-makunbound variable Special Form

Makes the variable be unbound and returns variable. variable should be any kind

of variable (it is not evaluated): local, special, or instance. Note: since local vari-

ables are always bound, they cannot be made unbound; if variable is local, the

compiler issues a warning.

If a is a special variable, (makunbound ’a) is the same as (variable-makunbound

’a). See the section "Functions Relating to the Value of a Symbol".

� vector &optional ( element-type ’* ) ( size ’* ) Type Specifier

vector is the type specifier symbol for the predefined Lisp structure of that name.

The type vector is a subtype of the type array: for all types of x, the type (vector

x) is the same as the type (array x (*)).

The types vector and list are disjoint subtypes of the type sequence.

The type vector is a supertype of the types string, bit-vector, simple-vector;

string means (vector string-char), or (vector character)

bit-vector means (vector bit)

simple-vector means (simple-array t (*))

�

The types vector t, string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list form,

vector allows the declaration and creation of specialized one-dimensional arrays

whose elements are all of type element-type and whose lengths match size. This is

entirely equivalent to

(array (element-type size))�

element-type must be a valid type specifier, or unspecified. For standard Symbolics

Common Lisp type specifiers: See the section "Type Specifiers".

size can be a non-negative integer, or it can be a list of non-negative integers, or

it can be unspecified.

The specialized types (vector string-char) and (vector bit) are so useful that

they have the special names string and bit-vector. 

Examples:

(typep  #(a b c) ’vector) => T�

(subtypep ’vector ’array) => T and T�

(subtypep ’vector ’sequence) => T and T�

(sys:type-arglist ’vector) 

=> (&OPTIONAL (ELEMENT-TYPE ’*) (SIZE ’*)) and T�
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(vectorp #()) => T �

(typep #*010 ’(vector bit 3)) => T�

See the section "Data Types and Type Specifiers". See the section "Arrays".

� vector &rest objects Function

Creates a simple vector with specified initial contents and with the order given.

For example:

(vector 12 ’foo 42.9) => #( 12 FOO 42.9)�

For a table of related items: See the section "Operations on Vectors".

� sys:vector-bitblt alu size from-array from-index to-array to-index Function

Copies a linear portion of from-array of length size starting at from-index into a

linear portion of to-array starting at to-index. The value stored can be a Boolean

function of the new value and the value already there, under the control of alu.

This function is a one-dimensional bitblt. See the function bitblt.

from-array and to-array are allowed to be the same array. If size is negative, then

the processing is done backwards, using (abs size) as the number of elements. For

arrays of different elements it works bitwise, and size is in units of to-array.

sys:vector-bitblt might not work well if from-array is indirected with an index-

offset. 

� vector-pop array &optional default Function

Decreases the fill pointer by one and returns the vector element designated by the

new value of the fill pointer. array must be a one-dimensional array with a fill

pointer. If the fill pointer is 0, nil is returned.

Symbolics Common Lisp provides the optional argument default, which might not

work in other implementations of Common Lisp.

(setq some-vector (make-array 4 :initial-contents (list 12 18 (list ’a ’b) ’C)

                              :fill-pointer t))

�

(vector-pop some-vector) => C

�

(vector-pop some-vector) => (A B)

�

(fill-pointer some-vector) => 2�

For a table of related items: See the section "Operations on Vectors". Also: See the

section "Adding to the End of an Array".

� vector-push new-element vector Function
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Stores new-element in the element designated by the fill pointer and increments

the fill pointer by one. vector must be a one-dimensional array with a fill-pointer,

and new-element can be any object allowed to be stored in the array. 

If the fill pointer does not designate an element of the array (specifically, when it

gets too big), it is unaffected and vector-push returns nil. Otherwise, the two ac-

tions (storing and incrementing) happen uninterruptibly, and vector-push returns

the former value of the fill pointer, that is, the array index in which it stored new-

element.

For a table of related items: See the section "Operations on Vectors". Also: See the

section "Adding to the End of an Array".

� vector-push-extend new-element vector &optional extension�

Function

Stores new-element in the element designated by the fill pointer and increments

the fill pointer by one. If the vector is too small, vector-push-extend extends the

vector, it is adjustable. Note that under CLOE, only vectors specified to be ad-

justable in the call to make-array are in fact adjustable.

vector-push-extend returns the index in vector where new-element was stored.

(setq astring (make-array 12 :element-type ’string-char :fill-pointer t

               :adjustable t :initial-element #\.))

 => "............"

�

(fill-pointer astring) => 12

(array-dimension astring 0) => 12

�

(vector-push-extend #\a astring 10) => 12

astring => "............a"

(fill-pointer astring) => 13

(array-dimension astring 0) => 22

�

(vector-push-extend #\b astring 100) => 13

astring => "............ab"

�

(fill-pointer astring) => 14

(array-dimension astring 0) => 22�

Note in the previous example that we use the extension argument of the first call

to vector-push-extend because only this call actually adjusts the array. The second

call places an element within the bounds of the newly adjusted array. 

For a table of related items: See the section "Operations on Vectors". Also: See the

section "Adding to the End of an Array".

� vector-push-portion-extend to-array from-array &optional (from-start 0) from-end 

Function
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Copies a portion of one array to the end of another, updating the fill pointer of the

second to reflect the new contents. The destination array must have a fill-pointer.

The source array need not. 

vector-push-portion-extend returns the to-array and the index of the next location

to be filled.

Example: 

(setq to-string

      (vector-push-portion-extend 

         to-string from-string (or from 0) to))�

If the optional arguments are not provided, the default is to copy all of from-array

to the end of to-array. 

For a table of related items: See the section "Operations on Vectors". 

� vectorp object Function

Tests whether the given object is a vector. A vector is a one-dimensional array. See

the type specifier vector.

(vectorp (make-array 5 :element-type ’bit :fill-pointer 2)) 

 => T

�

(vectorp (make-array ’(5 2)))

 => NIL�

�

(vectorp ’#(foo bar baz)) => t

�

(vectorp (make-array ’(2 3)

          :initial-element ’foo)) => nil�

For a table of related items: See the section "Operations on Vectors". 

� warn optional-options optional-condition-name format-string &rest args Function

If the flag *break-on-warnings* is nil, prints a warning message without entering

the Debugger.

If the flag *break-on-warnings* is not nil, warn enters the Debugger and prints

the warning message. If you continue from the error, warn returns args.

format-string is an error message string.

format-args are additional arguments; these are evaluated only if a condition is

signalled.

Examples:
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�

(defun sum-numbers (list-of-numbers)

  (when (< (length list-of-numbers) 2)

    (warn "You are trying to only add ~D number~:P."

  (length list-of-numbers)))

  (reduce #’+ list-of-numbers))  => SUM-NUMBERS

 

(sum-numbers ’(1)) 

=> Warning: You are trying to only add 1 number.

�

(setq *break-on-warnings* t) => T

�

(sum-numbers ’(1))=>

Warning: You are trying to only add 1 number

�

SUM-NUMBERS:

   Arg 0 (LIST-OF-NUMBERS): (1)

 Debugger was entered because *BREAK-ON-WARNINGS* is set

s-A, <RESUME>: Return from WARN

s-B:           Proceed without any special action

s-C, <ABORT>:  Return to Lisp Top Level in Dynamic Lisp Listener 1

→ Return from WARN

1�

For a table of related items: See the section "Condition-Checking and Signalling

Functions and Variables". 

� what-files-call symbol-or-symbols &optional how Function

Returns a list of the pathnames of all the files that contain functions that who-

calls would have printed out. This is useful if you need to recompile and/or edit

all those files. 

how may be nil, meaning all ways to call the symbol, a keyword, meaning only

find symbol called as keyword, or a list of keywords. The permitted keywords are: 

:variable Uses symbol as a variable.

:function Calls symbol as a function.

:microcoded-function

Calls symbol as an instruction. This is used on 3600-family ma-

chines only.

:constant Uses symbol as a constant.

:instance-variable Uses symbol as an instance variable.

:macro Uses symbol as a macro or optimized function.

:defined-constant Uses symbol as an open coded (defconstant) constant.
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:condition Establishes a condition handler for symbol.

:flavor-component A dependent flavor of symbol.

:generic-function Calls symbol as a generic function.

:constructor Is a constructor function for symbol.

:setf Calls the setf function for symbol.

:locf Calls the locf function for symbol.

:presentation-translator-from

A presentation translator from symbol.

:presentation-translator-to

A presentation translator to symbol.

:defines-instance-variable

A flavor that defines symbol as an instance variable.

� when condition &rest body Macro

The forms in body are evaluated when condition returns non-null. In that case, it

returns the value(s) of the last form evaluated. When condition returns nil, when

returns nil.

Examples:

(when) => error�

(when t "Climb Tree") => "Climb Tree"�

(when (atom ’x) (setq a 1) "foo") => "foo"

a => 1�

(when (eq 1 2) "day" "night") => NIL�

(defun make-even (integer)

  (when (oddp integer) (setf integer (+ integer 1))))

�

(defvar *my-int* 5)

(make-even *my-int*) => 6

(make-even *my-int*) => nil�

Note that the following forms are equivalent, and the when version of these may be

more readable:

(if test (progn form1 form2 form3))

(unless (not test) form1 form2 form3)

(when test form1 form2 form3)�

When body is empty, when always returns nil.

For a table of related items: See the section "Conditional Functions".
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� when keyword for loop

when expr

If expr evaluates to nil, the following clause is skipped, otherwise not.

Examples:

(defun loop1 ()

  (loop for i from 1 to 10

when (= i 5 ) return i

finally (print "Finally triggered"))) => LOOP1

(loop1) => 5

�

(defun loop1 ()

  (loop for i from 1

when (> i 5 ) collect i

until (> i 20))) => LOOP1

(loop1) => (6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)�

Multiple conditionalization clauses can appear in sequence. If one test fails, any

following tests in the immediate sequence, and the clause being conditionalized,

are skipped.

In the typical format of a conditionalized clause such as

when expr1 keyword expr2�

expr2 can be the keyword it. If that is the case, then a variable is generated to

hold the value of expr1, and that variable gets substituted for expr2. Thus, the

composition:

when expr return it�

is equivalent to the clause:

thereis expr�

and one can collect all non-null values in an iteration by saying:

when expression collect it�

If multiple clauses are joined with and, the it keyword can only be used in the

first. If multiple whens, unlesses, and/or ifs occur in sequence, the value substi-

tuted for it is that of the last test performed. The it keyword is not recognized in

an else-phrase.

Conditionals can be nested.

See the section "loop Conditionalization".

� where-is pname Function

Finds all symbols named pname and prints on *standard-output* a description of

each symbol. The symbol’s home package and name are printed. If the symbol is

present in a different package than its home package (that is, it has been import-

ed), that fact is printed. A list of the packages from which the symbol is accessible



Page 1623

is printed, in alphabetical order. where-is searches all packages that exist, except

for invisible packages.

If pname is a string it is converted to uppercase, since most symbols’ names use

uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

The find-all-symbols function is the primitive that does what where-is does with-

out printing anything. 

� :which-operations Message

The object should return a list of the messages and names of generic functions for

which it has methods.

The :which-operations method supplied by flavor:vanilla generates the list once

per flavor and remembers it, minimizing consing and compute time. The list is re-

generated when a new method is added.

For a summary of all functions, macros, special forms, and variables related to

Flavors, see the section "Summary of Flavor Functions and Variables".

� while Keyword for loop

while expr

If expr evaluates to nil, the loop is exited, performing exit code (if any),

and returning any accumulated value. The test is placed in the body of the

loop where it is written. It can appear between sequential for clauses.

Examples:

�

(defun x-power (x)

  (loop for stepper = x then (* stepper x)

while (< stepper 100)

do

    (print stepper))) => X-POWER

(x-power 3) => 

3 

9 

27 

81 NIL

�

� who-calls symbol &optional how Function

Tries to find all the functions in the Lisp world that call symbol. 
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how may be nil, meaning all ways to call the symbol, a keyword, meaning only

find symbol called as keyword, or a list of keywords. The permitted keywords are: 

:variable Uses symbol as a variable.

:function Calls symbol as a function.

:microcoded-function

Calls symbol as an instruction. This is used on 3600-family ma-

chines only.

:constant Uses symbol as a constant.

:instance-variable Uses symbol as an instance variable.

:macro Uses symbol as a macro or optimized function.

:defined-constant Uses symbol as an open coded (defconstant) constant.

:condition Establishes a condition handler for symbol.

:flavor-component A dependent flavor of symbol.

:generic-function Calls symbol as a generic function.

:constructor Is a constructor function for symbol.

:setf Calls the setf function for symbol.

:locf Calls the locf function for symbol.

:presentation-translator-from

A presentation translator from symbol.

:presentation-translator-to

A presentation translator to symbol.

:defines-instance-variable

A flavor that defines symbol as an instance variable.

who-calls takes a single symbol as its argument.

who-calls prints one line of information for each caller it finds. It also returns a

list of the names of all the callers.

who-calls works only on bound symbols. To locate unbound symbols: See the func-

tion si:who-calls-unbound-functions.

The compiler records, as part of its debugging-info property, which macros were

expanded and which functions were optimized away, with the exception of basic

parts of the language, such as car and when. This information is used by who-

calls and similar functions. Thus you can use who-calls for macros. who-calls can

also find callers of open-coded functions, such as substitutable functions.

The who-calls database is created at site configuration time using the function

si:enable-who-calls. See the function si:enable-who-calls.

After you create the database, you should run si:compress-who-calls-database. See

the function si:compress-who-calls-database.
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The editor has a command, List Callers (m-X), that is similar to who-calls. There

is also a Command Processor command:

See the section "Show Callers Command". 

� si:who-calls-unbound-functions Function

Searches the compiled code for any calls through a symbol that is not currently

defined as a function. This is useful for finding errors such as functions whose

names you misspelled or forgot to write.

� &whole Lambda List Keyword

Used with macros only. It should be followed by a single variable that is bound to

the entire macro-call form or subform. This variable is the value that the macro-

expander function receives as its first argument. &whole and its following variable

should appear first in the lambda-list, before any other parameter or lambda-list

keyword. 

� with keyword for loop

with var1 {data-type} {= expr1} {and var2 {data-type} {= expr2}}...

The with keyword can be used to establish initial bindings, that is, vari-

ables that are local to the loop but are only set once, rather than on each

iteration.

The optional argument, data-type, is reserved for data type declarations. It

is currently ignored.

If no expr is given, the variable is initialized to the appropriate value for

its data type, usually nil. with bindings linked by and are performed in

parallel; those not linked are performed sequentially. That is:

(loop with a = (foo) and b = (bar) and c

...)�

binds the variables like:

((lambda (a b c) ...)

 (foo) (bar) nil)�

whereas:

(loop with a = (foo) with b = (bar a) with c ...)�

binds the variables like:

((lambda (a)

   ((lambda (b)

      ((lambda (c) ...)

       nil))

    (bar a)))

 (foo))�
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All expr’s in with clauses are evaluated in the order they are written, in

lambda-expressions surrounding the generated prog. The loop expression:

(loop with a = xa and b = xb

      with c = xc

      for d = xd then (f d)

      and e = xe then (g e d)

      for p in xp

      with q = xq

...)�

produces the following binding contour, where t1 is a loop-generated tem-

porary:

((lambda (a b)

   ((lambda (c)

      ((lambda (d e)

 ((lambda (p t1)

    ((lambda (q) ...)

     xq))

  nil xp))

       xd xe))

    xc))

 xa xb)�

Because all expressions in with clauses are evaluated during the variable-

binding phase, they are best placed near the front of the loop form for

stylistic reasons.

For binding more than one variable with no particular initialization, one

can use the construct:

with variable-list {data-type-list} {and ...}�

as in:

with (i j k t1 t2) (fixnum fixnum fixnum) ...�

A slightly shorter way of writing this is:

with (i j k) fixnum and (t1 t2) ...�

These are cases of destructuring which loop handles specially. See the sec-

tion "Destructuring".

Examples:
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(defun loop1 ()

  (loop for x from 0 to 3

with (a b)

with c = ’(its constant)

with d = ’(another constant)

do

    (setq a (+ x 10))

    (setq b (+ x 20))

    (print (list a b c d)))) => LOOP1

(loop1) => 

(10 20 (ITS CONSTANT) (ANOTHER CONSTANT)) 

(11 21 (ITS CONSTANT) (ANOTHER CONSTANT)) 

(12 22 (ITS CONSTANT) (ANOTHER CONSTANT)) 

(13 23 (ITS CONSTANT) (ANOTHER CONSTANT)) NIL�

See the macro loop.

� sys:with-aborts-enabled (&rest identifiers) &body body Macro

Cancels the effect of one or more invocations of sys:without-aborts.

Each of the identifiers is a symbol that relates this invocation of sys:with-aborts-

enabled to a matching invocation of sys:without-aborts. The innermost

sys:without-aborts with a matching identifier is nullified for the duration of body.

The identifier unwind-protect identifies the automatic sys:without-aborts created

by unwind-protect. It is not possible to nullify a sys:without-aborts without an

identifier.

Use sys:with-aborts-enabled when an operation that is generally unsafe to abort

contains an interval during which the state is consistent and aborting is safe, es-

pecially if an error can be signalled during that interval. In the case of an error,

sys:with-aborts-enabled allows the user to abort without having to interact fur-

ther with the Debugger.

You also use sys:with-aborts-enabled when you don’t need the automatic

sys:without-aborts created by unwind-protect. For example,

(unwind-protect (do-something)

  (sys:with-aborts-enabled (unwind-protect)

    (clean-up-something)))�

If the cleanup form contained an explicit sys:without-aborts, to specify a specific

reason why it should not be aborted instead of the default generic reason, the

sys:with-aborts-enabled must specify the identifiers of both the explicit and the

implicit sys:without-aborts. For example,
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(unwind-protect (do-something)

  (sys:without-aborts

      (foo "The floor is being cleaned up.

Aborting now could leave a serious mess that will cause

trouble if you enter this room again later.")

    (do-something-not-abortable)

    (sys:with-aborts-enabled (foo unwind-protect)

      (do-something-abortable))))�

See the function sys:without-aborts.

For a table of related items, see the section "Nonlocal Exit Functions". 

� clos:with-accessors slot-entries form &body body Macro

Creates a lexical environment in which accessors can be called as if they were

variables. A reader can be called by using the variable, and a writer can be called

by using setf or setq with the variable. 

slot-entries Each slot-entry is a list of the form:

(variable-name reader-name)�

The reader-name is the name of a reader generic function, and

variable-name is the name of a variable which will call the

reader. Note that setf or setq may also be used with this vari-

able, to call the corresponding writer. 

form A form that evaluates to the object whose accessors should be

made available.

declarations The clos:with-accessors syntax allows declarations to appear

before the body.

body Within the lexical context of the body, the variables can be

used to call the accessors.�

� clos:with-added-methods Special Form

Symbolics CLOS does not support clos:with-added-methods. 

� dbg:with-erring-frame (frame-var condition) &body body Macro

Sets up an environment with appropriate bindings for using the rest of the func-

tions that examine the stack. It binds frame-var with the frame pointer to the

stack frame that signalled the error. 

frame-var is always a pointer to an interesting stack frame.

condition is the condition object for the error, which was the first argument given

to the condition-bind handler.
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(defun my-handler (condition-object)

   (dbg:with-erring-frame (frame-ptr condition-object)

       body...))�

Inside body, the variable frame-var is bound to the frame pointer of the frame

that got the error.

Sometimes, you might want to use the special variable dbg:*current-frame* as

frame-var because some functions expect this special variable to be bound to the

stack frame that signalled the error. 

You would use this special variable if you are sending the :bug-report-description

message to the condition object, which calls stack-examination routines that depend

on the idea of a current frame, in addition to the other things that dbg:with-

erring-frame sets up. :bug-report-description is the message that generates the

text that the :Mail Bug Report command (c-M) puts in the mail composition win-

dow. See the generic function dbg:bug-report-description.

For a table of related items: See the section "Functions for Examining Stack

Frames". 

� sys:with-indentation (stream-var relative-indentation) &body body Function

Within the body of sys:with-indentation, any output to stream-var is preceded by a

number of spaces. At every recursion, the additional indentation is specified by rel-

ative-indentation. The macro does not work this way with the :item message used

to display mouse-sensitive items; the items appear, but without indentation. (See

the section "Interactive Streams and Mouse-Sensitive Items".)

(defun traced-factorial (n)

  (format t "~%Argument:  ~D" n)

  (sys:with-indentation (*standard-output* 2)

    (let ((value (if (≤ n 1)

     1

     (* n (traced-factorial (1- n))))))

      (format t "~%Value:  ~D" value)

      value)))

�

(traced-factorial 5)
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�

Argument:  5

  Argument:  4

    Argument:  3

      Argument:  2

        Argument:  1

        Value:  1

      Value:  2

    Value:  6

  Value:  24

Value:  120

120

�

� flavor:with-instance-environment (instance env) &body body Macro

Within the body, the variable env will be bound to an interpreter environment for

the specified instance. The primary use of this is to create a listener loop like that

of the debugger when examining a method, in which you can reference an in-

stance’s instance variables and internal functions directly.

� clos:with-slots slot-entries form &body body Macro

Creates a lexical environment in which slots can be accessed as if they were vari-

ables. The access to these slots is accomplished by calling clos:slot-value. The

slots can be read (by using the variable) or written (by using setf or setq with the

variable). 

slot-entries Each slot-entry is one of the following:

slot-name

(variable-name slot-name)�

The slot-name is the name of a slot. If it is given alone, then

it can be accessed by the variable with the same name as the

slot. If it is given in the list format, then it can be accessed by

the given variable-name.

form A form that evaluates to the object whose slots should be made

available.

declarations The clos:with-slots syntax allows declarations to appear before

the body.

body Within the lexical context of the body, the variables can be

used to call clos:slot-value to access the slots. �

� sys:with-table-locked (table) &body body Function
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Locks a table around body. 

� sys:without-aborts ([optional-identifier] reason &rest format-args) &body body�

Function

Encloses code that should not be aborted. sys:without-aborts intercepts abort at-

tempts by user action (such as c-ABORT), but not abort attempts by program action

(such as throw).

When the macro is activated, it uses reason, a format-control string, and format-

args, additional arguments, to display an explanation of why it is sensitive to the

current abort request and what the consequences of aborting now would be.

Phrase this explanation so that it is as useful and meaningful as possible to the

user who is trying to abort the program. Giving the user the information needed

to decide whether to leave the program running or to force it to abort is more im-

portant than conciseness. See the example given below.

optional-identifier is optional and usually omitted. If present, optional-identifier is a

symbol that relates this invocation of sys:without-aborts to a matching invocation

of sys:with-aborts-enabled. See the macro sys:with-aborts-enabled.

Use sys:without-aborts to protect those parts of your program, such as manipula-

tions of global data structures, that cannot be aborted partway through their exe-

cution without damaging the program. You don’t need sys:without-aborts if abort-

ing the program would not cause a future execution of it to operate incorrectly.

If a program remains unsafe to abort for only a brief time, c-ABORT simply waits

until the program leaves the body of sys:without-aborts and then aborts it.

c-ABORT displays reason and queries the user only if the program remains inside

sys:without-aborts for too long.

If a program enters the Debugger while inside sys:without-aborts, and you invoke

a restart option that would throw through the sys:without-aborts, aborting the ex-

ecution of body, the Debugger displays reason and queries you. In this case waiting

until the program leaves body is not possible because the program is already

stopped and sitting in the Debugger.

sys:without-aborts is automatically wrapped around all unwind-protect cleanup

forms; this decreases the probability of leaving an unwind-protect without com-

pletely executing its cleanup forms. When sys:without-aborts is invoked during an

unwind-protect, optional-identifier is unwind-protect and reason is a generic ex-

planation supplied by the system. 

You can specify a more precise description of why the cleanup forms of this

unwind-protect are not safe to abort by invoking sys:without-aborts explicitly.

You can also specify that the cleanup forms are safe to abort by invoking sys:with-

aborts-enabled with unwind-protect as an identifier.

The function process-abort, used by the various abort keys, respects sys:without-

aborts, waiting until the process is abortable, and asking the user what to do if

the process is still not abortable after a timeout. See the section "Obsolete Process

Functions".
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Example:

(sys:without-aborts

  ("The ~:R widget data base is being ~(~A~)d.~@

    Aborting this could leave the data base in an inconsistent state,~@

    and future operations on widgets might fail in unpredictable ways."

   2 :update)

  (+ 1 ’foo))

Trap: The second argument...

s-A, <RESUME>:   Supply replacement argument

s-B:             Return a value from the +-INTERNAL instruction

s-C:             Retry the +-INTERNAL instruction

s-D, <ABORT>:    Return to Dynamic Lisp Top Level in Dynamic Lisp Listener 2

s-E:             Restart process Dynamic Lisp Listener 2

-->Abort Abort

Return to Dynamic Lisp Top Level in Dynamic Lisp Listener 2

�

The program cannot safely be aborted at this time.

  The second widget data base is being updated.

  Aborting this could leave the data base in an inconsistent state,

  and future operations on widgets might fail in unpredictable ways.

Do you want to Skip or Abort? (press <HELP> for help) <HELP>

The current program operation is one that the programmer expected

to run to completion.  Aborting this operation partway through

could leave the program in an inconsistent state and interfere

with its proper operation.

Your choices are:

�

   Skip   Abandons this attempt to abort the program.

   Abort  Aborts the program by force, accepting the risk of damage.

�

Do you want to Skip or Abort? Abort

�

Back to Dynamic Lisp Top Level in Dynamic Lisp Listener 2.

�

The example assumes the user of this program knows what widgets are and what

a widget data base is. If this is not the case, the reason string should include a

brief explanation. 

In this example, the Debugger offers you two choices. If you select Skip, you can

use one of the first two proceed options to correct the error in the program and

continue execution. If you select Abort, you accept the possibility that the program

won’t work correctly in the future.

If the program had been aborted with c-ABORT, you would have been offered addi-

tional choices, as follows:

Skip Abandons this attempt to abort the process.
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Wait Waits until the process reaches a point where it can safely be

aborted. Offers these choices again if five seconds elapse and it

still cannot be aborted.

Wait indefinitely Keeps waiting for as long as it takes. Another attempt to abort

stops waiting and offers these choices again.

Abort Aborts the process by force, accepting the risk of damage.

Debug Enters the Debugger for detailed investigation.�

For a table of related items, see the section "Nonlocal Exit Functions". 

� without-floating-underflow-traps &body body Special Form

Inhibits trapping of floating-point exponent underflow traps within the body of the

form. The result of a computation which would otherwise underflow is a denormal-

ized number or zero, whichever is closest to the mathematical result.

Example: 

(describe (without-floating-underflow-traps (expt .1 40))) => 

1.0e-40 is a single-precision floating-point number.

  Sign 0, exponent 0, 23-bit fraction 213302 (denormalized)

1.0e-40�

� write object &key :stream :escape :radix :base :circle :pretty :level :length :case :gen-

sym :array :integer-length :array-length :string-length :bit-vector-length :abbreviate-

quote :readably :structure-contents :exact-float-value Function

The printed representation of object is written to the output stream specified by

:stream, which defaults to the value of *standard-output*, or *terminal-io* if

:stream is t.

The other keyword arguments specify values used to control the generation of the

printed representation. Each defaults to the corresponding global variable: see

*print-escape*, *print-radix*, *print-base*, *print-circle*, *print-pretty*, *print-

level*, *print-length*, *print-case*, *print-gensym*, *print-array*, *print-

integer-length*, *print-array-length*, *print-string-length*, *print-bit-vector-

length*, *print-abbreviate-quote*, *print-readably*, *print-structure-contents* ,

and *print-exact-float-value*. Note that the printing of symbols is also affected by

the value of the variable *package*.

write returns object. For example:

(write "A simple string") => "A simple string"

"A simple string"�

:readably, :array-length, :string-length, :bit-vector-length, :structure-contents,

:abbreviate-quote, and :exact-float-value are all Symbolics extensions to Common

Lisp. 



Page 1634

(let ((*print-escape* t) (s "foo"))

 (terpri)

 (write s)

 (write-char #\Space)

 (prin1 s)

 (write-char #\Space)

 (princ s)

 nil)

"foo" "foo" foo

=> NIL

�

(let ((*print-escape* nil) (s "foo"))

 (terpri)

 (write s)

 (write-char #\Space)

 (prin1 s)

 (write-char #\Space)

 (princ s)

 nil)

foo "foo" foo

=> NIL�

� write-byte integer binary-output-stream Function

Writes one byte, the value of integer to binary-output-stream. It is an error if inte-

ger is not of the type specified as the :element-type argument to open when the

stream was created. write-byte returns integer.

(with-open-file (s "data.file" 

   :direction :output

   :element-type ’(unsigned-byte 2))

  (write-byte 1 s)

  (write-byte 3 s)

  (write-byte 2 s))

=> 2

�

(with-open-file (s "data.file" 

   :direction :input

           :element-type ’(unsigned-byte 2))

  (list (read-byte s) (read-byte s) (read-byte s)))

=> (1 3 2)�

� write-char character &optional output-stream Function

Outputs character as a printing character to output-stream, and returns character

as a character object. character must be a character object. For example:
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(write-char #\a) => a

#\a�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

is *terminal-io*.

(with-output-to-string (s)

  (princ "foo" s)

  (write-char #\Space s)

  (princ "bar" s))

=> "foo bar"�

� write-line string &optional output-stream &key (start 0) end Function

Writes the characters of the specified substring of string to output-stream, followed

by a newline. The :start and :end parameters delimit a substring of string. write-

line returns string. For example:

(write-line "hello") => hello

"hello"

�

(setq stream (make-string-output-stream))

  => #<LEXICAL-CLOSURE CLI::STRING-OUTPUT-STREAM 35643762>

�

(write-line "two words" stream :start 4)

  => "two words" ;returns the full string

�

(get-output-stream-string stream)

 => "words

" ;writes the substring plus NEWLINE to the stream�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

is *terminal-io*.

(with-output-to-string (s)

  (write-line "foo" s)

  (write-line "bar" s)

  (write-line "baz" s))

=> "foo

bar

baz

"�

� write-string string &optional output-stream &key (:start 0) :end�

Function

Writes the characters of the specified substring of string to output-stream, without

a following newline. The :start and :end parameters delimit a substring of string.

write-string returns string. For example:
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(write-string "hello") => hello"hello"

�

(setq s (make-string-output-stream))

  => #<LEXICAL-CLOSURE CLI::STRING-OUTPUT-STREAM 14372772>

�

(write-string "two words" s :start 4)

  => "two words" ;returns the full string

�

(get-output-stream-string s)

  => "words" ;writes the substring to the stream�

output-stream, which, if unspecified or nil, defaults to *standard-input*, and if t,

is *terminal-io*.

(with-output-to-string (s)

  (write-string "foo" s)

  (write-char #\Space s)

  (write-string "bar" s))

=> "foo bar"�

� write-to-string object &key :escape :radix :base :circle :pretty :level :length :case :gen-

sym :array :integer-length :array-length :string-length :bit-vector-length :abbreviate-

quote :readably :structure-contents :exact-float-value�

Function

The object is printed as if by write, and the characters that would be output are

made into a string, which is returned. The other keyword arguments specify values

used to control the generation of the printed representation. See the function

write and see CLtL 384.

For example:

(write-to-string ’|red|) => "|red|"�

(let ((*print-escape* t))

 (list (write-to-string #\A)

       (progn (setq *print-escape* nil) (write-to-string #\A))))

=> ("#\\A" "A")�

� xcons y x Function

Creates an "exchanged cons", one whose car is x and whose cdr is y. Example:

(xcons ’a ’b) => (b . a)�

xcons is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 
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� xcons-in-area y x area Function

Creates an "exchanged cons", one whose car is x and whose cdr is y, in the speci-

fied area. (Areas are an advanced feature of storage management. See the section

"Areas".)

xcons-in-area is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and

Conses". 

� zerop number Function

Returns t if number is zero, otherwise nil. If number is not a number, zerop sig-

nals an error. 

For floating-point numbers, this only returns t for exactly 0.0, -0.0, 0.0d0 or

-0.0d0; there is no "fuzz". For complex numbers, both real and imaginary parts

must be zero.

(zerop 0.0) => t

(zerop #c(0 0)) => t�

For a table of related items, see the section "Numeric Property-checking Predi-

cates".




