
Site Operations

Introduction to Site Operations and Administration

This document provides information for Site Administrators, people who set up

("configure") and maintain sites with one or more Symbolics computers. Typically,

the Site Administrator is responsible for the following tasks:

• Installing new releases of Genera software, and any layered products used at the

site.

• Choosing a network addressing scheme. Each computer needs a unique network

address. All Symbolics computers run Chaosnet, and each Symbolics computer

needs a Chaosnet address. Some sites also use IP/TCP or DECnet protocols; if

so, the computers there need Internet or DECnet addresses as well as Chaosnet

addresses.

• Choosing a configuration for the site. In a site with more than one computer,

you need to decide how to distribute responsibility among them. Most sites des-

ignate one Symbolics machine as a server; this machine might be a namespace

server, file server, and mail server. Users of the other computers store their

files on the server, which means you need only do backups on one machine, in-

stead of on several. If you have a printer, you need to decide which computer

will be the print server. Large sites might designate several machines to be

servers.

• Configuring the software to reflect the site itself. The namespace database de-

scribes the site and the computers, networks, printers, and users in it. You need

to keep the namespace database current with the configuration of your site.

• Customizing worlds for various purposes. Sometimes it is useful for a site to

have different worlds running on Symbolics machines for different purposes. For

example, a server machine requires a world with the server software in it. Oth-

er machines require worlds with site-specific customizations and applications.

• Backing up files to tape. As in other computing environments, it is important to

establish a regular schedule for copying the contents of disks to tape.

• Serving as a liason with Symbolics Customer Service (for example, sending

"crash data" mail to Symbolics at CUSTOMER-REPORTS@STONY-

BROOK.SCRC.SYMBOLICS.COM or CUSTOMER-REPORTS@SCRC.STONY-BROOK.ARPA).

Note: Genera software installation procedures and site configuration information

are documented in the Software Installation Guide for each new release of the

Genera software. For software installation information about layered products, see

the documentation that is shipped with each layered product.

Page 422

This document contains reference information about tools and techniques for Site

Administrators. Because this is a reference document (and because each site is

different), you will not need to master all of the information provided here. Only

portions of this document will be relevant to you, and to your site's needs.

In particular, this document includes the following information:

Booting the Symbolics Machine

When you boot the Lisp machine, you bring up a "world". The world is

your Lisp environment. A Lisp world can reside either on the local disk

of the machine you wish to boot, or on a remote machine (called a net-

boot server). This section describes cold booting, warm booting, netboot-

ing, and autobooting.

Setting Up and Maintaining the Namespace Database

The Site Administrator sets up and maintains the namespace database by

registering new hosts, printers, and users, and otherwise updating the

namespace database so that it "knows about" any changes to your site's

configuration. This section describes how to edit the namespace database,

and the semantics of the information stored in it.

Making, Distributing, and Using Worlds

When a new release of Genera is available, the Site Administrator needs

to make new worlds for the site to use. The new world must contain

both the new Genera software and information about the site itself. This

section describes how to make new worlds, and how to distribute them

among computers at the site.

The Front-End Processor

When you boot a Symbolics computer, you communicate with the Front-

End Processor (the FEP). This section describes how to use the FEP

commands, and gives other information about the FEP.

The Lisp Machine File System (LMFS)

All Symbolics computers use Lisp Machine File System (LMFS) files and

directories. This section provides information about utilizing your disk to

maximize the space available for LMFS files (by using LMFS partitions).

This section also describes the procedures for backing up, dumping,

reloading, and retrieving files (and systems) in LMFS.

Using the Tape Facilities

Symbolics supports different tape formats for different purposes. This

section describes how to know which format to use for a given purpose,

and how to use the tools for writing the contents of a disk to magnetic

tape.

Symbolics Store-and-Forward Mailer

The Mailer is a program that provides mail forwarding and delivery ser-

vices to users at a site. The Mailer is distinct from Zmail, which is a

user program for reading and composing mail. The Mailer program runs

on a Symbolics machine designated as a mail server. This section de-

scribes how the Mailer works, and how to perform administrative tasks

such as setting up mailing lists.

Page 423

Internet Domain Names

The Internet Domain Names system is a collection of specifications and

procedures which implement the DOMAIN protocol, which is commonly

used on the ARPA Internet. The DOMAIN protocol deals extensively

with naming, and it distributes the responsibility of maintaining naming

information across a set of administrative bodies. This section describes

the Symbolics implementation of the DOMAIN protocol.

Symbolics Dialnet

Symbolics Dialnet supports the international dial network, meaning that

it enables communication over the telephone lines. Dialnet is primarily

used for mail transfer.

Note that several other documents contain important related information. We par-

ticularly recommend the following sections:

• For an introduction to the anatomy of a Symbolics computer, including the FEP

and other parts of the machine, see the section "Workbook: Overview of the Ma-

chine".

• For introductory information on networks, using server machines, and how the

namespace database describes the network configuration, see the section "Con-

cepts of Symbolics Networks".

• For reference information on network addressing, see the section "Network Ad-

dressing".

• For information on choosing a network addressing scheme, see the section

"Choosing a Network Addressing Scheme".

Booting the Symbolics Machine

You give commands to the FEP in order to boot the Symbolics machine. When you

boot, you bring up a "world". The world is your Lisp environment. A Lisp world

can reside either on the local disk of the machine you wish to boot, or on a remote

machine (called a netboot server). FEP commands to boot a world can be entered

manually (at the FEP Command: prompt), or executed from within a file (using the

Boot FEP command).

Boot File Types

Boot files always have the extension .boot. Three types of boot files exist. Each

boot file type has an initial default filename (provided by the FEP):

boot.boot This type of file contains commands for booting a specific Lisp

world. It's useful to have several boot files, especially if your

site uses various world loads, some of which may have special

programs loaded into their environment.

Page 424

Boot files can incorporate either the FEP Netboot command (to

netboot from a remote host) or the FEP command Load World

(to boot a world from the local disk).

Note: Always press RETURN at the end of a boot file before sav-

ing it.

hello.boot This type of file contains commands for both scanning FEP

overlay (flod) files, and initializing the local machine's hard-

ware tables. More information is available about the FEP over-

lay (flod) files.

• See the section "Overlay (Flod) Files and the FEP".

• See the section "Scanning the Overlay (Flod) Files".�

autoboot.boot This type of file combines the functions of boot.boot and

hello.boot files. It contains commands for scanning the FEP

overlay (flod) files, for initializing the hardware tables on the

local machine, and for booting a specific Lisp world. See the

section "Autobooting".

Contents of Hello.Boot Files and Boot.Boot Files

This section briefly describes the philosophy of which FEP commands belong in

the Hello.boot file and which belong in the Boot.boot file on both 3600-family and

Ivory-based machines.

Hello.boot File�

This file should contain anything that holds constant for this machine, regardless

of the world you are running. For example, this includes your flod files, your pag-

ing files, your network address, and so on.

First, this file must scan all the flods from which you want to use commands. This

includes the lisp, loaders, info, and debug flods.

Next, the file should include the Initialize Hardware Tables command, so that any

errors it encounters will be seen early in the booting process. (This command is

completely optional in Ivory-based machines. It is automatically invoked by the

Ivory FEP when needed, but errors it signals may be less clear when automatically

invoked.)

Then, the Hello.boot file should declare any paging files you always want to use;

this saves you having to manually Add Paging Files, or to say the same in your

boot file. Do not declare any "spare" paging you want to save for an emergency,

because Load World automatically uses all declared paging files, and thus the

spare paging file would not be available in case of an emergency. It is harmless to

declare paging files that do not exist (for example, one you might delete every now

and then to make room for Copy World); nonexistent ones give a warning, but are

not used.

Page 425

Ivory machines only: �

Starting with Genera 8.1, the hello.boot file for an Ivory machine should contain

two lines:

Hello Innn

Hello Local (or hostname)�

Each of these corresponds to a boot file. The nnn refers to the IFEP number,

which is 328 for Genera 8.3.

Hello Innn Boot File

The Innn.boot file (where nnn is the IFep version number, which is 328 for Gen-

era 8.3) should contain the commands to scan the flod files and initialize things.

Scan I328-lisp.flod

Scan I328-loaders.flod

Scan I328-info.flod

Scan I328-debug.flod

Initialize Hardware Tables

Hello Local Boot File

The local.boot file should contain those commands that set up this specific ma-

chine, declaring paging files, setting the network address, and any other boot op-

tions.

Declare Paging Files FEP0:>Paging-1.page

Declare More Paging Files FEP0:>Paging-2.page,Paging-3.page

Set Boot Options :Network Address Chaos|52525 :IDS Enable

�

Boot options are required for standalone sites. They are optional for other sites,

but they do save manually invoking them or having them duplicated or inconsis-

tent in boot files (if you have multiple boot files). See the section "Set Boot Op-

tions FEP Command".

The boot options replace other FEP commands. For compatibility, some of the boot

options have corresponding commands. Note that some of these commands (such as

Enable/Disable IDS on 3600-family machines), if present, must appear in the

Boot.boot file, since they must follow Load World. (In the Ivory-based FEP, these

commands warn if you try to use them at the wrong time, while in the 3600-family

FEP they silently perform no operation if used at the wrong time). We recommend

using the Set Boot Options command instead of the corresponding commands, so

you can set all the boot options in one spot.

Normally, you set your network address with Set Boot Options, but you could use

the Set Network Address command instead. Whichever way you choose to set the

network address, it should be done in the Local.boot file, and should not be dupli-

cated in your Boot.boot files.

Page 426

3600 and Ivory Machines�

Note that, in previous releases, you had to set the network address after loading

the world, but this restriction no longer holds on either architecture.

Here is a sample Hello.boot file for a 3600-family machine:

Sample 3600-Family Machine Hello.Boot File

Scan v127-info.flod

Scan V127-loaders.flod

Scan v127-lisp.flod

Scan v127-debug.flod

Initialize Hardware Tables

Declare Paging-Files FEP0:>Paging-1.page

Declare More Paging-Files FEP0:>Paging-2.page,Paging-3.page

Set Chaos-Address 52525�

(For a sample Hello.boot file for an Ivory-based machine, see the section "Sample

Ivory-Based Machine Hello.Boot File".)

Boot.boot Files�

These files should contain any setting that pertains only to the particular world

(and microcode, on a 3600-family machine) this file loads and starts. (Note that

this excludes the address of the machine.) There is a slim possibility that you

might want to have some explicit paging file commands here (for example, a boot

file to boot with just one paging file explicitly added for when you want to do

world copying).

Sample 3600-Family Boot.Boot Files

Here is the sequence of commands for a Symbolics 3600-family machine that is

cold booting a world from the local disk:

Clear Machine

Load Microcode FEP0:>3640-fpa-mic.mic.430

Load World FEP0:>genera-8-3.load

Enable IDS

Start

Here is the sequence of commands for a Symbolics 3600-family machine that is

cold booting a world from a remote disk (netbooting):

Clear Machine

Load Microcode FEP0:>3640-fpa-mic.mic.430

Netboot inc-site-genera-8-3

Enable IDS

Start

Page 427

The information in the rest of this section applies to Ivory-based machines only.

Boot.boot files for Ivory-based machines should contain only the following:

Load World

Start�

Note that you can set your default world to boot in boot options. If you choose to

load the default world, there is no need to give an explicit pathname argument to

Load World.

It is unnecessary to do a Clear Machine before the Load World since this com-

mand does nothing on Ivory-based machines. On 3600 family machines, it serves a

purpose. To avoid confusion and make boot files easier to understand and main-

tain, if Clear Machine is left in the boot file of an Ivory machine, it is ignored.

It is possible, although not recommended, to give the Enable/Disable IDS command

here, but the recommended way is to do all that in your Hello.boot file, via Set

Boot Options :IDS [Enable/Disable]. You should also use the Set Network Address

commands in your Hello.boot file. (Note that if someone copies a boot file with an

address in it to another machine, confusion will result.)

Note also that Disable IDS saves only an inconsequential amount of memory and

overhead, so there is usually no advantage in doing it.

Here is the recommended sequence of commands for a Symbolics Ivory-based ma-

chine that is cold booting a world from the local disk:

Load World

Start

This loads the most recent world on your local disk, which is usually the one you

want to boot.

For a netbooted machine, the recommended sequence is:

Netboot inc-site-genera-8-3

Start�

Cold Booting

Cold booting completely resets Lisp and puts the machine into a "fresh state" for

the next user. You can cold boot a world that is resident on the local disk. Alter-

natively, you can cold boot a world from remote machine (that is, netboot).

To cold boot a world from a remote host (netboot server), include the FEP com-

mand Netboot in your machine's boot file (or in a manually entered sequence of

FEP commands). For more information about the Netboot command, see the sec-

tion "Netboot FEP Command".

If you are cold booting a world from the local disk, include the FEP Load World

command in your machine's boot file (or in a manually entered sequence of FEP

commands). For more information about the Load World command, see the section

"Load World FEP Command".

Page 428

If the calendar clock has not been set, the machine will notify you, so that you can

set it. Use the Command Processor (CP) Set Time command. For more informa-

tion, see the section "Set Time Command".

Here is the sequence of commands for a Symbolics 3600-family machine that is

cold booting a world from the local disk:

Clear Machine

Load Microcode FEP0:>3640-fpa-mic.mic.430

Load World FEP0:>genera-8-3.load

Enable IDS

Start

Here is the sequence of commands for a Symbolics 3600-family machine that is

cold booting a world from a remote disk (netbooting):

Clear Machine

Load Microcode FEP0:>3640-fpa-mic.mic.430

Netboot inc-site-genera-8-3

Enable IDS

Start

Here is the recommended sequence of commands for a Symbolics Ivory-based ma-

chine that is cold booting a world from the local disk:

Load World

Start

This loads the most recent world on your local disk, which is usually the one you

want to boot.

For a netbooted machine, the recommended sequence is:

Netboot inc-site-genera-8-3

Start�

More information is available about boot files. See the section "Boot File Types".

Netbooting

Note: Only Symbolics 3600-family machines that run Genera 7.2 or a later release

can be netboot servers. Only Symbolics Ivory machines that run Genera 8.1 or a

later release can be netboot servers. A netboot server must be on the same subnet

as the user machine it is netbooting.

Netbooting allows Symbolics machine users to boot and run worlds from remote

machines. In order to netboot, sufficient paging space (around 40,000 blocks, or

space equivalent to the size of the world you are netbooting) must be available on

the local disk.

In order to use netbooting, each user also needs a netboot core on the local disk.

For more information about netboot cores, see the section "Netboot Cores".

If the same worlds are used by multiple machines at your site, netbooting will en-

able you to keep ¾ and maintain ¾ only two copies of each world (one of them a

backup), rather than one copy of each world for every user.

Page 429

If you netboot an Incremental Disk Save (IDS) world, all its parents will be net-

booted as well. In order to netboot them, IDS worlds and their parents must reside

on the same (netboot server's) disk.

Note: The Load World FEP command checks the local disks for an IDS world's

parents. If one or more parents is missing, the Load World FEP command will

look for the parent on all enabled netboot servers, and attempt to netboot it. This

means that, if all the parents of an IDS world do not reside on the local disk, Load

World becomes a request to netboot the parent worlds of an IDS loaded from the

local disk.

More information is available about IDS worlds. See the section "Using the Incre-

mental Disk Save (IDS) Facility".

If you want to use netbooting at your site:

• Create one or more netboot servers with world-load files for all worlds used at

the site. For information about creating netboot servers, see the section "Setting

Up Servers for Netbooting".

• Put a netboot core on each user machine that will use netbooting. For informa-

tion about setting up user machines for netbooting, see the section "Setting Up

User Machines for Netbooting".

• Include a Netboot FEP command where the Load World FEP command would

otherwise appear in boot files, or in a manually entered sequence of FEP com-

mands. For information about the Netboot FEP command, see the section "Net-

boot FEP Command".�

The FEP command Netboot takes the argument world-description.

world-description can be a complete specification, or a short, unique substring from

the name of a world-load file. world-description need not include a disk unit speci-

fication, or the file type .load or .ilod.

If you have two worlds with identical substrings in them, the Netboot FEP com-

mand looks for the newest one. For example, if these two worlds exist:

Genera-8-0-incremental-1.load

Genera-8-0-incremental-2.load

and you issue this command:

Command: Netboot Genera-8-0

you get the newest world containing the substring Genera 8.0 (but you are not

able to specify which one you want to boot).

To ensure that you netboot the world you intend, name the worlds something like

this:

Inc-1

Page 430

Inc-2

Then, issue the Netboot FEP command, followed by the appropriate (unique) sub-

string.

Netboot Cores

Netboot cores are small Lisp programs that contain the necessary code to bring a

Lisp world across the network and load it into local memory.

You can have more than one netboot core on a disk. It is best to use a netboot

core built from the same version of Genera as the world you are booting.

On machines with loadable microcode, the FEP looks for the appropriate netboot

core for the world you are booting. The appropriate netboot core is the newest one

that will run with the microcode that you have loaded.

Netboot cores contain all of the wired pages for a world (around 150 pages). If you

use a netboot core built from the world you are booting, it will use itself as the

wired pages for the world and load only the remainder of the world (this saves a

small amount of time).

Netboot cores have the file type .load, and use approximately 150 blocks each. If

you have a Genera 8.0 world-load file on your FEP, you can use this world-load

file as a netboot core. Any Genera 8.0 world load can be used as a netboot core,

but netboot core files are much smaller.

Create Netboot Core Command

Create Netboot Core world�

Creates a netboot core, a small world with just enough information in it to be able

to locate and boot a world over the net. An appropriate netboot core is included on

every distribution tape, so you should never need to use this command.

world {pathname} The pathname of a world load file to use to create

the netboot core. This world must be resident on your FEP or

IFEP.�

Setting Up Servers for Netbooting

Note: Only Symbolics 3600-family machines that run Genera 7.2 or a later release

can be netboot servers. Only Symbolics Ivory machines that run Genera 8.1 or a

later release can be netboot servers. A netboot server must be on the same subnet

as the user machine it is netbooting.

To set up a netboot server, perform the following steps:

Page 431

1. Use the Copy Flod Files command to copy the new overlays (flod files) to the

FEP file system on the server running the Genera 8.0 world.

2. Add netboot service to the server's Host Object in the local namespace:

Service: NETBOOT SLAP NETBOOT

 . . .

Server Machine: Yes

(Server Machine: Yes causes the server machine to boot with services dis-

abled. This prevents users from requesting netboot service before the server

itself has finished booting.)

3. Copy any worlds that users will be netbooting. Put them in a top-level FEP

directory on the netboot server.

4. Enable services once the netboot server is finished booting. Use the Enable

Services CP command to enable all services (including netboot service) like

this:

Enable Services (disabled services [default All]) All

Alternatively, use the Command Processor (CP) Enable Services command to

enable netboot service like this:

Enable Services (disabled services [default All]) Netboot

Netbooting includes a queuing mechanism; netboot service is provided serially, on

a first-come-first-served basis. You can have a backup netboot server. This is use-

ful if, at your site, many machines could require netboot service at the same time

(following a power failure, for example).

A user machine can be a netboot server, but this may slow the netbooting process

to some extent. A user machine is better utilized as a backup (rather than a pri-

mary) server. Symbolics does not recommend using a file server as a netboot serv-

er, since file service can degrade during netbooting operations, and vice versa. It's

preferable to dedicate one machine at your site as the netboot server.

If you have booted identical worlds on different netboot servers, remember to

maintain them both at the same patch level.

Setting Up User Machines for Netbooting

Note: Only Symbolics 3600-family machines that run Genera 7.2 or a later release

can be netboot servers. Only Symbolics Ivory machines that run Genera 8.1 or a

later release can be netboot servers. A netboot server must be on the same subnet

as the user machine it is netbooting.

Set up a user machine for netbooting like this:

1. Use the Copy Flod Files command to copy the new overlays (flod files) to the

FEP file system. See the section "Copy Flod Files Command". Copy the net-

boot core to the FEP file system of the local machine using the Copy World

command. See the section "Copy World Command".

Page 432

This file has the same name as the distribution world, prefixed by Netboot-

core-from-, such as Netboot-Core-from-8-0.load. If you have multiple disks,

put the core on FEP0.

(If you explicitly mount another disk in your boot file before issuing the Net-

boot command, you can safely put the netboot core on that disk.)

2. Add extra paging space, equivalent to the size of the world you will netboot,

in addition to the paging space you normally use. This extra paging space is

necessary if you want the netbooted world to have as much virtual memory

space as a locally booted world would.�

Place the FEP command Netboot in your machine's boot file where you would nor-

mally use the Load World command. For information about the Netboot FEP com-

mand, see the section "Netboot FEP Command". Here is a sample boot file with a

recommended sequence of commands for using Netboot:

Clear Machine

Load Microcode FEP0:>3640-fpa-mic.mic.430

Netboot inc-site-genera-8-0

Enable IDS

Start

See the section "Contents of Hello.Boot Files and Boot.Boot Files".

User machines that have been netbooted do not need any world files in their FEP

file system except the netboot core (and a backup copy of the core).

If you have a Genera 8.0 world-load file on your FEP, you can use the world-load

file as a netboot core. (Any Genera 8.0 world load can be used as a netboot core,

but netboot core files are much smaller.)

When you netboot, the screen blanks and then provides a narrative of the netboot-

ing process. You can monitor netbooting via the progress bar at the lower right-

hand portion of the screen. The leading, dotted line indicates how much of the

world has been requested for loading. The trailing, solid line indicates how much

of the world has been loaded.

The label beneath the progress bar describes each phase of the netboot process.

Additionally, the short bars indicate (from left to right, respectively) Disk-Wait,

CPU-Run, and Net-Wait status.

You can halt netbooting at any time, as indicated in the upper left of the screen.

For 3600 family, XL family, and UX family machines you press h-c-FUNCTION. On

the NXP1000, press the NMI button on the front of the machine.

If, for any reason, your netboot core does not work properly, you may need to use

the FEP command Set World-to-Netboot. For information about the Set World-to-

Netboot FEP command, see the section "Set World to Netboot FEP Command".

Autobooting

Page 433

Ivory-based and 3600-family machines with G208 FEP EPROMS support autoboot-

ing. (To find out the FEP version of your 3600-family machine, type the Command

Processor (CP) command Show Machine Configuration in a Lisp Listener.)

When a machine is set up for autobooting, it boots automatically at power up. The

autoboot command sequence is specified by an autoboot.boot file; the presence of�

the autoboot.boot file enables the autoboot process.

The autoboot.boot file must include all of the FEP commands that are normally

specified by both the hello.boot and boot.boot files, in the order in which these

commands would normally be executed.

Specifically, autoboot.boot must contain commands to:

• Scan the required overlay (flod) files.

• Declare paging files.

• Set the Chaos address.

• Initialize the hardware tables.

• Clear the machine.

• Load the appropriate microcode and world.

• Start the machine.

The file autoboot.boot must reside on the lowest numbered disk unit implemented

in your machine. (In most cases, this is Unit 0.)

Note that the Ivory FEP allows nested boot files, so your autoboot file could con-

tain only the following:

Hello

Autoboot Delay 10 (Press a character to stop autobooting now)

Boot�

During disk drive spin-up, the autoboot software waits for Unit 0 to respond. If,

after three minutes, Unit 0 has not responded, the system checks the lowest num-

bered disk unit for the existence of the autoboot.boot file.

On Ivory-based machines, you can abort the autoboot process at any time (by

pressing any character). On 3600-family machines, you can abort autobooting ¾

within the first 10 seconds of the process ¾ by pressing any key, or while the Au-

toboot Delay FEP command is executing. (You can use the Autoboot Delay FEP

command to lengthen the time period during which you can abort autobooting.)

Once you've aborted autobooting, boot by using the standard hello.boot and

boot.boot files (or power-cycle the machine to begin the autoboot process again).

Additional information is available about the Autoboot Delay FEP command. See

the section "Autoboot Delay FEP Command".

Page 434

Booting IDS Worlds

It's possible to keep an Incremental Disk Save (IDS) world without being required

to keep all of its parents) on a local disk. When you want to boot the IDS world,

use the Load World FEP command.

Note: The Load World FEP command checks the local disks for an IDS world's

parents. If one or more parents is missing, the Load World FEP command will

look for the parent on all enabled netboot servers, and attempt to netboot it. This

means that, if all the parents of an IDS world do not reside on the local disk, Load

World becomes a request to netboot the parent worlds of an IDS loaded from the

local disk.

If no enabled netboot server exists, the Start command will start Lisp and Lisp

will wait for a netboot server, without returning an error. If your site does not

support netbooting, use h-c-FUNCTION to halt the netboot process, get back to the

FEP, and boot from the local disk.

Warm Booting

Warm booting is a recovery procedure that may enable you to restart Lisp in order

to save buffers and mail. It destroys the state of the process running at the time

of the boot, destroys the state of the window system, and resets all network con-

nections. If you warm boot after a crash, do not expect to continue running for

very long after a warm boot, unless the cause of the crash can be rectified.

Once you've warm booted, save your work, try to determine the cause of the crash,

and cold boot the machine. For information about investigating problems that

cause your machine to crash, see the section "Debugging in the FEP".

Warm boot the machine by using one of the following procedures:

1. If the machine crashed, issue the Show Status FEP command at the FEP

prompt, check the information it provides, and then issue the Start FEP com-

mand. For information about checking the information that the Show Status

FEP command provides, see the section "Debugging in the FEP".

2. If the machine did not crash, but is unresponsive, issue the Command Proces-

sor (CP) Halt Machine command, or press h-c-FUNCTION if you cannot get a

Lisp Listener or if the Lisp Listener is not responding to keyboard input.

(Note: on UX-family machines h-c-FUNCTION only works from the cold load

stream, so you might have to first enter the cold load stream with FUNCTION

SUSPEND or by opening the cold load icon in order to enter the FEP.) Then,

issue the Start FEP command at the FEP prompt. For information about halt-

ing Lisp, see the section "Halting". Alternatively, on MacIvory machines, you

can choose Restart Lisp from the Ivory menu item to warm boot Lisp.�

Note: On MacIvory machines, choosing Shutdown from the Ivory menu, subse-

quently choosing Quit from the File menu, and then choosing Restart Lisp Ivory

menu item also causes a warm boot.

Page 435

In this case, though, because you have properly shut down Lisp (instead of having

crashed), you can expect to operate normally; your machine's state will be as it

was before quitting Lisp (rather than initialized, as it would be after a cold boot).

Setting Up and Maintaining the Namespace Database

The site administrator or site maintainer sets up and maintains the namespace

database by (for example) registering new hosts and users, and otherwise updating

the namespace database so that it "knows about" any changes to your site's con-

figuration.

Site configuration enables your Symbolics computers to describe and access the re-

sources available to them. Once your site has been configured, all of its Symbolics

computers can find out about the other hosts, printers, and users there.

Namespace service is at the heart of site configuration. In order for one machine

(a local host) to use any of the resources provided by other machines (remote

hosts), namespace service ¾ managed and provided by a namespace server ¾ is

required.

A local host depends on the namespace server for answers to these questions:

• How is the remote host connected to the local host (what is the remote host's

network address)?

• What network protocol must be used to obtain the desired service?

By configuring your site, you give each Symbolics machine sufficient information

to know where and how to obtain namespace service. You also give your name-

space server sufficient information to provide that service.

Register new users in the namespace database either before they use the system,

or when they log in for the first time. New hosts and printers should be registered

in the namespace database before being connected to the network or to the host

that will support them.

For more information about the namespace database and why it's used, see the

document Genera User's Guide.

Site Configuration and Namespace Service

The namespace server uses namespace files to describe each resource at a particu-

lar site. The namespace server might not store the namespace files locally, but it

knows where to locate them.

If your site is large, with many (over ten) user machines to make demands on the

namespace server, Symbolics recommends that you create a dedicated namespace

server; use one Symbolics machine that's unavailable for user applications. If your

site is small (under ten user machines), designate one of the user machines as the

namespace server.

Page 436

The namespace server's purpose is to collect and maintain information for a site.

All of the information known about a site's network(s) and each host, printer, and

user is stored in the namespace database. More information is available about

namespace objects and the namespace system. See the section "Setting Up and

Maintaining the Namespace Database".

There can be more than one namespace server at a site. One server is the primary

namespace server; the others are secondary namespace servers. More information

is available about the differences between server machines. See the section "Ma-

chines and Worlds".

A typical Symbolics site uses a namespace server to store the namespace database,

and a file server to store system sources and online documentation. It is possible

for one machine to perform both these services, provided it has enough disk space.

There are some restrictions pertaining to servers. The namespace server must be a

Symbolics computer. The system sources and online documentation must reside on

one of the following:

• A Symbolics computer.

• Any UNIX host running NFS, in a .sct directory (see the section "Using SCT

with a UNIX File System").

More information is available about system sources and online documentation. See

the section "System Sources and Online Documentation".

Using the Set Site and Define Site Commands

If you have a Symbolics 3600-family machine, and you boot a distribution world

(the base world that Symbolics sends you), the Command Processor (CP) Show

Herald command displays the machine's name as DIS-LOCAL-HOST and the site

name as DISTRIBUTION.

• In order to use the machine, you must first use either the Set Site or the De-

fine Site command.

If you have a Symbolics Ivory-based machine, and you boot a distribution world

(the base world that Symbolics sends you), the Command Processor (CP) Show

Herald command displays the machine's name as MACIVORY, XL400, or UX-family

and the site name as STANDALONE.

• If the MacIvory is the only Symbolics machine at your site, you need not use

the Set Site or Define Site commands.

• If the MacIvory is one of multiple Symbolics machines at your site, you must

use either the Set Site or the Define Site command. To do so:

Page 437

1. Double-click on the Genera icon to boot the Genera application. See the

section "Using the Genera Application on a MacIvory".

2. Edit the hello.boot file and remove the Set Boot Options command line

from the file.

3. Add the Set Network Address command line to the hello.boot file, with a

Chaos address for your machine. See the section "Set Network Address

FEP Command".

4. Cold boot the MacIvory and use the Set Site or Define Site command.

Here are the criteria for determining whether to use the Set Site or Define Site

command on a Symbolics 3600-family or Ivory-based machine:

Set Site If the namespace files have already been created, use the Set

Site comand. This gives your machine access to the already

configured site's resources.

Define Site If the namespace files do not yet exist, use the Define Site

command. This creates a new namespace that you can expand

later to include other hosts, sites, users, printers, and net-

works.

Set Site Command

Set Site site-name�

Configures the local distribution world to be an already existing site.

site-name {name, get-from-network} The name of your site.�

Any further arguments are entered through an AVV menu that adjusts depending

on the parameters needed. The Set Site command also fully supports multiple sites

within one namespace so the site name does not have to match the namespace

name, although one site in any namespace must have a name that is the same as

the namespace name.

If the Set Site command is used when the local machine is already registered in a

site, the current site is changed to the distribution site before changing over to

the new site. This is to eliminate any problems with dangling references to the

previous site.

The Set Site command enables your machine to identify all objects included in the

site's namespace database. The namespace database for each site is stored in the

file system accessible from a machine called the namespace server.

In order for the Set Site command to work, your machine must be a registered

host in the site's namespace. If the site's namespace server is not the local host,

you must know the namespace server's name and network address.

Page 438

See the section "Set Site Dialogue".

Define Site Command

Define Site site-name�

Defines a new site.

Type the Define Site command immediately after you boot a new distribution world

when you want to define a new site and namespace; it brings up a menu to create

a new namespace called site-name; when you start this dialogue the local host is,

by default, the site's:

• Primary namespace server.

• SYS host.

• Host for storing namespace database files.

• Host for bug reports.�

If you want non-local host(s) to perform any of these jobs, provide their primary

network addresses and operating system types in the appropriate menu slots.

During the Define Site dialogue, the namespace database files (object files, log

files, changes files, and a descriptor file) are created for you on the file system of

the machine you specify as the namespace server. Make sure the file system exists

on a host accessible to the namespace server machine before you issue the Define

Site command. For more information about the namespace database files, see the

section "Namespace Database Files".

The namespace server for the new site will have these initial default attributes

when the Define Site command is used (nnnnn represents a valid octal Chaos ad-

dress):

Page 439

System Type*: LISPM

Machine Type: 3600

Service: CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS

Service: SHOW-USERS CHAOS NAME

Service: TIME CHAOS-SIMPLE TIME-SIMPLE

Service: UPTIME CHAOS-SIMPLE UPTIME-SIMPLE

Service: LOGIN CHAOS TELNET

Service: LOGIN CHAOS SUPDUP

Service: LOGIN CHAOS 3600-LOGIN

Service: SEND CHAOS CONVERSE

Service: SEND CHAOS SEND

Service: NAMESPACE CHAOS NAMESPACE

Service: NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP

Service: LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER

Service: FILE CHAOS NFILE

Service: FILE CHAOS QFILE

Service: CONFIGURATION CHAOS CONFIGURATION

Address: CHAOS 12345�

See the section "Define Site Dialogue".

Introduction to the Namespace Database

A namespace database contains objects. An object must belong to one (and only

one) of seven classes in order to be registered in the namespace database:

Host Represents any computer, usually connected to a network.

User Represents a person who uses any of the hosts, or a daemon

user.

Network Represents a computer network, to which some hosts are at-

tached.

Printer Represents a device for producing hardcopy.

Site Represents a collection of hosts, printers, and networks,

grouped together in one location.

Namespace A database containing information about the mappings from

object names to objects, and about the objects themselves.

File System Reserved for Statice.�

Objects in the namespace database have global-names (which identify them), and

attributes (which describe them).

Data Types for Attributes

The following data types can be used with attributes in the namespace database:

Page 440

Global-Name A name that is shared by all namespaces.

Token An arbitrary character string.

Set One or more elements of the same data type.

Pair Two elements; each element can be of a different data type.

Triple Three elements; each element can be of a different data type.�

Global-name and token require you to supply one value. Set, pair and triple require

you to supply compound (one or more, two, or three) values.

For more information about attributes, see the section "Attributes for Objects in

the Namespace Database".

Use the Namespace Editor to "create" (or document) objects, their global-names,

and their attributes. For more information about the Namespace Editor, see the

section "Using the Namespace Editor".

Names and Namespaces

Every object has a name, which is a character string. Two objects of different

classes can have the same name. For example, there can be a printer named

George and a user named George. An object is identified both by its class and its

name.

This means that if you want to look up an object in the database (and you know

its name) you have to say "Find the printer named George" or "Find the user

named George". You cannot say "Find George".

A namespace is a database that contains mappings from names to objects. Names

in one namespace are unrelated to names in another namespace. Specifically, a

namespace maps from [class, name] pairs to objects, since every object is identified

both by its class and by its name.

Typical sites have one namespace, and the names of all the objects at that site are

in that namespace. An object in some namespace other than your own can be re-

ferred to by a qualified name, which consists of the name of the namespace, a ver-

tical bar, and the name of the object in that namespace.

When long-distance networks link together different sites, the possibility for name

conflicts arises. Neither site is forced to change its names just because it wants to

connect to the other site.

For example, suppose both Harvard and Yale have computer centers. Harvard has

three hosts named Yellow, Orange, and Blue. Yale has three hosts named Apple,

Orange, and Banana. Each computer center has its own namespace; Harvard's is

named Harvard and Yale's is named Yale.

At Harvard, the Harvard computers are referred to by their unqualified names

(Yellow, Orange, and Blue), but the Yale computers are referred to by their quali-

fied names (Yale|Apple, Yale|Orange, and Yale|Banana). At Yale, it would all

work the other way around.

Page 441

Each namespace also has a list of namespaces for its search rules. When a name is

looked up, each of the search rules namespaces listed is consulted in turn, until an

object of the desired name is found in one of them. If you list namespaces other

than your own in your search rules, it is easier to refer to objects in those names-

paces, because you do not need to use qualified names for them (unless a name

conflict exists).

For example, in the scenario above, the search rules for the Harvard namespace

could list the Harvard namespace first and the Yale namespace second. Then,

users at Harvard could refer to Yale's computers as Apple, Yale|Orange, and Ba-

nana. The qualified name Yale|Orange is only necessary because a name conflict

exists.

Actually, only some classes of objects have names that are in namespaces; other

classes of objects are globally named, which means that their names are universal,

and conflicts are not permitted. In particular, namespaces and sites are globally

named; networks, hosts, printers, and users are not (instead, they're named within

namespaces).

Some namespaces do not correspond to any local site. Most large nationwide or

worldwide networks have their own host-naming convention. For example, the U.S.

Department of Defense Internet has its own set of host names, and this is consid-

ered a namespace. If a local site includes some hosts that are on the Internet, it

might want to put the Internet namespace into its search list, and install gateways

to access Internet machines. For more information, see the section "Namespace

Editor CP Commands".

Some objects can also have nicknames. In particular, networks and hosts can have

nicknames; objects of other classes cannot. A nickname serves as an alternative

name for the object. Sometimes you give an object a nickname because its full

name is too long to type conveniently. However, each object only has one primary

name.

It is possible for an object to be in several namespaces at once. For example, a

host which is on both the Internet and a local network at some site might be in

both the Internet namespace and the local namespace. In this case, both names-

paces maintain their own separate information on the object. The information from

each namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a

name and Yale's namespace is in Harvard's search list, Yale's search list is not

followed.

Using the Namespace Editor

You use the Namespace Editor to register new users and new hardware in the

namespace database. To do so, you create and save namespace objects representing

the new addition to the site. Once an object has been globally saved, it becomes

part of your site's configuration.

Page 442

The Namespace Editor checks input, and supplies both help and completion.

Specifically, the Namespace Editor:

• Checks for errors in network addresses.

• Verifies the nicknames in use by other hosts in the local namespace.

• Checks for unknown services, mediums, and protocols.�

You can reach the Namespace Editor in these ways:

• Use the Command Processor (CP) Select Activity command (and select the

Namespace Editor Activity). See the section "Workbook: Selecting a New Activi-

ty".

• Assign the Namespace Editor to a SELECT key combination with the Select Key

Selector or the tv:add-select-key function. For more information about how to

use the SELECT key, see the section "Customizing the SELECT Key".

• Invoke individual Command Processor (CP) Namespace Editor commands in a

Lisp Listener. See the section "Namespace Editor CP Commands".�

Creating a New Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.

To create a new namespace object, click on [Create Object]. You are prompted for

the class and the name of the new object. A template for the information is dis-

played in the top window. The attributes are mouse sensitive. Clicking on an at-

tribute prompts you in the bottom window for the information to put in the at-

tribute.

Note that the required attributes appear with an asterisk (*) after them. All object

classes have a small number of required attributes, and several optional attributes.

You can also create a new object by copying an existing object. Enter Copy Object

at the Namespace Editor prompt. Alternatively, use Create Object with the :Copy

From keyword.

The window can be scrolled using the SCROLL and m-SCROLL keys or with the

mouse. See the section "Scrolling with the Mouse".

When you are satisfied with the information, you can enter it in the database by

clicking on [Save Object]. Then click on [Quit] to exit the namespace editor.

For a discussion of saving (locally or globally) new information in the namespace

database: See the section "Editing a Namespace Object".

Editing a Namespace Object

Page 443

Select the Namespace Editor by using the Edit Namespace Object command. If you

do not supply the class and object name to Edit Namespace Object, the Namespace

Editor window comes up empty and you can click on [Edit Object] or enter the

Edit Object command. You are prompted for the name of an object to edit. The

current information for the object is retrieved from the namespace database and

displayed in the window.

Click Middle on the attribute name for information on the attribute.

The attribute fields are mouse-sensitive. Clicking on an attribute prompts you for

information. Mouse clicks have the following meaning:

Left Replace the information in the attribute.

Middle Edit information in the attribute.

Right Menu.

sh-Middle Delete the information in the attribute.

The window can be scrolled using the SCROLL and m-SCROLL keys, the scroll bar,

or the mouse.

Once you have finished editing the information, you have three ways to proceed.

You can click on [Quit] without saving the changed information. If you are just

practicing using the Namespace Editor, that would be appropriate.

The other two choices are to save the information locally or globally. If you save it

globally, the new information is stored in the site's namespace database. If you

save it locally, the new information is stored only in your machine's local copy of

the namespace; changes saved locally affect only your machine (until it is reboot-

ed).

The initial state of the Namespace Editor is the global mode. When you are in

global mode the middle of the screen looks like:

�

If you have clicked on [Locally], you are in local mode. The middle of the screen

looks like:

�

You can click on [Locally] to toggle the mode between global and local. When you

are ready, click on [Save Object] to save the information. Then click on [Quit] to

exit the Namespace Editor.

For a complete list of the namespace editor commands, see the section "Namespace

Editor Commands".

Page 444

Namespace Editor Commands

Commands in the Namespace Editor are available as menu items, or as commands

you type to the Namespace Editor prompt. This section first gives a short-form

summary about each Namespace Editor command, and then describes each com-

mand in more detail.

Command Name Command Description

Clear History Clears objects previously read into the Namespace Editor.

Copy Object Creates a new namespace object that's similar to an existing

one (use the one you've copied as a starting point).

Create Object Creates a new namespace object.

Delete Object Deletes a namespace object.

Edit Object Reads the description of an existing object into the Namespace

Editor.

Help Displays help about the (Namespace Editor-related) topic you

specify.

Locally Toggles whether changes are to be made either to the current

world or to the site's namespace database.

Not Modified Marks the object "not modified". Also bound to m-~ .

Previous Object Returns to the previously edited object. Also bound to c-m-L

(which can take a numeric argument).

Revert Object Reverts an object's description to the state it was in prior to

the current editing session.

Save Object Saves the (edited) description of an object.

Show History Shows all the objects that have been read into the Namespace

Editor. Also bound to c-0 c-m-L.�

� Namespace Editor Command: Clear History

Clear History�

Clears the history of objects from the Namespace Editor. After issuing this com-

mand, there is no current object in the Namespace Editor, and no history will ex-

ist from which to select a Previous Object. See the section "The Show History

Namespace Editor Command".

� Namespace Editor Command: Copy Object

Copy Object name keywords�

Page 445

Creates a new namespace object named name of the same type as the current ob-

ject. The initial attributes for the new object (except short names and nicknames)

are copied from the current object. Once you have copied an object, you can edit it

and save the namespace information about the new object.

name The name of the object to create.

keywords :Insert Defaults, :Locally�

:Insert Defaults Toggles the Namespace Editor insert-defaults mode on or off

for the current namespace object. The initial mode is off.

When the insert-defaults mode is enabled for an object, the

Namespace Editor inserts default values to the following indi-

cators:

File Control Lifetime

Home Host

Lispm Name

Mail Address

Pretty-Name

Printer and Bitmap Printer

Printer Interface

Services

Site�

See the section "The Insert Defaults Namespace Editor Com-

mand" for details on how default values are derived.

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world). The default for this keyword is

displayed along with the object's name, and, if you are editing

multiple objects in the Namespace Editor, the current setting

becomes the default for subsequent objects.

�

� Namespace Editor Command: Create Object

Create Object class name keywords�

Creates a new namespace object of type class named name and makes it the cur-

rent object in the Namespace Editor. Once the object has been created, you can

edit and save it.

Page 446

class The class of the object to create, such as Host, Printer, User,

Site, Namespace, and so on.

name The name of the object to create.

keywords :Copy From, :Insert Defaults, :Locally, :Property-list

:Copy From {name of an object of the same class} This will copy the con-

tents of the object named into the newly created object. Dupli-

cate names are removed before the contents of the existing ob-

ject are inserted into the new object.

:Insert Defaults Toggles the Namespace Editor insert-defaults mode on or off

for the current namespace object. The initial mode is off.

When the insert-defaults mode is enabled for an object, the

Namespace Editor inserts default values to the following indi-

cators:

File Control Lifetime

Home Host

Lispm Name

Mail Address

Pretty-Name

Printer and Bitmap Printer

Printer Interface

Services

Site�

See the section "The Insert Defaults Namespace Editor Com-

mand" for details on how default values are derived.

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world). The default for this keyword is

displayed along with the object's name, and, if you are editing

multiple objects in the Namespace Editor, the current setting

becomes the default for subsequent objects.

:Property-list {Lisp expression} This specifies an initial property list for the

newly created object. This keyword option will have no effect if

the :Copy From keyword option is used.

� Namespace Editor Command: Delete Object

Delete Object�

Deletes the current object from the namespace database. If the current object is

being edited locally, the deletion only happens in Lisp virtual memory, not in the

(global) namespace database. This command prompts you for confirmation.

Page 447

� Namespace Editor Command: Edit Object

Edit Object namespace-object keywords�

Reads in an object from a namespace server, makes it the current object, and al-

lows you to make changes to it.

namespace-object A namespace object is specified by the class of the object fol-

lowed by the name of the object. For instance, to specify the

printer named Asahi, you enter:

Edit Object printer Asahi�

If namespace-object is described in more than one namespace

(is "multi-homed"), Edit Object prompts for the namespace in

which you want to edit this object. (Typically, a namespace ob-

ject is described only in one namespace.)

Keywords :Insert Defaults, :Locally

:Insert Defaults Toggles the Namespace Editor insert-defaults mode on or off

for the current namespace object. The initial mode is off.

When the insert-defaults mode is enabled for an object, the

Namespace Editor inserts default values to the following indi-

cators:

File Control Lifetime

Home Host

Lispm Name

Mail Address

Pretty-Name

Printer and Bitmap Printer

Printer Interface

Services

Site�

See the section "The Insert Defaults Namespace Editor Com-

mand" for details on how default values are derived.

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world).

The default for this keyword is displayed along with the ob-

ject's name, and, if you are editing multiple objects in the

Namespace Editor, the current setting becomes the default for

subsequent objects.

Page 448

�
� Namespace Editor Command: Help

Help topic�

Displays help about a namespace-related topic.

topic The topics include Namespace Editor commands and menu

items, overviews, and object attributes.

Namespace Editor Command: Insert Defaults

Insert Defaults

Toggles the insert-defaults mode on and off for the current Namespace Editor ob-

ject (the initial mode is off). Note that the insert-defaults mode is not "sticky".

That is, if it is enabled for the current namespace object, it is not enabled for new

objects read into the Namespace Editor (unless explicity specified).

When the insert-defaults mode is enabled, the Namespace Editor inserts default in-

dicator values as follows:

File Control Lifetime

The value of fs:*default-file-control-connection-lifetime* is

used (30 minutes).

Home Host Defaults to the host in the mail address when it is available.

Lispm Name Defaults to the user object name.

Mail Address Defaults to User-name Home-Host when home-host is available.

Pretty-Name The pretty-name defaults to the string-capitalized name of the

object.

Printer and Bitmap Printer

The site's default printers are used.

Printer Interface Defaults to serial.

Services When a system-type and network are available, services from

neti:*supported-services* are added to the object.

Site For hosts and printers, the site defaults to the site with the

same name as the namespace for the object. �

Note that, if you are adding default Services to a namespace server at a site

where pre-Genera 8.0 machines are still running, the TCP namespace services that

are added can cause problems for booting pre-Genera 8.0 machines.

You can also use the :Insert Defaults keyword for the following commands to

enable/disable the insert-defaults mode for a namespace object:

Page 449

"The Edit Object Namespace Editor Command"

"The Create Object Namespace Editor Command"

"The Copy Object Namespace Editor Command"

"Edit Namespace Object Command"

"Create Namespace Object Command"�

Namespace Editor Command: Locally

Locally�

Toggles whether the current object is being edited locally or globally.

If you save an object locally, the namespace database on the namespace server is

not changed. Only the local machine sees the changes; the changes are lost when

you cold boot (unless you have saved the changed world).

If you save an object globally (the default in most cases), the namespace database

on the namespace server is changed. This makes the new namespace information

available to the entire site.

� Namespace Editor Command: Not Modified

Not Modified�

Changes the current object's status to "not modified". This command is bound to

m-~.

See the section "The Save Object Namespace Editor Command".

� Namespace Editor Command: Previous Object

Previous Object keyword�

Selects the previous object read into the Namespace Editor, and makes it the cur-

rent object. This command is bound to c-m-L.

keyword :Count�

:Count {integer} Means go back this many objects on the history list.

The default is 2. Alternatively, a numeric argument can be

given to c-m-L.�

See the section "The Show History Namespace Editor Command".

� Namespace Editor Command: Revert Object

Revert Object�

Page 450

Discards any recently made changes to the current object. If the object is being

edited locally, it reverts to the version in the local machine's virtual memory. If

the object is being edited globally, it reads a fresh copy of the object in from the

namespace server.

� Namespace Editor Command: Save Object

Save Object keyword�

Saves the current object. If the object is being edited locally, this command saves

the changes only to the local machine's Lisp world. If the object is being edited

globally, this command saves the changes to the global namespace database (on the

namespace server).

keyword :Force Save�

:Force-save {Yes, No} The default is No, which means do nothing if no

changes were made. A Yes answer saves the object even if no

changes were made (or if the Not Modified namespace editor

command was used).�

� Namespace Editor Command: Show History

Show History�

Displays a mouse-sensitive list of all the objects read into the Namespace Editor.

This is bound to c-0 c-m-L.

Here is an example of the display:

1. PRINTER PRENSA in namespace SCRC.

2. NETWORK INTERNET (locally) in namespace SCRC.

3. HOST WATERFOWL (locally) in namespace SCRC.

4. USER CRAWLEY in namespace SCRC.�

See the section "The Previous Object Namespace Editor Command".

Namespace Editor CP Commands

This section describes Command Processor (CP) commands related to the Name-

space Editor.

Add Services to Hosts Command

Add Services to Hosts service-triples specific-hosts-or-all-hosts keywords

Adds the specified service attributes in the namespace for one or more hosts.

Page 451

service-triples A service triple consists of a service, a medium, and a protocol.

For more information, see the section "Concepts of Service,

Medium, and Protocol".

specific-hosts-or-all A list of hosts (or "all") to which you want to add services. If

you specify all, use the :Namespace, :Site, and :Type keywords.

Keywords:

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world).

The default for this keyword is displayed along with the ob-

ject's name, and, if you are editing multiple objects in the

Namespace Editor, the current setting becomes the default for

subsequent objects.

:Verbose Prints messages for each host modified.

:Namespace Adds the services to all hosts in the namespace (use with the

"all" argument).

:Site Adds the service to all hosts in the site (use with the "all" ar-

gument).

:Type Adds the service to all hosts of this system type (use with the

"all" argument).

Here is an example adding netboot service to three hosts at once:

Command: Add Services To Hosts (A Service Triple) (service) netboot

(medium) slap (protocol) netboot

(A sequence of hosts or All) HARPAGORNIS, WINTER, TOWHEE

(keywords) :Locally

�

Adding service NETBOOT SLAP NETBOOT to hosts (locally).

Done.

�

� Create Namespace Object Command

Create Namespace Object class name keywords

Adds a new object to the namespace database. For more information about adding

objects to the namespace database, see the section "Creating a New Namespace

Object".

Page 452

class {File-System, Host, Namespace, Network, Printer, Site, User}

The type of object you want to create.

name The name of the new object.�

Keywords :Copy From, :Insert Defaults, :Locally, :Property-List

:Copy From {name of an object of the same class} This will copy the con-

tents of the object named into the newly created object. Dupli-

cate names are removed before the contents are inserted into

the new object to avoid conflicts.

:Insert Defaults Toggles the Namespace Editor insert-defaults mode on or off

for the current namespace object. The initial mode is off.

When the insert-defaults mode is enabled for an object, the

Namespace Editor inserts default values to the following indi-

cators:

File Control Lifetime

Home Host

Lispm Name

Mail Address

Pretty-Name

Printer and Bitmap Printer

Printer Interface

Services

Site�

See the section "The Insert Defaults Namespace Editor Com-

mand" for details on how default values are derived.

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world).

The default for this keyword is displayed along with the ob-

ject's name, and, if you are editing multiple objects in the

Namespace Editor, the current setting becomes the default for

subsequent objects.

:Property List {a Lisp expression} This specifies an initial property list for

the newly created object in the internal form that object prop-

erties are specified in. This keyword option will have no effect

if the :Copy From keyword option is used.

� Delete Namespace Object Command

Page 453

Delete Namespace Object class name keywords

Removes information about the object name from the namespace.

class {File-System, Host, Namespace, Network, Printer, Site, User}

The type of object you want to delete.

name The name of the object you want to delete.

Keywords: :Locally�

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world). The default for this keyword is

displayed along with the object's name, and, if you are editing

multiple objects in the Namespace Editor, the current setting

becomes the default for subsequent objects.

If the object you are deleting is still referenced by other objects, for example, if

you are deleting a host and a user still lists that host as a mail address, you can-

not delete it. This protects your namespace from becoming corrupted. You get an

error telling you which objects still reference the object you are trying to delete so

you can edit those objects to remove the references.

Error: Error from Namespace on RIVERSIDE: You cannot delete HOST QUABBIN.

 It is still referenced by the following objects:

 SITE SCRC USER LISP-MACHINE USER WOBBLY

 USER SCH|FILE-SERVER USER DCP USER HASEGAWA

 USER NFEP USER FILE-SERVER

 USER NISHIMOTO USER ZIPPY�

� Edit Namespace Object Command

Edit Namespace Object namespace-object keywords�

Modifies an object in the namespace database.

To create a new object, see the section "Create Namespace Object Command".

namespace-object A namespace object is specified by the class of the object fol-

lowed by the name of the object. For instance, to specify the

printer named Asahi, you enter:

Edit Namespace Object printer Asahi�

If namespace-object is described in more than one namespace

(is "multi-homed"), Edit Namespace Object prompts for the

namespace in which you want to edit this object. (Typically, a

namespace object is described only in one namespace.)

Page 454

Keywords :Insert Defaults, :Locally

:Insert Defaults Toggles the Namespace Editor insert-defaults mode on or off

for the current namespace object. The initial mode is off.

When the insert-defaults mode is enabled for an object, the

Namespace Editor inserts default values to the following indi-

cators:

File Control Lifetime

Home Host

Lispm Name

Mail Address

Pretty-Name

Printer and Bitmap Printer

Printer Interface

Services

Site�

See the section "The Insert Defaults Namespace Editor Com-

mand" for details on how default values are derived.

� :Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world).

The default for this keyword is displayed along with the ob-

ject's name, and, if you are editing multiple objects in the

Namespace Editor, the current setting becomes the default for

subsequent objects.

�

� Remove Services From Hosts Command

Remove Services from Hosts service-triples specific-hosts-or-all keywords

Removes the specified service attributes in the namespace for one or more hosts.

service-triples A service triple consists of a service, a medium, and a protocol.

For more information, see the section "Concepts of Service,

Medium, and Protocol".

specific-hosts-or-all A list of hosts (or "all") from which you want to remove ser-

vice. If you specify all, use the :Namespace, :Site, and :Type

keywords.

keywords: :Locally, :Verbose, :Namespace, :Site, :Type

Page 455

:Locally {Yes, No} The initial default is No, which updates the global

namespace database (the namespace server) to reflect the

changes you have made. Answer Yes to update only the local

Lisp world with the changes you have made; the changes will

be "forgotten" when you cold boot the local machine (unless

you save the changed world).

The default for this keyword is displayed along with the ob-

ject's name, and, if you are editing multiple objects in the

Namespace Editor, the current setting becomes the default for

subsequent objects.

:Verbose Print messages for each host modified.

:Namespace Add the services to all hosts in the namespace (use with the

"all" argument).

:Site Add the services to all hosts in the site (use with the "all" ar-

gument).

:Type Add the services to all hosts of this system type (use with the

"all" argument).

Here is an example of removing netboot service from a host:

Remove Services From Hosts (Service Triples (service) netboot

(medium) slap (protocol) netboot

(A sequence of hosts or All) HARPAGORNIS

�

Removing service NETBOOT SLAP NETBOOT from hosts.

Done.

�

� Show Namespace Object Command

Show Namespace Object namespace-object keywords�

Shows the information in the namespace database.

namespace-object A namespace object is specified by the class of the object fol-

lowed by the name of the object. For instance, to specify the

printer named Asahi, you enter:

Show Namespace Object printer Asahi�

If namespace-object is described in more than one namespace

(is "multi-homed"), Edit Namespace Object prompts for the

namespace in which you want to edit this object. (Typically, a

namespace object is described only in one namespace.)

keywords: :Format, :Locally, :More Processing, :Output Destination

Page 456

:Format {Normal, Detailed} Whether to show fields that are empty. The

default is normal, to omit empty fields. Detailed shows all

fields.

:Locally Specifies whether the Show Namespace Object command

queries the namespace server or uses the values in the current

Lisp world.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

�

Here is what the namespace object for a user might look like:

Showing USER KJONES in namespace ACME:

Lispm Name: Kjones

Personal Name: Jones, Kingsley

Nickname: King

Work Address: Building 3-701

Work Phone: 5891

Home Host: ACME

Mail Address: Kjones ACME

Birthday: 19 June

Project: Database

Supervisor: Finklestein

Namespace Database Files

This section describes the namespace database files. While this information is use-

ful for anyone who wants to learn about namespace database functionality, it's

most important for site administrators and maintainers (people who manage the

namespace database).

Four types of text files exist to hold information relevant to the namespace

database:

1. Descriptor Files.

2. Object Files.

Page 457

3. Log Files.

4. Changes Files.

Namespace database files are stored on namespace servers. The Namespace Editor

provides the interface between you and the namespace database files; when you

use the Namespace Editor, it updates each of the namespace database files appro-

priately.

Namespace database files should never be changed by hand. By only using the

Namespace Editor to update the namespace database, you ensure the integrity of

the namespace database files at your site.

Namespace database files contain records. Records provide printed representations

of each object (and its attributes) in the namespace database.

A record is a set of lines. Lines, in turn, are sets of tokens, separated by spaces. A

token is a sequence of characters excluding the space, newline, semicolon, and dou-

ble quote characters, or any sequence of characters located between double quotes.

(You can quote within double-quotes by using the backslash character.) A blank

line follows every record.

There is a one-to-one relationship between objects in the namespace database and

records in the namespace database files; each record describes an object. The first

line of a record always consists of the object's class, and its primary name. Subse-

quent lines contain an attribute indicator and value. (Similar to a property list, the

first token in each line is called an indicator; other tokens in the line are called

values.)

Namespace Database Descriptor Files

Each namespace has one descriptor file. Its pathname appears in the Descriptor-

File namespace object attribute. A descriptor file holds information that describes

where all of the namespace database (object-specific) information is stored.

Each line of the file contains a comment or an indicator, followed by a pathname.

Valid indicators are class (object type), version, changes, or asterisk (*).

Table ! describes each indicator and its value.

Here are the sample contents of a descriptor file:

;-*-Text-*-

VERSION BLUE:>SYS>SITE>HARVARD-NAMESPACE-LOG.TEXT

CHANGES BLUE:>SYS>SITE>HARVARD-NAMESPACE-CHANGES.TEXT

HOST BLUE:>SYS>SITE>HARVARD-HOSTS.TEXT

USER BLUE:>SYS>SITE>HARVARD-USERS.TEXT

* BLUE:>SYS>SITE>HARVARD-OTHERS.TEXT�

Namespace Database Object Files

Page 458

Indicator Value

Class The pathname is for a file containing objects of this class.

Version The pathname is for the log file.

Changes The pathname is for the changes file.

* The pathname is for a file that contains objects in other

 classes (not explicitly named by the indicator class).

Table 1. Descriptor File Indicators and Values

�

Object files contain the most current descriptions of all objects that exist within

the namespace. An object file begins with a list that specifies the namespace to

which it belongs. This is followed by a series of records. Each record is separated

by a blank line. For information about records, see the section "Namespace

Database Files".

Here are the sample contents from an object file:

;-*- Mode: Text; Network-Namespace: Harvard -*-

USER GEORGE

LISPM-NAME George

PERSONAL-NAME "Washington, George"

HOME-HOST BLUE

MAIL-ADDRESS George BLUE

LOGIN-NAME George BLUE

LOGIN-NAME Washington.States MIT|MULTICS

LOGIN-NAME GW MIT|MC

NICKNAME Georgie

WORK-ADDRESS "The White House, Washington D.C., 10001"

WORK-PHONE 202-555-1212

HOME-ADDRESS "Mount Vernon VA"

HOME-PHONE 202-999-1234

PROJECT "being President of the United States"

SUPERVISOR "the People"

REMARKS "I cannot tell a lie."�

� Namespace Database Log Files

Namespace database log files contain all of the changes made to a database. A

namespace database log file's file-system version number serves as a timestamp for

the change that resulted in that version being written out. This timestamp helps

the namespace database to identify obsolete data.

Here are the sample contents from a log file:

Page 459

1/24/90 16:39:22 USER GEORGE by George. Old timestamp was 607.

1/24/90 22:09:10 HOST BLUE by JAdams. Old timestamp was 608.

1/26/90 07:23:45 HOST GREEN deleted by JAdams.�

� Namespace Database Changes Files

Namespace database changes files provide a chronological record of all the changes

to the namespace database. This enables hosts to process only those changes to the

namespace database that have occurred since the last time the world was saved on

the namespace server.

Each entry in the changes file consists of:

• A timestamp line.

• Lines for deleted objects (optional).

• A blank line.

• Changed or added object records (optional).

The timestamp line consists of the word "timestamp", followed by the version num-

ber of the log file before the change was made. Deleted objects are identified by

their class and primary name. Changed objects appear just as they do in the object

file.

If an object is changed twice, only the newest record for it will appear. Older en-

tries in the file are likely to consist only of a timestamp line and a blank line. Run

neti:prune-namespace-changes-file to excise them.

Here are the sample contents of a changes file:

Page 460

TIMESTAMP 608

HOST BLUE

SYSTEM-TYPE LISPM

SERVICE CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS

SERVICE SHOW-USERS CHAOS NAME

SERVICE TIME CHAOS-SIMPLE TIME-SIMPLE

SERVICE UPTIME CHAOS-SIMPLE UPTIME-SIMPLE

SERVICE LOGIN CHAOS TELNET

SERVICE SEND CHAOS SEND

SERVICE MAIL-TO-USER CHAOS CHAOS-MAIL

SERVICE NAMESPACE CHAOS NAMESPACE

SERVICE NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP

SERVICE LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER

SERVICE FILE CHAOS QFILE

LOCATION Kiosk 1

FINGER-LOCATION "Harvard Square Kiosk"

PRETTY-NAME Yellow

ADDRESS CHAOS 24412

MACHINE-TYPE LISPM

NICKNAME YEL

SHORT-NAME Y

SITE HARVARD

�

TIMESTAMP 609

HOST GREEN

�

TIMESTAMP 610�

Attributes for Objects in the Namespace Database

Objects in the namespace database can have attributes associated with them. At-

tributes describe the characteristics of an object. Like Lisp property lists, at-

tributes have:

1. An indicator (the name of the attribute).

2. A value.�

Although objects have one or more required attributes, most attributes are option-

al. For example, every host object has a System-Type attribute (this describes the

operating system it runs), and every printer object has a Type attribute (this de-

scribes the kind of printer it is). Host objects can optionally have a Pretty-Name

attribute, printer objects can optionally have a Default-Font attribute, and user ob-

jects can optionally have a Home-Phone attribute associated with them.

Some attributes can be associated more than once with a given object. For exam-

ple, hosts can have multiple Address attributes if they are attached to multiple

networks.

Page 461

When editing a namespace object, it's easy to determine whether its attributes are

required or optional; required attributes are marked with an asterisk. Remember

that each class of objects has a prescribed set of both required and optional at-

tributes (you cannot create additional attributes for the objects within your name-

space database). For more information about objects in the namespace database,

see the section "Introduction to the Namespace Database".

Attributes for Objects of Class "Namespace"

These attributes belong to objects of class "namespace".

In the Namespace Editor, required namespace object attributes have an asterisk by

them.

Namespace Object Attribute: Descriptor-File

Descriptor-File A pathname that specifies the descriptor file for a namespace

(descriptor files say where all of the objects in a namespace

database are stored). For example:

Descriptor File*: BLUE:>SYS>SITE>HRV-NAMESPACE.TEXT

For more information about namespace database descriptor

files, see the section "Namespace Database Descriptor Files".

� Namespace Object Attribute: Internet-Domain-Name

Internet-Domain-Name

Specifies an Internet Domain Name for a namespace. For ex-

ample,

Internet Domain Name: SCRC.Symbolics.COM

To avoid naming conflicts, Internet Domain Names for names-

paces must be unique (that is, registered with the Network In-

formation Center).

For more information, see the section "Dialnet and Internet

Domain Names".

� Namespace Object Attribute: Primary-Name-Server

Primary-Name-Server

The host that is the primary namespace servers for a name-

space. Primary servers are the authority regarding a name-

space; namespace data are stored in files belonging to the pri-

mary namespace server. For example,

Primary Name Server: BLUE

Page 462

More information is available about the namespace database

files. See the section "Namespace Database Files".

� Namespace Object Attribute: Search-Rules

Search-Rules Namespaces listed in the order that they will be used when

searching for an object. Note that the namespace itself must

appear in the search rules. For example:

Search Rules*: HARVARD YALE BROWN

More information is available about search rules. See the sec-

tion "Names and Namespaces".

� Namespace Object Attribute: Secondary-Name-Server

Secondary-Name-Server

Hosts that are secondary namespace servers for a namespace.

Secondary namespace servers are not authoritative regarding a

namespace. Rather, they provide a backup in case a primary

namespace server is unavailable.

Secondary namespace servers attempt to keep a copy of the

namespace information current by querying the primary server

more often than a nonserver machine would.

Secondary namespace servers check every namespace that the

host knows about. So that your secondary namespace server

will look at only one other namespace, see the section "The De-

fault Secondary Name Server Host Attribute".

� Namespace Object Attribute: User-Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

� Attributes for Objects of Class "Site"

Page 463

These attributes belong to objects of class "site" within a namespace. Site objects

are collections of hosts, printers, and networks located together.

In the namespace editor, required site object attributes have an asterisk by them.

Site Object Attribute: All-Mail-Addresses-Forward

All-Mail-Addresses-Forward

If set to Yes, this option means that Foo@BAR and

Foo@QUUX are the same address if BAR and QUUX are in

the same site. In particular, it permits any Mailer at the site

to lookup the address in its mailbox table and process it ap-

proriately. If set to No, Mailers are forced to deliver the mes-

sage to whatever host at the site is specified.�

Note: Setting All-Mail-Address-Forward to Yes does not interact well with non-

Symbolics mailers at the same site.

� Site Object Attribute: Default-Bitmap-Printer

Default-Bitmap-Printer

Specifies the default printer for printing screen images at this

site; a printer object. This is used by hosts that do not have

their own Bitmap-Printer Attribute.�

� Site Object Attribute: Default-Printer

Default-Printer Specifies the default printer for printing text files at this site;

a printer object. Hosts that do not have their own Printer At-

tribute use the printer specified by this site attribute.�

� Site Object Attribute: Dont-Reply-To-Mailing-Lists

Dont-Reply-To-Mailing-Lists

Specifies those mailing lists to which Zmail won't reply to by

default; tokens. This attribute is useful only for users who

have not set the "people not to reply to" option in their Zmail

init files.�

� Site Object Attribute: Host-for-Bug-Reports

Page 464

Host-for-Bug-Reports

Specifies the host to which bug reports should be sent (re-

quired). The Command Processor (CP) Report Bug command,

and other Debugger, Editor, and Zmail bug reporting com-

mands use this attribute.�

� Site Object Attribute: Host-Protocol-Desirability

Host-Protocol-Desirability

A triple for the Generic Network System's desirability esti-

mates (used when the system tries to construct a path to a

service). Host represents a host, protocol names a protocol that

the host supports, and desirability is a token expressing a float-

ing-point factor (for the cost calculations). For example:

Host Protocol Desirability: YUKON CHAOS-MAIL 0.75

Network services and protocols are discussed elsewhere.

• See the section "Symbolics Generic Network System".

• See the section "Desirability of Network Protocols".

If you change the value of host-protocol-desirability, you must

either cold boot, warm boot, or use the Command Processor

(CP) command Reset Network to make the change take effect.�

� Site Object Attribute: Local-Namespace

Local-Namespace Specifies the namespace that is local to the site. (Normally,

there is exactly one site for each namespace.)�

� Site Object Attribute: Other-Sites-Ignored-in-Zmail-Summary

Other-Sites-Ignored-in-Zmail-Summary

Specifies a set of site objects whose names will not be dis-

played in the Zmail summary windows of users at the site.�

� Site Object Attribute: Other-Sites-in-Mail-Area

Other-Sites-in-Mail-Area

Sites that share the same list of mailboxes as this site. For

more information, see the section "Symbolics Store-and-Forward

Mailer".

Page 465

� Site Object Attribute: Pretty-Name

Pretty-Name Most objects contained within the namespace (sites, other

namespaces, networks, hosts, and printers) are eligible to have

a Pretty-Name attribute. The Pretty-Name attribute specifies a

name; a token.

The pretty name is the object name that appears on screen dis-

plays and in prompts. That is, an object's pretty name appears

where people need to see it, while an object's actual name is

used by software.

� Site Object Attribute: Root-Domain-Server-Address

Root-Domain-Server-Address

A pair that specifies the network type and an address for the

root domain server (used by the Domain Name System). Here

are some examples:

Root Domain Server Address: INTERNET 10.0.0.51

Root Domain Server Address: INTERNET 10.1.0.17

Root Domain Server Address: INTERNET 128.213.5.17

More information is available about the Domain Name System.

• See the section "Introduction to Internet Domain Names".

• See the section "Installing the Internet Domain Names Sys-

tem".

� Site Object Attribute: Secure-Subnets

Secure-Subnets One or more lists that specify networks and the "trusted" sub-

nets. Hosts on the specified subnets are "trusted", which means

that they are permitted to invoke servers at the site. This at-

tribute controls the subnet security feature of any servers that

use the :trusted-p or :reject-unless-trusted keywords to

net:define-server. The following server-side protocols respect

the secure-subnets attribute: NFILE, QFILE, TCP-FTP, and

TFTP.

The first element in each list is a network type, either CHAOS

or INTERNET. The second element is one or more subnet

numbers. For CHAOS networks, the subnet numbers are repre-

sented as octal character strings. Internet subnet/network num-

bers are represented as decimal character strings. For exam-

ple:

Page 466

Secure Subnets: CHAOS 1 3 4 5 16 22 24 26 30

Secure Subnets: INTERNET 128.81.0.0�

If this attribute has no value for INTERNET, then no Internet

subnets/networks are trusted. If this attribute has the value

"ALL" for INTERNET, then all Internet subnets/networks are

trusted.

If this attribute has no value for CHAOS or the value "ALL",

then all Chaos subnets are trusted.�

� Site Object Attribute: Site Directory

Site-Directory A token that specifies the directory that holds the Symbolics

computer system's site-specific files. This provides the transla-

tion for the logical pathname sys:site; .

All other site-specific pathname translations are managed by

logical pathname translations files.

� Site Object Attribute: Site-System

Site-System A token that specifies the name of a system (as defsystem

does) that contains software you want shared by all of the

Symbolics computers at your site. A notification appears when

machines are booted without having loaded the site system.�

� The Standalone Site Attribute

Standalone Specifies whether the host at this site is a standalone machine;

a token. If Yes, only one host exists at this site and no re-

sponse to the who-am-I network broadcast request at boot time

is expected.

If No, or should the attribute not be present, multiple Symbol-

ics computer hosts exist at this site; when one host is booted,

another answers its who-am-I query.�

� Site Object Attribute: Terminal-F-Argument

Terminal-F-Argument

Defines how arguments to the FUNCTION F key should work.

The first element is a number (a decimal string) or the word

none. The second element is a global-name (this can be: login,

Page 467

host, local-lisp-machines, or all-lisp machines). The third ele-

ment is a list of hosts (if host was the second element).

Global names are described in greater detail here:

Login The login file computer.

Local-Lisp-Machines

All Symbolics computers at this site.

All-Lisp-Machines All Symbolics computers on the local net-

work.

Host A list of hosts appears as the third ele-

ment.

For example:

Terminal F Argument: NONE LOCAL-LISP-MACHINES

Terminal F Argument: 0 ALL-LISP-MACHINES

Terminal F Argument: 1 HOST VIXEN CUPID COMET

Terminal F Argument: 2 LOGIN

More information is available about Function-F. See the section

"FUNCTION F".

� Site Object Attribute: Timezone

Timezone The timezone at this site; a global-name (required). For exam-

ple:

Timezone*: EST

� Site Object Attribute: User-Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

� Site Object Attribute: Validate-LMFS-Dump

Page 468

Validate-LMFS-Dump

If Yes, the LMFS backup dumper validates backup tapes. If No

(or if the attribute is not provided), validation is not per-

formed.�

� Attributes for Objects of Class "Host"

These attributes belong to objects of class "host" within a namespace. A host ob-

ject is any computer connected to a network.

In the namespace editor, required host object attributes have an asterisk by them.

Host Object Attribute: Address

Address One or more pairs that specify the network addresses for a

host. Networks must be valid network objects (already regis-

tered in the namespace). Network addresses must be in the

correct format for each network type. For example:

Address: CHAOS 401

For information about individual network types and the ad-

dressing conventions they use, see the section "Network Ad-

dressing".

� Host Object Attribute: Bitmap-Printer

Bitmap-Printer Specifies the default bitmap printer for this host. If this at-

tribute is not provided, the site's Default-Bitmap-Printer at-

tribute is used.�

� Host Object Attribute: Console-Location

Console-Location A triple that describes the physical location of a host's console.

Prompts for the building, floor number, and a description of

the location. (Use quotes to enter multiword values for build-

ing and floor number). For example,

Console-location: "Empire State" 107 Near King Kong�

� Host Object Attribute: Default-Secondary-Name-Server

Page 469

Default-Secondary-Namespace-Server

If Yes, this host acts as a secondary namespace server. Typi-

cally, each primary namespace server also acts as a secondary

namespace server for other namespaces (if they exist for the

site).

There are two ways to create a secondary namespace server:

• List secondary namespace servers in the Secondary-

Namespace-Server attribute of an object of class "name-

space".

• Set the Default-Secondary-Namespace-Server attribute to Yes

in a host object.

See the section "The Secondary Name Server Namespace At-

tribute".

� Host Object Attribute: File-Control-Lifetime

File-Control-Lifetime

A time interval that specifies the lifetime of a file control con-

nection. When a Symbolics computer (client) connects to a file

server, the client will automatically close the connection after

it has been idle for the specified amount of time. For example:

File Control Lifetime: 30 minutes

More information is available about time intervals. See the sec-

tion "Reading and Printing Time Intervals".

� Host Object Attribute: Finger-Location

Finger-Location A token that describes the physical location of a host. For ex-

ample

Finger-location: Across the alley from the Alamo

Note: This attribute is obsolete; use the Console-Location host

object attribute instead.

� Host Object Attribute: Internet-Domain-Name

Internet-Domain-Name

Use this attribute to explicitly specify the Internet Domain

Name for a host.

Page 470

For example, if the default Internet Domain Name for the host

should be:

Internet Domain Name: Redwing.SCRC.Symbolics.COM

you can provide a different string to the Internet-Domain-Name

attribute, like this:

Internet Domain Name: Redwing.MIT.EDU

Note: Symbolics does not recommend that you use this at-

tribute, as it allows you to violate the implementation restric-

tions for Internet Domain Names, which can result in unpre-

dictable behavior.

You can use the neti:*allow-dotted-host-names-in-

namespaces* variable to accommodate host names with dots in

them. For more information about this, see the variable

neti:*allow-dotted-host-names-in-namespaces*.

See the section "Dialnet and Internet Domain Names".

� Host Object Attribute: Location

Location A pair of tokens that describes the physical location of a host.

The first element in the pair specifies the building (or room)

in which the machine resides. The second element specifies the

floor. For example:

Location: Lab 2

Note: This attribute is obsolete; use the Console-Location host

object attribute instead.

� Host Object Attribute: Machine-Type

Machine-Type Specifies the hardware type of the machine (as opposed to the

operating system, see the section "The System Type Host At-

tribute"); a global-name. It is not required, but strongly recom-

mended. For example:

Machine Type: 3653

The Machine-Type is used largely for informational display and

determining defaults. For example, a tape operation on an em-

bedding host of Machine-Type SUN-3 offers a default for de-

vice of st0: instead of Cart:. Any value is accepted in this

field. However, you should try to use the official name as in

the list maintained by the Network Information Center As-

signed Numbers RFC. The NIC lists Symbolics machine types

as Symbolics- followed by the model number. The namespace

Machine Type Attribute strips the Symbolics- off and uses just

the model number. The most common machine types Symbolics

Page 471

deals with are included here:

Machine Type Host Attribute Value

Symbolics 3600 3600

Symbolics 3610 3610

Symbolics 3620 3620

Symbolics 3630 3630

Symbolics 3640 3640

Symbolics 3645 3645

Symbolics 3650 3650

Symbolics 3653 3653

Symbolics 3670 3670

Symbolics 3675 3675�

Symbolics MacIvory MACIVORY

Symbolics XL400 XL400

Symbolics XL1200 XL1200

Symbolics UX400 UX400S

Symbolics UX1200S UX1200S

Sun-3 Sun-3

SPARCstation Sun-4

Digital VAX VAX

Digital PDP10 PDP10

Digital PDP11 PDP11

IBM PC IBMPC

Honeywell DPS-8M HONEYWELL-DPS-8M

Alto ALTO

CADR CADR

(Note: For Sun-n, any value is accepted, for example Sun-3/260

is accepted as Sun-3. However, SPARCstation and any other

names should be entered as Sun-modelnumber.)�

� Host Object Attribute: Nickname

Nickname Specifies alternative names for the host. A host can have one

or more nicknames. For example:

Nickname: Redwing

Nickname: Red�

� Host Object Attribute: Peripheral

Peripheral Specifies a peripheral device. Click on the peripheral type and

you are prompted for the values associated with it.

Page 472

For example, some XL and MacIvory machines use the Emulex

M02 controller, a QIC-11 SCSI tape drive. You need to add a

PERIPHERAL entry to the namespace object of any host that uses

the Emulex MT02 controller. If this entry is not present, only

four of the nine tracks will be used. For example, for a con-

troller at SCSI address 1, the entry should look like this:

Peripheral: TAPE UNIT SCSI1 MODEL EMULEX-MT02�

� Host Object Attribute: Pretty-Name

Pretty-Name Most objects contained within the namespace (sites, other

namespaces, networks, hosts, and printers) are eligible to have

a Pretty-Name attribute. The Pretty-Name attribute specifies a

name; a token.

The pretty name is the object name that appears on screen dis-

plays and in prompts. That is, an object's pretty name appears

where people need to see it, while an object's actual name is

used by software.

Unlike the Name, the Nickname, and the Short-Name at-

tributes, the Pretty-Name attribute cannot be used to find a

host.

� Host Object Attribute: Print-Spooler-Options

Print-Spooler-Options

One or more pairs of global-names and tokens that specifies

the directory where hardcopy requests are stored for each print

spooler running on this host. A typical global-name for the

Print-Spooler-Options attribute is Home-Directory.

The default for Symbolics computers is local:>print-spooler>.

Print spooler options can also be specified for individual print-

ers. For example,

Print Spooler Options: Home-directory local:>print-spooler>�

� Host Object Attribute: Printer

Printer Specifies the preferred printer object for this host. This printer

is used by default when files are hardcopied from this host. If

this attribute is not provided, the site's Default-Printer at-

tribute is used.

Page 473

� Host Object Attribute: Server-Machine

Server-Machine Specifies whether the object described is a server machine; a

token. If the value is Yes, the host is a server machine. If it is

No (the default) this host is not a server machine.

This attribute applies only to Symbolics computers. Server ma-

chines do not automatically enable their services when you

boot them; you must enable services in the server's lispm-init

file, using sys:enable-services or the Command Processor (CP)

Enable Services command. See the section "Enable Services

Command".

� Host Object Attribute: Service

Service A triple specifying that a host is capable of providing service

when connected via medium and protocol. For example,

Service: FILE CHAOS NFILE

For information on services, mediums, and protocols, see the

section "Service Attributes in the Namespace Database".

� Host Object Attribute: Short-Name

Short-Name Specifies a set of short-names to be used when a program

wants to display a host's name without taking up much space.

� Host Object Attribute: Site

Site Specifies the site (a site object) at which this host is located

(required). For example,

Site*: SCRC

� Host Object Attribute: Spooled-Printer

Spooled-Printer Specifies printers for which this host provides a spooling ser-

vice. When you enter a printer object, you are prompted for a

home directory and pairs that provide printer options. For ex-

ample,

Spooled Printer: PRENSA

Home Directory: local:>print-spooler>

Other Options: zero or more pairs of a global name and a token

Page 474

Hardcopy requests are stored in the home directory. The de-

fault for Symbolics computers is local:>print-spooler>.

� Host Object Attribute: System-Type

System-Type Specifies the operating system run on the host (as opposed to

the hardware machine-type; see the section "The Machine Type

Host Attribute"); a global-name (required). The Symbolics file

system software and network software uses this information to

communicate with a given host. Any operating system name is

acceptable in this slot. The complete list of operating system

names is available in the Network Information Center

RFC1010. However, Genera only knows about some more com-

mon operating systems. The system types known to Genera

are:

Value Software Type Software Version

lispm Symbolics Any

unix42 UNIX 4.2BSD and later

unix UNIX Prior to 4.2BSD

ultrix Ultrix Any

xenix Xenix Any

vms4.4 VMS 4.4 and later

vms4 VMS 4.0, 4.1, 4.2, and 4.3

vms VMS Prior to version 4

tops-20 TOPS-20 Any

tenex TENEX Any

its ITS Any

multics MULTICS Any

msdos MS-DOS Any

vm370 IBM VM Any

If you provide an unknown type, the host object is created with

type random; be sure to enter values correctly. For example:

System Type*: LISPM�

� Host Object Attribute: User-Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

Page 475

User-Property: ID-number 123-45-6789�

� Attributes for Objects of Class "User"

These attributes belong to objects of class "user" within a namespace. A user ob-

ject can represent one of two things:

• A person.

• A daemon (pseudo-user).

Symbolics computers log in as daemon users when they act as file or mail servers,

for example, or while they are performing maintenance functions.

In the namespace editor, required user object attributes have an asterisk by them.

User Object Attribute: Affiliation

Affiliation Specifies the user's group affiliation; a single character. The

character is arbitrary and can refer for example, to different

sets of users.

Affiliation: Z

� User Object Attribute: Birthday

Birthday Specifies the user's birthday; a token.

Birthday: February 22

� User Object Attribute: Home-Address

Home-Address Specifies the user's home address; a token.

Home Address: Mount Vernon VA

� The Home Host User Attribute

Home-Host Specifies the host from which the user's lispm-init file is read

(required). For example,

Home Host*: SHOOFLY

Page 476

� User Object Attribute: Home-Phone

Home-Phone Specifies the user's home phone number; a token.

Home Phone: 202-999-1234

� User Object Attribute: Lispm-Name

Lispm-Name Specifies the name displayed in the status line; a token (re-

quired). For the Lispm-Finger service, the user name.

The Lisp variable zl:user-id is set from this attribute. It's usu-

ally similar to the actual name of the user object (but it uses

upper- and lowercase letters). For example,

LispM Name*: GWash

� User Object Attribute: Login-Name

Login-Name Specifies the appropriate login name for each of several hosts;

one or more pairs. The first element in each pair (a token)

gives the login name. The second element provides the host ob-

ject corresponding to that name.

In general, one Login-Name should exist for each host on

which the user has an account. Login-Name is not a required

attribute, but if it's not present, any server that requires that

a Login-Name be presented to it will prompt for one (which

might be inconvenient).

Passwords are not stored in the database. The Symbolics com-

puter prompts the user for a password when one is required.

� User Object Attribute: Mail-Address

Mail-Address A pair that specifies the network mailbox at which the user

will receive mail. The first element in the pair is the mailbox

name (a token). The second element in the pair is a host. For

example:

Mail Address*: Steve DREGS

More information is available about mailboxes. See the section "Symbolics Store-

and-Forward Mailer".

� User Object Attribute: Nickname

Page 477

Nickname Specifies a personal nickname; a token. Unlike host nicknames,

user nicknames cannot be used to find a user object.

� User Object Attribute: Personal-Name

Personal-Name Specifies the user's personal name; a token (required). For ex-

ample,

Personal Name*: Morse, Steve�

� User Object Attribute: Project

Project Specifies what the user is working on; a token. For example,

Project: MacIvory

� User Object Attribute: Pretty-Name

Pretty-Name Most objects contained within the namespace (sites, other

namespaces, networks, hosts, and printers) are eligible to have

a Pretty-Name attribute. The Pretty-Name attribute specifies a

name; a token.

The pretty name is the object name that appears on screen dis-

plays and in prompts. That is, an object's pretty name appears

where people need to see it, while an object's actual name is

used by software.

� User Object Attribute: Remarks

Remarks Specifies any information (like comments); a token. For exam-

ple,

Remarks: "I cannot tell a lie."

� User Object Attribute: Supervisor

Supervisor Specifies for whom the user is working; a token. For example,

Supervisor: JO

Page 478

� User Object Attribute: Type

Type Specifies a special user type such as "daemon". No value is

needed for typical user objects.

� User Object Attribute: Work-Address

Work-Address A token that specifies a work (business) address. For example,

Work Address: The White House, Washington D.C.

� User Object Attribute: Work-Phone

Work-Phone A token that specifies the work (business) phone number. For

example,

Work Phone: 202-555-1212

� Attributes for Objects of Class "Printer"

These attributes belong to objects of class "printer" within a namespace. A printer

object is a hardcopy output device.

In the namespace editor, required printer object attributes have an asterisk by

them.

Printer Object Attribute: Body-Character-Style

Body-Character-Style

A list specifying the character style that should normally be

used for this printer. The first element is the family; the sec-

ond element is the face; the third element is the size. For ex-

ample,

Body Character Style: SWISS.ROMAN.LARGE

See the section "Character Styles". If this attribute is not

specified, the default character style is usually determined by

the type of printer.

� Printer Object Attribute: Character-Size

Character-Size Specifies the size of a character in micas; width and height, in

decimal. (A mica is 10 microns, or 1/2540 of an inch.)

Page 479

� Printer Object Attribute: Default-Font

Default-Font Specifies the font that should normally be used for this print-

er; a token. If not specified, the default-font is usually deter-

mined by the type of printer.

� Printer Object Attribute: DPLT-Logo

DPLT-Logo This printer object attribute is no longer supported.�

� Printer Object Attribute: Fonts-Width-File

Fonts-Width-File A token that specifies the name of the fonts.widths file for

this printer. Use a full physical pathname instead of a logical

pathname, like this

Font Widths File: A:>sys>stats>lgp-1>fonts.widths

� Printer Object Attribute: Format

Format Specifies the print formats supported by the device; a set of

global-names (in addition to those implied by the Type printer

attribute). For example,

Format: LGP

Common print formats include:

lgp

lgp2

lgp3

press

xgp

ascii

tektronix

� The Header Font Printer Attribute

Header-Font Specifies the name of the header font that should normally be

used by this printer. If not supplied, the type of printer usually

determines what this font will be.

� Printer Object Attribute: Heading-Character-Style

Page 480

Heading-Character-Style

A list that specifies the name of the character style that

should be used for this printer. The first element is the family;

the second element is the face; the third element is the size.

For example,

Heading Character Style: SWISS.ROMAN.VERY-LARGE

See the section "Character Styles".�

� Printer Object Attribute: Host

Host Specifies the host to which the printer is directly connected; a

host object (required).

� Printer Object Attribute: Interface-Options

Interface-Options Specifies parameters of the hardware interface. Click on the

correct values. For example,

Interface Options:

Unit: 1

Baud: 300 600 1200 1800 2000 2400 3600

4800 7200 9600 19200 56000

Other Options: zero or more pairs of a global name and a token

� Printer Object Attribute: Interface

Interface Specifies the type of interface by which this printer is attached

to its host. Click on the correct choice. For example,

Interface: Serial Elp Other

� Printer Object Attribute: Page-Size

Page-Size A pair that specifies the size of the page in device units; width

and height, in decimal. For example,

Page Size: 135 80

� Printer Object Attribute: Pretty-Name

Page 481

Pretty-Name Most objects contained within the namespace (sites, other

namespaces, networks, hosts, and printers) are eligible to have

a Pretty-Name attribute. The Pretty-Name attribute specifies a

name; a token.

The pretty name is the object name that appears on screen dis-

plays and in prompts. That is, an object's pretty name appears

where people need to see it, while an object's actual name is

used by software.

� Printer Object Attribute: Printer-Location

Printer-Location Describes the physical location of the printer; a list (three to-

kens). The first element identifies the building. The second ele-

ment is the floor number. The third element is a textual de-

scription.

Printer Location: SCRC 3 Jennifer's office

� Printer Object Attribute: Protocol

Protocol Specifies protocols for direct (unspooled) printing; a set of

global-names. If protocols are not specified, hardcopy service is

invoked on the host to which the printer is directly connected.

� Printer Object Attribute: Site

Site The site where the printer is located; a site object. Generally

all printers at a site are offered in menus of potential output

devices for the destination of a hardcopy request.

� Printer Object Attribute: User-Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

Page 482

Attributes for Objects of Class "Network"

These attributes belong to objects of class "network" within a namespace. A net-

work object is a computer network to which some hosts are attached.

In the namespace editor, required network object attributes have an asterisk by

them.

Network Object Attribute: Global Network Name

Global-Network-Name

A token that, when specified at two sites, helps the Generic

Network System to determine that networks at these sites are

logically connected with one another.

More information is available about Global Network Names.

See the section "Sync-Link Gateways".

� Network Object Attribute: Nickname

Nickname Specifies alternate names for the network; a set of names by

which the network may be found.

� Network Object Attribute: Site

Site Specifies the site at which this network is located; a site ob-

ject.

Site: HARVARD�

� Network Object Attribute: Subnet

Subnet Specifies the characteristics of a network's subnetwork. The

first element is a token that names the subnet. The second ele-

ment is one or more pairs of global-names and tokens that pro-

vide extra information about the subnet. For example,

Subnet: 81 cable-start "Room 2" cable-end "Room 15" �

More information is available about the how the Subnet at-

tribute is used. See the section "Symbolics Dialnet".

� Network Object Attribute: Type

Type A global-name that specifies a network type. For example,

Type*: INTERNET

Page 483

Common network types include:

CHAOS A network using the Chaos protocols. Ad-

dresses are 16-bit numbers represented in

octal. For example,

17006

INTERNET A network using the DD Internet protocols.

Addresses are the 32-bit Internet addresses

as four octets, represented in decimal, sep-

arated by periods. For example,

10.0.0.6

DNA A network using the DECnet Digital Net-

work Architecture protocols. DNA addresses

are 16-bit quantities, where the high-order

6 bits constitute the area, and the low-

order 10 bits constitute the node number;

they are expressed in decimal notation. For

example,

3.7

DIAL A direct-dial telephone network. Usually

there is only one of these, called "dial" by

convention. Addresses are telephone num-

bers governed by the dialing conventions of

the installation. For example,

15551212

X25 A packet-switching network with a CCITT

Recommendation X.25 interface. Addresses

are X.121 addresses. For example,

311061700138

GATEWAY-PSEUDONET

A network actually implemented by direct

connection of a gateway to a terminal line.

Address is service-name = contact name on

gateway host. For example,

tty-login=prime�

� Network Object Attribute: User-Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

Page 484

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

Attributes for Objects of Type "File System"

Host

Specifies the host that the file system resides on; a host object

(required).

Host: MARS

� Type

Must always be DBFS (required). Other values are reserved for

future expansion.

Type: DBFS

� Root Directory

Specifies a pathname of a FEPFS file. That file contains the

directory of the Statice File System. The pathname should al-

ways start with FEPn: and end with the .UFD file extension.

Root Directory: FEP1:>Iris.UFD

� Pretty Name

Specifies a name for the file-system to use when showing the

name; a token (required).

Pretty Name: Iris�

� Nickname

Specifies alternate names for the network; a set of names. The

file system may be found by these names.

Nickname: IRE

Page 485

� Short Name

Specifies additional nicknames; a set of names. A short-name is

used when a program wants to display a host's name without

using up too much space. A short-name is used for both input

and output. This is also used in the printed representation of

pathnames.

Short Name: I

� User Property

User-Property All objects contained within the namespace (hosts, sites,

namespaces, printers, and users) are eligible to have a User-

Property attribute. It consists of a pair whose first element is

an indicator (like that of a property list) and whose second ele-

ment is a token. The User-Property attribute holds any infor-

mation that users choose to associate with an object. For ex-

ample:

User-Property: ID-number 123-45-6789�

Statice automatically places several user properties into file-

system objects. The User Properties named PARTITION have

values that are pathnames of the FEP files which are the par-

titions that make up the file system. The database is stored in

a number of partitions. For more information on partitions: See

the section "Create Statice File System Command".

The User Property named LOG-DESCRIPTOR-FILE-ID is the

unique ID of Statice's "log descriptor" file, an internal file used

to store various per-file-system information.

The User Property named DBFS-DIR-ROOT-FILE-ID contains,

in the form of a string, the internal unique ID of the special

database in the file system that stores the hierarchical directo-

ry structure of the file system. This is established when the

Statice File System is created, and you should never change it.

Lisp Functions for Namespace Database Administration

Under normal circumstances, Namespace Editor and CP commands are sufficient

for performing administrative tasks within the namespace database. Occasionally,

however, the Lisp functions described within this section can be useful.

neti:read-object-file-and-update namespace class-name Function

Page 486

Updates the namespace database from an object file. namespace can be a name-

space object or the name of one. This function is used for namespaces which are

maintained outside of the Symbolics namespace database, but which should be ac-

cessible to it. It reads an object file (usually generated from some external source

of information) and makes the namespace database agree with it by adding,

changing, and deleting objects. The changes and log files are updated. It can be

invoked only on the primary namespace server for the namespace to be updated.

(neti:read-object-file-and-update

 :arpanet :host)�

Note that this function does not update the object file itself; you should do this in

Zmacs. A typical use of neti:read-object-file-and-update is as follows:

1. Disable Services on the primary namespace server.

2. Edit the object file (such as YOURSITE-HOSTS.TXT) with Zmacs.

3. Do (neti:read-object-file-and-update "SCRC" :host)

4. Enable Services on the primary namespace server.�

neti:prune-namespace-changes-file namespace starting-timestamp Function

Eliminates the record of changes to namespace before starting-timestamp. This re-

duces the amount of information which must be processed by the primary name-

space server when it is booted. The changes file is best pruned only when there

are no world load files that were saved before the earliest remaining change; they

will take quite awhile to boot.

Making, Distributing, and Using Worlds

Symbolics distributes new Genera software on tape. We distribute world loads,

called distribution worlds, along with documentation sources, examples, fonts, and

non-loaded systems. You can customize a distribution world for your site's needs.

The sequence of steps by which you do this will vary. This section outlines the

procedures for customizing and saving worlds for your site. All the commands

you'll need to do this are documented in this section.

If you want to load a new world and save an incremental version of it, here is the

basic sequence of steps you might take:

1. Boot the new world. For information on booting: See the section "Booting a

World".

2. Use the Set Site command to make the world site-specific.

Page 487

3. Use the Optimize World command to optimize paging performance. To do this

from a program, use the function (si:reorder memory).

4. Use the Save World command to save an incremental world on your machine.�

If you want to add some special programs, or systems, to the initial distribution

world load, and then create an incremental world, this is the sequence of steps you

might take:

1. Boot the new world. For information on booting: See the section "Booting a

World".

2. Use the Set Site command to make the world site-specific.

3. Use the Load System command to load special software into your world.

4. Use the Optimize World command to optimize the world.

5. Use the Save World Incremental command to save an incremental world on

your machine.�

If you want to add patches (updates to the software distributed by Symbolics) to

the initial distribution world load, and then create an incremental world, this is

the sequence of steps you might take:

1. Boot the new world. For information on booting: See the section "Booting a

World".

2. Use the Set Site command to make the world site-specific.

3. Use the Load Patches command to add updated software to your world.

4. Use the Optimize World command to optimize paging performance. To do this

from a program, use the function (si:reorder memory).

5. Use the Save World command to save an incremental world on your machine.�

For information about Incremental Disk Save (IDS): See the section "Using the In-

cremental Disk Save (IDS) Facility".

For information about the Optimize World command: See the section "Optimizing

Worlds".

Note: If you want to supply a world to a Symbolics 3600-family machine that does

not have a FEP EPROM version 127 or greater, you should follow one of the pro-

cedures listed above, but use the Save World command with the :Complete, instead

of :Incremental, argument.

If your site needs to build a distribution world, follow these steps:

Page 488

1. Boot the new world. For information on booting: See the section "Booting a

World".

2. Use the Set Site command to make the world site-specific.

3. Use the Load System command to load any additional software.

4. Use the Set Site command with the site name as Distribution.

5. Use the function (si:full-gc) to garbage-collect the world.

6. Use the Optimize World command to optimize paging performance. To do this

from a program, use the function (si:reorder memory).

7. Use the Save World command to save the complete world.�

Using the Incremental Disk Save (IDS) Facility

The Incremental Disk Save (IDS) facility allows you to save modified worlds. IDS

saves a world (called the incremental world) by copying only those pages of an an-

cestor (or parent world) that have changed; incremental world loads require less

disk space than complete world loads do.

You can make multiple (different) incremental worlds from one parent world, and

save each with a minimum of disk space. IDS-worlds run slightly slower than non-

IDS worlds because they utilize extra wired memory.

Note: Keep all of the ancestors for any incremental worlds you intend to use; de-

scendents require blocks from their ancestors. If you have a Symbolics 3600-family

machine, and you are netbooting an incremental world, you may keep the ances-

tor(s) on the netboot server (rather than on the local host).

To perform an incremental disk save, boot an existing world with IDS enabled. See

the section "Enable IDS FEP Command". After making site-specific modifications

to the world (by loading private patches, and any systems that its users will need),

save the world by using the Save World command, specifying the type of world

(incremental) that you want to save. See the section "Save World Command".

Note: Do not use gc-immediately or si:full-gc on a world prior to using IDS. In-

stead, Symbolics recommends that you use the ephemeral-object garbage collector

(EGC). By default, EGC is enabled.

For information about the command that shows the IDS parent worlds for a speci-

fied world load file: See the section "Show IDS Parents Command".

For information about the command that shows the IDS children for a specified

world load file: See the section "Show IDS Children Command".

For information about the command that shows the IDS files for a specified host:

See the section "Show IDS Files Command".

Page 489

Optimizing Worlds

If you load special software or programs into distribution worlds, use the Optimize

World command to improve the new worlds' paging performance. (To do this from

a program, use the function (si:reorder-memory).) If you load the distribution

world and then customize it for your site without loading any additional programs,

you needn't use the Optimize World command.

Paging performance measures the speed at which accesses occur from virtual

memory. Optimization software moves related functions and data so that they re-

side in contiguous (virtual) memory locations. After a world has been optimized, it

runs with improved paging performance.

The optimization software does not move objects that were originally part of the

distribution world; this world is optimized before you receive it. The software

moves only new objects that you load into the distribution world.

Use the Optimize World Command after loading any site-specific software or lay-

ered products, and before saving the world.

Note: If you optimize an IDS world whose parent world was not (but should have

been) optimized, your IDS world will be significantly larger than neccessary.

Use the Optimize World command on IDS worlds only if:

• The parent world was optimized, or

• The parent world didn't need optimization.�

If you follow this rule, optimization will not increase the size of your IDS world.

Since distribution worlds are optimized before leaving Symbolics, if you site-

configure a distribution world (but do not load any systems) you need not optimize

it again. (This saves you some time in your world-building process.)

Direct Calls: a Linking Feature for Ivory-based Machines

The Ivory architecture provides Direct Calls, a fast mechanism for function calls

that is mostly usable for benchmarking and application delivery.

In a normal Lisp call (an "indirect" call), the caller function has a pointer to the

function cell containing the function to be called. When the call instruction is exe-

cuted, it fetches the callee function from the function cell, and starts execution at

the entry instruction of that function. The entry instruction sequence checks that

the proper number of arguments was passed, initializes optional and keyword ar-

guments, and then proceeds to execute the body of the called function.

The normal call is called "indirect" because it fetches the contents of a function

cell (indirects through it) rather than addressing the callee function directly. Lisp

implementations typically implement calls as indirect calls in order to efficiently

support redefinition at runtime: When a function is redefined, all the Lisp system

has to do is change the contents of the function cell, and all callers will immedi-

ately address the new definition.

Page 490

In a direct call, the caller addresses the callee function directly, without going

through a function cell. For Lisp systems that implement function calls using the

direct method, redefinition must change every caller of a function to address the

new definition. This is typically very slow.

Another optimization is possible when calls are implemented directly. Since rela-

tively simple static analysis can determine how many arguments are being passed

to a function, a direct call can often skip the preamble instructions that check for

the proper number of arguments and initialize optional arguments.

Genera 8.0 provides a linker for Ivory-based machines that performs both of the

above optimizations. Depending on the application, its use can result in substantial

performance improvements. The linker is not fully integrated with Genera. If there

are direct calls to a function, and there is an attempt to redefine it, an error is

signaled. Proceed options allow you to unlink definitions to a function before re-

defining, or to proceed without unlinking.

To globally link all functions, use (cli::link-to-functions t). To globally unlink

them, use (cli::unlink-to-functions t). If you need finer control of which exist-

ing functions should be linked or unlinked, refer to cli::link-to-functions and

cli::unlink-to-functions for further information.

Regardless of whether any functions are linked or not, newly compiled or loaded

functions are always unlinked.

Note: Because of architectural limitations, linking does not work on 3600-family

machines, In order to get the additional performance benefit of linking, you must

use an Ivory-based processor.

cli::link-to-functions functions &optional link-noter verbose Function

Links all calls to the functions specified by functions. functions is either a list of

functions and/or function specs, or the symbol t, meaning all functions. This pro-

cess takes up to twenty minutes, depending on your system configuration and the

amount of software loaded.

cli::unlink-to-functions functions &optional unlink-noter verbose Function

Unlinks all calls to the functions specified by functions. functions is either a list of

functions and/or function specs, or the symbol t, meaning all functions. This pro-

cess takes about five minutes, depending on your system configuration and the

amount of software loaded.

Enabling the Who-Calls Database

The who-calls database helps to locate the callers of variables, functions, or

macros.

The who-calls database is a cache that maps names (which are symbols) to code

and variables that use the symbols in some way. A name can be used as a con-

Page 491

stant, a variable, a function, a macro, an instance variable, or a condition, for ex-

ample.

By default, the Set Site command automatically calls the function (si:enable-who-

calls :new). This enables the who-calls database to record the callers in any lay-

ered products, special software, or programs loaded into the world (after the site

has been set).

More information is available on si:enable-who-calls and related functions. For

more information, see the section "Lisp Functions Related to the Who-Calls

Database".

Compressing the Who-Calls Database

After you use the function si:enable-who-calls with the argument best suited for

the type of database you want to create, you can compress the database by using

either (si:compress-who-calls-database) or (si:full-gc).

It is best to use (si:compress-who-calls-database), since it is faster and does not

preclude your using Incremental Disk Save (IDS). (Using Incremental Disk Save

(IDS) after (si:full-gc) renders your world the same size as the world from which

you started.)

If you want to have the entire body of Symbolics-supplied software in your who-

calls database, there are different modes in which you can use the function

si:enable-who-calls during the customization of the distribution world.

Here are examples of the ways in which you can couple si:enable-who-calls in dif-

ferent modes with (si:full-gc) and (si:compress-who-calls-database):

1. Use the form (si:enable-who-calls ':all-no-make) followed by the form

(si:full-gc).

(si:enable-who-calls ':all-no-make) creates a callers database that includes

only new functions. When you request si:full-gc the entire database is creat-

ed. This takes a long time and about 2000 pages of storage.

2. Alternatively, use the form: (si:enable-who-calls ':all) followed by the form

(si:compress-who-calls-database).

(si:enable-who-calls ':all) creates a full callers database. This also takes a

long time and about 2000 pages of storage. si:compress-who-calls-database

compresses the who-calls database by garbage-collecting the database.

3. Use the form (si:enable-who-calls ':explicit) followed by either (si:compress-

who-calls-database) or (si:full-gc).

(si:enable-who-calls :explicit) enables you to add items to the callers

database explicitly, by using (si:add-files-to-who-calls-database) or (si:add-

system-to-who-calls-database).

Page 492

Note: If you use (si:enable-who-calls :explicit) or (si:enable-who-calls :new),

load only a small amount of software into the world, and then save the world,

there is no advantage to compressing or doing a full garbage collection.

Lisp Functions Related to the Who-Calls Database

This section contains information about si:enable-who-calls and functions that you

will want to use with it.

si:enable-who-calls &optional mode Function

mode describes how the who-calls database should record the callers of any func-

tion. For more information about the who-calls database, see the section "Enabling

the Who-Calls Database".

:all If you want to include callers of the Symbolics-supplied soft-

ware (that is, software contained in the distribution world) in

the database, use :all. This enables you to create the database

once and then save it when you save the world. (When used

with this argument, si:full-gc would discard the existing

database and then remake it).

:all-remake Includes callers of the Symbolics-supplied and site-specific soft-

ware in the database. Use this if you do not want to perform a

si:full-gc. (When used with this argument, si:full-gc would dis-

card the existing database and then remake it).

:new Enables the who-calls database to record the callers in any

layered products, special software, or programs loaded into the

world (after the site has been set). The Set Site command uses

this argument by default. :new does not cause the callers of

software in the distribution world to be recorded.

:all-no-make Enables the who-calls database to record the callers in any

layered products, special software, or programs loaded into the

world (after the site has been set), and does not cause the

callers of software in the distribution world to be recorded un-

til si:full-gc is performed. Once si:full-gc is performed, those

callers (for software in the distribution world) are recorded.

:explicit If you want only explicitly-named files to be in the database,

use the function si:enable-who-calls with the argument

:explicit.

Note: Creating a full database takes a long time and about 2000 pages of storage.

si:compress-who-calls-database Function

Page 493

Makes the who-calls database more compact and efficient. Call this function after

si:enable-who-calls. With the function (si:enable-who-calls ':all), the function

si:compress-who-calls-database takes a long time to complete its job. However, it

is faster than using si:full-gc, and you can perform an Incremental Disk Save

(IDS) afterwards. See the section "Using the Incremental Disk Save (IDS) Facility".

si:full-gc &key system-release Function

Garbage-collects the entire Genera virtual memory environment, including some

static areas. However, because static areas change slowly and are not likely to con-

tain much garbage, use gc-immediately or the command Start GC :Immediately

instead. See the section "Start GC Command". si:full-gc leaves the garbage-

collector facilities in the state that it originally finds them, that is, with the same

dynamic and ephemeral option settings.

If you use si:full-gc, call it with no arguments. The option :system-release is re-

served for use by Symbolics. si:full-gc does an immediate, complete, nonincremen-

tal garbage collection as a preparation for immediately saving a world.

si:full-gc performs these operations:

• Resets temporary areas.

• Sets up the static areas to be cleaned up.

• Flips.

• Scavenges and flushes oldspace.

• Makes static areas static again.�

It is not useful to perform an Incremental Disk Save (IDS) after running si:full-gc.

Perform a complete disk save, instead.

Note: The Command Processor command Optimize World is the preferred high-

level interface to the functions si:full-gc, si:reorder-memory, and si:optimize-

compiled-functions. See the section "Optimize World Command".

Using the Initialization Lists invoked by si:full-gc

Two initialization lists, accessed through the full-gc and after-full-gc keywords to

add-initialization, are run by si:full-gc. See the section "Introduction to Initializa-

tions".

si:full-gc runs the forms on the full-gc initialization list and then garbage-collects

without multiprocessing (inside a without-interrupts form). The machine essential-

ly "freezes" and does nothing but garbage collection for the duration. This opera-

tion takes 20 minutes or more, depending on the size of the world. After the

garbage collection is completed, and before it reenables scheduling and returns,

si:full-gc runs the forms on the after-full-gc initialization list.

Page 494

full-gc is a system initialization list. You can add forms to it by using the :full-gc

keyword in the list of keywords that is the third argument of add-initialization.

The full-gc initialization list is run just before a full garbage collection is per-

formed by si:full-gc. All forms are executed without multiprocessing, so the evalua-

tion of these forms must not require any use of multiprocessing: they should not

go to sleep or do input/output operations that might wait for something.

Typical forms on this initialization list reset the temporary area of subsystems and

make sure that what is logically garbage has no more pointers to it.

Creating a World-Build Script File

Here is a sample world-build script file. It contains some forms that you might put

into a world-build script file for your site.

Note: This file is one that contains forms enclosed in a wrapper function; it isn't a

script file in the traditional sense.

Read the comments (prefaced by three semi-colons) for an explanation of the file's

contents.

;;; -*- Syntax: common-lisp; Base: 10; Mode: LISP; Package: SYSTEM-INTERNALS; -*-

�

;;; a large function to do the entire job of building

;;; a world, given that you execute it in a site-configured environment

�

;;; use this to create a user or server world

(defun produce-world (&key server)

�

 (format t "~2& Enabling the EGC")

�

 ;;; make sure that the GC is in a consistent condition

 (gc-on :ephemeral t :dynamic nil)

�

 ;;; disable screen-dimmer to avoid interrupts-off surprises

 (let ((tv:*dim-screen-after-n-minutes-idle* nil))�

 (setq time-start (time:get-universal-time)

 ;;; disable the services, to avoid any unwanted network interactions

 (disable-services)

 ;;; turn the global more breaks off, in case not already done

 (setq tv:more-processing-global-enable nil)�

 ;;; this assures that someone is logged in to the machine

 (fs:force-user-to-login)

�

 (format t "~2& *** Constructing your site's world, System ~D.~2%~

 ~4TServices disabled, more processing on locally, off globally,

 logged in as ~A.~@@ ~4TLoading patches." (get-system-version) user-id)

Page 495

�

 ;;; load patches to make sure you're up to the current patch level

 (load-patches nil :query nil)

�

 (format t "~2& *** Up to current patch level; loading added systems.~%")

 �

 ;;; now load the extra systems that you want in your world

 (flet ((load-a-system (name)

 (unless (sct:find-system-named name nil t t)

 (format t "~2& Loading ~A.~2%" name)

 (sct:load-system name :query :no-confirm))))

 (load-a-system "metering")

 (when server

 (load-a-system "Print")

 (load-a-system "Mailer"))

�

�

 (format t "~2& *** Added systems loaded.~%")

�

 ;;; compile the who-calls database

 (si:enable-who-calls :all-no-make)

�

 ;;; now do a full gc. This takes about 1.75 hours

 (format t "~2% *** Beginning Full-GC.")

 (full-gc)

�

 (format t "~2% *** Beginning Reorder-Memory.")

(reorder-memory :incremental nil

 :run-without-interrupts t) ;;;run-without-interrupts is faster

 �

 ;;; Last (and least) make this function disappear

 (fundefine 'produce-world)

 ;;; Print final statistics.

 (format t

 "~2& *** Full-GC, Reorder-Memory and final parameter settings complete.

 If everything~@@ ~5@@Tlooks OK, please save the result via Save World .~2%")

 (values)))

�

(format t "~2&Start the world production by calling ")

(present `(produce-world) 'sys:form)

(format t ".~%")

�

Page 496

Creating a Site System for Holding Private Patches

If you have a software service contract, you might receive private patches as

workarounds for problems you report. These small pieces of code (usually modifica-

tions to functions from system sources) should be kept separate from the system

for which they are patches, because their patch number might cconflict with offi-

cial patches for that system that you might get later in a Software ECO distribu-

tion. The right place to keep them and to patch them is in a site system.

A site system is a small system that contains software you want loaded by all the

Symbolics machines at your site. It is defined like any other system (see the sec-

tion "Defining a System"). For example, if your site were named ACME, you might

define a site system to hold a patch and some local hack like this:

(defsystem ACME-SITE

 (:pretty-name "Acme Site System"

 :default-pathname "SYS:IN-HOUSE;"

 :patchable t

 :advertised-in (:herald :finger :disk-label)

 :initial-status :released

 :before-patches-initializations (sct:set-component-systems-advertised-in nil)

 :maintaining-sites :acme

)

 (:module trap-handler "trap-handler-patch")

 (:serial

 "trap-handler-patch"

 "finger-hack"

))�

To register this system as a site system, you then add the Site-System attribute to

your Site object in the Namespace. The object Site ACME in ACME's namespace

would be given the attribute:

Site-System: ACME-SITE�

A site system becomes a collection of miscellaneous pieces and modifications to

standard systems. There are some guidelines to observe when adding things to it:

1. If you are adding or modifying something that is expected to have an indefi-

nite lifetime in the system, place this code into its own source file in system

source directory (SYS:IN-HOUSE; in our example) with an appropriate package,

and add the source to the list of sources in the system declaration file. Then

patch the change for the purposes of the current system.

2. If you are adding a workaround from software support that will have a life-

time of only the current version of Genera, place the file in the system direc-

tory but do not include it in the system declaration. Just patch the code into

the site system, and clearly mark it as a temporary patch in the patch com-

ment.

Page 497

3. If something was installed provisionally in this site system, and it is super-

seded by an ECO from Symbolics, you must revoke it from your site system

so that it does not shadow the official fix:

a. If it exists in a source in the system declaration, remove that source file

name from the list in the system declaration. If appropriate, make a

patch to undo the removed code in the current world.

b. If it exists in a patch, revoke the patch:

i. Use m-X Resume Patch for that patch number.

ii. Delete all the code from the patch file.

iii. Do m-X Finish Patch and change the patch comment to say some-

thing like "Superseded by Symbolics ECO".�

c. Both of the above may apply.�

4. Your site system should be recompiled every time you receive a new release

from Symbolics. �

Caveat: When you receive ECO or new releases, previous patches and workarounds

might be superseded by a change to the appropriate system, and you would then have

loading order clashes. You must exercise caution to recognize this situation as ECOs

are received, and withdraw the site-system patch.

It is advisable to remove all Symbolics-provided private patches in your site system

when you receive a new release, until you can verify that they are still needed.

World-Related Commands and Functions

These commands and functions are often useful to site maintainers who make, dis-

tribute, and use worlds. For your convenience, we have arranged the commands in

alphabetical order; the commands appear first.

Copy World Command

Copy World file destination keywords�

Makes a copy of file (by default, a world load). This includes the specified world as

well as any Incremental Disk Save (IDS) worlds on which it was built. See the sec-

tion "Using the Incremental Disk Save (IDS) Facility". Copy World works from re-

mote terminals. Copy World can also be used to copy netboot cores. You can boot a

world from a remote world server with only a netboot core on your FEP. See the

section "Netbooting".

Page 498

file A FEP file specification; the world to copy. The default is con-

structed from the version of the world that you have booted.

destination A FEP file specification; the pathname for the new world. The

default is a wildcard pathname assuring the correct hierarchi-

cal pathname relationship for the parent world and an IDS

world.

Note: The .ilod file extension indicates world-load files for Ivory-based machines,

just as the .load file extension indicates world-load files for Symbolics 3600-family

machines. Files with the .ilod extension can be copied only between Ivory-based

machines. Files with the .load extension can be copied only between Symbolics

3600-series machines.

After you issue the Copy World Command, Genera puts up a menu allowing you to

specify the actions you want it to take:

Figure 8. Copy World�

keywords :Automatic, :End Block, :File Set, :More Processing, :Output

Destination, :Query, :Start Block, :Transfer Mode, :Update Boot

File.�

:Automatic {Yes, No} Whether or not to attempt automatic error recovery.

The default is Yes.

:End Block {integer} The number of the last block to copy from source.

The default is the last block, meaning copy until the end.

:File Set {All parents, Missing parents, Just Requested Files, Selective}

Which parent IDS files to transfer. The default is Missing par-

ents.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

Page 499

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No} Whether or not to present a menu of transfer pa-

rameters. The default is Yes.

:Show Blocks Copied

{Yes, No} Whether to print block numbers for blocks finished

copying, every 100 blocks. The default is No, the mentioned de-

fault is Yes.

:Start Block {integer} The number of the block to start copying from the

source. The default is 0, meaning begin at the beginning.

:Transfer Mode {Transfer-and-Checksum, Transfer-Only, Checksum-Only}

Whether to verify the integrity of the copied world. The de-

fault is Transfer-and-Checksum. You can use Checksum-Only to

checksum a band that you copied previously but were unable to

checksum due to network problems.

:Update Boot file {FEP-file-spec, none}. Boot file to update to load the new

world. The default boot file for IDS or complete worlds is

boot.boot. The default for netboot cores is none.

Define Site Command

Define Site site-name�

Defines a new site.

Type the Define Site command immediately after you boot a new distribution world

when you want to define a new site and namespace; it brings up a menu to create

a new namespace called site-name; when you start this dialogue the local host is,

by default, the site's:

• Primary namespace server.

• SYS host.

• Host for storing namespace database files.

• Host for bug reports.�

If you want non-local host(s) to perform any of these jobs, provide their primary

network addresses and operating system types in the appropriate menu slots.

During the Define Site dialogue, the namespace database files (object files, log

files, changes files, and a descriptor file) are created for you on the file system of

the machine you specify as the namespace server. Make sure the file system exists

Page 500

on a host accessible to the namespace server machine before you issue the Define

Site command. For more information about the namespace database files, see the

section "Namespace Database Files".

The namespace server for the new site will have these initial default attributes

when the Define Site command is used (nnnnn represents a valid octal Chaos ad-

dress):

System Type*: LISPM

Machine Type: 3600

Service: CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS

Service: SHOW-USERS CHAOS NAME

Service: TIME CHAOS-SIMPLE TIME-SIMPLE

Service: UPTIME CHAOS-SIMPLE UPTIME-SIMPLE

Service: LOGIN CHAOS TELNET

Service: LOGIN CHAOS SUPDUP

Service: LOGIN CHAOS 3600-LOGIN

Service: SEND CHAOS CONVERSE

Service: SEND CHAOS SEND

Service: NAMESPACE CHAOS NAMESPACE

Service: NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP

Service: LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER

Service: FILE CHAOS NFILE

Service: FILE CHAOS QFILE

Service: CONFIGURATION CHAOS CONFIGURATION

Address: CHAOS 12345�

See the section "Define Site Dialogue".

Load System Command

Load System system keywords�

Loads a system into the current world.

system Name of the system to load. The default is the last system

loaded.

keywords :Component Version, :Condition, :Include Components :Load

Patches, :More Processing, :Output Destination, :Query, :Redef-

initions Ok, :Silent, :Simulate, :Version�

:Component Version

{Released, Latest, Newest, version-designator} The version of

any component systems to load. Released means the version

designated as released in the journal file. Latest means the

most recent version recorded in the journal file. Newest means

to ignore the versions in the journal file and just find the

newest files. The default is the version with which the system

was compiled.

Page 501

:Condition {Always, Never, Newly-Compiled} Under what conditions to

load each file in the system. Always means load each file. New-

ly-compiled means load a file only if it has been compiled since

the last load. The default is Newly-Compiled.

:Include Components

{Yes, No} Whether to load component systems. The default is

Yes.

:Load Patches {Yes, No} Whether to load patches after loading the system.

The default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Everything, Confirm-only, No} Whether to query before load-

ing. Everything means query before loading each file. Confirm-

only means create a list of all the files to be loaded and then

ask for confirmation before proceeding. No means just go

ahead and load the system without asking any questions. The

default is No. The mentioned default is Everything.

:Redefinitions Ok{Yes, No} Controls what happens if the system asks for confir-

mation of any redefinition warnings during the loading process.

Yes means assume that all requests for confirmation are an-

swered yes and proceed. No means pause at each redefinition

and await confirmation. The default is No. The mentioned de-

fault is Yes. This allows you to start loading a system that you

know will take a long time to load and leave it to finish by it-

self without interruption for questions such as "Warning: func-

tion-name being redefined, ok? (Y or N)".

:Silent {Yes, No} Whether to turn off output to the console while the

system is loading. The default is No. The mentioned default is

Yes.

:Simulate {Yes, No} Print a simulation of what compiling and loading

would do. The default is No. The mentioned default is Yes.

:Version {Released, Latest, Newest, version-designator} Which version

number to load. Released means the version designated as re-

Page 502

leased in the journal file. Latest means the most recent version

recorded in the journal file. Newest means to ignore the ver-

sions in the journal file and just find the newest files. The de-

fault is Released.�

Note: This command only loads a system. If you want to compile and load a sys-

tem, see the section "Compile System Command".

Load Patches Command

Load Patches system keywords�

Loads patches into the current world for all systems, locally maintained systems,

or the indicated systems.

system {All Local system-name1, system-name2 ... } The system(s) for

which to load patches. The default is All.

keywords :Dangerous Patch Action, :Excluding, :Include Components,

:More Processing, :Output Destination, :Query, :Save, :Show �

:Dangerous Patch Action

{Skip, Query, Load} Whether to skip loading dangerous patch-

es, that is, patches that might make data structures in your

world inconsistent, causing unexpected behavior. The default is

Skip.

:Excluding {System(s)} Excludes loading patches for these systems.

:Include Components

{Yes, No} Whether to load patches for any component systems.

The default is No. The mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No, Ask} Yes asks for confirmation before beginning the

load patches process and again before loading each patch. Ask

asks whether or not it should query before each patch, and

then for confirmation before beginning the load patches pro-

cess. The default is No. The mentioned default is Yes.

Page 503

:Save {pathname, Prompt, No-Save} The file in which to save the

world with all patches loaded. Omitting this keyword means do

not save the world. The mentioned default is Prompt, which

means save the world and then prompt for a pathname.

:Show {Yes, No, Ask} Whether to print the patch comments as each

patch is loaded. The default is Yes.�

See the function load-patches.

Optimize World Command

Optimize World keywords�

Optimizes the world that is currently loaded into your enviroment by reorganizing

the world to improve paging performance. Use this command after you load site-

specific software or layered products into a distribution world, and before you save

it.

Note: If you optimize an IDS world whose parent world was not (but should have

been) optimized, your IDS world will be significantly larger than neccessary.

Use the Optimize World command on IDS worlds only if:

• The parent world was optimized, or

• The parent world didn't need optimization.�

If you follow this rule, optimization will not increase the size of your IDS world.

Since distribution worlds are optimized before leaving Symbolics, if you site-

configure a distribution world (but do not load any systems) you need not optimize

it again. (This saves you some time in your world-building process.)

When you enter the Optimize World command, you are prompted for confirmation.

Once the program has finished, a message appears. Optimization typically takes

about one-half hour to execute, but this time period can vary according to the size

of the world load and the total amount of main memory that's available when you

execute the command.

During the time that Optimize World is running your machine does not respond to

the network or keyboard; you cannot use your machine while optimization is in

process.

keywords :Show�

:Show Displays the progress of the optimization process on the

screen.�

Page 504

Save World Command

Save World (Complete or Incremental) pathname�

Saves the current world. The system prompts for (Complete or Incremental) if In-

cremental Disk Save is enabled. Specify Complete to save the entire world, or In-

cremental (if enabled) to perform an Incremental Disk Save. The default is Com-

plete.

pathname The pathname for the saved world. The default is the FEP file

specification for the local machine, based on the version num-

ber of the current system and on whether this is a complete or

incremental save.

A complete save yields a pathname of Genera-major-minor or

System-nnn-mmm. An incremental save changes this default in

the following way:

• "Genera-" is prefaced with "Inc-"

• "System-" is replaced by "Inc-".

• "-from-" is appended to the name.

• A shortened version of the loaded world name (the pathname

that appears in the first line of the herald) is appended to

the name.

• If the result is longer than 32 characters (the limit of file-

names in the FEP file system), the filename is truncated

and the last 4 characters within the limit are replaced with

"-etc".�

More information is available about saving incremental worlds. See the section

"Using the Incremental Disk Save (IDS) Facility".

Set Site Command

Set Site site-name�

Configures the local distribution world to be an already existing site.

site-name {name, get-from-network} The name of your site.�

Any further arguments are entered through an AVV menu that adjusts depending

on the parameters needed. The Set Site command also fully supports multiple sites

within one namespace so the site name does not have to match the namespace

name, although one site in any namespace must have a name that is the same as

the namespace name.

Page 505

If the Set Site command is used when the local machine is already registered in a

site, the current site is changed to the distribution site before changing over to

the new site. This is to eliminate any problems with dangling references to the

previous site.

The Set Site command enables your machine to identify all objects included in the

site's namespace database. The namespace database for each site is stored in the

file system accessible from a machine called the namespace server.

In order for the Set Site command to work, your machine must be a registered

host in the site's namespace. If the site's namespace server is not the local host,

you must know the namespace server's name and network address.

See the section "Set Site Dialogue".

Show FEP Directory Command

Show FEP Directory keywords�

Displays a description of the FEP files on the local host. The :Host keyword allows

you to specify another host.

keywords :Format, :Highlight Files In Use, :Highlighting Mode, :Host,

:More Processing, :Output Destination, :Type, :Unit�

:Format {Normal, Detailed} How much information to include in the

display. The default is Normal, meaning file name, length in

blocks, and file comment (if any) are displayed for each file.

Detailed means that all information, including creation date

and author, is displayed.

:Highlight Files In Use

{Yes, No} Whether to indicate files that are currently in use.

The default is Yes. This keyword works only when displaying

the FEP file system of the local host.

:Highlighting Mode

{Bold, Arrow} How to indicate that a file is in use. Bold means

display the filename in boldface, Arrow means prefix the file-

name with an arrow. (The arrow is useful from a remote ter-

minal.) The default is Bold except on remote terminals, where

the default is Arrow.

:Host A host on the network. The default is local.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

Page 506

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Type {All, Boot, Fep, LMFS, Microcode, Other, Paging, World} The

type of file(s) to display information about. The default is All.

More than one type can be given, separated by commas.

:Unit {disk-unit-number All} The default is All. disk-unit-number is

an integer, interpreted as a disk unit number on the specified

host.

Show FEP Directory first displays the number of free blocks and the proportion of

blocks used on each disk unit. It then displays a summary of the files on each unit

grouped by file type.

Show Herald Command

Show Herald keywords�

Displays the herald message. The herald is a a multiline message displayed when

you cold or warm boot, use the Command Processor (CP) Show Herald or Save

World commands, or use the Disk Restore FEP command.

The herald shows you the name of the FEP file or partition for the current world

load, any comment added to the herald, a measure of the physical memory and

swapping space available, the versions of the systems that are running, the site's

name, and the machine's own host name.

When you cold or warm boot, your machine displays a full-screen herald. When

you display the herald with the Show Herald command, you see an abbreviated

herald.

keywords :Detailed, :More Processing, :Output Destination�

:Detailed {Yes, No, Normal} Whether or not to print the version infor-

mation in full detail. Normal displays the systems which are

usually of interest to users. Yes displays more systems than

does Normal. No shows only machine information and release

level, and no information about system versions. The default is

Normal. The mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

Page 507

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

For information about herald-related functions:

• See the function sct:get-system-version.

• See the function sct:print-system-status-warning.�

si:enable-who-calls &optional mode Function

mode describes how the who-calls database should record the callers of any func-

tion. For more information about the who-calls database, see the section "Enabling

the Who-Calls Database".

:all If you want to include callers of the Symbolics-supplied soft-

ware (that is, software contained in the distribution world) in

the database, use :all. This enables you to create the database

once and then save it when you save the world. (When used

with this argument, si:full-gc would discard the existing

database and then remake it).

:all-remake Includes callers of the Symbolics-supplied and site-specific soft-

ware in the database. Use this if you do not want to perform a

si:full-gc. (When used with this argument, si:full-gc would dis-

card the existing database and then remake it).

:new Enables the who-calls database to record the callers in any

layered products, special software, or programs loaded into the

world (after the site has been set). The Set Site command uses

this argument by default. :new does not cause the callers of

software in the distribution world to be recorded.

:all-no-make Enables the who-calls database to record the callers in any

layered products, special software, or programs loaded into the

world (after the site has been set), and does not cause the

callers of software in the distribution world to be recorded un-

til si:full-gc is performed. Once si:full-gc is performed, those

callers (for software in the distribution world) are recorded.

:explicit If you want only explicitly-named files to be in the database,

use the function si:enable-who-calls with the argument

:explicit.

Page 508

Note: Creating a full database takes a long time and about 2000 pages of storage.

si:full-gc &key system-release Function

Garbage-collects the entire Genera virtual memory environment, including some

static areas. However, because static areas change slowly and are not likely to con-

tain much garbage, use gc-immediately or the command Start GC :Immediately

instead. See the section "Start GC Command". si:full-gc leaves the garbage-

collector facilities in the state that it originally finds them, that is, with the same

dynamic and ephemeral option settings.

If you use si:full-gc, call it with no arguments. The option :system-release is re-

served for use by Symbolics. si:full-gc does an immediate, complete, nonincremen-

tal garbage collection as a preparation for immediately saving a world.

si:full-gc performs these operations:

• Resets temporary areas.

• Sets up the static areas to be cleaned up.

• Flips.

• Scavenges and flushes oldspace.

• Makes static areas static again.�

It is not useful to perform an Incremental Disk Save (IDS) after running si:full-gc.

Perform a complete disk save, instead.

Note: The Command Processor command Optimize World is the preferred high-

level interface to the functions si:full-gc, si:reorder-memory, and si:optimize-

compiled-functions. See the section "Optimize World Command".

Using the Initialization Lists invoked by si:full-gc

Two initialization lists, accessed through the full-gc and after-full-gc keywords to

add-initialization, are run by si:full-gc. See the section "Introduction to Initializa-

tions".

si:full-gc runs the forms on the full-gc initialization list and then garbage-collects

without multiprocessing (inside a without-interrupts form). The machine essential-

ly "freezes" and does nothing but garbage collection for the duration. This opera-

tion takes 20 minutes or more, depending on the size of the world. After the

garbage collection is completed, and before it reenables scheduling and returns,

si:full-gc runs the forms on the after-full-gc initialization list.

full-gc is a system initialization list. You can add forms to it by using the :full-gc

keyword in the list of keywords that is the third argument of add-initialization.

The full-gc initialization list is run just before a full garbage collection is per-

formed by si:full-gc. All forms are executed without multiprocessing, so the evalua-

Page 509

tion of these forms must not require any use of multiprocessing: they should not

go to sleep or do input/output operations that might wait for something.

Typical forms on this initialization list reset the temporary area of subsystems and

make sure that what is logically garbage has no more pointers to it.

sct:get-system-version &optional (system "System") Function

Returns three values. The first two are the major and minor version numbers of

the version of system currently loaded into the machine. The third is the status of

the system, as a keyword symbol: :experimental, :released, :obsolete, or :broken.

system defaults to System. This returns nil if that system is not present at all.

For CLOE, it uses name, which may be a symbol, string or system denoting a sys-

tem, and returns information about the corresponding system. The three returned

values are the system major version number, the minor version number, and the

system status (such as :released or :experimental). Note that this function is only

available on the 386 side.

(get-system-version "FROB") =>

3

2

:experimental�

si:optimize-compiled-functions &optional (verbose t) Function

This function can be run at any time. It takes one to two minutes to run. When

functions are redefined (but not when they are first defined) old calls to the new

function will not be as fast as they originally were. This function causes the refer-

ences to be "snapped out," that is, forward pointers are replaced by what they

point to. This makes the references as fast as they were originally.

Because redefined functions are in a different place in memory than the original

function, paging performance can be degraded when many patches have been load-

ed. This problem is not fixed by si:optimize-compiled-functions, but it is by

si:reorder-memory.

si:optimize-compiled-functions is called automatically when needed by disk saving,

or when calling si:full-gc or si:reorder-memory, so it will not usually be needed

on its own. If, however, a new definition of a system is loaded over an old one,

with no intention of saving the resulting world, running si:optimize-compiled-

functions will yield a substantial performance improvement.

Note: The Command Processor command Optimize World is the preferred high-

level interface to the functions si:full-gc, si:reorder-memory, and si:optimize-

compiled-functions. See the section "Optimize World Command".

sct:print-system-status-warning &optional (system "system") Function

Page 510

If system's status is :experimental, prints out a warning reminding the user to

load patches. If system's status is :broken, prints out a warning cautioning the

user that the system may not work. Otherwise, it does nothing.

si:reorder-memory &key (incremental t) (run-without-interrupts t) Function

This function can be run after si:full-gc. It moves objects around in memory in a

manner that optimizes paging performance. While it is running, the machine can-

not be used for any other purpose. Usually this function is invoked with the inten-

tion of immediately saving the world.

You should use si:reorder-memory on IDS worlds only if the parent world has it-

self been optimized or if the parent world does not need optimizing. If you violate

this rule, your IDS worlds will be considerably larger than they need to be. If you

follow the rule, si:reorder-memory will not increase the size of the IDS world.

Distribution worlds are already optimized. Site-configured worlds which have only

had Set Site done on them (and no systems loaded) do not need to be optimized.

Note: The Command Processor command Optimize World is the preferred high-

level interface to the functions si:full-gc, si:reorder-memory, and si:optimize-

compiled-functions. See the section "Optimize World Command".

Logical Pathnames

A logical pathname is one that does not correspond to any particular physical file

system on a host. Logical pathnames make it easy to keep software on more than

one type of file system.

For example, the set of files containing the Symbolics system sources and online

documentation system is stored at each site. Some sites store these files on a Lisp

Machine File System (LMFS), others store them on a VAX/Berkeley UNIX host

with the Chaosnet package, and still others use a UNIX host running NFS in a

.sct directory (see the section "Using SCT with a UNIX File System"). It is also

possible to use a VAX/VMS file server running DNA. More information is available

about using VAX hosts. See the section "Site Configuration and Namespace

Service".

Symbolics software uses logical pathnames. All sites create a logical host (called

SYS). Logical pathnames and the logical SYS host allow software to work correctly

(and the same way) at every site. All pathnames for system software files are logi-

cal, and all begin with the logical host SYS. Only the translation of each logical

pathname to a physical pathname differs at each site.

The translation of logical to physical pathnames depends on the translations files

loaded into the current world. For more information about the translations files,

see the section "Pathname Translation".

A site that stores the system software on a UNIX system translates logical path-

names into UNIX pathnames. A site that stores the system software on a LMFS

translates logical pathnames into LMFS pathnames.

Page 511

The flexibility of logical pathnames enables sites to split their logical SYS host

across several physical hosts. A given physical host might contain some of the sys-

tem software, but the logical entity called a SYS host contains all of it.

Syntax for Logical Pathnames

A logical pathname has the form

HOST: DIRECTORY; NAME.TYPE.VERSION�

In logical pathnames, dots separate the filename, type, and version. There is no

way to specify a device within a logical pathname. When a logical pathname is

parsed, a pathname is returned whose device component is :unspecific. Logical

pathnames can be hierarchical; use semicolons to separate directory levels.

Logical pathnames can also be relative. That is, they can contain a directory com-

ponent whose meaning is "when merging against a default, append this". The syn-

tax for this is

HOST: ; DIRECTORY; NAME.TYPE.VERSION�

Notice the semicolon [;] that is placed before the directory component. The previ-

ous pathname, merged against a default of

HOST: USER; FOO.LISP.NEWEST�

would yield this:

HOST: USER; DIRECTORY; NAME.TYPE.VERSION�

The equivalence-sign character (”) can be used for quoting special characters such

as spaces and semicolons. (The use of this character is discouraged, however, as

files named using it will probably not be transportable). The double-arrow charac-

ter («) can be used as a place-holder for unspecified components. The :newest,

:oldest, and :wild values for versions are specified with the strings NEWEST,

OLDEST, and * respectively. On input, :newest can be represented by > and

:oldest by <.

There is no init file naming convention for logical hosts; you cannot log in to

them. The :string-for-host, :string-for-wholine, :string-for-dired, and :string-for-

editor messages are all passed on to the translated pathname, but the :string-for-

printing is handled by the fs:logical-pathname flavor itself and shows the logical

name.

Wildcard Matching in Logical Pathnames

The system can match any directory or subdirectory, at any level. For example,

you can ask the Show Directory command to list all font files anywhere in the SYS

hierarchy like this:

Show Directory SYS:FONTS;**;*.BFD.*

Wildcards in logical pathnames correspond to the >**> syntax for LMFS path-

names, the [name...] syntax for VAX/VMS file specifications, and the /**/ syntax in

Page 512

UNIX file specifications. See the section "LMFS Pathnames". This makes it easy to

specify logical pathname translations on Symbolics computers, VAX/VMS, and

UNIX. For example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 '(("**;" "ACME-SMBX:>Rel-8-0>sys>**>")))

�

(fs:set-logical-pathname-host "SYS"

 :translations

 '(("SYS:**;*.*.*" "ACME-VMS:SYMBOLICS:[REL8-0...]*.*;*"))

 :no-translate nil)

�

Consider this example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 '(("**;" "ACME-VMS:[SYMBOLICS.REL-8-0.SYS...]")))�

Consider the following UNIX example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 '(("**;" "ACME-UNIX:/usr/share/symbolics/rel-8-0/sys.sct/**/")))�

Note: Wherever a double asterisk [**] appears in a logical-host's pathname, a cor-

responding "wild-inferiors" pathname must exist in the physical-host's pathname.

For more information about LMFS and VAX/VMS pathnames, see the section

"LMFS Pathnames" and see the section "VAX/VMS Pathnames".

Loading System Definitions

Once you have written a large program and defined it as a system, use the func-

tion load-system (or the Command Processor (CP) commands Compile System and

Load System) to compile and load the system (plus any patches related to it).

For information about the function load-system, see the function load-system. For

information about the Load System and Compile System Command Processor (CP)

commands:

• See the section "Compile System Command".

• See the section "Load System Command".�

Loading System Definitions Using Logical Pathnames

So that your system definition can use logical pathnames, create these files:

Page 513

System File This file (named sys:site;system-name.system) contains a pointer

to the system declaration file (defined within this section). The

system file enables the load-system function to find and load

your system (so that others can easily use it).

If yours is an experimental or private system, you may not re-

quire a separate sys:site;system-name.system file. Instead, com-

pile the defsystem in an editor buffer (or put a form that

loads the system declaration in your initialization file).

For more information about system files, see the section "Sys-

tem Files".

Translations File This file (named sys:site;logical-host.translations) describes each

logical host defined in the current world. When you transport a

world load to a new site, the translations file is reloaded from

the site's sys:site; directory, and the site's logical pathnames

are mapped into the appropriate, corresponding set of physical

pathnames.

For more information about translations files, see the section

"Translations Files".

System Declaration File

This file (named logical-host:logical-directory;system-name.lisp or

logical-host:logical-directory;sysdcl.lisp) contains the defsystem

for a system. For more information about system declaration

files, see the section "System Declaration Files".

System Files

System files (named sys:site;system-name.system) enable the function load-system

(which looks in the sys:site; logical directory) to identify a system name that is un-

defined in your environment. For example, if you type the following at a Lisp Lis-

tener:

Load System graphic-lisp �

the load-system function looks for the file SYS:SITE;GRAPHIC-LISP.SYSTEM.

The system file must contain this form:

(sct:set-system-source file "system-name"

 "logical-host:logical-directory;system-declaration-file") �

If a logical host other than "sys" is needed, use the additional form:

(fs:make-logical-pathname-host "logical-host")�

For example, for the system graphic-lisp, the file SYS:SITE;GRAPHIC-LISP.SYSTEM con-

tains the following:

�

;;; -*- Mode: LISP; Package: USER -*-

Page 514

�

(fs:make-logical-pathname-host "graphic-lisp")

(sct:set-system-source-file "graphic-lisp"

 "graphic-lisp: graphic-lisp; glisp-sys") �

The first form, a call to fs:make-logical-pathname-host, defines a logical host.

Commonly, the "logical-host" has the same name as "system-name". fs:make-logical-

pathname-host also loads the translations file, which defines the translation from

logical pathnames to physical pathnames.

Make sure that fs:make-logical-pathname-host is the first form in the file, as the

second form depends on having the logical host defined already. sct:set-system-

source-file specifies the logical pathname of the system declaration file. load-

system, after referring to the translation definitions, loads the system declaration

file.

Translations Files

Translations files (named sys:site;logical-host.translations) define the translations

from logical directories (on the logical host) to physical directories (on a physical

host). A translations file looks like this:

(fs:set-logical-pathname-host "logical-host"

 :physical-host "host-name"

 :translations '(("logical-directory;" "physical-directory"))�

For example, for the system graphic-lisp, the file graphic-lisp.translations contains

the following:

�

;;; -*- Mode: LISP; Package: USER -*-

�

(fs:set-logical-pathname-host "graphic-lisp"

 :physical-host "puzzle"

 :translations '(("graphic-lisp;" ">sys>graphic-lisp>")))�

Notice the translations list in the previous example; the list consists of two-

element lists (strings) that represent the logical directories specified in the system

declaration and their associated physical directories.

To specify a hierarchy of directories (instead of a one-to-one translation), change

the translations list as follows (where the double asterisk [**] means include all

subdirectories of "graphic-lisp;"):

 :translations '(("graphic-lisp;**;" ">sys>graphic-lisp>**")))�

In simple applications, where all system files are stored in one directory, it is com-

mon for the logical directory name (for example, "graphic-lisp;") to be the same as

the system name ("graphic-lisp").

The sys:site;logical-host.translations file is loaded by fs:make-logical-pathname-

host. Use load-patches to reload the file in the event that it has been changed.

Page 515

System Declaration Files

System declaration files contain a defsystem form for defining your system and, if

you need one, a zl:defpackage form (which must precede the system declaration).

Any user-defined defsystem transformations should also precede the system decla-

ration within this file.

Currently, a system declaration file can contain no more than one defsystem form,

although any number of defsubsystem forms can appear in the file. This con-

straint exists because the system declaration can potentially be reloaded for each

defsystem present (a situation difficult for the System Construction Tool (SCT) to

resolve).

More information is available about defsystem, zl:defpackage, and defsubsystem.

• See the function defsystem.

• See the special form defpackage.

• See the function defsubsystem.

Here is a sample system declaration file:

;;; -*- Mode: LISP; Package: CL-USER; -*-

;;; Fortran package specifications

(defpackage fortran-global

 (:use)

 (:nicknames fortran for)

 (:prefix-name "FORTRAN")

 (:colon-mode :external)

 (:size 200))

�

(defpackage fortran-system

 (:use)

 (:nicknames for-sys)

 (:prefix-name "FOR-SYS")

 (:colon-mode :external)

 (:size 200))

�

(defpackage fortran-compiler

 (:use fortran-system fortran-global symbolics-common-lisp)

 (:nicknames for-compiler)

 (:prefix-name "FOR-COMPILER")

 (:colon-mode :external)

 (:size 1500))

Page 516

�

(defpackage fortran-user

 (:use fortran-global symbolics-common-lisp)

 (:nicknames for-user)

 (:prefix-name "FOR-USER")

 (:relative-names-for-me (fortran-global user))

 (:size 2000))

�

;;; System definition using SCT

(defsystem fortran

 (:default-pathname "sys: fortran;"

 :journal-directory "sys: fortran;"

 :patchable t)

 (:module macros ("macros") (:root-module nil))

 (:module language-tools (language-tools) (:type :system))

 (:module front-end (fortran-front-end) (:type :system))

 (:module back-end (fortran-back-end) (:type :system))

 (:serial macros language-tools front-end back-end))

�

;;; Component system definition

(defsubsystem language-tools

 (:default-pathname "sys: language-tools;")

 (:serial ...))

�

;;; Subsystem definition (non-patchable)

(defsubsystem fortran-front-end

 (:default-pathname "sys: fortran;")

 (:serial "tokenizer" "grammar" ...))

�

;;; Subsystem definition (non-patchable)

(defsubsystem fortran-back-end

 (:default-pathname "sys: fortran;")

 (:serial "code-generator" "optimizer" ...))�

Since you specify the pathname explicitly with the form sct:set-system-source-file

(inside the system file), system declaration filenames do not require an exact for-

mat. Typically, though, the logical pathname for them is logical-host:logical-

directory;system-name.

Give the system declaration source file the lisp canonical file type. When you call

the load-system function, sct:set-system-source-file loads the system declaration

file (.newest version).

Loading System Definitions Using Physical Pathnames

To load system definitions that use physical pathnames, specify the name of the

system and the pathname of the system declaration file in an sct:set-system-

source-file form. Have your init file evaluate the form (or type the form at a Lisp

Page 517

Listener) prior to calling the function load-system. For more information about

the function sct:set-system-source-file, see the section "Lisp Functions for Loading

System Definitions".

Note: Logical pathnames enable you to change only translations (instead of editing

all of your files to contain new file names) when moving programs between hosts

(that use different operating systems, for example). Use logical pathnames ¾

rather than physical pathnames ¾ to ensure the site-independence of your sys-

tems.

Lisp Functions for Loading System Definitions

The Lisp functions described within this section are especially useful for site main-

tainers who make and distribute worlds.

sct:set-system-source-file system-name source-file Function

Specifies the pathname (source-file) of a file containing the system declaration for

a system called system-name. Although sct:set-system-source-file can be used in

two ways, Symbolics recommends the first.

1. When your system is defined with logical pathnames, include the sct:set-

system-source-file form in the file sys:site;system-name.system. load-system

loads the sys:site;system-name.system file the first time you attempt to load

the system.

2. When your system is defined using physical pathnames, have your init file

evaluate the sct:set-system-source-file form (or type the form at a Lisp Lis-

tener) prior to calling load-system or to using the Load System or Compile

System Command Processor (CP) commands. Source-file is loaded the first

time you compile or load your system.

More information is available about using the function sct:set-system-source-file

in system files. See the section "System Files".

fs:set-logical-pathname-host logical-host &key :physical-host :translations :rules

:site-rules (:no-translate t) :no-search-for-shadowed-physical Function

Creates a logical host named "logical-host" if one does not already exist. This form

appears in sys:site;logical-host.translations files. It establishes the translations

of logical directories on logical-host to physical directories on one or more physical

hosts. The machine specified by the :physical-host keyword serves as the default

physical host.

The :translations keyword specifies the list of translations from logical to physical

directories.

Page 518

• For more information about translations lists: See the section "Translations

Files".

• For the format of the lists and the translation rules: See the section "Pathname

Translation".

• For a discussion of the :rules and :site-rules keywords: See the section "Defining

a Translation Rule".

If no-translate is nil, the translation of every interned logical pathname is checked.

Properties are copied from the old physical pathname to the the new one, and logi-

cal pathnames that now have no corresponding physical pathnames are uninterned.

If no-translate is not nil or not supplied, this mapping is suppressed, and some

physical pathnames might not get the properties of the logical pathname. This is

not normally of any consequence, so no-translate defaults to t.

The argument no-search-for-shadowed-physical (default nil) means to look only in

the existing pathname hosts for a host with the same name as the logical host.

This saves time by not asking the namespace server whether the name of the new-

ly defined logical host conflicts with the names of any physical hosts, but it pre-

vents you from seeing the following warnings:

�

Warning: the host ~A must now be referred to as ~A: in pathnames,

since ~A is now a logical pathname host.

This affects ~[no~:;~:*~D~] extant pathnames.

�

Warning: the nickname ~A: for the physical host ~A

 will now refer instead to the

 logical pathname host ~A.

 Use ~A: in pathnames.�

For more information about sys.translations files, see the section "Pathname

Translation". Also see the section "Translations Files".

fs:make-logical-pathname-host name &key no-search-for-shadowed-physical

Function

Defines name (a string or symbol) to be the name of a logical pathname host.

Name should not conflict with the name of any existing host, logical or physical.

An fs:make-logical-pathname-host form often appears in the file sys:site;system-

name.system.

fs:make-logical-pathname-host loads the file sys:site;name.translations. load-

patches checks the translations file for each logical host that is defined in the

current world; if any translations file has been changed it is reloaded (if and only

if no specific systems are specified in its arguments).

The argument :no-search-for-shadowed-physical (default nil) means to look only

in the existing pathname hosts for a host with the same name as the logical host.

Page 519

This saves time by not asking the namespace server whether the name of the new-

ly defined logical host conflicts with the names of any physical hosts, but it pre-

vents you from seeing the following warnings:

�

Warning: the host ~A must now be referred to as ~A: in pathnames,

since ~A is now a logical pathname host.

This affects ~[no~:;~:*~D~] extant pathnames.

�

Warning: the nickname ~A: for the physical host ~A

 will now refer instead to the

 logical pathname host ~A.

 Use ~A: in pathnames.�

Note: fs:add-logical-pathname-host is an obsolete name for this function.

More information is available about using the function fs:make-logical-pathname-

host in system files. See the section "System Files".

Pathname Translation

A translations file contains the form fs:set-logical-pathname-host and a transla-

tions list. The list describes logical pathnames by providing their corresponding

physical pathnames. Each logical/physical pathname pair is called a translation

pair.

The Logical Pathname Translations File�

Here is a sample translations file (note the translations list, containing three

translation pairs, following the :translations keyword at the end of the file):

;;; -*- Mode: LISP; Package: FS; Syntax: ZetaLisp; Base: 10; -*-

(fs:set-logical-pathname-host "SYS"

 :physical-host "ACME-YUKON"

 :translations '(("SYS:DOC;**;*.*.*" "ACME-YUKON:>sys>doc>**>*.*.*")

 ("SYS:FONTS;**;*.*.*" "ACME-RIVERSIDE:>sys>fonts>**>*.*.*")

 ("SYS:**;*.*.*" "ACME-QUABBIN:>sys>**>*.*.*")))�

In this sample, the logical pathname SYS:DOC; (and all its inferior directories)

maps to the physical host ACME-YUKON. If this translations file were loaded, the

logical pathname,

SYS:DOC;SITE;SITE7.SAB.NEWEST

would resolve to the file described by this physical pathname:

ACME-YUKON:>sys>doc>site>site7.sab.newest�

Likewise, the logical pathname, SYS:FONTS; (and all its inferior directories) would

map to the physical host ACME-RIVERSIDE, and the logical pathname,

SYS:FONTS;TV;CPTFONTB.BFD.NEWEST

would resolve to the file described by this physical pathname:

Page 520

ACME-RIVERSIDE:>sys>fonts>tv>cptfontb.bfd.newest�

All other logical pathnames beginning with SYS: (and all their inferior directories)

would map to the physical host ACME-QUABBIN. For example,

SYS:FLAVOR;CTYPES.LISP.NEWEST

would resolve to the file described by this physical pathname:

ACME-QUABBIN:>sys>flavor>ctypes.lisp.newest�

The Logical Pathname Translation Process�

There are two phases to the translation process. In the first phase, using the

:pathname-match message, the pathname resolver matches a logical pathname

(the pathname to be translated) against the logical pathnames listed successively

in the translations file. Once the pathname resolver finds a match, it uses the ap-

propriate logical/physical pathname pair from the list.

Note: Because the translation list is searched in sequence, it should provide the

most specific pathnames first, and the most general pathname last.

In the second phase, the pathname resolver processes the selected translation pair

according to translation rules. There are three sets of translation rules for each

logical host:

Permanent The permanent translation rules are special purpose rules that

cannot be overridden. They provide for such things as the

translation of patch file pathnames. This set is searched first.

Site The site translation rule is determined by the Site-Directory

attribute for each object of class "site" in the namespace. A

site's translation rule cannot be overridden. This set is

searched second.

Supplied The normal, supplied translation rules are provided by the au-

thor of the software using the logical host. This set is

searched third.

Additionally, the pathname resolver uses these host-independent rules:

Global This set is not currently used for anything, but it is provided

for future extension.

Default This is the :translate-wild rule, which uses :translate-wild-

pathname-reversible. This rule is used when no other rule is

applicable.

The second phase (in which the the pathname resolver processes the selected

translation pair according to translation rules) is potentially more complex. In its

simplest form, the pathname resolver uses the default rule. Before using the de-

fault rule, though, the pathname resolver searches for a more suitable one.

Page 521

The default rule produces a physical pathname by sending the :translate-wild-

pathname-reversible message to the logical pathname, where the first element of

the translation pair is the source pattern, and the second element of the transla-

tion pair is the target pattern. For more information about source and target pat-

terns:

See the section "Wildcard Pathname Mapping". See the section "Wildcard Directory

Mapping". See the section "Reversible Wildcard Pathname Translation".

Logical Translations to Multiple Physical Hosts

A logical host can translate to more than one physical host when the translations

list given to fs:set-logical-pathname-host contains explicit pointers to more than

one host.

For example:

(fs:set-logical-pathname-host "SYS"

 :translations '(("SYS:DOC;**;*.*.*" "ACME-LISPM:>Rel-8-0>doc>**>*.*.*")

 ("SYS:**;*.*.*" "ACMEVAX:SYMBOLICS:[REL8-0...]*.*.*"))

 :no-translate nil)�

Note: it is not necessary to specify the :physical-host argument to fs:set-logical-

pathname-host as long as host names are specified in the translations list. If a

:physical-host argument is specified, however, it serves as the default.

The Front-End Processor

When you boot a Symbolics computer, you communicate with the Front-End Pro-

cessor (the FEP). The FEP loads those files that enable the local machine to boot.

On Symbolics 3600-family machines, the FEP is a separate chip and takes care of

other needs, such as listening for the machine's keyboard and mouse.

These components make up the FEP:

1. A microprocessor.

2. A FEP Kernel.

3. Overlay files (also called "flods") containing loadable software. The FEP can

read these from tape or disk. Overlay (flod) files provide support for new fea-

tures, and are supplied as part of each new Genera release.�

On Ivory-based machines, there is no separate processor; the FEP is implemented

in software. The FEP kernel resides on disk (FEP kernel version I307 or greater).

On 3600-family machines, the FEP kernel resides in EPROM (EPROM version 127

if you have a 3640 or 3670 machine; EPROM version 206 if you have an 3610,

3620, or 3650 machine manufactured before the release of Genera 7.2; EPROM

version 208 if you have a 3620, 3630, or 3650 machine manufactured after the re-

lease of Genera 7.2).

Page 522

Use the Show Version FEP command to determine the FEP (EPROM or software)

version with which your machine has been equipped. (For information about the

Show Version FEP command, see the section "Show Version FEP Command".)

If you have a Symbolics 3600-family machine, and it is equipped with an EPROM

whose version number is lower than 127, please contact Symbolics Customer Ser-

vice for an upgrade.

Overlay (Flod) Files and the FEP

The FEP implements some basic commands from its kernel (the FEP kernel is res-

ident in EPROM or software, depending on what type of machine you have). Ker-

nel commands include startup commands and the display and disk drivers, for ex-

ample. Additional, release-specific commands reside in loadable software, specifical-

ly in the FEP overlay (flod) files, loaded onto your machine with the Copy Flod

File command. All flod files have the extension ".flod", which identifies them as

overlays. See the section "Copy Flod Files Command".

In order for the FEP to use them, each overlay file must be paged into memory.

Only one overlay file at a time can be memory-resident, and each overlay file must

be scanned before the FEP can access ¾ and use ¾ the commands within it.

Scanning inserts those commands defined in an overlay file into the FEP's com-

mand tables. Once scanned, these commands remain in the FEP's command tables

until you reset the FEP, or power down your machine.

When you type a FEP command, three things can happen:

1. The command is resident or the correct overlay has been scanned and paged

in; the FEP immediately executes the command.

2. The command resides in an overlay that has been scanned but not yet been

paged in; the FEP pages in this overlay, scans it, and executes the command.

3. The command resides in an overlay that has not been scanned. �

Here is a list of the overlay (flod) files and some examples of the types of com-

mands contained within them. To read this list, replace the wildcard symbol (*)

with the FEP EPROM version (for example, V127, G206, or G208) or Ivory FEP

kernel version (for example, I315) for your machine:

Overlay File: Contains:

*-info.flod Commands that give information about the machine, such as

the Show Configuration command.

*-loaders.flod Commands to load the machine, such as the Load Microcode

and Load World commands.

*-lisp.flod Commands for manipulating Lisp, such as the Start, Continue,

and Show Status commands.

Page 523

*-debug.flod The FEP Debugger, which is invoked by the Debug command.

*-tests.flod The Test commands.

*-disk.flod The Disk Restore and Disk Format commands.�

The last two overlay files are used only during software installation or testing.

More information is available about using the *-tests.flod and *-disk.flod files. See

the section "Scanning the Overlay (Flod) Files".

Saving Previous FEP Kernels and FLOD Files

Some users like to "houseclean" their FEP-related files, and delete all but the most

recent version. This is a dangerous habit, and we recommend against it. Backup

versions of FEP files are necessary in some debugging situations. Since FEP files

(both the kernel and flod files) do not require much disk space, we recommend

that you save the previous versions of these files.

Ivory users in particular should save the previous version of the FEP kernel and

flod files. Note that on Ivory machines, there is no FEP in PROM as there is on

3600-family machines, so your options are very limited if you depend on a single

copy on disk and it goes bad.

The system attempts to prevent you from deleting the previous kernel, but it does

not keep you from deleting the previous flods. The kernel is not much use without

its flod files.

Scanning the Overlay (Flod) Files

Use the hello.boot file to scan the overlay (flod) files so that the FEP can use the

commands contained within them. The FEP command Hello loads the hello.boot

file for you.

If one does not already exist, create a hello.boot file in the editor, with a path-

name of FEPn:>hello.boot (FEPn refers to the disk unit number where the

hello.boot file resides, if your computer has more than one disk associated with

it).

This file should contain a sequence of commands to scan the overlay (flod) files

(except for those overlays containing special commands used for installation and

testing). Hello.boot should also contain the command Initialize Hardware Tables.

Additionally, the hello.boot file should contain other commands that you want

your machine to execute every time you boot. (This is in contrast to the boot.boot

file, which should contain commands specific to the world you load.)

Here is a sample hello.boot file for a 3600-family machine:

Page 524

Scan v127-info.flod

Scan V127-loaders.flod

Scan v127-lisp.flod

Scan v127-debug.flod

Initialize Hardware Tables

Declare Paging-Files FEP0:>Paging-1.page

Declare More Paging-Files FEP0:>Paging-2.page,Paging-3.page

Set Chaos-Address 52525�

Here is a sample hello.boot file for an Ivory-based machine:

Hello Innn

Hello Local (or hostname)�

Innn and Local represent two .boot files. Their contents should be as follows:

Hello Innn Boot File

The Innn.boot file (where nnn is the IFep version number, which is 328 for Gen-

era 8.3) should contain the commands to scan the flod files and initialize things.

Scan I328-lisp.flod

Scan I328-loaders.flod

Scan I328-info.flod

Scan I328-debug.flod

Initialize Hardware Tables

Hello Local Boot File

The local.boot file should contain those commands that set up this specific ma-

chine, declaring paging files, setting the network address, and any other boot op-

tions.

Declare Paging Files FEP0:>Paging-1.page

Declare More Paging Files FEP0:>Paging-2.page,Paging-3.page

Set Boot Options :Network Address Chaos|52525 :IDS Enable

�

Use the Show Version FEP command to determine the FEP (EPROM or software)

version with which your machine has been equipped. (For information about the

Show Version FEP command, see the section "Show Version FEP Command".)

If you have a Symbolics 3600-family machine, and it is equipped with an EPROM

whose version number is lower than 127, please contact Symbolics Customer Ser-

vice for an upgrade.

Make sure you press RETURN after the last command, and then save the file. For an

explanation of the Scan commands, see the section "Overlay (Flod) Files and the

FEP".

Page 525

When necessary (before issuing installation and test commands), use the Scan com-

mand to explicitly page in and scan the -tests.flod and -disk.flod files. Instead of

using a hello.boot file, type the following to the FEP prompt (the asterisk (*) rep-

resents the EPROM version present in your machine):

Scan *-disk.flod

Scan *-tests.flod

For more information about the FEP file system and FEP files (such as the

hello.boot file) see the section "FEP File Systems".

Using Lisp to Write Overlay (Flod) Files to Cartridge Tape

The Lisp function tape:write-fep-overlay-flods-to-cart writes the overlay (flod)

files to a cartridge tape in the appropriate format for the FEP's Scan command.

We recommend that you use this function to make a backup tape containing over-

lay (flod) files. If you ever find yourself without flod files on disk, you can use the

backup tape to get them.

This example shows how to copy v127 flod files to tape:

(tape:write-fep-overlay-flods-to-cart "V127")�

To use the backup tape, load it into a tape drive and type the following at the

FEP prompt:

FEP Command: Mount Cart:

FEP Command: Scan Cart:

FEP Command: Scan

.

.

.�

Repeat the Scan command until you get an "End of File" notification. Then, type

boot to activate the boot file, or manually type each boot command at the prompts.

For more information about manual booting, see the section "Booting the Symbol-

ics Machine".

Once you've booted Lisp, copy the overlay files from SYS:N-FEP; onto the FEP file

system. Use the Copy Flod Files command to do this.

• For information about what each overlay file contains, see the section "Overlay

(Flod) Files and the FEP".

• For information about using the Copy Flod Files command, see the section

"Copy Flod Files Command".

• For information about using this Lisp function, see the function tape:write-fep-

overlay-flods-to-cart.

• For information about using the debug.flod files, see the section "Debugging in

the FEP".

Page 526

FEP File Systems

Although FEP is an acronym for Front-End Processor, FEP file systems are man-

aged primarily by Genera. The FEP can only access files stored within the FEP

file system on the local host. For example, the FEP needs to use FEP file systems

to boot the machine, and run diagnostics. FEP file systems are also used to orga-

nize and store files that are needed for system overhead (such as paging files).

FEP file systems support multiple file versions, soft deletion, and expunging. They

also use hierarchical directories.

The need to allow the FEP to access FEP files ¾ while at the same time, allow-

ing the rest of the system to use them ¾ imposes these constraints on the design

of FEP file systems:

• The internal data structure of files within FEP file systems must be simple

enough to permit the FEP to read them.

• A small amount of concurrent access by both the FEP and Lisp must be al-

lowed.

• A FEP file's data blocks need a high degree of locality on the disk, to minimize

access time.

• FEP file systems must be reliable; the FEP needs to use them for basic opera-

tions, such as the running of diagnostics, and the booting of each machine.

Allocating new blocks for FEP files is a slow process. The creation of many files

(especially small ones) can impair system performance because essential files ¾

such as those used for paging or world loads ¾ can become inappropriately frag-

mented.

To see the contents of a FEP file system, use the Command Processor (CP) Show

FEP Directory or Show Directory commands. Alternatively, use m-x Dired, the

Command Processor (CP) Edit Directory command, or the File System Editor Ac-

tivity (FSEdit).

For more information about how to use the Show FEP Directory command, see the

section "Show FEP Directory Command".

For more information about how to use Dired, see the section "Dired/Edit Directo-

ry".

For more information about how to use FSEdit, see the section "Using FSEdit".

FEP File Systems and Symbolics Computer Disks

Symbolics computers can have more than one local disk, and each machine's FEP

can access all of them. Currently, hardware limits the maximum number of any

one 3600-family machine's disks to eight. MacIvory machines have a maximum pe-

ripheral device limit of seven.

Page 527

The form FEP: refers to the disk (by default) from which the current world was

booted. Disk 0 is usually the default, so typing FEP: is usually equivalent to typing

FEP0: . Besides using the default, you can specify disks explicitly, using forms

such as FEP1: or FEP7: .

Here are some activities that require you to specify a disk unit number (explicitly

or implicitly):

• Booting a world with the Load World FEP command.

• Adding paging files with the Declare Paging Files FEP command at boot time,

or

• Adding paging files with the Command Processor (CP) Add Paging File com-

mand from an already-running Lisp world.

Note: The .ilod file extension indicates world-load files for Ivory-based machines,

just as the .load file extension indicates world-load files for Symbolics 3600-family

machines. Files with the .ilod extension can be copied only between Ivory-based

machines. Files with the .load extension can be copied only between Symbolics

3600-series machines.

FEP File Systems on 3600-Series and XL400 Systems

Each 3600-family or XL400 disk must have a FEP file system on it that describes

the disk space available on it.

Each disk unit is presumed to contain one FEP file system. FEP file systems are

named FEPn (where n is the disk unit number on which the FEP file system re-

sides).

This scheme allows gaps in the sequence of FEP file system names. For example,

a machine with disk unit 0 and disk unit 2 (but no disk unit 1) has FEP file sys-

tems named FEP0 and FEP2 (but none named FEP1).

FEP File Systems on MacIvory Systems

MacIvory systems share disk space (swap space) between the Ivory and Macintosh

processors. In order for the Ivory processor to access a Macintosh's disk to find a

world load, for example, that disk must have at least one Ivory partition on it.

(Symbolics recommends that you limit the number of Ivory partitions on each disk

to one.)

Ivory partitions represent disk space to which the Macintosh processor does not

have access. Each Ivory partition must contain a FEP file system that describes

the disk space available in it.

Each time you power up or boot a MacIvory, the system checks the disk from

which you booted. Next, it checks the remaining disks, according to their respec-

tive Small Computer Serial Interface (SCSI) bus priorities.

Page 528

The first Ivory partition that the system finds is presumed to contain the FEP file

system named FEP0. Any remaining Ivory partitions are presumed to contain the

FEP file systems named FEP1, FEP2, and so on. This scheme does not allow gaps

in the sequence of MacIvory FEP file system names.

FEP Pathnames

FEP pathnames can include references to a host, disk-unit, directory, filename, file

type, and version. Separate the host-name from the rest of a file pathname by us-

ing a vertical bar (you can see this in the example that follows).

Delimit FEP pathnames like this:

Picasso|FEP0:>directory-name>filename.type.version�

Pathname components are:

Host Specifies which machine's FEP file system you are referencing.

The default is the local machine.

Disk-unit Specifies the disk unit number on which the local host's FEP

file system resides. The initial default is FEP0. Later, the de-

fault becomes the local disk unit from which the world was

booted. Netbooting doesn't change the default. Symbolics sug-

gests that you specify the disk-unit number explicitly, since the

default may be different for different worlds.

Directory Indicates the name of the FEP file system directory (directory

names cannot exceed 32 characters). There is no limit on the

total length of a hierarchical directory specification.

Filename Indicates the name of the FEP file (filenames cannot exceed 32

characters).

File type Indicates the type of the FEP file (file types cannot exceed 4

characters).

Version Indicates the version number of the FEP file (this must be a

positive integer or the word "newest").�

Note: Although you can access FEP files on other hosts from Genera, the FEP has

access only to the local host.

For information about Ivory-based machines and the host pathname syntax for

them, see the section "Accessing the Macintosh File System".

FEP File Types

By convention, the FEP file system uses the following extensions to deliniate file

types:

boot Files with the .boot extension contain commands that can be

read and executed by the FEP.

Page 529

load Files with the .load extension contain a world load image,

(sometimes called a band) for Symbolics 3600-family machines.

Files with the .load extension can only be copied between

Symbolics 3600-family machines.

ilod Files with the .ilod extension contain a world load image,

(sometimes called a band) for Ivory machines. Files with the

.ilod extension can only be copied between MacIvory, XL400,

and Symbolics UX-family machines.

mic Files with the .mic extension contain a microcode image, plus

the contents of other internal high-speed memories that are

initialized when Symbolics 3600-family machines are booted.

For example, >3640-mic.mic.428 contains version 428 of the mi-

crocode for 3640 and 3670 machines.

fspt In order to use the local Lisp Machine File System (LMFS),

Lisp must have access to the File System Partition Table

(FSPT). The File System Partition Table is contained within a

FEP file named fspt.fspt that lists the LMFS partitions.

file Files with the .file extension are Lisp Machine File System

(LMFS) partitions.

page Files with the .page extension are used exclusively as virtual

memory swap space during the current boot session.

flod Files with the .flod extension are FEP overlay (flod) files. Such

files contain binary code (FEP software).

fep Files with the .fep extension are FEP-specific; they contain in-

formation about the organization of fep files on the disk.

Note: Since FEP-specific files are system files, not user files,

they should not be written to by user programs.

>free-pages.fep This file describes which blocks on the disk

are free.

>bad-blocks.fep This file lists all of the blocks that contain

media defects.

>sequence-number.fep

This file contains the highest sequence

number in use. The FEP file system uses

sequence numbers to uniquely identify files.

(These help to rebuild the file system,

should a catastrophic disk failure occur.)

>disk-label.fep This file contains the disk pack's physical

disk label. The label is used to identify the

pack, and to describe its characteristics.

Page 530

>kernel.fep This file exists only on Ivory-based ma-

chines. It contains the FEP software which,

on Symbolics 3600-family machines, resides

in EPROM.

>reserve.fep This file is reserved for use by Symbolics

software.

>unique-id.fep This file is reserved for use by Symbolics

software.�

dir Files with the .dir extension are FEP subdirectories. Use the

Show Directory FEP command or the Command Processor (CP)

Show Directory Command to see the contents of FEP subdirec-

tories. For more information about these commands,

• See the section "Show Directory FEP Command".

• See the section "Show Directory Command".

Note: Since the directory >root-directory.dir is a system file,

not a user file, it should not be written to by user programs.�

FEP File Properties

FEP file properties store information about FEP files (such as when they were last

written, and whether they can be deleted).

File properties are read by the fs:file-properties function, and modified by the

fs:change-file-properties function. The function fs:directory-list returns the file

properties of several files at once.

The following file properties can be both read and modified:

:creation-date The universal time at which a file was last written. (See the

section "Dates and Times".)

:author The user-ID of the last writer to a file: a string.

:length-in-bytes The length of a file, expressed as an integer.

:deleted When t, a file is marked as deleted. Disk space is not re-

claimed until you expunge the directory in which a deleted file

resides.

:dont-delete When t, attempting to delete or overwrite a file signals an er-

ror. When nil, indicates that a file can be written to or delet-

ed.

:comment Written comments displayed in brackets: a string.�

Page 531

These file properties are returned by the :properties message. They cannot, how-

ever, be modified by :change-properties:

:byte-size The number of bits in a byte. The value of this property is al-

ways eight.

:length-in-blocks The block length of a file expressed as an integer.

:directory When t, the file is a directory, otherwise nil.

Creating Free Space on the Local Disk

There are times when you'll need to create free space on the local disk (for exam-

ple, when copying or save worlds, creating additional paging files, or to increase

the size of a Lisp Machine File System (LMFS)). There are three ways to create

free space on the local disk:

• Delete and expunge unneeded world load files.

• Delete and expunge unused paging files.

• Vacate and delete unnecessary LMFS partitions.

This section describes how to perform these procedures.

Deleting and Expunging Unneeded World Loads

Note: Unless netbooting service is available at your site, you must keep at least

one base (distribution) world on your disk.

1. Check to see which world load files are in use. To do this, issue the Com-

mand Processor (CP) Show FEP Directory command and specify "world load

files", like this:

Show FEP Directory :type world

This will display the world load files on the local disk; those in use will be

shown in boldface type on your screen.

2. Delete and expunge any obsolete world load files. This will provide you with

additional space. (If this doesn't provide you with enough disk space for your

needs, go on to the next procedure, and delete and expunge unused paging

files.)�

Deleting and Expunging Unused Paging Files

1. Check to see whether all of your paging files are in use. To do this, issue the

Command Processor (CP) Show FEP Directory command and specify "paging

files" like this:

Show FEP Directory :type paging

Page 532

This will display the paging files on the local disk; those in use will be shown

in boldface type on your screen.

2. If all the paging files are currently in use, cold boot the machine, but do not

declare any of the paging files that you intend to delete. Manually type these

FEP commands on a 3600-family machine:

Declare Paging-Files with no argument supplied

Declare Paging-Files the-names-of-paging-files-you-want-to-keep

Clear Machine

Load Microcode

Load World world-load-filename

Enable IDS

Set Chaos-Address this-machine's-Chaos-address

Start

Manually type these commands on an Ivory-based machine:

Declare Paging Files with no argument supplied

Declare Paging Files the-names-of-paging-files-you-want-to-keep

Clear Machine

Load World world-load-filename

Enable IDS

Set Network Address Chaos|this-machine's-Chaos-address

Start

Cold booting with this sequence of commands enables you to remove some

paging files from use, and to declare a new list of paging files. For informa-

tion about how the Declare Paging Files FEP command works, see the section

"Declare Paging Files FEP Command".

3. Delete and expunge the paging files that are not in use. This will provide you

with additional space. Be sure to remove any references to the deleted paging

files from your boot file(s), as well.�

Vacating and Removing Unnecessary LMFS Partitions

Note: Auxilliary file partitions should be removed only by using the File System

Editor (FSEdit).

1. Check to see if how many LMFS partitions are present. To do this, issue the

Command Processor (CP) Show FEP Directory command and specify "LMFS

files" like this:

Show FEP Directory :type LMFS

This will display the LMFS-related files on the local disk. If only one file of

type .file exists, this is your main LMFS partition; do not attempt to remove

it. If more than one file of type .file exists, go to Level 2 of the File System

Editor (FSEdit).

Page 533

2. In Level 2 of the File System Editor (FSEdit), click right on the [Free

Records] menu item to find out how much room is available in each LMFS

partition. If one partition has enough space so that you can move the contents

of another LMFS partition into it, go to Level 3 of the File System Editor

(FSEdit).

3. In Level 3 of the File System Editor, click Left, Middle, or Right on the [Re-

move Partition] menu item. You will be queried about which partitions to va-

cate, remove, and delete.

4. Expunge the LMFS partitions that you have vacated, removed, and deleted.�

� Increasing Available Paging (Swap) Space

Programs that use large amounts of virtual memory might require the allocation

of additional paging (swap) space. To create a 20,000 block paging file on disk unit

0, use the Command Processor (CP) Create FEP File command. At the Command:�

prompt in a Lisp listener, type:

Command: Create FEP File fep0:>page1.page 20000

The Command Processor (CP) Add Paging File command will enable you to use

the paging file from within the Lisp environment. Alternatively, halt the machine

and use the Add Paging File FEP command, and then use the Continue FEP com-

mand to return to Lisp.

If you modify boot files with the Declare Paging Files command, you won't have to

manually add the paging files again (when you next boot the machine). Issue the

Declare Paging Files FEP command before the Load World FEP command inside a

boot file.

More detailed information is available about the Declare Paging Files command.

See the section "Declare Paging Files FEP Command".

FEP Commands

Different types of FEP commands exist. This section provides details about all of

them. In order to make it easy for you to find and use information about FEP

commands, we've grouped them by function. Unless otherwise noted, each FEP

command is implemented on both 3600-family and Ivory-based machines.

Symbolics computer users need some FEP commands for the day-to-day operation

of their Symbolics computers. For descriptions of these FEP commands, see the

section "Commonly Used FEP Commands".

Some FEP commands pertain specifically to systems with color consoles. For de-

scriptions of these FEP commands, see the section "Color Systems FEP

Commands".

Other FEP commands are designed for System Administrators, who perform rou-

tine system maintenance and troubleshooting tasks. For descriptions of these FEP

commands, see the section "Systems Maintenance FEP Commands".

Page 534

The remaining FEP commands are "for expert use". Be careful when using these

commands. If you make a mistake, you can destroy the state of the loaded or saved

Lisp system. For descriptions of these FEP commands, see the section "FEP Com-

mands for Systems Experts".

For information about FEP-related Command Processor (CP) commands, see the

section "FEP-Related Command Processor (CP) Commands". For information about

Lisp Functions that site maintainers will find useful, see the section "FEP-Related

Lisp Functions".

Note: Some FEP commands are unique to Symbolics 3600-family machines, some

are unique to Symbolics Ivory-based machines, and some are common to both. The

syntax for commands used by both machines can be different, however. Many 3600-

family machine FEP commands, for example, require hyphens (but Ivory FEP com-

mands never have hyphens in them). Before issuing a FEP command, make sure

that you know how to use it appropriately.

If your system doesn't recognize a FEP command, you may need to scan an overlay

(flod) file to make the command available. Alternatively, your machine may not

support that command. For information about the overlay (flod) files, see the sec-

tion "Overlay (Flod) Files and the FEP".

Entering FEP Commands

Note: Ivory-based machines allow you to press c-ABORT to stop any long-running

FEP operations (such as Load World). 3600-family machines do not. On 3600-

family and Ivory-based machines, you can type any character to abort FEP typeout.

The FEP supplies you with default arguments and can provide you with documen-

tation about its commands. The FEP command prompt, displayed when you are us-

ing the FEP, looks like this:

FEP Command:�

You need type only enough of a FEP command to identify it uniquely, as shown

here:

This Input Completes to

b RETURN Boot

l w RETURN Load World (default is FEP0:>Genera-8-0.ilod)

st RETURN Start

At the prompt, press the HELP key for a list (and descriptions) of all FEP com-

mands.

Once you have typed a command name, press the space bar and then the HELP key

for a list of all possible completions to that command.

You can insert parenthetical comments within or after FEP commands in hello

files or boot files. Such comments are useful, for example, for providing identifica-

tion about different boot files:

Page 535

load world >World-1.load (contains geological survey programs)

load world >World-2.load (contains simulator)�

� Pathname Completion in the FEP

Two types of pathname completion exist in the FEP. When you press the COMPLETE

or HELP key, the FEP attempts to complete the pathname you have supplied, aug-

menting your input as far as possible (until it runs into a potential conflict be-

tween two similar pathnames in the file system).

For example, at a 3600-family machine, if you type:

Load Microcode (default is FEP0:>3640-mic.mic) 3640 COMPLETE�

the FEP system responds like this:

Load Microcode (default is FEP0:>3640-mic.mic) FEP0:>3640-�

because the possibilities are:

FEP0:>3640-mic.mic

FEP0:>3640-fpa-mic.mic�

Similarly, if you type:

Load World (default is ...) Inc HELP�

the machine will display all the files that begin with Inc (such as those worlds

that were created using the Incremental Disk Save command).

On Ivory-based machines, the FEP will not choose deleted (but unexpunged) files

when performing pathname completion or choosing the approriate file when the

version is .newest. You can force the Ivory FEP to use a deleted file (one that, for

example, you have erroneously deleted) by specifying its version number explicitly.

By using this technique along with the Add World File FEP command, you can

force the FEP to load a deleted world hierarchy (provided that it has not been

overwritten or expunged). More information is available about this command. See

the section "Add World File FEP Command".

� Pathname Merging in the FEP

Like Lisp, the FEP merges pathnames against the default. You need specify only

the fields (name, type, or version) that differ from the (context-dependent) default.

If either the filename or the type is given, the default version will always be

.newest. Pathnames are not case-sensitive. Here are some examples of pathname

merging in the FEP:

Page 536

Default Input Merged

FEP0:>3600-MIC.MIC 3600-FPA-MIC FEP0:>3600-FPA-MIC.MIC

FEP0:>3600-MIC.MIC fep1: FEP1:>3600-MIC.MIC

FEP0:>3600-MIC.MIC ..428 FEP0:>3600-MIC.MIC.428

FEP0:>3600-MIC.MIC.428 3600-FPA-MIC FEP0:>3600-FPA-MIC.MIC

FEP0:>3600-MIC.MIC 3600-mic..428 FEP0:>3600-MIC.MIC.428

� Commonly Used FEP Commands

These FEP commands can be typed in at the FEP command prompt, or executed

from within a command file (such as a .boot file). For your convenience, we have

arranged these commands in alphabetical order.

Add Paging File FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Add Paging-File filename (for 3600-family machines)

Add Paging File filename (for Ivory-based machines)�

Adds a file to be used for virtual memory swap space during the current boot ses-

sion.

filename Filename of the file to be used for paging. Filename defaults

to FEPn:>page.page.�

The Add Paging File FEP command adds a paging file only for current use; this

command does not add a paging file to the list of declared paging files (declared

by the Declare Paging Files command or the Declare More Paging Files com-

mand). See the section "Declare Paging Files FEP Command". See the section "De-

clare More Paging Files FEP Command".

Load the Add Paging File FEP command by scanning the overlay (flod) file

*-loaders.flod.

� Boot FEP Command

Page 537

Boot filename

Executes the commands specified in filename. (On the MacIvory, this is automati-

cally done for the user whenever Lisp is started). See the section "Using the Gen-

era Application on a MacIvory".

filename The name of a boot file; the default is the last filename given

to either the Boot or Show File commands (initially, the de-

fault is >Boot.boot).�

The Boot FEP command is resident in the FEP, so it needn't be loaded from an

overlay (flod) file.

� Clear Machine FEP Command

Clear Machine

Clears Lisp memory. It is optional on Ivory-based machines.

On 3600-family machines, use the Clear Machine FEP command before loading

new microcode, and before using the Disk Restore or Disk Format FEP commands.

Load the command by scanning the overlay (flod) file *-loaders.flod. This com-

mand commonly appears in boot.boot and autoboot.boot files.

� Clear Paging Files FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Clear Paging-Files (for 3600-family machines)

Clear Paging Files (for Ivory-based machines)�

Clears the list of paging files automatically added by the Load World FEP com-

mand. It also clears the list of paging files added by the Add Paging File FEP

command.

The Clear Paging Files FEP command does not clear the list of paging files de-

clared by the Declare Paging Files or Declare More Paging Files FEP commands.

To clear this list, issue the Declare Paging Files command without listing any

files.

Load the Clear Paging Files FEP command by scanning the overlay (flod) file

*-loaders.flod. This command commonly appears in files of the type boot.boot,

hello.boot, and autoboot.boot.

� Clear Screen FEP Command

Page 538

Clear Screen

On 3600-family machines, clears the console's screen. On Ivory-based machines, it

clears the Ivory FEP window.

The Clear Screen FEP command is resident in the FEP, so it needn't be loaded

from an overlay (flod) file. This command commonly appears in files of the type

hello.boot and autoboot.boot.

� Continue FEP Command

Continue

Returns you to Lisp from the FEP.

On Ivory-based machines, you are asked to confirm any FEP command that would

prevent you from using the Continue FEP command. On 3600-family machines, if

you have used the Halt Machine command or h-c-FUNCTION to stop Lisp, loaded

new microcode, or used the Clear Machine command, the Continue command will

not work. Instead, you'll need to use the Start command (to warm or cold boot).

See the section "Using the Genera Application on a MacIvory".

Load the Continue FEP command by scanning the overlay (flod) file *-lisp.flod.

See the section "Start FEP Command".

� Debug FEP Command

Debug

Enters the FEP Debugger on 3600-family machines or the IFEP Debugger on

Ivory-based machines. You can use this command to gather information for sending

bug reports. See the section "Debugging in the FEP".

On Ivory-based machines, use the Mail Bug Report subcommand of the Debug FEP

Command to append the stack backtrace to the crash data. Crash data for both the

3600 and Ivory machines can be recovered the next time Lisp is running: Use the

Command Processor (CP) Show Crash Data command.

Load the Debug FEP command by scanning the overlay (flod) file *-debug.flod.

keywords :Ignore Storage Structures, :Show Initial Frame �

These keywords are only supported on Ivory-based machines.

:Ignore Storage Structures

{Yes, No} This option allows you to ignore Lisp's storage

structure when you invoke the IFEP Debugger.

Specify :Ignore Storage Structures Yes, if you suspect that the

Lisp storage system is damaged or is preventing the IFEP De-

bugger from working properly. This option defaults to Yes if

Page 539

the FEP believes Lisp has not completed initializing its storage

system (otherwise, the default is No).

Note that if you specify :Debug :Ignore Storage Structures

when Lisp has been running for some time, you may get un-

predictable results. For more details, see the section "The

IFEP Debugger and Virtual Memory".

:Show Initial Frame{Yes, No} This option allows you to control the display of the

initial frame when you invoke the IFEP Debugger. This key-

word option defaults to Yes if the FEP believes that Lisp is

running (to No, otherwise).

Specify :Debug :Show Initial Frame No if an error in the ini-

tial display appears to be preventing you from entering the

Debugger.

� Declare More Paging Files FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Declare More Paging-Files sequence-of-filenames (for 3600-family machines)

Declare More Paging Files sequence-of-filenames (for Ivory-based machines)�

Declares sequence-of-filenames to be paging files.

sequence-of-filenames

A list of files separated by spaces on 3600-family machines,

and by commas on Ivory-based machines.�

� Note: The syntax of FEP commands that take sequence arguments is different, de-

pending on whether the machine is a 3600-family machine or an Ivory-based ma-

chine. A "sequence argument" is a list of things, such as the sequence-of-filenames

argument to the Declare Paging Files and the Declare More Paging Files com-

mands.

On 3600-family machines, the elements of the sequence must be separated with

spaces. For example:

Declare Paging-Files file1 file2 file3�

On Ivory-based machines, the elements of the sequence must be separated with

commas and no spaces. (This syntax is compatible with the Command Processor

syntax.) For example:

Declare Paging Files file1,file2,file3�

The Declare More Paging Files FEP command is similar to the Declare Paging

Files command, but Declare More Paging Files does not clear previously declared

Page 540

paging files. Instead, it declares new paging files (in addition to any paging files

that have already been declared). See the section "Declare Paging Files FEP Com-

mand". The Declare More Paging Files FEP command checks to see if each paging

file actually exists. If it does not exist, a warning is issued, and the file is added

to the list of declared files in case the file is created later.

The list of declared paging files is cleared when:

• You reset the FEP.

• Your machine is powered down.

• You reissue the Declare Paging Files command.

Here is a sample (Ivory-based machine) hello.boot file that includes both the De-

clare Paging Files and the Declare More Paging Files FEP commands:

Hello Innn

Hello Local (or hostname)�

Innn and Local represent two .boot files. Their contents should be as follows:

Hello Innn Boot File

The Innn.boot file (where nnn is the IFep version number, which is 328 for Gen-

era 8.3) should contain the commands to scan the flod files and initialize things.

Scan I328-lisp.flod

Scan I328-loaders.flod

Scan I328-info.flod

Scan I328-debug.flod

Initialize Hardware Tables

Hello Local Boot File

The local.boot file should contain those commands that set up this specific ma-

chine, declaring paging files, setting the network address, and any other boot op-

tions.

Declare Paging Files FEP0:>Paging-1.page

Declare More Paging Files FEP0:>Paging-2.page,Paging-3.page

Set Boot Options :Network Address Chaos|52525 :IDS Enable

�

Load the Declare More Paging Files FEP command by scanning the overlay (flod)

file *-loaders.flod. This command commonly appears in files of the type

boot.boot, hello.boot, and autoboot.boot.

Note: Issue the Declare More Paging Files FEP command before the Load World

FEP command and after the Declare Paging Files FEP command inside a boot.boot

Page 541

file. Issue the Declare Paging Files and Declare More Paging Files FEP commands

after the Initialize Hardware Tables FEP command inside a hello.boot file.

� Declare Paging Files FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Declare Paging-Files sequence-of-filenames (for 3600-family machines)

Declare Paging Files sequence-of-filenames (for Ivory-based machines)�

Declares sequence-of-filenames to be paging files.

sequence-of-filenames

A list of files separated by spaces on 3600-family machines,

and by commas on Ivory-based machines.�

Note: The syntax of FEP commands that take sequence arguments is different, de-

pending on whether the machine is a 3600-family machine or an Ivory-based ma-

chine. A "sequence argument" is a list of things, such as the sequence-of-filenames

argument to the Declare Paging Files and the Declare More Paging Files com-

mands.

On 3600-family machines, the elements of the sequence must be separated with

spaces. For example:

Declare Paging-Files file1 file2 file3�

On Ivory-based machines, the elements of the sequence must be separated with

commas and no spaces. (This syntax is compatible with the Command Processor

syntax.) For example:

Declare Paging Files file1,file2,file3�

The Declare Paging Files command is similar to the Declare More Paging Files

FEP command, but clears any previously declared paging files. See the section

"Declare More Paging Files FEP Command". The Declare Paging Files FEP com-

mand checks to see if each paging file actually exists. If it does not exist, a warn-

ing is issued, and the file is added to the list of declared files in case the file is

created later.

If no declared paging files exist, the Load World command attempts to add the

paging file called FEPn:>Page.page. The list of declared paging files is cleared

when:

• You reset the FEP.

• Your machine is powered down.

Page 542

• You reissue the Declare Paging Files command.

Here is a sample hello.boot file for an Ivory based machine. It contains both the

Declare Paging Files and the Declare More Paging Files FEP commands.

Hello Innn

Hello Local (or hostname)�

Innn and Local represent two .boot files. Their contents should be as follows:

Hello Innn Boot File

The Innn.boot file (where nnn is the IFep version number, which is 328 for Gen-

era 8.3) should contain the commands to scan the flod files and initialize things.

Scan I328-lisp.flod

Scan I328-loaders.flod

Scan I328-info.flod

Scan I328-debug.flod

Initialize Hardware Tables

Hello Local Boot File

The local.boot file should contain those commands that set up this specific ma-

chine, declaring paging files, setting the network address, and any other boot op-

tions.

Declare Paging Files FEP0:>Paging-1.page

Declare More Paging Files FEP0:>Paging-2.page,Paging-3.page

Set Boot Options :Network Address Chaos|52525 :IDS Enable

�

Load the Declare Paging Files FEP command by scanning the overlay (flod) file

*-loaders.flod. This command commonly appears in files of the type boot.boot,

hello.boot, and autoboot.boot.

Note: Issue the Declare Paging Files FEP command before the Load World FEP

command inside a boot.boot file. Issue the Declare Paging Files FEP command af-

ter the Initialize Hardware Tables FEP command inside a hello.boot file.

� Enable IDS FEP Command

Enable IDS

Enables the Incremental Disk Save facility. See the section "Using the Incremental

Disk Save (IDS) Facility".

See the section "Set Boot Options FEP Command".

Page 543

Load the Enable IDS FEP command by scanning the overlay (flod) file

*-loaders.flod. This command commonly appears in files of the type boot.boot

and autoboot.boot.

Note: Issue the Enable IDS FEP command after the Load World FEP command

and before the Start FEP command inside a boot file.

� Hello FEP Command

Hello filename

Loads the hello.boot file.

filename A filename (defaulting to FEPn:>hello.boot) that contains a

minimum sequence of commands to:

• Scan the FEP overlay (flod) files.

• Determine the machine's hardware configuration.

• Set the machine's primary network address.�

Optionally, the hello.boot file can contain additional commands.

For more information:

• See the section "Scanning the Overlay (Flod) Files".

• See the section "Declare Paging Files FEP Command".

• See the section "Declare More Paging Files FEP Command".�

For Ivory-based machines, also see the section "Set Boot Op-

tions FEP Command".

A hello.boot file resides on every Symbolics machine. Each time a machine is pow-

ered up or reset, use the Hello command to load the hello.boot file. (On MacIvory

machines, this is automatically done for the user whenever Lisp is started). See

the section "Using the Genera Application on a MacIvory".

The Hello FEP command is resident in the FEP, so it needn't be loaded from an

overlay (flod) file. See the section "Overlay (Flod) Files and the FEP".

� Initialize Hardware Tables FEP Command

Page 544

Initialize Hardware Tables

initializes the FEP's hardware tables.

The Initialize Hardware Tables FEP command determines the type and size of

memory on each memory board in the machine. Before this command is executed

for the first time, the FEP has no information about the type ¾ or the respective

locations ¾ of each memory board in the machine.

It's not necessary to explicitly issue the Initialize Hardware Tables FEP command,

since any command that requires hardware table initialization automatically exe-

cutes that function. Because the initialization function might have to print diag-

nostic messages to the console, however, it is useful to place Initialize Hardware

Tables FEP command in the hello.boot file.

Load the Initialize Hardware Tables FEP command by scanning the overlay (flod)

files *-loaders.flod. This command commonly appears in files of the type

hello.boot and autoboot.boot.

� Load Microcode FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Load Microcode filename

Loads microcode from the local disk into the machine's memory. You must use the

Load Microcode command before loading a world, and also if you want to use the

Disk Format or Disk Restore FEP commands. The Clear Machine FEP command

should always precede the Load Microcode FEP command.

filename A filename indicating where the microcode is stored. The ini-

tial default filename for this command depends on the local

machine's hardware configuration. For example:

Hardware Configuration Default

3600, FPA FEP:>3600-fpa-mic.mic

3600, FPA, XSQ FEP:>3600-fpa-xsq-mic.mic

3640, FPA FEP:>3640-fpa-mic.mic

3640, FPA, XSQ FEP:>3640-fpa-xsq-mic.mic�

To recompute the initial microcode default, use the Compute Microcode Default

command. See the section "Compute Microcode Default FEP Command".

Load the Load Microcode FEP command by scanning the overlay (flod) file

*-loaders.flod. This command commonly appears in files of the type boot.boot

and autoboot.boot.

� Load World FEP Command

Page 545

Load World filename

Loads the Lisp world from a local disk into the machine's memory, and adds any

paging files declared with the Declare Paging Files or Declare More Paging Files

FEP commands.

filename A filename indicating where the world is stored. The default

value of filename is the last file name given to the Load World

command.�

Because the Load World FEP command searches the local machine's (mounted)

disks to find any parents of an IDS world loaded with the Load World FEP com-

mand, use the Mount FEP command to explicitly mount all disk units (if they are

not already mounted). On 3600-family machines, it is possible to netboot using the

Load World FEP command.

Note: The Load World FEP command checks the local disks for an IDS world's

parents. If one or more parents is missing, the Load World FEP command will

look for the parent on all enabled netboot servers, and attempt to netboot it. This

means that, if all the parents of an IDS world do not reside on the local disk, Load

World becomes a request to netboot the parent worlds of an IDS loaded from the

local disk.

Also:

• See the section "Booting IDS Worlds".

• See the section "Netbooting".

Load the Load World FEP command by scanning the overlay (flod) file

*-loaders.flod. This command commonly appears in files of the type boot.boot,

and autoboot.boot.

Note: The Load World FEP command sets the default disk unit to be the disk

from which the world was loaded. To change this default, use the Set Default-Disk-

Unit FEP command.

� Mount FEP Command

Mount device

Mounts a specified device.

device A number indicating which device to mount. For example, to

mount disk unit FEP2:

Mount (default is FEP:) 2�

Any time a pathname references a device, that device is automatically mounted for

you. You must explicitly mount a device only if you haven't used any pathnames

that referenced it. See the section "Dismount FEP Command".

Page 546

The Mount FEP command is resident in the FEP, so it needn't be loaded from an

overlay (flod) file.

� Netboot FEP Command

Netboot world-description

Loads a netboot core from the local disk into the machine's memory, and adds any

paging files declared with the Declare Paging Files or Declare More Paging Files

FEP commands. This prepares the machine to boot a Lisp world ¾ described by

world-description ¾ from a netboot server's disk.

world-description Describes which world to boot.�

world-description can be a complete specification, or a short, unique substring from

the name of a world-load file. world-description need not include a disk unit speci-

fication, or the file type .load or .ilod.

If you have two worlds with identical substrings in them, the Netboot FEP com-

mand looks for the newest one. For example, if these two worlds exist:

Genera-8-0-incremental-1.load

Genera-8-0-incremental-2.load

and you issue this command:

Command: Netboot Genera-8-0

you get the newest world containing the substring Genera 8.0 (but you are not

able to specify which one you want to boot).

To ensure that you netboot the world you intend, name the worlds something like

this:

Inc-1

Inc-2

Then, issue the Netboot FEP command, followed by the appropriate (unique) sub-

string.

For more information about netboot cores, see the section "Netboot Cores". For

more information about the Declare Paging Files and Declare More Paging-Files

FEP commands, see the section "Declare Paging Files FEP Command" and see the

section "Declare More Paging Files FEP Command".

Load the Netboot FEP command by scanning the overlay (flod) file *-load-

ers.flod. This command commonly appears in files of the type boot.boot, and

autoboot.boot.

Note: When you netboot, replace the Load World FEP command with the Netboot

FEP command inside a boot file (or manually type the Netboot FEP command

Page 547

within the appropriate sequence). For more information about netbooting, see the

section "Netbooting".

� Reset FEP FEP Command

Reset FEP

Initializes the FEP's memory. After the FEP is reset, you must initialize the FEP

overlay (flod) files by typing Hello to the FEP command prompt. (On MacIvory

machines, this is automatically done for the user whenever Lisp is started).

The Reset FEP command is resident in the FEP, so it needn't be loaded from an

overlay (flod) file.

� Scan FEP Command

Scan pathname

Reads an overlay (flod) file, and makes the commands located in the file available

to the FEP.

pathname Specifies the overlay (flod) file to read.�

The Scan FEP command is resident in the FEP, so it needn't be loaded from an

overlay (flod) file. This command commonly appears in files of the type hello.boot

and autoboot.boot.

� Set Boot Options FEP Command

Note: This command is implemented only on Symbolics Ivory-based machines.

 Set Boot Options keywords�

Sets default values for keywords on the local Ivory-based machine. Use this com-

mand instead of entering the corresponding FEP command for each keyword in a

hello.boot file.

The Set Boot Options FEP command makes it possible for users to boot distribu-

tion worlds without having to site-configure them first.

keywords :Network Address, :Ethernet Address, :LMFS FSPT Unit,

:Timezone Offset, :Timezone Name, :Site Name, :Namespace

Descriptor File, :Default World, :Default Boot File, :IDS, :Auto-

boot on Halt, :Slave-Buffer Base�

:Autoboot on Halt

{Yes, No}. If Yes, and Lisp halts to the FEP, the FEP searches

for an autoboot.boot file and processes it (if found) as if the

system had just been powered up. If the autoboot process is

Page 548

aborted (by typing any character before it is finished) this op-

tion is set back to No (on the assumption that the system is no

longer running unattended).

Recommended usage: Your autoboot.boot file might look like

this:

Hello

Set Boot Options :Autoboot on Halt Yes

(Type any character to abort autobooting...)

Autoboot Delay 20

Boot �

Note that the Set Boot Options command must follow the Hello

command, since it is in an overlay and would otherwise be un-

recognized. (A "safer" .boot file would also specify the argu-

ments to Hello and Boot.)

If you abort an autoboot, and later want to leave the machine

unattended, you must reset the :Autoboot on Halt keyword. You

could have it always set on in your standard hello file or boot

file. Another way to do this is simply to halt to the FEP and

reboot by:

Hello autoboot.boot�

when you are ready to return to unattended operation. (Note

that the default for Hello is always hello.boot, so this is safe to

use with the above autoboot file where the Hello command

reads its default. If you were to use Boot, instead of Hello

above, you would end up recursively reading the autoboot.boot

file. For safety, you should always fully specify arguments to

commands in .boot files.)

:Default Boot File

Pathname for a boot file to use (must be in the local machine's

FEPFS).

:Default World A world to load (must be in the local machine's FEPFS).

:Ethernet Address

The Ethernet address of the local machine. (This is used for

DNA only.)

:IDS {Enable, Disable, Default}. How to set IDS when booting. The

default is Default, that is, based on the world.

:LMFS FSPT Unit

The disk unit on which the File System Partition Table re-

sides.

:Namespace Descriptor File

Pathname for a locally accessible namespace descriptor file

(can be resident in the FEPFS, LMFS, or host (for example,

Page 549

Macintosh) file systems). If a site name is provided and it is

not the current site, the site will be changed. If no descriptor

file is provided, the site information is obtained from the net-

work.

:Network Address

The primary network address of the local machine. A Chaos

address is specified as follows: CHAOS|24623. An Internet ad-

dress is specified as follows: INTERNET|128.81.41.147.

:Timezone Name Name of the local machine's timezone.

:Timezone Offset Offset from GMT of the local machine's timezone.

:Site Name Site name for a site. Used to change sites at boot time.

:Slave-Buffer Base

Enables you to specify the base-address when it is something

other than the default.�

Load the Set Boot Options FEP command by scanning the overlay (flod) file

*-lisp.flod. This command commonly appears in files of the type hello.boot.

For related information, see the section "Set Ethernet Address FEP Command",

and see the section "Set Chaos Address FEP Command".

Set Chaos Address FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Set Chaos-Address octal-value�

Sets the Chaos address of the local 3600-family machine. Ivory-based machines

must use the Set Network Address FEP command, instead. For more information,

see the section "Set Network Address FEP Command".

octal-value Specifies the Chaos address; this defaults to the previously set

Chaos address, and to zero when the FEP is reset.�

Load the Set Chaos Address FEP command by scanning the overlay (flod) file

*-lisp.flod. This command commonly appears in files of the type boot.boot and

autoboot.boot.

For related information, see the section "Set Ethernet Address FEP Command",

and see the section "Set Network Address FEP Command".

� Set Default Disk Unit FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Page 550

Set Default-Disk-Unit unit-number�

Sets the disk unit to which Lisp and the FEP should default for all subsequent

disk references.

unit-number Specifies a unit; must be a number in base 10.�

Load the Set Default Disk Unit FEP command by scanning the overlay (flod) file

*-loaders.flod. This command commonly appears in files of the type boot.boot,

and autoboot.boot.

Note: The Load World FEP command sets the default disk unit to be the disk

from which the world was loaded. To change this default, use the Set Default-Disk-

Unit FEP command.

� Set Display-string FEP Command

Note: This command is supported only on the following machine models: 3600,

3640, 3645, 3670, 3675.

Set Display-string string

Displays a string on the front panel of some Symbolics 3600-family machines. This

is useful when you want to display the machine's name or Chaos address there, for

example.

string The string to display. Its length is limited to 12 characters. If

more characters are used, the string is truncated.�

Load the Set Display-string FEP command by scanning the overlay (flod) file

*-lisp.flod. This command commonly appears in files of the type hello.boot and

autoboot.boot.

� Set Ethernet Address FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Set Ethernet-Address Ethernet-address

Set Ethernet Address Ethernet-address�

Sets the Ethernet address of the local machine. Use this command if you are using

Symbolics DNA (DECnet).

Ethernet-address The Ethernet address of the local machine.�

Page 551

Load the Set Ethernet Address FEP command by scanning the overlay (flod) file

*-lisp.flod. This command commonly appears in files of the type boot.boot and

autoboot.boot.

For related information, see the section "Set Network Address FEP Command", see

the section "Set Chaos Address FEP Command", and see the section "Show Ether-

net Address FEP Command".

� Set LMFS FSPT Unit FEP Command

Set LMFS FSPT Unit unit-number�

In order to use the local Lisp Machine File System (LMFS), Lisp must have access

to the File System Partition Table (FSPT). The File System Partition Table is con-

tained within a FEP file named fspt.fspt that lists the LMFS partitions. See the

section "LMFS Multiple Partitions".

Sets the default location for the file named fspt.fspt to the disk unit specified by

unit-number.

unit-number A number indicating a unit; must be a number in base 10.�

Note: The Load World FEP command sets the default disk unit to be the disk

from which the world was loaded. To change this default for the FSPT file, use

the Set LMFS FSPT Unit FEP command.

Load the Set LMFS FSPT Unit FEP command by scanning the overlay (flod) file

*-lisp.flod. This command commonly appears in files of the type hello.boot and

autoboot.boot.

� Set Network Address FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Set Network-Address interfacename:network-type|network-address;option;

 option;... (for 3600-family machines)

Set Network Address interfacename:network-type|network-address;option;

 option;... (for Ivory-based machines)�

Sets the primary network type and address of the local machine. This command

supports the ability to use the Internet as the primary network.

interfacename The name of the interface, if there are multiple network inter-

faces available. Separate this from network-type by a colon [:].

Page 552

• On 3600-family machines, the interface name is OBS-0 for

3600, 3670, 3675, 3640 and 3645 machines, and NBS-0 for

3620, 3630, and 3650 machines.

• On XL400 machines, the interface name is Merlin0.

• On MacIvory machines, the interface name is enetportnum-

ber.

• On UX-family machines, the interface name is the name of

the Sun interface.�

network-type Chaos or Internet. Separate this from network-address with a

bar [|].

network-address The primary network address of the local machine, in the ad-

dress format appropriate to the network type.

option Additional address information for use on machines that boot

in an Internet-only configuration on a network with several

subnets. Separate these by semicolons [;]. The two options are:

gateway The address of the gateway machine on the

subnet. This allows the machine to locate

its namespace server if the namespace

server is on another subnet.

mask A representation of bits in the network ad-

dress that should be masked when deter-

mining the host number. For an explana-

tion of internet subnet masks, see the sec-

tion "IP/TCP Support for Subnetting".�

If the machine is on more than one network, separate each network address string

with commas [,].

The network addresses of a UX-family machine might look like this:

ie0:Chaos|24407, ie0:Internet|128.81.41.7;gateway=128.81.41.1;mask=255.255.255.0�

On Ivory-based machines, load the Set Network Address FEP command by scan-

ning the overlay (flod) file *-lisp.flod. On 3600-family machines, load the Set

Network-Address FEP command by scanning the overlay (flod) file *-rel7.flod.

This command commonly appears in files of the type boot.boot and autoboot.boot.

Note that on Ivory-based machines you can use the Set Boot Options command

(specifically, the :Network Address keyword) to set the network address, instead of

using the Set Network Address command. See the section "Set Boot Options FEP

Command".

For related information, see the section "Set Ethernet Address FEP Command",

and see the section "Set Chaos Address FEP Command".

Set Prompt FEP Command

Page 553

Set Prompt string

Sets the FEP command prompt to the specified string.

string The string to be used as the FEP command prompt.�

For example:

FEP Command: Set Prompt "In the FEP Again?"

�

In the FEP Again?

The Set Prompt FEP command is resident in the FEP, so it needn't be loaded

from an overlay (flod) file. This command commonly appears in files of the type

hello.boot and autoboot.boot.

� Show Directory FEP Command

Show Directory directory-specification

Displays the contents of a specified directory in the FEP file system, and shows

detailed information about each FEP file system directory entry, similar to the way

the CP command Show Directory shows this information.

directory-specification

Specifies a directory in the FEP file system. directory-

specification can use simple wildcards, as shown in these ex-

amples:

Wildcard Spec Lists all

*.load world loads

*.boot boot files

v127*.flod .flod files for FEP version 127

sys.* files whose name contains sys

*.mic.428 version 428 microcode files �

The Show Directory FEP command displays:

• The number of blocks allocated to each FEP file.

• The number of bytes in each file and the file's byte-size (or the word "directory"

if the file is a subdirectory of FEPn).

• Any flags (such as "don't delete", "deleted", and "don't reap").

• The file's creation time (in Greenwich Mean Time (GMT)).

• Comments about the file (if any exist).

Page 554

• The file's author.

The Show Directory FEP command is resident in the FEP, so it needn't be loaded

from an overlay (flod) file.

� Show File FEP Command

Show File filename

Displays the contents of a file in the the FEP file system.

filename A file in the FEP file system.�

The Show File FEP command is resident in the FEP, so it needn't be loaded from

an overlay (flod) file.

� Show Paging Files FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Show Paging-Files (for 3600-family machines)

Show Paging Files (for Ivory-based machines)

�

Shows two lists of files:

1. Files declared using the Declare Paging Files or Declare More Paging Files

commands.

2. Files added using the Command Processor (CP) Add Paging File command, or

added automatically by the Load World or Netboot FEP command.

Load the Show Paging Files FEP command by scanning the overlay (flod) file

*-loaders.flod.

� Shutdown FEP Command

Shutdown

Asks for confirmation and halts the FEP. On some machine models, the Shutdown

command queries appropriately and powers down the machine. On embedded sys-

tems, the Shutdown command closes the Genera application and returns control to

the embedding host.

Page 555

To restart (and reset) the machine, press the RESET button on the processor's front

panel.

If you have a MacIvory, use the Cold Boot Lisp Ivory menu item.

If you have a UX-family machine, run the Genera program.

Use the Shutdown command to power off an XL400 or a 3600-family machine as

follows:

1. Issue the Halt Machine command.

2. Issue the Shutdown command.

3. Power off the console and processor.

Use the Shutdown command to power off a MacIvory machine as follows:

1. Use the Shutdown Ivory menu item.

2. Use the Shutdown Special menu item.

3. Power off the console, processor, and external disk, if one exists.

Use the Shutdown command to power off a UX-family machine as follows:

1. Issue the Halt Machine command.

2. Issue the Shutdown command.

3. Shut down UNIX (see your UNIX documentation).

4. Power off the console and processor.

The Shutdown FEP command is resident in the FEP, so it needn't be loaded from

an overlay (flod) file.

� Start FEP Command

Start keyword

Transfers control to the loaded Lisp world.

keyword :Ignore Saved State�

:Ignore Saved State

{Yes, No} This keyword argument should not normally need to

be used. Yes causes the machine to attempt not to unwind the

process out of which you are warm booting. The default is No.

This keyword is available only on Ivory-based machines.�

Page 556

If the Lisp world has been running, the Start FEP command initiates a warm boot.

If the Lisp world has just been loaded (using the Load World or Netboot com-

mand), the Start FEP command initiates a cold boot. See the section "Using the

Genera Application on a MacIvory". See the section "Continue FEP Command".

Load the Start FEP command by scanning the overlay (flod) file *-lisp.flod.

� Color Systems FEP Commands

These FEP commands pertain to systems with color consoles. For your conve-

nience, we have arranged these commands in alphabetical order.

Attach Graphics Tablet FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Attach Graphics Tablet serial-port-number

Issue this command before connecting a graphics tablet to a serial port.

serial-port-number A number indicating a serial port.�

Note: This command is supported only on the following machine models: 3600,

3640, 3645, 3670, 3675.

Load the Attach Graphics Tablet FEP command by scanning the overlay (flod) file

*-lisp.flod.

� Clear Color Background Screen FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Clear Color Background Screen

Clears the regular (not overlay) screen in a color console system. Since the FEP

writes to the overlay screen, it may be easier to read the overlay screen after you

clear the regular screen.

The Clear Color Background Screen FEP command is resident in V127 and G206

versions of the FEP EPROM, so it needn't be loaded from an overlay (flod) file.

� Color FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Color

Like the Monochrome FEP command, allows you to select between the color and

monochrome displays. You must either warm boot or cold boot after issuing this

command.

Page 557

The Color FEP command is resident in V127 and G206 versions of the FEP

EPROM, so it needn't be loaded from an overlay (flod) file.

� Detach Graphics Tablet FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Detach Graphics Tablet

Issue the Detach Graphics Tablet FEP command before disconnecting a graphics

tablet from a serial port.

Note: This command is supported only on the following machine models: 3600,

3640, 3645, 3670, 3675.

Load the Detach Graphics Tablet FEP command by scanning the overlay (flod) file

*-lisp.flod.

� Load Color Sync Program FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Load Color Sync-Program

Loads a color sync program from disk.

Load the Load Color Sync Program FEP command by scanning the overlay (flod)

file *-loaders.flod.

� Monochrome FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Monochrome

LIke the Color FEP command, allows you to select between the monochrome and

color displays. You must either warm boot or cold boot after issuing this command.

The Monochrome FEP command is resident in V127 and G206 versions of the FEP

EPROM, so it needn't be loaded from an overlay (flod) file.

� Set Color Monitor Type FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Set Color Monitor-Type console-name

Identifies the color monitor to the FEP. This command also loads the appropriate

sync program from the PROM and sets the sync program in the CadBuffer (or

CadBuffer2) hardware.

Page 558

console-name Amtron, Tektronix, or Sony

The Set Color Monitor Type FEP command is resident in all versions of the FEP,

so it needn't be loaded from an overlay (flod) file.

� Set Console FEP Command

Set Console console keywords

Allows you to select between the available consoles. For 3600-family machines with

CadBuffer2 hardware, this command also switches input from the console's display

hardware to the CadBuffer2 keyboard. To make Lisp notice that the console has

been changed, you need to reload microcode (on 3600-family machines) and warm

or cold boot (on both 3600-family and Ivory machines) after using the Set Console

FEP command.

console On 3600-family machines, the console is Color or Monochrome.

On Ivory-based machines, the console can be any of the avail-

able and enabled consoles; press HELP for a list of choices.

keywords :Clear Screen, :Cold Load Too�

:Clear Screen {Yes, No} Whether to clear the screen before selecting it. The

default is No.

:Cold Load Too {Yes, No} Whether Lisp's cold-load stream (and Main console if

you warm boot) should be redirected there also. The default is

Yes.�

The Set Console FEP command is resident in G208 and greater versions of the

FEP EPROM, and in I322 or greater versions of the IFEP kernel, so it needn't be

loaded from an overlay (flod) file.

� Set Disk Label FEP Command

Set Disk Label unit-number keywords�

unit-number A disk unit (must be a number in base 10).

keywords :Color System Startup File, :FEP Kernel, :Query�

:Color System Startup File

Pathname of the file where the color system startup programs

are stored.

:FEP Kernel Pathname of the file where the FEP kernel is stored.

:Query {Yes, No} Whether the system should ask for confirmation be-

fore setting the disk label. The default is No.�

Page 559

The Set Disk Label command is resident in the FEP, so it needn't be loaded from

an overlay (flod) file.

� Set FEP Options FEP Command

Set FEP Options keywords

Sets options which are used by the FEP.

keywords :Color System Number, :Color System Startup Program, :Color

System Type, :Serial Console Type�

The Color System keywords are used only when you are using a custom color mon-

itor (other than the default Sony monitor).

:Color System Type

{None, FrameThrower} FrameThrower enables the FEP to use

the color monitor. None disables the use of the color monitor.

:Color System Number

The number of the color system, a decimal integer between 0

and 255. (You can have more than one FrameThrower, and the

color system number enables you to distinguish among them.)

:Color System Startup Program

Which color system startup program in the color system start-

up file for the color system to use.

:Serial Console Type

{None, ASCII, or X3.64} None prevents the FEP from ever us-

ing the serial console; this is appropriate if you have a serial

device other than a console connected to the serial port, and

know you won't use the serial device as a console. ASCII indi-

cates that the serial console is a dumb terminal. X3.64 indi-

cates that the serial console is an ANSI-standard X3.64 termi-

nal, such as a VT100.

The new options you specify in Set FEP Options take effect when you next reset

the FEP with the Reset FEP FEP command.

The Set FEP Options FEP command is resident in the FEP, so it needn't be load-

ed from an overlay (flod) file.

� Set Monitor Type FEP Command

Set Monitor Type console type (for 3600-family machines with G208

or greater FEP EPROMs, and for Ivory machines with I322 or greater

FEP kernels)

Page 560

Set Monitor-Type console-name (for machines with V127 and G206

FEP EPROMs, and for Ivory machines with I321 or less FEP kernels)�

Users of 3600-family machines should use the Set Monitor Type FEP command

when installing a monitor that differs from the one specified by the machine's

hardware.

On 3600-family machines with G208 or greater FEP EPROMs, sets the console

type and name. On 3600-family machines with V127 and G206 FEP EPROMs, sets

the console name. This command also loads the appropriate sync program into the

machine's display controller, CadBuffer, or CadBuffer2 hardware.

Users of Ivory-based machines should use the Set Monitor Type FEP command if

the FEP options installed by the Set FEP Options FEP command are incorrect. At

your first opportunity after using the Set Monitor Type command, you should use

Set FEP Options to correct the FEP options, and reset the FEP to make the new

FEP options take effect.

console A particular console; this argument defaults to the current

console. Use HELP to find out which consoles are applicable. On

Ivory machines, a console is specified by three elements: the

console type, the sync program, and the unit number. On 3600-

family machines, a console is specifed as being color or

monochrome

console-name The list of choices depends on the console. Use HELP to find

out which choices are applicable. �

The Set Monitor Type FEP command is resident in the FEP, so it needn't be load-

ed from an overlay (flod) file.

� Show Disk Label FEP Command

Show Disk Label unit-number

Displays the information in the disk label.

unit-number A disk unit (must be a number in base 10).�

The Show Disk Label FEP command is resident in the FEP, so it needn't be load-

ed from an overlay (flod) file.

� Systems Maintenance FEP Commands

The FEP commands described in this section are of interest to Site Administrators

who maintain systems. For your convenience, we have arranged these commands in

alphabetical order.

Add World File

Page 561

Add World File pathname

Adds the world specified by pathname into the local machine's internal world

database.

Pathname A world load filename (not a netboot world-description).�

The FEP's internal world database automatically maintains information about the

relationships between IDS worlds on the local disk, and is instrumental in deter-

mining which world to use as a netboot core.

The Add World File, Clear World Files, Find World Files, and Find All World

Files FEP Commands can be used to override the automatically maintained inter-

nal world database (for example, if you have multiple copies of the same world on

different disks, and you want to force the FEP to find a particular parent for an

IDS world).

Here is a sample (3600-family machine) boot file that loads an incremental world

with one parent world. This file uses the Add World File FEP command to explic-

itly name the parent, so that the Load World FEP command won't have to search

the local machine's disk to find it. (In this sample file, genera-7-2.load is the par-

ent of incremental-genera-7-2.load):

Clear Machine

Load Microcode FEP1:>3640-mic.mic.430

Add World File FEP0:>genera-8-0.load

Load World FEP1:>incremental-genera-8-0.load

Start

For related information,

• See the section "Clear World Files FEP Command".

• See the section "Find World Files FEP Command".

• See the section "Find All World Files FEP Command".

• See the section "Show World Files FEP Command".�

Load the Add World File FEP command by scanning the FEP overlay (flod) file

*-loaders.flod.

� Autoboot Delay FEP Command

Autoboot Delay time-period�

Automatically delays the autobooting process by ten seconds. You can use this com-

mand to increase the time period during which you can abort the autobooting pro-

cess. If you need a longer time period during which to abort autobooting, place

this command in your autoboot.boot file and specify the the number of seconds

Page 562

you wish to delay autobooting (the number you specify must be a multiple of 10).

Placing this command in your autoboot.boot file without specifying a number auto-

matically delays autobooting an additional ten seconds.

Note that all commands listed before the Autoboot Delay FEP command in your

autoboot.boot file are processed before the autoboot delay.

The Autoboot Delay FEP command is available on Ivory-based machines and on

3600-family machines with G208 FEP EPROMS. It is resident in the G208 FEP

EPROM, so it need not be loaded from a FEP overlay (flod) file.

� Clear Command Tree

Clear Command Tree

Clears FEP memory of all commands that were loaded by scanning the overlay

(flod) files.

The Clear Command Tree FEP command is resident in all versions of the FEP, so

it needn't be loaded from an overlay (flod) file.

� Clear World Files FEP Command

Clear World Files

Removes worlds from the internal world database.

The FEP's internal world database automatically maintains information about the

relationships between IDS worlds on the local disk, and is instrumental in deter-

mining which world to use as a netboot core.

The Add World File, Clear World Files, Find World Files, and Find All World

Files FEP Commands can be used to override the automatically maintained inter-

nal world database (for example, if you have multiple copies of the same world on

different disks, and you want to force the FEP to find a particular parent for an

IDS world).

If you haven't reset the FEP or powered down for several months, the internal

world database may contain obselete worlds. Issue the Clear World Files FEP com-

mand to clear the database, and free up FEP memory space.

For related information,

• See the section "Add World File FEP Command".

• See the section "Find World Files FEP Command".

• See the section "Find All World Files FEP Command".

• See the section "Show World Files FEP Command".�

Page 563

Load the Clear World Files FEP command by scanning the overlay (flod) file

*-loaders.flod.

� Compute Microcode Default FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Compute Microcode Default

Computes the microcode type from the hardware configuration of the local ma-

chine, and sets the Load Microcode command so that it will default to the newly

computed microcode type. Some examples:

Hardware Configuration Microcode Default

3600, FPA FEP:>3600-fpa-mic.mic

3600, FPA, XSQ FEP:>3600-fpa-xsq-mic.mic

3640, FPA FEP:>3640-fpa-mic.mic

3640, FPA, XSQ FEP:>3640-fpa-xsq-mic.mic

Load the Compute Microcode Default FEP command by scanning the overlay (flod)

file *-loaders.flod.

Create Initial FEP Filesystem FEP Command

Note: This command is implemented only on Symbolics Ivory-based machines.

:Create Initial FEP Filesystem unit keywords�

unit A disk unit number in base 10.

keywords: :Pack-Name, :Creator, :Bad-Blocks, :Creation-Date�

:Bad-Blocks {Ask, None, Defect-Data}. Ask queries for a list of bad blocks.

None is the default for MacIvory machines. Defect-Data reads

the list stored on the disk.

:Creator A string (the author for initial files being created)

:Creation-Date Current date (defaults to the Macintosh computer's clock) in

this format:

[YYYY-MM-DD HH:MM:SS (Timezone)]�

:Pack-Name A string that appears in the disk label.�

This command is just the part of the Disk Format FEP command that you need

for embedded systems. It builds an empty filesystem on a disk for use by Lisp (and

the FEP). In standalone systems this command is automatically invoked as a part

of Disk Format. In embedded systems, where you are typically allocating only a

portion of the host disk for use by Lisp, you do not format the host disk (format-

ting and partitioning is done by the host operating system and utilities). You still

Page 564

have to create an initial (empty) filesystem in the partition allocated to Ivory be-

fore Lisp or the FEP can use it. Use this command to do so.

Warning: This is a dangerous command that can erase all the information on your

disk. Don't use this command unless you know how. The typical use of this com-

mand is to initialize a new disk that you are adding to your system. It is extreme-

ly important to specify the correct unit number; if you specify the wrong unit, the

data on that disk will be erased.

The unit number you specify must refer to a disk that does not yet have a filesys-

tem allocated to Ivory. One safe way to figure out which unit number to specify is

to try Show Directory on FEP0 (and then on FEP1, and so on). If you get results

(files appear in the directory listing), then that unit number refers to an existing

filesystem. If, for example, the Show Directory on FEP1 results in an error, then 1

is the unit number that you should specify.

Disable IDS FEP Command

Disable IDS

Disables the Incremental Disk Save facility.

See the section "Using the Incremental Disk Save (IDS) Facility".

See the section "Set Boot Options FEP Command".

Note: Issue the Disable IDS FEP command after the Load World FEP command

and before the Start FEP command inside a boot file.

Load the Disable IDS FEP command by scanning the FEP overlay (flod) file

*-loaders.flod.

� Disable Load To Paging Migration FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Disable Load-to-Paging Migration (for 3600-family machines)

Disable Load to Paging Migration (for Ivory-based machines)

�

Prevents unmodified world-load file pages from being written out to a paging file.

Use this (default) command if you want to allow only modified world-load file

pages to be written out to a paging file. See the section "Set Boot Options FEP

Command".

Load the Disable Load to Paging Migration FEP command by scanning the overlay

(flod) file *-loaders.flod.

Page 565

� Dismount FEP Command

Dismount device

Dismounts a specified device. This example shows how to dismount disk unit FEP2:�

Dismount (default is FEP:) 2

For related information, see the section "Mount FEP Command". The Dismount

FEP command is resident in the FEP, so it needn't be loaded from an overlay

(flod) file.

� Enable Load To Paging Migration FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Enable Load-to-Paging Migration (for 3600-family machines)

Enable Load to Paging Migration (for Ivory-based machines)

�

Allows unmodified world-load file pages to be written out to a paging file. Use this

command if you want to allow both modified and unmodified world-load file pages

to be written out to (and subsequently read from) a paging file. See the section

"Set Boot Options FEP Command".

Effective available paging space is increased when you use the Disable Load to

Paging Migration FEP command. Load to Paging Migration is disabled by default.

For more information about the Disable Load to Paging Migration FEP command,

see the section "Disable Load to Paging Migration FEP Command".

Load the Enable Load to Paging Migration FEP command by scanning the overlay

(flod) file *-loaders.flod.

Note: Issue the Enable Load to Paging Migration FEP command after the Load

World FEP command and before the Start FEP command inside a boot file.

� Find All World Files FEP Command

Note: This command is implemented only on Symbolics Ivory-based machines.

Find All World Files

Examines world files in all FEP directories, and updates the internal world

database to include the worlds that it finds. As each file is found, its name and

world-generation are displayed.

Page 566

The FEP's internal world database automatically maintains information about the

relationships between IDS worlds on the local disk, and is instrumental in deter-

mining which world to use as a netboot core.

The Add World File, Clear World Files, Find World Files, and Find All World

Files FEP Commands can be used to override the automatically maintained inter-

nal world database (for example, if you have multiple copies of the same world on

different disks, and you want to force the FEP to find a particular parent for an

IDS world).

For related information,

• See the section "Add World File FEP Command".

• See the section "Clear World Files FEP Command".

• See the section "Find World Files FEP Command".

• See the section "Show World Files FEP Command".�

Load the Find All World Files FEP command by scanning the overlay (flod) file

*-loaders.flod.

Find World Files FEP Command

Find World Files pathname

Examines world files in the specified FEP directory, and updates the internal

world database to include the worlds that it finds. As each file is found, its name

and world-generation are displayed.

The FEP's internal world database automatically maintains information about the

relationships between IDS worlds on the local disk, and is instrumental in deter-

mining which world to use as a netboot core.

The Add World File, Clear World Files, Find World Files, and Find All World

Files FEP Commands can be used to override the automatically maintained inter-

nal world database (for example, if you have multiple copies of the same world on

different disks, and you want to force the FEP to find a particular parent for an

IDS world).

For related information,

• See the section "Add World File FEP Command".

• See the section "Clear World Files FEP Command".

• See the section "Find All World Files FEP Command".

• See the section "Show World Files FEP Command".�

Page 567

Load the Find World Files FEP command by scanning the overlay (flod) file

*-loaders.flod.

� Load Sync Program FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Load Sync-Program filename

Loads the specified file (of type .sync) into the 3600-family machine's display con-

troller memory. Issue this command when using a monitor that requires a differ-

ent sync program than the one resident within the FEP. (The sync program con-

verts bits into the signal that's sent to the monitor.)

The default value of filename is the last filename given to the Load Sync Program

command. Its initial default is FEPn:>Sync.sync, where FEPn is the default disk

unit.

Load the Load Sync Program FEP command by scanning the overlay (flod) file

*-loaders.flod.

� Reset Device FEP Command

Reset Device pathname

Performs a device-dependent reset of the device specified by pathname. Use the

command like this:

FEP Command: Reset Device FEP1:>

The Reset Device FEP command is resident in the FEP, so it needn't be loaded

from an overlay (flod) file.

� Reset Most FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Reset Most

Resets most of the machine, including its processor clock, Lbus, sequencer data

paths, display controller, and disks. (If the Reset Most FEP command doesn't "un-

wedge" the local machine, you probably need to try power-cycling it.)

Load the Reset Most FEP command by scanning the overlay (flod) file *-lisp.flod.

� Reset Video FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Page 568

Reset Video

Reloads the screen's sync program.

The Reset Video FEP command is resident in the FEP, so it needn't be loaded

from an overlay (flod) file.

� Retension Cartridge Tape FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Retension Cartridge-Tape

Rewinds the tape in the local cartridge tape drive.

This command is resident in 3610, 3620, 3630, 3650, and 3653 machine model FEP

EPROMs. If you have a 3600, 3640, 3645, 3670, or 3675 machine model, load the

Retension Cartridge-Tape FEP command from the *-disk.flod overlay (flod) file.

� Set Monitor Type FEP Command

Set Monitor Type console type (for 3600-family machines with G208

or greater FEP EPROMs, and for Ivory machines with I322 or greater

FEP kernels)

Set Monitor-Type console-name (for machines with V127 and G206

FEP EPROMs, and for Ivory machines with I321 or less FEP kernels)�

Users of 3600-family machines should use the Set Monitor Type FEP command

when installing a monitor that differs from the one specified by the machine's

hardware.

On 3600-family machines with G208 or greater FEP EPROMs, sets the console

type and name. On 3600-family machines with V127 and G206 FEP EPROMs, sets

the console name. This command also loads the appropriate sync program into the

machine's display controller, CadBuffer, or CadBuffer2 hardware.

Users of Ivory-based machines should use the Set Monitor Type FEP command if

the FEP options installed by the Set FEP Options FEP command are incorrect. At

your first opportunity after using the Set Monitor Type command, you should use

Set FEP Options to correct the FEP options, and reset the FEP to make the new

FEP options take effect.

console A particular console; this argument defaults to the current

console. Use HELP to find out which consoles are applicable. On

Ivory machines, a console is specified by three elements: the

console type, the sync program, and the unit number. On 3600-

family machines, a console is specifed as being color or

monochrome

Page 569

console-name The list of choices depends on the console. Use HELP to find

out which choices are applicable. �

The Set Monitor Type FEP command is resident in the FEP, so it needn't be load-

ed from an overlay (flod) file.

� Set World To Netboot FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Set World-To-Netboot world-description�

Prepares the machine to netboot the world specified by world-description. Before

you use the Set World-to-Netboot FEP command, issue the Load World FEP com-

mand to explicitly load a world to be used as the netboot core.

The Set World-To-Netboot FEP command enables you to netboot using a different

netboot core than the one that the Netboot command would have automatically se-

lected for you.

Use this command if the netboot core that the Netboot FEP command selects for

you proves to be damaged, or doesn't work properly.

Load the Set World To Netboot FEP command by scanning the NFEP overlay

(flod) file *-loaders.flod.

For information about netbooting, see the section "Netbooting". For information

about netboot cores, see the section "Netboot Cores".

� Show Command Modules FEP Command

Show Command Modules

Displays the overlay (flod) files that contain accessible commands. If the overlay

file FEP0:>v127-loaders.flod is not currently loaded in your environment, issuing

the Show Command Modules FEP command will display this:

Pathname FEP0:>v127-loaders.flod, not loaded

� Use the Show Version FEP command to determine the FEP (EPROM or software)

version with which your machine has been equipped. (For information about the

Show Version FEP command, see the section "Show Version FEP Command".)

If you have a Symbolics 3600-family machine, and it is equipped with an EPROM

whose version number is lower than 127, please contact Symbolics Customer Ser-

vice for an upgrade.

Load the Show Command Modules FEP command by scanning the overlay (flod)

file *-info.flod.

� Show Command Tree

Page 570

Show Command Tree

Displays the commands that are accessible from scanning the overlay (flod) files.

The Show Command Tree FEP command shows whether a command came from an

overlay file or resides within the FEP. It also shows the address within FEP mem-

ory at which the command resides (or would reside if the overlay file were loaded).

Load the Show Command Tree FEP command by scanning the overlay (flod) file

*-info.flod.

� Show Configuration FEP Command

Show Configuration

Displays the hardware configuration of the local machine. On MacIvory machines,

select the About the Finder Apple menu item for additional information (about the

Macintosh host).

Load the Show Configuration FEP command by scanning the overlay (flod) file�

*-info.flod.

� Show Disk Label FEP Command

Show Disk Label unit-number

Displays the information in the disk label.

unit-number A disk unit (must be a number in base 10).�

The Show Disk Label FEP command is resident in the FEP, so it needn't be load-

ed from an overlay (flod) file.

� Show Ethernet Address FEP Command

This command is implemented on both Symbolics 3600-family and Symbolics Ivory-

based machines. Although Ivory-based machines do not use hyphens in their FEP

command names, many 3600-family machine FEP commands do. Where there are

differences, they are shown here.

Show Ethernet-Address (for 3600-family machines)

Show Ethernet Address (for Ivory-based machines)

�

Displays the Ethernet address of the local machine. Use this command if you are

using Symbolics DNA (DECnet).

Load the Show Ethernet Address FEP command by scanning the overlay (flod) file

*-info.flod.

Page 571

For related information, see the section "Set Network Address FEP Command", see

the section "Set Chaos Address FEP Command", and see the section "Set Ethernet

Address FEP Command".

� Show LMFS FSPT Unit FEP Command

Show LMFS FSPT Unit

In order to use the local Lisp Machine File System (LMFS), Lisp must have access

to the File System Partition Table (FSPT). The File System Partition Table is con-

tained within a FEP file named fspt.fspt that lists the LMFS partitions.

The Show LMFS FSPT Unit FEP command shows the disk unit on which Lisp ex-

pects the file system partition table to reside.

Load the Show LMFS FSPT Unit FEP command by scanning the overlay (flod) file

*-lisp.flod.

Note: To change the default location for the FSPT file, use the Set LMFS FSPT

Unit FEP command. For more information, see the section "Set LMFS FSPT Unit

FEP Command".

� Show Serial FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Show Serial unit-number

Tells whether the specified serial port is in use. If the serial port is in use, the

Show Serial FEP command provides information about the port's status.

unit-number A serial port (must be a number in base 10).�

Note: This command is supported only on the following machine models: 3600,

3640, 3645, 3670, 3675.

Load the Show Serial FEP command by scanning the overlay (flod) file

*-lisp.flod.

� Show Status FEP Command

Show Status

Displays the internal status of the machine (in machine-dependent format). This

command is useful for debugging and crash analysis. Additional crash data can be

obtained by using the Debug FEP command. On Ivory-based machines, the Debug

command can be used to append a backtrace to the crash data. See the section

"Debug FEP Command".

Page 572

For related information (about the Show Status FEP Command's Command Proces-

sor equivalent), see the section "Show Crash Data Command".

Information is available to help you interpret the output of this command for 3600-

family machines. See the section "Interpreting the Show Status Command's Output

on 3600-Family Machines".

Load the Show Status FEP command by scanning the overlay (flod) file�

*-lisp.flod.

� Show Version FEP Command

Show Version

Displays the version of the local machine's FEP (Symbolics 3600-family machines

display a FEP EPROM version; Symbolics Ivory-based machines display the version

number of their FEP kernel code).

The Show Version FEP command is resident in the FEP, so it needn't be loaded

from an overlay (flod) file.

� Show World Files FEP Command

Show World Files

Lists the files contained in the internal world database. As each file is listed, the

following information is displayed:

• The world-file pathname

• The required microcode (on 3600-family machines)

• The world-file's world-generation

• The world-file's timestamp and the timestamps of its parents

• Whether the world-file can be used as a netboot core�

� The FEP's internal world database automatically maintains information about the

relationships between IDS worlds on the local disk, and is instrumental in deter-

mining which world to use as a netboot core.

The Add World File, Clear World Files, Find World Files, and Find All World

Files FEP Commands can be used to override the automatically maintained inter-

nal world database (for example, if you have multiple copies of the same world on

different disks, and you want to force the FEP to find a particular parent for an

IDS world).

For related information,

Page 573

• See the section "Add World File FEP Command".

• See the section "Clear World Files FEP Command".

• See the section "Find World Files FEP Command".

• See the section "Find All World Files FEP Command".�

Load the Show World Files FEP command by scanning the overlay (flod) file�

*-loaders.flod.

� FEP Commands for Systems Experts

To use the FEP commands in this section, you should have extensive knowledge

about the Lisp Machine File System. (Many of these commands can be destructive,

so use them all with caution). For your convenience, we have arranged these com-

mands in alphabetical order.

Add Disk Type FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Add Disk-Type name cylinders heads sectors gap1 gap2 gap3 fast

Lets you declare arbitrary disk types to the FEP. Use this command if you need to

format and restore disks that Symbolics does not yet support. You can declare up

to four disk types before you need to give the Clear Disk Types FEP command.

Add Disk Type is needed only to format and restore disks. It is not needed for the

normal operation of any validly formatted disk with a FEP file system.

Add Disk Type has the following arguments, for which it prompts with the argu-

ment names in parentheses:

name The textual name by which this disk type is known.

cylinders The number of cylinders supported by the drive.

heads The number of heads on the drive.

sectors The number of sectors.

gap1 The length of "gap1".

gap2 The length of "gap2".

gap3 The length of "gap3".

fast 0 for slower disks, 1 for faster disks.�

These numbers require careful computation and involve some hardware restric-

tions. The calculations should be performed by Symbolics Customer Service per-

sonnel.

Page 574

Load the Add Disk Type FEP command by scanning the overlay (flod) file

*-disk.flod.

� Clear Disk Counters FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Clear Disk-Counters

Resets the registers that keep track of disk statistics.

Load the Clear Disk Counters FEP command by scanning the overlay (flod) file

*-disk.flod.

� Clear Disk Types FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Clear Disk-Types

Clears all disk types declared with the Add Disk Type FEP command. See the sec-

tion "Add Disk Type FEP Command".

Load the Clear Disk Types FEP command by scanning the overlay (flod) file

*-disk.flod.

� Copy File FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Copy File from-pathname to-pathname

Copies a file from disk to tape on that same machine.

from-pathname Pathname of a file on disk.

to-pathname Pathname of the file on tape.�

The Copy File FEP command is resident in the FEP, so it needn't be loaded from

an overlay (flod) file.

Debug FEP Command

Debug

Enters the FEP Debugger on 3600-family machines or the IFEP Debugger on

Ivory-based machines. You can use this command to gather information for sending

bug reports. See the section "Debugging in the FEP".

Page 575

On Ivory-based machines, use the Mail Bug Report subcommand of the Debug FEP

Command to append the stack backtrace to the crash data. Crash data for both the

3600 and Ivory machines can be recovered the next time Lisp is running: Use the

Command Processor (CP) Show Crash Data command.

Load the Debug FEP command by scanning the overlay (flod) file *-debug.flod.

keywords :Ignore Storage Structures, :Show Initial Frame �

These keywords are only supported on Ivory-based machines.

:Ignore Storage Structures

{Yes, No} This option allows you to ignore Lisp's storage

structure when you invoke the IFEP Debugger.

Specify :Ignore Storage Structures Yes, if you suspect that the

Lisp storage system is damaged or is preventing the IFEP De-

bugger from working properly. This option defaults to Yes if

the FEP believes Lisp has not completed initializing its storage

system (otherwise, the default is No).

Note that if you specify :Debug :Ignore Storage Structures

when Lisp has been running for some time, you may get un-

predictable results. For more details, see the section "The

IFEP Debugger and Virtual Memory".

:Show Initial Frame{Yes, No} This option allows you to control the display of the

initial frame when you invoke the IFEP Debugger. This key-

word option defaults to Yes if the FEP believes that Lisp is

running (to No, otherwise).

Specify :Debug :Show Initial Frame No if an error in the ini-

tial display appears to be preventing you from entering the

Debugger.

Disk Format FEP Command

Disk Format (for 3600-family machines)

Disk Format unit keywords (for MacIvory machines)

Formats a disk and creates an initial FEPFS on the local machine. This command

is primarily for the use of system maintainers in debugging unusual problems.

When the Disk Format FEP command is used on a 3600-family machine, it creates

the root-directory, free-pages, and bad-blocks files in the new FEPFS.

Table ! shows valid answers that you can provide when queried by the FEP.

Issue the Show Disk Label FEP command to find the answers to these questions.

For information about the Show Disk Label FEP command, see the section "Show

Disk Label FEP Command".

Page 576

Questions Valid Answers

Of Type M2284, T306, M2284, M2294, M2312, M2351A,

 XT1140, XT1105, XT2190, D2257, P807, EMD368,

 EMD515, XMD858, XT4380

On Unit Disk Unit Number

With Pack ID 0�

From Cylinder Cylinder Number (includes lower bound)

Through Cylinder Cylinder Number (includes upper bound)

Table 2. Using the Disk Format FEP Command on a 3600-Family Machine�

On MacIvory machines with customer-supplied disk drives, the Disk Format FEP

command also initializes a disk partition for Ivory to use (an Ivory partition must

already exist on the Macintosh disk).

In general, the defaults for the Disk Format FEP command are correct, and you

should not have to supply any keywords.

unit A disk unit number in base 10.

keywords: :Pack-Name, :Creator, :Bad-Blocks, :Creation-Date�

:Pack-Name A string that appears in the disk label.

:Creator A string (the author for initial files being created)

:Bad-Blocks {ask, none, defect-data}. Ask queries for a list of bad blocks.

None is the default for MacIvory machines. Defect-Data reads

the list stored on the disk.

:Creation-Date Current date (defaults to the Macintosh computer's clock) in

this format:

[YYYY-MM-DD HH:MM:SS (Timezone)]�

Note: Some FEP commands (like Disk Restore and Disk Format) are used primari-

ly by System Administrators to debug unusual problems. Be careful when using

these commands. If you make a mistake, you can destroy the state of the Lisp file

system.

For related information, see the section "Disk Restore FEP Command".

Load the Disk Format FEP command by scanning the overlay (flod) file�

*-disk.flod.

� Disk Restore FEP Command

Disk Restore

Page 577

Loads FEP files from cartridge tape to disk.

Using the Disk Restore FEP Command on 3600-Family Machines

On 3600-family machines, the cartridge tape from which you are loading files must

have been written using either the FEP-Tape Activity or the Copy File FEP com-

mand. Before using the Disk Restore FEP command on a 3600-family machine, is-

sue the Clear Machine FEP command and then the Load Microcode FEP command

(with the cart: argument; note the trailing colon [:] after cart).

A destination file (large enough to accommodate the restored data) must already

exist on the 3600-family machine's disk. The destination file (including its header

information) will be overwritten when the data is restored to it from tape.

When you issue the Disk Restore FEP command on a 3600-family machine, you are

queried:

Have you used Set Disk Type for all units that do not have valid label

blocks?

Answer Y (for yes) unless you're installing a new disk (you must set the disk type

¾ using the Set Disk Type FEP command ¾ if the label block is not yet written).

The first file's name, length, author, creation date and time, and comments are

displayed from tape and you are queried:

Do you want to restore it?

• Answer Y (for yes) if you want the program to restore the file.

• Answer N (for no) if you do not want the program to restore the file.

• Answer S (for skip microcodes) if you want the program to search the tape for

the next, non-microcode file (a world load, for example).

• Answer F (for find microcode) if you want the program to ask for a specific mi-

crocode to find (the default is the current microcode).�

Using the Disk Restore FEP Command on Ivory-Based Machines

On Ivory-based machines, the cartridge tape from which you are loading files must

have been written using the FEP-Tape Activity. Disk Restore for Ivory machines

takes two arguments, unit and network-address followed by optional keywords:

unit {integer} The disk unit to restore.

network-address {string} The primary network address to use in the Hello.boot

file.

Page 578

keywords :Create Boot, :Create Paging Files, :Creation Date, :Query, :Fep

Version, :Format, :Paging Space, :Report, :Source, :Standalone

Site, :World File

:Create Boot Files {Yes, No} Whether to create Hello.boot and Boot.boot files.

:Create Paging Files

{Yes, No} Whether to create the standard paging files (and de-

clare them in the Hello.boot file).

:Creation Date {yyyy-mm-dd hh:mm:ss} The current date and time.

:Query {Everything, Files, Confirm, No} Whether to ask about every

step, each file to be restored, just confirm before starting, or

not ask at all.

:Fep Version {integer} (a version number) The version of the FEP to re-

store.

:Format {Yes, No} Whether to format and create an initial FEP file

system on the disk first.

:Paging Space {integer} Number of blocks to allocate for paging files.

:Report {Yes, No} Whether to describe progress.

:Source {pathname} Source device or directory to copy flods and world

from.

:Standalone Site {Yes, No} Whether to include standalone site commands in

Hello.boot.

:World File {pathname} The pathname of the Lisp world to restore.�

The defaults are correct for a complete restore of a Disk from Tape. They can be

overridden for other purposes, for example, restoring from Disk to Disk, creating

paging files. A simple way to pick and choose is simply to use:

�

Disk Restore N network|address :Query Everything�

And answer y or n to each query.

Note: Some FEP commands (like Disk Restore and Disk Format) are used primari-

ly by System Administrators to debug unusual problems. Be careful when using

these commands. If you make a mistake, you can destroy the state of the Lisp file

system.

For related information, see the section "Disk Format FEP Command".

Load the Disk Restore FEP command by scanning the overlay (flod) files

*-disk.flod.

� Enable Trap Handling FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Page 579

Enable Trap Handling

On 3600, 3640, 3645, 3670, and 3675 machines, enables interrupts for the FEP

doorbell (an interaction between Lisp and the FEP), enables DMA interrupts, and

initializes (sets trap enable for) a status register.

On other 3600-family machines, the Enable Trap Handling FEP command simply

initializes (sets trap enable for) a status register.

Use the Enable Trap Handling FEP command if, by mistake, some software has

disabled trap handling and "forgotten" to turn it back on.

Load the Enable Trap Handling FEP command by scanning the overlay (flod) files

*-lisp.flod.

� Load Complete World FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Load Complete World

Loads all of a world into memory. This command is mainly for use by system de-

velopers.

Load the Load Complete World FEP command by scanning the overlay (flod) files

*-loaders.flod.

� Load FEP FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Load FEP filename

Loads and starts loadable FEP programs.

filename Specifies the FEP program. The names of the FEP programs

are usually of the form V127-name, where V127 is the number

of the FEP version on which the program runs and name is

the name of the program.�

Use the Show Version FEP command to determine the FEP (EPROM or software)

version with which your machine has been equipped. (For information about the

Show Version FEP command, see the section "Show Version FEP Command".)

If you have a Symbolics 3600-family machine, and it is equipped with an EPROM

whose version number is lower than 127, please contact Symbolics Customer Ser-

vice for an upgrade.

The Load FEP FEP command is resident in the FEP, so it needn't be loaded from

an overlay (flod) file.

Page 580

� Set Disk Type FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Set Disk-Type unit type pack-id

Tells the FEP that disk unit is of type type and has pack id pack-id. Disk Restore

might need this information if the disk has no label block or if the label block con-

tains incorrect information. Issue the Set Disk Type FEP command after using the

Mount FEP command.

unit A number specifying a disk unit.

type The type of the disk unit.

pack-id The pack id of the disk unit.�

Load the Set Disk Type FEP command by scanning the overlay (flod) file

*-disk.flod.

� Set Lisp Release FEP Command

Set Lisp Release

Sets the intended Lisp release version.

Load the Set Lisp Release FEP command by scanning the overlay (flod) file

*-lisp.flod.

� Set Wired Addresses FEP Command

Set Wired Addresses %wired-virtual-address-high

Sets values for wired addresses. If there are local or Symbolics-distributed patches

to the wired system, and if these patches cause an internal limit to be exceeded,

an error is signalled stating that the variable sys:%wired-virtual-address-high

needs to be increased to the suggested new value. This command makes it easy to

set the necessary variables.

Load the Set Wired Addresses FEP command by scanning the overlay (flod) file

*-loaders.flod.

Note: This command must be executed after the Load World command and before

the Start command.

� Show Disk Types FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Page 581

Show Disk Types

Lists the model names for possible disks, along with disk geometry, including for-

mat gap sizes.

Load the Show Disk Types FEP command by scanning the FEP overlay (flod) file�

*-disk.flod.

� Test A Memory FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Test A-memory

Tests all locations in A memory.

Load the Test A Memory FEP command by scanning the overlay (flod) file

*-tests.flod.

� Test All FEP Command

Test All

Runs all FEP tests on a 3600-family machine. On an Ivory machine, it runs only

Test Main Memory. For information about each FEP test:

See the section "Test Main Memory FEP Command".

See the section "Test Simple Main Memory FEP Command".

See the section "Test A Memory FEP Command".

See the section "Test Disks FEP Command".

You can load the Test All FEP command by scanning the overlay (flod) file

*-tests.flod.

� Test Location FEP Command

Test location on a 3600-family machine:

Test Location

Tests a single location in main memory.

On an Ivory machine:

Test Location address keywords�

address {octal-number} The location to test, in octal.

keywords :Base, :Hard ECC Error Action, :Passes, :Test Pattern�

:Base {2, 8, 10, 16} The base in which to display the errors. The de-

fault is 8.

Page 582

:Hard ECC Error Action

{Halt, Report, Clear} The action to take when a hard ECC er-

ror is encountered. The default is halt, so that the error can

be fixed. Report means just report the error. Clear means clear

the location. Clearing the location can damage a running

world. This action should be used with caution.

:Passes {integer} The number of times to run each test pattern over

the location.

:Test Pattern {Quick, Checkerboard, Walking-bit, All} The pattern to use to

test. The default is Checkerboard. All uses each pattern in

turn.�

You can load the Test Location FEP command by scanning the overlay (flod) file

*-tests.flod.

� Test Disks FEP Command

Note: This command is implemented only on Symbolics 3600-family machines.

Test Disks

Tests the local machine's disks.

Load the Test Disks FEP command by scanning the NFEP overlay (flod) file

*-tests.flod.

� Test Simple Main Memory FEP Command

Test simple main memory on 3600-family and Ivory machines:

Test Simple Main Memory

Runs a memory test. It runs faster (and more thoroughly) than Test Main Memo-

ry.

See the section "Test Main Memory FEP Command".

Load the Test Simple Main Memory FEP command by scanning the overlay (flod)

file *-tests.flod.

� Test Main Memory FEP Command

Test main memory on a 3600-family machine:

Test Main Memory

Tests some locations in main memory. It runs more slowly (and less thoroughly)

than Test Simple Main Memory.

Page 583

See the section "Test Simple Main Memory FEP Command".

On an Ivory machine:

Test Main Memory keywords�

keywords :Base, :Hard ECC Error Action, :Passes, :Test Pattern�

:Base {2, 8, 10, 16} The base in which to display the errors. The de-

fault is 8.

:Hard ECC Error Action

{Halt, Report, Clear} The action to take when a hard ECC er-

ror is encountered. The default is halt, so that the error can

be fixed. Report means just report the error. Clear means clear

the location. Clearing the location can damage a running

world. This action should be used with caution.

:Passes {integer} The number of times to run each test pattern over

the memory.

:Start {location} The address at which to start the test. There is a

lower limit of 1011015 (octal) to protect the FEP itself, which

on an Ivory machine resides in main memory.

:Test Pattern {Quick, Checkerboard, Walking-bit} The pattern to use to test.

The default is Checkerboard.

You can load the Test Main Memory FEP command by scanning the overlay (flod)

file *-tests.flod.

� FEP-Related Command Processor (CP) Commands

These commands can be typed in at the Command Processor (CP) prompt in the

Lisp Listener. For your convenience, we have arranged these commands in alpha-

betical order.

Add Paging File Command

Add Paging File pathname :prepend�

Enables you to add a paging file at the Command Processor prompt (in Lisp),

rather than from within the FEP. If the paging file does not already exist, use the

Create FEP File command to create it. See the section "Create FEP File

Command".

pathname The pathname of the existing FEP file, which becomes the new

paging file. The default pathname is the disk unit from which

you most recently booted. For example, if you most recently

booted from FEP1:>, the default paging file might look like:

Page 584

FEP1:>.page�

Each paging file must have a unique name.

keywords :Prepend�

:Prepend {Yes, No} Yes puts the added paging file at the beginning of

the list of existing paging files. This makes the newly added

paging file available for immediate use. No (the default) puts

the added paging file at the end of the list of existing paging

files, so that it won't be used immediately.�

� Create FEP File Command

Create FEP File FEP-file-spec size�

Creates a file on a FEP directory on your machine.

FEP-file-spec The pathname of the file to create. The default is

FEP:>temporary.temp.

size The size in FEP blocks of the file. You must supply this.�

Use Create FEP File to do the following:

• To create an extra paging file. For example:

Create FEP File fep0:>aux.page 100000�

• To allocate space into which to load a world load. For example:

Create FEP File fep0:>release-8-0.load 50000�

� Copy Flod Files Command

Copy Flod Files keywords�

Copies FEP overlay (flod) files to a Symbolics 3600-family machine, or flod files

and a FEP kernel to to an Ivory-based machine. On Ivory-based machines, Copy

Flod Files also makes sure that your FEP kernel and overlay versions are consis-

tent with one another, and installs the previous FEP kernel as the FEP backup

kernel. On XL1200 Color Systems, Copy Flod Files also copies the color system

startup file. We recommend that you do not delete previous versions of the flod

files and FEP kernel, because they can be useful in debugging certain problems.

keywords :Automatic, :Create Hello File, :Disk Unit, :From Directory,

:Hosts, :Silent, :Version�

Page 585

:Automatic Whether to automatically skip copying the flod files to any

hosts for which the process gets an error. The default is Yes if

more than one target host is specified, otherwise No. The men-

tioned default in both cases is Yes.

:Create Hello File

{Yes, No, Ask} Whether or not to create a Hello.boot file after

copying (if one does not already exist). The default is Ask.

:Disk Unit {integer} Disk onto which flod files will be copied. The default

is 0.

:From Directory {pathname} Directory from which to copy files. On Symbolics

3600-family machines, the default is SYS:N-FEP; . On Ivory-based

machines, the default is SYS:IFEP; .

:Hosts {name, All} Host(s) to which flod files will be copied. The de-

fault is your local FEP.

:Silent {Yes, No} Display files as they are copied. The default is Yes.

:Version FEP version. For example, G206, G208, V127, or I316.

� Copy Microcode Command

Note: This command is implemented only on Symbolics 3600-family machines.

Copy Microcode {version or pathname} destination keywords�

Installs a version of microcode.

version or pathname

Microcode version number or pathname to copy. version is a

microcode version number (in decimal). pathname rarely needs

to be supplied. It defaults to a file on FEPn:> (where n is unit

number of the boot disk) whose name is based on the mi-

crocode name and version. (The file resides in the logical di-

rectory SYS:L-UCODE;.) The version actually stands for the file

appropriate-hardware-MIC.MIC.version on FEPn:>.

destination FEP file specification. The pathname on your FEPn:> directo-

ry. The default is created from the microcode version.

keywords :Update Boot File�

:Update Boot File

{FEP-file-spec, None, Query}. The pathname of the boot file

you want it to update. The default is the current default boot

file name.

� Copy World Command

Page 586

Copy World file destination keywords�

Makes a copy of file (by default, a world load). This includes the specified world as

well as any Incremental Disk Save (IDS) worlds on which it was built. See the sec-

tion "Using the Incremental Disk Save (IDS) Facility". Copy World works from re-

mote terminals. Copy World can also be used to copy netboot cores. You can boot a

world from a remote world server with only a netboot core on your FEP. See the

section "Netbooting".

file A FEP file specification; the world to copy. The default is con-

structed from the version of the world that you have booted.

destination A FEP file specification; the pathname for the new world. The

default is a wildcard pathname assuring the correct hierarchi-

cal pathname relationship for the parent world and an IDS

world.

Note: The .ilod file extension indicates world-load files for Ivory-based machines,

just as the .load file extension indicates world-load files for Symbolics 3600-family

machines. Files with the .ilod extension can be copied only between Ivory-based

machines. Files with the .load extension can be copied only between Symbolics

3600-series machines.

After you issue the Copy World Command, Genera puts up a menu allowing you to

specify the actions you want it to take:

Figure 9. Copy World�

keywords :Automatic, :End Block, :File Set, :More Processing, :Output

Destination, :Query, :Start Block, :Transfer Mode, :Update Boot

File.�

:Automatic {Yes, No} Whether or not to attempt automatic error recovery.

The default is Yes.

:End Block {integer} The number of the last block to copy from source.

The default is the last block, meaning copy until the end.

:File Set {All parents, Missing parents, Just Requested Files, Selective}

Which parent IDS files to transfer. The default is Missing par-

ents.

Page 587

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No} Whether or not to present a menu of transfer pa-

rameters. The default is Yes.

:Show Blocks Copied

{Yes, No} Whether to print block numbers for blocks finished

copying, every 100 blocks. The default is No, the mentioned de-

fault is Yes.

:Start Block {integer} The number of the block to start copying from the

source. The default is 0, meaning begin at the beginning.

:Transfer Mode {Transfer-and-Checksum, Transfer-Only, Checksum-Only}

Whether to verify the integrity of the copied world. The de-

fault is Transfer-and-Checksum. You can use Checksum-Only to

checksum a band that you copied previously but were unable to

checksum due to network problems.

:Update Boot file {FEP-file-spec, none}. Boot file to update to load the new

world. The default boot file for IDS or complete worlds is

boot.boot. The default for netboot cores is none.

� Halt Machine Command

Halt Machine

Stops execution of Lisp and gives control to the FEP. You can now enter FEP

commands, for example, to warm or cold boot the machine.

� Show Machine Configuration Command

Show Machine Configuration host keywords�

Shows the board-level hardware information about any Symbolics on the same net-

work as your machine.

Page 588

host The name of a Symbolics machine. The default is your ma-

chine.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

This information is useful for Symbolics Software Support Personnel. The display

from Show Machine Configuration on a 3640 looks like this:

Page 589

Chassis (PN 170219, Serial 70) in Chassis or NanoFEP:

 Manufactured on 10/6/84 as rev 1, functions as rev 1, ECO level 0

 Machine Serial Number: 4070

 FEP Version Number: 127

Datapath (PN 170032, Serial 2958):

 Manufactured on 1/7/85 as rev 3, functions as rev 3, ECO level 0

Extended Sequencer (PN 170299, Serial 720) in Sequencer:

 Manufactured on 5/12/86 as rev 1, functions as rev 1, ECO level 0

Memory Control (PN 170052, Serial 4102) in Memory Control or IFU:

 Manufactured on 6/11/86 as rev 5, functions as rev 5, ECO level 0

Floating Point (PN 170172, Serial 12) in FPA:

 Manufactured on 5/18/84 as rev 1, functions as rev 1, ECO level 0

Front End (PN 170062, Serial 3069) in FEP:

 Manufactured on 12/21/84 as rev 5, functions as rev 5, ECO level 0

512K Memory (PN 170002, Serial 1758) in LBus slot 00:

 Octal Base address: 0

 Manufactured on 9/28/84 as rev 2, functions as rev 2, ECO level 0

1Meg Memory (PN 170473, Serial 265) in LBus slot 02:

 Octal Base address: 4000000

 Manufactured on 10/3/85 as rev 1, functions as rev 1, ECO level 0

IO (PN 170157, Serial 849) in LBus slot 03:

 Octal Base address: 6000000

 Manufactured on 2/21/85 as rev 6, functions as rev 6, ECO level 0

512K Memory (PN 170002, Serial 1897) in LBus slot 04:

 Octal Base address: 10000000

 Manufactured on 10/15/84 as rev 2, functions as rev 2, ECO level 0

FEP Paddle Card (PN 170069, Serial 377) in FEP -- PADDLE side:

 Manufactured on 10/23/84 as rev 1, functions as rev 1, ECO level 0

IO Paddle Card (PN 170245, Serial 692) in LBus slot 03 -- PADDLE side:

 Manufactured on 6/17/85 as rev 1, functions as rev 1, ECO level 0

 Ethernet Address: 08-00-05-03-A0-15�

� FEP-Related Lisp Functions

These Lisp functions may be useful for system maintainers.

si:fix-fep-block unit cylinder head sector &key :force-write-test Function

Reads the block at the specified location reported to have an ECC error and op-

tionally performs a read/write test which will likely correct the error. The function

can be used to remove any bad blocks from use and place them in the bad-blocks

file. The block numbers are printed in octal, so you should use #o when you type

them.

If there is a read error, you are asked whether to try a write-read test. If rewrit-

ing results in no read error, the function exits, because the ECC error has been

eliminated.

Page 590

If a read error persists, or if you refuse the write-read test, you are queried about

what to do with the block. There are four choices:

1. Splice it out.

2. Replace it with a block of zeros.

3. Replace it with a block containing a copy of the bad block.

4. Delete the file.

The first three choices result in the block being put in the bad-blocks file. This

means that potentially good (no-media-defect) blocks can end up in the bad-blocks

file. If there is an ECC error and you refuse the rewrite test, the block will be

written to the bad-block file.

A similar function, si:fix-fep-file, tests all the blocks in a file.

Never use this function on a LMFS partition. For a similar function for use on

LMFS partitions, see the function lmfs:fix-file.

si:fix-fep-file pathname Function

First reads all blocks in a file reported to have an ECC error and optionally per-

forms a read/write test that will likely correct the error. The function can be used

to remove these blocks from use and place them in the bad-blocks file.

Never use this function on a LMFS partition. For a similar function for use on

LMFS partitions, see the function lmfs:fix-file. If there is a read error on a block,

you are asked whether to try a write-read test. If rewriting results in no read er-

ror, the function exits, because the ECC error has been eliminated.

If a read error persists, or if you refuse the write-read test, you are queried as to

what to do with the block. There are four choices:

1. Splice it out.

2. Replace it with a block of zeros.

3. Replace it with a block containing a copy of the bad block.

4. Delete the file.

The first three choices result in the bad block being put in the bad-blocks file.

Note that this means there is a way to put good (no-media-defect) blocks in the

bad-blocks file. If there is an ECC error and the user refuses the rewrite test, thus

not finding that the blocks have no defects, but chooses one of the first three op-

tions, the result is to write the blocks to the bad-block file.

A similar function, si:fix-fep-block, tests a single block.

Page 591

si:machine-model Function

Returns at least two values: a keyword symbol designating the model number of a

Symbolics computer, and a serial number for that computer. On a MacIvory,

si:machine-model returns CPU major and minor revision numbers, as well.

Possible return values are as follows:

:unknown The model number cannot be determined (usually indicating

lack of some ID prom)

:/3600 or :|36xx| (The keyword whose print-name is "36xx".) The machine is a

Symbolics 3600 or 3600-family machine.

:XL400 The machine is a Symbolics XL400.

:|MacIvory| The machine is a Symbolics MacIvory.

:UX400S This is a Symbolics UX-family machine.�

si:verify-fep-filesystem &optional (unit 0) &key (fix-checkwords ':ask) Function

Checks the FEP file system on disk unit unit, which defaults to zero, reporting

any detected inconsistencies and offering to correct certain types of failures. If

:fix-checkwords is :ask (the default), you are prompted if anything has to be

fixed; the other options are :yes (always fix), :no (never fix), :silently (always fix

without a message), and :inform-only (send messages only, do not fix, do not ask).

si:print-fep-filesystem &optional (unit 0) Function

Outputs a textual description of the FEP file system on disk unit unit. The default

value of unit is 0.

The tape:write-fep-overlay-flods-to-cart function may also be useful for site

maintainers. For information about the tape:write-fep-overlay-flods-to-cart func-

tion, see the section "Using Lisp to Write Overlay (Flod) Files to Cartridge Tape".

Debugging in the FEP

You can enter "debug" mode in the FEP by issuing the Debug FEP command. This

command is especially useful if you ever have problems that cause control to re-

turn to the FEP. (In the FEP, it's impossible to use the debugging methods nor-

mally used in Lisp.) See the section "Debug FEP Command".

Because the debug.flod file is not usually scanned in the hello.boot file, you may

have to explicitly scan this flod file to make the Debug FEP command available.

For more information, see the section "Scanning the Overlay (Flod) Files".

The Command Processor (CP) Copy Flod Files command will automatically copy

the appropriate debug.flod file for your machine. Copy the debug.flod file before�

you need to use it; if you do not have debug.flod file on your FEP file system

Page 592

(FEPFS), you will not be able to get it using Copy Flod Files once Lisp has

crashed. For information about using the Command Processor (CP) Copy Flod Files

command, see the section "Copy Flod Files Command".

Similar to when you're in the Lisp Debugger, you can move up and down the stack

to attempt to determine the source of a crash. The HELP key lists available debug

commands.

Debugging on 3600-family Machines

On 3600-family machines, if the machine has crashed during paging, use the c-m-S

command to switch between the auxiliary stack (where paging code runs) and the

normal stack (where user code runs). If the machine crashed while executing on

the auxiliary stack, the c-m-S command will help you find user stack frames.

The Lisp function si:show-machine-model can be useful when debugging in the

FEP. For more information about it,see the section "FEP-Related Lisp Functions".

The Show Machine Configuration FEP command is also useful. For information

about it,

see the section "FEP-Related Command Processor (CP) Commands".

Show Crash Data Command

Show Crash Data keywords�

keywords :Interpreted, :Output Destination�

:Interpreted Interprets the data in the current world.

:Output Destination

Directs the output of this command to a specified location. The

location can be the pathname of a buffer or file, a printer,

stream, or window.�

Obtains the most recent output from the FEP's Show Status command, and makes

it available in the Lisp world.

On 3600-family machines, this information includes some hardware state, the com-

piled code program counter (macro PC), virtual memory address (VMA), stack

pointer and frame pointer (SP and FP), and the 16 most recent microcode program

counters (OPCs).

On Ivory-based machines, the Mail Bug Report subcommand of the Debug FEP

Command can be used to append the stack backtrace to the crash data obtained

using the Command Processor (CP) Show Crash Data command.

On both 3600-family and Ivory-based machines, the information displayed by the

Command Processor (CP) Show Crash Data command is similar to the information

displayed by the Show Status FEP command. However, Show Crash Data provides

an historical display; it shows the machine's status at the last crash. Show Status

Page 593

reveals the machine's current status (that is, its status when the command was

issued).

If you want to put all of the information from the Show Crash Data command in

the current editor buffer or in a mail message, use the m-X Insert Crash Data

Zmacs command. This makes it easy to include information about a Lisp crash

that put you into the FEP. (This data is preserved even if you cold boot the ma-

chine, but not if you reset the FEP.)

The information retrieved from the Show Crash Data command is available until

the next time Lisp halts, until the FEP is reset, or the machine is powered down.

Therefore, even if you are unable to warm boot your machine, you can cold boot

and then make a report with the data of the last crash.

Here is a possible sequence of events:

• The machine crashes and puts you into the FEP.

• The FEP issues the Show Status command automatically.

• On Ivory-based machines, you use the Debug FEP command and its Mail Bug

Report subcommand.

• Unless this is a fatal error, you use the FEP command Start to warm boot the

machine. If this does not work, use the Load World and Start FEP commands to

cold boot the machine.

• You use the Command Processor (CP) Show Crash Data command in order to

retrieve the most recent output of the Show Status FEP Command.

• You use the m-X Insert Crash Data command in the editor to save the informa-

tion in a buffer.�

Interpreting the Show Status Command's Output on 3600-Family Machines

The Show Status command displays the internal status of some Symbolics 3600-

family machine registers. This display can provide information about machine

states that cause the FEP message "Lisp stopped itself". In general, Show Status

is not useful for interpreting wired-ferror halts.

When Show Status prints the contents of hardware registers, it decodes the bits

symbolically. The FEP does not interpret these contents.

The Show Status output section "3600 program counters" includes a macro PC (the

address of the current instruction of compiled Lisp code), a CPC (the address of

the current microinstruction), and 16 OPCs (the addresses of the 16 most recently

executed microinstructions; OPC+0 is the most recent, OPC+17 the earliest.

An arrow points to either the CPC or the first OPC, depending on the error condi-

tion that stopped the machine. This CPC or OPC pointed to represents the mi-

croinstruction that was executing at the time of the crash.

Page 594

When interpreting the Show Status command's output to diagnose a crash, remem-

ber that:

• You must interpret some bits depending on the value of other bits.

• Some registers listed below are printed only if they contain "useful" information.

• The Sequencer Status and MC Error Status registers will be the most important

ones to examine.�

The "Show Crash Data Command" can automatically interpret some of this infor-

mation for you, once the machine has been rebooted (and Lisp is running again).

Use it with the :Interpreted keyword.

Self-Explanatory Hardware Errors�

Bit Meaning

Spare-error-bit [never happens, unless manually wired

 to some signal]

GC-map-parity-error GC MAP RAM on DP board.

Type-map-parity-error TYPE MAP RAM on DP board.

Page-Tag-parity-error PAGE TAG RAM on FEP board.

A-memory-parity-error AMEM RAM on DP board.

B-memory-parity-error BMEM RAM on DP board.

MC-error (map, ifu, or main mem) Error on MC or

 IFU board; see MC/IFU error status.

AU-error Error on AU (FPA) board (if the

 machine has one).

Task-state-memory-parity-error TSKM RAM on SQ board

 (doesn't always halt machine).

Control-memory-parity-error CMEM RAM on SQ board

 (also for microcode breakpoints if an L-Console

 program is cabled up for debugging).

Hardware "Errors" (not always really errors)�

Bit Meaning

CTOS-low-parity-error CSTK RAM on SQ board

 (low half of output register).

CTOS-high-parity-error CSTK RAM on SQ board

 (high half of output register).

Note: If CTOS-came-from-IFU is true, the above bits (CTOS-low-parity-error and

CTOS-high-parity-error) have no meaning.

Page 595

Sequencer Error Status

(Status of the SQ board and the main error status bits that can halt the machine)

The Microcode-halted bit will be set if a "halt" microinstruction was executed for

one of the following reasons:

• A call to the %HALT function (due to a wired-ferror or a call to HALT).

• A fatal error, such as an error while entering the error handler or an error in

wired code (page fault, disk handlers).

• Executing an undefined macroinstruction (running too old a version of mi-

crocode or executing bad macrocode).

• Failure of a microcode consistency check (stack frame too large, stack over-

written).

Sequencer Miscellaneous Status

(Status bits that are not errors)

Bit Meaning

CTOS-came-from-IFU CTOS register holds macroinstruction

 dispatch address from IFU (or TMC) rather than

 contents of CSTK RAM.

TSK-STOP (sequencer stopped) Machine is stopped.

Errhalt-Sync An error bit is set (stops machine).

MC Wait Microinstruction waiting for memory

 control to allow the instruction to continue.

Task Switch Switching to a different microtask.

ECC Syndrome

(An octal number followed by an address with x's in it)

This register contains the most recent main-memory read-error correction status.

The error can be caused by a read by the processor, a read by the FEP, or a read

by a DMA I/O device. The events that set this register include nonexistent memo-

ry reference, single-bit error correction, and double-bit error detection. Nonexistent

memory and double-bit error halt the processor (even if it was the FEP or an I/O

device that got the error). Currently, the FEP disables itself from getting a bus

error if it references nonexistent Lbus memory or gets a double-bit error in Lbus

memory.

Note: A bug in the FEP's code for examining the machine's status can set this

register. In this case, the first two digits of the address are usually 77.

The address is the physical address of the location referenced. Only bits 23-18 and

1-0 are valid (the rest are x'ed out). These are sufficient bits to determine which

Page 596

Lbus slot (bits 23-19) and which of the 8 banks within a memory board are being

referenced. To convert the address to an Lbus slot number, consider the one or

two digits at the left of the x's to be an octal value, and divide by 2. This is a log-

ical slot number, as printed (in decimal) by the Show Configuration command. It is

not related to the numbers printed on the machine chassis. Slot 0 is at the left, as

seen from the front of the machine.

The syndrome codes are as follows:

000 okay 36 37 2-bit 38 2-bit 2-bit 3

010 39 2-bit 2-bit 6 2-bit 8 9 2-bit

020 40 2-bit 2-bit 13 2-bit 15 16 2-bit

030 2-bit 18 19 2-bit 20 2-bit 2-bit unused

040 41 2-bit 2-bit 23 2-bit 25 26 2-bit

050 2-bit 28 29 2-bit 30 2-bit 2-bit 31

060 2-bit 33 34 2-bit 35 2-bit 2-bit unused

070 NXM 2-bit 2-bit unused 2-bit unused unused 2-bit

100 42 2-bit 2-bit 0 2-bit 1 2 2-bit

110 2-bit 4 5 2-bit 7 2-bit 2-bit 10

120 2-bit 11 12 2-bit 14 2-bit 2-bit unused

130 17 2-bit 2-bit unused 2-bit unused unused 2-bit

140 2-bit 21 22 2-bit 24 2-bit 2-bit unused

150 27 2-bit 2-bit unused 2-bit unused unused 2-bit

160 32 2-bit 2-bit unused 2-bit unused unused 2-bit

170 2-bit unused unused 2-bit unused 2-bit 2-bit unused

3600 Program Counters

Label Meaning

Macro PC The address of the current compiled Lisp

 code instruction. This is prefaced with either (Odd)

 or (Even) since there are two instructions per word.

Current micro PC (CPC) The address of the current microinstruction.

Old PCs (OPC) The addresses of the 16 most recently

 executed microinstructions. OPC+0 was executed

 most recently, OPC+17 least recently.

FEP buffer status

Page 597

Bit Meaning

Spy DMA Enb Spy bus being used by FEP to access

 disk or net (means spy bus being used for

 normal functions).

Write to / Read from Device Spy DMA direction.

Drive Busy Spy DMA Mode (who controls busy line).

Int Enb Spy DMA Enable to interrupt FEP.

Count Up / Count Down Spy DMA address increment direction.

Busy Spy DMA Busy (inside FEP).

Spy DMA Busy Spy DMA busy line (on backplane).

DMA Setup [meaning unknown].

FEP Lbus control

Bit Meaning

ECC Diag Normal memory error correction logic disabled;

 instead, FEP can read or write the 8 extra bits

 of main memory.

Doorbell Int Enb Doorbell (Lisp-to-FEP signal) interrupt enabled.

Use Uncorrected Data FEP unaware of corrected Lbus data

 if single-bit-error.

Ignore Double ECC Error FEP does not get bus error

 if uncorrectable Lbus error (either double-bit error

 or nonexistent memory).

Task 3 Req FEP trying to wake up microtask 3.

Doorbell Doorbell ringing (Lisp-to-FEP signal).

Lbus Buffer Busy [self-explanatory].

Lbus Buffer Some Parity Error [self-explanatory].

FEP Board ID control

Bit Meaning

Continuity Read-back of random signal that checks board presence.

Lbus ID Req Lbus reading board IDs during not-normal functions.

Half Speed Main processor clock running at half speed.

FEP Process Control

Page 598

Bit Meaning

Lbus Power Reset Reset all Lbus devices due to power

 on or power off.

Lbus Power Reset (on bus) Same as above, but

 actually read back from the bus.

Lbus Reset Reset all Lbus devices.

Lbus Reset (on bus) Read back the Lbus Reset.

Clear Errors Bit that clears FEP error registers

 (not an error).

FEP Int Enable FEP interrupt enable (not an error).

Kept Alive FEP died and was reset by nanofep.

FEP RAM Par Err Parity error in dynamic RAM on FEP board.

MC / IFU Error Status

Bit Meaning

Double bit error An uncorrectable error in main

 memory, or a reference to a nonexistent

 Lbus address. See "ECC syndrome".

Map A parity error, Map B parity error Parity errors in the map caches

 on the MC (TMC, IFU) board.

Hit in both Map A and Map B Both map caches claim to map the

 same address. Could be map hardware or a hardware or

 microcode problem causing bad data writes to map.

IFU Op Parity Error Parity error in internal IFU operation.

IFU Arg Parity Error Parity error in internal IFU argument.

Decoding Micro PCs on 3600-Family Machines

On Symbolics 3600-family machines, you can use the Lisp functions dbg:decode-

micro-pc and dbg:decode-micro-pcs to decode the microcode PCs printed by the

Show Status FEP command. You can use the "Show Crash Data Command" to au-

tomatically decode micro PCs in crash data (use the :Interpreted keyword). For

more information about crash data, See the section "Show Crash Data Command".

dbg:decode-micro-pc pc &optional (name sys:%microcode-version) (version

(sys:microcode-version-number sys:%microcode-version)) Function

Useful for investigating why a machine crashed. It decodes an octal microinstruc-

tion address printed by the Show Status FEP command.

To use this function, write down the Show Status FEP command's output. Then,

either warm boot the machine using the Start command, or call dbg:decode-

micro-pc on another machine. To decode more than one octal microinstruction ad-

dress, see the function dbg:decode-micro-pcs.

Page 599

� dbg:decode-micro-pcs pcs &optional (name sys:%microcode-version) (version

(sys:microcode-version-number sys:%microcode-version)) verbose (load-symbol-

table :ask) Function

Useful for investigating why a machine crashed. It decodes the octal microinstruc-

tion addresses printed by the Show Status FEP command.

To use this function, write down the Show Status FEP command's output. Then,

either warm boot the machine using the Start command, or call dbg:decode-

micro-pcs on another machine. To decode only one octal microinstruction address,

see the function dbg:decode-micro-pc.

pc is an address in the microcode, taken from the CPC or OPC information printed

(in octal) by the Show Status FEP command. If your default radix is decimal, pre-

cede pc by #o.

Normally the number in the Show Status FEP command's output with the arrow

(fi) pointing to it is the relevant one, but you may want to decode all of the num-

bers for additional clues.

name and version are optional; they specify the version of the microcode that was

running at the time of the crash. Omit these arguments if you call dbg:decode-

micro-pc or dbg:decode-micro-pcs while using the machine that crashed (make

sure that you're running the same microcode version that was running at the time

of the crash).

Also, omit these arguments if you call the functions from another machine that

has the identical software and hardware configuration to that of the machine that

crashed. To find a machine's microcode version name and number, use the Com-

mand Processor (CP) Print Herald command with the keyword :Detailed, or look

for the name and version number of the microcode file from the machine's boot

file (normally, this is file fep0:>boot.boot).

Microcode version numbers are decimal; include a period at the end of the number

if your default radix is octal.

dbg:decode-micro-pc and dbg:decode-micro-pcs print information that depends on

the microinstruction:

Microinstruction Information printed

Halt instruction The reason it halted the machine. An example

is "error in the error handler". Reasons are

provided as constant strings in the microcode

source program. They do not represent any dy-

namic analysis of the machine's state.

Signaller of a Lisp error The internal form of the error message. Nor-

mally, Lisp software translates error messages

into conditions and signals them. The condi-

tions define more readable error messages.

This is useful mainly in decoding OPCs other

than ones with the arrow provided by the Show

Status FEP command.

Page 600

Handler for a macroinstruction in compiled Lisp code

The name of a macroinstruction. Might be

caused by running a world with an incompati-

ble microcode (such as a microcode from an

earlier release).

If all else fails, the functions offer to load the microcode symbol table (from the

SYS:L-UCODE; directory) and then print the symbolic name of the microinstruction. It

takes a few minutes to load the table. Microinstruction symbolic names can some-

times contain clues about what the machine was doing when it crashed.

When the symbolic name of the microinstruction includes parentheses, it is a list

containing the name of a microcode routine and the path through that routine by

which to reach the microinstruction in question. Remember that these names are

not unique; the same microinstruction may be reachable via multiple paths, and

from different microcode routines. For example, a microinstruction named (FTN-

AR-1 3) might also be part of the microcode for the CAR instruction.

When the name has no parentheses, it is unique; it names the first microinstruc-

tion of a microcode routine.

Note: If the reason Lisp stopped itself is anything other than "microcode halted",

the information that the Lisp functions dbg:decode-micro-pc and dbg:decode-

micro-pcs print will be most useful for people who understand Symbolics hard-

ware.

� Decoding Macro PCs on 3600-Family Machines

To decode the macrocode PC printed by the Show Status FEP command, warm

boot, if you can. Then, use the "Show Crash Data Command" to automatically de-

code macro PCs in crash data (use the :Interpreted keyword). For more informa-

tion about crash data, see the section "Show Crash Data Command".

If you cannot warm boot, go to another 3600-family machine running identical

software, and call the function sys:%find-structure-header on the number printed

by the FEP. This is an octal number; use #o if necessary. It returns a compiled-

function object, which is the function that was executing at the time.

To find the exact place in the function that was executing, note the difference be-

tween the number printed by the FEP and the address in the printed representa-

tion of the compiled-function object. You can use sys:%pointer-difference to com-

pute this difference.

Multiply this by 2, and add 1 if the PC was odd (not even). The result is the in-

struction number of the current instruction; disassemble the compiled function to

see it.

Example:

Page 601

FEP Command: Show Status

...

3600 program counters:

 Macro PC/ (Odd)1244531

 ...

FEP Command: Start

...

(%find-structure-header #o1244531)

#<DTP-COMPILED-FUNCTION EQUAL 1244530>

(%pointer-difference #o1244531 *)

1

(1+ (* * 2))

3

(disassemble ***)

 0 ENTRY: 2 REQUIRED, 0 OPTIONAL

 1 PUSH-LOCAL FP|0 ;A

 2 PUSH-LOCAL FP|1 ;B

 3 BUILTIN EQL STACK

 ...�

Instruction 3 (EQL) is the one that halted.

Debugging on Ivory-based Machines

This section describes how to use the Ivory FEP (IFEP) Debugger. For informa-

tion on debugging 3600 machines, see the section "Debugging on 3600-family Ma-

chines".

The main use of IFEP Debugger is to file bug reports about system errors that

are not handled by the Lisp Debugger (for example, errors in the storage system,

or in wired interrupt handlers).

The IFEP Debugger is used internally by Symbolics to diagnose low-level system

errors, or errors that occur before the Lisp Debugger is loaded.

Because the IFEP Debugger has access to Lisp virtual memory, you can also use

the IFEP Debugger to modify Lisp variables or other structures.

Note that to use the IFEP Debugger to diagnose system problems or to set Lisp

variables, you must be familiar with the machine architecture and the internal

representation of Lisp objects.

When Lisp stops because of a error, it invokes the FEP. The FEP prints the error

message supplied by Lisp (or prints the machine state, if Lisp stopped because of

an undetected error), and then suggests that you use the IFEP Debugger to record

backtrace information for a bug report.

Lisp Stopped Itself

<Lisp error message, if any>

Use :Debug and c-M to record a backtrace.

FEP Command:�

Page 602

Using the IFEP Debugger to Report System Errors

The IFEP Debugger is useful when Lisp stops itself because of an error, or the

machine reboots (to the FEP). You can also use the Debugger when the machine

hangs and does not respond to keyboard interrupts.

If Lisp stops because of a system error, the FEP prints the error message provided

by Lisp, and suggests that you use the :Debug command. If the system hangs and

does not respond to the normal keyboard interrupts, you can use h-c-FUNCTION to

stop Lisp. (You may need to press h-c-FUNCTION more than once, if Lisp is run-

ning uninterruptably.) As a last resort, you can reset the machine to reboot to the

FEP. A fatal error will cause Lisp to reboot to the FEP.

The standard procedure for reporting system errors using the IFEP Debugger is as

follows:

1. Invoke the IFEP Debugger using the :Debug command. See the section

"Debug FEP Command".

2. Use other IFEP Debugger commands and command accelerators to iso-

late and display relevant backtrace data. See the section "IFEP Debug-

ger Command Descriptions".

3. Record a backtrace in the "crash data" area, using the :Mail Bug Report

(c-M) command. You can alternatively use the :Output Destination key-

word option to record crash data in a file. You can include this data in

a Lisp system bug report.

4. Leave the IFEP Debugger and resume Lisp execution using :Abort (c-Z

or ABORT).

5. Compose and send the bug report using the :Report Bug CP command

or the (m-X) Report Bug Zwei command.

If you recorded your crash data in an :Output Destination file, you

should include this file when you compose your bug report. If you

recorded the backtrace in the "crash data" area, use the m-X Insert

Crash Data command when you compose your bug report.�

Entering the IFEP Debugger

Invoke the IFEP Debugger by entering the following command at the FEP com-

mand prompt.

:Debug �

You can use keyword options to specify IFEP Debugger initial conditions (for ex-

ample, :Ignore Storage Structures Yes, or :Show Initial Frames No). See the sec-

tion "Debug FEP Command".

Page 603

If the IFEP Debugger (or the FEP itself) appears confused (for example, if the dis-

play appears erratic or if there is a lot of error printing), the system error may

have corrupted the FEP's state information image or data. In this case, first re-

boot the FEP before you proceed. Do not boot Lisp directly; this could destroy the

state information necessary for debugging the error. For additional information on

resetting and booting the FEP (without booting Lisp), see the document Genera 8.1

Software Installation Guide. If the machine hangs and does not respond to any of

the usual keyboard interrupts (including h-c-FUNCTION), or if the machine reboots

(to the FEP), you might still be able to do some debugging. Since Lisp's state is

preserved by Boot ROM on reset, you can still debug, even if the machine reboots

or if you have to reboot by resetting the machine (hardware).

Sending a Bug Report Using the IFEP Debugger

Use the IFEP Debugger command :Mail Bug Report (c-M) to record a backtrace of

the error. Keyword options allow you to limit the size or detail of the backtrace, or

to save the backtrace to a disk file. See the section "Mail Bug Report IFEP Debug-

ger Command".

Note that this command only captures backtrace information. It does not mail a

Lisp bug report. When you are next running Lisp, you can use the Report Bug

command to compose the actual bug report. See the section "Report Bug

Command".

To include an IFEP Debugger backtrace in your Lisp bug report, enter (m-X) In-

sert Crash Data, or (m-X) Insert File when you are in the Zwei bug-report window.

(If you have saved the backtrace to a file, the "crash data" will be the name of the

file containing the backtrace.)

The following example demonstrates how to include an IFEP Debugger backtrace

in a Lisp bug report:

FEP Command: :Debug

fi c-M :Mail Bug Report Nframes 3 :Output Destination crash-data.text

fi :Abort

FEP Command: :Start

Command: Report Bug

m-X Insert File crash-data.text

Note that you must enter the Lisp Report Bug command to actually report the

bug. You can insert the file containing the crash data with the (m-X) Insert File

command in the minibuffer.

Exiting the IFEP Debugger

To exit from the IFEP Debugger (and return to the top-level FEP command pro-

cessor) type the following IFEP command at the prompt:

fi :Abort�

Page 604

You can also press one of its two command accelerators, c-Z or ABORT. Note that

ABORT returns you to the FEP only when you enter it at the top-level IFEP Debug-

ger prompt. Otherwise, ABORT terminates the current activity (for example, the ex-

ecution of a command, or the typing of command input).

If the error that caused Lisp to halt is a proceedable error, the IFEP Debugger re-

minds you that you can resume execution of Lisp using the Continue FEP com-

mand, after you exit the IFEP Debugger (see the section "Continue FEP

Command").

A proceedable error is a non-fatal error that is detected when the normal error re-

porting system is not usable. In this case, Lisp halts to the FEP so that the error

can be recorded. Continuing will clear the error in a way that does not damage

Lisp.

Often, you can clear non-proceedable Lisp errors by warm booting, using the Start

FEP command (see the section "Start FEP Command"). (Note that you may need

to use :Ignore Saved State Yes to abort any unwind-protects or binding restoration

in the erring process.)

If all else fails, you can use the Boot FEP command to cold-boot Lisp (see the sec-

tion "Boot FEP Command"). The FEP will preserve your "crash data" backtrace

(until you create another backtrace) as long as the FEP is not reset (either manu-

ally or because of a fatal error).

Even if you crash again before you mail the bug report, the original backtrace will

still be available. If you have already reported the bug which included the back-

trace, you can reset the FEP to recover the memory used by the backtrace. For

more information, see the section "Reset FEP FEP Command".

� Using IFEP Debugger Commands

The IFEP Debugger offers more than thirty full-form commands and command ac-

celerators. You can use these commands to study the Lisp world and to record

stack information for further analysis.

In general, IFEP Debugger command functions and syntax are similar to Lisp De-

bugger commands. Differences between similar IFEP and Lisp Debugger com-

mands are noted in the description of each individual command (see the section

"IFEP Debugger Command Descriptions").

The IFEP Debugger does not have an evaluator. Instead it supports additional

commands that perform debugging functions normally provided in Lisp. The IFEP

Debugger also supports DDT-like commands, which allow you to examine Lisp

memory locations for symbol values, functions, structure slots, and instance vari-

ables or slots.

IFEP Debugger commands use a concept of point (also called dot), which means

the location (address and segment) being examined. Most of the IFEP Debugger

commands and accelerators use point in some way. Many commands use point as

their default argument. Some of the IFEP Debugger commands set point. For more

details, see the section "IFEP Debugger Command Descriptions".

Page 605

When you are using IFEP Debugger DDT commands, a location being examined is

considered open (meaning that you could change its contents). The IFEP Debugger

indicates that a location is open by leaving the cursor on the current line, immedi-

ately after displaying the contents of the location. That is, the IFEP Debugger

does not display a new prompt. Pressing RETURN closes the open location and re-

turns you to the Debugger prompt.

You can use other IFEP Debugger DDT commands to operate on the current open

location (for example, to set a Lisp variable), or to close the current location and

open another.

Getting Help in the IFEP Debugger

The IFEP Debugger assumes familiarity with system architecture and the internal

representation of Lisp objects. Consequently, IFEP Debugger self-documentation is

minimal.

At the command prompt level, you can use HELP to display a brief description of

IFEP Debugger commands, accelerators, or modifiers. You can also use c-/ or c-?�

to see a list of the commands matching what you have typed so far.

Since the accelerators echo their full-form command, you can use the full form to

get help. Note that some IFEP Debugger commands (the Point Stack accelerators),

do not have full-form command equivalents (for more details, see the section

"IFEP Debugger Point Stack Accelerators").

c-HELP or :Accelerator Help gives a brief paragraph describing accelerator argu-

ments and modifiers, and then lists the accelerator keys and their names. (Usually

the accelerator key name is similar to the full-form command that the accelerator

invokes.)

� Aborting IFEP Debugger Commands or Output

You can usually stop a IFEP Debugger command by pressing c-ABORT.

If the Debugger appears to be looping and c-ABORT does not respond, you can use

h-c-FUNCTION to force the Debugger back to its command-level prompt.

If you want to stop the IFEP Debugger while it is producing output (for example,

printing), press any key. This aborts the output and returns to the top-level

prompt. Note that, if you press ahead, you might accidentally abort the output of a

command. If the command output appears truncated, you can usually recover by

reentering the command.

� Entering IFEP Debugger Commands

Like the Lisp Debugger, the IFEP Debugger prompt is fi. The IFEP Debugger ac-

cepts both full-form commands (such as :Show Backtrace), and command accelera-

tors (such as c-B).

Page 606

Full-form IFEP Debugger commands begin with a colon (:) or m-X. When you press

either of these, the Debugger indicates that it expects a full-form command by dis-

playing the following prompt

Debugger command:�

Full-form commands use positional and keyword arguments and command comple-

tion, as in the rest of the FEP (and Genera). Accelerators take their arguments in

a fashion similar to the Lisp Debugger (or Zmacs editor).

Note that the IFEP Debugger indicates that a location is open by not prompting

for a new command. See the section "Using IFEP Debugger Commands".

Using IFEP Debugger Command Accelerators

Most IFEP Debugger commands have associated command accelerators. For those

commands you can invoke an IFEP Debugger command either by typing the full-

form command or by entering the associated command accelerator. See the section

"IFEP Debugger Command Descriptions".

The IFEP Debugger Point Stack commands are invoked only through accelerators.

That is, they do not have full command equivalents. For more details, see the sec-

tion "IFEP Debugger Point Stack Accelerators".

IFEP Debugger accelerator commands may take command modifiers and arguments

and argument modifiers. Accelerator argument modifiers further specify accelera-

tor arguments. Accelerator command modifiers are interpreted differently for indi-

vidual IFEP Debugger commands (some commands can take an additional argu-

ment when prefixed by this argument).

IFEP Debugger Accelerator Arguments

The IFEP Debugger interprets anything that is not a full-form command or a com-

mand accelerator as an accelerator argument.

The IFEP Debugger supports the following types of accelerator arguments:

• Numeric

• Symbolic

• Typein�

IFEP Debugger accelerator arguments can be further specified using accelerator

argument modifiers. See the section "IFEP Debugger Accelerator Argument Modi-

fiers".

Page 607

Numeric Arguments�

Numeric arguments are similar to Zwei numeric arguments. Any of the digit char-

acters (in the current base), +, -, c-U, or ¥ indicate an IFEP Debugger numeric

argument. If you enter a numeric argument with any of c-, m-, s-, or h- keys held

down, the numeric argument is parsed in base 10. Numbers are parsed in the cur-

rent number base (which defaults to 8). You can change the number base using

the "Set Base IFEP Debugger Command".

The character "." adds the value of point (or dot) to any accumulated numeric ar-

gument.

Note that the argument parser does not do arithmetic. A minus sign (-) simply

negates the accumulated argument. For example, the following numeric arguments

are equivalent:

 .+3, 3+., +.3, 3.+, 3. �

These arguments are also equivalent,

 .-4, 4-., -.4, 4.-�

Also note that the following argument is -34, not -1.

 c-3 c-- c-4�

Symbolic Arguments�

Characters that cannot be parsed as numeric are parsed as symbolic arguments. In

this case, the Debugger reminds you that you are entering a symbolic name by re-

prompting with:

 Examine (symbol)�

Symbolic names include all the interned symbols in Lisp, as well as those symbolic

names explicitly defined by the IFEP Debugger.

Currently, the only symbolic names defined by the IFEP Debugger are the names

of the machine registers. They are of the form:

%REGISTER-XXX�

Register symbolic name accelerator arguments are translated to the appropriate

address in the register segment (as specified in the IFEP debugger command argu-

ment modifier or in the :Set Default Segment command). See the section "IFEP

Debugger Accelerator Argument Modifiers" and see the section "Set Default Seg-

ment IFEP Debugger Command".

If an IFEP Debugger symbolic name collides with a Lisp symbol, you can enter the

Lisp symbol by explicitly specifying the Lisp symbol package.

Note that when you specify a package you must separate it from the symbol with a

colon (:). See the section "Set Package IFEP Debugger Command".

Symbol name prefixes specify how to interpret the symbol name.

Page 608

#' Uses the symbol function-cell contents.

' Uses the address of the symbol.�

If you do not enter a prefix, the accelerator argument is interpreted as the symbol

variable value.

Typein Arguments�

A typein argument allows you to type an argument in a format similar to one of

the typeout formats (see the section "Using IFEP Debugger Typeout Formats").

Typein arguments begin with a backquote (‘) in IFEP Debugger commands. The

IFEP Debugger supports the following typein formats:

‘Q An argument created from a cdr-code, data type, and pointer

‘O A number (in the current base)

‘S A symbol�

Note that the ‘Q typein mode prompts for a cdr-code, data-type (both symbolic),

and a pointer. The IFEP Debugger then constructs the appropriate accelerator ar-

gument.

‘O and ‘S typein modes explicitly instruct the Debugger to parse a numeric or

symbolic argument, respectively.

IFEP Debugger Accelerator Argument Modifiers

IFEP Debugger argument modifiers begin with an atsign (@).

Most IFEP Debugger command accelerators treat their arguments as an address or

location. IFEP Debugger accelerator argument modifiers for these arguments allow

you to specify one of the following segments for that address to be interpreted in.

@V Virtual memory

@P Physical memory

@R Register number

@U "Unmapped" memory�

The @U modifier identifies a subset of virtual addresses (that is, those virtual ad-

dresses that map directly to physical addresses.) These are also called vma-equals-

pma. Since the wired system operates in vma-equals-pma, it is often useful to be

able to specify a vma-equals-pma in terms of the physical address that it would

map to.

Note that when you use the @R modifier, the addresses in the R segment do not

correspond to the internal register numbers of the Ivory chip. They correspond to

virtual register numbers. Only the registers that are available in the FEP Show

Status command are accessible.

Page 609

The best way to access registers is to use the symbolic register name. See the sec-

tion "Set Default Segment IFEP Debugger Command". The self-documentation for

this command's argument gives the possible segments and their abbreviations.

IFEP Debugger Accelerator Modifiers

The lozenge (à, sh-ESCAPE, sy-ESCAPE, or ESCAPE) identifies an IFEP Debugger

accelerator command modifier. Accelerator commands interpret this prefix differ-

ently. In general, you can use this modifier to specify a second accelerator argu-

ment. For example, the following command specifies two numeric arguments:

Here are some examples of using ESCAPE to give a second argument to an acceler-

ator or modify its defaults. Notice that each accelerator interprets ESCAPE differ-

ently:

 fi c-m-D :Show Compiled Code -133936248 :Radius 4

 Disassembled code for #<DTP-COMPILED-FUNCTION SI:AUX-HALT 37001045610>:

 => 0 ENTRY: 0 REQUIRED, 1 OPTIONAL

 2 PUSH NIL

 4 START-CALL-INDIRECT-PREFETCH #'SI:AUX-WAIT-FOR-DISK-DONE�

The default arguments to :Show Compiled Code (c-m-D) are the current function

and a radius of 4. (For more details, see the section "Show Compiled Code IFEP

Debugger Command".)

To see more, use ESCAPE c-8 to keep default first argument, and change second

argument to 8:

fiESCAPE c-8 c-m-D :Show Compiled Code -133936248 :Radius 8

Disassembled code for #<DTP-COMPILED-FUNCTION SI:AUX-HALT 37001045610>:

=> 0 ENTRY: 0 REQUIRED, 1 OPTIONAL

 2 PUSH NIL

 4 START-CALL-INDIRECT-PREFETCH #'SI:AUX-WAIT-FOR-DISK-DONE

 6 FINISH-CALL-0-EFFECT

 10 PUSH-CONSTANT '#<DTP-LOCATIVE to SYS:*LISP-STOPPED-CLEANLY*

37001010062>

 7 PUSH T

fi�

Similarly, you can give an Nframes argument of 5 to (c-M):

fic-5 c-M :Mail Bug Report :Nframes 5 :Output-destination NIL�

Adding an ESCAPE here changes the output destination to a file:

fi c-5 ESCAPE c-M :Mail Bug Report :Nframes 5 :Output-destination

#P"FEP0:>Crash-data.text.newest" �

See the section "IFEP Debugger Command Descriptions" for details on how to use

this modifier in particular IFEP Debugger commands.

IFEP Debugger Command Descriptions

Page 610

IFEP Debugger commands are functionally classified as follows:

• Stack Display Commands

• Stack Motion Commands

• Point Stack Accelerators

• DDT Commands

• Lisp-like Commands

• Miscellaneous Commands�

Command Summary

This section briefly describes IFEP Debugger commands and keywords. Default

keyword options are shown in bold.

Stack Display Commands

These commands display backtrace information and information about

the current stack frame (such as argument values, local variable

values, disassembled code, and so on).

Accelerator Command Keywords or Arguments

c-m-A :Show Argument Argument {base 10 integer}

c-B, m-B :Show Backtrace :Detailed {Yes, No}

:N Frames {base 10 integer}

:Step {Yes, No}�

c-m-D, c-X D :Show Compiled Code :PC {a relative PC}

c-X c-D :Radius {Base 10 integer}�

c-L, m-L :Show Frame :Clear Window {Yes, No}

c-X c-L :Detailed {Yes, No}

c-X c-A�

c-m-F :Show Function

c-m-L :Show Local Local {base 10 integer}

Stack Motion Commands

Page 611

These are stack navigation commands.

Accelerator Command Keywords or Arguments

m-> :Bottom of Stack :Detailed {Yes, No}

c-S :Find Frame Frame {string}

:Detailed {Yes, No}

:Reverse {Yes, No}�

c-N, m-N :Next Frame :Detailed {Yes, No}

:N Frames {base 10 integer}�

c-P, m-P :Previous Frame :Detailed {Yes, No}

:N Frames {base 10 integer}�

m-< :Top of Stack :Detailed {Yes, No}

Point Stack Accelerators

These accelerators maintain the Point Stack (or PDL). Note that they

have have no IFEP Debugger command equivalent. They correspond

closely to the point-pdl commands in Zmacs (c-SPACE for (m-X) Set

Pop Mark, and c-m-SPACE for (m-X) Move to Previous Point).

Accelerator Description

0 c-SPACE Displays the Point Stack

c-m-SPACE Exchanges point and top of stack

c-U c-U c-SPACE Pops a location off the stack and discards it

c-U c-SPACE Pops a location off the stack and sets point

c-SPACE Pushes point pdl onto the stack

n c-m-SPACE Rotates the top n entries of the point stack

DDT Commands

These commands perform basic Debugger functions (similar to conventional

DDTs).

Page 612

Accelerator Command Keywords or Arguments

= :Describe Location Address {an address}

:Print Location {Yes, No}

:Segment {a segment}�

 ^, RETURN :Set Location Contents Address {an address}

LINE,SPACE Tag {an integer}

BACK-SPACE :Follow Forwarding {Yes, No}

:Format {a typeout format}

:Segment {a segment}

:Then Show {an address or Null}�

:Set Typeout Format Format {a typeout format}

/, ^, TAB :Show Location Contents Address {an address}

LINE, SPACE :Follow Forwarding {Yes, No}

BACK-SPACE :Format {a typeout format}

:Print Location {Yes, No}

:Segment {a segment}�

; :Show Value in Format Tag {an integer}

Pointer {an address}

:Format {a typeout format}�

Use these typeout formats with the :Format keyword in the IFEP Debugger

DDT commands to specify a display format for a value.

' Character

Bit Number

A Array Header

C Control Register

E Error Trap

I Instruction

O "Octal"

Q Lisp Pointer

S Lisp Object �

Lisp-like Commands

These commands perform debugging functions normally provided in

Lisp.

Accelerator Command Keywords or Arguments

:Describe Area Area {an area name}

Page 613

:Describe Physical Address Address {an address}

:Describe Region Region {a region number}

:Describe Virtual Address Address {an address}

:Symbol Function Symbol

:Symbol Value Symbol {interned Lisp symbol}

Miscellaneous Commands

These commands do not fit in the other IFEP Debugger command functional

categories.

Accelerator Command Keywords or Arguments

c-Z :Abort

c-HELP :Accelerator Help

:Debug Process Process {name and address}

:Show Initial Frame {Yes, No}�

c-M :Mail Bug Report Nframes {base 10 integer}

:Output Destination

{FEP pathname, or Null}�

:Set Base Number Base {base 10 integer}

:Set Debugger Options :Follow Forwarding {Yes, No}

:Name Heuristication {Yes, No}

:Print Errors {Yes, No}

:Print Length {an integer}

:Print Level {an integer}�

:Set Default Segment Segment {a segment}

:Set Package New Package {a package}�

Stack Display Commands

These commands display backtrace information and information about the current

stack frame (such as values, local variable values, disassembled code, and so on).

Page 614

Show Argument IFEP Debugger Command

:Show Argument Argument c-m-A�

Shows an argument in the current frame. This command sets point to the stack-

address of the argument.

For example,

STORAGE:CHECK-UNIT-HUNG (PC = 70)

 Arg 0 (UNIT): #<STORAGE:EMBEDDED-UNIT-QUEUE 36000603042>

fic-m-0 c-m-A :Show Argument 0

#<STORAGE:EMBEDDED-UNIT-QUEUE 36000603042>

fiTAB

36000603042@V/04170200000060 ;s #<DTP-HEADER-I 30200000060>

fi�

Since c-m-A sets point to the argument, you can use TAB> to examine the struc-

ture (in this case) further.

Argument {base 10 integer} Argument number (from :Show Frame dis-

play). (Default is 0.)

Key-binding accelerators�

Use c-L or c-X c-A to show all the arguments in the frame.

c-m-A :Show Argument 0�

Show Backtrace IFEP Debugger Command

:Show Backtrace keywords c-B, m-B, c-m-B�

Displays a backtrace. This command does not change the value of point.

Note that the IFEP Debugger does not have a concept of invisible or interpreter

frames. They are always shown, as are continuations.

keywords :Detailed, :N Frames, :Step�

:Detailed {Yes, No} Shows the arguments and current PC for each

frame. The default is No (Yes, if mentioned).

:N Frames {base 10 integer} Specifies how many frames to include in the

backtrace. (Default is 5.)

:Step {Yes, No} Stops after each frame.

In :Detailed Yes mode, :Step Yes prompts for "Next Frame?", to

which you can reply Yes or No.

Page 615

In :Detailed No mode, there is no prompt. Pressing RUBOUT,

ABORT, or N will stop. Any other character continues. (Default

is No. Mentioned default is Yes.)

Key-binding accelerators�

c-B :Show Backtrace

m-B, c-m-B :Show Backtrace :Detailed Yes :Step Yes�

Show Compiled Code IFEP Debugger Command

:Show Compiled Code Function keywords c-m-D, c-X D, c-X c-D�

Shows the compiled code (that is, disassembled instructions) around an address.

Note that this command takes different arguments than the similar Lisp Debugger

command.

This command sets point to the relative PC in the specified function.

Function {an address in a compiled function} Note you can enter a PC

as an argument to c-m-D. The default is the current PC of the

current frame. �

keywords :PC, :Radius�

:PC {a relative PC} The PC to center the disassembly on. (Default

is the PC pointed to by function.)

:Radius {base 10 integer} The number of words to display before and

after the PC. (Default is 4.)

Key-binding accelerators�

Note that the IFEP Debugger accelerators c-x D and c-m-D are compatible with

the Lisp Debugger (c-X c-D is :Show Source Code in the Lisp Debugger).

You can use the accelerator modifier to specify a different radius. For example,

ESCAPE c-8 c-m-D is equivalent to :Show Compiled Code <default> :Radius 8.

c-X c-D :Show Compiled Code <accelerator argument> :Radius 4

c-m-D

c-X D

Show Frame IFEP Debugger Command

Page 616

:Show Frame keywords c-L, m-L, c-X c-L, c-X c-A

Shows the current stack frame function and arguments. Sets point to the first

stack-address (FP|0) of the frame.

keywords :Clear Window, :Detailed

:Clear Window {Yes, No} Clears the window first. (Default is No. Mentioned

default is Yes.)

:Detailed {Yes, No} Shows locals and disassembled code, as well as any

bindings in the frame. You can use this command option to dis-

cover the value of specials in other processes. This is equiva-

lent to the Lisp Debugger command :Show Stack. (Default is

No. Mentioned default is Yes.)

Key-binding accelerators�

c-L, c-X c-A :Show Frame :Clear Window Yes

m-L, c-X c-L :Show Frame :Detailed Yes :Clear Window Yes

Show Function IFEP Debugger Command

:Show Function c-m-F�

Shows the function in the current frame.

Sets point to the function-cell of the function.

Key-binding accelerators�

c-m-F :Show Function�

Show Local IFEP Debugger Command

:Show Local Local c-m-L�

Shows a local variable in the current frame. You can also use this command to

show any values accumulating in the frame. (This is equivalent to :Show Frame

:Detailed.)

Note that you can use this command to examine any slot in the current frame (the

IFEP Debugger does not distinguish between a local variable and an internal stack

slot). You can display an &rest argument using :Show Local with an index one less

than the first local.

Sets point to the stack-address of the local.

Page 617

Local {base 10 integer} Local number (from :Show Frame :Detailed

display). (Default is 0.)

Key-binding accelerators�

Use m-L or c-X c-L to show all the locals in the frame.

c-m-L :Show Local <accelerator argument>�

Stack Motion Commands

These commands move to another activation frame in the stack (note that as in

the Lisp Debugger, down (:Next Frame) is less recent, or toward the caller, and

up (:Previous Frame) is more recent, or toward the callee):

Bottom of Stack IFEP Debugger Command

:Bottom of Stack keywords m->�

Goes to the bottom of the stack (that is, the least recent frame). Sets point to the

first stack-address (FP|0) of the frame.

keyword :Detailed�

:Detailed {Yes, No} Shows locals and disassembled code for the frame.

(Default is No. Mentioned default is Yes.)

Key-binding accelerators�

m-> :Bottom of Stack�

Find Frame IFEP Debugger Command

:Find Frame Frame keywords c-S�

Searches down (for a caller) frame whose function matches Frame. Sets point to

the first stack-address (FP|0) of the frame (if found).

Frame {string} Searches for a frame whose function contains this

string.�

keywords :Detailed, :Reverse�

Note that the IFEP Debugger shows all frames (including invisible and interpreter

frames). Therefore, there is no need for the Lisp Debugger c-m-P or m-sh-P accel-

erators, or for the :Invisible or :Internal keywords.

Page 618

:Detailed {Yes, No} Shows locals and disassembled code for the frame.

(Default is No. Mentioned default is Yes.)

:Reverse {Yes, No} Searches up (for a callee) instead. (Default is No.

Mentioned default is Yes.)

Key-binding accelerators�

The accelerator prompts you for the Frame string to search for. Because of the

way accelerators work, c-- c-S actually translates to the command :Reverse Find

Frame, which is identical to :Find Frame with the sense of the :Reverse keyword

reversed.

c-S :Find Frame

c-- c-S :Find Frame :Reverse Yes�

Next Frame IFEP Debugger Command

:Next Frame keywords c-N, m-N�

Shows the next frame (down) in the stack. Sets point to the first stack-address

(FP|0) of the frame.

keywords :Detailed, :N Frames�

:Detailed {Yes, No} Shows locals and disassembled code for the frame.

(Default is No. Mentioned default is Yes.)

:N Frames {base 10 integer} Moves this many frames before displaying the

frame. (Default is 1.)

Key-binding accelerators�

Note that the IFEP Debugger shows all frames (including invisible and interpreter

frames). Therefore, there is no need for the Lisp Debugger c-m-P or m-sh-P accel-

erators, or for the :Invisible or :Internal keywords.

c-N :Next Frame :N Frames <accelerator-argument>

m-N :Next Frame :N Frames <accelerator-argument> :Detailed Yes

Previous Frame IFEP Debugger Command

:Previous Frame keywords c-P, m-P�

Shows the previous frame (up) in the stack. Sets point to the first stack-address

(FP|0) of the frame.

keywords :Detailed, :N Frames�

Page 619

:Detailed {Yes, No} Shows locals and disassembled code for the frame.

(Default is No. Mentioned default is Yes.)

:N Frames {base 10 integer} Moves this many frames before displaying the

frame. (Default is 1.)�

Key-binding accelerators�

Note that the IFEP Debugger shows all frames (including invisible and interpreter

frames). Therefore, there is no need for the Lisp Debugger c-m-P or m-sh-P accel-

erators, or for the :Invisible or :Internal keywords.

c-P :Previous Frame :N Frames <accelerator-argument>

m-P :Previous Frame :N Frames <accelerator-argument> :Detailed

Yes�

Top of Stack IFEP Debugger Command

:Top of Stack keywords m-<�

Goes to the top of the stack (that is, the most recent frame). Sets point to the

first stack-address (FP|0) of the frame.

keyword :Detailed�

:Detailed {Yes, No} Shows locals and disassembled code for the frame.

(Default is No. Mentioned default is Yes.)

Key-binding accelerators�

m-< :Top of Stack�

Point Stack Accelerators

The IFEP Debugger provides two accelerators for maintaining the Point Stack (or

PDL). They correspond closely to the point-pdl commands in Zmacs (c-SPACE for

(m-X) Set Pop Mark, and c-m-SPACE for (m-X) Move to Previous Point). You can

use these accelerators to save points of interest.

The Point Stack accelerators have no full-form equivalents in the IFEP Debugger

command table. They are available only as accelerators.

The IFEP Debugger DDT commands automatically maintain the Point Stack by

pushing the previous point on the stack whenever you move to a non-consecutive

location.

When non-DDT commands set point, they do not always push the previous point on

the Point Stack. Non-DDT commands only push the previous point onto the stack

Page 620

if the location is still open when you enter the command. (You can usually return

to a point that you reached with non-DDT Debugger commands by reissuing a sin-

gle IFEP Debugger command.)

Since the Point Stack is a limited resource, oldest points are discarded when you

add a point to a full stack.

The IFEP Debugger Point Stack accelerators are:

c-SPACE for push-or-pop-point-pdl.

With no argument, it pushes a point on the stack.

This is equivalent to the Zmacs command (m-X) Set

Pop Mark.

With an argument of c-U, it pops a location off the

stack and sets point.

With an argument of c-U c-U, it pops a location of

the stack and discards it.

With an argument of 0, it displays the Point Stack

(describing each location on the stack, as if by :De-

scribe Location).

c-m-SPACE for exchange-point-pdl

A numeric argument rotates top argument entries of

the point PDL (the default numeric argument is 2).

An argument of 1 rotates the whole point PDL, and

a negative argument rotates the other way.

This is equivalent to the Zmacs command (m-X)

Move Previous Command.

For either accelerator, if point is set from the stack, a :Show Location Contents

command for the new value of point is executed.

Exchange Point IFEP Debugger Point Stack Accelerator

c-m-SPACE

IFEP Debugger Point Stack accelerators have no full-form command equivalents.

They are available only as accelerators.

You can use this accelerator to exchange point with the top of the stack. (This is

equivalent to the Zmacs command (m-X) Set Pop Mark.) A numeric accelerator al-

lows you to rotate top argument entries of the Point Stack.

Note that, if point is set from the stack, :Show Location Contents for the new val-

ue of point is automatically executed.

Page 621

Key-binding accelerators�

c-m-SPACE Exchanges point and the top of the Point Stack.

<a number> c-m SPACE

A numeric argument rotates top argument entries of the Point

Stack. (Default numeric argument is 2).

An argument of 1 rotates the whole Point Stack. A negative ar-

gument rotates the other way.

Push or Pop Point IFEP Debugger Point Stack Accelerator

c-SPACE

IFEP Debugger Point Stack accelerators have no full-form command equivalents.

They are available only as accelerators.

You can use this accelerator to add or delete points from the IFEP Debugger Point

Stack (or PDL). Accelerator options allow you to display the PDL, pop and discard

a point from the PDL, pop and set a point, and push a point onto the Point Stack.

This is equivalent to the Zmacs command (m-X) Move Previous Command.

Note that, if point is set from the stack, :Show Location Contents for the new val-

ue of point is automatically executed.

Key-binding accelerators�

c-SPACE Pushes a point onto the Point Stack.

c-U c-SPACE Pops a location off the Point Stack and sets point.

c-U c-U c-SPACE Pops a location off the Point Stack and discards it.

0 c-SPACE Displays the Point Stack.�

DDT Commands

The IFEP Debugger runs on the same processor as Lisp. This means that the

IFEP Debugger has access to the Lisp structures. It also means that the IFEP De-

bugger and Lisp may be effected by the same error.

In addition to the commands that closely depend on the Lisp state, the IFEP De-

bugger provides a set of commands that only minimally depends on the Lisp state.

These latter commands are especially useful when Lisp encounters an error. They

are similar to DDT commands of conventional debuggers.

These commands provide basic debugging functions. You can use DDT commands

to examine and modify Lisp memory. (Note that IFEP Debugger DDT commands

use an address-oriented rather than object-oriented view of the Lisp world.) Using

these commands requires knowledge of both hardware and software internals.

Page 622

Almost all the IFEP Debugger DDT commands are technically accelerators, that is,

they are single-character commands. Unlike the other accelerators, however, they

do not normally echo their full-form equivalents (some of which are not even in

the command table, for space reasons).

Describe Location IFEP Debugger Command

:Describe Location Address keywords =�

Briefly describes what an address points to. If point is not open, the default argu-

ment is point. Otherwise, the default argument is the contents of point.

• For virtual addresses, the output of this command is similar to the output

of describe for a locative (you could think of it as printing a symbolic ad-

dress).

• For physical addresses that map to external bus addresses, the external

bus address (and shuffling, if any) is given. For more information, see the

macro sys:with-bus-mode, and see the macro sys:with-hardware-bit-

shuffling.

• For addresses in other segments, the symbolic name (if any) is given.�

Address

{an address} The address to describe. (Default is point.)

keywords

:Print Location, :Segment

:Print Location

{Yes, No} Specifies whether to echo the address and seg-

ment arguments first. (Default is No if point is open, Yes

otherwise.)

:Segment

{a segment} The segment to interpret the address in.

(Default is the segment of point.)�

�

This command is most useful in its accelerator form (because of the way it accepts

its arguments).

Note that the IFEP Debugger indicates that a location is open by not prompting

for a new command. See the section "Using IFEP Debugger Commands".

For examples of how to use this command, see the section "Examples of Using the

IFEP Debugger to Set Lisp Variables".

Key-binding accelerators�

Page 623

= :Describe Location <accelerator argument> :Segment <argu-

ment modifier>

Set Location Contents IFEP Debugger Command

:Set Location Contents Address Tag Pointer keywords ^, RETURN,

LINE, SPACE,

BACK-SPACE

Sets the contents of a memory location.

Address {an address} The address of the location whose contents to

change. (Default is point.)

Tag {an integer in the current base between 0 and 255} The Tag

field of the value to set. (Defaults to the Tag field of point.)

Pointer {an address} The pointer field of the value to set. (Defaults to

the Pointer field of point.)�

keywords :Follow Forwarding, :Format, :Segment, :Then Show�

:Follow Forwarding {Yes, No} Specifies whether to follow any invisible pointers be-

fore storing the value. (Defaults to the current setting of the

option as set by :Set Debugger Options.)

:Format {a typeout format} The format to display the next location con-

tents in. (Defaults to the default set by :Set Typeout Format.)

:Segment {a segment} The segment to use for interpreting addresses.

(Default is the segment of point.)

:Then Show {an address or Null} A location to display next. (Default is

Null.)�

As with :Show Value in Format, this command is most useful in its accelerator

form (because of the way the command accepts its arguments).

Note that these accelerators are only available when a location is open and an ac-

celerator argument has been pressed. If a location is not open, or no accelerator

argument has been pressed, these accelerators act as described in the :Show Loca-

tion Contents IFEP Debugger command. (The RETURN accelerator with no argu-

ment simply closes the current location without modifying it.)

Key-binding accelerators�

Because a typing mistake could easily be interpreted as a request to change loca-

tion contents, the IFEP Debugger normally prompts for confirmation. If you expect

to make a number of changes, you respond with P (for Proceed) to stop the Debug-

ger from asking each time.

For examples of how to use these accelerators, see the section "Examples of Using

the IFEP Debugger to Set Lisp Variables".

Page 624

RETURN :Set Location Contents <point> <accelerator-modifier> <acceler-

ator-argument>

LINE, SPACE :Set Location Contents <point> <accelerator-modifier> <acceler-

ator-argument> :Then Show <point>+1

^, BACK-SPACE :Set Location Contents <point> <accelerator-modifier> <acceler-

ator-argument> :Then Show <point>-1

� Set Typeout Format IFEP Debugger Command

:Set Typeout Format Format�

Sets the default typeout format (that is, the format that IFEP Debugger DDT

mode commands use to display their values). See the section "Using IFEP Debug-

ger Typeout Formats".

You can use the :Show Value in Format IFEP Debugger command to redisplay the

current value in another format.

This command is most useful in its accelerator form (because of the way it accepts

its arguments).

Format {a typeout format} The format to use. (Defaults to the current

setting.)

Not all the typeout formats are useful as defaults (for instance,

C or Control Register). Common default typeout formats are:

O "Octal"

Q Lisp pointer

S Lisp object�

Show Location Contents IFEP Debugger Command

:Show Location Contents Address keywords /, LINE, SPACE, ^,

BACK-SPACE, TAB �

Shows the contents of a memory location.

This command is most useful in its accelerator form (because of the way it accepts

its arguments).

Address {an address} The address of the location to display. (Defaults

to point.)�

keywords :Follow Forwarding, :Format, :Print Location, :Segment�

Page 625

:Follow Forwarding {Yes, No} Specifies whether to follow any invisible pointers be-

fore showing the value. (Defaults to the current setting of the

option as set by :Set Debugger Options.)

:Format {a typeout format} The format of the location contents display.

See the section "Using IFEP Debugger Typeout Formats". (De-

faults to the default set by :Set Typeout Format.)

:Print Location {Yes, No} Specifies whether to echo the address and segment

arguments first. (Default is Yes.)

:Segment {a segment} The segment to interpret the address in. (Default

is the segment of point.)

Key-binding accelerators�

The accelerators for this command are the main ways of examining Lisp memory.

/ Opens point and displays its contents. Alternatively, you can

give an argument address and a segment.

LINE or SPACE Displays the next consecutive location (usually used without an

argument).

^ or BACK-SPACE Displays the previous consecutive location (usually used with-

out an argument).

TAB Goes through a location to display what that location addresses

(usually used without an argument). Use this only if the cur-

rent location actually contains an address.�

When a location is open and you press an argument followed by any of LINE,

SPACE, ^, or BACK-SPACE, the IFEP Debugger assumes a request to write the ar-

gument into the open location and then to display the location the accelerator

would normally display. It does not treat the argument as an accelerator argument.

For more information, see the section "Set Location Contents IFEP Debugger Com-

mand".

If you intend the argument as a new location to open, you must first close the cur-

rently open location (using RETURN). This returns you to the IFEP Debugger com-

mand prompt.

Use c-HELP or :Accelerator Help to display the accelerator descriptive names.

/ :Show Location Contents <accelerator argument> :Segment <ar-

gument modifier>

The default argument is point. (If an argument is given, :Print

Location is No. Otherwise, the default is Yes.)

LINE, SPACE :Show Location Contents <accelerator argument> :Segment <ar-

gument modifier>

The default argument is point, incremented by one. If a loca-

tion is open, an argument is interpreted as a :Set Location

Page 626

Contents request. Otherwise, the argument is interpreted as a

location and its contents is displayed.

^, BACK-SPACE :Show Location Contents <accelerator argument> :Segment <ar-

gument modifier>

The default argument is point, decremented by one. If a loca-

tion is open, an argument is interpreted as a :Set Location

Contents request. Otherwise, the argument is interpreted as a

location and its contents is displayed.

TAB :Show Location Contents

The default arguments are the address and segment as indicat-

ed by the contents of point (that is, point is "indirected

through" to find the location to display. (Note that, if an argu-

ment is given, it is taken as a location to "indirect through".)

See the section "Using Invisible Pointers or Cell Forwarding in

the IFEP Debugger" for information on how to correctly use

this accelerator.

Show Value in Format IFEP Debugger Command

:Show Value in Format Tag Pointer keywords ;, ESCAPE;�

Displays a value in a specified typeout format. See the section "Using IFEP Debug-

ger Typeout Formats".

Note that this command automatically follows cell forwarding before performing its

function.

Tag {an integer in the current base between 0 and 255} The tag

field of the value to show. (Defaults to the tag field of point.)

Pointer {an address} The pointer field of the value to show. (Defaults

to the pointer field of point.)

keyword :Format�

:Format {a typeout format} The typeout format to use. See the section

"Using IFEP Debugger Typeout Formats". (Defaults to the de-

fault set by :Set Typeout Format.)�

This command is most useful in its accelerator form (because of the way it accepts

its arguments).

Key-binding accelerators�

;char :Show Value in Format <default> <default> :Format char

ESCAPE;char :Show Value in Format <default> <default> :Format char

Page 627

This command performs the same function as ;char, except

that it also sets the temporary default format to the format you

specified. The temporary default applies for as long as you have

an open location (that is, until you return to the IFEP Debug-

ger prompt). See the section "Using IFEP Debugger

Commands" for a definition of an open location.�

For example, if you are examining a stack frame with the IFEP Debugger and see

a display like this:

�

 FOO:BAR (PC = 3)

 Local 0: <<Error printing value>>

 fi�

You can change the typeout format by pressing c-0 c-m-L to get point to point to

that stack slot, then enter ;Q to see the value in Lisp pointer format.

 FOO:BAR (PC = 3)

 Local 0: <<Error printing value>>

 fi:Show Local 0

 <<Error printing value>>

 fi;q CDR-NEXT DTP-NULL 20012362724

 fi�

Since Ivory allows random data-types on its stack, this might or might not be a le-

gitimate value.

Note that the non-DDT IFEP Debugger commands all print out using S typeout

format.

Lisp-like Commands

These commands provide debugging functions normally provided in Lisp.

Describe Area IFEP Debugger Command

:Describe Area Area�

Describes an area (that is, performs (describe-area "area").

In this example, the default is used. Note that since point is an address in a wired

function, the default is Wired-control-tables (the area where wired functions are

stored).

Page 628

37001053101@V/17703377140013 .=Word 23 of #<DTP-COMPILED-FUNCTION

STORAGE:WIRED-WAIT 37001053056>

fiDescribe Area (Area [Default Wired-control-tables]) Wired-control-tables

Area #1: SYS:WIRED-CONTROL-TABLES has 1 region, region size 10000000 (octal):

 Last (dynamic) level: 0 regions, 0K allocated, 0K used.

 Static: 1 region, 64K allocated, 43K used.

 Region #1: Origin 37001000000, Length 200000, Free 125425, GC

125425, NEW STRUCTURE, Scav WIRED FixedSize NEW STRUCTURE Space: 1 region,

65536 allocated, 43797 used.

 Total for SYS:WIRED-CONTROL-TABLES: 65536 allocated, 43797 used.

fi�

Area {an area name} The name of the area to describe.

Describe Physical Address IFEP Debugger Command

:Describe Physical Address Address�

Gives detailed virtual-memory information about a physical address. This command

is used to debug virtual-memory errors.

For example,

fiDescribe Physical Address (Address [Default 37000000753]) 0

PMA 0 is in PPN 0

PPN 0 contains a copy of VPN 76000000

The load bit for VPN 76000000 is clear.

The sysout bit for VPN 76000000 is clear.

VPN 76000000 is in region 0 of area 0 (SI:FEP-AREA). Region #0: Origin

37000000000, Length 1000000, Free 327642, GC 0, NEW LIST, NoScav WIRED FixedSize

PPN 0 is described by MMPT entry 0

 MMPT entry 0 describes VPN 76000000

 Status=WIRED, Write-Lock=0, Flushing=0, Wired-Count=7, Thread=77777777

�

Address {an address} The address to describe. (Defaults to point, as a

physical address.)�

Describe Region IFEP Debugger Command

:Describe Region Region�

Describes a region (that is, performs (si:describe-region si:region).

Region {a region number} The region to describe. (Defaults to the re-

gion containing point.)

Page 629

Describe Virtual Address IFEP Debugger Command

:Describe Virtual Address Address�

Gives detailed virtual-memory information about a virtual address. This command

is used to debug virtual-memory errors.

For example,

fiDescribe Virtual Address (Address [Default 37000000753]) 0

The load file contains a copy of VPN 0 at DPN 561555, in a block of 1 pages at DPN 561555.

The load bit for VPN 0 is set.

The sysout bit for VPN 0 is clear.

VPN 0 is in region 112 of area 10 (SYS:WORKING-STORAGE-AREA).

Region #112: Origin 0, Length 1000000, Free 220, GC 0, NEW LIST,

Scav EPHEMERAL level 1

 �

Address {an address} The address to describe. Defaults to point, as a

virtual address.�

Symbol Function IFEP Debugger Command

:Symbol Function Symbol�

Shows the definition of a Lisp symbol (that is, performs (symbol-function

'symbol)).

Note that the IFEP Debugger always shows the top-level binding at the time Lisp

halted. Also note that it shows special variable bindings for stack-frames that are

displayed (it does not look up bindings for a particular stack frame or process).

Sets point to the function-cell of the symbol.

Symbol {an interned Lisp symbol} The symbol whose definition to

show.�

Symbol Value IFEP Debugger Command

:Symbol Value Symbol�

Shows the value of a Lisp symbol (that is, performs (symbol-value 'symbol)). You

can use this command to see the current value of a special variable.

Note that the IFEP Debugger always shows the top-level binding at the time Lisp

halted. Also note that it shows special variable bindings when stack frames are

displayed (it does not look up bindings relative to a particular stack-frame or pro-

cess.)

Page 630

Sets point to the value-cell of the symbol.

Symbol {an interned Lisp symbol} The symbol whose value to show.�

Miscellaneous Commands

These commands perform functions that do not fit neatly into the other command

categories.

Abort IFEP Debugger Command

:Abort c-Z, ABORT

Exits the IFEP Debugger.

Note that if you are not at the top-level Debugger prompt, ABORT may have other

meanings (such as, terminate the current typein, typeout, or command in execu-

tion). You may need to enter ABORT several times to achieve the same effect as

:Abort (that is, to exit from the IFEP Debugger).

Key-binding accelerators�

c-Z, ABORT :Abort�

Accelerator Help IFEP Debugger Command

:Accelerator Help c-HELP�

Gives a brief paragraph describing accelerator arguments and modifiers, then lists

the accelerator keys and their descriptive names.

Key-binding accelerators�

c-HELP :Accelerator Help�

Debug Process IFEP Debugger Command

:Debug Process Process keyword

Selects a process other than the current one. Use :Debug Process HELP to see a

list of processes and their states.

Process {a process name and address} To uniquely identify the process,

include the address of the process with the name. You can use

command completion to include the process address. (Defaults

to the process that was running when Lisp stopped.)

Page 631

For a list of possible processes and their states, use HELP,

c-/, or c-?.

keyword :Show Initial Frame�

:Show Initial Frame{Yes, No} Specifies whether or not to show the top frame of

the process.

Use :Show Initial Frame No if it appears that something in the

initial display is preventing the Debugger from debugging the

process. (Default is Yes. Mentioned default is No.)

� Mail Bug Report IFEP Debugger Command

:Mail Bug Report Nframes keyword c-M�

Saves a backtrace that you can later include in Lisp bug mail.

Nframes {base 10 integer} How many frames to include in the backtrace.

(Default is 5.)�

keyword :Output Destination�

:Output Destination{FEP pathname or Null} The FEP saves the backtrace in local

memory, unless you name a destination disk file. Note that

FEP local memory is limited (and ephemeral, if the FEP is

reset). (Default is Null. Mentioned default is FEP:>Crash-

data.text.newest.)

Key-binding accelerators�

c-M :Mail Bug Report <accelerator-argument>

ESCAPE c-M :Mail Bug Report <accelerator-argument> :Output Destination �

Set Base IFEP Debugger Command

:Set Base Number Base�

Sets the default base for printing and accepting numbers in the IFEP Debugger.

Note that numeric arguments to command accelerators prefixed by any of c-, m-,

s-, or h- are always parsed in base 10. Unprefixed numbers are parsed in the cur-

rent base.

The base setting applies only for the current session of the IFEP Debugger. It is

reset when you leave the Debugger. You cannot set input and output bases sepa-

rately.

Page 632

Number Base {base 10 integer} The number base to use. (Default is 10.)�

Set Debugger Options IFEP Debugger Command

:Set Debugger Options keywords�

Sets the values of various Debugger parameters.

keywords :Follow Forwarding, :Name Heuristication, :Print Errors, :Print

Length, :Print Level

:Follow Forwarding {Yes, No} Specifies whether to hide invisible pointers as they

are in Lisp. (Default is No.)

:Name Heuristication

{Yes, No} Specifies whether to search for a plausible name

when printing named structures and instances. (Default is

Yes.)

:Print Errors {Yes, No} Specifies whether or not to print internal FEP de-

bugging information, when the printer gets an error. (Default

is No.)

:Print Level {an integer} The depth to abbreviate lists to when describing

stack frames. Note that there is no abbreviation when examin-

ing individual objects. (Default is 2.)

:Print Length {an integer} The length to abbreviate lists to when describing

stack frames. Note that there is no abbreviation when examin-

ing individual objects. (Default is 4.)

Set Default Segment IFEP Debugger Command

:Set Default Segment Segment�

Specifies the default segment for interpreting an address.

Accelerator arguments that are entered without an argument modifier that explic-

itly specifies the segment, are considered to be in the default segment (as set by

this command). The self-documentation for this command's argument gives the

possible segments and their abbreviations.

Segment {a segment} The segment to use as a default for interpreting

addresses. See the section "IFEP Debugger Accelerator Argu-

ments" for a description of available segments. (Default is the

current setting, initially V.)

Set Package IFEP Debugger Command

Page 633

:Set Package New Package�

Sets the default package for remote symbol lookup.

Note that the IFEP Debugger always prints symbol packages, even for symbols in

the current package. Also note that the IFEP Debugger does not distinguish inter-

nal from external symbols. Therefore, do not interpret a internal symbol printed

with a single colon to mean that its package is current. See the section "Printed

Representation of Lisp Objects in the IFEP Debugger".

New Package {a package} The package to use. (Default is the current value

of *package*.) �

Printed Representation of Lisp Objects in the IFEP Debugger

The IFEP Debugger implements the Lisp printer, with the following restrictions:

• The IFEP Debugger printer does not always print prettily.

• Long printed representations simply wrap. You can abort long printouts

by pressing any key.

• The IFEP Debugger does not implement printing of circular objects. You

must manually abort the printout.

• When describing a stack frame, *print-level* and *print-length* limits are

2 and 4, respectively. Otherwise, they are unlimited.�

Lisp objects are printed in a familiar format, with the following exceptions:

• Symbols

• Numbers that are not fixnums

• Characters or strings with character-set or character-style attributes

• Bit vectors, vectors, and arrays

• Named-structures and instances �

The printed representation describes the S typeout format. For more details, see

the section "Using IFEP Debugger Typeout Formats".

Printing Symbols

The IFEP Debugger does not print symbols in the same way that the Lisp printer

does.

Page 634

· The IFEP Debugger always prints the full package name of symbols (re-

gardless of the current package, syntax, or existence of relative package

names).

· The IFEP Debugger always prints one colon separating the package name

from the symbol name (that is, the printer does not distinguish between

internal and external symbols).

· The IFEP Debugger does not quote package or symbol names.•

Printing Numbers

The IFEP Debugger prints fixnums in the current base. All other numbers print

as their data-type and pointer field. For example, 1.0 prints as

 #<DTP-SINGLE-FLOAT 7740000000>•

You can change the number base using the :Set Base IFEP Debugger command.

Printing Characters and Strings

String-chars and strings of string-chars (also known as thin strings) print normally

in the IFEP Debugger. Characters with only bits attributes also print normally.

Characters that have a non-nil character style or a non-zero character set attribute

print as if thin, that is, as if their character-style and character set are ignored. If

the thin character does not map into the FEP's only font, it is printed as a

lozenged octal number instead. (This may have obscure results for fonts that do

not represent standard characters. For example, #\mouse:nw-arrow prints as

<406> .

Note that usually errors that require using the IFEP Debugger do not involve

characters or strings in nonstandard fonts.

Printing Bit Vectors, Vectors, and Arrays

These objects are printed as arrays with print-array set to nil You can use the

IFEP Debugger DDT commands to examine individual array elements. See the sec-

tion " IFEP Debugger DDT Commands " .

Printing Named Structures and Instances

The IFEP Debugger does not support print functions or methods for named struc-

tures and instances. However, it does include a heuristic that searches for and

prints a string could plausibly be the name of the structure or instance. For ex-

ample,

