Symbolics Common Lisp Dictionary

number &rest numbers Function

In your new programs, we recommend that you use function =, which is the Com-
mon Lisp equivalent of =

Returns t if number is not numerically equal to any of numbers, and nil otherwise.
Either argument can be of any numeric type.

< number &rest more-numbers Function

In your new programs, we recommend that you use function <=, which is the Com-
mon Lisp equivalent of <.

< compares its arguments from left to right. If any argument is greater than the
next, < returns nil. But if the arguments are monotonically increasing or equal,
the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
Examples:

(£5) =>T

(£123) =>T

(£36 2 8) => NIL

(£56.3) =>T

> number &rest more-numbers Function

In your new programs, we recommend that you use function >= which is the Com-
mon Lisp equivalent of >,

> compares its arguments from left to right. If any argument is less than the next,
> returns nil. But if the arguments are monotonically decreasing or equal, the re-
sult is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
Examples:

(28) =>T

(23221 =>1T

(>5 46 2) => NIL

(> 6.02s23 6.02d23) => T

+ &rest numbers Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which
is the identity for this operation. An error signals if any argument is a non-
number.

Page 836

If the arguments are of different numeric types, they are converted to a common
type, which is also the type of the result. See the section "Coercion Rules for
Numbers".

Examples:
(+) => 0
(+ -8) => -8

(+1234) =>18
(+ 2 5.9) => 7.9
(+ 5/2 2 2/3) => 31/6

When using Genera, the following functions are synonyms of + :

zl:plus
zl:+$

For a table of related items, see the section "Arithmetic Functions".

+ Variable

While a form is being evaluated by a read-eval-print loop, + is bound to the previ-
ous form that was read by the loop. Variable ++ is likewise bound to the penulti-
mate evaluated form, and +++ to the form whose evaluation is removed from the
form currently undergoing evaluation.

(floor 5 2) => 2 1
(eval +) => 2 1

++ Variable

Holds the previous value of +, that is, the form evaluated two interactions ago.

+++ Variable

Holds the previous value of ++, that is, the form evaluated three interactions ago.

zl:+$ &rest args Function

Returns the sum of its arguments. If there are no arguments, it returns 0, which
is the identity for this operation.

The following functions are synonyms of zl:+$:

zl:plus
+

- number &rest more-numbers Function

Page 837

With only one argument, returns the negative of its argument. With more than
one argument, - returns its first argument minus all of the rest of its arguments.
In this way, - serves the dual function of a unary minus and polyadic minus.
However, this can cause confusion, particularly when used with apply or given an
unexpected number of arguments.

If the arguments are of different numeric types they are converted to a common
type, which is also the type of the result. See the section "Coercion Rules for
Numbers".

Examples:
(- 8) => -8
(- 93) =>6

(-9421) =>2
(- #C(3 4) 4) => H#C(-1 4)
(- 9 5/68) => 49/6
(-1234) => -8

When using Genera, the following function is a synonym of - :
z1:-$

For a table of related items, see the section "Arithmetic Functions".

- Variable

While a form is being evaluated by a read-eval-print loop, - is bound to the form
itself.

(print -) prints: (print -)

zl:-$ arg &rest args Function

With only one argument, returns the negative of its argument. With more than
one argument, zl:-§ returns its first argument minus all the rest of its arguments.

The following function is a synonym of zl:-$§ :

z1:/ number &rest more-numbers Function

In your new programs, we recommend that you use the function /, which is the
Common Lisp equivalent of the function /.

With more than one argument, / is the same as zl:quotient; it returns the first ar-
gument divided by all of the rest of its arguments. With only one argument, (/ x)
is the same as (/ 1 x).

With integer arguments, / acts like truncate, except that it returns only a single
value, the quotient.

Page 838

Note that in Zetalisp syntax / is the quoting character and must therefore be dou-
bled.

Examples:
(z1:/ 3 2) =>1 ;Integer division truncates.
(z1:/ 3 -2) => -1
(z1:/ -3 2) => -1
(z1:/ -3 -2) => 1
(z1:7 3 2.8) => 1.5
(z1:/ 3 2.08d8) => 1.5d8@
(z1:/ 4 2) => 2
(z1:7 12. 2. 3.) => 2
(z1:/ 4.8) => .25

The following function is a synonym of / :
z1:/$

For a table of related items, see the section "Arithmetic Functions".

/ number &rest more-numbers Function

With more than one argument, / successively divides the first argument by all the
others and returns the result. With one argument, / returns the reciprocal of the
argument: (/ x) is the same as (/ 1 x). If the arguments are of different numeric
types, they are converted to a common type, which is also the type of the result.
See the section "Coercion Rules for Numbers".

/ follows normal mathematical rules, so if the mathematical quotient of two inte-
gers is not an exact integer, the function returns a ratio. To obtain an integer re-
sult, use one of these functions: floor, ceiling, truncate, round.

(/7 4) => 1/4

(/ 4.8) => 0.25

(/93 =>3

(/ 18 4) => 9/2 ;returns rational number in canonical form
(/ 181 18.8) => 10.1 ;applies coercion rules

(/ 181 18) => 181/10

(/ 24 4 2) => 3

(/ 36. 4. 3.) => 3

(/ 36.8 4.8 3.8) => 3.0

(/ #ic(1 1) f#fic(1 =-1)) => ffc(@ 1)
(/ #c(3 4) 5) => #c(3/5 4/5)

For a table of related items, see the section "Arithmetic Functions".

z1:/$ arg &rest args Function

With more than one argument, zl-user:$ is the same as zl:quotient; it returns the
first argument divided by all of the rest of its arguments. With only one argu-
ment, (zl-user:$ x) is the same as (zl-user:$ 1 x).

Page 839

With integer arguments, zl-user:$ acts like truncate, except that it returns only a
single value, the quotient.

Note that in Zetalisp syntax zl:/ is the quoting character and must therefore be
doubled.

The following function is a synonym of zl-user:$:
zl:/

/= number &rest numbers Function

Returns t if all arguments are not equal, and nil otherwise. Arguments can be of
any numeric type; the rules of coercion are applied for arguments of different nu-
meric types.

Two complex numbers are considered = if their real parts are = and their imagi-
nary parts are =.

Examples:
(/= 4) => T
(/= 4 4.8) => NIL
(/= 4 #c(4.8 B)) => NIL
(/= 4 5) => T
(/=4567) =>T
(/=456 74) => NIL
(/=45 4 7 4) => NIL
(/= #c(3 2) #c(2 3) #c(2 =3)) => T
(/= #c(3 2) #c(2 3) #c(2 -3) #c(2 3.8)) => NIL

When using Genera, the following function is a synonym of /= :
+*

For a table of related items, see the section "Numeric Comparison Functions".

/ Variable

While a form is being evaluated by a read-eval-print loop, / is bound to a list of
the results printed the last time through the loop.

If you are using CLOE, variable / is bound to the list of values returned by the
last evaluated form. Variable // is bound to the list of values returned by the
penultimate evaluated form, and variable /// is bound to the list of values re-
turned by the form evaluated three before the current form.

(floor 5 2) => 2, 1
/= (2 1)

/! Variable

Page 840

Holds the previous value of waser::////////////////, that is, the list of results printed two
times through the loop ago.

n Variable

Holds the previous value of waser:://///II11HHHHTTTTTTTTHIIIIINIII, that is, the list of results
printed three times through the loop ago.

< number &rest more-numbers Function

Compares its arguments from left to right. If any argument is not less than the
next, < returns nil. But if the arguments are monotonically strictly increasing, the
result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:

(<« 34) =T

(< 11.8) => NIL

(< B8 1/22.834) =T
(< 81324 =>NIL

(< 572 5) => t

(< 33.12) => t

When using Genera, the following function is a synonym of < :

zl:lessp

For a table of related items, see the section "Numeric Comparison Functions".

<= number &rest more-numbers Function

Compares its arguments from left to right. If any argument is greater than the
next, <= returns nil. But if the arguments are monotonically increasing or equal,
the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:
(<= 8) =T
(<= 34) =T
(<= 1) =>1T
(<= 1.8) => T
(<=81/22.834) =>1T

(<= 1334) =T
(<= 5/2) => nil

1
1
0
(<=2 1 32 4) => NIL
0
5
(<= 33.83.54) =>t

Page 841

When using Genera, the following function is a synonym of <= :

<

For a table of related items, see the section "Numeric Comparison Functions".

= number &rest more-numbers Function

Tests for numeric equality of numbers, and works for any type of number. Differs
from eq in that non-identical but numerically equal numbers will not be eq but
will be =. Differs from eql in that numerically equal numbers need not be of the
same type to be =. Returns t if all arguments are numerically equal.

= takes arguments of any numeric type; the arguments can be of dissimilar numer-
ic types.
Examples:

(=8) =>1T

(= 3 4) => NIL

(=33.03.8d8) =>T

(=4 #C(4 9) }#C(4.0 0.9) #§iC(4.0d0 B.0d0)) => T

(=9 0.9) => t

(= #c(1 2) #c(1.8 2.8)) => t
For a discussion of non-numeric equality predicates, see the section "Comparison-
performing Predicates".

For a table of related items, see the section "Numeric Comparison Functions".

> number &rest more-numbers Function

Compares its arguments from left to right. If any argument is not greater than
the next, > returns nil. But if the arguments are monotonically strictly decreasing,
the result is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:

(>43.8) =T
(>4321/20) =T
(>431280) =>NIL
(>4 3) =>t

(>3 32) => nil

When using Genera, the following function is a synonym of > :

zl:greaterp

For a table of related items, see the section "Numeric Comparison Functions".

>= number &rest more-numbers Function

Page 842

Compares its arguments from left to right. If any argument is less than the next,
>= returns nil. But if the arguments are monotonically decreasing or equal, the re-
sult is t.

Arguments must be noncomplex numbers, but they need not be of the same type.
An error is returned if any of the arguments are complex or not numbers.

Examples:
(>=8) =T
(>=43.0) =T
>=432180) =T
(>=42318) =>NIL
(> 43321/28) =>7T
(>=43) => 1t
(>>332) =>1

When using Genera, the following function is a synonym of >= :

>

For a table of related items, see the section "Numeric Comparison Functions".

zl:\ x y Function

In your new programs, we recommend that you use either the function rem or

remainder which are the Common Lisp equivalents of the function zI-

LS 111 TTLTTLTITYATEEALL AL EALULELEAEE LU AR
IAAAAUAL AU LR
ALV
AL
AL LU AEEUALEE AL
AU/
AL A
AU ALV
AL LA LDLUEAEALUELULAAEEALEELELELDLEUAEEAEEALEULE A LEELEUEALEELLEELLLALAA
ALV REAAAANEL AL TAELAEL AR BT TR IIIIIY

Returns the remainder of x divided by y. x and y must be integers.

zl-

18 57537 4 |11 11UULETATALAAAAL AN E LA AUAARRR UL T UAAARAA AL AL EUEUAARA AU TR UL UL E LR TR LRI
ALV EE U EEEUEEL AL EEEUEE LA EREUR LA
AUV EEE LR EEE VLT EEEUU AL EEEUEELALLREUEEL AL
LTV EE LT ALEEEUU AL EEEU LA LREUE LA
ULV TR EEEEEU R EEEU UL EEEUU LA ETEU LA LREUE AL
UL EUUUEEEUUEEEEEEU LR EE UL EEEUE AL EEEEU AL EEEE LA LREUE LA
AU UUUEEEEEEVUUEEEEUEEEEE LR LR ALEEEEE AL EEEE LA LREUR LA
AUV EVUUEEEEUEUEEEEEEE LR AT LEEEEEU AL AALEEEUE AL EEEU LA ALLREUR LA
XA EEE AT EE LT EE UL EEEUE DAL TR TLR UL
AU EEE LA EEEUEEAAA LA EEEEE AU LT LR ERERE LA LLRR R AL

acts like truncate, except that it returns only a single value, the remainder.

Page 843

Examples:

(z1:\\ 3 2) => 1
(zT:\\ =3 2) => -1
(zT:\\ 3 -2) => 1
(z1:\\ -3 -2) => -1

The following functions are synonyms for zl-

TS/@12A11TTLTTIELATEEEAAL LUV TR
L1V
ALV TR LT LAV
ALV
ALV
ALV LR LA
L1 R TARRLTLRARELEURTRLARTLARELLEAAEERLEAREREARERARELREAREERLAAREREEAARELARELRLRAR LRI
AL 1L U AT LTAAAE AU UL TR AR TR
L1 LA LTLAAAE AR UL LR UL
LA AL ULV AL AL

rem
zl:remainder

Note: In programs using the Zetalisp syntax you would represent zl-

18 £5753 4 | 11111 ANTATALAAAA AL ELAAUUAAR AR UL TATAAARAA AL RAUUEUAAAA AU LALUEAA AU UL UL TR E LR TR AR
LUV EVUUEEEEUEEEEE VLR UUEEEE UL EEEUEEUALEEEUU AL EEEUEELAALLREUR AL
AUV LR AEEEEEE LR ALEEEEUEE A EEEEEEEE AL EEEUEEELAALLEEUR LA
AL UL EUUEEEEUUEEEEUEUUEEEEE LR LLEEEEUE LTI LLEEEUE AL LTI AL
NV EEEEE AL EE UL TR LA LRERELL ALV
LA LE LUV EEEEU AU EE AL EE LA EEEUEUEAALE TR LA LLRERELL AL
AL UL EE UL EE UL EEEUE AL EEEUEE AT LRERELLA ALV
ALV EEELE TR EEEEELAA LU EEEUELELAA LR AL
ALV EE AR EEE AU EE AR EEEU DAL LR U LA LREUELL AR
XUV EE UL EE UL LAV

as \. The function is represented here as zl-

18 57537 4 11 1ILLVETATALAAAAARE UL AU AAAAR VR UL TLUAAARA AR ULEUAAUAUETALUEL AU UL UL LT LR E LRI
ALV EEUEUA UL EEEU AR UL LU EREUEELAA LRV
ALV EEE AT EE AR LT EREULELAALLRERE DAL LLR AR
ALV UAEE UL UL EE UL EEEEEEAAL LT EEEUUEEL AL RN
ULV EEEEEEL LA EEEU LA EEEUEELAARLREUE AL
ALV EE UL LU LT EEEUUEEL LA LREU LA
AU R EEEEEE UL LR EEEUUEE AL EEEUEE LA LREUR AL
AUV LU EEEE AR EE LT LR ETEUEELLALLREUE LA
ALV AAEEEEEE AT EEEEU AL ETEU LA LREUE LA LLRN A
AU VUEEREEUEEEEUUEEEEE VAR EEEEEAEEEEU ARV EEEUE LA TR AL TR ATV

because all objects in this manual are represented as if printed by prinl with

package bound to the Common Lisp readtable. In Common Lisp, the backslash

character (\) is the escape character and must be doubled.

zl:\\ x v &rest args Function

Page 844

Returns the remainder of x divided by y. The arguments must be integers.
The following functions are synonyms of \\:

zl:remainder
rem

We recommend that you use rem in new programs.

Note: In programs using the Zetalisp syntax you would represent \\ as \. The func-
tion is represented here as \\ only because all objects in this manual are represent-
ed as if printed by prinl with *package* bound to the Common Lisp readtable. In
Common Lisp, the backslash character (\) is the escape character and must be
doubled.

zl:~ x y Function

Returns x raised to the yth power. The result is an integer if both arguments are
integers (even if y is negative!) and floating-point if either x or y or both is float-
ing-point. If the exponent is an integer a repeated-squaring algorithm is used,
while if the exponent is floating the result is (exp (* y (log x))).

The following functions are synonyms of zl:~ :

zl:expt
z1:~$

zI:*$ x y Function

Returns x raised to the yth power. The result is an integer if both arguments are
integers (even if y is negative!) and floating-point if either x or y or both is float-
ing-point. If the exponent is an integer a repeated-squaring algorithm is used,
while if the exponent is floating the result is (exp (* y (log x))).

The following functions are synonyms of zl:*$:

zl:expt
zl:»

* &rest numbers Function

Returns the product of its arguments. If there are no arguments, it returns 1,
which is the identity for this operation.

If the arguments are of different numeric types they are converted to a common
type, which is also the type of the result. See the section "Coercion Rules for
Numbers".

Examples:

Page 845

(x) =>1

(x 4 6) => 24

(x 1234) =>24

(x 2.5 4) => 10.0

(x 3.08s4 10) => 300000.0
(x 1.8 2.8 3/2 4/3) => 4.0

(x #c(1.9 2.8) 3/2 #c(2 4/3)) => #c(-1.8 8.0)
When using Genera, the following functions are synonyms of * :

zl:times

z1:*$

For a table of related items, see the section "Arithmetic Functions".

% Variable

While a form is being evaluated by a read-eval-print loop, * is bound to the result
printed the last time through the loop. If several values were printed (because of a
multiple-value return), * is bound to the first value. If no result was printed, * is
not changed. Variable ** is bound to the value returned by the penultimate evalu-
ated form, and *** is bound to the value returned by the form evaluated three be-
fore the current form. The star forms always return only a single value.

(floor 5 2) => 2, 1
x => 2

g Variable

Holds the previous value of *, that is, the result of the form evaluated two interac-
tions ago.

g Variable

Holds the previous value of #**, that is, the result of the form evaluated three in-
teractions ago.

z1:*$ &rest args Function

Returns the product of its arguments. If there are no arguments, it returns 1,
which is the identity for this operation.

The following functions are synonyms of zl:*$:

zl:times
£

1+ number Function

Page 846

(14+ number) is the same as (+ number 1).
Examples:

(1+ 5) => 6
(1+ 3.0d8) => 4.8de

(1+ 3/2) => 5/2

(1+ #C(4 5)) => #C(5 5)

When using Genera, the following functions are synonyms of 1+ :

zl:add1
z1:1+$

For a table of related items: See the section "Arithmetic Functions".

z1:1+$ x Function
(z1:1+$ x) is the same as (+ x 1).

The following functions are synonyms of zl:1+$:

zl:add1
1+

1- number Function

(1- number) is the same as (- number 1). Note that this name might be confusing:
(1- number) does not mean 1 - number; rather, it means number - 1.
Examples:

(1- 9) => 8

(1- 4.9) => 3.0

(1- 4.9d8) => 3.8de

(1- #C(4 5)) => HC(3 5)

When using Genera, the following functions are synonyms of 1- :

zl:subl
7z1:1-$

For a table of related items: See the section "Arithmetic Functions".

z1:1-$ x Function
(z1:1-$ x) is the same as (- x 1).

The following functions are synonyms of zl:1-$:

zl:subl
1-

sys:%ld-aloc array index Function

Page 847

Returns a locative pointer to the array element-cell selected by the index. sys:%1d-
aloc is like zl:aloc, except that it ignores the the number of dimensions of the ar-
ray and acts as if it were a one-dimensional array by linearizing the multidimen-
sional elements.

Current style suggests that you should use (loef (sys:%ld-aref |...|)) instead of
sys:%ld-aloc.

When using sys:%l1d-aloc it is necessary to understand how arrays are stored in
memory: See the section "Row-major Storage of Arrays".

For an example of accessing elements of a multidimensional array as if it were a
one-dimensional array: See the function sys:%1d-aref.

For a table of related items: See the section "Accessing Multidimensional Arrays
as One-dimensional".

sys:%ld-aref array index Function

Returns the element of array selected by the index. sys:%ld-aref is the same as
aref, except that it ignores the number of dimensions of the array and acts as if it
were a one-dimensional array by linearizing the multidimensional elements. copy-
array-portion uses this function.

For example:

(setq xarrayx (make-array ’(20 30 50))) => H<Art-Q-20-30-50 5023116>
(setf (aref xarrayx 5 6 7) ’foo) => FOO

;;; The following three forms have the same effect.

(aref xarrayx 5 6 7) => FOO

(sys:%1d-aref xarrayx (+ (x (+ (x 5 30) 6) 50) 7)) => FOO
(sys:%1d-aref xarrayx (array-row-major-index xarrayx)) => F0O
(sys:%1d-aref xarrayx (array-row-major-index xarrayx 5 6 7)) => FO0O

When using sys:%l1d-aref it is necessary to understand how arrays are stored in
memory: See the section "Row-major Storage of Arrays".

For a table of related items: See the section "Accessing Multidimensional Arrays
as One-dimensional".

sys:%ld-aset value array index Function

Stores a value into the specified array element, selected by the index. sys:%1d-aset
is the same as zl:aset, except that it ignores the number of dimensions of the ar-
ray and acts as if it were a one-dimensional array.

copy-array-portion uses this function.

Current style suggests that you should use (setf (sys:%ld-aref |...|)) instead of
sys:%ld-aset.

Page 848

When using sys:%ld-aset it is necessary to understand how arrays are stored in
memory: See the section "Row-major Storage of Arrays".

For an example of accessing elements of a multidimensional array as if it were a
one-dimensional array: See the function sys:%1d-aref.

For a table of related items: See the section "Accessing Multidimensional Arrays
as One-dimensional".

2d-array-blt alu nrows ncolumns from-array from-row from-column to-array to-row
to-column Function

Copies a rectangular portion of from-array into a portion of fo-array. 2d-array-blt
is similar to bitblt but takes (row,column) style arguments on two-dimensional ar-
rays, while bitblt takes (x,y) arguments on rasters.

The number of columns in from-array times the number of bits per element must
be a multiple of 32. The same is true for to-array.

This can be used on sys:art-fixnum or sys:art-lb, sys:art-2b,... sys:art-16b arrays.
It can also be used on sys:art-q arrays provided all the elements are fixnums.

For a table of related items: See the section "Copying an Array".

Sys:%32-bit-difference fixnumi fixnum?2 Function

Returns the difference of fixnumil and fixnum?2 in 32-bit two’s complement arith-
metic. Both arguments must be fixnums. The result is a fixnum.

For a table of related items, see the section "Machine-Dependent Arithmetic Func-
tions".

sys:%32-bit-plus fixnuml fixnum?2 Function

Returns the sum of fixnumi and fixnum2 in 32-bit two’s complement arithmetic.
Both arguments must be fixnums. The result is a fixnum.

For a table of related items, see the section "Machine-Dependent Arithmetic Func-
tions".

abs number Function

Returns |number|, the absolute value of number. For noncomplex numbers, abs
could have been defined by:

(defun abs (number)
(cond ((minusp number) (minus number))
(t number)))

Note that if number is equal to negative zero in IEEE floating-point format the
above algorithm returns -0.0.

Page 849

For complex numbers, abs could have been defined by:
(defun abs (number)

(sqrt (+ (T (realpart number) 2) (= (imagpart number) 2))))
(abs 81) => 81

(abs -81.8) => 81.8

(abs f#ic(3 4)) => 5.0
See the function phase.

For a table of related items, see the section "Arithmetic Functions".

acons key datum alist Function

Constructs a new association list by adding the pair (key . datum) onto the front of
alist. acons returns a new association list which has the new key and datum pair
added to it. See the section "Association Lists". This is equivalent to using the
cons function on key and datum, and consing it onto the old list as follows:

(acons key datum alist) = (cons (cons key datum) alist)

Example:

(setg bird-alist ’((wader . heron) (raptor . eagle))) =>
((WADER . HERGON) (RAPTOR . EAGLE))

(acons ’diver ’loon bird-alist) =>
((DIVER . LOON) (WADER . HERGON) (RAPTOR . EAGLE))

bird-alist =>
((WADER . HERON) (RAPTOR . EAGLE))

In the following example, acons updates the association list of tenured professors
and their classes.

(setqg professors-with-tenure
(("smith" . (CS282 CS231))
("parks” . (CS221)) ("hunter” . (CS216 CS232))))

(setq professors-with-tenure
(acons "Jones” (list CS181 CS242)
professors-with-tenure))

(professors-with-tenure
*(("Jones” . (CS1@1 CS242)) ("smith" . (CS282 CS231))
("parks” . (CS221)) ("hunter” . (CS216 CS232))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

Page 850

acos number Function

Computes and returns the arc cosine of the argument (that is, the angle whose co-
sine is equal to number). The result is in radians.

The argument can be any noncomplex or complex number. Note that if the abso-
lute value of number is greater than one, the result is complex, even if the argu-
ment is not complex.

The arc cosine being a mathematically multiple-valued function, acos returns a
principal value whose range is that strip of the complex plane containing numbers
with real parts between 0 and w. The range excludes any number with a real part
equal to zero and a negative imaginary part, as well as any number with a real
part equal to m and a positive imaginary part.

Examples:
(acos 1) => 0.0
(acos @) => 1.5707964 ; W/2 radians

(acos -1) => 3.1415927 ; =w

(acos 2) => {#{C(0.8 1.3169578)

(acos -2) => H#C(3.1415927 -1.316958)
(acos (/7 (sgrt 2) 2)) => 0.785398

For a table of related items, see the section "Trigonometric and Related
Functions".

acosh number Function

Computes and returns the hyperbolic arc cosine of the argument (that is, the angle
whose cosh is equal to number). The result is in radians.

The argument can be any noncomplex or complex number, except -1. Note that if
the value of number is less than one, the result is complex, even if the argument
is not complex. The hyperbolic arc cosine being mathematically multiple-valued in
the complex domain, acosh returns a principal value whose range is that half-strip
of the complex plane containing numbers with a non-negative real part and an
imaginary part between -m and m (inclusive). A number with real part zero is in
the range if its imaginary part is between zero (inclusive) and n (inclusive).

Example:

(acosh 1) => 0.0 ;(cosh B) => 1.0
(acosh -2) => #c(1.316958 3.1415927)

For a table of related items, see the section "Hyperbolic Functions".

clos:add-method generic-function method Generic Function

Adds method to generic-function and returns the modified generic-function.
clos:add-method is the underlying mechanism of the clos:defmethod macro.

generic-function A generic function object.

Page 851

method A method object.
If the generic function already has a method with the same parameter specializers
and qualifiers as method, then the existing method is replaced with method.

An error is signaled if:

e The lambda-list of the method is not congruent with the lambda-list of the
generic function.

e The method object is already attached to a different generic function object.

zl:addl x Function
(zl:addl x) is the same as (+ x 1).

The following functions are synonyms of zl:addl:

1+
z1:1+$

adjoin item list &key (:test #eql) :tesi-not (:key #’identity) (:area sys:default-cons-
area) :localize :replace

Function

Adds an element to a set, provided it is not already a member. If item is added,
the noew cons is returned. Otherwise, list is returned. The keywords are:

:test Any predicate that specifies a binary operation on a supplied
argument and an element of a target list. The item matches
the specification only if the predicate returns t. If :test is not
supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only
if there is an element of the list for which the predicate re-
turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element. This func-
tion is applied to both item and members of list.

:localize Can be nil, t, or a positive integer when using Genera:

nil Does not localize the top level of the list
before returning the list.

t Localizes the top level of list structure, by
calling sys:localize-list or sys:localize-tree
on the list before returning it.

Page 852

integer Localizes integer levels of list structure, by
calling sys:localize-list or sys:localize-tree
on the list before returning it.

:replace Destructively modifies the specified element (or elements) and
replaces it with the value provided. :replace’s value can be t
or nil. Not available in CLOE.

Note that, since adjoin adds an element only if it is not already a member, the
sense of :test and :test-not have inverted effect: with :test, an item is added to
the list only if there is no element of the list for which the predicate returns t.
With :test-not, an item is added if there is no element for which the predicate re-
turns nil.

When :test is eql, the default, then:
(adjoin item list) = (if (member item Tist) Tist (cons item Tist))
Here are some examples:

(setq bird-1ist ’((loon . diver) (heron . wader))) =>
((LOON . DIVER) (HERON . WADER))

(setq bird-1list (adjoin ’(eagle . raptor) bird-list :key #’car)) =>
((EAGLE . RAPTOR) (LOON . DIVER) (HERON . WADER))

(adjoin ’(eagle . oops) bird-list :key #’car) =>
((EAGLE . RAPTOR) (LOON . DIVER) (HERGON . WADER))

(setq add-to-list ’(j-jones "John Jones" "acct rep"))
(setq list (adjoin add-to-list list
:test #’string-equal :key }H’cadr))

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

Compatibility Note: The keywords :area, :localize, and :replace are Symbolics ex-
tension to Common Lisp, not available in CLOE.

adjust-array array new-dimensions &key :element-type :initial-element :initial-
contents :fill-pointer :displaced-to :displaced-index-offset :displaced-conformally
Function

Changes the dimensions of an array. It returns an array of the same type and
rank as array, but with the new-dimensions. The number of new-dimensions must
equal the rank of the array. All elements of array that are still in the bounds are
carried over to the new array.

:element-type specifies that elements of the new array are required to be of a cer-
tain type. An error is signalled if array contains elements that are not of that
type. :element-type thus provides an error check.

Page 853

:zinitial-element allows you to specify an initial element for any elements of the
new array that are not in the bounds of array.

The :initial-contents and :displaced-to options have the same effect as they do for
make-array. If you use either of these options, none of the elements of array are
carried over to the new array.

You can use the :fill-pointer option to reset the fill pointer of array. If array had
no fill pointer an error is signalled.

If the size of the array is being increased, adjust-array might have to allocate a
new array somewhere. In that case, it alters array so that references to it are
made to the new array instead, by means of "invisible pointers" under Genera. See
the function structure-forward. adjust-array returns this new array if it creates
one, and otherwise it returns array. Be careful to be consistent about using the re-
turned result of adjust-array, because you might end up holding two arrays that
are not the same (that is, not eq), but that share the same contents.

Compatibility Note: :displaced-conformally is a Symbolics extension to Common
Lisp, and not available in CLOE.

(setq xprint-arrayx t)
(setq array-1 (make-array ’(2 3 2) :initial-element ’a :adjustable t))
=> #3ACCA A) (A A) (AA)) ((AA) (AA) (AR)))

(adjust-array array-1 ’(3 2 2) :initial-element ’b)
=> #3ACC(A A) (A A)) ((AA) (AA)) ((BB) (BB)))

(setq an-array (make-array 10 :element-type ’string-char :adjustable t
zinitial-element f#\x))
=> " XXXXXXXXXX "

(adjust-array an-array 15 :initial-element #\y)
=> XXX XXXXXXXYYYYY

(setq xprint-arrayx t)

(setq an-array (make-array ’(2 3) :adjustable t
:initial-contents " ((1 2 3)(4 5 6))))

#2A((1 2 3)(4 5 6))

(adjust-array an-array ’(3 2) :initial-element #\y)
#H2A((1 2) (4 3) (1\y #\y))

zl:adjust-array-size array new-size Function

If array is a one-dimensional array, its size is changed to be new-size. If array has
more than one dimension, its size is changed to new-size by changing only the first
dimension.

If array is made smaller, the extra elements are lost. If array .is made bigger, the
new elements are initialized in the same fashion as make-array would initialize
them: either to nil, 0 or (code-char 0), depending on the type of array.

Page 854

Example:
(setg a (make-array H))
(setf (aref a 4) ’foo)
(aref a 4) => foo
(z1:adjust-array-size a 2)
(aref a 4) => an error occurs

See the function adjust-array.

The meaning of zl:adjust-array-size for conformal indirect arrays is undefined.

adjustable-array-p array Function

Returns t if array is adjustable, and nil if it is not. Lisp dialects supported by
Genera make most arrays adjustable even if the :adjustable option to make-array
is not specified; but to guarantee that an array can be adjusted after created, it is
necessary to use the :adjustable option. Under CLOE, arrays are adjustable only if
the :adjustable option is specified non-nil.

(setq foo (make-array (4 5)))
(adjustable-array-p foo) => nil ;under CLOE
=T ;under Genera
(setq bar (make-array (4 5) :adjustable t))
(adjustable-array-p bar) => t ;CLOE and Genera

For a table of related items: See the section "Getting Information About an Array".

:advance-input-buffer &optional new-pointer Message

If new-pointer is non-nil, it is the index in the buffer array of the next byte to be
read. If new-pointer is nil, the entire buffer has been used up.

sys:*all-flavor-names* Variable

This is a list of the names of all the flavors that have ever been created by
defflavor.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

&allow-other-keys Lambda List Keyword

In a lambda-list that accepts keyword arguments, specifies that keywords that are
not specifically listed after &key are allowed. They and their corresponding values
are ignored, as far as keywords arguments are concerned, but they do become part
of the &rest argument, if there is one.

zl:aloe array &rest subscripts Function

Page 855

Returns a locative pointer to the element of array selected by the subscripts. The
subscripts must be integers and their number must match the dimensionality of ar-
ray. See the section "Cells and Locatives".

Current style suggests using locf with aref instead of zl:aloc. For example:

(Tocf (aref array subscripts))

alpha-char-p char Function

Returns t if char is a letter of the alphabet.

(alpha-char-p #f\A) => T
(alpha-char-p #\1) => NIL

For a table of related items, see the section "Character Predicates".

alphalessp x y Function

(alphalessp x y) is equivalent to (string-lessp x y). If the arguments are not
strings, alphalessp compares numbers numerically, lists by element, and all other
objects by printed representation. alphalessp is a Maclisp all-purpose alphabetic
sorting function.

Examples:

(alphalessp “apple” "orange") => T
(alphalessp ’tom ’tim) => NIL
(alphalessp "same" "same") => NIL
(alphalessp ’symbol "string”) => NIL
(alphalessp (abc) (abd)) =T

alphanumericp char Function

Returns t if char is a letter of the alphabet or a base-10 digit.

(alphanumericp #\7) => T
(alphanumericp #\%) => NIL

For a table of related items, see the section "Character Predicates".

always keyword for loop

always expr

Causes the loop to return t if expr always evaluates non-null.
If expr evaluates to nil, the loop immediately returns nil, with-
out running the epilogue code (if any, as specified with the
finally clause); otherwise, t is returned when the loop finishes,
after the epilogue code has been run. If the loop terminates be-
fore expr is ever evaluated, the epilogue code is run and the
loop returns t.

Page 856

always expr is like (and expri expr2 ...), except that if no expr
evaluates to nil, always returns t and and returns the value
of the last expr. If the loop terminates before expr is ever eval-
uated, always is like (and).

If you want a similar test, except that you want the epilogue
code to run if expr evaluates to nil, use while.
Examples:

(defun loop-always (my-list)
(Toop for x in my-list
finally (print "what you going to do next ?")
do
(princ x) (princ " ")
do
and always (equal x ’a))) => LOOP-ALWAYS

(lToop-always ’(b c a d)) => B NIL

(lToop-always ’(a a)) => A A
"what you going to do next ?* T

See the section "Aggregated Boolean Tests for loop".

and &rest types Type Specifier

Allows the definition of data types that are the intersection of other data types
specified by types. As a type specifier, and can only be used in list form.

Examples:

(typep 89 ’(and integer number)) =>T
(subtypep ’hit-vector ’(and vector array)) => T and T
(sys:type-arglist ’and) => (&REST TYPES) and T

See the section "Data Types and Type Specifiers".

For a discussion of the function and: See the section "Flow of Control".

and &rest forms Special Form

Evaluates each form one at a time, from left to right. If any form evaluates to nil,
and immediately returns nil without evaluating any other form. If every form eval-
uates to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can use it as a logical and function,
because it returns a true value only if all of its arguments are true. So you can
use it as a predicate:

Examples:

Page 857

(if (and ’this ’that) "reaches this point") => "reaches this point”
(if (and (equal 1 1) (equal nil ’())) "equal”) => "equal”

(if (and socrates-is-a-person all-people-are-mortal)
(setq socrates-is-mortal t))

Because the order of evaluation is well-defined, you can do:

(if (and (boundp ’x)
(eq x ’foon))
(setq y ’bar)) => NIL

knowing that the x in the eq form is not evaluated if x is found to be unbound.
You can also use and as a simple conditional form:
Examples:

(and) => T
(and t nil) => NIL
(and t ’hi (numberp 3.14)) => T

(when (and (setq temp (assq x y))
(rplacd temp 2)))

(when (and bright-day
glorious-day
(princ "It is a bright and glorious day.")))

In the following example, very-expensive-function is not evaluated because a prior
form is false:

(setq foo 12 bar (3 4 5))

(if (and (eql 12 foo)
(eql foo bar)
(very-expensive-function bar))

bar
foo)

Note: (and) => t , which is the identity for the and operation.
For a table of related items: See the section "Conditional Functions".

CLOE Note: This is a macro in CLOE.

zl:ap-1 array index Function

This is an obsolete version of zl:aloe that works only for one-dimensional arrays.
There is no reason ever to use it.

Page 858

zl:ap-2 array index1 index2 Function

This is an obsolete version of zl:aloc that works only for two-dimensional arrays.
There is no reason ever to use it.

zl:ap-leader array index Function

Returns a locative pointer to the indexed element of array’s leader. array should be
an array with a leader, and index should be an integer. See the section "Cells and
Locatives".

However, the preferred method is to use locf and array-leader as shown in the
following example:

(setq xarrayx
(make-array ’(2 3) :element-type ’character
:leader-Tist ’(t nil)))

(locf (array-leader xarrayx 1))

append &rest lists Function

Concatenates lists, returning the resulting list. The arguments to append are lists.
They are not changed (see ncone). Example:

(append ’(abc) ’(de f) nil ’(g)) => (abcdef Qg

append makes copies of the top-level list structure of all the arguments it is
given, except for the last one. So the new list shares the conses of the last argu-
ment to append, but all the other conses are newly created. Only the lists are
copied, not the elements of the lists. The function concatenate can perform a sim-
ilar operation, but always copies all its arguments. See also ncone, which is like
append but destroys all its arguments except the last.

The last argument does not have to be a list, but can be any Lisp object, which
becomes the tail of the constructed list. For example,

(append ’(abc) ’d) => (abc . d)
A version of append that only accepts two arguments could have been defined by:

(defun append2 (x y)
(cond ((atom x) y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made (relying on
car of nil being nil):

(defun append (&rest args)
(if (< (length args) 2) (car args)
(append2 (car args)
(apply (function append) (cdr args)))))

Page 859

These definitions do not express the full functionality of append; the real defini-
tion under Genera minimizes storage utilization by cdr-coding the list it produces.
See the section "Cdr-Coding".

Example:
(setgqa’(12)b’@34) c’B6)AdT7) =>7
(setg x (append a b c)) => (1 2 3 4 5 6)
(setf (car c) ’foo) (setf (car b) ’bar) x =>
(1 2 bar 4 foo 6)
(append a b c d) => (1 2 bar 4 foo 6 . 7)
a=> (12

To copy a list, use copy-list; the old practice of using
(append x *())

to copy lists is unclear and obsolete.

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

append keyword for loop

append expr {into var}

Causes the values of expr on each iteration to be appended together. When the
epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms append and appending are synonymous.

Examples:

(defun splice-list (list1 1ist2)
(lToop for item1 in Tlist1

for item2 in list2

append (Tist item1) into result

append (1ist item2) into result

finally (return (append result)))) => SPLICE-LIST
(splice-list ’(Let not the of minds) ’(me to marriage true)) =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Is equivalent to

Page 860

(defun splice-list (1list1 1ist2)
(lToop for item1 in Tlist1

for item2 1in list2

appending (list item1) into result

appending (1ist item2) into result

finally (return (append result)))) => SPLICE-LIST
(splice-1ist ’(Let not the of minds) ’(me to marriage true)) =>
(LET ME NOT TO THE MARRIAGE OF TRUE)

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the col-
lections are compatible. append, collect, and nconc are compatible.

See the section "Accumulating Return Values for loop".

apply function argument &rest arguments
Function

Applies the function function to arguments. function can be any function, but it
cannot be a special form or a macro. The arguments for function consist of the
last argument to apply appended to the end of the list of all other arguments to
apply except for function itself. It is as if all the arguments to apply except func-
tion were given to list* to create the argument list.

Examples:

(setq fred ’+)

(apply fred (1 2)) => 3

(apply fred 1 2 *(3 4) => 10

(apply ’cons ’((+ 2 3) 4)) => ((+ 2 3) . 4) not (b . 4)
Note that if the function takes keyword arguments, you must put the keywords as
well as the corresponding values in the argument list.

(apply #’ (lambda (8&key a b) (list a b)) ’(:b 3) => (nil 3)
Compatibility Note: In Symbolics Common Lisp, apply is extended to allow you to
call an array as a function.

See the section "Functions for Function Invocation".

zl:apply fn args Function

Applies the function fr to the list of arguments args. args must be a list; fn can
be any function, but it cannot be a special form or a macro. The arguments for fn
consist of the elements of the list args.

Examples:

Page 861

(setq fred ’+)

(z1:apply fred (1 2)) => 3

(setq fred ’-)

(z1:apply fred (1 2)) => -1

(z1:apply ’cons ’((+ 2 3) 4)) => ((+ 2 3) . 4) not (5 . 4)

Of course, args can be nil. Note: Unlike Maclisp, zl:apply never takes a third ar-
gument; there are no "binding context pointers" in Symbolics Common Lisp.

See the function funcall.

See the section "Functions for Function Invocation".

apropos string &optional package (do-inherited-symbols t) do-packages-used-by
Function

Searches for all symbols whose print-names contain string as a substring. When it
finds a symbol, it prints out the symbol’s name; if the symbol is defined as a func-
tion and/or bound to a value, it tells you so, and prints the names of the argu-
ments (if any) to the function or the dynamic value of the symbol. If package is
specified, it only searches for symbols containing string in that package, otherwise
all packages are searched, as if by do-all-symbols. Because symbols can be avail-
able in more than one package by inheritance, apropos might print information
about the same symbol more than once.

Compatibility Note: Symbolics Common Lisp provides two additional optional ar-
guments, do-inherited-symbols and do-packages-used-by. If do-inherited-symbols is t,
the set of packages searched includes all packages that package uses. If do-
packages-used-by is t, the set also includes all packages that use package. You can-
not use these two optional arguments in CLOE runtime.

apropos prints its information to *standard-output*. It returns nil.

zl:apropos apropos-substring &optional pkg (do-packages-used-by t) do-packages-used
Function

Searches for all symbols whose print-names contain apropos-substring as a sub-
string. When it finds a symbol, it prints out the symbol’s name; if the symbol is
defined as a function and/or bound to a value, it tells you so, and prints the names
of the arguments (f any) to the function. It checks all symbols in a certain set of
packages. The set always includes pkg. If do-packages-used-by is t, the set also in-
cludes all packages that use pkg. If do-packages-used is t, the set also includes all
packages that pkg uses. pkg defaults to the global package, so normally all pack-
ages are searched. apropos returns a list of all the symbols it finds. This is simi-
lar to the Find Symbol command, except that Find Symbol only searches the cur-
rent package unless you specify otherwise.

apropos-list string &optional package do-packages-used-by Function

Page 862

Searches for all symbols whose print-names contain siring as a substring. If the
Symbolics Common Lisp optional argument package is specified, the function only
searches for symbols containing string in that package, otherwise all packages are
searched, as if by do-all-symbols. It returns a list of the symbols it finds.

Compatibility Note: Symbolics Common Lisp provides the additional optional argu-
ment do-packages-used-by. If do-packages-used-by is t, the set also includes all pack-
ages that use package. Package and do-packages-used-by may not work in other im-
plementations of Common Lisp and does not work in CLOE Runtime.

For more information, see the function apropos.

zl:ar-1 array index Function

This is an obsolete version of aref that works only for one-dimensional arrays.
There is no reason ever to use it.

zl:ar-2 array indexI index2 Function

This is an obsolete version of aref that works only for two-dimensional arrays.
There is no reason ever to use it.

aref array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-
tegers and their number must match the dimensionality of array.

(setq this-array (make-array ’(2 3) :initial-contents

"((@bc) (de f))))

(aref this-array @ @) => A
(aref this-array 8 1) => B
(aref this-array @ 2) => C
(aref this-array 1 @) => D

setf can be used with aref to set the value of an array element.
(setf (aref this-array 1 @) ’x) => X
(aref this-array 1 @) => X
The subscripts can refer to an element beyond a fill pointer
(setg this-array
(make-array ’(3 2 2) :element-type ’integer :initial-contents
“(((5 6) (12 8))
((7 8) (5 13))
((9 4) (22 6)))))

(aref this-array 1 8 8) => 7

For a table of related items: See the section "Basic Array Functions".

Page 863

zl:arg x Function

(zl:arg nil), when evaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs
also receive their number of arguments as the value of their lambda-variable.

(zl:arg 1), when evaluated during the application of a lexpr, gives the value of the
i’th argument to the lexpr. i must be an integer in this case. It is an error if i is
less than 1 or greater than the number of arguments supplied to the lexpr. Exam-
ple:

(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) ;return the sum of the first

(arg (- nargs 1)))) ;and next to last arguments.

zl:arg exists only for compatibility with Maclisp lexprs. To write functions that
can accept variable numbers of arguments, use the &optional and &rest keywords.
See the section "Evaluating a Function Form".

arglist function &optional real-flag Function

Given an ordinary function, a generic function, or a function spec, returns a repre-
sentation of the function’s lambda-list. It can also return a second value that is a
list of descriptive names for the values returned by the function. The third value
is a symbol specifying the type of function:

Returned Value Function Type

nil ordinary or generic function
subst substitutable function

special special form

macro macro

si:special-macro both a special form and a macro
array array

If function is a symbol, arglist of its function definition is used.

Some functions’ real argument lists are not what would be most descriptive to a
user. A function can take an &rest argument for technical reasons even though
there are standard meanings for the first element of that argument. For such cas-
es, the definition of the function can specify, with a local declaration, a value to be
returned when the user asks about the argument list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))

Note that since the declared argument list is supplied by the user, it does not nec-
essarily correspond to the function’s actual argument list.

real-flag allows the caller of arglist to say that the real argument list should be
used even if a declared argument list exists.

Page 864

If real-flag is t or a declared argument list does not exist, arglist computes its re-
turn value using information associated with the function. Normally the computed
argument list is the same as that supplied in the source definition, but occasional-
ly some differences occur. However, arglist always returns a functionally correct
answer in that the number and type of the arguments is correct.

When a function returns multiple values, it is useful to give the values names so
that the caller can be reminded which value is which. By means of a values decla-
ration in the function’s definition, entirely analogous to the arglist declaration
above, you can specify a list of mnemonic names for the returned values. This list
is returned by arglist as the second value.

(arglist ’arglist)
=> (function &optional real-flag) and (arglist values type)

args-info fcn Function

Returns an integer called the "numeric argument descriptor" of fcn, which de-
scribes the way the function takes arguments. This descriptor is used internally by
the microcode, the evaluator, and the compiler. fcn can be a function or a function
spec.

The information is stored in various bits and byte fields in the integer, which are
referenced by the symbolic names shown below. By the usual Symbolics convention,
those starting with a single "%" are bit-masks (meant to be bit-tested with the
number with logand or zl:bit-test), and those starting with "%%" are byte descrip-
tors (meant to be used with 1db or 1db-test).

Here are the fields:

sys:%%arg-desc-min-args
This is the minimum number of arguments that can be passed to this
function, that is, the number of "required" parameters.

sys:%%arg-desc-max-args
This is the maximum number of arguments that can be passed to this
function, that is, the sum of the number of "required" parameters and the
number of "optional" parameters. If there is an &rest argument, this is not
really the maximum number of arguments that can be passed; an arbitrari-
ly large number of arguments is permitted, subject to limitations on the
maximum size of a stack frame (about 200 words).

sys:%%arg-desc-rest-arg
If this is nonzero, the function takes an &rest argument or &key argu-
ments. A greater number of arguments than sys:%%arg-desc-max-args can
be passed.

sys:%arg-desc-interpreted
This function is not a compiled-code object.

sys:%%arg-desc-interpreted
This is the byte field corresponding to the sys:%arg-desc-interpreted bit.

Page 865

sys:%%arg-desc-quoted
This is obsolete.

sys:%args-info function Function

An internal function; it is like args-info, but does not work for interpreted func-
tions. Also, function must be a function, not a function spec.

zl:argument-typecase arg-name &body clauses Special Form

A hybrid of zl:typecase and zl:check-arg-type. Its clauses look like clauses to
zl:typecase. zl:argument-typecase automatically generates an otherwise clause
which signals an error. The proceed types to this error are similar to those from
zl:check-arg; that is, you can supply a new value that replaces the argument that
caused the error.

For example, this:

(defun foo (x)
(argument-typecase x
(:symbol (print ’symbol))
(:number (print ’number))))

is the same as this:

(defun foo (x)
(check-arg x
(typecase x
(:symbol (print ’symbol) t)
(:number (print ’number) t)
(otherwise nil))
"a symbol or a number"))

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

array &optional (element-type **) (dimensions *) Type Specifier
array is the type specifier symbol for the Lisp data structure of that name.

The types array, cons, symbol, number, and character are pairwise disjoint.

The type array is a supertype of the types:

simple-array
vector

This type specifier can be used in either symbol or list form. Used in list form,
array allows the declaration and creation of specialized arrays whose members are
all members of the type element-type and whose dimensions match dimensions.

Page 866

element-type must be a valid type specifier, or unspecified. For standard Symbolics
Common Lisp type specifiers: See the section "Type Specifiers".

dimensions can be a non-negative integer, which is the number of dimensions, or it
can be a list of non-negative integers representing the length of each dimension
(any of which can be an asterisk). dimensions can also be an asterisk.

Note that (array t) is a proper subset of (array *). This is because (array t) is
the set of arrays that can hold any Symbolics Common Lisp object (the elements
are of type t, which includes all objects). On the other hand, (array *) is the set
of all arrays whatsoever, including for example arrays that can hold only charac-
ters. (array character) is not a subset of (array t); the two sets are in fact dis-
joint because (array character) is not the set of all arrays that can hold charac-
ters, but rather the set of arrays that are specialized to hold precisely characters
and no other objects. To test whether an array foo can hold a character, you
should not use

(typep foo ’(array character))
but rather
(subtypep ’character (array-element-type foo))
Examples:
(setq example-array (make-array ’(3) :fill-pointer 2))
=> #<ART-Q-3 43063275>
(typep example-array ’array) => T

(typep example-array ’simple-array) => NIL
; simple arrays do not have fill-pointers.

(z1:typep #x181) => :ARRAY

(subtypep ’array t) => T and T

(array-has-fill-pointer-p example-array) => T

(arrayp example-array) => T

(sys:type-arglist ’array)

=> (&OPTIONAL (ELEMENT-TYPE ’x) (DIMENSIONS ’x)) and T
See the section "Data Types and Type Specifiers".

See the section "Arrays".

zl:array x type &rest dimlist Macro

Creates an sys:art-q type array in sys:default-cons-area with the given dimen-
sions. (That is, dimlist is given to zl:make-array as its first argument.) fype is ig-
nored. If x is nil, the array is returned; otherwise, the array is put in the function
cell of symbol, and symbol is returned. This exists for Maclisp compatibility.

Use the Common Lisp function make-array in your new programs.

zl:*array x type &rest dimlist Function

Page 867

Creates an sys:art-q type array in sys:default-cons-area with the given dimen-
sions, and evaluates all of the arguments. It exists for Maclisp compatibility.

zl:array-#-dims array Function

We recommend that you use the function array-rank, which is the Common Lisp
equivalent of zl:array-#-dims.

Returns the dimensionality of array. For example:
(z1:array-ft-dims (make-array ’(3 5))) => 2

For a table of related items: See the section "Getting Information About an Array".

zl:array-active-length array Function

Returns the number of active elements in array. If array does not have a fill
pointer, this returns whatever (array-total-size array) would have. If array does
have a fill pointer that is a non-negative fixnum, zl:array-active-length returns it.
See the section "Array Leaders".

A general explanation of the use of fill pointers is in that section.

Note that length provides the same functionality for lists and vectors.

sys:array-bits-per-element Variable

The value of sys:array-bits-per-element is an association list that associates each
array type symbol with the number of bits of unsigned numbers (or fixnums) it
can hold, or nil if it can hold Lisp objects. This can be used to tell whether an ar-
ray can hold Lisp objects or not. See the section "Association Lists".

For a table of related items: See the section "Array Representation Tools".

sys:array-bits-per-element index Function

Given the internal array-type code numbers, returns the number of bits per cell
for unsighed numeric arrays, or nil for a type of array that can contain Lisp ob-
jects.

array-dimension array dimension-number Function

Returns the length of the dimension numbered dimension-number of array. dimen-
sion-number should be a non-negative integer less than the rank of array.

(setq foo (make-array (3 2 4 6)))
(array-dimension foo @) => 3
(array-dimension foo 3) => 6

For a table of related items: See the section "Getting Information About an Array".

Page 868

array-dimension-limit Constant

Represents the upper exclusive bound on each individual dimension of an array.
The value of this is 134217728 under Genera, and CLOE.

(when (> max-number-in-categories array-dimension-1limit)
(setq xnumber-of-arrays-neededx
(ceiling max-number-in-categories array-dimension-1imit)))

For a table of related items: See the section "Basic Array Functions".

zl:array-dimension-n n array Function

Returns the size for the specified dimension of the array. array can be any kind of
array, and n should be an integer. If n is between 1 and the dimensionality of ar-
ray, this returns the nth dimension of array. If n is 0, this returns the length of
the leader of array; if array has no leader it returns nil. If n is any other value,
this returns nil. Examples:
(setq a (make-array ’(3 5) :leader-length 7))
(zl:array-dimension-n 1 a) => 3
(z1:array-dimension-n 2 a) => 5
(z1:array-dimension-n 3 a) => nil
(z1:array-dimension-n @ a) => 7

We recommend that you use the function array-dimension, which is the Common
Lisp equivalent of zl:array-dimension-n.

array-dimensions array Function

Returns a list whose elements are the dimensions of array. Example:

(setq a (make-array ’(3 9)))
(array-dimensions a) => (3 5)

For a table of related items: See the section "Getting Information About an Array".

sys:array-displaced-p array Function

Tests whether the array is a displaced array. array can be any kind of array. This
predicate returns t if array is any kind of displaced array (including an indirect
array). Otherwise it returns nil.

For a table of related items: See the section "Getting Information About an Array".

sys:array-element-byte-size array Function

Given an array, returns the number of bits that fit into an element of that array.
For arrays that can hold general Lisp objects, the result is 32; this assumes that
you are storing bits into the array with sys:%logdpb, rather than storing numbers
into the array with dpb.

Page 869

For a table of related items: See the section "Array Representation Tools".

sys:array-element-size array Function

Given an array, returns the number of bits that fit into an element of that array.
For arrays that can hold general Lisp objects, the result is 31; this assumes that
you are storing fixnums in the array and manipulating their bits with dpb (rather
than sys:%logdpb). You can store any number of bits per element in an array that
holds general Lisp objects, by letting the elements expand into bignums.

For a table of related items: See the section "Array Representation Tools".

array-element-type array Function

Returns the type specifier of the elements allowed in the array. In some cases this
may be different thatn the element-type specified in the call to make-array. Ex-
ample:

(setq a (make-array ’(3 9)))

(array-element-type a) => T

(array-element-type "foo") => STRING-CHAR

(setq bar (make-array ’(3 2 4) :element-type ’bit))

(array-element-type bar) => (integer @ (2))

For a table of related items: See the section "Getting Information About an Array".

sys:array-elements-per-q index Function

Given the internal array-type index, returns the number of array elements stored
in one word, for an array of that type.

For a table of related items: See the section "Array Representation Tools".

sys:array-elements-per-q index Variable

This is an association list that associates each array type symbol with the number
of array elements stored in one word, for an array of that type. See the section
"Association Lists".

For a table of related items: See the section "Array Representation Tools".

zl:array-grow array &rest dimensions Function

Creates a new array of the same type as array, with the specified dimensions.
Those elements of array that are still in bounds are copied into the new array.
The elements of the new array that are not in the bounds of array are initialized
to nil or 0 as appropriate. If array has a leader, the new array has a copy of it.
zl:array-grow returns the new array and also forwards array to it, like adjust-
array.

Page 870

Unlike adjust-array, zl:array-grow usually creates a new array rather than grow-
ing or shrinking the array in place. (If the array is one-dimensional and it is being
shrunk, zl:array-grow does not create a new array.) zl:array-grow of a multidi-
mensional array can change all the subscripts and move the elements around in
memory to keep each element at the same logical place in the array.

array-has-fill-pointer-p array Function

Returns t if the array has a fill pointer; otherwise it returns nil. array can be any
array.

(setg foo (make-array 12 :element-type ’string-char :fill-pointer @))

(array-has-fill-pointer-p foo) => t

array-has-leader-p array Function
Returns t if array has a leader; otherwise it returns nil. array can be any array.

For a table of related items: See the section "Operations on Array Leaders". Also:
See the section "Getting Information About an Array".

array-in-bounds-p array &rest subscripts Function

Checks whether subscripts is a valid set of subscripts for array, and returns t if
they are; otherwise it returns nil

In the following example, the second set of indices returns an out-of-bounds result
because Common Lisp arrays are zero based. Therefore, 2 is the highest allowable
index for a dimension of 3.

(setq foo (make-array (3 2 4 6)))
(array-in-bounds foo 2 1 3 5) => t
(array-in-bounds foo 3 1 3 5) => nil

For a table of related items: See the section "Getting Information About an Array".

sys:array-indexed-p array Function

Returns t if array is an indirect array with an index-offset. Otherwise it returns
nil. array can be any kind of array. Note, however, that displaced arrays with an
offset are not considered indexed.

sys:array-indirect-p array Function

Returns t if array is an indirect array. Otherwise it returns nil. array can be any
kind of array.

Page 871

array-leader array index Function

Returns the indexed element of array’s leader. array should be an array with a
leader, and index should be an integer.

For a table of related items: See the section "Operations on Array Leaders".

array-leader-length array Function

Returns the length of array’s leader if it has one, or nil if it does not. array can
be any array.

For a table of related items: See the section "Getting Information About an Array".

array-leader-length-limit Variable

This is the exclusive upper bound of the length of an array leader. It is 1024 on
Symbolics 3600-family computers, 256 on Ivory-based machines.

(condition-case (err)
(make-array 4 :leader-length array-leader-length-Timit)
(errar (princ err)))
=> Leader Tength specified (1824) is too Tlarge.
H#<FERROR 60065043>

zl:array-length array Function

We recommend that you use the function array-total-size, which is the Common
Lisp equivalent of zl:array-length.

Returns the total number of elements in array. array can be any array. The total
size of a one-dimensional array is calculated without regard for any fill pointer.
For a one-dimensional array, zl:array-length returns one greater than the maxi-
mum allowable subscript. For example:

(z1:array-length (make-array 3)) => 3
(z1:array-length (make-array ’(3 5))) => 15

Note that if fill pointers are being used and you want to know the active length of
the array, you should use length or zl:array-active-length instead of zl:array-
length.

zl:array-length does not return the same value as the product of the dimensions
for conformal arrays.

For a table of related items: See the section "Getting Information About an Array".

zl:array-pop array &optional (default nil) Function

We recommend that you use the function vector-pop, which is the Common Lisp
equivalent of the function zl:array-pop.

Page 872

Decreases the fill pointer by one and returns the array element designated by the
new value of the fill pointer. array must be a one-dimensional array that has a fill
pointer.

The second argument, if supplied, is the value to be returned if the array is emp-
ty. If zl:array-pop is called with one argument and the array is empty, it signals
an error.

The two operations (decrementing and array referencing) happen uninterruptibly.
If the array is of type sys:art-q-list, an operation similar to nbutlast has taken
place. The cdr coding is updated to ensure this.

See the function vector-pop.

zl:array-push array x Function

Attempts to store x in the element of the array designated by the fill pointer and
increase the fill pointer by one. array must be a one-dimensional array that has a
fill pointer, and x can be any object allowed to be stored in the array. If the fill
pointer does not designate an element of the array (specifically, when it gets too
big), it is unaffected and zl:array-push returns nil; otherwise, the two actions
(storing and incrementing) happen uninterruptibly, and zl:array-push returns the
former value of the fill pointer, that is, the array index in which it stored x.

If the array is of type sys:art-q-list, an operation similar to nconc has taken
place, in that the element has been added to the list by changing the cdr of the
formerly last element. The cdr coding is updated to ensure this.

See the function vector-push.

zl:array-push-extend array x &optional extension Function

Similar to zl:array-push except that if the fill pointer gets too large, the array is
grown to fit the new element; that is, it never "fails" the way zl:array-push does,
and so never returns nil. extension is the number of elements to be added to the
array if it needs to be grown. It defaults to something reasonable, based on the
size of the array. zl:array-push-extend returns the former value of the fill pointer,
that is, the array index in which it stored x.

See the function vector-push-extend.

zl:array-push-portion-extend fo-array from-array &optional (from-start 0) from-end
Function

We recommend that you use the function vector-push-portion-extend, which is
the Symbolics Common Lisp equivalent of the function zl:array-push-portion-
extend.

Copies a portion of one array to the end of another, updating the fill pointer of the
other to reflect the new contents. The destination array must have a fill pointer.
The source array need not. This is equivalent to numerous zl:array-push-extend

Page 873

calls, but more efficient. zl:array-push-portion-extend returns the fo-array and the
index of the next location to be filled.

Example:
(setq to-string
(z1:array-push-portion-extend to-string
from-string
(or from B)
t0))

This is similar to zl:array-push-extend except that it copies more than one ele-
ment and has different return values. The arguments default in the usual way, so
that the default is to copy all of from-array to the end of to-array.

zl:array-push-portion-extend adjusts the array size using adjust-array. It picks
the new array size in the same way that zl:array-push-extend does, making it big-
ger than needed for the information being added. In this way, successive additions
do not each end up consing a new array. zl:array-push-portion-extend uses copy-
array-portion internally.

See the function vector-push-portion-extend.

array-rank array Function

Returns the number of dimensions of array. For example:

(array-rank (make-array (3 5))) => 2

For a table of related items: See the section "Getting Information About an Array".

array-rank-limit Constant

Represents the exclusive upper bound on the rank of an array. The value of this is
8 under Genera, and 256 under CLOE.

(when (> number-of-categories array-rank-1limit)
(setq xnumber-of-arrays-neededx
(ceiling number-of-categories array-rank-1imit)))

For a table of related items: See the section "Basic Array Functions".

array-row-major-index array &rest subscripts Function

Takes an array and valid subscripts for the array and returns a single positive in-
teger, less than the total size of the array, that identifies the accessed element in
the row-major ordering of the elements. The number of subscripts supplied must
equal the rank of the array. Each subscript must be a nonnegative integer less
than the corresponding array dimension. Like aref, array-row-major-index returns
the position whether or not that position is within the active part of the array.

For example:

Page 874

window is a conformal array whose 0,0 coordinate is at 256,256 of big-array. The
following code creates a 1/4 size portal into the center of big-array.

;53 —-%- Syntax: Zetalisp; Package: USER; Base: 10; Mode: LISP -x-
(setg big-array (make-array ’ (1824 10824) :type ’art-q
:initial-value 8))
(setq window (make-array ’ (512 512) :type ’art-q
:displaced-to bhig-array
:displaced-index-offset
(array-row-major-index big-array 256 256)
:displaced-conformally t))

For a one-dimensional array, the result of array-row-major-index equals the sup-
plied subscript.

An error is signalled if some subscript is not valid.

array-row-major-index can be used with the :displaced-index-offset option of
make-array to construct the desired value for multidimensional arrays.

(setq foo (make-array ’(2 3 3) :initial-contents
"(((@12) (345) (678))
((9 18 11) (12 13 14) (15 16 17)))))
(array-row-major-index foo 8 2 2) => 8

For a table of related items: See the section "Getting Information About an Array".

sys:array-row-span array Function

Returns the number of array elements spanned by one of its rows, given a two-
dimensional array. Normally, this is just equal to the length of a row (that is, the
number of columns), but for conformally displaced arrays, the length and the span
are not equal.
(sys:array-row-span (make-array ’(4 5))) => 5
(sys:array-row-span (make-array ’(4 H)
:displaced-to (make-array ’(8 9))
:displaced-conformally t))
=> 9

Note: If the array is conceptually a raster, it is better to use decode-raster-array
than sys:array-row-span.

For a table of related items: See the section "Getting Information About an Array".
See the section "Accessing Multidimensional Arrays as One-dimensional".

array-total-size array Function

Returns the total number of elements in array. The total size of a one-dimensional
array is calculated without regard for any fill pointer.

(array-total-size (make-array (3 5 2))) => 30

Page 875

Note that if fill pointers are being used and you want to know the active length of
the array, you should use length or under Genera, zl:array-active-length.

array-total-size does not return the same value as the product of the dimensions
for Genera conformal arrays.

For a table of related items: See the section "Getting Information About an Array".

array-total-size-limit Constant

Represents the exclusive upper bound on the number of elements of an array. The
value of this is 134217728 under Genera and CLOE.

(when (> number-of-data-elements array-total-size-limit)
(setq xnumber-of-arrays-neededx
(ceiling number-of-data-elements array-total-size-1limit)))

For a table of related items: See the section "Basic Array Functions".

sys:array-type array Function

Returns the symbolic type of array. Example:
(sys:array-type (make-array ’(3 5))) => SYS:ART-Q

sys:*array-type-codes* Variable

The value of sys:*array-type-codes* is a list of all of the array type symbols such
as sys:art-q, sys:art-4b, sys:art-string and so on. The values of these symbols are
internal array type code numbers for the corresponding type.

For a table of related items: See the section "Array Representation Tools".

sys:array-types index Function

Returns the symbolic name of the array type. The index is the internal numeric
code stored in sys:*array-type-codes*.

For a table of related items: See the section "Array Representation Tools".

zl:arraydims array Function

Returns a list whose first element is the symbolic name of the type of array, and
whose remaining elements are its dimensions. array can be any array; it also can
be a symbol whose function cell contains an array (for Maclisp compatibility).

Example:
(setq a (make-array ’(3 5)))
(zl:arraydims a) => (sys:art-q 3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the list re-
turned by (zl:arraydims x).

Page 876

See the function array-dimensions.

arrayp object Function

Returns t if its argument is an array, otherwise nil. Note that strings are arrays.

(setq screen (make-array (640 350) :element-type ’bit))
(arrayp screen) => t

(arrayp "foo") => t

(arrayp ’((a b)(c d))) => nil

zl:as-1 value array index Function

This is an obsolete version of zl:aset that works only for one-dimensional arrays.
There is no reason ever to use it.

zl:as-2 value array index1 index2 Function

This is an obsolete version of zl:aset that works only for two-dimensional arrays.
There is no reason ever to use it.

zl:ascii n Function
Returns a symbol whose printname is the character n.
n can be an integer (a character code), a character, a string, or a symbol.

Examples:
(zl:ascii 2) => o
(zl:ascii t\y) => |yl
(zl:ascii "Y") =>Y
(zl:ascii ’a) => A

The symbol returned is interned in the current package.

This function is provided for Maclisp compatibility only.

ascii-code spec Function

Returns an integer that is the ASCII code named by spec. If spec is a character,
char-to-ascii is called. Otherwise, spec can be a string or keyword that names one
of the ASCII special characters.

ascii-code returns an integer, for example, (ascii-code #: #\RETURN) => #o0l5.
ascii-code also recognizes strings and looks up the names of the ASCII "control"
characters. Thus (ascii-code "SOH") and (ascii-code #:|#\l|) return 1. (ascii-
code #\c-A) returns 65, not 1; there is no mapping between Symbolics character
set control characters and ASCII control characters.

Page 877

Valid ASCII special character names are listed below. All numbers are in octal.

NUL 000 HT o011 DC1 o021 SUB 032
SOH 001 LF 012 DC2 022 ESC 033
STX 002 NL 012 DC3 023 ALT 033
ETX 003 VT 013 DC4 024 FS 034
EOT 004 FF 014 NAK 025 GS 035
ENQ 005 CR 015 SYN 026 RS 036
ACK 006 SO 016 ETB 027 Us 037
BEL 007 SI 017 CAN 030 SP 040
BS 010 DLE 020 EM 031 DEL 177
TAB 011

For a table of related items, see the section "ASCII Characters".

ascii-to-char code Function

Converts code (an ASCII code) to the corresponding character. The caller must ig-
nore LF after CR if desired.

ascii-to-char performs an inverse mapping of the function char-to-ascii, and this
mapping embeds the ASCII character character set in the Symbolics character set.
There is no attempt to map more obscure ASCII control codes into the also ob-
scure and unrelated Symbolics control codes. For example, Escape, is a character
in the Symbolics character set corresponding to the key marked Escape. The ASCII
code Escape is not the same as the Symbolics Escape. See the function char-to-
ascii. See the function ascii-code. See the section "ASCII Conversion String Func-
tions".

The functions char-to-ascii and ascii-to-char provide the primitive conversions
needed by ASCII-translating streams. They do not translate the Return character
into a CR-LF pair; the caller must handle that. They just translate #\Return into
CR and #\Line into LF. Except for CR-LF, char-to-ascii and ascii-to-char are
wholly compatible with the ASCII-translating streams.

They ignore Symbolics control characters; the translation of #\e-G is the ASCII
code for G, not the ASCII code to ring the bell, also known as "control G." (asecii-
to-char (ascii-code "BEL')) is #\n, not #\¢-G. The translation from ASCII to char-
acter never produces a Symbolics control character.

For a table of related items, see the section "ASCII Characters".

ascii-to-string ascii-array Function

Converts ascii-array, an sys:art-8b array representing ASCII characters, into a
Lisp string. Note that the length of the string can vary depending on whether
ascii-array contained a Newline character or Carriage Return Line Feed charac-
ters. See the section "ASCII Characters".

Example:

Page 878

(setq a-string-array

(z1:make-array 5 :type zl:art-8b :initial-value (ascii-code }#\x)))
=> }#(120 120 120 120 120)
(ascii-to-string a-string-array) => "xxxxx"

For a table of related items: See the section "ASCII Conversion String Functions".

zl:aset element array &rest subscripts Function

Stores element into the element of array selected by the subscripts. The subscripts
must be integers and their number must match the dimensionality of array. The
returned value is element.

Current style suggests using setf and aref instead of zl:aset. For example:

(setf (aref array subscripts...) new-value)

ash number count Function

Shifts number arithmetically left count bits if count is positive, or right -count bits
if count is negative. Unused positions are filled by zeroes from the right, and by
copies of the sign bit from the left. Thus, unlike Ish, the sign of the result is al-
ways the same as the sign of number. If number is an integer, this is a shifting
operation. If number is a floating-point number in Genera, this does scaling (multi-
plication by a power of two), rather than actually shifting any bits. If you are us-
ing CLOE, it is an error for number to be a float.

Examples:

(ash 1 3) => 8

(ash 18 3) => 84
(ash 18 -3) => 1
(ash 1 -3) => 0
(ash 1.5 3) => 12.8
(ash -1 3) => -8
(ash -1 -3) => -1

See the section "Functions Returning Result of Bit-wise Logical Operations".

For a table of related items: See the section "Functions Returning Result of Bit-
wise Logical Operations".

asin number Function
Computes and returns the arc sine of number. The result is in radians.

The argument can be any noncomplex or complex number. Note that if the abso-
lute value of number is greater than one, the result is complex, even if the argu-
ment is not complex.

The arc sine being a mathematically multiple-valued function, asin returns a prin-
cipal value whose range is that strip of the complex plane containing numbers

Page 879

with real parts between -m/2 and n/2. Any number with a real part equal to -m/2
and a negative imaginary part is excluded from the range. Also excluded from the
range is any number with real part equal to m/2 and a positive imaginary part.

Examples:

(asin 1) => 1.5707964 ; /2 radians
(asin @) => 0.0

(asin -1) => -1.5707964 ;-T/2 radians
(asin 2) => #c(1.5787964 -1.316958)
(asin -2) => #c(-1.5787964 1.3169578)
(asin (/ (sgrt 2) 2)) => 0.785398

For a table of related items, see the section "Trigonometric and Related
Functions".

asinh number Function

Computes and returns the hyperbolic arc sine of number. The result is in radians.
The argument can be any noncomplex or complex number.

The hyperbolic arc sine being mathematically multiple-valued in the complex plane,
asinh returns a principal value whose range is that strip of the complex plane
containing numbers with imaginary parts between -n/2 and m/2. Any number with
an imaginary part equal to -n/2 is not in the range if its real part is negative; any
number with real part equal to n/2 is excluded from the range if its imaginary
part is positive.

Example:
(asinh @) => 0.0 ;(sinh B8) => 0.0

For a table of related items, see the section "Hyperbolic Functions".

zl:ass pred item list Function

Looks up item in the association list /ist. Returns the first cons whose car matches
item according to pred, or nil if none does. (zl:ass ‘eq a b) is the same as (zl:assq
a b). As with zl:mem, you can use noncommutative predicates; the first argument
to the predicate is item and the second is the indicator of the element of list. See
the function zl:mem.

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

assert test-form &optional references format-string &rest format-args Macro

Signals an error if the value of fest-form is nil. It is possible to proceed from this
error; the function lets you change the values of some variables, and starts over,
evaluating tesi-form again.

assert returns nil.

Page 880

test-form is any form.

references is a list, each item of which must be a generalized variable reference
that is acceptable to the macro setf. These should be variables on which test-form
depends, whose values can sensibly be changed by the user in attempting to cor-
rect the error. Subforms of each of references are only evaluated if an error is sig-
nalled, and can be re-evaluated if the error is re-signalled (after continuing with-
out actually fixing the problem).

format-string is an error message string.

format-args are additional arguments; these are evaluated only if an error is sig-
nalled, and reevaluated if the error is signalled again.

The function format is applied in the usual way to format-string and and format-
args to produce the actual error message.

If format-string (and therefore also formai-args) are omitted, a default error mes-
sage is used.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

assoc item a-list &key (test #eql) test-not (key #identity) Function

Searches the association list a-list. The value returned is the first pair in a-list
whose car satisfies the predicate specified by :test, or nil if no such pair is found.
If nil is one of the elements in the association list, assoc passes over it. The key-
words are:

:test Any predicate that specifies a binary operation on a supplied
argument and an element of a target list. The ifem matches
the specification only if the predicate returns t. If :test is not
supplied, the default operation is eql.

:test-not Similar to :test, except that item matches the specification only
if there is an element of the list for which the predicate re-
turns nil.

:key If not nil, should be a function of one argument that will ex-

tract the part to be tested from the whole element.

Example:

(assoc ’loon ’((eagle . raptor) (loon . diver))) =>
(LOON . DIVER)

3

(assoc ’diver ’((eagle . raptor) (loon . diver))) => NIL

(assoc ’2 ’((Tabc) (2bcd) (-7xy2z2)) =>(2BCD)

It is possible to rplacd the result of assoe (provided that it is non-nil) in order to
update a-list.

Page 881

(setq values ’((x . 108) (y . 200) (z . 5@))) =>
((X . 18@) (Y . 2088) (Z . 508))

(assoc ’y values) => (Y . 200)

3

(rplacd (assoc ’y values) 201) => (Y . 201)

(assoc ’y values) => (Y . 201)

The two expressions:
(assoc item alist :test pred)
and
(find item alist :test pred :key #’car)

are almost equivalent in meaning. The difference occurs when nil appears in a-list
in place of a pair, and the item being searched for is nil. In these cases, find com-
putes the car of the nil in a-list, finds that it is equal to ifem, and returns nil,
while assoc ignores the nil in a-list and continues to search for an actual cons
whose car is nil. See also, find and position.

It is often better to update an association list by adding new pairs to the front,
rather than altering old pairs. The following example demonstrates an association
list consisting of pairs of keys and association lists.

(setq financial-statement)
> ((MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))
(MONTHLY-EXPENSE ((18 . 28) (11 . 21)))
(MONTHLY-REVENUE ((18 . 31) (11 . 42))))

In the following example, the first call to assoe extracts the monthly-cash-on-hand
association list. The second assoc extracts the monthly-cash-on-hand for the month
of November from monthly-cash-on-hand:

(setq monthly-cash-on-hand
(assoc ’monthly-cash-on-hand financial-statement))
=> (MONTHLY-CASH-ON-HAND ((11 . 52) (12 . 73)))
(assoc ’11 (cdr monthly-cash-on-hand))
=>(11 . 52)
In the next example, rplacd alters a value stored in the association list, and assoc
delivers the pointer for rplacd.

(assoc ’monthly-revenue financial-statement)
=> (MONTHLY-REVENUE . ((18 . 31) (11 . 42)))

(setf (cdr (assoc ’11 (assoc ’monthly-revenue financial-statement)))
22)

(assoc ’monthly-revenue financial-statement)
=> (MONTHLY-REVENUE . ((18 . 31) (11 . 22)))

Usually, association lists are updated by adding a new pair to the front of the list,
as shown in the following example:

Page 882

(acons ’11 ’22 (assoc ’monthly-revenue financial-statement))

(assoc ’monthly-revenue financial-statement)
=> (MONTHLY-REVENUE . ((11 . 22)(18 . 31)(11 . 42)))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

zl:assoc item in-list Function

Looks up ifem in the association list in-list. Returns the first cons whose car is
zl:equal to item, or nil if none is found. Example:

(zl:assoc ’(a b) "((x . y) ((@ab) . 7) ((c .d) .e))
=> ((ab) . 7)
zl:assoc could have been defined by:
(defun assoc (item Tist)
(cond ((null Tist) nil)

((equal item (caar 1list)) (car Tist))
((assoc item (cdr Tist)))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

assoc-if predicate a-list &key :key Function

Searches the association list a-list. Returns the first pair in ¢-list whose car satis-
fies predicate, or nil if there is no such pair in a-list. The keyword is:

:key If not nil, should be a function of one argument that will ex-
tract the part to be tested from the whole element. :key is a
Symbolics extension to Common Lisp.

Example:

(assoc-if ff’integerp ’((eagle . raptor) (1 . 2))) =>
1.2

(assoc-if #’symbolp ’((eagle . raptor) (1 . 2))) =>
(EAGLE . RAPTOR)

(assoc-if #’floatp ’((eagle . raptor) (1 . 2))) =>
NIL
In the following example, the function finds the largest numeric key in an associa-

tion list by repeating assoc-if with a test for a key greater than the greatest key
found so far.

Page 883

(defun find-largest-key (a-list &optional (start 0))
(if (setq pair
(assoc-if #f’ (lambda(x) (> x start)) a-list))
(find-largest-key a-list (car pair))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

Compatibility Note: :key is a Symbolics extension to Common Lisp, not available
in CLOE.

assoc-if-not predicate a-list &key :key Function

Searches the association list a-list. The value returned is the first pair in a-list
whose car does not satisfy predicate, or nil if there is no such pair in a-list. The
keyword is:

:key If not nil, should be a function of one argument that will ex-
tract the part to be tested from the whole element. :key is a
Symbolics extension to Common Lisp.

Example:

(assoc-if-not #’integerp ’((eagle . raptor) (1 . 2))) =>
(EAGLE . RAPTOR)
(assoc-if-not #’symbolp ’
1.2

((eagle . raptor) (1 . 2))) =>

(assoc-if-not #’symbolp ’((eagle . raptor) (loon . diver))) =>
NIL

In the following example, the callto assoc-if-not finds the first pair in a-list such
that its key is not string-equal to "salary".
(assoc-if-not #’ (lambda(x) (string-equal "salary” x))
a-list)

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

Compatibility Note: :key is a Symbolics extension to Common Lisp, not available
in CLOE.

zl:assq item in-list Function
Looks up item in the association list in-list. The value is the first cons whose car

is eq to item, or nil if none is found. Examples:

(zl:assq ’r "((a . b) (c . d) (r . x) (s .y) (r. 2)))
=> (r . x)

Page 884

(zl:assq ’fooo ’((foo . bar) (zoo . goo)))
=> nil

(zl:assq b ’((abc) (bcd) (xy 2)))
=> (b c d)

You can rplacd the result of zl:assq as long as it is not nil, if you want to update
the "table" in-list. Example:

(setq values ’((x . 16@) (y . 200) (z . 5@)))
(zl:assq 'y values) => (y . 2@8)

(rplacd (zl:assq ’y values) 201)

(zl:assq ’y values) => (y . 2081) now

A typical trick is to use (edr (zl:assq x y)). Since the cdr of nil is guaranteed to
be nil, this yields nil if no pair is found (or if a pair is found whose cdr is nil.)

zl:assq could have been defined by:

(defun zl:assq (item list)
(cond ((null Tist) nil)
((eq item (caar list)) (car 1list))
((z1:assq item (cdr list)))))

For a table of related items: See the section "Functions that Operate on Associa-
tion Lists".

atan y &optional x Function

With two arguments, y and x, computes and returns the arc tangent of the quanti-
ty y/x. If either argument is a double-float, the result is also a double-float. In the
two argument case neither argument can be complex. The returned value is in ra-
dians and is always between -m (exclusive) and m (inclusive). The signs of y and «x
determine the quadrant of the result angle.

Note that either y or x (but not both simultaneously) can be zero. The examples il-
lustrate a few special cases.

With only one argument y, atan computes and returns the arc tangent of y. The
argument can be any noncomplex or complex number. The result is in radians and
its range is as follows: for a noncomplex y the result is noncomplex and lies be-
tween -m/2 and w/2 (both exclusive); for a complex y the range is that strip of the
complex plane containing numbers with a real part between -n/2 and w/2. A num-
ber with real part equal to -n/2 is not in the range if it has a non-positive imagi-
nary part. Similarly, a number with real part equal to n/2 is not in the range if its
imaginary part is non-negative.

Examples:

Page 885

(atan 8) => 0.0

(atan B8 673) => 0.0 ;(atan (/' y X))
(atan 1 1) => 0.7853982 ;first quadrant
(atan 1 -1) => 2.3561945 ;second quadrant
(atan -1 -1) => -2.3561945 ;third quadrant
(atan -1 1) => -0.7853982 ; fourth quadrant

(atan 1 B) => 1.5707964

(setq theta (/ pi 4)) — 0.785398

(atan (cos theta) (sin theta)) = theta => 0.785398
When given a single argument, atan accepts a complex argument.
(atan (/ (cos theta) (sin theta))) = theta => 0.785398

(atan y) is the same as
(x -1 (log (x (+ 1 (x 1 y))
(sgrt (/1 (+ 1 (expt y 2)))))))

For a table of related items, see the section "Trigonometric and Related
Functions".

zl:atan y x Function

Returns the angle, in radians, whose tangent is y/x. zl:atan always returns a num-
ber between zero and 2.

Examples:

(zl:atan 1 1) => 0.7853982
(z1:atan -1 -1) => 3.926991

For a table of related items: See the section "Trigonometric and Related
Functions".

zl:atan2 y x Function

Returns the angle, in radians, whose tangent is y/x. zl:atan2 always returns a
number between -n and m.

Similar to zl:atan, except that it accepts only noncomplex arguments.

For a table of related items: See the section "Trigonometric and Related
Functions".

atanh number Function

Computes and returns the hyperbolic arc tangent of number. The result is in radi-
ans. The argument can be any noncomplex or complex number. Note that if the
absolute value of the argument is greater than one, the result is complex even if
the argument is not complex.

Page 886

The hyperbolic arc tangent being mathematically multiple-valued in the complex
plane, atanh returns a principal value whose range is that strip of the complex
plane containing numbers with imaginary parts between -n/2 and 7/2. Any number
with an imaginary part equal to -n/2 is not in the range if its real part is non-
negative; any number with imaginary part equal to /2 is excluded from the range
if its real part is non-positive.

Example:

(atanh @) => 0.0

For a table of related items, see the section "Hyperbolic Functions".

atom object Function
Returns t if object is not a cons, otherwise nil.
Note that (atom ’()) is true because () is equivalent to nil.
(atom x)
is equivalent to
(type x ’atom)
is equivalent to
(not (typep x ’cons))
Note that arrays, strings, structures, vectors, numbers, and symbols are all atoms.

(atom " ()) => t

(setq foo (make-array ’(4 2)) bar "24" baz ’(a foo bar))
(atom foo) => t

(atom bar) => t

(atom baz) => nil

For a table of related items, see the section "Predicates that Operate on Lists".

atom object Function
Returns t if object is not a cons, otherwise nil
Note that (atom ’()) is true because () is equivalent to nil.
(atom x)
is equivalent to
(type x ’atom)
is equivalent to
(not (typep x ’cons))

Note that arrays, strings, structures, vectors, numbers, and symbols are all atoms.

Page 887

(atom ’()) => t

(setq foo (make-array ’(4 2)) bar "24" baz ’(a foo bar))
(atom foo) => t

(atom bar) => t

(atom baz) => nil

For a table of related items, see the section "Predicates that Operate on Lists".

atom Type Specifier
atom is the type specifier symbol for the predefined Lisp object of that name.
atom = (not cons).
Examples:
(typep ’a ’atom) => T
(z1:typep ’a) => :SYMBOL
(subtypep ’atom ’common) => NIL and NIL
(atom ’a) => T
(sys:type-arglist ’“atom) => NIL and T
See the section "Data Types and Type Specifiers".

See the section "Symbols, Keywords, and Variables".

&aux Lambda List Keyword

Separates the arguments of a function from the auxiliary variables. If it is present,
all specifiers after it are entries of the form:

(variable initial-value-form)

zZl:base Variable

The value of zl:base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base 10 is controlled by the
value of variable *print-radix*. See the section "Printed Representation of Rational
Numbers".

In your new programs use the Common Lisp variable *print-base®.

beep &optional beep-type (stream zl:terminal-io) Function

Tries to attract the user’s attention by causing an audible beep, or flashing the
screen, or something similar. If the stream supports the :beep operation, this func-
tion sends it a :beep message, passing type along as an argument. Otherwise it

Page 888

just causes an audible beep on the terminal. fype is a keyword selecting among
several different beeping noises. The allowed types have not yet been defined; zype
is currently ignored and should always be nil. See the message :beep.

:beep &optional type Message

This is supported by interactive streams. It attracts the attention of the user by
making an audible beep and/or flashing the screen. type is a keyword selecting
among several different beeping noises. The allowed types have not yet been de-
fined; type is currently ignored and should always be nil.

bignum Type Specifier

bignum is the type specifier symbol for the predefined primitive Lisp object of
that name.

The types bignum and fixnum are an exhaustive partition of the type integer,
since integer = (or bignum fixnum). These two types are internal representations
of integers used by the system for efficiency depending on integer size; in general,
bignums and fixnums are transparent to the programmer.

Examples:
(typep 10000000000000000000000000000AAAAA *bignum) => T
(typep ’1 ’bignum) => NIL
(z1:typep ’10000000000000000000E0OBALOBAABA) => :BIGNUM
(subtypep ’bignum ’integer) => T and T ; subtype and certain
(typep 565682366398848747848463539404874 ’common) => T
(z1:bigp 444444444445555555555555555556666666666666) => T
(sys:type-arglist ’bignum) => NIL and T
(type-of 089889374897338373689484949494373639484099876) => BIGNUM
See the section "Data Types and Type Specifiers".

See the section "Numbers".

zl:bigp object Function
Returns t if object is a bignum, otherwise nil.

For a table of related items, see the section "Numeric Type-checking Predicates".

bit array &rest subscripts Function

Returns the element of array selected by the subscripts. The subscripts must be in-
tegers and their number must match the dimensionality of array. The array must
be an array of bits.

Page 889

(setq foo (make-array (2 3)
:adjustable t
:element-type ’bit
:initial-contents " ((1 1 1)
(181))))

(bit foo 1 1) => 0

Note that the bit-array in the previous example is adjustable, and therfore not
simple. Therfore, we can not use sbit for foo. We could have used aref, but bit is
generally more efficient for bit-arrays.

For a table of related items: See the section "Arrays of Bits".

bit Type Specifier
bit is equivalent to the type (integer 0 1) and (unsigned-byte 1).

bit-and first second &optional third Function

Performs logical and operations on bit arrays. The arguments must be bit arrays
of the same rank and dimensions. A new array is created to contain the result if
the third argument is nil or omitted. If the third argument is t, the first array is
used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-andcl first second &optional third Function

Performs logical and operations on the complement of first with second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-ande2 first second &optional third Function

Performs logical and operations on first with the complement of second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-eqv first second &optional third Function

Performs logical exclusive nor operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain the re-

Page 890

sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-ior first second &optional third Function

Performs logical inclusive or operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain the re-
sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-nand first second &optional third Function

Performs logical not and operations on bit arrays. The arguments must be bit ar-
rays of the same rank and dimensions. A new array is created to contain the re-
sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

bit-nor first second &optional third Function

Performs logical not or operations on bit arrays. The arguments must be bit arrays
of the same rank and dimensions. A new array is created to contain the result if
the third argument is nil or omitted. If the third argument is t, the first array is
used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bit-not source &optional destination Function

Returns a bit-array of the same rank and dimensions that contains a copy of the
argument with all the bits inverted. source must be a bit-array. If destination is nil
or omitted, a new array is created to contain the result. If destination is t, the re-
sult is destructively placed in the source array.

(bit-not #x10681) => {x0110@
For a table of related items:

See the section "Arrays of Bits".

bit-orel first second &optional third Function

Performs logical or operations on the complement of first with second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

Page 891

For a table of related items: See the section "Arrays of Bits".

bit-ore2 first second &optional third Function

Performs logical or operations on first with the complement of second on bit ar-
rays. The arguments must be bit arrays of the same rank and dimensions. A new
array is created to contain the result if the third argument is nil or omitted. If
the third argument is t, the first array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

zl:bit-test x y Function

In your new programs, we recommend that you use the function logtest, which is
the Common Lisp equivalent of the function zl:bit-test.

zl:bit-test is a predicate that returns t if any of the bits designated by the 1’s in x
are 1’s in y.

For a table of related items: See the section "Predicates for Testing Bits in Inte-
gers".

bit-vector &optional (size '*) Type Specifier
bit-vector is the type specifier symbol for the Lisp data structure of that name.

The type bit-vector is a subtype of the type vector; (bit-vector) means (vector
bit).

The type bit-vector is a supertype of the type simple-bit-vector.
The types (vector t), string, and bit-vector are disjoint.

This type specifier can be used in either symbol or list form. Used in list form,
bit-vector allows the declaration and creation of specialized types of bit vectors
whose size is restricted to the specified size. (bit-vector size) means the same as
(array bit (size)): the set of bit-vectors of the indicated size.

Examples:

(setq array-bit-vector
(make-array ’(3) :element-type ’bit :fill-pointer 2))
=> fl<ART-1B-3 43015121>

(typep #x10110 ’bit-vector) => T

(typep #x101 ’(bit-vector 3)) => T

(typep array-bit-vector ’hit-vector) =>T

(subtypep ’bit-vector ’vector) => T and T

(bit-vector-p #fx) => T ;empty bit vector

(sys:type-arglist ’bit-vector) => (&0PTIONAL (SIZE ’x)) and T

See the section "Data Types and Type Specifiers".

Page 892

See the section "Arrays".

bit-vector-cardinality bit-vector &key (:start 0) :end Function

Counts how many of the bits in the range are one’s and returns the number
found.

bit-vector is a one-dimensional array whose elements are required to be bits. See
the type specifier bit-vector.

:start and :end must be non-negative integer indices into the bit-vector. :start
must be less than or equal to :end, or else an error is signalled. :start defaults to
zero (the start of the bit vector).

:start indicates the start position for the operation within the bit-vector. :end is
the position of the first element in the bit-vector beyond the end of the operation.

For example:

(bit-vector-cardinality #x11111)
=> b

(bit-vector-cardinality #x11100)
=> 3

(bit-vector-cardinality #x1118811 :start 8 :end 5H)
=> 3

For a table of related items: See the section "Operations on Vectors".

bit-vector-disjoint-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Function

Tests two bit vectors to see if they are disjoint (have no common positions contain-
ing 1’s) in a range specified by :startl, :endl, :start2, and :end2.

bit-vector-1 and bit-vector-2 are one-dimensional arrays whose elements are required
to be bits.See the type specifier bit-vector.

:startl, :endl, :start2, and :end2 must be non-negative integer indices into bit-
vector]l and bit-vector-2. :startl and :start2 must be less than or equal to :endl and
:end2, or else an error is signalled. :startl and :start2 default to zero (the start of
the bit vector). If :end is unspecified or nil, the length bit-vector is used.

:startl and :start2 indicate the start positions for the operation within the bit-
vector. :endl and :end2 are the position of the first element in the bit-vector be-
yond the end of the operation.

For example:

Page 893

(bit-vector-disjoint-p #x001000001 {x001000001)
=> NIL

(bit-vector-disjoint-p #x11100100008 #x111008100811)
=> NIL

(bit-vector-disjoint-p #x11100100008 f#x1110010011 :start1 1 :end1 6 :start2 6 :end2 8)
= T

For a table of related items: See the section "Operations on Vectors".

bit-vector-p object Function

Tests whether the given object is a bit vector. A bit vector is a one-dimensional ar-
ray whose elements are required to be bits. See the type specifier bit-vector.

(bit-vector-p (make-array 3 :element-type ’bit :fill-pointer 2))
=T

(bit-vector-p (make-array 5 :element-type ’string-char))
=> NIL

For a table of related items: See the section "Operations on Vectors".

bit-vector-position bit bit-vector &key (:start 0) :end Function

If bit-vector contains an element matching bi¢, returns the index within the bit vec-
tor of the leftmost such element as a non-negative integer; otherwise nil is re-
turned.

bit is either 0 or 1.

bit-vector is a one-dimensional array whose elements are required to be bits. See
the type specifier bit-vector.

:start and :end must be non-negative integer indices into the bit-vector. :start
must be less than or equal to :end , or else an error is signalled. :start defaults to
zero (the start of the bit vector). If :end is unspecified or nil, the length bit-
vector is used.

:start indicates the start position for the operation within the bit vector. :end is
the position of the first element in the bit-vector beyond the end of the operation.
For example:

(bit-vector-position 1 #x11111)
=> 0

(bit-vector-position 1 #x0011111)
=> 2

Page 894

(bit-vector-position 1 #x8811111 :start 3 :end 5)
=> 3

(bit-vector-position @ #x111)
=> NIL

For a table of related items: See the section "Operations on Vectors".

bit-vector-subset-p bit-vector-1 bit-vector-2 &key (:startl 0) :endl (:start2 0) :end2
Function

Tests if one bit vector is a subset of another bit vector (subset means that for
each position of bit-vector-2 that contains a one, the same position in bit-vector-1
also contains a 1) in a range specified by :startl, :endl, :start2, and :end2.

bit-vector-1 and bit-vector-2 are one-dimensional arrays whose elements are required
to be bits.See the type specifier bit-vector.

:startl, :endl, :start2, and :end2 must be non-negative integer indices into bit-
vector]l and bit-vector-2. :startl and :start2 must be less than or equal to :endl and
:end2, else an error is signalled. :startl and :start2 default to zero (the start of
the bit vector). If :end is unspecified or nil, the length bit-vector is used.

:startl and :start2 indicate the start position for the operation within the bit vec-
tor. :endl and :end2 are the positions of the first element in the bit-vector beyond
the end of the operation.

For example:

(bit-vector-subset-p #x00100100111 }#x00100100111)
= T

(bit-vector-subset-p #x1110010011 }#x0010010011)
=> NIL

(bit-vector-subset-p #x11100000 #x11100011 :start1 @ :end1 6 :start2 @ :end2 6)
= T

(bit-vector-subset-p #x11100000 {x11100011 :start1 @ :end1 8 :start2 8 :end2 8)
=> NIL

For a table of related items: See the section "Operations on Vectors".

bit-vector-zero-p bit-vector &key (:start 0) :end Function
Tests if bit-vector is a bit vector of zeros in the range specified by :start and :end.
bit-vector is a one-dimensional array whose elements are required to be bits.

:start and :end must be non-negative integer indices into the bit-vector. :start
must be less than or equal to :end, or else an error is signalled. :start defaults to
zero (the start of the bit vector).

Page 895

:start indicates the start position for the operation within the bit vector. :end is
the position of the first element in the bit-vector beyond the end of the operation.
See the type specifier bit-vector.

For example:

(bit-vector-zero-p #x00000 :start @ :end H)
= T

(bit-vector-zero-p #x00011)
=> NIL

(bit-vector-zero-p #x00011 :start @ :end 3)
=T

For a table of related items: See the section "Operations on Vectors".

bit-xor first second &optional third Function

Performs logical exclusive or operations on bit arrays. The arguments must be bit
arrays of the same rank and dimensions. A new array is created to contain the re-
sult if the third argument is nil or omitted. If the third argument is t, the first
array is used to hold the result.

For a table of related items: See the section "Arrays of Bits".

bitblt a¢lu width height from-raster from-x from-y to-raster to-x to-y Function

Copies a rectangular portion of from-raster into a rectangular portion of to-raster.
from-raster and to-raster must be two-dimensional arrays of bits or bytes (sys:art-
1b, sys:art-2b, sys:art-4b, sys:art-8b, sys:art-16b, or sys:art-fixnum). The value
stored can be a Boolean function of the new value and the value already there, un-
der the control of alu. This function is most commonly used in connection with
raster images for TV displays.

The top-left corner of the source rectangle is:
(raster-aref from-raster from-x from-y)
The top-left corner of the destination rectangle is:

(raster-aref fo-raster to-x to-y)

width and height are the dimensions of both rectangles. If width or height is zero,
bitblt does nothing.

from-raster and to-raster are allowed to be the same array. bitblt normally travers-
es the arrays in increasing order of x and y subscripts. If width is negative,
(abs width) is used as the width, but the processing of the x direction is done
backwards, starting with the highest value of x and working down. If height is
negative it is treated analogously. When bitblting an array to itself, when the two
rectangles overlap, it might be necessary to work backwards to achieve the desired

Page 896

effect, such as shifting the entire array upwards by a certain number of rows.
Note that negativity of width or height does not affect the (x,y) coordinates speci-
fied by the arguments, which are still the top-left corner even if bitblt starts at
some other corner.

If the two arrays are of different types, bitblt works bit-wise and not element-wise.
That is, if you bitblt from an sys:art-2b raster into an sys:art-4b raster, then two
elements of the from-raster correspond to one element of the fo-raster. width is in
units of elements of the to-raster. Note that the width and heigth arguments are
relative to the to-raster array, not the from-raster array.

If bitblt goes outside the bounds of the source array, it wraps around. This allows
such operations as the replication of a small stipple pattern through a large array.
If bitblt goes outside the bounds of the destination array, it signals an error.

If src is an element of the source rectangle, and dst is the corresponding element
of the destination rectangle, then bitblt changes the value of dst to (boole alu src
dst). The following are the symbolic names for some of the most useful alu func-
tions:

tv:alu-seta plain copy

tv:alu-setz set destination to 0

tv:alu-ior inclusive or

tv:alu-xor exclusive or

tv:alu-andca and with complement of source

For a chart of more alu possibilities: See the function boole.

bitblt is written in highly optimized microcode and goes very much faster than the
same thing written with ordinary raster operations would. Unfortunately this caus-
es bitblt to have a couple of strange restrictions. Wraparound does not work cor-
rectly if from-raster is an indirect array with an index offset. On black-and-white
screens, bitblt signals an error if the widihs of from-raster and fo-raster are not
both integral multiples of the machine word length. On color screens, the product
of the number of bits per raster element and the width must be an integral multi-
ple of 32. You can determine the number of bits per raster element by the number
of bits which correspond to a single pixel on the screen. For sys:art-lb arrays,
width must be a multiple of 32., for sys:art-2b arrays it must be a multiple of 16.,
and so on. Use :draw-1-bit-raster rather than bitblt in programs that run without
modification on color screens.

For a table of related items: See the section "Operations on Rasters". Also: See the
section "Copying an Array'.

block name &body body
Special Form

Provides an exit context for the evaluation of its body argument. Evaluates each
form in sequence and normally returns the (possibly multiple) values of the last
form. However, (return-from name value) or (return or (return (values-list /ist))

Page 897

form) might be evaluated during the evaluation of some form. In that case, the
(possibly multiple) values that result from evaluating vaelue are immediately re-
turned from the innermost block that has the same name and that lexically con-
tains the return-from form. Any remaining forms in that block are not evaluated.

name is not evaluated. It must be a symbol.

The scope of name is lexical. That is, the return-from form must be inside the
block itself (or inside a block that that block lexically contains), not inside a func-
tion called from the block.

do, prog, and their variants establish implicit blocks around their bodies; you can
use return-from to exit from them. These blocks are named nil unless you specify
a name explicitly.

Examples:

(bTock nil
(print "clear")
(return)
(print "open")) => "clear" NIL

(et ((x 2400))
(bTlock time-x
(when (= x 24800)
(return-from time-x "time to go"))
("time time time"))) => “time to go”

(defun bar ()
(princ "zero ")
(bTock a
(princ "one *) (return-from a "two ")
(princ "three "))
(princ "four ")
t) => BAR
(bar) => zero one four T

(block negative
(mapcar (function (lambda (x)
(cond ((minusp Xx)
(return-from negative x))
(t (fx)))))
y))

(block foo
(Tet ((num xa-numberx)
(result 0))
(dotimes (i num result)
(if (=1 28) (return-from foo result))
(setq result (+ result (expt i 2))))))

defun establishes an implicit block whose name is the same as that of the defined

Page 898

function.

(defun matrix-find (elt matrix)
(dotimes (i (array-dimension matrix 0))
(dotimes (j (array-dimension matrix 1))
(if (eql elt (aref matrix i j))
(return-from matrix-find (values i j))))))

The following two forms are equivalent:

(cond ((predicate x)
(do-one-thing))
(t
(format t “The value of X is “S™7" x)
(do-the-other-thing)
(do-something-else-too0)))

(bTock deal-with-x
(when (predicate x)

(return-from deal-with-x (do-one-thing)))
(format t "The value of X is 7S7%" x)
(do-the-other-thing)
(do-something-else-to0))

The interpreter and compiler generate implicit blocks for functions whose name is
a list (such as methods) just as they do for functions whose name is a symbol. You
can use return-from for methods. The name of a method’s implicit block is the
name of the generic function it implements. If the name of the generic function is
a list, the block name is the second symbol in that list.

For a table of related items: See the section "Blocks and Exits Funections and Vari-
ables".

&body Lambda List Keyword

This keyword is used with macros only. It is identical in function to &rest, but it
informs output-formatting and editing functions that the remainder of the form is
treated as a body, and should be indented accordingly.

Note that either &body or &rest, but not both, should be used in any definition.

boole op integerl &rest more-integers Function

This function is the generalization of logical functions such as zl:logand, zl:logior
and zl:logxor. It performs bit-wise logical operations on integer arguments return-
ing an integer which is the result of the operation.

The argument op specifies the logical operation to be performed; sixteen operations
are possible. These are listed and described in the table below which also shows
the truth tables for each value of op.

Page 899

op can be specified by writing the name of one of the constants listed below which
represents the desired operation, or by using an integer between 0 and 15 inclusive
which controls the function that is computed. If the binary representation of op is
abed (@ is the most significant bit, d the least) then the truth table for the
Boolean operation is as follows:

integer2
[8 1
integerl gl a c
11 b d
Examples:
(boole 6 8 B) => 0 ; a=0
(boole 11 1 8) => -2 ; a=1 and b=0
(boole 2 6 9) => 9 ; a=b=d=0 c=1 therefore 1’s appear only

; when integer1 is @ and integer2 is 1

With two arguments, the result of boole is simply its second argument. At least
two arguments are required.

If boole has more than three arguments, it is associated left to right; thus,
(boole op x y z) = (boole op (boole op x y) 2)
(boole boole-and B8 1 1) => @

For the basic case of three arguments, the results of boole are shown in the table
below. This table also shows the value of bits abcd in the binary representation of
op for each of the sixteen operations. (For example, boole-clr corresponds to
#b0000, boole-and to #b0001, and so on.) As the table shows,

op = (boole op #b8101 #bBB11) = (boole op 5 3)

a b c d
Integerl 0 1 0 1

op Integer2 0 0 1 1 Operation Name
boole-clr 0 0 0 0 clear, always 0
boole-and 0 0 0 1 and

e
e
—
e

boole-andcl and complement of integerl
with integer2

boole-2 0 0 1 1 last of more-integers

boole-andc2 0 1 0 0 and integerl with complement
of integer2

boole-1 0 1 0 1 integerl

boole-xor 0 1 1 0 exclusive or

boole-ior 0 1 1 1 inclusive or

boole-nor 1 0 0 0 nor (complement of

inclusive or)
boole-eqv 1 0 0 1 equivalence (exclusive nor)

Page 900

boole-cl 1 0 1 0 complement of integerl
boole-orcl or complement of integerl
with integer2

—
=]
—
—

boole-c2 1 1 0 0 complement of integer2

boole-orc2 1 1 0 1 or integerl with complement
of integer2

boole-nand 1 1 1 0 nand (complement of and)

boole-set 1 1 1 1 set, always 1

Examples:

(boole boole-clr 3) => 3 ;with two arguments always returns
;integeri
(boole boole-set 7) => 7

(boole boole-1 1 8) => 1
(boole boole-2 1 @) => 0

(boole boole-orc2 1 4) => -5

(boole (if flag then boole-xor boole-ior) int1 int2)

As a matter of style the explicit logical functions such as logand, logior, and
logxor are usually preferred over the equivalent forms of boole. boole is useful,
however, when you want to generalize a procedure so that it can use one of sever-
al logical operations.

For a table of related items: See the section "Functions Returning Result of Bit-
wise Logical Operations".

boole-1 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the first integer argument of boole.

boole-2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the last integer argument of boole.

boole-and Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical and operation to be performed on the integer arguments of boole.

boole-andel Constant

Page 901

Can be used as the first argument to the function boole; it specifies a logical op-
eration to be performed on the integer arguments of boole, namely, a bit-wise logi-
cal and of the complement of the first integer argument with the next integer ar-
gument.

boole-andc2 Constant

Can be used as the first argument to the function boole; it specifies a logical op-
eration to be performed on the integer arguments of boole, namely, a bit-wise logi-
cal and of the first integer argument with the complement of the next integer ar-
gument.

boole-cl Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the complement of the first integer argument of boole.

boole-c2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation that returns the complement of the last integer argument of boole.

boole-clr Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical clear operation to be performed on the integer arguments of boole.

boole-eqv Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical equivalence operation to be performed on the integer arguments of boole.

boole-ior Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical inclusive or operation to be performed on the integer arguments of boole.

boole-nand Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical not-and operation to be performed on the integer arguments of boole.

boole-nor Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical not-or operation to be performed on the integer arguments of boole.

Page 902

boole-orcl Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation to be performed on the integer arguments of boole, namely, the logi-
cal or of the complement of the first integer argument with the next integer ar-
gument.

boole-orc2 Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical operation to be performed on the integer arguments of boole, namely, the logi-
cal or of the first integer argument with the complement of the next integer ar-
gument.

boole-set Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical set operation to be performed on the integer arguments of boole.

boole-xor Constant

Can be used as the first argument to the function boole; it specifies a bit-wise log-
ical exclusive or operation to be performed on the integer arguments of boole.

both-case-p char Function
Returns t if char is a letter that exists in another case.

(both-case-p #f\M) => T
(both-case-p #\m) => T

Returns T if char is an uppercase character and a lowercase character analog can
be obtained by using char-downcase, or if char is a lowercase character and an up-
percase character analog can be obtained by using char-upcase.

(both-case-p #\$) => nil
(both-case-p #\a) => t

For a table of related items, see the section "Character Predicates".

boundp symbol Function

Returns t if the dynamic (special) variable symbol is bound; otherwise, it returns
nil.

(defvar xalarmsx)

(boundp ’xalarmsx) => nil

Page 903

(setq xalarmsx 20)

(boundp ’xalarmsx) => t

See the section "Functions Relating to the Value of a Symbol".

boundp-in-closure closure symbol Function

Returns t if symbol is bound in the environment of closure; that is, it does what
boundp would do if you restored the value cells known about by closure. If symbol
is not closed over by closure, this is just like boundp. See the section "Dynamic
Closure-Manipulating Functions".

boundp-in-instance instance symbol Function
Returns t if the instance variable symbol is bound in the given instance.

For a summary of all functions, macros, special forms, and variables related to
Flavors: See the section "Summary of Flavor Functions and Variables".

break &optional format-string &rest format-args Function

Like zl:dbg, when evaluated, causes entry to the Debugger (a Debugger Break).
However, break takes a format-string and format-args instead of a process.

The format-string is a user-written error message that is printed in the Debugger’s
Break message whenever break is encountered and you enter the Debugger. for-
mat-args are the zl:format-style arguments to zl:format directives in format-string.

break is a temporary way to insert Debugger breakpoints into your program while
you are debugging it. It is not designed for permanent use in your program as a
way of signalling errors. Therefore, you would use this function only for the dura-
tion of your debugging session. Continuing from break will not trigger any unusu-
al recovery action.

zl:break &optional fag (conditional t) Special Form

Enters a breakpoint loop, which is similar to a Lisp top-level loop. (zl:break tag)
always enters the loop; (zl:break tag conditional) evaluates conditional and only
enter the break loop if it returns non-nil. If the break loop is entered, zl:break
prints out:

;Breakpoint fag; Resume to continue, Abort to quit.

The standard values for any variables are checked. If zl:break rebinds any of
these standard variables, it warns you that it has done so. zl:break then enters a
loop reading, evaluating, and printing forms. A difference between a break loop
and the top-level loop is that when reading a form, zl:break checks for the follow-
ing special cases: If the ABORT key is pressed, control is returned to the previous

Page 904

break or Debugger, or to top level if there is none. If the RESUME key is pressed,
zl:break returns nil. If the list (return form) is typed, zl:break evaluates form
and returns the result.

Inside the zl:break loop, the streams zl:standard-output, zl:standard-input, and
zl:query-io are bound to be synonymous to zl:terminal-io; zl:terminal-io itself is
not rebound. Several other internal system variables are bound, and you can add
your own symbols to be bound by pushing elements onto the value of the variable
sys:*break-bindings*. (See the variable sys:*break-bindings*.)

If tag is omitted, it defaults to nil.

There are two easy ways to write a breakpoint into your program: (zl:break) gets
a read-eval-print loop, and (zl:dbg) gets the Debugger. (These are the programmat-
ic equivalents of the SUSPEND and m—SUSFEND keys on the keyboard.)

sys:*break-bindings* Variable

When zl:break is called, it binds some special variables under control of the list
that is the value of sys:*break-bindings*. Each element of the list is a list of two
elements: a variable and a form that is evaluated to produce the value to bind it
to. The bindings happen sequentially. You can push things on this list (adding to
the front of it), but should not replace the list wholesale since several of the vari-
able bindings on this list are essential to the operation of zl:break.

break-on-warnings Variable

This variable controls the action of the function warn. If *break-on-warnings®* is
nil, warn prints a warning message without signalling.

If *break-on-warnings* is not nil, warn enters the Debugger and prints the warn-
ing message. The default value is nil

This flag is intended primarily for use when you are debugging programs that is-
sue warnings.

Note that this flag is still supported but is considered obsolete.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

breakon &optional function (condition t)
Function

With no arguments, returns a list of all functions with breakpoints set by
breakon.

breakon sets a trace-style breakpoint for the function. Whenever the function
named by function is called, the condition dbg:breakon-trap is signalled, and the
Debugger assumes control. At this point, you can inspect the state of the Lisp en-
vironment and the stack. Proceeding from the condition then causes the program
to continue to run.

Page 905

The first argument can be any function, so that you can trace methods and other
functions not named by symbols. See the section "Function Specs".

condition can be used for making a conditional breakpoint. condition should be a
Lisp form. It is evaluated when the function is called. If it returns nil, the func-
tion call proceeds without signalling anything. condition arguments from multiple
calls to breakon accumulate and are treated as an or condition. Thus, when any
of the forms becomes true, the breakpoint "goes off". condition is evaluated in the
dynamic environment of the function call. You can inspect the arguments of func-
tion by looking at the variable arglist.

For a table of related items: See the section "Breakpoint Functions".

dbg:bug-report-description condition stream nframes Generic Function

Called by the :Mail Bug Report (c-M) command in the Debugger to print out the
text that is the initial contents of the mail-sending buffer. The handler should sim-
ply print whatever information it considers appropriate onto stream. nframes is the
numeric argument given to c-M. The Debugger interprets nframes as the number
of frames from the backtrace to include in the initial mail buffer. A nframes of nil
means all frames.

The compatible message for dbg:bug-report-description is:
:bug-report-description

For a table of related items: See the section "Debugger Bug Report Functions".

dbg:bug-report-recipient-system condition Generic Function

Called by the :Mail Bug Report (z-M) command in the Debugger to find the mail-
ing list to which to send the bug report mail. The mailing list is returned as a
string.

The default method (the one in the condition flavor) returns "lispm'", and this is
passed as the first argument to the zl:bug function.

The compatible message for dbg:bug-report-recipient-system is:
:bug-report-recipient-system

For a table of related items: See the section "Debugger Bug Report Functions".

clos:built-in-class Class

The class of many of the predefined classes corresponding to Common Lisp types,
such as list and t.

These classes (objects whose class is clos:built-in-class) are provided so users can
define methods that specialize on them. They do not support the full behavior of
user-defined classes (whose class is clos:standard-class). For example, you cannot
use clos:make-instance to create instances of these classes.

Page 906

butlast x &optional (n 1) Function

Creates and returns a list with the same elements as x, excepting the last element.
Examples:

(butlast ’(abcd)) => (a b c)
(butlast ’((a b) (c d))) => ((a h))
(butlast ’(a)) => nil

(butlast nil) => nil

(setga ’(12345617))

(butlast a) => (1 2 3 4 5 6)
(butlast a 4) => (1 2 3)
a=>((12345617)

The name is from the phrase "all elements but the last".

For a table of related items: See the section "Functions for Modifying Lists".

byte size position Function

Creates a byte specifier for a byte size bits wide, position bits from the right-hand
(least-significant) end of the word. The arguments size and position must be inte-
gers greater than or equal to zero.

The byte specifier so created serves as an argument to various byte manipulation
functions.

Examples:

(1db (byte 2 1) 9) => @

(1db (byte 3 4) Ho012345) => 6
(setq byte-spec (byte 5 2))
(byte-size hyte-spec) => 5
(byte-position byte-spec) => 2

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

byte-position bytespec Function
Extracts the position field of bytespec.
bytespec is built using function byte with bit size and position arguments.

Example:
(byte-position (byte 3 4)) => 4

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

byte-size bytespec Function

Extracts the size field of bytespec.

Page 907

bytespec is built using function byte with bit size and position arguments.

Example:
(byte-size (byte 3 4)) => 3

For a table of related items: See the section "Summary of Byte Manipulation Func-
tions".

caaaar x Function

(caaaar x) is the same as (car (car (car (car x))))

caaadr x Function

(caaadr x) is the same as (car (car (car (cdr x))))

caaar x Function

(caaar x) 1s the same as (car (car (car x)))

caadar x Function

(caadar x) is the same as (car (car (cdr (car x))))

caaddr x Function

(caaddr x) is the same as (car (car (cdr (cdr x))))

caadr x Function

(caadr x) is the same as (car (car (cdr x)))

caar x Function

(caar x) 1s the same as (car (car x))

cadaar x Function

(cadaar x) is the same as (car (cdr (car (car x))))

cadadr x Function

Page 908

(cadadr x) is the same as (car (cdr (car (cdr x))))

cadar x Function

(cadar x) 1s the same as (car (cdr (car x)))

caddar x Function

(caddar x) is the same as (car (cdr (cdr (car x))))

cadddr x Function

(cadddr x) is the same as (car (cdr (cdr (cdr x))))

caddr x Function

(caddr x) is the same as (car (cdr (cdr x)))

cadr x Function

(cadr x) 1s the same as (car (cdr x))

call-arguments-limit Constant

A positive integer that is the upper exclusive bound on the number of arguments
that can be passed to a function. The current value is 128 for 3600-series ma-
chines, 50 for Ivory-based machines, and 256 for CLOE.

For example, let’s assume that we have two functions, process-elements-pairwise
and process-elements-atonce. The first takes the elements of an array and oper-
ates on them by repeatedly calling a subordinate function of two variables. The
second function atonce calls a subordinate function that takes each element of the
array as arguments. Then we might use the following code to call the appropriate
function:

(if (> (array-total-size array) call-arguments-limit)
(process-elements-pairwise array)
(process-elements-atonce array))

flavor:call-component-method function-spec &key apply arglist Function

Produces a form that calls function-spec, which must be the function-spec for a
component method. If no keyword arguments are given to flavor:call-component-

Page 909

method, the method receives the same arguments that the generic function re-
ceived. That is, the first argument to the generic function is bound to self inside
the method, and succeeding arguments are bound to the argument list specified
with defmethod. Additional internal arguments are passed to the method, but the
user never needs to be concerned about these.

arglist is a list of forms to be evaluated to supply the arguments to the method,
instead of simply passing through the arguments to the generic function.

When arglist and apply are both supplied, :apply should be followed by t or nil. If
:apply t is supplied, the method is called with apply instead of funcall. :apply nil
causes the method to be called with funcall.

When arglist is not supplied, the value following :apply is the argument that
should be given to apply when the method is called. (Certain internal arguments
are also included in the apply form.) For example:

(flavor:call-component-method function-spec :apply list)
Results in:

(apply #’function-spec internal arguments list)
In other words, the following two forms have the same effect:

(flavor:call-component-method function-spec :apply list)
(flavor:call-component-method function-spec :arglist (1ist list)
:apply t)
If function-spec is nil, flavor:call-component-method produces a form that returns
nil when evaluated.
For examples, see the section "Examples of define-method-combination".

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

flavor:call-component-methods function-spec-list &key (operator ’progn) Function

Produces a form that invokes the function or special form named operator. Each
argument or subform is a call to one of the methods in function-spec-list. operator
defaults to progn.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

clos:call-method method &optional next-method-list Macro

Used within effective method forms (forms returned by the body of clos:define-
method-combination) to call a method. The macro clos:call-method calls the
method and supplies it with the arguments that were supplied to generic function.

The next-method-list argument to clos:call-method defines the "next method" for
clos:call-next-method and eclos:next-method-p. That is, if clos:call-next-method is

Page 910

called within the method, the first method in next-method-list will be called; if
clos:call-next-method is called within that method, the second method in next-
method-list will be called, and so on.

method A method object, or a list such as (clos:make-method form).
Such a list specifies a method object whose method function
has a body that is the given Lisp form.

next-method-list A list of method objects. Each element is either a method ob-
ject or a list such as (clos:make-method form), as described
above.

clos:call-method returns the value or values returned by the method.

When clos:call-method is called and the next-method-list argument is unsupplied,
it means that semantically there is no such thing as a "next method"; for example,
this is true for before-methods and after-methods in clos:standard method combi-
nation. Thus, when the next-method-list is unsupplied, clos:eall-next-method is not
allowed inside the method, and the behavior of clos:next-method-p is undefined. If
the next-method-list argument is supplied as nil, and the method uses clos:call-
next-method, then clos:no-next-method is called.

clos:call-next-method &rest args Function

Used within a method body to call the "next method". clos:call-next-method re-
turns the value or values returned by the method it calls.

args Arguments to be passed to the next method. If any args are
provided, the following condition must hold: the ordered set of
methods applicable for args must be the same as the ordered
set of methods applicable for the arguments that were passed
to the generic function. If this requirement is not satisfied, an
error is signaled.

If no args are provided, clos:call-next-method passes the
method’s original arguments on to the next method.

The method-combination type in use determines which kinds of methods can use
clos:call-next-method, and defines the meaning of "next method". The
clos:standard method-combination type supports clos:call-next-method in around-
methods and primary methods, but not in before-methods or after-methods. It de-
fines the next method as follows:

e If clos:call-next-method is called in an around-method, the next method is the
next most specific around-method, if one is applicable.

e If clos:call-next-method is called in the least specific applicable around-method,
the next method consists of the following:

° All the before-methods in most-specific-first order.

Page 911

° The most specific primary method. If clos:call-next-method is called in the
primary method, then the next method is the next most specific primary
method.

° All the after-methods in most-specific-last order.
If clos:call-next-method is called and there is no next method, then clos:no-next-
method is called. The default method for clos:no-next-method signals an error.

If clos:call-next-method is called with arguments but omits optional arguments,
the next method called defaults those arguments.

clos:call-next-method has lexical scope and indefinite extent.
You can use clos:next-method-p to test whether the next method exists.

If clos:call-next-method is called in a method that does not support it, an error is
sighaled. The method-combination type in use controls which kinds of methods sup-
port clos:call-next-method.

car x Function
Returns the head (car) of list or cons x. Example:
(car ’(abc)) => a

(setq a ’(first second third))=>
(FIRST SECOND THIRD)

(car a)=>

FIRST

(car (cdr a))=>

SECOND

Officially car is applicable only to conses and locatives. However, as a matter of
convenience, car of nil returns nil.

For a table of related items: See the section "Functions for Extracting from Lists".

zl:car-location cons Function
Returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; since the cons itself can be used as a loca-
tive to its cdr.

For a table of related items: See the section "Functions for Finding Information
About Lists and Conses".

case test-object &body clauses Special Form

This is a conditional that chooses one of its clauses to execute by comparing a val-
ue to various constants. The constants can be any object.

Page 912

Its form is as follows:

(case test-object

(keylist consequent consequent ...)

(keylist consequent consequent ...)

(keylist consequent consequent ...)
L)

Structurally case is much like cond, and it behaves like cond in selecting one
clause and then executing all consequents of that clause. However, case differs in
the mechanism of clause selection.

The first thing case does is to evaluate test-object, to produce an object called the
key object. Then case considers each of the clauses in turn. If key is eql to any
item in the test list of a clause, case evaluates the consequents of that clause as
an implicit progn.

If no clause is satisfied, case returns nil.

case returns the value of the last consequent of the clause evaluated, or nil if
there are no consequents to that clause.

The keys in the clauses are not evaluated; they must be literal key values. It is an
error for the same key to appear in more than one clause. The order of the claus-
es does not affect the behavior of the case construct.

Instead of a test, one can write one of the symbols t and otherwise. A clause with
such a symbol always succeeds and must be the last clause; this is an exception to
the order-independence of clauses.

If there is only one key value for a clause, that key value can be written in place
of a list of that key, provided that no ambiguity results. Such a "singleton key" can
not be nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

Examples:

(Tet ((num 69))
(case num
((1 2) "math...ack")
((3 4) "great now we can count”))) => NIL

(Tet ((num 3))
(case num
((1 2) "one two")
((3 45 6) (princ "numbers”) (princ " three") (fresh-Tline))
(t "not today"))) => numbers three
T

(Tet ((object-one ’candy))
(case object-one
(apple (setq class ’health) "weekdays")
(candy (setqg class ’junk) “weekends")
(otherwise (setq class ’unknown) "all week long”))) => "weekends"
class => JUNK

Page 913

For a table of related items: See the section "Conditional Functions".

(defun print-field (object)
(when (consp object)
(case (list-length object)
(1 (print (car object)))
((2 345) (print (cadr object)))
(otherwise (print "too large to print”)))))

zl:caseq fest-object &body clauses Special Form

Provided for Maclisp compatibility; it is exactly the same as zl:selectq. This is not
perfectly compatible with Maclisp, because zl:selectq accepts otherwise as well as
t where zl:caseq would not accept otherwise, and because Maclisp accepts a more
limited set of keys then zl:selectq does. Maclisp programs that use zl:caseq work
correctly as long as they do not use the symbol otherwise as the key.

Examples:

(let ((a ’big-bang))
(caseq a
(light "day")
(dark "night"))) => NIL
(setg a 3) => 3

(caseq a
(1 "one")
(2 "two")

(t “not one or two")) => “not one or two"
(let ((a ’big-bang))
(caseq a
(light "day")
(dark "night")
(otherwise "night and day"))) => "night and day”

For a table of related items: See the section "Conditional Functions".

catch tag &body body Special Form

Provides an environment for evaluating its argument forms as an implicit progn
with dynamic exit capability throw. Although throw need not be in the lexical
scope of catch, it must be in the dynamic scope.

Used with throw for nonlocal exits. catech first evaluates tag to obtain an object
that is the "tag" of the catch. Then the body forms are evaluated in sequence, and
catch returns the (possibly multiple) values of the last form in the body.

However, a throw (or in Genera, a *throw) form might be evaluated during the
evaluation of one of the forms in body. In that case, if the throw "tag" is eq to the
catch "tag" and if this catch is the innermost catch with that tag, the evaluation

Page 914

of the body is immediately aborted, and catch returns values specified by the
throw or zl:*throw form.

If the catch exits abnormally because of a throw form, it returns the (possibly
multiple) values that result from evaluating throw’s second subform. If the catch
exits abnormally because of a zl:*throw form, it returns two values: the first is
the result of evaluating zl:*throw’s second subform, and the second is the result
of evaluating zl:*throw’s first subform (the tag thrown to).

(catch ’foo form) catches a (throw ’foo form) but not a (throw ’bar form). It is
an error if throw is done when no suitable catch exists.

The scope of the tags is dynamic. That is, the throw does not have to be lexically
within the cateh form; it is possible to throw out of a function that is called from
inside a catch form.

For example:

(catch ’done
(ask-database <pattern>
#’ (Tambda (x) (when (nice-p Xx)
(throw ’done x)))))

The throw to ’done returns x, the pattern searched for in the database. The sec-
ond example that follows acts as a somewhat extended example of a tiny parser.

(catch ’foo (list ’a (catch ’bar (throw ’foo ’h)))) — B
(defvar xinput-bufferx nil)

(defun parse (xinput-bufferx)
(catch ’parse-error
(list ’s (parse-np) (parse-vp))))

(defun parse-np (&aux (item (pop xinput-bufferx)))
(if (member item ’(a an the))
‘(np (det item) (n , (pop xinput-bufferx)))
(throw ’parse-error
(format t “Problem with “A in noun phrase.”%Z" item))))

(defun parse-vp (&aux (item (pop xinput-bufferx)))
(if (member item ’(eats sleeps runs))
(vp (v item))
(throw ’parse-error
(format t "Problem with A in verb phrase.”%" item))))

(parse ’(a man eats)) => (S (NP (DET A) (N MAN)) (VP (V EATS)))

(parse ’(a man walks)) => NIL
prints: Problem with WALKS 1in verb phrase.

For a table of related items, see the section "Nonlocal Exit Functions".

Page 915

zl:*catch tag &body body Special Form

An obsolete version of catch that is supported for compatibility with Maclisp. It is
equivalent to catch except that if zl:*catch exits normally, it returns only two
values: the first is the result of evaluating the last form in the body, and the sec-
ond is nil. If zl:*catch exits abnormally, it returns the same values as catch when
catch exits abnormally: that is, the returned values depend on whether the exit re-
sults from a throw or a zl:*throw. See the special form catch.

For a table of related items, see the section "Nonlocal Exit Functions".

catch-error form &optional (printflag t)
Macro
Evaluates form, trapping all errors.
form can be any Lisp expression.
printflag controls the printing or suppression of an error message by catch-error.

If an error occurs during the evaluation of form, catch-error prints an error mes-
sage if the value of printflag is not nil. The default value of printflag is t.

catch-error returns two values: if form evaluated without error, the value of form
and nil are returned. If an error did occur during the evaluation of form, t is re-
turned.

Only the first value of form is returned if it was successfully evaluated.

catch-error-restart (flavors description &rest args) &body body
Special Form

Establishes a restart handler for flavors and then evaluates the body. If the han-
dler is not invoked, catch-error-restart returns the values produced by the last
form in the body, and the restart handler disappears. If a condition is signalled
during the execution of the body and the restart handler is invoked, control is
thrown back to the dynamic environment of the catch-error-restart form. In this
case, catch-error-restart also returns nil as its first value and something other
than nil as its second value. Its format is:

(catch-error-restart (flavors description)
form-1
form-2
)

flavors is either a condition or a list of conditions that can be handled. description
is a list of arguments to be passed to format to construct a meaningful description
of what would happen if the user were to invoke the handler. The Debugger uses
these values to create a message explaining the intent of the restart handler.

The conditional variant of ecatch-error-restart is the form:

Page 916

catch-error-restart-if

For a table of related items: See the section "Restart Functions".

catch-error-restart-if cond (flavors description &rest args) &body body
Special Form

Establishes its restart handler conditionally. In all other respects, it is the same as
catch-error-restart. Its format is:
(catch-error-restart-if cond
(flavors description)
form-1
form-2

)

catch-error-restart-if first evaluates cond. If the result is nil, it evaluates body as
if it were a progn but does not establish any handlers. If the result is not nil, it
continues just like catch-error-restart, establishing the handlers and executing
body.

For a table of related items: See the section "Restart Functions".

ccase object &body body Special Form
The name of this function stands for "continuable exhaustive case".

Structurally ccase is much like case, and it behaves like case in selecting one
clause and then executing all consequents of that clause. However, ccase does not
permit an explicit otherwise or t clause. The form of ccase is as follows:

(ccase key-form

(test consequent consequent ...)
(test consequent consequent ...)
(test consequent consequent ...)
)

object (which serves as the key-form) must be a generalized variable reference ac-
ceptable to setf.

The first thing ccase does is to evaluate key-form, to produce an object called the
key object.

Then ccase considers each of the clauses in turn. If key is eql to any item in the
test list of a clause, ccase evaluates the consequents of that clause as an implicit

progn.

ccase returns the value of the last consequent of the clause evaluated, or nil if
there are no consequents to that clause.

The test lists in the clauses are not evaluated; literal key values must appear in
test. It is an error for the same key value to appear in more than one clause. The
order of the clauses does not affect the behavior of the ecase construct.

Page 917

If there is only one key value for a clause, that key value can be written in place
of a list of that key, provided that no ambiguity results. Such a "singleton key" can
not be nil (which is confusable with (), a list of no keys), t, otherwise, or a cons.

If no clause is satisfied, ccase uses an implicit otherwise clause to signal an error
with a message constructed from the clauses. To continue from this error supply a
new value for object argument, causing ccase to store that value and restart the
clause tests. Subforms of object can be evaluated multiple times.

Examples:

(Tet ((num 24))
(ccase num
((1 2 3) "integer less then 4")
((4 5 6) "integer greater than 3"))) =>
Error: The value of NUM is SI:xEVAL, 24, was of the wrong type.
The function expected one of 1, 2, 3, 4, 5, or 6.

SI:xEVAL:

Arg @ (SYS:FORM): (DBG:CHECK-TYPE-1 *NUM NUM ’#)

Arg 1 (SI:ENV): ((# #) NIL () () ...)

--defaulted args:--

Arg 2 (SI:HOOK): NIL
s-A, <RESUME>: Supply a replacement value to be stored into NUM
s-B, <ABORT>: Return to Lisp Top Level in dynamic Lisp Listener 1
— Supply a replacement value to be stored into NUM:
4
"integer greater than 3"

(Tet ((num 3))
(ccase num
((1 2) "one two")
((3456) (princ "numbers") (princ " three") (terpri))
(t "not today"))) => numbers three
T

(let ((Dwarf ’Sleepy))
(ccase Dwarf
((Grumpy Dopey) (setq class "confused”))
((Bilbo Frodo) (setq class "Hobbits not Dwarfs"))
(otherwise (setq class ’unknown) "talk to Snow White")))
=> “talk to Snow White"
class => UNKNOWN

For a table of related items: See the section "Conditional Functions".

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

cdaaar x Function

(cdaaar x) is the same as (cdr (car (car (car x))))

cdaadr x

(cdaadr x) is the same as (cdr (car (car (cdr x))))

cdaar x

(cdaar x) is the same as (cdr (car (car x)))

cdadar x

(cdadar x) is the same as (cdr (car (cdr (car x))))

cdaddr x

(cdaddr x) is the same as (cdr (car (cdr (cdr x))))

cdadr x

(cdadr x) is the same as (cdr (car (cdr x)))

cdar x

(cdar x) 1s the same as (cdr (car x))

cddaar x

(cddaar x) is the same as (cdr (cdr (car (car x))))

cddadr x

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

cddar x

(cddar x) is the same as (cdr (cdr (car x)))

cdddar x

Page 918

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Page 919

(cdddar x) is the same as (cdr (cdr (cdr (car x))))

cddddr x Function
(cddddr x) is the same as (cdr (cdr (cdr (cdr x))))

cdddr x Function

(cdddr x) is the same as (cdr (cdr (cdr x)))

cddr x Function

(cddr x) 1is the same as (cdr (cdr x))

cdr x Function

Returns the tail (edr) of list or cons x. Example:
(cdr ’(abc)) == (b c)

(setg a (1 (first second third) c d)=>
=> (1 (FIRST SECOND THIRD) C D))

(setqg b (cdr a))

=> ((FIRST SECOND THIRD) C D)

(cdr (car h))

=> (SECOND THIRD)

Officially edr is applicable only to conses and locatives. However, as a matter of
convenience, edr of nil returns nil.

For a table of related items: See the section "Functions for Extracting from Lists".

ceiling number &optional (divisor 1) Function

Divides number by divisor, and truncates the result toward positive infinity. The
truncated result and the remainder are the returned values.

number and divisor must each be a noncomplex number. Not specifying a divisor is
exactly the same as specifying a divisor of 1.

If the two returned values are Q and R, (+ (x Q divisor) R) equals number. If divi-
sor is 1, then Q and R add up to number. If divisor is 1 and number is an integer,
then the returned values are number and 0.

The first returned value is always an integer. The second returned value is inte-
gral if both arguments are integers, is rational if both arguments are rational, and
is floating-point if either argument is floating-point. If only one argument is speci-
fied, then the second returned value is always a number of the same type as the
argument.

Page 920

Examples:

(ceiling 5) => 5 and @

(ceiling -5) => -5 and @

(ceiling 5.2) => 6 and -0.3000002
(ceiling -5.2) => -5 and -0.19999981
(ceiling 5.8) => 6 and -0.19999981
(ceiling -5.8) => -5 and -0.8000002
(ceiling 5 3) => 2 and -1

(ceiling -5 3) => -1 and -2

(ceiling 5 4) => 2 and -3

(ceiling -5 4) => -1 and -1

(ceiling 5.2 3) => 2 and -0.83000002
(ceiling -5.2 3) => -1 and -2.1999998
(ceiling 5.2 4) => 2 and -2.83000002
(ceiling -5.2 4) => -1 and -1.1999998
(ceiling 5.8 3) => 2 and -0.19999981
(ceiling -5.8 3) => -1 and -2.3000002
(ceiling 5.8 4) => 2 and -2.1999998
(ceiling -5.8 4) => -1 and -1.8000002

For a table of related items: See the section "Functions that Divide and Convert
Quotient to Integer".

cerror optional-condition-name continue-format-string error-format-string &rest args
Function

Signals proceedable (continuable) errors. Like error, it signals an error and enters
the Debugger. However, cerror allows the user to continue program execution
from the debugger after resolving the error.

If the program is continued after encountering the error, cerror returns nil. The
code following the call to cerror is then executed. This code should correct the
problem, perhaps by accepting a new value from the user if a variable was invalid.

If the code that corrects the problem interacts with the program’s use and might
possibly be misleading, it should make sure the error has really been corrected be-
fore continuing. One way to do this is to put the call to eerror and the correction
code in a loop, checking each time to see if the error has been corrected before
terminating the loop.

Compatibility Note: Optional-condition-name is a Symbolics Common Lisp exten-
sion, which allows you to specify a particular flavor error.

The continue-format-string argument, like the error-format-string argument, is given
as a control string to format along with args to construct a message string. The
error message string is used in the same way that error uses it. The continue
message string should describe the effect of continuing. The message is displayed
as an aid to the user in deciding whether and how to continue. For example, it
might be used by an interactive debugger as part of the documentation of its
"continue" command.

Page 921

The content of the continue message should adhere to the rules of style for error
messages.

In complex cases where the error-format-string uses some of the args and the con-
tinue-format-string uses others, it may be necessary to use the format directives ~*
and ~

to skip over unwanted arguments in one or both of the format control strings.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

clos:change-class instance new-class Generic Function

Changes the class of the existing instance to new-class, and returns the modified
instance. The modified instance is eq to the original instance.

instance The instance whose class is to be changed.

new-class The desired class of the instance. This can be the name of a
class or a class object.

clos:change-class modifies the structure of the instance to be correct for the new
class. It does the following:

e Adds local slots: For any local slot defined by the new class that is not defined
by the previous class, that slot is added to the instance.

e Deletes local slots: For any local slot defined by the previous class that is not
defined by the new class, that slot is deleted from the instance.

e Retains the values of local slots: For any local slot defined by both the previous
and the new class, the instance retains the value of that slot. If the slot was
unbound, it remains unbound.

e Retains the values of slots defined as shared in the previous class and local in
the new class.

e Replaces the values of slots defined as local in the previous class and shared in
the new class; the instance now "sees" the value of the shared slot.

Next, clos:change-class initializes newly added slots according to their initforms
by calling clos:update-instance-for-different-class with two arguments: a copy of
the instance before its class was changed (which enables methods to access the
slot values), and the modified instance. clos:change-class does not provide any ini-
tialization arguments in its call to clos:update-instance-for-different-class.

You can customize the behavior of this step by defining an after-method for
clos:update-instance-for-different-class.

See the section "Changing the Class of a CLOS Instance".

Page 922

change-instance-flavor instance new-flavor Function

Changes the flavor of an instance to another flavor. The result is a modified in-
stance, which is eq to the original.

For those instance variables in common (contained in the definition of the old fla-
vor and the new flavor), the values of the instance variables remain the same
when the instance is changed to the new format. New instance variables (defined
by the new flavor but not the old flavor) are initialized according to any defaults
contained in the definition of the new flavor.

Instance variables contained by the old flavor but not the new flavor are no longer
part of the instance, and cannot be accessed once the instance is changed to the
new format.

Instance variables are compared with eq of their names; if they have the same
name and are defined by both the old flavor (or any of its component flavors) and

the new flavor (or any of its component flavors), they are considered to be "in
common".

If you need to specify a different treatment of instance variables when the in-
stance is changed to the new flavor, you can write code to be executed at the time
that the instance is changed. See the generic function flavor:transform-instance.

Note: There are two possible problems that might occur if you use change-
instance-flavor while a process (either the current process or some other process)
is executing inside of a method. The first problem is that the method continues to
execute until completion even if it is now the "wrong" method. That is, the new
flavor of the instance might require a different method to be executed to handle
the generic function. The Flavors system cannot undo the effects of executing the
wrong method and cause the right method to be executed instead.

The second problem is due to the fact that change-instance-flavor might change
the order of storage of the instance variables. A method usually commits itself to a
particular order at the time the generic function is called. If the order is changed
after the generic function is called, the method might access the wrong memory
location when trying to access an instance variable. The usual symptom is an ac-
cess to a different instance variable of the same instance or an error "Trap: The
word #<DTP-HEADER-I nnnn> was read from Tocation nnnn*. If the garbage collector
has moved objects around in memory, it is possible to access an arbitrary location
outside of the instance.

When a flavor is redefined, the implicit change-instance-flavor that happens nev-
er causes accesses to the wrong instance variable or to arbitrary locations outside
the instance. But redefining a flavor while methods are executing might leave
those methods as no longer valid for the flavor.

We recommend that you do not use change-instance-flavor of self inside a
method. If you cannot avoid it, then make sure that the old and new flavors have
the same instance variables and inherit them from the same components. You can
do this by using mixins that do not define any instance variables of their own, and
using change-instance-flavor only to change which of these mixins are included.
This prevents the problem of accessing the wrong location for an instance variable,

Page 923

but it cannot prevent a running method from continuing to execute even if it is
now the wrong method.

A more complex solution is to make sure that all instance variables accessed after
the change-instance-flavor by methods that were called before the change-
instance-flavor are ordered (by using the :ordered-instance-variables option to
defflavor), or are inherited from common components by both the old and new
flavors. The old and new flavors should differ only in components more specific
than the flavors providing the variables.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

:change-properties error-p &rest properties Message

Changes the file properties of the file open on this stream. You should not use
:change-properties. Instead, use fs:change-file-properties.

If the error-p argument is t, a Lisp error is signalled. If error-p is nil and an error
occurs, the error object is returned.

char string index Function

Returns the character at position index of string. The count is from zero. The
character is returned as a character object; it will necessarily satisfy the predicate
string-char-p.

string must be a string.
index must be a non-negative integer less than the length of string.

Note that the array-specific function aref, and the general sequence function elt
also work on strings.

To destructively replace a character within a string, use char in conjunction with
the function setf.

Examples:

(char "a string” 1) => #\Space
(string-char-p (char "a string” 3)) => T

(char (make-array 4 :element-type ’character
sinitial-element #\y) 3) => H\y
(string-char-p (char (make-array 4 :element-type ’character
zinitial-element #\.) 2)) => T

(char (make-array 4 :element-type ’character
:initial-element f#\.
:fill-pointer 2) 1) => #\.

Page 924

(defvar a-string
(make-array 10
:element-type ’string-char
:fill-pointer t
zinitial-element f#\a))
=> "aaaaaaaaaa”

(char a-string @) => f\a
(setf (char a-string 1) #\b) => #\b
a-string => "abaaaaaaaa”

(char a-string 1) => #\b

Because a-string is not a simple string, char rather than schar is used to access
elements of the string.

For a table of related items: See the section "String Access and Information".

char+ char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
equal, nil is returned, otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\B #\C) => T

char# can be used in place of user::char////=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char< char &rest chars Function

This predicate compares characters exactly, depending on all fields including code,
bits, character style, and alphabetic case. If each of the arguments is equal to or
less than the next, t is returned, otherwise nil.

(char<= #\A #\B #i\C) =>T
(char<= #\C #\B #i\A) => NIL
(char<= #\A #1\A) => T

char< can be used instead of char<=.

char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If each of the arguments is
equal to or greater than the next, t is returned, otherwise nil.

Page 925

(char>= #\C #\B f#i\A) => T
(char>= #\A #\A) => T
(char>= #\A #\B #\C) => NIL

char> can be used instead of char>=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char/= char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
equal, nil is returned, otherwise t.

(char/= #\A #\A #\A) => NIL
(char/= #\A #\B #\C) => T

char# can be used in place of user::char////=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char< char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
ordered from smallest to largest, t is returned, otherwise nil.

(char< #\A #\B #\C) => T
(char< #\A #\A) => NIL
(char< #\A #\C #\B) => NIL

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char<= char &rest chars Function

This predicate compares characters exactly, depending on all fields including code,
bits, character style, and alphabetic case. If each of the arguments is equal to or
less than the next, t is returned, otherwise nil.

(char<= #\A #\B #i\C) =>T
(char<= #\C #\B #\A) => NIL
(char<= #\A #\A) => T

char< can be used instead of char<=.

char= char &rest chars Function

Page 926

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
equal, t is returned, otherwise nil.

(char= #\A #\A #\A) => T
(char= #\A #\B #\C) => NIL

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char> char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If all of the arguments are
ordered from largest to smallest, t is returned, otherwise nil.

(char> H#\C #\B #1\A) => T
(char> #\A #\A) => NIL
(char> #\A #\B #\C) => NIL

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

char>= char &rest chars Function

This comparison predicate compares characters exactly, depending on all fields in-
cluding code, bits, character style, and alphabetic case. If each of the arguments is
equal to or greater than the next, t is returned, otherwise nil.

(char>= #\C #\B #\A) => T
(char>= #\A #\A) => T
(char>= #\A #\B #\C) => NIL

char> can be used instead of char>=.

For a table of related items, see the section "Character Comparisons Affected by
Case and Style".

character Type Specifier

character is the type specifier symbol for the the predefined Lisp character data
type.

The types character, cons, symbol, and array are pairwise disjoint.
The type character is a supertype of the type string-char.

Examples:

Page 927

(typep #\0@ ’character) => T

(z1:typep #\~) => :CHARACTER

(characterp #\A) => T

(characterp (character "1")) =>T
(sys:type-arglist ’character) => NIL and T

See the section "Data Types and Type Specifiers". See the section "Characters".

character x
Function

Coerces x to a single character. If x is a character, it is returned. If x is a string,
an array, or a symbol, an error is returned. If x is a number, the number is con-
verted to a character using int-char. See the section "The Character Set".

For a table of related items, see the section "Character Conversions'.

characterp object Function

Returns t if object is a character object. See the section "Type Specifiers and Type
Hierarchy for Characters".

(setg foo ’(#\c 44 "h"))
(characterp foo) => nil
(characterp (car foo)) => t
(characterp (cadr foo)) => nil
(characterp (caddr foo)) => nil

Note in the previous example that "h" is not a character, but a string.
(characterp (aref "h" B@)) => t

For a table of related items: See the section "Character Predicates".

:characters Message

Returns t if the stream is a character stream, nil if it is a binary stream.

dbg:*character-style-for-bug-mail-prologue* Variable

Creates the bug-report banner inserted into the text of bug messages, enabling you
to choose the font. The default is NIL.NIL.TINY, specifying a small font for the
bug-report banner.
To display a bug-report banner in a small font you can type the following:
(setg dbg:xcharacter-style-for-bug-mail-prologuex
(si:character-style-for-device-font ’fonts:quantum si:xb&w-screenx))
To display a bug-report banner in a large font you can type the following:

(setq dbg:xcharacter-style-for-bug-mail-prologuex
(si:parse-character-style ’(nil nil :huge)))

Page 928

You can also type the following to specify a particular font:

(setq dbg:xcharacter-style-for-bug-mail-prologuex ’(nil nil :huge))

char-bit char name Function

Returns t if the bit specified by name is set in char; otherwise it returns nil. name
can be :control, :meta, :super, or :hyper. You can use setf on char-bit access-
form name.

(char-bit f#f\c-A :control) => T

(char-bit f#f\h-c-A :hyper) => T

(char-bit f#f\h-c-A :meta) => NIL

(setq char #\D)

(char-bit (set-char-bit char :control t) :control) => t

(char-bit char :control) => nil

For a table of related items, see the section "Character Fields".

char-bits char Function
Returns the bits field of char. You can use setf on (char-bits access-form).

(char-bits #\c-A) => 1
(char-bits #f\h-c-A) => 9
(char-bits #\m-c-A) => 3
(char-bits #\Control-D) => 1
(char-bits #\D) => @

For a table of related items, see the section "Character Fields".

char-bits-limit Constant

The value of char-bits-limit is a non-negative integer that is the upper limit for
the value in the bits field. Its value is 16.
(if (= char-bits-Timit 1)
(setq xno-bitsx t)
(setq xno-bitsx nil))

For a table of related items: See the section "Character Attribute Constants".

char-code char Function
Returns the code field of char.

(char-code #\A) => 65
(char-code #\&) => 38

For a table of related items, see the section "Character Fields".

Page 929

char-code-limit Constant

The value of char-code-limit is a non-negative integer that is the upper limit for
the number of character codes that can be used. Its value is 65536.
(Tet ((intnum (read stream))
(bits (read stream)))
(if (> intnum char-code-Timit)
(error "Cannot make ~A a character code” intnum)
(code-char intnum bits)))

For a table of related items: See the section "Character Attribute Constants".

char-control-bit Constant
The value of char-control-bit is the weight of the control bit, which is 1.

For a table of related items: See the section "Character Bit Constants".

char-downcase char Function

If char is an uppercase alphabetic character in the standard character set, char-
downcase returns its lowercase form; otherwise, it returns char. If character style
information is present it is preserved. In no case will the font or bits attribute val-
ues differ from those of char.

(char-downcase #\A) => ff\a
(char-downcase #\A) => #\a
(char-downcase #\3) => #\3
(char-downcase ff\a) => ff\a

For a table of related items, see the section "Character Conversions'.

char-equal char &rest chars Function

This is the primitive for comparing characters for equality; many of the string
functions call it. char and chars must be characters; they cannot be integers. char-
equal compares code and bits, ignores case and character style, and returns t if
the characters are equal. Otherwise it returns nil.

(char-equal #\A NA) => T
(char-equal #\A f#\Control-A) => NIL
(char-equal #\A #\B #\A) => NIL

Compatibility Note: Common Lisp specifies that char-equal should ignore bits.
This difference is incompatible. Under CLOE, lisp:char-equal ignores the bits at-
tribute of the character arguments.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

Page 930

char-fat-p char Function

Returns t if char is a fat character, otherwise nil. char must be a character object.
A character that contains non-zero bits or style information is called a fat charac-
ter. See the section "Type Specifiers and Type Hierarchy for Characters".

(char-fat-p #\A) => NIL
(char-fat-p #f\c-A) => T
(char-fat-p (make-character #\A :style ’(nil :bold nil))) =>T

For a table of related items: See the section "Character Predicates".

char-flipcase char Function

If char is a lowercase alphabetic character in the standard character set, char-
flipcase returns its uppercase form. If char is an uppercase alphabetic character in
the standard character set, char-flipcase returns its lowercase form. Otherwise, it
returns char. If character style information is present it is preserved.

(char-flipcase #\X) => #\x
(char-flipcase f\b) => H\B

For a table of related items, see the section "Character Conversions'.

char-font char Function

Returns the font field of the character object specified by char. Genera characters
do not have a font field so char-font always returns zero for character objects.

Genera does not support the Common Lisp concept of fonts, but supports the char-
acter style system instead. See the section "Character Styles". To find out the
character style of a character, use si:char-style: See the function si:char-style.

The only reason to use char-font would be when writing a program intended to be
portable to other Common Lisp systems.

(char-font #\A) => 0

For a table of related items: See the section "Character Fields".

char-font-limit Constant

The value of char-font-limit is the upper exclusive limit for the value of values of
the font bit. Genera characters do not have a font field so the value of char-font-
limit is 1. Genera does not support the Common Lisp concept of fonts, but sup-
ports the y character style system instead. See the section "Character Styles".

(if (= char-font-Timit 1)
(setg xno-fontsx t)
(setq xno-fontsx nil))

For a table of related items: See the section "Character Attribute Constants".

Page 931

char-greaterp char &rest chars Function

Compares characters for order; many of the string functions call it. char and chars
must be characters; they cannot be integers. The result is t if char comes after
chars ignoring case and style, otherwise nil. See the section "The Character Set".
Details of the ordering of characters are in that section.

This function compares the code and bits fields and ignores character style and
distinctions of alphabetic case.

(char-greaterp #\A #\B #\C) => NIL
(char-greaterp #\A #\B #\B) => T

Compatibility Note: Common Lisp specifies that char-greaterp should ignore bits.
This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-hyper-bit Constant
The name for the hyper bit attribute. The value of char-hyper-bit is 8.

For a table of related items: See the section "Character Bit Constants".

char-int char Function

Returns the character as an integer, including the fields that contain the charac-
ter’s code (which itself contains the character’s set and subindex into that charac-
ter set), bits, and style.

(char-int f\a) => 97
(char-int #\8) => 56
(char-int #\c-m-A) => 58331713 ;under Genera
(char-int
(make-character f#\a :style ’(nil :bold nil))) => 65633 ;under Genera

(char-int #\A) => 65

(eq (< (char-int charl) (char-int char2))
(char< charl char2))

=> T

(defvar char-arr (make-array 512))
(setf (elt char-arr (char-int f#f\a)) ’first)

For a table of related items, see the section "Character Conversions'.

char-lessp char &rest chars Function

Page 932

This primitive compares characters for order; many of the string functions call it.
char and chars must be characters; they cannot be integers. The result is t if char
comes before chars ignoring case and style, otherwise nil. See the section "The
Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character
style and distinctions of alphabetic case.

(char-lessp #\A H#\B H#\C) => T
(char-lessp #\A #\B #\B) => NIL

Compatibility Note: Common Lisp specifies that char-lessp should ignore bits.
This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-meta-bit Constant
The name for the meta bit attribute. The value of char-meta-bit is 2.

For a table of related items: See the section "Character Bit Constants".

char-mouse-button char Function

Returns the number corresponding to the mouse button that would have to be
pushed to generate char. 0, 1, and 2 correspond to the Left, Middle, and Right
mouse buttons, respectively.

Example:
(char-mouse-button #\m-mouse-m) ==>

1

The complementary function is make-mouse-char.

char-mouse-equal charl char2 Function

Returns t if the mouse characters charl and char2 are equal, nil otherwise. char-
mouse-equal checks that its arguments are really mouse characters and signals an
error otherwise. You can also use eql, which is slightly faster, to compare mouse
characters, when you do not require the argument checking.

char-name char Function

char must be a character object. char-name returns the name of the object (a
string) if it has one. If the character has no name, or if it has non-zero bits or a
character style other than NIL.NIL.NIL, nil is returned.

(char-name #\Tab) => "Tab"
(char-name #\Space) => "Space”
(char-name #\A) => NIL

Page 933

For a table of related items, see the section "Character Names".

char-not-equal char &rest chars Function

This primitive compares characters for non-equality; many of the string functions
call it. char and chars must be characters; they cannot be integers. char-equal
compares code and bits, ignores case and character style, and returns t if the
characters are not equal. Otherwise it returns nil.

(char-not-equal #\A #\B) => T

(char-not-equal #\A #\c-A) => T
(char-not-equal #\A #\A) => NIL
(char-not-equal f\a #\A) => NIL

Compatibility Note: Common Lisp specifies that char-not-equal should ignore
bits. This difference is incompatible.

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-not-greaterp char &rest chars Function

This primitive compares characters for order; many of the string functions call it.
char and chars must be characters; they cannot be integers. The result is t if char
does not come after chars ignoring case and style, otherwise nil. See the section
"The Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character
style and distinctions of alphabetic case.

(char-not-greaterp #\A #\B) => T
(char-not-greaterp t#h\a #f\A) => T
(char-not-greaterp #\A f\a) => T
(char-not-greaterp #\A #\A) => T

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

char-not-lessp char &rest chars Function

This primitive compares characters for order; many of the string functions call it.
char and chars must be characters; they cannot be integers. The result is t if char
does not come before chars ignoring case and style, otherwise nil. See the section
"The Character Set". Details of the ordering of characters are in that section.

This comparison predicate compares the code and bits fields and ignores character
style and distinctions of alphabetic case.

(char-not-lessp #\A #\B) => NIL
(char-not-lessp #\B f#f\b) => T
(char-not-lessp #\A NA) => T

Page 934

For a table of related items, see the section "Character Comparisons Ignoring Case
and Style".

si:char-style char Function

Returns the character style of the character object specified by char. The returned
value is a character style object.

(si:char-style #\a)
=> H#<CHARACTER-STYLE NIL.NIL.NIL 204004146>

(si:char-style (make-character #\a :style ’(:swiss :bold nil)))
=> H#<CHARACTER-STYLE SWISS.BOLD.NIL 116835602>

For a table of related items: See the section "Character Fields".

sys:char-subindex char Function
Returns the subindex field of char as an integer.

For a table of related items, see the section "Character Fields".

char-super-bit Constant
The name for the super bit attribute. The value of char-super-bit is 4.

For a table of related items: See the section "Character Bit Constants".

char-to-asecii ch Function

Converts the character object ch to the corresponding ASCII code. This function
works only for characters with neither bits nor style.

char-to-ascii performs an inverse mapping of the function ascii-to-char, and this
mapping embeds the ASCII character character set in the Symbolics character set
in an invertible way. There is no attempt to map more obscure ASCII control
codes into the also obscure and unrelated Symbolics control codes. For example,
Escape, is a character in the Symbolics character set corresponding to the key
marked Escape. The ASCII code Escape is not the same as the Symbolics Escape.
See the function ascii-to-char. See the function ascii-code. See the section "ASCII
Conversion String Functions".

It is an error to give char-to-ascii anything other than one of the 95 standard
ASCII printing characters. To get the ASCII code of one of the other characters,
use ascii-code, and give it the correct ASCII name.

The functions char-to-ascii and ascii-to-char provide the primitive conversions
needed by ASCII-translating streams. They do not translate the Return character
into a CR-LF pair; the caller must handle that. They just translate #\Return into
CR and #\Line into LF. Except for CR-LF, char-to-ascii and ascii-to-char are
wholly compatible with the ASCII-translating streams.

Page 935

They ignore Symbolics control characters; the translation of #\e-G is the ASCII
code for G, not the ASCII code to ring the bell, also known as "control G." (asecii-
to-char (ascii-code "BEL')) is #\r, not #\e¢-G. The translation from ASCII to char-
acter never produces a Symbolics control character.

For a table of related items, see the section "ASCII Characters".

char-upcase char Function

If char, which must be a character, is a lowercase alphabetic character in the
standard character set, char-upcase returns its uppercase form; otherwise, it re-
turns char. In Genera, if character style information is present, it is preserved. In
no case will the font or bits attribute values differ from those of char.

(char-upcase #\a) => H#\A
(char-upcase #\a) => h\A
(char-upcase #\3) => #\3
(char-upcase H\A) => H\A

For a table of related items, see the section "Character Conversions'.

zl:check-arg arg-name predicate-or-form type-string
Macro

Checks arguments to make sure that they are valid. A simple example is:
(z1:check-arg foo stringp "a string”)

foo is the name of an argument whose value should be a string. stringp is a pred-
icate of one argument, which returns t if the argument is a string. "A string” is
an English description of the correct type for the variable.

The general form of zl:check-arg is

(z1:check-arg var-name
predicate
description)

var-name is the name of the variable whose value is of the wrong type. If the er-
ror is proceeded this variable is setq’ed to a replacement value. predicate is a test
for whether the variable is of the correct type. It can be either a symbol whose
function definition takes one argument and returns non-nil if the type is correct,
or it can be a nonatomic form which is evaluated to check the type, and presum-
ably contains a reference to the variable var-name. description is a string which
expresses predicate in English, to be used in error messages.

The predicate is usually a symbol such as zl:fixp, stringp, zl:listp, or zl:closurep,
but when there isn’t any convenient predefined predicate, or when the condition is
complex, it can be a form. For example:

Page 936

(defun test1 (a)
(z1:check-arg a
(and (numberp a) (£ a 18.) (> a 8.))
“a number from one to ten")

L)
If testl is called with an argument of 17, the following message is printed:

The argument A to TEST1, 17, was of the wrong type.
The function expected a number from one to ten.

In general, what constitutes a valid argument is specified in two ways in a
zl:check-arg. description is human-understandable and predicate is executable. It is
up to the user to ensure that these two specifications agree.

zl:check-arg uses predicate to determine whether the value of the variable is of
the correct type. If it is not, zl:check-arg signals the sys:wrong-type-argument
condition. See the flavor sys:wrong-type-argument.

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

zl:check-arg-type arg-name type &optional type-string Macro

A useful variant of the zl:check-arg form. A simple example is:
(z1:check-arg-type foo :number)

foo is the name of an argument whose value should be a number. :number is a
value which is passed as a second argument to zl:typep; that is, it is a symbol
that specifies a data type. The English form of the type name, which gets put into
the error message, is found automatically.

The general form of zl:check-arg-type is:

(z1:check-arg-type var-name
type-name
description)

var-name is the name of the variable whose value is of the wrong type. If the er-
ror is proceeded this variable is setq’ed to a replacement value. type-name de-
scribes the type which the variable’s value ought to have. It can be exactly those
things acceptable as the second argument to zl:typep. description is a string which
expresses predicate in English, to be used in error messages. It is optional. If it is
omitted, and type-name is one of the keywords accepted by zl:typep, which de-
scribes a basic Lisp data type, then the right description is provided correctly. If it
is omitted and type-name describes some other data type, then the description is
the word "a" followed by the printed representation of type-name in lowercase.

The Common Lisp equivalent of zl:check-arg-type is the macro:
check-type

For a table of related items: See the section "Condition-Checking and Signalling
Functions and Variables".

Page 937

check-type place type &optional (type-string ’nil) Macro

Signals an error if the contents of place are not of the desired zype. If you contin-
ue from this error, you will be asked for a new value; check-type stores the new
value in place and starts over, checking the type of the new value and signalling
another error if it is still not of the desired type. Subforms of place can be evalu-
ated multiple times because of the implicit loop generated. check-type returns nil.

place must be a generalized variable reference acceptable to the macro setf.

type must be a type specifier; it is not evaluated. For standard Symbolics Common
Lisp type specifiers, see the section "Type Specifiers".

type-string should be an English description of the type, starting with an indefinite
article ("a" or "an'"); it is evaluated. If fype-string is not supplied, it is computed
automatically from ¢ype. This optional argument is allowed because some applica-
tions of check-type may require a more specific description of what is wanted
than can be generated automatically from the type specifier.

The error message mentions place, its contents, and the desired type.
Examples:

(setq bees ’(bumble wasp jacket)) => (BUMBLE WASP JACKET)
(check-type bees (vector integer))
=> Error : The value of BEES in SI:xEVAL, (BUMBLE WASP JACKET),
was of the wrong type.
The function expected a vector whose typical element
is an integer.
(setq naards ’foo) => FOO
(check-type naards (integer @ x) "a positive integer”)
=> Error : The value of NAARDS in SI:xEVAL, F0Q0, was of the wrong
type.
The function expected a positive integer.

In CLOE, if a condition is signalled, handlers of this condition can use the func-

tions type-error-object and type-error-expected-type to access the contents of
place and the typespec, respectively.

Compatibility Note: In Zetalisp, the equivalent facility is called user::check-arg-
type.
See the section "Data Types and Type Specifiers".

Using check-type in CLOE

In CLOE, if store-value is called, check-type will store the new value which is
the argument to store-value (or which is prompted for interactively by the debug-
ger) in place and start over, checking the type of the new value and signalling an-
other error if it is still not the desired type. Subforms of place may be evaluated
multiple times because of the implicit loop generated. check-type returns nil.
Here’s an example of using cheek-type in CLOE:

Page 938

Lisp> (SETQ AARDVARKS ’(SAM HARRY FRED))
— (SAM HARRY FRED)
Lisp> (CHECK-TYPE AARDVARKS (ARRAY x (3)))
Error: The value of AARDVARKS, (SAM HARRY FRED),
is not a 3-long array.
1: Specify a value to use instead.
2: Return to Lisp Toplevel.

Debug> :1
Use Value: #(SAM FRED HARRY)
— NIL

Lisp> AARDVARKS
— #<ARRAY-T-3 13571>
Lisp> (MAP ’LIST #’IDENTITY AARDVARKS)
— (SAM FRED HARRY)
Lisp> (SETQ AARDVARK-COUNT ’F00)
— FOO
Lisp> (CHECK-TYPE AARDVARK-COUNT (INTEGER @ x) "a positive integer")
Error: The value of AARDVARK-COUNT, F0O0, is not a positive integer.
1: Specify a value to use instead.
2: Return to Lisp Toplevel.

Debug> :2
Lisp>
circular-list &rest args Function

Constructs a circular list whose elements are args, repeated infinitely. circular-list
is the same as list except that the list itself is used as the last cdr, instead of nil.
circular-list returns a circular list, repeating its elements infinitely. circular-list
is especially useful with mapcar, as in the expression:

(mapcar (function +) foo (circular-list 5))
which adds each element of foo to 5. circular-list could have been defined by:

(defun circular-Tist (&rest elements)
(setq elements (copylistx elements))
(rplacd (last elements) elements)
elements)

circular-list is a Symbolics extension to Common Lisp.

For a table of related items: See the section "Functions for Constructing Lists and
Conses".

cis radians Function
This function can be defined by:

(defun cis (radians)
(complex (cos radians) (sin radians)))

Page 939

radians must be a noncomplex number.

(signum ftc(x y)) — (cis (phase f#ic(x y)))
Mathematically, this is equivalent to e/ ~radians,

For a table of related items: See the section "Trigonometric and Related
Functions".

clos:class-name class-object Generic Function

Returns the name of the class object. You can use setf with clos:class-name to set
the name of the class object.

class-object A class object.

If the class object has no name, nil is returned.

clos:class-of object Function

Returns the class of the given object. The returned value is a class object.

object Any Lisp object.

(flavor:method :clear sicheap) Method
Remove all of the entries from the heap.

For a table of related items: See the section "Heap Functions and Methods".

:clear-hash Message

Removes all of the entries from the hash table. This message is obsolete; use
clrhash instead.

clear-input &optional input-stream Function

Clears any buffered input associated with input-stream. It is primarily useful for
removing type-ahead from keyboards when some kind of asynchronous error has
occurred. If this operation doesn’t make sense for the stream involved, then clear-
input does nothing. clear-input returns nil.

(let ((c (read-char)))
(1ist (peek-char)
(progn (clear-input) (read-char-no-hang))))xy
=> (#\x NIL)

:clear-input Message

Page 940

The stream clears any buffered input. If the stream does not handle this, the de-
fault handler ignores it.

clear-output &optional output-stream Function

Some streams are implemented in an asynchronous, or buffered, manner. clear-
output attempts to abort any outstanding output operation in progress in order to
allow as little output as possible to continue to the destination. This is useful, for
example, to abort a lengthy output to the terminal when an asynchronous error
occurs. clear-output returns nil.

output-stream, if unspecified or nil, defaults to *standard-output®* and if t, is
terminal-io.

:clear-output Message

The stream clears any buffered output. If the stream does not handle this, the de-
fault handler ignores it.

:clear-rest-of-line Message

Erases from the current position to the end of the current line. This message is
supported by all terminal streams and windows.

:clear-rest-of-line replaces the obsolete message :elear-eol.

:clear-rest-of-window Message

Erases from the current position to the end of the current window. This message
is supported by all windows. Non-window streams do not support this operation.

:clear-window Message

Erases the window on which this stream displays. Non-window streams do not sup-
port this operation.

:clear-window replaces the obsolete message :clear-screen.

:close &optional mode Message

The stream is "closed", and no further operations should be performed on it; you
can, however, :close a closed stream. If the stream does not handle :close, the de-
fault handler ignores it.

The mode argument is normally not supplied. If it is :abort, we are abnormally ex-
iting from the use of this stream. If the stream is outputting to a file, and has not
been closed already, the stream’s newly created file is deleted, as if it were never
opened in the first place. Any previously existing file with the same name remains,
undisturbed.

Page 941

zl:closure symbol-list function Function

Use the Symbolics Common Lisp function make-dynamic-closure, which is equiva-
lent to the function zl:closure.

zl:closure creates and returns a dynamic closure of function over the variables in
symbol-list. Note that all variables on symbol-list must be declared special.

To test whether an object is a dynamic closure, use the zl:closurep predicate. See
the section "Predicates". The typep function returns the symbol zl:closure if given
a dynamic closure. (typep x :closure) is equivalent to (zl:closurep x).

See the section "Dynamic Closure-Manipulating Functions".

zl:closure-alist closure Function

Use the Symbolics Common Lisp function dynamic-closure-alist, which is equiva-
lent to the function zl:closure-alist.

Returns an alist of (symbol . value) pairs describing the bindings which the dy-
namic closure performs when it is called. This list is not the same one that is ac-
tually stored in the closure; that one contains pointers to value cells rather than
symbols, and zl:closure-alist translates them back to symbols so you can under-
stand them. As a result, clobbering part of this list does not change the closure.

If any variable in the closure is unbound, this function signals an error.

See the section "Dynamic Closure-Manipulating Functions".

closure-function closure Function

Returns the closed function from the dynamic closure closure. This is the function
that was the second argument to zl:closure when the dynamic closure was created.
See the section "Dynamic Closure-Manipulating Functions".

zl:closure-variables closure Function

Use the Symbolics Common Lisp function function dynamic-closure-variables,
which is equivalent to the function zl:closure-variables.

Creates and returns a list of all of the variables in the dynamic closure closure. It
returns a copy of the list that was passed as the first argument to zl:closure when
closure was created.

See the section "Dynamic Closure-Manipulating Functions".

zl:closurep x Function

Returns t if its argument is a closure, otherwise nil.

clrhash table Function

Page 942

Removes all of the entries from table and returns the hash table itself.
(hash-table-count (clrhash old-hash-table)) => @

For a table of related items: See the section "Table Functions".

zl:clrhash-equal hash-table Function

Removes all of the entries from hash-table. This function is obsolete; use clrhash
instead.

sys:cl-structure-printer structure-name object stream depth Macro

Expands into an efficient function that prints a given structure object of type struc-
ture-name to the specified stream in #S format. It depends on the information cal-
culated by defstruct, and so is only useful after the defstruct form has been com-
piled. This macro enables a structure print function to respect the variable *print-
escape®.

(defstruct (foo
(:print-function foo-printer))
aboc)

(defun foo-printer (object stream depth)
(if xprint-escapex
(sys:cl-structure-printer foo object stream depth)
other-printing-strategy))

For a table of related items: See the section "Functions Related to defstruet Struc-
tures".

code-char code &optional (bits 0) (font 0) Function

Constructs a character given its code field. code, bits, and font must be non-
negative integers. If code-char cannot construct a character given its arguments,
it returns nil.

To set the bits of a character, supply one of the character bits constants as the
bits argument. See the section "Character Bit Constants".

For example:

(code-char 65 char-control-bit) => #\c-A
(char-code 65) => f\A
(char-code 65 4) => #\Super-A

Since the value of char-font-limit is 1, the only valid value of font is 0. The only
reason to use the font option would be when writing a program intended to be
portable to other Common Lisp systems.

In Genera, to construct a new character that has character style other than
NIL.NIL.NIL, use make-character. See the function make-character.

Page 943

For a table of related items, see the section "Making a Character".

coerce object result-type Function
Converts an object to an equivalent object of another type.
object is a Lisp object.

result-type must be a type-specifier; object is converted to an equivalent object of
the specified type. If object is already of the specified type, as determined by
typep, it is returned.

If the coercion cannot be performed, an error is signalled. In particular, (coerce x
nil) always signals an error.

Example:

(coerce ’x nil)
=> Error: I don’t know how to coerce an object to nothing

It is not generally possible to convert any object to be of any type whatsoever; only
certain conversions are allowed:

Any sequence type can be converted to any other sequence type, provided the new
sequence can contain all actual elements of the old sequence (it is an error if it
cannot). If the resuli-type is specified as simply array, for example, then array t is
assumed. A specialized type such as string or (vector (complex short-float)) can
be specified;

Examples:

(coerce '(a b c) ’vector) => f#f(A B C)

(coerce ’(a b c) ’array) => #(A B C)

(coerce #x101 ’(vector (complex short-float))) => #(1 6 1)
(coerce f#(4 4) ’number)

=> Error: I don’t know how to coerce an object to a number

Elements of the new sequence will be eql to corresponding elements of the old se-
quence. Note that elements are not coerced recursively. If you specify sequence as
the result-type, the argument can simply be returned without copying it, if it al-
ready is a sequence.

Examples:

(coerce #(8 9) ’sequence) => #(8 9)
(eql (coerce #(1 2) ’sequence) #(1 2)) => NIL
(equalp (coerce #(1 2) ’sequence) #(1 2)) => T

In this respect, (coerce sequence type) differs from (concatenate type sequence),
since the latter is required to copy the argument sequence.

Some strings, symbols, and integers can be converted to characters. If object is a
string of length 1, the sole element of the string is returned. If object is a symbol
whose print name is of length 1, the sole element of the print name is returned. If
object is an integer n, (int-char n) is returned.

Page 944

Examples:

(coerce "b" ’character) => }\b

(coerce "ab" ’character)

=> Error: "AB" is not one character Tong.
(coerce ’a ’character) => #\A

(coerce ’ab ’character)

=> Error: "AB" is not one character Tong.
(coerce 65 ’character) => {\A

(coerce 1508 ’character) => H#\Circle

Any non-complex number can be converted to a short-float, single-float double-
float, or long-float. If simply float is specified as the result-type and if object is
not already a floating-point number of some kind, odject is converted to a single-
float.

Examples:

(coerce B ’short-float) => 0.0
(coerce 3.5L8 *float) => 3.5d@
(coerce 7/2 ’float) => 3.5

Any number can be converted to a complex number. If the number is not already
complex, a zero imaginary part is provided by coercing the integer zero to the type
of the given real part. If the given real part is rational, however, the rule of
canonicalization for complex rational numbers results in the immediate reconver-
sion of the the result type from type complex back to type rational.

Examples:

(coerce 4.5s8 ’complex) => HC(4.5 0.8)
(coerce 7/2 ’complex) => 7/2

(coerce #C(7/2 @) ’(complex double-float))
=> f##C(3.5d0 0.0da)

Any object can be coerced to type t.
Example:
(coerce ’house ’t) => HOUSE

is equivalent to
(identity ’house) => HOUSE

Coercions from floating-point numbers to rational numbers, and of ratios to inte-
gers are not supported because of rounding problems. Use one of the specialized
functions such as rational, rationalize, floor, and ceiling instead. See the section
"Numeric Type Conversions".

Similarly, coerce does not convert characters to integers; use the specialized func-
tions char-code or char-int instead.

See the section "Data Types and Type Specifiers".

collect keyword for loop

Page 945

collect expr {into var}

Causes the values of expr on each iteration to be collected into a list. When the
epilogue of the loop is reached, var has been set to the accumulated result and
can be used by the epilogue code.

It is safe to reference the values in var during the loop, but they should not be
modified until the epilogue code for the loop is reached.

The forms collect and collecting are synonymous.

Examples:

(defun loop1 (start end)
(loop for x from start to end
collect x)) => LOOP1
(Toop1 @ 4) => (B8 1 2 3 4)

(defun loop2 (small-Tlist)
(Toop for x from @
for item in small-Tist
collect (list x item))) => LOOP2
(Toop2 ’("one" "two" "three" "four"))
=> ((B "one”) (1 "two") (2 "three") (3 "four"))

The following examples are equivalent.

(defun loop3 (small-Tist)
(Toop for x from @
for item in small-list
collect x into result-1
collect item into result-2
finally (print (list result-1 result-2)))) => LOOP3
(Toop3 ’(abcde f)) =>
((@12345 (ABCDEF)) NIL

(defun loop3 (small-Tist)
(Toop for x from @
for item in small-Tist
collecting x into result-1
collecting item into result-2
finally (print (list result-1 result-2)))) => L0OOP3
(loop3 ’(abcdef)) =>
((@12345 (ABCDEF)) NIL

Not only can there be multiple accumulations in a loop, but a single accumulation
can come from multiple places within the same loop form, if the types of the col-
lections are compatible. collect, nconc, and append are compatible.

See the section "Accumulating Return Values for loop".

Page 946

zl:comment Special Form

Ignores its form and returns the symbol zl:comment. Example:

(defun foo (x)
(cond ((null x) B)
(t (comment x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows you to add comments to your code that are ig-
nored by the Lisp reader. Example:

(defun foo (x)
(cond ((null x) @)
(t (M+ (foo (cdr x)))) ;X has something in it
))

A problem with such comments is that they are discarded when the form is read
into Lisp. If the function is read into Lisp, modified, and printed out again, the
comment is lost. However, this style of operation is hardly ever used; usually the
source of a function is kept in an editor buffer and any changes are made to the
buffer, rather than the actual list structure of the function. Thus, this is not a
real problem.

See the section "Functions and Special Forms for Constant Values".

common Type Specifier

This is the type specifier symbol denoting an exhaustive union of the following
Common Lisp data types:

cons, symbol

(array x), where x is either t or a subtype of common

string, fixnum, bignum, ratio, short-float,

single-float, double-float long-float

(complex x) where x is a subtype of common

standard-char, hash-table, readtable, package,

pathname, stream, random-state

and all types created by the user with defstruct, or defflavor.

The type common is a subtype of type t.
Examples:

(typep ’#c(3 4) ’common) =>T
(subtypep ’common t) => T and T
(commonp ’cons) => T

(sys:type-arglist ’common) => NIL and T

Page 947

(setq four
(Tet ((x 4))
(closure ’(x) ’zerop))) => H<DTP-CLOSURE 1510647>

(typep four ’sys:dynamic-closure) => T

(subtypep ’sys:dynamic-closure ’common) => NIL and NIL

See the section "Data Types and Type Specifiers".

commonp object
Function

Returns true if object is a standard Common Lisp data object; otherwise, returns
false. However, some standard Common Lisp data objects (such as characters with
one or more bits attributes set) and function objects are not included in type
common. All structure objects are of type common, even though their types are
defined by the user with defstruect.

(commonp x) = (typep x ’common)
Examples:

(commonp 1.5d9) => T

(commonp 1.8) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T s equivalent to (typep 4 ’common) => T

See the section "Data Types and Type Specifiers".

See the section "Predicates".

commonp object
Function

Returns true if object is a standard Common Lisp data object; otherwise, returns
false. However, some standard Common Lisp data objects (such as characters with
one or more bits attributes set) and function objects are not included in type
common. All structure objects are of type common, even though their types are
defined by the user with defstruct.

(commonp x) = (typep x ’common)

Examples:

Page 948

(commonp 1.5d9) => T

(commonp 1.8) => T

(commonp -12.) => T

(commonp ’3kd) => T

(commonp ’symbol) => T

(commonp #c(3 4)) => T

(commonp 4) => T 1is equivalent to (typep 4 ’common) => T

See the section "Data Types and Type Specifiers".

See the section "Predicates".

compile-flavor-methods flavor! flavor2... Macro

Causes the combined methods of a program to be compiled at compile-time, and
the data structures to be generated at load-time, rather than both happening at
run-time. compile-flavor-methods is thus a very good thing to use, since the need
to invoke the compiler at run-time slows down a program using flavors the first
time it is run. (The compiler is still called if incompatible changes have been
made, such as addition or deletion of methods that must be called by a combined
method.)

It is necessary to use compile-flavor-methods when you use the :constructor op-
tion for defflavor, to ensure that the constructor function is defined.

Generally, you use compile-flavor-methods by including the forms in a file to be
compiled. (The compile-flavor-methods forms can also be interpreted.) This causes
the compiler to include the automatically generated combined methods for the
named flavors in the resulting binary file, provided that all of the necessary flavor
definitions have been made. Furthermore, when the binary file is loaded, internal
data structures (such as the list of all methods of a flavor) are generated.

You should use compile-flavor-methods only for flavors that will be instantiated.
For a flavor that will never be instantiated (that is, one that only serves to be a
component of other flavors that actually do get instantiated), it is almost always
useless. The one exception is the unusual case where the other flavors can all in-
herit the combined methods of this flavor instead of each having its own copy of a
combined method that happens to be identical to the others.

The compile-flavor-methods forms should be compiled after all of the information
needed to create the combined methods is available. You should put these forms af-
ter all of the definitions of all relevant flavors, wrappers, and methods of all com-
ponents of the flavors mentioned.

In general, Flavors cannot guarantee that defmethod macro-expands correctly un-
less the flavor (and all of its component flavors) have been compiled. Therefore,
the compiler gives a warning when you try to compile a method before the flavor
and its components have been compiled.

If you see this warning and no other warnings, it is usually the case that the fla-
vor system did compile the method correctly.

Page 949

In complicated cases, such as a regular function and an internal flavor function
(defined by defun-in-flavor or the related functions) having the same name, the
flavor system cannot compile the method correctly. In those cases it is advisable to
compile all the flavors first, and then compile the method.

See the function flavor:print-flavor-compile-trace.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

compiled-function Type Specifier

This is the type specifier symbol for the predefined Lisp data type compiled-
function.
Examples:

(typep (compile nil ’(lambda (a b) (+ a b))) ’compiled-function)

= T

(z1:typep (compile nil ’(Tambda (a b) (+ a b))))
=> :COMPILED-FUNCTION

(sys:type-arglist ’compiled-function) => NIL and T
(compiled-function-p (compile nil ’(lambda (a) (+ a a)))) => T
See the section "Data Types and Type Specifiers".

See the section "Functions".

compiled-function-p x Function

Returns t if its argument is any compiled code object.

compiler-let bindlist &body body
Special Form

When interpreted, a compiler-let form is equivalent to let with all variable bind-
ings declared special. When the compiler encounters a compiler-let, however, it
performs the bindings specified by the form (no compiled code is generated for the
bindings) and then compiles the body of the compiler-let with all those bindings in
effect. In particular, macros within the body of the compiler-let form are expanded
in an environment with the indicated bindings. See the section "Nesting Macros".

compiler-let allows compiler switches to be bound locally at compile time, during
the processing of the body forms. Value forms are evaluated at compile time. See
the section "Compiler Switches". In the following example the use of compiler-let
prevents the compiler from open-coding the map.

(compiler-let ((compiler:open-code-map-switch nil))
(map (function (lambhda (x) ...)) foo))

Page 950

The body of the compiler-let form is an implicit progn; thus, the forms are evalu-
ated sequentially, and the value of the last evaluated form is returned. The differ-
ence between compiler-let and let is that the former use the bindings at the time
of semantic analysis, rather than use the bindings at execution time. For example,
causing the compiler to use the bindings while generating code for the body,
rather than generate code for the bindings. Of course, another difference is the
implicit special declaration of the bindings. In general, only embedded macrolet
and compiler-let forms can reliably recognize the bindings (though in some di-
alects these bindings may coincidentally be visible in interpreted code).

In the following example, compiler-let enables two macros which are used together
for effective communication. First, the macro with-end-push establishes a context
that points to the end of a list. Second macro push-onto-end uses the pointer to
add items to the end of the list, much as push adds to the beginning of a list. The
special variable *end-ptr* is bound to the pointer. Therefore, when push-onto-end
is expanded in the context of that binding, the appropriate pointer is employed.

(defvar xend-ptrx nil)

(defmacro with-end-push (Tist &body body)
(let ((lastptr (gensym)))
‘(let ((,lastptr (last ,1list)))
(compiler-let ((xend-ptrx ’,lastptr))
,body))))

(defmacro push-onto-end (val)
‘(setf ,xend-ptrx (setq ,xend-ptrx (cons ,val nil))))

(let ((mylist (list 1 2 3))
(a-Tist (1ist ’a ’h ’c ’d)))
(with-end-push mylist
(dolist (1 a-list mylist)
(push-onto-end 1))))

=> (123ABCD

The difference between compiler-let and let is only relevant when the actual code
that contains the macro with compiler-let is compiled.

See the section "Special Forms for Binding Variables".

:complete-connection &key (timeout (* 60. 6.)) Message

This message is sent to a new stream created by :start-open-auxiliary-stream, in
order to wait for the connection to be fully established. :complete-connection is
used whether or not this side is active.

Timeout is interpreted as the number of sixtieths of a second to wait before timing
out.

Page 951

When :complete-connection returns, the stream is fully connected to an active
network connection. At this point, :connected-p to that stream returns t.

:complete-connection signals an error if the connection times out or does not
complete for another reason.

complex &optional (type '*) Type Specifier
complex is the type specifier symbol for the predefined Lisp complex number type.

The types complex, rational, and float are pairwise disjoint subtypes of the type
number.

This type specifier can be used in either symbol or list form. Used in list form,
complex allows the declaration and creation of complex numbers, whose real part
and imaginary part are each of type type.

Examples:
(typep #c(3 4) ’complex) => T
(subtypep ’complex ’number) => T and T ;subtype and certain
(typep ’(complex 3 4) ’common) => T

The expression
(complexp #c(4/5 7.8)) => T

Is equivalent to
(typep #c(4/5 7.8) ’complex) => T

Here is an example of using the type argument for complex:
(typep #c (3.8 4.8) ‘complex) => T

(typep #c(3.0 4.08) ’(complex integer)) => NIL
(typep #c(3.0 4.08) ’(complex float)) =>T

(typep #c(3 4) ’(complex integer)) => T
See the section "Data Types and Type Specifiers".

See the section "Numbers".

complex realpart &optional imagpart Function

Constructs a complex number from real and imaginary noncomplex parts, applying
complex canonicalization.

If the types of the real and imaginary parts are different, the coercion rules are
applied to make them the same. If imagpart is not specified, a zero of the same
type as realpart is used. If realpart is an integer or a ratio, and imagpart is 0, the
result is realpart.

Examples:

Page 952

(complex 7) => 7

(complex 4.3 @) => #C(4.3 0.0)
(complex 2 @) => 2

(complex 3 4) => fiC(3 4)

(complex 3 4.0) => #C(3.0 4.0)
(complex 3.0d@ 4) => #C(3.0d0 4.0d0)
(complex 5/2 4.0d@) => #C(2.5d0 4.0dA)

Related Functions:

realpart
imagpart

For a table of related items: See the section "Functions that Decompose and Con-
struct Complex Numbers".

complexp object Function

Returns t if object is a complex number, otherwise nil. The following code tests
whether a and b are numbers. If numbers, they are added. Otherwise, we attempt
to extract complex numbers that are then tested by complexp.

(if (and (numberp a) (numberp b))
(+ a b)
(if (and (consp a)
(complexp (cadr a))
(consp b)
(complexp (cadr b)))
(+ (cadr a) (cadr h))
(error "couldn’t extract complexs from ~a and ~a" a b)))

For a table of related items, see the section "Numeric Type-checking Predicates".

complexp object Function

Returns t if object is a complex number, otherwise nil. The following code tests
whether a and b are numbers. If numbers, they are added. Otherwise, we attempt
to extract complex numbers that are then tested by complexp.

(if (and (numberp a) (numberp b))
(+ a b)
(if (and (consp a)
(complexp (cadr a))
(consp b)
(complexp (cadr h)))
(+ (cadr a) (cadr h))
(error "couldn’t extract complexs from ~a and ~a" a b)))

For a table of related items, see the section "Numeric Type-checking Predicates".

flavor:compose-handler generic flavor-name &key env Function

Page 953

Finds the methods that handle the specified generic operation on instances of the
specified flavor. Four values are returned:

handler-function-spec
The name of the handler, which can be a combined method, a
single method, or an instance-variable accessor.

combined-method-list
A list of function specs of all the methods called, in order of
execution; the order is approximate because of wrappers.

method-combination A list of the method combination type and parameters to it.

error nil normally, otherwise a string describing an error that oc-
curred.

For example, to use flavor:compose-handler on the generic function change-
status for the flavor box-with-cell:

(flavor:compose-handler ’change-status ’hox-with-cell)
-->(FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)
((FLAVOR:METHOD CHANGE-STATUS CELL)
(FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL))
(:AND :MOST-SPECIFIC-LAST)
NIL

The generic function change-status and the methods for the flavors box-with-cell
and cell are defined elsewhere. See the section "Example of Programming with
Flavors: Life".

In the second return value of sample output here, we put each method on one line,
for readability. This is not done by flavor:compose-handler.

For documentation of the env parameter, see the function flavor:compose-handler-
source.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

flavor:compose-handler-source generic flavor-name &key env Function

Finds the methods that handle the specified generic operation on instances of the
flavor specified by flavor-name, and finds the source code of the combined method
(if any). Seven values are returned:

form A Lisp form which is the body of the combined method. If
there isn’t actually a combined method, this is nil.

handler-function-spec
The name of the handler, which can be a combined method, a
single method, or an instance-variable accessor.

Page 954

combined-method-list
A list of function specs of all the methods called, in order of
execution; the order is approximate because of wrappers.

wrapper-sources Information that the combined method requires so that Flavors
knows when it needs to be recompiled.

lambda-list A list describing what the arguments of the combined method
should be (not including the three interal arguments automati-
cally given to all methods).

method-combination A list of the method combination type and parameters to it.

error nil normally, otherwise a string describing an error that oc-
curred.

flavor:compose-handler-source is generally slower than flavor:compose-handler,
since the latter function can usually take advantage of pre-computed information
present in virtual memory.

The env parameter to flavor:compose-handler and flavor:compose-handler-source
can be used to insert hypotheses into their computations. If env is nil, the gener-
ics, flavors, and methods in the running world are used. env can be an alist of
modifications to the running world; each element takes the form:

(name flavor-structure generic-structure (method definition)...)

Everything except name can be nil. name is the name of a generic, or a flavor, or
both. flavor-structure is nil or the internal structure that describes the flavor.
generic-structure is nil or the internal structure that describes the generic function.
The remaining elements of an alist element refer to methods of the flavor named
name; method is a function spec and definition is nil if that method is to be ig-
nored, t if the method is to be assumed to exist, or the actual definition (expander
function) in the case of a wrapper.

env can also be the symbol compile, which is used internally to access the com-
pile-time environment.

For a summary of all functions, macros, special forms, and variables related to
Flavors, see the section "Summary of Flavor Functions and Variables".

si:compress-who-calls-database Function

Makes the who-calls database more compact and efficient. Call this function after
sizenable-who-calls. With the function (si:enable-who-calls ’:all), the function
si:compress-who-calls-database takes a long time to complete its job. However, it
is faster than using si:full-ge, and you can perform an Incremental Disk Save
(IDS) afterwards. See the section "Using the Incremental Disk Save (IDS) Facility".

clos:compute-applicable-methods generic-function function-arguments Function

Page 955

Returns the set of methods that are applicable for function-arguments; the methods
are sorted according to precedence order.

generic-function A generic function object.

function-arguments A list of the arguments to the generic function.

concatenate result-type &rest sequences Function

Combines the elements of the sequences in the order the sequences were given as
arguments. Returns the new, combined sequence.

The result does not share any structure with any of the argument sequences. The
type of the result is specified by result-type, which must be a subtype of type se-
quence. It must be possible for every element of the argument sequences to be an
element of a sequence of type result-type.

sequence can be either a list or a vector (one-dimensional array). Note that nil is
considered to be a sequence, of length zero.

For example:

(concatenate ’vector "abc" f(ab) "gh") => #(#\a #\b H#\c AB H#\g #\h)

3

(setqg vector (vector ’a 'b ’1 ’2)) => #(A B 1 2)

(setq list (make-list 3 :initial-element ’blah))
=> (BLAH BLAH BLAH)

(concatenate ’list vector Tist)
=> (A B 1 2 BLAH BLAH BLAH)

(concatenate ’vector 1ist vector) => H{(BLAH BLAH BLAH A B 1 2)

(concatenate ’string ’(#\a #\b #\c)) => "abc"

If only one sequence argument is provided and it has the type specified by result-
type, concatenate is required to to copy the argument rather than simply return-
ing it. If a copy is not required, but only possible type-conversion, then the func-
tion coerce can be appropriate.

For a table of related items: See the section "Sequence Construction and Access".

cond &rest clauses Special Form

Consists of the symbol cond followed by several clauses. Each clause consists of a
predicate form, called the antecedent, followed by zero or more consequent forms.

Page 956

(cond (antecedent consequent consequent...)
(antecedent)
(antecedent consequent ...)

)

Each clause represents a case that is selected if its antecedent is satisfied and the
antecedents of all preceding clauses were not satisfied. When a clause is selected,
its consequent forms are evaluated.

cond processes its clauses in order from left to right. First, the antecedent of the
current clause is evaluated. If the result is nil, cond advances to the next clause.
Otherwise, the edr of the clause is treated as a list of consequent forms that are
evaluated in order from left to right. After evaluating the consequents, cond re-
turns without inspecting any remaining clauses. The value of the cond special
form is the value of the last consequent evaluated, or the value of the antecedent
if there were no consequents in the clause. If cond runs out of clauses, that is, if
every antecedent evaluates to nil, and thus no case is selected, the value of the
cond is nil.

Examples:
(cond) => NIL

(cond ((= 2 3) (print "2 equals 3, new math"))
((<« 3 3) (print "3 < 3, not yet !"))) => NIL

(cond ((equal ’Becky ’Becky) "Girl")
((equal ’Tom ’Tom) “Bay")) => "Girl"

(cond ((equal ’Rover ’Red) "dog")
((equal ’Pumpkin ’Pickles) "cat")

(t “rat")) => "rat”
(cond ((zerop Xx) ;First clause:
(+y 3)) ; (zerop x) 1is the antecedent.
; (+y 3) is the consequent.
((null y) ;A clause with 2 consequents:
(setq y 4) ;this
(cons x 2)) ;and this.
(2) ;A clause with no consequents: the antecedent
;is just z. If z is non-nil, it is returned.
(t ;An antecedent of t
105) ;1s always satisfied.
) ;This is the end of the cond.

For a table of related items: See the section "Conditional Functions". The following
is an approximate possible implementation of zl-user:constantp using cond:

Page 957

(defun constantp (object)
(cond ((consp object) (eq (car object) (quote quote)))
((not (symbolp object)) t)
((defined-constant-p object) t)
((or (null object) (eq object t) t)
((keywordp object) t)
(t ni1)))

cond-every &body clauses Special Form

Has the same syntax as cond, but executes every clause whose predicate is satis-
fied, not just the first. If a predicate is the symbol otherwise, it is satisfied if and
only if no preceding predicate is satisfied. The value returned is the value of the
last consequent form in the last clause whose predicate is satisfied. Multiple val-
ues are not returned.

Examples:

(cond-every) => NIL

(cond-every ((> 2 3) (print "sister"))
((= 2 3) (print "brother"))) => NIL

3

(cond-every ((equal ’mom ’mom) (princ "mother "))
((equal ’dog ’cat) (princ "pet dog"))
((equal ’dad ’dad) (princ “father")))
=> mother father"father”

(cond-every ((= 1 1) t) ((= 2 2) "yes!")
(otherwise "no")) => "yes!"

For a table of related items: See the section "Conditional Functions".

condition-bind /ist &body body
Special Form

Binds handlers for conditions and then evaluates its body with those handlers
bound. One of the handlers might be invoked if a condition is signalled while the
body is being evaluated. The handlers bound have dynamic scope.

The following simple example sets up application-specific handlers for two standard
error conditions, fs:file-not-found and fs:delete-failure.

(condition-hind ((fs:file-not-found ’my-fnf-handler)
(fs:delete-failure ’my-delete-handler))
(deletef pathname))

The format for condition-bind is:

Page 958

(condition-bind ((condition-flavor-1 handler-1)

form-1
form-2

]-”o-r-m—n)

condition-flavor

handler

form

(condition-flavor-2 handler-2)

(condition-flavor-m handler-m))

The name of a condition flavor or a list of names of condition
flavors. condition-flavor need not be unique or mutually exclu-
sive. (See the section "Finding a Handler". Search order is ex-
plained in that section.)

A form that is evaluated to produce a handler function. One
handler is bound for each condition flavor clause in the list.
The forms for binding handlers are evaluated in order from
handler-1 to handler. All the handler-j forms are evaluated and
then all handlers are bound.

When handler is a lambda-expression, it is compiled. The han-
dler function is a lexical closure, capable of referring to the
lexical variables of the containing block.

Note: handler must have one argument, which is the condition
object. Otherwise, an error is signalled.

A body, constituting an implicit progn. The forms are evaluat-
ed sequentially. The eondition-bind form returns whatever val-
ues form returns (nil when the body contains no forms). The
handlers that are bound disappear when the condition-bind
form is exited.

If a condition signal occurs for one of the condition-flavors during evaluation of
the body, the signalling mechanism examines the bound handlers in the order in
which they appear in the condition-bind form, invoking the first appropriate han-
dler. You can think of the mechanism as being analogous to typecase or case. It
invokes the handler function with one argument, the condition object. The handler
runs in the dynamic environment in which the error occurred; no throw is per-

formed.

Any handler function can take one of three actions:

e It can return nil to indicate that it does not want to handle the condition after
all. The handler is free to decide not to handle the condition, even though the
condition-flavors matched. (In this case the signalling mechanism continues to
search for a condition handler.)

e It can throw to some outer catch-form, using throw.

Page 959

e If the condition has any proceed types, it can proceed from the condition by call-
ing the sys:proceed generic function on the condition object and returning the
resulting values. In this case, signal returns all of the values returned by the
handler function. (Proceed types are not available for conditions signalled with
error. See the section "Proceeding".)

The conditional variant of condition-bind is the form:
condition-bind-if

For a table of related items, see the section "Basic Forms for Bound Handlers".

condition-bind-default /ist &body body Special Form

Binds its handlers on the default handler list instead of the bound handler list.
See the section "Finding a Handler". In other respects condition-bind-default is
just like condition-bind. The default handlers are examined by the signalling
mechanism only after all of the bound handlers have been examined. Thus, a
condition-bind-default can be overridden by a condition-bind outside of it. This
advanced feature is described in more detail in another section. See the section
"Default Handlers and Complex Modularity".

The conditional variant of condition-bind-default is the form:
condition-bind-default-if

For a table of related items, see the section "Basic Forms for Default Handlers".

condition-bind-default-if cond list &body body Special Form

Binds its handlers on the default handler list instead of the bound handler list.
See the section "Finding a Handler". In other respects condition-bind-default-if is
just like condition-bind-if. The default handlers are examined by the signalling
mechanism only after all of the bound handlers have been examined. Thus, a
condition-bind-default-if can be overridden by a condition-bind outside of it. This
advanced feature is described in more detail in another section. See the section
"Default Handlers and Complex Modularity".

For a table of related items, see the section "Basic Forms for Default Handlers".

condition-bind-if cond list &body body
Special Form

Binds its handlers conditionally. In all other respects, it is just like
condition-bind. It has an extra subform called cond, for the conditional. Its format
is:

Page 960

(condition-bind-if cond
((condition-flavor-1 handler-1)
(condition-flavor-2 handler-2)

(condition-flavor-m handler-m))
form-1
form-2

form-n)
condition-bind-if first evaluates cond. If the result is nil, it evaluates the handler
forms but does not bind any handlers. It then executes the body as if it were a

progn. If the result is not nil, it continues just like condition-bind binding the
handlers and executing the body.

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-call (&rest varlist) form &body clauses Special Form

Binds handlers for conditions, expressing the handlers as clauses of a case-like
construct instead of as functions. These handlers have dynamic scope.

condition-call and condition-case have similar applications. The major distinction
is that condition-call provides the mechanism for using a complex conditional cri-
terion to determine whether or not to use a handler. condition-call clauses have
the ability to decline to handle a condition because the clause is selected on the
basis of the predicate, rather than on the basis of the type of a condition.

The format is:

(condition-call (var)
form
(predicate-1 form-1-1 form-1-2 ... form-1-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-1 form-m-2 ... form-m-n))

Each predicate must be a function of one argument. The predicates are called,
rather than evaluated. The form-m-n are a body, a list of forms constituting an im-
plicit progn. The handler clauses are bound simultaneously.

When a condition is signalled, each predicate in turn (in the order in which they
appear in the definition) is applied to the condition object. The corresponding han-
dler clause is executed for the first predicate that returns a value other than nil.
The predicates are called in the dynamic environment of the signaller.

condition-call takes the following actions when it finds the right predicate:
1. It automatically performs a throw to unwind the dynamic environment back

to the point of the condition-call. This discards the handlers bound by the
condition-call.

Page 961

2. It executes the body of the corresponding clause.

3. It makes condition-call return the values produced by the last form in the
clause.

During the execution of the clause, the variable var is bound to the condition ob-
ject that was signalled. If none of the clauses needs to examine the condition ob-
ject, you can omit var:

(condition-call () ...)

condition-call and :no-error

As a special case, predicate-m (the last one) can be the special symbol :no-error. If
form is evaluated and no error is signalled during the evaluation, condition-case
executes the :no-error clause instead of returning the values returned by form.
The variables vars are bound to the values produced by form, in the style of
multiple-value-bind, so that they can be accessed by the body of the :no-error
case. Any extra variables are bound to nil.

Some limitations on predicates:

e Predicates must not have side effects. The number of times that the signalling
mechanism chooses to invoke the predicates and the order in which it invokes
them are not defined. For side effects in the dynamic environment of the signal,
use condition-bind.

e The predicates are not lexical closures and therefore cannot access variables of
the lexically containing form, unless those variables are declared special.

e Lambda-expression predicates are not compiled.

The conditional variant of condition-call is the form:
condition-call-if

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-call-if cond (&rest varlist) form &body clauses Special Form

Binds its handlers conditionally. In all other respects, it is just like condition-call.
Its format includes cond, the subform that controls binding handlers:

(condition-call-if cond (var)
form
(predicate-1 form-1-1 form-1-2 ... form-1-n)
(predicate-2 form-2-1 form-2-2 ... form-2-n)

(predicate-m form-m-1 form-m-2 ... form-m-n))

Page 962

condition-call-if first evaluates cond. If the result is nil, it does not set up any
handlers; it just evaluates the form. If the result is not nil, it continues just like
condition-call, binding the handlers and evaluating the form.

The :no-error clause applies whether or not cond is nil.

For a table of related items: See the section "Basic Forms for Bound Handlers".

condition-case (&rest varlist) form &rest clauses
Special Form

Binds handlers for conditions, expressing the handlers as clauses of a case-like
construct instead of as functions. The handlers bound have dynamic scope.

Examples:

(condition-case ()
(time:parse string)
(time:parse-error xdefault-timex))

(condition-case (e)
(time:parse string)
(time:parse-error
(format xerror-outputx "~A, using default time instead."” e)
xdefault-timex))

(do () (niT)
(condition-case (e)
(return (time:parse string))
(time:parse-error
(setq string
(prompt-and-read
:string
"“A~%Use what time instead? " e)))))

The format is:

(condition-case (varl var2 ...)
form
(condition-flavor-1 form-1-1 form-1-2 ... form-1-n)
(condition-flavor-2 form-2-1 form-2-2 ... form-2-n)

(condition-flavor-m form-m-1 form-m-2 ... form-m-n))

Each condition-flavor-j is either a condition flavor, a list of condition flavors, or
:no-error. If :no-error is used, it must be the last of the handler clauses. The re-
mainder of each clause is a body, a list of forms constituting a