
Program Development Utilities

Introduction to Program Development Utilities

This volume contains reference documentation about the program development util-

ities available to you in Genera. These utilities include:

• The System Construction Tool (SCT), which helps manage large programs that

span several files. See the section "System Construction Tool".

• The Common Lisp Developer. See the section "Developing Portable Common Lisp

Programs".

• The compiler. See the section "The Compiler".

• Metering utilities. See the section "Metering a Program’s Performance".

• The Genera interactive Debugger, and some related debugging utilities. See the

section "Debugger".

• Other debugging tools and techniques, including tracing function execution, ad-

vising a function, stepping through an evaluation, and using the Inspector and

Peek utilities. See the section "Miscellaneous Debugging Techniques".

• Files and pathnames. See the section "Files".

• The Conversion Tools, which are a series of special-purpose Zmacs commands

that save you time and effort in editing large pieces of code in ways that can be

done semiautomatically. See the section "Conversion Tools".

System Construction Tool

Introduction to the System Construction Tool

When a program becomes large, it is often desirable to split it up into several

files. One reason is to help keep the parts of the program organized, to make

things easier to find. Another is that programs broken into small pieces are more

convenient to edit and compile. It is particularly important to avoid the need to re-

compile all of a large program every time any piece of it changes; if the program

is broken up into many files, only the files that have changes in them need to be

recompiled.

The apparent drawback to splitting up a program is that more mechanism is need-

ed to manipulate it. To load the program, you now have to load several files sepa-

rately, instead of just loading one file. To compile it, you have to figure out which

files need compilation, by seeing which have been edited since they were last com-

piled, and then you have to compile those files.

Page 2

An even more complicated factor is that files can have interdependencies. You

might have a Lisp file called "defs" that contains macro definitions (or flavor def-

initions), and functions in other files might use those macros. This means that in

order to compile any of those other files, you must first load the file "defs" into

the Lisp environment, so that the macros will be defined and can be expanded at

compile time. You would have to remember this whenever you compile any of those

files. Furthermore, if "defs" has changed, other files of the program might need to

be recompiled because the macros might have changed and need to be reexpanded.

Finally, you might want to generate multiple versions of the program  a stable

version for general users to run, another for development purposes; source control

for the various versions would be nearly impossible to maintain manually.

The System Construction Tool (SCT) addresses the difficulties of maintaining large

programs that span several files. A system is a set of files and a set of rules and

procedures that define the relations among these files; together these files, rules,

and procedures constitute a complete program.

SCT examines the creation times of the source files to determine which ones must

be recompiled to produce "clean" and "coherent" product files. It can also be used

to merge patches to a system. By tracking all dependencies, SCT ensures that each

released system is consistent. See the section "Directories Associated with a Sys-

tem".

A system can be constructed out of Lisp source files or files written in other lan-

guages. Systems can also be constructed out of text files or other types of files

specified by users.

Here we summarize how you define and use systems:

• You define the system, using SCT’s defsystem special form. The definition,

called a system declaration, specifies such information as the names of the

source files (or modules) in your system and what operations should be per-

formed on each file in what order (for example, which files should be compiled,

loaded, or both, and which should be loaded first). See the section "Defining a

System".

• The body of a defsystem declaration names the files that compose the system

and consists of one or more module specifications. A module is one or more files

or modules that should be treated as a unit. Operations  compiling, loading,

editing, hardcopying, and the like  are applied to the module as a whole. See

the section "defsystem Modules".

• If the system is to be made generally available to other users, you should place

the system definition in its own file. (This file should contain no more than one

defsystem form, but there can be any number of defsubsystems and other

forms.) You also must create two other files that make your system site-

independent. The goal is to make your system run at any site, not just the one

on which it physically resides. (Imagine the problems that would occur if you

moved your program to another host machine, and you had to update every sin-

gle pathname listed in your system definition!)

Page 3

• You can perform operations on your system (for example, compile, edit, load,

reap-protect, distribute, release, or hardcopy) by using the appropriate Command

Processor commands (for example, Load System and Compile System) or Lisp

functions. See the section "Loading and Compiling Systems". See the section

"Functions that Operate on Systems". You can also define your own operations

to perform on systems. See the section "User-defined Operations on Systems".

• The patch facility lets you make and distribute incremental fixes and improve-

ments to your system, called patches, thereby avoiding recompilation or reloading

of the entire system. By maintaining a patch registry, a detailed record keeping

system, the patch facility allows developers to maintain multiple versions of the

same system. See the section "Patch Facility".

• Various functions exist to help you find information about existing systems. See

the section "Obtaining Information About a System".�

Defining a System

A system is a set of files and a set of rules and procedures that defines the rela-

tions among these files; together these files, rules, and procedures constitute a

complete program. The definition of a system (called the system declaration) de-

scribes these relationships and rules. Some useful, general guidelines are:

1. Use Zmacs to enter the system declaration in its own file, with a canonical

type of :lisp. The system declaration file also contains a package declaration

for the system (if necessary), which must precede the system declaration in

the file. For an example of a system declaration file: See the section "System

Declaration Files".

2. Create a defsystem form. See the section "Using defsystem". Wherever a

pathname is required in your system declaration use logical pathnames, not

physical pathnames. Logical pathnames provide a way of referring to files in

a site-independent way. They also make it possible to move the sources from

one machine to another within a site.

3. Assuming that you have used logical pathnames, you need to prepare two oth-

er files:

• The system file

• The translations file�

The system file defines a logical host, specifies the location of the system dec-

laration file, and loads the translations file. The translations file defines the

translation from logical directories on the logical host to physical directories

on a physical host. See the section "Loading System Definitions".

Page 4

4. Invoke a Lisp function or Command Processor (CP) command to compile, load,

or perform some other operation on your system, as in

Load System Fortran :Version Latest

The command uses the information in the translations file to load the system

declaration file, compiling this declaration file first if necessary.

Using defsystem

defsystem system-name options &body body Function

Defines a system called system-name. This name is used for all operations on the

system.

The definition of a system (called the system declaration) describes a group of rela-

tions among a group of files that constitute at least one complete program. The

declaration provides information on (1) the files that make up the system, (2)

which files depend on previous operations, and (3) the characteristics of the sys-

tem, for example, the package in which the source code should be read. Note: sys-

tem-name is not package-dependent. It is only used as a string.

Interpreting or compiling the system declaration brings your system into existence

for the purposes of applying operations to it. After your system declaration is load-

ed into the Lisp environment, Command Processor commands (such as Load Sys-

tem and Compile System) and corresponding Lisp functions construct a plan of op-

erations in accordance with the properties specified in your system declaration.

The system is operated on according to this plan.

options is a list of keyword and value pairs that specify global attributes of the

system being defined. body contains the detailed specification of the parts of the

system. body can be written using a long-form syntax or an abbreviated short-form

syntax.

CLOE 386 supports all the keyword options available under CLOE 3600 SCT, at

least to the extent of preserving the values supplied. However, several options are

used on the CLOE 386 side, especially :name, :pretty-name, :short-name and

:root-pathname-for-delivery. Option :root-pathname-for-delivery specifies the sys-

tem root directory for the system in question.

For information on each option, see the section "defsystem Options".

The body of the defsystem form specifies information about the system and depen-

dencies among components of the system. This information is used on the CLOE

3600 side to generate a compilation plan. The plan is contained in the file: file.l,

and is transmitted by the Migrate System command.

For information on defsystem modules, see the section "defsystem Modules".

defsystem Options

Page 5

options is a list of keyword and value pairs that specify global attributes of the

system being defined.

:pretty-name

Specifies the name of the system for use in printing. This is the

user-visible name appearing in heralds and so on. If :pretty-

name is not specified, the default is the name of the system: sys-

tem-name.

Example: Based on the following declaration, the herald displays

the name of the registrar system as "Automatic Registration

System".

(defsystem registrar

 (:pretty-name "Automatic Registration System"

 :short-name "Registration"

 :default-pathname "reg:reg;")...)�

:short-name

Specifies an abbreviated name used in constructing disk label

comments and patch file names for some file systems. See the

section "Names of Patch Files". If the :short-name is not sup-

plied, system-name is used.

:required-systems

� Specifies the systems that are required to be loaded before this

system being defined can be loaded (or compiled). If you try to

load a system when a required system is missing, SCT gives an

error telling you that the required system must be loaded first.

:required-systems allows you to establish dependencies among

several systems without having to lock in a specific version num-

ber, as would happen if one system were a component system of

the other.

(defsystem registrar

 (:pretty-name "Automatic Registration System"

 :short-name "Registration"

 :default-pathname "reg:reg;"

 :required-systems "Scheduling Utilities")...)�

:default-package

� Specifies the name of an existing package into which each file in

the system will be loaded or compiled. This is only useful if the

file has no package attribute in its mode line. (Typically, the

package declaration for a system is placed in the same file as the

system declaration. See the section "Defining a Package".)

It is sometimes necessary to selectively override the system’s de-

fault-package, for example, when a particular system module

needs to read a file into a particular package. In this case specify

Page 6

a different package for a particular module. See the section

":module Keyword Options".

On other occasions you might want to compile or load your sys-

tem in a package other than the default package for purposes of

debugging new versions of the system. For information, see the

discussion of the :package-override option, see the section

"defsystem Options".

Example: All the modules in mailer, except for macros, are

compiled/loaded into the mail package.

(defpackage mail (:size 4096.))

�

(defsystem mailer

 (...

 :default-package mail

 ...)

 (:module defs "defs")

 (:module macros "macros" (:package special)

 (:in-order-to :compile (:load defs)))

 ...)�

Note: Your system should be compiled and loaded in its own

unique package. If your system and someone else’s system both

define a function called foo, but with different package names,

the package specification will prevent name conflicts. Avoid af-

fecting symbols in the standard Genera packages. See the section

"Packages".

:package-override

� Overrides all other explicit package declarations  the system de-

fault package, a package declaration for a particular module, as

well as a package specified in the attribute lists of constituent

files.

Commonly, this option is used when debugging a new version of a

system. For example, temporarily insert the option in your

defsystem form, reevaluate the form, and compile and test your

experimental version. Do not save the system declaration file with

the :package-override option. When you’re finished debugging

the new version, delete the option from the defsystem form and

reevaluate it.

:default-pathname

� Specifies a default pathname against which all other pathnames

in the system are merged. Specify that part of the pathname for

which you want to establish a default. You are urged to supply

a logical, not a physical, pathname. See the section "Syntax for

Logical Pathnames".

Page 7

Here is an example.

:default-pathname "sys:zwei;"�

This eliminates the need to enter the full pathname of each of

the system’s files. If the system’s files reside in more than one

directory, furnish a pathname default for the directory storing the

largest number of files. Where the pathname differs from the de-

fault, specify the full pathname.

Example: "pres-type-macro" and "pres-type-fspec" are merged here

into "sys:dyno-windows;pres-type-macro" and "sys:dyno-

windows;pres-type-fspec" respectively. Because "character-style-

pres" resides in "sys:sys2;" a full pathname specification is given.

(defsystem dyno-windows

 (:pretty-name "Dynamic Windows"

 :default-pathname "sys:dyno-windows;")

 (:serial (:parallel "pres-type-macro" "pres-type-fspec")

 (:parallel "sys:sys2;character-style-pres")))�

:default-destination-pathname

Tells SCT where .bin or .ibin files should be compiled to (or

loaded from). This allows you to put the .bin or .ibin files in a

different place from the source files, so that multiple versions of

a system can be separated.

(defsystem foo

 (:default-pathname "SYS:FOO;"

 :default-destination-pathname "SYS:FOO;BIN-FILES;"

 ...)

 ...)�

:default-module-type

� Specifies a keyword, which is the default type for each module. If

not furnished, the default value is :lisp. The type specifies the

nature of the inputs to the system and determines the details of

what is done for each generic operation (load, edit, hardcopy) per-

formed on the system.

Some commonly used predefined types are: :lisp, :fortran,

:pascal, :text, :font, :lisp-example, and :system. (The :fortran

and :pascal types are supplied by the corresponding optional

products.) For a complete list of predefined types and operations:

See the section "System Module Types and Operations".

You can also define your own types. See the section "User-defined

Module Types".

It is possible to selectively override the system’s default type by

specifying another type for a particular module. See the section

":module Keyword Options".

Page 8

Example: The action system consists of five unnamed modules of

type :fortran.

(defsystem action

 (:short-name "act"

 :default-pathname "quark: code;"

 :default-package quark

 :default-module-type :fortran)

 (:serial "defs" "macros" (:parallel "things" "rooms") "parser"))�

:maintain-journals

� Controls whether or not a system is journalled. The default is t,

to maintain journal files. Using :maintain-journals nil makes the

system unjournalled. An unjournalled system is not patchable and

has no version number, so loading it always loads the .NEWEST

version of the files in the system.

:journal-directory

� Specifies the location of the journal directory, which contains: the

system-directory file and all the journal subdirectories. See the sec-

tion "Directories Associated with a System".

By default, the journal directory of a system is called the subdi-

rectory "patch" under the default pathname. For example if the

default directory is

sys: quux;�

then the journal directory defaults to

sys: quux; patch;�

:patchable

Specifies whether you want the system to be patchable or not. It

takes one argument, either t or nil. The default is t, meaning

that the system is patchable. (See the section "Patch Facility".)

:patches-reviewed

� Controls whether patching a system prompts for the name of a

reviewer for the patch. The value of :patches-reviewed can be t,

nil, or the name of a mailing list. When you start a patch for the

system, Zmacs asks you to supply a patch reviewer if appropriate.

The default is nil, not to prompt for a patch reviewer. If it is set

to the name of a mailing list, when you finish the patch and se-

lect yes for the question "Send mail about this patch?" in the

menu, this mailing list is used as the destination for your mes-

sage.

:patch-atom

Controls how the patch files for a system are named. Usually, the

patch-file names are derived from the short-name of a system.

:patch-atom lets you override the short-name.

Page 9

If you explicitly supply a :patch-atom in a defsystem, it should

be in interchange case. (For more information on interchange

case, see the section "Case in Pathnames".)

:parameters

Specifies an "argument list" for the system. When you perform

some operation on a system (compile or load it, for example), you

can include extra keyword arguments that will be passed on to

the methods that implement operations on the modules in the

system. The value of :parameters is a list that reads like a key-

word argument list.

Example: The :parameters option creates the keyword :force-

package that can be passed on to system foo when it is com-

piled.

(defsystem foo

 (...

 :parameters (force-package))

 ...)

�

(compile-system ’foo :force-package ’foo-package)�

In this example, the user-defined parameter :force-package key-

word is not used by compile-system and is passed to the lower-

level callee. In this example it could be the underlying compiler

appropriate to the system being defined, such as the Pascal com-

piler.

:version-mapping

� Controls the component mapping for component systems. For ex-

ample:

(((:compile :newest) :released) ;compiling :NEWEST loads :RELEASED

 ((:* :keyword) :number) ;keywords snapshot the number

 ((:* :number) :number)) ;ditto for numbers

:initializations

Creates a list of initializations to be run immediately after the

last file in the system has been loaded and before any patches are

loaded. The format is :initializations argument. If argument is a

symbol, it is interpreted as an initialization list. If it is an arbi-

trary form, it is evaluated.

This example specifies an initialization list:

:initializations *foo-init-list*

One of the files in your system, preferably the first one, should

create the initialization list: (defvar symbol nil). For example:

(defvar *foo-init-list* nil)

You can add initializations to the list in your code. For example:

Page 10

(add-initialization "init storage"

’(setq *storage* nil) () ’*foo-init-list*) �

See the section "Introduction to Initializations".

:initial-status

Sets the initial status of the system when a new major version is

created. The system’s system-directory file records the status. The

valid status keywords are :experimental (the default), :broken,

:obsolete, and :released.

:experimental The system has been built but has not yet

been fully debugged and released to users.

The software is not stable.

:released The system is deemed stable and is released

for general use.

:obsolete The system is no longer supported.

:broken The system does not work properly.

:bug-reports

Specifies the mailing list for bug reports for the system and the

purpose of the bug mail. The system has a bug report template

with the values specified to keywords in the :bug-reports option.

All values must be strings. The acceptable keywords are:

:name Specifies the name of the bug report tem-

plate. This name is used in all menus of bug

report categories and is also used in the bug

report’s prologue describing the state of the

machine on which the report was created. The

default is the pretty name of the system.

:mailing-list The name of the mailing list to which the

bug report will be sent. The mailing list name

must be specified exactly (that is, the system

does not add "Bug-" to the string you give

here). The default is "Bug-system-name",

where system-name is replaced by the actual

system name.

:documentation The documentation associated with this bug

report template. This documentation is visible

in the mouse documentation line when a

menu of bug report categories is displayed.

The default for this option is

Report problems in the pretty-name system. �

where pretty-name is the pretty name of the

system.

Page 11

For example,

(defsystem ip-domain-server

 (:pretty-name "IP Domain Name Server"

 :bug-reports (:mailing-list "Bug-Domains")

 ...)

 ...)

specifies that the bug report template for the IP-Domain-Server

system is called "IP Domain Name Server", that the bug reports

are sent to the "Bug-Domains" list, and that the documentation

string for the template is "Report problems in the IP Domain

Name Server system.".

:advertised-in

Specifies a list of zero or more keywords indicating the contexts

in which the system name and version number should be dis-

played. Valid keywords are:

Keyword Meaning

:herald The system name and version number are dis-

played in the herald.

:finger The system name and version number are dis-

played in the Show Users listing.

:disk-label The system name and version number are dis-

played in world load comments.

nil The system name is not displayed.

The default is :herald. Note that for a system not to appear in

the herald, you must specify :advertised-in ().

:maintaining-sites

� Specifies the list of sites that maintain the system. For patchable

systems this declares the sites that can patch a system. It helps

you to monitor versions in order to ensure that no changes are

made at "unauthorized" sites. When you attempt to patch a sys-

tem that is not maintained at your site, you receive a warning.

For example:

(defsystem experimental-file-system

 (...

 :maintaining-sites (:sgd :scrc))...)�

The default for :maintaining-sites when it is undeclared is nil.

This has the effect of allowing any site to patch the system with-

out a warning.

:source-category

Page 12

Specifies the classification of the sources for the system for dis-

tribution purposes. It is used for writing software distribution

tapes. Its valid values are :basic (the default), :optional, and

:restricted. These categories relate to distribution dumper cate-

gories. The distribution dumper writes out the sources for a sys-

tem based on whether the system fits into the specified source-

category. :basic is less restricted than :optional, which is less re-

stricted than :restricted.

This option can also be specified as an alist, for example:

(:basic

 (:restricted "secrets" "more-secrets")

 (:optional "not-quite-as-secret"))�

This says that all files are in the :basic category, except "se-

crets," "more-secrets," and "not-quite-as-secret."

:distribute-sources

� Specifies whether or not the sources for the system are distribut-

ed. It is used by the distribution dumper to decide whether or not

to write sources to the distribution tape. It takes the values t or

nil, and its default value is t.

:distribute-binaries

� Specifies whether or not the binary files (object files) for the sys-

tem are distributed. It is used by the distribution dumper to de-

cide whether or not to write binaries to the distribution tape. It

takes the values t or nil, and its default value is nil.

:installation-script

� Specifies the pathname of the installation script for the system.

Such a script is a series of Lisp forms that load up the system

and save out an incremental world with the system loaded. If you

supply your system with an installation script, your users can in-

stall your software using the Install System command.

defsystem Modules

The body of a defsystem declaration names the files that compose the system and

consists of one or more module specifications. A module is one or more files or

modules that should be treated as a unit. Operations  compiling, loading, editing,

hardcopying, and the like  are applied to the module as a whole.

Modules can be explicitly named or unnamed (anonymous). For example, in the

long-form syntax,

(:module foo ("bar" "baz")) �

is a named module called foo and contains two files  bar and baz. All opera-

tions are applied to the aggregate foo. The :module form names the aggregate

(which the short-form :parallel would not do) and allows keyword modifiers to be

associated with the module.

Page 13

On the other hand, the following clause treats the files bar and baz as two sepa-

rate but unnamed modules:

(:serial "bar" "baz")�

A restriction on the construction of modules is that any one file in a module can-

not depend on the operations performed on another file in that same module. If

the compilation of file "bar" depends on file "baz" having been loaded, then these

files cannot be placed in the same module.

A common organizing principle for grouping files into modules is to collect togeth-

er those files that perform a similar function, with the restriction that the files

within the module must not depend on one another. For example, all low-level defi-

nitions (variables and macros) might be placed in the same module.

Module specifications can be expressed using a long-form syntax, a simpler short-

form syntax, or a hybrid of both formulations.

• Use the short form exclusively when your system uses only default types and

packages and has straightforward dependency relationships.

• Use the long form as needed when your system contains component systems

(that is, when a module represents another system), non-default-type modules,

explicit package specifications other than the system default package, or compli-

cated dependency relationships. �

Module Dependencies

Dependencies describe relationships among operations on modules. That is, they

describe which modules depend on one another and for which operations they de-

pend on one another. For example, modules often depend on the previous loading

of other modules. The main program module in a system presumably depends on

the previous loading of the low-level module definitions. Thus, the relationship of

one defsystem module to another can be described as a hierarchy of dependencies.

Within a module, however, no file can depend on any other file, but all files share

the same dependencies vis-a-vis other modules.

Dependencies, which are described in the defsystem form, impose an order in

which operations are performed on a module. The long-form module specification is

needed to specify complicated dependencies among modules and operations. Note

that a dependency does not guarantee that the operation will be performed, only

that if the operation is requested (by the user), it will be performed in a certain

order relative to other operations.

Formally defined, a module dependency states that under certain conditions, all

specified operations must be performed on the indicated modules before the opera-

tion on the current module can take place.

Page 14

Dependency Example 1

The following module specifications (assume they are Lisp modules) declare that:

• In order to load main, defs must be loaded first.�

(defsystem foo

 ...

 (:module defs ("defs1"))

 (:module main ("main")

 (:in-order-to :load (:load defs))))�

The dependency in the example applies only when foo is loaded, and so is called a

load-time dependency.

Compile-time dependencies, which apply only when a compile operation is per-

formed, are slightly more complicated.

Dependency Example 2

Assuming that the bar system consists of Lisp-type modules, consider the :in-

order-to clause below. This says that macros depends on the compilation and load-

ing of defs whenever the bar system is compiled. At first glance, the compilation

requirement is surprising because (:load defs) does not mention anything about

compilation. However, the system facility considers source files that can be com-

piled (such as Lisp or Pascal files) to have an implicit compile-time dependency on

themselves: in order to load the files you must compile them first (if they are not

already compiled).

Note: In order to prevent a Lisp file from being compiled at all, there are two pre-

defined module types :lisp-read-only and :lisp-load-only. Declaring a module to be

one of these types prevents compilation of its files.

(defsystem bar

 ...

 (:module defs ("defs"))

 (:module macros ("macros")

 (:in-order-to :compile (:load defs)))

 ...)�

Dependencies can be expressed in different ways. Examples 1 and 2 declare the

presence of a dependency relationship explicitly. A module can also describe a de-

pendency implicitly using a short-form syntax.

Dependency Example 3

The :serial clause implies that main depends on defs and that defs does not de-

pend on any other module. It also implies that operations on "defs" and "main" be

performed separately and in order, even though it does not explicitly state these

operations. So, if a compile operation were performed on system foo, first defs

would be compiled and loaded, then main would be compiled and loaded.

Page 15

(defsystem foo

 ...

 (:serial "defs" "main"))�

In Examples 1 and 2, defs contains only one file, "defs", but if defs consisted of

two files, "defs1" and "defs2", then the examples would have to be rewritten. This

is relatively straightforward for Example 1; the single module specification would

be edited as follows:

(:module defs ("defs1" "defs2"))

All operations would be applied to the aggregate defs.

Changing Example 3 requires altering the dependency to say that "defs1" and

"defs2" do not depend on one another. However, main still depends on the prior

compilation/loading of "defs1" and "defs2" but in no particular order. This depen-

dency would be written like so:

(:serial (:parallel "defs1" "defs2") "main")

The embedded :parallel clause declares that the files that follow have no depen-

dency relationship; they are operated on as a unit. The :serial clause still states

that any operations are applied first to the :parallel clause, then to main.

Once you correctly determine (1) which files should compose a module and (2)

which and how modules depend on one another, you do not have to figure out

these relationships again. By constructing a plan based on the modules and their

dependencies, you have finished your part of the job. Commands that operate on

systems, such as Load System, will work correctly.

Short-form Module Specifications

Short-form specifications provide an abbreviated syntax for defining groups of un-

named (anonymous) modules that have a straightforward dependency relationship.

All the system’s files must be of the default type (defined by the :default-module-

type option) if they are named explicitly in the short-form specification.

A short-form specification consists of a keyword, followed by one or more elements:

(keyword element1 element2 ...)

An element can be another short-form or a primary. A primary is either a symbol,

which is interpreted to be the name of a named module, or a string, which is a

file spec.

The keyword describes the dependency relationship among the modules and can be

any of the following: :serial, :parallel, :definitions, or :module-group.

Short forms can be embedded in short forms.

The meanings of the keywords are explained here.

• :serial means that each of the specified elements depends in some way on the

preceding one. The order of specification is therefore essential.

Page 16

Example: If the compile operation is performed on the system, each Lisp module

in the clause shown below is compiled and then loaded in turn before the next

one is compiled and loaded. The compilation and loading of glub depends on the

previous compilation and loading of bar. In order to compile and load bar, the

computer must have already compiled and loaded foo.

(:serial "foo" "bar" "glub")�

• :parallel means that the specified elements do not depend on one another in any

way; they are operated on as a group. The order of specification is therefore not

important.

Example: If the compile operation is performed, all the Lisp modules in the fol-

lowing clause are compiled, then all are loaded.

(:parallel "foo" "bar" "glub")�

• The syntax of the :definitions clause is (:definitions primary element).

:definitions means that the element has a serial dependency on the primary and,

in addition, it has a compile-dependency. This means that if the primary is com-

piled, the element must be compiled. The :definitions clause is useful when the

primary contains macros that are used in the definition of the element.

• :module-group is an additional short-form syntax keyword. It provides a way to

name the aggregate result of a short-form specification, so that other specifica-

tions can refer to this result. The format is:

(:module-group name short-form options).

The structure is analogous to, and the options are the same as for, the long-

form specification. See the section "Long-form Module Specifications".�

Short Form Syntax Examples

The following short-form syntax defsystem illustrates serial dependency with an

embedded parallel dependency.

(defsystem adventure

 (:default-pathname "quark: code;"

 :default-package quark

 :default-module-type :fortran)

 (:serial "defs" "macros" (:parallel "things" "rooms") "parser"))�

The adventure system consists of a sequence of modules of the type :fortran,

compiled in the quark package. In the event that the system is compiled, then op-

erations occur as follows:

1. Compile defs, then load it

2. Compile macros, then load it

3. Compile things and rooms, then load both of them

4. Compile and load parser�

The following diagram illustrates the above dependency relationship.

Page 17

 DEFS

 |

MACROS

/ \

 THINGS ROOMS

\ /

PARSER�

Both "things" and "rooms" depend on "defs" and "macros" to have been compiled

and loaded, but "things" and "rooms" do not depend on each other with respect to

compilation. "Parser" depends on "things" and "rooms" having been compiled and

loaded but in no particular order.

The next example shows how the :module-group keyword is used. The :module-

group names the result of the included short-form specification bigstuff, so that

the main module can refer to it as a dependency: in order to compile main, first

compile and load bigstuff.

(:module-group bigstuff

 (:definitions "macros" (:parallel "foo" "bar" "blech")))

(:serial bigstuff (:parallel "a" "b" "c"))�

Long-form Module Specifications

Use the long-form module specification when your system contains component sys-

tems, non-default-type modules, explicit package specifications other than the sys-

tem default package, or complicated system dependencies.

The general format of a long-form specification is:

(:module name inputs

 (keyword-option-1)

 (keyword-option-2)

 ...)�

The :module keyword defines the module called name. name must be a symbol or

nil; nil means that the module is anonymous.

inputs can be nil or a list of one or more of the following:

• Strings representing a file name

• Symbols representing the name of another system defined by defsystem�

When a module consists of more than one input, the inputs must be specified as a

list.

The ordering of inputs within a module specification is not significant. Dependen-

cies are determined by explicit keyword directives in :module clauses or, failing

that, by the order of the modules in the system declaration.

Page 18

:module Keyword Options

:package and :type override the system defaults for package and types, respec-

tively.

:package

The :package option takes one argument, a string, and causes

operations on a module to be performed in the specified package.

It overrides both the system default (specified by the :default-

package option to defsystem) and any package named in the at-

tribute lists of the system’s files. It does not override the

:package-override option to defsystem.

Example: The macros module is compiled and loaded into the

special package. All other modules are compiled and loaded into

the system default, mail.

(defsystem mailer

 (...

 :default-package mail

 ...)

 (:module defs "defs")

 (:module macros "macros" (:package special)

 (:in-order-to :compile (:load defs)))

 ...)�

:type

The :type option in a module specification overrides the default

module type for the system. The type specifies the nature of the

inputs to that module, for example, whether it’s composed of Pas-

cal files, Lisp files, or ordinary text files, and determines the de-

tails of what is done for each generic operation (for example,

load, edit, hardcopy) performed on that module. Each type has

certain valid operations. You can use any of the predefined types,

including :lisp, :text, :font, :lisp-example, :system, and so on.

See the section "System Module Types and Operations".

You can also define your own module types. See the section

"User-defined Module Types".

Example 1: The inputs to adventure1 are all FORTRAN files;

however, if the parser had been written in Lisp, then the

defsystem form should be rewritten as shown in adventure2.

parser is explicitly declared to be a module of type :lisp.

Page 19

;;; Example 1

(defsystem adventure1

 (:short-name "advent1"

 :default-pathname "quark: code;"

 :default-package quark

 :default-module-type :fortran)

 (:serial "defs" "macros" (:parallel "things" "rooms") "parser"))

�

(defsystem adventure2

 (:short-name "advent2"

 :default-package quark

 :default-pathname "quark: code;"

 :default-module-type :fortran)

 (:module parser ("parser") (:type :lisp))

 (:serial "defs" "macros" (:parallel "things" "rooms") parser))�

The :system type specifies the names of component systems,

which are other systems (defined by a defsystem or

defsubsystem form) that are to be included in this system. Sys-

tem operations are performed recursively. In the usual case, per-

forming an operation on a system with component systems is

equivalent to performing the same operation on all the individual

systems.

Example 2: The moderately complicated definition of common-

lisp-internals falls rather gracefully and readably into the serial-

parallel abbreviated form. Then common-lisp-internals is easily

made a component system of common-lisp by designating it as

module cl of type :system. Note how neatly a compile and load

dependency on cl is specified in the :serial clause.

;;; Example 2

(defsubsystem common-lisp-internals

 (:default-pathname "sys:clcp;"

 :default-package cli)

 (:serial "functions" "sequence-macros" "numerics"

 (:parallel "listfns" "seqfns" "hashfns")

 "type-infra" "type-supra" "type-supra2" "Type-supra3"

 "More-functions" "Stringfns" "Charfns" "Arrayfns" "Error"

 (:parallel "Iofns" "Read-print")))

�

(defsubsystem common-lisp

 (:default-pathname "sys:clcp;")

 (:module cl common-lisp-internals (:type :system))

 (:serial cl "Permanent-links"))�

:in-order-to and :uses-definitions-from are the two main options for controlling

the dependency relationships among modules.

Page 20

:in-order-to

:in-order-to is the basic keyword that expresses dependency rela-

tionships among modules. The general format is

(:in-order-to (:operation-1 :operation-2 ...) (:operation module))

Note that the first argument to :in-order-to can be either a sym-

bol or a list.

Example: The following code fragment illustrates a compile-time

and a load-time dependency.

(:module main ("main")

 (:in-order-to :compile (:load defs))

 (:in-order-to :load (:load utils)))�

It directs that:

• If the compile operation is performed on the present module,

main, then the defs module must be loaded first.

• If main is loaded, then the module utils must be loaded first.�

:uses-definitions-from

:uses-definitions-from is similar to the :in-order-to option. The

general format is (:uses-definitions-from module).

Writing (:uses-definitions-from foo) implies the dependency rela-

tion:

(:in-order-to (:compile :load) (:load foo))�

To state it another way, :uses-definitions-from means that the

module has a serial dependency on the depended-upon module. In

addition, it requires that if the depended-upon module needs to be

recompiled, then all of its dependents will be recompiled as well.

Note that dependencies are transitive.

Example: Consider the following fragment, assuming that the

macros module has been defined in the defsystem form.

(defsystem jonathan

 (:default-pathname "sys:jonathan;"

 :default-package cl)

 (:module macros ("bim" "bam" "boom"))

 (:module A ("a" "b" "c")

 (:uses-definitions-from macros))�

The :uses-definition-from clause affects module A in the follow-

ing ways:

• If macros is being compiled, then compile A whether or not it

is otherwise necessary.

Page 21

• If A is being compiled, then compile macros, if it needs to be

compiled, first.

• If A is being loaded, then load macros, if it needs to be load-

ed, first.�

:serial-definitions

Combines :serial and :uses-definitions-from to control the depen-

dencies of modules.

:root-module and :compile-satisfies-load also control the order in which opera-

tions are performed but are far less commonly used than :in-order-to and :uses-

definitions-from.

:root-module

The :root-module option is useful for controlling the loading and

compilation of macro definitions. It has the effect of altering the

normal rules of dependency. Its valid values are:

Value Meaning

t Designates the indicated module as a root

module  a module that is always processed.

t is the default.

nil Indicates that the module is not a root mod-

ule.�

This attribute affects system building as follows: when a com-

mand or function that operates on a system (such as Compile

System) constructs a step-by-step plan to operate on a system

(compiling, loading, as necessary) it will not include a step for a

non-root-module unless it is explicitly depended upon by another

module. That is, compilation (or loading, and so on) of this mod-

ule occurs only if a dependency exists.

Example: In the following example, the macros module specifies

that it should not be considered a root module.

Page 22

(defsystem rm-example

 (:default-pathname "example: code;")

 (:module defs ("defs"))

 (:module macros ("macros")

 (:in-order-to :compile (:load defs))

 (:root-module nil))

 (:module utils ("utils")

 (:uses-definitions-from macros)

 (:in-order-to :compile (:load macros))

 (:in-order-to :load (:load defs)))

 (:module main ("main")

 (:uses-definitions-from macros)

 (:in-order-to :compile (:load macros))

 (:in-order-to :load (:load utils))))�

Assuming that the user has requested a system load, examine the

load-time dependencies and note that, for purposes of loading,

macros is not depended upon by any other module:

• defs does not depend on any other module

• macros depends on defs being loaded

• utils depends on defs being loaded

• main depends on utils being loaded�

Thus, macros is ignored during the preparation of the system

construction plan for loading rm-example:

1. Load defs

2. Load utils

3. Load main�

If :root-module had not been specified or had been given a value

of t, macros would have been loaded, according to the normal de-

pendency rules. Since macro definitions need not be installed

when a system is being loaded to be used, (:root-module nil)

gives exactly the desired result.

When the same system is compiled, however, a load of macros is

included in the system construction plan because macros is de-

pended upon at compile-time by two modules.

• defs does not depend on any other module

• macros depends on defs being compiled, if necessary, and load-

ed

• utils depends on macros being compiled, if necessary, and

loaded

• main depends on macros being compiled, if necessary, and

loaded�

Page 23

Since macro definitions need only be loaded at compile-time,

(:root-module nil) again gives exactly the desired result.

:compile-satisfies-load

The :compile-satisfies-load option, like :root-module, is useful

for controlling the compilation and loading of macro definitions

and alters the normal rules of dependency.

It has two valid values: t and nil. When set to t, the option de-

clares that when a module is compiled in the current compiler

environment, it should not be loaded  even if a load dependency

exists, because the loading the module could destroy the current

environment. The load dependency is satisfied by compiling the

module.

When set to nil, :compile-satisfies-load specifies that when a

module is compiled in the current compiler environment, load it if

necessary. nil is the default.

This feature is useful because the compiler will notice entities

like defmacro, defsubst, zl:defstruct, and defflavor and use

them for the compilation of subsequent files without having to

load them. However, if the bodies of macros (not the code pro-

duced by their expansion) call subroutines (defuns) in the file,

then the file must be loaded in order to define those subroutines.

Example of :compile-satisfies-load: Assume that the user has re-

quested a compile of the csl-example system.

(defsystem csl-example

 (:default-pathname "example: code;")

 (:module defs ("defs"))

 (:module macros ("macros")

 (:in-order-to :compile (:load defs))

 (:root-module nil)

 (:compile-satisfies-load t))

 (:module utils ("utils")

 (:uses-definitions-from macros)

 (:in-order-to :compile (:load macros))

 (:in-order-to :load (:load defs)))

 (:module main ("main")

 (:uses-definitions-from macros)

 (:in-order-to :compile (:load macros))

 (:in-order-to :load (:load utils))))�

The compile-time dependencies expressed above indicate that:

• defs does not depend on any other module

• macros depends on defs being compiled, if necessary, and load-

ed

Page 24

• utils depends on macros being compiled, if necessary, and

loaded

• main depends on macros being compiled, if necessary, and

loaded�

If the :compile-satisfies-load attribute were absent or set to nil

the system construction plan would look like this:

1. Compile defs

2. Load defs

3. Compile macros

4. Load macros

5. Compile utils

6. Compile main

7. Load utils

8. Load main�

Note that because the :compile-satisfies-load attribute is present,

the plan is amended to delete step 4.

:load-when-systems-loaded controls the loading of modules according to whether

or not required systems have been loaded.

:load-when-systems-loaded

The :load-when-systems-loaded option instructs SCT not to load

some modules of a system when a set of required systems is not

loaded. When all the required systems become loaded, SCT auto-

matically loads the unloaded modules.

Including this option in a module has two effects:

• If the required systems are not all loaded, that module is not

loaded.

• When all the required systems become loaded, SCT goes back

and loads the module.

• You cannot safely patch that module, as it might not be loaded

yet at the time patches are loaded.�

:load-when-systems-loaded differs from the :required-systems

option to defsystem in that :required-systems gives an error if

the required systems are not present. :load-when-systems-loaded

never gives an error.

Note that any module that contains the :load-when-systems-

loaded option should be a named module, so SCT can keep track

of the unloaded modules by name (since sysdcls can be reloaded).

Page 25

Example:

(defsystem print-spooler

 (:default-pathname t)

 (:module unix-spooler ("ux-spool")

 (:load-when-systems-loaded :unix-support))

 (:serial (:parallel "defs" "macros")

 "spooler"

 unix-spooler))�

Suppose that the system UNIX-SUPPORT is not loaded. When

you load the PRINT-SPOOLER system, all the files in the system

are loaded except for those files in UNIX-SPOOLER module

(namely, UX-SPOOL). If and when you load the UNIX-SUPPORT

system, the files in the UNIX-SPOOLER will get loaded.

The :source-category, :distribute-sources, and :distribute-binaries options supply

values that override within the module the corresponding default values for the

system.

:source-category

The :source-category option is used for writing software distribu-

tion tapes. Its valid values are :basic (the default), :optional, and

:restricted. These categories relate to distribution dumper cate-

gories.

The distribution dumper writes out the sources for a system

based on whether the system fits into the specified source-

category. :basic is less restricted than :optional, which is less re-

stricted than :restricted.

This module option can also be specified as an alist. See the

:source-category option to defsystem.

:distribute-sources

The :distribute-sources option is used by the distribution dumper

to decide whether or not to write sources to the distribution tape.

It takes the value t or nil, and its default value is t.

:distribute-binaries

The :distribute-binaries option is used by the distribution

dumper to decide whether or not to write binaries to the distribu-

tion tape. It takes the values t or nil, with a default value of nil.

What You Can Do With Systems

Page 26

With defsystem, specifications of modules are intermingled with operations on

modules. This stands in contrast to the syntax of defsystem in earlier releases in

which module clauses and "transformation" clauses were separate.

This section gives a brief overview of the kinds of operations that can be applied

to systems. For more details on these operations, see the referenced sections.

Seven types of predefined operations are available:

Load Load the system into the current environment. Invoked by the

Command Processor command Load System and the function

load-system. See the section "Loading and Compiling Systems".

Compile Compile the system, create journal files, and optionally load it

into the current environment. Invoked by the Command Proces-

sor command Compile System and the function compile-system

See the section "Loading and Compiling Systems".

Edit Read all the files of the system into editor buffers. Invoked by

the Command Processor command and the function sct:edit-

system See the section "Functions that Operate on Systems".

Hardcopy Hardcopy all the files in the system. Invoked by the function

sct:hardcopy-system. See the section "Functions that Operate

on Systems".

Reap-protect Reap-protect the system. This marks all source and product

files as protected from deletion. Invoked by the Command Pro-

cessor command and the function sct:reap-protect-system See

the section "Functions that Operate on Systems".

Distribute Write the system on tape. Invoked by the Command Processor

command Distribute Systems (note the plural form, since one

or more systems can be written to tape at a time). See the sec-

tion "Functions that Operate on Systems".

Release Puts the :released keyword in the system’s patch directory,

and inserts a :released designation in the system directory file.

For most operations on a system, the :released designator is

used as the default version. Failing this, the :latest version is

used. Invoked by the function sct:release-system; no corre-

sponding Command Processor command. See the section "Func-

tions that Operate on Systems".

For more details on operations that can be performed on the different modules

types, see the section "System Module Types and Operations".

Besides the standard, predefined operations, you can define your own operations on

modules. See the section "User-defined Operations on Systems".

System Module Types and Operations

Page 27

This is a table of system module types and their behavior under standard opera-

tions. Note: The operation sct:reap-protect-system applies to all types of systems

and so is not listed here. See the legend below the table to find the meaning of

the various abbreviations used.

Module Default Compile Load Hard- Edit Distribute

Type file type copy (source/product)

===

Lisp :lisp L-comp BL T T T/T

Prolog :prolog P-comp BL T T T/T

Ada :ada A-comp BL T T T/T

Fortran :fortran F-comp BL T T T/T

Pascal :pascal Pa-comp BL T T T/T

Text :text -- -- T T T/--

Font :bfd -- FL N N T/--

System -- *** Operate recursively ***

Lisp-

example :lisp -- -- T T T/T

Readtable :lisp R-comp BL T T T/T

Lisp-

read-only :lisp -- Read- T T T/--

 file

Lisp-

load-only :lisp -- BL T T --/T

Logical-

translations :lisp -- Read- T T T/--

 file

Binary-data :bin -- -- N N --/T

Text-data :text -- -- T T T/--

---�

Legend: "i-comp" means the appropriate compiler is used, for example, "L-comp"

means the Lisp compiler is invoked. "--" means this operation is meaningless on

this file type. "BL" means the binary loader is invoked. "FL" refers to the font

loader.

Page 28

System Plan

The order in which operations are performed on the modules in a system is called

the system plan. By default, operations occur in the order that they are defined or

they are shuffled the minimum amount necessary to realize the specified con-

straints. These constraints are in the form of dependencies (that is, module X

must be loaded before module Y is loaded).

In order to see in advance the system plan for a given system with a given opera-

tion, type the Command Processor command: Show System Plan name-of-system

(operation). Two factors determine the system plan:

1. The order in which the modules are defined

2. The ordering constraints that derive from the dependencies that are specific

to that operation�

Show System Plan Command

Show System Plan system operation keywords�

Show the system plan (the order of operations) for the specified system under the

specified operation.

system The system for which to show the plan.

operation The operation for which to show the plan. The available opera-

tions are:

All Count-Lines-In Kludge-Load

Compile Distribute Load

Copy Edit Load-Patches

Copy-Toolkit-C-Files Hardcopy Reap-Protect

Write-Toolkit-C-Files�

keywords :Date Checking, :Detailed, :More Processing,:Output Destina-

tion, :Version�

:Date Checking {Yes, No} Compare files against the file system. The default is

No, the mentioned default is Yes.

:Detailed {Yes, No} Whether to describe the plans for component sys-

tems. The default is No, the mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

Page 29

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Version Version of the system for which to construct plans. The default

is Released.

Undefining Systems

sct:undefsystem system-name Function

Removes all record of the system called system-name from sct:*all-systems* and

removes all the source file name properties from the system. The effect is to make

it look like a defsystem wasn’t even done. Note: This does not undefine functions,

flavors, and so on, created by loading the system.

Defining Subsystems

defsubsystem system-name options &body body Function

Defines a system that has no autonomous existence and is not patchable. It can

only be compiled and loaded by compiling or loading its parent system. It can,

however, be treated independently for some operations, like edit or hardcopy.

In a defsystem form, a subsystem is specified as a :module and is flagged with

the keyword pair (:type system) (see the example). Subsystems are provided as a

convenience for specifying groups of modules that are all in one package or direc-

tory. Subsystems have no associated component directory. Their files are journaled

in the parent system’s component directory.

Subsystems retain identity as systems on which you can select as a tag table in

Zmacs.

In the following example of defsubsystem, we have not listed all the file names

for each system and subsystem. The places where these names normally go are

marked by ellipses.

Page 30

(defsystem fortran

 (:default-pathname "sys: fortran;"

 :journal-directory "sys: fortran;"

 :patchable t)

 (:module macros ("macros") (:root-module nil))

 (:module language-tools (language-tools) (:type :system))

 (:module front-end (fortran-front-end) (:type :system))

 (:module back-end (fortran-back-end) (:type :system))

 (:serial macros language-tools front-end back-end))

�

;;; Component system definition

(defsystem language-tools

 (:default-pathname "sys: language-tools;"

 :patchable t)

 (:serial ...))

�

;;; Subsystem definition (non-patchable)

(defsubsystem fortran-front-end

 (:default-pathname "sys: fortran;")

 (:serial "tokenizer" "grammar" ...))

�

;;; Subsystem definition (non-patchable)

(defsubsystem fortran-back-end

 (:default-pathname "sys: fortran;")

 (:serial "code-generator" "optimizer" ...))�

In the example, language-tools is a patchable component system, and fortran-

front-end and fortran-back-end are both subsystems.

User-defined Module Types

You can define your own module types using the function sct:define-module-type.

sct:define-module-type type source-default product-default &body base-flavors

Function

Defines a new module type called type with a source-default module type and a

product-default module type.

The base-flavors are the previously defined module type upon which this type is

built. The new type inherits the properties of the base-flavors and interprets opera-

tions like the base-flavors do, except in the case that special methods are defined

for the type that override the base-flavors operations.

One you have defined a module type, you define methods with defmethod that im-

plement the special behavior of the new module type for the standard operations:

compile, load, and so on.

Page 31

The purpose of this example is to define a module type called lisp-read-only whose

sources are Lisp code but which is meant to be read and not compiled. According

to the definition of lisp-read-only in the example, a module of this type will re-

spond according to the definition of its base flavor lisp-module for all operations

except loading and compiling.

(define-module-type :lisp-read-only :lisp nil

 lisp-module)

�

(defmethod (:compile lisp-read-only-module) (system-op &rest keys)

 (ignore system-op keys)

 nil)

�

(defmethod (:load lisp-read-only-module) (system-op &rest keys)

 (lexpr-send self :read system-op keys))�

User-defined Operations on Systems

It is usually more useful to define your own type of system module than it is to

define your own operation. However, SCT provides a facility for defining your own

operations, should you need it. The macro sct:define-system-operation is the pri-

mary tool for this purpose.

sct:define-system-operation operation driving-function documentation &key (arglist

’(system-name &key query :confirm silent batch (version :latest) (include-

components t) &rest keys &allow-other-keys)) (class :normal) (subsystems-ok t)

body-wrapper (encache :both) Function

Defines a manipulation called operation to be applied to a system, creating a func-

tion called operation-system. The driving-function is a closure  the operation it-

self at the level of what is done to a single file. Higher-level mechanisms take

care of applying this operation to each file in a system. The documentation is an-

other closure  an operation that prints what will be done to the file. The arglist

specifies the arguments that are accepted by the operation. The operation can also

process the keyword arguments :query, :batch, :version, and

:include-components. For the meaning of these keywords: See the function load-

system.

The encache argument is used by SCT to optimize calls to fs:multiple-file-plists.

Typically, you should use :both if the operation needs to look at any file properties

(the compile operation, for example) or nil if the operation does not need to look

at any properties (the edit or hardcopy operations). class should be :normal for op-

erations that construct a plan according to dependencies (for example, compile,

load, edit) or should be :simple for operations that work on everything in the sys-

tem (for example, reap-protect).

The definition of the standard hardcopy operation is shown next as an example of

the use of the sct:define-system-operation macro.

Page 32

;;; -*- Mode: LISP; Syntax: Zetalisp; Package: SCT; Base: 10 -*-

�

(define-system-operation :hardcopy

 ; input output module keywords

 (lambda (source ignore ignore &rest ignore)

 (declare (special hardcopy:*default-text-printer*))

 (hardcopy:hardcopy-file source hardcopy:*default-text-printer*))

 ; input output module keywords

 (lambda (source ignore ignore &rest ignore)

 (format standard-output "~&Hardcop~[y~;ying~;ied~] file ~A"

 system-pass source))

 :arglist

 (system-name &key (query :confirm) silent batch

 (include-components t) (version :newest)

 &rest keys &allow-other-keys)

 :encache nil

 :class :normal)�

Loading and Compiling Systems

The load-system and compile-system forms, with their Command Processor equiv-

alents Load System and Compile System, are the means of loading and compiling

systems.

Load System Command

Load System system keywords�

Loads a system into the current world.

system Name of the system to load. The default is the last system

loaded.

keywords :Component Version, :Condition, :Include Components :Load

Patches, :More Processing, :Output Destination, :Query, :Redef-

initions Ok, :Silent, :Simulate, :Version�

:Component Version

{Released, Latest, Newest, version-designator} The version of

any component systems to load. Released means the version

designated as released in the journal file. Latest means the

most recent version recorded in the journal file. Newest means

to ignore the versions in the journal file and just find the

newest files. The default is the version with which the system

was compiled.

:Condition {Always, Never, Newly-Compiled} Under what conditions to

load each file in the system. Always means load each file. New-

Page 33

ly-compiled means load a file only if it has been compiled since

the last load. The default is Newly-Compiled.

:Include Components

{Yes, No} Whether to load component systems. The default is

Yes.

:Load Patches {Yes, No} Whether to load patches after loading the system.

The default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Everything, Confirm-only, No} Whether to query before load-

ing. Everything means query before loading each file. Confirm-

only means create a list of all the files to be loaded and then

ask for confirmation before proceeding. No means just go

ahead and load the system without asking any questions. The

default is No. The mentioned default is Everything.

:Redefinitions Ok{Yes, No} Controls what happens if the system asks for confir-

mation of any redefinition warnings during the loading process.

Yes means assume that all requests for confirmation are an-

swered yes and proceed. No means pause at each redefinition

and await confirmation. The default is No. The mentioned de-

fault is Yes. This allows you to start loading a system that you

know will take a long time to load and leave it to finish by it-

self without interruption for questions such as "Warning: func-

tion-name being redefined, ok? (Y or N)".

:Silent {Yes, No} Whether to turn off output to the console while the

system is loading. The default is No. The mentioned default is

Yes.

:Simulate {Yes, No} Print a simulation of what compiling and loading

would do. The default is No. The mentioned default is Yes.

:Version {Released, Latest, Newest, version-designator} Which version

number to load. Released means the version designated as re-

leased in the journal file. Latest means the most recent version

recorded in the journal file. Newest means to ignore the ver-

Page 34

sions in the journal file and just find the newest files. The de-

fault is Released.�

Note: This command only loads a system. If you want to compile and load a sys-

tem, see the section "Compile System Command".

load-system system-name &rest keys &key (:version :released) :system-branch :ma-

chine-types (:query :confirm) :silent :batch (:include-components t) :no-warn :reload

:no-load :never-load :dont-set-version (:load-patches t) :component-version &allow-

other-keys Function

Loads the system named by system-name into the current environment, according

to the specified keyword options.

These are the predefined keyword options to load-system. Note that the allowable

keywords can include those declared in the :parameters part of the defsystem.

:query Takes t, nil, :confirm, or :no-confirm. If t, ask for approval of

each and every operation. If nil or :no-confirm, don’t ask about

anything. If :confirm, list all the operations and then ask for

confirmation. Default-value: :confirm.

:silent Takes t or nil. If t, perform all operations without printing any-

thing. If :query is non-nil, :silent t is overridden. Default value:

nil.

:no-warn Takes t or nil. If t, does not query or print a redefinition warn-

ing when a function is redfined. If set to :just-warn, it prints a

warning but does not query. Default value: nil.

:batch Takes t, nil, or pathname. Simulate :query :confirm :silent t :no-

warn t and collect the compiler warnings and write them to sys-

tem-name.cwarns. If pathname, do the same as t but write compil-

er warnings to pathname. Default value: nil.

:reload Takes t or nil. If t, reload all the binary files, even if the version

in the environment is the most recent version. Default value: nil.

:no-load Takes t or nil. If t, do not load binary files unless they are re-

quired by a specific dependency in the defsystem. Default value:

nil.

:never-load Takes t or nil. If t, never load any binary files, no matter what

dependencies say. Default value: nil.

:include-components

Takes t or nil. If t, perform the requested system operation on

component systems. Default value: t.

:load-patches Takes t or nil. After the system has been loaded, implicitly per-

form a load-patches operation. Default value: t.

Page 35

:version Takes :Latest, :Newest, :Released, a number, or another desig-

nator. :Latest means the latest major version recorded in the

journal directory. :Newest means ignore the journal directory and

find the newest version of the files.

:dont-set-versionTakes t or nil. If t, do not worry about setting the version num-

ber of the system in the running world. This is an optimization

used to speed up the loading of some systems such as the Logical

Pathname Translations Files system. Default-value: nil.

See the section "Load System Command".

Compile System Command

Compile System system keywords�

Compile the files that make up system.

system The name of the system to compile. The default is the last sys-

tem loaded.

keywords :Batch, :Component Version, :Condition,

:Copy Compile,:Include Components, :Load, :More Processing,

:New Major Version, :Output Destination, :Query, :Redefini-

tions Ok :Silent, :Simulate, :Update Directory , :Version

:Batch {Yes, No} Whether to save the compiler warnings in a file in-

stead of printing them on the screen. The default is No, to

print them on the screen. The mentioned default is Yes.

:Component Version

{version-designator} The version of any component system to

load for the compilation. The default is Released.

:Condition {Always, New-Source} Under what conditions to compile each

file in the system. Always means compile each file. New-source

means compile a file only if it has been changed since the last

compilation. The default is New-Source.

:Copy Compile {Yes, No, Query} For those systems where the product of the

compilation is not a true binary file (notably documentation

systems) and is usable on both Ivory and 3600 architectures,

:Copy Compile Yes has the effect of compiling it for the other

architecture. For example, if you compile a documentation sys-

tem on a 3600-family machine, to "copy compile" it would have

the effect of compiling it for the Ivory architecture as well.

Yes does the copy compile. No does not. Query prints an expla-

nation of what is being offered, and queries about whether to

do it. The copy compile works by copying the form in the com-

ponent-dir.

Page 36

:Include Components

{Yes, No} Whether to load any component systems. The default

is Yes. If :Include Components is Yes, :Component Version is

used to select the appropriate version of any component sys-

tems.

:Load {Everything, Newly-Compiled, Only-For-Dependencies, Nothing}

Whether to load the system you have just compiled into the

world. The default is Newly-Compiled.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:New Major Version

{Yes, No} Whether to give your newly compiled version of the

system the next higher version number. The default is Yes.

Giving the choice No will ask you to confirm that you really

want to "prevent incrementing system major version number".

(Note that if your goal is to compile a system version for an-

other machine type, you should use the :Version keyword, in-

stead of specifying :New Major Version No. For more informa-

tion, see the section "Compiling a System for Multiple Machine

Types".)

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Everything, Yes, Confirm-Only, No} Whether to query before

compiling. Everything means query before compiling each file.

Confirm-Only means create a list of all the files to be compiled

and then ask for confirmation before proceeding. No means

just go ahead and compile the system without asking any

questions. The default is No. The mentioned default is Every-

thing.

:Redefinitions Ok{Yes, No} Controls what happens if the system asks for confir-

mation of any redefinition warnings during the compilation.

Yes means assume that all requests for confirmation are an-

swered yes and proceed. No means pause at each redefinition

and await confirmation. The default is No. The mentioned de-

fault is Yes. This allows you to start a compilation that you

know will take a long time and leave it to finish by itself with-

out interruption for questions such as "Warning: function-name

being redefined, ok? (Y or N)".

Page 37

:Silent {Yes, No} Whether to suppress output to the screen. The de-

fault is No, to allow output. The mentioned default is Yes.

:Simulate {Yes, No} Print a simulation of what compiling would do. The

default is No. The mentioned default is Yes.

:Update Directory

{Yes, No, version-designator} Whether to update the directory

of the system’s components. The default is Yes.

:Version {Newest, version-number} Specifies the version number of a

system. When this option is used, SCT checks the journals for

the specified system and compiles a new version of the system

using the same version of the source files. The new system

must be compiled for a different machine type. See the section

"Compiling a System for Multiple Machine Types". The default

is Newest.�

compile-system system-name &rest keys &key :system-branch :machine-types (:query

:confirm) :silent :batch (:include-components t) (:version :newest) :component-version

:no-warn :recompile :no-compile :reload :no-load :never-load (:increment-version t)

(:update-directory t) :initial-status :update-from-world (:load-patches t) (:copy-

compile-p :query) &allow-other-keys Function

Compiles the system named by system-name with the specified keyword options.

Note that if you are using the CLOE 386 Application Generator, you can only use

these keywords: :recompile, :version, :verbose, :compile-print, and :root-path.

These are the predefined keyword options to compile-system. Note that the allow-

able keywords can include those declared in the :parameters part of the

defsystem.

:recompile Takes t or nil. If t, recompile all the source files, even if the bi-

nary file is newer than the source file. Default value: nil.

:no-compile Takes t or nil. If t, do not compile any source files, no matter

what anyone else says. This is useful in conjunction with

:update-directory t and :increment-version nil, since it buys the

ability to fix up the journal files after you have hand-compiled

some source files. Default value: nil.

:increment-version

Takes t or nil. If t, create a new major version number. Default

value: t.

:update-directory

Takes t, nil, or keyword. If t, update the journal files. If keyword,

update the journal files and add a designator of keyword for the

newly created version. Furthermore, if keyword is :released, then

declare the status of the system to be released. Default value: t.

Page 38

:initial-status Takes keyword. Declare the initial status of the system to be key-

word. Default value: :experimental.

:query Takes t, nil, :confirm, or :no-confirm. If t, ask for approval of

each and every operation. If nil or :no-confirm, don’t ask about

anything. If :confirm, list all the operations and then ask for

confirmation. Default-value: :confirm.

:silent Takes t or nil. If t, perform all operations without printing any-

thing. If :query is non-nil, :silent t is overridden. Default value:

nil.

:no-warn Takes t or nil. If t, does not query or print a redefinition warn-

ing when a function is redfined. If set to :just-warn, it prints a

warning but does not query. Default value: nil.

:batch Takes t, nil, or pathname. Simulate :query :confirm :silent t :no-

warn t and collect the compiler warnings and write them to sys-

tem-name.cwarns. If pathname, do the same as t but write compil-

er warnings to pathname. Default value: nil.

:reload Takes t or nil. If t, reload all the binary files, even if the version

in the environment is the most recent version. Default value: nil.

:no-load Takes t or nil. If t, do not load binary files unless they are re-

quired by a specific dependency in the defsystem. Default value:

nil.

:never-load Takes t or nil. If t, never load any binary files, no matter what

dependencies specify. Default value: nil.

:include-components

Takes t or nil. If t, perform the requested system operation on

component systems. Default value: t.

:load-patches Takes t or nil. After the system has been loaded, implictly per-

form a load-patches operation. Default value: t.

:version Takes :newest or n, where n is the version number of a system.

Used with :increment-version nil to compile identical systems for

multiple types of machines. For further information, see the sec-

tion "Compiling a System for Multiple Machine Types".

:copy-compile-p Takes t, nil, or :query, which is the default. For those systems

where the product of the compilation is not a true binary file (no-

tably documentation systems) and is usable on both Ivory and

3600 architectures, :copy-compile-p allows "compilation" for the

other machine type by copying the form in the component-dir.

This saves the necessity of doing the compilation over for the

other machine type. See the section "Compiling a System for Mul-

tiple Machine Types".

If you are using the CLOE 386 Application Generator, compile-system compiles

the corresponding system, according to the compilation plan contained in the

Page 39

component.l file and the values of the keyword options. If no keywords are speci-

fied for the :released version of system name, components unlisted in the compila-

tion plan as already compiled will be compiled. This will be executed by using

compile-file to files with the same name, and of type b. The compilation plan is

updated to include these newly compiled files. Other versions can be compiled if

specified in the :version option. If the :recompile option is not nil, all files will be

compiled. If the :verbose switch is true, then information about the compilations

will be printed as the files are compiled. Otherwise, the compilations are silent.

Note that this function is only available on the 386 side.

An error is signalled if no system is found. If this due to incorrect information or

unavailablity, you will have an opportunity to supply the missing information.

(compile-system "frobozz" :recompile t :version :latest)�

Compiling a System for Multiple Machine Types

The System Construction Tool (SCT) incorporates capabilities that allow you to

easily compile systems for different machine types (such as the 3600 and Ivory)

from the same set of sources. It also provides functions that allow you to share

patches for systems compiled for more than one machine type.

The Compile System command and compile-system function accept the :version

option, which takes a value N or Newest and specifies a system’s version number.

You can use :version N to compile systems for different machine types in this

way: First, compile the system on one machine type. From the second type of ma-

chine, recompile the system specifying the version number of the system you have

just compiled. Specifying the :version option makes SCT compile the same version

of each source file that was compiled when the system was compiled before, in-

stead of compiling the newest version of each source file. It causes SCT to look at

the journals and compile the same version of the system from the same sources for

the new machine type.

For example, compile the system Sample on a 3600-series machine with:

Compile System Sample �

Assuming that the resulting version was numbered 5, type one of the following

lines on the second, Ivory-based machine to compile Sample for that machine type:

Compile System Sample :Version 5 �

or

(compile-system Sample :version 5)�

The same version of the system Sample is now compiled for both machines.

For the 3600-series, the resulting binary files are identified by the extension .bin.

For Ivory-based systems, binary files are identified by the extension .ibin.

Maintaining Parallel Systems for Multiple Machine Types

Page 40

Use the following functions to maintain parallel systems for multiple machine

types.

sct:compile-uncompiled-patches systems &optional (machine-type sct:*local-

machine-type*) Function

Compiles those patches in systems that are uncompiled for the current machine

type. For instance, if you create a patch for a system from a 3600, the patch is

compiled only for the 3600 machine type. To compile the patch for another ma-

chine type, such as the MacIvory, use sct:compile-uncompiled-patches from a

MacIvory.

Using the form (sct:compile-uncompiled-patches) compiles patches for all systems.

To specify some systems, use a form like:

(sct:compile-uncompiled-patches :zmail :lmfs :my-system)�

See the function sct:recompile-changed-patches for related information.

sct:recompile-changed-patches systems &optional (machine-type sct:*local-

machine-type*) Function

Recompiles those patches in systems whose Lisp files are newer than their binary

files. For example, if you recompile a patch for a system on a 3600, you can use

sct:recompile-changed-patches on an Ivory-based machine to recompile it for an

Ivory.

Using the form (sct:recompile-changed-patches) compiles patches for all systems.

To specify some systems, use a form like:

(sct:recompile-changed-patches :my-system)�

See the function sct:compile-uncompiled-patches for related information.

Loading System Definitions

Once you have written a large program and defined it as a system, use the func-

tion load-system (or the Command Processor (CP) commands Compile System and

Load System) to compile and load the system (plus any patches related to it).

For information about the function load-system, see the function load-system. For

information about the Load System and Compile System Command Processor (CP)

commands:

• See the section "Compile System Command".

• See the section "Load System Command".�

Loading System Definitions Using Logical Pathnames

So that your system definition can use logical pathnames, create these files:

Page 41

System File This file (named sys:site;system-name.system) contains a pointer

to the system declaration file (defined within this section). The

system file enables the load-system function to find and load

your system (so that others can easily use it).

If yours is an experimental or private system, you may not re-

quire a separate sys:site;system-name.system file. Instead, com-

pile the defsystem in an editor buffer (or put a form that

loads the system declaration in your initialization file).

For more information about system files, see the section "Sys-

tem Files".

Translations File This file (named sys:site;logical-host.translations) describes each

logical host defined in the current world. When you transport a

world load to a new site, the translations file is reloaded from

the site’s sys:site; directory, and the site’s logical pathnames

are mapped into the appropriate, corresponding set of physical

pathnames.

For more information about translations files, see the section

"Translations Files".

System Declaration File

This file (named logical-host:logical-directory;system-name.lisp or

logical-host:logical-directory;sysdcl.lisp) contains the defsystem

for a system. For more information about system declaration

files, see the section "System Declaration Files".

System Files

System files (named sys:site;system-name.system) enable the function load-system

(which looks in the sys:site; logical directory) to identify a system name that is un-

defined in your environment. For example, if you type the following at a Lisp Lis-

tener:

Load System graphic-lisp �

the load-system function looks for the file SYS:SITE;GRAPHIC-LISP.SYSTEM.

The system file must contain this form:

(sct:set-system-source file "system-name"

 "logical-host:logical-directory;system-declaration-file") �

If a logical host other than "sys" is needed, use the additional form:

(fs:make-logical-pathname-host "logical-host")�

For example, for the system graphic-lisp, the file SYS:SITE;GRAPHIC-LISP.SYSTEM con-

tains the following:

�

;;; -*- Mode: LISP; Package: USER -*-

Page 42

�

(fs:make-logical-pathname-host "graphic-lisp")

(sct:set-system-source-file "graphic-lisp"

 "graphic-lisp: graphic-lisp; glisp-sys") �

The first form, a call to fs:make-logical-pathname-host, defines a logical host.

Commonly, the "logical-host" has the same name as "system-name". fs:make-logical-

pathname-host also loads the translations file, which defines the translation from

logical pathnames to physical pathnames.

Make sure that fs:make-logical-pathname-host is the first form in the file, as the

second form depends on having the logical host defined already. sct:set-system-

source-file specifies the logical pathname of the system declaration file. load-

system, after referring to the translation definitions, loads the system declaration

file.

Translations Files

Translations files (named sys:site;logical-host.translations) define the translations

from logical directories (on the logical host) to physical directories (on a physical

host). A translations file looks like this:

(fs:set-logical-pathname-host "logical-host"

 :physical-host "host-name"

 :translations ’(("logical-directory;" "physical-directory"))�

For example, for the system graphic-lisp, the file graphic-lisp.translations contains

the following:

�

;;; -*- Mode: LISP; Package: USER -*-

�

(fs:set-logical-pathname-host "graphic-lisp"

 :physical-host "puzzle"

 :translations ’(("graphic-lisp;" ">sys>graphic-lisp>")))�

Notice the translations list in the previous example; the list consists of two-

element lists (strings) that represent the logical directories specified in the system

declaration and their associated physical directories.

To specify a hierarchy of directories (instead of a one-to-one translation), change

the translations list as follows (where the double asterisk [**] means include all

subdirectories of "graphic-lisp;"):

 :translations ’(("graphic-lisp;**;" ">sys>graphic-lisp>**")))�

In simple applications, where all system files are stored in one directory, it is com-

mon for the logical directory name (for example, "graphic-lisp;") to be the same as

the system name ("graphic-lisp").

The sys:site;logical-host.translations file is loaded by fs:make-logical-pathname-

host. Use load-patches to reload the file in the event that it has been changed.

Page 43

System Declaration Files

System declaration files contain a defsystem form for defining your system and, if

you need one, a zl:defpackage form (which must precede the system declaration).

Any user-defined defsystem transformations should also precede the system decla-

ration within this file.

Currently, a system declaration file can contain no more than one defsystem form,

although any number of defsubsystem forms can appear in the file. This con-

straint exists because the system declaration can potentially be reloaded for each

defsystem present (a situation difficult for the System Construction Tool (SCT) to

resolve).

More information is available about defsystem, zl:defpackage, and defsubsystem.

• See the function defsystem.

• See the special form defpackage.

• See the function defsubsystem.

Here is a sample system declaration file:

;;; -*- Mode: LISP; Package: CL-USER; -*-

;;; Fortran package specifications

(defpackage fortran-global

 (:use)

 (:nicknames fortran for)

 (:prefix-name "FORTRAN")

 (:colon-mode :external)

 (:size 200))

�

(defpackage fortran-system

 (:use)

 (:nicknames for-sys)

 (:prefix-name "FOR-SYS")

 (:colon-mode :external)

 (:size 200))

�

(defpackage fortran-compiler

 (:use fortran-system fortran-global symbolics-common-lisp)

 (:nicknames for-compiler)

 (:prefix-name "FOR-COMPILER")

 (:colon-mode :external)

 (:size 1500))

Page 44

�

(defpackage fortran-user

 (:use fortran-global symbolics-common-lisp)

 (:nicknames for-user)

 (:prefix-name "FOR-USER")

 (:relative-names-for-me (fortran-global user))

 (:size 2000))

�

;;; System definition using SCT

(defsystem fortran

 (:default-pathname "sys: fortran;"

 :journal-directory "sys: fortran;"

 :patchable t)

 (:module macros ("macros") (:root-module nil))

 (:module language-tools (language-tools) (:type :system))

 (:module front-end (fortran-front-end) (:type :system))

 (:module back-end (fortran-back-end) (:type :system))

 (:serial macros language-tools front-end back-end))

�

;;; Component system definition

(defsubsystem language-tools

 (:default-pathname "sys: language-tools;")

 (:serial ...))

�

;;; Subsystem definition (non-patchable)

(defsubsystem fortran-front-end

 (:default-pathname "sys: fortran;")

 (:serial "tokenizer" "grammar" ...))

�

;;; Subsystem definition (non-patchable)

(defsubsystem fortran-back-end

 (:default-pathname "sys: fortran;")

 (:serial "code-generator" "optimizer" ...))�

Since you specify the pathname explicitly with the form sct:set-system-source-file

(inside the system file), system declaration filenames do not require an exact for-

mat. Typically, though, the logical pathname for them is logical-host:logical-

directory;system-name.

Give the system declaration source file the lisp canonical file type. When you call

the load-system function, sct:set-system-source-file loads the system declaration

file (.newest version).

Loading System Definitions Using Physical Pathnames

To load system definitions that use physical pathnames, specify the name of the

system and the pathname of the system declaration file in an sct:set-system-

source-file form. Have your init file evaluate the form (or type the form at a Lisp

Page 45

Listener) prior to calling the function load-system. For more information about

the function sct:set-system-source-file, see the section "Lisp Functions for Loading

System Definitions".

Note: Logical pathnames enable you to change only translations (instead of editing

all of your files to contain new file names) when moving programs between hosts

(that use different operating systems, for example). Use logical pathnames 

rather than physical pathnames  to ensure the site-independence of your sys-

tems.

Lisp Functions for Loading System Definitions

The Lisp functions described within this section are especially useful for site main-

tainers who make and distribute worlds.

sct:set-system-source-file system-name source-file Function

Specifies the pathname (source-file) of a file containing the system declaration for

a system called system-name. Although sct:set-system-source-file can be used in

two ways, Symbolics recommends the first.

1. When your system is defined with logical pathnames, include the sct:set-

system-source-file form in the file sys:site;system-name.system. load-system

loads the sys:site;system-name.system file the first time you attempt to load

the system.

2. When your system is defined using physical pathnames, have your init file

evaluate the sct:set-system-source-file form (or type the form at a Lisp Lis-

tener) prior to calling load-system or to using the Load System or Compile

System Command Processor (CP) commands. Source-file is loaded the first

time you compile or load your system.

More information is available about using the function sct:set-system-source-file

in system files. See the section "System Files".

fs:set-logical-pathname-host logical-host &key :physical-host :translations :rules

:site-rules (:no-translate t) :no-search-for-shadowed-physical Function

Creates a logical host named "logical-host" if one does not already exist. This form

appears in sys:site;logical-host.translations files. It establishes the translations

of logical directories on logical-host to physical directories on one or more physical

hosts. The machine specified by the :physical-host keyword serves as the default

physical host.

The :translations keyword specifies the list of translations from logical to physical

directories.

Page 46

• For more information about translations lists: See the section "Translations

Files".

• For the format of the lists and the translation rules: See the section "Pathname

Translation".

• For a discussion of the :rules and :site-rules keywords: See the section "Defining

a Translation Rule".

If no-translate is nil, the translation of every interned logical pathname is checked.

Properties are copied from the old physical pathname to the the new one, and logi-

cal pathnames that now have no corresponding physical pathnames are uninterned.

If no-translate is not nil or not supplied, this mapping is suppressed, and some

physical pathnames might not get the properties of the logical pathname. This is

not normally of any consequence, so no-translate defaults to t.

The argument no-search-for-shadowed-physical (default nil) means to look only in

the existing pathname hosts for a host with the same name as the logical host.

This saves time by not asking the namespace server whether the name of the new-

ly defined logical host conflicts with the names of any physical hosts, but it pre-

vents you from seeing the following warnings:

�

Warning: the host ~A must now be referred to as ~A: in pathnames,

since ~A is now a logical pathname host.

This affects ~[no~:;~:*~D~] extant pathnames.

�

Warning: the nickname ~A: for the physical host ~A

 will now refer instead to the

 logical pathname host ~A.

 Use ~A: in pathnames.�

For more information about sys.translations files, see the section "Pathname

Translation". Also see the section "Translations Files".

fs:make-logical-pathname-host name &key no-search-for-shadowed-physical

Function

Defines name (a string or symbol) to be the name of a logical pathname host.

Name should not conflict with the name of any existing host, logical or physical.

An fs:make-logical-pathname-host form often appears in the file sys:site;system-

name.system.

fs:make-logical-pathname-host loads the file sys:site;name.translations. load-

patches checks the translations file for each logical host that is defined in the

current world; if any translations file has been changed it is reloaded (if and only

if no specific systems are specified in its arguments).

The argument :no-search-for-shadowed-physical (default nil) means to look only

in the existing pathname hosts for a host with the same name as the logical host.

Page 47

This saves time by not asking the namespace server whether the name of the new-

ly defined logical host conflicts with the names of any physical hosts, but it pre-

vents you from seeing the following warnings:

�

Warning: the host ~A must now be referred to as ~A: in pathnames,

since ~A is now a logical pathname host.

This affects ~[no~:;~:*~D~] extant pathnames.

�

Warning: the nickname ~A: for the physical host ~A

 will now refer instead to the

 logical pathname host ~A.

 Use ~A: in pathnames.�

Note: fs:add-logical-pathname-host is an obsolete name for this function.

More information is available about using the function fs:make-logical-pathname-

host in system files. See the section "System Files".

Functions that Operate on Systems

Besides being loaded and compiled, systems can be edited, hardcopied, reap-

protected, released, and copied. You can also set the system status and designate a

system version. This section describes those operations. For information on dis-

tributing systems, see the section "Distributing Systems".

Setting the system status and version are invoked by functions. The other opera-

tions can be invoked by either functions or Command Processor commands.

sct:edit-system system-name &rest keys &key :machine-types (:query :confirm)

:silent :batch (:include-components t) (:version :newest) &allow-other-keys Function

Edits all the source files of the system called system-name according to the speci-

fied keyword options. This can also be accomplished with the Command Processor

command Edit System or the Zmacs command (m-X) Edit System Files.

These are the keyword options to sct:edit-system.

:machine-types

Whether the operation on the system(s) should be for 3600 Family machines, Ivory

machines, or all machine types. Valid values are :|3600| and :IMACH. The default

for sct:edit-system and sct:hardcopy-system is the type of the current machine.

The default for sct:reap-protect-system is all machine types.

:query Takes t, nil, :confirm, or :no-confirm. If t, ask for approval of

each suboperation, such as whether to load the system declaration

file. If nil or :no-confirm, don’t ask about anything. If :confirm,

list all the suboperations and then ask for confirmation. Default-

value: :confirm.

Page 48

:silent Takes t or nil. If t, perform all suboperations without printing

anything. If :query is non-nil, :silent t is overridden. Default

value: nil.

:include-components

Takes t or nil. If t, perform the requested system operation on

component systems. Default value: t.�

sct:hardcopy-system system-name &rest keys &key :machine-types (:query :confirm)

:silent :batch (:include-components t) (:version :newest) (:hardcopy-device

hardcopy:*default-text-printer*) :title (:copies 1) :landscape-p :page-headings :body-

character-style :heading-character-style &allow-other-keys Function

Hardcopies the source files of the system specified by system-name according to the

specified keyword options.

These are the keyword options to sct:hardcopy-system.

:machine-types

Whether the operation on the system(s) should be for 3600 Fami-

ly machines, Ivory machines, or all machine types. Valid values

are :|3600| and :IMACH. The default for sct:edit-system and

sct:hardcopy-system is the type of the current machine. The de-

fault for sct:reap-protect-system is all machine types.

:query Takes t, nil, :confirm, or :no-confirm. If t, ask for approval of

each suboperation. If nil or :no-confirm, don’t ask about any-

thing. If :confirm, list all the operations and then ask for confir-

mation. Default-value: :confirm.

:silent Takes t or nil. If t, perform all operations without printing any-

thing. If :query is non-nil, :silent t is overridden. Default value:

nil.

:include-components

Takes t or nil. If t, perform the requested system operation on

component systems. Default value: t.

:version Takes a version number or indicator and performs the requested

system operation on that version. The default is :newest.

:hardcopy-device

Takes a printer name, the device to which to send the hardcopy

request. The default is the value of hardcopy:*default-text-

printer*.

:copies Takes a number, the number of copies to make. The default is 1.

:landscape-p Takes t or nil. If :landscape-p is t, the printing is done in land-

scape mode.

Page 49

sct:reap-protect-system system-name &rest keys &key (:query :confirm) :silent

:batch (:include-components t) (:version :latest) (:machine-types :all) (:reap-protect t)

&allow-other-keys Function

Reap-protects all the files in the system specified by system-name according to the

specified options.

These are the keyword options to sct:reap-protect-system.

:query Takes t, nil, :confirm, or :no-confirm. If t, ask for approval of

each suboperation. If nil or :no-confirm, don’t ask about any-

thing. If :confirm, list all the operations and then ask for confir-

mation. Default-value: :confirm.

:silent Takes t or nil. If t, perform all operations without printing any-

thing. If :query is non-nil, :silent t is overridden. Default value:

nil.

:reap-protect Takes t or nil. If t, reap-protect the files. If nil un-reap-protect

them. Default value: t.

:machine-types

Whether the operation on the system(s) should be for 3600 Fami-

ly machines, Ivory machines, or all machine types. Valid values

are :|3600| and :IMACH. The default for sct:edit-system and

sct:hardcopy-system is the type of the current machine. The de-

fault for sct:reap-protect-system is all machine types.

:include-components

Takes t or nil. If t, perform the requested system operation on

component systems. Default value: t.�

sct:set-system-status system new-status &optional major-version only-update-on-disk�

Function

Changes the status of the specified system to new-status. Valid values of new-status

are: :experimental, :released, :frozen, :obsolete, and :broken. Note that declaring

a system to have a status of :released is not the same as designating a system as

being the :released version. When only-update-on-disk is t, this does not update in-

core datastructures if the system has not been loaded.

sct:designate-system-version system designator major-version &optional only-

update-on-disk Function

Adds a version designator of designator to the specified major-version of the

system. For example, if you want to claim that version 29 of the Tools system is to

be called the in-house version:

(sct:designate-system-version ’Tools :in-house 29.)�

If major-version is nil, designator is removed. When only-update-on-disk is t, this

does not update in-core datastructures if the system has not been loaded.

Page 50

sct:release-system system major-version &key :only-update-on-disk (:reap-protect t)

Function

Puts the :released keyword in the system’s patch directory, inserts a :released des-

ignation in the system directory. Invoked by the function sct:release-system; no

corresponding Command Processor command. Releases the system specified by sys-

tem-name with the specified major-version number. When :only-update-on-disk is

t, it does not update in-core datastructures if the system has not been loaded.

When :reap-protect is t, it sets the reap-protect bit for all the files that make up

the system.

Note: This operation is equivalent to a sct:set-system-status operation followed by

a sct:designate-system-version.

sct:copy-system system-name &rest keys &key :system-branch (:query :confirm)

:silent :batch (:include-components t) (:version :newest) (:machine-types :all) :destina-

tion :copy-patches (:copy-journals sct:copy-patches) (:copy-sources

:use-system-value) (:copy-binaries :use-system-value) (:copy-creation-date t) (:copy-

author t) :create-directories :clobber :never-clobber :flatten-files :compress-files &allow-

other-keys Function

Moves the files of a system from one place to another. system-name is the system

to move.

:destination

Specifies where to copy the system files. The :destination keyword is re-

quired. It can take one of the following values:

• A non-wild filename (host, device, and directory only)

Copies all files in the given system into this directory. In this case,

the source directory structure is flattened so that all files appear in

the same result directory regardless of the shape of the directory

structure in which they originally resided. (Note that in this case, if

files with the same name exist in two different source directories,

name collisions can occur.)

For example:

(sct:copy-system "Physics" :destination "Cobalt:>Marie>physics>")�

If the Physics system contained these files:

Hydrogen:>Albert>toys>macros.lisp

Helium:>Isaac>general>utilities.lisp�

they would be copied to:

Page 51

Cobalt:>Marie>physics>macros.lisp

Cobalt:>Marie>physics>utilities.lisp�

• A wild filename (host, device, and directory only)

Constructs a matching set of wildcards to match against the directory

structure in the source, and copies all files in the source into the

specified pathname.

It is an error if the wildcards in the destination do not match the

shape of the source structure. For example, in the example shown be-

low, "Cobalt:>Marie>physics>*>*>" would be an appropriate alternative

for this input data, but "Cobalt:>Marie>physics>*>" would not (because

there are two levels of directory structure in the source files). In gen-

eral, it is best to use a :wild-inferiors designator, such as the "**"

notation for LMFS pathnames, if at all possible.

For example:

(sct:copy-system "Physics" :destination "Cobalt:>Marie>physics>**>")�

If the Physics system contained these files:

Hydrogen:>Albert>toys>macros.lisp

Helium:>Isaac>general>utilities.lisp�

they would be copied to:

Cobalt:>Marie>physics>Albert>toys>macros.lisp

Cobalt:>Marie>physics>Isaac>general>utilities.lisp�

• A translation alist

This translation alist has the same format as the :translations argu-

ment to fs:set-logical-pathname-host. Entries are tried in succession

until the first match. When an entry matches an element in the car of

some entry, the destination pathname is the cadr of that entry.

For example:

(SCT:COPY-SYSTEM

 "Physics"

 :DESTINATION ’(("Hydrogen:>**>*.*.*"

 "Cobalt:>Marie>Hydrogen>**>*.*.*")

 ("Helium:>Isaac>**>*.*.*"

 "Cobalt:>Marie>Isaac>**>*.*.*")

 ("Helium:>**>*.*.*"

 "Cobalt:>Marie>Helium-Other>**>*.*.*")))�

Page 52

If the Physics system contained these files:

Hydrogen:>Albert>toys>macros.lisp

Helium:>Isaac>general>utilities.lisp�

they would be copied to:

Cobalt:>Marie>Hydrogen>Albert>toys>macros.lisp

Cobalt:>Marie>Isaac>general>utilities.lisp�

:copy-sources

If t, then sources are copied. If nil, they are not. The default is :use-

system-value, which means that the defaults for distribution as deter-

mined in the system declaration (and the defaults for the Distribute Sys-

tem command) are used.

:copy-binaries

If t, then binaries are copied. If nil, they are not. The default is :use-

system-value, which means that the defaults for distribution as deter-

mined in the system declaration (and the defaults for the Distribute Sys-

tem command) are used.

:flatten-files

Reserved for future use.

:machine-types

Takes a list of machine types or :all. The default is :all. The possible

machines types are :|3600| and :imach.

Distributing Systems

Distribute Systems Command

Distribute Systems systems-and-versions-pairs keywords�

Writes systems to tape for distribution. If you do not specify a system, the Dis-

tribute Systems Activity window is selected for you. Distribute Systems lists the

systems to write to tape, and asks if you want to perform the Distribute Systems

operation. Type Y for Yes, N for No, Q for Quit, or S for Selective.

If you choose Selective, each file is listed, and you are asked if you want to dis-

tribute that particular file. You can select as many files as you want. After you en-

ter this information, you are prompted for a tape specification, if you did not speci-

fy one already.

systems-and-versions-pairs

A list consisting of items separated by commas, each item be-

ing a system name followed by a space and a version number.

Page 53

keywords :Compress Files, :Default Version, :Distribute Patch Sources,

:File Types, :Full Length Tapes, :Include Components, :Include

Patches, :Included Files Checkpoint, :Machine Types, :Menu,

:More Processing, :Output Destination, :Query, :Source Catego-

ry, :Tape Spec, :Use Cached Checkpoint, :Use Disk�

:Compress Files {Yes, No} Whether to compress the files when writing them to

tape. The default is No. The mentioned default is Yes.

:Default Version {Released, Latest, Newest, version-designator} Version of the

system to distribute if not individually specified in Systems.

The default is Released.

:Distribute Patch Sources

{Yes, No} Whether to include patch sources for system patch-

es. The default is No. The mentioned default is Yes.

:File Types {Sources, Binaries, Both, Patches-Only, Default} What file

types to distribute. The default leaves it to the specifications

in individual defsystem forms.

:Full Length Tapes

{Yes, No} Write all tracks of the tape. Use this only if you are

sure that you don’t have to read the tape on a 3600 Cipher

drive. The default is No. The mentioned default is Yes.

:Include Components

{Yes, No} Whether to include any component systems of the

systems being distributed. The default is Yes.

:Include Patches {Yes, No, Selective} Whether to include the patch files for the

systems being distributed. The default is Yes. If you include

patch files and also distribute source files, the source file cor-

responding to the patch level, not necessarily the source used

for the compilation, is the one included on the tape. For exam-

ple, suppose you have a system that includes the file

blue.lisp.1. You put this file in an editor buffer, modify the

code, make a patch file, and then save the buffer with the al-

tered code to blue.lisp.2. When you use Distribute Systems,

blue.lisp.2 is distributed, but not blue.lisp.1.

:Included Files Checkpoint

{Patch, Release, None} Limit distributed files to those after

this patch number or release name, or None (do not limit).

The default is None.

:Machine Types {3600, Imach, All} Specifies whether the systems to distribute

should be for 3600-family machines, Ivory-based machines, or

all machine types. The default is to distribute systems for all

machine types.

:Menu {Yes, No} Whether to use a menu interface to specify details

of the distribution. Choosing Yes presents a Distribute Systems

Page 54

frame to select which files are distributed. For detailed infor-

mation about this frame, see the section "Distribute Systems

Activity". The default is No. The mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Everything, Yes, Confirm-Only, No} Whether to ask about dis-

tributing each file. The default is Confirm-Only. The men-

tioned default is Everything. Everything queries you about

each file being distributed, and again for each system being

distributed. Yes queries you about each file being distributed.

Confirm-Only queries you about each system being distributed.

No does not query.

For queries about individual files, the possible responses are:

Y Yes, distribute this file.

N No, do not distribute this file.

I Include the remaining files in this system.

B Bypass (do not include) the remaining files in this system.

D Directory. Show the directory containing this file.

E Edit this file.

S Source compare this file.�

For queries about systems, the possible responses are:

Y Yes, distribute all files listed in this system.

N No, do not distribute any files listed.

Q Quit. Do not distribute any files listed in this system.

S Selective. Query about each file in this system individually.�

:Source Category {Basic, Optional, Restricted, Optional-only, Restricted-only} In-

dicates which source category or categories to write to tape for

distribution. The default is Basic.

:Tape Spec The specification for the tape. The default is the default drive

on the local machine. For more information about tape specifi-

cations, see the section "Tape Specifications".

Page 55

:Use Cached Checkpoint

{Yes, No} Use the last checkpoint gathered for this system.

Using the cached checkpoint information, if there is any, saves

time. But it is safe to use only if you are sure no more patches

have been made since the cached information was computed.

The default is No. The mentioned default is Yes.

:Use Disk On all machines other than a MacIvory, the choices are {Yes,

No}. If Yes, the input is written to disk as a special file that is

an image of what would be written to tape. When writing to

disk, the distribution plan is not divided into parts according to

any size limit. You can use this either to distribute on disk, or

when you are preparing a distribution and want to see what

files would be written to tape. The default is No. The men-

tioned default is Yes.

On a MacIvory, the choices are {Tape, Disk, Floppy}. Disk indi-

cates the hard disk, and Floppy indicates the floppy disk. These

two values also write a special file that is an image of what

would be written to tape. Additionally, when a floppy disk is

used, the size limit for a "reel" is set to the capacity of the

floppy (that is, 800 Kbytes). Tape means to write to tape; this

is the default.

Distribute Systems Activity

When you use the Distribute Systems command, and specify the keyword :Menu

with the value Yes, you invoke the Distribute Systems activity. This activity en-

ables you to define and edit the specifications for one or more systems to be writ-

ten on a distribution tape. You can add specifications for new systems one at a

time, make changes to the details of the existing systems, or delete them entirely.

You can also access the Distribution Systems activity by using the command Select

Activity Distribution System.

Figure ! shows the Distribute Systems activity.

� Overview:

The Distribution Systems window consists of six different sections: one distribution

display specification pane, one pane indicating your status in the process of dis-

tributing systems, two command menus, and two panes for setting parameters.

While using the Distribute Systems activity, you are in different phases of the

process, depending on which activity are performing. The top-left pane always dis-

plays the name of the activity you are performing. Initially, the top-left pane dis-

plays the words Specify Systems, since this is the first activity you perform.

The first phase of the process occurs when you make your system specifications.

These specifications appear in the large Distribution Specification pane if you en-

ter the Distribute Systems activity with the Distribute Systems command, and

specify the keyword :Menu, with the value Yes. When you are in this first phase,

the top-left pane displays the words Specify Systems.

Page 56

Figure 1. Distribute Systems Menu

After you finish specifying systems, you click on the Generate Plan command in

the command menu. The top-left pane then quickly displays the words Generating

Plan.... The distribution plan then appears in the Distribution Specification pane,

and the words Edit Distribution appear in the top-left pane.

When you are satisfied with the distribution plan, you click on Write Distribution

in the command menu, and the words Writing Distribution appear in the top-left

pane, signifying that that you are writing the distribution. While writing the dis-

tribution, the process prints the progress log in a typeout window, and also in an-

other location if you specify it to do so.

Here is a description of the different panes:

Distribution Specification Pane -- the right-side pane

This pane displays the system specs, as you have defined them up to now.

Specify Systems Pane -- the top-left pane

The top-left pane always displays the name of the phase you are in. The name

changes as you move from one activity to another.

The Command Pane -- the second-left pane

The second-left pane offers a command menu for setting parameters of the systems

you want to distribute. You can choose one of the commands by clicking on the

command name.

Here is an explanation of these commands.

Page 57

Command Description

Add System Specs Adds specifications for new systems.

Delete System Specs

Deletes a specification in the list of systems. You can specify

individual systems or **all**.

Edit System Spec Enables you to edit the detailed parameters of an individual

specification already in the list of parameters.

Generate Plan Generates the plan so you can examine it before writing the fi-

nal distribution. Computes the exact list of files to write, ac-

cording to your specifications. When it finishes, it switches to

the Edit Distribution Plan phase, and displays the list of files.

Help Gives information about Specify Systems commands.

Reset Defaults Enables you to reset the actions and default parameters to

their initial values.

Switch Modes Enables you to switch back and forth between the Specify Sys-

tems and the Edit Distribution Plan phases. (This command

does not change the state of the activity window in any other

respect).

Write Distribution Creates the distribution. Clicking on this writes the distribu-

tion to the file or tape device specified in the Actions During

Distribution pane.

To add specifications for new systems, you can use Add System Specs in the Speci-

fy Systems menu, or you can click left on the title line of the system spec display.

The parameter values initially offered in the pop-up editor are from the current

set of Default Parameters.

To edit the detailed parameters of an individual specification already in the list,

you can use the Edit System Spec in the Specify Systems menu, or you can click

left on the displayed line for that system specification.

To delete specifications for a system you can use Delete System Specs, or you can

click middle on the displayed line for that system specification.

Actions During Distribution Pane -- the third-left pane

The third-left pane is a parameters pane for changing the settings that control pa-

rameters (for example, where to direct the information lines that tell which files

are being written). You can change these parameters by clicking on their values.

The first parameter, "query about each system", determines (as the distribution is

being written) whether the user will be queried by file, by system, or not at all.

The second parameter, "write Informational output to", determines (as the distribu-

tion is being written) where the typeout will go. Values are:

Standard-Output, or

Page 58

�

Destination (Buffer, File, Printer, Stream, or

Window). �

The default (standard-output) is to write the information on a typeout window on

the screen.

The third parameter, "write distribution to device", determines where the distribu-

tion data will be written. Values are machine dependent:

Tape, Disk, or Floppy.

If you choose tape, it prompts you for the tape specification:

Spec for tape: Local: Cart, den=1600

For more information about tape specifications, see the section

"Tape Specifications".

If you choose disk, the input is written to disk as a special file

that is an image of what would be written to tape. You are

queried for the pathname of a tape image file. When disk is

chosen, the distribution plan is not divided into parts according

to any size limit.

If you choose floppy, you are queried for the pathname of a file

on a floppy disk. Additionally, when a floppy disk is used, the

size limit for a "reel" is set to the capacity of the floppy (that

is, 800 Kbytes).

Recast System Specs from Defaults Pane -- the fourth-left pane

The fourth-left pane is a command menu for setting the parameters of the systems

to distribute. You may click on the command in this pane after you have changed

some parameters in the bottom-left pane, Default Parameters.

This command is useful if you have changed some system specifications in the Dis-

tribution Specification activity, and you wish to revert all of them to the defaults

displayed in the Default Parameters pane. When you click on Recast System Specs

from Defaults, it changes all the specifications for each system to the ones speci-

fied in the Default Parameters pane.

Default Parameters Pane -- the bottom-left pane

The bottom-left pane contains the default values for the details of how Distribute

Systems writes each system. When you create a new system specification, Dis-

tribute Systems uses these defaults as the initial settings for the parameters for

that system specification.

Once you create a system specification, it contains a full set of parameter values.

These parameter values are displayed in the Default Parameters pane. Note that

the Distribution Specification pane only displays the settings that do not corre-

spond to the default parameters.

If you change a default parameter, the display of the existing system specifications

changes to reflect the fact that one of its parameter values is no longer the de-

Page 59

fault. You can change a parameter by clicking on its value. Here are the parame-

ters:

Default Version (one of the following):

Released The version designated as released in the journal file. This is

the default.

Latest The most recent version recorded in the journal file.

Newest Newest means to ignore the versions in the journal file and

just find the newest files.

A positive integer The version of the system you want to distribute.�

Source Category (one of the following):

Basic Distribute only sources marked Basic.

Restricted Distribute only sources marked Restricted, Optional, or Basic.

Restricted-Only Distribute only sources marked Restricted.

Optional Distribute only sources marked Optional, or Basic.

Optional-Only Distribute only sources marked Optional.�

Distribute Sources (one of the following):

Yes All sources in the specified source category distributed.

No No sources distributed.

Use-System-Value Use the parameter set in the defsystem for each system.�

Distribute Binaries (one of the following):

Yes All binary files included.

No No binary files included.

Use-System-Value Uses the parameter set in the defsystem for each system.�

Include patches (one of the following):

Yes All patches included.

No No patches included.

Selective Prompts you for which patches to include.�

Include Patch Sources (one of the following):

Yes All patch sources included.

No No patch sources included.�

Include journals (one of the following):

Page 60

Yes All journals included.

No No journals included.�

Include component systems (one of the following):

Yes All component systems included.

No No component systems included.�

Checkpoint for included files: limit the distributed files to those after (one of the

following):

A positive integer A patch number.

Release A release name.

None Do not limit.�

Use cached checkpoint (one of the following):

Yes Use the last checkpoint gathered for this system. Using the

cached checkpoint information, if there is any, saves time. But

it is safe to use only if you are sure no more patches have

been made since the cached information was computed.

No Do not use the last checkpoint gathered for this system.�

After Setting All of the Parameters

After you set all of the parameters, use the Generate Plan command in the com-

mand menu to compute the exact list of files to write, according to your specifica-

tions. When it finishes, it switches to the Edit Distribution Plan phase, and dis-

plays the list of files. You can edit the distribution plan if you like. When you are

done editing the distribution plan, or are satisfied with it, click on the Write Dis-

tribution command to write the distribution.

How to Scroll the Screens

In the screens with scroll bars, you can scroll the screen display with the SCROLL

key, or by pressing m-SCROLL. In addition, you can use m-< to move to the begin-

ning of the display, and m-> to move to the end of the display.

Directories Associated with a System

Each system is associated with a set of directories and files. This section explains

the directory structure associated with a system called zoo. Under a single logical

directory, zoo; reside these files:

1. The System declaration file which contains the defsystem form for this sys-

tem.

2. Multiple versions of source and product files that comprise the system.

Page 61

3. A journal directory, by default called patch;.

The journal directory contains a subhierarchy of files that contain the history of

the compilations done and the patches made to the system.

Journal-directory (zoo;patch;)

zoo.system-dir

. . .
zoo-1; zoo-2; zoo-n;

(journal subdirectories)

Figure 2. Journal Directory for system Zoo

�

�

The system-dir file is a registry of the location of the component-directory file for

a given version of a system for a given machine. Here is the zoo.system-dir file

looks like:

;;; -*- Mode: LISP; Base: 10 -*-

Page 62

�

;;; Written 1/30/89 13:39:22 by Ellen,

;;; while running on James Baldwin from FEP0:>Writer-from-SCRC-7-3I-A-etc.ilod.1

;;(("ZOO" :RELEASED 404 :LATEST 404)

;;; System versions: ...

 (404

 (:|3600|

 (:COMPONENT-DIRECTORY

 ("SYS:ZOO;PATCH;ZOO-404.COMPONENT-DIR" :NEWEST NIL))))

 (403

 (:|3600|

 (:COMPONENT-DIRECTORY

 ("SYS:ZOO;PATCH;ZOO-403.COMPONENT-DIR" :NEWEST NIL))))

 (402

 (:|3600|

 (:COMPONENT-DIRECTORY

 ("SYS:ZOO;PATCH;ZOO-402.COMPONENT-DIR" :NEWEST NIL))))

 (401

 (:|3600|

 (:COMPONENT-DIRECTORY

 ("SYS:ZOO;PATCH;ZOO-401.COMPONENT-DIR" :NEWEST NIL))))

 (8

 (:|3600|

 (:COMPONENT-DIRECTORY

 ("SYS:ZOO;PATCH;ZOO-8.COMPONENT-DIR" :NEWEST NIL))))

 (7

 (:|3600|

 (:COMPONENT-DIRECTORY

 ("SYS:ZOO;PATCH;ZOO-7.COMPONENT-DIR" :NEWEST NIL))))

 �

Each journal subdirectory is associated with a particular version of a system. Here

is the structure of the journal subdirectory zoo-2;.

Component Directory File

The component directory file is not an actual directory in the file system, but is

rather a registry of the source and product version numbers for a major version of

a system. Whenever you perform an operation on a system, that operation uses

this file to determine the versions of the system files to operate on.

Here is an example of the contents of a component-directory file.

;;; -*- Mode: LISP; Base: 10 -*-

;;; Written 11/10/89 12:05:58 by Zippy,

;;; while running on Brown Creeper from FEP0:>Base-System-424-0.load.1

Page 63

zoo-2;

. . .
zoo-2.component-dir zoo-2.patch-dir zoo-2-1 zoo-2-n

(patch files)

Figure 3. Journal Subdirectory for Zoo Version 2

�

�

�

(("IP-TCP" 420)

 ;; Files for version 420:

 (:|3600|

 (:DEFSYSTEM

 ("SYS:IP-TCP;SYSTEM" 107 NIL))

 (:INPUTS-AND-OUTPUTS

 ("SYS:IP-TCP;TCP-STRUCTURE.TEXT" 10 NIL)

 .

 .

 .

 ("SYS:IP-TCP;EGP" 83 58))))�

When you compile a system a new component directory file is created. The major

benefit of this detailed record keeping is that your site can support multiple ver-

sions of the same system. General users and system developers can load specific

versions of systems and specific versions of system files, even when newer and

possibly incompatible versions have been made. Some examples:

• System developers can work on the latest versions of systems, editing and recom-

piling some files, without forcing the average user to contend with new and ex-

perimental changes to the system.

• General users, on the other hand, can load the stable, released versions.

• Symbolics can more easily distribute versions of the system other than the

newest version.

• You can use old versions of systems after recompiled versions have been made

for the latest system software.�

In addition, you can load a system in several different ways:

• by version number

Page 64

• by version name

• by designation as released, latest, or newest�

To load a specific system, use the :version option for load-system

The released version is the fully debugged version intended for general use. To

designate a system as the released version use either sct:release-system or

compile-system with the :update-directory option to make the change in the com-

ponent directory file.

The latest version is the most recently compiled version of the system. The compo-

nent directory file is automatically updated whenever you compile or recompile the

system; compile-system assigns the :latest keyword to this system.

The newest version of a system consists of the most recently compiled version of

each file of a system. The newest version differs from the latest version when indi-

vidual files have been compiled by hand. The newest version of a system has no

version number. Note that you cannot define patches for the newest system.

Contents of the Patch Directory Files

Two patch-directory files are created for each patch (one when the patch is begun

and another when the patch is finished). The patch-directory file is not a directory;

it is a registry of minimum information about a patch including the number of the

patch, a comment, the author, and a timestamp. A new patch directory file is cre-

ated automatically when you recompile a system.

Here is an example of the contents of a patch-directory file.

;;; -*- Mode: Lisp; Package: ZL-User; Base: 10.; Patch-File: T -*-

;;; Patch directory for IP-TCP version 420

;;; Written 1/17/90 12:25:42 by Hornig,

;;; while running on Brown Creeper from FEP0:>Base-System-424-0.load.1

;;; ...

(:EXPERIMENTAL

 ((0 "IP-TCP version 420 loaded." "SWM" 2729958587)

 (1

 "Make TFTP work again.

Function TCP::IP-STORE-16: Needs ONCE-ONLY.

Function TCP::IP-STORE-32: ditto

Function (DEFUN-IN-FLAVOR TCP::TFTP-FLUSH-BUFFER

TCP::TFTP-OUTPUT-STREAM):

Recompile caller."

 "Hornig" 2730718516)

 (2

 "Function (DEFUN-IN-FLAVOR TCP::IP-RETRANSMIT-PACKET

TCP::IP-PROTOCOL):

Don’t ever forward or redirect broadcast packets."

 "Hornig" 2730990265)

))�

The patch files themselves are found in both source and product form, with one

source and one product file associated with each patch.

Page 65

Patch Facility

How Patching Works

Software development is usually a process of incremental changes to many large

programs. Many developers can be involved, and the changes can be distributed to

any number of users, including the same developers. (Note: the term large program

refers to one defined by defsystem. Only these programs can make use of the

patch facility.)

Briefly, developers fix or improve existing functional and other definitions (or

write new ones), and then, after thorough testing, decide to issue their changes to

the users at their site. They effect release in two ways: (1) they write new ver-

sions of the source files containing the edited or new definitions, and (2) they cre-

ate patch files, which contain only the new or changed definitions. Every time a

patch is created (written to disk), the patch facility automatically records the event

in a sort of "patch registry", noting the number of the patch, the system being

patched, and a brief summary of the patch, as described by the developer. Zmacs,

the Symbolics editor, provides special tools that make this process relatively easy

for the developer.

The patch facility creates a patch file. Saving your buffer after you make a change

creates a new version of your source file. When the system is recompiled, your

source file, and not the patch file, will be used to construct the new system. The

important point is that the patch files  and not the newly written source files 

allow the changes to be put into widespread use immediately. The patch facility al-

lows users to obtain all the incremental changes to a system simply by loading its

associated patch files.

Basically what occurs during the loading of patches is this: the current state of

the patch registry is compared to the registry as last loaded by the user. If patch-

es have been written since that time, just the new patches are loaded, and their

summary descriptions are displayed. At that point, the state of the given system in

the user’s machine is presumably the same as in the developer’s machine when

the patch was finished.

Genera provides a number of convenient tools and several interfaces for loading

patches. For example, users can load patches by calling one of several Lisp func-

tions or alternatively using Command Processor commands. Users also have the

choice of loading patches to virtual memory (which means they disappear when the

machine is booted) or of saving the patches to disk. (Of course, new patches can

be made later, and then these will have to be loaded to get the very latest version

of a system.) In the case where users load a particular system whenever they want

to use it, the system-loading facility automatically loads all the patches for that

system.

Inevitably, a developer or system maintainer must stop accumulating patches and

recompile all the source files in a large program, for example, when a system is

changed in a far-reaching way that cannot be accomplished with a patch. Only at

this point do the source files become important to system maintenance and distri-

Page 66

bution. After a complete recompilation, the old patch files are useless and should

not be loaded.

To keep track of all the changing number of files in a large program, the patch

facility labels each version of a system with a two-part number. The two parts are

called the major version number and the minor version number. The minor version

number is increased every time a new patch is made; the patch is identified by the

major and minor version number together. The major version number is increased

when the program is completely recompiled, and at that time the minor version

number is reset to zero. A complete system version is identified by the major ver-

sion number, followed by a dot, followed by the minor version number.

The following typical scenario should clarify this scheme.

1. A new system is created; its initial version number is 1.0.

2. Then a patch file is created; the version of the program that results from

loading the first patch file into version 1.0 is called 1.1.

3. Then another patch file might be created, and loading that patch file into sys-

tem 1.1 creates version 1.2.

4. Then the entire system is recompiled, creating version 2.0 from scratch.

5. Now the two patch files are irrelevant, because they fix old software; the

changes that they reflect are integrated into system 2.0.�

Note that the second patch file should only be loaded into system 1.1 in order to

create system 1.2; you should not load it into 1.0 or any other system besides 1.1. It

is important that all the patch files be loaded in the proper order, for two reasons.

• First, it is very useful that any system numbered 1.1 be exactly the same soft-

ware as any other system numbered 1.1, so that if somebody reports a bug in

version 1.1, it is clear just which software is being cited.

• Secondly, one patch might patch another patch; loading them in some other or-

der might have the wrong effect.�

In addition to enabling users to have the most up-to-date programs available, the

patch facility performs another important function. Via the patch registry, it al-

lows a site to support multiple versions of the same system. Thus, general users

can load a stable, debugged version, while system developers can run the latest

version of the same system, editing and recompiling files, without forcing the gen-

eral user to deal with experimental changes. The detailed record keeping that this

capability requires is maintained in a hierarchy of files that is created automatical-

ly and updated whenever a system is compiled.

The patch registry also keeps track of all the individual patch files that exist, re-

membering which version each one creates. A separate numbered sequence of

patch files exists for each major version of each system, for example, lmfs-37-

15.lisp, lmfs-37-16.lisp, and so forth. All patches for each major version are stored

in the journal subdirectory associated with that version of the system. See the sec-

tion "Directories Associated with a System".

Page 67

In addition to the patch files themselves, the patch-directory file keeps track of

what minor versions exist for a major version. For example, lmfs-37.patch-dir con-

tains a listing of the patches made for major version 37, their author, a times-

tamp, and a comment on why each patch was made.

In order to use the patch facility, you must define your system with defsystem

and declare it as patchable with the :patchable option. (:patchable is the default.)

When you load your system, it is added to the list of all systems present in the

world. Whenever you compile your patchable system, its major version in the file

system is incremented; thus a major version is associated with a set of compiled

code files.

The patch facility keeps track of which version of each patchable system is

present, and where the data about that system reside in the file system. This in-

formation can be used to update the Genera world automatically to the latest ver-

sions of all the systems it contains. Once a system is present, you can ask for the

latest patches to be loaded, ask which patches are already loaded, and add new

patches. You can also load patches or whole new systems and then save the entire

Genera environment away in a FEP file. See the function zl:load-and-save-

patches.

Types of Patch Files

The patch facility maintains several different types of files in the journal subdirec-

tory associated with a major version of your system:

• The patch directory files (two versions for each patch)

• Individual patch files (both source and product versions)�

The patch directory file constitutes a sort of "patch registry", recording the num-

ber of the patch, the name and version of the system being patched, and a brief

description of the patch. One version of the patch directory file is created when

starting a patch, and another is created when finishing a patch. (Of course, old

versions can be deleted and expunged.) See the section "Component Directory File".

Patch Directory File

The patch directory file in the journal subdirectory keeps a listing of the patches

(minor versions) that exist for a major version. Each major version of the system

has its own patch directory file, which lists the minor version number, any com-

ments about the patch, and the patch author. A new patch directory file is created

automatically when you recompile a system.

See the section "Directories Associated with a System".

See the section "Component Directory File".

See the section "Contents of the Patch Directory Files".

Page 68

Individual Patch Files

Each minor version of the system has a patch source file and a corresponding com-

piled code file. The individual patch files for a major system version reside in the

subdirectory for that major version. (The patch directory file also resides in this

subdirectory.) Each patch file is uniquely identified by the major and minor ver-

sion numbers of the system. For example, lmfs-37-3.lisp would be the name of the

patch source file for major version #37 and minor version #3 of lmfs.

Organization of Patch Files

The component directory file, the patch directory file, and the individual patch

files are created and maintained automatically, but you will need to know where

the patch facility stores these patch files and how to find them on your host.

The patch facility knows which directories to associate with your system by looking

at how you specified the :patchable option and the :default-pathname option in

your system declaration. For example, the following defsystem declaration will

cause the patches to be stored in the logical directory "george: patch;" rather than

in the directory that holds the other files of the system, the pathname default.

:default-pathname "george: george;"

:patchable t

:journal-directory "george: patch;"�

When you do not supply the journal-directory then the patches are stored in the

directory specified by :default-pathname; plus patch;. In the following example

this is the logical directory "george: george; patch;".

:default-pathname "george: george;"

:patchable t�

The source and compiled code patch files for a major system version are kept in

the component directory, along with the component directory file. The patch direc-

tory file for a major version resides in this same directory.

Names of Patch Files

The patch facility chooses names for your patch files based on your system defini-

tion and on the host.

The host determines the file type and the number of characters in the file name.

For example, VMS, UNIX 4.2, and ITS use a computer-generated contraction of

the file name. A system directory file name like charlie.system-dir on LMFS would

be CHARLI (SDIR) on ITS. Similarly, a patch directory file name like charlie-

1.patch-dir on LMFS would be CHA001 (PDIR) on ITS.

The following tables show the physical file types of the system directory file, the

patch directory file, and the component directory file for various hosts.

Page 69

Host File type of the system directory file

TOPS-20 SYSTEM-DIR

UNIX 4.1 sd

UNIX 4.2 system-dir (also sd for compatibility)

VMS SPD

ITS (SDIR)

LMFS system-dir

Multics system-dir

Host File type of the patch directory file

TOPS-20 PATCH-DIR

UNIX 4.1 pd

UNIX 4.2 patch-dir (also pd for compatibility)

VMS VPD

ITS (PDIR)

LMFS patch-dir

Multics patch-dir

Host File type of the component directory file

TOPS-20 COMPONENT-DIR

UNIX 4.1 cd

UNIX 4.2 component-dir (also cd for compatibility)

VMS CPD

ITS (CDIR)

LMFS component-dir

Multics component-dir�

The format of patch file names varies with the type of file.

• The format of the system directory file is some name chosen by the patch facili-

ty followed by the appropriate file type and file version number. For example,

the system directory file on LMFS for the george system might be:

q:>sys>george>patch>george.system-dir.1�

• The format of the patch directory file name is some name followed by the major

version number and the appropriate file type and file version number. For ex-

ample, the patch directory file on LMFS for major version #38 of george might

be:

q:>sys>george>patch>george-38>george-38.patch-dir.44�

Note that the file resides in a subdirectory of the same name.

• The format of the individual patch file is some name chosen by the patch facili-

ty followed by the major version number, the minor version number, and the ap-

propriate file type and file version number. For example, source patch file #1 for

major version #38 of george might be:

Page 70

q:>sys>george>patch>george-38>george-38-1.lisp�

Because the translation rules for generating patch file pathnames are fairly com-

plicated, they are not given here. Instead use the sct:patch-system-pathname

function to determine the names of your patch files.

sct:patch-system-pathname system type &rest args Function

Given a system name and the type (:component-directory, :system-directory,

:patch-directory, :patch-file) and additional args required by that type, returns

the pathname for the file in question. Additional args are, in order, system-major-

version, system-minor-verison, and file-canonical-type. :system-directory requires

none of these, :component-directory and :patch-directory require one, and

:patch-file all three.

Returns the logical pathname of a patch file. system is the name of the system.

type is :patch-file, :system-directory, :component-directory, :patch-directory, or

:patch-file. Specify also any additional args required by the type.

:component-directory

Returns the logical pathname of the component directory file for the

system specified by a major version number, for example:

(sct:patch-system-pathname "LMFS"

 :component-directory 37)�

The form returns #P"SYS:LMFS;PATCH;LMFS-37.COMPONENT-DIR.NEWEST".

:system-directory

Returns the logical pathname of the system directory file for the speci-

fied system, for example:

(sct:patch-system-pathname "LMFS"

 :system-directory)�

The form returns #P"SYS:LMFS;PATCH;LMFS.SYSTEM-DIR.NEWEST".

:patch-directory

Supplied with a major-version-number argument, it returns the logical

pathname of that patch directory file for the given system, for example:

(sct:patch-system-pathname "LMFS"

 :patch-directory 51.)�

The form returns #P"SYS:LMFS;PATCH;LMFS-51.PATCH-DIR.NEWEST".

:patch-file Supplied with the major-version-number, minor-version-number, and

canonical-type arguments, it returns the logical pathname of the patch

file.

(sct:patch-system-pathname "LMFS"

 :patch-file 51. 2.

 :lisp)�

The form returns #P"SYS:LMFS;PATCH;LMFS-51-2.LISP.NEWEST".

Page 71

To find the physical pathname translation of any of these, send the returned value

the :translated-pathname message. For example, send the :translated-pathname

message to the returned value of (sct:patch-system-pathname "LMFS" :system-

directory). The form would return #P"Q:>SYS>LMFS>PATCH>LMFS.SYSTEM-DIR>".

Making Patches

During a typical maintenance session you might make several changes to existing

definitions or write new ones. Rather than recompiling the entire system every

time you change a source file, you can copy only the new or revised code into a

patch file and write the file ("finish" the patch). Whenever you finish a patch, the

patch facility automatically compiles the file and records the event in a "patch

registry" for the system, noting the number of the patch, the system being patch,

and a brief user-supplied description. As soon as a user loads the patch file (after

the system is loaded), the state of the given system in the user’s machine is pre-

sumably the same as in the developer’s machine when the patch was finished.

The patch facility allows you to have several patches in progress at once. Thus you

can patch several different systems or several different minor versions of the same

system during one work session. The patch facility manages this potentially dan-

gerous situation in the following way. Every time you start a patch, a number and

a place in the patch registry is reserved for the patch in production. The patch is

marked in-progress. When the patch is finished, the entry is completed and the in-

progress mark removed. If you decide to abort the patch, the registry entry is

automatically deleted.

The ability to have more than one patch in-progress to more than one system

makes it imperative that you keep track of the state of your various patches. If a

patch is left unfinished (unwritten), the load-patches function will load neither

the in-progress patch nor any subsequent finished patches.

The patch facility considers patches to be active or inactive and in one of the

following states: initial, in-progress, aborted, or finished. Show Patches (m-X) dis-

plays the state of all patches started in this work session. If more than one patch

is in progress, one of them is known as the current patch. The commands that add

patches, like Add Patch (m-X), add only to the patch considered by the patch facili-

ty to be the current patch. The command Select Patch (m-X) displays a menu of

active patches and allows you to make another patch the current one.

In general you should adhere to the following steps in making a patch. It is

assumed that your system is patchable; that is, the :patchable option appears in

the system declaration.

1. You must load (via load-system) the major version of the system that you

want to patch.

2. Read in the source files you want to edit into a Zmacs buffer. Make all

changes and test them thoroughly. Write the source file.

3. Use the appropriate Zmacs commands to make your patch. Begin the patch,

using Start Patch (m-X).

Page 72

4. Add the changed code to the patch buffer by using Add Patch (m-X), Add

Patch Changed Definitions of Buffer (m-X), or Add Patch Changed Definitions

(m-X).

5. Finish the patch, using Finish Patch (m-X), or abort the patch, using Abort

Patch (m-X).�

Commands provided for initiating a patch are Start Patch (m-X), Start Private

Patch (m-X), and Add Patch (m-X).�

� Start Patch (m-X)

Starts a new patch, prompting you for the name of the system to be patched; it

must be a system currently loaded. It assigns a new minor version number for

that particular system by writing a new version of the patch directory file with an

entry for that minor version number. The patch is marked as in-progress. It starts

constructing the patch file in an editor buffer, but does not select the buffer.

While you are making your patch file, the minor version number that has been

allocated for you is reserved so that nobody else can use it. Thus, if two people are

patching the same system at the same time, they cannot be assigned the same

minor version number.

The command does not actually move any definitions into the patch file. You must

explicitly do so with Add Patch Changed Definitions of Buffer (m-X), Add Patch

Changed Definitions (m-X), or Add Patch (m-X).

The patch facility permits you to start another patch before finishing the current

one. However, if your new patch is to the same system, the patch facility warns

you that you already have a patch in progress and allows you to take one of four

actions:

• Abort the in-progress patch and start a new patch.

• Finish the in-progress patch and start a new patch.

• Proceed with the second patch (initial patch) for this system and leave the in-

progress patch intact.

• Use the existing buffer and do not start a new patch.�

Start Private Patch (m-X)

Although similar to Start Patch (m-X), Start Private Patch (m-X) does not have any

relationship to systems, major and minor version numbers, and official patch di-

rectories. Rather it allows you to make a private patch file that you can load, test,

and share with other users before you install a numbered patch that is automati-

cally available to all users.

Instead of prompting for a system name, the command prompts for a file name. It

also prompts for a patch note to be saved with the patch. The default for this

private patch note is the same as the name component of the private patch path-

name, except that spaces are converted to hyphens. This patch note is also offered

Page 73

as the subject line of a mail message if you select yes for Send mail about this

patch in the Finish Patch menu.

Start Private Patch does not actually move any definitions into the patch file. Use

Add Patch Changed Definitions of Buffer (m-X), Add Patch Changed Definitions

(m-X), or Add Patch (m-X) to insert the code. Finishing the patch (using Finish

Patch (m-X)) writes it out to the specified file.

Note: Use the Load File command or Load File (m-X) to load a private patch; the

Load Patches command and the load-patches function do not load private patches.�

Add Patch (m-X)

Starts a new patch if none is underway, prompts you for a system name, and

inserts the region or current definition into the patch buffer. If a patch was in

progress, Add Patch (m-X) just adds the region or current definition to the current

patch file.

Warns you if your editor buffer conflicts with the system being patched. If you

mistakenly use Add Patch on code that does not work, select the buffer containing

the patch file and delete it. Then later you can use Add Patch (m-X) on the

corrected version. For each patch you add, it queries for a patch comment, which

it then inserts in the patch file. Just pressing END means "no comment".�

Add Patch (m-X), Add Patch Changed Definitions (m-X), or Add Patch Changed

Definitions of Buffer (m-X) insert code into the patch file. If the patch is being

made to the system the current buffer’s file came from, the commands proceed.

If there is a current patch, and it is not appropriate for the system that the

buffer’s file came from, you see a menu showing all of the current patches, plus

an option to create a new patch appropriate for the buffer, plus an option to abort.

�

� Add Patch Changed Definitions of Buffer (m-X)

Add Patch Changed Definitions of Buffer (m-X) selects each definition that was

changed in the buffer and asks you whether or not you want the definition

patched.

For each definition, you can respond as follows:

Response Action

Y Patches the definition.

N Skips the definition.

P Patches the definition and any additional modified definitions in the

same buffer without asking any more questions.�

Page 74

A definition needs to be patched if it has been changed since it was last patched

or if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in

the patch file. Just pressing END means "no comment".�

Add Patch Changed Definitions (m-X)

Add Patch Changed Definitions (m-X) selects a buffer in which definitions were

changed and asks whether or not you want to patch the changed definitions.

Answering N skips the buffer and proceeds to the next buffer of the same mode, if

any. Answering Y selects each definition that has changed in that buffer and asks

you whether or not you want the definition patched. For each definition, you can

respond as follows:

Response Action

Y Patches the definition.

N Skips the definition.

P Patches the definition and any additional modified definitions in the

same buffer without asking any more questions; when done, it pro-

ceeds to the next buffer.�

If there are more buffers containing definitions to be patched, it asks questions

again when it gets to the next buffer.

A definition needs to be patched if it has been changed since it was last patched

and if it has not been patched since the file was read into the buffer.

For each patch you add, it queries for a patch comment, which it then inserts in

the patch file. Just pressing END means "no comment".

Add Patch Changed Definitions selects buffers based on the mode of the buffer

from which the command is issued. Thus if you are in a Lisp mode buffer, any

Lisp mode buffers with definitions to be patched are offered, and if you are in

another mode buffer, only buffers of that mode are offered.�

When making multiple patches during one work session use the Select Patch and

Show Patches commands to keep track of patches.�

� Select Patch (m-X)

When you are making more than one patch during a work session, Select Patch

(m-X) allows you to choose a different patch as the current patch from a menu of

active patches. The patching commands (like Add Patch and Add Patch Changed

Definitions of Buffer) insert definitions into the patch file that you have selected

as the current patch. To insert patch definitions into another buffer, use Select

Patch to choose that buffer as the current patch.�

Page 75

Show Patches (m-X)

Show Patches (m-X) displays the state of all patches started in this session.

Patches are either active or inactive and can be in one of the following states:

initial, in-progress, aborted, or finished. Inactive patches are in an aborted or fin-

ished state. Active patches are in an initial or in-progress state. Initial means that

the patch buffer has been initialized but as yet no definitions have been added to

the buffer. In-progress means that the patch buffer has been initialized and defini-

tions have been added to the buffer.

Show Patches groups the active and inactive patches and identifies the current

patch.�

After making and testing all of your patches, use the Finish Patch command to

install the patch in the system.�

� Finish Patch (m-X)

Finish Patch (m-X) installs the patch file so that other users can load it. This

command saves and compiles the patch file (patches are always compiled). If the

compilation produces compiler warnings, the command asks whether or not you

want to finish the patch anyway. If you do, or if no warnings are produced, a new

version of the patch directory file is written. The in-progress mark is removed

from the entry in the patch registry.

The command allows you to edit the patch comments, which are written to the

patch directory file. (load-patches and zl:print-system-modifications print these

comments.) It then asks you whether you want to send mail about the patch. If

you say "yes", it opens a mail buffer and inserts initial contents, including the

name of the patch file and your patch comment.

Note: By default the Finish Patch command queries you about sending mail. You

can alter this behavior by changing the value of the variable zwei:*send-mail-

about-patch*. Its valid values are :ask, the default value, which queries the user;

t, which opens a Zmacs mail buffer without querying; and nil, which takes no

action regarding the sending of patch mail.

The Finish Patch menu lists the modified source files for the patch and offers to

save them as part of the Finish Patch process. If you do not save your files as

part of the Finish Patch process, Finish Patch displays a reminder to save your

files when it finishes writing the patch directory. You can set the variable

zwei:*finish-patch-save-sources-default* (default nil) to t in your init file to have

Finish Patch save your files automatically.

Sometimes you start making a patch file and for a variety of reasons do not finish

it  for example, you decide to abort the patch, you need to end your work session

at this machine, or your machine crashes. In each of these situations it is of the

utmost importance that you leave the patch directory file in a clean state; that is,

Page 76

either go back and finish the patch (as soon as possible!) or deallocate the patch

number reserved to you. Failure to do so has unfortunate consequences: users at

your site will not be able to load patches.

If your machine has crashed, use Resume Patch (m-X) to reclaim access to the

patch number previously assigned to you. You can continue with the patch (assum-

ing you saved the source files just prior to the crash) or use Abort Patch (m-X) to

deallocate the patch number. Begin the patch again if you wish. If you simply

decide to abandon the patch file, then just use Abort Patch. If you must boot your

machine before finishing the patch, then save the patch buffer and as soon as

possible use Resume Patch to read in the relevant patch file; finish the patch or

abort it, as you wish.�

� Abort Patch (m-X)

Abort Patch (m-X) deallocates the minor version number that was assigned by the

Start Patch or Add Patch commands. It tells Zmacs that you are no longer inter-

ested in making the current patch and offers to kill the patch buffer. The next

time you do Add Patch (m-X), Zmacs starts a new patch instead of appending to

the one in progress.�

Resume Patch (m-X)

Resume Patch (m-X) allows you to return to a patch that you were not able to

finish in the same boot session in which you started it; for example, your machine

might have crashed or you had to boot your machine suddenly. It reads in the

relevant patch file if it was previously saved; otherwise it just reclaims your access

to the minor version number allocated to you when you started the patch. Abort or

finish the patch.�

Under certain circumstances you might find it necessary to recompile and reload a

patch file. �

� Recompile Patch (m-X)

Recompile Patch (m-X) recompiles an existing patch file. This command is useful

when, for example, an existing patch needs to be edited or a compiled patch file

becomes damaged in some way. Never recompile a patch manually or in any way

other than using the Recompile Patch command. This command ensures that

source and object files are stored where the patch system can find them.

Use Recompile Patch with caution! Recompiling a patch that has already been

loaded by other users can cause divergent world loads.�

Reload Patch (m-X)

Page 77

Reload Patch (m-X) reloads an existing patch file. This command makes it easy to

reload a patch file without having to know its pathname.�

You might want to have your herald announce private patches that you make.

note-private-patch adds a private patch to the database in your world and in-

cludes the name of the patch in the herald.�

� note-private-patch string Function

Adds a private patch to the database in your world. note-private-patch takes a

string argument. For example, the following adds the private patch called

patch.lisp:

(note-private-patch "s:>maria>patch.lisp")�

Subsequent displays of your herald show the inclusion of that patch in your world.

You create private patches using the Start Private Patch (m-X) command and then

the standard patch commands for adding to and finishing the patch. Use the Load

File command or Load File (m-X) to load a private patch; the Load Patches com-

mand and the load-patches function do not load private patches.�

sct:require-patch-level-for-patch &rest system-major-minor-specs Function

Enforces a patch’s dependency on some particular patch level in another system or

systems. It is used at the head of any patch file that requires a certain patch level

in some other system to load or operate correctly. For example:

(sct:require-patch-level-for-patch ’(system 357. 510.) ’(tape 69. 10.))

If the patch level requirements are not all met, loading the patch (and subsequent

patches for that system) is skipped. After patches are loaded for all systems, Load

Patches is called again to see if the patch levels of the other systems are now

high enough to permit loading of additional patches. You can specify the patch lev-

el requirements from the Finish Patch menu.

zwei:*send-mail-about-patch* Variable

Controls whether the Finish Patch menu question "Send mail about this patch?"

comes up set to yes. The possible values are t, nil, or :ask. The default is :ask. If

the value is t, the question always appears with yes set.

zwei:*finish-patch-save-sources-default* Variable

Controls whether the Finish Patch menu question "Save sources for this patch?"

comes up set to yes or no. The possible values are t or nil. The default is nil. If

the value is t, the question always appears with yes set.

Page 78

Dangerous Patches

Occasionally you need to make a patch to a system that, in some circumstances,

might damage the system. For example, it might make changes to very low level

internal functions or initialize parts of the system. Loading such a patch into a

running system could unpleasantly affect the operation of the system. Such a patch

is referred to as a dangerous patch. You can declare a patch dangerous by placing

the form sct:dangerous-patch at the beginning of the patch file.

sct:dangerous-patch format-string &rest format-args Function

Specifies a patch as being problematic to load (a dangerous patch) in some circum-

stances.

To declare a patch a dangerous patch, place a form containing sct:dangerous-

patch at the beginning of the patch file, before the contents of the patch, to test

for the conditions under which the patch should not be loaded.

For example, if you have a program that creates a list called *my-results* to store

its results, you would not want to load a patch that reinitializes that list if the

program were running. You should put a form like this at the beginning of the

patch file:

(when (listp *my-results*)

 (sct:dangerous-patch "This patch cannot be loaded because it

reinitializes *my-results*"))

�

When you attempt to load the patch, load-patches checks the value of

sct:*dangerous-patch-action* to determine the action to take.

Using sct:dangerous-patch at top level (not inside a conditional form) produces an

error when you attempt to finish the patch.

� sct:with-dangerous-patch-action (action) &body body Function

Allows you to bind sct:*dangerous-patch-action* during a load-patches operation.

This is useful if you are loading patches under program control.

(sct:with-dangerous-patch-action :load (load-patches))

The possible values for sct:*dangerous-patch-action* are:

:skip The default. Skips loading patches for the system.

:query Queries you, allowing you to skip loading patches for the sys-

tem or load the dangerous patch.

:load Loads the patch inspite of its dangerous status.

The Load Patches CP command takes a keyword argument, :Dangerous Patch Ac-

tion, that is the same as sct:with-dangerous-patch-action.

Page 79

� sct:*dangerous-patch-action* Variable

Controls the action taken when a dangerous patch is encountered in loading patch-

es for a system. See the function sct:dangerous-patch.

:skip The default. Skips loading patches for the system.

:query Queries you, allowing you to skip loading patches for the sys-

tem or load the dangerous patch.

:load Loads the patch inspite of its dangerous status.

Loading Patches

When you command the loading of patches for a software system the current state

of the patch registry is compared to the registry as last loaded by the user. If

patches have been written since that time, just the new patches are loaded, and

their summary descriptions are displayed. As each patch is loaded, the state of the

given system in your machine is at the same level as in the developer’s machine

when that particular patch was finished.

The patch registry manages the appropriate loading of patches for a particular

system. New patches for a system (since the last loading, if any) are installed until

no more remain or until an in-progress patch is encountered. In this last case,

loading is halted before the patch in-progress is installed, because the consistency

of patches that might follow cannot be guaranteed. The system displays a message

indicating the presence of unfinished patches.

Genera provides a number of convenient tools and several interfaces for loading

patches. For example, you can load patches by calling one of several Lisp functions

 load-patches or zl:load-and-save-patches  or alternatively, by issuing the

Load Patches command in the Command Processor. The effect of these tools dif-

fers: load-patches and its Command Processor equivalent loads patches to virtual

memory, which means they disappear when the machine is booted; zl:load-and-

save-patches writes the patches to disk. (Of course, new patches can be made

later, and then these will have to be loaded to get the very latest version of a

system.)

When you call load-system, the System Construction Tool automatically loads all

the patches for that system, using the same options specified in the call to load-

system.

Load Patches Command

Load Patches system keywords�

Loads patches into the current world for all systems, locally maintained systems,

or the indicated systems.

Page 80

system {All Local system-name1, system-name2 ... } The system(s) for

which to load patches. The default is All.

keywords :Dangerous Patch Action, :Excluding, :Include Components,

:More Processing, :Output Destination, :Query, :Save, :Show �

:Dangerous Patch Action

{Skip, Query, Load} Whether to skip loading dangerous patch-

es, that is, patches that might make data structures in your

world inconsistent, causing unexpected behavior. The default is

Skip.

:Excluding {System(s)} Excludes loading patches for these systems.

:Include Components

{Yes, No} Whether to load patches for any component systems.

The default is No. The mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Query {Yes, No, Ask} Yes asks for confirmation before beginning the

load patches process and again before loading each patch. Ask

asks whether or not it should query before each patch, and

then for confirmation before beginning the load patches pro-

cess. The default is No. The mentioned default is Yes.

:Save {pathname, Prompt, No-Save} The file in which to save the

world with all patches loaded. Omitting this keyword means do

not save the world. The mentioned default is Prompt, which

means save the world and then prompt for a pathname.

:Show {Yes, No, Ask} Whether to print the patch comments as each

patch is loaded. The default is Yes.�

See the function load-patches.

load-patches &optional systems &key (query t) silent no-warn reload include-

components Function

Page 81

Brings the current world up to the latest minor version of whichever major ver-

sion it is, for all systems present, or for certain specified systems. If there are any

patches available, load-patches offers to read them. load-patches also loads the

translations file (sys:site;logical-host.translations file) if it has changed. load-

patches returns t if any patches were loaded, and nil otherwise.

Note: When you do a load-system of a patchable system, load-system calls load-

patches after loading the system. If load-system is silent, load-patches is silent;

if load-system asks for confirmation, load-patches asks for confirmation.

With no arguments, load-patches assumes you want to update all the systems

present in this world and asks you whether you want to load each patch.

:query Takes t, nil, :confirm, or :no-confirm. If t, ask for approval of

each and every operation. If nil or :no-confirm, don’t ask about

anything. If :confirm, list all the operations and then ask for

confirmation. Default-value: :confirm.

:silent Takes t or nil. If t, perform all operations without printing any-

thing. If :query is non-nil, :silent t is overridden. Default value:

nil.

:no-warn Takes t or nil. If t, don’t bother to print a redefinition warning.

Default value: nil.

zl:load-and-save-patches &rest keyword-args Function

Disables network services and MORE processing and then loads any patches that

need to be loaded and any new versions of the site files, calling load-patches with

arguments of :query nil.

If no one is logged in, it logs in anonymously. If any patches have been loaded,

zl:load-and-save-patches prompts for the name of a FEP file in which to save the

world load and then calls zl:disk-save to actually save the resulting world load. If

no patches have been loaded, it restores network services to their state before

zl:load-and-save-patches was called, and logs out if it has logged in anonymously.

Call zl:load-and-save-patches before you log in in order to avoid putting the con-

tents of your init file into the saved world load.

Note that loading files asynchronously  particularly patch files  is neither

guaranteed to work nor an efficient use of resources. The main process and the

background process would compete for resources, and you would lose a lot of time

to paging and the scheduler. Furthermore, you cannot expect the correct results

from loading patch files in a background process for the following reasons:

• load-patches can reset and rebuild the site information.

• When a foreground bug occurs while patches are loading, you cannot determine

what system the bug occurred in.

• When you are using a subsystem in the foreground while it is being patched in

the background, unexpected problems could arise.

Page 82

• The file could be doing something that maps over all pathnames, expecting that

pathnames would not change while it was running.

• defflavor has no locking at load time. Thus, the flavor data structures can be

damaged if two processes evaluate defflavor simultaneously.�

Obtaining Information About a System

The Command Processor command Show System Definition and the Lisp function

describe-system are useful means of finding information about a system.

Show System Definition Command

Show System Definition system-or-subsystem keywords�

Displays a the system definition of system including its current patch level, status

(experimental or released), and the files that make up the system.

system-or-subsystem The system whose definition to display.

keywords :Detailed, :More Processing, :Output Destination, :Use Jour-

nals, :Version�

:Detailed {Yes, No} Whether to display the information about all the

component systems of the system or not. The default is No, the

mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Use Journals {Yes, No} Use the information in the system’s journal files in-

stead of the information loaded into the world. The default is

No, the mentioned default is Yes.

:Version {version-designator} What version of the system for which to

display the definition. The default is :Released.

Page 83

� describe-system system-name &rest keys &key (:show-files t) :use-journals :system-

op :reload :recompile :version :detailed :system-branch &allow-other-keys�

Function

Displays useful information about the system named system-name. This includes

the name of the system source file, the system package default if any, and compo-

nent systems. For a patchable system, describe-system displays the system version

and status, a typical patch file name, the sites maintaining the system, and, if the

user wants, a listing of patches.

If :show-files is t (the default), it displays the history of the files in the system.

Other possible values are nil (do not show file history) and :ask (ask the user).

If :system-op is t, it displays the operations required to load the system. Other

possible values are nil (do not display operations) and :ask (ask the user).

If :reload is t (the default is nil) the files are reloaded.

If :recompile is t (the default is nil) the files are recompiled.

The default version of the system is :latest.

The :detailed argument (t or nil) indicates whether to display the plans for the

component systems.

Other useful commands include Show System Modifications and Show System Plan.

Show System Modifications Command

Show System Modifications system-name keywords�

With no arguments, Show System Modifications lists the locally maintained sys-

tems present in this world and, for each system, all the modifications that have

been loaded into this world. For each modification it shows the major version num-

ber (which is always the same, since a world can only contain one major version),

the minor version number, and an explanation of what the modification does, as

entered by the person who made it.

If Show System Modifications is called with an argument, only the modifications to

system-name are listed.

system-name {All, Local, system-name1, system-name2 ... } The system for

which to show modifications. The default is All.

keywords :Author, :Before, :From, :Matching, :More Processing, :Newest,

:Number, :Oldest, :Output Destination, :Reviewer, :Since,

:Through�

:Author A name. Show modifications by a particular person. For exam-

ple:

:show modifications system :author kjones�

would only show those modifications made by the person whose

user ID is kjones.

Page 84

:Before A date to serve as one limit for modifications to show:

:before 1/23/90

:From A number to use as the first modification to show.

:Matching A string to search for in the comments and show only modifi-

cations whose comment contain that string:

:matching namespace

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Newest A number of modifications to show, for instance the ten most

recent ones:

:newest 10

Using this keyword without a number is the same as :newest

1.

:Number A number. Show only this particular modification. For example:

Show Modifications :number 6�

would show modification number 6.

:Oldest A number of modifications to show, for instance the ten earli-

est ones:

:oldest 10

Using this keyword without a number is the same as :oldest

1.

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Reviewer A name. Show modifications reviewed by a particular person.

:Since A date to serve as one limit for modifications to show.

:Through A number to use as the last modification to show:

:through 17�

� Show System Plan Command

Page 85

Show System Plan system operation keywords�

Show the system plan (the order of operations) for the specified system under the

specified operation.

system The system for which to show the plan.

operation The operation for which to show the plan. The available opera-

tions are:

All Count-Lines-In Kludge-Load

Compile Distribute Load

Copy Edit Load-Patches

Copy-Toolkit-C-Files Hardcopy Reap-Protect

Write-Toolkit-C-Files�

keywords :Date Checking, :Detailed, :More Processing,:Output Destina-

tion, :Version�

:Date Checking {Yes, No} Compare files against the file system. The default is

No, the mentioned default is Yes.

:Detailed {Yes, No} Whether to describe the plans for component sys-

tems. The default is No, the mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Version Version of the system for which to construct plans. The default

is Released.

Obtaining Information on System Versions

When a Symbolics computer is booted, it displays a line of information telling you

what systems are present, and which version of each system is loaded. This infor-

mation is returned by the function sct:system-version-info. It is followed by a text

string containing any additional information that was specified by whoever created

the current world load. See the function zl:disk-save.

Page 86

sct:system-version-info &optional brief-format Function

Returns a string giving information about which systems and what versions of the

systems are loaded into the machine (for systems that differ from the released

versions) and what microcode version is running. A typical string for it to produce

is:

"System 424.210, Zmail 416.13, LMFS 417.5, Tape 418.9,

microcode 3640-MIC 420, FEP 127" �

If brief-format is t, it uses short names, and suppresses the microcode version, any

systems that should not appear in the disk label comment, the name System, and

the commas.

sct:get-system-version &optional (system "System") Function

Returns three values. The first two are the major and minor version numbers of

the version of system currently loaded into the machine. The third is the status of

the system, as a keyword symbol: :experimental, :released, :obsolete, or :broken.

system defaults to System. This returns nil if that system is not present at all.

For CLOE, it uses name, which may be a symbol, string or system denoting a sys-

tem, and returns information about the corresponding system. The three returned

values are the system major version number, the minor version number, and the

system status (such as :released or :experimental). Note that this function is only

available on the 386 side.

(get-system-version "FROB") =>

3

2

:experimental�

sct:get-release-version Function

Releases have version numbers and status associated with them, just as systems

do. Symbolics staff assign the release number.

sct:get-release-version returns three values, the release numbers and the status of

the current world load:

Major version number

Patch version number or string describing minor patch level

Status of the world load as a keyword symbol:

:experimental

:released

:obsolete

:broken

nil (when status cannot be determined)�

zl:print-system-modifications &rest system-names Function

Page 87

With no arguments, this function lists all the systems present in this world and,

for each system, all the patches that have been loaded into this world. For each

patch it shows the major version number (which will always be the same since a

world can only contain one major version), the minor version number, and an ex-

planation of what the patch does, as entered by the person who made the patch.

If zl:print-system-modifications is called with arguments, only the modifications

to system-names are listed.

sct:patch-loaded-p major-version minor-version &optional (system "System")

Function

A predicate that tells whether the loaded version of system is past (or at) the spec-

ified patch level. Returns t if:

• the major version loaded is major-version and the minor version loaded is

greater than or equal to minor-version

• the major version loaded is greater than major-version �

Otherwise, the function returns nil.

sct:get-system-input-and-output-source-files system &optional version &key :sys-

tem-branch Function

Returns a list of pairs of the form (input-file output-file) for system.

:version Lists the files for the specified version. If version is not speci-

fied, returns the :newest version of the files.

:system-branch Reserved for future use.

sct:get-system-input-and-output-defsystem-files system &optional version &key

:system-branch Function

Returns the system declaration file for a specified version of the specified system.

If version is not specified, returns the :newest version of the files.

sct:get-all-system-input-files system &key :version :include-components :system-

branch Function

Returns a list of the system declaration file (sysdcl) and the input (source) files

that make up system.

:version Lists the files for the specified version of the system. If no

version is supplied, it returns the :newest version of all the

files.

:include-components

Includes the list of files for component systems also.

Page 88

:system-branch Reserved for future use.

sct:check-system-patch-file-version &key (:system "System") (:major-version

(sct:get-system-version sct:system)) :minor-version :file-version�

Function

Checks to see if the patch file to the system, with the specified major version and

minor-version, of file-version has been loaded into the world. If file-version is :none,

checks to see that the patch file has never been loaded. If the check fails, it caus-

es an error. Typically, this form is used in a patch file to ensure that a patch to

another system has (or has not) been made.

Developing Portable Common Lisp Programs

Introduction to the Common Lisp Developer

The Common Lisp Developer is a tool which assists in developing and testing Com-

mon Lisp programs. It is useful when you are planning to port a program to other

Common Lisp implementations.

When you are planning to port a program, it is often useful to aim at making that

program work in the "Least Common Denominator" of Common Lisp. The Genera

environment tends to be highly fault-tolerant and therefore not always predictive

of other systems which might be a target of your port. The Common Lisp Develop-

er adds a new dimension to the Genera development environment, by enabling you

to define certain programs in an environment that replaces Genera’s fault-tolerant

interpretation of Common Lisp with a stricter interpretation, which is more predic-

tive of the "Least Common Denominator" of Common Lisp.

The aim of the Common Lisp Developer is to permit you to develop code for any

conforming implementation of Common Lisp, as described in Common Lisp: The

Language (also known as CLtL) by Guy L. Steele Jr.. (Note that the Common Lisp

Developer currently does not assist in developing code intended to run in an ANSI

Common Lisp implementation.)

Because the Common Lisp Developer’s interpretation of CLtL is more strict than

the Genera interpretation of CLtL, there is much higher likelihood that programs

developed in the Common Lisp Developer will port easily to other Common Lisp

environments.

In summary, Symbolics offers two dialects of Common Lisp: a conservative inter-

pretation (the Common Lisp Developer’s CLtL syntax) and a liberal interpretation

(Genera’s Common-Lisp syntax). When developing programs to ship outside the

Symbolics environment, the conservative approach will help you plan for the harsh

realities of life outside. The CLtL syntax is a good donor environment. But for pro-

grams you do not plan to port, or for programs that were written elsewhere, the

fault-tolerant environment (Common-Lisp syntax) is better. The Common-Lisp syn-

tax is a good recipient environment. Because of the conflicting requirements of

Page 89

donor and recipient environments, it is tricky for a single environment to satisfy

both needs; this is why Symbolics provides two environments.

For detailed information about differences between the two dialects of Common

Lisp, see the section "Technical Details: Differences Between CL and CLtL".

For historical information about where Common Lisp Developer came from, see the

section "Relationship of Common Lisp Developer and Cloe".

Nature of the Common Lisp Developer

The Common Lisp Developer is not a program like Zmail or Frame-Up; it is not

tied to a particular window. Instead, it is a substrate which is accessible in various

different ways from existing programs.

Unlike some code analysis tools which employ only static techniques to determine

conformance, the Common Lisp Developer uses a mixture of static and dynamic

techniques. For example, you can get both compile-time diagnostics about wrong

numbers of arguments and runtime checking of declarations. (The variable cltl-

i:*enforce-type-declarations* controls this behavior. See the variable cltl-

i:*enforce-type-declarations*.)

Working in the Common Lisp Developer can be characterized as being like work-

ing in Genera with blinders on. You have access to all the Genera tools, but you

are kept focused on the business at hand: developing portable programs. The Com-

mon Lisp Developer keeps you from accidentally using Symbolics features which

probably will not be available in your delivery environment.

How the Common Lisp Developer Works

The Common Lisp Developer provides a new syntax called CLtL, with a set of as-

sociated packages.

Both the CLtL and Common-Lisp syntaxes have a lisp package, but the packages

are different. Where the symbols have the same meaning, they are shared between

the two packages. For example, CLtL’s car is the same symbol as Common-Lisp’s

car. However, cltl:if is different than Common-Lisp’s if, because the CLtL version

does not have the extended-else body offered in the normal Genera Common-Lisp

implementation. The reason for this should be obvious: the extended-else body is

useful, but it is not available everywhere. Programs which depend on its presence

are not likely to port easily. The guiding principle of the Common Lisp Developer

is "Better to find out now than later."

Since both CLtL and Common-Lisp have a package called lisp, we will sometimes

speak of a package universe. This is the currently active global mapping from

names of packages to package objects. So, for example, if you enter lisp:if in a

Lisp Listener, you will get the sym- bol cltl:if if you are in CLtL syntax or cl:if if

you are in Common- Lisp syntax.

For more information about packages, see the section "How Package Universes

Work".

Page 90

How to Access the Common Lisp Developer

First, you must statically decide which environment your code will live in. For ex-

ample, you cannot type

(defun double (x) (declare (fixnum x)) (* x 2))�

to a Lisp Listener and then later decide you want to run the program under the

Common Lisp Developer. The rules are basically the same as they are for the sepa-

ration between Zetalisp and Common-Lisp. Another way to view the CLtL syntax

(or the Common Lisp Developer as a whole) is as a third dialect that has been

added alongside the original two.

You can access the developer in any of these three ways:

• Create files with an attribute list that specifies the CLtL syntax. The syntax

line should contain the following:

-*- Syntax: CLtL; ... -*-�

You can use the Set Lisp Syntax (m-X) command in the editor (when you are in

Lisp mode) to enable this syntax.

• Enable CLtL syntax globally by using the Set Lisp Context command when typ-

ing to the command processor in a Lisp Listener.

• Name individual symbols in the CLtL package universe without entering the

CLtL universe by using the escape sequence ":::" in a symbol. For example,

when typing to a Lisp Listener, regardless of whether you are in Common-Lisp,

Zetalisp, or CLtL syntax, the symbol cltl:::lisp:if denotes if in CLtL’s package

universe. This technique can also be used to escape back to Common-Lisp or Ze-

talisp from the CLtL syntax, but be aware that using this syntax indiscriminate-

ly blurs important modularity boundaries and can lead to trouble when it comes

time to port.

CLtL-Only and CLtL Syntax

Common Lisp Developer provides two syntaxes, which are almost the same. The

two syntaxes are needed because of a small but important problem which comes up

a lot in porting. The following example illustrates the problem.

Claim Nothing in Common Lisp states that the following expression

is non-conforming:

(defun choose-em (x) (tv:menu-choose x))�

Realization Things explicitly permitted or forbidden by CLtL are not the

only source of portability headaches. There is no a priori way

to distinguish whether the program choose-em is relying on

Genera functionality to make tv:menu-choose available, or

whether the user in good faith plans to port only to implemen-

Page 91

tations which provide tv:menu-choose, or whether the user in

fact plans to develop tv:menu-choose for implementations

which do not have such a package and/or function.�

Therefore, for some purposes we want to be able to use the CLtL environment on-

ly to "get at things which are specified by CLtL". For other purposes, we want to

use the CLtL environment to lock out those things which are not specified. The

CLtL syntax differs from the CLtL-Only syntax in only one way: the package uni-

verse of CLtL-Only does not contain the initial Genera packages such as TV, DW,

ZWEI, and so on.

Interactively, it may be useful to get to these packages. Short of setting the Lisp

Context back to Common-Lisp, you can escape from the CLtL-only universe and

gain access to tv:make-window, for example, by using cl:::tv:make-window. Of

course code that calls tv:make-window is not likely to be portable. (For sugges-

tions about designing code that needs to use some non-portable features, see the

section "Developing Code for a non-Symbolics Lisp with Extensions".)

Another pragmatic reason why you might like to get to these packages is that you

may prefer not to see the Debugger type every symbol from the Genera universe

as zl:::tv:this or zl:::dw::that. In files, it is almost always better to lock out the

Genera packages and to ask for specific features by name as you need them to

keep a tight reign on your modularity, and so you’ll best be able to anticipate port-

ing costs.

We recommend that you always use

-*- Syntax: CLtL-Only; ... -*-�

in files so that you do not accidentally become dependent on Genera functionality

without having realized it. Interactively, you might want to use

Set Lisp Context CLtL�

rather than

Set Lisp Context CLtL-Only�

because it gives you slightly more convenient interactive access to functions in

Genera that you might want to call when debugging. Note that these are only rec-

ommendations, and you might prefer a different workstyle.

Using #+ and #- to Distinguish the Common Lisp Developer

You can use #+CLTL and #-CLTL to identify the Common Lisp Developer envi-

ronment. Since this is intended to be a fairly conservative simulation, we expect

that other vendors might offer this same feature if they also offer a similarly con-

servative interpretation of CLtL. You can use #+(and Symbolics CLtL) in the rare

case when you need to distinguish the particular idiosyncrasies of the Symbolics

Common Lisp Developer environment.

For some uses, you can also use #+Genera and #-Genera, given that the Genera

feature is not present in the CLtL syntax.

Page 92

As should be obvious, the variable cltl:*features* is not eq to *features*. The

former controls the #+ and #- macros when in CLtL syntax, the latter when in Ze-

talisp or Common-Lisp syntax. (For historical reasons, the Zetalisp and Common-

Lisp syntaxes cannot be distinguished with #+ and #-).

Avoiding a common pitfall: For most purposes, it is appropriate for an application

to simply do (push key *features*) without regard to what environment it is load-

ing into. Since the two environments are largely separate, this will cause

features to get set correctly when you load things into Common-Lisp and

cltl:*features* when you load things into CLtL. In general, your goal should be to

put something on a features list only to announce to other programs that some in-

teresting feature is accessible to them. Except in very unusual cases, loading

something into CLtL does not make things available to Common-Lisp, or vice ver-

sa, so it is not necessary to push a feature onto both features lists in most cases.

Developing Code for a non-Symbolics Lisp with Extensions

Sometimes you develop code to run in an environment which is extended in some

way beyond straight CLtL but not in the same way as Genera.

For example, suppose you want to develop code for a Lisp which offers a menu

choice facility that has an interface like:

(menu:choose objects prompt)�

where objects is an uninterpreted list of objects, not an item list as in Genera, and

where prompt is just a string. We recommend that you isolate the part of your ap-

plication which is not covered by CLtL into a single file or a small set of files.

When you are ready to port the program, you can then focus on these files. Such a

file might contain definitions like:

;-*- Mode: LISP; Syntax: CLtL; Package: AARDVARK -*-

�

(defun choose-one-of (objects prompt)

 #+symbolics

 (zl:::dw:menu-choose

 (mapcar #’(lambda (x)

(list (zl:::dw:present-to-string x) :value x))

 objects)

 :prompt prompt)

 #+acme

 (menu:choose objects prompt)

 #-(or acme symbolics)

 (error "implementation does not support choose-one-of."))�

The idea is to isolate the non-portable references (for example, to dw:menu-choose

or to menu:choose) in one file, and to use portable references (for example,

aardvark::choose-one-of) everywhere else in the application. In general this

methodology can help keep porting issues under control, although not all problems

can be decomposed this simply.

Page 93

In some cases you need to make an entire package available, with the idea that on

other machines you will provide equivalent functionality in some other way. The

function si:import-genera-package is useful for this case.

si:import-genera-package genera-package-name &optional target-name target-

nicknames target-syntax-name Function

Imports genera-package-name into the current package universe, or the package

universe given by target-syntax-name. Within that universe the name chosen will be

the same as genera-package-name unless overridden by target-name and target-

nicknames.

Since this function exists outside the CLTL package universe, and it is typically

used when you are in the CLTL package universe, you usually call it as follows:

(zl:::si:import-genera-package "TV")�

Technical Details: Differences Between CL and CLtL

• In CLtL syntax, the package named LISP denotes CLTL, and CL denotes Gen-

era’s CL package. In CLtL-Only syntax, LISP denotes CLtL and there is no CL

package.

• CLtL says that some functions require a certain number of arguments, but Gen-

era (that is, the Common-Lisp syntax) allows some of those arguments to be op-

tional. Also, in some cases, Genera allows additional (&OPTIONAL or &KEY) argu-

ments that are not sanctioned by CLtL. In many cases, the CLTL package shad-

ows the symbols in question and provides a function that requires the same ar-

gument convention as is specified in CLtL.

• The definitions of cltl:lambda and cltl:defun handle &REST arguments correctly

(by copying stack-allocated lists into the heap). See CLtL, p59 and p67. There

are two variables that control rest list copying: cltl-i:*copy-&rest-lists-in-heap*

and cltl-i:*copy-&rest-lists*. For related information, see the section "Perfor-

mance Considerations of Common Lisp Developer".

• The functionp function returns true for symbols only if they have a global func-

tion definition; that is, if (fboundp symbol) would return true. The

cltl:functionp function returns true for any symbol argument. See CLtL, p76.

• The funcall and apply functions allow you to call an array as a function. The

cltl:funcall and cltl:apply functions allow you to call only those objects for

which cltl:functionp would return true. See CLtL, p76 and p107.

• The if special form allows more than three arguments. The cltl:if special form

requires two or three arguments, erring if additional arguments are supplied.

See CLtL, p115.

Page 94

• The loop facility allows control of iteration with keywords. The cltl:loop macro

does not allow atoms in the loop body because no standard interpretation of

such keywords has been established. See CLtL, p121.

• The default package to :use in the functions in-package and make-package is

"CL". The default package to :use in the functions cltl:in-package and

cltl:make-package is the package which the Common Lisp Developer calls lisp

and Genera calls cltl. See CLtL, p183.

• The CL implementation of many functions allows them to accept some types of

arguments that are not guaranteed to be accepted by CLtL. The CLTL package

shadows such symbols and provides definitions which are more compatible with

a strict reading of CLtL (that is, errors are signalled at runtime when the

stricter interpretation has been violated).

° The functions export, unexport, import, shadowing-import, and shadow al-

low strings in place of symbols in some cases where CLtL says that symbols

are required. See CLtL, p186.

° The functions rename-package, intern, find-symbol, and unintern allow

package names in place of packages in places where CLtL does not define the

behavior. See CLtL, pp184-185.

° The functions string=, string<, string>, string<=, string>=, zl-user:string//=,

string-equal, string-lessp, string-greaterp, string-not-greaterp, string-not-

lessp, string-not-equal, string-trim, string-right-trim, string-left-trim,

string-upcase, string-downcase, and string-capitalize are defined by CLtL to

accept strings and symbols, but the default CL implementation allows charac-

ter arguments as well. See CLtL, pp299-303.�

• The functions char-equal, char-not-equal, char-lessp, char-greaterp, char-not-

greaterp, and char-not-equal are not compatible with the descriptions as stated

in CLtL because they do not ignore the bits information of the characters they

are comparing. The functions cltl:char-equal, cltl:char-not-equal, cltl:char-

lessp, cltl:char-greaterp, cltl:char-not-greaterp, and cltl:char-not-equal strictly

observe the CLtL description, even though the Common Lisp designers generally

seem to believe that the CLtL description is a design mistake. See CLtL, p239.

• The symbols prin1, evalhook, and applyhook have both function and variable

definitions, though CLtL defines only the function definition. cltl:prin1,

cltl:evalhook, and cltl:applyhook are shadowed symbols in order to allow only

the function definition to be accessible. See CLtL, p323 and p383.

• The open function and with-open-file macro allow many non-standard options.

The cltl:open function and cltl:with-open-file macro allow only those options

which are portable. See CLtL, p418-422.

Page 95

• The macros trace and untrace accept complicated argument patterns which are

not defined by Common Lisp. The cltl:trace and cltl:untrace macros signal an

error if their arguments are non-atomic. See CLtL, p440.

Note that although this checking for trace and untrace may be helpful for code

which calls trace, it is probably an inconvenience in interactive code.

The option variable cltl-i:*extended-trace-enable* (which defaults to nil) may be

set to t to make cltl:trace behave like trace. Most users will probably want to

consider enabling this option in an init file.

• The functions cltl:apropos and cltl:apropos-list take only the arguments de-

fined in CLtL. See CLtL, p443.

• Uses of type declarations in declare are enforced at runtime in most variable

binding situations (cltl:lambda, cltl:defun, cltl:let, and so on). For related in-

formation, see the variable cltl-i:*enforce-type-declarations* and see the section

"Performance Considerations of Common Lisp Developer".

• The function cltl:ash requires that its first argument be an integer. The func-

tion ash accepts either an integer or a float as a first argument.

• The cltl:flet macro does not permit declarations by default. The variable cltl-

i:*allow-declarations-in-flet* controls this; its default is nil.

• The symbol cltl:ignore is unlike the symbol ignore in that it is only defined as

a function. Neither is cltl:ignore treated magically as a variable name, nor is it

a predefined function.

• The symbol cltl:lambda is unlike the symbol lambda in that it is recognized on-

ly by the function special form. cltl:lambda is not a predefined macro.

• The function cltl:documentation accepts as a second argument only the stan-

dard documentation keywords: variable, function, structure, type, and setf.

• The functions cltl:adjust-array and cltl:vector-push-extend will signal an error

if the given array was not created by specifying :adjustable t. For related in-

formation, see the variable cltl-i:*adjustable-arrays-being-recorded* and see

the section "Performance Considerations of Common Lisp Developer".

• The following functions permit their pathname arguments to be symbols, where-

as their CL counterparts would signal an error in that case: cltl:pathname,

cltl:truename, cltl:merge-pathnames, cltl:pathname-host, cltl:pathname-

device, cltl:pathname-directory, cltl:pathname-name, cltl:pathname-type,

cltl:pathname-version, cltl:namestring, cltl:file-namestring, cltl:directory-

namestring, cltl:host-namestring, cltl:enough-namestring, cltl:directory,

cltl:load, and cltl:compile-file.

Page 96

• The variable cltl:*features* contains significantly fewer symbols than does does

features, and some of them are different. For example, CLtL has a :cltl fea-

ture which CL does not. CL has a :genera feature which CLtL does not. Since

this list is coordinated with #+ and #-, you can read-conditionalize code for the

Common Lisp Developer.

• The functions cltl:software-type, cltl:software-version, cltl:machine-type,

cltl:machine-version, cltl:machine-instance, cltl:lisp-implementation-type, and

cltl:lisp-implementation-version return different values than their CL counter-

parts.

• The function cltl:describe returns no values. The function describe returns its

argument.

• The function cltl:make-echo-stream is implemented.

• cltl:make-concatenated-stream returns a stream which does not treat an EOF

in one of the given streams as a token break.

• list-all-packages and do-all-symbols work locally with respect to the CLTL

package universe when in CLtL-Only (but not CLtL) syntax. (The decision of

which action to take is made dynamically at runtime.)�

Performance Considerations of Common Lisp Developer

The goal of the Common Lisp Developer is to provide you with correct code; speed

of the correct code under the Developer was not a primary goal. That is not to say

that the Developer is unbearably slow, but in some cases speed has been traded for

additional checking.

In some large applications we have run, the typical loss in speed of using CLtL

over using the Genera’s Common-Lisp dialect is about 20 percent. However, this

number could vary widely depending on what language features you use. In some

cases you may see negligible loss in speed, while in others you may see a higher

loss.

In cases where an error-check was likely to result in a noticeable speed cost, we

have tried to provide you a way to selectively disable the checking. That way, you

can disable checks that you decide are not worth the performance penalty.

The primary places where speed was traded for error checking are documented

below:

• Declaration checking

For example:

Page 97

(defun f (x) (declare (float x)) x)

(f 1)

�

ERROR: The value of X in F, 1, was of the wrong type.

 The function expected a floating point number.�

The variable cltl-i:*enforce-type-declarations* can be used to control which

declarations are being checked.

Implementation Note: Declarations are currently checked only at binding time

(and at re-assignment time in a do). Declarations are not currently re-tested

when a setq is done.

Note also that the checking is dynamic, not lexical. In some cases, this can

make for much more intelligible diagnostics than you might get by other means:

(DO ((I (- MOST-POSITIVE-FIXNUM 4) (+ I 1)))

 (NIL)

 (DECLARE (FIXNUM I))

 (PRINT I))

2147483643

2147483644

2147483645

2147483646

2147483647

Error: The value of I in SI:*EVAL, 2147483648, was of the wrong type.

 The function expected a fixnum.�

• Rest list consing�

For example:

(DEFUN F (&REST X) X)

(F ’A ’B ’C) => (A B C)�

By default, rest list copying is done even in cases where you might wish it could

be lexically determined that it is not needed. There are two variables that con-

trol rest list copying: cltl-i:*copy-&rest-lists-in-heap* and cltl-i:*copy-&rest-

lists*.

• Checking for adjusting arrays�

Common Lisp Developer checks for violations of attempts to adjust arrays that

are created with :adjustable nil (or with no :adjustable option).

In Genera’s Common-Lisp implementation of arrays, all arrays are adjustable re-

gardless of the use of :adjustable. (This is conforming under a strict reading of

CLtL, however some have argued that this is not the standard interpretation.)

Page 98

The CLtL implementation takes the alternate point of view  that no array

should be adjustable unless :adjustable t was used. The Common Lisp Devel-

oper’s information about adjustable arrays is recorded in a table. Any array not

recorded in the table is assumed to be non-adjustable (unless this recording is

disabled, in which case all arrays are reverted to being assumed adjustable).

Since there are both speed and space concerns to this technique, the feature can

be disabled by using the variable cltl-i:*adjustable-arrays-being-recorded*,

whose default is t.

Variables That Affect Common Lisp Developer Behavior

cltl-i:*adjustable-arrays-being-recorded* Variable

Controls whether or not Common Lisp Developer checks for violations of attempts

to adjust arrays that are created with :adjustable nil (or with no :adjustable op-

tion).

The variable cltl-i:*adjustable-arrays-being-recorded*, enables you to disable this

feature. The default value of this variable is t. You can set it to nil to disable this

feature.

Note that if you set this variable to nil, we recommend that you do not later set

this variable back to t. If you do set it back to t, any arrays created with

:adjustable t during the time while the variable was nil will not appear to be ad-

justable.

This decision is made dynamically at runtime.

cltl-i:*allow-declarations-in-flet* Variable

This variable, used by Common Lisp Developer, controls whether cltl:flet permits

declarations by default. The default is nil.

This decision is made at semantic resolution (that is, compile or macroexpand)

time.

cltl-i:*copy-&rest-lists* Variable

This variable, used by Common Lisp Developer, controls whether &REST lists have

indefinite or dynamic extent. Its default is true.

If this variable is true, &REST lists always have indefinite extent (as specified in

CLtL).

If this variable is false, &REST lists always have dynamic extent (as done in Zetal-

isp).

This decision is made at semantic resolution (that is, compile or macroexpand)

time.

Page 99

cltl-i:*copy-&rest-lists-in-heap* Variable

This variable, used by Common Lisp Developer, controls whether &REST lists are

permitted to share structure with the list used in the call even when those lists

are already in the heap. Its default is true.

If this variable is true, &REST lists are not permitted to share structure with the

list used in the call even when those lists are already in the heap. (This can hap-

pen only when &REST is used.) If false, sharing might or might still occur. The in-

teresting test case is:

(let ((l ’(a b c)))

 (not (eq (apply #’(cltl:lambda (&rest x) x) l) l)))�

If this variable is true, the above expression returns true. If this variable is false,

then the above expression might return either true or false.

This decision is made at semantic resolution (that is, compile or macroexpand)

time.

cltl-i:*enforce-type-declarations* Variable

Common Lisp Developer does runtime checking of declarations. This variable is a

list of the types which are checked at runtime by Common Lisp Developer.

The decision to enforce these declarations is made at semantic resolution (that is,

compile or macroexpand) time, but the enforcement itself occurs at runtime.

Tuning an Application in the Common Lisp Developer

You should generally not try to tune an application in the Common Lisp Developer

(or any development environment). Tuning should be done for each target imple-

mentation by running the program within that implementation. Issues of varying

paging performance, memory configuration, data formats, compiler optimizations,

and so on make it impossible for the Common Lisp Developer to simulate the ap-

plication’s native performance.

Moreover, the error checking offered by the Common Lisp Developer may skew

your intuitions about your program’s speed even further. For example, the Devel-

oper will (by default) check the validity of declarations at runtime, slowing things

down somewhat in the hope of detecting bugs. Yet when your program is delivered

to its target environment, the same declaration will increase, not decrease, the

speed of your program. The reason the program will run faster is that it will com-

pile out checking; this is the reason that it is important to get this checking at de-

velopment time, and the reason that the Developer prefers to let your program run

a little slower just to assure that the checking really gets done.

Relationship of Common Lisp Developer and Cloe

Page 100

The Cloe Developer and the Common Lisp Developer are similar in purpose. They

differ primarily in their intended target and in the array of features offered.

The target implementation of the Common Lisp Developer is very broad; code de-

veloped in it will typically run in any conforming Common Lisp implementation.

The target implementation of the Cloe Developer is the Cloe Runtime lisp, a soft-

ware-only delivery option sold by Symbolics which runs on many 386-based ma-

chines under either MS-DOS or UNIX.

A key difference is that any good development environment for code to be ported

is constrained to provide you only the least common denominator of the two sys-

tems you are working on. The Cloe dialect of Lisp is a superset of Common Lisp,

so the least common denominator of Cloe and Genera is a richer environment than

the least common denominator of Common Lisp and Genera. As such, the Cloe De-

veloper offers you more power.

Another key difference is that both the Cloe development environment and the

Cloe delivery environment are Symbolics products. This means that we can keep

the features of the two carefully aligned to minimize porting problems. This also

means that additional tools can be provided which specifically anticipate (and help

you work around) standard kinds of problems which we know you will encounter.

For example, the migration tools of the Cloe Developer will take an application

which is defined in SCT and automatically copy its source files, journal files, and

so on to the MS-DOS or UNIX environment and set up everything so that you can

simply compile and load the system on the 386 without any special effort.

Symbolics provides you with two important software delivery options. The specific

delivery option you choose should be driven by the specific technical and delivery

needs of your application. You can develop in the Common Lisp Developer and de-

liver in an arbitrary Common Lisp, or you can develop in the Cloe Developer and

deliver specifically in Cloe. The former offers you a broader base of targets but

loses the ability to take advantage of specific information about the target to make

life easy for you in some ways. The latter offers you a more limited number of tar-

get implementations, but takes advantage of the constraint by exploiting additional

features known about those delivery options.

And, of course, since the Cloe Runtime system is a Common Lisp, you could devel-

op in the Common Lisp Developer and use the Cloe Runtime system as one of sev-

eral delivery vehicles. In that case, of course, the least common denominator rule

keeps you from being able to take advantage of Cloe’s extended features (except by

conditionalized escapes), but that may still be satisfactory for some applications.

You should not ignore Cloe as an option just because you are constrained to deliv-

er in other vendors Lisps as well.

The Compiler

Introduction to the Compiler

Page 101

The purpose of the Symbolics Lisp compiler is to convert Lisp functions into pro-

grams in the Symbolics computer’s instruction set. Compiled functions run more

quickly and take up less storage than interpreted code. They are executed directly

by the machine. The compiler checks for errors and issues warnings regarding

faulty syntax, typographical errors, and undeclared variables. Because the compiler

does all this checking, as well as the fact that compiling code does not lose any

run-time checking, most users debug their programs in compiled form rather than

debugging them in interpreted form and compiling them after they work.

How to Invoke the Compiler

You can invoke the compiler in several ways.

• Use one of several Zmacs commands to compile regions of Lisp code in an editor

buffer to your Lisp environment. Some of the most common commands are Com-

pile Region (m-X) (c-sh-C), Compile Changed Definitions of Buffer (m-X)

(m-sh-C), and Compile Buffer (m-X). See the section "Compiling Lisp Programs

in Zmacs".

• Call the function compile to compile an interpreted function in the Lisp envi-

ronment. Compiling an interpreted function in a Dynamic Lisp Listener converts

the function into a compiled code object in memory. Programmers occasionally

compile interpreted functions to examine the code generated by the compiler. To

examine a compiled function in symbolic form, use the disassemble function.

• Use compile-file and related functions, Compile File (m-X), or Compile File at

the Command Processor prompt to translate source files into compiled code files.

• Invoke compile-system or type Compile System at the Command Processor

prompt to compile and load large programs, usually consisting of many files.

Caveats on Using the Compiler

Circular structures cannot be dumped by the bin file dumper.

Circular structures may not be constants in compiled functions.

Users should not name arguments or variables self. The compiler has a special

way of dealing with variables named self, because it uses that name when compil-

ing generic functions for structures and flavors.

Structure of the Compiler

The Lisp compiler is actually composed of three distinct pieces of software:

• The stream compiler

• The function compiler

Page 102

• The bin (binary) file dumper�

The stream compiler accepts a stream of top-level Lisp forms and processes them.

These forms are usually read from a stream of characters, which can be either a

file or part or all of an editor buffer. The stream compiler passes forms recognized

as function definitions through the function compiler. Certain other forms are also

processed specially: See the section "How the Stream Compiler Handles Top-level

Forms". Stream compiler output can be sent either to the Symbolics computer’s

virtual memory or to a file (via the bin file dumper) for later loading.

The function compiler takes a Lisp function and translates it from Lisp expres-

sions into machine instructions. Its job includes expanding macros, performing op-

timizations, recognizing special forms, and recognizing calls to functions that have

corresponding machine instructions. The function compiler is available to use by

itself as the compile function; it is also called by the stream compiler.

The bin file dumper accepts a stream of Lisp forms and machine-instruction func-

tion definitions (compiled function objects) and writes them into a file in a com-

pact form understood by the loading function (zl:load). The bin file dumper is

available for use by itself as the sys:dump-forms-to-file function; it is also called

by the stream compiler.

Different combinations of these compilers are available:

• The function compiler can be used by itself (via the compile function).

• The bin file dumper can be used by itself (via the sys:dump-forms-to-file

function).

• The stream compiler can be used with the function compiler (c-sh-C or related

Zmacs commands).

• All three compilers can be used (via compile-file, compile-system, or the Com-

mand Processor’s Compile System command).�

The following diagram shows the relationship of the different compilers to one an-

other.

Page 103

 a stream

 ↓

 STREAM COMPILER

 ↓ ↓

 function definitions other forms

 (such as defuns) (such as defvars)

 ↓ |

 FUNCTION COMPILER |

 ↓ |

 compiled function |

 objects |

 | |

 | |

 |----->----\ /----<-------|

 | | |

 | | |

 | | |

 | | |

 | BIN FILE DUMPER |

 | ↓ |

 | compiled code file |

 | ↓ |

 | LOAD |

 |___________|_____________|

 |

 EVAL

 ↓

 virtual memory �

The Genera tools you use to invoke compilation determine the path through the

diagram. For example, suppose you run the compile-file function on a Lisp source

file. The function calls the stream compiler, which in turn calls the function com-

piler on any function definitions in the file. The function compiler passes the re-

sulting compiled function objects to the bin file dumper. Some forms are passed

directly to the bin file dumper (middle of the diagram) without being processed

through the function compiler. All output from the bin file dumper is sent to a

compiled code file. Loading that file creates the effect of compiling the source code

directly to virtual memory.

For example, rather than compiling the source file, read it into an editor buffer

and compile the entire buffer via the Zmacs command Compile Buffer (m-X); the

output from the stream compiler and function compiler is evaluated immediately.

The point is that while these two methods of compilation operate completely dif-

ferently, the effect is the same once the results are in virtual memory.

How the Stream Compiler Handles Top-level Forms

Page 104

The stream compiler accepts a stream of top-level Lisp forms and processes them.

These forms are usually read from a stream of characters, which can be either a

file or part or all of an editor buffer. The stream compiler categorizes these forms

according to the table below and processes each according to its category. It calls

the function compiler to translate a form that defines a function into a compiled

function object containing compiled instructions. Certain other categories of forms

are also processed specially, as documented in Table 1.

The stream compiler remembers certain "declarations" for the duration of the

compilation. For example, when it compiles a macro definition, it saves the macro

definition for use in processing subsequent top-level forms and function bodies.

This permits a macro definition different from the one installed in the Symbolics

computer’s virtual memory to be used during compilation. Other kinds of "declara-

tions" are also saved; most of these are documented in Table 1. The duration of

the compilation during which these "declarations" are saved is usually a single in-

vocation of the stream compiler, but when a system is being compiled (a program

declared via defsystem) the declarations are in effect for the entire compilation,

regardless of how many files in the system are compiled.

Stream compiler output can be sent either to the Symbolics computer virtual mem-

ory or to a file (via the bin file dumper) for later loading. This output can be re-

garded as a stream of forms that are evaluated either immediately, during the

compilation, or later, when the bin file is loaded, depending on the type of compi-

lation.

Table 1. Lisp Forms that Require Special Processing by the Compiler.

---�

1. DEFINITIONS

Function Definitions, such as (defun function-spec arguments body...), (defselect...),

and (defmethod...)

The stream compiler calls the function compiler to translate the function def-

inition into a compiled function object. The result is to define the function-

spec to be the compiled function object. See the function fdefine.

Macro Definitions, such as (defmacro...)

The stream compiler saves the definition of the macro for the duration of the

compilation, and calls the function compiler to translate the function defini-

tion into a compiled function object. The result is to define the function-spec

to be a macro whose expander function is the compiled function object. See

the function fdefine.

Substitutable Function Definitions, such as (defsubst...)

The stream compiler saves the definition of the substitutable function for the

duration of the compilation, and calls the function compiler to translate the

function definition into a compiled function object. The result is to define the

function-spec to be the compiled function object. See the function fdefine.

Page 105

Variable Definitions, such as (defvar...), (defparameter...), (zl:defconst...), (def-

constant...), and (defvar-standard...)

The stream compiler saves the declaration of the variable as a special vari-

able for the duration of the compilation. It passes the form through as the

compiler’s output.

Generalized Function Definitions: (def...) and (deff...)

The stream compiler processes each subform of def after the initial function

spec as a top-level form.

The stream compiler passes a deff form through as its output and remem-

bers that it defines a function.

Other Definitions, such as (defstruct...), (defflavor...), (defpackage...), and

(defsystem...)

The processing of each type of definition is idiosyncratic. The behavior of the

stream compiler for these definition types is defined using the extension

mechanisms discussed in this table, principally macro expansion.

2. COMPILER-SPECIFIC FORMS

(progn form form...)

Each form is processed as a top-level form. Any macro that expands into

multiple top-level forms uses progn to arrange for the stream compiler to

process all of the forms. See the section "Macros Expanding into Many

Forms".

(eval-when (time time...) form form...)

Each form is processed under the control of the list of times. If load is one

of the times, the stream compiler processes each form as a top-level form. If

compile is one of the times, each form is evaluated during the compilation.

(compiler-let ((var val)...) form...)

Each form is processed as a top-level form, with the specified bindings of

special variables in effect.

(function args...) where the symbol function has a compiler:top-level-form proper-

ty.

The value of the property must be a function of one argument. This function

controls the behavior of the stream compiler.

3. DECLARATIONS

(declare form form...)

The stream compiler considers each form. If it invokes special or unspecial,

the compiler handles it as if it had appeared at top level. Otherwise, the

compiler simply evaluates form.

Page 106

Use of declare in this way is considered to be an obsolete Maclisp-

compatibility feature. Declaring special variables in a top-level declare form

is not advisable because this hides the variables from the intepreter, which

uses special declarations in the same way as the compiler. It is preferable to

declare special variables with an appropriate special form (such as defvar)

that is understood by both the compiler and the interpreter, or by using spe-

cial as a top-level form without enclosing it in declare, or by including a

(declare (special ...)) form inside the body of each function that uses the

variable.

Forms to be evaluated at compile time should be specified with eval-when

rather than declare. The stream compiler recognizes a top-level (declare

form1 form2...) as equivalent to (eval-when (compile) form1 form2...) and

evaluates form1, form2, and so on; if the car of form is special or unspecial,

then that form is equivalent to (eval-when (compile load) form). Forms ap-

pearing within a top-level declare should be valid top-level forms. Typical

special forms that might appear are special, unspecial, *expr, *lexpr, and

*fexpr.

(zl:local-declare (declaration declaration...) form form...)

The stream compiler processes the forms as top-level forms, with the speci-

fied declarations in effect. zl:local-declare is considered to be an obsolete

feature; use declare inside function bodies instead.

(zl:special variable variable...) and (zl:unspecial variable variable...)

The stream compiler saves the declaration for the duration of the compilation

and outputs the form unchanged.

4. OTHER FORMS

Macro Invocations

The stream compiler expands each top-level form that invokes a macro before

further considering that form. Thus macro expansion can be used to extend

the behavior of the stream compiler. Many definition forms are implemented

by macros that expand into simpler definitions and other forms. For example,

the expansion of such a macro might look like

(progn

 (record-source-file-name ’name ’type)

 (eval-when (compile)

 things to do at compile time)

 (defun ...))�

For additional examples, use mexp to examine the expansion of defvar, def-

subst, and defstruct forms.

Ordinary Forms

If the stream compiler does not recognize a form, it simply outputs the form

unchanged.

Page 107

Forms Protected From the Compiler

To prevent the stream compiler from recognizing a form, if for some reason

it is necessary to pass the form unchanged through the compiler, the safest

way is to conceal it inside an eval form. For example, the following form

prevents the foo function from being converted into a compiled function ob-

ject.

(eval (quote (defun foo (x) ...)))�

Ignored Forms

The stream compiler ignores atoms (both variables and constants), (quote x),

and (zl:comment...). It outputs no form when one of these appears in its in-

put.

For Maclisp compatibility a number of top-level declaration forms are provided, in-

cluding zl:special, zl:unspecial, zl:*expr, zl:*lexpr, and zl:*fexpr.

--�

special &rest symbols Special Form

Declares each of the symbols to be "special" for the Lisp system (for example, the

interpreter and the compiler). Provided for Maclisp compatibility. Note: defvar is

usually preferred over special.

zl:unspecial &rest symbols Special Form

Removes any "special" declarations of the symbols for the Lisp system (for exam-

ple, the interpreter and the compiler). Provided for Maclisp compatibility.

Controlling the Evaluation of Top-level Forms

Sometimes you want to override the stream compiler’s default behavior. For exam-

ple, you might want a form to be put into the compiled code file (compiled, of

course), or not; evaluated within the compiler, or not; or evaluated if the file is

read directly into Lisp, or not. To tell the stream compiler exactly what to do with

a form, use the general eval-when special form.

eval-when times-list &body forms Function

Allows you to tell the compiler exactly when the body forms should be evaluated.

times-list can contain one or more of the symbols load, compile, or eval, or can be

nil.

The interpreter evaluates the body forms only if the times-list contains the symbol

eval; otherwise eval-when has no effect in the interpreter.

If symbol is present Then forms are

Page 108

load Written into the compiled code file to be evaluated when

the compiled code file is loaded, with the exception that

defun forms put the compiled definition into the compiled

code file.

compile Evaluated in the compiler.

eval Ignored by the compiler, but evaluated when read into the

interpreter (because eval-when is defined as a special

form there).�

Example 1: Normally, top-level special forms such as defprop are evaluated at load

time. If some macro expansion depends on the existence of some property, for ex-

ample, constant-value, the definition of that property must be wrapped inside an

(eval-when (compile) ...) so that the property is available at compile (macro ex-

pansion) time.

(eval-when (compile load eval)

 (defprop three 3 constant-value))�

Example 2: eval-when should be used around defconstants of complex expressions.

This is because the compiler does not maintain an environment acceptable to eval

containing defconstants

(eval-when (compile load eval)

 (defconstant name expr))�

In other words, if you are sure that (1) evaluating the expr in the global environ-

ment gives the correct results, and (2) that no harm is done by changing the cur-

rent environment to have the (possibly new) value of name, then you can use the

global environment as a substitute for the compilation environment.

In addition to eval-when, the compiler:top-level-form property provides another

means for overriding the default behavior of the stream compiler.

compiler:top-level-form Property

Provides a way to extend the behavior of the stream compiler when it encounters

a top-level form that looks like (function args...) and the symbol function has a

compiler:top-level-form property. The value of the property must be a function of

one argument. The compiler, rather than behaving in its normal fashion, calls the

function with the original form as its argument. Whatever the function returns is

dumped as the form to be evaluated at load time. You can have the function evalu-

ate the form at compile time simply by calling eval. Note that the form returned

by the function does not go back through the compiler’s top-level form processing.

This means that the returned form, which has been dumped to a compiled code

file, cannot contain function definitions that you expect to be compiled.

Function Compiler

Page 109

The function compiler takes a Lisp function and translates it from Lisp expres-

sions into compiled functions. Compiled functions are represented in Lisp by com-

piled function objects, which contain machine code as well as various other infor-

mation. The printed representation of the object is as follows:

#<DTP-COMPILED-FUNCTION name address>�

When dealing with function bodies the function compiler performs the following

operations on a form in this order:

1. Looks for compiler declarations (expands macros far enough to determine if

they are declarations or not)

2. Performs style checking, unless you explicitly inhibit it.

3. Performs optimizations, if so requested, trying to optimize body forms from

the inside out.

4. Runs transformations.

5. Expands macros.�

If the case of a regular function, the entire process is repeated on the function’s

arguments. A special form, on the other hand, compiles its subforms, or not, de-

pending on the syntax of the particular special form. When all the processing is

done, the function compiler generates machine instructions.

Circular structures may not be constants in compiled functions.

bin File Dumper

The bin (binary) file dumper accepts a stream of Lisp forms and/or machine-

instruction function definitions from the function compiler and writes them in a

compact form into a compiled code file.

It is also possible to make a compiled code file containing data, rather than a com-

piled program. Call the bin file dumper by itself via the sys:dump-forms-to-file

function. See the section "Putting Data in Compiled Code Files".

By loading the compiled code file (using the function zl:load, the Zmacs command

Load File (m-X), or the Command Processor command Load File), the objects repre-

sented in the file are created in your Lisp world.

Compiler Tools and Their Differences

Tools for Compiling Code from the Editor Into Your World

You can use several Zmacs commands to compile code in an editor buffer to your

world. Users generally compile routines to memory as soon as they write them, de-

bugging them before proceeding with more complex routines. The most common

command for incremental compiling is Compile Region (m-X), or c-sh-C.

Page 110

� c-sh-C Compile Region

Compile Region (m-X)

Compiles the region, or if no region is defined, the current definition.

Because recompiling routines as you edit them can be quite time-consuming,

Zmacs provides two commands for compiling only those routines that have changed

since they were last compiled: Compile Changed Definitions (m-X) and Compile

Changed Definitions of Buffer (m-X), or m-sh-C. These commands obviate the need

to remember which routines have changed in your buffer or buffers. Alternatively,

you can recompile the entire buffer.

� Compile Changed Definitions (m-X)

Compiles any definitions that have changed in any of the current buffers. With a

numeric argument, it prompts individually about whether to compile particular

changed definitions (the default compiles all changed definitions).

� Compile Changed Definitions of Buffer (m-X)

m-sh-C

Compiles any definitions that have changed in the current buffer. With a numeric

argument, it prompts individually about whether to compile particular changed

definitions. The default is to compile all changed definitions.

� Compile Buffer (m-X)

Compiles the entire buffer. With a numeric argument, it compiles from point to

the end of the buffer. (This is useful for resuming compilation after a prior Com-

pile Buffer has failed.)

Tools for Compiling Files

Compiling a source file, using the Zmacs command Compile File (m-X), the Com-

mand Processor command Compile File, or the function compile-file, saves the out-

put in a binary file (called a compiled code file). You can compile a file and also

load the resulting file by using compile-file with the :load keyword set to t, or

you can load the file separately into your Lisp world by using load or Load File

(m-X).

Compile File Command

Page 111

Compile File pathname keywords�

Compile the file(s) designated in pathname.

pathname The pathname of the file to compile. The default is the usual

file default.

keywords :Binary File, :Compiler, :Load, :More Processing, :Output Desti-

nation, :Query, :Silently�

:Binary File {pathname} The file into which to put the output. The default

is pathname.bin for a 3600-family machine, and pathname.ibin

for an Ivory-based machine.

:Compiler {Lisp, Pascal, Prolog, Fortran, Use-Canonical-Type} The com-

piler to use. The default is Use-Canonical-Type.

:Load {Yes, No, Ask} Whether to load the file after compiling. The

default is No. The mentioned default is Yes.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Silently {Yes, No} Whether to display the pathname of the file being

compiled. The default is Yes.

:Query {Yes, No, Ask} Whether to ask for confirmation before compil-

ing each file. The default is No. The mentioned default is Yes.

compile-file input-file &key :output-file :package :load (:set-default-pathname

compile-file-set-default-pathname) Function

The file input-file is given to the compiler, and the output of the compiler is writ-

ten to a file whose name is input-file with a canonical file type of :bin or :ibin,

under Genera, ".b" under CLOE Runtime.

You can supply the :output-file or ".fas" keyword to specify where the output is

written. The :package keyword indicates the package with respect to which the in-

put-file is compiled. You can load the file after compiling it by supplying :load t.

The purpose of compile-file is to take a file and produce a translated version that

does the same thing as the original except that the functions are compiled.

Page 112

compile-file reads through the input file, processing the forms in it one by one.

For each form, suitable binary output is sent to the compiled code file, which

when loaded reproduces the effect of that source form.

Thus, if the source contains a (defun ...) form at top level, when the compiled

code file is loaded, the function is defined as a compiled function. If, on the other

hand, the source file contains a form that is not of a type known specially to the

stream compiler, then that form (encoded in binary format) is output "directly" in-

to the compiled code file, so that when that file is loaded that form is evaluated.

For example, if the source file contains (setq x 3), then the compiler places in the

compiled code file instructions to set x to 3 at load time. (For a more general

form, the compiled code file would contain instructions to recreate the list struc-

ture of a form and then call eval on it.)

compile-file returns the pathname of the :output-file, which you can pass to :load

to load the compiled code file.

Compatibility Note: :package, :load, and (:set-default-pathname *compile-file-

set-default-pathname*) are Symbolics extensions to Common Lisp, not available in

CLOE.

Compile File (m-X)

Compiles a file, offering to save it first (if it has an associated buffer that has

been modified). It prompts for a file name in the minibuffer, using the file associ-

ated with the current buffer as the default. It does not load the file.

File Types of Lisp Source and Compiled Code Files

The results of compilation are written to a file of canonical type :bin or :ibin. The

type :bin is for files compiled for 3600-family machines, and :ibin is for files com-

piled for Ivory-based machines. The actual file types for compiled code files are

host-dependent, as are those of the Lisp source files. The following table shows the

file types of both input and output files for various hosts.

Host type File type of File type of

source file compiled code file

3600-family Symbolics lisp bin

Ivory-based Symbolics lisp ibin

Multics lisp bin

TOPS-20 LISP, LSP BIN

UNIX l, lisp bn, bin

VAX/VMS LSP BIN�

Tools for Compiling Single Functions

Compiled functions are Lisp objects that contain programs in the machine instruc-

tion set. Compiling an interpreted function by calling the function compiler on a

Page 113

function spec, converts it into a compiled function and changes the definition of

the function spec to be that compiled function. Most users do not compile func-

tions directly, but rather compile files or regions of code in a Zmacs buffer.

compile function-spec &optional lambda-exp Function

Gets the function definition from either of its arguments. If the lambda expression

lambda-exp is supplied, compile uses lambda-exp and converts it into a compiled

function object. If, on the other hand, lambda-exp is nil, compile gets the function

definition of function-spec, which is either a function specification or nil. If nil,

compile returns the compiled function object without storing it anywhere. If func-

tion-spec is not nil, compile changes function-spec’s definition to be the compiled

function object; the returned value is function-spec.

Consider this example:

(setq foo (compile nil ’(lambda (x) (* x (- x 1)))))

�

(funcall foo 8) => 56�

Consider this example:

(fboundp ’compiler-test) nil

(compile ’compiler-test ’(lambda (x) x))

(fboundp ’compiler-test) t

(compiler-test 259) 259�

For more information, see the function fdefine.

uncompile function-spec Function

If function-spec is not defined as an interpreted function and it has a :interpreted-

definition property in its debugging-info, uncompile restores the function cell

from the value of the property. (Otherwise, uncompile does nothing and returns

"Not compiled".) This "undoes" the effect of compile.

See the function undefun.

Although all these methods call the compiler and produce compiled function ob-

jects, they are not equivalent. For example, using compile-file to compile a source

file of canonical type :lisp converts it into a binary file, with a canonical file type

of :bin. Compiling the source file has no effect on your Lisp environment. Compil-

ing a top-level form in an editor buffer, using a command like Compile Region

(c-sh-C) or Compile Buffer (m-X), creates a compiled function object in memory

but does not write an object code file on disk. Compiling a top-level form in an ed-

itor buffer does cause some side effects on the Lisp environment.

The most essential difference, however, between compiling a source file and com-

piling the same code in an editor buffer is this: When you compile a file, most

function specs are not defined and most forms (except those within eval-when

(compile) forms) are not evaluated at compile time. Instead the compiler puts in-

structions into the binary file that causes evaluation to occur at load time.

Page 114

Loading a compiled code file does not differ substantially from loading its associat-

ed source file, except that the functions defined in the binary file are defined as

compiled functions instead of interpreted functions. When you load a source file

that contains defun forms, you define the function specs named in the forms to be

those functions.

Sometimes you might want to put things in the compiled code file that are not

meant merely to be translated into binary form. Top-level macro definitions fall in-

to this category. The macros must actually get defined within the compiler in or-

der for the compiler to be able to expand them at compile time. Compiler declara-

tions also fall into this category.

Compiler Warnings Database

Compiler warnings are kept in an internal database. Several functions, Command

Processor commands, and Zmacs commands allow you to inspect and manipulate

this database in various ways.

The database of compiler warnings is organized by pathname; warnings that were

generated during the compilation of a particular file are kept together, and this

body of warnings is identified by the generic pathname of the file being compiled.

Any warnings that were generated while compiling some function not in any file

(for example, by using the compile function on some interpreted code) are stored

under the pathname nil. For each pathname, the database has entries, each of

which associates the name of a function (or a flavor) with the warnings generated

during its compilation.

The database starts out empty when you cold boot. Whenever you compile a file,

buffer, or function, the warnings generated during its compilation are entered into

the database. If you recompile a function, the old warnings are removed, and any

new warnings are inserted. If you get some warnings, fix the mistakes, and recom-

pile everything, the database becomes empty again.

Warnings can also be saved to a file or printed out as well as stored in the

database. If the value of the special variable compiler:suppress-compiler-

warnings is not nil, warnings are not printed, although they are still stored in the

database.

Save Compiler Warnings Command

Save Compiler Warnings pathname files-whose-warnings-to-save�

Save compiler warnings of the files files-whose-warnings-to-save to the specified

pathname. files-whose-warnings-to-save can be All to save all warnings, or it can be

a list of one or more pathnames. Among the pathnames can be the special token

No File to catch warnings for no particular file.

The database has a printed representation. The command Show Compiler Warnings

or the function print-compiler-warnings produces this printed representation from

the database, and compiler:load-compile-warnings updates the database from a

saved printed representation.

Page 115

Show Compiler Warnings Command

Show Compiler Warnings pathname keywords�

Display compiler warnings for the files specified by pathnames.

pathname {pathnames(s), All, No File} The compiled files whose warnings

to show. All shows all compiler warnings for the compilation.

No File shows the warnings for no particular file. The default

is All.

keywords :More Processing, :Output Destination�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

print-compiler-warnings &optional files (stream zl:standard-output) file-node-

message function-node-message anonymous-function-node-message Function

Prints out the compiler warnings database. If files is nil (the default), it prints the

entire database. Otherwise, files should be a list of generic pathnames, and only

the warnings for the specified files are printed. (nil can be a member of the list,

too, in which case warnings for functions not associated with any file are also

printed.) The output is sent to stream, which you can use to send the results to a

file.

compiler:load-compiler-warnings file &optional (flush-old-warnings t) Function

Updates the compiler warnings database. file should be the pathname of a file con-

taining the printed representation of the compiler warnings related to the compila-

tion of one or more files. If flush-old-warnings is t (the default), any existing

warnings in the database for the files in question are completely replaced by the

warnings in file. If flush-old-warnings is nil, the warnings in file are added to

those already in the database.

The printed representation of a set of compiler warnings is sometimes stored in a

file. You can create such a file using print-compiler-warnings, but it is usually

Page 116

created by invoking compile-system with the :batch option. The default type for

such files is CWARNS; for example, a file might be named FOO.CWARNS.

Several Zmacs commands manipulate the compiler warnings database.

Compiler Warnings (m-X)

Creates the compiler warnings buffer (called *Compiler-Warnings-1*) if it does not

exist, puts all outstanding compiler warnings in that buffer, and switches to that

buffer. You can view the compiler warnings by scrolling around and doing text

searches through them using Edit Compiler Warnings (m-X).

Edit Compiler Warnings (m-X)

Prompts you with the name of each file mentioned in the database, allowing you to

edit the warnings for that file. It then splits the Zmacs frame into two windows:

the upper window displays a warning message and the lower one displays the

source code whose compilation caused the warning. After you have finished editing

each function, c-. gets you to the next warning: the top window scrolls to show

the next warning and the bottom window displays the function associated with this

warning. Successive uses of c-. take you through all of the warning messages for

all of the files you specified. When you are done, the last c-. puts the frame back

into its previous configuration.

Edit File Warnings (m-X)

Asks you for the name of the file whose warnings you want to edit. You can give

either the source file or the compiled file. Only warnings for this file are edited. If

the database does not have any entries for the file you specify, the command

prompts you for the name of a file that contains the warnings, in case you know

that the warnings are stored in another file.

Load Compiler Warnings (m-X)

Loads a file containing compiler warning messages into the warnings database. It

prompts for the name of a file that contains the printed representation of compiler

warnings. It always replaces any warnings already in the database.

Controlling Compiler Warnings

compiler:*compiler-warnings-to-core-action* Variable

Determines what the compiler does if there are compiler warnings when you com-

pile functions in core. If the function already exists in core (that is, if you are re-

defining the function), then this variable is examined to determine the action to

take. Possible values are

:define Defines the function in core despite the warnings. This is the

default.

:do-not-define Does not define the function in core if there are warnings.

:query Asks you what to do.

Page 117

:warn Warns you that the redefinition is occuring.

si:*duplicate-declarations-warnings* Variable

Controls issuing a warning if duplicate declarations are found for a symbol. Its de-

fault is t, so warnings are issued. In some cases, particularly where code is gener-

ated automatically, you might not want to see these warnings. In those cases, you

can set si:*duplicate-declarations-warnings* to nil.

compiler:invisible-references variables &body body Special Form

Allows references to variables in a form to remain invisible to the compiler for the

purposes of variable reference warnings.

For example, suppose you have a macro my-dotimes, which is defined like this:

(defmacro my-dotimes ((var countform &optional resultform) &body forms)

 (let ((countvar (gensym)))

 ‘(prog ((,var 0)

 (,countvar ,countform))

loop

 (unless (< ,var ,countvar)

 (return ,resultform))

 ,@forms

 (incf ,var)

 (go loop))))�

If you use this in a function like this:

(defun silly-function ()

 (my-dotimes (i 5)

 (print 3)))�

You would like to get a compiler warning to the effect that you have not used the

variable i in the body of your function. However, since there are uses of the vari-

able in the macro expansion, the compiler does not warn you. If you use

compiler:invisible-references, like this:

(defmacro my-dotimes ((var countform &optional resultform) &body forms)

 (let ((countvar (gensym)))

 ‘(prog ((,var 0)

 (,countvar ,countform))

loop

 (unless (compiler:invisible-references (,var)

 (< ,var ,countvar))

 (return ,resultform))

 ,@forms

 (compiler:invisible-references (,var)

 (incf ,var))

 (go loop))))

the compiler warns you when you compile silly-function that the variable i was

never used.

Page 118

Compiler Style Warnings

The compiler performs style checking on all forms. This means that the Lisp com-

piler produces compiler warnings when it sees programs that are invalid Lisp or

that may produce errors at runtime. You can add to the checks that the compiler

makes in several ways.

• Your macros can can call the warn function to warn of problematic usage.

• You can use compiler:make-obsolete to declare something obsolete.

• You can define style checkers by means of the function-spec compiler:style-

checker. A style checker is a Lisp function associated with a symbol. When the

compiler compiles an s-expression with that symbol in the functional position

car, it calls all of the style checkers for the symbol with an argument of the

form. These style checkers can examine the form and call warn if they detect

something wrong.�

compiler:style-checker

Defines a style checker. Note: compiler:style-checker is not a function but rather,

a function-spec. A style checker is a Lisp function associated with a symbol. When

the compiler compiles an S-expression with that symbol in the functional position

car, it calls all of the style checkers for the symbol with an argument of the form.

These style checkers can examine the form and call warn if they detect something

wrong. checker-name is the name of your style checker function, and symbol is the

symbol that you want to check. arg1 and arg2 are optional arguments to your style

checker function.

You define a style checker as follows:

(defun (compiler:style-checker style-checker-name

 function-symbol)

 (form)

 body-that-looks-at-the-form...

)�

You can have multiple style checkers on a single function symbol. For example, as-

sume that you define function to take a first argument that must be a number,

and which is often a constant.

(defun stylish-function (number &rest other-args)

)�

You might write:

Page 119

(defun (compiler:style-checker first-arg-must-be-numeric

 stylish-function)

 (form)

 (destructuring-bind (ignore number &rest ignore) form

 (when (and (compiler:constant-form-p number)

 (not (numberp

 (compiler:constant-evaluator number))))

 (warn "The first argument ~S to ~S is not a number."

 number ’stylish-function))))�

In the example, the function compiler:constant-form-p simply checks if the form

is treated as a constant by the compiler; the function compiler:constant-evaluator

returns the value of a constant. You have to be very careful about how you exam-

ine arguments. The form in the example code is uncompiled list structure. If the

caller is passing a variable as an argument

(stylish-function foo)�

then the form will contain the symbol foo as the second element. foo is not a con-

stant, so you cannot tell what its runtime value is at compile time.

The pre-Genera 7.0 way of style checking using property lists is also supported,

but you cannot use both the new and the old technology on the same checked

function. In the old way, style checking is implemented by the compiler:style-

checker property on a symbol; the value of the property is called on all forms

whose car is that symbol, except those immediately enclosed in inhibit-style-

warnings. Obsolete function warnings are also performed by means of the style-

checking mechanism.

inhibit-style-warnings form Function

Prevents the compiler from performing style-checking on the top level of form;

style-checking will still be done on the arguments of form.

The following code warns you about the obsolete function zl:explode, since inhibit-

style-warnings applies only to the top level of the form inside it, in this case, to

the setq.

Generate warning:

(inhibit-style-warnings (setq bar (explode foo))) �

The following code, on the other hand, does not warn that explode is an obsolete

function:

Do not generate warning:

(setq bar (inhibit-style-warnings (explode foo)))�

If an optimizer needs to return a form with nested "bad-style" forms, there should

be an explicit inhibit-style-warnings wrapped around the nested forms.

By setting the compile-time value of inhibit-style-warning-switch you can enable

or disable some of the warning messages of the compiler. The compile-time value

of obsolete-function-warning-switch enables or disables obsolete-function warn-

ings in particular.�

Page 120

compiler:make-obsolete spec reason &optional (type ’defun) Special Form

Declares a function, flavor, or structure to be obsolete; code that calls an obsolete

definition generates a compiler warning. It is useful for marking as obsolete some

Zetalisp functions that exist in Common Lisp but should not be used in new pro-

grams, or for reminding users that some function is being phased out.

spec is the definition to be made obsolete and is not evaluated. reason is evaluated

and is the warning or explanation to be printed when the obsolete definition is

called. type, the optional third argument, is the definition-type of the object de-

clared obsolete and is not evaluated. Its default value is defun when no type is

specified. compiler:make-obsolete recognizes four definition-types: defun,

defflavor, zl:defstruct, and defvar.

compiler:make-obsolete with a third argument of zl:defstruct makes the struc-

ture obsolete as well as all of its accessor functions. compiler:make-obsolete with

a third argument of defflavor makes obsolete both the flavor and its outside acces-

sible instance variables.

An attempt to create a new flavor with an obsolete flavor as an included or compo-

nent flavor generates a compiler warning. Likewise, creating a new structure with

an obsolete structure as an included structure also generates a warning.

compiler:make-message-obsolete message-name format-string Function

Allows you to generate compiler warnings about obsolete message names. The first

argument, message-name, is the obsolete message name. The second argument, for-

mat-string, is the warning to be printed. If the string contains the ~S format di-

rective, it will be replaced by the object that was sent the message.

Example:

(compiler:make-message-obsolete :clear-screen

"You have sent the message :CLEAR-SCREEN to the object ~S.

 This name is obsolete. The new name for this message is

 :CLEAR-WINDOW. Please update your code.")�

Function-referenced-but-never-defined Warnings

Normally, the compiler notices whenever any function x calls any other function y;

it takes note of all these uses, and then warns you at the end of the compilation if

function y was called but was neither defined nor declared (by compiler:function-

defined).

The compiler uses a set of variables and functions to keep track of which func-

tions have been defined and which have been referenced. These are the basis for

the messages "FOO was defined but never referenced" that occur during compil-

ing.

sys:file-local-declarations Variable

Page 121

Stores global declarations valid for the entire compilation. Since it can become

fairly large, it is implemented as a hash table (or nil). The symbol being declared

is the key, and the value is a property list of declarations and values. The default

value is nil.

compiler:functions-defined Variable

A hash table of all functions defined or nil, if none has been defined yet.

compiler:functions-referenced Variable

A hash table of functions referenced but not defined. Each entry is an alist of

(<generic-pathname> . <by-whom>). In this way warnings can be put into the ap-

propriate file when this variable is processed at the end of a compilation.

compiler:function-defined fspec Function

Tells the compiler that the function fspec has been defined (by putting it into the

hash table in compiler:functions-defined).

zl:*expr, zl:*lexpr, and zl:*fexpr are the Maclisp equivalents of compiler:function-

defined.

zl:*expr &rest functions Function

Declares each function spec in the list of functions to be the name of a function.

In addition it prevents these functions from appearing in the list of functions ref-

erenced but not defined, which appears at the end of the compilation. Provided for

Maclisp compatibility.

zl:*lexpr &rest functions Function

Declares each function spec in the list of functions to be the name of a function.

In addition it prevents these functions from appearing in the list of functions ref-

erenced but not defined that is printed at the end of the compilation. Provided for

Maclisp compatibility.

zl:*fexpr &rest functions Function

Declares each function spec in the list of functions to be the name of a special

form. In addition it prevents these names from appearing in the list of functions

referenced but not defined that is printed at the end of the compilation. Provided

for Maclisp compatibility.

compiler:file-declare thing declaration value Function

Page 122

Enters a declaration in the table sys:file-local-declarations for the remaining ex-

tent of the compilation environment.

(compiler:file-declare ’foo ’special t)�

compiler:file-declaration thing declaration Function

Looks up a declaration in the table sys:file-local-declarations. It returns the dec-

laration when thing is a declaration of type declaration and nil otherwise.

compiler:function-referenced what &optional (by compiler:default-warning-

function) Function

Useful for requesting compiler warnings in certain esoteric cases. For example,

sometimes the compiler has no way of telling that a certain function is being used.

Suppose that instead of x’s containing any forms that call y, x simply stores y

away in a data structure somewhere, and someplace else in the program that data

structure is accessed and funcall is done on it. In this case the compiler cannot

see that this is going to happen; the result is that it cannot note the function us-

age and hence cannot create a warning message. In order to make such warnings

happen, you can explicitly call the function compiler:function-referenced at com-

pile-time.

what is a symbol that is being used as a function. by can be any function spec.

compiler:function-referenced must be called at compile time while a compilation

is in progress. It tells the compiler that the function what is referenced by by.

When the compilation is finished, if the function what has not been defined, the

compiler issues a warning to the effect that by referred to the function what,

which was never defined.

Overriding Variable-defined-but-never-referenced Warnings

Sometimes functions take arguments that they deliberately do not use. Normally

the compiler warns you if your program binds a variable that it never references.

In order to disable this warning for variables that you know you are not going to

use, you can do one of several things.

• You can declare the variable to be ignored:

(declare (ignore fraz-size))�

• You can name the variables ignore or ignored. The compiler does not complain

if a variable of one of these names is not used. Furthermore, you can have more

than one variable in a lambda-list that has one of these names.

• You can simply use the variable for effect (ignoring its value) at the front of

the function. This has the advantage that arglist will return a more meaningful

argument list for the function, rather than returning something with ignores in

it. Example:

Page 123

(defun the-function (list fraz-name fraz-size)

 fraz-size ; This argument is not used.

 ...)�

• You can use the variable as an argument to the ignore function.

(defun the-function (list fraz-name fraz-size)

 (ignore fraz-size)

 ...)�

Compiler Switches

The compile-time values of the following variables, called "compiler switches", af-

fect the operation of the compiler. Use compiler-let to bind compiler switches.

compiler:obsolete-function-warning-switch Variable

The compile-time value of this variable affects the operation of the compiler. If

this variable is non-nil, the compiler tries to warn you whenever an obsolete func-

tion, such as zl:maknam or zl:samepnamep, is used. The default value is t.

compiler:open-code-map-switch Variable

The compile-time value of this variable affects the operation of the compiler. If

this variable is non-nil, the compiler attempts to produce inline code for the map-

ping functions (mapc, mapcar, and so on, but not zl:mapatoms) if the function

being mapped is an anonymous lambda-expression. Setting this switch to nil makes

the compiled code smaller. Setting this switch to t makes the compiled code larger

but faster. The default value is t.

zl:all-special-switch Variable

The compile-time value of this variable affects the operation of the compiler. If

this variable is non-nil, the compiler regards all variables as special, regardless of

how they were declared. The default is nil.

compiler:inhibit-style-warnings-switch Variable

The compile-time value of this variable affects the operation of the compiler. If

this variable is non-nil, all compiler style-checking is turned off. Style checking is

used to issue obsolete function warnings and other sorts of warnings. The default

value is nil.

compiler:*inhibit-keyword-argument-warnings* Variable

Page 124

Controls whether the compiler checks the keyword arguments of a function against

the keyword arguments accepted by the called function. The values can be:

nil This is the default. The compiler checks keyword arguments

supplied in a function call against the keyword arguments ac-

cepted by the called function. As with checking the number of

arguments in a function call, this checking does not work if

the function call is earlier in the file or group of files than the

definition of the called function. If there is an arglist declara-

tion, it is used in place of the actual lambda-list to determine

what keywords are accepted, since often the declared lambda-

list contains &key but the actual lambda-list contains just

&rest.

t Disables this checking. This can be useful if you have a lot of

declared arglists that are malformed.�

compiler:compiler-verbose Variable

The compile-time value of this variable affects the operation of the compiler. The

compiler displays a message (using zl:standard-output) each time it starts compil-

ing a function when the value of compiler:compiler-verbose is t. The default val-

ue is nil.

compiler:*enable-frame-splitting* Variable

This variable controls the compiler’s action when it encounters a function which is

too large to be directly supported by the machine architecture. The possible values

are:

nil Attempt to compile the function anyway. For borderline func-

tions, this may work, and if it does will result in better code

being generated.

t Heuristically split the function into smaller functions which

can be supported by the architecture. The resulting code may

not be as efficient.

:warn Same as t, but when the compiler splits a function, issue a

warning. This can be useful to identify functions which may

not compile as efficiently as you would want.�

To use this variable, either set it globally, or wrap defining forms in a compiler-

let.

Example:

Page 125

(compiler-let ((compiler:*enable-frame-splitting* :warn))

 (defun large-function ...)

) ;;End of COMPILER-LET�

si:*compiled-function-constant-mode* Variable

Controls how constants are localized with compiled functions in normal compiled-

function creation. Its value can be one of the following:

:share This is the default. Compiled function constants are copied and

shared to be immediately after the compiled function in memo-

ry.

:copy Compiled function constants are copied to be immediately fol-

lowing the compiled function in memory. No attempt is made

to share constants. In some cases this may result in faster

loading of compiled functions and a larger working set for the

resulting functions.

:unlocalized Compiled function constants are not copied. Thus circular

structures and eq-ness of constants are preserved. However,

the working set of running functions loaded in this manner is

guaranteed to be larger, since the constants are guaranteed to

be on separate pages. Additionally, garbage collection overhead

wil be higher for dynamic constants, and IDS files may be

larger.

Note that the only constants which are currently copied are lists, numbers, strings,

and simple arrays.

Copying of compiled functions and this variable may be changed in a future re-

lease.

Compiler Source-Level Optimizers

An optimizer is a function that converts a form into another form that is more ef-

ficiently executed. An optimizer can be used to transform code into an equivalent

but more efficient form that can be compiled better. For example, (eq obj nil) is

transformed into (null obj), which can be compiled better.

Do not use optimizers to define new language features, because they take effect

only in the compiler; the interpreter (that is, the evaluator) does not know about

optimizers. So an optimizer should not change the effect of a form; it should pro-

duce another form that does the same thing, possibly faster or with less memory.

If you want to actually change the form to do something else, you should use

macros.

The compiler treats (optimized or transformed) forms returned by compiler opti-

mizers as if they were wrapped in an inhibit-style-warnings form. For example,

the expression:

Page 126

(eql x 3)�

is optimized into the expression:

(eq x 3)�

In general, it is a bad idea to compare numbers with eq, since the implementation

of numbers is such that some numbers can be compared with eq and some can’t.

A style checker keeps the user from writing (eq x 3). The optimizer is allowed to

do this without warning on the assumption that the optimizer always generates

"correct" code.

Note: inhibit-style-warnings only affects the top-level form inside it. If an optimiz-

er needs to return a form with nested "bad-style" forms, there should be an explic-

it inhibit-style-warnings wrapped around the nested forms.

compiler:add-optimizer target-function optimizer-name &rest optimized-into

Function

Puts optimizer-name on target-function’s optimizers list if it is not there already.

optimizer-name is the name of an optimization function, and target-function is the

name of the function calls that are to be processed. Neither is evaluated.

(compiler:add-optimizer target-function optimizer-name optimize-into-1 optimize-into-

2...) also remembers optimize-into-1, and so on, as names of functions that can be

called in place of target-function as a result of the optimization.

Files That Maclisp Must Compile

Certain programs are intended to be run both in Maclisp and in Symbolics Com-

mon Lisp. Their source files need some special conventions. For example, all

special declarations must be enclosed in top-level declare forms, so that the

Maclisp compiler sees them. The main issue is that many Symbolics Common Lisp

functions and special forms do not exist in Maclisp.

The #Q sharp-sign reader macro causes the object that follows it to be visible only

when compiling for Symbolics Common Lisp. The sharp-sign reader macro #M

causes the following object to be visible only when compiling for Maclisp. These

work both on subexpressions of the objects in the file, and at top level in the file.

To conditionalize top-level objects, however, it is better to put the macros zl:if-for-

lispm and zl:if-for-maclisp around them. (You can only put these around a single

object.) The #Q sharp-sign reader macro cannot do this, since it can be used to

conditionalize any Lisp object, not just a top-level form.

To allow a file to detect what environment it is being compiled in, the following

macros are provided:

zl:if-for-lispm &rest forms Function

Seen at the top level of the compiler, forms is passed to the compiler top level if

the output of the compiler is a compiled code file intended for Symbolics Common

Page 127

Lisp. If the Symbolics Common Lisp interpreter sees this it evaluates forms (the

macro expands into forms).

zl:if-for-maclisp &rest forms Function

Seen at the top level of the compiler, forms is passed to the compiler top level if

the output of the compiler is a compiled code file intended for Maclisp (for exam-

ple, if the compiler is COMPLR). If the Symbolics Common Lisp interpreter sees

this it ignores it (the macro expands into nil).

zl:if-for-maclisp-else-lispm maclisp-form lispm-form Function

When (if-for-maclisp-else-lispm form1 form2) is seen at the top level of the com-

piler, form1 is passed to the compiler top level if the output of the compiler is a

compiled code file intended for Maclisp; otherwise form2 is passed to the compiler

top level.

zl:if-in-lispm &rest forms Function

In Symbolics Common Lisp, (if-in-lispm forms) causes forms to be evaluated; in

Maclisp, forms is ignored.

zl:if-in-maclisp &rest forms Function

In Maclisp, (if-in-maclisp forms) causes forms to be evaluated; in Symbolics Com-

mon Lisp, forms is ignored.

When you have two definitions of one function, one conditionalized for one ma-

chine and one for the other, put them next to each other in the source file with

the second (defun) indented by one space, and the editor will put both function

definitions on the screen when you ask to edit that function.

In order to make sure that those macros are defined when reading the file into the

Maclisp compiler, you must make sure the file starts with a prelude, which should

look like:

(declare (cond ((not (status feature lispm))

 (load ’|AI: LISPM2; CONDIT|))))�

This does nothing when you compile the program on Symbolics computers. If you

compile it with the Maclisp compiler, it loads definitions of the above macros, so

that they will be available to your program. The form (status feature lispm) is

generally useful in other ways; it evaluates to t when evaluated on Symbolics com-

puters and to nil when evaluated in Maclisp.

Putting Data in Compiled Code Files

A compiled code file can contain data rather than a compiled program. This can be

useful to speed up loading of a data structure into the machine, as compared with

Page 128

reading in a printed representation of that same data structure. Also, certain data

structures, such as arrays, do not have a convenient printed representation as text,

but can be saved in compiled code files.

In compiled programs, the constants are saved in the compiled code file in this

way. The compiler optimizes by making constants that are equal become eq when

the file is loaded. This does not happen when you make a data file yourself; identi-

ty of objects is preserved. Note that when a compiled code file is loaded, objects

that were eq when the file was written are still eq; this does not normally happen

with text files.

The following types of objects can be represented in compiled code files:

• Symbols

• Numbers of all kinds

• Lists

• Characters

• Arrays of all kinds (including strings)

• Instances, such as hash tables

• Instance of user-defined CLOS classes

• Compiled function objects�

When an instance is put (dumped) into a compiled code file, it is sent a :fasd-

form message, which must return a Lisp form that, when evaluated, will recreate

the equivalent of that instance. This is because instances are often part of a large

data structure, and simply dumping all of the instance variables and making a new

instance with those same values is unlikely to work. Instances remain eq; the

:fasd-form message is sent only the first time a particular instance is encountered

during writing of a compiled code file. If the instance does not accept the :fasd-

form message, it cannot be dumped.

If you need to dump CLOS instances, see the generic function clos:make-load-

form.

sys:dump-forms-to-file filename forms &optional file-attribute-list Function

Writes data to a file in binary form by invoking the bin file dumper. forms is a

list of Lisp forms, each of which is dumped in sequence. It dumps the forms, not

their results. The forms are evaluated when you load the file. For more informa-

tion, see the section "Putting Data in Compiled Code Files". (If you need to dump

CLOS instances, see the generic function clos:make-load-form.)

For example, suppose a is a variable bound to any Lisp object, such as a list or

array. The following example creates a compiled code file that recreates the vari-

able a with the same value:

(sys:dump-forms-to-file "f:>foo>aval"

(list ‘(setq a ’,a)))�

For the purposes of understanding what this function does, you can consider that

it is the same as the following:

Page 129

(defun sys:dump-forms-to-file (file forms)

 (with-open-file (s file ’:direction ’:output)

 (dolist (f forms)

 (print f s))))�

The actual definition (which is more complicated) writes a binary file in a more

easily parsed format so it will load faster. It can also dump arrays, which you can-

not write to a Lisp source file.

file-attribute-list supplies an optional attribute list for the resulting compiled code

file. It has basically the same result when loading the binary file as the file at-

tribute list does for compile-file. Its most important application is for controlling

the package that the file is loaded into.

(sys:dump-forms-to-file "foo" forms-list ’(:package "user"))�

sys:dump-forms-to-file always puts a package attribute into the binary file it

writes. If you do not specify the file-attribute-list argument, or if file-attribute-list

does not contain a :package attribute, the function uses the cl-user or zl-user

package, depending on the context. This is to ensure that package prefixes on sym-

bols are always interpreted when they are loaded as they were intended when the

file was dumped.

The file-attribute-list argument can be used to store useful information (such as

"headers" for special data structures) in the file’s attribute list. The information

can then be retrieved from the attribute list with fs:pathname-attribute-list, with-

out reading the rest of the file.

sys:dump-forms-to-file checks the variable si:*bin-dump-no-list-sharing*:

si:*bin-dump-no-list-sharing*

Controls whether or not sys:dump-forms-to-file attempts to determine what data

is shared and preserve that sharing.

Files dumped with sys:dump-forms-to-file that contain only data (no code), can be

loaded into both 3600-family and Ivory machines.

clos:make-load-form object Generic Function

Provides a way to use an instance of a user-defined CLOS class (that is, an in-

stance whose metaclass is clos:standard-class or clos:structure-class) as a con-

stant in a program compiled with compile-file. Users can define a method for

clos:make-load-form that describes how an equivalent object can be reconstructed

when the compiled-code file is loaded.

compile-file calls clos:make-load-form on an object needed at load time, if the

object’s metaclass is clos:standard-class. compile-file will call clos:make-load-

form only once for any given object (compared with eq) within a single file. If

clos:make-load-form is called and no user-defined method is applicable, an error

is signaled.

The argument object is an object needed at load-time.

Page 130

clos:make-load-form returns two values. The first value, called the "creation

form", is a form that, when evaluated at load time, should return an object that is

equivalent to object.

The second value, called the "initialization form", is a form that, when evaluated

at load time, should perform further initialization of the object. The value returned

by the initialization form is ignored. If the clos:make-load-form method returns

only one value, the initialization form is nil, which has no effect. If the object used

as the argument to clos:make-load-form appears as a constant in the initialization

form, at load time it will be replaced by the equivalent object constructed by the

creation form; this is how the further initialization gains access to the object.

Both the creation form and the initialization form can contain references to in-

stances of user-defined CLOS classes. However, there must not be any circular de-

pendencies in creation forms. An example of a circular dependency is when the

creation form for the object X contains a reference to the object Y, and the cre-

ation form for the object Y contains a reference to the object X. A simpler example

would be when the creation form for the object X contains a reference to X itself.

Initialization forms are not subject to any restriction against circular dependencies,

which is the entire reason that initialization forms exist. See the example of circu-

lar data structures below.

The creation form for an object is always evaluated before the initialization form

for that object. When either the creation form or the initialization form references

other objects of user-defined types that have not been referenced earlier in the

compile-file, the compiler collects all of the creation and initialization forms. Each

initialization form is evaluated as soon as possible after its creation form, as deter-

mined by data flow. If the initialization form for an object does not reference any

other objects of user-defined types that have not been referenced earlier in the

compile-file, the initialization form is evaluated immediately after the creation

form. If a creation or initialization form F references other objects of user-defined

types that have not been referenced earlier in the compile-file, the creation forms

for those other objects are evaluated before F, and the initialization forms for

those other objects are also evaluated before F whenever they do not depend on

the object created or initialized by F. Where the above rules do not uniquely deter-

mine an order of evaluation, which of the possible orders of evaluation is chosen is

unspecified.

While these creation and initialization forms are being evaluated, the objects are

possibly in an uninitialized state, analogous to the state of an object between the

time it has been created and it has been processed fully by

clos:initialize-instance. Programmers writing methods for clos:make-load-form

must take care in manipulating objects not to depend on slots that have not yet

been initialized.

Examples:

Page 131

;; Example 1

(defclass my-class ()

 ((a :initarg :a :reader my-a)

 (b :initarg :b :reader my-b)

 (c :accessor my-c)))

�

(defmethod shared-initialize ((self my-class) ignore &rest ignore)

 (unless (slot-boundp self ’c)

 (setf (my-c self) (some-computation (my-a self) (my-b self)))))

�

(defmethod make-load-form ((self my-class))

 ‘(make-instance ’,(class-name (class-of self))

 :a ’,(my-a self) :b ’,(my-b self)))�

In this example, an equivalent instance of my-class is reconstructed by using the

values of two of its slots. The value of the third slot is derived from those two

values.

Another way to write the last form in the above example is to use clos:make-load-

form-saving-slots:

(defmethod make-load-form ((self my-class))

 (make-load-form-saving-slots self ’(a b)))�

;; Example 2

(defclass my-frob ()

 ((name :initarg :name :reader my-name)))

(defmethod make-load-form ((self my-frob))

 ‘(find-my-frob ’,(my-name self) :if-does-not-exist :create))�

In this example, instances of my-frob are "interned" in some way. An equivalent

instance is reconstructed by using the value of the name slot as a key for search-

ing existing objects. In this case the programmer has chosen to create a new ob-

ject if no existing object is found; an alternative would be to signal an error in

that case.

;; Example 3

(defclass tree-with-parent ()

 ((parent :accessor tree-parent)

 (children :initarg :children)))

(defmethod make-load-form ((x tree-with-parent))

 (values

 ;; creation form

 ‘(make-instance ’,(class-of x)

 :children ’,(slot-value x ’children))

 ;; initialization form

 ‘(setf (tree-parent ’,x) ’,(slot-value x ’parent))))�

In this example, the data structure to be dumped is circular, because each parent

has a list of its children and each child has a reference back to its parent. Sup-

pose clos:make-load-form is called on one object in such a structure. The creation

form creates an equivalent object and fills in the children slot, which forces cre-

Page 132

ation of equivalent objects for all of its children, grandchildren, and so on. At this

point none of the parent slots have been filled in. The initialization form fills in

the parent slot, which forces creation of an equivalent object for the parent if it

was not already created. Thus the entire tree is recreated at load time. At compile

time, clos:make-load-form is called once for each object in the tree. All the cre-

ation forms are evaluated, in unspecified order, and then all of the initialization

forms are evaluated, also in unspecified order.

clos:make-load-form-saving-slots object &optional save-slots Function

Used in the bodies of methods for clos:make-load-form. The argument object is an

object needed at load-time. The argument save-slots is a list of the names of the

slots to preserve; it defaults to all of the local slots.

clos:make-load-form-saving-slots returns forms that construct an equivalent ob-

ject using clos:make-instance and setf of clos:slot-value for slots with values, or

clos:slot-makunbound for slots without values, or other functions of equivalent

effect.

clos:make-load-form-saving-slots returns two values, thus it can deal with circu-

lar structures. clos:make-load-form-saving-slots works for instances of user-

defined classes; that is, instances whose metaclass is clos:standard-class or

clos:structure-class.

See the generic function clos:make-load-form.

si:*bin-dump-no-list-sharing* Variable

Controls whether or not sys:dump-forms-to-file attempts to determine what data

is shared and preserve that sharing. The default is nil, meaning that shared struc-

ture is preserved. If you set si:*bin-dump-no-list-sharing* to t, sys:dump-forms-

to-file dumps faster but does not share sublists. This means that the file created

may be larger than if sharing were preserved, and when you reload the file, shar-

ing optimizations that were present in your original environment are not there.

Metering a Program’s Performance

Metering Interface

Metering is the process of measuring the performance of a program, usually with

the goal of determining where performance can be improved. Genera offers tools

for metering different aspects of performance, such as time, paging, and consing.

The Metering Interface is a uniform interface which makes it convenient to use

the various metering tools.

Note that you can use the Metering Interface to meter "foreign" programs (such

as C, FORTRAN, or Pascal programs) in the same way you use it to meter Lisp

programs.

Page 133

This chapter also documents several macros that are useful for metering short

forms. See the section "Macros for Metering the Execution Time of Forms".

Overview of the Metering Interface

This section gives an overview of how to use the Metering Interface.

The Metering system is not part of the default world; it is loaded separately. To

begin, load the system:

Load System Metering

Now you can select the Metering Interface:

SELECT %

The name % was chosen because it is related to metering; you might be seeking

the percentage of time spent in one function, or some other percentage.

You will notice that when you first select the Metering Interface, it takes a little

while for the Metering Interface to do some preparatory work. The progress note

says "Computing Fudge Factors". We suggest that you wait for this to finish be-

fore typing, using the mouse, or doing any other activity that would interfere with

this computation. See the section "Computing Fudge Factors".

Metering involves a sequence of steps. Here we briefly describe each step, and

refer to the section that describes the step in further detail.

1. Specifying what to meter

You can meter the performance of a Lisp form, a portion of a function, or one

or more functions running within a process. For example, to execute and

meter a form, click on [Meter Form] and enter the form. You could also

meter one or more functions running within a process by clicking on [Meter

in Process]. See the section "Specifying What to Meter".

2. Choosing the type of metering

The Metering Interface prompts you for a metering type. The metering type

controls how the data is collected and presented. The choices are: Function

Call, Page Fault, Call Tree, Statistical Function Call, Statistical Call Tree,

and Statistical Program Counter. See the section "Choosing a Metering Type".

3. Specifying metering parameters

This is an optional step. The keyword options to Meter Form and Meter in

Process allow you to control various aspects of the metering run. For exam-

ple, you might decide to meter the code within a without-interrupts form, or

to run the code a number of times and meter only the results of the last time

it executes. When doing a Page Fault metering run, you can flush all pages

first. The keywords available depend on which metering command you give,

and the type of metering. See the section "Meter Form Command". See the

section "Meter in Process Command".

Page 134

4. Running and metering the code

When using Meter Form, once you choose the type of metering and press RE-

TURN, the form is immediately executed and simultaneously metered.

When using Meter in Process you can meter one or more functions whenever

they are naturally executed within a given process, instead of executing them

immediately. This is useful for metering a function that normally runs within

a process such as Zmail or a network process; the metering results are more

representative of the usual environment of the function than they would be if

you called the function explicitly.

When you use Meter Form or Meter in Process, the result is called a meter-

ing run, which contains the data collected. The Metering Interface saves a

history of metering runs in the top pane, which makes it convenient to show

the data of a metering run later, or to repeat the metering run. The "cur-

rent" metering run is the run whose results are now being displayed. The

current metering run appears in bold face in the Metering History. See the

section "Running and Metering the Code".

5. Customizing the display of metering results

This is an optional step. The display in the bottom pane shows the results of

the metering run. The results appear in columns under headers that describe

the data. Each column is an output field. An output field shows a kind of da-

ta, such as consing, page faults, or time spent in a function. Output fields are

divided into subfields; each subfield shows one aspect of the information.

You can click Middle on a column header for information describing the data

in that output field. You can also tailor this display to request more or less

information by removing output fields from the display or adding them to the

display. See the section "Customizing the Display of Metering Results".

Often the data displayed is only a summary of the data available. You can get

expanded information on a particular portion of the data by clicking Middle

on it. See the section "Expanding Metering Data".

6. Interpreting the results of the metering run

In this step you analyze the metering results and try to identify where the

performance of your program can be improved. See the section "Interpreting

the Results of a Metering Run".

7. Saving the results of a metering run (in hardcopy or a buffer)

The results of a metering run are saved in your Lisp world until you explicit-

ly delete the metering run or cold boot. However, sometimes it is useful to

save the results more permanently, either by printing them or by sending the

Page 135

results to an editor buffer and then using a Zmacs command to write the re-

sults to a file. To do this, use Show Metering Run and give the :Output Des-

tination option. See the section "Show Metering Run Command".

Usually when you are metering a program, you go through the cycle of metering

steps several times. You might choose other metering types to collect information

on different aspects of performance. You might modify the program on the basis of

the metering results, and then meter the program again.

When you begin using the Metering Interface, you might make use of the Meter-

ing Help facilities: See the section "Getting Help in the Metering Interface". The

Metering Interface enables you to use the mouse to give many of the metering

commands: See the section "Using the Mouse in the Metering Interface".

When you do a metering run of a new metering type, it takes some time for the

Metering Interface to do the necessary compilation and set-up work. However, fu-

ture metering runs of the same metering type will not have this start-up delay.

� How to Use the Metering Interface

Getting Help in the Metering Interface

Here are some suggestions for getting help within the Metering Interface. Most of

these suggestions are applicable in most other contexts of the Symbolics Genera

environment.

• What metering commands are available? Press the HELP key for a list.

• What does a metering command do? Enter Help command-name to see the docu-

mentation for a given metering command. You can also click Middle on any of

the commands visible in the command menu.

• What operations can you do on a metering run? Click Right on a metering run

displayed in the History of Metering Runs pane for a menu of operations.

• What operations can you do on an output field? Click Right on an output field

displayed above the Metering Results pane for a menu of operations.

• What operations can you do on a node of a call tree display? Click Right on a

node displayed in the Metering Results pane for a menu of operations.

• What is the information presented under a output field or subfield? Click Middle

on an output field or subfield to describe its contents.�

� Specifying What to Meter

Page 136

The first decision is whether you want to meter within the scope of a form or

within a process.

When you use Meter Form, the form is executed in the Metering Interface pro-

cess, and simultaneously metered. Metering will occur only within that form. You

can meter everything occurring within that form, or specify functions or portions

of functions to meter within that form. See the section "Meter Form Command".

Sometimes you want to meter a function whenever it is normally called within a

process. You don’t want to use Meter Form, because that would execute and meter

the function immediately. Meter in Process allows you to meter one or more func-

tions within a process, without explicitly calling those functions. You can meter ev-

erything occurring within the process, or specify functions or portions of functions

to meter within the process. See the section "Meter in Process Command".

For both Meter Form and Meter in Process, you will be prompted for "What to

meter", which allows you to further specify the code to be metered. The choices

are:

Everything Meter everything within the form/process.

Only When EnabledMeter only the code which is surrounded by a mi:with-

metering-enabled form.

Within Functions Meter only within the functions specified. You will be prompted

for :Metered functions, and you should enter the functions of

interest.

Only When Enabled is used to meter only a portion of code. First you edit one or

more functions of interest to wrap mi:with-metering-enabled around the desired

portion or portions of code and compile the changed function (or functions). Then

you can use Meter Form or Meter in Process and specify Only When Enabled.

This starts a metering run that will meter only the code in the dynamic scope of

mi:with-metering-enabled. See the section "Controlling Metering Within Lisp

Code".

� Choosing a Metering Type

This section describes each metering type, and then gives some general guidelines

and suggestions about choosing the right metering type for different purposes.

Function Call Collects data on every function entry and exit. The display in-

dexes the data by function. This display shows the number of

times each function was called, the total amount of time spent

in each function, the total amount of consing that took place in

each function, and information on any page faults that oc-

curred in each function.

Call Tree Collects the same data as Function Call, but the display index-

es the data by the stack trace. This describes the entire calling

sequence of functions that occurred. Each function is a node of

Page 137

the tree; the callees of a function are displayed below the func-

tion and indented. You can selectively conceal or display nodes

of the tree.

Page Fault Collects data related to the paging system. The display indexes

the data by page fault. The display shows how much time was

spent in each page fault, what kind of page fault occurred, the

virtual address and physical page where the page fault oc-

curred, and the function and/or Lisp object whose reference

caused the page fault.

Statistical Function Call

Collects and displays the same kind of data as does Function

Call. The difference is that Statistical Function Call does not

collect data on every function entry and exit; instead, it period-

ically samples the process being metered.

Statistical Call Tree

Collects and displays the same kind of data as does Call Tree.

The difference is that Statistical Call Tree does not collect da-

ta on every function entry and exit; instead, it periodically

samples the process being metered.

Statistical Program Counter

This metering type incorporates the PC Metering Tools into

the Metering Interface. It collects and displays only exclusive

time, and indexes it by function. It automatically executes the

form a number of times, gradually zooming in on the functions

where most of the time is spent. �

Where to Start?

Function Call and Call Tree are the typical places to start metering. These meter-

ing types collect the same kind of data, but they display it differently. Since Func-

tion Call indexes the data by function, you can see the total amount of time spent

in each function, the total number of times a function was called, and totals for

paging and consing during each function. However, the Function Call display does

not inform you of the calling sequence. In contrast, Call Tree indexes data by the

stack trace, which informs you of the calling sequence. However, if a function was

called in more than one place in the call tree, the information on that function is

not merged together to show you the total number of times the function was

called, total paging, total consing within that function, and so on.

Metering Long Runs

You will notice immediately that when you execute and meter code, it takes much

longer than running the code normally (without metering). For a long run, it

might be prohibitively time-consuming to meter every function entry and exit.

You can use the Statistical Function Call or Statistical Call Tree metering types to

periodically sample the process being metered instead of collected data on every

Page 138

function entry and exit; this enables you to identify performance problems in runs

that are too long to meter completely.

Often it is useful to use one of the statistical metering types to get a rough idea

of where the performance problems are, and then narrow the scope of the meter-

ing to focus on those problems. You can edit your program to use mi:with-

metering-enabled to specify exactly what code should be metered. You can then

use Function Call or Call Tree metering types (and supply the :Only When En-

abled keyword as Yes); much less data will be collected, and the metering run will

go faster. You can also use mi:with-metering-enabled with the statistical metering

types.

Function Call metering is significantly faster than Call Tree metering. Function

Call and Call Tree metering take much longer than their statistical counterparts,

but the data is deterministic, whereas the result of statistical metering is statisti-

cal data.

Metering for Paging Performance

The Function Call and Call Tree metering types give information on paging, in-

cluding the number of page faults and the time spent in the paging system. Often

that information is exactly what you are looking for, and there is no need to use

Page Fault type of metering.

Page Fault metering collects and displays more detailed information on page

faults, and the activities of the paging system. It is intended for people already fa-

miliar with paging systems. Page Fault metering shows what function or object

took the page fault. It also shows information about fetching that occurred, which

is useful for programmers who control the prefetch count by using the :swap-

recommendations option to make-area.

Integration of PC Metering into the Metering Interface

The Statistical Program Counter metering type integrates the PC Metering tools

into the Metering Interface. PC Metering was available prior to the Metering In-

terface, which was introduced in Genera 7.2. Probably for most purposes the Me-

tering Interface will collect and display the desired kinds of data.

The Statistical Program Counter metering is useful only when the form you are

metering has strictly repeatable results. (You cannot use this type of metering for

Meter in Process, only for Meter Form metering runs.) The form is executed a

number of times. It collects and displays the percentage of exclusive time spent in

functions; this information is indexed by function.

In Statistical Program Counter metering, the sampling is supported by microcode.

This means it can meter code within a without-interrupts special form. In con-

trast, in Statistical Function Call and Statistical Call Tree metering, the sampling

is done from another process, so it cannot take place within without-interrupts.

Also, the data will show time spent in escape functions, which is not shown in the

other metering types.

Page 139

� Running and Metering the Code

When using Meter Form, once you have entered the arguments and pressed

RETURN, the metering run begins. The form is executed and the desired kinds of da-

ta are collected during the execution. A metering run takes significantly longer

than running the code without metering, because metering collects a lot of data.

When the metering run finishes, the results are displayed in the Metering Results

pane.

When using Meter in Process, the function being metered is not executed by the

Metering Interface. Instead, the Metering Interface meters that function within

some other process. For example, you might want to meter a function that normal-

ly runs within a network process; you would not want to call that function explic-

itly, but rather meter it whenever it normally is called. Once metering is started,

whenever the function is called within that process, it is metered. In Meter in Pro-

cess you specify explicitly when the metering should start and stop. Whenever you

stop the metering, the desired kinds of data are collected into a metering run,

which is displayed in the Metering Results pane.

� Customizing the Display of Metering Results

The default display of metering results is a summary of the data collected. Each

column is an output field. An output field shows a kind of data, such as consing,

page faults, or time spent in a function. Output fields are divided into subfields;

each subfield shows one aspect of the information.

You can request more detail by adding output fields or subfields to the display, or

by expanding some piece of data already shown. You can request less detail by

deleting output fields or subfields from the display. If desired, you can also set the

default output fields for a given type of run, and cause other runs of that type to

be displayed using the new defaults.

You can get information on the display itself, such as finding out what units are

being displayed. You can use the Metering History to show the results of a previ-

ous metering run.

In many cases, you can give the following commands by using a mouse gesture.

See the section "Using the Mouse in the Metering Interface".

Getting Information on the Display Itself

You can describe the meaning of a major output field or a subfield by positioning

the mouse over the field and clicking Middle.

Describe Output Field Command

Describes the meaning of the data displayed in a given output field. You can

do this by clicking Middle on an output field.

Page 140

Displaying Information not Currently Visible

You can request expanded data by clicking Middle on a piece of data. You can

scroll the various window panes by positioning the mouse on the scroll bar and us-

ing the normal scrolling commands.

Expand Field Command

Expands the data identified by the output field (column) and the function

(row), for a given metering run. You can do this by clicking Middle on the

piece of data you want to expand.�

Deleting Output Fields from the Display

You can delete a major field or a subfield from the display by positioning the

mouse on the field and clicking sh-Middle.

Delete Output Field Command

Deletes an output field from the display of the metering run. You can do

this by clicking sh-Middle on the output field you want to delete.

Delete Output Subfield Command

Deletes an output subfield from the display of the metering run. You can do

this by clicking sh-Middle on the output subfield you want to delete.

Adding Output Fields to the Display

Add Output Field Command

Adds a new field to the display of the metering run. You can do this by

clicking c-m-Left on a metering run.

Add Output Subfield Command

Adds a new subfield to the display of a metering run. You can do this by

clicking c-m-Left on an output subfield.�

Freezing the Display while Adding or Deleting Fields

Lock Results Display Command

Prevents updating of the display of metering results until the Unlock Re-

sults Display command is given. Useful when you are adding or deleting sev-

eral output fields.

Unlock Results Display Command

Reenables the updating of the display of metering results. Use this after you

have used Lock Results Display and finished customizing the output fields.�

Changing the Defaults for Displaying

Once you have added or deleted fields from a metering run, you might want to

cause all future metering runs of that metering type to display the same fields

that this run displays. To do so, use Set Default Output Fields for Type. That sets

the default output fields for displaying runs of that metering type, but it only af-

Page 141

fects future metering runs. You can use Set Output Fields of Run from Defaults to

cause an existing metering run to use the new defaults.

Set Default Output Fields for Type Command

Sets the defaults for displaying future metering runs to be the same as the

fields displayed for the given metering run. This only affects the display of

metering runs of the same metering type as this run.

Set Output Fields of Run From Defaults

Sets the output fields of the given metering-run to the defaults. This is use-

ful when you have changed the defaults and you want a metering run to use

the new defaults. �

Using the Metering History

You can position the mouse over a metering run in the Metering History. Then

you can click Left to display the results of the run, or Middle to describe the run,

or Right for other alternatives.

Describe Metering Run Command

Describes a metering run, including the date and time of the run, what code

was metered, and the metering parameters that were used. You can do this

by clicking Middle on a metering run.

Show Metering Run Command

Displays the results of a metering run. You can do this by clicking Left on a

metering run.

Delete Metering Run Command

Deletes a metering run from the Metering History. You can do this by click-

ing sh-Middle on a metering run.

Re-Meter Command

Repeats a metering run, selecting the type of metering and the code to

meter from the specified metering run. You can do this by clicking s-Middle

on a metering run.

Changing Other Aspects of the Display

Move Output Field Command

Moves an output field to another position in the display of metering results.

You can do this by clicking c-m-Middle on an output field.

Set Display Options Command

Enables you to specify how the data of a metering run should be sorted and

filtered; this is very useful for specifying which kind of data you are particu-

larly interested in seeing. You can do this by clicking on [Set Display Op-

tions] in the menu.

Set Indentation Depth Command

Specifies how many levels not to indent for displaying a call tree metering

run. You can do this by clicking s-m-Middle on a displayed node, to start in-

dentation after that node. �

Page 142

For information on customizing the display of a call tree metering run: See the

section "Exploring a Call Tree".

� Computing Fudge Factors

When you first select the Metering Interface, some initialization work goes on.

The progress note says "Computing fudge factors." The goal of this computation is

to measure the overhead of some of the metering tools, so the metering results do

not reflect any of this overhead. The "fudge factors" are based on the hardware

and software configuration of your machine.

We recommend that you wait until this process has completed before you type any-

thing or move the mouse around. It is important for the machine to be otherwise

idle, while the fudge factors are being calculated.

The computation happens more than once. If the results are roughly similar, then

the Metering facility records the variations and uses these numbers to estimate

the reliability and accuracy of the fudge factors. It then uses these estimates in

the various Error fields in the interface. (See the section "Error Output Subfields

in Metering Results".) On the other hand, if the results vary significantly, the

computation is believed to have failed. This can happen if you move the mouse

rapidly during the computation, for example, or if something else requires action

on the part of the machine, such as unusually heavy network traffic. It might also

happen if your machine has special hardware which the Metering facility did not

anticipate, and for which the Metering facility cannot compensate.

When the fudge factors have not been calculated accurately, if you use Call Tree

or Function Call metering, the metering results you obtain will not be accurate,

because the Metering Interface cannot accurately subtract metering overhead from

the results. Incorrect fudge factors can result in negative times for short func-

tions, for example. If you decide to use the Metering Interface after the computa-

tion has failed, it is very important to display the Error information (such as the

Error% field), so you can see how reliable the results are. (Even when the compu-

tation succeeds, these numbers are still valuable.)

The Metering Interface informs you if the computation has failed, and it provides

some numbers which describe more about how it failed. The Metering Interface

then prompts you for what to do. The choices are:

Retry once Make one more attempt to do the computation, and prompt

again if it fails.

Retry Continue retrying the computation until the measurements are

consistent.

Ignore Use the values computed so far, even though they are possibly

inconsistent.

We advise retrying the computation. To make it more likely to succeed, you might

try moving your mouse off the screen, make sure the garbage collector is off, or

wait for network traffic to die down.

Page 143

If this is not possible, you can use Ignore to proceed past this stage. However, we

recommend against using Function Call or Call Tree metering unless the fudge

factors have been computed correctly.

Before using metering types Function Call or Call Tree you can recompute the

fudge factors by evaluating the following form:

(progn

 (setq metering:*function-entry-fudge-factor-1* 0)

 (metering:enable-metering-utility))

� Using the Mouse in the Metering Interface

It is often convenient to use the mouse to give commands in the Metering Inter-

face. This section summarizes the available mouse gestures. The mouse gestures

are arranged in patterns so it should be easy to remember how to use them. For

example, clicking Middle on something describes that thing.

To take action on a metering run, you can click on a metering run in the Meter-

ing History. To indicate the current metering run, you can click on the header of

the Metering Results pane (where the names of the output fields appear).

Mouse Gesture Action

Left Says "do it". When used on a metering run, it displays the re-

sults of the run. When used on a metering command in the

menu, it prompts you for the arguments to the command. This

mouse gesture can mean different things in different contexts;

it usually enables you to do the most commonly done action on

the highlighted thing. When used on a node in a call tree dis-

play, it offers to hide or show the children (whichever is ap-

propriate).

Middle Gives a description. Can be used on a metering run, a meter-

ing command in the menu, an output field or subfield, or a

piece of data (to expand the data).

Right Gives a menu of commands that can be given on the highlight-

ed thing. Can be used on a metering run, an output field or

subfield, or a visible node in a call tree display.

sh-Middle Deletes the highlighted thing. Can be used to delete a meter-

ing run, to delete an output field or subfield, or to hide a node

in a call tree display.

c-m-Left Adds an output field or subfield. When used on a metering

run, it adds an output field. When used on an output field, it

adds an output subfield.

c-m-Middle Moves an output field or subfield.

s-Middle On a metering run, re-meters the run.

Page 144

s-Left On a node in a call tree display, shows all the node descen-

dants.

s-m-Left On a node in a call tree display, hoists the node. On a node

that has already been hoisted, dehoists the node.

s-m-Middle On a node in a call tree display, starts the indentation after

that node. �

The Metering Interface also offers the following command keyboard accelerators,

which are based on similar accelerators in other parts of Genera:

c-sh-D Describes the current metering run. (This is based on c-sh-D,

which means describe in Zmacs and the input editor.)

c-m-R Re-meters the current metering run. (This is based on c-m-R,

which means reinvoke in the Debugger.)

c-m-U Dehoist current node. This takes a numeric arg. An integer

greater than 0 tells how many levels to dehoist. A numeric ar-

gument of 0 Dehoists all the way. The default is 1 level. (This

is based on c-m-U in Zmacs and the input editor, which means

"up one level of list structure".)

� Interpreting the Results of a Metering Run

In general, interpreting metering results is a skill that requires practice and famil-

iarity with the code being metered. We suggest that you do metering with specific,

limited questions in mind, rather than metering with too great a scope and being

overwhelmed with data, much of which is not relevant. Another approach is to

start with a general question in mind, and use the metering results to help you

limit the scope of future metering runs, thus enabling you to focus on the impor-

tant aspects of your program’s performance.

Be aware that the default display of metering results shows many fields that

might be of interest, but for any given metering run, some of those fields may not

be of interest. You might find it useful to delete fields from the display in order to

focus on the fields that are relevant to the question being asked. On the other

hand, you can also add other fields to the display.

This chapter describes the important concepts that apply to interpreting metering

results. We do not document here what each of the fields of data means. We sug-

gest that you use the online documentation available within the context of the Me-

tering Interface. To find out what a field of data means, position the mouse over a

field or subfield and click Middle to describe it.

Inclusive and Exclusive Time in Metering

When interpreting metering results, it is important to understand the meaning of

inclusive time and exclusive time.

Page 145

Inclusive time The amount of time spent in function, including time spent in

any functions that this function called.

Exclusive time The amount of time spent in function, excluding time spent in

any functions that this function called.

The terms "inclusive" and "exclusive" are also applied to other aspects of perfor-

mance, such as consing or page faults. "Inclusive" always means that any callees

of the function are included in the data, whereas "exclusive" means that the

callees are excluded from the data.

For an illustration of inclusive versus exclusive time, suppose you meter the form

(format t "~&Hello, world.") and specify the Function Call type of metering. The

first function in the display is format. The inclusive time of format is very large;

in fact it is equal to the amount of time spent in the run. However, the exclusive

time of format is very small, because most of the time spent in format was actu-

ally spent in functions called by format.

The inclusive time of a function is the sum of the inclusive times of its callees

and the exclusive time in itself.

Process Time and Time Metering Output Fields

This section describes how time spent in other processes affects metering results,

and describes the difference between the output fields labeled "Time" and "Process

Time".

When you meter a form and do not use without-interrupts, the scheduler will

probably cause other processes to run, interleaved with the process in which you

are metering. You will sometimes see the function process::run-process-

dispatcher in the metering results; this function indicates that a process preemp-

tion has occurred. The Exclusive Time of that function shows how much time was

spent in other processes.

The Metering Interface collects two kinds of data on time. The Process Time out-

put field (whether Inclusive or Exclusive) includes only the time during which the

process of interest was running. The Time output field (whether Inclusive or Ex-

clusive) includes all the time spent during the metering run; that is, both the time

when the process of interest was running, and the time when other processes were

running. You can think of the Time output field as the result of using a stopwatch

or wall clock to time your code.

The Process Time output field is usually more valuable information than the Time

output field. Another interesting piece of information is the %Root subfield of Pro-

cess Time, which shows the proportion of time spent in the process with respect to

time spent in the metering run. This gives you an idea of the proportion of com-

puting power that was allotted to your process during the metering run.

The metering results on paging time, number of page faults, and consing are col-

lected on a per-process basis, so they do not reflect anything that occurred during

other processes.

Page 146

Metering with :Without Interrups�

The Meter Form command offers the :Without Interrupts keyword, which enables

you to execute and meter the form from start to finish without allowing the sched-

uler to give control to other processes. (The form is executed inside a

process:without-preemption form.) Note that this can be dangerous; it causes

both your program and the metering code to run without interruption. Unless the

program is short, this might take a very long time and use up a lot of space on

the machine.

When you do metering and any part of the function being metering uses without-

interrupts (or other forms that disable preemption), the metering code itself is al-

so within the scope of that without-interrupts. Usually the metering code takes

significantly longer than the user code being metered; this has one side-effect you

might notice. For a function that uses without-interrupts, scheduler preemptions

are more likely to occur when you are running metering the function than when

you run your function without metering it. This happens because of the way the

scheduler works; whenever a without-interrupts is exited, the scheduler immedi-

ately checks to see if other processes are waiting to run, and if so, it preempts the

current process. Since the without-interrupts surrounds both the user code and

the metering code (which often takes significantly longer than your code), there is

more time for other processes to be ready to run. Thus preemptions are likely to

occur immediately upon exiting the without-interrupts form during metering.

An additional side-effect of using without-interrupts is that the processor must do

additional work if a preemption has been requested. If preemption has been re-

quested and sys:inhibit-scheduling-flag is t, then the machine chekcs at every un-

bind to see if sys:inhibit-scheduling-flag has been cleared. On the 3600-family

machines, this check is not noticeable. On Ivory machines, this check is imple-

mented by an expensive trap handler, and can affect metering times.

� Exploring a Call Tree

For Call Tree and Statistical Call Tree types of metering, the output field labeled

Function contains the "call tree" of the functions. This describes the entire calling

sequence of functions that occurred. The callees of a function are displayed below

the function and indented.

Each function in a call tree display is called a node. The first function is called

the root node; this is the top-level function you metered. The callees of a function

are known as the "children" of that node. The descendants of a node include all of

its children, all of their children, and so on.

Usually the call tree is not presented in entirety because that would be too long

and hard to decipher; instead a heuristic determines which nodes should be dis-

played. The Metering Interface offers several ways to explore a call tree display.

You can open a node (show all of its children) or close it (hide all of its children).

The symbols in the call tree have the following meanings:

↓ This node is completely opened; all of its children are shown.

Page 147

→ This node is not opened at all; none of its children are shown.

↔ This node is partially open; some of its children are shown.

• This is a terminal or "leaf" node; it has no children.

In many cases, you can give the following commands by using a mouse gesture.

See the section "Using the Mouse in the Metering Interface".

Commands for exposing nodes further

Show Node Children Command

Adds all the children of a node to a call tree metering display. You can do

this by clicking Left on a node with undisplayed children.

Show All Node Descendants Command

Adds all the descendants of a node to a call tree metering display. You can

do this by clicking s-Left on a node.

Commands for concealing nodes or portions of nodes

Hide All But Path to This Node Command

Customizes a call tree metering display to show only the path to the given

node, by removing functions from the display that do not lead directly to

this node.

Hide Node Children Command

Removes all the children of a node from a call tree metering display. You

can do this by clicking sh-Left on a node which is partially or completely

open.

Hide Node Command

Removes a node and all of its descendants from a call tree metering display.

You can do this by clicking sh-Middle on a node. �

Commands for changing the root node

Hoist Node Command

Changes a call tree metering display to focus on a certain node as if it were

the root node, and removes all functions from the display which are not de-

scendants of this node. You can do this by clicking s-m-Left on a node.

Dehoist Command

After you have hoisted a node, you can use Dehoist to restore the display to

a different root node that is no longer displayed. You can do this by clicking

s-m-Left on a node that has been hoisted.�

When you hoist a node, it is often useful to add the /Root subfield to one or more

fields of interest. For example, the /Root subfield of Exclusive Time output field

shows the fraction of exclusive time spent in a given function, with respect to the

new root (as opposed to /Run, the fraction of time in a given function with respect

to the whole run).

Page 148

Command for altering the indentation

Sometimes the indentation is so great that the names of the functions are pushed

off the right edge of the display. There are two solutions to this problem. First,

you can scroll the window horizontally by using the usual scrolling commands.

Second, you can use the Set Indentation Depth command to specify how many lev-

els of the tree should be displayed without indentation; the following levels will be

indented.

Set Indentation Depth Command

Specifies how many levels not to indent for displaying a call tree metering

run. You can do this by clicking s-m-Middle on a displayed node, to start in-

dentation after that node.

The Set Display Option command is very valuable for filtering the results of a call

tree metering run. For information, see the section "Setting the Display Options".

Different Views of the Same Metering Data

The Metering Interface can often give you different views of the same data. For

example, Inclusive Time is a field that can express its data in several views; each

view is expressed by a subfield of the Inclusive Time field. Some of the views in-

clude:

Total The total time spent inclusively in the function.

/Run A bar graph showing the proportion of time spent inclusively in this

function with respect to time spent in the whole run.

%Run Same as /Run, but expressed as a numerical percentage.

Avg Average amount of time spent inclusively in this function, per call.

RAvg "Reasonable Average" amount of time spent inclusively in this func-

tion, per call. This is the average of samples that fell in the main

node of the histogram, only. The partitioning of a histogram into

nodes is done heuristically, at runtime, and is therefore imperfect, at

best. RAvg is a good first cut at filtering out noise, but closer inspec-

tion of the full contents of the histogram is sometimes necessary, if

RAvg depends on false nodes.�

Notice that some of the views describe the relationship between two kinds of data.

For example, /Run shows the proportion of time spent inclusively in this function

with respect to time spent in the whole run.

The default display shows some of these subfields. You can choose to add subfields

to the display, or delete subfields from the display. See the section "Customizing

the Display of Metering Results".

Often the metering results displays a summary of the collected data, and addition-

al data is available to you. You can position the mouse over a piece of data, and

click Middle to expand it. See the section "Expanding Metering Data".

Page 149

Error Output Subfields in Metering Results

The Metering Interface tries to keep track of the reliability of the results of vari-

ous output fields. To display this information, use the Add Output Subfield com-

mand (or click c-m-Left on an output field) to add one or more the the following

fields:

Error The total probable error of this field. The total value of this

field is probably accurate within +/- the error.

Avg Error The probable per-call error of this value. The average value is

accurate only to within +/- the average error.

Error% The percentage error of this value. The value itself is accurate

only to within +/- this percentage.

Error/ Bar graph of the percentage error of this value.�

The Error% and Error/ fields are probably the most useful, because they give a

clear, visual clue as to the reliability of the metering results.

Setting the Display Options

The Metering Interface collects a huge amount of data, and it must make some de-

cisions on how to present the data. The Metering Interface makes some decisions

by default, but it also enables you to specify the criteria in which you are particu-

larly interested.

You can use the Set Display Options command to specify how the data should be

sorted and filtered most usefully for your purposes. The decisions on what criteria

to use for sorting and filtering has a great effect on what results you see on the

screen. As you learn more about the performance of your program, you can contin-

ue to change the display options to answer different questions.

When you use the Set Display Options command, you are prompted with all the

available choices for sorting and filtering. These choices include the major output

fields that are collected for the metering type, and other criteria, such as function

name. You will also see the default sorting and filtering criteria, which gives you

an idea of how the data you are seeing was chosen to be displayed.

By default, the Metering Interface uses the same criterion for both sorting and fil-

tering the results. In some cases, you might wish to sort on one criterion (such as

consing), and filter the data on another criterion (such as Inclusive Process Time).

For Call Tree metering runs, the display options are quite complex, so we describe

them in detail here.

By default, Call Tree metering runs do not display every function called. These

runs are filtered according to five criteria:

Filter the output by: the category or kind of data by which to filter.

Page 150

�

Node Threshold with respect to caller %: None 80

Node Threshold with respect to total %: None 20

Maximum Tree Depth: None integer

Match Functions: None strings �

The last four criteria are all with respect to the filtering category. For example, if

the filtering category is by Total Inclusive Process Time, then the Metering Inter-

face displays any node which took 80 percent of the Process Time of its caller, or

which took 20 percent of the total Process Time of the metering run. (These are

the meanings of Node Threshold with respect to caller, and with respect to total.)

The Metering Interface OR’s together the Node Thresholds, so if a node meets one

threshold, it is displayed.

Sometimes you do a Call Tree metering run, and the functions in which you are

particularly interested do not appear at all in the results. You can specify None for

the two Node Threshold criteria to ensure that all function calls are shown in the

display, and then use the Hide Node command to conceal nodes or branches of lit-

tle or no interest.

The Maximum Tree Depth controls how many levels of the tree should be shown.

If the Maximum Tree Depth is None, then all levels of the call tree that meet the

Node Thresholds are shown. If it is an integer such as 5, then no more than 5 lev-

els of the tree are shown. The Metering Interface AND’s together the Maximum

Tree Depth with the Node Thresholds, which means that to be displayed, a func-

tion must meet one of the Node Thresholds, and must not exceed the Maximum

Tree Depth. The Maximum Tree Depth is also AND’ed with the Match Functions.

Finally, the Match Functions criterion enables you to specify one or more functions

of particular interest. The Metering Interface displays only functions that "match"

the specified Match Functions; this is a substring match, so "append" would match

string-append, append, sage::make-appendix, and so on. To specify more than

one Match Function, separate them by commas. (If strings are separated with

spaces, then they are interpreted as one string with embedded spaces.) These

Match Functions are OR’d, so if a function matches any of the Match Functions,

then it is displayed.

The Metering Interface OR’s the Match Functions criterion with the Node

Thresholds, which means that to be displayed, a node’s function must match the

Match Function or the node must meet the Node Threshold.

If you want to see only those functions that match the Match Functions, then set

both Node Thresholds to 100. (Note that if you set Node Threshold to None, then

Match Functions will have no effect, because all nodes will be displayed.)

Note that in a call tree, if any function is shown, then the calling sequence lead-

ing to that function call is also shown. In other words, the filtering criteria do not

eliminate the calling sequence leading up to a function call. The filtering criteria

simply choose which function calls (and their calling sequences) are displayed.

Overview of How Metering Works

Page 151

This section briefly summarizes how metering works, which should help you under-

stand what the results mean. The metering substrate is the implementation under-

lying the Metering Interface.

Background on Function Call and Call Tree Metering

When you start metering something, the metering substrate sets up a trap which

is entered when the code to be metered begins to execute. When this trap is en-

tered, the metering substrate notes the time when the the function begins to run;

it also begins to collect data on paging and consing. When the code being metered

finishes, the trap is exited and the metering substrate notes the time when it end-

ed (and other data).

You will notice that it takes longer to execute and meter a form than it does to

execute the form without metering it. However, it is important to note that the

metering substrate subtracts all of its own overhead from the metering results.

That is, the metering results (time, page faults, paging system, and consing) cor-

rectly exclude any work done by the metering substrate itself.

Results Collected on a Per-process Basis

Note that during the metering, the scheduler might switch processes from the pro-

cess in which the metered code is running to some other process. When this hap-

pens, the metering substrate "turns off" the collection of data on page faults, pag-

ing system, and consing. Thus the page faults, paging system, and consing results

are collected on a per-process basis, and they correctly exclude any page faults,

paging, or consing done within a different process. However, this is not the case

for the data on time: See the section "Process Time and Time Metering Output

Fields".

Metering Overhead is Excluded when Possible

One overall design goal of the metering tools was to subtract out overhead only if

it could be done accurately, and when this is not possible, to document the possible

anomalies in the metering results. The alternative would be to attempt to estimate

the overhead, which might yield incorrect results, without the user being aware

that the results were inaccurate. One example of the metering tools not subtract-

ing out overhead is in sequence breaks.

See the section "The Effects of Sequence Breaks on Metering Results".

See the section "Metering Percentages Greater Than 100%".

See the section "Metering Overhead When :Within Functions is Used".

Background on Statistical Program Counter Metering

The Statistical Program Counter metering type (also called PC Metering) is done

at the microcode level, and it works differently than the other metering types. For

details: See the section "PC Metering".

PC metering divides up compiled functions into "buckets" by their locations in

memory. It repeatedly executes the form provided to Meter Form, sampling the PC

Page 152

at a high rate. It increments the count of a bucket each time a PC falls within

that range. If the number of samples in a bucket is greater than a given percent-

age (the resolution percentage) of the total number of samples, it will rerun your

form and "zoom in" on this particular bucket. It "zooms in" by ignoring all PC’s

outside of the bucket of interest, and therefore is able to use progressively finer

and finer resolution buckets. When a bucket contains a single function the "zoom-

ing" stops.

The resolution percentage controls how many buckets the metering interface

"searches" (it will skip all buckets that take up less than the resolution percentage

of the total), and consequently how many times it must repeat your form. The fin-

er (or smaller) the resolution, the more times it will have to repeat your form in

order to investigate more buckets.

� Metering Percentages Greater Than 100%

For the output fields that give information in a ratio or percentage, such as the

/Run subfield of Inclusive or Exclusive Time, sometimes the result is greater than

100 percent. In theory, a result greater than 100 percent should never happen.

However, it can happen when the resolution of the the numerator is not the same

as the resolution of the denominator. For example, the paging time is expressed in

units of 1024 microseconds.

One goal of the Metering Interface is to give the user the most complete and un-

doctored information possible. That is, the Metering Interface chooses not to round

the percentage down to 100 percent, but rather to give the actual data to the user,

who can then interpret them.

When a ratio greater than 100 percent occurs, the bar graph displays are filled in

with a darker stipple.

� Metering Overhead When :Within Functions is Used

When you use the :Within function keyword to Meter Form or Meter in Process,

the metered functions are encapsulated, and the encapsulations show up in the me-

tering results. You will see functions that are obviously part of the metering facil-

ity.

These encapsulations usually take only about 4-500 microseconds, so they are usu-

ally insignificant compared to the other data. With the default filtering, they are

almost never visible in the display. However, when you are metering code that

takes less than a couple of milliseconds, the overhead spent in these encapsula-

tions becomes significant and they appear in the display. In a call tree they are

usually top level nodes, and so you can easily ignore them by hoisting the real top

level nodes of interest. In function call metering there is currently no way to elim-

inate these functions automatically.

� Metering Results Are Not Usually Repeatable

Page 153

Note that although you can repeat a metering run, the results themselves are usu-

ally not repeatable. For example, paging performance depends on what pages are

currently in virtual memory, and this is constantly changing. The metering results

depend on all kinds of events that might be occurring in Genera, such as sequence

breaks, incremental garbage collection, notifications, network services, and other

processes. (See the section "The Effects of Sequence Breaks on Metering Results".)

In addition, variations in user code itself, such as caching, often change the meter-

ing results from one run to the next.

There are techniques for looking below the surface of the metering results, to de-

termine how reliable the results are. Sometimes it is useful to meter the same

thing several times in several different ways. If some aspect of the data seems out

of the ordinary or suspicious, you can look at a histogram to see whether all of the

data points are clustered together, or whether a few data points are at one ex-

treme. You can do this by expanding the displayed data, or (when available) adding

the output subfields Dist or WDist. See the section "Expanding Metering Data".See

the section "Distribution of Metering Data".

� Expanding Metering Data

Often the metering results display a summary of the collected data, and additional

data is available to you. You can position the mouse over a piece of data, and click

Middle to expand it.

For example, in a Function Call metering run, the column Inclusive Time shows

the total amount of time spent inclusively in the function, which is a sum of the

inclusive time for each call of the function. The function might have been called

hundreds or thousands of times. Click Middle on one of those pieces of data to get

more information on the Inclusive Time. You will see information such as:

Lowest data point

Highest data point

Average

Standard deviation

Histogram of the data points

Usually you picture a histogram as having the majority of the data points gathered

around one main peak. However, sometimes the data points are gathered around

more than one recognizable peak; there might be an underflow peak (below the

main peak) and/or an overflow peak (above the main peak). When the data points

are gathered around more than one peak, the histogram is multi-modal. For multi-

modal histograms, the display shows more than one histogram, in order to focus on

each of the peaks. Thus there is always one histogram showing the main peak, and

there might be one or two more histograms, showing the underflow and overflow

peaks, if any.

For a graphic example: See the section "Distribution of Metering Data".

� Distribution of Metering Data

Page 154

Some output fields collect information about the distribution of the data points.

This information is available in the "Dist" and "WDist" output subfields, which are

usually not part of the default display, but can be added with the Add Output Sub-

field command

The "Dist" output subfield stands for "Distribution" and "WDist" means "Weighted

Distribution". Each shows a small graphic representation of the data points. The

middle of the graph is the average; the left-hand edge is 0, and the right-hand

edge is twice the average. If there is data whose value is greater than twice the

average, a gap appears afer the right-hand edge, and a smaller horizontal bar ap-

pears to its right; this represents the data whose values are greater than twice the

average.

Dist The height of each bar is related to the call count. That is, for the in-

clusive time output field, if several calls to a function fall within the

same range of time, the height of each bar is controlled by the number

of function calls within that category.

WDist The height of each bar shows how much weight that data point con-

tributed to the average. That is, for the inclusive time output field, sev-

eral calls to a function might fall into the same range of time; the

height of that bar is controlled both by the product of the number of

calls in that range, and the (average) amount of time the calls in that

range took.

Below we generate a metering run that has a wide distribution of data, show how

the Dist and WDist fields appear on the screen, and discuss their significance.

Generating the Metering Run

We generated these results by Meter Form, where the arguments were:

CALL-TREE Metering Run

Created: 1/31/90 17:40:12

Form: (LOOP FOR I DOWNFROM 1000 TO 0 DO (FROB (FLOOR I 40)))

What was metered: Everything

Count: 1

Process: Metering Interface 1

Without Interrupts: Yes

We defined frob as follows:

(defun frob (n)

 (if (plusp n)

 (let ((limit (random n)))

(loop repeat limit))

 (two-point)))

Page 155

�

(defun two-point ()

 (let ((n (random 2)))

 (if (oddp n)

(loop repeat 10 doing (random 2)))))

The purpose of this metering run was to show a widespread distribution of data.

The functions frob and two-point have no other purpose.

Visual Appearance of Dist and WDist Fields

�

Figure 4. Dist and WDist Metering Output Subfields

The leftmost edge of the horizontal bar means 0. The small tick that descends

from the middle of the horizontal bar of each Dist and WDist entry marks where

the middle, or the average value is. The rightmost edge of the horizontal bar is

twice the average value.

In some cases you will notice that past the rightmost edge of the bar there is a

gap followed by another, smaller horizontal bar. This gap indicates that there are

data points whose value is greater than twice the average value. Figure 3 shows

such gaps in all of the functions except for two. In some cases so few data points

occur there that they don’t show up as a vertical bar. Still, the fact that there is a

bar beyond the right edge indicates that some amount of data is there.

Using Dist to Understand the Average

Notice that the first function was called once. Its inclusive time is 100% of the

run. Since it was called exactly once, there is only one data point. With only one

data point, the Dist field clearly shows that all the data (one value) is clustered at

the middle of the average.

The other functions were all called many times, so there are many data points.

Here the Dist field shows more useful information. Look at the Dist field for the

function two-point. The data points are clustered around two different values.

That is, there is a peak somewhere below the average and another peak above the

average. There is no data at all appearing at the average. (This is entirely due to

the definition of two-point.) Here the Dist tells you that the average was calculat-

ed based on two distinct behaviors. In cases such as these, probably the average it-

Page 156

self is unimportant, but the average of each separate peak is important. You can

get that information by expanding the data (clicking Middle on the row).

�

Figure 5. Expanded Data for two-point

The expanded data in Figure 4 confirms what we learned from the Dist output

field; the data points are clustered around two different areas. The histogram is

multi-modal (with two modes). The average of the 40 calls was 36.1. However the

average of 20 calls was 64.75, and the average of the other 20 calls was 7.45.

Using WDist to Understand the Effect of Data Past the Gap

The Dist field shows where all the data points occurred. You can think of this as a

seesaw where the average is the fulcrum. The seesaw is balanced on the average.

If there is a gap and another horizontal bar to the far right, then the seesaw is

longer on that end. The one thing that the Dist field cannot show you is how

much longer that side is.

The data appearing past the gap affects the average. Its effect is based on two

things: the number of data points there, and their values. The Dist field shows the

number of data points there, but gives you no information about what their values.

In other words, you don’t know how long the gap is, or how much longer that side

of the seesaw is.

The WDist field shows you the weighted distribution. It gives you an idea of how

great an effect on the average the data points have. When computing an average

from many data points, a small number of data points that have a high value have

great impact on the average. On the other hand, a large number of data points

with low values have a small impact on the average.

Look at the Dist and WDist fields for cli::typep-function. The Dist field shows

that the great majority of data occurred well below the average. There is a gap, so

some amount of data happened beyond twice the average. Since there is no vertical

bar beyond the gap, very few data points occurred there. However, the WDist

shows that the weighted value of those few data points was very large. In other

words, a very few data points occurred quite far past twice the average. The right

side of the Dist seesaw is much longer than the left.

� The Effects of Sequence Breaks on Metering Results

Symbolics computers periodically take a sequence break, an asynchronous interrupt.

During sequence breaks some mouse-tracking, I/O interrupts, and disk events

Page 157

might occur. Also, during the sequence break control might switch to the sched-

uler, which then checks to see whether other processes are waiting to be activated.

The value of the variable si:*default-sequence-break-interval* controls how many

sequence breaks occur before the scheduler is activated.

Although sequence breaks can occur even during without-interrupts, control is

never switched to the scheduler inside a without-interrupts. However, there is

some amount of overhead due to the sequence break itself.

The metering tools cannot measure exactly the overhead due to sequence breaks,

so that overhead shows up in the metering results. The effects of sequence breaks

are quite easy to recognize in metering results. For example, if you meter a func-

tion hundreds of times, you would expect the inclusive times of the function for all

class to be very similar. However, you might notice that one call takes 250 mi-

croseconds or so (this varies from one machine to another) longer than the other

calls; this extra time is probably due to a sequence break.

Sequence breaks are not something you should try to control; they happen in the

normal operation of the machine. However, it is good to be able to recognize a se-

quence break, so you won’t be concerned when you notice this anomaly in the me-

tering results.

� The Effects of Paging on Metering Results

When you are metering something, the metering code and data significantly in-

crease the working set of your program. Thus, paging occurs more frequently dur-

ing metering than it would otherwise occur.

If a page fault occurs during the execution of a function, the effect on the meter-

ing results is very large. You might notice this in a Call Tree metering run; a

function might be called ten times, and its inclusive time for nine of those calls is

approximately equal, but the inclusive time spent in one of the calls is far greater.

If you notice this, look in the PFs or PS output field for that function call; proba-

bly a page fault occurred during it.

Since the Function Call metering runs display data indexed by function, the output

fields show the total time spent in each function, not the time for each individual

call of a given function. If you notice that a page fault occurred during a Function

Call metering run, you can usually observe the effect of paging by expanding a

piece of data (by clicking Middle on it) in the Inclusive Time field. This shows a

histogram of the inclusive time in each of the calls to that function. You might no-

tice one data point at the high extreme, which is probably the function call during

which the page fault occurred. See the section "Expanding Metering Data".

We mention this for general background. If your goal in metering is to reduce

paging time, then the extreme data points that occur due to paging represent in-

formation that is directly helpful to your goal. However, the goal might be to in-

crease efficiency of a program in aspects other than paging. In that case, you

would probably ignore the extreme data points caused by paging. If your goal is

more general (simply to improve performance, however it can best be done), you

would probably try to weigh the effects of paging to determine whether it is

Page 158

worthwhile to spend effort in reducing paging time. In this case the histogram

would be useful because it probably gives you some idea how often page faults are

occurring by the number of data points are at the high extreme.

� Page Fault Output Fields

Several of the metering types have two output fields related to paging: PFs (num-

ber of page faults) and PS Time (paging system time).

Usually, the time spent in the paging system is more valuable information than

the number of page faults. The performance of your program is affected by the

time spent in the paging system; you can compare the proportion of time spent

paging versus time spent in the function itself, to get an idea how significant the

effects of paging are on the function.

The data under PS Time is measured in microseconds, but each individual sample

is quantized in units of 1024 microseconds. This quantization is achieved by using

a clock that "ticks" every 1024 microseconds. This is not equivalent to rounding

each individual sample to units of 1024 microseconds. If we assume a uniform dis-

tribution of entries into the paging system with respect to this 1024 microsecond

clock, then the sum of a large number of samples as a measure of "Total Time

spent in the Paging System" becomes progressively more accurate. For a small

number of samples it is important to remember that the possible error is plus-or-

minus 1024 microseconds per sample.

It is possible to have zero page faults but still spend a small amount of time in

the paging system. This might indicate a map miss (that is, the paging system ex-

periences a miss in the hardware cache that changes a virtual address to a physi-

cal address; it is necessary to page in that cache) or some other background activi-

ty in the paging system.

The different types of page faults take different amounts of time. The longer times

can be several hundred times as long as the shorter times. A reasonable time for a

page fault that uses the disk is 15 or more milliseconds. An entry into the paging

system that does not use the disk might be satisfied in less than a millisecond.

� Interpreting Results of Meter in Process

Metering is implemented by noting when a function is entered and when it is ex-

ited. When using Meter Form, the form is always executed from start to finish,

and the metering data is collected in entirety.

In contrast, when you use Meter in Process, you stop and start the metering ex-

plicitly. This means there is the possibility of starting or stopping metering in the

middle of the execution of a function being metered. This is not necessarily bad,

but it does have an effect on the data.

Consider what happens if you are doing a Call Tree metering run and you start

the metering in the middle of a call tree. The function at the top of the tree (the

root) was entered before metering was started, so the metering tools cannot collect

data starting at that level of the tree. Instead, the callees of that function are me-

Page 159

tered, and they appear to be roots in the metering results. (A root function has

level 1 in a call tree.) Thus the callees of the real root function appear as discon-

nected roots in the display, because the real root function was not metered from

the beginning of its execution.

Now consider what happens if you are doing a Function Call metering run and you

stop the metering before a function completes its execution. If that function was

called only once, its Call Count is zero; this informs you that it was entered but

not exited. However, if the function was called more than once, data has already

been collected and will appear in the total time spent in the function, and the oth-

er fields. In this case the Call Count will be some integer which represents how

many times the function was executed completely (both entered and exited) during

metering. In this situation there is no way of knowing that the function was en-

tered one additional time without being exited.

In summary, the metering tools collect data only for functions that are both en-

tered and exited during metering. Sometimes you can control the starting and

stopping of Meter in Process runs carefully, with the goal of not starting or stop-

ping in the middle. In other cases, the metering results contain the information

you want, even if the data is incomplete.

� The Effects of the Sample Size in Statistical Metering

For Statistical Function Call and Statistical Call Tree metering, the results are

more valuable as the number of samples increases. For example, if you meter a

function that runs so quickly that only one sample takes place, the metering re-

sults will not be at all representative of the function’s performance.

We suggest that you describe a metering run (click Middle on a metering run) to

find out how many times sampling occurred during the metering. In Statistical

Function Call metering you can also find out how many times a particular function

was sampled (that is, how many times that function was being executed during the

sampling) by expanding a portion of data (click Left on a piece of data).

Note that Statistical Program Counter metering runs your function again and

again, in order to achieve a representative sample. This is not done by Statistical

Function Call or Statistical Call Tree metering.

� Statistical Metering of Code That Uses without-interrupts

The metering types Statistical Function Call and Statistical Call Tree do not ac-

cept the keyword :Without Interrupts. These metering types work by sampling the

function periodically. Sampling cannot take place when code is running inside a

without-interrupts form, because the scheduler will not interrupt that code in or-

der to allow the metering process to sample the code. For example, if you wrap a

without-interrupts form around a function and then try to meter that function

with either the Statistical Function Call or the Statistical Call Tree metering type,

the result will be no data. This holds for any portion of the code which is within

the scope of without-interrupts.

Page 160

The Statistical Program Counter metering type is done at the microcode level, so

it can meter code within the a without-interrupts form.

� Controlling Metering Within Lisp Code

mi:with-metering-enabled &body body Special Form

Specifies where metering should be enabled. All code in the dynamic scope of the

body will be metered when you use Meter Form or Meter in Process, and specify

:Only When Enabled. Alternatively, you can create a metering run by using

mi:with-new-metering-run instead of the commands in the Metering Interface.

For example, you might want to exclude from metering any code that does prelimi-

nary set-up work, or performs a transition from one state to another, or cleans up

afterward. The following example enables metering for two portions of the code:

(mi:with-new-metering-run (:metering-type :call-tree)

 (setup-code)

 (mi:with-metering-enabled

 (first-step))

 (transition-code)

 (mi:with-metering-enabled

 (second-step))

 (cleanup-code))�

� mi:with-new-metering-run ((&key :metering-type :name :process :without-interrupts)

&body body) Special Form

Creates a new metering run without using the Metering Interface; note that you

need to use the Metering Interface to view the results. Use this special form in

conjunction with mi:with-metering-enabled. All code of the body is executed, and

any code within a mi:with-metering-enabled form is metered. The result is a me-

tering run, which is placed in the Metering History pane of the Metering Inter-

face. This metering run is not necessarily current, so to display it you should click

Left on the metering run.

:metering-type One of the following: :function-call, :call-tree, :page-fault,

:statistical-function-call, :statistical-call-tree. The default is

:function-call. See the section "Choosing a Metering Type".

:name A string used to identify this metering run. There is no de-

fault for :name.

:process The process in which to execute and meter the body. The de-

fault is the Metering Interface process.

:without-interrupts If t, the code within mi:with-metering-enabled is executed in-

side a without-interrupts form. This means that no other pro-

cess can interrupt the execution of the metering run. This

Page 161

should be used with caution, because it can be dangerous for

any code that does a lot of consing or takes a long time. If nil,

the body is executed normally, and the results may show time

spent in other processes. (Note that the functions running in

other processes are not shown, but the time spent in them is

shown). The default is nil. If the metering type is :statistical-

function-call or :statistical-call-tree, you should not supply

:without-interrupts as t because no sampling would take place.

See the section "Statistical Metering of Code That Uses

without-interrupts".�

See the special form mi:with-metering-enabled.

� Dictionary of Commands in the Metering Interface

Add Output Field Command

Add Output Field metering-run new-field before-field �

Adds a new field to the display of the metering run. The available fields depend on

the type of metering.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

new-field A field of data not already being displayed.

before-field States where to place the new field in the display; the new

field is placed immediately to the left of the before-field.

You can do this by clicking c-m-Left on a metering run. After entering the field to

be added, a bar will appear somewhere within the output field. You can move that

bar horizontally until you have it where you want the subfield to be placed, and

then click Left to add the field to that position.

This command is available only within the Metering Interface.

� Add Output Subfield Command

Add Output Subfield metering-run new-subfield before-field

Adds a new subfield to the display of the metering run. The available subfields de-

pend on the type of metering.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

new-subfield A subfield of data not already being displayed.

Page 162

before-field States where to place the new field in the display; the new

field is placed immediately to the left of the before-field.

You can do this by clicking c-m-Left on an output subfield. After entering the sub-

field to be added, a bar will appear somewhere within the output field. You can

move that bar horizontally until you have it where you want the subfield to be

placed, and then click Left to add the subfield to that position.

This command is available only within the Metering Interface.

� Dehoist Command

Dehoist metering-run call-tree-node keyword

After you have hoisted a node, you can use Dehoist to change the display to use a

different root node which is no longer displayed. The default is to restore the dis-

play to use the previous root node.

keyword {:number of levels}

:number of levelsAn integer or "All the way". The default is the integer that

would restore the display to its previous root. All the way

means to restore the display to reinstate the top-level function

as the root. �

You can do this by clicking s-m-Left on a node that has been hoisted.

This command is available only within the Metering Interface, and only for call

tree displays.

� Delete Output Field Command

Delete Output Field metering-run output-field

Deletes an output field from the display of the metering run.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

output-field An output field, which is one of the column headers. You can

type in the name of an output field, or click on one in the dis-

play. �

You can do this by clicking sh-Middle on the output field you want to delete.

This command is available only within the Metering Interface.

� Delete Output Subfield Command

Page 163

Delete Output Subfield metering-run output-subfield

Deletes an output subfield from the display of the metering run.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

output-subfield An output subfield, which is one of the column sub-headers.

You can type in the name of an output subfield, or click on one

in the display.

You can do this by clicking sh-Middle on the output subfield you want to delete.

You can achieve the same effect by positioning the mouse over the

This command is available only within the Metering Interface.

� Delete Metering Run Command

Delete Metering Run metering-run

Deletes a metering run from the Metering History.

metering-run A metering run. You can click on a metering run in the Meter-

ing History. �

You can do this by clicking sh-Middle on a metering run.

This command is available only within the Metering Interface.

� Describe Metering Run Command

Describe Metering Run metering-run

Describes a metering run, including the date and time of the run, what code was

metered, and the metering parameters that were used.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

You can do this by clicking Middle on a metering run.

This command is available only within the Metering Interface.

� Describe Output Field Command

Describe Output Field output-field

Describes the meaning of the data displayed in the output-field.

Page 164

output-field An output field or subfield, which is one of the column head-

ers. You can type in the name of a field, or click on one in the

display.�

You can do this by clicking Middle on an output field.

This command is available only within the Metering Interface.

� Expand Field Command

Expand Field metering-run output-field function

Expands the data identified by output-field (a column) and function (a row), for the

given metering-run.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

output-field An output field, which is one of the column headers. You can

type in the name of an output field, or click on in the display.

This identifies the column of interest.

function The function spec of the function for which data should be ex-

panded. You can type in the function spec, or click on one in

the display. This identifies the row of interest.�

You can do this by clicking Middle on the piece of data you want to expand.

This command is available only within the Metering Interface.

� Help Command in Metering Interface

Help command-name

Displays the documentation about the Metering Interface command.

To get a list of the Metering Interface commands, press the HELP key.

You can do this by clicking Middle on a command that appears in the metering

command menu.

� Hide All But Path to This Node Command

Hide All But Path to This Node call-tree-node

Customizes a call tree metering display to show only the path to the given node,

by removing functions from the display that do not lead directly to this node. This

does not remove any descendants of this node from the display.

You can achieve the same effect by positioning the mouse over a node, clicking

Right, and choosing this command. This command is available only within the Me-

tering Interface, and only for call tree displays.

Page 165

� Hide Node Children Command

Hide Node Children call-tree-node

Removes all the children of a node from a call tree metering display.

You can do this by clicking sh-Left on a node which is partially or completely

open.

This command is available only within the Metering Interface, and only for call

tree displays.

� Hoist Node Command

Hoist Node metering-run call-tree-node

Changes a call tree metering display to focus on a certain node as if it were the

root node. Removes all functions from the display which are not descendants of

this node. When you hoist a node, it is often useful to add the /Root subfield to

one or more fields of interest. For example, the /Root subfield of Exclusive Time

output field shows the fraction of exclusive time spent in a given function, with

respect to the new root (as opposed to /Run, the fraction of time in a given func-

tion with respect to the whole run).

You can do this by clicking s-m-Left on a node.

This command is available only within the Metering Interface, and only for call

tree displays.

� Lock Results Display Command

Lock Results Display

This is useful when customizing the display of metering results. You will notice

that normally when you add or remove output fields, the Metering Interface imme-

diately updates the display. This can be cumbersome. When you know you will be

adding or deleting one output field after another, you can use this command to

prevent the updating of the display. After you have finished specifying what output

fields should be displayed, use Unlock Results Display to update the display of me-

tering results.

This command is available only within the Metering Interface.

� Meter Form Command

Meter Form form metering-type what-to-meter keywords �

Immediately executes and simultaneously meters the form and displays the results.

This command is available only within the Metering Interface.

Page 166

form Any Lisp form

metering-type {Function Call, Call Tree, Page Fault, Statistical Function Call,

Statistical Call Tree, Statistical Program Counter.} See the

section "Choosing a Metering Type".

what-to-meter {Everything, Only when Enabled, Functions.}

Everything Meter everything within the form/process.

Only when Enabled Meter only the code which is surrounded

by a mi:with-metering-enabled form.

Within Functions Meter only within the functions specified.

You will be prompted for :Metered func-

tions, and you should enter the functions of

interest. See the section "Metering Over-

head When :Within Functions is Used".�

keywords The keywords allow you to specify parameters that control the

metering run. The keywords vary according to the metering-

type.�

All types of metering accept these keywords:

:Count {integer} Execute the form this many times, and collect data

only on the last run of the code. The default is 1. Note that

often the first time a form is executed is not a representative

run, for a variety of reasons. For example, sometimes some

compilation occurs during the first execution of a form. Anoth-

er example is paging; probably significantly more paging is

necessary the first time a form is executed than the subse-

quent times. Often using this keyword is useful for metering a

more representative run.

:Name {name} A name to be used when printing and describing this

run. This name will appear in the Metering History window

pane.�

The following keyword is accepted by Function Call, Call Tree, Page Fault, and

Statistical Program Counter:

:Without Interrupts

{Yes No} Yes executes the form inside a process:without-

preemption form. This means that no other process can inter-

rupt the execution of the metering run. This should be used

with caution, because it can be dangerous for any code that

does a lot of consing or takes a long time. When No, the form

is executed normally, and the results may show time spent in

other processes. (Note that the functions running in other pro-

cesses are not metered or displayed, but the time spent in

Page 167

them is shown). The default is No. Using :Without Interrupts

is useful for preventing irrelevant data from being collected

and displayed, but it does not usually make the environment

more representative (unless the code is typically executed with-

in a process:without-preemption form).

Note that if you specify both :Only When Enabled and :With-

out Interrupts as Yes, only the code within the mi:with-

metering-enabled form is surrounded by process:without-

preemption.

Using :Without Interrupts is particularly useful for the Statis-

tical Program Counter metering type, because it usually yields

more repeatable results. When doing metering by sampling (in-

stead of metering constantly), the results are more valuable

when all of the runs are similar. If you are metering a form

which has very different results each time it is run, the results

of metering by sampling will be only a rough approximation of

the characteristics of all the sampled runs, and may not be a

good approximation of any given run.�

The following keyword is accepted by Page Fault:

:Initially Flush All Pages

{Yes No} If Yes, all pages are flushed from virtual memory

prior to the metering run. The default is No. This is useful

when trying to set up the metering to occur in an environment

in which the virtual memory does not contain the pages of in-

terest; this might be representative of the first time a form is

executed.

The following keyword is accepted by Statistical Program Counter:

:Resolution Percentage

{float} The default is 0.5 percent. The resolution percentage

controls how many buckets the metering interface "searches"

(it will skip all buckets that take up less than the resolution

percentage of the total), and consequently how many times it

must repeat your form. The finer (or smaller) the resolution,

the more times it will have to repeat your form in order to in-

vestigate more buckets. For more information: See the section

"Overview of How Metering Works".

� Meter in Process Command

Meter in Process process metering-type what-to-meter keywords

This command is useful when you want to meter some code that normally runs

within a process. For example, you might want to meter a function that normally

Page 168

runs within Zmail. You don’t want to use Meter Form, because that would execute

and meter the function immediately; instead, you want the function to be metered

whenever it is normally called. Meter in Process allows you to meter one or more

functions within a process, without explicitly calling those functions.

This command offers greater control over when the metering is started and

stopped than does the Meter Form command. By default, the metering starts im-

mediately after you finish entering the Meter in Process command. To stop the

metering, you should select the Metering Interface. Either press END or answer YES

to the displayed question, which is "Do you want to stop metering now?"

This command is available only within the Metering Interface.

process The process in which to meter.

metering-type {Function Call, Call Tree, Page Fault, Statistical Function Call,

Statistical Call Tree.} Note that you cannot use the Statistical

Program Counter metering type with Meter in Process. See the

section "Choosing a Metering Type".

what-to-meter {Everything, Only when Enabled, Functions.}

Everything Meter everything within the process.

Only when Enabled Meter only the code which is surrounded

by a mi:with-metering-enabled form.

Within Functions Meter only within the functions specified.

You will be prompted for :Metered func-

tions, and you should enter the functions of

interest. See the section "Metering Over-

head When :Within Functions is Used".�

keywords The keywords allow you to specify parameters that control the

metering run. The keywords vary according to the metering-

type.�

All types of metering accept these keywords:

:Name {name} A name to be used when printing and describing this

run. This name will appear in the Metering History window

pane.

:Only When Enabled

{Yes No} Yes means to meter only those portions of the code

that occur within the dynamic scope of a mi:with-metering-

enabled form. No means to meter the specified function specs

or the whole process. The default is No.

:Start and stop {Until End Chosen, Function Keys} Specifies the way in which

metering is started and stopped. The default is Until End Cho-

sen.

Page 169

Until End Chosen means that metering is started immediately

after the command is entered, and it is stopped when the user

presses END in the Metering Interface.

Function Keys means that metering is started when the user

presses FUNCTION (and stopped when the user presses FUNC-

TION). This allows you asynchronous control over when me-

tering is started and stopped. See below for information on

how :Start and stop interacts with :Mode lock p.

:Mode lock p {Yes No} Specifies whether the MODE LOCK key controls

whether metering is on or off. Yes means that metering is

turned on only when the MODE LOCK key is pressed. No means

that the MODE LOCK key is not used to start and stop metering.

The default is No. Note that MODE LOCK does not give an asyn-

chronous signal to start or stop metering; instead, it gives a

synchronous signal. This means that it might take a moment

for the Metering Interface to poll for the status of MODE LOCK,

so its effect is not immediate. See below for information on

how :Start and stop interacts with :Mode lock p. �

The following keyword is accepted by Page Fault:

:Initially Flush All Pages

{yes no} If Yes, all pages are flushed from virtual memory pri-

or to the metering run. The default is No. This is useful when

trying to set up the metering to occur in an environment in

which the virtual memory does not contain the pages of inter-

est; this might be representative of the first time a form is

executed. �

Interaction between :Mode lock p and :Start and stop

Usually when users specify :Mode lock p as Yes, they specify :Start and stop as

Until End Chosen. That way you cause metering to occur by pressing MODE LOCK;

you cause it to stop occurring by releasing MODE LOCK; and you finally end the me-

tering run entirely and display the data by selecting the Metering Interface and

pressing END.

If you specify :Start and Stop as Function Keys and :Mode lock p as Yes, then me-

tering is started only when you have pressed FUNCTION (and the MODE LOCK key

is pressed. In other words, each of the keywords states how metering is started, so

you must meet both requirements in order to start the metering. You can stop me-

tering from occurring by releasing the MODE LOCK key, and cause metering to start

again by pressing MODE LOCK again; you finally end the metering run entirely and

display the data by entering FUNCTION).

� Move Output Field Command

Page 170

Move Output Field metering-run output-field before-field

Moves the specified output-field to the left of before-field in the display of metering

results.

You can do this by clicking c-m-Middle on an output field.

This command is available only within the Metering Interface.

� Re-Meter Command

Re-Meter metering-run

Repeats a metering run, selecting the type of metering and the code to meter from

the specified metering run. You can then change the metering parameters, or start

metering with the same parameters.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

You can do this by clicking on [Re Meter] in the Metering Interface menu, or by

clicking s-Middle on a metering run.

This command is available only within the Metering Interface.

� Set Default Output Fields for Type Command

Set Default Output Fields for Type metering-run

Sets the defaults for displaying future metering runs of a certain metering type to

be the same as the output fields displayed for the given metering-run. Any meter-

ing runs you do from now on will use these defaults. You can cause an existing

metering run to use these defaults for display by using Set Output Fields of Run

from Defaults on that metering run.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

This command is available only within the Metering Interface.

� Set Display Options Command

Set Display Options metering-run

Enables you to specify how the data of a metering run should be displayed, includ-

ing how the data should be sorted. The display options depend on the metering

type of the run.

Page 171

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

You can achieve the same effect by clicking on [Set Display Options] in the Meter-

ing Interface menu. This command is available only within the Metering Interface.

The Metering Interface collects a huge amount of data, and it must make some de-

cisions on how to present the data. The Metering Interface makes some decisions

by default, but it also enables you to specify the criteria in which you are particu-

larly interested.

You can use the Set Display Options command to specify how the data should be

sorted and filtered most usefully for your purposes. The decisions on what criteria

to use for sorting and filtering has a great effect on what results you see on the

screen. As you learn more about the performance of your program, you can contin-

ue to change the display options to answer different questions.

When you use the Set Display Options command, you are prompted with all the

available choices for sorting and filtering. These choices include the major output

fields that are collected for the metering type, and other criteria, such as function

name. You will also see the default sorting and filtering criteria, which gives you

an idea of how the data you are seeing was chosen to be displayed.

By default, the Metering Interface uses the same criterion for both sorting and fil-

tering the results. In some cases, you might wish to sort on one criterion (such as

consing), and filter the data on another criterion (such as Inclusive Process Time).

For Call Tree metering runs, the display options are quite complex, so we describe

them in detail here.

By default, Call Tree metering runs do not display every function called. These

runs are filtered according to five criteria:

Filter the output by: the category or kind of data by which to filter.

�

Node Threshold with respect to caller %: None 80

Node Threshold with respect to total %: None 20

Maximum Tree Depth: None integer

Match Functions: None strings �

The last four criteria are all with respect to the filtering category. For example, if

the filtering category is by Total Inclusive Process Time, then the Metering Inter-

face displays any node which took 80 percent of the Process Time of its caller, or

which took 20 percent of the total Process Time of the metering run. (These are

the meanings of Node Threshold with respect to caller, and with respect to total.)

The Metering Interface OR’s together the Node Thresholds, so if a node meets one

threshold, it is displayed.

Sometimes you do a Call Tree metering run, and the functions in which you are

particularly interested do not appear at all in the results. You can specify None for

the two Node Threshold criteria to ensure that all function calls are shown in the

display, and then use the Hide Node command to conceal nodes or branches of lit-

tle or no interest.

Page 172

The Maximum Tree Depth controls how many levels of the tree should be shown.

If the Maximum Tree Depth is None, then all levels of the call tree that meet the

Node Thresholds are shown. If it is an integer such as 5, then no more than 5 lev-

els of the tree are shown. The Metering Interface AND’s together the Maximum

Tree Depth with the Node Thresholds, which means that to be displayed, a func-

tion must meet one of the Node Thresholds, and must not exceed the Maximum

Tree Depth. The Maximum Tree Depth is also AND’ed with the Match Functions.

Finally, the Match Functions criterion enables you to specify one or more functions

of particular interest. The Metering Interface displays only functions that "match"

the specified Match Functions; this is a substring match, so "append" would match

string-append, append, sage::make-appendix, and so on. To specify more than

one Match Function, separate them by commas. (If strings are separated with

spaces, then they are interpreted as one string with embedded spaces.) These

Match Functions are OR’d, so if a function matches any of the Match Functions,

then it is displayed.

The Metering Interface OR’s the Match Functions criterion with the Node

Thresholds, which means that to be displayed, a node’s function must match the

Match Function or the node must meet the Node Threshold.

If you want to see only those functions that match the Match Functions, then set

both Node Thresholds to 100. (Note that if you set Node Threshold to None, then

Match Functions will have no effect, because all nodes will be displayed.)

Note that in a call tree, if any function is shown, then the calling sequence lead-

ing to that function call is also shown. In other words, the filtering criteria do not

eliminate the calling sequence leading up to a function call. The filtering criteria

simply choose which function calls (and their calling sequences) are displayed.

� Set Indentation Depth Command

Set Indentation Depth metering-run integer

Specifies how many levels to display without indenting, when displaying a Call

Tree metering run. The levels after integer are indented. This helps you customize

the display to focus on an area of interest in the call tree, which might be many

levels deep in the tree.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

integer Number of levels not to indent in the display. Indenting starts

at the level after integer. �

You can do this by clicking s-m-Middle on a displayed node, to start indentation

after that node.

This command is available only within the Metering Interface, and only for call

tree displays.

Page 173

� Set Output Fields of Run From Defaults

Set Output Fields of Run from Defaults metering-run

Sets the output fields of the given metering-run to the defaults. When you next

display the metering run, the output fields will be displayed according to the de-

faults for metering runs of this type. This is useful when you have changed the

defaults and you want a metering run to use the new defaults.

metering-run A metering run. You can click on a metering run in the Meter-

ing History. �

This command is available only within the Metering Interface.

� Show All Node Descendants Command

Show All Node Descendants call-tree-node

Adds all the descendants of a node to a call tree metering display.

You can do this by clicking s-Left on a node.

This command is available only within the Metering Interface.

� Show Node Children Command

Show Node Children call-tree-node

Adds all the children of a node to a call tree metering display.

You can do this by clicking Left on a node with undisplayed children.

This command is available only within the Metering Interface.

� Show Metering Run Command

Show Metering Run metering-run keywords

Displays the results of the metering run in the Metering Results window, or if

:Output Destination is specified, sends the results to that destination.

metering-run A metering run. You can click on a metering run in the Meter-

ing History.

keywords {:Output Destination}

:Output Destination

{buffer window printer} Sends the metering results to the

specified buffer, window, or printer. Neither of the other two

usual output destinations (files and streams) are supported.

Page 174

However, you can send the output to a file by first sending it

to a buffer and then saving that buffer to a file.

You can achieve the same effect by clicking on [Show Metering Run] in the Meter-

ing Interface menu, or by clicking Left on a metering run.

This command is available only within the Metering Interface.

� Unlock Results Display Command

Unlock Results Display

Use this to update the display of metering results, after you have locked the dis-

play by using Lock Results Display. You can achieve the same effect by clicking on

the phrase Unlock Results Display which appears in the Metering Results pane

when the display is locked.

This command is available only within the Metering Interface.

� Macros for Metering the Execution Time of Forms

Sometimes a programmer wants a simple measure of how long a Lisp form takes

to execute. It might not be worthwhile setting up the Metering Interface if only a

quick test is desired, or if the amount of data collected by the Metering Interface

is not needed. Probably the first alternative to come to mind is the Common Lisp

time function: See the special operator time.

Often, time is not adequate for simple metering. Since the behavior of the form

varies depending on the state of the machine, one sample isn’t enough. To under-

stand the behavior of a form, it is useful to execute the form many times, and to

see a histogram of the values so you can see the effects of "noise", bimodal behav-

ior, or extreme data points. For an example: See the section "Distribution of Me-

tering Data".

Here we document several macros that give you more flexibility and accuracy in

metering the time of short forms. They are similar to time in the respect that

they take a single form and return some simple metering information. They are

more precise and informative than time in the measurement of time itself, al-

though they provide less information than time with regard to the storage system,

sequence-breaks, and consing.

The metering macros address the problems with using time. They enable you to

meter a form by executing it many times and computing the average execution

time. They simultaneously measure the metering overhead, which gives you an in-

dication of the accuracy of the results.

Here we summarize the metering macros:

metering:with-part-of-form-measured

Executes the form many times, and meters the subform that is surround-

ed by metering:form-to-measure.

Page 175

metering:with-form-measured

Executes the form many times, and meters the whole form.

metering:define-metering-function

Returns a compiled function which can be used to meter the form more

than once. Useful when you know in advance that you will be metering a

form repeatedly.

metering:measure-time-of-form

Has the same effect as metering:define-metering-function in that it us-

es a compiled function to meter the form, but instead of returning the

metering function, it runs it once to meter the form. The metering func-

tion is not saved for further use. �

Probably metering:define-metering-function is the most generally useful of the

group. It enables you to meter the form more than once. However, if you want to

execute a form and meter only a portion of it, use metering:metering-with-part-

of-form-measured.

Here we document each of the metering macros:

metering:with-part-of-form-measured (&key (:no-ints ’t) :verbose :values (:time-

limit 1) :count-limit) &body form Macro

Executes the form many times, and meters the subform that is surrounded by

metering:form-to-measure. Note that metering:form-to-measure does not return

the value of the subform it surrounds.

If you want to meter the whole form, the macro metering:with-form-measured is

more convenient: See the macro metering:with-form-measured.

This tells you how many microseconds (on average) were needed to evaluate the

form or subform. It also measures the overhead of the metering code.

By default, the average time and the average overhead are printed out in a mouse-

sensitive way. You can click on these averages to display the histogram of values

that were used to compute them.

The keywords :time-limit and :count-limit can be used to control how many times

the form is evaluated. The :verbose and :values keywords control the output of this

macro. See the section "Keyword Options for Metering Macros".

This form is most useful in compiled code. When they are used in interpreted

code, the results are primarily a measurement of the interpreter, and not the form.

See the section "Output of the Metering Macros".

� metering:with-form-measured (&key (:no-ints ’t) :verbose :values (:time-limit 1)

:count-limit) &body form Macro

Executes the form many times, and meters the whole form. This is an abbreviation

for the most common case of metering:with-part-of-form-measured, in which the

Page 176

entire form is metered. If you want to meter a subform within a form, use

metering:with-part-of-form-measured. See the macro metering:with-part-of-form-

measured.

This tells you how many microseconds (on average) were needed to evaluate the

form or subform. It also measures the overhead of the metering code.

By default, the average time and the average overhead are printed out in a mouse-

sensitive way. You can click on these averages to display the histogram of values

that were used to compute them.

The keywords :time-limit and :count-limit can be used to control how many times

the form is evaluated. The :verbose and :values keywords control the output of this

macro. See the section "Keyword Options for Metering Macros".

This form is most useful in compiled code. When they are used in interpreted

code, the results are primarily a measurement of the interpreter, and not the form.

See the section "Output of the Metering Macros".

� metering:define-metering-function name args (&key (:no-ints t) :verbose :values

:count-limit :time-limit) &body form Macro

Returns a compiled function which can be used to meter the form more than once.

This is useful when you know in advance that you will be metering a form repeat-

edly.

This is an abbreviation for the following form (where where keywords1 and key-

words2 are constructed according to the rules explained below):

(compile (defun function-name (arglist . keywords1)

 (metering:with-form-measured (keywords2) form)))

Any keywords specified in metering:define-metering-function will not be accessi-

ble in the function function-name. Any keywords omitted from the keyword list in

metering:define-metering-function will become part of the arglist of function-

name.

The compiled function function-name can be used to execute the form many times,

and meter it. It tells you how many microseconds (on average) were needed to

evaluate the form or subform. It also measures the overhead of the metering code.

By default, the average time and the average overhead are printed out in a mouse-

sensitive way. You can click on these averages to display the histogram of values

that were used to compute them.

The keywords :time-limit and :count-limit can be used to control how many times

the form is evaluated. The :verbose and :values keywords control the output of this

macro. See the section "Keyword Options for Metering Macros". See the section

"Output of the Metering Macros".

� metering:measure-time-of-form (&key (:no-ints ’t) :verbose :values :time-limit

:count-limit) &body form Macro

Page 177

Has the same effect as metering:define-metering-function in that it uses a com-

piled function to meter the form, but instead of returning the metering function, it

runs it once to meter the form. The metering function is not saved for further

use.

See the macro metering:define-metering-function. See the section "Keyword Op-

tions for Metering Macros". See the section "Output of the Metering Macros".

� Keyword Options for Metering Macros

The metering macros accept the following keyword arguments:

:no-ints The default is t. A non-nil value causes the metering to be done inside a

without-interrupts. If the form is exceptionally long, or if it relies on

other processes to work correctly, then :no-ints should be nil. If you

specify :no-ints t, and the length of the form times :count-limit (if

specified) is greater than five minutes, you will be prompted to check if

you really want to disable the scheduler for that long.

:time-limit

Value is an integer, expressing a number of seconds. The default is 1

second. This specifies that the form should be repeated until this many

seconds of real-time have elapsed. This includes the amount of time

spent recording the metering results. :time-limit and :count-limit are

mutually exclusive keywords.

:count-limit

Value is an integer. This specifies that the form should be repeated this

many times. :time-limit and :count-limit are mutually exclusive key-

words.

:verbose The default is nil. A non-nil value causes the full histograms to be print-

ed out instead of just the averages. This keyword is overridden by the

:values keyword.

:values The default is nil. A non-nil value causes nothing to be printed out; the

metering results are represented by three returned values. The first is

the average time, the second is the histogram of the times for evaluation

of the form, and the third is the histogram for the overhead loop. You

can get other information by using the histograms as described below.�

Using the Histograms

The following functions can be done to the histograms returned when you give the

:values option:

;; To display the results of a histogram

(metering:display-collector histogram stream)

Page 178

�

;; Returns the average value of the histogram

(metering:average histogram)

�

;; Returns the total of the data in the histogram

(metering:total histogram)

�

;; Returns standard-deviation of the data

(metering:standard-deviation histogram)

�

;; Maps over the buckets in the histogram

(metering:map-over-histogram-buckets

 histogram #’(lambda (low high count)))

�

To display a number in such a way so that clicking Middle will expand the data

into a full histogram, you must present the data with the ’metering:metering-

results presentation type. For example:

(dw:with-output-as-presentation (:object rainfall

 :type ’metering:metering-results)

 (format t "~&The average rainfall was ~,5F inches."

 (metering:average rainfall)))

� Output of the Metering Macros

By default, the output displays two or three quantities.

Average time

The first quantity, "Average time", is the time a single execution of the body took

to execute, averaged over some number of repetitions. The number of repetitions

can be controlled by using either the :count-limit or :time-limit keyword options.

Average clock overhead

The second quantity, "Avg clock overhead", is the amount of time spent by identi-

cal metering code metering the empty loop. This is provided for calibration (you

can subtract this time from the "Average time") and to provide some measure of

the significance of the result (if the "Average time" is close to the value of "Avg

clock overhead", the results are suspect.

Clock variation

The third quantity may or may not be present. It begins with the phrase "A sec-

ond sampling of the clock". This is printed out when a second measurement of

the empty loop does not agree with the first. This indicates that something is mak-

ing it hard to get reproducible metering results. This can be caused by many

things. Although it does not always mean you should repeat the metering, it does

Page 179

mean that you should look at the numbers produced on such a run a little more

carefully than normal.

The decision whether to print out the third value is controlled by the variable

metering:*tolerable-clock-variation*. Its value is a number between 0 and 1,

which represents a percentage. When the two numbers differ by more than this

percentage then the third value is printed.

Histograms are available

By default, the average time and the average overhead are printed out in a mouse-

sensitive way. You can click on these averages to display the histogram of values

that were used to compute them.

Usually you picture a histogram as having the majority of the data points gathered

around one main peak. However, sometimes the data points are gathered around

more than one recognizable peak; there might be an underflow peak (below the

main peak) and/or an overflow peak (above the main peak). When the data points

are gathered around more than one peak, the histogram is multi-modal. For multi-

modal histograms, the display shows more than one histogram, in order to focus on

each of the peaks. Thus there is always one histogram showing the main peak, and

there might be one or two more histograms, showing the underflow and overflow

peaks, if any.

� PC Metering

PC Metering was available prior to the Metering Interface, which was introduced

in Genera 7.2. Probably for most purposes the Metering Interface is a more conve-

nient way to meter programs. See the section "Metering Interface".

Program counter (PC) metering is a tool to allow the user to determine where

time is being spent in a given program. PC metering produces a histogram that

you can interpret to improve the performance of your program.

The mechanism of PC metering is as follows. At regular intervals, the front-end

processor (FEP) causes the main processor to task switch to special microcode.

This microcode looks up the macro PC that contains the virtual address of the

macroinstruction that the processor is currently executing. If this virtual address

falls outside the monitored range, the microcode increments a count of the number

of PCs that missed the monitored range. If the address is within the monitored

range, the microcode subtracts the bottom of the monitored range from the PC,

leaving a word offset. It then divides the word offset by the number of words per

bucket and uses that as an index into the monitor array. Next, it increments that

indexed element of the monitor array. This can only measure statistically where

the macro PC is pointing; for the results to be valid, a relatively large number of

samples per bucket must be available.

For Symbolics 367X, 365X, 364X, and 363X machines with Rev. 4 of the in-

put/output board (this denotes machines with digital audio), PC metering is per-

formed in the audio microtask and samples at a rate of 50,000 samples per second.

This is useful for metering almost all code.

Page 180

For Symbolics 3600 computers with Rev. 2 of the input/output board, the FEP

samples at about 170 samples per second, so PC monitoring is probably valid only

for sessions that take longer than five to ten seconds.

You specify a range of the program to be monitored. The range is specified by low-

er and upper bounding addresses, and compiled functions that lie between those

addresses are monitored. The range is divided into some number of buckets. The

relative amount of time that the program spends executing in each bucket is mea-

sured.

The parameters you specify are the range of addresses to be monitored, the num-

ber of buckets, and an array with one word for each bucket.

Some of the metering functions deal with compiled functions. In this context a

compiled function is either a compiled code object or an sys:art-16b array, into

which escape functions (small, internal operations used by the microcode) compile.

meter:make-pc-array size Function

Makes a PC array with size number of buckets. This storage is wired, so you prob-

ably do not want this to be more than about 64. pages, or (* 64 sys:page-size)

words.

meter:monitor-all-functions Function

Changes the microcode parameters so that the monitor array refers to every possi-

ble function in the Genera world at the time of the execution of meter:monitor-

all-functions. This usually causes many functions to map into a single bucket, and

is therefore useful in obtaining a first estimate of which functions are using a sig-

nificant portion of the execution time.

meter:setup-monitor &optional (range-start 0) (range-end 268435456) Function

Monitors the region between range-start and range-end.

meter:monitor-between-functions lower-function upper-function Function

Monitors all functions between lower-function and upper-function. This does not

work in some situations, such as:

• You compile a function from a buffer, which puts its definition outside the

range

• A previous region is extended, and new functions go there instead of in mono-

tonically increasing virtual addresses.�

Example:

Page 181

(defun start-of-library ()())

 ...code...

 (defun end-of-library ()())

 (meter:monitor-between-functions #’start-of-library #’end-of-library)�

meter:expand-range start-bucket &optional (end-bucket start-bucket) Function

Changes the microcode parameters so that the entire monitor array refers only to

the functions previously contained within the range specified by start-bucket and

end-bucket. start-bucket and end-bucket are inclusive bounds.

meter:report &optional function-list Function

Prints a summary of the data collected into the monitor array. You should not

have to supply the function-list argument.

meter:start-monitor &optional (clear t) Function

Enables collection of PC data. If clear is not nil, the contents of the monitor array

are cleared. If clear is nil, the array is not modified, so that the new samples are

simply added to the old.

meter:stop-monitor Function

Disables further collection of PC data.

meter:print-functions-in-bucket bucket Function

Prints all the compiled functions that map into the specified bucket.

meter:list-functions-in-bucket bucket Function

Returns a list of all the compiled functions that map into the specified bucket.

meter:range-of-bucket bucket Function

Returns the virtual address range that maps into the specified bucket.

meter:with-monitoring clear body... Function

Enables monitoring around the execution of body. If clear is not nil, clears the

monitor array first. See the function meter:start-monitor.

meter:map-over-functions-in-bucket bucket function &rest args Function

Page 182

Calls function for every compiled function in the specified bucket. The first argu-

ment to function should be the compiled function, and any remaining arguments

are args.

meter:function-range function Function

Returns two values, the buckets that contain the first and last instructions of func-

tion.

meter:function-name-with-escapes object Function

If object is a compiled function, returns the function spec of the compiled function.

Otherwise, returns nil.

Debugger

Overview of the Debugger

Genera, the Symbolics software environment, offers you a host of powerful debug-

ging tools. The most comprehensive of these tools is the Symbolics interactive De-

bugger and its window-oriented counterpart, the Display Debugger.

Other debugging tools are:

• The Trace facility, which performs certain debugging actions when a function is

called or when a function returns. See the section "Tracing Function Execution".

• The Advise facility, which modifies the behavior of a function. See the section

"Advising a Function".

• The Step facility, which allows you to execute interpreted forms in your pro-

gram, one at a time, so that you can examine what is happening when execution

suspends at every "step." See the section "Stepping Through an Evaluation". The

Debugger’s :Single Step command also performs stepping through compiled

functions. See the section "Single Step Command".

• The evalhook facility, which allows you to get a particular Lisp form whenever

the evaluator is called. The Step facility also uses evalhook. See the section "A

Hook Into the Evaluator".

• The Inspector is a window-oriented program that lets you inspect data objects

and their components. See the section "The Inspector".

• Peek is a program that gives a dynamic display of various kinds of system sta-

tus. See the section "Using Peek".

Page 183

• The Metering Interface allows you to meter the performance of a form, function,

or process. See the section "Metering Interface".

For information on the Display Debugger, see the section "Using the Display De-

bugger".

In the Genera software environment, unlike more traditional programming envi-

ronments, you do not have to include the Debugger explicitly when you compile

your programs. Generally, you can debug your code as you write it without having

to perform a series of complicated compiling, loading, and executing procedures be-

tween source code development and debugging.

Because Symbolics user-interface features allow you to perform many Symbolics ac-

tivities simultaneously  Zmacs, Zmail, the file system, a Dynamic Lisp Listener,

and so on  debugging becomes an easy task, regardless of how many system ac-

tivities you are using. You can move in and out of the Debugger as easily as you

can move in and out of any other activity in Genera.

For example, the Debugger command c-E (:Edit Function) brings up a specified

function for you to edit in a Zmacs editor window. This is useful when you have

found the function that caused the error and want to edit that function immedi-

ately. Another command, c-M (:Mail Bug Report), creates a bug report message in

a mail window and puts a backtrace into it. While composing the bug report, you

can switch back and forth between the Debugger and the mail window.

The Debugger is there whenever you need it. It is invoked whenever an error oc-

curs in your program’s execution or the execution of a system function. That is,

your machine brings you into the Debugger whenever it encounters an error that

is not handled by a condition handler, for example, when you reference an un-

bound variable. See the section "Entering and Exiting the Debugger". Once in the

Debugger, you are given a choice of actions that can correct the error. These ac-

tions are called proceed and restart options. See the section "Proceeding and

Restarting in the Debugger".

You can also enter the Debugger explicitly, at any time, by pressing m-SUSPEND or

c-m-SUSPEND. Or you can make your program enter the Debugger by inserting the

break or zl:dbg function into your program code. See the section "Entering and

Exiting the Debugger".

Upon Debugger entry, besides selecting one of the proceed and restart options, you

can enter any of the Debugger’s commands. These commands are full-form English

commands, built on the normal Command Processor (CP) substrate. In fact, several

Debugger commands are in the global command table. For more information on

Debugger commands, see the section "Entering a Debugger Command" and see the

section "Debugger Command Descriptions".

In the Debugger you can also evaluate a form in the lexical (user-program) context

of the current frame. This context is referred to as the Debugger’s evaluation envi-

ronment. You can think of the Debugger’s evaluation environment as a special

read-eval-print loop that not only evaluates forms but also evaluates them in the

context of the suspended function, where the lexically apparent values of all the lo-

cal variables are accessible. For more information on the evaluation environment,

see the section "Evaluating a Form in the Debugger".

Page 184

Like other output in the Genera software environment, Debugger output is mouse

sensitive, so you can perform many useful Debugger operations using the mouse.

For more information on mouse capabilities, see the section "Using the Mouse in

the Debugger".

The Debugger also provides some online help facilities. For more information on

help facilities, see the section "Getting Help for Debugger Commands".

For complete information on the uses of these features and other Debugger fea-

tures, see the section "Using the Debugger". For descriptions of all Debugger

commands, see the section "Debugger Command Descriptions".

In general, you use the Debugger when:

• Your program triggers the Debugger because garbage  an unbound variable or

too many arguments perhaps  was passed to a function, and you want to find

out where the garbage came from. See the section "Analyze Frame Command".

• You want to see what’s happening in the sequence of function calls just execut-

ed, including a history of these function calls, the argument values passed, the

local-variable values, the source code, and the compiled code. See the section

"Show Backtrace Command". See the section "Debugger Commands for Viewing

a Stack Frame".

• You want to find out who or what is referencing a special variable or any other

location in memory. See the section "Monitor Variable Command".

• You want to perform debugging operations using the mouse. See the section

"Using the Mouse in the Debugger".

• You want to continue program execution, proceed from an error, restart a func-

tion, return from a function, or throw through a function. See the section "De-

bugger Commands to Continue Execution".

• Your condition handler does not work properly, and you want to debug this han-

dler when it is encountered. See the section "Enable Condition Tracing Com-

mand".

• You want to edit your function’s source code in Zmacs immediately after you

have found the error. See the section "Edit Function Command".

• You want to put a Debugger backtrace into a mail message and send this mes-

sage as a bug report. See the section "Mail Bug Report Command".

• You want to use Debugger breakpoint commands, instead of using the Trace fa-

cility or inserting a function in your code, to set Debugger breakpoints. See the

section "Debugger Commands for Breakpoints and Single Stepping".

Page 185

Overview of Debugger Commands

The Debugger offers more than 50 full-form English commands, which are imple-

mented as CP commands. Debugger commands are entered inside the Debugger at

the Debugger’s command prompt, a right arrow (→). Commands fall into eight

general categories:

• Commands for viewing a stack frame

• Commands for stack motion

• Commands for general information display

• Commands to continue execution

• Trap commands

• Commands for breakpoints and single stepping

• Commands for system transfer

• Miscellaneous commands�

Most Debugger commands have corresponding key-binding accelerators, which

means you can press a combination of one or more keys in place of the command.

For example, you can press the accelerator c-E instead of entering the command

:Edit Function.

Most Debugger commands also have keywords you can use to modify the com-

mand’s behavior.

Many Debugger commands share the global command table. Therefore, you can en-

ter these commands while you are in a CP command loop. You do not have to be

in the Debugger. Note, however, that when you enter these commands while in the

Debugger, you must type a preceding colon with every command; for example, you

must type :Set Breakpoint in the Debugger.

These commands are:

• :Clear All Breakpoints

• :Clear Breakpoint

• :Disable Condition Tracing

• :Edit Function

• :Enable Condition Tracing

• :Monitor Variable

• :Set Breakpoint

• :Set Stack Size

• :Show Breakpoints

• :Show Compiled Code

• :Show Function Arguments

• :Show Monitored Locations

• :Show Source Code

• :Show Standard Value Warnings

• :Unmonitor Variable�

Page 186

For general information on using the Debugger, see the section "Using the Debug-

ger". For documentation of each Debugger command, see the section "Debugger

Command Descriptions".

Overview of Debugger Evaluation Environment

In the Debugger, you can evaluate a form as easily as you can in a Dynamic Lisp

Listener read-eval-print loop. Evaluating a form in the Debugger, however, is par-

ticularly useful because you are evaluating the form in the context of a user pro-

gram and the current stack frame. This means you can see the value of Lisp ob-

jects at the point in program execution where an error occurred or at the precise

place in your program where you explicitly suspend execution and invoke the De-

bugger. You can even reference lexical (local) variables at the point where execu-

tion suspends.

Evaluating a form in the Debugger is a simple task. If you type a character other

than the first character in a Debugger command  a colon or accelerator key 

the Debugger immediately brings you into its evaluation environment. In other

words, just type the form. Evaluation in the proper environment happens automat-

ically.

For complete information on how to evaluate a form in the Debugger: See the sec-

tion "Evaluating a Form in the Debugger".

Overview of Debugger Mouse Capabilities

When the output generated by Debugger commands is displayed in a Dynamic

Window, it is mouse sensitive. You can perform several useful debugging opera-

tions simply by using the mouse to click on something. Some of these operations

include: setting a breakpoint, monitoring a variable or another location in memory,

evaluating a form, editing a function, setting the current frame, and choosing a

proceed or restart option. The mouse documentation line at the bottom of the

screen tells you what actions are available for the currently highlighted output

item.

Besides performing certain mouse operations by clicking directly on displayed De-

bugger output, you can use menus to perform the usual large variety of other

types of operations on Debugger output, just as you can with other kinds of output

generated in the Genera software environment.

For more information on using the mouse in the Debugger: See the section "Using

the Mouse in the Debugger".

Overview of Debugger Help Facilities

The Debugger provides online help for Debugger commands and their components,

such as keywords. You can get help for all Debugger commands by typing c-HELP,

which displays brief command descriptions and available key-binding accelerators.

For more information about Debugger help: See the section "Getting Help for De-

bugger Commands".

Page 187

Entering and Exiting the Debugger

Virtually anywhere in Genera, the Debugger is invoked during the signalling of an

error to which no condition handlers are bound. The Debugger is invoked not only

when errors occur during program execution, but also when errors occur in rela-

tion to functions that control various system operations, such as loading patches

and executing commands in the Dynamic Lisp Listener.

The Debugger is invoked within the process that signalled the error. Since the De-

bugger is not a separate process, several distinct processes can all be in the De-

bugger at the same time, independently.

Usually, entry to the Debugger is triggered by an error. However, you can also en-

ter the Debugger explicitly at any time. You exit the Debugger via the ABORT key,

the :Abort command, or by invoking a proceed or restart handler.

This chapter describes various ways to enter and exit the Debugger.

Entering the Debugger

Enter the Debugger in one of three ways:

• Automatically, by causing an error.

• Explicitly, by pressing m-SUSPEND or c-m-SUSPEND.

• Through your program execution, by inserting and calling the break function or

the zl:dbg function.

Entering the Debugger by Causing an Error

The Debugger is invoked automatically when errors occur during your program

execution, or during the execution of system functions, or when you explicitly

cause an error.

Error Display

Upon entering the Debugger via an error, you receive an error message and a

choice of actions to take. Errors are signalled by the microcode and by Lisp pro-

grams by error or related functions.

For example, suppose you trigger an error by using an unbound variable, FOO.

The Debugger error display might look like this:

�

Trap: The variable FOO is unbound.

�

SI:*EVAL:

Page 188

�

 Arg 0 (SYS:FORM): FOO

 Arg 1 (SYS:ENV): NIL

 --Defaulted args:--

 Arg 2 (SI:HOOK): NIL

s-A, RESUME: Supply a value to use this time as the vaue of FOO

s-B, s-sh-C: Supply a value to store permanently as the value of FOO

s-C: Retry the SYMEVAL instruction

s-D, ABORT: Return to Lisp Top Level in Dynamic Lisp Listener 1

→�

The word Trap, Error, or Break followed by a boldface message, such as the line at

the top of this display, indicates you have entered the Debugger. Trap, Error, and

Break are the most common causes, although there are others. Trap, Error, and

Break have the following meanings:

• Trap indicates an error signalled by the microcode.

• Error indicates an error signalled by a program.

• Break indicates entry to the Debugger by keystroke (m-SUSPEND or c-m-SUSPEND),

the break function, or the zl:dbg function.

The message that follows describes the error in English  in this example, an un-

bound variable. The next five lines in the example show the stack frame in which

the error occurred, the function that was being called, and the current values of

arguments. The next six lines are available proceed and restart options, which are

discussed in the next section.

The right-facing arrow at the end of the display (→) is the Debugger’s command

prompt, which waits for you to enter a command. Multiple arrow prompts indicate

recursive invocations of the Debugger. For more information on recursive Debug-

ger invocations: See the section "Using Recursive Debugger Invocations".

Debugger Proceed and Restart Options

Whenever you enter the Debugger, either for the first time or recursively, it dis-

plays a list of possible actions for you to take. These actions, called proceed and

restart options, allow you to proceed (continue program execution) from the error,

leave the Debugger, restart (return to) a previous activity, or take some other ac-

tion.

A list of proceed and restart options might look like this:

s-A, RESUME: Supply a value to use this time as the vaue of FOO

s-B, s-sh-C: Supply a value to store permanently as the value of FOO

s-C: Retry the SYMEVAL instruction

s-D, ABORT: Debugger command level 1

s-E: Return to Lisp Top Level in Dynamic Lisp Listener 1�

Page 189

You can select one of these options by pressing the keys that appear in the left-

hand column or by clicking on an option with the mouse. All of these options are

bound to the SUPER key.

For more information on proceed and restart options: See the section "Proceeding

and Restarting in the Debugger".

Entering the Debugger with m-SUSPEND, c-m-SUSPEND

When you want to enter the Debugger explicitly, without waiting for an error to

occur, you can do so in one of two ways:

Press m-SUSPEND

Press c-m-SUSPEND�

If the program you are running is waiting for keyboard input, use m-SUSPEND.

If you want to enter the Debugger while your program is actually running, use

c-m-SUSPEND, which calls the Debugger immediately, at any time, regardless of

your program’s state.

Entering a Break Loop with SUSPEND, c-SUSPEND

Using SUSPEND or c-SUSPEND, without the META key modifier, causes entry to a

break loop. A break loop, also called a breakpoint loop, is a Dynamic Lisp Listener

read-eval-print loop that comes up on your screen in a special small "breakpoint"

window whenever you temporarily suspend an activity, such as Zmacs or Zmail.

This allows you to suspend into a Dynamic Lisp Listener instead of pressing SE-

LECT L to actually change activities.

Do not confuse this break loop with a Debugger breakpoint. A break loop is a Dy-

namic Lisp Listener read-eval-print loop, which is activated when you suspend your

current activity. A Debugger breakpoint, which you set via the Set Breakpoint

command, the break function, the zl:dbg function, m-SUSPEND, or c-m-SUSPEND,

suspends into the Debugger, usually for the purpose of debugging a program. Once

in the Debugger, you can evaluate forms using the Debugger’s read-eval-print loop

(evaluation environment).

When you want to enter a break loop, you can do so in one of two ways:

Press SUSPEND

Press c-SUSPEND�

If the program you are running is waiting for keyboard input, use SUSPEND.

If you want to enter a break loop while your program is actually running, use

c-SUSPEND, which brings up the break loop immediately, at any time, regardless of

your program’s state.

To leave the break loop and return to your previous activity, press the RESUME key.

Page 190

Entering the Debugger with break and zl:dbg Functions

A third way of entering the Debugger is by inserting the break or the zl:dbg

function into your program’s source code. These functions can help you detect er-

rors when you place one of them at strategic points in your program  places

where you can examine the stack and pinpoint probable causes of errors.

The following paragraphs provide more information on the break and the zl:dbg

functions.

break &optional format-string &rest format-args Function

Like zl:dbg, when evaluated, causes entry to the Debugger (a Debugger Break).

However, break takes a format-string and format-args instead of a process.

The format-string is a user-written error message that is printed in the Debugger’s

Break message whenever break is encountered and you enter the Debugger. for-

mat-args are the zl:format-style arguments to zl:format directives in format-string.

break is a temporary way to insert Debugger breakpoints into your program while

you are debugging it. It is not designed for permanent use in your program as a

way of signalling errors. Therefore, you would use this function only for the dura-

tion of your debugging session. Continuing from break will not trigger any unusu-

al recovery action.

zl:dbg &optional process Function

Forces process into the Debugger so that you can look at its current state. zl:dbg

sets up a restart handler for ABORT and RESUME that exits from the zl:dbg function

back to the original process. The message for this restart handler is "Allow pro-

cess to continue". You can use :Throw, :Return, :Reinvoke, and other similar De-

bugger commands when you enter the Debugger via zl:dbg.

• With no argument, it enters the Debugger as if an error had occurred for the

current process. It is not an error; in particular, catch-error does not handle it.

You can include this form in program source code as a means of entering the

Debugger. This is useful for breakpoints and causes a special compiler warning.

• With an argument of t, rather than a process, window, or stack group, it finds a

process that has sent an error notification.

Suppose you are running in process X and you use zl:dbg on some process Y. Pro-

cess Y is forced into the Debugger, no matter what it is doing. Technically, it is

"interrupted", similar to how c-SUSPEND and c-m-SUSPEND work. Process Y starts

running the Debugger, using the stream *debug-io*, which gets the same stream

as was bound to *terminal-io* in process X. At this time, process X waits in a

state called DBG until process Y leaves the Debugger, and so process X does not

contend for the stream.

Exiting The Debugger

Page 191

To exit the Debugger, use the ABORT key, the :Abort command, or invoke a restart

option. ABORT, which is a very powerful command, takes you out of the process

that received the error.

If an error brings you into the Debugger, and you don’t want to use the Debugger,

you can get back to the top command level in which your program is running by

simply pressing ABORT. In this case, the top command level is the level in which

you were working prior to the Debugger call  the first and only invocation of the

Debugger.

If you have made a number of errors, or if you have called the Debugger explicitly

several times, then you probably are in the middle of a series of recursive Debug-

ger invocations. In this case, ABORT returns you to the previous invocation. If you

keep pressing ABORT, the invocations unwind until you actually leave the Debugger

and return to top level.

If you find yourself in the middle of many recursive Debugger invocations, or if

you are in the Debugger’s evaluation environment, and you want to leave the De-

bugger immediately: Press m-ABORT, which brings you back to top level immediate-

ly.

Using the Debugger

This chapter offers some general instructions for using the Debugger. Specifically,

it covers the following topics:

• Entering a Debugger command

• Getting help for Debugger commands

• Proceeding and restarting in the Debugger

• Evaluating a form in the Debugger

• Using recursive Debugger invocations

• Using the mouse in the Debugger

• Creating Debugger proceed menus

Entering a Debugger Command

Entering a Debugger command is almost identical to entering a command in the

Command Processor (CP) to a Dynamic Lisp Listener. In fact, you can enter many

Debugger commands in both the Debugger and the CP because these commands

share the same command table. If you have not done so already, read the section

"Entering a Command" about entering commands in the CP. For more general in-

formation about the Command Processor: See the section "Communicating with

Genera".

When an error brings you into the Debugger, or when you enter the Debugger

through m-SUSPEND, c-m-SUSPEND, break, or zl:dbg, the Debugger prompts you for

commands. The Debugger’s command prompt is a right arrow (→). Recursive De-

bugger invocations prompt you with two or more arrows. For example, the third

Debugger invocation prompts you with →→→. See the section "Using Recursive

Debugger Invocations".

Page 192

At its command prompt, the Debugger expects a full-form command, such as :Show

Backtrace, or a command accelerator, such as c-B. When giving a full-form com-

mand in the Debugger, you must precede the command with a colon. For example:

:Show Backtrace�

If you enter anything other than a colon or an accelerator  anything that is not

a Debugger command  the Debugger brings you into its evaluation environment,

where you can evaluate Lisp expressions. See the section "Evaluating a Form in

the Debugger".

Because they are implemented as CP commands, Debugger commands have posi-

tional arguments, keywords, and command completion, which allows you to enter a

command without typing the whole command name. You can also edit a Debugger

command with the input editor. For more information on positional arguments,

keywords, and command completion: See the section "Communicating with Genera".

Debugger Command Accelerators

Most Debugger commands have key-binding accelerators. You can enter a com-

mand’s accelerator instead of its full-form command name. Some commands have

only one corresponding accelerator. For example, the accelerator c-m-F stands for:

:Show Function�

Other commands, however, have two or more accelerators that correspond to dif-

ferent variations of the command. For example, the :Previous Frame command has

five accelerators:

RETURN, c-P, m-P, c-m-P, c-m-U�

In this case, each accelerator corresponds to a command/keyword combination. For

example, m-P stands for:

:Previous Frame :Detailed Yes�

and c-m-P stands for:

:Previous Frame :Internal Yes�

Where applicable, accelerators take a numeric argument to complete the command

successfully. For example, if you type the :Show Backtrace command, you can spec-

ify how many stack frames to display with the :Nframes keyword  :Nframes 2, 3,

4, and so on. However, if you enter the command accelerator, c-B, you can specify

how many frames to display by giving a numeric argument. For example, c-9 c-B

would display nine frames. Likewise, c-1 c-5 c-B would display 15 frames.

When you press an accelerator, the Debugger displays an italic message that de-

fines what the accelerator stands for. It then executes the command. For example,

when you press the c-B accelerator, you get this message:

→ Control-B Show Backtrace :Nframes 10000 :Internal No :Detailed No�

Editing a Debugger Command

Page 193

When you make a mistake while typing a Debugger command or change your mind

about entering the command, you have two choices:

Press ABORT and begin again.

Edit your input.�

The input editor allows you to type, display, and edit a Debugger command. With

the input editor, you can edit all Debugger command components  command

name, positional arguments, and keywords  before entering the command.

For more information on the input editor: See the section "The Input Editor Pro-

gram Interface".

The input editor is also used to edit a form in the Debugger’s evaluation environ-

ment. For more information on the Debugger’s evaluation environment: See the

section "Evaluating a Form in the Debugger".

Entering a Debugger Command with the Mouse

You can use the mouse to enter a Debugger command. This is accomplished by

simply pointing the mouse at a Debugger command previously displayed in the

screen output and clicking on that command. See the section "Using the Mouse in

the Debugger".

Getting Help for Debugger Commands

The Debugger offers you online help. Pressing the HELP key inside the Debugger

displays several help options for you to choose:

• c-HELP displays documentation about all Debugger commands. This documenta-

tion consists of brief command descriptions and available key-binding accelera-

tors.

• The ABORT key takes you out of the Debugger. (You can enter the :Abort com-

mand or press c-Z instead of pressing ABORT.)

• c-m-W brings you into the Window Debugger. (You can enter the :Window De-

bugger command instead of pressing c-m-W.)

The REFRESH key, the :Show Frame command, or the :Show Frame command accel-

erator c-L clears the screen, then redisplays the error message for the current

stack frame.

You can also ask for help with keywords. If you do not remember what keywords

are available for the command you are entering, press the HELP key after you re-

ceive the keywords prompt. The Debugger displays a list of keywords for that

command. For example:

Page 194

→ :Previous Frame (keywords) HELP

You are being asked to enter a keyword argument

�

These are the possible keyword arguments:

:Detailed Show locals and disassembled code

:Internal Show internal interpreter frames

:Nframes Move this many frames

:To Interesting Move out to an interesting frame

�

Proceeding and Restarting in the Debugger

Upon entering the Debugger, you might not want to use Debugger commands. In-

stead, you might want, for example, to continue program execution, leave the De-

bugger, or return to a previous activity. These alternatives are called proceeding

and restarting in the Debugger. Proceeding means to continue execution from the

point where the error occurred. Restarting means to return to a prior activity,

such as the Lisp Listener or Zmail.

Proceeding and restarting are implemented through a displayed list of possible ac-

tions for you to take. These actions are called proceed and restart options.

Using Debugger Proceed and Restart Options

Whenever you enter the Debugger, either for the first time or recursively, the De-

bugger displays a list of possible actions for you to take. These actions, called pro-

ceed and restart options, allow you to proceed from the error (continue program

execution), leave the Debugger, restart (return to) a previous activity, or take

some other action.

A list of proceed and restart options might look like this:

s-A, RESUME: Supply a value to use this time as the value of FOO

s-B, s-sh-C: Supply a value to store permanently as the value of FOO

s-C: Retry the SYMEVAL instruction

s-D, ABORT: Debugger command level 1

s-E: Return to Lisp Top Level in Dynamic Lisp Listener 1�

You can select one of these actions by pressing the keys that appear in the left-

hand margin or by selecting an option with the mouse. All of these options are

bound to the SUPER key.

Proceed and restart options are assigned to internal proceed handlers or restart

handlers respectively. A proceed handler allows you to proceed from the error 

continuing execution from the point where the error occurred. For example, you

can assign a correct value to an unbound variable then continue execution. A

restart handler allows you to unwind the stack  the series of calls that led to

the error  and return to a previous system level prior to the error. For example,

you can return to a previous Debugger invocation, Zmail, or Zmacs, or you can

Page 195

leave the Debugger and return to the top level activity, such as the Dynamic Lisp

Listener, as shown above.

Using ABORT and RESUME in the Debugger

Debugger proceed and restart options are listed in order from the most recent

handler that was called to the least recent, oldest handler that was called. The RE-

SUME key is always assigned to the innermost proceed handler or the innermost

restart handler if there are no proceed handlers. The ABORT key is always assigned

to the innermost restart handler. Pressing the ABORT key usually brings you back

to the next previous top-level process in which you were working before the error

occurred.

In general, therefore, whenever you want to proceed from the error, press RESUME.

Whenever you want to restart the previous activity, press ABORT.

The exact way RESUME works depends on the kind of error that happened. For

some errors, there is no standard way to proceed, and the RESUME option just tells

you so and returns to the Debugger’s command level. For the very common "un-

bound variable" error, it requests that you supply the Lisp object that should be

used in place of the (nonexistent) value of the symbol. For unbound-variable or un-

defined-function errors, you can also just type Lisp forms to set the variable or de-

fine the function, and then press RESUME; execution proceeds after the Debugger

asks you to confirm that the new value is acceptable.

The ABORT key, of course, is used in general to exit from the Debugger. See the

section "Exiting The Debugger".

Supplying a Value to Store Permanently

The value you supply with the RESUME proceed option provides a replacement value

but does not change the value of the Lisp object permanently. If you want to

change the value permanently, use the proceed option s-sh-C, which instructs you

to supply a value to store permanently. This option is similar to RESUME, except

s-sh-C actually sets a variable or defines a function and stores the new value so

that the error does not happen again.

Supplying a Missing Package Prefix

The proceed option c-sh-P is only available for such errors as an unbound variable

or undefined function when there is a variable or function in another package that

has the same name. It permits easy recovery when you forget to supply a package

prefix.

Evaluating a Form in the Debugger

You can evaluate a form in the Debugger as easily as you can evaluate a form in a

Dynamic Lisp Listener. Evaluation in the Debugger is useful because the Debug-

Page 196

ger evaluates a form in the context of the function that got the error. All bindings

that were in effect at the time the error occurred are in effect when your form is

evaluated. You can also evaluate a form using the lexical context of the current

frame. For example, you can see the values of lexical variables within LET and

LOOP operations. Lexical variables are local variables created temporarily; they

exist only for the duration of the lexical operation.

To evaluate a form in the Debugger, simply press a key that is not a command 

a character other than a colon or command accelerator key. (As you recall, a full-

form Debugger command must begin with a colon.) To evaluate a form, you can

type, for example, an open parenthesis. The Debugger gives you the following eval-

uation prompt:

Eval (program):�

This Eval (program): prompt indicates you are evaluating a form using the lexical,

user-program context of the current frame. This means you can see the values of

Lisp objects, including local variables, at the place where your program execution

suspends.

The evaluation prompt comes up the moment you type a non-command character.

Your character is immediately placed to the right of the prompt. For example, sup-

pose you type an open parenthesis at the Debugger’s right-arrow prompt. This is

what happens the moment you type the character:

→ Eval (program): (�

After it evaluates a form, the Debugger prompts again with the right arrow. If,

while typing the form, you change your mind and want to get back to the Debug-

ger’s right-arrow prompt, press ABORT. Deleting all the characters in the form also

brings you back to the Debugger prompt.

The Debugger’s evaluation environment is actually a read-eval-print loop that uses

the context of the function that received the error. Like a Dynamic Lisp Listener

read-eval-print loop, the Debugger’s evaluation environment maintains the values

of +, *, and related variables.

If a complex error occurs in the evaluation of the Lisp expression, you are brought

into a second Debugger looking at the new error, unless you have specified that

your program handle that error. The Debugger prompts with two arrows (→→) to

show that you are inside two Debuggers. You can get back to the first Debugger

by pressing the ABORT key. However, if the error is not complex, the abort is done

automatically and the original error message is reprinted. See the section "Using

Recursive Debugger Invocations".

Various Debugger commands ask for Lisp objects, such as an object to return or

the name of a catch-tag. Whenever it requests a Lisp object, it expects you to type

in a form; it will evaluate what you type in. This provides greater generality, since

there are objects to which you might want to refer that cannot be typed, such as

arrays. If the form you type is not complex (not just a constant form), the Debug-

ger shows you the result of the evaluation and asks you if it is what you intended.

It expects a Y or N answer. (See the function zl:y-or-n-p.) If you answer negative-

ly it asks you for another form. To exit the command, just press ABORT.

Page 197

Besides the Debugger’s lexical, user-program evaluation environment, the Debug-

ger also has a dynamic evaluation environment, created specifically for the task of

debugging the debugger. Unless you have to redesign or debug the Symbolics De-

bugger  an extremely unlikely prospect  do not use this evaluation environ-

ment. It is used exclusively by Symbolics software development personnel. The

prompt for the dynamic evaluation environment is:

Eval (debugger):�

If you accidentally bring up this prompt, you can change the environment and

bring up the Eval (program): prompt by entering the :Use Lexical Environment

command or by pressing c-X I, which toggles between the two environments.

The current evaluation environment is established by the previous environment

you chose. Therefore, once you’re in the lexical program environment, you will stay

there until you explicitly enter the :User Dynamic Environment command or press

c-X I.

For more information: See the section "Use Lexical Environment Command". Also:

See the section "Use Dynamic Environment Command".

Editing a Form in the Debugger

When you make a mistake while typing a form in the Debugger or change your

mind about entering the form, you can do one of two things:

Press ABORT and begin again.

Edit your input.�

The input editor allows you to type, display, and edit a form in the Debugger’s

evaluation environment. The input editor is also used for input in Debugger com-

mands and a Dynamic Lisp Listener command processor and read-eval-print loop.

For information about editing a Debugger command: See the section "Editing a

Debugger Command". For more information on the input editor: See the section

"The Input Editor Program Interface".

Rebound Variable Bindings During Evaluation

When the Debugger evaluates a form, the variable bindings at the point of error

are in effect with the following exceptions:

• *terminal-io* is rebound to the stream the Debugger is using. dbg:old-

terminal-io is bound to the value that *terminal-io* had at the point of error.

• *standard-input* and *standard-output* are rebound to be synonymous with

terminal-io; their old bindings are saved in dbg:old-standard-input and

dbg:old-standard-output.

Page 198

• *query-io*, *debug-io*, and *error-output* are rebound to be synonymous with

terminal-io; their old bindings are not directly accessible.

• + and * are rebound to the Debugger’s previous form and previous value. When

the Debugger is first entered, + is the last form typed, which is typically the

one that caused error, and * is the value of the previous form. ++, +++, **, ***,

-, and zl:/ are treated in an analogous fashion. See the section "The Lisp Top

Level". When the Debugger is exited, all of these variables are restored to their

original values; the interactions with the Debugger’s read-eval-print loop do not

affect the interactions with the top-level Lisp read-eval-print loop.

• sys:rubout-handler and zl:read-preserve-delimiters are rebound to nil, in case

the error occurred while in the input editor or the reader.

• evalhook is rebound to nil, turning off the zl:step facility if it was in use when

the error occurred. See the section "A Hook Into the Evaluator".

• dbg:*bound-handlers* and dbg:*default-handlers* are rebound to nil, prevent-

ing conditions signalled by the form the Debugger is evaluating from reaching

condition handlers in the program being debugged. This prevents you from acci-

dentally being thrown out of the Debugger.

• *print-base*, zl-user:*read-base*, *package*, and zl-user:*read-default-float-

format* are checked to insure that they contain legal values. If not, they are

set to their standard values.�

Note that the variable bindings are those in effect in the current frame being ex-

amined, unless you are not inheriting the lexical environment, in which case the

bindings are those in effect at the point of error.

Using Recursive Debugger Invocations

Whenever you cause an error from within the Debugger, or call the Debugger ex-

plicitly from within the Debugger, you are brought into another Debugger.

For example, suppose you used an unbound variable in the Dynamic Lisp Listener.

The Debugger is invoked. Then suppose, inside this first Debugger, you reference

an undefined function. You are brought into a second Debugger. Then suppose you

reference a function that contains a zl:dbg function. You are brought into a third

Debugger.

In the scenario described above, the three Debugger calls are recursive Debugger

invocations, where the Debugger causes itself to be called. Each Debugger call is

known as a Debugger command level. The first call is the first level, the second

call is the second level, and the third call is the third level. You can simply refer

to the first Debugger, second Debugger, and third Debugger.

If you were to get a backtrace at the third Debugger, you would see that each call

to the Debugger appears as a separate stack frame. Like other stack frames, you

Page 199

can unwind the stack  usually with the ABORT key  and thereby have each De-

bugger return to the previous Debugger. The term unwind means to return the

function in the current frame to the function in the previous frame. Remember: In

the third Debugger, you have three active Debuggers. They have been called but

have not yet returned.

The Debugger command prompt lets you know which Debugger you are in at any

given time. For example, three right arrows (→→→) indicate you are in the third

Debugger. Two right arrows (→→) indicate you are in the second. One arrow, of

course, indicates you are at the first.

Using the same example, suppose, in a Dynamic Lisp Listener, you reference an

unbound variable, foo:

Trap: The variable FOO is unbound.

�

SI:*EVAL:

 Arg 0 (SYS:FORM): FOO

 Arg 1 (SI:ENV): NIL

 --Defaulted args:--

 Arg 2 (SI:HOOK): NIL

s-A, RESUME: Supply a value to use this time as the value of FOO

s-B, s-sh-C: Supply a value to store permanently as the value of FOO

s-C: Retry the SYMEVAL instruction

s-D, ABORT: Return to Lisp Top Level in Dynamic Lisp Listener 1

s-E: Restart process Dynamic Lisp Listener 1

→�

Then suppose, within the Debugger, you reference an undefined function, glitch:

Trap: The function GLITCH is undefined.

�

SI:*EVAL:

 Arg 0 (SYS:FORM): (GLITCH)

 Arg 1 (SI:ENV): NIL

 --Defaulted args:--

 Arg 2 (SI:HOOK): NIL

 Debugger was entered because an error occurred while evaluating a form in the debugger

s-A, RESUME: Supply a value to use this time as the definition of GLITCH

s-B, s-sh-C: Supply a value to store permanently as the definition of GLITCH

s-C: Retry the FSYMEVAL instruction

s-D, ABORT: Debugger command level 1

s-E: Return to Lisp Top Level in Dynamic Lisp Listener 1

s-F: Restart process Dynamic Lisp Listener 1

→→�

In the example shown above, notice the two right arrows, which indicate entry to

the second Debugger. Notice also the restart option, ABORT, which allows you to re-

turn to the first Debugger. Suppose now, within the second Debugger, you refer-

ence zl:dbg:

Page 200

Break:

�

SI:*EVAL:

 Arg 0 (SYS:FORM): (ZL:DBG)

 Arg 1 (SI:ENV): NIL

 --Defaulted args:--

 Arg 2 (SI:HOOK): NIL

s-A, RESUME: Proceed without any special action

s-B, ABORT: Debugger level 2

s-C: Debugger command level 1

s-D, Return to Lisp Top level in Dynamic Lisp Listener 1

s-E: Restart process Dynamic Lisp Listener 1

→→→�

Now notice the three right arrows, which indicate entry to the third Debugger.

Notice also the two restart options, ABORT and s-C, which allow you to return to

the second Debugger and the first Debugger respectively.

Pressing the ABORT key is the fundamental way of leaving the current Debugger

and returning to the previous Debugger level. If you have amassed many Debugger

invocations and want to leave the Debugger entirely and return to top level imme-

diately  in this case Dynamic Lisp Listener 1  press m-ABORT, which keeps un-

winding the stack until you reach top level. m-ABORT always gets you back to top

level.

The following example shows what happens when you keep pressing ABORT, begin-

ning at the third Debugger:

→→→ Abort Abort

Debugger command level 2

Back to Trap: The function GLITCH is undefined.

→→ Abort Abort

Debugger command level 1

Back to Trap: The variable FOO is unbound.

→ Abort Abort

Return to Lisp Top Level in Dynamic Lisp Listener 1

Back to Lisp Top Level in Dynamic Lisp Listener 1.

�

Command:�

Using the Mouse in the Debugger

Like most other screen output generated in the Genera software environment, De-

bugger output is mouse sensitive. You can perform some useful debugging opera-

tions simply by clicking on output produced by Debugger commands. For example,

you can perform the following operations:

• Execute a Debugger command by clicking on any command name that is already

displayed on the screen as a result of the command’s prior use.

Page 201

• Set the current stack frame by clicking on a frame’s function name displayed in

backtrace output.

• Evaluate a form by entering the :Show Source Code command, pointing the

mouse at a code fragment in the source code output, and pressing m-Middle.

• Set a Debugger breakpoint on a compiled function by entering the :Show Com-

piled Code command, pointing the mouse at a PC (program counter) line in the

disassembled code output, and pressing c-m-Left.

• Set a Debugger breakpoint on a form in the source code by entering the :Show

Source Code command, pointing the mouse at a code fragment in the source

code output, and pressing c-m-Left.

• Clear a Debugger breakpoint on a compiled function by entering the :Show Com-

piled Code command, pointing the mouse at a PC line in the disassembled code

output, and pressing c-m-Middle.

• Clear a Debugger breakpoint on a form in the source code by entering the

:Show Source Code command, pointing the mouse at a code fragment in the

source code output, and pressing c-m-Middle.

• Monitor the access of a variable or other location by pointing the mouse at a

locative, structure slot, or instance variable and pressing c-m-sh-Left. (When a

program or process accesses the monitored location, a Debugger trap is sig-

nalled.)

• Unmonitor a variable or other location by pointing the mouse at a locative,

structure slot, or instance variable and pressing c-m-sh-Middle. (When you stop

monitoring the access of a location, the Debugger trap is no longer signalled.)

• Edit a function in a Zmacs editor window by pointing the mouse at a function’s

stack frame and pressing m-Left.

• Activate a proceed or restart option by clicking on one.

• Perform a describe function on a Lisp object by pointing the mouse at any ob-

ject and pressing Middle.

Suggested mouse operations are listed in the individual descriptions of some De-

bugger commands later in this chapter. See the section "Debugger Command De-

scriptions". Since so much of the Debugger output is mouse sensitive, the docu-

mentation lists only the most useful mouse operations. However, you are encour-

aged to experiment with the mouse while using the Debugger. You most likely will

discover some other mouse or mouse/keyboard capabilities that are particularly

suited to your personal debugging style.

Page 202

Of course, you can perform virtually all of the suggested mouse operations listed

in the documentation via momentary menus. As with all other screen output in

Genera software environment, you can also use menus and submenus to perform a

huge variety of system operations on Debugger output. To perform system or De-

bugger operations via menus, just point the mouse at the desired piece of Debug-

ger output  a form, function, argument, flavor, instance, locative, or whatever 

and click Right.

� Creating Debugger Proceed Menus

Debugger pop up proceed menus are an alternative interface to the regular De-

bugger. When an error occurs, a menu pops up, enabling the user to select a retry

option. Debugger proceed menus are perfect for situations where there is an abor-

mal but expected error with a possible clean recovery. An example is programs

that perform long file operations where there is a good possibility of a network

break.

The following is a list of standard errors in the Genera system that cause a De-

bugger proceed menu to appear in case of an error:

fs:file-operation-failure

fs:unknown-pathname-host

fs:host-not-accessible-for-file

fs:host-not-available

sys:host-not-responding

sys:unknown-host-name

tape:mount-error

If you want to disable Debugger menus from appearing, set or bind the variable

dbg:*disable-menu-proceeding* to t.

dbg:*disable-menu-proceeding* Variable

Disables Debugger menu proceeding. When set or bound to t, it forces all error

conditions to enter the standard Debugger.

If you have a condition that you want to add to the list of standard errors that

causes a pop up Debugger menu to appear, use the macro dbg:with-extra-

debugger-menu-conditions.

dbg:with-extra-debugger-menu-conditions (conditions) &body body Macro

Given a set of conditions, executes the body with the conditions added to the stan-

dard list of conditions which cause a Debugger menu to appear, rather than enter-

ing the Debugger.

This macro is useful for error conditions which are abnormal but expected, and for

which there is a possible clean recovery. For example, if you have a program that

is performing long file operations, and you expect that it may run into a network

break, you can use dbg:with-extra-debugger-menu-conditions to provide a pop-up

Page 203

menu of options when it runs into the network break, rather than putting you into

the standard Debugger.

conditions is a list of flavors.

body is the code that may encounter the conditions.

Here is an example of dbg:with-extra-debugger-menu-conditions used with code

designed to save the results of a computation on a file. dbg:with-extra-debugger-

menu-conditions provides for a Debugger menu interface in case any kind of file

or network error occurs.

 (dbg:with-extra-debugger-menu-conditions (fs:file-error sys:network-error)

 (catch-error-restart-with-form ((fs:file-error sys:network-error)

 "Skip saving file ~A." name)

(abort-current-command)

 (error-restart ((fs:file-error sys:network-error)

 "Retry saving file ~A." name)

(with-open-file (stream name :direction :output)

 ... <code to output data to the file> ...)

)))�

To disable the Debugger menu from appearing, you can set or bind the variable

dbg:*disable-menu-proceeding* to t.

Figure

! shows an example of a Debugger menu which occurred when a user tried to save

a file on a disk when there was not enough room. This menu is unrelated to the

code example above.

Figure 6. The Debugger Menu

Debugger Command Descriptions

This section provides descriptions for all Debugger commands. These commands

fall into eight categories according to their functions:

Page 204

• Commands for viewing a stack frame

• Commands for stack motion

• Commands for general information display

• Commands to continue execution

• Trap commands

• Commands for breakpoints and single stepping

• Commands for system transfer

• Miscellaneous commands�

Debugger commands are implemented as Command Processor (CP) commands.

There are many Debugger commands that share the global command table with

CP commands. Therefore, you can enter these commands in the CP as well as the

Debugger. They are:

• :Clear All Breakpoints

• :Clear Breakpoint

• :Disable Condition Tracing

• :Edit Function

• :Enable Condition Tracing

• :Monitor Variable

• :Set Breakpoint

• :Set Stack Size

• :Show Breakpoints

• :Show Compiled Code

• :Show Monitored Locations

• :Show Source Code

• :Unmonitor Variable�

Note, however, that you must precede every command entered in the Debugger

with a colon; for example, you must type :Set Breakpoint in the Debugger.

In the sections that follow, Debugger commands are presented in alphabetical or-

der within their logical groups. Each command presentation contains a command

format line, a brief command description, and lists of positional arguments, key-

words, and useful mouse operations, if any. Key-binding accelerators, if any, appear

against the right margin on the command format line. If a command has two or

more accelerators, then its accelerators are listed separately with corresponding

command/keyword definitions.

Command descriptions use the terms default and mentioned default. A default is

the result of entering a Debugger command without a keyword and/or positional

argument. A default also means the result of entering a positional argument with-

out a modifier. A mentioned default is the result of entering a keyword without a

keyword modifier, such as Yes or No. In other words, once you type in the key-

word, the Debugger mentions the consequences of pressing RETURN without a key-

word modifier.

Page 205

Debugger Commands for Viewing a Stack Frame

The Debugger provides commands for displaying information about the current

stack frame. Information that you can display includes, for example, argument val-

ues, local variable values, disassembled code, source code, and &rest arguments.

These commands, in alphabetical order, are:

• :Show Arglist (c-X c-A)

• :Show Argument (c-m-A)

• :Show Compiled Code (c-X D)

• :Show Frame (REFRESH, c-L, m-L)

• :Show Function (c-m-F)

• :Show Local (c-m-L)

• :Show Rest Argument

• :Show Source Code (c-X c-D)

• :Show Stack

• :Show Value (c-m-V)�

All of these commands operate in the context of the current stack frame. The De-

bugger knows about the current frame at any given time, and it uses the current

frame environment to perform operations according to the suspended state of your

program. For example, it evaluates forms in the lexical context of the function sus-

pended in the current frame.

Initially, the current stack frame is the one that signalled the error  either the

one that got the microcode-detected error or the one that called ferror, error, or a

related function. The current frame can change, depending on which Debugger op-

erations you perform.

When the Debugger is invoked, it shows you the current frame in the following

format:

foo:

 Arg 0 (X): 13

 Arg 1 (Y): 1�

The Debugger displays the name of the function in the current frame, then lists

the numbers, names, and values of all arguments in the current frame. In the case

shown above, foo was called with two arguments, whose numbers are 0 and 1 and

whose names in the Lisp source code are x and y. The current values of x and y

are 13 and 1 respectively. Numbering of arguments begins with 0. Therefore, argu-

ment 0 refers to the first argument, argument 1 refers to the second argument,

and so on.

Show Arglist Command

:Show Arglist c-X c-A�

Displays the argument list for the function in the current frame. When you enter

this command, the Debugger replies:

Page 206

The argument list for (function-name) is (argument-names)�

The function-name is the name of the function in the current frame  the name

of the function that appears when the Debugger is invoked. It is also the name of

the function that would appear at the top of the stack if you were to perform a

backtrace.

 The function-name is the name of the function in the current frame, that is the

name of the function that appears when the Debugger is invoked. This is also

the name of the function that appears at the top of the stack if you perform a

backtrace.

Debug 1> :set-current-frame 5

=> 5: (#<function:91e933> # # # 4 ...)

Debug 1> :show-arglist

Arguments for frame 5

Argument (0) = (1)

Argument (1) = (1 2)

Argument (2) = (1 (2 3))

Argument (3) = 4

Argument (4) = 5�

Show Argument Command

:Show Argument argument c-m-A�

Displays the value of one or all arguments in the current frame. You can also use

the Lisp function (dbg:arg number) where number specifies the number of the ar-

gument you want to display. Numbering begins with 0. For example, (dbg:arg 3)

displays the fourth argument. A numeric argument given with this command’s ac-

celerator also specifies the number of the argument you want to display; for exam-

ple, c-m-3 c-m-A displays the fourth argument. To change the value of an argu-

ment, setf on (dbg:arg number).

When you ask to see all arguments  the default for this command  the Debug-

ger displays the arguments in the same way it would display them upon entry to

the Debugger. It displays the name of the function in the current frame, then lists

the numbers, names, and values of all arguments in that function. When you speci-

fy an argument number, the Debugger displays only the value of that argument.

When you are using the lexical context of the current frame, you can evaluate an

argument by typing in its name (or clicking on its name using the mouse) in the

Debugger’s evaluation environment.

The :Show Argument command leaves * set to the value of the argument so you

can use the read-eval-print loop to examine it. It also leaves + set to a locative

pointing to the argument on the stack so you can change that argument by calling

setf on the locative.

Page 207

argument {number, All} The number is an integer that specifies which

argument you want to display in the current frame. All dis-

plays all arguments in the current frame. (Default is All.)

 Displays the value of one of the arguments in the current frame. Numbering

begins with 0. A numeric argument given with this command’s accelerator speci-

fies the number of the argument you want to display.

Debug 1> :set-current-frame 5

=> 5: (#<function:91e933> # # # 4 ...)

Debug 1> :show-argument 2

=> 5: Argument (2):

(1 (2 3))�

Show Compiled Code Command

Show Compiled Code compiled-function-spec from-pc to-pc keywords c-X D�

Displays the disassembled code for a function. When you enter this command and

specify a compiled-function-spec, the Debugger displays this message:

Disassembled code for (function):�

where function is the name of the compiled function for which you want to see dis-

assembled code. Immediately under this message, the Debugger lists the disassem-

bled code instructions for this function. Each instruction  PUSH, CALL, BRANCH,

and so on  is listed on its own line, numbered by the PC (program counter). PCs

are numbered in octal (base 8), and numbering begins with 0.

compiled-function-spec

The name of a compiled function for which you want to see

disassembled code. (Default is the function in the current

frame.)

from-pc The number of the PC at which you want to begin seeing dis-

assembled code. (Default displays all disassembled code.)

to-pc The number of the PC at which you want to stop seeing disas-

sembled code. (Default displays disassembled code from PC 0,

or from the number specified in from-pc, to the last PC in the

disassembled code.)

keywords :More Processing, :Output Destination�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

Page 208

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Suggested mouse operations�

• To use this command with the mouse: Type in the Show Compiled Code com-

mand. When the Debugger asks you for a compiled-function-spec, point the

mouse at the name of a compiled function previously displayed in the output of

another command, such as Show Backtrace or Next Frame, and click Left. (You

can do this only when your previous command output includes the name of a

compiled function.)

• To set a breakpoint: Point the mouse at a PC in the disassembled code and

press c-m-Left.

• To clear a breakpoint: Point the mouse at a PC in the disassembled code and

press c-m-Middle.

Displays the disassembled code for the function associated with the current

frame.

Show Frame Command

:Show Frame keywords REFRESH, c-L, m-L�

Displays information about the current frame. (Default redisplays the error mes-

sage for the current frame then lists the name of the function and its arguments

in the current frame.)

keywords :Clear Window, :Detailed�

:Clear Window {Yes, No} Clears the screen and redisplays at the top of the

screen the error message for the current frame. The name of

the function and its arguments in the current frame are also

displayed. (Default is No. Mentioned default is Yes.)

:Detailed {Yes, No} Redisplays the error message for the current frame

then displays detailed information, including: Arguments and

their values, local variables and their values, and disassembled

code with an arrow pointing to the next instruction to be exe-

cuted. If a function sets one of the frame’s arguments, then

both the original argument supplied by the caller and the cur-

rent value of the variable are displayed. (Default is No. Men-

tioned default is Yes.)�

Page 209

Key-binding accelerators�

REFRESH, c-L :Show Frame :Clear Window Yes

m-L :Show Frame :Clear Window Yes :Detailed Yes

 Displays information about the current frame.

Debug 1> :set-current-frame 5

=> 5: (#<function:91e933> # # # 4 ...)

Debug 1> :show-frame

=> 5: (#<function:91e933> (1) (1 2) (1 (2 3)) 4 5)�

Show Function Command

:Show Function c-m-F�

Displays the name of the function in the current frame. You can also use the Lisp

function (dbg:fun). The Show Function command leaves * set to the value of the

function so that you can use the read-eval-print loop to examine it. It also leaves +

set to a locative pointing to the function so that you can change it by calling setf

on the locative.

 Displays the name of the function in the current frame.

Debug 1> :set-current-frame 5

=> 5: (#<function:91e933> # # # 4 ...)

Debug 1> :show-function

=> 5: Function = #<function:91e933>�

Show Local Command

:Show Local local-variable c-m-L�

Displays the value of one or all local variables for the function in the current

frame. When you enter this command, the names of local variables and their val-

ues are listed in a sequence: Local 0, Local 1, Local 2, and so on. In this list, lo-

cals are numbered in decimal (base 10), and numbering begins with 0.

You can also use the Lisp function (dbg:loc number) where number specifies which

local variable you want to display. For example, (dbg:loc 3) displays the fourth lo-

cal variable. A numeric argument given with this command’s accelerator also spec-

ifies which local variable you want to display; for example, c-m-3 c-m-L displays

the fourth local variable. To change the value of a local variable, use the setf

function with (dbg:loc number).

When you are using the lexical context of the current frame, you can evaluate a

local variable by typing its name (or clicking on its name using the mouse) in the

Debugger’s evaluation environment.

Page 210

The :Show Local command leaves * set to the value of the local variable so you

can use the read-eval-print loop to examine it. It also leaves + set to a locative

pointing to the local variable on the stack so you can change that argument by

calling setf on the locative.

local-variable {number, All} The number is an integer that specifies which lo-

cal variable you want to see in the current frame. All displays

all local variables in the current frame. (Default is All.)

Displays the value of one of the local variables for the function in the current

frame. When you enter this command, the local variables and their values are

listed in a sequence: Local 0, Local 1, Local 2, and so on. In this list, locals are

numbered in decimal (base 10), and numbering begins with 0.

Show Rest Argument Command

:Show Rest Argument�

Displays the &rest argument, if there is one, and formats it neatly. :Show Rest Ar-

gument sets the value of *.

Show Source Code Command

:Show Source Code compiled-function-spec keywords c-X c-D�

Displays the source code for a function. This command works only when your code

resides in an editor buffer. The output is mouse sensitive only when the function

is compiled with source locators. When you specify a compiled function for which

you want to see source code  for example, myfunction  the Debugger displays

the source code for myfunction beneath the following message:

Source code for MYFUNCTION:�

If myfunction were not compiled with source locators, the Debugger would still

display the source code, but the output would not be mouse sensitive. The Debug-

ger would display the source code only after giving you this message:

Function MYFUNCTION has no source locators; the code will not be sensitive.�

compiled-function-spec

The name of a compiled function for which you want to see

source code. (Default is the function in the current frame.)

keywords :More Processing, :Output Destination�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

Page 211

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Suggested mouse operations�

When a function has been compiled using source locators  mapping source code

to PCs via the editor’s c-m-sh-C command  you can perform the following mouse

operations:

• To use this command with the mouse: Type in the :Show Source Code command.

When the Debugger asks you for a compiled-function-spec, point the mouse at

the name of a compiled function previously displayed in the output of another

command, such as :Show Backtrace, and click Left.

• To set a breakpoint: Point the mouse at a form (a code fragment) in the dis-

played source code and press c-m-Left.

• To clear a breakpoint: Point the mouse at a form (a code fragment) in the dis-

played source code and press c-m-Middle.

• To evaluate a code fragment: Point the mouse at a form in the displayed source

code and press m-Middle.

Show Stack Command

:Show Stack�

Displays all of the local-variable and temporary stack slots in the current frame.

This command is very similar to :Show Local, except that in addition to local-

variable slots, :Show Stack displays stack slots that do not necessarily correspond

to named local variables. Therefore, :Show Stack gives you more information than

does :Show Local. The output for this command is displayed the way :Show Local

output is displayed; that is, locals and their values are listed in sequence: Local 0,

Local 1, Local 2, and so on. In this list, stack slots are numbered in decimal (base

10), and numbering begins with 0.

Show Value Command

:Show Value value c-m-V�

Page 212

Displays one or all values being returned from the function that is being returned.

If the frame is not in the process of returning values, the Debugger tells you:

No values are being returned now�

:Show Value is useful only when you are using a trap on exit or looking at a

frame that is about to return. See the section "Set Trap On Exit Command".

You can also use the Lisp function (dbg:val number) where number specifies which

value to display. Numbering begins with 0. For example, (dbg:val 3) displays the

fourth value. A numeric value used with this command’s accelerator also specifies

which value to display; for example, c-m-3 c-m-V displays the fourth value. To

change a particular value being returned from a frame, use setf on (dbg:val num-

ber).

The :Show Value command leaves * set to the value of the argument, so you can

use the read-eval-print loop to examine it. It also leaves + set to a locative point-

ing to the argument on the stack so you can change that argument by calling setf

on the locative.

value {number} The number is an integer that specifies which value

to display.

Debugger Commands for Stack Motion

The Debugger provides commands that allow you to move up and down the stack.

The term move in the context of these commands means to make another frame

the current frame. For example, moving to the top of the stack makes the most re-

cent frame  the frame where the error occurred  the current frame.

Moving down the stack takes you back in time toward the oldest, least-recent

frame. Moving up the stack takes you forward in time toward the newest, most-

recent frame, which is usually the call to the Debugger itself.

Stack motion commands not only traverse the stack, but they also display informa-

tion about the frame to which you move. Most of these commands can optionally

display local variables, disassembled code, and internal interpreter frames.

The motion commands, in alphabetical order, are:

• :Bottom Of Stack (m->)

• :Find Frame (c-S)

• :Next Frame (LINE, c-N, m-N, c-m-N)

• :Previous Frame (RETURN, c-P, m-P, c-m-P, c-m-U)

• :Set Current Frame

• :Top Of Stack (m-<)�

Bottom Of Stack Command

:Bottom Of Stack keyword m->�

Page 213

Moves to the bottom of the stack, displays the least recent frame, and makes that

frame current. When you enter this command, the Debugger displays the name of

the function at the bottom of the stack, followed by its arguments.

keyword :Detailed�

:Detailed {Yes, No} Displays detailed information about the frame at the

bottom of the stack, including: Arguments and their values, lo-

cal variables and their values, and disassembled code with an

arrow pointing to the next instruction to be executed. If a

function sets one of the frame’s arguments, then both the orig-

inal argument supplied by the caller and the current value of

the variable are displayed. (Default is No. Mentioned default is

Yes.)

Moves to the bottom of the stack, displays the least recent frame, and makes

that frame current. When you enter this command, the Debugger displays the

name of the function at the bottom of the stack, followed by its arguments.

Debug 1> :bottom-of-stack

=> 14: (SYSTEM::APPLICATION-TOP-LEVEL #)�

Find Frame Command

:Find Frame string keywords c-S�

Searches the stack for a frame’s function name that contains a specified string

and makes that frame current. When you enter this command, the Debugger dis-

plays the name of the function in the specified frame, followed by its arguments.

string A string that can be part or all of a function name.

keywords :Detailed, :Invisible, :Reverse

:Detailed {Yes, No} Displays detailed information about the specified

frame, including: Arguments and their values, local variables

and their values, and disassembled code with an arrow pointing

to the next instruction to be executed. If a function sets one of

the frame’s arguments, then both the original argument sup-

plied by the caller and the current value of the variable are

displayed. (Default is No. Mentioned default is Yes.)

:Invisible {Yes, No} Yes searches all frames, visible and invisible. (The

default is No. Mentioned default is Yes.)

:Reverse {Yes, No} Searches backwards, toward the most recent frame,

for the specified frame. (Default is No. Mentioned default is

Yes.)

Page 214

Searches the stack for a frame’s function name that contains a specified string

and makes that frame current. When you enter this command, the Debugger dis-

plays the name of the function in the specified frame, followed by its arguments.

Keywork @i(string) is a string that can be part or all of a function name.

Next Frame Command

:Next Frame keywords LINE, c-N, m-N, c-m-N, m-sh-N�

Moves down one frame, to the next less-recent frame  the calling frame  dis-

plays information about that frame, and makes it current. When you enter this

command, the Debugger displays the name of the function in the next frame, fol-

lowed by its arguments. A numeric argument given with this command’s accelera-

tors, as well as the :Nframes keyword, specifies how many frames to move down;

for example, c-3 c-N moves down three frames.

keywords :Detailed, :Internal, :Invisible, :Nframes�

:Detailed {Yes, No} Displays detailed information about the next frame,

including: Arguments and their values, local variables and

their values, and disassembled code with an arrow pointing to

the next instruction to be executed. If a function sets one of

the frame’s arguments, then both the original argument sup-

plied by the caller and the current value of the variable are

displayed. (Default is No. Mentioned default is Yes.)

:Internal {Yes, No} Displays internal interpreter frames in the next

frame. Ordinarily, when running interpreted code, the Debug-

ger tries to skip over frames that belong to functions of the

interpreter, such as si:*eval, prog, and cond, and only show

"interesting" functions. (Default is No. Mentioned default is

Yes.)

:Invisible {Yes, No} Yes allows selecting invisible frames. No skips over

them. (Default is No. Mentioned default is Yes.)

:Nframes {number} Specifies how many frames you want to move down.

The number signifies that you want to move down to the nth

frame from the current frame. (Default is 1.)�

Key-binding accelerators�

LINE, c-N :Next Frame :Nframes 1

m-N :Next Frame :Detailed Yes :Nframes 1

m-sh-N :Next Frame :Detailed Yes :Nframes 1 :Invisible Yes

c-N :Next Frame :Detailed Yes :Nframes 1 :Invisible No

c-m-N :Next Frame :Internal Yes :Nframes 1�

Page 215

Moves down one frame to the next less recent frame, the calling frame. Displays

information about that frame and makes is current.

Debug 1> :next-frame

=> 6: (FIB1 1)�

(:next-frame)

Moves down one frame, to the next less-recent frame or the calling frame, and

displays information about that frame to makes it current. When you enter this

command, the Debugger displays the name of the function in the next frame, fol-

lowed by its arguments.

Previous Frame Command

:Previous Frame keywords RETURN, c-P, m-P, c-m-P, c-m-U, m-sh-P�

Moves up one frame, to the next most-recent frame  the frame that the current

frame called  displays information about that frame, and makes it current. When

you enter this command, the Debugger displays the name of the function in the

previous frame, followed by its arguments. A numeric argument given with this

command’s accelerators, as well as the :Nframes keyword, specifies how many

frames to move up; for example, c-3 c-P moves up three frames.

keywords :Detailed, :Internal, :Invisible, :Nframes, :To Interesting�

:Detailed {Yes, No} Displays detailed information about the previous

frame, including: Arguments and their values, local variables

and their values, and disassembled code with an arrow pointing

to the next instruction to be executed. If a function sets one of

the frame’s arguments, then both the original argument sup-

plied by the caller and the current value of the variable are

displayed. (Default is No. Mentioned default is Yes.)

:Internal {Yes, No} Displays internal interpreter frames in the previous

frame. Ordinarily, when running interpreted code the Debugger

tries to skip over frames that belong to functions of the inter-

preter, such as si:*eval, prog, and cond, and only show "in-

teresting" functions. (Default is No. Mentioned default is Yes.)

:Invisible {Yes, No} Yes allows selecting invisible frames. No skips over

them. (Default is No. Mentioned default is Yes.)

:Nframes {number} Specifies how many frames you want to move up.

The number signifies that you want to move up to the nth

frame from the current frame. (Default is 1.)

:To Interesting {Yes, No} Moves to the next previous frame that is interesting

(non-interpreter), skipping over interpreter frames. (Default is

No. Mentioned default is Yes.)�

Key-binding accelerators�

Page 216

RETURN, c-P :Previous Frame :Nframes 1

m-P :Previous Frame :Detailed Yes :Nframes 1

m-sh-P :Previous Frame :Detailed Yes :Nframes 1 :Invisible Yes

c-P :Previous Frame :Detailed Yes :Nframes 1 :Invisible No

c-m-P :Previous Frame :Internal Yes :Nframes 1

c-m-U :Previous Frame :To Interesting Yes�

Moves up one frame to the next most recent frame, the frame that the current

frame called. Displays that frame and makes it current.

Debug 1> :set-current-frame 6

:set-current-frame 6

=> 6: (FIB1 1)

Debug 1> :previous-frame

=> 5: (#<function:91e933> (1) (1 2) (1 (2 3)) 4 5)�

:previous-frame

Moves up one frame, to the next most-recent frame or the frame that the cur-

rent frame called, and displays information about that frame, and makes it cur-

rent. When you enter this command, the Debugger displays the name of the

function in the previous frame, followed by its arguments.

Set Current Frame Command

:Set Current Frame stack-frame�

Makes the stack frame that you specify with the mouse become the current frame.

stack-frame A stack frame that you select with the mouse.

Suggested mouse operations�

• To set the current frame: Display the stack with the :Show Backtrace command,

point the mouse at the stack frame you want to make current, and click Left.

:set-current-frame stack-frame

This command set the current frame to be the frame numbered n. Frames are

numbered from 0.

Debug 1> :set-current-frame 5

=> 5: (#<function:91e933> # # # 4 ...)�

Top Of Stack Command

:Top Of Stack keyword m-<�

Page 217

Moves to the top of the stack  the frame where the error occurred  displays

the most recent frame, and makes it current. When you enter this command, the

Debugger displays the name of the function in the frame at the top stack, followed

by its arguments.

keyword :Detailed�

:Detailed {Yes, No} Displays detailed information about the frame at the

top of the stack, including: Arguments and their values, local

variables and their values, and disassembled code with an ar-

row pointing to the next instruction to be executed. If a func-

tion sets one of the frame’s arguments, then both the original

argument supplied by the caller and the current value of the

variable are displayed. (Default is No. Mentioned default is

Yes.)

Moves to the top of the stack, displays the most recent frame, and makes that

frame current. When you enter this command, the Debugger displays the name

of the function at the top of the stack, followed by its arguments.

Debug 1> :top-of-stack

=> 0: (DEBUGGER::COMPUTE-FRAMES-IF-NECESSARY)�

top-of-stack

Moves to the top of the stack, which is the frame where the error occurred, dis-

plays the most recent frame to make it current. When you enter this command,

the Debugger displays the name of the function in the frame at the top stack,

followed by its arguments.

Debugger Commands for General Information Display

The Debugger provides commands that allow you to examine the Lisp control stack

and display general information about your program’s execution as it relates to the

error that triggered entry to the Debugger. Information that you display, for ex-

ample, can be the value of *, special variable bindings, catch blocks, condition

handlers, instructions, standard value warnings, proceed options, and so on.

The most powerful information-display command is :Show Backtrace, which dis-

plays the Lisp control stack. The stack keeps a record of all active functions. The

term active refers to a function that has been called but has not yet returned. For

example, if you call foo at Lisp’s top level, and it calls bar, which in turn calls

baz, and baz gets an error, then a backtrace displays this call history. Functions

foo, bar, and baz appear on the stack because they have been called but have not

yet returned. A backtrace, therefore, traces the execution of program functions and

system functions back in time, and the Debugger displays the sequence of calls

that led to the error.

The :Show Backtrace command can display a brief backtrace with only function

names in a call history sequence, or it can display backtraces with more detailed

information, such as arguments, local variables, disassembled code, and internal in-

Page 218

terpreter frames. Using the the foo/bar/baz example mentioned above, a brief

backtrace of that call history might look like this:

BAZ ← BAR ← FOO ← EVAL ← SI:LISP-TOP-LEVEL1 ← SI:LISP-TOP-LEVEL�

In the example shown above, the arrows indicate the direction of calling. See the

section "Show Backtrace Command".

The general information display commands, in alphabetical order, are:

• :Analyze Frame (c-m-Z)

• :Describe Last (c-m-D)

• :Show Backtrace (c-B, m-B, c-m-B)

• :Show Bindings (c-X B)

• :Show Catch Blocks

• :Show Condition Handlers

• :Show Instruction (c-m-I)

• :Show Lexical Environment

• :Show Proceed Options

• :Show Special

• :Show Standard Value Warnings

• :Symeval In Last Instance (c-X c-I)

• :Use Dynamic Environment (c-X I)

• :Use Lexical Environment (c-X I)�

Analyze Frame Command

:Analyze Frame c-m-Z�

Analyzes the erroneous frame and locates the source code of the current error.

Whenever your program blows up unexpectedly, for example, due to an incorrect

argument value or undefined function, you can use the :Analyze Frame command

to walk back up the stack and locate the origin of the error.

Specifically, the :Analyze Frame command can locate the source-code origin of

these type of errors:

• Incorrect argument values

• Invalid or undefined functions

• Unclaimed messages

• Wrong number of arguments�

If :Analyze Frame does not operate on a particular kind of error, the Debugger

tells you:

There is nothing to analyze in this frame.�

:Analyze Frame tells you the name of the function where the error occurred,

moves to the previous frame, and examines the code in the previous frame. If it

does not find the origin of the error in that frame, it keeps moving up the stack,

Page 219

examining code frame by frame. For each frame, the Debugger displays the name

of the "bad argument" that received the error as well as the name of the function

that passed the error  the calling function. It also highlights the bad argument

and calling function in boldface type and displays the source code.

The last frame the Debugger displays is the frame that caused the error.

Suppose a bad argument, foo, was passed to a function, myfunction  the place

where the error occurred  and foo originated from another function, glitch. The

Debugger would display the source code of myfunction beneath the following

message:

Error occurred in myfunction:�

Then the Debugger would tell you:

Probably bad argument foo�

followed by this message:

Called from glitch:�

The Debugger would then display the source code for glitch. If the bad argument,

foo, had not originated from glitch, the Debugger would have kept crawling up

the stack, and, for each frame, would have displayed the probable bad argument

and the source code of the calling function.

Suppose you execute a function, test, without arguments, and test calls another

function, number-test, which expects one argument, n. Via the :Analyze Frame

command, the Debugger would display the following information:

Bad call ocurred in:

�

(DEFUN TEST ()

 (NUMBER-TEST))

�

Correct arguments to NUMBER-TEST are (N)�

Describe Last Command

:Describe Last c-m-D�

Executes the Lisp describe function on the most recently displayed value and

leaves * set to that value.

Suggested mouse operations�

• To perform a describe function on any Lisp object: Point the mouse at any ob-

ject in the output and click Middle.

Show Backtrace Command

Page 220

:Show Backtrace keywords c-B, m-B, c-m-B, m-sh-B, c-sh-B�

Displays a backtrace of the stack. The default displays a brief backtrace of the

stack.

A brief backtrace displays just the names of active function calls in the sequence

in which they were called. In the display, each function points to the function it

calls. For example:

BAZ ← BAR ← FOO ← EVAL ← SI:LISP-TOP-LEVEL1 ← SI:LISP-TOP-LEVEL�

If you want a backtrace with more detailed information and/or with internal inter-

preter frames, use the :Detailed and :Internal keywords described below. See also

the definitions of command accelerators below.

A numeric argument given with this command’s accelerators, as well as the

:Nframes keyword, specifies how many frames to display in the stack; for example,

c-9 c-B displays nine frames.

keywords :Continuations, :Detailed, :Internal, :Invisible, :Nframes�

:Continuations {Yes, No} Yes displays all continuation frames, which are

frames that correspond to some internal function of a function.

(Default is Yes. Mentioned default is No.)

:Detailed {Yes, No} Displays a detailed backtrace of the stack, with ar-

guments and their values. If a function sets one of the frame’s

arguments, then both the original argument supplied by the

caller and the current value of the variable are displayed. (De-

fault is No. Mentioned default is Yes.)

:Internal {Yes, No} Displays internal interpreter frames in the back-

trace. Ordinarily, when running interpreted code the Debugger

tries to skip over frames that belong to functions of the inter-

preter, such as si:*eval, prog, and cond, and only show "in-

teresting" functions. (Default is No. Mentioned default is Yes.)

:Invisible {Yes, No} Yes displays all invisible frames. (Default is No.

Mentioned default is Yes.)

:Nframes {number} Designates how many frames to display in the back-

trace. Enter a number to specify the number of frames to dis-

play. (Default is 10000.)�

Key-binding accelerators�

c-B :Show Backtrace :Nframes 10000 (brief backtrace)

m-B :Show Backtrace :Detailed Yes :Nframes 10000

c-m-B :Show Backtrace :Internal Yes :Nframes 10000

m-sh-B :Show Backtrace :Detailed No :Nframes 10000 :Invisible Yes

:Continuations Yes

Page 221

c-sh-B :Show Backtrace :Detailed No :Nframes 10000 :Invisible No

:Continuations No�

Displays a backtrace of the stack. The default displays a brief backtrace of the

stack.

1 Enter STOP (1) (1 2) (1 (2 3)) 4 5

Break: STOP.

�

 :1 (Continue) Return from BREAK.

 :2 (Abort) Return to toplevel.

Debug 1> :show-backtrace

�

;;; Stack Backtrace:

�

=> 0: (DEBUGGER::COMPUTE-FRAMES-IF-NECESSARY)

 1: (#<function:90faab>)

 2: (CONDITIONS::EXECUTE-DEBUGGER-COMMAND :SHOW-BACKTRACE NIL #)

 3: (INVOKE-DEBUGGER #)

 4: (BREAK "~a." STOP)

 5: (#<function:91e933> # # # 4 ...)

 6: (FIB1 1)

 7: (FIB1 2)

 8: (FIB1 3)

 9: (FIB1 4)

 10: ("Unknown")

 11: (EVAL #)

 12: (SYSTEM::LISTENER NIL)

 13: (SYSTEM::TOPLEVEL)

 14: (SYSTEM::APPLICATION-TOP-LEVEL #)�

Show Bindings Command

:Show Bindings keywords c-X B�

Displays the special variable bindings for one or more frames. When you enter this

command, the Debugger displays special variable bindings beneath this message:

Names and values of specials bound in this frame:�

keywords :All, :Invisible, :Matching�

:All {Yes, No} Displays bindings for all frames in the stack. (De-

fault is No. Mentioned default is Yes.)

:Invisible {Yes, No} Yes shows bindings for all frames, visible and invisi-

ble. (The default is No. Mentioned default is Yes.)

:Matching {string} Displays only the bindings for special variables whose

symbol names contain a string that you specify. (Default is the

current frame.)

Page 222

Show Catch Blocks Command

:Show Catch Blocks keyword�

Displays the active catch blocks for the current frame or for all frames. When you

enter this command, the Debugger displays information in this format:

Open catch blocks and unwind-protects in this frame:

 Throwing to tag tag-name returns to frame at location

 with value(s)�

The tag-name is the name of the symbol that is catching the form. The frame is

the name of the frame’s function to which a throw operation returns. The location

is a PC (program counter) line number in disassembled code.

keyword :All�

:All {Yes, No} Displays active catch blocks for all frames in the

stack. (Default is No. Mentioned default is Yes.)

Show Condition Handlers Command

:Show Condition Handlers keyword�

Displays the condition handlers for the current frame or for all frames. Here is an

example of what the Debugger displays when you enter this command for the cur-

rent frame:

→ :Show Condition Handlers

Bound Handlers established in this frame:

 CONDITION-CASE handler for SYS:PARSE-ERROR

→�

If the frame shown in the example above were not the current frame, and you

used the :All keyword, the Debugger would display the name of the frame along

with the condition handler information. For example:

→ :Show Condition Handlers (keywords) :All

For frame (DEFUN-IN-FLAVOR SI:INPUT-EDITOR-READ ...):

 Bound Handlers established in this frame:

 CONDITION-CASE handler for SYS:PARSE-ERROR

→�

keyword :All�

:All {Yes, No} Displays condition handlers for all frames in the

stack. (Default is No. Mentioned default is Yes.)

Show Instruction Command

Page 223

:Show Instruction c-m-I�

Displays the instruction that was just trapped in the Debugger or the instruction

that would be executed next if you were to perform a single step operation. Here

is an example of what the Debugger displays when you enter this command:

→ :Show Instruction

In (FLAVOR:METHOD :INPUT-EDITOR SI:INTERACTIVE-STREAM) at PC 160:

 PUSH-NIL

→ �

Show Lexical Environment Command

:Show Lexical Environment�

Displays the lexical (local program) environment of the current frame, as estab-

lished by the lexical ancestors of the frame. When you enter this command, the

Debugger displays lexical (local) variables beneath this message:

Lexically inherited variables:�

If the current frame has no lexical environment, the Debugger tells you:

This frame was not lexically called.�

Show Proceed Options Command

:Show Proceed Options�

Displays all of the currently available proceed and restart options. Here is an ex-

ample of what the Debugger displays when you enter this command:

→ :Show Proceed Options

s-A, RESUME:

Supply a value to use this time as the value of FOO

s-B, s-sh-C:

Supply a value to store permanently as the value of FOO

s-C:

Retry the SYMEVAL instruction

s-D, ABORT:

Return to Lisp Top Level in Dynamic Lisp Listener 1

→�

Suggested mouse operations�

• To activate a proceed handler with the mouse: Display the proceed options with

the :Show Proceed Options command, point the mouse at a proceed option, and

click Left.

Page 224

Show Special Command

:Show Special symbol keyword�

Displays the special variable binding of a symbol in the context of the current

frame’s environment.

symbol A symbol whose special variable binding you want to see.

keyword :Environment

:Environment {Program, Debugger, Streams} Evaluates and displays the sym-

bol in the environment that you specify. Program specifies a

program you are debugging. Debugger and Streams specify

that you are debugging the Debugger. (Default is the environ-

ment of the current frame. Mentioned default is Program.)

Show Standard Value Warnings Command

Show Standard Value Warnings keywords�

Displays more detailed information about standard variables that have been re-

bound. Here is an example of what the Debugger displays when you enter this

command:

→ :Show Standard Value Warnings

The following standard values were bound:

 Rebinding CP:*COMMAND-TABLE* to #<COMMAND-TABLE User #o260252757>

 (old value was #<COMMAND-TABLE Debugger #o261747137>)

→�

If no standard variables have been rebound, the Debugger tells you:

There were no standard values which required binding�

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.�

See the section "Standard Variables".

Page 225

Symeval In Last Instance Command

:Symeval In Last Instance symbol c-X c-I�

Evaluates a symbol as an instance variable in the context of the last instance to

have been typed out.

symbol A symbol to be evaluated.�

Use Dynamic Environment Command

:Use Dynamic Environment c-X I�

Changes the current evaluation mode from the lexical (local program) environment

to the dynamic (global debugger) environment. Unless you debug your own Debug-

ger, do not use this command. The :Use Dynamic Environment command is used

by Symbolics development personnel who debug the Debugger. If you have entered

the dynamic evaluation environment accidentally, you can get back to the lexical

evaluation environment by entering the :Use Lexical Environment command or by

pressing c-X I, which toggles between the two evaluation environments. The dy-

namic evaluation prompt is:

Eval (debugger):�

Use Lexical Environment Command

:Use Lexical Environment c-X I�

Changes the current evaluation mode from the dynamic (global debugger) environ-

ment to the lexical (local program) environment. When the Debugger is in this

evaluation environment, you can examine local variables and arguments by simply

typing their names, and you can use internal functions by name  functions de-

fined with flet or labels. See the section "Evaluating a Form in the Debugger".

The lexical evaluation prompt is:

Eval (program):�

The c-X I accelerator toggles between the lexical evaluation environment and the

dynamic evaluation environment.

Debugger Commands to Continue Execution

The Debugger provides commands that continue or restart execution. These com-

mands, in alphabetical order, are:

• :Abort (ABORT, c-Z)

• :Disable Aborts

Page 226

• :Enable Aborts

• :Proceed (RESUME)

• :Reinvoke (c-m-R)

• :Return (c-R)

• :Throw (c-T)�

Abort Command

:Abort ABORT, c-Z�

Depending on the context of its use: Returns to either top level or the previously

invoked Debugger. Executes the abort instruction that appears in the list of pro-

ceed and restart options. :Abort is used to exit the Debugger. See the section "Ex-

iting The Debugger". You can use the ABORT key in place of this command.

:abort

Depending on the context of its use, returns to either the top level or the previ-

ously invoked Debugger. Executes the abort instruction that appears in the list of

proceed and restart options. Used to exit the Debugger.

1 Enter STOP (1) (1 2) (1 (2 3)) 4 5

Break: STOP.

�

 :1 (Continue) Return from BREAK.

 :2 (Abort) Return to toplevel.

Debug 1> :abort

�

=>�

Disable Aborts Command

:Disable Aborts�

Disables the use of the :Abort command. :Disable Aborts is useful for making sure

you do not abort something accidentally.

Enable Aborts Command

:Enable Aborts�

Enables the use of the :Abort command.

Proceed Command

:Proceed RESUME�

Page 227

Depending on the context of its use: Continues the execution of the program or

process that has been suspended, executes the proceed-handler instruction that ap-

pears in the list of proceed and restart options, or returns to the previously in-

voked Debugger. You can use the RESUME key in place of this command.

Reinvoke Command

:Reinvoke keyword c-m-R, c-u c-m-R�

Restarts execution of the function in the current frame. Any numeric argument

given with this command’s accelerator, as well as the :New Args keyword, prompts

you for new argument values. If the function has been redefined  perhaps you

edited the function to fix a bug  the new definition is used. The :Reinvoke com-

mand asks for confirmation before restarting the frame.

keyword :New Args�

:New Args {Yes, No} Prompts you to supply new argument values for the

reinvoked frame. (Default is No, which reinvokes the frame us-

ing current argument values. Mentioned default is Yes.)�

Key-binding accelerators�

c-m-R :Reinvoke :New Args No

c-U c-m-R :Reinvoke :New Args Yes�

Return Command

:Return c-R�

Returns from the current frame. This command prompts for as many values as the

caller needs. You must enter values acceptable to the current frame’s caller. For

each value, the Debugger prompts you for a form, which it evaluates. It returns

the resulting values, possibly after confirming them with you. If no values are ex-

pected, it requests confirmation before returning. The :Return command is useful

when you want to simulate the return of a frame’s execution, which was halted for

some reason.

 :return

Returns from the current frame. This command prompts for values You must en-

ter values acceptable to the current frame’s caller. Useful when you want to sim-

ulate the return of a frame’s execution from a halt.

Throw Command

:Throw symbol form c-T�

Page 228

Executes a Lisp throw function and throws the result of evaluating form to the

tag named by symbol. You can also use the Lisp function throw.

symbol A catch tag.

form A form to evaluate. The returned values from this evaluation

are thrown to symbol.

throw symbol

Prompts for a form to be evaluated and thrown to symbol. You can also use the

Lisp function throw.

Debugger Trap Commands

The Debugger provides commands associated with Debugger traps. These com-

mands, in alphabetical order, are:

• :Clear Trap On Call (c-X c-C)

• :Clear Trap On Exit (c-X c-E)

• :Disable Condition Tracing (c-X T)

• :Enable Condition Tracing (c-X T)

• :Monitor Variable

• :Proceed Trap On Call (c-X m-C)

• :Restart Trap On Call (c-X c-m-C)

• :Set Trap On Call (c-X C)

• :Set Trap On Exit (c-X E)

• :Show Monitored Locations

• :Unmonitor Variable�

A trap suspends a function’s execution and, if there is no condition handler, causes

entry to the Debugger. For example, a trap might be signalled when your program

executes an illegal instruction, such as division by 0. Unless your program is pre-

pared to handle the trap, the Debugger is entered.

The :Monitor Variable command also causes a trap and Debugger entry. This com-

mand triggers a monitor trap whenever a process accesses a special variable. If

you have many different processes accessing a special variable, and you want to

identify them all, you can simply specify the variable to be monitored. The trap oc-

curs when that variable is referenced. You can also monitor instance variables and

structure slots by clicking on them with the mouse. :Monitor Variable is useful if

you want to keep track of and debug the interactions between the accessing pro-

cesses. See the section "Monitor Variable Command".

The :Enable Condition Tracing command also signals a trap when you suspect a

condition handler is broken and want to debug that handler. If you receive recur-

sive error messages due to a defective handler, use :Enable Condition Tracing to

cause a trap and enter the Debugger before the condition is signalled. See the sec-

tion "Enable Condition Tracing Command".

Page 229

Once in the Debugger, you can explicitly set traps by using the :Set Trap On Call

and :Set Trap On Exit commands. A trap on exit suspends execution outside the

called function, immediately after the function has returned. A trap on call sus-

pends execution inside the called function, immediately before the first instruction.

The RESUME key can be used to continue returning or throwing whenever execution

is suspended in a trap. When a trap on exit is set for a frame, throwing through

that frame still signals the trap.

The ABORT key can be used to bypass the trap on exit.

The :Set Trap On Call, :Proceed Trap On Call, and :Restart Trap On Call com-

mands have the following restriction: If you are metering all functions in a partic-

ular process, you cannot use trap on call in that process while metering is enabled.

Clear Trap On Call Command

:Clear Trap On Call c-X c-C�

Clears trap on call for the current frame.

Clear Trap On Exit Command

:Clear Trap On Exit keyword c-X c-E�

Clears trap on exit for the current frame or for all frames. Any numeric argument

given with this command’s accelerator clears trap on exit for all frames.

keyword :All�

:All {Yes, No} Clears traps on exit for all frames in the stack. (De-

fault is No. Mentioned default is Yes.)

Disable Condition Tracing Command

:Disable Condition Tracing c-X T�

Disables condition tracing. The c-X T accelerator toggles between :Disable Condi-

tion Tracing and :Enable Condition Tracing. See the section "Enable Condition

Tracing Command".

Enable Condition Tracing Command

:Enable Condition Tracing condition keyword c-X T�

Enables condition tracing. That is, this command allows you to debug an error

handler when it does not work properly. For example, when you receive continu-

ous, recursive error messages due to a defective error handler, you can use :En-

Page 230

able Condition Tracing to cause a trap and enter the Debugger before the condi-

tion is signalled. Once in the Debugger, you can debug and fix the handler.

You should use this command only if you code your own error handlers. If you do

not code your own handlers, and suspect there is a bug in a handler, send a bug

report to your Symbolics customer representative.

Any numeric argument given with this command’s accelerator sets sys:trace-

conditions to t. The c-X T accelerator toggles between :Enable Condition Tracing

and :Disable Condition Tracing.

condition {t, nil, conditions} t enters the Debugger when any condition

is signalled. nil turns off condition tracing previously specified

by t. condition is a condition flavor, which causes entry to the

Debugger when any flavor built on conditions are signalled.

keyword :Conditional

:Conditional {Always, Mode-Lock, Never, Once} Enables condition tracing

according to certain conditions. Always: enables condition trac-

ing in all cases. Mode-Lock: enables condition tracing only

when the MODE LOCK key is held down. Never: has the effect of

disabling condition tracing. Once: enables condition tracing on-

ly for the first time a condition is raised. (Default is Always.)

Monitor Variable Command

Monitor Variable symbol keywords�

Monitors the access of a special variable. This command arranges for a trap to be

signalled when any process accesses the monitored location. This command is used

to answer the question: "What program or process is reading or writing this loca-

tion in memory?". This is particularly useful when there are several processes

sharing some data structures, and you want to debug the interactions between the

processes.

symbol The name of a symbol whose location in memory you want to

monitor. Enter the name of a symbol and, optionally, its Value-

Cell or Function-Cell. (See the :Cell keyword description be-

low.)

keywords :Boundp, :Cell, :Locf, :Makunbound, :Read, :Write

:Boundp {Yes, No} Monitors the location for boundp operations. The

default is No. The mentioned default is Yes.

:Cell {Value-Cell, Function-Cell} Specifies the cell that you want to

monitor within the location. The Debugger gives you two

choices: Value-Cell or Function-Cell. The default is Value-Cell.

Page 231

:Locf {Yes, No} Monitors the location for locf operations. (Default is

No.)

:Makunbound {Yes, No} Monitors the location for makunbound operations.

The default is No. The mentioned default is Yes.

:Read {Yes, No} Monitors the location for reads. The default is No.

The mentioned default is Yes.

:Write {Yes, No, Change} Monitors the location for writes. The de-

fault is Yes.�

Suggested mouse operations�

• To monitor a location: Point the mouse at a locative, structure slot, or instance

variable and press c-m-sh-Left.

• To unmonitor a location: Point the mouse at a locative, structure slot, or in-

stance variable that was previously monitored and press c-m-sh-Middle.

Proceed Trap On Call Command

:Proceed Trap On Call c-X m-C�

Resumes execution of the function in the current frame after setting trap on call.

Use this command when you want to suspend execution at the entry to the next

called function immediately. The :Restart Trap On Call command is similar, except

that it restarts execution from the beginning of the current function before it sus-

pends execution at the next called function. See the section "Restart Trap On Call

Command". Using the :Proceed Trap On Call command is identical to using the

:Set Trap On Call and :Proceed commands successively. The trap on call suspends

execution inside the called function, immediately before the first instruction. See

the section "Set Trap On Call Command".

Note: The Debugger might mistake this command for the :Proceed command if you

attempt to type in the full command name. To avoid this problem, use the c-X m-C

accelerator, surround the command name in quotes (excluding the colon), or type

in:

:p t COMPLETE�

to complete the command properly.

Restart Trap On Call Command

:Restart Trap On Call c-X c-m-C�

Restarts execution of the function in the current frame, but first sets trap on call.

Use this command when you want to restart execution of the current frame then

Page 232

immediately suspend execution at the entry to the next called function. The :Pro-

ceed Trap On Call command is similar, except that it resumes execution from

wherever execution is suspended within the function instead of restarting execu-

tion from the beginning of the function. See the section "Proceed Trap On Call

Command". Using the :Restart Trap On Call command is identical to using the

:Set Trap On Call and :Reinvoke commands successively. The trap on call suspends

execution inside the called function, immediately before the first instruction. See

the section "Set Trap On Call Command".

Set Trap On Call Command

:Set Trap On Call c-X C�

Sets trap on call for the next function called in the current frame. Use this com-

mand when you want to suspend execution at the entry of the next called function.

(This command also sets trap on exit for the next called function.) The trap occurs

only for the first time your program execution encounters the called function. A

trap on call suspends execution inside the called function, immediately before the

first instruction.

Set Trap On Exit Command

:Set Trap On Exit keyword c-X E�

Sets trap on exit for the current frame or for all frames. The trap on exit occurs

only for the first time your program execution returns the called function. Any nu-

meric argument given with this command’s accelerator sets traps on exit for all

frames. When a trap on exit is set for a frame, throwing through that frame, via a

Lisp throw function, still signals the trap.

keyword :All �

:All {Yes, No} Sets traps on exit for all frames in the stack. (De-

fault is No. Mentioned default is Yes.)

Show Monitored Locations Command

Show Monitored Locations�

Displays all variables and other locations in memory that you are monitoring via

the Monitor Variable command, the dbg:monitor-location function, and so on.

Unmonitor Variable Command

Unmonitor Variable symbol keyword�

Page 233

Stops monitoring one or all special variables in memory.

symbol {location, RETURN} A location specifies one location that you

want to stop monitoring. Enter the name of a symbol and, op-

tionally, its Value-Cell or Function-Cell. (See the :Cell keyword

description below.) Press the RETURN key if you want to stop

monitoring all locations.

keyword :Cell

:Cell {Value-Cell, Function-Cell} Specifies which cell within the loca-

tion you want to stop monitoring. The Debugger gives you two

choices: Value-Cell or Function-Cell. (Default is Value-Cell.)�

Suggested mouse operations�

• To unmonitor a location: Point the mouse at a locative, structure slot, or in-

stance variable that was previously monitored and press c-m-sh-Middle.

Debugger Commands for Breakpoints and Single Stepping

The Debugger provides breakpoint and single-step commands.

Like a trap, a Debugger breakpoint is also a suspension of a function’s execution.

Unlike a trap on call or trap on exit, any breakpoint that you set suspends execu-

tion every time your program encounters the breakpoint. You can set a breakpoint

with the :Set Breakpoint command as well as other ways, listed below. Breakpoints

are useful for examining data at strategic points in your program while your exe-

cution is frozen.

When you enter the Debugger via breakpoint, the Debugger displays the word

Break in the top line of the error display. A Debugger breakpoint can be signalled

by:

• Using the :Set Breakpoint command. See the section "Set Breakpoint Command".

• Performing mouse operations on the code fragments and disassembled code in-

structions output by the :Show Source Code and :Show Compiled Code commands

respectively. See the section "Show Source Code Command". Also: See the sec-

tion "Show Compiled Code Command".

• Pressing m-SUSPEND or c-m-SUSPEND. See the section "Entering the Debugger

with m-SUSPEND, c-m-SUSPEND".

• Inserting the break or zl:dbg function into your program’s source code. See the

section "Entering the Debugger with break and zl:dbg Functions".

Do not confuse a Debugger breakpoint with a break loop. A break loop is a Dynam-

ic Lisp Listener read-eval-print loop, which is activated when you suspend your

Page 234

current activity, via SUSPEND or c-SUSPEND. A Debugger breakpoint suspends into

the Debugger, usually for the purpose of debugging a program.

You should set breakpoints only in your program’s source code. Do not set a break-

point in a system function  any code that the system depends on for its opera-

tions. Placing a breakpoint in a system function can produce dangerous results be-

cause your breakpoint may be encountered by other system functions. A breakpoint

in the following types of functions can be particularly dangerous:

• Input/Output functions

• Input Editor functions

• Storage system functions

• Hardware I/O functions

• Garbage collecting functions�

The term single stepping refers to the process of executing instructions, one in-

struction at a time. That is, the :Single Step command executes the next instruc-

tion, then suspends execution. The pattern becomes execute-suspend, execute-

suspend, execute-suspend, and so on. The :Single Step command only operates on

compiled code. To single step through interpreted code, use the Step facility or the

:step option in the Trace facility. See the section "Stepping Through an

Evaluation". Also: See the section "Tracing Function Execution". The :Single Step

command steps over compiled functions. To step into a compiled function, use the

:Set Trap On Call command on the function in which you want to step, then use

the :Single Step command.

Commands for breakpoints and single stepping, in alphabetical order, are:

• :Clear All Breakpoints

• :Clear Breakpoint

• :Set Breakpoint

• :Show Breakpoints

• :Single Step (c-sh-S)�

Clear All Breakpoints Command

:Clear All Breakpoints compiled-function-spec�

Clears all breakpoints in the current frame’s function or in any other compiled

function.

compiled-function-spec

The name of a compiled function in which you want to clear

breakpoints. (Default clears all breakpoints in the current

frame’s function.)

Clear Breakpoint Command

Page 235

:Clear Breakpoint compiled-function pc�

Clears a breakpoint.

compiled-function The name of a compiled function in which you want to clear a

breakpoint.

pc The PC (program counter) at which you want to clear a break-

point. The default is 1.�

Suggested mouse operations�

• To clear a breakpoint in a compiled function: Display disassembled code with

the :Show Compiled Code command, point the mouse at a PC, and press

c-m-Middle.

• To clear a breakpoint in a code fragment: Display the code with the :Show

Source Code command, point the mouse at a code fragment, and press c-m-Mid-

dle.

Set Breakpoint Command

Set Breakpoint compiled-function pc�

Sets a breakpoint.

compiled-function The name of a compiled-function in which you want to set a

breakpoint.

pc The PC (program counter) at which you want to set a break-

point.

keywords :Action, :Conditional

:Action {Show-All, Show-Args, Show-Locals} Specifies an action to take

when the breakpoint is encountered. Show-All: Displays argu-

ments and local variables. Show-Args: Displays arguments and

no local variables. Show-Locals: Displays only local variables.

Give an expression if you want it to be evaluated in the lexical

context of the frame. (Default is no action. Mentioned default

is Show-All.)

:Conditional {Always, Mode-Lock, Never, Once} Executes the breakpoint

trap according to certain conditions. Always: The breakpoint is

always taken. Mode-Lock: The breakpoint is taken only when

the MODE LOCK key is pressed. Never: The breakpoint is never

taken. Once: The breakpoint is taken only for the first time it

is encountered. Give an expression if you want it to be evaluat-

ed in the lexical context of the frame. (Default is Always.)�

Page 236

Suggested mouse operations�

• To set a breakpoint in a compiled function: Display disassembled code with the

Show Compiled Code command, point the mouse at a PC, and press c-m-Left.

• To set a breakpoint in a code fragment: Display the code with the Show Source

Code command, point the mouse at a code fragment, and press c-m-Left.

Show Breakpoints Command

:Show Breakpoints �

Displays all of the currently set breakpoints.

Single Step Command

:Single Step c-sh-S�

Executes one instruction at a time and steps over function calls. This command

works only on compiled code. For interpreted code, use the Step facility or the

:step option in the Trace facility. For stepping into a compiled function, use the

:Set Trap On Call command on the function in which you want to step, then use

the :Single Step command.

Debugger Commands for System Transfer

The Debugger provides commands that allow you to enter other systems while de-

bugging. These systems are:

• Zmacs, which allows you to edit your function

• A mail message window, which allows you to mail a bug report

• The Display Debugger�

The Debugger commands that transfer you to these other systems are:

• :Edit Function (c-E)

• :Mail Bug Report (c-M)

• :Display Debugger (c-m-W)�

Edit Function Command

:Edit Function function c-E�

Enters the Zmacs editor to bring up the current function or any other function for

editing. This command lets you look at the function’s source code. This is useful

Page 237

when you have found the function that caused the error and want to fix the code

right away. The editor command c-Z returns to the Debugger, if it is still there.

function A stack frame that you select with the mouse or a function

spec that specifies which function you want to edit. (Default

edits the current function.)�

Suggested mouse operations�

To edit a function: Point the mouse at the function’s stack frame and press

m-Left.

Mail Bug Report Command

:Mail Bug Report keyword c-M�

Brings up a mail message window and puts a backtrace into a mail message to be

mailed as a bug report.

This command creates a new process and runs the bug function in that process. It

starts up a mail-sending window that contains information from your herald identi-

fying what version of the software you are using, a copy of the error message and

a detailed backtrace of the stack. You are expected to report information explain-

ing what you were doing when the problem occurred, preferably including a way

for the person reading the bug report to make the problem happen again. The

stack trace by itself is not adequate information for debugging. When you type the

END key, the bug report is sent as mail, and you are brought back into the Debug-

ger.

While composing the bug report, you can use normal window-switching commands

such as FUNCTION S to switch back and forth between the Debugger and the mail-

sending window.

A numeric argument given with this command’s accelerator, c-M, as well as the

:Nframes keyword, specifies the number of stack frames to put in your bug report;

for example, c-5 c-M puts five frames into your report. The current stack frame

begins the backtrace, so you might want to enter the :Top Of Stack command be-

fore you use :Mail Bug Report, if you have been examining frames other than the

one that got the error. :Top Of Stack makes sure the error frame begins the back-

trace.

You can control the character style of the herald information. See the variable

dbg:*character-style-for-bug-mail-prologue*.

keyword :Nframes�

:Nframes {stack-frame, number} Specifies the number of stack frames to

put into your bug report. Select a stack-frame with the mouse,

or enter the number of most recent stack frames you want to

send in your bug report. Frames that you specify show detailed

Page 238

information in the mail message. (Default places eight most re-

cent frames into the mail message.)

Suggested mouse operations�

• To put a backtrace in a mail message: Display the backtrace with the :Show

Backtrace command, point the mouse at the last frame you want included in

your backtrace, and click Left. All frames up to and including the frame you

clicked on are put into the mail message.

Display Debugger Command

:Display Debugger c-m-W�

Enters the Display Debugger.

Miscellaneous Debugger Commands

There are a few miscellaneous Debugger commands that do not fit into any logical

category. These commands are:

• :Help (c-HELP)

• :Set Stack Size�

Help Command

:Help c-HELP�

Displays a list of all available Debugger commands with brief descriptions and key-

binding accelerators.

Set Stack Size Command

:Set Stack Size stack-type stack-size�

Sets the size of a stack.

stack-type The type of the stack. Enter Control, Binding, or Data. (De-

fault is Control.)

stack-size The size of the stack. Enter a number of machine words that

represents the stack size.

Summary of Debugger Commands

Page 239

The following table summarizes all Debugger commands in alphabetical order. For

each command, the table lists the command name, accelerators, positional argu-

ments, keywords, and useful mouse operations.

This table appears only in the printed book. It does not appear online, in the Docu-

ment Examiner. In the Document Examiner, you will see just an alphabetical list

of all commands and their accelerators. To view a full command description for

any command, simply point the mouse at the desired command in this list, and

click Mouse-Left.

See the section "Debugger Command Descriptions". See also the online help file by

pressing c-HELP.

Abort Command

ABORT, c-Z: Returns to either top level or the previously invoked Debug-

ger and executes the abort instruction that appears in the list of proceed

and restart options.

Analyze Frame Command

c-m-Z: Analyzes the erroneous frame and locates the source code of the

current error.

Bottom Of Stack Command

m->: Moves to the bottom of the stack, displays the least recent frame,

and makes that frame current.

Clear All Breakpoints Command

Clears all breakpoints in the current frame’s function or in any other

compiled function.

Clear Breakpoint Command

Clears a breakpoint.

Clear Trap On Call Command

c-X c-C: Clears trap on call for the current frame.

Clear Trap On Exit Command

c-X c-E: Clears trap on exit for the current frame or for all frames.

Describe Last Command

c-m-D: Executes the Lisp describe function on the most recently dis-

played value and leaves * set to that value.

Disable Aborts Command

Disables the use of the :Abort command.

Disable Condition Tracing Command

 c-X T: Disables condition tracing.

Edit Function Command

c-E: Enters the Zmacs editor to bring up the current function or any

other function for editing.

Enable Aborts Command

Enables the use of the :Abort command.

Page 240

Enable Condition Tracing Command

c-X T: The enable tracing command allows you to debug an error han-

dler when it does not work properly.

Find Frame Command

c-S: Searches the stack for a frame’s function name that contains a

specified string and makes that frame current.

Help Command

c-HELP: Displays a list of all available Debugger commands with brief

descriptions and key-binding accelerators.

Mail Bug Report Command

c-M: Brings up a mail message window and puts a backtrace into a mail

message to be mailed as a bug report.

Monitor Variable Command

Monitors the access of a special variable.

Next Frame Command

LINE, c-N, m-N, c-m-N: Moves down one frame, to the next less-recent

frame (the calling frame), displays information about that frame, and

makes it current.

Previous Frame Command

RETURN, c-P, m-P, c-m-P, c-m-U: Moves up one frame, to the next most-

recent frame (the frame that the current frame called), displays informa-

tion about that frame, and makes it current.

Proceed Command

RESUME: Continues the execution of the program or process that has been

suspended, executes the proceed-handler instruction that appears in the

list of proceed and restart options, or returns to the previously invoked

Debugger.

Proceed Trap On Call Command

c-X m-C: Resumes execution of the function in the current frame after

setting trap on call.

Reinvoke Command

c-m-R: Restarts execution of the function in the current frame.

Restart Trap On Call Command

c-X c-m-C: Restarts execution of the function in the current frame, but

first sets trap on call.

Return Command

c-R: Returns from the current frame.

Set Breakpoint Command

Sets a breakpoint.

Set Current Frame Command

Makes the stack frame that you specify with the mouse become the cur-

rent frame.

Page 241

Set Stack Size Command

Sets the size of a stack.

Set Trap On Call Command

c-X C: Sets trap on call for the next function called in the current

frame.

Set Trap On Exit Command

c-X E: Sets trap on exit for the current frame or for all frames.

Show Arglist Command

c-X c-A: Displays the argument list for the function in the current

frame.

Show Argument Command

c-m-A: Displays the value of one or all arguments in the current frame.

Show Backtrace Command

c-B, m-B, c-m-B: Displays a backtrace of the stack.

Show Bindings Command

c-x B: Displays the special variable bindings for one or more frames.

Show Breakpoints Command

Displays all of the currently set breakpoints.

Show Catch Blocks Command

Displays the active catch blocks for the current frame or for all frames.

Show Compiled Code Command

Displays the disassembled code for a function.

Show Condition Handlers Command

Displays the condition handlers for the current frame or for all frames.

Show Frame Command

REFRESH, c-L, m-L: Displays information about the current frame.

Show Function Command

c-m-F: Displays the name of the function in the current frame.

Show Instruction Command

c-m-I: Displays the instruction that was just trapped in the Debugger or

the instruction that would be executed next if you were to perform a sin-

gle step operation.

Show Lexical Environment Command

Displays the lexical (local program) environment of the current frame, as

established by the lexical ancestors of the frame.

Show Local Command

c-m-L: Displays the value of one or all local variables for the function in

the current frame.

Show Monitored Locations Command

Displays all variables and other locations in memory that you are moni-

Page 242

toring via the Monitor Variable command, the dbg:monitor-location

function, and so on.

Show Proceed Options Command

Displays all of the currently available proceed and restart options.

Show Rest Argument Command

Displays the &rest argument, if there is one, and formats it.

Show Source Code Command

c-X c-D: Displays the source code for a function.

Show Special Command

Displays the special variable binding of a symbol in the context of the

current frame’s environment.

Show Stack Command

Displays all of the local-variable and temporary stack slots in the current

frame.

Show Standard Value Warnings Command

Displays more detailed information about standard variables that have

been re-bound.

Show Value Command

c-m-V: Displays one or all values being returned from the function that

is being returned.

Single Step Command

c-sh-S: Executes one instruction at a time and steps over function calls.

Symeval In Last Instance Command

c-X c-I: Evaluates a symbol as an instance variable in the context of

the last instance to have been typed out.

Throw Command

c-T: Executes a Lisp throw function and throws the result of evaluating

form to the tag named by symbol.

Top Of Stack Command

m-<: Moves to the top of the stack (the frame where the error occurred),

displays the most recent frame, and makes it current.

Unmonitor Variable Command

Stops monitoring one or all special variables in memory.

Use Dynamic Environment Command

c-X I: Changes the current evaluation mode from the lexical (local pro-

gram) environment to the dynamic (global debugger) environment.

Use Lexical Environment Command

c-X I: Changes the current evaluation mode from the dynamic (global

debugger) environment to the lexical (local program) environment.

Display Debugger Command

c-m-W: Enters the Display Debugger.

Page 243

Debugger Functions

The Debugger’s evaluation environment lets you type in Lisp forms, which it reads

and evaluates in the lexical context of the current frame, and then prints. When

you are typing these forms, you can use the following functions to examine or

modify the arguments, local variables, function object, and values being returned

in the current frame.

dbg:arg name-or-number Function

Returns the value of argument name-or-number in the current stack frame. (setf

(dbg:arg n) x) sets the value of the argument n in the current frame to the value

of x. name-or-number can be the number of the argument (for example, 0 to speci-

fy the first argument) or the name of the argument. This function can be called

only from the Debugger’s evaluation environment.

dbg:loc name-or-number Function

Returns the value of the local variable name-or-number in the current stack frame.

(setf (dbg:loc n) x) sets the value of the local variable n in the current frame to

the value of x. name-or-number can be the number of the local variable (for exam-

ple, 0 to specify the first local variable) or the name of the local variable. This

function can be called only from the Debugger’s evaluation environment.

dbg:fun Function

Returns the function object of the current stack frame. (setf (dbg:fun) x) sets the

function object of the current frame to the value of x. This function can be called

only from the Debugger’s evaluation environment.

dbg:val &optional val-no 0 Function

Returns the value of the val-noth value to be returned from the current stack

frame. (setf (dbg:val val-no) x) sets the value of the val-noth value to be returned

from the current frame to the value of x. val-no must be a fixnum (since values do

not have names) and defaults to 0. (dbg:val) without a value number gives the

first value. This function can be called only from the Debugger’s evaluation envi-

ronment.

dbg:monitor-location (location &key (read nil) (write t) (makunbound (eq write t))

(boundp (eq read t)) locate name) Function

Monitors a location; that is, causes entry to the Debugger whenever location is ac-

cessed by a process. location is a locative to the location to be monitored; for ex-

ample, (zl:value-cell-location ’foo). Descriptions of other arguments follow:

Page 244

read {t, nil} monitors the location for reads. (Default

is nil.)

write {t, nil} monitors the location for writes. (Default

is t.)

makunbound {t, nil} monitors the location for makunbound

operations. (Default is the value of write)

boundp {t, nil} monitors the location for boundp

operations. (Default is the value of read.)

locate {t, nil} monitors the location for locf operations.

(Default is nil.)�

dbg:monitor-instance-variable instance instance-variable-name &key (read nil)

(write t) makunbound boundp locate Function

Monitors an instance variable; that is, causes entry to the Debugger whenever the

instance variable is accessed by a process. instance is the name of an instance con-

taining an instance-variable you want to monitor. Descriptions of other arguments

follow:

read {t, nil} monitors the instance variable for reads. (Default

is nil.)

write {t, nil} monitors the instance variable for writes. (Default

is t.)

makunbound {t, nil} monitors the instance variable for makunbound

operations. (Default is nil.)

boundp {t, nil} monitors the instance variable for boundp

operations. (Default is nil.)

locate {t, nil} monitors the instance variable for locf operations.

(Default is nil.)�

dbg:unmonitor-location location Function

Unmonitors a location. location is a locative to the location you want to stop moni-

toring.

Debugger Variables

The Debugger uses the following variables:

Page 245

dbg:*frame* Variable

Inside the Debugger’s evaluation environment, the value of dbg:*frame* is the lo-

cation of the current frame.

dbg:*defer-package-dwim* Variable

When this is nil (the default), the Debugger searches over all packages to find any

look-alike symbols when errors concerning unbound variables occur.

When the option is not nil, the search does not occur until you press c-sh-P. In

this case, the Debugger offers c-sh-P in the list of commands even if the search

would find no look-alike symbols.

dbg:*debug-io-override* Variable

Diverts the Debugger to a stream that is known to work; this can be useful when

debugging. If the value of this variable is nil (the default), the Debugger uses the

stream that is the value of *debug-io*. But if the value of dbg:*debug-io-

override* is not nil, the Debugger uses the stream that is the value of this vari-

able instead. This variable should always be set (using setq), not bound, so all pro-

cesses and stack groups can see it.

dbg:*show-backtrace* Variable

Backtrace information appears when you enter the Debugger. The default is nil.

Value Meaning

nil The Debugger startup message does not include any backtrace

information.

t The Debugger startup message includes a three-element back-

trace.

� dbg:*character-style-for-bug-mail-prologue* Variable

Creates the bug-report banner inserted into the text of bug messages, enabling you

to choose the font. The default is NIL.NIL.TINY, specifying a small font for the

bug-report banner.

To display a bug-report banner in a small font you can type the following:

 (setq dbg:*character-style-for-bug-mail-prologue*

 (si:character-style-for-device-font ’fonts:quantum si:*b&w-screen*))

To display a bug-report banner in a large font you can type the following:

 (setq dbg:*character-style-for-bug-mail-prologue*

 (si:parse-character-style ’(nil nil :huge)))

You can also type the following to specify a particular font:

Page 246

 (setq dbg:*character-style-for-bug-mail-prologue* ’(nil nil :huge))

Miscellaneous Debugging Techniques

Tracing Function Execution

The trace facility allows you to trace some functions. Tracing is useful when you

need to find out why a program behaves in an unexpected manner, particularly

when you suspect that arguments are being passed incorrectly or functions are be-

ing called in the wrong sequence.

Certain special actions are taken when a traced function is called and when it re-

turns. The default tracing action prints a message when the function is called,

showing its name and arguments, and another message when the function returns,

showing its name and values.

You invoke the trace facility in several ways:

• Use the trace and untrace special forms.

• Click on [Trace] in the System menu. Enter or point to the function to be

traced; a menu of options pops up.

• Invoke the Trace (m-X) command in the editor. Enter the function to be traced;

a menu of options pops up. �

The menu options are also available with trace; however, the syntax is complex.

trace &rest specs Special Form

A trace form looks like:

(trace spec-1 spec-2 ...)�

Each spec can be one of the following:

A symbol

This is a function name, with no options. The function is traced in the de-

fault way, printing a message each time it is called and each time it re-

turns.

A list (function-name option-1 option-2 ...)

function-name is a symbol and the options control how it is to be traced.

For a list of the various options, see the section "Options to trace". Some

options take arguments, which should be given immediately following the

option name.

A list (:function function-spec option-1 option-2 ...)

This option is like the previous form except that function-spec need not be a

symbol. Note that you cannot use this feature on a 386 based machine.

Page 247

See the section "Function Specs". It exists because if function-name were a

list in the previous form, it would instead be interpreted as the following

form:

A list ((function-1 function-2...) option-1 option-2 ...)

All the functions are traced with the same options. Each function can be ei-

ther a symbol or a general function-spec.

trace returns as its value a list of names of all functions it traced. If called with

no arguments, as just (trace), it returns a list of all the functions currently being

traced.

If you attempt to trace a function already being traced, trace calls untrace before

setting up the new trace.

Tracing is implemented with encapsulation, so if the function is redefined (for ex-

ample, with defun or by loading it from a compiled code file) the tracing is trans-

ferred from the old definition to the new definition.

It is recommended that you trace only user-defined functions and avoid tracing the

system functions. Although some of the background processes use these functions,

they never expect to have to type out anything. If they do have to type out some-

thing, the process will hang until you let it type out.

See the section "Encapsulations".

See the section "Options to trace".

Options to trace

The options to trace are:

:break pred

Enters a Dynamic Lisp Listener break loop after printing the entry trace

information but before applying the traced function to its arguments, if and

only if pred evaluates to non-nil. During the break, the symbol arglist is

bound to a list of the arguments of the function.

:exitbreak pred

This is just like :break except that the break loop is entered after the

function has been executed and the exit trace information has been printed,

but before control returns. During the break, the symbol arglist is bound to

a list of the arguments of the function, and the symbol values is bound to

a list of the values that the function is returning.

:error

Calls the Debugger when the function is entered. Use RESUME to continue

execution of the function. If this option is specified, no printed trace output

appears other than the error message displayed by the Debugger. (Note: If

you also want to call the Debugger when the function returns, use the

Debugger’s :Set Trap On Exit (c-X E) command.)

Page 248

:step

Steps through interpreted code of a function whenever the function is

called. For compiled code, use the Debugger’s :Single Step command. See

the section "Single Step Command".

See the section "Stepping Through an Evaluation".

:entrycond pred

Prints trace information on function entry only if pred evaluates to non-nil.

:exitcond pred

Prints trace information on function exit only if pred evaluates to non-nil.

:cond pred

Prints trace information on function entry and exit only if pred evaluates to

non-nil.

:wherein function

Traces the function only when it is called, directly or indirectly, from the

specified function function. You can give several trace specs to trace, all

specifying the same function but with different :wherein options, so that

the function is traced in different ways when called from different func-

tions.

This is different from advise-within, which only affects the function being

advised when it is called directly from the other function. The trace

:wherein option means that when the traced function is called, the special

tracing actions occur if the other function is the caller of this function, or

its caller’s caller, or its caller’s caller’s caller, and so on.

:per-process process

Traces the function in the specified process only. You must specify the pro-

cesses as an argument.

:argpdl pdl

Specifies a symbol pdl, whose value is initially set to nil by trace. When

the function is traced, a list of the current recursion level for the function,

the function’s name, and a list of arguments are pushed onto the pdl when

the function is entered, and then popped when the function is exited. The

pdl can be inspected from within a breakpoint, for example, and used to de-

termine the very recent history of the function. This option can be used

with or without printed trace output. Each function can be given its own

pdl, or one pdl can serve several functions.

:entryprint form

form is evaluated and the value is included in the trace message for calls

to the function. You can give this option more than once, and all the values

will appear, preceded by \\.

:exitprint form

form is evaluated and the value is included in the trace message for re-

turns from the function. You can give this option more than once, and all

the values will appear, preceded by \\.

Page 249

:print form

form is evaluated and the value is included in the trace messages for both

calls to and returns from the function. You can give this option more than

once, and all the values will appear, preceded by \\.

:entry list

Specifies a list of arbitrary forms whose values are printed along with the

usual entry-trace. The list of resultant values, when printed, is preceded by

\\ to separate it from the other information.

:exit list

Similar to :entry, but specifies expressions whose values are printed with

the exit-trace. The list of values printed is preceded by \\.

:arg :value :both nil

Specifies which of the usual trace printouts should be enabled.

If you specify Then

:arg On function entry prints the name of the function and

the values of its arguments.

:value On function exit prints the returned value(s) of the

function.

:both Same as if both :value and :arg were specified.

nil Same as if neither :value nor :arg were specified.

None The default is to :both.�

If any further options appear after one of these, they are not treated as op-

tions. Rather, they are considered to be arbitrary forms whose values are to

be printed on entry and/or exit to the function, along with the normal trace

information. The values printed are preceded by a //, and follow any values

specified by :entry or :exit. Note that since these options "swallow" all fol-

lowing options, if one is given it should be the last option specified.

If the variable arglist is used in any of the expressions given for the :cond,

:break, :entry, or :exit options, or after the :arg, :value, :both, or nil option,

when those expressions are evaluated the value of arglist will be bound to a list of

the arguments given to the traced function. Thus the following form would cause

a break in foo if and only if the first argument to foo is nil.

(trace (foo :break (null (car arglist))))�

If the :break or :error option is used, the variable arglist will be valid inside the

break-loop. If you setq arglist, the arguments seen by the function will change.

Similarly, the variable values will be a list of the resulting values of the traced

function. For obvious reasons, this should only be used with the :exit option. If the

:exitbreak option is used, the variables values and arglist are valid inside the

break-loop. If you setq values, the values returned by the function will change.

Page 250

You can "factor" the trace specifications, as explained earlier. For example,

(trace ((foo bar) :break (bad-p arglist) :value))�

is equivalent to

(trace (foo :break (bad-p arglist) :value)

 (bar :break (bad-p arglist) :value))�

Since a list as a function name is interpreted as a list of functions, nonatomic

function names are specified as follows:

(trace (:function (:method flavor :message) :break t))�

See the section "Function Specs".

sys:trace-compile-flag Variable

If the value of trace-compile-flag is non-nil, the functions created by trace will

get compiled, allowing you to trace special forms such as cond without interfering

with the execution of the tracing functions. The default value of this flag is nil.

The following trace options are available:

:break pred

Enters a Dynamic Lisp Listener break loop after printing the entry trace

information but before applying the traced function to its arguments, if and

only if pred evaluates to non-nil. During the break, the symbol sys::arglist

is bound to a list of the arguments of the function.�

:exitbreak pred

This is just like :break except that the break loop is entered after the

function has been executed and the exit trace information has been printed,

but before control returns. During the break, the symbol sys::arglist is

bound to a list of the arguments of the function, and the symbol values is

bound to a list of the values that the function is returning.�

:error

Calls the Debugger when the function is entered. If this option is specified,

no printed trace output appears other than the error message displayed by

the Debugger.

:entrycond pred

Prints trace information on function entry only if pred evaluates to non-nil.�

:exitcond pred

Prints trace information on function exit only if pred evaluates to non-nil.�

:cond pred

Prints trace information on function entry and exit only if pred evaluates to

non-nil.�

:wherein function

Traces the function only when it is called, directly or indirectly, from the

specified function function. The trace :wherein option means that when the

Page 251

traced function is called, the special tracing actions occur if the other func-

tion is the caller of this function, or its caller’s caller, or its caller’s

caller’s caller, and so on.

:argpdl pdl

Specifies a symbol pdl, whose value is initially set to nil by trace. When

the function is traced, a list of the current recursion level for the function,

the function’s name, and a list of arguments are pushed onto the pdl when

the function is entered, and then popped when the function is exited. The

pdl can be inspected from within a breakpoint, for example, and used to de-

termine the very recent history of the function. This option can be used

with or without printed trace output. Each function can be given its own

pdl, or one pdl can serve several functions.�

:entryprint form

form is evaluated and the value is included in the trace message for calls

to the function. You can give this option more than once, and all the values

will appear, preceded by \\.�

:exitprint form

form is evaluated and the value is included in the trace message for re-

turns from the function. You can give this option more than once, and all

the values will appear, preceded by \\.�

:print form

form is evaluated and the value is included in the trace messages for both

calls to and returns from the function. You can give this option more than

once, and all the values will appear, preceded by \\.�

:entry list

Specifies a list of arbitrary forms whose values are printed along with the

usual entry-trace. The list of resultant values, when printed, is preceded by

\\ to separate it from the other information.�

:exit list

Similar to :entry, but specifies expressions whose values are printed with

the exit-trace. The list of values printed is preceded by \\.

:meter Enables metering when the function is entered and disables metering when

the function is exited.

:arg On function entry prints the name of the function and the values of its ar-

guments.

:value On function exit prints the returned value(s) of the function.

:both Same as if both :value and :arg were specified.

nil Same as if neither :value or :arg was specified.

None The default is to :both.�

If any further options appear after one of these, they are not treated as options.

Rather, they are considered to be arbitrary forms whose values are to be printed

Page 252

on entry and/or exit to the function, along with the normal trace information. The

values printed are preceded by a //, and follow any values specified by :entry or

:exit. Note that since these options "swallow" all following options, if one is given

it should be the last option specified.

If the variable sys::arglist is used in any of the expressions given for the :cond,

:break, :entry, or :exit options, or after the :arg, :value, :both, or nil option,

when those expressions are evaluated the value of sys::arglist will be bound to a

list of the arguments given to the traced function. Thus the following form would

cause a break in foo if and only if the first argument to foo is nil.

(trace (foo :break (null (car sys::arglist))))�

If the :break or :error option is used, the variable sys::arglist will be valid inside

the break-loop. If you setq sys::arglist, the arguments seen by the function will

change.

Similarly, the variable values will be a list of the resulting values of the traced

function. For obvious reasons, this should only be used with the :exit option. If the

:exitbreak option is used, the variables values and sys::arglist are valid inside the

break-loop. If you setq values, the values returned by the function will change.

You can "factor" the trace specifications, as explained earlier. For example,

(trace ((foo bar) :break (bad-p sys::arglist) :value))�

is equivalent to

(trace (foo :break (bad-p sys::arglist) :value)

 (bar :break (bad-p sys::arglist) :value))�

Controlling the Format of trace Output

Tracing output is printed on the stream that is the value of *trace-output*. This

is synonymous with *terminal-io* unless you change it. Following is an example of

the default form of *trace* output:

1 Enter FACT 4.

| 2 Enter FACT 3.

| 3 Enter FACT 2.

| | 4 Enter FACT 1.

| | 5 Enter FACT 0.

| | 5 Exit FACT 1.

| | 4 Exit FACT 1.

| 3 Exit FACT 2.

| 2 Exit FACT 6.

1 Exit FACT 24.�

You can use the variables si:*trace-columns-per-level*, si:*trace-bar-p*, si:*trace-

bar-rate*, and si:*trace-old-style* to control the format of trace output.

si:*trace-columns-per-level* Variable

Page 253

For trace output, controls the number of columns of indentation that are added for

each level of function call. The value must be an integer. The default is 2.

si:*trace-bar-p* Variable

For trace output, controls whether columns of vertical bars are printed. If the val-

ue is not nil, they are printed; otherwise, spaces are printed instead of the vertical

bars. The default is t (print the bars).

si:*trace-bar-rate* Variable

When si:*trace-bar-p* is not nil, columns of vertical bars are printed in trace out-

put for every n levels of function call, where n is the value. The value must be an

integer. The default is 2.

si:*trace-old-style* Variable

If not nil, the old, Maclisp-compatible form of printing trace output is used. The

default is nil (use the new style).

Untracing Function Execution

untrace "e &rest fns Function

Undoes the effects of trace and restore functions fns to their normal, untraced

state. untrace takes multiple specifications, for example, (untrace foo bar baz).

Calling untrace with no arguments untraces all functions currently being traced.

The arguments should be names of globally defined, traced functions; the names

are not evaluated.

(untrace delete-duplicates position-if)

 => POSITION-IF�

Advising a Function

To advise a function is to tell a function to do something extra in addition to its

actual definition. Advising is achieved by means of the special form advise. The

something extra is called a piece of advice, and it can be done before, after, or

around the definition itself. The advice and the definition are independent, in that

changing either one does not interfere with the other. Each function can be given

any number of pieces of advice.

Advising is fairly similar to tracing, but its purpose is different. Tracing is intend-

ed for temporary changes to a function to give the user information about when

and how the function is called and when and with what value it returns. Advising

is intended for semipermanent changes to what a function actually does. The dif-

ferences between tracing and advising are motivated by this difference in goals.

Page 254

Advice can be used for testing out a change to a function in a way that is easy to

retract. In this case, you would call advise from the console. It can also be used

for customizing a function that is part of a program written by someone else. In

this case you would be likely to put a call to advise in one of your source files or

your login init file rather than modifying the other person’s source code. See the

section "Logging In".

Advising is implemented with encapsulation, so if the function is redefined (for

example, with defun or by loading it from a compiled code file), the advice will be

transferred from the old definition to the new definition. See the section "Encapsu-

lations".

advise function class name position &body forms Special Form

A function is advised by the special form

(advise function class name position

 form1 form2...)�

None of this is evaluated.

function Specifies the function to put the advice on. It is usually a symbol, but

any function spec is allowed. (See the section "Function Specs".)

class Specifies either :before, :after, or :around, and says when to execute

the advice (before, after, or around the execution of the definition of the

function). For more information about the meaning of :around, :before,

and :after advice: See the section ":around Advice".

name Specifies an arbitrary symbol that is remembered as the name of this

particular piece of advice. It is used to keep track of multiple pieces of

advice on the same function. If you have no name in mind, use nil; then

we say the piece of advice is anonymous.

A given function and class can have any number of pieces of anonymous

advice, but it can have only one piece of named advice for any one

name. If you try to define a second one, it replaces the first.

Advice for testing purposes is usually anonymous. Advice used for cus-

tomizing someone else’s program should usually be named so that multi-

ple customizations to one function have separate names. Then, if you

reload a customization that is already loaded, it does not get put on

twice.

position Specifies where to put this piece of advice in relation to others of the

same class already present on the same function.

Position can have these values:

• position can be nil. The new advice goes in the default position: it

usually goes at the beginning (where it is executed before the other

advice), but if it is replacing another piece of advice with the same

name, it goes in the same place that the old piece of advice was in.

Page 255

• position can be a number, which is the number of pieces of advice of

the same class to precede this one. For example, 0 means at the be-

ginning; a very large number means at the end.

• position can have the name of an existing piece of advice of the same

class on the same function; the new advice is inserted before that

one.�

forms Specifies the advice; they get evaluated when the function is called. �

Example: The following form modifies the factorial function so that if it is

called with a negative argument it signals an error instead of running forev-

er.�

(advise factorial :before negative-arg-check nil

 (if (minusp (first arglist))

 (ferror "factorial of negative argument")))�

Sometimes you use advise for per-site customizations. In this case, it is undesir-

able to use unadvise, thus removing even the more "permanent" advice. To specify

this more permanent advice: See the function si:advise-permanently.

si:advise-permanently function class name position &body forms Function

Identical to advise, except that forms advised by si:advise-permanently cannot be

removed by unadvise. They must be removed by si:unadvise-permanent. See the

function si:unadvise-permanent.

function Specifies the function to put the advice on. It is usually a symbol, but

any function spec is allowed. (See the section "Function Specs".)

class Specifies either :before, :after, or :around, and says when to execute

the advice (before, after, or around the execution of the definition of the

function). For more information about the meaning of :around, :before,

and :after advice, see the section ":around Advice".

name Specifies an arbitrary symbol that is remembered as the name of this

particular piece of advice. It is used to keep track of multiple pieces of

advice on the same function. If you have no name in mind, use nil; then

we say the piece of advice is anonymous.

A given function and class can have any number of pieces of anonymous

advice, but it can have only one piece of named advice for any one

name. If you try to define a second one, it replaces the first.

Advice for testing purposes is usually anonymous. Advice used for cus-

tomizing someone else’s program should usually be named so that multi-

ple customizations to one function have separate names. Then, if you

reload a customization that is already loaded, it does not get put on

twice.

position Specifies where to put this piece of advice in relation to others of the

same class already present on the same function.

Page 256

Position can have these values:

• position can be nil. The new advice goes in the default position: it

usually goes at the beginning (where it is executed before the other

advice), but if it is replacing another piece of advice with the same

name, it goes in the same place that the old piece of advice was in.

• position can be a number, which is the number of pieces of advice of

the same class to precede this one. For example, 0 means at the be-

ginning; a very large number means at the end.

• position can have the name of an existing piece of advice of the same

class on the same function; the new advice is inserted before that

one.

forms Specifies the advice; they get evaluated when the function is called. �

� si:show-permanent-advice Function

Displays all functions which currently have permanent advice.

� si:unadvise-permanent function class &optional position Function

Removes pieces of advice whether put there by advise, or by si:advise-

permanently.

function Specifies the function from which to remove the advice. It is usually a

symbol, but any function spec is allowed. (See the section "Function

Specs".)

class Specifies either :before, :after, or :around, and which advice (before,

after, or around the execution of the definition of the function) to re-

move. For more information about the meaning of :around, :before, and

:after advice, see the section ":around Advice".

position specifies which piece of advice to remove. It can be the numeric index

(0 means the first one) or it can be the name of the piece of advice.�

unadvise &optional function class position Function

Removes pieces of advice. None of its subforms are evaluated. function and class

have the same meaning as they do in the function advise. position specifies which

piece of advice to remove. It can be the numeric index (0 means the first one) or

it can be the name of the piece of advice.

unadvise can remove more than one piece of advice if some of its arguments are

missing or nil. The arguments function, class, and position all act independently. A

missing value or nil means all possibilities for that aspect of advice. For example,

the following form removes all :before, :after, and :around advice named

Page 257

negative-arg-check on the factorial function:

(unadvise factorial nil negative-arg-check)�

In this example unadvise removes all :around advice on all functions in all posi-

tions with all names:

(unadvise nil :around)�

In this example unadvise removes all classes of advice named my-personal-advice

on all functions:

(unadvise nil nil my-personal-advice)�

(unadvise) removes all advice on all functions, since function, class, and position

take on all possible values.

The following are the primitive functions for adding and removing advice. Unlike

the special forms advise and unadvise, the following are functions and can be

conveniently used by programs. advise and unadvise are actually macros that ex-

pand into calls to these two.

si:advise-1 function class name position forms Function

Adds advice. The arguments have the same meaning as in advise. Note that the

forms argument is not a &rest argument.

si:unadvise-1 function &optional class position Function

Removes advice. function, class, and position are independent. If function, class, or

position is nil, or if class or position is unspecified, all classes of advice or advice

for all functions, at all positions, or with all names is removed.

You can find out manually what advice a function has with grindef, which grinds

the advice on the function as forms that are calls to advise. These are in addition

to the definition of the function. See the special form grindef.

To poke around in the advice structure with a program, you must work with the

encapsulation mechanism’s primitives. See the section "Encapsulations".

si:advised-functions Variable

A list of all functions that have been advised.

Designing the Advice

For advice to interact usefully with the definition and intended purpose of the

function, it needs access to the data flow and control flow through the function.

The system provides conventions for doing this.

The list of the arguments to the function can be found in the variable arglist. The

value of the variable arglist sometimes includes internal arguments that should be

ignored. In some cases these internal arguments are machine-dependent. If you are

Page 258

advising only ordinary functions defined with defun, you need not worry about

this. In the following table, the arguments noted as ignore are internal:

Function Type 3600 Arglist Ivory Arglist

Method (self ignore ignore args...) (ignore self args...)

Whopper (self ignore ignore args...) (ignore self args...)

defun-in-flavor (self ignore args...) (ignore self args...)

:internal (ignore args...) (ignore args...)

To find out what the value of the variable arglist will be when advising a func-

tion, you can evaluate the form (arglist ’function-name). The result always includes

the internal arguments.

:before advice can replace this list, or an element of it, to change the arguments

passed to the definition itself. If you replace an element, it is wise to copy the

whole list first with:

(setq arglist (copylist arglist))�

After the function’s definition has been executed, the list of the values it returned

can be found in the variable values. :after advice can set this variable or replace

its elements to cause different values to be returned.

All the advice is executed within a prog, so any piece of advice can exit the entire

function and return some values with return. No further advice will be executed.

If a piece of :before advice does this, the function’s definition will not even be

called.

:around Advice

A piece of :before or :after advice is executed entirely before or entirely after the

definition of the function. :around advice is wrapped around the definition; that is,

the call to the original definition of the function is done at a specified place inside

the piece of :around advice. You specify where by putting the symbol :do-it in that

place.

For example, (+ 5 :do-it) as a piece of :around advice would add 5 to the value

returned by the function. This could also be done by the following:

(setq values (list (+ 5 (car values)))) �

as :after advice.

When there is more than one piece of :around advice, they are stored in a se-

quence just like :before and :after advice. Then, the first piece of advice in the

sequence is the one started first. The second piece is substituted for :do-it in the

first one. The third one is substituted for :do-it in the second one. The original

definition is substituted for :do-it in the last piece of advice.

:around advice can access arglist, but values is not set up until the outermost

:around advice returns. At that time, it is set to the value returned by the

:around advice. It is reasonable for the advice to receive the values of the :do-it

(for example, with multiple-value-list) and play with them before returning them

(for example, with values-list).

Page 259

:around advice can return from the prog at any time, whether the original defini-

tion has been executed yet or not. It can also override the original definition by

failing to contain :do-it. Containing two instances of :do-it can be useful under pe-

culiar circumstances. If you are careless, however, the original definition might be

called twice, but something like the following certainly works reasonably:

(if (foo) (+ 5 :do-it) (* 2 :do-it))�

Advising One Function Within Another

It is possible to advise the function foo only when it is called directly from a spe-

cific other function bar. You do this by advising the function specifier (:within

bar foo). That works by finding all occurrences of foo in the definition of bar and

replacing them with altered-foo-within-bar. This can be done even if bar’s defini-

tion is compiled code. The symbol altered-foo-within-bar starts off with the sym-

bol foo as its definition; then the symbol altered-foo-within-bar, rather than foo

itself, is advised. The system remembers that foo has been replaced inside bar, so

that if you change the definition of bar, or advise it, then the replacement is prop-

agated to the new definition or to the advice. If you remove all the advice on

(:within bar foo), so that its definition becomes the symbol foo again, then the re-

placement is unmade and everything returns to its original state.

(grindef bar) prints foo where it originally appeared, rather than altered-foo-

within-bar, so the replacement will not be seen. Instead, grindef prints calls to

advise to describe all the advice that has been put on foo or anything else within

bar.

An alternate way of putting on this sort of advice is to use advise-within.

advise-within within-function function-to-advise class name position &body forms

Function

An advise-within form looks like this:
�

(advise-within within-function function-to-advise

 class name position

forms...)�

It advises function-to-advise only when called directly from the function within-

function. The other arguments mean the same thing as with advise. None of them

is evaluated.

To remove advice from (:within bar foo), you can use unadvise on that function

specifier. Alternatively, you can use unadvise-within.

unadvise-within within-function &optional advised-function class position Function

An unadvise-within form looks like this:

(unadvise-within within-function function-to-advise class position)�

Page 260

It removes advice that has been placed on (:within within-function function-to-

advise). The arguments class and position are interpreted as for unadvise.

For example, if those two arguments are omitted, then all advice placed on func-

tion-to-advise within within-function is removed. Additionally, if function-to-advise is

omitted, all advice on any function within within-function is removed. If there are

no arguments, than all advice on one function within another is removed. Other

pieces of advice, which have been placed on one function and not limited to within

another, are not removed.

(unadvise) removes absolutely all advice, including advice for one function within

another.

The function versions of advise-within and unadvise-within are called si:advise-

within-1 and si:unadvise-within-1 respectively. advise-within and unadvise-within

are macros that expand into calls to the other two.

� Compiled Advice

You have the option of whether or not to compile or interpret advice. You can con-

trol this globally, by using si:*advice-compiled-by-default*, or individually (on a

function by function basis) by using si:compile-advice and si:interpret-advice.

si:*advice-compiled-by-default* Variable

When this varible is set to t, advise and si:advise-permanently cause the advice

to be compiled. When si:*advice-compiled-by-default* is set to nil, the advice is

interpreted.

� si:compile-advice function Function

function must be a function spec of a compiled function that is currently advised.

This specification is "sticky" until the next time all advice is removed from func-

tion. Until then, all advice for function is compiled.

� si:interpret-advice Function

function must be a function spec of a compiled function that is currently advised.

This specification is "sticky" until the next time all advice is removed from func-

tion. Until then, all advice for function is interpreted.

Stepping Through an Evaluation

The step facility gives you the ability to follow every step of the evaluation of an

interpreted form and examine what is going on. It is analogous to a single-step

proceed facility often found in machine-language debuggers. Use the step facility if

your program is behaving strangely, and it is not obvious how it is getting into

this strange state.

Page 261

You can enter the stepper in two ways:

• Use the step function.

• Use the :step option of trace. �

step form Evaluates form with single stepping.

If a function is traced with the :step option, whenever that function is called it

will be single stepped. See the section "Options to trace". Note that any function

to be stepped must be interpreted; that is, it must be a lambda-expression. Com-

piled code cannot be handled by step.

When evaluation is proceeding with single stepping, before any form is evaluated,

it is (partially) printed out, preceded by a right-facing arrow (→) character. When

a macro is expanded, the expansion is printed out preceded by a double arrow (↔)

character. When a form returns a value, the form and the values are printed out

preceded by a left-facing arrow (←) character; if more than one value is being re-

turned, an and-sign (∧) character is printed between the values.

Since the forms can be very long, the stepper does not print all of a form; it trun-

cates the printed representation after a certain number of characters. Also, to

show the recursion pattern of who calls whom in a graphic fashion, it indents each

form proportionally to its level of recursion.

After the stepper prints any of these things, it waits for a command from you. A

variety of commands exist to tell the stepper how to proceed, or to look at what is

happening.

c-N (Next) Steps to the next thing. The stepper continues until the next thing

to print out, and it accepts another command.

SPACE Goes to the next thing at this level. In other words, it continues to

evaluate at this level, but does not step anything at lower levels.

In this way you can skip over parts of the evaluation that do not

interest you.

c-U (Up) Continues evaluating until we go up one level. Similar to the

SPACE command; it skips over anything on the current level as well

as lower levels.

c-X (Exit) Exits; finishes evaluating without any more stepping.

c-T (Type) Retypes the current form in full (without truncation).

c-G (Grind) Grinds (that is, pretty-prints) the current form.

c-E (Editor) Enters the editor.

c-B (Breakpoint)

This command puts you into a breakpoint (that is, a read-eval-print

loop) from which you can examine the values of variables and oth-

er aspects of the current environment. From within this loop, the

following variables are available:

Page 262

step-form The current form.

step-values The list of returned values.

step-value The first returned value.

You can change the values of these variables within the current

environment.

You can also refer to local variables and arguments in the func-

tion.

c-L Clears the screen and redisplays the last ten pending forms (forms

being evaluated).

m-L Like c-L, but does not clear the screen.

c-m-L Like c-L, but redisplays all pending forms.

? or HELP Prints documentation on these commands.

It is strongly suggested that you write a little function and try the stepper on it.

If you get a feel for what the stepper does and how it works, you will be able to

tell when it is the right thing to use to find bugs.

A Hook Into the Evaluator

The evalhook facility provides a "hook" into the evaluator; it is a way you can get

a Lisp form of your choice to be executed whenever the evaluator is called. The

stepper uses evalhook; however, if you want to write your own stepper or some-

thing similar, then use this primitive albeit complex facility to do so.

evalhook Variable

In your new programs, we recommend that you use the variable *evalhook* which

is the Common Lisp equivalent of evalhook.

If the value of evalhook is non-nil, then special things happen in the evaluator.

When a form (any form, even a number or a symbol) is to be evaluated, evalhook

is bound to nil and the function that was evalhook’s value is applied to one argu-

ment  the form that was trying to be evaluated. The value it returns is then re-

turned from the evaluator.

evalhook is bound to nil by break and by the Debugger, and setqed to nil when

errors are dismissed by throwing to the Lisp top-level loop. This provides the abili-

ty to escape from this mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several restrictions

are imposed on evalhook. It applies only to evaluation  whether in a read-eval-

print loop, internally in evaluating arguments in forms, or by explicit use of the

function eval. It does not have any effect on compiled function references, on use

of the function apply, or on the "mapping" functions.

Page 263

If you are using CLOE, evalhook causes eval to pass its argument form to the

value of *evalhook*. This only occurs when the variable is not nil. The value of

evalhook should be a function.

evalhook form evalhook &optional applyhook env Function

This function helps exploit the evalhook feature. The form is evaluated with

evalhook lambda-bound to the function evalhook, and applyhook lambda-bound to

the function given as applyhook. The checking of evalhook is bypassed in the eval-

uation of form itself, but not in any subsidiary evaluations, for instance of argu-

ments in the form. This is like a "one-instruction proceed" in a machine-language

debugger. env is used as the lexical environment for the operation. env defaults to

the null environment.

Note: While the Symbolics Common Lisp version of this function does not require

the argument applyhook, the function as specified in Common LISP: the Language

and as implemented in CLOE Runtime does.

Example:�

;; This function evaluates a form while printing debugging

;; information.

(defun hook (x)

 (terpri)

 (evalhook x ’hook-function))

�

;; Notice how this function calls evalhook to evaluate the

;; form f, so as to hook the subforms.

(defun hook-function (f)

 (let ((v (evalhook f ’hook-function)))

 (format t "form: ~s~%value: ~s~%" f v)

 v))

�

;; This isn’t a very good program, since if f returns multiple

;; values, it will not work.�

The following output might be seen from (hook ’(cons (car ’(a . b)) ’c)):

form: (quote (a . b))

value: (a . b)

form: (car (quote (a . b)))

value: a

form: (quote c)

value: c

(a . c)�

Normally after eval has evaluated the arguments to a function, it calls the func-

tion. If applyhook exists, however, eval calls the hook with two arguments: the

function and its list of arguments. The values returned by the hook constitute the

values for the form. The hook could use zl:apply on its arguments to do what eval

would have done normally. This hook is active for special forms as well as for real

functions.

Page 264

Whenever either an evalhook or applyhook is called, both hooks are bound off. The

evalhook itself can be nil if only an applyhook is needed.

applyhook catches only apply operations done by eval. It does not catch apply

called in other parts of the interpreter or apply or funcall operations done by oth-

er functions such as mapcar. In general, such uses of apply can be dealt with by

intercepting the call to mapcar, using the applyhook, and substituting a different

first argument.

The argument list is like an &rest argument: it might be stack-allocated but is

not guaranteed to be. Hence you cannot perform side-effects on it and you cannot

store it in any place that does not have the same dynamic extent as the call to ap-

plyhook.

Compatibility Note: In SCL’s implementation, the variable name evalhook is not

available to the user. The incompatibility with the implementation in Common

Lisp the Language is that:

• evalhook is initially bound.

• evalhook is special.

• evalhook should not be altered (via the use of assigning, binding, making un-

bound, and so on).

A Hook Into zl:apply

applyhook provides a hook into zl:apply, much as evalhook provides a hook into

eval.

applyhook Variable

In your new programs, we recommend that you use the variable *applyhook*

which is the Common Lisp equivalent of applyhook.

When the value of this variable is not nil and eval calls zl:apply, applyhook is

bound to nil and the function that was its value is applied to two arguments: the

function that eval gave to apply and the list of arguments to that function. The

value it returns is returned from the evaluator.

If you are using CLOE, applyhook changes the action that takes place when a

function is applied to its arguments. This only occurs when the variable is not nil.

The function and its arguments to the value of applyhook (which should be a

function) are passed by zl:apply.

applyhook function args evalhook applyhook &optional env Function

function is applied to args with evalhook lambda-bound to the function evalhook

and with applyhook lambda-bound to the function applyhook.

Page 265

Like the evalhook function, this bypasses the first place where the relevant hook

would normally be triggered. env is used as the lexical environment for the opera-

tion. env defaults to the null environment. evalhook or applyhook can be nil.

Compatibility Note: In SCL’s implementation, the variable name applyhook is not

available to the user. The incompatibilities with the implementation specified in

Common Lisp: the Language are:

• applyhook is initially bound.

• applyhook is special.

• applyhook should not be altered (via the use of assigning, binding, making un-

bound, and so on).

The Inspector

How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When

you ask to inspect a particular object, its components are displayed. The particular

components depend on the type of object; for example, the components of a list are

its elements, and those of a symbol are its value binding, function definition, and

property list.

The component objects displayed on the screen by the Inspector are mouse-

sensitive, allowing you to do something to that object, such as inspect it, modify it,

or give it as the argument to a function. Choose these operations from the menu

pane at the top-right part of the screen.

When you click on a component object itself, that component object gets inspected.

It expands to fill the window and its components are shown. In this way, you can

explore a complex data structure, looking into the relationships between objects

and the values of their components.

The Inspector can be part of another program or it can be used standalone. Note,

however, that although the display looks the same as that of the standalone In-

spector, the handling of the mouse buttons depends upon the particular program

being run.

Figure ! shows the standalone Inspector window. The display consists of the follow-

ing panes, from top to bottom:

• A small interaction pane

• A history pane and menu pane

• Some number of inspection panes (three by default)�

Page 266

Figure 7. The Inspector�

Entering and Leaving the Inspector

You can enter the standalone Inspector via:

• Select Activity Inspector

• SELECT I

• [Inspect] in the System menu

• The Inspect command, which inspects its argument, if any

• The inspect function, which inspects its argument, if any

Warning: If you enter with the Inspect command or the inspect function, the In-

spector is not a separate activity from the Lisp Listener in which you invoke it. In

this case you cannot use SELECT L to return to the Lisp Listener; you should al-

ways exit via the [Exit] or [Return] option in the Inspector menu. If you forget

and exit the Inspector by selecting another activity, you might need to use

c-m-ABORT to return the Lisp Listener to its normal state.

Page 267

The Inspector Interaction Pane

The interaction pane has two functions: to prompt you and to receive input. If you

are not being asked a question, then a read-eval-inspect loop is active. Any forms

you type are echoed in the interaction pane and evaluated. The result is not print-

ed, but rather inspected. When you are prompted for input, usually due to having

invoked a menu operation, any input you type at the read-eval-inspect loop is saved

away and erased from the interaction pane. When the interaction is finished, the

input is re-echoed and you can continue to type the form.

The Inspector History Pane

The history pane maintains a list of all objects that you have inspected, allowing

you to back up and continue down another path. The last recently displayed object

is at the top of the list, and the most recently displayed object is at the bottom.

You can inspect any mouse-sensitive object in the history pane by clicking on it. In

addition, you can perform other operations by placing the mouse cursor in the line

region, which is the left-hand side of the history pane, the area bounded by the

margin on one side and the list of objects on the other. In the line region the

shape of the mouse cursor changes to a rightward-pointing arrow.

• Clicking Left in the line region inspects the object. This is sometimes useful

when the object is a list and it is inconvenient to position the mouse at the

open parenthesis.

• Clicking Middle deletes the object from the history.

The history pane also maintains a cache allowing quick redisplay of previously dis-

played objects. This means that merely reinspecting an object does not reflect any

changes in its state. Clicking Middle in the line region deletes the object from the

cache as well as deleting it from the history pane. Use [DeCache] in the menu

pane to clear everything from the cache.

The history pane has a scroll bar at the far left, as well as scrolling zones in the

middle of its top and bottom edges. The last three lines of the history are always

the objects being inspected in the inspection panes.

The Inspector Menu Pane

The menu pane (to the right of the history pane) displays these infrequently used

but useful commands:

[Exit] Equivalent to c-Z. Exits the Inspector and deactivates the frame.

[Return] Similar to [Exit], but allows selection of an object to be returned as

the value of the call to inspect.

[Modify] Allows simple editing of objects. Selecting [Modify] changes the

mouse sensitivity of items on the screen to only include fields that

Page 268

are modifiable. In the typical case of named slots, the names are the

mouse-sensitive parts. When the field to modify has been selected, a

new value can be specified either by typing a form to be evaluated

or by using the mouse to select any normally mouse-sensitive object.

The object being modified is redisplayed. Clicking Right at any time

aborts the modification.

[DeCache] Flushes all knowledge about the insides of previously displayed ob-

jects and redisplays the currently displayed objects.

[Clear] Clears out the history, the cache, and all the inspection panes.

[Set] \ Sets the value of the symbol \ by choosing an object.

The Inspector Inspection Pane

Each inspection pane can inspect a different object. When you inspect an object it

appears in the large inspection pane at the bottom, and the previously inspected

objects shift upward.

At the top of an inspection pane is either a label, which is the printed representa-

tion of the object being inspected in that window, or the words "a list", which

means a list is being inspected. The main body of an inspection pane is a display

of the components of the object, labelled with their names, if any. You can scroll

this display using the scroll bar on the left or the "more above" and "more below"

scrolling zones at the top and bottom.

Clicking on any mouse-sensitive object in an inspection pane inspects that object.

The three mouse buttons have distinct meanings, however.

• Clicking Left inspects the object in the bottom pane, pushing the previous ob-

jects up.

• Clicking Middle inspects the object but leaves the source (namely, the object be-

ing inspected in the window in which the mouse was clicked) in the second pane

from the bottom.

• Clicking Right tries to find and inspect the function associated with the selected

object (for example, the function binding if a symbol was selected).

Inspection Pane Display

The information that the Inspector displays depends upon the type of the object:

Symbol The name, value, function, property list, and package of the sym-

bol are displayed. All but the name and the package are modifi-

able.

List The list is displayed ground by the system grinder. Any piece of

substructure is selectable, and any car or atom in the list can be

modified.

Page 269

Instance The flavor of the instance, the method table, and the names and

values of the instance-variable slots are displayed. The instance-

variables are modifiable.

Hash Table The flavor of the hash table, the method table, and the names

and values of the instance-variable slots of the hash table are

displayed, followed by the key/value pairs for the entries of the

hash table. The value for a given key is modifiable.

Closure The function, and the names and values of the closed variables

are displayed. The values of the closed variables are modifiable.

Named structure The names and values of the slots are displayed. The values are

modifiable.

Array The leader of the array is displayed if present. For one-

dimensional arrays, the elements of the array are also displayed.

The elements are modifiable.

Compiled code object

The disassembled code is displayed.

Select Method The keyword/function pairs are shown, in alphabetical order by

keyword. The function associated with a keyword is settable via

the keyword.

Stack Frame This is a special internal type used by the Display Debugger. It is

displayed as either interpreted code (a list) or as a compiled code

object with an arrow pointing to the next instruction to be exe-

cuted.

Special Characters Recognized by the Inspector

Some special keyboard characters are recognized when not in the middle of typing

in a form.

c-Z Exits and deactivates the Inspector.

BREAK Runs a break loop in the typeout window of the bottom-most inspection

pane.

ESCAPE Reads a form, evaluates it, and prints the result instead of inspecting it.

Examining a Compiled Code File

To examine a compiled code file, use si:unbin-file. The output format from unbin-

file includes disassembled code for any compiled functions in the compiled code

file.

si:unbin-file file &optional outfile Function

Page 270

Converts the compiled code file file to a human-readable file, which you can option-

ally specify. It includes disassembled code for any compiled functions in the com-

piled code file.

The Peek Program

You start up Peek by pressing SELECT P, by using the Select Activity Peek com-

mand, or by evaluating (zl:peek).

Overview of Peek

The Peek program gives a dynamic display of various kinds of system status.

When you start up Peek, a menu is displayed at the top, with one item for each

system-status mode. The item for the currently selected mode is highlighted in re-

verse video. If you click on one of the items with the mouse, Peek switches to that

mode. Pressing one of the keyboard keys as listed in the Help message also switch-

es Peek to the mode associated with that key. The Help message is a Peek mode;

Peek starts out in this mode.

Pressing the HELP key displays the Help message.

The Q command exits Peek and returns you to the window from which Peek was

invoked.

Most of the modes are dynamic: they update some part of the displayed status pe-

riodically. The interval between updates is 20 seconds, but if you want more or

less frequent updates, you can set it using the Z command. Pressing nZ, where n

is some number, sets the time interval between updates to n seconds. Using the Z

command does not otherwise affect the mode that is running.

Some of the items displayed in the modes are mouse sensitive. These items, and

the operations that can be performed by clicking the mouse on them, vary from

mode to mode. Often clicking the mouse on an item gives you a menu of things to

do to that object.

The Peek window has scrolling capabilities, for use when the status display is

longer than the available display area. SCROLL or c-V scrolls the window forward

(towards the bottom), m-SCROLL or m-V scrolls it backward (towards the top).

As long as the Peek window is exposed, it continues to update its display. Thus a

Peek window can be used to examine things being done in other windows in real

time.

zl:peek &optional (character ’tv:p) Function

Displays various information about the system, periodically updating it. It has sev-

eral modes, which are entered by pressing a single key that is the name of the

mode. The initial mode is selected by the argument, character. If no argument is

given, zl:peek starts out by explaining what its modes are.

The Help message consists of the following:

Page 271

This is the Peek utility program. It shows a continually

updating display of status about some aspect of the system,

depending on what mode it is in. The available modes are listed

below. Each has a name, followed by a single character in

parentheses, followed by a description. To put Peek into a given

mode, click on the name of the mode, in the command menu above.

Alternatively, type the single character shown below.

�

Processes (P):

 Show all active processes, their states, priorities, quanta,

 idle times, etc.

�

Areas (A):

 Show all the areas in virtual memory, their types, allocation, etc.

�

File System (F):

 Show all of our connections to various file servers.

�

Windows (W):

 Show all the active windows and their hierarchical relationships.

�

Servers (S):

 Show all active network servers and what they are doing.

�

Network (N):

 Show all local networks, their state and active connections, and

 network interfaces.

�

Help (HELP):

 Explain how this program works.

�

Quit (Q):

 Bury PEEK window, exiting PEEK

�

Hostat (H):

 Show the status of all hosts on the Chaosnet

�

There are also the following single-character commands:

Z (preceded by a number): Set the amount of time between updates,

 in seconds. By default, the display is updated every twenty seconds.

<SPACE>: Immediately update the display.�

The commands P, A, F, W, S, H, and N each place you in a different Peek mode, to

examine the status of different aspects of Genera.

Peek Modes

Page 272

Processes (P)

In Processes mode, invoked by pressing P or by clicking on the [Processes] menu

item, you see all the processes running in your environment, one line for each.

The process names are mouse sensitive; clicking on one of them pops up a menu

of operations that can be performed:

Arrest (or Un-Arrest)

Arrest causes the process to stop immediately. Unarrest causes

it to pick up where it left off and continue.

Flush Causes the process to go into the state Wait Forever. This is

one way to stop a runaway process that is monopolizing your

machine and not responding to any other commands. A process

that has been flushed can be looked at with the Debugger or

Inspector and can be reset.

Reset Causes the process to start over in its initialized state. This is

one way to get out of stuck states when other commands do

not work.

Kill Causes the process to go away completely.

Debugger Enters the Debugger to look at the process.

Describe Displays information about the process.

Inspect Enters the Inspector to look at the process.�

See the section "Introduction to Processes".

Areas (A)

Areas mode, invoked by pressing A or by clicking on [Areas], shows you informa-

tion about your machine’s memory. The first line is hardware information: the

amount of physical memory on the machine, the amount of swapping space remain-

ing in virtual memory, and how many wired pages of memory the machine has.

The following lines show all the areas in virtual memory, one line for each. For

each area you are shown how many regions it contains, what percentage of it is

free, and the number of words (of the total) in use. Clicking on an area inserts de-

tailed information about each region: its number, its starting address, its length,

how many words are used, its type, and its GC status. See the section "Areas".

Meters (M)

Meters mode, invoked by pressing M or by clicking on [Meters], shows you a list of

all the metering variables for storage, the garbage collector, Zwei sectionization,

netboot and the disk. There are two types of meters:

Timers Timers have names that start with *ms-time- and keep a total

of the milleseconds spent in some activity.

Page 273

Counts Counts have names that start with *count- and keep a running

total of the number of times some event has occurred.�

The garbage collector meters fall into two groups according to which part of the

garbage collector they pertain to: the scavenger or the transporter. See the section

"Theory of Operation of the GC Facilities".

File System (F)

File System mode, invoked by pressing F or by clicking on [File System], provides

information about your network connections for file operations. For each host the

access path, protocol, user-id, host or server unit number, and connection state are

listed. For active connections information about the actual packet flow is also

given. The various items are mouse sensitive. For hosts, you can get hostat infor-

mation, do a file reset, log in remotely, find out who is on the remote machine,

and send a message to the machine. You can reset, describe, or inspect data chan-

nels, and close streams.

Resetting an access path makes the server on a foreign host go away, which might

be useful to free resources on that host or if you suspect that the server is not

working correctly.

Windows (W)

Windows mode, invoked by pressing W or clicking on [Windows], shows you all the

active windows in your environment with the panes they contain. This allows you

to see the hierarchical structure of your environment. The items are mouse sensi-

tive. Clicking on a window name pops up a menu of operations that you can per-

form on the window.

Servers (S)

Clicking on [Servers] or pressing S puts Peek in Servers mode. If your machine is

a server (for example, a file server), Servers mode shows the status of each active

server.

Network (N)

Network mode, invoked by pressing N or by clicking on [Network], shows informa-

tion about the networks connected to your machine. For each network there are

three headings for information:

Active connections The data channels that your machine has opened to another

machine or machines on the network.

Meters Information about the data flow (packets) between your ma-

chine and other machines on the network.

Page 274

Routing table A list of all the subnets and for each the route to take to send

packets to a host on that subnet.�

To view the information under one of these headings, you click on the heading.

The hosts and data channels in the list of active connections are mouse sensitive.

For hosts, you can get hostat information, do a file reset, login remotely, find out

who is on the remote machine, and send a message to the machine. You can reset,

describe, or inspect data channels.

Information about the hardware network interface is also displayed, as well as me-

tering variables for the networks.

Hostat (H)

Clicking on [Hostat] or pressing H starts polling all the machines connected to the

local network. For each host on the network a line of information is displayed.

Those machines that do not respond to the poll are marked as "Host not respond-

ing". You terminate the display by pressing c-ABORT.

Help and Quit

Clicking on the [Help] menu item or pressing HELP displays the help information

that is displayed when Peek is selected the first time.

Clicking on [Quit] or pressing Q buries the Peek window and returns you to the

window from which you invoked Peek.

Files

Naming of Files

A Symbolics computer generally has access to many file systems. While it can have

its own file system on its own disks, a community of Symbolics users often has

many shared file systems accessible by any of the Symbolics computers over a net-

work. These shared file systems can be implemented by any computers that are ca-

pable of providing file system service. A file server computer might be a special-

purpose computer that does nothing but service file system requests from comput-

ers on a network, or it might be an existing timesharing system.

Programs, at the behest of users, need to use names to designate files within

these file systems. The main difficulty in dealing with names of files is that differ-

ent file systems have different naming conventions and formats for files. For ex-

ample, in the UNIX system, a typical name looks like:

/usr2/george/foo.bn�

In this example, /usr2/george is the directory name, foo is the file name and bn is

the file type. However, in TOPS-20, a similar file name is expressed as follows:

Page 275

PS:<GEORGE>FOO.BIN �

It would be unreasonable for each program that deals with file names to be ex-

pected to know about each different file name format that exists; in fact, new for-

mats could be added in the future, and existing programs should retain their abili-

ties to manipulate files in a system-independent fashion.

The functions, flavors, and messages described in this chapter exist to solve this

problem. They provide an interface through which a program can deal with files

and manipulate them without depending on their syntax. This lets a program deal

with multiple remote file systems simultaneously, using a uniform set of conven-

tions.

Pathnames

All file systems dealt with by the Symbolics computer are mapped into a common

model, in which files are named by a conceptual object called a pathname. The

Symbolics computer system, in fact, represents pathnames by objects of flavor

pathname, and the flavors built upon it. A pathname always has six conceptual

components, described below. These components provide the common interface that

allows programs to work the same way with different file systems; the mapping of

the pathname components into the concepts peculiar to each file system is taken

care of by the pathname software. This mapping is described elsewhere for each

file system. See the section "The Character Set".

The following are the conceptual components of a pathname. They will be clarified

by examples below.

Host The computer system, the machine, on which the file resides.

Device Corresponds to the "device" or "file structure" concept in many

host file systems. Often, it designates a group of disks, or re-

movable storage media, or one of several different media of dif-

fering storage densities or costs.

Directory An organizational structure in which files are "contained" on

almost all file systems. Files are "stored in", or "reside in" di-

rectories. The directories have names; the files’ names are only

valid within the context of a given directory. Some systems (hi-

erarchical file systems) allow directories to be contained in oth-

er directories; others do not.

Name The name of a group of files that can be thought of as concep-

tually the "same" file. In many systems, this is the "first

name" of the file. For instance, source and object files for the

same program generally have the same name, but differing

type.

Type Corresponds to the "filetype" or "extension" concept in many

host file systems. This usually indicates the kind of data stored

in the file, for example, binary object code, a Lisp source pro-

gram, a FORTRAN source program, and so forth.

Page 276

Version Corresponds to the "version number" concept in many host file

systems. Some systems implement this concept, others do not.

A version number is a number, part of the conceptual name of

the file, that distinguishes succeeding versions of a file from

each other. When you write out a file on such a file system,

you are not modifying the file on the host computer but writ-

ing a new version, that is, one with a higher version number,

automatically.

The Symbolics computer system allows a version component of

"newest" or "oldest", represented by the keyword symbols

:newest and :oldest, respectively, to designate "the newest

(oldest) version of the file, whichever that might be".

As an example, consider a TOPS-20 user named "George", who writes a Lisp pro-

gram that he thinks of as being named "conch". If George uses the TOPS-20 host

named FISH, the source for his program might be in a file on the host FISH with

the following name:

<GEORGE>CONCH.LISP.17�

In this case, the host is FISH, the device would be some appropriate default, and

the directory would be <GEORGE>. This directory would probably contain a num-

ber of files related to the "conch" program. The source code for this program

would live in a file with name CONCH, type LISP, and versions 1, 2, 3, and so on.

The compiled form of the program would live in a file named CONCH with type

BIN.

Now suppose George is a UNIX user, using the UNIX host BIRD. The source for

his program would probably be in a file on the host BIRD with the following

name:

/usr2/george/conch.l�

In this case, the host is BIRD, and the directory would be /usr2/george. This direc-

tory would probably contain a number of files related to the "conch" program. The

source code for this program would live in a file with name conch, type l. The

compiled form of the program would live in a file named conch, with type bn.

There are no version numbers on UNIX.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a

way to get to a file; a pathname need not correspond to any file that actually ex-

ists, and more than one pathname can refer to the same file. For example, the

pathname with a version of "newest" will refer to the same file as a pathname

with the same components except a certain number as the version. In systems with

links, multiple file names, logical devices, and so forth, two pathnames that look

quite different can turn out to designate the same file. To get from a pathname to

a file requires doing a file system operation such as open.

Basic Use of the Pathname System

Page 277

The pathname system can be very easy to use if you know a few simple tech-

niques. It often seems that there are many different ways to do anything, and that

only one of these is right for any circumstance, but most of these features only ex-

ist for special needs. This section shows you how to easily do some of the simple

things.

Getting a Filename From the User

The simplest and most common application for using a pathname is simply to read

or write a file. For example, a program to do some very simple processing of a

database (it reads the file and ignores it):

(defun process-example-database (database-pathname)

 (with-open-file (database-stream database-pathname)

 (format t "~&Ignoring database ~A ..." (send database-stream :truename))

 (stream-copy-until-eof stream #’si:null-stream)

 (format t " ignored.~%")))�

This simple example is adequate for a program interface, but for a user, it is

rather awkward. You must supply all components of the pathname, plus the quota-

tion marks around the strings. Also, you have no completion available. In this ex-

ample, you do not have to parse the pathname; open will do that for you. (Some-

times we are not be so lucky).

Your job can be made easier by providing a function to read a pathname and pass

it to process-example-database. To do this, zl-user:accept is used.

In our first version, we just ask the user for the pathname.

(defun run-example ()

 (let ((pathname (prompt-and-read :pathname "Where is your database? ")))

 (process-example-database pathname)))

�

Where is your database? Y:>user>databases>dummy.database

Ignoring Y:>user>databases>dummy.database.7 ... ignored.

�

zl-user:accept does much of what we are looking for. It provides the following:

• Parsing

• Completion

• Merging with defaults�

In this case, we supplied no default, so the "default default", fs:*default-

pathname-defaults* is used. But this default is not very helpful, because it is not

visible; it could even be confusing if you expected one default and got another.

Good practice dictates telling the user what the default is. prompt-and-read

makes this easy with the :visible-default suboption to :pathname, :pathname-or-

nil, and :pathname-list.

Page 278

�

(defun run-example ()

 (let ((pathname (prompt-and-read

 ‘(:pathname :visible-default ,fs:*default-pathname-defaults*)

 "Where is your database? ")))

 (process-example-database pathname)))

Where is your database? (Default Y:>user>foo.lisp) databases>dummy.database

Ignoring Y:>user>databases>dummy.database.7 ... ignored.

�

Now that you can see the defaults, you can make use of them. Note that in the

above example, you did not have to type the "Y:>user>", because the default was

available.

Tailoring Pathname Defaults

fs:*default-pathname-defaults* is a global default, with nothing particularly ap-

propriate to any specific application. Often, when an application is writing or read-

ing a file, it knows more about the file than is implied by fs:*default-pathname-

defaults*. This information can be used to help prompt the user for a suitable

filename and help reduce the amount of typing needed to specify a suitable file-

name.

For example, consider our example of reading a database. (See the section "Getting

a Filename From the User".) In this example, we are just prompting for the file-

name and ignoring the actual database.

�

(defun run-example ()

 (let ((pathname (prompt-and-read

 ‘(:pathname :visible-default ,fs:*default-pathname-defaults*)

 "Where is your database? ")))

 (process-example-database pathname)))

Where is your database? (Default Y:>user>foo.lisp) databases>dummy.database

Ignoring Y:>user>databases>dummy.database.7 ... ignored.

�

First, if we are going to seriously use our own special file type, we need to define

the type so that it can be used successfully on different systems. See the special

form fs:define-canonical-type.

(fs:define-canonical-type :database "DATABASE"

 ((:vms :vms4) "DBS")

 (:unix "DB"))�

Now this type can be used as the default type for our example databases.

Page 279

(defun run-example ()

 (let* ((default (fs:default-pathname fs:*default-pathname-defaults*

 nil ;Host

 :database)) ;Type

 (pathname (prompt-and-read ‘(:pathname :visible-default ,default)

 "Where is your database?~%")))

 (process-example-database pathname)))

�

Where is your database? (Default Y:>user>foo.database) databases>dummy

Ignoring Y:>user>databases>dummy.database.7 ... ignored.�

More About Defaults

Most simple programs use fs:*default-pathname-defaults* as the source for their

defaults. However, as a program makes more use of pathname reading and de-

faults, there are some things we can do to make things easier for the user.

• Provide a default based on other files in an operation, for example, defaulting

an output file pathname from the input file.

• Provide "sticky" defaults, where the new default is based on the last file the

user gave.

• Provide a default based on the current context, as in "pathname of the current

buffer" in Zmacs.�

Defaulting An Output File Pathname From An Input File

Perhaps the most common defaulting situation is that of defaulting an output file

pathname from the input file. Usually, the output file differs from the input file

only in file type and version, and we would like to have users provide explicit in-

formation only when they want something differ from the usual case.

(defun my-compile-file (input-file output-file)

 (format t "~&Compiling ~A into ~A.~%"

 input-file output-file)

 (compiler:compile-file input-file output-file))

Page 280

�

(defun comp-it ()

 (let* ((input-default (fs:default-pathname nil nil :lisp :newest))

 (input-file (prompt-and-read

 ‘(:pathname :visible-default ,input-default)

 "Input file: "))

 (output-default (fs:default-pathname input-file nil :bin :newest))

 (output-file (prompt-and-read

‘(:pathname :visible-default ,output-default)

"Output file: ")))

 (my-compile-file input-file output-file)))

�

The above example works well for single files, but it does not handle wildcards. To

handle wildcards, we need to introduce the use of :translate-wild-pathname and

fs:directory-link-opaque-dirlist. :translate-wild-pathname does the work of inter-

preting how a given input file is to be mapped to its corresponding output file, and

fs:directory-link-opaque-dirlist takes care of finding all the input files.

Note that we use fs:directory-link-opaque-dirlist rather than fs:directory-list. In

general, this is necessary whenever the :translate-wild-pathname message is used.

:translate-wild-pathname expects the input pathname to match the input pattern.

fs:directory-list, in the presence of directory links or VAX/VMS logical devices,

can have a different directory or a different device.

If the input pattern has wildcards in its directory component, fs:directory-link-

opaque-dirlist currently does no better than fs:directory-list. This is a difficult

problem still under investigation.

(defun comp-one-file (input-file-pattern output-file-pattern input-file)

 (let ((output-file (send input-file-pattern :translate-wild-pathname

 output-file-pattern input-file)))

 (my-compile-file input-file output-file)))

�

(defun comp-files ()

 (let* ((input-default (fs:default-pathname nil nil :lisp :newest))

 (input-pattern (prompt-and-read

 ‘(:pathname :visible-default ,input-default)

 "Input file: "))

 (output-default (fs:default-pathname input-file nil :bin :newest))

 (output-pattern (prompt-and-read

 ‘(:pathname :visible-default ,output-default)

 "Output file: ")))

 (if (not (send input-file :wild-p))

(comp-one-file input-pattern output-pattern input-pattern)

 (loop for (file) in (cdr (fs:directory-link-opaque-dirlist

 input-pattern :fast))

 do (comp-one-file input-pattern output-pattern file)))))

�

Note that in the above example, we just call comp-one-file directly if the input

Page 281

pathname is not wild. While it is not strictly necessary to do this (fs:directory-

link-opaque-dirlist works on non-wildcard pathnames), it does eliminate an un-

needed operation.

Sticky Pathname Defaults

Often, when a single command or a related set of commands are to be repeated,

the next command should operate on a file related to the one the current com-

mand is operating on. In this case, it would be most convenient for the default to

be the previous pathname. This is called sticky defaulting.

For example, consider a simple user-written tool to either show or delete files.

(defun show-or-delete ()

 (loop with default = (fs:default-pathname)

for ch = (prompt-and-read :character "Cmd>")

do (multiple-value-bind (prompt function)

 (selector char-equal ch

 (#\S (values "Show File" #’viewf))

 (#\D (values "Delete File" #’deletef))

 (#\Q (return nil))

 (#\Help (format t "~&S = Show File~@

 D = Delete File~@

 Q = Quit~%")

 (values nil nil))

 (otherwise

 (tv:beep)

 (format t "~&~:C is an unknown command.~%" ch)))

 (when prompt

 (let ((file (prompt-and-read

 ‘(:pathname :visible-default ,default)

 prompt)))

 ; The following is done for us by prompt-and-read

 ;(setq default (fs:merge-pathnames file default))

 (funcall function file))))))�

Each time around the loop, when you specify a file, it is remembered to serve as

the default the next time around. Note the commented out (setq default

(fs:merge-pathnames file default)). This isn’t needed in this example, since

prompt-and-read does this for us, but if we were reading pathnames via some

other mechanism, it is important to keep the default as a fully specified pathname.

Otherwise, the second time around the loop, we could end up with defaults like

"Q:", which is not of much use if you are then forced to type all the components of

the pathname and may get an error if you do not.

If you wish to use a default such as this and not keep it in a local variable, you

should use a defaults alist. This serves as a registered place to remember a path-

name, so that if the world is moved to another site, it can be reset. Defaults alists

can be passed to fs:default-pathname to extract a fully-merged default. See the

function fs:set-default-pathname. See the function fs:make-pathname-defaults.

Page 282

Pathname Defaulting From the Current Context

Often, an application program involves the user working on a single context for an

extended time. For example, in the editor, the user is working on a single named

buffer. In the font editor, the user is working on a single named font.

Often, the object being worked on was read in from a file. This file can serve as a

default for further file operations, such as listing the directory, or resaving the

object. Consider a picture editor, which lets the user edit multiple pictures, as the

Zmacs editor lets the user edit multiple buffers. This picture editor stores its files

in .BIN files.

(defflavor picture (name

 (pathname sys:fdefine-file-pathname)

 (array (make-array ’(100. 100.) :type ’art-1b)))

 ()

 :gettable-instance-variables

 :settable-instance-variables

 :initable-instance-variables)

�

(defvar *pictures* nil

"List of pictures being edited")

�

(defvar *current-picture* nil)

�

(defvar *picture-defaults* (fs:make-pathname-defaults))

�

(defun add-picture (picture)

 (setq *pictures* (del #’(lambda (p1 p2)

 (string-equal (send p1 :name) (send p2 :name)))

picture

pictures))

 (push picture *pictures*)

 (setq *current-picture* picture))

�

(defmethod (picture :fasd-form) ()

 ‘(make-instance ’,(typep self)

 :name ’,name

 :array ’,array))

Page 283

�

(defun picture-default-pathname (&key type (version :newest))

 (let ((bare-default (fs:default-pathname *picture-defaults*

 nil type version))

(path (when *current-picture*

(send *current-picture* :pathname))))

 (if (not *current-picture*)

bare-default

 (if path

 (setq path (fs:merge-pathnames path bare-default version))

;; A new picture, so no pathname. Let’s make a guess from the name.

(let ((name (send *current-picture* :name)))

 (setq path

(condition-case ()

 (fs:merge-pathnames name bare-default version)

 ;; If name isn’t parsable, just use the bare default.

 (error bare-default)))))

 path)))

�

(defun com-create-picture ()

 (let ((name (prompt-and-read :string "Picture name: ")))

 (add-picture (make-instance ’picture :name name))))

�

(defun com-save-picture ()

 (let* ((default (picture-default-pathname :type :bin))

 (file (prompt-and-read

 ‘(:pathname :visible-default ,default)

 "Save to picture file: ")))

 ;; Remember the pathname given, so the next time we

 ;; get a new picture, we can have a better default.

 (fs:set-default-pathname file *picture-defaults*)

 (sys:dump-forms-to-file

 file

 ‘((add-picture ’,*current-picture*)))))

�

In this example, picture-default-pathname computes the default. If the current

picture has a file associated with it, that serves as the default. If there is no path-

name with the current picture, we attempt to make a pathname using the name. If

that fails (or if there is no current picture), we just use the bare default.

Finally, the pathname we read is remembered, so the next time a default is needed

for a new picture, we will have a more recent default.

Note that when the picture is loaded, sys:fdefine-file-pathname is used to get the

file being loaded. This works well when the file being loaded is a .bin file, since

zl:load binds this variable. However, in other situations, you need to make other

arrangements to set the pathname.

Page 284

Lozenge Character is Reserved in Pathnames

The lozenge character (◊) is a reserved character in pathnames.

Host Determination In Pathnames

Two important operations of the pathname system are parsing and merging. Pars-

ing is the conversion of a string, which might have been typed by the user when

asked to supply the name of a file, into a pathname object. This involves finding

out for which host the pathname is intended, using the file name syntax conven-

tions of that host to parse the string into the standard pathname components, and

constructing such a pathname. Merging is the operation that takes a pathname

with missing components and supplies values for those components from a set of

defaults.

Since each kind of file system has its own character string representation of

names of its files, there has to be a different parser for each of these representa-

tions, capable of examining such a character string and determining the value of

each component. The parsers, therefore, all work differently. How does the parsing

operation know which parser to use? It determines for which host the pathname is

intended, and uses the appropriate parser. A filename character string can specify

a host explicitly, by having the name of the host, followed by a colon, at the begin-

ning of the string, or it can assume a default, if there is no host name followed by

a colon at the beginning of the string.

Here is how the pathname system determines for which host a pathname being

parsed is intended. The first colon in a pathname being parsed always delimits the

host name. You can also enter pathname strings that are for a specific host and do

not contain any host name. In that case, a default host is used. Normally, the iden-

tity of the default host is displayed to the user entering a pathname. See the sec-

tion "Pathname Defaults and Merging".

However, pathnames can have colons in them that do not designate hosts, such as

filenames constructed from clock times, and the like. Some systems use the colon

character to delimit devices. This creates a problem in parsing such pathnames.

See the function fs:parse-pathname. The standard Symbolics computer user inter-

face does not use such pathnames, but they can be used by other programs, partic-

ularly those that deal with files whose format is defined by a foreign operating

system.

The rule for parsing file names containing colons is, again, that any string used

before a colon is unconditionally interpreted as a file computer. If the string can-

not be interpreted as a host, an error is signalled.

If you must type a pathname that has an embedded colon not meaning a host, you

omit the host and place a colon at the beginning of the string. This "null host"

tells the parser that it should not look further for a colon, but instead assume the

host from the defaults. Examples:

• SS:<FOO>BAR refers to a host named "SS". :SS:<FOO>BAR refers to no explicit

host; if parsed relative to a TOPS-20 default, "SS" probably refers to a device.

Page 285

• 09:25:14.data refers to a host named "09". :09:25:14.data refers to no explicit

host.

• AI: COMMON; GEE WHIZ refers to a host named "AI".

• AI: ARC: USERS1; FOO BAR refers to a host named "AI". "ARC" is the name of

a device in the ITS operating system.

• EE:PS:<COMMON>GEE.WHIZ.5 specifies host EE (TOPS-20).

• PS:<COMMON>GEE.WHIZ.5 specifies a host named PS, which is almost certain-

ly not what is intended! The user probably intended the "PS" device on some

TOPS-20 host.

• :PS:<COMMON>GEE.WHIZ.5, assuming that the default host is some TOPS-20,

specifies a device named "PS" on that host.

There are a few "pseudohost" names, which are recognized as host names even

though they are not actually the names of hosts:

"local" This pseudohost name always refers to the local file system

(LMFS) of the machine that you are using. It does not matter

whether or not a local file system actually exists on that ma-

chine; an attempt will be made to reference it. "Local" is al-

ways equivalent to the name of the local host.

"FEP" This pseudohost name always refers to a FEP (front-end pro-

cessor) file system on the machine you are using, specifically,

the one on the disk unit from which the system was booted.

"FEPn" This pseudo name always refers to a FEP file system on the

machine you are using. The single digit n specifies the disk

unit number; there is a separate FEP file system on each

drive. This can access the boot unit, or any other disk unit,

when multiple units are present.

"host|FEPn" host must be a valid host name. This pseudohost name refers

to a FEP file system on a remote Symbolics computer. The

syntax "host|FEP" is not acceptable: you cannot access the

"boot unit" of a remote machine in this fashion. You must

know the disk unit number. The disk unit number of a host

having only one disk unit is 0.

If the string to be parsed does not specify a host explicitly, the parser assumes

that some particular host is the one in question, and it uses the parser for that

host’s file system. The optional arguments passed to the parsing function

(fs:parse-pathname) tell it which host to assume.

Interning of Pathnames

Page 286

Pathnames, like symbols, are interned. This means that there is only one pathname

object with a given set of components. If a character string is parsed into compo-

nents, and some pathname object with exactly those components already exists,

then the parser returns the existing pathname object rather than creating a new

one. The main reason for this is that a pathname has a property list. See the sec-

tion "Property Lists". The system stores properties on pathnames to remember in-

formation about the file or family of files to which that pathname refers. (In fact,

some of the properties stored on a generic pathname come from the file’s attribute

list when the file is edited or loaded, so they can be retrieved later without having

to perform I/O on the file.) So you can parse a character string that represents a

filename, and then look at its property list to get various information known about

that pathname. The components of a pathname are never modified once the path-

name has been created, just as the print name of a symbol is never modified. The

only thing that can be modified is the property list.

When using property lists of pathnames, you have to be very careful which path-

name you use to hold properties, in order to avoid a subtle problem: many differ-

ent pathnames can refer to the same file, because of the :newest component, file

system links, multiple naming in the file system, and so on. If you put a property

on one of these pathnames because you want to associate some information with

the file itself, somebody else might look at another pathname that refers to the

same file, and not find the information there. If you really want to associate infor-

mation with the file itself rather than some particular pathname, you can get a

canonical pathname for the file by using the :truename message to a stream

opened to that file. See the message :truename. You might also want to store

properties on "generic" pathnames. See the section "Generic Pathnames".

Printing Pathnames

A pathname can be converted back into a string, which is in the file name syntax

of its host’s file system. Although such a string (the string for host) can be pro-

duced from a pathname (by sending it the :string-for-host message), we discour-

age this practice. The Genera user interface prefers a string called the string for

printing, which is the same as the string for host, except that it is preceded by the

host name and a colon. This leaves no ambiguity about the host on which the file

resides, when seen by a user. It is also capable of being reparsed, unambiguously,

back into a pathname. prin1 of a pathname (~S in zl:format) prints it like a Lisp

object (using the usual "#<" syntax), while princ of a pathname (~A in zl:format)

prints the string for printing. The string function, applied to a pathname, also re-

turns the string for printing.

Not all the components of a pathname need to be specified. If a component path-

name is missing, its value is nil. Before a file server can utilize a pathname to

manipulate or otherwise access a file, all the pathname’s missing components must

be filled in from appropriate defaults. Pathnames with missing components are

nevertheless often passed around by programs, since almost all pathnames typed by

users do not specify all the components explicitly. The host is not allowed to be

missing from any pathname; since the behavior of a pathname is host-dependent to

some extent, it has to explicitly designate a host. Every pathname has a host at-

Page 287

tribute, even if the string that was parsed to create it did not specify one explicit-

ly.

All pathname parsers support the cross-system convention that the double-shafted

arrow character (↔) can be used to specify a null directory, name, type, or version

component explicitly. Thus, for LMFS or TOPS-20, you can type the following:

↔.↔.5�

This example specifies a version of 5, but no name or type. This is useful when

typing against the default and attempting to change just the version of that de-

fault.

The keyword symbol :unspecific can also be a component of a pathname. This

means that the component is not meaningful on the type of file system concerned.

For example, UNIX pathnames do not have a concept of "version", so the version

component of every UNIX pathname is :unspecific. When a pathname is converted

to a string, nil and :unspecific both cause the component not to appear in the

string. The difference occurs in the merging operation, where nil is replaced with

the default for that component, while :unspecific is left alone.

The special symbol :wild can also be a component of a pathname. This is only use-

ful when the pathname is being used with a directory listing primitive such as

fs:directory-list or fs:all-directories, where it means that this pathname compo-

nent matches anything. See the function fs:directory-list. The printed representa-

tion of a pathname usually designates :wild with an asterisk; however, this is host-

dependent.

:wild is one of several possible wildcard components, which are given to directory-

listing primitives to filter file names. Many systems support other wildcard compo-

nents, such as the string "foo*". This string, when supplied as a file name to a di-

rectory list operation on any of several system types, specifies all files whose name

starts with "foo". In other contexts, it might not represent a wildcard at all. The

component :wild matches all possible values for any component for which it ap-

pears. Other wildcard possibilities for directories exist, but they are more compli-

cated, and are explained elsewhere. See the section "Values of Pathname Compo-

nents". See the section "Directory Pathnames and Directory Pathnames as Files".

Pathname Translation

A translations file contains the form fs:set-logical-pathname-host and a transla-

tions list. The list describes logical pathnames by providing their corresponding

physical pathnames. Each logical/physical pathname pair is called a translation

pair.

The Logical Pathname Translations File�

Here is a sample translations file (note the translations list, containing three

translation pairs, following the :translations keyword at the end of the file):

Page 288

;;; -*- Mode: LISP; Package: FS; Syntax: ZetaLisp; Base: 10; -*-

(fs:set-logical-pathname-host "SYS"

 :physical-host "ACME-YUKON"

 :translations ’(("SYS:DOC;**;*.*.*" "ACME-YUKON:>sys>doc>**>*.*.*")

 ("SYS:FONTS;**;*.*.*" "ACME-RIVERSIDE:>sys>fonts>**>*.*.*")

 ("SYS:**;*.*.*" "ACME-QUABBIN:>sys>**>*.*.*")))�

In this sample, the logical pathname SYS:DOC; (and all its inferior directories)

maps to the physical host ACME-YUKON. If this translations file were loaded, the

logical pathname,

SYS:DOC;SITE;SITE7.SAB.NEWEST

would resolve to the file described by this physical pathname:

ACME-YUKON:>sys>doc>site>site7.sab.newest�

Likewise, the logical pathname, SYS:FONTS; (and all its inferior directories) would

map to the physical host ACME-RIVERSIDE, and the logical pathname,

SYS:FONTS;TV;CPTFONTB.BFD.NEWEST

would resolve to the file described by this physical pathname:

ACME-RIVERSIDE:>sys>fonts>tv>cptfontb.bfd.newest�

All other logical pathnames beginning with SYS: (and all their inferior directories)

would map to the physical host ACME-QUABBIN. For example,

SYS:FLAVOR;CTYPES.LISP.NEWEST

would resolve to the file described by this physical pathname:

ACME-QUABBIN:>sys>flavor>ctypes.lisp.newest�

The Logical Pathname Translation Process�

There are two phases to the translation process. In the first phase, using the

:pathname-match message, the pathname resolver matches a logical pathname

(the pathname to be translated) against the logical pathnames listed successively

in the translations file. Once the pathname resolver finds a match, it uses the ap-

propriate logical/physical pathname pair from the list.

Note: Because the translation list is searched in sequence, it should provide the

most specific pathnames first, and the most general pathname last.

In the second phase, the pathname resolver processes the selected translation pair

according to translation rules. There are three sets of translation rules for each

logical host:

Permanent The permanent translation rules are special purpose rules that

cannot be overridden. They provide for such things as the

translation of patch file pathnames. This set is searched first.

Site The site translation rule is determined by the Site-Directory

attribute for each object of class "site" in the namespace. A

site’s translation rule cannot be overridden. This set is

searched second.

Page 289

Supplied The normal, supplied translation rules are provided by the au-

thor of the software using the logical host. This set is

searched third.

Additionally, the pathname resolver uses these host-independent rules:

Global This set is not currently used for anything, but it is provided

for future extension.

Default This is the :translate-wild rule, which uses :translate-wild-

pathname-reversible. This rule is used when no other rule is

applicable.

The second phase (in which the the pathname resolver processes the selected

translation pair according to translation rules) is potentially more complex. In its

simplest form, the pathname resolver uses the default rule. Before using the de-

fault rule, though, the pathname resolver searches for a more suitable one.

The default rule produces a physical pathname by sending the :translate-wild-

pathname-reversible message to the logical pathname, where the first element of

the translation pair is the source pattern, and the second element of the transla-

tion pair is the target pattern. For more information about source and target pat-

terns:

See the section "Wildcard Pathname Mapping". See the section "Wildcard Directory

Mapping". See the section "Reversible Wildcard Pathname Translation".

Logical Translations to Multiple Physical Hosts

A logical host can translate to more than one physical host when the translations

list given to fs:set-logical-pathname-host contains explicit pointers to more than

one host.

For example:

(fs:set-logical-pathname-host "SYS"

 :translations ’(("SYS:DOC;**;*.*.*" "ACME-LISPM:>Rel-8-0>doc>**>*.*.*")

 ("SYS:**;*.*.*" "ACMEVAX:SYMBOLICS:[REL8-0...]*.*.*"))

 :no-translate nil)�

Note: it is not necessary to specify the :physical-host argument to fs:set-logical-

pathname-host as long as host names are specified in the translations list. If a

:physical-host argument is specified, however, it serves as the default.

Translation Rules

The logical host SYS uses heuristics that eliminate characters illegal in VAX/VMS

file specifications and deal with filename-length limitations on foreign hosts.

For example, some filenames can be shortened without changing their meanings:

sys:io;pathnm-cometh.lisp �

Page 290

might translate to

acmevax:symbolics[rel7-I.io]pthnmcmth.lsp �

on a VAX/VMS physical host.

The system does not allow two logical pathnames to translate to the same place.

An error is signalled when the system attempts to translate a logical pathname to

a physical pathname already found as the result of a logical-pathname translation

(for example, if a typographical error is made when a user types in a logical

pathname).

However, when :no-translate nil is used in the fs:set-logical-pathname-host form,

the system translates all its logical pathnames when setting the logical system

host (thus eliminating the possibility of incorrect translations being entered by

mistake). For more information about this, see the function fs:set-logical-

pathname-host.

Reversible Wildcard Pathname Translation

Reversible wild pathname translation is a special version of wild pathname trans-

lation. The difference between wild pathname translation and reversible translation

lies in their treatment of a target wildcard pattern consisting solely of *. In regu-

lar translation, a target pattern of :wild causes the source component to be copied

verbatim. This is a useful user-interface feature, but it causes dropping of infor-

mation and resultant noninvertibility of the transformation. In reversible mapping,

this feature is not present. Logical pathname translation and back-translation is

done in this mode.

Example:

Source Source Target

Type pattern instance pattern Result

Regular foo* foolish * foolish

Reversible foo* foolish * lish

Either * bar foo-* foo-bar�

Note that the inverse translation of foo-bar to bar cannot be accomplished under

regular translation.

Defining a Translation Rule

Translation rules are defined using the fs:set-logical-pathname-host function, us-

ing the :rules or :site-rules argument. (The other rule tables are not normally set

by the user). These arguments should be an a list of system type and translation

rule specifications.

((:vms VMS rule specifications ...)

 (:vms4 VMS4 rule specifications ...)

 (:unix UNIX rule specifications ...))�

Each rule specification consists of a pattern, a rule type, and optional arguments,

Page 291

as in the following example.

("PICTURE:EDITOR;LINE-DRAWING-COMMANDS.*.*" :vms-new-pathname :name "LINECMNDS")�

In this example, "PICTURE:EDITOR;LINE-DRAWING-COMMANDS.*.*" is the

pattern, :vms-new-pathname is the rule type, and :name and "LINECMNDS"

form a keyword/value pair of arguments to the :vms-new-pathname rule type.

Normally, translation rules are defined in the system definition file before a

defsystem form, so that the rules are loaded before they are needed. If you wish

to override the translation rules provided either by Symbolics or another vendor,

you can use the :site-rules argument to the call to fs:set-logical-pathname-host,

normally placed in the translation file.

The following sections describe the various rule types that exist and their argu-

ments.

:translate-wild &rest options Translation rule

The default translation rule’s type is :translate-wild. This simply sends the source

pattern a :translate-wild-pathname-reversible with the target pattern as target

and the pathname being translated as the source pathname. For example:

contents of sys.translations file:

(fs:set-logical-pathname-host "SYS"

 :translations ’(("SYS:DOC;**;*.*.*" "S:>Rel-6>doc>*.*.*")

 ("SYS:**;*.*.*" "Q:>Rel-6>**>*.*.*")))

�

pathname to translate:

SYS:IO;PATHNM.LISP.23

�

translation pair found in phase 1:

("SYS:**;*.*.*" "ACME:>Rel-6>**>*.*.*")

�

result of translation:

ACME:>Rel-6>io>pathnm.lisp.23�

In other words, the default is for the translation to occur according to the wild-

card mapping given in the translations.

:new-pathname &key device directory name type version Translation rule

Similar to :translate-wild, but replaces the directory, name, type, or version. Any

components not specified in the argument list will not be replaced, and will be de-

rived via :translate-wild-pathname-reversible as for the :translate-wild transla-

tion rule type.

:vms-heuristicate &optional substitute Translation rule

Tries to make understandable VMS pathnames out of longer, hyphenated file-

names. It produces usually understandable, hopefully unique, legal names and di-

rectories. In operation, it is similar to the :translate-wild type, but the compo-

nents translated by wildcards are subjected to heuristics if needed to fit VMS’s

pathname syntax.

Page 292

The substitute argument is used to perform character substitutions. For example,

for VMS, it can be used to substitute "_" for "-".

("SYS:**;*.*.*" :vms-heuristicate ((#\- #_)))�

:vms-heuristicate-name &optional substitute Translation rule

Similar to :vms-heuristicate, but heuristicates only the name.

:vms-heuristicate-directory &optional substitute Translation rule

Similar to :vms-heuristicate, but heuristicates only the directory name.

:vms-new-pathname &key device directory name type version Translation rule

A cross between :new-pathname and :vms-heuristicate. Components not explicitly

specified in the argument list are supplied by wildcard mapping plus heuristics as

for :vms-heuristicate.

:vms-font &optional renamings Translation Rule

Parses the name component of the logical pathname as a font spec. For example,

in fix.roman.normal, the family is roman, the size is normal, and the style is fix.

(The style is optional). The font family is subjected to the VMS heuristics to fit in

a smaller space (to allow room for the size and style). The result is concatenated

with the size and style to construct a new name.

If the renamings argument is supplied, it is an alist of font names and replace-

ment to be used instead of the one produced by the heuristics. This is useful in

cases where the heuristic produces a confusing name, or where there would other-

wise be name conflicts. For example, the following translation rule is used with

the SYS: host for VMS hosts.

("SYS: FONTS; LGP-2; *.BFD.*" :vms-font

 (("DANG-MATH" "DANGM")

 ("GHELVETICA" "GHLVT")

 ("HELVETICA" "HELVT")

 ("TIMESROMAN" "TIMSR")

 ("XGP-VGV" "XGPVV")))�

This translation rule serves to encode the relevant information that makes each

font distinct.

In addition, :vms-font performs full VMS heuristics on the directory.

:vms-microcode Translation rule

Encodes the microcode names in such a way as to be sure to retain the informa-

tion that distinguishes different microcodes.

The name component of the logical pathname is parsed into words. Each word is

looked up in the alist fs:*vms-microcode-translation-alist*. (The alist is shared

with the equivalent translation for UNIX). If found, it is replaced with the replace-

ment (a single character, except "MIC" maps to "") found in the second element of

the alist bucket. This sequence of characters is then concatenated to produce the

new filename.

Page 293

The directory component is subject to full heuristication.

:tops20-heuristicate-directory &optional (levels fs:*default-tops20-directory-levels*)

Translation rule

Compensates for the fact that TOPS20 directories are limited to a size of fs:*tops-

20-max-field-size*, including the "." characters as directory-level separators. Each

level of directory is allocated a share of the available space, and is compressed to

fit in that space as needed. In determining how much space to allocate to each

level, the rule assumes that no more than levels directory levels will be needed.

The default is fs:*default-tops20-directory-levels*, or fs:*default-tops20-

directory-levels* levels.

:unix-microcode Translation rule

Encodes the microcode names in such a way as to be sure to retain the informa-

tion that distinguishes different microcodes.

The name component of the logical pathname is parsed into words. Each word is

looked up in the alist fs:*unix-microcode-translation-alist*. (The alist is shared

with the equivalent translation for VMS). If found, it is replaced with the replace-

ment (a single character, except "MIC" maps to "") found in the second element of

the alist bucket. This sequence of characters is then concatenated to produce the

new filename.

:unix-font &optional renamings Translation rule

Parses the name component of the logical pathname as a font spec. For example,

in fix.roman.normal, the family is roman, the size is normal, and the style is fix.

(The style is optional). The font family is subjected to the VMS heuristics to fit in

a smaller space (to allow room for the size and style). The result is concatenated

with the size and style to construct a new name.

If the renamings argument is supplied, it is an alist of font names and replace-

ment to be used instead of the one produced by the heuristics. This is useful in

cases where the heuristic produces a confusing name, or where there would other-

wise be name conflicts. For example, the following translation rule is used with

the SYS: host for UNIX hosts.

("SYS: FONTS; LGP-1; *.BFD.*" :unix-font

 (("DANG-MATH" "DANGMT")

 ("GHELVETICA" "GHELVT")

 ("HELVETICA" "HELVET")

 ("TIMESROMAN" "TIMESR")

 ("XGP-VGV" "XGPVGV")))�

This translation rule serves to encode the relevant information that makes each

font distinct.

:unix-type-and-version &optional renamings Translation rule

Used in situations where you need to retain both the type and version. This is

usually needed where differing versions of the file need to coexist.

Page 294

The name component is matched against the renamings alist. If it is found, the

second element of the alist bucket is used instead. Then, if the last character of

the name (or the replacement) is a digit, a "+" is added to the end. Then, the ver-

sion number (or "" if nil or "*" if :wild) is added to the end. This is then used as

the name component. The type is handled via the normal mechanisms.

The version is added to the name rather than the end of the type, so that the type

field can be recognized by programs that look at the type (or canonical type).

:site-directory &key device directory name type version Translation rule

Substitutes the :site-directory attribute from the local site object for the host and

directory. The arglist is like for :new-pathname. This is used to translate

SYS:SITE;.

As a special feature, this rule can be overridden by an explicit entry for SYS:

SITE; in the translations. This can be useful when debugging, to get a different

site directory without modifying your site namespace object.

fs:patch-file system-name &optional file-type Translation rule

fs:patch-file rules, which will often be seen when doing a fs:describe-logical-host,

are internal to the patch system. They provide for the translation of patch file log-

ical names to physical files, in a system-dependent manner. These rules are added

as a result of defining a system to be patchable.

fs:describe-logical-host host Function

Provides various information about the host, which can the a logical host or the

name of a logical host. The information includes:

• Default physical host

• Translations

• Translation rules sorted by search order

• Translation rules sorted by group

This translation rule can be useful for determining what went wrong with a trans-

lation file.

fs:make-logical-pathname-host name &key no-search-for-shadowed-physical

Function

Defines name (a string or symbol) to be the name of a logical pathname host.

Name should not conflict with the name of any existing host, logical or physical.

An fs:make-logical-pathname-host form often appears in the file sys:site;system-

name.system.

Page 295

fs:make-logical-pathname-host loads the file sys:site;name.translations. load-

patches checks the translations file for each logical host that is defined in the

current world; if any translations file has been changed it is reloaded (if and only

if no specific systems are specified in its arguments).

The argument :no-search-for-shadowed-physical (default nil) means to look only

in the existing pathname hosts for a host with the same name as the logical host.

This saves time by not asking the namespace server whether the name of the new-

ly defined logical host conflicts with the names of any physical hosts, but it pre-

vents you from seeing the following warnings:

�

Warning: the host ~A must now be referred to as ~A: in pathnames,

since ~A is now a logical pathname host.

This affects ~[no~:;~:*~D~] extant pathnames.

�

Warning: the nickname ~A: for the physical host ~A

 will now refer instead to the

 logical pathname host ~A.

 Use ~A: in pathnames.�

Note: fs:add-logical-pathname-host is an obsolete name for this function.

More information is available about using the function fs:make-logical-pathname-

host in system files. See the section "System Files".

fs:set-logical-pathname-host logical-host &key :physical-host :translations :rules

:site-rules (:no-translate t) :no-search-for-shadowed-physical Function

Creates a logical host named "logical-host" if one does not already exist. This form

appears in sys:site;logical-host.translations files. It establishes the translations

of logical directories on logical-host to physical directories on one or more physical

hosts. The machine specified by the :physical-host keyword serves as the default

physical host.

The :translations keyword specifies the list of translations from logical to physical

directories.

• For more information about translations lists: See the section "Translations

Files".

• For the format of the lists and the translation rules: See the section "Pathname

Translation".

• For a discussion of the :rules and :site-rules keywords: See the section "Defining

a Translation Rule".

If no-translate is nil, the translation of every interned logical pathname is checked.

Properties are copied from the old physical pathname to the the new one, and logi-

cal pathnames that now have no corresponding physical pathnames are uninterned.

Page 296

If no-translate is not nil or not supplied, this mapping is suppressed, and some

physical pathnames might not get the properties of the logical pathname. This is

not normally of any consequence, so no-translate defaults to t.

The argument no-search-for-shadowed-physical (default nil) means to look only in

the existing pathname hosts for a host with the same name as the logical host.

This saves time by not asking the namespace server whether the name of the new-

ly defined logical host conflicts with the names of any physical hosts, but it pre-

vents you from seeing the following warnings:

�

Warning: the host ~A must now be referred to as ~A: in pathnames,

since ~A is now a logical pathname host.

This affects ~[no~:;~:*~D~] extant pathnames.

�

Warning: the nickname ~A: for the physical host ~A

 will now refer instead to the

 logical pathname host ~A.

 Use ~A: in pathnames.�

For more information about sys.translations files, see the section "Pathname

Translation". Also see the section "Translations Files".

(flavor:method :translated-pathname fs:logical-pathname) Method

Converts a logical pathname to a physical pathname. It returns the translated

pathname of this instance: a pathname whose :host component is the physical host

that corresponds to this instance’s logical host. See the section "Syntax for Logical

Pathnames".

If this message is sent to a physical pathname, it simply returns itself.

(flavor:method :back-translated-pathname fs:logical-pathname) pathname

Method

Converts a physical pathname to a logical pathname. pathname should be a path-

name whose host is the physical host corresponding to this instance’s logical host.

This returns a pathname whose host is the logical host and whose translation is

pathname. See the section "Syntax for Logical Pathnames".

This message might be used in connection with truenames. Given a stream that

was obtained by opening a logical pathname,

(send stream :pathname)�

returns the logical pathname that was opened.

(send stream :truename)�

returns the true name of the file that is open, which of course is a pathname on

the physical host. To get this in the form of a logical pathname, you would do the

following:

Page 297

(send (send stream :pathname)

 :back-translated-pathname

 (send stream :truename))�

If this message is sent to a physical pathname, it simply returns its argument.

Thus the above example works no matter what kind of pathname was opened to

create the stream. However, it is important to note two situations in which back

translation can fail to do what you expect:

Links If opening the file involved following a link, the truename will

no longer match, and back translation might not be able to

convert it to a physical pathname at all.

File-system restrictions

If the translation involved compressing or modifying a name to

adapt to a file-system’s rules, the physical pathname might be

translated to a logical pathname different from the one origi-

nally used.�

Back translation is useful only in cases where the logical pathname is wanted for

informational, not operational, purposes. For example, if you remember a back

translation to reopen the file, you might end up with physical instead of logical

pathnames in your program. Physical pathnames are not transportable between

sites.

One way to avoid this problem is to avoid back translation. Often, all that is need-

ed is the version number, in which case the following code will serve:

(send (send stream :pathname)

 :new-default-pathname

 :version (send (send stream :truename) :version))�

Note that :new-default-pathname is used rather than :new-pathname. This is

necessary because the logical host and the physical host are of different types.

When copying components between host types, you need to allow for certain sub-

stitutions. In this case, if the physical host is a UNIX system, the version will be

:unspecific, and :new-default-pathname will convert this to the nearest equivalent

for logical pathnames: :newest.

Values of Pathname Components

The set of permissible values for components of a pathname depends, in general,

on the pathname’s host. However, in order for pathnames to be usable in a system-

independent way certain global conventions are adhered to. These conventions are

stronger for the type and version than for the other components, since the type

and version are actually understood by many programs, while the other compo-

nents are usually treated as things chosen by the user that need to be preserved

and passed around.

Most programs do not use or specify the components of a pathname explicitly, or

only in a very limited way. In this way, they can remain operating-system-

independent, while letting the pathname system take care of most issues of com-

Page 298

patibility. In general, you should avoid where possible using specific values of

pathname components in your programs. The descriptions here are illustrative but

not complete, and programs should be written to expect component values other

than those given here.

It is important to remember that not all pathname flavors accept all the values in-

dicated here. For example, UNIX pathnames accept a type or version of

:unspecific; few other pathnames do. Some systems do not allow certain characters

or limit certain fields to a certain length.

It is generally not possible to simply copy components from one flavor of pathname

to another. It is often necessary to perform substitutions in order to produce a le-

gal pathname. The :new-default-pathname message can be used instead of :new-

pathname to get this substitution where necessary. The :new-default-pathname

message attempts to substitute something as close as possible in meaning to the

original component; however, the substitution can be arbitrary if necessary. For

this reason, it is better to avoid copying components between pathnames of differ-

ing flavor, where possible.

The type is always a string (unless it is one of the special symbols nil,

:unspecific, or :wild). Many programs that deal with files have an idea of what

type they want to use. For example, Lisp source programs are "lisp", compiled Lisp

programs (on, for example, a LMFS host) are "bin", text files are "text", and so on.

The set of characters allowed in the type, and the number of characters, are sys-

tem-dependent. In order to process file types in a system-independent way, the

canonical type mechanism has been devised. A canonical type is a system-

independent keyword symbol representing the conceptual type of a file. For in-

stance, a Lisp source file on VMS has a file type of "LSP", and one on UNIX has

a file type of "l". When we ask pathnames of either of these natures for their

canonical type, we receive the keyword symbol :lisp. See the section "Canonical

Types in Pathnames".

The version is either a number (specifically, a positive fixnum), or one of the sym-

bols nil, :unspecific, :wild, :newest, or :oldest. nil, :unspecific, and :wild have

been explained above. :newest refers to the largest version number that exists

when reading a file, or that number plus one when writing a new file. :oldest

refers to the smallest existing version number.

The host component of a pathname is always a host object. See the section "At-

tributes for Objects of Class "Host"".

The device component of a pathname can be one of the symbols nil or :unspecific,

or a string designating some device, for those file systems that support such a no-

tion.

The file name can be nil or a string, or :wild.

The directory component is highly system-specific. While it can be nil for any type

of host, values designating actual directories, or partially wild specifications for

directories, are more complicated. On nonhierarchical file systems, the directory

component is usually a string such as "LMDOC", designating the name of the di-

rectory.

Page 299

On hierarchical file systems, the directory component, when not nil, is a list of di-

rectory level components. For example:

LMFS pathname Directory component

>sys>io>qfile.lisp.2357 ("sys" "io")

"sys" and "io" are the directory level components. Since the "root directory" of hi-

erarchical file systems has no directory level components, it would be represented

as nil, but this is impermissible, since nil already means that the directory compo-

nent has not been specified. Thus, :root is used as the directory component in that

case.

Relative pathnames on hierarchical file systems are represented by directory com-

ponents having the level component :relative, followed by a number of occurrences

of the symbol :up equal to the number of "upward relativization symbols", followed

by the remaining directory level components. For example:

LMFS relative pathname Directory component

<<x>y>z.lisp (:relative :up :up "x" "y")

Directory components of pathnames for hierarchical file systems, on some systems,

can also have the symbol :wild or a partially wild string (such as "foo*") as direc-

tory level components, to do level-by-level matching of level components. Also, on

some systems, the level component :wild-inferiors (which is printed as "**" on

LMFS and logical pathnames, and "..." on VMS, currently the only ones supporting

it) to designate "any number, including zero of directory levels" to a directory list

operation.

Note that some systems (currently VMS) do not allow using zero directory levels

to denote their root directory. In this case, :wild-inferiors cannot stand alone, but

must follow some other directory spec. For example: "[FOO...]" or "[*...]".

Directory Pathnames and Directory Pathnames as Files

In almost all systems having hierarchical directories, and certainly all the ones

supported by the Symbolics computer as file server systems, the directories are im-

plemented internally as special files, known about by the operating system. The da-

ta in these files is not accessible to the user except through the defined operating

system interfaces for dealing with directories.

Typically, listings of the contents of directories on hierarchical directory systems

display names of both files and directories contained in the listed directory (as

well as of links, on systems that support links).

Directories on hierarchical directory systems and files thus have some things have

in common. Both appear in directories. Also, directories can usually be renamed

(as can files) or deleted, when the appropriate restrictions of the operating system

are met, such as being empty. You can ask about the properties of a directory, or

change some of them, with fs:file-properties and fs:change-file-properties, re-

spectively, just as you do with a file.

Page 300

Using LMFS as an example, consider the directory named "bar", which is con-

tained in the directory named "foo", which itself is contained in the ROOT. A file

in this directory named "tables.lisp.6" would have the following pathname:

>foo>bar>tables.lisp.6�

The directory in which it is contained, bar, has the following pathname:

>foo>bar.directory.1�

The file type of a directory, on LMFS, is "directory", and the version number of all

directories is 1. The file types of directories, and their versions, if appropriate,

vary among operating systems. If you wanted to rename, delete, or deal with the

properties of the directory bar, you would have to present the above filename for

this directory. A pathname of this type, which names a directory, as though it

were a file, is called a directory pathname as file.

Directory pathnames as files are appropriate only to systems with hierarchical di-

rectories. On other systems, you cannot address directories directly.

The most common use of directories, however, is to reference files in them. The

following pathname mentions the directory "bar" in this way:

>foo>bar>tables.lisp.6�

This filename, when parsed into a pathname for the appropriate LMFS host, has a

name component of "tables", a type component of "lisp", a version component of 6,

and a directory component (in fact ("foo" "bar")) that designates the directory

bar, inferior of foo, inferior of the ROOT. Such a pathname, which designates a

given directory via its directory component, is called a pathname as directory for

that directory. Of course, since the file name, type, and version are irrelevant to

the specification of the directory, it is only one of many possible "pathnames as

directory" for the directory bar.

The concept of pathname as directory is more general than the concept of directo-

ry pathname as file, since directories on nonhierarchical systems be described by

their pathnames as directories as well. For instance, the following TENEX path-

name, which describes a file in the "LMDOC" directory, is a pathname as directory

for the LMDOC directory:

<LMDOC>CHFILE.TEXT;7�

Note, also, that any pathname whose directory component is not nil is a pathname

as directory for some directory.

Therefore, the Symbolics Common Lisp primitives and operations that deal with di-

rectories explicitly (for example, fs:expunge-directory and fs:all-directories) ex-

pect pathnames of directories to be represented in the "pathname as directory"

form. It is the canonical, system-independent way to represent pathnames of direc-

tories in the Symbolics system.

The following two messages convert between directory pathnames as files and

pathnames as directories:

Page 301

(flavor:method :directory-pathname-as-file pathname) Method

Every pathname whose directory component is not nil is a pathname as directory

for some directory. This method returns the directory pathname as file for that di-

rectory.

(setq p (fs:parse-pathname "Quabbin:>sys>lmfs>fsstr.lisp.243"))

#P"Q:>sys>lmfs>fsstr.lisp.243"

�

(send p :directory-pathname-as-file)

#P"Q:>sys>lmfs.directory.1"

T�

See the method (flavor:method :pathname-as-directory pathname).

(flavor:method :pathname-as-directory pathname) Method

This method is intended to be sent to a pathname that is the valid directory path-

name as file for some directory. It produces one of many possible pathnames as di-

rectory for that directory, namely, the one whose name, type, and version are all

nil.

(setq p1 (fs:parse-pathname "Quabbin:>sys>io.directory.1"))

#P"Q:>sys>io.directory.1"

(setq p2 (send p1 :pathname-as-directory))

#P"Q:>sys>io>"

(send p2 :directory-pathname-as-file)

#P"Q:>sys>io.directory.1"�

See the method (flavor:method :directory-pathname-as-file pathname).

If you are used to other systems’ file-naming conventions, you may be confused by

pathnames that have real directory components, but no name, type, or version.

When typed in or printed, they look like the following:

>jones>book>examples>�

Users who are familiar with Multics or UNIX immediately see such pathnames as

invalid, even though they are often used on the Symbolics computer to access Mul-

tics and UNIX. When parsed for LMFS or Multics, the above filename string pro-

duces a pathname whose directory component designates the directory "examples",

which is contained in "book", which itself is contained in "jones", an inferior of the

ROOT. The name, type, and version components of this pathname are nil. This

pathname is equivalent to the following:

>jones>book>examples>↔.↔.↔�

Either of these is a canonical pathname as directory for the directory "examples".

Typing such pathnames as input is exceedingly common, since the merging pro-

cess, given such a pathname as its unmerged input, replaces the directory compo-

nent of the default with a directory component specifying the directory named by

the "pathname as directory". See the section "Pathname Defaults and Merging".

For example:

Page 302

Default: Q:>abel>baker>cakes.list

User Typein: >Romanoli>weddings>

Merged output: >Romanoli>weddings>cakes.list�

Compare this with the following:

Default: Q:>abel>baker>cakes.list

User Typein: >Romanoli>weddings

Merged output: >Romanoli>weddings.list�

Default: Q:>abel>baker>cakes.list

User Typein: >Romanoli>weddings>↔.↔.73

Merged output: >Romanoli>weddings>cakes.list.73�

All the Symbolics hierarchical directory parsers recognize a trailing directory de-

limiter as an instruction to construct a pathname with nil name, type, and version,

for the directory designateda "pathname as directory". (The version component,

however, remains :unspecific for systems not supporting file versions.) This is

true even of the parsers for UNIX and Multics, on which systems such syntax is

never seen.

This mode of directory naming is usually familiar to users of nonhierarchical sys-

tems. The following TENEX pathname results, when parsed, in a pathname as di-

rectory for the LMDOC directory (on the appropriate TENEX host), with name,

type, and version of nil, that can be used in merging operations in a way similar

to that shown in the above LMFS example.

<LMDOC>�

As a side-effect of these conventions, the following kinds of pathnames occasionally

occur on LMFS or Multics:

<lmdoc>�

As explained above, this is a valid way of entering the following relative path-

name:

<lmdoc>↔.↔.↔�

Case in Pathnames

The pathname system handles alphabetic case in pathnames and transferring of

pathname components between hosts with different preferred alphabetic cases.

The components of a pathname (directory, name, type, and so on) have two possi-

ble representations for case, raw (also called native) and interchange. The raw case

representation keeps the case in whatever form is normal for that system (for ex-

ample, lowercase for UNIX, uppercase for TOPS-20). Interchange representation is

a format for manipulating pathname components in a host-independent manner. All

pathname defaulting and cross-host translation functions use the interchange form

of pathname messages.

All the standard messages to pathnames (for example, :directory, :name) return

pathname components in interchange case rather than raw case.

Page 303

The components are stored internally in raw case, that is, the actual alphabetic

case in which the names of the files are stored, or to be stored, in the host’s file

system. It is possible to access the raw case representation via the set of messages

:raw-directory, :raw-name, and so forth. However, programs seeking to be system-

independent should not use these messages, but the standard ones, :directory,

:name, and so forth. Doing so ensures that pathname components transferred be-

tween system types stay in the preferred case for each of the systems concerned.

The raw forms of the messages are provided for writing host-specific code or for

manipulating several pathname objects known to be on the same host.

Interchange case form Raw case form

:device :raw-device

:directory :raw-directory

:name :raw-name

:type :raw-type�

The interchange form of the message specifies the following effect:

Case of component Translated case returned

System default Uppercase

Mixed case Mixed case

Opposite to default Lowercase�

Uppercase was chosen as the interchange case because strings like "LISP", repre-

senting pathname components, appear in many programs. Either choice (upper or

lower) would have been natural for some hosts and not for others.

This facility provides more features for dealing with pathname components inde-

pendent of the case-sensitivity of file names of different hosts. The following table

shows some examples for different host types.

Host Message Applied to raw form Returns interchange form

UNIX :name "foo-bar.baz" "FOO-BAR"

:name "FOO-BAR.BAZ" "foo-bar"

:name "Foo-Bar.Baz" "Foo-Bar"

Lisp Machine :name "foo-bar.baz" "FOO-BAR"

File System :name "FOO-BAR.BAZ" "FOO-BAR"

:name "Foo-Bar.Baz" "FOO-BAR"

TOPS-20 :name "FOO-BAR.BAZ" "FOO-BAR"

:name "foo-bar.baz" "foo-bar"

:name "Foo-Bar.Baz" "Foo-Bar"

VMS4 :name "FOO_BAR.BAZ" "FOO-BAR"�

Note that VMS has only one example; that is because VMS supports uppercase on-

ly. VMS uses the underscore character "_" where other operating systems use the

hyphen "-".

Page 304

Note that the Lisp Machine File System (LMFS) appears not to follow the inter-

change case rules. This is because, for LMFS, case is usually maintained but is

not significant ("foo", "Foo", and "FOO" are all the same). Thus any mixture of

cases in a file name satisfies the "system default" condition and returns all upper-

case for the interchange form.

Functions that manipulate pathnames, such as fs:make-pathname, fs:merge-

pathnames, and fs:merge-pathname-and-set-defaults, manipulate components in

interchange case.

Pathname-constructing functions such as fs:make-pathname and pathname mes-

sages such as :new-pathname and :new-default-pathname accept both :directory

and :raw-directory, to allow specification of components in either interchange case

or raw case.

Pathname Defaults and Merging

It is unreasonable to require the user to type a complete pathname, containing all

components. Instead the program is expected to supply a default pathname, from

which values of components not specified by the user can be taken.

Every program that prompts the user for a pathname should maintain some de-

fault pathname, display it to the user when prompting for a pathname, and merge

the parsed input from the user with that default. The function prompt-and-read

provides easy ways to do all of these things. See the function prompt-and-read.

No program should use any pathname obtained from user input without merging it

against some default. Since it is impossible for a user to type a pathname correctly

without knowing against which default it will be merged, the default must be dis-

played to the user.

A default default is available for programs that have no better idea of a default

pathname, and a function (fs:default-pathname) for customizing default path-

names.

Typically, a program might take the default default, customize it, perhaps by sup-

plying a specific file type (usually via the canonical type mechanism), prompt the

user for the name of a file, displaying that default, and merge the user’s parsed

input against that default.

A more complex program, one that requires an input file and an output file, might

proceed as follows: It obtains the pathname of its input file as above, and prepares

a default pathname for its output file by customizing the input file pathname, usu-

ally by supplying a new type, and presents and uses that as a default for the

prompt for the output file pathname.

The merging operation is performed by the function fs:merge-pathnames. It takes

as input an unmerged pathname and a default pathname and returns a merged

pathname, which has no missing components. Basically, the missing components in

the unmerged pathname are filled in from the default pathname. The merging op-

eration also takes a default version argument, which specifies the version number

of the output pathname, if there is no version mentioned in the unmerged pathname.

Page 305

That is, the version number is almost never defaulted from the default pathname.

If the default version argument is not supplied, it is assumed to be :newest. The

version number of the default is used as a default version in the following cases:

• Neither name, type, nor version is specified by the unmerged pathname.

• The unmerged pathname does not have a version, and the value of the default

version argument is :default.�

The full details of the merging rules are as follows.

1. If the unmerged pathname does not supply a device, the device is the default

file device for that host.

2. If the unmerged pathname does not specify a host, device, directory, name, or

type, that component comes from the defaults.

3. If the unmerged pathname supplies a version, it is used.

4. If it does not supply a version, the default version as explained above is used.�

Thus, if the user supplies just a name, the host, device, directory and type will

come from the default, with the default version argument (or :newest if there was

none). If the user supplies nothing, or just a directory, the name, type, and version

comes over from the default together. If the host’s file name syntax provides a

way to input a type or version without a name, the user can let the name default

but supply a different type or version than the ones in the default.

The system also defines an object called a defaults alist. Functions are provided to

create one, get the default pathname out of one, merge a pathname with one, and

store a pathname back into one. A defaults alist is basically an object containing a

replaceable pathname. fs:merge-pathnames accepts a defaults alist as its default

pathname argument as well as a pathname. fs:merge-pathnames-and-set-defaults

is like fs:merge-pathnames but requires a defaults alist as its default pathname

argument. When it has completed its merge, it stores the result back into the de-

faults alist before returning it. See the function fs:merge-pathnames-and-set-

defaults. It is important that you do not attempt to construct a defaults alist, but

instead use the primitives provided. See the function fs:make-pathname-defaults.

See the function fs:copy-pathname-defaults.

See the function fs:set-default-pathname.

The following special variables are parts of the pathname interface that are rele-

vant to defaults.

fs:*default-pathname-defaults* Variable

The default defaults alist; if the pathname primitives that need a set of defaults

are not given one, they use this one. Most programs, however, should have their

own defaults rather than using these.

Page 306

fs:load-pathname-defaults Variable

In your new programs, we recommend that you use the variable *load-pathname-

defaults* which is the Symbolics Common Lisp equivalent of fs:load-pathname-

defaults.

The defaults alist for the zl:load and compiler:compile-file functions. Other func-

tions can share these defaults.

Generic Pathnames

A generic pathname stands for a whole family of files. The property list of a

generic pathname is used to remember information about the family, some of

which (such as the package) comes from the file attribute list line of a source file

in the family. See the section "File Attribute Lists". All types of files with that

name, in that directory, belong together. They are different members of the same

family; for example, they might be source code, compiled code, and documentation

for a program. All versions of files with that name, in that directory, belong to-

gether.

The generic pathname of pathname p has the same host, device, directory, and

name as p does. However, it has a version of nil. Furthermore, if the canonical

type of p is one of the elements of fs:*known-types*, then it has a type of nil;

otherwise it has the same type as p. The reason that the type of the generic path-

name works this way is that in some file systems, such as that of ITS, the type

component can actually be part of the file name; ITS files named "DIRECT IONS"

and "DIRECT ORY" do not belong together.

The :generic-pathname message to a pathname returns its corresponding generic

pathname. See the method (flavor:method :generic-pathname pathname).

fs:*known-types* Variable

A list of the canonical file types that are "not important"; constructing a generic

pathname will strip off the file type if it is in this list. File types not in this list

are really part of the name in some sense. The following is the initial list:

(:LISP :QBIN :BIN :IBIN NIL :UNSPECIFIC)�

Some users might need to add to this list. See the section "Canonical Types in

Pathnames".

Relative Pathnames

Many operating systems support a notion called relative pathnames in order to sim-

plify the typing of filenames by their users. Typically, a user on a system such as

Multics or UNIX tells the system what directory on the system is his or her work-

ing directory. These operating systems assume the working directory as the default

directory for filenames whose directory is not specified. For example, when the

user types a filename, perhaps as an argument to a command (such as "print foo")

Page 307

the system assumes that the name foo refers to a file named foo in the working

directory, as long as the user did not specify another directory (for instance, by

saying "print >sources>c>foo").

On hierarchical systems, such as UNIX and Multics, the working directory can

often be several levels deep, and have a full name that is therefore cumbersome to

type. The concept of working directory is all the more powerful in these cases.

Since the hierarchical organization of directories exists to facilitate relating files

by placing them in directories in common subtrees, it is common for users working

on such systems to want to reference files in "siblings" of their working directory,

or "uncles", or even "inferiors" or "inferiors of inferiors", that is, directories near

in the directory hierarchy to their working directory.

In order to facilitate the referencing of files in directories "near" the working di-

rectory, without having to type full pathnames of directories, these systems sup-

port relative pathnames, which are interpreted relative to the working directory.

Relative pathnames are always syntactically distinguishable from other pathnames.

For instance, on Multics, if the working directory is >udd>Proj>Username, the

pathname

<Othername>stuff>x.pl1�

refers to the file

>udd>Proj>Othername>stuff>x.pl1�

Although it supports relative pathnames, the Lisp Machine File System does not

support a concept of working directory. One rationale for this is the fact that the

user might be communicating with many systems at once, and might have several

working directories to remember. The merging and defaulting system takes the

place of the working directory concept. See the section "Pathname Defaults and

Merging". The default pathname, which is displayed when a user is asked to enter

a pathname, determines the default directory for a pathname having no directory

explicitly specified. What is more, it specifies the default values of other compo-

nents as well.

Systems supporting relative pathnames usually have some special syntax to indi-

cate a pathname that is relative to a superior of the working directory, and anoth-

er to indicate pathnames relative to superiors of the working directory. We call

these "upward relativization" and "downward relativization". In this context, a

pathname with an explicit directory specified is called an absolute pathname, and

one without an explicit directory, a relative pathname. However, since specification

of no directory at all is a very common case handled by systems that do not other-

wise support relative directories, namely, by simply defaulting an entire directory

component, this is not considered a relative pathname by the Symbolics system.

The Symbolics system supports relative directories for those hierarchical systems

that support it themselves. As might be expected, the "resolution" of relative path-

names entered by the user is performed relative to the default pathname, as op-

posed to any working directory. Resolution of relative pathnames is performed by

fs:merge-pathnames as part of its normal operation.

Page 308

The following examples, using LMFS pathnames, show some examples of relative

pathnames and their resolution via merging:

Default: >sys>lmfs>new>xst.lisp

Unmerged: test>xst.lisp

Merged: >sys>lmfs>new>test>xst.lisp�

Default: >sys>lmfs>new>xst.lisp

Unmerged: <test>thing.lisp ;upward relativization

Merged: >sys>lmfs>test>thing.lisp�

Default: >sys>lmfs>new>xst.lisp

Unmerged: <<test> ;upward relativization

Merged: >sys>test>xst.lisp�

Default: >sys>lmfs>new>xst.lisp

Unmerged: test>best> ;downward relativization

Merged: >sys>lmfs>new>test>best>xst.lisp �

Default: >sys>lmfs>new>xst.lisp

Unmerged: <xst.lisp

Merged: >sys>lmfs>xst.lisp�

Default: >sys>lmfs>new>xst.lisp

Unmerged: <<abel>baker>foo.lisp

Merged: >sys>abel>baker>foo.lisp�

Canonical Types in Pathnames

A canonical type for a pathname is a symbol that indicates the nature of a file’s

contents. To compare the types of two files, particularly when they could be on dif-

ferent kinds of hosts, you compare their canonical types. (fs:*default-canonical-

types* and fs:*canonical-types-alist* show the canonical types and the default

surface types for various hosts.)

Some terminology:

canonical type A host-independent name for a certain type of file, for example,

Lisp compiled code files or LGP font files. A canonical type is

a keyword symbol.

file specification What you type when you are prompted to supply a string for

the system to build a pathname object.

surface type The appearance of the type component in a file specification.

This is a string in native case.

default surface type Each canonical type has as part of its definition a representa-

tion for the type when it has to be used in a string. Default

surface type is the string (in interchange case) that would be

used in a string being generated by the system and shown to

the user. See the special form fs:define-canonical-type.

preferred surface type

Some canonical types have several different possible surface

Page 309

representations. The definition for the type designates one of

these as the preferred surface type. It is a string in inter-

change case. ("Default surface type" implies "preferred surface

type" when one has been defined.)�

Each canonical type has a default surface representation, which can be different

from the surface file type actually appearing in a file specification. :lisp is a

canonical type for files containing Lisp source code. For example, on UNIX, the de-

fault surface representation of the type for :lisp files is "L". (Remember, the de-

fault surface representation is kept in interchange case.) The surface type in a file

specification containing lisp code is different on different systems, "LISP" for Lisp

Machine file system, "l" for UNIX. You can find out from a pathname object both

the canonical type for the pathname and the surface form of the type for the path-

name by using the :canonical-type message. See the method (flavor:method

:canonical-type pathname).

The following tables illustrate the terminology.

UNIX�

Surface type "l" "lisp" "foo"

Raw type "l" "lisp" "foo"

Type "L" "LISP" "FOO"

Canonical type :lisp :lisp "FOO"

Original type nil "LISP" "FOO"�

Genera�

Surface type "l" "lisp" "foo"

Raw type "l" "lisp" "foo"

Type "L" "LISP" "FOO"

Canonical type "L" :lisp "FOO"

Original type "L" nil "FOO"�

To translate the type field of a pathname from one host to another, determine the

canonical type, using the surface type on the original host. Then find a surface

type on the new host for that canonical type.

Copying operations can preserve the surface type of the file through translations

and defaulting rather than by converting it to the surface form for the canonical

type. For example:

(multiple-value-bind (ctype otype)

 (send p ’:canonical-type)

 (send p ’:new-pathname

 ’:canonical-type ctype

 ’:original-type otype

 ’:name "temp-p"))�

Correspondence of Canonical Types and Editor Modes

Page 310

fs:*file-type-mode-alist* is an alist that associates canonical types (in the car)

with editor major modes (in the cdr).

((:LISP . :LISP) (:SYSTEM . :LISP) (:TEXT . :TEXT) ...)�

Wildcard Pathname Mapping

In the Symbolics system, as in some other systems, wildcard pathnames are used

not only to specify groups of files, but to specify mappings between pairs of path-

names, for operations such as renaming and copying files.

For example, you might ask to copy *foo*.lisp to *bar*.lisp. All the files to be

copied match the wildcard name *foo*.lisp. *bar*.lisp is a specification of how to

construct the pathname of the new file. The two wildcard pathnames, as in the

above example, are called the source pattern and target pattern. The original name

of any file to be copied is called the starting instance. Here is an example:

Source pattern: f:>fie>*old*.lisp

Target pattern: vx:/usr2/fum/*older*.l

Starting instance: f:>fie>--oldfoo.lisp

Target instance: vx:/usr2/fum/--olderfoo.l�

A more abstract description of this terminology:

Source pattern A pathname containing wild components.

Target pattern A pathname containing wild components.

Source instance A pathname that matches the source pattern.

Target instance A pathname specified by applying the common sequences be-

tween the source and target patterns to the source instance.�

Two Zmacs commands accept pairs of wildcard file specifications:

Copy File (m-X)

Rename File (m-X)�

The components of the target instance are determined component-by-component for

all components except the host. (The host component is always determined literally

from the source and target patterns; it cannot be wild.) The mapping of pathnames

is done in the native case of the target host. The source pattern and source in-

stance are coerced to the target host via the :new-default-pathname message be-

fore the mapping takes place. See the method (flavor:method :new-default-

pathname pathname).

When the type of the target pattern is :wild, it uses the canonical type for the

target, regardless of the surface form for the type in the source pattern and in-

stance. One implication is that the resulting translation is not reversible. See the

section "Reversible Wildcard Pathname Translation".

Note: In LMFS, * as the directory portion of a file specification specifies a relative

pathname. You must use >** to indicate a wild directory component that matches

any directory at all. See the section "LMFS Pathnames".

Page 311

Here are the rules used in constructing a target instance, given the source and

target patterns and a particular source instance. This set of rules is applied sepa-

rately to each component in the pathname. In the mapping rules, a * character as

the only contents of a component of a file spec is considered to be the same as the

keyword symbol :wild. The rule uses the patterns from the example above.

1. If the target pattern does not contain *, copy the target pattern component

literally to the target instance.

2. If the target pattern is :wild, copy the source component to the target literal-

ly with no further analysis. The type component is handled somewhat differ-

ently  when source and target hosts are of different system types, it uses

the canonical-type mechanism to translate the type. This does not apply when

the target pattern is :wild-inferiors, in directory specifications.

3. Find the positions of all * characters in the source and target patterns. Take

the characters intervening between * characters as a literal value. Literal val-

ues for the name component:

Source: old

Target: older�

4. Find each literal value from the source pattern in the source instance. Take

the characters intervening between literal values as a matching value for the

* from the source pattern. The matching value could be any number of char-

acters, including zero. Matching values for the name component:

-- and foo�

5. Create the component by assembling the literal and matching values in left to

right order, substituting the matching values where * appears in the target

pattern. For the name component:

--olderfoo�

When not enough matching values are available (due to too few * in the

source pattern) use the null string as the matching value. When the source

pattern has too many *, ignore the first extra * and everything following it.�

Some examples:

Source pattern Source instance Target pattern Target instance

�

*report 6802-report *summary 6802-summary

lmfs-* lmfs-errors * lmfs-errors

l* l l* l

l* lisp l* lisp

OLD-DIR OLD-DIR NEW-PLACE NEW-PLACE

* doc *-extract doc-extract

doc doc doc-extract doc-extract�

Wildcard Directory Mapping

Page 312

The rules for mapping directory components between two wildcard pathnames and

a starting instance are parallel to the rules for single names. Directory-level com-

ponents play roughly the roles of characters in the name-translating algorithm. See

the section "Wildcard Pathname Mapping".

Consider a directory component as a sequence of directory level components. The

levels are separated by level delimiters (> in LMFS). Example: In the pathname

>foo>bar>*>mumble*>x>**>y>a.b.3, the directory-level components are foo, bar, *,

mumble*, x, **, and y. The source and target patterns, as well as the starting in-

stance, are considered as sequences of directory-level components, and are matched

and translated level by level.

For this purpose, each directory-level component can be classified as one of three

types:

Type Directory representation

constant String containing no *’s

wild-inferiors ** in LMFS, ... in VMS

must-match * or string containing at least one * (but not the string repre-

senting wild-inferiors)�

The matching and mapping of constant and wild-inferiors levels proceeds in a

manner identical to the matching and mapping of constant substrings and *s for

single names. See the section "Wildcard Pathname Mapping". Constant directory

level components act as constant substrings in that algorithm, and wild-inferiors

levels as *s. That is, wild-inferiors level components match and, on the target side,

carry, zero to any number of constant directory-level components.

Examples:

Source pattern: >sys>**>*.*.newest

Target pattern: >old-systems>release-5>**>*.*.*

Starting instance: >sys>lmfs>patch>lmfs-33.patch-dir.66

Target instance: >old-systems>release-5>lmfs>patch>lmfs-33.patch-dir.66

Source pattern: >a>b>c>**>d>e>**>x.y.*

Target pattern: >t>u>**>m>**>w>*.*.*

Starting instance: >a>b>c>p>q>d>e>f>g>x.y.1

Target instance: >t>u>p>q>m>f>g>w>x.y.1�

Must-match components are matched with exactly one directory-level component,

which must be present. They are mapped according to the string-mapping rules in

the name-translating algorithm. See the section "Wildcard Pathname Mapping".

Example:

Source pattern: >a>b>c>foo*>d>*>*.*.*

Target pattern: >x>*bar>y>*man>*.*.*

Starting instance: >a>b>c>foolish>d>yow>a.lisp.1

Target instance: >x>lishbar>y>yowman>a.lisp.1�

Page 313

You can intersperse constants, must-matches, and wild-inferiors directory-level

components, as long as the sequence of wildcard types is the same in both pat-

terns.

Example:

Source pattern: >a>*>c>**>*.lisp.*

Target pattern: >bsg>sub>new-*>q>**>*.*.*

Starting instance: >a>bb>c>d>e>p1.lisp.6

Target instance: >bsg>sub>new-bb>q>d>e>p1.lisp.6�

Pathname Functions

The following functions are what programs use to parse and default file names

that have been typed in or otherwise supplied by the user.

pathname x &optional (defaults *default-pathname-defaults*) Function

Converts x into a pathname. The argument can be a pathname, a string, or a

stream. pathname always returns a pathname.

Compatibility Note: The optional argument defaults is an extension to Symbolics

Common Lisp, which might not work in other implementations of Common Lisp,

and is not supported in CLOE. See the function fs:parse-pathname.

parse-namestring thing &optional host (defaults *default-pathname-defaults*)

&key (start 0) end junk-allowed Function

Turns thing into a pathname. The thing is usually a string (that is, a namestring),

but it can be a symbol (in which case the print name is used) or a pathname or

stream (in which case no parsing is needed, but an error check can be made for

matching hosts).

This function does not, in general, do any defaulting of pathname components,

even though it has an argument named defaults; it only does parsing. The host and

defaults arguments are present because in some cases a namestring can be parsed

only with reference to a particular file name syntax of several available ones. If

host is non-nil, it must be a host name that could appear in the host component of

a pathname. If host is nil, then the host name is extracted from the default path-

name in defaults and used to determine the syntax convention.

For a string or symbol argument, parse-namestring parses a file name within it

in the range delimited by the :start and :end arguments. :start is an integer in-

dex into thing and defaults to the beginning of the string. :end is also an integer

index, and defaults to the end of the string.

If :junk-allowed is non-nil, the first value returned is the pathname parsed, or nil

if no syntactically correct pathname was seen. If :junk-allowed is nil (the default),

the entire substring is scanned, and the returned value is the pathname parsed.

Page 314

An error is signalled if the substring does not consist entirely of the representa-

tion of a pathname, possibly surrounded on either side by whitespace characters.

In either case, the second value returned is the index into the string of the delim-

iter that terminated the parse, or the index beyond the substring if the parse ter-

minated at the end of the substring (as is always the case if :junk-allowed is nil).

If thing is not a string or a symbol, the value of the :start keyword is always re-

turned as the second value.

Parsing an empty string alway succeeds, producing a pathname with all compo-

nents (except the host) equal to nil.

Note that if host is specified and non-nil, and thing contains a manifest host name,

an error is signalled if the hosts do not match.

The host and default arguments are not used in the CLOE implementation except

with respect to logical pathnames.

(parse-namestring "/tmp/ASD567") => #P"/tmp/ASD567"�

fs:parse-pathname thing &optional with-respect-to (defaults fs:*default-pathname-

defaults*) Function

Turns thing, which can be a pathname, a string, or a Maclisp-style name list, into

a pathname. Most functions that take a pathname argument call fs:parse-

pathname on it so that they accept anything that can be turned into a pathname.

Some, however, do it indirectly, by calling fs:merge-pathnames.

This function does not do defaulting, even though it has an argument named de-

faults; it only does parsing. The with-respect-to and defaults arguments are there

because in order to parse a string into a pathname, it is necessary to know what

host it is for so that it can be parsed with the file name syntax peculiar to that

host.

If with-respect-to is supplied, it should be a host or a string to be parsed as the

name of a host. If thing is a string, it is then parsed as a true string for that

host; host names specified as part of thing are not removed. Thus, when with-

respect-to is not nil, thing should not contain a host name.

If with-respect-to is not supplied or is nil, any host name inside thing is parsed and

used as the host. If with-respect-to is nil and no host is specified as part of thing,

the host is taken from defaults.

Examples, using a LMFS host named Q:

(fs:parse-pathname "a:>b.c" "q") => #P"Q:a:>b.c" ;(wrong)

(fs:parse-pathname "q:>b.c" "q") => #P"Q:q:>b.c" ;(wrong)

(fs:parse-pathname "q:>b.c") => #P"Q:>b.c"

(fs:parse-pathname ">b.c" "q") => #P"Q:>b.c"�

Note that this causes correct parsing of a TOPS-20 pathname when thing contains

a device but no host and when with-respect-to is not nil. (Warning: If thing con-

tains a device but no host and if with-respect-to is nil or not supplied, the device is

Page 315

interpreted as a host.) In the following example, X is a TOPS-20 host and A is a

device:

(fs:parse-pathname "a:c.d" "x") => #<TOPS20-PATHNAME "X:A:C.D">

(fs:parse-pathname "a:c.d") => Error: "a" is not a known file

 server host.�

In the same TOPS-20 example, if with-respect-to is nil and the host is be to taken

from defaults, the pathname string must be preceded by a colon to be parsed cor-

rectly:

(fs:parse-pathname ":a:c.d" nil "x:") => #<TOPS20-PATHNAME "X:A:C.D">

(fs:parse-pathname "a:c.d" nil "x:") => Error: "a" is not a known file

 server host.�

If thing is a list, with-respect-to is specified, and thing contains a host name, an er-

ror is signalled if the hosts from with-respect-to and thing are not the same.

merge-pathnames pathname &optional (defaults *default-pathname-defaults*) (de-

fault-version :newest) Function

This function should be called to process a file name supplied by a user. It fills in

unspecified components of the pathname from the defaults and returns a new

pathname. Both pathname and defaults can be a pathname, stream, string, or sym-

bol. The value returned is always a pathname.

defaults defaults to the value of *default-pathname-defaults*. default-version de-

faults to :newest.

(setq myfile (pathname "myfile"))

�

 => #P"myfile"

�

(setq *tmp-dir-default-path*

 (make-pathname

 :host :local :device nil :directory "tmp" :name "foo" :type "lisp"))

�

 => #P"/tmp/foo.lisp"

�

(merge-pathnames myfile *tmp-dir-default-path*)

�

 => #P"/tmp/myfile.lisp" �

fs:merge-pathnames pathname &optional (defaults

fs:*default-pathname-defaults*) (default-version ’:newest) Function

Fills in unspecified components of pathname from the defaults, and returns a new

pathname. This is the function that most programs should call to process a file

name supplied by the user. pathname can be a pathname, a string, or a Maclisp

name list. The returned value is always a pathname. The merging rules are docu-

mented elsewhere: See the section "Pathname Defaults and Merging".

Page 316

If pathname is a string, it is parsed before merging. The default pathname is pre-

sented to fs:parse-pathname as a default pathname, from which the latter de-

faults the host if there is no explicit host named in the string.

defaults can be a pathname, a defaults alist, or a string. If it is a string, it is

parsed against the default defaults. defaults defaults to the value of fs:*default-

pathname-defaults* if unsupplied.

fs:merge-pathnames-and-set-defaults pathname &optional (defaults fs:*default-

pathname-defaults*) (default-version ’:newest) Function

The same as fs:merge-pathnames except that after it is done the result is stored

back into defaults. This is handy for programs that have "sticky" defaults. (If de-

faults is a pathname rather than a defaults alist, then no storing back is done.)

The optional arguments default the same way as in fs:merge-pathnames.

default-pathname-defaults Variable

If any pathname primitive needs a set of defaults and is not given one, it uses this

set. In other words, this is the final source of pathname defaults. As a general

rule, however, each program should have its own pathname defaults rather than

relying on these defaults.

In CLOE, contains the system default pathname that includes a host component of

:local, a null device field, an indicator for the current working directory in the di-

rectory field, default name and type of foo and lisp, respectively, and a version

field of :newest.

(setq *default-pathname-defaults*

 (make-pathname

 :host :local :device nil :directory nil :name "myfile" :type "lsp"))�

The following function is what programs use to complete a partially typed-in path-

name.

fs:complete-pathname defaults string type version &rest options Function

string is a partially specified file name. (Presumably it was typed in by a user and

terminated with the COMPLETE or END to request completion.) fs:complete-

pathname looks in the file system on the appropriate host and returns a new, pos-

sibly more specific string. Any unambiguous abbreviations are expanded in a host-

dependent fashion.

string is completed relative to a default pathname constructed from defaults, the

host (if any) specified by string, type, and version, using the function fs:default-

pathname. See the function fs:default-pathname. If string does not contain a

colon, the host comes from defaults; otherwise the host name precedes the first

colon in string.

Page 317

options are keywords (without following values) that control how the completion

will be performed. The following option keywords are allowed. Their meanings are

explained more fully below.

:deleted Look for files that have been deleted but not yet expunged.

The default is to ignore such files.

:read or :in The file is going to be read. This is the default. The name :in

is obsolete and should not be used in new programs.

:write or :print or :out

The file is going to be written (that is, a new version is going

to be created). The names :print and :out are obsolete and

should not be used in new programs.

:old Look only for files that already exist. This is the default. :old

is not meaningful when :write is specified.

:new-ok Allow either a file that already exists, or a file that does not

yet exist. :new-ok is not meaningful when :write is specified.

The :new-ok option is no longer used by any system software,

because users found its effects (in the Zmacs command Find

File (c-X c-F)) to be too confusing. It remains available, but

programmers should consider this experience when deciding

whether to use it.

The first value returned is always a string containing a file name; either the origi-

nal string, or a new, more specific string. The second value returned indicates the

status of the completion. It is non-nil if it was completely successful. The following

values are possible:

:old The string completed to the name of a file that exists.

:new The string completed to the name of a file that could be cre-

ated.

nil The operation failed for one of the following reasons:

• The file is on a file system that does not support completion.

The original string is returned unchanged.

• There is no possible completion. The original string is re-

turned unchanged.

• There is more than one possible completion. The string is

completed up to the first point of ambiguity.

• A directory name was completed. Completion was not suc-

cessful because additional components to the right of this di-

rectory remain to be specified. The string is completed

through the directory name and the delimiter that follows it.�

Page 318

Although completion is a host-dependent operation, the following guidelines are

generally followed:

When a pathname component is left completely unspecified by string, it is general-

ly taken from the default pathname. However, the name and type are defaulted in

a special way described below and the version is not defaulted at all; it remains

unspecified.

When a pathname component is specified by string, it can be recognized as an ab-

breviation and completed by replacing it with the expansion of the abbreviation.

This usually occurs only in the rightmost specified component of string. All files

that exist in a certain portion of the file system and match this component are

considered. The portion of the file system is determined by the specified, defaulted,

or completed components to the left of this component. A file’s component x

matches a specified component y if x consists of the characters in y followed by

zero or more additional characters; in other words, y is a left substring of x. If no

matching files are found, completion fails. If all matching files have the same com-

ponent x, it is the completion. If there is more than one possible completion, that

is, more than one distinct value of x, there is an ambiguity and completion fails

unless one of the possible values of x is equal to y.

If completion of a component succeeds, the system attempts to complete any addi-

tional components to the right. If completion of a component fails, additional com-

ponents to the right are not completed.

A blank component is generally treated the same as a missing component; for ex-

ample, if the host is a LMFS, completion of the strings "foo" and "foo." deals with

the type component in the same way. The strings are not completed identically;

completion of "foo" attempts to complete the name component, but completion of

"foo." leaves the name component alone since it is not the rightmost.

If string does not specify a name, then the name of the default pathname is pre-

ferred but is not necessarily used. The exact meaning of this depends on options:

• With the default options, if any files with the default name exist in the speci-

fied, defaulted, or completed directory, the default name is used. If no such files

exist, but all files in the directory have the same name, that name is used in-

stead. Otherwise, completion fails.

• With the :write option, the default name is always used when string does not

specify a name, regardless of what files exist.

• With the :new-ok option, if any files with the default name exist in the speci-

fied, defaulted, or completed directory, the default name is used. If no such files

exist, but all files in the directory have the same name, that name is used in-

stead. Otherwise, the default name is used.

The special treatment of the case where all files in the directory have the same

name is not very useful and is not implemented by all file systems.

Page 319

If string does not specify a type, then the type of the default pathname is preferred

but is not necessarily used. The exact meaning of this depends on options:

• With the default options, if a file with the specified, defaulted, or completed

name and the default type exists, the default type is used. If no such file exists,

but one or more files with that name and some other type do exist and all such

files have the same type, that type is used instead. Otherwise, completion fails.

• With the :write option, the default type is always used when string does not

specify a type, regardless of what files exist.

• With the :new-ok option, if a file with the specified, defaulted, or completed

name and the default type exists, the default type is used. If no such file exists,

but one or more files with that name and some other type do exist and all such

files have the same type, that type is used instead. Otherwise, the default type

is used.

In file systems such as LMFS and UNIX that require a trailing delimiter (> or /)

to distinguish a directory component from a name component, the system heuristi-

cally decides whether the rightmost component was meant to be a directory or a

name, and inserts the directory delimiter if necessary.

If string contains a relative directory specification for a host with a hierarchical

file system, it is assumed to be relative to the directory in the default pathname

and is expanded into an absolute directory specification.

The host and device components generally are not completed; they must be fully

specified if they are specified at all. This might change in the future.

If string does not specify a version, the returned string does not specify a version

either. This differs from file name completion in TOPS-20; TOPS-20 completes an

implied version of "newest" to a specific number. This is possible in TOPS-20 be-

cause completing a file name also attaches a "handle" to a file. In Genera, the ver-

sion number of the newest file might change between the time the file name is

completed and the time the actual file operation (open, rename, or delete) is per-

formed.

A pathname component must satisfy the following rules in order to appear in a

successful completion:

• The host, device, and directory must actually exist.

• The name must be the name of an existing file in the specified directory, unless

:write or :new-ok is included in options.

• The type must be the type of an existing file with the specified name in the

specified directory, unless :write or :new-ok is included in options.

• A pathname component always completes successfully if it is :wild.

Page 320

When the rules are not satisfied by a component taken from the default pathname,

completion fails and that component remains unspecified in the resulting string.

When the rules are not satisfied by a component taken from string, completion

fails and that part of string remains unchanged (other components of string can

still be expanded).

These functions yield a pathname, given its components.

make-pathname &key host device directory name type version defaults Function

Constructs a pathname. It uses whatever components are supplied and fills in the

missing components following the merging rules used by merge-pathnames and

using the defaults from the :defaults argument.

The default value of the :defaults argument is a pathname whose host component

is the same as the host component of *default-pathname-defaults* and whose oth-

er components are all nil.

(make-pathname :name "MYFILE" :type "LSP" :defaults my-defaults)�

fs:make-pathname &rest options Function

Constructs a pathname. options are alternating keywords and values that specify

the components of the pathname. Missing components default to nil, except the

host (all pathnames must have a host). The :defaults option specifies the defaults

to get the host from if none are specified. The other options allowed are :host,

:device, :directory, :name, :type, :version, :raw-device, :raw-directory, :raw-

name, :raw-type, :canonical-type.

The following functions are used to manipulate defaults alists directly.

fs:make-pathname-defaults Function

Creates a defaults alist initially containing no defaults. Asking this empty set of

defaults for its default pathname before anything has been stored into it returns

the file FOO on the user’s home directory on the host to which the user logged in.

Defaults alists created with fs:make-pathname-defaults are remembered, and re-

set whenever the site is changed. This prevents remembered defaults from point-

ing to unknown hosts when world load files are moved between sites.

fs:copy-pathname-defaults defaults Function

Creates a defaults alist, initially a copy of defaults.

fs:default-pathname &optional defaults host default-type default-version sample-p

Function

Page 321

Obtains a pathname suitable for use as a default pathname and customizes it by

modification of its type and version. It also extracts pathnames out of default al-

ists.

The pathname returned by fs:default-pathname is always fully specified; that is,

all components have non-nil values. This is needed when defaulting a pathname

with fs:merge-pathnames to pass to open or other file-system operations, as these

operations should always receive fully specified pathnames.

Specifying the optional arguments host, default-type, and default-version as not nil

forces those fields of the returned pathname to contain those values. If defaults,

which can be a pathname or a defaults alist, is not specified, the default defaults

are used.

If default-type is a symbol representing a canonical type, that canonical type is

used as the canonical type of the pathname returned. That is, the pathname has a

type component that is the correct representation of that canonical type for the

host.

Users should never supply the optional argument sample-p.

fs:set-default-pathname pathname &optional defaults Function

Updates a defaults alist. It stores pathname into defaults. If defaults is not speci-

fied, the default defaults are used.

The following functions return useful information.

pathnamep x Function

This predicate is t if x is a pathname and nil otherwise.

(pathnamep (pathname "foo")) => t

�

(pathnamep (open "foo" :direction :output)) => nil�

directory pathname &key :deleted Function

Returns a list of pathnames that match the given pathname. The pathname argu-

ment can be a pathname, string, or a stream associated with a file. For a file that

matches, the truename is returned. If no file matches, the function returns nil.

Keywords such as :wild and :newest can be used in pathname to indicate the

search space.

If :deleted is nil, which is the default, only pathnames of undeleted files are list-

ed. If :deleted is t, then pathnames of deleted files are also listed.

(directory "/tmp")

 => (#P"/tmp/G5001.lisp" #P"/tmp/G5003.lisp" #P"/tmp/G5005.lisp")�

:deleted is a Symbolics extension to Common Lisp, not available in CLOE.

Page 322

pathname-device pathname Function

Returns the device component of pathname. pathname can be a pathname, string,

or stream.

The returned value is a string or the symbol :unspecific. See the method

(flavor:method :device pathname).

Converts object,which may be a string, symbol, file-stream or already a pathname,

to a pathname. The value of the converted object is returned.

�

(pathname "/usr/bin/appl.lisp") → #P"/usr/bin/appl.lisp" �

See Also: CLtL 413, truename

pathname-directory pathname Function

Returns the directory component of pathname. pathname can be a pathname,

string, or stream.

The returned value is a list of strings or keyword symbols. See the method

(flavor:method :directory pathname).

pathname-host pathname Function

Returns the host component of pathname. pathname can be a pathname, string, or

stream.

The returned value is a host object. See the method (flavor:method :host

pathname).

pathname-name pathname Function

Returns the name component of pathname. pathname can be a pathname, string, or

stream.

The returned value is a string or the symbol :wild. See the method

(flavor:method :name pathname).

pathname-type pathname Function

Returns the type component of pathname. pathname can be a pathname, string, or

stream.

The returned value strings or the symbol :wild. See the method (flavor:method

:type pathname).

pathname-version pathname Function

Returns the version component of pathname. pathname can be a pathname, string,

or stream.

Page 323

The returned value is a number or symbol. See the method (flavor:method

:version pathname).

truename x Function

Finds the "truename" of the file associated with x within the file system. If x is an

open stream already associated with a file in the file system, that file is used. The

"truename" is returned as a pathname. An error is signalled if an appropriate file

cannot be located within the file system for the given pathname.

truename can return a value different than pathname, since truename takes file

links, logical devices, mapping of the "newest" version to a real version number,

and other things into account.

An error is signalled if the file does not exist. The argument may be either a

string, file-stream, symbol or pathname.

For example, a file may be opened with a partial string name for the file. The

true pathname of the file associated with stream is returned, and namestring can

be used for the string conversion.

(setq myfile (open "myfile" :direction :output))

�

(namestring (truename myfile)) => "/usr/me/myfile.lisp"�

namestring pathname Function

Returns the full form of pathname as a string.

pathname can be a pathname, a string or symbol, or a stream that is or was open

to a file. If it is a stream, the name returned represents the name used to open

the file, which might not be the actual name of the file. It returns the result of

:string-for-printing to pathname.

(setq bar (parse-namestring "/usr/myfile"))

�

 => #P"/usr/myfile"

�

(namestring bar) => "/usr/myfile"

�

(setq foo (open "myfile" :direction :output))

�

(namestring foo) => "/usr/me/myfile.lisp"�

For more information see the function truename.

enough-namestring pathname &optional (defaults *default-pathname-defaults*)

Function

Returns an abbreviated namestring that identifies the file named by pathname rel-

ative to defaults, which defaults to the value of *default-pathname-defaults*. The

following two forms must be equivalent in all cases:

Page 324

(merge-pathnames (enough-namestring pathname defaults)

 defaults)

�

(merge-pathnames (parse-namestring pathname nil defaults)

 defaults)

�

The namestring returned by enough-namestring is generally the shortest string

that satisfies this condition.

(setq foo (open "myfile" :direction :output))

�

(directory-namestring foo) => "myfile"�

file-namestring pathname Function

Returns a string that represents the name, type, and version components of path-

name.

pathname can be a pathname, a string or symbol, or a stream that is or was open

to a file. If it is a stream, the name returned represents the name used to open

the file, which might not be the actual name of the file. See the function

truename. The name represented by pathname is returned as a namelist in canoni-

cal form.

Note that you cannot necessarily construct a valid namestring simply by concate-

nating the results of file-namestring, directory-namestring, and host-namestring.

To obtain a full namestring: See the function namestring.

Under CLOE, there is no string representationof the version component.

(setq foo (open "myfile" :direction :output))

�

(file-namestring foo) => "myfile.lisp"�

directory-namestring pathname Function

Returns a string that represents the directory-name component of pathname.

pathname can be a pathname, a string, a symbol, or a stream that is or was open

to a file. If it is a stream, the name returned represents the name used to open

the file, which might not be the actual name of the directory. See the function

truename.

Note that you cannot necessarily construct a valid namestring simply by concate-

nating the results of directory-namestring, file-namestring, and host-namestring.

To obtain a full namestring: See the function namestring.

(setq foo (open "myfile" :direction :output))

�

(directory-namestring foo) => "/usr/user-homedir"�

Page 325

host-namestring pathname Function

Returns a string that represents the host-name component of pathname. Note that

this string can specify a logical rather than a physical host.

pathname can be a pathname, a string, or a stream that is or was open to a file.

See the function truename.

Note that you cannot necessarily construct a valid namestring simply by concate-

nating the results of host-namestring, file-namestring, and directory-namestring.

To obtain a full namestring: See the function namestring.

(setq foo (open "myfile" :direction :output))

�

(host-namestring foo) => "LOCAL"�

file-author file Function

Returns the name of file’s author as a string, or nil if this cannot be determined.

file can be a pathname, a string, or a stream that is open to a file.

(file-author "myfile.lisp") => "juser"�

file-length stream Function

Returns a file’s length as an integer, or nil if the length cannot be determined.

stream must be a stream that is open to a file. For a binary file, the length is

measured in units of the :element-type specified when the file was opened.

This function is also the maximum value for a file position.

�

(with-open-file (myfile "myfile.lisp" :direction :io)

 (format myfile "The length of ~A is ~A.~%"

 myfile (file-length myfile)))�

file-write-date file Function

Returns the time, in universal time format, at which file was created or last writ-

ten, or nil if this cannot be determined. file can be a pathname, a string, or a

stream that is open to a file.

(multiple-value-bind (seconds minutes hours date month)

 (decode-universal-time (file-write-date "myfile.lisp"))

 (declare (ignore seconds minutes hours))

 (format nil "File write date myfile.lisp: ~A/~A" month date))�

user-homedir-pathname &optional (host fs:user-login-machine) Function

Page 326

Returns a pathname for the user’s home directory on host. The home directory is

the directory in which the user keeps personal files, such as lispm-init.lisp and

mail files. If it is impossible to determine this information, the function returns

nil. The function never returns nil when the host argument is not specified. The

function returns a pathname without any name, type or version component. Those

components are all nil.

(user-homedir-pathname) => #P"/usr/staff/techies/joeuser"�

fs:user-homedir &optional (host fs:user-login-machine) Function

Returns the pathname of the logged-in user’s home directory on host, which de-

faults to the host the user logged in to. For a registered user (one who logged in

without using the :host argument to login), the host is the user’s home-host at-

tribute. Home directory is a somewhat system-dependent concept, but from the

point of view of the Symbolics computer it is usually the directory where the user

keeps personal files such as init files and mail. This function returns a pathname

without any name, type, or version component (those components are all nil).

fs:init-file-pathname program-name &optional (canonical-type nil) (host fs:user-

login-machine) Function

Returns the pathname of the logged-in user’s init file for the program program-

name, on the host, which defaults to the host the user logged in to. Programs that

load init files containing user customizations call this function to find where to

look for the file, so that they need not know the separate init file name conven-

tions of each host operating system. The program-name "LISPM" is used by the

login function. canonical-type is the canonical type of the init file. It should be nil

when the returned pathname is being passed to load so that load can look for a

file of the appropriate type.

The following function defines a canonical file type.

fs:define-canonical-type canonical-type default &body specs Special Form

Defines a new canonical type. canonical-type is the symbol for the new type; default

is a string containing the default surface type for any kind of host not mentioned

explicitly. The body contains a list of specs that define the surface types that indi-

cate the new canonical type for each host. The following example would define the

canonical type :lisp.

(fs:define-canonical-type :lisp "LISP"

 ((:tops-20 :tenex) "LISP" "LSP")

 (:unix "L" "LISP")

 (:vms "LSP"))�

For systems with more than one possible default surface form, the form that ap-

pears first becomes the preferred form for the type. Always use the interchange

case.

Page 327

Define new canonical types carefully so that they are valid for all host types. For

example "com-map" would not be valid on VMS because it is both too long and

contains an invalid character. You must define them so that the surface types are

unique. That is, the same surface type cannot be defined to mean two different

canonical types.

Canonical types that specify binary files must specify the byte size for files of the

type. This helps zl:copyf and other system tools determine the correct byte size

and character mode for files. You specify the byte size by attaching a :binary-file-

byte-size property to the canonical type symbol. For example, the system defines

the byte size of press files as follows.

(defprop :press 8. :binary-file-byte-size)�

The following function is useful when dealing with canonical types. Unlike other

functions described here, this function actually accesses and searches a host file

system. This description is provided here for completeness. For functions and mes-

sages that actually access host file systems: See the section "Streams".

fs:find-file-with-type pathname canonical-type Function

Searches the file system to determine the actual surface form for a pathname ob-

ject. Like probef, it returns the truename for pathname. When no file can be

found to correspond to a pathname, it returns nil.

If pathname is a string, it is parsed against the default defaults to obtain an actu-

al pathname object before processing.

canonical-type applies only when pathname has nil as its type component. fs:find-

file-with-type searches the file system for any matching file with canonical-type.

For example, on a TOPS-20 host, this would look first for ps:<gcw>toolkit.lisp and

then for ps:<gcw>toolkit.lsp:

(fs:find-file-with-type (fs:parse-pathname "sc:<gcw>toolkit") ’:lisp)�

If it finds more than one file, it returns the one with the preferred surface type

for canonical-type (or chooses arbitrarily if none of the files has the preferred sur-

face type).

If pathname already had a type supplied explicitly, that overrides canonical-type.

You can ensure that canonical-type applies by first setting the type explicitly:

(fs:find-file-with-type (send p ’:new-type nil) ’:lisp)�

System programs that supply a default type for input files (for example, load)

could use this mechanism for finding their input files.

The following functions are useful for poking around.

fs:describe-pathname pathname Function

If pathname is a pathname object, this describes it, showing you its properties (if

any) and information about files with that name that have been loaded into the

machine. If pathname is a string, this describes all interned pathnames that match

Page 328

that string, ignoring components not specified in the string. This is useful for

finding the directory of a file whose name you remember. Giving describe a path-

name object does the same thing as this function.

fs:pathname-plist pathname Function

Parses and defaults pathname then returns the list of properties of that pathname.

Pathname Messages

This section documents some of the messages a user can send to a pathname ob-

ject. These messages are known as the passive messages to pathnames. They deal

with inspecting and extracting components, constructing new pathnames based on

old pathnames and new components, matching pathnames, and so forth. None of

these messages actually interact with any host file system; they deal only with

pathname objects within the Symbolics computer.

The other common, useful class of messages to pathnames are those that open,

delete, and rename files, list directories, find and change file properties, and so

forth. These are the active messages to pathnames. You usually do not send these

messages directly, but use interface functions, such as open, zl:probef, zl:deletef,

zl:renamef, fs:directory-list, fs:file-properties, and fs:change-file-properties. Nei-

ther these functions and messages, nor additional similar ones, are documented

here. See the section "Streams".

Pathnames handle some additional messages that are intended to be sent only by

the pathname system itself, and therefore are not documented here. Only someone

who wanted to add a new type of file host to the system would need to understand

those internal messages. This section also does not document messages that are

peculiar to pathnames of a particular type of host.

(flavor:method :host pathname) Method

Returns the host component of the pathname. The returned value is always a host

object. If the pathname is a logical pathname, the logical host is returned. It is an

error to send :host to a logical host.

(flavor:method :device pathname) Method

Returns the device component of the pathname. The returned value can be nil,

:unspecific, or a string. The string is in interchange case.

(flavor:method :directory pathname) Method

Returns the directory component of the pathname. The returned value can be nil,

:wild, or a list of strings and symbols, each representing a directory level. These

symbols can be :wild or :wild-inferiors. Single names of directories in nonhierar-

Page 329

chical file systems are returned as single element lists. The strings are in inter-

change case.

(flavor:method :name pathname) Method

Returns the name component of the pathname. The returned value can be nil,

:wild, or a string. The string is in interchange case.

(flavor:method :type pathname) Method

Returns the type component of the pathname. The returned value is always nil,

:unspecific, :wild, or a string. The string is in interchange case.

(flavor:method :version pathname) Method

Returns the version component of the pathname. The returned value is always nil,

:wild, :unspecific, :oldest, :newest, or a number.

(flavor:method :raw-device pathname) Method

Returns the device component of the pathname. The returned value can be nil,

:unspecific, or a string. The string is in its raw case.

(flavor:method :raw-directory pathname) Method

Returns the directory component of the pathname. The returned value can be nil,

:wild, or a list of strings and symbols, each representing a directory level. These

symbols can be :wild or :wild-inferiors. Single names of directories in nonhierar-

chical file systems will be returned as single element lists. The strings are in

their raw case.

(flavor:method :raw-name pathname) Method

Returns the name component of the pathname. The returned value can be nil,

:wild, or a string. The string is in its raw case.

(flavor:method :raw-type pathname) Method

Returns the type component of the pathname. The returned value is always nil,

:unspecific, :wild, or a string. The string is in its raw case.

(flavor:method :canonical-type pathname) Method

Determines the canonical type of a pathname and a surface representation for the

type. It returns two values:

Page 330

Value Meaning

canonical type This is either a keyword symbol from the set of known canoni-

cal types or a string (when the type component of the path-

name is not a known canonical type). The string contains the

type component from the pathname, in interchange case.�

original type

This is nil when the type of the pathname is the same as the

preferred surface type for the canonical type. See the special

form fs:define-canonical-type. Otherwise, when the type dif-

fers from the preferred or default surface type, it is the origi-

nal type in interchange case. �

For example, for a UNIX pathname, sending the message :canonical-type to the

following pathnames has these results:

Pathname Results from :canonical-type message

foo.l :lisp nil Preferred surface type

foo.lisp :lisp "LISP" Alternate surface type

foo.L "l" "l" Not recognized

foo.LISP "lisp" "lisp" Not recognized�

Keep in mind that the :canonical-type message returns the type string in the in-

terchange case rather than in the raw case.

(flavor:method :new-device pathname) new-device Method

Returns a new pathname that is the same as the pathname it is sent to except

that the value of the device component has been changed. The valid set of argu-

ments to the :new-device message is the set of possible outputs of :device. See

the method (flavor:method :device pathname). A string value is expected to be in

interchange case.

(flavor:method :new-directory pathname) new-directory Method

Returns a new pathname which is the same as the pathname it is sent to except

that the value of the directory component has been changed. The valid set of argu-

ments to the :new-directory message is the set of possible outputs of :directory.

See the method (flavor:method :directory pathname). String values are expected

to be in interchange case.

(flavor:method :new-name pathname) new-name Method

Returns a new pathname which is the same as the pathname it is sent to except

that the value of the name component has been changed. The valid set of argu-

ments to the :new-name message is the set of possible outputs of :name. See the

method (flavor:method :name pathname). String values are expected to be in in-

terchange case.

Page 331

(flavor:method :new-type pathname) new-type Method

Returns a new pathname that is the same as the pathname it is sent to except

that the value of the type component has been changed. The valid set of argu-

ments to the :new-type message is the set of possible outputs of :type. See the

method (flavor:method :type pathname). String values are expected to be in in-

terchange case.

(flavor:method :new-version pathname) new-version Method

Returns a new pathname that is the same as the pathname it is sent to except

that the value of the version component has been changed. The valid set of argu-

ments to the :new-version message is the set of possible outputs of :version. See

the method (flavor:method :version pathname).

(flavor:method :system-type pathname) Method

Returns the type of host that the pathname is intended for. This value is a key-

word from the following set:

:its, :lispm, :multics, :tenex, :tops-20, :unix, :vms, :logical�

This is the same set as returned by the :system-type message to a host object. It

is not likely that you need to use this message directly.

(flavor:method :new-raw-device pathname) dev Method

Returns a new pathname that is the same as the pathname it is sent to except

that the value of the device component has been changed. The valid set of argu-

ments to the :new-raw-device message is the set of possible outputs of :raw-

device. See the method (flavor:method :raw-device pathname). A string value is

expected to be in its raw case.

(flavor:method :new-raw-directory pathname) new-directory Method

Returns a new pathname that is the same as the pathname it is sent to except

that the value of the directory component has been changed. The valid set of argu-

ments to the :new-raw-directory message is the set of possible outputs of :raw-

directory. See the method (flavor:method :raw-directory pathname). String val-

ues are expected to be in their raw case.

(flavor:method :new-raw-name pathname) new-name Method

Returns a new pathname which is the same as the pathname it is sent to except

that the value of the name component has been changed. The valid set of argu-

ments to the :new-raw-name message is the set of possible outputs of :raw-name.

See the method (flavor:method :raw-name pathname). String values are expected

to be in their raw case.

Page 332

(flavor:method :new-raw-type pathname) new-type Method

Returns a new pathname that is the same as the pathname it is sent to except

that the value of the type component has been changed. The valid set of argu-

ments to the :new-raw-type message is the set of possible outputs of :raw-type.

See the method (flavor:method :raw-type pathname). String values are expected

to be in their raw case.

(flavor:method :new-canonical-type pathname) canonical-type &optional original-

type Method

Returns a new pathname based on the old one but with a new canonical type.

canonical-type specifies the canonical type for the new pathname. The surface type

of the new pathname is based on the default surface type of the canonical type,

unless the pathname already had the correct type.

When the pathname object receiving the message already has the correct canonical

type, the surface type in the new pathname depends on the presence of original-

type. When original-type is omitted, the new pathname type has the same surface

type as the old pathname. When original-type is supplied, the surface type for the

new pathname is original-type. This assumes that original-type is a valid represen-

tation for canonical-type; if that assumption is not met, the canonical-type prevails

and its default surface type is used.

canonical-type is a symbol for a known type, :unspecific, nil, or a string. Use a

string for canonical-type to make pathnames with types that are not known canoni-

cal types.

The following examples assume that a pathname object for the file specification

"vixen:/usr2/jwalker/mild.new" is the value of m.

(send m ’:new-canonical-type ’:lisp) =>

#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.l">�

(send m ’:new-canonical-type ’:lisp "LISP") =>

#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.lisp">�

(send m ’:new-canonical-type ’:lisp "MSS") =>

#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.l">�

(send m ’:new-canonical-type "BAR" "BAR") =>

#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.bar">�

(send m ’:new-canonical-type ’:lisp "lisp") =>

#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.l">�

(send m ’:new-canonical-type ’:lisp nil) =>

#<UNIX-PATHNAME "VIXEN: //usr2//jwalker//mild.l">�

(flavor:method :types-for-canonical-type pathname) canonical-type Method

The internal primitive for finding which surface types correspond to canonical-type.

Normally you would not use this directly. To determine what form of a pathname

exists in a file system: See the function fs:find-file-with-type.

Page 333

(flavor:method :new-pathname pathname) &rest options Method

Returns a new pathname that is the same as the pathname it is sent to except

that the values of some of the components have been changed. options is a list of

alternating keywords and values. The keywords all specify values of pathname

components; they are :host, :device, :directory, :name, :type, :version,

:raw-name, :raw-device, :raw-type, :raw-directory, and :canonical-type. The

:type argument also accepts a symbol as an argument, implying canonical type.

See the section "Canonical Types in Pathnames".

(flavor:method :new-default-pathname pathname) &rest options Method

Returns a new valid pathname based on the one receiving the message, using the

pathname components supplied by options. The components do not need to be

known to be valid on a particular host. The method uses the components "as sug-

gestions" for building the new pathname; it is free to make substitutions as neces-

sary to create a valid pathname. It is heuristic, not algorithmic, so it does not nec-

essarily yield valid semantics. The heuristics used, however, seem to produce path-

names that match what many people expect from cross-host defaulting.

It always produces a pathname with valid syntax but not necessarily valid seman-

tics. For example, when it tries to map between a hierarchical file system and a

nonhierarchical file system, it uses the least significant of the hierarchical compo-

nents as the directory component. Sometimes this is not correct, but in all cases it

is syntactically valid. The main applications for :new-default-pathname are in pro-

ducing defaults to offer to the user and in copying components from one kind of

pathname to another.

Application notes: :new-pathname always does what its arguments specify; it nev-

er uses heuristics. Thus :new-pathname could signal an error in certain cross-host

situations where :new-default-pathname would not have any problems. Usually,

user programs should use fs:default-pathname, which sends :new-default-

pathname as part of its operation. However, if you are copying a single component

from one kind of pathname to another, :new-default-pathname is the right tool.

For example, the right way to copy the version from an input pathname to an out-

put pathname is as follows:

(defun copy-version (input-pathname output-pathname)

 (send output-pathname :new-default-pathname

:version (send input-pathname :version)))�

If the above example used :new-pathname or :new-version, the input pathname

were a UNIX pathname, and the output were a LMFS pathname, this example

would signal an error, since :unspecific is not a valid version in a LMFS path-

name. However, using :new-default-pathname, the closest equivalent is substitut-

ed, namely :newest.

(flavor:method :parse-truename pathname) string &optional (from-filesystem t)

Method

Page 334

Returns the pathname corresponding to the string argument. The string is parsed,

with the pathname supplying the defaults (notably, the host). The method is useful

when, for example, a remote file system produces a string naming a file, and you

want the corresponding pathname.

(flavor:method :generic-pathname pathname) Method

Returns the generic pathname for the family of files of which this pathname is a

member. See the section "Generic Pathnames".

The following messages get a pathname string out of a pathname object:

(flavor:method :string-for-printing pathname) Method

Returns a string that is the printed representation of the pathname. This is the

same as what you get if use princ or string on the pathname. It is the native host

form of the pathname string, preceded by the name of the host and colon. This is

the preferred user-visible printed representation of pathnames.

(flavor:method :string-for-wholine pathname) Method

Returns a string that can be compressed in order to fit in the status line.

(flavor:method :string-for-editor pathname) Method

Returns a string that is the pathname with its components rearranged so that the

name is first. The editor uses this form to name its buffers.

(flavor:method :string-for-dired pathname) Method

Returns a string to be used by the directory editor. The string contains only the

name, type, and version.

(flavor:method :string-for-host pathname) Method

Returns a string that is the pathname in the form preferred by the host file sys-

tem.

(flavor:method :string-for-directory pathname) Method

Returns a string suitable for describing the directory portion of the pathname, in

the format that users of the host system are used to seeing it. The host name is

not included.

The following messages manipulate the property list of a pathname:

Page 335

(flavor:method :get pathname) indicator Method

Manipulates the pathname’s property list analogously to the function of the same

name, which does not (currently) work on instances. See the section "Property

Lists".

Be careful using property lists of pathnames. See the section "Pathnames".

(flavor:method :getl pathname) list-of-indicators Method

Manipulates the pathname’s property list analogously to the function of the same

name, which does not (currently) work on instances. See the section "Property

Lists". Please take care in using property lists of pathnames. See the section

"Pathnames".

(flavor:method :putprop pathname) value indicator Method

Manipulates the pathname’s property list analogously to the function of the same

name, which does not (currently) work on instances. See the section "Property

Lists". Please take care in using property lists of pathnames. See the section

"Pathnames".

(flavor:method :remprop pathname) indicator Method

Manipulates the pathname’s property list analogously to the function of the same

name, which does not (currently) work on instances. See the section "Property

Lists". Please take care in using property lists of pathnames. See the section

"Pathnames".

(flavor:method :plist pathname) Method

Manipulates the pathname’s property list analogously to the function of the same

name, which does not (currently) work on instances. See the section "Property

Lists".

The following messages can be sent to pathnames having wildcard components or

suspected of having wildcard components:

(flavor:method :pathname-match pathname) candidate-pathname &optional

(match-host t) Method

Determines whether candidate-pathname would satisfy the wildcard pattern of the

pathname receiving the message. (The pathname receiving the message is assumed

to be one that would satisfy :wild-p.) It compares corresponding components in the

pattern pathname and candidate-pathname. It returns nil when candidate-pathname

does not satisfy the pattern; otherwise it returns something other than nil.

match-host determines whether it requires the host component of the pattern to

match as well. When match-host is nil, it ignores the host component. By default,

it does require that the host component match.

Page 336

A pattern pathname containing no wild components matches only itself.

If the candidate-pathname specifies a physical host, and the message is sent to a

logical pathname, the physical host is "back-translated," if possible.

(flavor:method :wild-p pathname) Method

A predicate that determines whether the pathname is syntactically a wildcard

pathname. This means that any component is :wild, or, for most systems, contains

the character *, or that the directory component has any of the valid forms of di-

rectory wildcard in it. See the method (flavor:method :directory-wild-p

pathname).

Value Meaning

nil No component of the name is syntactically a wildcard.

not nil One or more components of the name are syntactically wild.

The actual value in this case is the symbol for the most signif-

icant wild component: :device, :directory, and so on.�

(flavor:method :device-wild-p pathname) Method

If the device component of this pathname is a recognized wildcard for the system

type concerned, or :wild, a non-nil is returned.

(flavor:method :directory-wild-p pathname) Method

If the directory component of this pathname is a recognized wildcard for the sys-

tem type concerned, or :wild, a non-nil is returned. All forms of wildcard at each

directory level for hierarchical file systems, as well as :wild-inferiors, are recog-

nized as constituting a wildcard directory component. Otherwise, nil is returned.

(flavor:method :name-wild-p pathname) Method

If the name component of this pathname is a recognized wildcard for the system

type concerned, or :wild, a non-nil is returned. Otherwise, nil is returned.

(flavor:method :type-wild-p pathname) Method

If the type component of this pathname is a recognized wildcard for the system

type concerned, or :wild, a non-nil is returned. Otherwise, nil is returned.

(flavor:method :version-wild-p pathname) Method

If the version component of this pathname is a recognized wildcard for the system

type concerned, or :wild, a non-nil is returned. Otherwise, nil is returned.

Page 337

(flavor:method :translate-wild-pathname pathname) target-pattern-pathname start-

ing-pathname Method

Produces a new pathname based on starting-pathname and the analogies between

the pathname receiving the message and target-pattern-pathname.

:translate-wild-pathname examines the correspondences between target-pattern-

pathname and the pathname receiving the message. It then does whatever is neces-

sary to starting-pathname to transform it into the target pathname.

It checks to be sure starting-pathname matches the pathname receiving the mes-

sage and signals zl:ferror if they do not match. A standard way for generating

starting-pathname is to send :directory-list to the source pattern pathname to gen-

erate a set of starting pathnames.

Pathnames on Supported Host File Systems

This section lists the host file systems supported, gives an example of the path-

name syntax for each system, and discusses any special idiosyncrasies.

LMFS Pathnames

LMFS is an acronym for Lisp Machine File System, which is the native file system

of the Symbolics computer. It is only one of many possible file systems accessible

from the Symbolics computer.

LMFS is a hierarchical file system. Every file has a name, type, and version.

Names are virtually unlimited in length (hundreds of characters), but a perfor-

mance penalty is imposed for names of over 30 characters. Types are limited to 14

characters. File versions are supported. There is no limit to the depth of directo-

ries. There are no devices (:device to a LMFS pathname always returns

:unspecific).

A LMFS pathname looks as follows:

>dir>ectory>name.type.version�

The greater-than (">") character separates directory levels. Absolute pathnames al-

ways start with greater-than’s. Pathnames that specify no directory, relative or

otherwise, contain no greater-than’s. For example:

foo.bar.7�

The topmost directory of the directory tree (the ROOT directory) is indicated by

the absence of directory names but the continued presence of a greater-than. For

example, the following is a file named foo.bar, version 7, in the ROOT directory:

>foo.bar.7�

No file type abbreviations are needed for LMFS.

File and directory names in LMFS can be stored in upper, lower, or mixed case.

Lowercase is the preferred case. Case is ignored on lookup.

Page 338

Due to problems with interning of pathnames it is sometimes difficult to control

the casing of a LMFS pathname, and it is almost always impossible to change it

once established. See the section "Interning of Pathnames".

A version component of :newest is represented by the string "newest". A version

component of :oldest is represented by the string "oldest".

Upward relativization in relative directory specifications is designated by a path-

name starting with the character less-than ("<"). All and only all absolute path-

names start with the character greater-than (">"). Downward relativization is indi-

cated by a pathname, which although it contains greater-than’s, does not start

with one. For example, the following specifies a directory named foo, inferior to

the superior directory of the directory of the default pathname with which it is

merged.

<foo>x.y�

LMFS directories, when referenced as files, have a file type of "directory" and a

version of 1. See the section "Directory Pathnames and Directory Pathnames as

Files".

The following example specifies a directory named bar, inferior to the directory of

the default pathname with which it is merged.

bar>x.y�

LMFS supports recursive directory level matching (:wild-inferiors). The represen-

tation of :wild-inferiors in LMFS is **. Any number of ** components can appear

in wildcard pathnames as directory levels, and need not be in trailing positions.

(The further it gets from the trailing end of the directory name, however, the

more expensive it gets to compute.) Here are some examples of the use of **:

Pathname What it means

>**>*.lisp.newest All the newest lisp files on the whole file system.

>**>*>secret>*.*.* All files in subdirectories (but not top-level directories) named

"secret".

>lmach>**>*.*.newest

All the newest files in >lmach and all its subdirectories.�

A component of :wild, in any component except the directory component, is repre-

sented by *. *, when accompanied by other characters, such as in foo*bar*, match-

es zero or more characters, as a wildcard. Although * or names containing * are

valid as directory-level component names, a directory component of :wild cannot be

specified through pathname syntax. This is because "any directory at all" is repre-

sented by (:wild-inferiors). A directory name given as * is a specification for a rel-

ative pathname, any subdirectory of the directory of the pathname which is

merged. That is represented internally as (:wild), not :wild.

The name of the ROOT directory, as a file (its "directory pathname as file") is

>The Root Directory.directory.1�

Page 339

Names of files stored in the Lisp Machine File System can not contain *. This re-

striction is necessary because * is used consistently to indicate wildcards in path-

names.

You can not access files whose names contain * as a character. A special function

allows you to rename any file or directories whose names contain *.

lmfs:rename-local-file-tool from-path to-path Function

Renames a file in which * appears in one of the pathname components. This func-

tion works locally only; you must run it on the machine in whose file system the

file is stored. It does not rename a file across the network.

from-path and to-path must be pathnames or strings coercible to pathnames. from-

path is parsed against a default on the local host. to-path is parsed against from-

path as the default. The version number for to-path is inherited from the file being

renamed. Any version number appearing in to-path is ignored.

(lmfs:rename-local-file-tool ">AUser>*secret-stuff*" "-secret-stuff-")

(lmfs:rename-local-file-tool ">*special*.directory.1" "-special-")�

FEP File System Pathnames

The syntax of FEP file system pathnames is identical to that of LMFS pathnames,

and the semantics are the same as well. For more information: See the section

"LMFS Pathnames".The following differences are to be noted.

• The maximum length of a file name is 32 characters.

• The maximum length of file types is 4 characters.

• The type of directories is "DIR".�

The name of the ROOT directory, as a file (its "directory pathname as file") is:

>ROOT-DIRECTORY.DIR.1�

UNIX Pathnames

Since UNIX file names can be no longer than 14 characters, the representations of

most canonical types are stored in abbreviated form, according to the following ta-

ble. Other values are represented as they are.

Canonical type UNIX abbreviation(s)

:LISP "l" "lisp"

:TEXT "tx" "text" "txt"

:MIDAS "md"

:QFASL "qf" "qfasl"

:QBIN "qb" "qbin"

Page 340

:BIN "bn" "bin"

:PRESS "pr" "press"

:LGP "lg" "lgp"

:PATCH-SYSTEM-DIRECTORY

"sd"

:PATCH-VERSION-DIRECTORY

"pd"

:BABYL "bb" "babyl"

:XMAIL "xm" "xmail"

:MAIL "ma" "mail"

:RMAIL "rm"

:ZMAIL-TEMP "_z" "_zmail"

:GMSGS-TEMP "_g" "_gmsgs"

:UNFASL "uf" "unfasl"

:OUTPUT "ot" "output"

:ULOAD "ul" "uload"

:MCR "mc" "mcr"

:SYM "sm" "sym"

:TBL "tb" "tbl"

:MICROCODE "mic"

:ERROR-TABLE "err"

:FEP-LOAD "flod"

:SYNC-PROGRAM "sn" "sync"

:CWARNS "cw" "cwarns"

:SYSTEM "sy" "system"

:FONT-WIDTHS "wd" "widths"

:BFD "bfd"

:KST "kt" "kst"

:AST "at" "ast"

:PLT "pl" "plt"

:DRW "drw"

:WD "wd"

:DIP "dip"

:SAV "sav"

:MAP "map"

:CONSOLIDATED-MAP

"cm"

:TAGS "tg" "tags"

:PALX-BIN "pb" "pbin"

:XGP "xg" "xgp"

:LIL "ll" "lil"

:SAR "sar"

:SAB "sab"

:MSS "mss" "ms"

:FORTRAN "f"

:LOGICAL-PATHNAME-TRANSLATIONS

"lt" "logtran"

Page 341

:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS

"ld" "logdir"

:NULL-TYPE :unspecific ""

:FILES "fl"

:COLD-LOAD "load"

:PXL "px" "pxl"

:IMAGE "im" "image"

:DUMP "dm" "dump"�

As is true with the canonical type mechanism in general, files having the canoni-

cal type spelled in full are also recognized as being of that canonical type.

Logical pathname translation must get around the restrictions in UNIX path-

names. When translating logical pathnames an extra translation step is invoked, in

some cases, as for VAX/VMS pathnames.

The preferred case on UNIX is lowercase. Pathname components presented to

:new-directory, :new-name, and so forth, are case-inverted in most instances. See

the section "Case in Pathnames".

UNIX 4.2 Pathnames

UNIX 4.2 uses slightly different representations of some canonical types than do

other versions of UNIX. In most cases, the representations are the same as for

LMFS, but the UNIX versions are also allowed.

Canonical type UNIX 4.2 abbreviation(s)

:LISP "lisp" "l"

:TEXT "text" "tx" "txt"

:MIDAS "midas" "md"

:QFASL "qfasl" "qf"

:QBIN "qbin" "qb"

:BIN "bin" "bn"

:PRESS "pr" "press"

:LGP "lgp" "lg"

:PATCH-SYSTEM-DIRECTORY

"system-dir" "sd"

:PATCH-VERSION-DIRECTORY

"patch-dir" "pd"

:BABYL "babyl" "bb"

:XMAIL "xmail" "xm"

:MAIL "mail" "ma"

:RMAIL "rmail" "rm"

:ZMAIL-TEMP "_zmail" "_z"

:GMSGS-TEMP "_gmsgs" "_g"

:UNFASL "unfasl" "uf"

:OUTPUT "output" "ot"

:ULOAD "uload" "ul"

:MCR "mcr" "mc"

Page 342

:SYM "sym" "sm"

:TBL "tbl" "tb"

:MICROCODE "mic"

:ERROR-TABLE "err"

:FEP-LOAD "flod"

:SYNC-PROGRAM "sync" "sn"

:CWARNS "cwarns" "cw"

:SYSTEM "system" "sy"

:FONT-WIDTHS "widths" "wd"

:BFD "bfd"

:AC "ac"

:AL "al"

:KS "ks"

:KST "kst" "kt"

:AST "ast" "at"

:PLT "pl" "plt"

:DRW "drw"

:WD "wd"

:DIP "dip"

:SAV "sav"

:MAP "map"

:CONSOLIDATED-MAP

"con-map" "cm"

:TAGS "tags" "tg"

:PALX-BIN "palx_bin" "pbin" "pb"

:XGP "xgp" "xg"

:LIL "lil" "ll"

:FORTRAN "f"

:SAR "sar"

:SAB "sab"

:MSS "mss" "ms"

:LOGICAL-PATHNAME-TRANSLATIONS

"logtran" "lt"

:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS

"translations" "logdir" "ld"

:NULL-TYPE :unspecific ""

:COLD-LOAD "load"

:FILES "files" "fl"

:PXL "pxl" "px"

:IMAGE "image" "im"

:DUMP "dump" "dm"�

As is true with the canonical type mechanism in general, files having the canoni-

cal type spelled in full are also recognized as being of that canonical type.

Logical pathname translation must get around the restrictions in UNIX path-

names. When translating logical pathnames, an extra translation step is invoked as

for VAX/VMS pathnames.

Page 343

The preferred case on UNIX is lowercase. Pathname components presented to

:new-directory, :new-name, and so forth, are case-inverted in most instances. See

the section "Case in Pathnames".

VAX/VMS Pathnames

A VAX/VMS version 4.4 pathname looks as follows:

[DIR.ECTORY.COM.PONENTS]NAME.TYP;VERSION�

The semicolon character is the standard delimiter for the version number. Because

of it, a version can be specified even though the name and type are omitted. For

compatibility with other Digital Equipment Corporation systems, however, a period

is also accepted as a version delimiter when name and type are supplied.

Device is specified by a device name followed by a colon preceding the pathname.

You must take great caution with pathnames specifying devices so as not to con-

fuse the pathname parser about host identity. See the section "Host Determination

In Pathnames".

Uppercase is the only supported alphabetic case. Pathnames typed in lowercase are

converted to uppercase on input.

Here is a list of canonical types, their VAX/VMS representations, their default

byte-size used for a binary transfer, and whether records are stored in fixed- or

variable-length format:

Canonical type VMS representation Byte-size Format

:LISP "LSP"

:TEXT "TEXT" "TXT"

:MIDAS "MID"

:QFASL "QFS" 16 var

:QBIN "QBN" 16 var

:BIN "BIN" 16 var

:PRESS "PRS" 8 fix

:PATCH-SYSTEM-DIRECTORY "SPD"

:PATCH-VERSION-DIRECTORY "VPD"

:BABYL "BAB"

:XMAIL "XML"

:MAIL "MAI"

:RMAIL "RML"

:ZMAIL-TEMP "ZMT"

:GMSGS-TEMP "GMT"

:UNFASL "UNF"

:OUTPUT "OUT"

:ULOAD "ULD"

:MCR "MCR"

:SYM "SYM"

Page 344

:TBL "TBL"

:MICROCODE "MIC" 8 var

:ERROR-TABLE "ERR"

:FEP-LOAD "FLD"

:SYNC-PROGRAM "SYN"

:CWARNS "CWN"

:SYSTEM "SYD"

:FONT-WIDTHS "WID" 16 fix

:BFD "BFD" 16 var

:KST "KST" 9

:AC "AC" 16

:AL "AL" 16

:KS "KS" 16

:AST "AST"

:PLT "PLT" 9

:DRW "DRW" 12

:WD "WD" 12

:DIP "DIP" 12

:SAV "SAV" 12

:MAP "MAP"

:CONSOLIDATED-MAP "CON"

:TAGS "TAG"

:PALX-BIN "PXB" 8 var

:XGP "XGP"

:LIL "LIL"

:FOR "FOR"

:SAR "SAR"

:SAB "SAB" 8

:MSS "MSS"

:LOGICAL-PATHNAME-TRANSLATIONS "LTR"

:LOGICAL-PATHNAME-DIRECTORY-TRANSLATIONS "LDT"

:NULL-TYPE ""

:COLD-LOAD "LOD" 16 var

:FILES "FLS"

:PXL "PXL" 8

:IMAGE "IMG"

:DUMP "IDM" 16

�

Different versions of VAX/VMS have different restrictions on pathnames. For ex-

ample, VAX/VMS version 3 allows neither the underscore character nor a hyphen

in pathnames. Versions 4.0 through 4.3 allow the underscore but not the hyphen.

Version 4.4 allows the hyphen. Also, version 3 had a strict restriction on the

length of filenames, which later versions relaxed. The Symbolics logical pathname

translation works differently depending on the version of VAX/VMS running on the

host. This information is stored in the System Type attribute of the host object for

the VAX. Briefly, the differences are as follows:

Page 345

System Type Logical Pathname Translation to VAX/VMS

vms4.4 VAX/VMS version 4.4 and later versions: translation does not

compress file names, and does not make changes for the hy-

phen or underscore, since both are supported by VAX/VMS.

vms4 VAX/VMS versions 4.0, 4.1, 4.2, and 4.3: translation substitutes

hyphens for the underscore character, but does not compress

file names.

vms VMS versions prior to version 4: translation to the VAX/VMS

side compresses file names, and removes underscores and hy-

phens. �

The VAX/VMS pathname mechanism supports recursive directory matching (:wild-

inferiors). The representation for a directory level component of :wild-inferiors is

".."; however, it can appear only at the end of a directory name. Thus, the follow-

ing matches any file in [A.B] or any of its subdirectories:

[A.B...]*.*.*�

Upward relativization in pathnames is specified by one or more minuses ("-") as

the first directory name. Downward relativization is represented by a null (0-

character) first directory name. For example, the following specifies a directory

named FOO, inferior to the superior directory of the directory of the default path-

name with which it is merged.

[-.FOO]X.Y�

A pathname version component of :newest is specified by a version of 0 in the

filename string. There is no VAX/VMS implementation of :oldest.

The percent sign (%) can be used in VAX/VMS wildcards to specify the matching

of a single character.

The pathname system does not recognize logical device names. They are specified

as device names and are resolved by VAX/VMS, not the pathname system. Default-

ing the directory specification of VAX/VMS pathnames when logical devices are

used can cause problems.

VAX/VMS directories, when referenced as files, have a type of "DIR" and a version

of 1. See the section "Directory Pathnames and Directory Pathnames as Files".

TOPS-20 and TENEX Pathnames

A TOPS-20 pathname has the form:

HOST:DEVICE:<DIRECTORY>NAME.TYPE.VERSION�

The default device is PS:.

TOPS-20 pathnames are mapped to uppercase. Special characters (including lower-

case letters) are quoted with the circle-X (⊗) character, which has the same char-

acter code in the Symbolics character set as control-V in the TOPS-20 character

set.

Page 346

TOPS-20 pathnames represent versions of :oldest and :newest by the strings "..-2"

and "..0", respectively.

The directory component of a TOPS-20 pathname is a list of directory level com-

ponents. The directory <FOO.BAR> is represented as the list ("FOO" "BAR").

The TOPS-20 init file naming convention is "<user>program.INIT".

When there is not enough room in the status line to display an entire TOPS-20

file name, the name is truncated and followed by a center-dot character to indicate

that there is more to the name than can be displayed.

TENEX pathnames are almost the same as TOPS-20 pathnames, except that the

version is preceded by a semicolon instead of a period, the default device is DSK

instead of PS, and the quoting requirements are slightly different.

ISO 9660 Pathnames

An ISO 9660 pathname looks like:

host|CDROMn:>dir1>dir2>...>file.type;version�

Directory names can be up to 31 characters long. The file name and type together

may be up to 30 characters long. If the CD-ROM drive is attached to the local

machine, "hostl" is optional. The version is an integer between 1 and 32767, or

"NEWEST", or "OLDEST". You can use "*" in any position for a wild card. All

names must consist entirely of digits, upper-case letters, and underscore "_" char-

acters.

CD-ROM character files are expected to be in "Unix ASCII" format with NL char-

acters separating the lines of text.

Multics Pathnames

Multics possesses a hierarchical file system. Every file has a name, and might or

might not have a type. Multics does not support file versions. The sum of the

lengths of name and type and the period required to separate them must not ex-

ceed 32 characters. A maximum of 16 directory levels is supported. There are no

devices (:device to a Multics pathname always returns :unspecific). A Multics

pathname looks as follows:

>dir>ectory>name.type�

The greater-than (">") character separates directory levels. Absolute pathnames al-

ways start with greater-than’s. Pathnames that specify no directory, relative or

otherwise, contain no greater-than’s, for example:

foo.bar�

The topmost directory of the directory tree (the ROOT directory) is indicated by

the absence of directory names but the continued presence of a greater-than. For

example, the following is a file named foo.bar, in the ROOT directory:

>foo.bar�

Page 347

No file type abbreviations are needed for Multics.

File and directory names can be stored in upper, lower, or mixed case. Lowercase

is the preferred case. Case is significant: Foo, FOO, and foo could be the names of

three different files in the same directory.

Upward relativization in relative directory specifications is designated by a path-

name starting with the character less-than ("<"). All and only all absolute path-

names start with the character greater-than (">"). Downward relativization is indi-

cated by a pathname, which although it contains greater-than’s, does not start

with one. For example, the following specifies a directory named foo, inferior to

the superior directory of the directory of the default pathname with which it is

merged.

<foo>x.y�

Multics directories, when referenced as files, have no specific type; they need not

have any type at all. See the section "Directory Pathnames and Directory Path-

names as Files".

The following example specifies a directory named bar, inferior to the directory of

the default pathname with which it is merged.

bar>x.y�

Multics does not support :wild-inferiors, that is, recursive directory-level match-

ing. For that matter, Multics does not support any form of wildcard in the directo-

ry component of a pathname. (Although :pathname-match matches such compo-

nents, Multics does not support them in directory lists.) A component of :wild, in

any component except the directory component, is represented by *. *, when ac-

companied by other characters, such as in foo*bar*, matches zero or more charac-

ters, as a wildcard.

ITS Pathnames

An ITS pathname looks like "HOST: DEVICE: DIR; FOO 69". The default device is

DSK: but other devices such as ML:, ARC:, DVR:, or PTR: can be used.

ITS does not exactly fit the virtual file system model, in that a file name has two

components (FN1 and FN2) rather than three (name, type, and version). Conse-

quently to map any virtual pathname into an ITS filename, it is necessary to

choose whether the FN2 will be the type or the version. The rule is that usually

the type goes in the FN2 and the version is ignored; however, certain types (LISP

and TEXT) are ignored and instead the version goes in the FN2. Also if the type

is :unspecific the FN2 is the version.

An ITS filename is converted into a pathname by making the FN2 the version if it

is "<", ">", or a number. Otherwise the FN2 becomes the type. ITS pathnames al-

low the special version symbols :oldest and :newest, which correspond to "<" and

">" respectively. If a version is specified, the type is always :unspecific. If a type

is specified, the version is :unspecific so that it does not override the type.

Page 348

Each component of an ITS pathname is mapped to uppercase and truncated to six

characters.

Special characters (space, colon, and semicolon) in a component of an ITS path-

name can be quoted by prefixing them with right horseshoe (⊃) or equivalence

sign (≡). Right horseshoe is the same character code in the Symbolics character

set as control-Q in the ITS character set.

The ITS init file naming convention is "homedir; user program".

fs:*its-uninteresting-types* Variable

The ITS file system does not have separate file types and version numbers; both

components are stored in the "FN2". This variable is a list of the file types that

are "not important"; files with these types use the FN2 for a version number. Files

with other types use the FN2 for the type and do not have a version number.

It is not possible to have two ITS pathnames with the same meaning that differ in

an ignored component. fs:*its-uninteresting-types* controls which types are ig-

nored in favor of retaining version numbers. The following table summarizes the

interaction of type and version components for ITS pathnames.

Type Version Result

supplied omitted type is retained, version is :unspecific

omitted supplied type is :unspecific, version is retained

"interesting" supplied type is retained, version is :unspecific

"uninteresting" supplied type is :unspecific, version is retained�

(flavor:method :fn1 fs:its-pathname) Method

Returns a string that is the FN1 host-dependent component of the pathname.

(flavor:method :fn2 fs:its-pathname) Method

Returns a string that is the FN2 host-dependent component of the pathname.

MS-DOS Pathnames

An MS-DOS pathname looks like this:

HOST:DEVICE:\DIR\ECTORY\NAME.TYPE�

The default device is C:. Uppercase is the only supported case. Pathnames typed in

lowercase are converted to uppercase on input.

File names and directory components are restricted to eight characters. File types

are restricted to three characters. The canonical types for MS-DOS are the same

as for VAX/VMS.

Relative pathnames are permitted. Upward-level changes are signalled with "..".

For example:

Page 349

PC:A:..\..\DIR\FILE.LSP�

Syntax for Logical Pathnames

A logical pathname has the form

HOST: DIRECTORY; NAME.TYPE.VERSION�

In logical pathnames, dots separate the filename, type, and version. There is no

way to specify a device within a logical pathname. When a logical pathname is

parsed, a pathname is returned whose device component is :unspecific. Logical

pathnames can be hierarchical; use semicolons to separate directory levels.

Logical pathnames can also be relative. That is, they can contain a directory com-

ponent whose meaning is "when merging against a default, append this". The syn-

tax for this is

HOST: ; DIRECTORY; NAME.TYPE.VERSION�

Notice the semicolon [;] that is placed before the directory component. The previ-

ous pathname, merged against a default of

HOST: USER; FOO.LISP.NEWEST�

would yield this:

HOST: USER; DIRECTORY; NAME.TYPE.VERSION�

The equivalence-sign character (≡) can be used for quoting special characters such

as spaces and semicolons. (The use of this character is discouraged, however, as

files named using it will probably not be transportable). The double-arrow charac-

ter (↔) can be used as a place-holder for unspecified components. The :newest,

:oldest, and :wild values for versions are specified with the strings NEWEST,

OLDEST, and * respectively. On input, :newest can be represented by > and

:oldest by <.

There is no init file naming convention for logical hosts; you cannot log in to

them. The :string-for-host, :string-for-wholine, :string-for-dired, and :string-for-

editor messages are all passed on to the translated pathname, but the :string-for-

printing is handled by the fs:logical-pathname flavor itself and shows the logical

name.

Wildcard Matching in Logical Pathnames

The system can match any directory or subdirectory, at any level. For example,

you can ask the Show Directory command to list all font files anywhere in the SYS

hierarchy like this:

Show Directory SYS:FONTS;**;*.BFD.*

Wildcards in logical pathnames correspond to the >**> syntax for LMFS path-

names, the [name...] syntax for VAX/VMS file specifications, and the /**/ syntax in

UNIX file specifications. See the section "LMFS Pathnames". This makes it easy to

specify logical pathname translations on Symbolics computers, VAX/VMS, and

Page 350

UNIX. For example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 ’(("**;" "ACME-SMBX:>Rel-8-0>sys>**>")))

�

(fs:set-logical-pathname-host "SYS"

 :translations

 ’(("SYS:**;*.*.*" "ACME-VMS:SYMBOLICS:[REL8-0...]*.*;*"))

 :no-translate nil)

�

Consider this example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 ’(("**;" "ACME-VMS:[SYMBOLICS.REL-8-0.SYS...]")))�

Consider the following UNIX example:

;;; -*- Mode: LISP; Syntax: Common-lisp; Package: USER -*-

�

(fs:set-logical-pathname-host "SYS" :translations

 ’(("**;" "ACME-UNIX:/usr/share/symbolics/rel-8-0/sys.sct/**/")))�

Note: Wherever a double asterisk [**] appears in a logical-host’s pathname, a cor-

responding "wild-inferiors" pathname must exist in the physical-host’s pathname.

For more information about LMFS and VAX/VMS pathnames, see the section

"LMFS Pathnames" and see the section "VAX/VMS Pathnames".

Init-File Naming Conventions

Init files are of canonical type :lisp for source files and :bin for compiled files. For

hosts that support long file names, the init file name consists of program-name

with "-INIT" appended. Thus, the standard file name for a Genera init file is

LISPM-INIT; for a Zmail init file, it is ZMAIL-INIT. Hosts that do not support

long file names have conventions peculiar to each system.

Following are the names of lispm init source files on some hosts:

Host system File name

LMFS/TOPS-20 LISPM-INIT.LISP

UNIX lispm-init.l

VMS LISPMINI.LSP

Multics lispm-init.lisp

ITS If user has own directory: LISPM >. If user does not have own

directory: USER LISPM.�

Page 351

File and Directory Access

Accessing Files

Genera lets you access files on a variety of remote file servers, which are typically

(but not necessarily) accessed through the Chaosnet, as well as accessing files on

the Symbolics computer itself, if the machine has its own file system. This section

tells you how to get a stream that reads or writes a given file, and what the de-

vice-dependent operations on that stream are. Files are named with pathnames.

Since pathnames are quite complex they have their own chapter. See the section

"Naming of Files".

File-Opening Options

The options used when opening a file are normally alternating keywords and val-

ues, like any other function that takes keyword arguments. The file-opening op-

tions control whether the stream is for input from an existing file or output to a

new file, whether the file is text or binary, and so on.

The following option keywords are recognized. Unless otherwise noted, they are

supported generically. Additional keywords can be implemented by particular file

system hosts.

:byte-size The possible values are nil (the default), a number in the

range 1 to 16 inclusive, which is the number of bits per byte,

and :default, which means that the file system should choose

the byte size based on attributes of the file. If the file is being

opened as characters, nil selects the appropriate system-

dependent byte size for text files; it is usually not useful to

use a different byte size. If the file is being opened as binary,

nil selects the default byte size of 16 bits. The preferred way

to specify the byte-size for files is to use the :element-type

keyword.

:characters

This option specifies whether the objects contained in the file

are characters or fixnums. The preferred way to specify char-

acter files is to use the :element-type keyword.

Value Meaning

t Specifies that the file contains character

objects. This is the default.

nil Specifies that the file is a binary file.

:default On output, :default is always t, as charac-

ter files are created by default. On input,

:default specifies that the file system de-

termine from the file properties for LMFS

Page 352

files and the canonical type definition for

other files what type of objects are stored

in the file; then open opens it in the ap-

propriate mode.�

:deleted The default is nil. If t is specified, and the file system has the

concept of deleted but not expunged files, it is possible to open

a deleted file. Otherwise deleted files are invisible.

:direct The default is nil. t specifies a direct access stream. See the

section "Direct Access File Streams".

:direction

The :direction option allows the following values:

:input The file is being opened for input. This is

the default.

:output The file is being opened for output.

:block This is a special case of :output that is

used for the FEP File System.

:io The file is being opened for intermixed in-

put and output. Bidirectionality is support-

ed only if the stream is to be a direct

stream, that is, :direct t is given as well.

See the section "Direct Access File

Streams".

:probe A "probe" opening; no data are to be trans-

ferred, and the file is being opened to de-

termine whether the file exists, or to gain

access to or change its properties. Returns

the truename of the object at the end of a

link or chain of links. If the value of

:direction is :probe and the value of :error

is nil, then open will return the error ob-

ject instead of nil. If the value of :if-does-

not-exist is nil, the error object will still

be returned.

:probe-link The same as :probe except that links are

not chased. Returns the truename of the

object named, even if it is a link.

:probe-directory The pathname is being opened to find out

about the existence of its directory compo-

nent. Otherwise, the semantics are the

same as :probe. If the directory is not

found, a file lookup error is signalled.

Page 353

nil This is the same as probe. No data are

transferred, and the file is being opened

only to gain access to or change its prop-

erties. If the value of :direction is nil and

the value of :error is nil, then open will

return the error object instead of nil. If the

value of :if-does-not-exist is nil, the error

object will still be returned.

:element-type

This argument specifies the type of Lisp object transferred by

the stream. Anything that can be recognized as being a finite

subtype of character or integer is acceptable. In particular,

the following types are recognized:

character The object being transferred is any charac-

ter, not just a string-character. The func-

tions read-char and/or write-char can be

used on the stream. This is the default.

Note that file-position does not work on a

stream of characters. You can speed up the

reading of the first byte of a long charac-

ter stream by specifying zl-user:string-

char as the stream’s :element-type.

string-char The object being transferred is a string-

character. The functions read-char and/or

write-char can be used on the stream.

Note that you can use file-position. Note

that epsilon coding of fonts is not inter-

preted in a stream of zl-user:string-chars.

(unsigned-byte n) The object being transferred is an unsigned

byte (a non-negative integer) of size n. The

functions read-byte and/or write-byte can

be used on the stream.

unsigned-byte The object being transferred is an unsigned

byte (a non-negative integer) whose size is

determined by the file system. The func-

tions read-byte and/or write-byte can be

used on the stream.

(signed-byte n) The object being transferred is a signed

byte of size n. The functions read-byte

and/or write-byte can be used on the

stream.

signed-byte The object being transferred is a signed

byte whose size is determined by the file

Page 354

system. The functions read-byte and/or

write-byte can be used on the stream.

bit The object being transferred is a bit (val-

ues 0 and 1). The functions read-byte

and/or write-byte can be used on the

stream.

(mod n) The object being transferred is a non-

negative integer less than n. The functions

read-byte and/or write-byte can be used on

the stream.

:default On output, :default is always character, as

character files are created by default. On

input, :default specifies that the file sys-

tem determine from the file properties for

LMFS files and the canonical type defini-

tion for other files what type of objects are

stored in the file; then open opens it in

the appropriate mode.�

:error

This option controls what happens when any fs:file-operation-

failure condition is signalled. t is the recommended value for

this option. The others have been provided for compatibility

with previous systems to aid in converting programs. See the

section "File-System Errors".

The option has three possible values:

Value Meaning

t Signals the error normally. t is both the

default and the recommended value.

nil Returns the error object. If the value of ei-

ther :if-exists or :if-does-not-exist is nil,

the error object is still returned.

:reprompt Reprompts the user for another file name

and tries open again. When you use this

option, remember that the :pathname mes-

sage sent to the stream finds out what file

name was really opened. The alternative to

:reprompt is to use :error t and set up a

condition handler for fs:file-operation-

failure that explains the condition and

prompts the user.

:estimated-length

Page 355

The value of the :estimated-length option can be nil (the de-

fault), which means there is no estimated length, or a number

of bytes indicating the estimated length of a file to be written.

Some file systems use this to optimize disk allocation.

:if-does-not-exist

Specifies the action to be taken if the file does not already ex-

ist. The following values are allowed:

:error Signals an error. This is the default if the

:direction is :input, :probe, or any of the

:probe-like modes, or if the :if-exists argu-

ment is :overwrite, :truncate, or :append.

:create Creates an empty file with the specified

name, and then proceeds as if it had al-

ready existed. This is the default if the

:direction is :output and the :if-exists ar-

gument is anything but :overwrite,

:truncate, or :append.

nil Does not create a file or even a stream.

Instead, simply returns nil to indicate fail-

ure. This is overridden when the value of

:direction is either nil or :probe and the

value of :error is nil. In this case, the er-

ror object is returned instead of nil.

:if-exists

Specifies the action to be taken if the :direction is :output

and a file of the specified name already exists. If the direction

is :input or :probe (or any of the :probe-like directions), this

argument is ignored.

The following values are allowed:

:error Signals an error. This is the default when

the version component of the filename is

not either :newest or :unspecific.

:new-version Creates a new file with the same file name

but a larger version number. This is the

default when the version component of the

filename is either :newest or :unspecific.

File systems without version numbers can

choose to implement this by effectively

treating it as :supersede.

:rename Renames the existing file to some other

name, and then creates a new file with the

Page 356

specified name. On most file systems, this

renaming happens at the time of a success-

ful close.

:rename-and-deleteRenames the existing file to some other

name and then deletes it (but does not ex-

punge it, on those systems that distinguish

deletion from expunging). Then creates a

new file with the specified name. On most

file systems, this renaming happens at the

time of a successful close.

:overwrite The existing file is used, and output opera-

tions on the stream destructively modify

the file. The file pointer is initially posi-

tioned at the beginning of the file; howev-

er, the file is not truncated back to length

zero when it is opened.

:truncate The existing file is used, and output opera-

tions on the stream destructively modify

the file. The file pointer is initially posi-

tioned at the beginning of the file; at that

time, the file is truncated to length zero,

and disk storage occupied by it is freed.

:append The existing file is used, and output opera-

tions on the stream modify the file. The

file pointer is initially positioned at the

current end of the file.

:supersede Supersedes the existing file. If possible, the

file system does not destroy the old file un-

til the new stream is closed, against the

possibility that the stream will be closed in

"abort" mode. This differs from :new-

version in that :supersede creates a new

file with the same name as the old one,

rather than a file name with a higher ver-

sion number.

nil Does not create a file or even a stream.

Instead, simply returns nil to indicate fail-

ure. This is overridden when the value of

:direction is either nil or :probe and the

value of :error is nil. In this case, the er-

ror object is returned instead of nil.

:preserve-dates The default is nil. If t is specified, the file’s reference and

modification dates are not updated.

Page 357

:raw The value can be nil (the default) or t, which disables all char-

acter set translation in ASCII files. Note that :raw is no

longer supported. The preferred way to specify character set

translation is to use the :element-type keyword.

:submit This is an option to open used to get batch jobs. Currently,

this is implemented only for VAX/VMS. When the file you are

writing is closed, the file is submitted as a batch job by using

this option.

:super-image The value can be nil (the default), or t which disables the spe-

cial treatment of Rubout in ASCII files. Normally Rubout is an

escape that causes the following character to be interpreted

specially, allowing all characters from 0 through 376 to be

stored. This applies to PDP-10 file servers only.

:temporary The default is nil. If t is specified, the file is marked as tem-

porary, if the file system has that concept.�

Functions for Accessing Files

with-open-file (stream-variable filename . options...) &body body... Function

Evaluates the body forms with the variable stream-variable bound to a stream that

reads or writes the file named by the value of filename. The options forms evaluate

to the file-opening options to be used. See the section "File-Opening Options".

When control leaves the body, either normally or abnormally (via throw), the file

is closed. If a new output file is being written, and control leaves abnormally, the

file is aborted and it is as if it were never written. Because it always closes the

file, even when an error exit is taken, with-open-file is preferred over open. Open-

ing a large number of files and forgetting to close them tends to break some re-

mote file servers, ITS’s for example.

filename is the name of the file to be opened; it can be a pathname object, a

string, or a symbol. Under Genera, it can be anything acceptable to fs:parse-

pathname. See the section "Naming of Files". The complete rules for parsing

pathnames are explained there.

If an error occurs, such as file not found, the user is asked to supply an alternate

pathname, unless this is overridden by options. At that point, the user can exit or

enter the Debugger, if the error was not due to a misspelled pathname.

Under Genera, if you are opening the file to read it with zl:read, and you want to

bind the package and so forth, see the special functions for handling file at-

tributes.

(with-open-file (mystream "myfile" :direction :input :element-type ’string-char)

 (process-data (read mystream)))�

See the function fs:read-attribute-list. See the function fs:file-attribute-bindings.

Page 358

with-open-file-case (var pathname . options) &body clauses Function

Opens a file, binding the input stream to var, using the pathname and options

given in the arguments. In the following example, it executes the first clause when

the file is not found. When the file is found without error, it executes the second

clause, which is the real reason for trying to open the file in the first place. See

the section "File-Opening Options".

(with-open-file-case (x "f:>dla>foo.lisp" ’:direction ’:input)

 (fs:file-not-found (send x ’:report *error-output*))

 (:no-error (stream-copy-until-eof x *standard-output*)))�

Any errors other than file-not-found (for example, access violations or an unre-

sponsive host) cause an error to be signalled normally.

with-open-file-case-if cond (var pathname . options) &body clauses Function

Opens a file, binding the input stream to var, using pathname and options given in

the arguments. All clauses are evaluated, but the error handling for the body is

performed only if the predicate specified by cond returns t. See the section "File-

Opening Options".

Any errors other than file-not-found (for example, access violations or an unre-

sponsive host) cause an error to be signalled normally.

with-open-stream (stream-variable construction-form) &body body Function

Like with-open-file except that you specify a form whose value is the stream,

rather than arguments to open. This is used with nonfile streams. See the func-

tion with-open-file.

(with-open-file (filestream "myfile" :direction :output)

 (with-open-stream (my-stream (misc::get-a-stream))

 ...

))�

See the section "File-Opening Options".

CLOE Note: This is a macro in CLOE.

with-open-stream-case (var construction-form) &body clauses Function

Opens a stream and binds it to var, using construction-form to create it. It then ex-

ecutes whichever clause is appropriate, given the condition that resulted from the

attempt to create the stream. Refer to the example shown for with-open-file-case.

See the section "File-Opening Options".

with-open-stream-case-if cond (var construction-form) &body clauses Function

Opens a stream and binds it to var, using construction-form to create it. All claus-

es are evaluated, but the error handling for the body is performed only if the pred-

icate specified by cond returns t. See the section "File-Opening Options".

Page 359

with-standard-io-environment &body body Function

All output in body is printed with *package*, *readtable*, and other variables

bound to consistent values. This is useful when you wish to write some data that

you will retrieve later using the function read. This is a custom environment that

you create, passing all variables and values that are important before body.

with-standard-io-environment inhibits the effect of #. while reading. This pre-

vents other forms being read and used as trojan horses. This can be inhibited by

rebinding si:*suppress-read-eval* to nil.

with-input-from-string (stream string &key :index (:start 0) :end) &body body�

Function

body is executed as an explicit progn with the variable stream bound to a charac-

ter input stream that supplies successive characters from the value of the form

string. with-input-from-string returns the results from the last form of the body.

The input stream is automatically closed on exit from the with-input-from-string

form, no matter whether the exit is normal or abnormal. The stream should be re-

garded as having dynamic extent. The following keywords can be used:

keyword value

:index The form after the :index keyword should be a place accept-

able to setf. If the form is exited normally, then the place will

have stored into it the index into string indicating the first

character not read, or the length of the string if all characters

were used. The place is not updated as reading progresses, but

only at the end of the operation.

:start An argument indicating the beginning of a substring of string

to be used. :start defaults to 0.

:end An argument indicating the end of a substring of string to be

used. :end defaults to the length of the string.�

Examples:

(values (with-input-from-string

 (stream "A long boring string" :index i)

 (read stream)) i) => A and 2

�

(values (with-input-from-string

 (stream "A long boring string" :index i :start 2)

 (read stream)) i) => LONG and 7

�

(values (with-input-from-string

 (stream "A long boring string" :index i :start 9 :end 12)

 (read stream)) i) => RIN and 12

Page 360

�

(let ((index 0)

 (new-str (make-array 10 :element-type ’string-char :fill-pointer 0))

 (my-string "Four score and seven years ago our fore-fathers..."))

 (with-input-from-string (instream my-string :index index)

 (loop

 (dotimes (i 10) (vector-push (read-char instream) new-str))

 (when (string= (subseq new-str 0 4) " our")

 (return t))

 (setf (fill-pointer new-str) 0)))

 new-str)

�

=> " our fore-"�

zl:with-input-from-string (var string &optional index limit) &body body Function

The form:

(zl:with-input-from-string (var string)

 body)�

evaluates the forms in body with the variable var bound to a stream that reads

characters from the string which is the value of the form string. The value of the

special form is the value of the last form in its body.

The stream is a function that only works inside the zl:with-input-from-string spe-

cial form, so be careful what you do with it. You cannot use it after control leaves

the body, and you cannot nest two zl:with-input-from-string special forms and use

both streams since the special-variable bindings associated with the streams con-

flict. It is done this way to avoid any allocation of memory.

After string you can optionally specify two additional "arguments". The first is in-

dex:

(zl:with-input-from-string (var string index)

 body)�

uses index as the starting index into the string, and sets index to the index of the

first character not read when zl:with-input-from-string returns. If the whole

string is read, it is set to the length of the string. Since index is updated it cannot

be a general expression; it must be a variable or a setfable reference. The index is

not updated in the event of an abnormal exit from the body, such as a throw. The

value of index is not updated until zl:with-input-from-string returns, so you can-

not use its value within the body to see how far the reading has proceeded.

(zl:with-input-from-string (var string index limit)

 body)�

uses the value of the form limit, if the value is not nil, in place of the length of

the string. If you want to specify a limit but not an index, write nil for index. Ex-

amples:

Page 361

(setq i 0) => 0

(values (zl:with-input-from-string

 (stream "A long boring string" i)

 (read stream)) i) => A and 2

�

(values (zl:with-input-from-string

 (stream "A long boring string" i)

 (read stream)) i) => LONG and 7

�

(values (zl:with-input-from-string

 (stream "A long boring string" i 12)

 (read stream)) i) => BORIN and 12

�

with-output-to-string (stream &optional string &key :index) &body body�

Function

body is executed as an explicit progn with the variable stream bound to a charac-

ter output stream that saves characters in string. If string is not specified, with-

output-to-string returns the results from the last form of the body as a string.

If string is specified, it must be a string with a fill pointer. The output is incre-

mentally appended to the string, as if using vector-push-extend if the string is

adjustable, and as if using vector-push otherwise. In this case, with-output-to-

string returns the results from the last form of the body.

The output stream is automatically closed on exit from the with-output-to-string

form, no matter whether the exit is normal or abnormal. The stream should be re-

garded as having dynamic extent.

The form after the :index keyword should be a place acceptable to setf. If the

form is exited normally, then the place will have stored into it the index into

string indicating the first character not read, or the length of the string if all

characters were used. The place is not updated as reading progresses, but only at

the end of the operation.

Examples:

(setq string (make-array 2 :element-type ’string-char

 :fill-pointer t)) => DD

(values (with-output-to-string (stream nil :index i)

 (write-string "a happy day" stream :start 2 :end 7))

 string i) => "happy" and DD and 17

�

(values (with-output-to-string (stream string :index i)

 (write-string "a happy day" stream :start 2 :end 7))

 string i) => "a happy day" and DD and 22

Page 362

�

(with-output-to-string (outstream)

 (format outstream "~d + ~d = ~d" 4 5 (+ 4 5)))

�

=> "4 + 5 = 9"

�

(setq my-string (make-array 10

 :element-type ’string-char

 :fill-pointer 5

 :initial-element #\.

 :adjustable t))

=> "....."

�

(with-output-to-string (outstream my-string)

 (format outstream "~d + ~d = ~d" 4 5 (+ 4 5)))

�

=> NIL

�

my-string => ".....4 + 5 = 9"�

zl:with-output-to-string (var &optional string index) &body body�

Function

This special form provides a variety of ways to send output to a string through an

I/O stream.

(with-output-to-string (var)

 body)�

evaluates the forms in body with var bound to a stream that saves the characters

output to it in a string. The value of the special form is the string.

(with-output-to-string (var string)

 body)�

appends its output to the string that is the value of the form string. (This is like

the string-nconc function). The value returned is the value of the last form in the

body, rather than the string. Multiple values are not returned. string must have an

array-leader; element 0 of the array-leader is used as the fill-pointer. If string is

too small to contain all the output, zl:adjust-array-size is used to make it bigger.

If characters with font information are output, string must be of type sys:art-fat-

string. See the section "sys:art-fat-string Array Type".

(with-output-to-string (var string index)

 body)�

is similar to the above except that index is a variable or setfable reference that

contains the index of the next character to be stored into. It must be initialized

outside the with-output-to-string and is updated upon normal exit. The value of

index is not updated until with-output-to-string returns, so you cannot use its val-

Page 363

ue within the body to see how far the writing has gotten. The presence of index

means that string is not required to have a fill-pointer; if it does have one it is

updated.

The stream is a "downward closure" simulated with special variables, so be careful

what you do with it. You cannot use it after control leaves the body, and you can-

not nest two with-output-to-string special forms and use both streams since the

special-variable bindings associated with the streams conflict. It is done this way

to avoid any allocation of memory. Examples:

(setq string (zl:make-array 2 :type ’zl:art-string :fill-pointer 2)) => DD

(setq i 0) => 0

(values (zl:with-output-to-string (stream nil i)

 (write-string "a happy day" stream :start 2 :end 7))

string i) => "happy" and DD and 0

�

(values (zl:with-output-to-string (stream string i)

 (write-string "a happy day" stream :start 2 :end 7))

string i) => "a happy day" and "ha" and 5

�

(values (zl:with-output-to-string (stream string i)

 (write-string "a happy day" stream :start 2 :end 7))

string i) => "a happy day" and "ha" and 10

(values (zl:with-output-to-string (stream string)

 (write-string "a happy day" stream :start 2 :end 7))

string i) => "a happy day" and "hahappy" and 10�

sys:with-open-file-search (stream-variable (operation defaults auto-retry) (type-list-

function pathname . type-list-args) . open-options) body... Function

Performs a with-open-file, searching for a file with one of the types in a list of

file types. zl:load uses this special form when not given a specific file type to

search first for a binary file and then for a source file.

The body is evaluated with stream-variable bound to a stream that reads or writes

the file. open-options are alternating keywords and values to be passed to open.

See the section "File-Opening Options".

type-list-function should be a function whose first argument is pathname and whose

remaining arguments are type-list-args. The function should return two values: a

list of file types to be searched, in order of preference, and a base pathname to be

merged with the types and defaults in searching for the file. defaults can be a

pathname or a defaults alist; if omitted, the defaults come from fs:*default-

pathname-defaults*. The special form uses fs:merge-pathname-defaults for

merging.

If no file is found with any of the types in the list of types, fs:multiple-file-not-

found is signalled. operation is the name of the operation that failed; usually this

is the name of the function that contains the sys:with-open-file-search form. If

auto-retry is not nil and the condition is not handled, the user is prompted for a

new pathname.

Page 364

open pathname &rest access-path-specific-and-zl-compatible-keywords &key (:direction

:input) (:element-type ’character) :if-exists :if-does-not-exist (:error t) &allow-other-

keys Function

Returns a stream that is connected to the specified file. The open function only

creates streams for files; streams for other devices are created by other functions.

If an error occurs, such as file not found, the user is asked to supply an alternate

pathname, unless this is overridden by options.

See the section "File-Opening Options".

When the caller is finished with the stream, it should close the file by using the

:close operation or the zl:close function. The with-open-file special form does this

automatically, and so is usually preferred. open should be used only when the con-

trol structure of the program necessitates opening and closing of a file in some

way more complex than the simple way provided by with-open-file. Any program

that uses open should set up unwind-protect handlers to close its files in the

event of an abnormal exit. See the special form unwind-protect.

For example:

(defun bliss-compile (file)

 (setq file (fs:parse-pathname file))

 (with-open-file (str "comet:usrd$:[mydir]tempfile.com"

 ’:direction ’:output

 ’:characters t

 ’:submit t)

 (send str ’:line-out

 (format nil "$ BLISS ~A" (send file ’:string-for-host)))))�

Although open is a Common Lisp function, the Genera implementation is different

from the specification in Common Lisp: the Language (CLtL) in a number of ways:

• CLtL defines a fixed set of keywords for open: direction, element-type,

if-exists, and if-does-not-exist. The Genera implementation accepts additional

keywords. The CLOE implementation does not.

• CLtL says that the default :element-type for open is string-char. In the Genera

implementation, the default :element-type is character. The default in CLOE is

string-char.

• CLtL says that :element-type accepts the following types: string-char,

(:unsigned-byte n), unsigned-byte, (signed-byte n) signed-byte, character, bit,

(mod n), and :default. Specifically:

Element Type Status

string-char Supported by Genera (but is not the default). CLOE default.

Page 365

character Supported by Genera (and is the default). Not supported by

CLOE.

unsigned-byte Not supported by Genera or CLOE.

(unsigned-byte 8) Supported by Genera.

(unsigned-byte 16) Supported by Genera.

(unsigned-byte 32) Supported by Genera for FEP files only.

(unsigned-byte n) Is not supported by Genera or CLOE (except for indicated

special cases).

signed-byte Is not supported by Genera or CLOE.

(signed-byte n) Is not supported by Genera or CLOE .

bit Is not supported by Genera.

(mod n) Is not supported by Genera (due to a bug).

:default Supported by Genera.

• CLtL says that the only valid values of the keyword :direction are :input,

:output, :io, and :probe. The Genera implementation accepts a number of other

values for this argument, such as :in and :out, and device-specific values such

as :block. The CLOE implementation does not.

The following optional arguments are Symbolics extensions to Common Lisp:

&rest access-path-specific-and-zl-compatible-keywords

&allow-other-keys�

Under CLOE, open returns a stream connected to filename. The default :direction

is :input, with other possible directions being :output, :io or :probe. The default

element type is character; also accepted are other character subtypes, and integer

subtypes. The default for both the :if-exists and :if-does-not-exist parameters is

are :error. The other possible value for both parameters is :nil; thus, nil should be

returned under the indicated condition. In addition, the value :create is accepted

for the :if-does-not-exist parameter, the values :new-version, :overwrite, :append,

:rename, :rename-and-delete, and :supersede are accepted for the :if-exists pa-

rameter. The :if-exists parameter is ignored unless output operations are permitted

on the file. Similarly, the :if-does-not-exist parameter is ignored unless input oper-

ations are permitted on the file.

Page 366

(unwind-protect

 (progn

 (setq myfile (open "myfile" :direction :output :if-exists :rename))

 (format myfile "~A + ~A = ~A~%" 1 2 3))

 (close myfile))�

In the previous example, unwind-protect ensured that the opened file is closed, re-

gardless of the state of the computations involving the file and whatever errors

that may occur. It is generally a good idea to wrap any direct calls to open in

such an unwind-protect. An even better idea is to use with-open-file where possi-

ble.

close stream &key abort Function

stream is closed and no further input or output operations can be performed on it.

However, certain inquiry operations can still be performed. It is permissible to

close an already closed stream.

If the :abort parameter is non-nil (the default is nil), it indicates an abnormal ter-

mination of the use of the stream. Under Genera, attempt is made to clean up any

side effects of having created the stream. For example, if the stream performs out-

put to a file that was newly created when the stream was created, then if possible

the file is deleted and any previously existing file is not superseded.

The :abort keyword argument is ignored by CLOE.

(setq file-stream (open "foo" :direction :output))

�

(format file-stream "hello~%")

�

(close file-stream)�

zl:close stream &optional abortp Function

Sends the :close message to stream.

The abortp argument is normally not supplied. If it is t, we are abnormally exiting

from the use of this stream. If the stream is outputting to a file, and has not been

closed already, the stream’s newly created file is deleted, as if it were never

opened in the first place. Any previously existing file with the same name remains,

undisturbed.

Close File Command

Close File file-spec keywords�

Closes the specified open files or streams.

file-spec The pathname of the open file, or the token All. If a pathname

is specified, it should be the pathname of an open file. The de-

Page 367

fault is All. If All is specified, the function fs:close-all-files is

executed.

keywords :Mode, :More Processing, :Output Destination, :Query Each�

:Mode {Abort, Normal} The mode in which to perform the close oper-

ation. The default is Abort.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window} En-

ables you to direct your output. The default is the stream

standard-output. Note that redirecting output to a printer

can be particularly useful.

:Query Each {Yes, No} Whether to ask for confirmation before closing each

file. The default is Yes.�

fs:file-properties pathname &optional (error-p t) Function

Returns a disembodied property list for a single file (compare this to fs:directory-

list). The car of the returned list is the truename of the file and the cdr is an al-

ternating list of indicators and values. If error-p is t (the default) a Lisp error is

signalled. If error-p is nil and an error occurs, the error object is returned.

fs:change-file-properties pathname error-p &rest properties Function

Some of the properties of a file can be changed, such as its creation date or its

author. The properties that can be changed depend on the host file system; a list

of the changeable property names is the :settable-properties property of the file

system as a whole, returned by fs:directory-list. See the function fs:directory-list.

fs:change-file-properties changes one or more properties of a file. pathname

names the file. The properties arguments are alternating keywords and values. If

an error occurs and the error-p argument is t, a Lisp error is signalled. If error-p

is nil and an error occurs, the error object is returned. If no error occurs,

fs:change-file-properties returns t.

copy-file from-pathname to-pathname &key (:element-type ’:default) (:characters

’:default) :byte-size (:copy-creation-date t) (:copy-author t) :report-stream (:create-

directories ’:query) Function

Page 368

This function copies one file to another. from-pathname identifies the source file

and must refer to a single file and contain no wild components. to-pathname identi-

fies the destination file and can contain wild components, which are eliminated af-

ter merging the defaults by means of :translate-wild-pathname.

copy-file first attempts to open from-path. When that has happened successfully, it

parses to-pathname and merges it (using merge-pathnames) against the link-

opaque truename of from-pathname and a version of :newest. The output file speci-

fied by to-pathname is opened with :if-exists :supersede. The processing of to-

pathname has the following result for version numbers.

Source Target Result

>foo>a.b.newest >bar> Retains the version number

>foo>a.b.newest >bar>x Makes a new version of >bar>x.b�

The defaults for to-pathname come from the link-opaque truename of from-

pathname. For systems without links, this is indistinguishable from the truename.

Otherwise, the link-opaque truename depends on whether from-pathname contains

an :oldest or :newest version. If it does not and if it is fully defaulted, with no

wild components, the pathname is its own link-opaque truename. If a pathname x

contains an :oldest or :newest version, the link-opaque truename is the pathname

of the file or link that corresponds to x, with the version number filled in. For ex-

ample, copying the LMFS file >a>p1.lisp to >b> results in >b>p1.lisp, with the

version of >a>p1.lisp.newest inherited. This is so whether >a>p1.lisp.newest is a

real file, a link, or a rename-through link.

By default, copy-file copies the creation date and author of the file.

Following is a description of the other options:

:element-type This argument specifies the type of Lisp object transferred by

the stream. Anything that can be recognized as being a finite

subtype of character or integer is acceptable. In particular,

the following types are recognized:

:characters Possible values:

:default copy-file decides whether this is a binary

or character transfer according to the

canonical type of from-pathname. You do

not need to supply this argument for stan-

dard file types. For types that are not

known canonical types, it opens from-

pathname in :default mode. In that case,

the server for the file system containing

from-pathname makes the character-or-

binary decision.

t Specifies that the transfer must be in char-

acter mode.

nil Specifies that the transfer must be binary

mode (in this case, you must supply byte-

size if using a byte size other than 16).�

Page 369

:byte-size Specifies the byte size with which both files are opened for bi-

nary transfers. You must supply :byte-size when :characters is

nil and the byte size is other than 16. Otherwise, copy-file de-

termines the byte size from the file type for from-pathname.

When from-pathname is a binary file with a known canonical

type, it determines the byte size from the :binary-file-byte-size

property of the type. When the file does not have a known

type, it requests the byte size for from-pathname from the file

server. When the server for the file system containing from-

pathname cannot supply the byte size, it assumes that the byte

size is 16.

:report-stream When :report-stream is nil (the default), the copying takes

place with no messages. Otherwise, the value must be a stream

for reporting the start and successful completion of the copy-

ing. The completion message contains the truename of to-

pathname.

:create-directories Determines whether directories should be created, if needed,

for the target of the copy. Permissible values are as follows:

t Try to create the target directory of the

copy and all superiors. Report directory

creation to *standard-output*.

nil Do not try to create directories. If the di-

rectory does not exist, handle this condition

like any other error.

:query If the directory does not exist, ask whether

or not to create it. This is the default.�

zl:copyf from-path to-path &key (characters ’:default) (byte-size nil) (copy-creation-

date t) (copy-author t) (report-stream nil) (create-directories ’:query) Function

In your new programs, we recommend that you use the function copy-file which is

the Symbolics Common Lisp equivalent of the function zl:copyf.

Copies one file to another. Copy File (m-X) in the editor uses this function.

from-path and to-path are the source and destination pathnames, which can be file

specifications. from-path must refer to a unique file; it cannot contain any wild

components. to-path can contain wild components, which are eliminated after merg-

ing the defaults by means of :translate-wild-pathname. zl:copyf first attempts to

open from-path. When that has happened successfully, it parses to-path and merges

it (using fs:merge-pathnames) against the link-opaque truename of from-path and

version of :newest. The output file specified by to-path is opened with :if-exists�

:supersede. The processing of to-path has the following result for version numbers.

Page 370

Source Target Result

>foo>a.b.newest >bar> Retains the version number

>foo>a.b.newest >bar>x Makes a new version of >bar>x.b�

The defaults for to-path come from the link-opaque truename of from-path. For sys-

tems without links, this is indistinguishable from the truename. Otherwise, the

link-opaque truename depends on whether from-path contains an :oldest or :newest

version. If it does not and if it is fully defaulted, with no wild components, the

pathname is its own link-opaque truename. If a pathname x contains an :oldest or

:newest version, the link-opaque truename is the pathname of the file or link that

corresponds to x, with the version number filled in. For example, copying the

LMFS file >a>p1.lisp to >b> results in >b>p1.lisp, with the version of

>a>p1.lisp.newest inherited. This is so whether >a>p1.lisp.newest is a real file, a

link, or a rename-through link.

By default, zl:copyf copies the creation date and author of the file.

Following is a description of the other options:

:characters Possible values:

:default zl:copyf decides whether this is a binary or

character transfer according to the canoni-

cal type of from-path. You do not need to

supply this argument for standard file

types. For types that are not known canoni-

cal types, it opens from-path in :default

mode. In that case, the server for the file

system containing from-path makes the

character-or-binary decision.

t Specifies that the transfer must be in char-

acter mode.

nil Specifies that the transfer must be binary

mode (in this case, you must supply byte-

size if using a byte size other than 16).�

:byte-size Specifies the byte size with which both files are opened for bi-

nary transfers. You must supply :byte-size when :characters is

nil and the byte size is other than 16. Otherwise, zl:copyf de-

termines the byte size from the file type for from-path. When

from-path is a binary file with a known canonical type, it de-

termines the byte size from the :binary-file-byte-size property

of the type. When the file does not have a known type, it re-

quests the byte size for from-path from the file server. When

the server for the file system containing from-path cannot sup-

ply the byte size, it assumes that the byte size is 16.

:report-stream When :report-stream is nil (the default), the copying takes

place with no messages. Otherwise, the value must be a stream

for reporting the start and successful completion of the copy-

ing. The completion message contains the truename of to-path.

Page 371

:create-directories Determines whether directories should be created, if needed,

for the target of the copy. Permissible values are as follows:

t Try to create the target directory of the

copy and all superiors. Report directory

creation to zl:standard-output.

nil Do not try to create directories. If the di-

rectory does not exist, handle this condition

like any other error.

:query If the directory does not exist, ask whether

or not to create it. This is the default.�

delete-file file Function

Deletes the specified file. file can be a string, a pathname, or a stream.

delete-file returns an non-nil value if successful. An attempt to delete a nonexis-

tent file signals an error. An unsuccessful deletion also signals an error. You can-

not specify a :wild component.

Under Genera, if file is an open stream associated with a LMFS file, the file is

deleted immediately, but the stream remains open until closed explicitly.

Under Genera, if file is an open stream associated with a file from a non-LMFS

file system, then the stream might or might not be closed immediately and the

deletion might be immediate or delayed until the stream is explicitly closed, de-

pending on the requirements of the non-LMFS file system.

(delete-file "myfile.old")�

zl:deletef file &optional (error-p t) Function

In your new programs we recommend that you use the function delete-file which

is the Common Lisp equivalent of the function zl:deletef.

Deletes the specified file. file can be a pathname or a stream that is open to a file.

If error-p is t, then if an error occurs it is signalled as a Lisp error. If error-p is

nil and an error occurs, the error object is returned; otherwise t is returned.

probe-file file Function

This predicate checks for the existence of a file named file. If the file does not ex-

ist, it returns nil. If the file exists, it returns the truename of the file. This name

might be different from file because of pathname merging, version numbers, or

links. If file is an open stream associated with a file, probe-file cannot return nil,

but produces the truename of the associated file. See the function truename. For

information on the :probe value, refer to the discussion of the :direction file-

opening option, see the section "File-Opening Options".

Page 372

(probe-file "myfile") => #P"/usr/jdoe/myfile.lisp"�

zl:probef pathname Function

Returns nil if there is no file named pathname, or signals an error if anything else

goes wrong (such as sys:host-not-responding). Otherwise, zl:probef returns a

pathname that is the truename of the file, which can be different from pathname

because of file links, version numbers, and so on.

rename-file file new-name Function

Renames the specified file is to new-name. file can be a string, pathname, or a

stream. If file is an open stream associated with a file, then both the stream and

the file return new-name to truename.

file can be a pathname, a string, or a stream that is open to a file. The specified

file is renamed to new-name (a pathname or string). If error-p is t, when an error

occurs it is signalled as a Lisp error. If error-p is nil and an error occurs, the er-

ror object is returned; otherwise the three values described below are returned.

file must refer to a unique file; it cannot contain any :wild components. new-name

can contain wild components, which are eliminated after merging the defaults by

means of :translate-wild-pathname. rename-file first attempts to open file. When

that has happened successfully, it parses new-name and merges it (using fs:merge-

pathnames) against the link-opaque truename of file and version of :newest. This

has the following result for version numbers.

Source Target Result

>foo>a.b.newest >bar> Retains the version number

>foo>a.b.newest >bar>x Makes a new version of >bar>x.b�

The defaults for new-name come from the link-opaque truename of file. For sys-

tems without links, this is indistinguishable from the truename. Otherwise, the

link-opaque truename depends on whether file contains an :oldest or :newest ver-

sion. If it does not and if it is fully defaulted, with no wild components, the path-

name is its own link-opaque truename. If a pathname x contains an :oldest or

:newest version, the link-opaque truename is the pathname of the file or link that

corresponds to x, with the version number filled in. For example, renaming the

LMFS file >a>p1.lisp to >b> results in >b>p1.lisp, with the version of

>a>p1.lisp.newest inherited. This is so whether >a>p1.lisp.newest is a real file, a

link, or a rename-through link.

rename-file returns three values:

1. The pathname produced by merging and defaulting new-name. This is the at-

tempted result of the renaming, produced by performing a merge-pathnames

operation using file for the defaults.

Page 373

2. The pathname of the object that was actually renamed. This might not be the

same as file. For example, file might have an :oldest or :newest version, or

LMFS rename-through links might be involved. This pathname never has an

:oldest or :newest version.

3. The actual pathname that resulted from the renaming. This might not be the

same as new-name. For example, new-name might have an :oldest or :newest

version, or LMFS create-through links might be involved.

The :rename message to streams and pathnames returns the second and third of

these values.

Examples:

This example is as simple as possible. Using LMFS, on host johnny, with no links

involved:

(rename-file "johnny:>a>foo.lisp" "bar") =>

#<LMFS-PATHNAME "johnny:>a>bar.lisp">

#<LMFS-PATHNAME "johnny:>a>foo.lisp.17">

#<LMFS-PATHNAME "johnny:>a>bar.lisp.1">�

This example is as complex as possible. Using LMFS, on host eddie, with links

>abel>moe.lisp.4 => >baker>larry.lisp (rename-through) (latest)

>baker>larry.lisp.4 =>

 >charlie>sam.lisp.19 (not rename- or create-through) (latest)

>david>jerry.lisp.5 => >earl>ted.lisp (create-through) (latest)�

(rename-file "eddie:>abel>moe.lisp.4" "eddie:>david>jerry") =>

#<LMFS-PATHNAME "eddie:>david>jerry.lisp">

#<LMFS-PATHNAME "eddie:>baker>larry.lisp.4">

#<LMFS-PATHNAME "eddie:>earl>ted.lisp.1">�

An unsuccessful renaming signals an error.

zl:renamef file new-name &optional (error-p t) Function

In your new programs we recommend that you use the function rename-file which

is the Common Lisp equivalent of the function zl:renamef.

Renames one file. The Rename File (m-X) command in the editor uses this func-

tion.

undelete-file pathname &optional (error-p t) Function

Undeletes the specified file. file can be a pathname or a stream that is open to a

file. If error-p is t and an error occurs, it is signalled as a Lisp error. If error-p is

nil and an error occurs, the error object is returned; otherwise t is returned.

undelete-file is like zl:deletef except that it undeletes the file instead of deleting

it. undelete-file is meaningful only for files in file systems that support undele-

tion, such as TOPS-20 and the Lisp Machine File System.

Page 374

zl:undeletef file &optional (error-p t) Function

In you new programs, we recommend using function undelete-file, which is the

Symbolics Common Lisp equivalent of the function zl:undeletef.

Undeletes the specified file. file can be a pathname or a stream that is open to a

file. If error-p is t and an error occurs, it is signalled as a Lisp error. If error-p is

nil and an error occurs, the error object is returned; otherwise t is returned.

zl:undeletef is like zl:deletef except that it undeletes the file instead of deleting

it. zl:undeletef is meaningful only for files in file systems that support undeletion,

such as TOPS-20 and the Lisp Machine File System.

zl:viewf file &optional (output-stream zl:standard-output) Function

Prints the file named by pathname onto the stream. (The optional third argument

is passed as the leader argument to stream-copy-until-eof.) The name zl:viewf is

analogous with zl:deletef, zl:renamef, and so on. Note: zl:viewf should not be used

for copying files; its output is not the same as the contents of the file (for exam-

ple, it does a :fresh-line operation on the stream before printing the file).

fs:close-all-files Function

Closes all open files. This is useful when a program has run wild opening files and

not closing them. It closes all the files in :abort mode, which means that files

open for output will be deleted. Using this function is dangerous, because you

might close files out from under various programs such as Zmacs and Zmail; only

use it if you have to and if you feel that you know what you’re doing.

fs:*remember-passwords* Variable

If not nil, causes the first password for each file access path to be remembered.

This suppresses prompting for passwords on subsequent attempts by the same user

to use that access path. The default value is nil.

Note that if you set this variable in an init file, your first login password, typed

before the init file is loaded, is not remembered.

Caution: Remembered passwords are accessible. Even after you log out the remem-

bered password for each access path is accessible. If password security is impor-

tant, leave this variable set to nil.

Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are

typically stored in files; the expressions in the file are mostly special forms such

as defun and defvar that define the functions and variables of the program.

Loading a compiled (or BIN) file is similar, except that the file does not contain

text but rather predigested expressions created by the compiler that can be loaded

more quickly.

Page 375

These functions are for loading single files. There is a system for keeping track of

programs that consist of more than one file: See the section "System Construction

Tool".

load filename &key (:verbose *load-verbose*) :print (:if-does-not-exist :error) :pack-

age :default-package (:set-default-pathname *load-set-default-pathname*) Function

Loads the file specified by filename into the Lisp environment. The file can be ei-

ther a Lisp source file or a binary file. If filename specifies the type, it is used;

otherwise, load looks first for a binary file, then for a Lisp file. If filename is a

string, it is passed with *load-pathname-defaults* as the defaults. See the func-

tion fs:parse-pathname.

If true, which is the default, the :verbose argument causes load to print a mes-

sage indicating what file is being loaded into what package.

:print is not implemented.

:if-does-not-exist specifies the action to be taken if the file does not already exist.

The following values are allowed: :error, :create, :reprompt, and nil. :reprompt

reprompts instead of signalling. For information on the other three values, refer to

the discussion of :if-does-not-exist file-opening option, see the section "File-

Opening Options".

:package takes the argument package. It binds package to *package*, overriding

any package specified in the file attribute list. :package is a Symbolics extension

to Common Lisp.

:default-package specifies the package to be used if the file’s attribute list does

not specify a package.

:set-default-pathname controls whether this file’s pathname is recorded in *load-

pathname-defaults*. The default value is t.

zl:load pathname &optional pkg nonexistent-ok-flag dont-set-default-p no-msg-p

Function

Loads the file named by pathname into the Lisp environment. The file can be ei-

ther a Lisp source file or a binary file. If the pathname specifies the type, it is

used; otherwise, zl:load looks first for a binary file, then for a Lisp file. Normally,

the file is read into its "home" package, but pkg can be supplied to specify the

package. pkg can be either a package or the name of a package as a string or a

symbol. If pkg is not specified, zl:load prints a message saying what package the

file is being loaded into.

nonexistent-ok controls the action of zl:load if none of the files is found. If it is nil

(the default), you are prompted for a new file unless the corresponding condition

(fs:multiple-file-not-found) is handled. If it is not nil, it is the returned value if

the file is not found. Other reasons for not finding the file, such as the host being

down or the directory not existing, are signalled as different errors. For example,

zl:load fails when the host is down even when you specified the nonexistent-ok ar-

gument.

Page 376

pathname can be anything acceptable to fs:parse-pathname. See the section "Nam-

ing of Files". pathname is defaulted from fs:load-pathname-defaults, which is the

set of defaults used by zl:load and similar functions. See the variable fs:load-

pathname-defaults. Normally zl:load updates the pathname defaults from path-

name, but if dont-set-default is specified this is suppressed.

If an ITS pathname contains an FN1 but no FN2, zl:load first looks for the file

with an FN2 of BIN, then it looks for an FN2 of >. For non-ITS file systems, this

generalizes to: if pathname specifies a type and/or a version, zl:load loads that file.

Otherwise it first looks for a binary file, then a Lisp file, in both cases looking for

the newest version.

If the value of no-msg-p is t (it defaults to nil), then zl:load does not print out the

message that it usually prints (that is, the message that tells you that a certain

file is being loaded into a certain package).

load-verbose Variable

Provides the default value for the :verbose argument to load. Its initial value is t.

(load "myfile")

NIL

�

(let ((*load-verbose* t))

 (load "myfile"))

;;; Loading "/usr/me/myfile.lisp" into package USER

NIL�

load-pathname-defaults Variable

The defaults alist for the load function.

load-set-default-pathname Variable

Controls whether the load and zl:load functions change *load-pathname-defaults*

to reflect the file loaded. The default value is t.

zl:readfile pathname &optional pkg no-msg-p Function

zl:readfile is the version of zl:load for text files. It reads and evaluates each ex-

pression in the file. As with zl:load, pkg can specify what package to read the file

into. Unless no-msg-p is t, a message is printed indicating what file is being read

into what package. The defaulting of pathname is the same as in zl:load.

File Attribute Lists

Page 377

Any text file can contain an attribute list that specifies several attributes of the

file. The functions that load files, the compiler, and the editor look at this at-

tribute list. File attribute lists are especially useful in program source files, that

is, a file that is intended to be loaded (or compiled and then loaded).

If the first nonblank line in the file contains the three characters "-*-", some text,

and "-*-" again, the text is recognized as the file’s attribute list. Each attribute

consists of the attribute name, a colon, and the attribute value. If there is more

than one attribute they are separated by semicolons. An example of such an at-

tribute list is:

; -*- Mode:Lisp; Syntax:Zetalisp; Package:User; Base:10 -*-�

The semicolon makes this line look like a comment rather than a Lisp expression.

This example defines four attributes: mode, syntax, package, and base.

The term attribute list applies not only to the -*- line in character files, but also to

an analogous data structure in compiled files. For example, in both cases the at-

tribute list tells load what package to load the file into.

An attribute name is made up of letters, numbers, and otherwise-undefined punctu-

ation characters such as hyphens. An attribute value can be such a name, or a

decimal number, or several such items separated by commas. Spaces can be used

freely to separate tokens. Upper and lowercase letters are not distinguished. There

is no quoting convention for special characters such as colons and semicolons. File

attribute lists are different from Lisp property lists; attribute lists correspond to

the text inside a file, while file properties are characteristics of the file itself, such

as the creation date.

The file attribute list format actually has nothing to do with Lisp; it is just a con-

vention for placing some information into a file that is easy for a program to in-

terpret.

Symbolics Common Lisp has a parser for file attribute lists that creates some Lisp

data structure that corresponds to the file attribute list. When a file attribute list

is read in and given to the parser (the fs:read-attribute-list function), it is con-

verted into Lisp objects as follows: Attribute names are interpreted as Lisp sym-

bols, and interned on the keyword package. Numbers are interpreted as Lisp

fixnums, and are read in decimal. If an attribute value contains any commas, then

the commas separate several expressions that are formed into a list.

When a file is edited, loaded, or compiled, its file attribute list is read in and the

attributes are stored on the attribute list of the generic pathname for that file,

where they can be retrieved with the :get and :plist messages. See the section

"Generic Pathnames". So, to examine the attributes of a file, you usually use mes-

sages to a pathname object that represents the generic pathname of a file. Note

that there other attributes there, too. The function fs:read-attribute-list reads the

file attribute list of a file and sets up the attributes on the generic pathname;

editing, loading, or compiling a file calls this function, but you can call it yourself

if you want to examine the attributes of an arbitrary file.

If the attribute list text contains no colons, it is an old EMACS format, containing

only the value of the Mode attribute.

Page 378

The following are some of the attribute names allowed and what they mean.

Mode The editor major mode to be used when editing this file. This

is typically the name of the language in which the file is writ-

ten. The most common values are Lisp and Text.

Package The name of the package into which the file is to be loaded.

See the section "The Need for Packages". For more information

about the format and semantics of the Package attribute, see

the section "Set Package".

Base The number base in which the file is written. This affects both

zl:ibase and zl:base, since it is confusing to have different in-

put and output bases. The most common values are 8 and 10.

If a file has no Base attribute, the value of the Syntax at-

tribute affects the default of Base. See the Syntax attribute

below.

Syntax The syntax of the programs contained in the file can be either

Zetalisp or Common-Lisp. If a file has no Syntax attribute, the

value of the Base attribute affects the default of Syntax.

• If there is a Base attribute, but no Syntax attribute, the syn-

tax is assumed to be Zetalisp.

• If there is a Syntax: Common-Lisp attribute, and no Base

attribute, the base is assumed to be 10.

• If there is neither a Base nor a Syntax attribute, Base is as-

sumed to be the default base (10) and the syntax is assumed

to be Zetalisp. Furthermore, a warning is issued (upon be-

ginning an editing session on the file) to the effect that

there is neither a Syntax nor a Base attribute. You should

edit your program accordingly. �

Lowercase If the attribute value is not nil, the file is written in lowercase

letters and the editor does not translate to uppercase. (The edi-

tor does not translate to uppercase by default unless the user

selects "Electric Shift Lock" mode.)

Fonts The attribute value is a list of font names, separated by com-

mas. The editor uses this for files that are written in more

than one font.

Backspace If the attribute value is not nil, the file can contain backspaces

that cause characters to overprint on each other. The default

is to disallow overprinting and display backspaces the way oth-

er special function keys are displayed. This default is to pre-

vent the confusion that can be engendered by overstruck text.

Page 379

Patch-File If the attribute value is not nil, the file is a "patch file". When

it is loaded, the system does not complain about function re-

definitions. Furthermore, the remembered source file names for

functions defined in this file are changed to this file, but are

left as whatever file the function came from originally. In a

patch file, the defvar special-form turns into zl:defconst; thus

patch files always reinitialize variables.

You are free to define additional file attributes of your own. However, you should

choose names that are different from all the names above, and from any names

likely to be defined by anybody else’s programs, to avoid accidental name conflicts.

The function fs:pathname-attribute-list is generally the most useful function for

obtaining a file’s attributes.

fs:pathname-attribute-list pathname Function

Returns the attribute list for a file designated by pathname.

fs:read-attribute-list pathname stream &key :dont-reset-stream Function

Parses file attribute lists from stream and updates pathname to have that attribute

list. The value of this function is the attribute list read from the stream (not the

updated attibute list of the pathname).

The pathname argument can be a pathname object (not a string or namelist, but

an actual pathname), or an empty list, or a locative to a property list to be updat-

ed. If a pathname is given, it is usually a generic pathname. For more information

about generic pathnames: See the section "Generic Pathnames".

stream should be a stream that has been opened and is pointing to the beginning

of the file whose file attribute list is to be parsed. The function reads from the

stream until it gets the file attribute list, parses it, and puts the corresponding at-

tributes onto the attribute list of pathname. The stream is set back to the begin-

ning of the file by using the :set-pointer file stream operation unless :dont-reset-

stream is set to t. See the message :set-pointer.

The obsolete name of this function is fs:file-read-property-list.

Programs in Symbolics Common Lisp generally react to the presence of attributes

on a file’s file attribute list by examining the attribute list in the generic path-

name’s property list. However, file attributes can also cause special variables to be

bound whenever Lisp expressions are being read from the filewhen the file is be-

ing loaded, when it is being compiled, when it is being read from by the editor,

and when its QFASL file is being loaded. This is how the Package and Base at-

tributes work. You can also deal with attributes this way, by using fs:file-

attribute-bindings:

fs:file-attribute-bindings pathname Function

Page 380

Examines the property list of pathname and finds all those property names that

have file-attribute bindings. Its obsolete name is fs:file-property-bindings.

Each such pathname-property name specifies a set of variables to bind and a set of

values to which to bind them. This function returns two values: a list of all the

variables, and a list of all the corresponding values. Usually you call this function

on a generic pathname whose attribute list has been parsed with fs:read-attribute-

list. Then you use the two returned values as the first two subforms to a progv

special form. Inside the body of the progv the specified bindings will be in effect.

Usually, pathname is a generic pathname. It can also be a locative, in which case

it is interpreted to be the property list itself.

Of the standard names, the following ones have file-attribute bindings, with the

following effects:

• zl:package binds the variable zl:package to the package. See the variable

zl:package.

• zl:base binds the variables zl:base and zl:ibase to the value. See the variable

zl:base. See the variable zl:ibase.

• fs:patch-file binds fs:this-is-a-patch-file to the value.

Any properties whose names do not have file-attribute bindings are ignored com-

pletely.

You can also add your own pathname-property names that affect bindings. If an in-

dicator symbol has a file-attribute binding, the value of that property is a function

that is called when a file with a file attribute of that name is going to be read

from. The function is given three arguments: the file pathname, the attribute

name, and the attribute value. It must return two values: a list of variables to be

bound and a list of values to bind them to. Both these lists must be freshly consed

(using list or ncons). The function for the zl:base keyword could have been de-

fined by:

(defun (:base file-attribute-bindings) (file ignore bse)

 (if (not (and (typep bse ’fixnum)

 (> bse 1)

 (< bse 37.)))

 (ferror nil "File ~A has an illegal -*- Base:~s -*-"

 file bse))

 (values (list ’base ’ibase) (list bse bse)))�

Finally, the function sys:dump-forms-to-file offers, among other things, the option

of manipulating the attribute list of a binary file. See the section "Putting Data in

Compiled Code Files".

For example, the following form converts a Lisp file to a binary file, without com-

piling. The attribute list is obtained from the input stream and cached in the

generic pathname. The function fs:file-attribute-bindings obtains the list of vari-

Page 381

ables to bind from the generic pathname; these bindings are necessary to ensure

that the file is read in the right base, syntax, and package. The progv actually ac-

complishes the binding of the variables.

(defun binify-file-internal (input-file output-file)

 (setq input-file (fs:parse-pathname input-file))

 (with-open-file (input input-file :direction :input :characters t)

 (let* ((generic-pathname (send input-file :generic-pathname))

 (attribute-list (fs:read-attribute-list generic-pathname input)))

 (multiple-value-bind (variables-list values-list)

 (fs:file-attribute-bindings generic-pathname)

(progv variables-list values-list

 (loop with eof-val = (ncons ’eof)

for form = (read input eof-val)

while (neq form eof-val)

collect form into forms

finally

 (sys:dump-forms-to-file output-file forms

 attribute-list)))))))�

Accessing Directories

To understand the functions in this section, you need to understand how files are

named. See the section "Naming of Files".

Functions for Accessing Directories

fs:directory-list filename &rest options Function

Finds all the files that match pathname and returns a freshly consed list with one

element for each file and an entry with nil as its car that refers to the file sys-

tem. Note that this file system entry is usually the first entry. options are a list of

keywords, with no values, that modify the operation. Each element in the returned

list is a list whose car is the pathname of the file and whose cdr is a list of the

properties of the file.

The matching is done using both host-independent and host-dependent conventions.

Any component of pathname that is :wild matches anything; all files that match

the remaining components of pathname are listed regardless of their values for the

wild component. In addition, there is host-dependent matching. Typically, this uses

the asterisk character (*) as a wild-card character. A pathname component that

consists of just a * matches any value of that component (the same as :wild). *,

appearing in a pathname component that contains other characters, matches any

character (on ITS) or any string of characters (on TOPS-20, LMFS, UNIX, and

Multics) in the starred positions and requires the specified characters otherwise.

Other hosts follow similar but not necessarily identical conventions.

Page 382

The options are keywords that modify the operation. These keywords do not take

values. The following options are currently defined:

:noerror If a file-system error (for example, no such directory) occurs

during the operation, an error is normally signalled and the

user is asked to supply a new pathname. However, if :noerror

is specified and an error occurs, an error object describing the

error is returned as the result of fs:directory-list. This is

identical to the :noerror option to open.

:deleted This is for file servers with soft deletion, such as TOPS-20,

LMFS, and FEP. It specifies that deleted (but not yet ex-

punged) files are to be included in the directory listing. Nor-

mally, they are not included.

:no-extra-info This results in only enough information for listing the directo-

ry as in Dired.

:sorted This causes the directory to be sorted so that at least multiple

versions of a file are consecutive in increasing version number.�

The properties that might appear in the list of property lists returned by

fs:directory-list are host-dependent to some extent. The following properties are

defined for most file servers.

:length-in-bytes The length of the file expressed in terms of the basic units in

which it is written (characters in the case of a text file and bi-

nary bytes for a binary file).

:byte-size The number of bits in a byte.

:length-in-blocks The length of the file in terms of the file system’s unit of stor-

age allocation.

:block-size The number of bits in a block.

:creation-date The date the file was created, as a universal time. This does

not necessarily mean the time that the file itself was created,

but rather, the time that the data in it were created. This

property corresponds to the concept of "modification date" on

many systems. See the section "Dates and Times".

:modification-date The most recent time at which this file was modified, ex-

pressed in Universal Time. This is the same as the creation

date if the file has been opened for appending. Operations such

as renaming and property changing update this property, but

do not update creation date. The dumper, for instance, is driv-

en off this property. See the section "Dates and Times".

:directory A boolean. If t, the object in question is a directory, as opposed

to a file or a link. This property can only be returned as t in a

hierarchical file system.

Page 383

:auto-expunge-interval

For directories, the time interval between automatic expung-

ings of this directory. If, on a file system that supports this

feature (such as TOPS-20 or LMFS), a directory is never auto-

matically expunged, the value of the property will be nil. The

time interval, when supplied, is expressed as a positive integer,

in seconds.

:last-expunge-time For directories, the date that the directory was last expunged.

It is nil if the directory has never been expunged.

:reference-date The most recent date that the file was used, as a universal

time.

:author The name of the person who created the data in the file, as a

string.

:account A string. Highly system-dependent in format.

:deleted A boolean. t for a "deleted" file, in file systems supporting

"soft deletion".

:dont-delete A boolean. If it is t, an error results if an attempt is made to

delete the file.

:dont-dump A boolean. Suppresses backup dumping.

:dont-reap A boolean. A flag used by directory maintenance tools.

:dumped A boolean. t if and only if the file has been dumped to backup

tape.

:generation-retention-count

A number that specifies how many versions of a file should be

saved.

:link-to A string. This is the target pathname of a link, as a string.

:offline A boolean. t if the file has been moved to archival storage.

:physical-volume A string. The volume on which the file is mounted.

:protection A string. What protections have been set for the file.

:reader A string. The last person to have read the file.

:settable-properties

A list of the properties that may be changed for the file using

fs:change-file-properties.

:temporary A boolean. t if the file is temporary.

Compare Directories Command

Compare Directories pathname1 pathname2 keywords�

Page 384

Compares the two specified directories. This command compares only filenames,

not the contents of the files in the directories. If the directories contain the same

information, you are notified that there are no differences in the two directories. If

there are differences, two lists are printed. The first list contains the names of all

the files in the first directory that are not in the second directory. The second list

contains the names of all the files in the second directory that are not in the first

directory.

pathname1 The pathname of the first directory to be used in the compari-

son. The default is the usual pathname default.

pathname2 The pathname of the second directory to be used in the com-

parison. The default is the usual pathname default.

keywords :Ignore Versions, :More Processing, :Output Destination�

:Ignore Versions {Yes or No} The default is No. If Yes, then consider files with

the same name and type to be the same even if they have dif-

ferent version numbers.

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

fs:multiple-file-plists filenames &rest options Function

Returns the property list for each file in filenames. For example:

(fs:multiple-file-plists

 (list "sys: doc; str; str1.sar" "sys: sys2; table.lisp")) =>

�

((#P"SYS:SYS2;TABLE.LISP.NEWEST" :TRUENAME

#P"Q:>rel-7>sys>sys2>table.lisp.43" :LENGTH 97047 :AUTHOR "Moon"

:BYTE-SIZE NIL :CREATION-DATE 2729141698)

(#P"SYS:DOC;STR;STR1.SAR.NEWEST" :TRUENAME

#P"Q:>rel-7>sys>doc>str>str1.sar.45" :LENGTH 15625 :AUTHOR "nancy"

:BYTE-SIZE NIL :CREATION-DATE 2728753545))�

The properties that might appear in the list of property lists returned by

fs:multiple-file-plists are host-dependent to some extent. The following properties

are defined for most file servers:

Page 385

:truename Returns the pathname of the file actually open on this stream.

This can be different from what :pathname returns because of

file links, logical devices, mapping of "newest" version to a par-

ticular version number, and so on.

:length The length of the file expressed in terms of the basic units in

which it is written (characters in the case of a text file and bi-

nary bytes for a binary file).

:author The name of the person who created the data in the file, as a

string.

:byte-size The number of bits in a byte.

:creation-date The date the file was created, as a universal time. This does

not necessarily mean the time that the file itself was created,

but rather, the time that the data in it were created. This

property corresponds to the concept of "modification date" on

many systems. See the section "Dates and Times".�

Note that &rest options are passed along to the function doing the work.

fs:change-file-properties pathname error-p &rest properties Function

Some of the properties of a file can be changed, such as its creation date or its

author. The properties that can be changed depend on the host file system; a list

of the changeable property names is the :settable-properties property of the file

system as a whole, returned by fs:directory-list. See the function fs:directory-list.

fs:change-file-properties changes one or more properties of a file. pathname

names the file. The properties arguments are alternating keywords and values. If

an error occurs and the error-p argument is t, a Lisp error is signalled. If error-p

is nil and an error occurs, the error object is returned. If no error occurs,

fs:change-file-properties returns t.

fs:file-properties pathname &optional (error-p t) Function

Returns a disembodied property list for a single file (compare this to fs:directory-

list). The car of the returned list is the truename of the file and the cdr is an al-

ternating list of indicators and values. If error-p is t (the default) a Lisp error is

signalled. If error-p is nil and an error occurs, the error object is returned.

fs:complete-pathname defaults string type version &rest options Function

string is a partially specified file name. (Presumably it was typed in by a user and

terminated with the COMPLETE or END to request completion.) fs:complete-

pathname looks in the file system on the appropriate host and returns a new, pos-

sibly more specific string. Any unambiguous abbreviations are expanded in a host-

dependent fashion.

Page 386

string is completed relative to a default pathname constructed from defaults, the

host (if any) specified by string, type, and version, using the function fs:default-

pathname. See the function fs:default-pathname. If string does not contain a

colon, the host comes from defaults; otherwise the host name precedes the first

colon in string.

options are keywords (without following values) that control how the completion

will be performed. The following option keywords are allowed. Their meanings are

explained more fully below.

:deleted Look for files that have been deleted but not yet expunged.

The default is to ignore such files.

:read or :in The file is going to be read. This is the default. The name :in

is obsolete and should not be used in new programs.

:write or :print or :out

The file is going to be written (that is, a new version is going

to be created). The names :print and :out are obsolete and

should not be used in new programs.

:old Look only for files that already exist. This is the default. :old

is not meaningful when :write is specified.

:new-ok Allow either a file that already exists, or a file that does not

yet exist. :new-ok is not meaningful when :write is specified.

The :new-ok option is no longer used by any system software,

because users found its effects (in the Zmacs command Find

File (c-X c-F)) to be too confusing. It remains available, but

programmers should consider this experience when deciding

whether to use it.

The first value returned is always a string containing a file name; either the origi-

nal string, or a new, more specific string. The second value returned indicates the

status of the completion. It is non-nil if it was completely successful. The following

values are possible:

:old The string completed to the name of a file that exists.

:new The string completed to the name of a file that could be cre-

ated.

nil The operation failed for one of the following reasons:

• The file is on a file system that does not support completion.

The original string is returned unchanged.

• There is no possible completion. The original string is re-

turned unchanged.

• There is more than one possible completion. The string is

completed up to the first point of ambiguity.

Page 387

• A directory name was completed. Completion was not suc-

cessful because additional components to the right of this di-

rectory remain to be specified. The string is completed

through the directory name and the delimiter that follows it.�

Although completion is a host-dependent operation, the following guidelines are

generally followed:

When a pathname component is left completely unspecified by string, it is general-

ly taken from the default pathname. However, the name and type are defaulted in

a special way described below and the version is not defaulted at all; it remains

unspecified.

When a pathname component is specified by string, it can be recognized as an ab-

breviation and completed by replacing it with the expansion of the abbreviation.

This usually occurs only in the rightmost specified component of string. All files

that exist in a certain portion of the file system and match this component are

considered. The portion of the file system is determined by the specified, defaulted,

or completed components to the left of this component. A file’s component x

matches a specified component y if x consists of the characters in y followed by

zero or more additional characters; in other words, y is a left substring of x. If no

matching files are found, completion fails. If all matching files have the same com-

ponent x, it is the completion. If there is more than one possible completion, that

is, more than one distinct value of x, there is an ambiguity and completion fails

unless one of the possible values of x is equal to y.

If completion of a component succeeds, the system attempts to complete any addi-

tional components to the right. If completion of a component fails, additional com-

ponents to the right are not completed.

A blank component is generally treated the same as a missing component; for ex-

ample, if the host is a LMFS, completion of the strings "foo" and "foo." deals with

the type component in the same way. The strings are not completed identically;

completion of "foo" attempts to complete the name component, but completion of

"foo." leaves the name component alone since it is not the rightmost.

If string does not specify a name, then the name of the default pathname is pre-

ferred but is not necessarily used. The exact meaning of this depends on options:

• With the default options, if any files with the default name exist in the speci-

fied, defaulted, or completed directory, the default name is used. If no such files

exist, but all files in the directory have the same name, that name is used in-

stead. Otherwise, completion fails.

• With the :write option, the default name is always used when string does not

specify a name, regardless of what files exist.

• With the :new-ok option, if any files with the default name exist in the speci-

fied, defaulted, or completed directory, the default name is used. If no such files

exist, but all files in the directory have the same name, that name is used in-

stead. Otherwise, the default name is used.

Page 388

The special treatment of the case where all files in the directory have the same

name is not very useful and is not implemented by all file systems.

If string does not specify a type, then the type of the default pathname is preferred

but is not necessarily used. The exact meaning of this depends on options:

• With the default options, if a file with the specified, defaulted, or completed

name and the default type exists, the default type is used. If no such file exists,

but one or more files with that name and some other type do exist and all such

files have the same type, that type is used instead. Otherwise, completion fails.

• With the :write option, the default type is always used when string does not

specify a type, regardless of what files exist.

• With the :new-ok option, if a file with the specified, defaulted, or completed

name and the default type exists, the default type is used. If no such file exists,

but one or more files with that name and some other type do exist and all such

files have the same type, that type is used instead. Otherwise, the default type

is used.

In file systems such as LMFS and UNIX that require a trailing delimiter (> or /)

to distinguish a directory component from a name component, the system heuristi-

cally decides whether the rightmost component was meant to be a directory or a

name, and inserts the directory delimiter if necessary.

If string contains a relative directory specification for a host with a hierarchical

file system, it is assumed to be relative to the directory in the default pathname

and is expanded into an absolute directory specification.

The host and device components generally are not completed; they must be fully

specified if they are specified at all. This might change in the future.

If string does not specify a version, the returned string does not specify a version

either. This differs from file name completion in TOPS-20; TOPS-20 completes an

implied version of "newest" to a specific number. This is possible in TOPS-20 be-

cause completing a file name also attaches a "handle" to a file. In Genera, the ver-

sion number of the newest file might change between the time the file name is

completed and the time the actual file operation (open, rename, or delete) is per-

formed.

A pathname component must satisfy the following rules in order to appear in a

successful completion:

• The host, device, and directory must actually exist.

• The name must be the name of an existing file in the specified directory, unless

:write or :new-ok is included in options.

• The type must be the type of an existing file with the specified name in the

specified directory, unless :write or :new-ok is included in options.

Page 389

• A pathname component always completes successfully if it is :wild.

When the rules are not satisfied by a component taken from the default pathname,

completion fails and that component remains unspecified in the resulting string.

When the rules are not satisfied by a component taken from string, completion

fails and that part of string remains unchanged (other components of string can

still be expanded).

zl:listf path &optional (output-stream standard-output) Function

Display an abbreviated directory listing. The default for name, type, and version of

path is :wild.

(listf "f:>maria>mit-220")

The format of the listing varies with the operating system.

Conversion Tools

About the Conversion Tools

The Conversion Tools are a series of special-purpose Zmacs commands that save

you time and effort in editing large pieces of code in ways that can be done semi-

automatically. This is particularly useful when converting from one Lisp dialect to

another.

The available Conversion Tools are:

• Flavors to CLOS, for converting object-oriented programs from using Flavors to

using the Common Lisp Object System (CLOS). See the section "Flavors to

CLOS Conversion".

• Zetalisp to Common Lisp, for converting Zetalisp programs to Symbolics Com-

mon Lisp. See the section "Zetalisp to Common Lisp Conversion".

• Symbolics Common Lisp to portable Common Lisp, for assistance in converting

Symbolics Common Lisp programs to more portable programs that will run in a

variety of Common Lisp implementations, including Genera and Cloe as well as

other vendors’ Common Lisps. See the section "Symbolics Common Lisp to

Portable Common Lisp Conversion".

• Package Conversion, for moving a program to a different package. See the sec-

tion "Package Conversion".

• Tools you write yourself, to do any source-to-source conversions you may re-

quire. See the section "Creating Your Own Conversion Set".

Page 390

Though the Conversion Tools are simple, the conversion task is not. For this rea-

son you must use the Conversion Tools with knowledge and care. For example,

when converting Zetalisp to Common Lisp, you should be sufficiently comfortable

with both Zetalisp and Common Lisp to be aware of function equivalences and to

understand the possible effects of a conversion (such as a changed order of argu-

ment evaluation for functions whose calling sequence is different in Common Lisp).

It is also very desirable that you be familiar with the details and the intent of the

code you are converting. As a trivial example, in order to get the correct conver-

sion of a Zetalisp division operation, you must know what numeric data types the

operation is intended for, whether or not truncated division is needed, and so on;

this knowledge will let you select quickly among the three Common Lisp alterna-

tives offered you by the Conversion Tools.

Obviously, you also need familiarity with the basic workings of the Zmacs editor.

Bear in mind that the conversion commands are intended as an aid to conversion,

not as a fully automatic conversion tool. Used properly, they will save you time

and effort, but you must monitor the results carefully after each step and be

aware that you might have to do some manual work after conversion: for instance,

comments might not end up exactly in the right place in the rearranged program,

indentation might change, converted functions might need some additions to the

code, and so on.

Getting Started with Conversion

Loading the Conversion Tools

The Conversion Tools reside on the source tape you received with Genera. Once

you have restored the distribution tape as described in your Software Installation

Guide, type this from the Lisp Listener:

Load System Conversion-Tools�

When the system files are loaded, you are ready to use the Conversion Tools.

For your convenience, the distribution tape also includes two sample programs you

can use to try out the Conversion Tools: SYS:CONVERSION-TOOLS;CONVERSION-TEST-

PROGRAM.LISP (the main example), and SYS:CONVERSION-TOOLS;CONVERSION-OCTAL-TEST-

PROGRAM.LISP (for radix conversion).

Preparing Your Files

All phases of the Conversion Tools run over files that have been read into the

Zmacs editor. If you have a large number of files you can save yourself some work

by treating them as a unit and having them read in automatically; you can do this

in one of two ways: for system files, that is, files that you have grouped via

defsystem, execute m-X Select System As Tag Table before starting. For other col-

lections of files, select these files as a Tag Table by executing m-X Select Some

Files As Tag Table. All files in the Tag Table are read into editor buffers when

Page 391

you issue the first conversion command. For more on working with Tag Tables,

see the section "Tag Tables and Search Domains in Zmacs".

As a precaution, especially if your file server does not maintain multiple file ver-

sions, we suggest you copy your source files to another directory. You can then

run the Conversion Tools over the original files in their home directory.

Running the Conversion Routines

All the conversion commands use the Zmacs extended command syntax and are,

therefore, prefixed by m-X. Command completion is provided as usual. Generally

the commands can be applied to Region, Buffer, or Tag Table. To convert the base

from octal, for example, you could type any one of these three commands:

m-X Convert Base of Region

m-X Convert Base of Buffer

m-X Convert Base of Tag Table�

For commands affecting a region, you would, of course, mark the region before is-

suing the conversion command. Remember that only the region you select is con-

verted while the rest of your program is left unchanged. If you don’t mark a re-

gion, it defaults to the definition containing the cursor.

The Tag Table version is the most powerful. It applies the conversion to all of the

files specified by the current Tag Table. Use one of these commands first to select

a current Tag Table:

m-X Select All Buffers As Tag Table

m-X Select Some Files As Tag Table

m-X Select System As Tag Table

m-X Select Some Buffers As Tag Table�

Certain conversion commands apply only to buffers meeting certain crtieria, such

as buffers that are in a certain package. Whenever you use one of these commands

with a Tag Table, the command finds and display a list of all the candidate

buffers and asks you how to proceed: Y(es) operates on all files, N(o) on none,

S(elective) on only some of these files (specified by you). As each file is converted,

the system displays its pathname. The message "Done." appears after all files have

been converted.

Interaction with the Conversion Tools is flexible; when the system queries you on

specific changes, it always offers you the option of editing your program manually

and then resuming the current conversion. (You do this by typing c-R).

If an unwanted conversion occurs, you can undo it with the Zmacs undo facility

(press c-sh-U, or mark a region and press m-sh-U). For more information, see the

section "Zwei Undo Facility".

As already stated, each conversion phase should produce a program that is fully

compatible with the source program. It is a good idea to test your program after

each conversion phase and to save your buffers after you are satisfied.

Page 392

Since there is no reliable convention for structured comments, the tools ignore

them, just as the Lisp compiler would (this is not always how the editor acts). If

you have lots of commented-out code that you want to convert too, you can uncom-

ment it before converting, and recomment it when done. For instance, if you use

the #|| ... ||# convention, you can cause the comment delimiters to be ignored by

using m-X Multiple Query Replace to replace #|| with #|{begin}|# and ||# with

#|{end}|#, which are unlikely to occur already in your program. When the conver-

sion is complete, you can replace the comment delimiters as easily as you removed

them.

When the Conversion Tools encounter an error they usually proceed to the next

definition and restart from there, after printing the error message. You should go

back and check the place where the error occurred to see what happened.

Getting Help

As mentioned, command completion is available for the Conversion Tools in the

usual fashion. See the section "Zmacs Command Completion".

Additionally, there is a Help facility that you invoke by pressing the HELP key; the

following general kinds of help are available:

• Finding commands: if you press HELP after typing part of a command, the sys-

tem displays a list of commands that can be used to complete it. For instance, if

you invoke HELP after typing Convert at the minibuffer the following displays:

You are typing at a mini-buffer that acts like an input editor.

You are being asked to enter an extended command.

�

These are the possible extended commands starting with "conv":

 Convert Base Of Buffer Convert Lisp Syntax Of Buffer

 Convert Base Of Region Convert Lisp Syntax Of Region

 Convert Base Of Tag Table Convert Lisp Syntax Of Tag Table

 Convert Functions Of Buffer Convert Package Of Buffer

 Convert Functions Of Region Convert Package Of Region

 Convert Functions Of Tag Table Convert Package Of Tag Table�

• Finding buffers: when the system verifies the name of the buffer to be convert-

ed and you don’t want the default (current) buffer, HELP offers to display all

your editor buffers; select the buffer you want from this display either by click-

ing on it with the mouse, or by typing the buffer name into the minibuffer.

• Options menu: when the system queries you for specific object conversions, HELP

gets you a menu of possible responses. The convention is:

Action Character or Key

Do it Y, SPACE

Skip it N, RUBOUT

Page 393

Do it every time P

Manual Edit c-R

Do it, then Allow Edit , (comma)

Redisplay screen c-L, REFRESH

Do it, leave a comment ; (semicolon)�

If multiple conversions are offered, you can also press the number of the conver-

sion (1 for the first, 2 for the second, etc.) to do it. If you press comma it does

the first conversion then allows editing. Period does the second conversion and

then allows editing. Slash does the third conversion and then allows editing. If

there are more than three possibilities, only the first three can be done with an

edit.

If you edit your program manually during conversion, press END to signal com-

pletion of your edit and return to the current conversion step.

The HELP and SCROLL keys are active during this query, along with the standard

scrolling commands such as c-V and s-R.

Flavors to CLOS Conversion

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table�

To translate a Flavors program to CLOS, issue one of the above commands. When

prompted "Conversion to use", select Flavors to CLOS. This semiautomatic conver-

sion will do most of the work required to convert a program from Flavors to

CLOS. Additional manual effort will be required if the program uses Flavors fea-

tures that do not have any direct counterpart in CLOS.

Each form in the program that can be converted to CLOS results in an interactive

query showing the old form in context in the editor buffer and one or more sug-

gested replacement functions. You can then enter one of a variety of single-

character commands. Press HELP for a list of options. For further information, see

the section "Getting Help with Conversion".

This is not a conversion from Symbolics Common Lisp to portable Common Lisp.

The Flavors to CLOS conversion converts only Flavors functions and macros; it

does not touch the rest of the program.

If your Flavors program is in Zetalisp, it is recommended, but not required, that

you first convert it to Common Lisp before converting it to CLOS. See the section

"Zetalisp to Common Lisp Conversion".

The general idea is to convert a flavor to a class with the same name, to convert

messages to generic functions, and to convert Flavors generic function and method

definitions to CLOS generic function and method definitions with the same generic

Page 394

function name. Flavors names and syntax are replaced with CLOS names and syn-

tax wherever a correspondence exists. Flavors features that do not exist in CLOS

are left in the program for you to convert by hand.

CLOS uses symbols that are not accessible in packages such as cl-user and scl.

Unless you first move your Flavors program into a package that uses clos or

future-common-lisp, the CLOS symbols will be inserted into your program with

package prefixes. Thus defmethod will be converted to clos:defmethod. If you

later move your program to a package or an implementation where CLOS is direct-

ly accessible, you can use m-X Query Replace to remove the package prefixes. For

information about moving your Flavors program to another package, see the sec-

tion "Package Conversion".

The conversion tool extracts information about your program, such as what

method-combination type a generic function uses or what instance variables and

defun-in-flavor functions are defined for a flavor, by looking in three places:

1. Forms that have already been converted during the same conversion opera-

tion.

2. Forms that have been read into editor buffers.

3. Flavor and generic function definitions that have been loaded into the world.�

Consequently, you will get better results if the entire program is read into the edi-

tor or loaded into the world before converting any of it.

The new version of the program can’t be used at the same time as the old version,

because it uses the same names with different meanings (a class is different from

a flavor, and a CLOS generic function is different from a Flavors generic func-

tion). However, if you move the new version into a new package before converting

it you can avoid this problem. For information about moving your Flavors program

to another package, see the section "Package Conversion".

CLOS does not have any equivalent of Flavors’ functions whose scope is limited to

methods for a particular flavor. Therefore defun-in-flavor is converted to

clos:defmethod (with the addition of an argument, since self is no longer con-

veyed automatically) and defmacro-in-flavor is converted to ordinary defmacro.

These conversions can result in name conflicts, if the same name had been used in

the scope of two different flavors. These conflicts will probably show up as method

lambda-list congruency errors and must be resolved manually.

Options for defflavor or defgeneric that do not have counterparts in CLOS are

converted into an :unconverted-flavor-options or :unconverted-defgeneric-options

option to remind you to convert these options manually. CLOS does not accept

:unconverted-flavor-options or :unconverted-defgeneric-options, so if you com-

pile the program without completing the manual conversion, an error will be re-

ported.

Some defflavor options, such as :required-flavors or :abstract-flavor, can simply

be deleted without harming the operation of a working program. Other options,

Page 395

like :mixture or :special-instance-variables, have no simple conversion to CLOS.

If you use them you might have to restructure your program. The following op-

tions have fairly straightforward conversions that are a little too complex to be

done automatically:

:constructor Use defun to define a function that calls clos:make-

instance.

:default-handler Use clos:defmethod to define a default method for each

generic function that needs default handling.

:init-keywords Use &key in a clos:initialize-instance method.�

Symbolics CLOS has an extension to allow slots to be located with locf. If you use

:locatable-instance-variables in Flavors, it is converted to the Symbolics CLOS

:locator slot-option. This will not work in other CLOS implementations.

Some Flavors efficiency features with no counterpart in CLOS are simply discard-

ed. For example, defwhopper-subst is simply converted into an :around method,

and defsubst-in-flavor is treated the same as defun-in-flavor.

Messages are converted to generic functions. This applies both to receivers

(defmethod, :gettable-instance-variables, and so on.) and to senders (send, lexpr-

send). Messages sent with funcall or apply are not recognized as messages and

are not converted. The first time a particular message is encountered during a

conversion operation, you will be prompted for the name of the replacement gener-

ic function. You can press RETURN to accept the offered default. You can press

SPACE to complete to "None", which means to leave this message unconverted. You

can later convert the message by hand, or leave it as a message if your program

runs partially in CLOS and partially in Flavors. A generic function name that is

already in use as a special form, macro, or nongeneric function will not be accept-

ed.

The following Flavors constructs are not automatically converted. They are left in

the program and must be converted by hand. Some of these do not have any sim-

ple conversion to CLOS; if you use them, you might have to restructure your pro-

gram. Others are used infrequently enough that automatic conversion did not seem

worthwhile.

compile-flavor-methods

define-method-combination

defwrapper

:fasd-form

get-handler-for

lexpr-send-if-handles

operation-handled-p

recompile-flavor

send-if-handles

:unclaimed-message

:which-operations�

Page 396

In addition, none of the documented Flavors constructs in the flavor, system, and

zl packages is converted. These are generally too internal to have exact correspon-

dences in CLOS.

Mixed use of Flavors and CLOS is not supported at present. That is, a class can-

not inherit from a flavor, a flavor cannot inherit from a class, CLOS generic func-

tions cannot be used with Flavors methods, and Flavors generic functions cannot

be used with CLOS methods nor with CLOS instances. The only supported mixed

use is that CLOS generic functions can be used with Flavors instances and CLOS

methods can be specialized to a flavor as if it was a class. Therefore if you convert

a program to CLOS, you must convert all uses of a given flavor to use a class in-

stead, and all Flavors methods for a given generic function to be CLOS methods

instead.

Symbolics Common Lisp to Portable Common Lisp Conversion

The Symbolics Common Lisp to portable Common Lisp conversion tool assists in

converting Symbolics Common Lisp programs to more portable programs that will

run in a variety of Common Lisp implementations, including Genera and Cloe as

well as other vendors’ Common Lisps.

In general, the strategy is to convert to "CLtL" Common Lisp (as defined by the

book Common Lisp: the Language, first edition, by Guy L. Steele, Jr.) when that is

possible and otherwise leave things unconverted. However, if the program is in a

package from the Common-Lisp, CLtL, or CLtL-Only universe, the resulting prefix

is future-common-lisp:.

A possible alternative strategy, which we did not adopt, would have been to take

advantage of extensions present in particular Common Lisp implementations such

as Symbolics Cloe, creating a conversion tool targeted to one particular Common

Lisp implementation rather than to the common subset of most implementations.

You can convert the remaining portions of your program to use extensions provid-

ed by particular implementations, if you so choose, after performing the automatic

conversions to the common subset; perhaps inserting #+/#- conditionalization.

The program output by the Symbolics Common Lisp to portable Common Lisp con-

version tool should be run in the Common Lisp Developer to help verify the cor-

rectness of the conversion, before porting it to another implementation.

See the section "Developing Portable Common Lisp Programs".

The Symbolics Common Lisp to portable Common Lisp conversion tool converts a

subset of Symbolics Common Lisp constructs to portable Common Lisp. Constructs

that can be locally converted into portable constructs are converted. Constructs

that have no portable equivalent, or that would require nonlocal changes to the

program, are not converted. Examples of this include locatives and array leaders.

Constructs such as who-calls that are only intended to be called interactively, not

incorporated into programs, are not converted.

Certain large facilities such as Flavors and Dynamic Windows are not converted by

this tool (to CLOS and CLIM, respectively), because there are separate tools just

for them.

Page 397

Several facilities from the future X3J13 Common Lisp are widely available now and

thus are assumed to be present in the target implementation. These include loop,

defpackage, destructuring-bind, the Condition system, and the dynamic-extent

declaration.

A number of Symbolics Common Lisp facilities such as resources, initializations,

SCT, and many others have no counterpart in X3J13 Common Lisp, so no conver-

sion is attempted. You should convert uses of these facilities by hand or obtain an

implementation of the facility in each target environment of interest.

Some extensions to standard constructs, such as the :area and :displaced-

conformally arguments to make-array, are discarded during the conversion; this

might not produce the desired behavior. In general the program output by the con-

version tool will require some testing and additional manual changes before the

conversion process is complete. Compiling the program in the Common Lisp Devel-

oper and checking the compiler warnings is the first step in this process. The sec-

ond step is to run the Symbolics Common Lisp version (in regular Genera) and the

converted version (in the Common Lisp Developer) simultaneously and compare

their behavior for a set of test cases.

To run the Symbolics Common Lisp to portable Common Lisp conversion tool, is-

sue one of the following commands and specify "Symbolics Common Lisp to

portable Common Lisp" in response to the "Conversion to use" query. Completion

and help are available when entering the name of a conversion, so you do not need

to type the entire name.

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table�

When converting to the Common Lisp Developer (the CLtL or CLtL-Only package

universe), superfluous package prefixes such as cl: will frequently be left in the

program. This occurs because the Common Lisp Developer uses alternative ver-

sions of many Common Lisp symbols that disable Symbolics extensions or perform

extra error checking. These package prefixes should be removed using one of the

commands listed above, specifying "Common Lisp to Common Lisp Developer" in

response to the "Conversion to use" query. This removes the prefixes only from

symbols that are essentially equivalent; using m-X Replace String would be danger-

ous as it might also remove package prefixes that indicate constructs that have

not yet been converted.

Package Conversion

Commands: m-X Convert Package of Region

m-X Convert Package of Buffer

m-X Convert Package of Tag Table

The Package Conversion tool modifies a program so that it can be read in a differ-

ent package but still get the same symbols. This tool is typically used as one step

Page 398

in converting a program from one Lisp dialect to another. Once the program has

been moved to a package that inherits the symbols of the target dialect, all sym-

bols inherited from the original dialect are tagged with package prefixes and can

easily be found so that they can be converted to constructs of the new dialect.

For example, one step of converting from Zetalisp to Common Lisp is to move the

program from a package that uses Zetalisp to a package that uses Common Lisp.

At each place where a symbol inherited from Zetalisp is referenced, if the same

symbol does not occur in Common Lisp a zl: package prefix is inserted in front of

the symbol. This affects inherited symbols only. Symbols that are directly present

in the old package are replaced by symbols with the same names directly present

in the new package.

No symbol substitution is done; the file is just changed to read the same global

symbols into the new package. For instance, memq is converted to read zl:memq,

not to the corresponding Common Lisp function name, member (that translation

occurs later).

In some cases there can be name conflicts between local symbols of the program

and defined symbols of the target dialect. This occurs most often when converting

from Zetalisp to Common Lisp. If name conflicts are possible, you should check for

them before converting the package. See the section "Step Three: Name Conflict

Resolution".

Procedure for Package Conversion

The Conversion Tools ask you for a package to replace each of the packages in the

program. When converting a region or a buffer, this is just one package, the buf-

fer’s package. When converting a Tag Table, this is the set of packages of all the

files in the Tag Table. You have three choices:

• Choose a package that is already defined.

• Create a new package. This is the default.

• Don’t convert this package, just keep on using it.�

If you convert a package more than once in the same session, after the first time

the default is to do the same conversion that you did last time, but all three choic-

es are still available.

When you choose to create a new package, you must specify its name and the

package it uses (inherits from). This is normally done by specifying a package uni-

verse (such as Zetalisp, Common-Lisp, or CLtL-Only) and letting the name and the

used package default according to the selected package universe. For example,

when converting from Zetalisp to Common-Lisp, the original package might be

named foo and inherit from global. If you specify the Common-Lisp package uni-

verse for the new package, it would be named common-lisp-foo and would inherit

from symbolics-common-lisp or common-lisp (your choice).

Page 399

If you have complex package declarations, you might prefer to create a new pack-

age with a different name by editing your defpackage form, before doing the

package conversion. Then specify that new package when the Conversion Tools ask

what your old package becomes.

If you don’t care about keeping your old package name, you can simply convert to

a new package name and you’re done. If instead you want to keep your old pack-

age name and redefine it as a new package, you must follow a more complex pro-

cedure so that the old and new packages can coexist in the same world temporarily

during the conversion process. The procedure is as follows:

1. Suppose you are converting from Zetalisp to Symbolics Common Lisp and you

have an old package, called my-package, that uses Zetalisp. During conver-

sion you replace this with a new package called common-lisp-my-package,

which uses Symbolics Common Lisp. This new package name will only be

used temporarily during the conversion process. The Conversion Tools convert

all your symbols from my-package to common-lisp-my-package.

2. If the Conversion Tools changed the file attribute lines at the front of your

files to refer to common-lisp-my-package, change them back to my-package.

3. Now save your files.

4. Edit the :use option of the defpackage form for my-package to specify

symbolics-common-lisp. Save the file containing this definition.

5. Reboot into a fresh world, without loading your system. Evaluate your

defpackage form to create a new version of my-package that uses Symbolics

Common Lisp instead of Zetalisp.

6. Now read the source files of your system into the editor and use m-X Query

Replace to convert any occurrences of common-lisp-my-package to my-

package. (There will probably not be any unless your system is written in

multiple packages.)

7. Recompile the system, and everything in this world should work.�

Package Prefix Conversion of a Buffer

The output buffer produced by the Name Conflict Resolution step is our input buf-

fer for this next step. Type:

m-X Convert Package of Buffer�

After verifying the file name as usual, the conversion command asks for the names

of the new packages to use, and shows the list of symbols to bypass. To change

any of these values, click Middle on them. Confirm the values as they stand by

pressing END.

Page 400

The Conversion Tools then proceed with the package conversion. Note the large

number of package prefixes (for example, zl:) that now appear in your program.

Package Prefix Conversion of a Region

Command: m-X Convert Package of Region�

This works analogously to the Buffer version of the command, except that it oper-

ates only on the region you have marked.

Package Prefix Conversion of a Tag Table

Command: m-X Convert Package of Tag Table�

Converting files in a Tag Table works in similar fashion to buffer conversion: first

you see a list of all the packages used by files in the Tag Table and you select

those you want to convert and what package to convert them to. Next you are

asked about bypassing the conversion of symbols that are more often used as vari-

ables than as functions. Finally, you are asked to confirm the list of files to be

converted (all files that are in the Tag Table and in a package that is being con-

verted).

Next you are asked whether the file attribute lists should be set to the new pack-

age, and from that point on, the package conversion proceeds automatically until

done.

Zetalisp to Common Lisp Conversion

The Zetalisp to Common Lisp Conversion Tools convert programs from Symbolics’

Zetalisp dialect to Symbolics’ extended version of Common Lisp. The kinds of

changes needed to convert your code from the Zetalisp to the Common Lisp pack-

age structure and syntax are summarized in the six-step breakdown of the Zetalisp

portion of the Conversion Tools system as follows:

1. Syntax Conversion

2. Radix Conversion (optional)

3. Name Conflict Resolution

4. Package Prefix Conversion

4a. CL Prefix Removal (optional)

5. Function Conversion

5a. Remaining ZL Prefix Removal (optional)

6. Structure Conversion�

These six steps are executed entirely via Zmacs commands that run over files read

into the editor buffer. The conversion commands are simple and easy to use; some

are largely automated; others depend on your input for correct results. A Help fa-

cility, invoked by pressing the HELP key, is also available.

Page 401

Each of the six steps produces a program that is complete, can be recompiled, and

that functions equivalently to the source program. Each step is dependent on its

predecessor and must, therefore, occur in the enumerated order, including the

three optional steps, 2, 4a and 5a, if you choose to execute them.

Note

The Zetalisp to Common Lisp Conversion Tools do not necessarily produce portable

Common Lisp code. Using the Common Lisp package is helpful, since after conver-

sion Symbolics Common Lisp symbols will be identifiable by their scl: prefixes; but

the Zetalisp to Common Lisp Conversion Tools do not especially flag conversions

that might involve the use of functions that have Symbolics Common Lisp exten-

sions to Common Lisp.

The Conversion Tools specifically don’t do the following function conversions:

• Zetalisp functions for which there is no Common Lisp analog

• Zetalisp functions used inside a macro

• Complex Zetalisp functions, or those requiring rearrangement of the code in

their vicinity�

Unconverted functions will, of course, remain prefixed by zl: as a result of the

Package Prefix conversion; they’ll be easy to find either visually or with Zmacs

Search commands.

We now present a step-by-step description of the Zetalisp to Common Lisp Conver-

sion Tools, listing the Zmacs commands used to perform each step.

Step One: Syntax Conversion

Commands: m-X Convert Lisp Syntax of Region

m-X Convert Lisp Syntax of Buffer

m-X Convert Lisp Syntax of Tag Table

Zetalisp uses "/" as the syntax-quoting (escape) character. Common Lisp uses "\"

for that purpose. Since the syntax is reliable in both cases, the conversion is auto-

mated.

The syntax conversion done in this first step results in the following changes:

ZL Becomes

character CL character

 // /

 #/ #\

 #\ #\

 / \

 \ \\

Page 402

 #^ #\control-

 #Q #+lispm

 #M #+Maclisp

 #N #+NIL�

(The last four character changes are listed only for the sake of completeness; they

are unlikely to appear in any files.)

The buffer syntax conversion tool changes the syntax in the file attribute line to

Common Lisp. The tag table syntax conversion tools asks whether to change the

syntax in the file attribute line; normally you answer yes.

Syntax Conversion of a Buffer

Type:

m-X Convert Lisp Syntax of Buffer�

The system verifies the name of the input buffer, as usual for file and buffer re-

lated commands. (Use HELP to see a display of all your buffer names, if you don’t

want to convert the current buffer.)

The syntax conversion then proceeds automatically. The file attribute line is

changed to Common Lisp from Zetalisp, and all uses of the Zetalisp quoting char-

acter "/" have changed to the Common Lisp quoting character "\".

Syntax Conversion of a Region

Command: m-X Convert Lisp Syntax of Region�

To apply the syntax conversion to a region, first mark the region, then issue the

conversion command. Only the region you marked is converted, and the rest of

your code remains unchanged.

Syntax Conversion of a Tag Table

Command: m-X Convert Lisp Syntax of Tag Table�

You can use the Tag Table option of the conversion command if you have previous-

ly issued either m-X Select System As Tag Table or m-X Select Some Files As Tag

Table. When you type the conversion command, the system first reads in all the

files in the Tag Table that are in Zetalisp. It then displays a list, "Files to be

converted" and asks whether to convert all, none, or some of these files. If you opt

for conversion, the system asks whether it should set the file attribute lists also.

The syntax conversion then proceeds automatically; the system displays the name

of each file as it is converted, ending with the message "Done."

Be sure to test your program after the syntax conversion, and to save the buffer

before proceeding to the next step.

Page 403

Step Two: Radix Conversion (Optional)

If any of your files have a base of 8 (octal), you may wish to convert them to base

10 (decimal); if so, you must do it now. This step is completely optional, since

Common Lisp programs can have nonstandard radices.

Commands: m-X Convert Base of Region

m-X Convert Base of Buffer

m-X Convert Base of Tag Table�

After verifying the buffer (or files, in the case of Tag Tables) to convert, the con-

version commands give you the option of having large octal numbers (numbers

larger than 10 octal) converted to decimal automatically or selectively. If you opt

for selective conversion, you are queried separately for each "large" number in

your program. The range of responses is:

Action Character or Key

Do it Y, SPACE

Skip it N, RUBOUT

Manual Edit c-R

Do it, then Allow Edit , (comma)

Redisplay screen c-L, REFRESH�

If you edit your program manually during conversion, press END to signal comple-

tion of your edit and return to the current conversion step.

Step Three: Name Conflict Resolution

Commands: m-X Find Conflicting Symbols in Buffer

m-X Find Conflicting Symbols in Tag Table

In your Zetalisp program you may have defined some functions or variables whose

names will conflict with the names of Common Lisp functions after conversion. For

instance, you might have defined a function named search that conflicts with the

Common Lisp function search.

Before your program can be moved to a new package, all function and variable

names that conflict with the names of functions or variables inherited by the new

package must be changed. This happens in two stages. First the Conversion Tools

generate a buffer that lists all conflicting symbol names. You then edit this buffer,

typing a new name after each of these symbols. During this edit you can also

delete lines whose symbols are not truly conflicting, such as symbols used only for

naming local variables. Then use m-X Multiple Query Replace command to substi-

tute the new name for the old one in the source program.

Name Conflict Resolution of a Buffer

Page 404

The output buffer produced by the Syntax Conversion step is our input buffer for

this next step. Type:

m-X Find Conflicting Symbols in Buffer�

After verifying the filename, the system asks how the buffer’s package will be

converted. See the section "Step Four: Package Prefix Conversion".

Select your choice. Now the system creates a buffer:

[Creating ZMACS Buffer "Conflicting symbols".]�

and places you in it. In our example, the Conflicting Symbols buffer might contain

only the name

�

SEARCH

�

Now edit the buffer to supply a new name. The new name must appear on the

same line as the old name, immediately following it. After editing, our sample buf-

fer of conflicting symbols looks like this:

�

SEARCH MY-SEARCH

�

Move back to your input buffer and type:

�

m-1 m-X Multiple Query Replace from Buffer

�

(m-1 specifies that only whole-word occurrences of the symbol are picked for sub-

stitution.) The Query Replace command works in the usual fashion, letting you

confirm or bypass the substitution in each individual case.

Name Conflict Resolution of a Tag Table

Command: m-X Find Conflicting Symbols in Tag Table�

If you are working with a Tag Table, the conversion command asks how the pack-

ages used by files in the Tag Table will be converted. It then creates the buffer of

conflicting symbols, which you edit as described earlier. Now type:

m-1 m-X Tags Multiple Query Replace from Buffer�

Zmacs displays each occurrence of a symbol to be replaced, and you respond with

an instruction to replace or skip, as appropriate, then press c-. to continue. See

the section "Performing Operations with Tag Tables". The system notifies you

when it has finished all substitutions.

Step Four: Package Prefix Conversion

Page 405

Commands: m-X Convert Package of Region

m-X Convert Package of Buffer

m-X Convert Package of Tag Table

This step modifies a program so that it can be read in a Common Lisp package in-

stead of a Zetalisp package, but still get the same symbols. Each time a symbol in-

herited from Zetalisp is referenced, if the same symbol does not occur in Common

Lisp a zl: package prefix is inserted in front of the symbol. No symbol substitution

is done; the file is just changed to read the same global symbols into the new

package. For instance, memq is converted to read zl:memq, not to the correspond-

ing Common Lisp function name, member (that translation occurs later).

For a description of this step, see the section "Package Conversion".

A number of Zetalisp global symbols are much more often used as the names of lo-

cal variables than as functions; examples are zl:args and zl:array. The Conversion

Tools display a list of such symbols and offer you the option of suppressing their

conversion. This will later save you the trouble of removing the unnecessary zl:

prefixes generated by the conversion. You can edit the list, adding or removing

symbols as required.

Step Four-a: CL Prefix Removal (Optional)

If your program was already using functions in the Common Lisp package by

means of an explicit cl: package prefix, you may want to remove these prefixes

now. Use the standard Zmacs Search and Replace commands for this purpose.

Step Five: Function Conversion

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table

Many Zetalisp functions and variables readily translate into their corresponding

Common Lisp functions. Three such types of translation are performed in this

step.

The simplest translation is the direct substitution of one symbol for another; you

can opt to have the system do these without querying you about each case. Other

translations may involve some changes such as the addition of a keyword, the

changing of an expression to a list, a changed order of arguments, and so on. In

such cases the conversion command displays the proposed change, and asks you to

confirm it. The most complicated renamings involve cases where there may be

more than one option for translating a given Zetalisp function. Here, the conver-

sion command displays the available options, along with some explanation about

each, and asks you to select the most appropriate among them. This is where max-

imum familiarity with the code and the conversion set comes into play.

Page 406

Before doing the function conversion, the system also prompts you for a conversion

set; typically this is Zetalisp to Common Lisp. It can also be any of several other

predefined conversion sets, such as Flavors to CLOS, or a conversion set that you

have defined yourself.

As already stated, Zetalisp functions without a Common Lisp analogue, Zetalisp

symbols not appearing their usual syntactic context, and complex Zetalisp functions

are not translated in this step. However, all such untranslated functions remain

prefixed by zl: as a result of Package Prefix Conversion, so you can find them and

deal with them yourself later.

The substituting mechanism is careful not to lose comments; they may not, how-

ever, end up exactly in the right place in the rearranged program. Indentation

might also have changed. You should look the program over as the conversion pro-

gresses.

Function Conversion of a Buffer

The output buffer produced by the Package Prefix Conversion step is our input

buffer for this next step. Type:

m-X Convert Functions of Buffer�

After verifying the file name as usual, the Conversion Tools prompt for a conver-

sion set; the options can be displayed by pressing HELP.

The defstruct option is for Structure conversion, the final conversion step. Here,

select Zetalisp to Common Lisp as the conversion set.

Next indicate whether or not you want to be queried for straightforward renam-

ings. Since these are simply direct symbol substitutions, the favored approach is to

let the system do them automatically.

After doing the simple conversions, the system uses a typeout window to query you

on all other substitutions. Before each query, the system displays the affected

line(s) in bold along with the immediate context so you can identify the code. For

a table of your possible actions at this point, see the section "Getting Help with

Conversion".

Function Conversion of a Region

Command: m-X Convert Functions of Region�

This works analogously to the Buffer version of the command, except that it oper-

ates only on the region you have marked.

Function Conversion of a Tag Table

Command: m-X Convert Functions of Tag Table�

Page 407

The sequence of events is as for the Buffer version: the conversion command

prompts you for a conversion set, asks if you want to be queried for simple re-

namings, and displays proposed changes or options, requesting a response. It dis-

plays each file name as it finishes its conversion; its last message is "Now no

more sets of possibilities."

Step Five-a: Remaining ZL Prefix Removal

Some Zetalisp functions may have been too complicated to convert automatically

because the change requires rearranging the code in the vicinity of the function.

Structure definitions and constructors are still unconverted, and should be left

with their zl: prefixes until the Structure Conversion step.

Some Zetalisp functions might remain, however, because a global symbol is really

being used in an innocent way and is not suppressed explicitly during the initial

package conversion. Such zl: prefixes can be removed altogether, since the new lo-

cal symbols serve better. Use the standard Zmacs Search and Replace commands

to do this.

Step Six: Structure Conversion

Commands: m-X Convert Functions of Region

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table

To convert structures, you use the same command as for Function Conversion, ex-

cept that this time you specify defstruct as the conversion set instead of Zetalisp

to Common Lisp. As before, you have the option of doing straightforward renam-

ings without a query. Keep in mind that since the system being converted is not

guaranteed to be loaded, you will be asked about all forms beginning with make-

that have an even number of arguments and no keywords other than :make-array.

This may include a number of legitimate function calls.

For the most part, the defstruct macro is compatible with its zl:defstruct coun-

terpart. However, some of the options accepted by both have a slightly different

behavior when given to cl:defstruct than when given to zl:defstruct. In some cas-

es, default behavior when no options are given also differs. There are, as well, dif-

ferences in the format of the constructors generated by each defstruct; these are

discussed in more detail below. For these reasons, we need a special conversion

phase just to convert structure definitions and constructors. This phase deals with

all defstruct forms, and all forms beginning with make- that appear to be struc-

ture constructor macros. You will probably need to do some editing of the conver-

sion results, as we explain later.

In Zetalisp, you give the structure component names to the constructor macro as

arguments for initializing these components, or slots. Common Lisp constructor

functions take instead keyword arguments with the same name as the structure

components. Further, Common Lisp constructor functions don’t accept keyword ar-

Page 408

guments to the :make-array keyword. This Zetalisp form of a constructor macro,

for example, is not acceptable to Common Lisp:

:make-array (:length 20)�

The Conversion Tools let you get around this restriction by offering a Symbolics

Common Lisp extension to defstruct that adds the option :constructor-make-

array-keywords to a cl:defstruct macro. This option is followed by a list of all

the :make-array arguments destined for use by the constructor function; these ar-

guments then become top-level arguments to the constructor instead of appearing

as keyword arguments to the :make-array keyword argument in the constructor.

Only arguments included in the :constructor-make-array-keywords option to

defstruct can be used in the constructor function.

If you opt for this approach, and if during conversion the system finds that the zl:

constructor contains :make-array keyword arguments that were not explicitly spec-

ified in the zl:defstruct :make-array option, it gives you an explicit message,

telling you to add the missing keywords. The message is also recorded in the com-

piler warnings database to let you do your editing all at once after the conversion.

Warning: Currently, the constructor function always expands to a call to zl:make-

array. This works in most cases, but could create problems if your Zetalisp struc-

ture definition specifies a type for the new structure (or any other keyword argu-

ment to zl:make-array that differs from a make-array keyword).

Structure Conversion of a Buffer

All previous phases of Common Lisp conversion must have already been executed

on the buffer before performing Structure Conversion.

This section uses examples in the file

SYS:CONVERSION-TOOLS;CONVERSION-STRUCTURES-TEST-PROGRAM.LISP�

Type:

m-X Convert Functions of Buffer�

After verifying the filename to convert as usual, the conversion command asks for

a conversion set to use; this time, type defstruct . As for function conversion, you

are asked if the conversion should do straightforward renamings without query;

answer Yes. Straightforward renamings include converting zl:defstruct to

defstruct, changing the names of structure components in constructor functions to

keywords, and changes involving different default behavior in Zetalisp and Com-

mon Lisp defstruct, as in the use of :conc-name in our sample.

After querying you for each conversion (press HELP for the full list of possible re-

sponses), the system produces the new code. Major changes are as follows:

All zl:defstruct macros have become Common Lisp defstruct.

In all the converted constructor functions, the names of the structure components

have become keyword arguments.

Example differences in zl: and cl: defstruct default behavior

Page 409

The treatment of the :conc-name option to defstruct points to differences in the

default behavior of the Zetalisp and Common Lisp forms. The zl:defstruct for the

structure my-structure contains a :conc-name option without an argument. This

form of the option is the default for defstruct. Therefore, :conc-name becomes re-

dundant and is removed during the conversion. In contrast, the zl:defstruct for

the structure header-structure in the example does not contain a :conc-name op-

tion, because we wanted to use the default version of the zl:defstruct, which is

the :conc-name nil option. Since this is not the default behavior for defstruct, the

conversion adds an explicit :conc-name nil option.

Treatment of :make-array keywords

The zl:defstruct for the structure header-structure in our example specifies that

the structure should be implemented as an array, and uses a :make-array option

to define the array length.

The Zetalisp constructor macro, make-header-structure, also uses the :make-

array keyword, followed by two keyword arguments to it, namely :length and

:displaced-to. To allow use of the latter two in the CL constructor function, which

does not accept keyword arguments to :make-array, the conversion did the follow-

ing:

It replaced the :make-array option in the zl:defstruct with the Symbolics Common

Lisp option :constructor-make-array-keywords, following it with the former

:length argument to :make-array which now serves as an argument rather than a

keyword.

It also replaced the :make-array option in the Zetalisp constructor macro by the

top-level keyword arguments, :length and :displaced-to.

While converting the constructor macro, the system finds that the constructor

:displaced-to argument is missing from the argument list of the :constructor-

make-array-keywords option in the defstruct. This is because it was not specified

in the zl:defstruct, appearing only in the constructor. The system therefore dis-

plays a message, telling you to add this argument to the list of arguments follow-

ing the :constructor-make-array-keywords, in the defstruct, so that the construc-

tor function can subsequently use it. To deal with all such messages together at

the end of the conversion, execute m-X Edit Compiler Warnings, which displays the

Compiler Warnings database.

If your zl:defstruct used the :type option:

Suppose your original code specifies that the structure be implemented as a string

array, as follows:

(zl:defstruct (header-structure :array-leader

(:make-array (:length 20

 :type ’zl:art-string)))

 slot-1)

�

(defun make-one ()

 (make-header-structure slot-1 ’one :make-array (:length 40)))

�

Page 410

This is then converted to the following Common Lisp form:

(defstruct (header-structure (:conc-name nil) :array-leader

 (:constructor-make-array-keywords

 (length 20) (element-type ’string-char)))

 slot-1)

�

(defun make-one ()

 (make-header-structure :slot-1 ’one :length 40))

�

Since the constructor function currently expands to a call to zl:make-array, the

form (zl:make-array 20 ... :element-type ’string-char) would result. This is not

legal, since Zetalisp recognizes only type as an array type specifier.

This problem will be fixed in a future release. Currently, you can get around it by

editing the converted code of the defstruct to restore the original Zetalisp type

declaration:

�

(defstruct (header-structure (:conc-name nil) :array-leader

 (:constructor-make-array-keywords (length 20)

 (type ’zl:art-string)))

 slot-1)

�

Creating Your Own Conversion Set

It’s easy to create your own conversion set, which can be invoked by specifying its

name to one of the m-X Convert Functions of ... commands. You don’t have to

know anything about the internals of the editor; all you have to do is define trans-

lations from forms to forms, very much in the style of defmacro. The system

takes care of parsing the text in the editor buffer into a form, calling your con-

version, querying the user about the conversion, and writing the new form back in-

to the editor buffer, maintaining comments and indentation.

The general method of operation of function conversion is to search the buffer for

a string that looks like it matches a conversion in the conversion set. When such a

string is found, the innermost pair of balanced parentheses containing it marks the

form to be converted. The system reads this form with read and looks for one or

more matching conversions. It calls each conversion. A conversion can return a re-

placement form, or can return nil if it is not really applicable. The argument tem-

plate you specify when you define a conversion compiles into code that returns nil

if the actual form doesn’t match the template. The body of your conversion can

make additional checks and return nil if they are not satisfied. If no applicable

conversion is found the system goes back to searching the buffer, without saying

anything.

Once the set of matching and applicable conversions has been determined and

their replacement forms have been collected, the system displays the context and

Page 411

queries the user whether to make the conversion, and which one to make if there

are multiple possibilities. If the user replies affirmatively, the system determines

the differences between the old form and the new form, and edits the buffer so

that it will read as the new form. This editing process is done in a way that pre-

serves comments and most indentation.

Besides function conversions, a conversion set can also define conversions for fu-

nargs and for bare symbols. A function conversion applies to a symbol as the first

element of a list. A funarg conversion applies to #’symbol or (function symbol). A

symbol conversion applies to a symbol regardless of context. Funarg and symbol

conversions are simpler since there are no arguments and hence no template

matching and conditional processing.

To define a conversion set, start by using the macro conversion-tools:define-

conversion-set. This defines macros to define function, funarg, and symbol conver-

sions for that conversion set. Once you have defined the conversions, you can use

the m-X Convert Functions of Region command to apply the conversion set to test

cases and see if it works as desired.

To see a fairly complex example of defining a conversion set, see the file SYS:CON-

VERSION-TOOLS;ZETALISP-CONVERSIONS.LISP.

conversion-tools:define-conversion-set set-name symbol-macro function-macro &key

:funarg-macro :message-macro :send-functions :pretty-name :search-strings :default-

conversions Function

Defines a conversion set named set-name, which can be run by specifying its name

to one of the m-X Convert Functions of ... commands.

If symbol-macro is non-nil, it is the name of a macro that defines a symbol conver-

sion for this conversion set. A symbol conversion applies to a symbol regardless of

context.

If function-macro is non-nil, it is the name of a macro that defines a function con-

version for this conversion set. A function conversion applies to a symbol as the

first element of a list.

If funarg-macro is non-nil, it is the name of a macro that defines a funarg conver-

sion for this conversion set. A funarg conversion applies to #’symbol or (function

symbol).

If message-macro is non-nil, it is the name of a macro that defines a message con-

version for this conversion set. A message conversion applies to any list whose

first element is one of the symbols in send-functions (which defaults to just send)

and whose third element is constant and a symbol.

You can use send-functions to make the message-macro apply to funcall as well as

send if you like.

If pretty-name is specified, it is a string that names the conversion set. The m-X

Convert Functions of ... commands accept this string. If pretty-name is not speci-

fied, it defaults based on set-name.

Page 412

If search-strings is specified, it is a list of strings to search for to find relevant

symbols in the editor buffer. If search-strings is not specified, the search uses all

of the symbols for which a conversion has been established. Sometimes speed can

be improved by specifying search-strings, for example if all relevant symbols will

have a certain package prefix.

If default-conversions is specified, it is a list of symbols that name function conver-

sions (see the :name option to the function-macro). These conversions are applied

to all function calls, after any conversions that are specifically for the function.

The arguments to the function-macro are name template &key :form :name :modifi-

cation-depth :documentation :documentation-level :documentation-length. As an ab-

breviation, the function-macro can be called with simply name template form if

none of the other options are required. The arguments are

name the symbol that names the function. Calls to this function are

subject to the conversion being defined. This works for macros

and special forms as well as true functions.

template a defmacro-style argument list that matches the function call

being converted. The variables bound by template are available

in :form; their values are subforms of the function call being

converted. If the function call being converted does not match

the template, for example the number of arguments is differ-

ent, this conversion is quietly ignored.

:form a form that evaluates to the replacement form, or to nil if this

conversion is not really applicable. Typically this is a back-

quote expression. If you need more than one form, you must

enclose them in progn; the function-macro does not have a

body. Within this form, the variable conversion-tools:function-

name is bound to the name of the function in the function call

being converted. This can be useful in connection with default-

conversions.

:name a symbol that names the conversion. This defaults based on

name and the name of the conversion set, so it only has to be

specified when there is more than one conversion defined for

the same function.

:modification-depth the depth down from the original form in which lists have

some elements changed. It is usually 1 except for things like

selectq → case, where a t might turn into an otherwise, thus a

modification depth of 2 is required because there are 2 levels

of parenthesis around the otherwise. :Modification-depth helps

in the editing of the buffer to install the replacement form.

:Modification-depth defaults to 1.

:documentation a string that briefly describes what this conversion does.

:documentation-level controls *print-level* while printing the replacement form,

when querying the user. This defaults to a smart default.

Page 413

:documentation-length

controls *print-length* while printing the replacement form,

when querying the user. This defaults to a smart default.�

The arguments to the symbol-macro are old-symbol and new-symbol. Wherever the

old-symbol is encountered, it is replaced by the new-symbol. If a function or funarg

conversion is also defined for old-symbol, and the context where the symbol ap-

pears is appropriate, the function or funarg conversion is used instead of the sym-

bol conversion.

The arguments to the funarg-macro are name &key :new-function :documentation

:documentation-length :documentation-level :modification-depth :name. As an abbre-

viation, the funarg-macro can be called with simply name new-function if none of

the other options are required. The arguments are

name the symbol that names the function. References to this func-

tion as a constant (using #’ or function) are subject to the

conversion being defined.

:new-function the symbol that is to be used instead.

:documentation a string that briefly describes what this conversion does.

:documentation-level controls *print-level* while printing the replacement form,

when querying the user. This defaults to a smart default.

:documentation-length

controls *print-length* while printing the replacement form,

when querying the user. This defaults to a smart default.

:modification-depth the depth down from the original form in which lists have

some elements changed. It is usually 1 except for things like

selectq → case, where a t might turn into an otherwise, thus a

modification depth of 2 is required because there are 2 levels

of parenthesis around the otherwise. :Modification-depth helps

in the editing of the buffer to install the replacement form.

:Modification-depth defaults to 1.

:name a symbol that names the conversion. This defaults based on

name and the name of the conversion set, so it only has to be

specified when there is more than one conversion defined for

the same function.�

The arguments to the message-macro are message template &key :flavor :form

:name :modification-depth :documentation :documentation-level :documentation-length.

As an abbreviation, the message-macro can be called with simply message template

form if none of the other options are required. The arguments are

message the symbol that names the message to be converted.

template a defmacro-style argument list that matches the message send

being converted. The first argument matches the object receiv-

ing the message; the remaining arguments match the argu-

Page 414

ments to the message. The variables bound by template are

available in :form; their values are subforms of the message

send being converted. If the message send being converted

does not match the template, for example the number of argu-

ments is different, this conversion is quietly ignored.

:flavor a symbol that names the type of object receiving the message,

or a list (or type type...) that names several types that could

receive the message. If :flavor is specified, then the conversion

only applies if the object receiving the message appears to be

of the required type; this is assumed if the object is the value

of a variable with the same name as the type, otherwise the

user is queried.

:form, :name, :modification-depth, :documentation, :documentation-level, :documenta-

tion-length

these arguments are the same as for the function-macro.�

The Demonstrations Facility

The demonstrations facility is an extensible facility for using and writing programs

that demonstrate or highlight interesting aspects of a system-defined or user-

defined program or application.

Using the Demonstrations Facility

To use the demonstration facility, use these CP commands:

Show Demonstration Names Command

Show Demonstration Names�

Shows the names of demonstrations which are available in the demonstrations fa-

cility.

The output is mouse sensitive. Consult the mouse documentation line for informa-

tion on the available options.

The output is partitioned into "loaded" and "unloaded". The demonstration defini-

tion resides in the file system and is not loaded until it is first referred to. Load-

ing a demonstration loads only its definition, not its supporting code, and is there-

fore always fast. When a demonstration is first run, it is initialized, which may

take longer.

Run Demonstration Command

Run Demonstration name keyword�

Page 415

Runs a demonstration. If the demonstration has not been initialized, it will be ini-

tialized automatically before it is first run.

name The name of a demonstration.

keywords :More Processing, :Output Destination, :Show Instructions,

:Specify Options�

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

:Show Instructions

{Yes, No, Ask} Specifies whether to show instructions. The de-

fault is Yes.

:Specify Options {Yes, No} Specifies whether to interactively prompt for option

values (if any) to control the demonstration.�

Initialize Demonstration Command

Initialize Demonstration name keyword�

Does any pre-loading specified in the demonstration definition, such as loading any

required systems and running the initializer function. This command is not func-

tionally necessary (because when a demonstration is first run, it is initialized au-

tomatically, if it has not been initialized yet), but it can save time in situations

when you want to have the first run of a demonstration be fast.

name The name of a demonstration.

keywords :Force

:Force {Yes, No} Specifies whether to force initialization even if it

has already been done. (Even when this is Yes, required sys-

tems are not re-loadedonly the initializer action is re-run).�

Show Demonstration Summary Command

Page 416

Show Demonstration Summary name keyword�

Shows a brief summary of what the demonstration does.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Demonstration Instructions Command

Show Demonstration Instructions name keyword�

Shows the essential instructions on how to use the demonstration.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Demonstration Legal Notice Command

Show Demonstration Legal Notice name keyword�

Page 417

Shows any copyright notices related to the demonstration.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Show Demonstration Background Information Command

Show Demonstration Background Information name keyword�

Displays background information about the demo which might help you understand

where the demo came from or what it is trying to show, but which is not essential

to actually running the demo. For example, if the demonstration is the Life game,

this Show Demonstration Background Information might give information about

who invented the Life game, the rules of the game, and other interesting informa-

tion.

name The name of a demonstration.

keywords :More Processing, :Output Destination

:More Processing {Default, Yes, No} Controls whether **More** processing at

end of page is enabled during output to interactive streams.

The default is Default. If No, output from this command is not

subject to **More** processing. If Default, output from this

command is subject to the prevailing setting of **More** pro-

cessing for the window. If Yes, output from this command is

subject to **More** processing unless it was disabled globally

(see the section "FUNCTION M").

:Output Destination

{Buffer, File, Kill Ring, None, Printer, Stream, Window}

Where to redirect the typeout done by this command. The de-

fault is the stream *standard-output*.

Page 418

Extending the Demonstrations Facility

The package demonstration, whose short name is demo, supports the demonstra-

tions facility.

This section documents a variable and a function that are central to the demon-

strations facility, and then describes how to install a new demo.

demo:*demonstration-pathnames* Variable

A list of the (possibly wildcarded) pathnames which are searched by the demon-

strations facility (Show Demonstration Names, Run Demonstration, and so on.)

The default is ("SYS:SITE;*.DEMO.NEWEST"). This means that demonstration defini-

tions can be installed by creating a file in SYS:SITE;demonstration-name.DEMO with

the appropriate contents. However, since the files in this directory might change

when new system versions are installed, maintainers of site systems might wish to

create an alternate directory for the purpose of holding site-specific demonstration

definitions. If this is done, an appropriate wildcard should be added to this list by

the site system. For example:

(pushnew "acme:>corporate-demos>*.demo.newest"

 demonstration:*demonstration-pathnames*

 :test #’string-equal)�

demo:define-demonstration name options (&key :pretty-name :required-systems :re-

strictions :initializer :instructions :background-information :legal-notice :initialize)

summary &body forms Function

Defines a demonstration called name.

options are formal parameters to the forms in the body. Each option has the form:

(var init type key1 val1 key2 val2...) where var names a variable, init is var’s initial

value, type is var’s type (must be a valid type argument for accept), and the re-

maining keys and vals are other arguments to accept.

The keyword arguments to demo:define-demonstration are described below. All

keyword values are evaluated normally (so some values may require quoting).

:pretty-name A string that must be string-equal to the given name, but can

be used to change the case to something prettier. The default

is (string-capitalize name).

:required-systems A list of systems which must be loaded when this system is

initialized. The default is ’().

:restrictions A list of restriction keywords for this demonstration. Possible

keywords include:

:large-screen-only

Does not work with a small screen.

Page 419

:local-screen-only

Does not work with a remote screen.

:local-terminal-only

Does not work with a remote terminal. The default is ’().�

:initializer A function which is run once (the first time the demonstration

is about to be run, or the first time Initialize System is used)

to initialize the demonstration.

:instructions A string containing instructions for using the demonstration,

or a function of one argument (a stream) which will display

the instructions.

:background-information

Like :instructions, but contains additional interesting informa-

tion not essential to actually running the demonstration.

:legal-notice Like :instructions, but contains any legal information associat-

ed with the demonstration.

:initialize A boolean value indicating whether to initialize the demonstra-

tion as soon as it is loaded. The default is nil.�

For some important information about the order of loading the demonstration defi-

nition and the demonstration’s system, See the section "Installing a

Demonstration".

summary is a short string which describes the action of the demonstration for

menu purposes; this is used by the Show Demonstrations command.

forms are the forms to be executed when the demonstration is actually run. They

may refer to variables named in options.

Installing a Demonstration

To install a demonstration, create a file in one of the files on the list

demo:*demonstration-pathnames*. For example, the default value of this variable

is "SYS:SITE;*.DEMO.NEWEST"; you might create a definition file named "SYS:SITE;MY-

TOYS.DEMO".

The file can contain any Lisp forms, but somewhere they must include either di-

rectly (in the text) or indirectly (by using load) a definition for a demo:define-

demonstration form for a demonstration whose name is string-equal to the file’s

name. For example, in the file "SYS:SITE;MY-TOYS.DEMO" we would expect to find

something like:

Page 420

;-*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

(DEMO:DEFINE-DEMONSTRATION MY-TOYS ((SOME-PARAMETER 64. ’(INTEGER 0 100)))

 (:REQUIRED-SYSTEMS ’("MY-TOYS-SUPPORT")

 :RESTRICTIONS ’(:LOCAL-TERMINAL-ONLY)

 :INSTRUCTIONS "Sit back, relax, and enjoy the ride."

 :LEGAL-NOTICE "Copyright (c) 1990 J. Doe. All Rights Reserved.")

 "Show off my skills as a toymaker."

 (MY-TOYS-DEMO-DRIVER SOME-PARAMETER))�

Note that this file might be loaded before MY-TOYS-SUPPORT is loaded, so you must

be careful to either define functions it needs (such as MY-TOYS-DEMO-DRIVER, in the

above example) in a package that will exist (such as user), or else you should be

careful to not assume that the package exists. For example:

;-*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 -*-

�

(DEMO:DEFINE-DEMONSTRATION MY-TOYS ((SOME-PARAMETER 64. ’(INTEGER 0 100)))

 (:REQUIRED-SYSTEMS ’("MY-TOYS-SUPPORT")

 :RESTRICTIONS ’(:LOCAL-TERMINAL-ONLY)

 :INSTRUCTIONS "Sit back, relax, and enjoy the ride."

 :LEGAL-NOTICE "Copyright (c) 1990 J. Doe. All Rights Reserved.")

 "Show off my skills as a toymaker."

 (FUNCALL (INTERN "MY-TOYS-DEMO-DRIVER" "TOYS-INTERNAL") SOME-PARAMETER))�

