
Networks

Concepts of Symbolics Networks

Networking capabilities are an essential part of Symbolics computers. Via net-

works, Symbolics computers communicate with each other and with different kinds

of computers at a site. The goal of that communication is for one computer to pro-

vide a service for another computer. This allows a site to share its resources

among the users at the site. For example, a network enables many users to share

printers, tape drives, and disks. This reduces redundancy and often saves money.

This section gives a general description of what the networking capability provides

and how to use the network services.

Design Goals of the Network System

In designing the network capability, Symbolics had three major goals. The network

system should:

• Do its job automatically for the user.

There is no special program to learn in order to use the network. Instead, you

use familiar commands from the editor, Zmail, or the Command Processor; these

commands use the network for you, when needed. Many commonly used com-

mands and functions use the network, such as Show Users, Find File (m-X),

Copy File, and Get Inbox. Many complex interactions must occur for these com-

mands to do their jobs successfully , but they happen quickly, reliably, and au-

tomatically.

• Provide a way for programmers to deal uniformly with computers that run dif-

ferent operating systems and different networking software.

For example, programmers use a single set of functions (such as with-open-file)

to access files, whether they are stored locally or on a remote host, regardless

of the type of operating system or networking software supported by that host.

The same principle applies to programs such as the Mailer, the Terminal pro-

gram, Tape, and so on.

• Be easily extensible by the programmer.

The extensibility of the networking software should prove valuable to program-

mers who want to add new networking capabilities. The software is divided into

layers of protocol so that programmers can build new applications on the foun-

dation of a chosen layer of protocol. This unique design of a networking system

is called the Symbolics Generic Network System: See the section "Symbolics

Generic Network System".�

Page 2

What is a Network?

When a site has more than one computer, it is often desirable for the computers

to be able to communicate. The goal of that communication is for one computer to

perform a service for another computer, such as transferring files, sending mail,

and so on.

A network consists of hardware and software that allow two or more computers to

communicate with each other. The hardware provides a physical link and the soft-

ware governs the communication. Computers that are connected by a network are

often called hosts.

There are different types of computer networks, but they all have these things in

common:

• Each host on the network must have a network address.

• One host must know the address of another host to communicate with it.

• Every host can communicate with any other host on the network. �

Networks differ in three main ways:

• Types of services supplied.

• Format of network addresses.

• The way that data is transmitted from one host to another. �

A "type of network" does not refer specifically to hardware. The hardware used by

Symbolics computers is an Ethernet cable. One Ethernet cable can be used to sup-

port a Chaosnet network, an Internet network, or both.

What is a Network Service?

When computers are connected to a network, each computer gains certain new ca-

pabilities. That is, one computer is capable of performing a service for another

computer. Here are some examples:

Name of Description of Service

Service�

FILE Ability to access files on a remote host.

MAIL Ability to send electronic mail to a user on a remote host.

LOGIN Ability to log in to a remote host.

SEND Ability to send conversational messages to a user on a remote

host.

Page 3

HARDCOPY Ability to hardcopy a file on a printer attached to a remote

host. �

The names of the services are in capital letters, as they appear in the namespace

database. In other networking environments, the same services are called by differ-

ent names.

What is a File Server?

One important capability of the network is that of transferring files from one ma-

chine to another. This capability is called FILE service. FILE service also enables

a user to perform file operations on a remote host, such as copying and deleting

files, probing for the existence of a file, listing and expunging directories.

A machine that provides FILE service to other machines is called a file server.

Most sites designate one or more machines as file servers for all machines at the

site. Users can store their files on the file server machine rather than on the Sym-

bolics computer they use every day. This shared file system retains the traditional

advantages of a timesharing system, such as:

• Users can have access to the same files and programs.

• Resources at the site are shared, such as disks.

• Users benefit from centralized backups and maintenance. �

File servers can be Symbolics computers or any computer accessible via the net-

work. For example, a timesharing computer such as a VAX can be a file server for

the Symbolics computers at the site if it has the necessary hardware and software

to be connected to the network.

Some other important servers are:

Print Server A computer that is attached to a hardcopy device; it offers to

print (or spool) files for other computers on the network.

Namespace Server A Symbolics computer that stores the namespace database. �

Concepts of Service, Medium, and Protocol

The Symbolics networking system has three important and related concepts:

service, medium, and protocol. These are the conceptual layers of the networking

software.

Service A capability provided by one host for another. Examples in-

clude: FILE, LOGIN, MAIL.

Protocol A particular high-level type of stylized dialogue supported by

one computer that provides a particular service to another

computer. Examples include: TCP-FTP, 3600-LOGIN, SMTP.

Page 4

Medium A definition of what types of paths are adequate for providing

a service using a particular protocol. Examples include: TCP,

CHAOS, DNA. �

Requesting a service and getting served involves a stylized dialogue between two

hosts. The details of that dialogue are called the protocol. For example, if we imag-

ine that food is a service, the protocol for requesting food is different if you are at

a restaurant or a vending machine:

 RESTAURANT protocol VENDING-MACHINE protocol

 for FOOD service for FOOD service

1. Ask for food. 1. Pay with coins.

2. Receive food on plate. 2. Press buttons.

3. Pay with cash or credit. 3. Receive food in package.

�

A medium is a system underlying the protocol; it defines the low-level details of

the communication. We can extend the food analogy to include mediums: You can

request food service using restaurant protocol with the IN-PERSON medium or the

TELEPHONE medium.

The concepts of service, medium, and protocol are described in more detail else-

where:

See the section "Concept of service Attribute".

See the section "Service Attributes in the Namespace Database".

See the section "How a Network Service is Performed".

�

Common Protocols

Internet supports several levels of protocol. The lowest level protocol provides for

transport of datagrams (raw blocks of data), and serves as the

skeleton for which all other Internet protocols are built:

IP (Internet Protocol)

Defines the essentials for datagram transport including a stan-

dard address format, fragmentation/reassembly of data not fit-

ting into a single packet, and packet checksum format. This

protocol does not provide flow of control, retransmission, or er-

ror control.

The next level of protocol provides minimal routing, flow of control, and error

control:

ICMP Provides minimal routing, flow of control and error control.

You can use the following protocols for various administrative functions:

Page 5

• ARP (Address Resolution Protocol)

Enables hosts to obtain a hardware (Ethernet) address corre-

sponding to a known protocol address (for example, Internet

or Chaos address).

• EGP (Exterior Gateway Protocol)

Used for exchanging routing information between gateways.

• IGMP (Internet Group Multicast Protocol)

Provides the tools necessary for defining multicast addresses

and for associating a host with a multicast address.

• RARP (Reverse Address Resolution Protocol)

Enables hosts to determine a protocol address (for example,

Internet or Chaos address) corresponding to a known hard-

ware (Ethernet) address.

You can use the following host to host data transmission protocols as a basis for

application specific protocols:

• UDP (User Datagram Protocol)

A minimal transaction-oriented protocol providing source and

destination port addressing. This protocol distinguishes dif-

ferent application protocols, and also differentiates multiple

connections between hosts. UDP does not protect against du-

plicate or out-of-order packets, or transport failure.

• TCP (Transmission Control Protocol)

Provides process-to-process, end-to-end data transfer between

hosts. TCP supports sour ce and destination ports (sockets),

ordered transmission of data, and provides flow of control.�

The most common IP/TCP protocols are:

• Domain Name Protocol

Provides name service for Internet hosts. Two forms exist;

° Domain Simple

Used over UDP.

° Domain

Used over TCP.�

• File Transfer Protocol

A general file transfer mechanism using TCP; referred to as

TCP-FTP by the Symbolics implementation.

Page 6

• Simple Mail Transfer Protocol

The format for electronic mail using TCP.

• TELNET

Remote login protocol based on TCP.�

Networks Supported by Symbolics Computers

A computer supports a type of network if the computer has the hardware and soft-

ware required for that network. The hardware that physically links Symbolics com-

puters together is called an Ethernet. This is a coaxial cable of the type used for

cable television. Each Symbolics computer has a hardware interface to the ether-

net. In the following model, a site has four Symbolics computers connected to an

Ethernet:

 Mickey Donald Minnie Pluto <- Symbolics computers

 | | | | <- hardware interface

 =============================== <- the Ethernet�

A Symbolics computer can be on many different networks even if it has only one

hardware interface; it requires the software to support the different networks.

Symbolics computers have the software (some of which is purchased separately) to

support the following types of networks:

Chaos All Symbolics computers support Chaosnet, which was original-

ly developed at M.I.T.

Dial Any Symbolics computer with a modem can support Dialnet,

the international telephone network. This is the only network

that does not use Ethernet hardware; it uses a modem and the

existing telephone network. The function of Dialnet is to pro-

vide a reliable transport medium over possibly unreliable com-

mon carrier facilities. The primary uses of Dialnet are mail

transfer and remote login.

Internet Symbolics makes available optional software (the IP/TCP soft-

ware package) that enables Symbolics computers to support In-

ternet networks.

DNA Symbolics makes available optional software (the Digital Net-

work Architecture software package) that enables Symbolics

computers to support DECnet, also called DNA.

SNA Symbolics makes available optional software (the System Net-

work Architecture facility) that enables Symbolics computers to

support a subset of SNA capabilities.�

Typically, Symbolics computers use Chaosnet to communicate with one another.

When a site has other kinds of computers, often those computers are already con-

Page 7

nected to a network, such as an Internet or a DECnet network. The optional soft-

ware packages enable the Symbolics computer to be connected to the network al-

ready in use at a site.

Concept of Network Addresses

Each host on a network needs a unique network address. The network address is

an identifier for the host. For example, when an electronic mail message is sent

over the network, the sending host must include the network address of the desti-

nation host in the message. When you send a letter through the postal system, you

write an address on the envelope for the same purpose.

One computer can support two different networks (for example, Chaosnet and In-

ternet), if it has the necessary software. Such a host needs to have both a Chaos-

net address and an Internet address.

The following examples show typical addresses on different networks:

Chaosnet 402

Internet 192.10.41.21

Dialnet 16175551234

DECnet 3.1�

For one host on the network to communicate with another, it must know or be

able to find out the address of that host. This information is stored in the name-

space database. For an introduction to the namespace database: See the section

"Concepts of the Namespace System".

For more detailed information: See the section "Network Addressing".

Setting the Chaosnet Address

Every Symbolics computer on a Chaosnet needs to set its Chaos address in its boot

file. This is a line resembling:

Set Chaos-address octal-value�

The default value of octal-value is the previous Chaosnet address, which is set to

zero when the FEP is started.

The FEP checks for an acceptable Chaosnet address before starting Lisp. If none

is specified as argument to this command, it warns you, asks whether the current

setting is acceptable, and allows you to change it if necessary.

Concepts of the Namespace System

When computers are connected by a network to form a distributed computing en-

vironment, the computers should all be able to share information that describes

that environment. The type of information typically needed by computers on a net-

work includes:

Page 8

• The names of other computers with which they can communicate

• The network addresses of those computers

• What printers are available on the various server computers

• Which host stores the mailbox for a particular user �

Most network implementations have some method for storing and updating such

information; in general, this is called a network database. The Symbolics imple-

mentation of a network database is called the namespace database.

The namespace database is maintained by a computer designated as the namespace

server. Only Symbolics computers can be namespace servers.

All computers on the network can query or make changes to the namespace

database by communicating over the network with the namespace server. The

namespace editor is the tool for viewing and altering information stored in the

namespace database. You can invoke the namespace editor by choosing it from the

System menu, or giving the command Edit Namespace Object.

The database is structured to understand that there can be many different net-

works in a distributed environment. Hosts can be on more than one network, and

some hosts that are on two networks can serve as gateways from one network to

the other. One of the purposes of the database is to let a user host find a path to

a server host, using whichever networks and gateways are necessary.

Summary of Namespace Terminology

namespace database

The Symbolics implementation of network databases.

namespace server

The computer on which the namespace database is stored.

namespace system

The namespace database itself and the tools to use it.

namespace editor

The tool used to view or alter objects in the namespace database. �

Concept of Namespace Objects

The namespace database consists of a collection of objects. The namespace database

has several different kinds of objects for different purposes. For example, the

namespace database has a host object for each host on the network.

Examples of Namespace Objects

host object Contains information on a computer on the network, such as

its name, its network addresses, and the services it provides.

Page 9

user object Contains information on a user of the network, such as the

user’s login name and mail address.

printer object Contains information on a printer connected to the network,

such as the printer’s name, its type, the host to which it is at-

tached, and the options it supports.�

Concept of service Attribute

Each service is implemented on a network medium using a protocol. Hosts that are

on two networks can often provide a service over two network mediums using two

different protocols. For example:

On Internet:

FILE service is implemented on the TCP medium using the TCP-FTP protocol.

Often FILE service is implemented also on the UDP medium using the UDP-FTP

protocol.

On Chaosnet:

FILE service is implemented on the CHAOS medium using the NFILE protocol.

The namespace database stores information on the services, media, and protocols

that each host supports. The information is stored in the service attributes of each

host object. A service attribute has three parts: the service, the medium, and the

protocol. If you view a host object, you might see these entries:

Service: Set: FILE CHAOS NFILE

Service: Set: FILE TCP TCP-FTP �

When one computer needs a service from another computer, it consults the name-

space database to determine:

• Does the computer provides the requested service?

• What is the best route to get that service? The medium and protocol are part of

the route. �

Finding a path to a host can be a complicated procedure, but it is all done auto-

matically by the Symbolics Generic Network System. The necessary information is

stored in the namespace database, and the namespace system provides tools that

use the information to find the best route. For more information: See the section

"Finding a Path to a Service on a Remote Host".

For more details on how services are requested and performed: See the section

"How a Network Service is Performed".

For more details on service entries: See the section "Service Attributes in the

Namespace Database".

Page 10

A Sample Host Object in the Namespace Database

By viewing a sample host object in the namespace database, many of the concepts

of Symbolics networking become clearer. Host objects can contain much more in-

formation than shown here; however, this example illustrates the most important

attributes of a host object.

System Type*: LISPM

Machine Type: 3600

Address: Pair: CHAOS 24460

Address: Pair: INTERNET 192.10.41.48

Service: Set: FILE TCP TCP-FTP

Service: Set: FILE CHAOS NFILE�

This host is a Symbolics 3600-family computer that is on two networks: Chaos and

Internet. The host therefore has two network addresses.

The service attributes show that this host can provide FILE service in two ways:

across the Internet network (using the TCP medium and TCP-FTP protocol), and

across the Chaos network (using the CHAOS medium and the NFILE protocol).

Glossary of Networking Terminology

This section gives brief definitions of the terms used frequently in the networking

documentation.

Host Used interchangeably with computer and machine. Examples

are: Symbolics computers and VAX computers.

Machine Used interchangeably with computer and host. Examples are:

Symbolics computers and VAX computers.

Medium Defines how one computer can provide a service using a given

protocol; that is, defines what type of paths are adequate for a

given protocol. Examples are: TCP, CHAOS, DNA.

Namespace database

The Symbolics implementation of network databases.

Namespace editor The set of tools used to view or alter objects in the namespace

database.

Namespace server The computer on which the namespace database is stored.

Namespace system The namespace database itself and the tools to use it.

Network The hardware and software that enables two computers to

communicate. The goal of that communication is for one com-

puter to provide a service for the other computer.

Network type There are many different types of networks; each type has a

designated way of transmitting data, format of network ad-

dresses, and types of services supplied. Examples are: Internet,

Chaos, Dial.

Page 11

Protocol A stylized dialogue between two computers that takes place

when one computer requests a service from another computer.

Examples are: TCP-FTP, 3600-LOGIN.

Service A capability that one computer provides for another computer

on the network. Examples are: FILE, LOGIN, MAIL.

Site A collection of computers located in one small geographic loca-

tion; usually the computers are connected to one another by

means of a network. A site can also be a single computer;

these sites have no need for a network. Examples: the Symbol-

ics Corporate Research Center, ACME Corporation building 21.

User host A computer that requests a service from another computer on

the network.

Server host A computer that provides a service to another computer on the

network. �

Using the Network

Symbolics designed the network to be used by commands, functions, and activities,

instead of being invoked directly by a user. This section describes some of the

commands and activities that use the network automatically, when needed.

The only time you need to do anything special to use the network is when logging

in to a remote host. Then you use the Terminal program. See the section "Using

the Terminal Program".

You can connect to a remote Symbolics computer from an ASCII terminal or anoth-

er Symbolics computer. For more information: See the section "Remote Login".

Commands That Use the Network

The following Zmacs, Zmail, and Command Processor commands provide some ex-

amples of the use of the network. Many other functions and programs also use the

network.

Show Users This CP command requests the SHOW-USERS service from a

given host on the network, or from all hosts reachable on the

network.

Find File (m-X) This Zmacs command (c-X c-F) requests the FILE service

from the host on the network where the given file is stored.

The file is copied from that host to an editor buffer.

Save File (m-X) When you later save the file (c-X c-S), Zmacs again requests

FILE service to copy the altered contents of the file from your

editor buffer to the host on the network where the file is

stored.

Page 12

Mail This Zmail command requests STORE-AND-FORWARD-MAIL

service on the host where the recipient receives mail. STORE-

AND-FORWARD-MAIL handles the mail delivery.

Get Inbox Many Zmail commands use the network. When you use the Get

Inbox command, Zmail requests FILE service from your mail

host. Your inbox is copied from your mail host to a Zmail buf-

fer.

Hardcopy File This command requests HARDCOPY service from a print serv-

er. Your host sends the contents of the file to the print server,

which in turn sends it to the printer. �

Activities That Use the Network

The following activities use the network for you:

SELECT C The Converse facility requests SEND service on one or more

hosts on the network, to send your conversational message to

its recipients.

SELECT T The Terminal facility requests LOGIN service from the given

host, enabling you to log in to that host over the network. See

the section "Using the Terminal Program".

SELECT D Document Examiner frequently requests FILE service from the

host that stores the online documentation files. Commands like

Show Candidates, Show Documentation, and Show Table of

Contents make use of the network. �

Using the Terminal Program

Connecting to a Remote Host over the Network

If your Symbolics computer is on a network and configured properly, you can ac-

cess other hosts on the network with the Terminal program.

To use the Terminal program, press SELECT T. The prompt is:

Connect to host:�

Type the name of the host to which you want to connect. The network system

makes a connection, and you will see the prompt of the remote host displayed on

the screen. You are now communicating directly with the remote machine.

When you are connected to a remote host, the NETWORK key provides several useful

commands. For example:

NETWORK HELP Displays the list of options for the NETWORK key.

Page 13

NETWORK L Logs out of the remote host, and breaks the connection.

NETWORK D Disconnects without logging out first.�

See the section "NETWORK Key".

If you want to use the Terminal program to log in to a remote Symbolics computer

when someone is logged in to that machine, you must first enable remote login by

evaluating the form (net:remote-login-on) on that machine. See the function

net:remote-login-on.

See the section "Connection Keywords in the Terminal Program". See the section

"Dynamic Window Features of The Terminal Program".

Remote Terminal Commands

Set Remote Terminal Options

Enables you to toggle MORE processing on and off. Additionally,

you can specify whether a status line appears at the bottom of

your screen, and also how often the status line updates.

Show Remote Terminal Options

Enables you to view the current settings of your remote termi-

nal options. This command also displays the height and width

of your screen.

Halt Remote Terminal

Enables you to halt your remote terminal.

Connection Keywords in the Terminal Program

In most cases you need only enter the name of the host to the "Connect to host"

prompt in the Terminal program. However, there are optional keywords that let

you further specify some aspect of the connection. These keywords include:

:Login protocol The name of the protocol to use to interpret output from the

remote host. If this keyword is not supplied, a protocol is cho-

sen automatically by the Generic Network System. You can en-

ter any protocol for LOGIN service defined on your host. Some

examples are: TELNET, SUPDUP, 3600-LOGIN, CTERM. The

HELP key lists the LOGIN protocols defined on your host.

:Connection Protocol

The name of the protocol to use to establish the connection. If

this keyword is not supplied, a protocol is chosen automatically

by the Generic Network System, and it will be a protocol for

LOGIN service. The HELP key lists the connection protocols de-

fined on your host. You can specify a protocol for a service oth-

er than LOGIN if you want to debug that server.

:Echo If yes, echo all characters locally. If no, let the remote host

echo the characters. The default is no.

Page 14

:Overstrike If yes, when the host outputs a backspace and you type anoth-

er character in its place, the second character overstrikes the

first. This behavior is similar to that of a printing terminal. If

no, the backspace erases characters instead of overstriking

them.

:Terminal Simulator

Specifies the name of a terminal you wish to emulate. The

choices are: VT100, Ambassador, IMLAC, and Glass TTY.

:Wallpaper File The pathname of a file to which output should be sent. This is

sometimes called a journal file. By default there is no wallpa-

per file.

Dynamic Window Features of The Terminal Program

The Terminal program offers some Dynamic Window features. First, the window is

scrollable, so you can scroll forward and backward over the history of input and

output that has appeared on the screen. Second, you can mark a region of the

screen and do something to it, such as: enter the marked region as input, save it

on the kill ring, or hardcopy it.

The Terminal program does not use presentation types, nor does it support fea-

tures of Dynamic Windows that use the SUPER or META keys. For example, m-W,

m-V, and m-SCROLL do not work in the Terminal program.

Marking and Using Regions:

The marking features are available with the CONTROL key pressed down. If you

press CONTROL, the mouse documentation line shows which commands are available.

Typically you first mark a region of the screen and then do something with that

region. To mark a region, position the cursor at the beginning of the region of in-

terest. Press c-Left and move the cursor to the end of the region of interest. The

marked region is underlined. Press c-Right for the Marking and Yanking Menu,

which lists the things you can do with the region.

Entering a Region as Input:

You can position the cursor over a single word (not separated by spaces) and press

c-Middle to enter that word as input. If you want to enter a longer command that

is separated by spaces and lines, mark the region, click c-Right for the menu, and

choose [Yank Marked Text].

Using the scroll bar:

The scroll bar on the left side of the screen allows you to scroll backward and for-

ward. Any cursor motion or graphics display occurs relative to the current view-

port.

When you are using the TELNET or CTERM protocol, all input and output history

is saved, and you can access it by scrolling. Most terminal connections to UNIX

hosts use TELNET, and connections to VAX/VMS hosts use CTERM.

Page 15

Note that when you are using the 3600-LOGIN or SUPDUP protocol, or emulating

a VT100 terminal, only one screenful of input and output is saved, so you cannot

scroll backward or forward. Most terminal connections between two Symbolics com-

puters use 3600-LOGIN.

Using Peek to Get Information on Networks

The Peek facility displays and updates status information on various aspects of the

network. The best way to find out what information Peek offers is to experiment

with it. Press SELECT P.

Peek has four network-related options: [Networks], [File System], [Servers], and

[Hostat]. [Networks] and [File System] are the most interesting. Click on one of

those headings at the top of the screen. When you move the mouse over the differ-

ent parts of the display, the mouse documentation line offers options that are ap-

propriate to that mouse-sensitive area of the screen.

For more information: See the section "Using Peek".

Recovering From a Network Problem

In general, the symptom of a network problem is the inability of your Symbolics

computer to communicate with other hosts on the network. This section describes

how to recognize some common network problems, some possible causes of them,

and suggestions for solving the problem.

In brief, the first step is to isolate the problem. A network problem could be a

problem in the software or hardware of your local machine, the software or hard-

ware of the remote machine, the information stored in the namespace database, or

the hardware of the network itself. The Reset Network command is useful for re-

setting the network software in your machine, but it cannot solve any problems in

the remote host, the network itself, or the hardware.

Once you have located the problem, you can take steps to solve it. If the problem

is the remote host, the namespace, or the network itself, you should probably con-

sult with your Site Administrator for help.

Symptoms of Network Problems

• File transfer is stuck or slow.

When a file is being transferred, the pathname is displayed in the bottom right

corner of the screen, along with the number of bytes and the percentage of the

file that has been copied. If the percent and byte-count figures do not change,

the file transfer seems to be stuck.

The local program might be running slowly. If the status line is in Run state, at

least you know that the program is running. Another possible cause of a stuck

or slowed-down file transfer is that the server on the remote host is responding

slowly. It is also possible that the network is highly congested. In any of these

cases, little can be done other than just waiting.

Page 16

If the file transfer remains stuck for a long time (several minutes), sometimes

the connection is broken and you are offered some choices in a debugging menu.

You can choose to restart or abort the file transfer.

A hardware problem could also halt a file transfer. See below.

• Broken Terminal connection.

When you are using the Terminal program and are connected to a remote host,

the connection can be broken. An error message is displayed, and the prompt

"Connect to host:" is redisplayed. This can happen if the remote host goes down

unexpectedly or for scheduled maintenance, or if someone resets its network in-

terface. Similarly, if you give the Reset Network command, this would break all

your network connections. Once the connection is broken, the only thing you can

do is try to open another connection by answering the Terminal prompt with the

name of the desired host. If you cannot log in to that host, you should check

with the Site Administrator for that host to see if there is a problem with that

host.

A hardware problem could also break a Terminal connection. See below.

• No network operations work successfully.

Occasionally, you will notice several problems with network-related tasks. For

example, a file transfer gets stuck, the Terminal program stops responding, and

you cannot queue a file to a printer. To test the network software on your host,

give some simple commands, such as Show Users and Show Hosts for several

hosts. If you do not get the expected response, it is possible that the network

software is somehow compromised. You can give the Reset Network command.

This resets much of the networking software, breaks any outstanding network

connections, and restarts the network again. Once you have done this, try the

Show Users command again.

It is also possible that the network itself is causing the problems. Check with

other users at the site to see if they are also having trouble with network oper-

ations. If so, the problem probably lies in the network itself.

If other users are not having problems, but your host still cannot communicate

over the network, it is probably a hardware problem specific to your host. One

common cause of this is the transceiver cable somehow falling out of the back

of the Symbolics computer. If this has happened, plug it in again. If the network

does not immediately work, use the Reset Network command.

• Error message: Host does not have services enabled.

Sometimes the remote host is up and running, but does not have its network

services enabled. This is often true when a host is just coming up and is not yet

fully initialized. It is also possible that a user of that host has decided to disable

Page 17

services. You can either wait and try again later, or call the host’s Site Admin-

istrator to see why services are not enabled.

This symptom does not indicate a hardware problem.

• Error message: Host does not support this service.

This error message indicates that the target host does not support the network

service you requested. Sometimes the network system offers to try another pro-

tocol for the same service; you can try that. In a heterogeneous networking en-

vironment, there are some services that you cannot obtain from some hosts.

It is also possible that the host does have the capability of performing that ser-

vice, but the information in its host object in the namespace is incorrect. You

can ask the person who is responsible for maintaining the namespace database if

that is the case.

This symptom does not indicate a hardware problem. �

Hardware Problems

A hardware problem usually halts all network operations. There are two categories

of problems: a problem that is isolated to your machine, and a problem that affects

all users of the network.

If only your machine is affected, the first thing to check is that the transceiver is

properly connected to the back of your machine. If it has been dislodged, plug it in

again. If it is properly connected and the network still does not work, the

transceiver hardware might be the problem.

If the whole site is affected, the cause of the problem could be one of these:

• Ethernet cable is not terminated at both ends.

• Ethernet cable is broken in the middle.

• Ethernet cable is shorted.

• A network host is jamming the cable by transmitting continuously. �

Remote Login

The Remote Login Capability for ASCII Terminals

The remote login facilities allow up to four ASCII terminals to be connected di-

rectly via a Symbolics computer’s serial ports. See the section "The Serial I/O Fa-

cility".

Page 18

Also, any number of terminals can be connected via the network. If a modem is

connected to the machine, it is also possible to dial up the machine from an ASCII

terminal or from another Symbolics computer. Video operations are supported only

on ASCII terminals that support ANSI X3.64 display codes (Ann Arbor Ambas-

sador, Digital Equipment VT100, and so forth).

Network servers are available for the remote login protocols 3600-LOGIN, TEL-

NET, and SUPDUP. 3600-LOGIN is used only in communication between two Sym-

bolics computers. TELNET and SUPDUP are standard protocols used on the In-

ternet.

The following programs can be run from terminals connected via a network, a se-

rial port, or a modem:

• Lisp Listener (not a Dynamic Window)

• Input editor

• Debugger (not the Display Debugger)

• Command Processor�

Zmacs, Zmail, and other programs that use the window system or the mouse can-

not be used.

The remote login facility is useful for applications such as the following:

• Examining the status of a physically distant machine, such as a file server.

• Monitoring the status of a long computation from home.

• Simple data-entry or query-and-answer applications.�

Note that the remote login feature cannot support several programmers on the

same machine, because program-development tools, such as Zmacs, cannot be used

remotely.

For further information:

See the section "Using the Remote Login Facilities for ASCII Terminals".

See the section "Functions Used in Remote Login for ASCII Terminals".

�

Using the Remote Login Facilities for ASCII Terminals

This section discusses how to prepare to use the remote login facilities for ASCII

terminals. The server host is the Symbolics computer to which you want to con-

nect remotely.

Page 19

Preparing the Server Host for Remote Login

If the server host has no user logged in, there are no restrictions on logging into

it from a remote terminal. However, if a user is logged in, remote login connec-

tions are rejected by default. To change this, use the function net:remote-login-on

on the server host. You cannot do this step remotely; you must evaluate that form

on the server host itself.

Editing the Namespace

If you are not connecting via the serial line, you need to decide which generic net-

work service, medium, and protocol you want to use. Edit the host object of the

server host to add the appropriate service attribute.

To connect to a Symbolics computer from another Symbolics computer, the service

attribute is one of these:

Service: LOGIN CHAOS 3600-LOGIN

Service: LOGIN TCP 3600-LOGIN �

To connect to a Symbolics computer from a terminal attached to a host that is on

the same network as the Symbolics computer, or from a terminal attached to a ter-

minal concentrator that is on the network, you need to know which protocol the

host or terminal concentrator uses. These are the possibilities:

Service: LOGIN CHAOS SUPDUP

Service: LOGIN CHAOS TELNET

Service: LOGIN TCP TELNET

Service: LOGIN TCP SUPDUP�

Preparing to Connect via a Serial Line

To use a terminal connected via a serial line, use the function neti:enable-serial-

terminal on the server host. There is no need to edit the namespace database

when connecting directly to a serial line.

Describing the Characteristics of the Terminal

This step is required when you use the TELNET protocol or the serial line. You

need to use either the function neti:ask-terminal-parameters or the function

neti:set-terminal-parameters on the server host to describe the terminal. (If the

terminal automatically echoes a newline when a character is printed in the right-

most column, then decrement the width by one.)

When the SUPDUP or 3600-LOGIN protocol is used, terminal information is com-

municated automatically.

Page 20

Additional Notes

• The SUPDUP server works only if the terminal supports character insertion and

deletion.

• Only one interactive process is allowed per remote terminal.

• If you are logging in from an ASCII keyboard, an escape prefix exists to allow

you to refer to Symbolics special function keys that do not exist on an ASCII

keyboard. The special keys are typed as single characters following the escape,

which is ascii code 31. Different keyboards have different schemes for typing

ascii code 31. c-_ is a common one. Others include c-←, c-?, and c->. The sin-

gle characters to send the special function keys are:

H HELP
E END
A ABORT
S SUSPEND
R RESUME
C COMPLETE
I CLEARINPUT)
X ESCAPE
L LINE
P PAGE
F REFRESH
B BACKSPACE
N NETWORK
1 SQUARE
2 CIRCLE
3 TRIANGLE�

• If you are logging in from one Symbolics computer to another, the keyboard op-

eration is identical except that when you use these keys, they are not transmit-

ted through to the server:

NETWORK

LOCAL

FUNCTION

SELECT�

Set Remote Terminal Options Command

Set Remote Terminal Options�

Prompts for the options to set up a remote terminal. On a serial terminal, keyword

arguments to neti:enable-serial-terminal are used to determine reasonable de-

faults.

Set Remote Terminal Options is only available from a remote terminal.

Functions Used in Remote Login for ASCII Terminals

Page 21

net:remote-login-on &optional (mode t) Function

Controls the acceptance or rejection of remote login requests to a Symbolics com-

puter that has a user logged in at the main console. The mode argument specifies

the treatment of remote login requests, as follows:

t or unspecified Allows remote login connections even when the main console is

in use.

nil Rejects remote login requests.

:notify Allows remote login requests but send the main-console user a

notification.�

neti:ask-terminal-parameters Function

Asks you for information about the ASCII terminal currently associated with

terminal-io. You are asked whether the terminal supports ANSI x3.64 escape se-

quences, whether it has a META key, and for its height and width in characters.

Your answers are used to set or change the terminal’s parameters. If you supply

nil for height and width, the current settings do not change.

neti:set-terminal-parameters x3.64 meta-key? width height Function

Sets the parameters of the terminal associated with *terminal-io*. The argument

x3.64 specifies whether the terminal supports escape sequences meeting this ANSI

standard; META-key? says whether the terminal has a Meta key; width and height

are the terminal’s width and height in characters, respectively. If you supply nil

for height and width, the current settings do not change.

neti:enable-serial-terminal &rest options &key (:top-level ’si:lisp-top-level1) (:her-

ald t) :x3.64 (:width 79) (:height 1073741824) (:unit 1) :share-kill-history :status-

line-p (:status-line-update-frequency 300) &allow-other-keys Function

Allows an ASCII terminal to communicate with a Symbolics computer process

through one of the machine’s serial ports (specified by the unit argument). unit

can be 1, 2, or 3 to indicate one of the bulkhead ports (these are DTEs); or 0 to

indicate the serial I/O port located at the back of the console (a DCE). For more

information on the serial I/O ports: See the section "The Serial I/O Facility".

The argument :x3.64 specifies whether the terminal supports escape sequences

meeting this ANSI standard. :width and :height are the terminal’s width and

height in characters, respectively. If you supply nil for height and width, the cur-

rent settings do not change. top-level specifies the process. :herald specifies

whether the herald is displayed on the terminal. :status-line-p specifies whether or

not to display the status line and :status-line-update-frequency controls the fre-

quency of updates on the status line in sixtieths of a second.

Sample use:

Page 22

(neti:enable-serial-terminal :X3.64 T :HEIGHT 48.

 :WIDTH 80. :UNIT 3 :BAUD 9600.)�

This creates a Lisp Listener process to communicate with the terminal. If you

wish to have some other program communicating with the terminal, either invoke

the program from the Lisp Listener, or use the :top-level keyword argument. The

value of this keyword should be a function of one argument, which is the stream

going to the terminal.

neti:disable-serial-terminal unit Function

Kills the Genera process associated with a terminal connected to a serial port,

closes the stream, and clears the serial port so it can be used again. unit specifies

the serial port to which the terminal is connected. unit can be 0, 1, 2 or 3.

Communication between the terminal and the Symbolics computer is begun with

the neti:enable-serial-terminal function.

Sample use:

(neti:disable-serial-terminal 2)�

Network Addressing

This section describes the format of Chaosnet addresses, DNA addresses, and In-

ternet addresses.

We propose that all sites choose network addresses for their hosts with the per-

spective that they might eventually support another type of network, or connect to

another existing network. Thus we recommend coordination among sites that

might later be connected via a gateway. We also propose a scheme for choosing

DNA and Chaosnet addresses based on a valid Internet address.

The recommendations are described at the end of this section: See the section

"Choosing a Network Addressing Scheme".

Format of Chaosnet Addresses

A Chaos address is a 16-bit quantity, in which the high-order 8 bits represent the

subnet number, and the low-order 8 bits represent the host number on that sub-

net. Neither the subnet number nor the host number can be zero. Chaos addresses

are expressed in octal.

For technical details on how the Chaosnet address is used: See the section "Chaos-

net Addresses and Indices".

Format of Internet Addresses

Internet addresses are expressed in decimal, in four octets separated by periods.

Each octet is 8 bits long. There are three kinds of Internet addresses: Class A,

Class B, and Class C.

Page 23

 Example: Chaos Address 401

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 |<-------Subnet number--------->|<---------Host number--------->|

 The subnet number is 1.

 The host number is 1.

 The Chaos address is 401 octal.�

Examples of Internet addresses:

• 10.2.0.7 is host 2.0.7 on Class A network 10.

• 139.41.0.3 is host 0.3 on Class B network 139.41.

• 192.10.0.200 is host 200 on Class C network 192.10.0.�

Note that the host number cannot be zero or 255, because those are considered

broadcast addresses.

Interpreting Internet Addresses

Internet addresses consist of network and host fields. The network field identifies

the network, and the host field identifies the host on that network. This size of

the Internet address depends on the address and the configuration of the network.

You can use a subnet field for networks containing subnets. Using a subnet field

divides the address into three fields. A subnet mask determines the bits used for

selecting a subnet. Note that the rules for determining a subnet field vary for

each network.

Note: You cannot fill a field (network, subnet, or host field) with all zeros or ones

for representing a network, subnet, or host.

Class A Addresses

A Class A Internet address is a 32-bit number, in which the high-order octet (8-

bits) represents the network number and the following three octets represent the

host number. The first octet is less than 128.

 Example of Class A Internet Address: 10.2.0.7

 +--------+--------+--------+--------+

 |00001010|00000010|00000000|00000111|

 +--------+--------+--------+--------+

Page 24

 |<-net-->|<--------host------------>|

�

Class B Addresses

A Class B Internet address is a 32-bit number, in which the two high-order octets

represent the network number and the following two octets represent the host

number. The first octet of a Class B network is greater than or equal to 128 and

less than 192.

 Example of Class B Internet Address: 139.41.0.3

 +--------+--------+--------+--------+

 |10001011|00101001|00000000|00000011|

 +--------+--------+--------+--------+

 |<---network----->|<-----host------>|

 �

Class C Addresses

A Class C Internet address is a 32-bit number, in which the three high-order

octets represent the network number and the low-order octet represents the host

number. The first octet of a Class C network is greater than or equal to 192, and

less than 224.

 Example of Class C Internet Address: 192.10.0.200

 +--------+--------+--------+--------+

 |11000000|00001010|00000000|11001000|

 +--------+--------+--------+--------+

 |<-------network---------->|<-host->|

�

Internet Subnet Number�

The Internet subnet number is the Internet address resulting from replacing the

host field of an Internet address with zeros. You can determine the Internet sub-

net number of a network by determining the class of a host address and replacing

the host portion of the address with zeros. For example, the class B address

128.81.38.232 corresponds to the Internet Subnet number 128.81.0.0.

Subnet Masks

A subnet mask determines the field of the Internet address specifying the subnet

on the network. A subnet mask is a 32-bit quantity containing one in every bit cor-

responding to the official Internet subnet number. Additionally, the subnet mask

contains a zero in every bit selecting a host on a subnet. For example, A class B

Page 25

network (128.81.0.0) is broken into many subnets, using the third octet of the ad-

dress for selecting a subnet. The Class B default mask is 255.255.0.0; since the

third octet determines a subnet, you have to fill it with ones. The resulting subnet

mask is 255.255.255.0.

Format of DNA Addresses

DNA addresses have two components: an area and a node number in that area.

For example, a DNA address of 3.7 indicates the host is node 7 in area 3. Hosts

with different area numbers cannot communicate with each other.

DNA addresses are 16 bit quantities, where the high-order 6 bits constitute the

area, and the low-order 10 bits constitute the node number. DNA addresses are ex-

pressed in decimal notation.

 Example: DNA Address 3.7

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 |<---------Area-------->|<------------Node number-------------->|

 Bits 0-9 represent the node number, in this example 7.

 Bits 10-15 represent the area number, in this example 3.

�

You can choose DNA addresses for your hosts in any way you like, as long as:

• Each host that will use DNA protocols, whether the machine is a VAX or a

Symbolics computer, has a valid and unique DNA address.

• Any two hosts that want to communicate with each other are in the same area.

For example, the Symbolics computer area numbers must be the same as the

area number for any VAX that is a server machine.

• The area number is in the range of 1 to 63 inclusive.

• The node number is in the range of 1 to 1023 inclusive. �

Some sites choose to assign DNA addresses sequentially, from 1.1, 1.2, 1.3 and so

on.

The Dialnet Subnets File

Page 26

Addresses for the dial network are complete telephone numbers, including country

and area codes. For North American customers, the country code is 1, so a fully

specified number looks like a common long distance sequence. Trunk 7348 in the

577 exchange of the 617 area code would be fully specified as 16175777348.

The mailer always identifies Dialnet hosts by their fully-specified addresses, mean-

ing that the address is represented by its country code, area code, exchange, and

so forth. Any given Dialnet address has only one fully-specified form, unique world-

wide, regardless of the local conventions for how one dials the phone to connect to

that address.

It is not generally appropriate to dial a fully specified address; numbers within the

same area code do not require the area code, and often require a 1 prefix if it is a

toll call. The Subnets file is used to tell the mailer, for a given telephone number,

what actual number to dial in order to connect to that number.

There can only be one Dialnet subnets file at any given site, called SYS: SITE;

SUBNETS.LISP. This file consists of some number of Lisp forms. Each form is always

a list of alternating keywords and values like this:

(:subnet "1xxxyyyyyyy>1800zzzzzzz" :dial "1800zzzzzzz" :cost "1")�

All three keywords must appear, and they must appear in this order. No other key-

words are accepted.

The attribute after the :subnet keyword specifies a pattern that must match in or-

der to consider the rest of the particular form. If the match succeeds, the actual

telephone number that the modem should dial is described by the attribute after

the :dial keyword, which may contain modem control characters as well as pattern-

matching characters and literal digits. Finally, the attribute after the :cost key-

word specifies how expensive this call is, and is used to select the cheapest way to

route the call if more than one of the :subnet patterns matches.

:Subnet Keyword in the Dialnet Subnets File

The Mailer may know the Dialnet addresses for a large number of hosts. It is not

necessary to specify every possible binary combination of world-wide phone ex-

changes and their associated prefixes in order for the mailer to know how to dial

the phone. Instead, the attribute following the :subnet keyword in the subnets file

provides a simple pattern matcher that can be used to express both specific and

general dialing rules. The name of each subnet on the dial network gives the input

pattern to the pattern-matching system; these patterns are matched against the

combined source and destination addresses for the connection, that is, against the

local and foreign telephone numbers.

The pattern consists of two sequences of digits and letters. The digits represent

the fixed parts of the pattern and the letters represent the variable parts. The two

sequences are separated by a > character, indicating that the left-hand part of the

pattern is the calling party and the right-hand part of the pattern is the called

party. Contiguous occurrences of the same letter represent the same variable. Vari-

able assignment takes place from left to right. If a letter is seen that has no as-

Page 27

signment, the variable sub-sequence is tentatively assigned a value of the corre-

sponding sub-sequence of the pattern to be matched. If the variable has an assign-

ment (binding), or if there is a constant digit, it must match the corresponding

part of the pattern to be matched.

A specific example clarifies this. Suppose we are calling from 16175777348 to

14155200142. Given the subnet pattern 1xxxyyyyyyy>1zzzwwwwwww, we want to match

it against 16175771212>14155200142. 1 is a fixed constant and matches. x has no

binding so it is tentatively assigned 617. Likewise y is assigned 5777348, z 415, and

w 5200142. The match is successful and the result is these four bindings.

Now suppose instead the subnet pattern was 1xxxyyyyyyy>1xxxzzzzzzz. The x as-

signment is the same, 617, as is the y assignment. On the second occurrence of x,

however, it already has a binding, so this must be matched against the input. 617

does not match 415, so the whole subnet match fails.

The subnet that best represents a particular phone call is the one with the most

minimal variable bindings. So, if we were making the call 16175777348>16175777344,

the pattern 1xxxyyyyyyy>1xxxzzzzzzz would have only three bindings, and so would

be better than 1xxxyyyyyyy>1zzzwwwwwww, which has four.

:Dial Keyword in the Dialnet Subnets File

The attribute following the :dial keyword in a subnets file is used if the pattern

match in a :subnet attribute succeeds. This :dial attribute is a sequence of digits,

letters, and punctuation. Digits in this attribute are simply dialed literally. Non-

digits are more complicated, and may either stand for digits in the number to be

dialed, or for modem control characters.

For example, suppose we are calling from 16175777348 to 14155200142. Given the

subnet pattern 1xxxyyyyyyy>1zzzwwwwwww, we would get the successful matches:

xxx 617

yyyyyyy 5777348

zzz 415

wwwwwww 5200142

The :dial attribute corresponding to this pattern match might be 91zzzwwwwwww.�

The non-digits in this attribute will be filled in from the values obtained from the

pattern-match of the :subnet attribute, meaning that we will actually dial

914155200142. We would do something like this if the modem went through a PBX

that required dialing 9 to get to an ordinary outside telephone line.

Some telephone systems, such as PBX’s, may require you to dial a number to get

to an outside line, wait for a second dial tone, and then continue dialing. Many

modems support this sort of dialing by allowing you to embed punctuation charac-

ters in the string of numbers to dial which cause the modem to take some special

action.

To allow you to specify this, if you specify characters in the :dial attribute that

are not matched by the right side of the :subnet attribute, those characters will

Page 28

be sent literally to the modem, rather than eliciting an error message. (Before

Genera 8.0, unmatched characters in the right side would cause an error message.)

For example,

(:subnet "1xxxyyyyyyy>1xxxzzzzzzz" :dial "T9,WPzzzzzzz" :cost "0")�

might tell a Hayes modem that, in order to dial an outside number from a PBX

that is in the same area code as the number to be dialed, it must DTMF-dial a 9,

wait for a second dial tone, then pulse-dial the rest of the number.

Note that because unmatched non-digits in the :dial attribute will be sent directly

to the modem instead of causing an error, typographical errors in this attribute

are difficult to catch.

:Cost Keyword in the Dialnet Subnets File

The attribute following the :cost keyword should be a small integer which some-

how reflects the cost of the call in some convenient metric. Typically this is relat-

ed to how expensive it is to make the call. If more than one pattern matches a

particular address, Dialnet uses the match with the lowest cost. This typically

comes into play when an 800 number matches some address that is also matched

by a "normal" long-distance line. If there is only one way to reach the given num-

ber (only one pattern matched), the cost is ignored.

Here is an example of a typical subnets file:

;;; -*- Mode: Lisp -*-

�

(:subnet "1xxxyyyyyyy>1xxxzzzzzzz" :dial "zzzzzzz" :cost "0")

(:subnet "1xxxyyyyyyy>1zzzwwwwwww" :dial "1zzzwwwwwww" :cost "5")

(:subnet "1212xxxxxxx>1yyyzzzzzzz" :dial "yyyzzzzzzz" :cost "5")

(:subnet "1617864xxxx>1617774yyyy" :dial "1774yyyy" :cost "3")

(:subnet "1xxxyyyyyyy>1800zzzzzzz" :dial "1800zzzzzzz" :cost "1")�

These mean, respectively:

1. When dialing a call within the same area code, just dial the number.

2. When dialing a number outside the local area code, dial a 1, then the area

code and number.

3. When dialing from the 212 area code, you do not have to use a 1 prefix for

long-distance calls.

4. Within the 617 area code (Massachusetts), you need to dial a 1 to get from

Cambridge (864) to East Boston (774).

5. The cost of a wide-area telephone service (WATS) call is less than a normal

long distance call. Note that the cost of WATS is still declared higher than a

local call; this is to avoid making a WATS call when a local call would do,

leaving the WATS trunks available for those who need them.

Page 29

6. Note that a typical subnets file that may already be suitable for your tele-

phone system is included in SYS: DIALNET; PROTOTYPE-SUBNETS.LISP. (This is not

distributed as SYS: SITE; SUBNETS.LISP, which is where the data must eventually

be stored, because it may not be correct for your site and the consequences of

misdialing can be expensive.)

The map between abstract subnet patterns and actual dialing sequences is main-

tained by the subnet attributes of the namespace object representing the interna-

tional dial network. (This network is named dial|dial.) Each subnet pattern has

associated pairs of indicators and values that encode the actual dialing sequence

and the relative expense of the phone call.

Choosing a Network Addressing Scheme

This section proposes a scheme for convenient handling of network addresses in a

multi-networking environment, and recommends coordination among sites that

might in the future be connected via gateways. It is not necessary or required that

you follow the suggestions in this section.

The primary intent of this section is to advise site administrators to consider the

possibility that the site might want to connect to an existing network, or support

another type of network sometime in the future. Many sites already support more

than one type of network. Some sites support Chaosnet and Internet networks; oth-

er sites support Chaosnet and DNA networks.

A standalone site can set up the network addressing in such a way that the transi-

tion to a larger networking environment will go smoothly in the future. For exam-

ple, consider the requirement that each network host (for Chaosnet, DNA, or Inter-

net types of networks) must have a unique address. If your site intends to connect

to another existing network, it is to your advantage to coordinate with the site ad-

ministrator of that network to ensure that no two hosts on either network have

the same address. This type of coordination would obviate the need for changing

the network addresses of hosts when the two networks become connected.

We also recommend choosing network addresses by a scheme of mapping one type

of address into another, such that if you know the Internet address of a host, you

can derive its Chaosnet address and vice versa. We propose a similar mapping be-

tween Chaosnet and DNA addresses. When a site uses such a scheme, the site ad-

ministrator has one method for assigning network addresses for hosts. This should

reduce the complexity of assigning two or three types of addresses to each host.

As a general note, all sites might consider requesting a valid Internet address. If

you set up your site based on a valid Internet address, it is unlikely that your ad-

dresses will collide with the addresses of other sites. You can receive a valid Inter-

net address without being connected to the Internet. If your site ever does connect

to the Internet in the future, the transition will go smoothly if your site is already

using valid Internet addresses.

Once you have an Internet address, you can use the mapping schemes to derive a

Chaos address and a DNA address based on the Internet address.

Page 30

How to Obtain an Internet Address

If your site does not already have an Internet network number, you can request

one by contacting:

Joyce Reynolds

USC - Information Sciences Institute

4676 Admiralty Way

Marina del Rey, California 90292

(213) 822-1511

ARPANET: jkreynolds@usc-isi.arpa�

The Internet address you receive is the network part of the address. You assign

the host number part of the address yourself. Each host on the local network must

have a unique host number.

Mapping an Internet Address into a Chaos Address

Once you have an Internet address for a host, you can map that address into a

Chaos address. You can then assign sequential Chaos addresses for all Chaos hosts

on the network. If you are on the Internet, you can use each host’s Internet ad-

dress to derive a Chaos address.

The mapping process is best explained by example. The following two examples

show the mapping of a Class B and Class C Internet address into a Chaosnet ad-

dress:

Class C Internet address: 192.10.41.48 decimal.

Step 1: Get the Chaos subnet number and host number.

 192.10.41.48 is the Internet address.

 192 is unused in the mapping.

 10 is unused in the mapping.

 41 is the Chaos subnet number.

 48 is the Chaos host number.

Step 2: Convert the decimal subnet and host numbers to octal.

 The subnet number (41 decimal is 51 octal.)

 The host number (48 decimal is 60 octal.)

Step 3: Insert subnet and host numbers into two eight-bit bytes.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Page 31

 |<-------Subnet number--------->|<---------Host number--------->|

Step 4: Express the quantity in octal notation; this is the Chaos

 address.

 0 010 100 100 110 000 (binary representation)

 2 4 4 6 0 (octal representation)

 The resulting Chaos address is 24460 octal.

�

Class B Internet address: 139.41.9.3 decimal.

 The subnet number is 9 decimal.

 The host number is 3 decimal.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 |<-------Subnet number--------->|<---------Host number--------->|

 The resulting Chaos address is 4403 octal.

�

Mapping a Chaos Address into a DNA Address

We recommend that you choose DNA addresses for the hosts at your site based on

the Chaos addresses. Each Symbolics computer already has a unique Chaos ad-

dress. By choosing a DNA address derived from the Chaos address, you can always

determine a DNA address from the Chaos address (thus assuring that the DNA ad-

dress is unique), and you can derive the Chaos address from the DNA address.

It is not necessary or required that you derive DNA addresses based on the Chaos

addresses. This is just a suggestion.

Some sites cannot use this mapping scheme. If your site has several VAX/VMS

hosts that are already using DNA protocols, they already have DNA addresses as-

signed to them. In that case, you must be sure to assign DNA addresses to the

Symbolics computers that have the same DNA area number as the VAX/VMS hosts

on the network. These addresses must be unique within the DNA database.

If you use this mapping scheme, keep in mind that the node numbers of each host

must be below the VAX’s limit, which is the MAX ADDRESS parameter of the

NCP. The NCP does not accept network communication from hosts with node num-

bers higher than MAX ADDRESS. By default, MAX ADDRESS is 32. It is an easy

matter to set the MAX ADDRESS higher.

Page 32

Start by figuring out the Chaos address of the first host to have DNA installed on

it. You can do this by entering the namespace database (choose it from the System

menu): use [View], then use [Host], then enter the name of the host. Each Symbol-

ics computer host object should contain a Chaos address (expressed in octal nota-

tion) that resembles:

Address: Pair: CHAOS 401 �

To map a Chaos address into a DNA address, first determine the Chaos host num-

ber and subnet number from the address. The Chaos host number is the DNA

node number. The Chaos subnet number is the DNA area number.

 Chaos Address 401

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 |<----Chaos Subnet Number------>|<-----Chaos Host Number------->|

 The Chaos subnet number is 1.

 The Chaos host number is 1.

 The Chaos address is 401 octal.

�

In this example, the Chaos subnet number is 1, so the DNA area number is 1. The

Chaos host number is 1, so the DNA node number is 1. The Chaos address 401

maps into a DNA address of 1.1.

Note that this mapping of Chaos subnet number to DNA area number works only

if the Chaos subnet number uses six or less of the available eight bits, that is, if

the Chaos subnet number is 128 or less. Any Chaos address that is 37777 or less

can be fully mapped into a DNA address. Chaos addresses greater than 37777 can

be partially mapped into DNA addresses, by mapping only the Chaos host number

into the DNA node number.

Symbolics Generic Network System

This section provides information useful to anyone who is maintaining the name-

space database and wants to understand more about how it fits into the network-

ing system. In brief, this section describes some of what goes on automatically

when a network service is requested by one host and performed by another host.

The generic network system is the conceptual framework of Symbolics’ implementa-

tion of network communications. This section describes some key aspects of net-

work communication, including: the roles of the two computers, the service entries

stored in the namespace database, network addresses, and the process of finding a

path to a desired service on a remote host.

Page 33

This section describes mediums and defines the terms generic and specific medium.

This section also lists the mediums and protocols supported by Symbolics comput-

ers.

Network Users and Servers

When a network service is performed, the work is done in a dialogue between two

hosts. A protocol is a specification of the dialogue that occurs over the network.

The host that requests the service is called the user host, and the host that per-

forms the service is the server host.

Each network protocol has two implementations, a user side and a server side. The

user side is a program that runs on the user host; the server side is a program

that runs on the server host. A service is obtained by a user side using a protocol

to communicate via a network medium with a server side.

In many cases, a host provides both a user side and a server side for the same

protocol. Sometimes the Symbolics computer supports a protocol with a user side

but no server side. This means that the Symbolics computer can use the service if

another host provides it. The :tcp-gateway protocol is one example of this.

In other cases, the Symbolics computer supports a protocol with a server side but

no user side. If another host supports a user protocol, that host can take advan-

tage of the server on the Symbolics computer. Or, you could write such a user pro-

gram on another host.

Some services are provided locally. The medium of such a service is :local. These

services are performed without using the network when the user host is the same

as the server host.

Service Attributes in the Namespace Database

This section describes the role of the namespace database service attributes.

Purpose of Service Attributes

Typically, host objects contain one or more service attributes. The purpose of each

attribute is to inform all hosts on the network that this host can provide a given

service, and the details of how it can provide the service (the protocol and medi-

um).

When you request a generic network service, your machine is the user host. The

user host consults the namespace database and looks at the host object of the serv-

er host to determine if it provides the desired service. Therefore, every host at the

site that is expected to perform network services should have information on all

services it can provide entered in the service attributes of its host object.

Thus, a computer that acts as a file server must contain a :file service attribute

for each medium and protocol for which it provides :file service in its host object.

Similarly, a computer that acts as a namespace server must have service attributes

for the :namespace and :namespace-timestamp services in its host object.

Page 34

Three Parts of a Service Attribute

A service attribute has three parts: service, medium, and protocol. Each generic

network service is implemented by a protocol, communicating through a medium.

The service attribute of a host object resembles:

Service: a triple of service, medium, and protocol�

Although the names of services, mediums, and protocols are keywords, you should

not enter the colon when editing the namespace database.

service is the name of the generic network service. Some services are implemented

on more than one medium or protocol. For example, a host might contain the fol-

lowing service attributes:

Service: FILE TCP NFILE

Service: FILE CHAOS NFILE

Service: FILE CHAOS QFILE�

medium is a specific medium in the namespace database, even if the protocol is

defined to be built on a generic medium. For example, :file service is defined for

the generic :byte-stream-with-mark medium, using the :nfile protocol. :byte-

stream-with-mark is implemented over two specific mediums: :chaos and :tcp.

Therefore, the host object has two separate service attributes that contain the two

specific mediums for :file service and :nfile protocol. To match a generic medium

with the specific medium or mediums that implement it, see the section "Descrip-

tions of Defined Mediums".

Some generic network services are implemented on the :local medium. It is not

necessary to have a service attribute for any service implemented on :local. A host

that provides a :local service stores that information internally and does not con-

sult the namespace when such a service is requested and performed.

protocol is the name of the protocol that the server offers. In some cases, the

names of the service and the protocol are the same, as in this service attribute:

Service: SEND CHAOS SEND�

Symbolics computers are capable of providing many generic network services. The

services themselves are described elsewhere: see the section "Descriptions of De-

fined Generic Services".

Network Mediums

A medium is one of the layers of abstraction in the network paradigm. Each proto-

col is associated with a medium. The medium provides a way for the information

of the protocol to be communicated; it fills in some lower-level details of the com-

munication. For example, the medium knows how to open a connection to a remote

host. Because there are different ways to open connections to hosts, there are dif-

ferent mediums. Some examples of mediums are: :chaos, :tcp, and :dna.

Page 35

Generic and Specific Mediums

The network system has two types of mediums: generic mediums and specific medi-

ums.

 Examples of Examples of

Generic Mediums Specific Mediums

:byte-stream :chaos

:byte-stream-with-mark :chaos-simple

:datagram :tcp

:dna

:dial�

Generic mediums are useful because some protocols are written in such a way that

they require only a generic byte stream or generic datagram medium, and do not

care about the details of how those things are implemented. Generic mediums can

operate over many kinds of network. Each generic medium is implemented by one

or more specific mediums, because the generic medium does not understand the

lower-level details that are necessary to communicate over a particular kind of

network.

The specific mediums sometimes take advantage of the features peculiar to a spe-

cific network in order to provide higher performance or special services.

It is not possible to make a strictly dualistic distinction between generic and spe-

cific mediums, because one medium can be implemented by another, which is im-

plemented by a third, and so on. The structure is really a directed graph rather

than a pair of layers.

Here are the definitions of two generic mediums, :byte-stream and :datagram:

(define-medium :byte-stream ())

�

(define-medium :datagram ())�

When a specific medium is defined, it usually implements one more more generic

mediums. Thus the specific medium provides a specific implementation of the

generic medium. The second subform of the net:define-medium form contains the

generic mediums on which this medium is built. The following form defines the

:chaos medium, which is built on two generic mediums, :byte-stream and :byte-

stream-with-mark:

(define-medium :chaos (:byte-stream :byte-stream-with-mark)

 (((:network :chaos)) lambda-list

 body))�

Similarly, the definition of the :chaos-simple medium shows that it is built on the

:datagram generic medium:

Page 36

(define-medium :chaos-simple (:datagram)

 (((:network :chaos)) lambda-list

 body))�

Generic mediums never appear in the service attributes of host objects. If a host

claimed to provide some service over the :byte-stream medium, it would have to

support every kind of medium that is built on :byte-stream, which is unlikely.

Generic mediums often appear in server and protocol definitions. When a service is

requested, a specific medium is chosen based on what is found in the service at-

tribute of the host object of the server host.

Descriptions of Defined Mediums

It is customary that user and server sides of protocols are defined to use a generic

medium (in the net:define-server and net:define-protocol forms). Each generic

medium is supported by one or more of the specific mediums listed below.

Generic Mediums:

:byte-stream Delivers bytes reliably from one end of the connection to the

other. The bytes arrive intact and in the original order. This

medium is used for protocols that require a stream of data

bytes, such as the :nfile protocol.

:byte-stream-with-mark

Provides the same functionality as :byte-stream, with the addi-

tional feature that either side may safely interrupt the flow of

data. This medium has a mark that makes it possible to resyn-

chronize the connections between the two hosts, should it be

required. See the section "BYTE-STREAM-WITH-MARK Net-

work Medium".

:datagram A datagram is some small number of bytes of data. The data-

gram arrives at the destination intact, but might arrive multi-

ple times or fail to arrive at all. If you send two datagrams,

they might not arrive in the order that they were sent. This

medium is used by protocols that provide their own error

checking, or do not require error checking. :datagram is ap-

propriate for protocols that perform simple tasks, such as re-

questing the time of day. �

Specific Mediums:

:chaos Supports the :byte-stream and :byte-stream-with-mark gener-

ic network mediums. All Symbolics computers support the

:chaos medium, which is used by the Chaosnet type of net-

works. Chaosnets usually use Ethernet hardware.

:chaos-simple Supports the :datagram generic network medium. All Symbol-

ics computers support the :chaos-simple medium, which is

used by the Chaosnet type of networks.

Page 37

:dial Supports communications over the international telephone net-

work. All Symbolics computers support the :dial medium soft-

ware; however, they require a modem to physically connect to

the telephone network. :dial supports the :byte-stream medi-

um. The primary use of the :dial medium is mail transfer. See

the section "Dial Network Medium".

:local Enables a host to provide a service locally, without using the

network.

:tcp Supports the :byte-stream and :byte-stream-with-mark gener-

ic mediums. It is used to communicate with hosts on IP/TCP

networks, such as the ARPA Internet. This medium is supplied

with the optional IP/TCP software package. :tcp is the Trans-

mission Control Protocol medium as described in ARPA RFC

793, available from ARPA Network Information Center.

:udp Supports the :datagram generic medium. It is used to commu-

nicate with hosts on IP/TCP networks, such as the ARPA In-

ternet. This medium is supplied with the optional IP/TCP soft-

ware package. :udp is the User Datagram Protocol medium as

described in ARPA RFC 768, available from ARPA Network In-

formation Center.

:dna Supports the :byte-stream generic medium. Provides communi-

cations using DECnet protocols, as described in DECnet Digital

Network Architecture (Phase IV) General Description, available

from Digital Equipment Corporation. This medium is supplied

with the optional DNA software package. �

Generic Network Services

For information on how to write application programs built on the foundation of

the generic network system, see the section "Defining a New Network Service".

Protocols Supported by all Symbolics Computers as Users

This chart lists the generic services that are supported by user sides on all Sym-

bolics computers, and the specific medium and protocol on which each service is

implemented. For related information: See the section "Descriptions of Defined

Generic Services".

The optional software packages support additional capabilities; these are listed

separately.

The variable neti:*protocol-list* is a list of user-side descriptions.

Service Medium Protocol

Page 38

BAND-TRANSFER CHAOS BAND-TRANSFER

CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS

CONFIGURATION CHAOS CONFIGURATION

DOMAIN CHAOS DOMAIN

ECHO-XCN-TOKEN-LIST CHAOS ECHO-XCN-TOKEN-LIST

EXPAND-MAIL-RECIPIENT CHAOS EXPAND-MAILING-LIST

EXPAND-MAIL-RECIPIENT CHAOS SMTP

FILE CHAOS NFILE

FILE CHAOS QFILE

HARDCOPY-STATUS CHAOS LGP-QUEUE

HARDCOPY CHAOS LGP

HARDCOPY CHAOS PRINTER-QUEUE

LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER

LOGIN CHAOS 3600-LOGIN

LOGIN CHAOS SUPDUP

LOGIN CHAOS TELNET

LOGIN CHAOS TELSUP

LOGIN CHAOS TTY-LOGIN

LOGIN DIAL TELNET

MAIL-PROBE DIAL MAIL-PROBE

MAIL-TO-USER CHAOS CHAOS-MAIL

MAIL-TO-USER CHAOS SMTP

MAIL-TO-USER DIAL SMTP

NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP

NAMESPACE CHAOS NAMESPACE

NOTIFY CHAOS NOTIFY

PRINTER-QUEUE-CONTROL CHAOS PRINTER-QUEUE

PRINTER-CONTROL CHAOS PRINTER-QUEUE

RESET-TIME-SERVER CHAOS-SIMPLE RESET-TIME-SERVER

SEND CHAOS CONVERSE

SEND CHAOS SEND

SEND CHAOS SMTP

SHOW-USERS CHAOS NAME

STORE-AND-FORWARD-MAIL CHAOS CHAOS-MAIL

STORE-AND-FORWARD-MAIL CHAOS SMTP

STORE-AND-FORWARD-MAIL DIAL SMTP

TAPE CHAOS RTAPE

TIME CHAOS-SIMPLE TIME-SIMPLE

UPTIME CHAOS-SIMPLE UPTIME-SIMPLE

WHO-AM-I CHAOS-SIMPLE WHO-AM-I�

Protocols Supported by all Symbolics Computers as Servers

This chart lists the generic services that are supported by server sides on all Sym-

bolics computers, and the medium and protocol on which each service is imple-

mented.

Page 39

See the section "Descriptions of Defined Generic Services".

The variable neti:*servers* is a list of server-side descriptions.

Service Medium Protocol

BAND-TRANSFER CHAOS BAND-TRANSFER

CHAOS-STATUS CHAOS-SIMPLE CHAOS-STATUS

CONFIGURATION CHAOS CONFIGURATION

DOMAIN CHAOS DOMAIN

EXPAND-MAIL-RECIPIENT CHAOS SMTP

FILE CHAOS NFILE

FILE CHAOS QFILE

HARDCOPY-STATUS CHAOS LGP-QUEUE

HARDCOPY CHAOS LGP

HARDCOPY CHAOS PRINTER-QUEUE

LISPM-FINGER CHAOS-SIMPLE LISPM-FINGER

LOGIN CHAOS 3600-LOGIN

LOGIN CHAOS SUPDUP

LOGIN CHAOS TELNET

LOGIN CHAOS TTY-LOGIN

LOGIN DIAL TELNET

MAIL-PROBE DIAL MAIL-PROBE

MAIL-TO-USER CHAOS CHAOS-MAIL

MAIL-TO-USER DIAL SMTP

NAMESPACE-TIMESTAMP CHAOS-SIMPLE NAMESPACE-TIMESTAMP

NAMESPACE CHAOS NAMESPACE

NOTIFY CHAOS NOTIFY

PRINTER-QUEUE-CONTROL CHAOS PRINTER-QUEUE

PRINTER-CONTROL CHAOS PRINTER-QUEUE

RESET-TIME-SERVER CHAOS-SIMPLE RESET-TIME-SERVER

SEND CHAOS CONVERSE

SEND CHAOS SEND

SEND CHAOS SMTP

SHOW-USERS CHAOS NAME

STORE-AND-FORWARD-MAIL CHAOS CHAOS-MAIL

STORE-AND-FORWARD-MAIL DIAL SMTP

TAPE CHAOS RTAPE

TIME CHAOS-SIMPLE TIME-SIMPLE

UPTIME CHAOS-SIMPLE UPTIME-SIMPLE

WHO-AM-I CHAOS-SIMPLE WHO-AM-I�

The server protocols related to the mailer are available only if the mailer is in-

stalled. The server protocols related to hardcopy and printers are available only if

the print spooler is installed.

Page 40

TCP and UDP Protocols Supported by Symbolics Computers as Users

The IP/TCP software package enables Symbolics computer users to access the fol-

lowing services provided by other hosts:

Service Medium Protocol

CONFIGURATION TCP CONFIGURATION

DOMAIN TCP DOMAIN

DOMAIN UDP DOMAIN-SIMPLE

EXPAND-MAIL-RECIPIENT TCP SMTP

FILE TCP NFILE

FILE TCP TCP-FTP

FILE UDP TFTP

LISPM-FINGER UDP LISPM-FINGER

LOGIN TCP 3600-LOGIN

LOGIN TCP SUPDUP

LOGIN TCP TELNET

MAIL-TO-USER TCP SMTP

SEND TCP SMTP

SHOW-USERS TCP ASCII-NAME

STORE-AND-FORWARD-MAIL TCP SMTP

TCP-GATEWAY CHAOS TCP-GATEWAY

TIME TCP TIME-MSB

TIME UDP TIME-SIMPLE-MSB�

TCP and UDP Protocols Supported by Symbolics Computers as Servers

The IP/TCP software package enables Symbolics computers to provide the follow-

ing services:

Service Medium Protocol

CONFIGURATION TCP CONFIGURATION

DOMAIN TCP DOMAIN

DOMAIN UDP DOMAIN-SIMPLE

EXPAND-MAIL-RECIPIENT TCP SMTP

FILE TCP NFILE

FILE TCP TCP-FTP

FILE UDP TFTP

IEN-116 UDP IEN-116

LISPM-FINGER UDP LISPM-FINGER

LOGIN TCP 3600-LOGIN

Page 41

LOGIN TCP SUPDUP

LOGIN TCP TELNET

MAIL-TO-USER TCP SMTP

SEND TCP SMTP

SHOW-USERS TCP ASCII-NAME

STORE-AND-FORWARD-MAIL TCP SMTP

TIME UDP TIME-SIMPLE-MSB

UNIX-RWHO UDP UNIX-RWHO�

The server protocols related to the mailer are available only if the mailer is in-

stalled.

TCP and UDP Protocols Supported by SUN Computers as Servers

Service Medium Protocol

FILE TCP TCP-FTP

FILE UDP NFS

HARDCOPY TCP UNIX-LPD

PRINTER-QUEUE-CONTROL TCP UNIX-LPD

PRINTER-CONTROL TCP UNIX-LPD

LOGIN TCP TELNET

RPC UDP UDP-RPC

RPC TCP TCP-RPC

RPC TCP RPC

SEND TCP SMTP

SHOW-USERS TCP ASCII-NAME

TAPE TCP UNIX-REXEC

TIME UDP TIME-SIMPLE-MSB

UNIX-REXEC TCP UNIX-REXEC

X-WINDOW-SYSTEM TCP X-WINDOW-SYSTEM�

DNA Protocols Supported by Symbolics Computers as Users

The DNA software package enables Symbolics computer users to access the follow-

ing services provided by other hosts:

Service Medium Protocol

FILE DNA DAP

LOGIN DNA CTERM

MAIL-TO-USER DNA DNA-MAIL

Page 42

SHOW-USERS DNA ASCII-NAME

TAPE DNA RTAPE

TIME DNA DNA-LMTIME

UPTIME DNA DNA-LMUPTIME�

DNA Protocols Supported by Symbolics Computers as Servers

The DNA software package enables Symbolics computers to provide the following

services:

Service Medium Protocol

FILE DNA DAP

LOOPBACK DNA DNA-LOOPBACK-MIRROR

MAIL-TO-USER DNA DNA-MAIL�

Descriptions of Defined Generic Services

:band-transfer

The user side requests that a copy of a world load be transferred.

This transfer can be in either direction. The Copy World command us-

es this service. �

:configuration

The server reports its hardware configuration to the user. The Show

Machine Configuration command uses this service. �

:domain The server is capable of being an Internet Domain Server. This is

used when parsing host names. See the section "Internet Domain

Names".�

:expand-mail-recipient

The server returns the elements of a mailing list. The Show Expanded

Mailing List (m-X) Zmail command uses this service. �

:file The user host performs operations on files stored on a remote host.

The server host responds to requests from the user host relating to

file access. File access can include these file operations: open, close,

read, write, probe, directory, and so on. �

:hardcopy-status

The server sends a description of the current status of a local hard-

copy device and its spooler to the user. This is used by sites that have

one or more Symbolics computers. �

Page 43

:hardcopy The server prints a file on a local hardcopy device. The Hardcopy File

command and the hardcopy:make-hardcopy-stream function use this

service. This is used by sites that have one or more Symbolics com-

puters. �

:lispm-finger

The server host provides information on the users currently logged in

to this host. Returns a list of (host-name user-id host-location idle-time

personal-name group). The Show Users command uses this. If you

prefer to keep certain fields of your user object private, such that the

:lispm-finger protocol does not return them: See the section "Censor-

ing Fields for lispm-finger and name Services".�

:login The server permits a user to log in remotely. The Terminal program

uses this service. �

:mail-to-user

The server delivers an electronic mail message to the mailbox of the

recipient of the message. :mail-to-user service performs delivery only

if the mailbox is stored locally on the server host. �

:namespace-timestamp

This service is used to determine whether the data in the namespace

database has changed. The server returns a timestamp of the last up-

date to the database. It is necessary for any namespace server to pro-

vide this service. �

:namespaceThe namespace system uses this service to query and update the

namespace database. It is necessary for any namespace server to pro-

vide this service. For information on the protocol used to provide this

service: See the section "Network Namespace Protocol".�

:notify The server issues an asynchronous message to a local user or users.

net:notify and chaos:notify-all-lispms use this service. �

:printer-control

The server manipulates a local hardcopy device, as requested by the

user. The Halt Printer command uses this service. �

:printer-queue-control

The server manipulates the queue of a local hardcopy device, as re-

quested by the user. The Delete Printer Request command uses this

service. �

:reset-time-server

The server host resets its own internal time to the time returned by

one of the network hosts. �

Page 44

:send The server host sends an interactive message to a designated user

(person) on that host. The Converse program uses this service.�

:show-usersThe server returns information on the users currently logged in to

this host The Show Users command uses this service. If you prefer to

keep certain fields of your user object private, such that the :name

protocol does not return them: See the section "Censoring Fields for

lispm-finger and name Services".�

:store-and-forward-mail

The server participates in the delivery of an electronic mail message.

The message is forwarded to another host on the network which is

closer to the target host. If the next host in the path is down, the

server holds the message (hence the "store" in the name of the ser-

vice) and retransmits it when the host is up. �

:tape The server side transfers data between a tape and the user side. The

transfer can be in either direction. tape:make-tape-stream uses this

service. �

:time The server returns the current universal time, or nil if it cannot find

the current time. See the section "Representation of Dates and Times".

:tcp-gateway

The server host is capable of being a TCP gateway, which means it

can create TCP connections on behalf of the user side. This is useful

when the user host has no IP-TCP medium directly connected to it. �

:uptime The server returns the amount of time it has been up, in sixtieths of

a second. �

:who-am-i The server provides information about itself. Returns three values: the

keyword that names the namespace of this host; the host name (or

:unknown); and the host that responded with this information. This is

used by Symbolics computers at boot time.�

Enabling and Disabling Network Services

If a network service is enabled on your host, your host performs the service when

requested to do so by another network host. If a service is not enabled, your host

refuses to perform the service when it is requested.

When you cold or warm boot your machine, the function sys:enable-services is

called. It enables the network services indicated by the variable neti:*standard-

services-enabled*.

You can enable or disable selected network services using sys:enable-services and

sys:disable-services.

Page 45

sys:enable-services &optional (services neti:*standard-services-enabled*) Function

Enables selected network services. services can be a symbol that names a single

service to enable, or a list of symbols naming services to enable, or :all, to enable

all services. If no argument is provided, only those services indicated by the vari-

able neti:*standard-services-enabled* are enabled.

If the keyword symbol that names a service has a sys:enable-services property,

that function is called with the name of the service as its sole argument.

sys:disable-services &optional (particular-services ’:all) Function

Disables network services. particular-services can be a symbol that names a service,

or a list of symbols to disable. If no argument is provided, all services are dis-

abled. For example:

(sys:disable-services ’:send)�

If the keyword symbol that names a service has a sys:disable-services property

function, that function is called with the name of the service as its sole argument.

neti:*standard-services-enabled* Variable

Contains the services that are enabled by sys:enable-services by default. This

variable is one of:

:all All services are enabled; this is the default.

nil No services are enabled.

list Only the services in list are enabled. �

neti:*new-services-enable* Variable

A non-nil value ensures that when a new service is defined it is also enabled (if

any services are enabled). The default is nil.

neti:service-enabled-p protocol-name Function

protocol-name is a keyword symbol that names a protocol. If the service implement-

ed by that protocol is currently enabled, the list of enabled services is returned.

protocol-name is the first element of the list.

Returns nil if the service is not currently enabled.

For example:

(neti:service-enabled-p ’:send) �

Page 46

net:*services-enabled* Variable

Contains a list of the network services currently enabled on this host.

sys:enable-services Property

Server name symbols can have a sys:enable-services property. This function is

called when the function sys:enable-services is called; the function should enable

the service. The argument is always the name of the service. For example:

(defun (:property service sys:enable-services) (arg)

 body...)�

sys:disable-services Property

Server name symbols can have a sys:disable-services property. This function is

called when the function sys:disable-services is called; the function should disable

the service. The argument is always the name of the service. For example:

(defun (:property service sys:disable-services) (arg)

 body...) �

The Remote Procedure Call Facility

Overview of Symbolics RPC

Symbolics RPC is an implementation of industry-standard RPC that underlies Sun

Microsystems’ NFS and other programs (see Request for Comments (RFC) #1057

"RPC: Remote Procedure Call Protocol specification version 2"). The distinguishing

characteristic of Symbolics RPC is that it uses Lisp technology to provide a very

clean and easy-to-use interface for defining RPC-based programs. The form of data

transmitted over the communications medium is fully compliant with the standard.

Remote Procedure Call (RPC) is a facility that allows a function executing on one

processor to call a function executing on another processor. The two functions can

be written in the same language or in different languages, such as Lisp and C.

The two processors can be of the same type or of different types; for example, a

function executing on an Ivory can call a function that executes on an MC68020.

RPC allows a program executing on one processor to access facilities that are

available on another processor. For example, an Ivory embedded in a host can use

RPC to make use of hardware devices controlled by that host, to call facilities of

the host operating system, and to call program libraries that are available for the

host but not for the Ivory. Similarly, a program running on a host can use RPC to

call symbolic processing facilities such as Joshua that run on the Ivory.

Using RPC, you can segment a program into pieces and run each piece on a differ-

ent processor. This can improve performance through parallel processing. More

Page 47

importantly, this allows each part of the program to execute on the processor and

under the operating system best adapted to support that part. Benefits include

both performance improvement and ease of programming.

For example, a program for a MacIvory system can run its user interface on the

Macintosh and its knowledge processing on the Ivory. It is not necessary to have

such a large granularity in the segmentation of a program; the same program

might be improved by running the high-level "policy" portion of its user interface

on the Ivory, with the low-level "mechanism" portion running on the Macintosh.

Dynamic Windows on MacIvory work precisely this way.

Another reason to use RPC is when you want to run a program on processor A but

it needs to cooperate with an existing program that is available only on processor

B. Processor A might be an Ivory, which you are using because of its ease of pro-

gramming, while processor B might be a non-Symbolics processor, with a large li-

brary of available programs. The main part of your program runs on processor A

and it includes an appendage that runs on processor B; the appendage communi-

cates with the existing program using the interfaces defined by the existing pro-

gram. The main part of your program and the appendage communicate through

RPC. The existing program is unaware of RPC and does not have to be modified

or adapted. (The Genera interface to HyperCard on MacIvory works this way.)

RPC provides communication between two processors in a single system, as when a

Symbolics Ivory is embedded in a non-Symbolics platform such as a Macintosh or

Sun.

In this case communication is through shared memory and is quite efficient, al-

though of course calling a function remotely is never as fast as calling it locally.

RPC can also be used for communication between two processors in separate sys-

tems, which might be physically located side by side or at a great distance from

each other. RPC operates through local-area and wide-area networks and through

RS232 serial lines. Using RPC over a network is slower than using RPC in an em-

bedded system.

Symbolics RPC provides a transparent interface; calling a function remotely looks

the same as calling a local function. When you call a function, you do not have to

know whether its body executes on the local processor or on a remote processor.

This is true regardless of whether you program in Lisp or in C. The RPC system

implements this by automatically defining a stub function that acts as a local rep-

resentative of the remote function. The stub takes care of all the housekeeping re-

quired to transmit the arguments to the remote function and receive back the val-

ues. Symbolics RPC provides a transparent interface for the callee as well. You

write the body of a remotely callable function in Lisp or C in the usual way; the

RPC system automatically adds code to receive the arguments, puts them in vari-

ables with the names you specified, and sends back the results.

Symbolics RPC and Sun RPC

Symbolics RPC is a fully compliant implementation of the RPC and XDR (eXternal

Data Representation) standards described in RFC (Request for Comments) #1057

Page 48

"RPC: Remote Procedure Call Protocol specification version 2" and RFC #1014

"XDR: External Data Representation standard."

As such, it is completely compatible and can interoperate with any other compliant

RPC implementation, such as the one supplied with Sun Microsystems computers.

(See the Sun Microsystems document Network Programming for further informa-

tion.) For instance, a program written in Symbolics RPC can make RPC calls to a

program written in SunRPC language, and vice versa.

Symbolics RPC language differs from SunRPC language in many ways, most no-

tably in that Symbolics RPC can simultaneously generate code in two programming

languages, C and Lisp. Symbolics RPC language cannot generate code in Sun RPC

language. Users of the Symbolics UX can choose either for programming. Symbol-

ics RPC language is likely to make the code-maintenance task easier for programs

that will run on both Ivory-based systems and a C-based system.

Differences Between Local and Remote Function Calling

An important and necessary difference between local and remote function calling is

that functions executing on separate processors have separate memory address

spaces and cannot share any data. All arguments and values must be passed by

value, not by reference. For this reason, unlike a locally callable function, a re-

motely callable function uses special functions (rpc:rpc-values and rpc:rpc-error

in Lisp, RPCValues and RPCError in C) to return its results.

Because there is no call by reference, the data types that can be used with RPC

are limited. For example, in Lisp you cannot pass an arbitrary symbol as an argu-

ment. If you pass a flavor instance, the callee sees a copy of the instance. If the

callee modifies the instance, those modifications are not passed back to the caller.

On the other hand, a benefit of call by value is that the caller and callee can use

different data representations. For example, the caller can pass a Lisp flavor in-

stance, which the callee will see as a C struct.

You construct an RPC-based program by using a set of Lisp macros to define the

remotely callable functions. These Lisp macros are somewhat unusual in that they

expand into both Lisp code and C code. The Lisp expansion is processed in the

normal way. The C expansion is written to a file that can be compiled by the Sym-

bolics C compiler or shipped to another processor and compiled by its own C com-

piler. Once the interface has been defined and compiled, you call the stub func-

tions using ordinary Lisp or C function calls. The callee or server half of the in-

terface is loaded together with any other programs it calls.

Basic Concepts of RPC

The basic concepts of RPC include remote modules, remote entries, remote errors,

and remote types, explained in the following table:

remote entry A remotely callable function.

Page 49

remote module A collection of related remote entries that are treated as a unit

for bookkeeping purposes.

remote error An exceptional condition that can arise while executing a re-

mote entry.

remote type A type of data that can be used as an argument to a remote

entry or a remote error, and can be returned as a value by a

remote entry. A remote type defines the possible data values,

their representation in Lisp and C, their representation for in-

terprocessor transmission, and the methods for converting be-

tween these representations.�

Some of these concepts have nonstandard names. These names were chosen to

avoid any confusion with other concepts in Genera with names similar to the stan-

dard names. Other systems call remote modules "remote programs" and call remote

entries "remote procedures."

The RPC facility consists of three layers:

• The call layer is in charge of identifying remote entries to be called, transmit-

ting the arguments to them, matching up the returned values with the caller

who is awaiting the results, and reporting errors.

• The data representation layer is in charge of defining a common representation

for data and translating representations used by different machines and by dif-

ferent programming languages to and from the common representation.

• The transport layer is in charge of moving raw bits between machines and deal-

ing with bit-ordering issues. There are three different transport layers, se-

lectable at run time. One is based on the embedding substrate’s inter-processor

communication mechanism, the others are based on the byte-stream and UDP/IP

media of the generic network system.�

Symbolics RPC Facilities in Lisp

Extensions to Lisp Syntax for RPC

The RPC facility involves several Lisp macros that expand into C code. To make

these macros easier to write, we have extended Lisp syntax with a facility that

amounts to a C version of Lisp’s backquote. This minimizes the syntactic clumsi-

ness of constructing C programs with Lisp code, as compared to doing a lot of ex-

plicit string manipulation or using a package for manipulating C parse trees.

To enable this syntax, you must specify -*- Syntax: Lisp+C -*- in the file’s at-

tribute list. This is the same as -*- Syntax: Common-Lisp -*- except for the addi-

tion of a #{ reader macro. Text between #{ and the balancing } is C source code

with one exception noted below. The result of reading a #{...} expression is a Lisp

Page 50

form which, when evaluated, produces a list of tokens. There is a function

rpc:write-c-token-list that prints a list of tokens to a file, producing a valid and

more or less legible C program. Tokens are Lisp integers, strings, characters, and

symbols, with most C tokens being represented as symbols in the rpc package.

Inside a #{...} the ↓ character allows you to drop in some tokens produced by a

Lisp form. This is the equivalent of comma in Lisp’s backquote. A ↓ is followed by

a Lisp form that evaluates to a list of tokens. A ↓↓ is followed by a Lisp form that

evaluates to a single token (a less common case in practice). When using this syn-

tax, you need to be careful to terminate the Lisp form in a Lisp way, not a C way;

it is usually best to leave a space after the form before resuming C syntax.

Syntax Examples�

1. A simple C program:

#{ printf("Hello, world.\n"); }�

2. A Lisp function that generates variations on that C program:

(defun hello (&optional (whom "world"))

 #{ printf("Hello, %s.\n", ↓↓whom); }
)

(hello "my fellow Americans")

Note how the close parenthesis is not placed on the same line as the semi-

colon, to avoid confusing Zmacs’ Lisp expression parser. At present, Zwei does

not understand #{...} syntax, so you must be careful about C semicolon char-

acters, which will be interpreted as comments. Do not put a close parenthesis

on the same line after a semicolon.

3. A Lisp function that takes C programs as both input and output:

 (defun print-out (C-expression)

 (let ((string (with-output-to-string (s)

 (rpc:write-c-token-list C-expression s))))

 #{ printf("The value of %s is %d\n",

↓↓string , ↓C-expression); }
))�

For additional information: See the macro rpc:define-remote-type. See the macro

rpc:define-remote-c-program.

Macros for Defining RPC-based Programs

rpc:define-remote-module module-name &rest options Macro

Page 51

Defines a module. A module is a collection of related entry points. These are called

"modules" rather than "programs" to avoid confusion with dw:define-program-

framework.

module-name is a symbol that identifies this module. Some information about the

module is kept in an object that is stored as the remote-module property of the

symbol. If there is a Lisp client for this module, the special variable

module-name-remote-module holds the object also, so the stubs can get at it

quickly.

Valid options are:

(:version integer) Version of the interface. This option is mandatory. Change the

version number when you change the interface. Only equal ver-

sions are compatible.

(:number integer) A number that uniquely identifies the remote module. The

identifying integer for a remote module must be unique world-

wide. For information on how to choose a number, see the sec-

tion "Remote Module Numbers". This option is mandatory.

(:process keyword value keyword value...) or (:process nil)

Controls what process a server runs in. The default is for each

incoming call to start a new process, in which the server for

that call runs. The first form of the :process option can be

used to specify options for this process, such as :name and

:priority.

The (:process nil) option causes the server to run in the RPC

dispatcher process. This ensures that asynchronous calls are

processed in order, but is dangerous if the server runs for a

long time or can block, since all RPC service is delayed until

the server finishes.

(:server languages...) or (:client languages...)

These options tell the macros what stubs and handlers to gen-

erate. At least one must be specified. languages are keywords

:lisp and :c.

The :server option lists the languages in which entries of this

module can execute. The :client option lists the languages

from which entries of this module can be called.

(:allow-untrusted-access boolean)

If boolean is nil, then network access (TCP or UDP) to this

RPC module from untrusted hosts is not permitted. Any such

network connections will be rejected by stream-based RPC, and

ignored by datagram-based RPC. The default is nil.

(:authentication authentication-flavors)

Authentication-flavors specifies the flavor of authentication that

entries in this module will use. The recognized values are

:null, :unix, and :des. The default is :null authentication. For

Page 52

related information, see the :authentication option to

rpc:define-remote-entry.

:unix authentication requires that the client host be trusted by

Genera on the server host, regardless of the setting of the

:allow-untrusted-hosts option. When more then one authenti-

cation flavor is listed, the server allows the least secure and

the client uses the most secure. If both :des and :unix are

specified, the client tries des first, then, because :des authenti-

cation is as yet unimplemented, it falls back to :unix. The

server will accept requests that use either unix or des authen-

tication (assuming always that they have valid credentials), ex-

cept that it will only allow :unix authentication from trusted

clients.

Remote Module Numbers

In interprocessor communication, modules are identified by their number, not by

name. Choose module numbers following the conventions in the file

SYS:EMBEDDING;RPC;ASSIGNED-NUMBERS.TEXT . All module numbers for a particular site

must be unique.

rpc:define-remote-entry entry-name module-name &rest options Macro

Defines an entry point to a remote module. This function does three things: de-

fines the interface to a remotely callable entry, creates zero or more stubs for call-

ing this entry from various languages, and creates zero or more handlers for im-

plementing this entry in various languages. When a stub is called by a normal

function call, it contacts a server on some other machine, sends the arguments,

and receives and returns the values. A handler is called by the server and its body

performs the desired action on behalf of a stub running on some other machine.

entry-name is a symbol that names the Lisp stub function. The C stub’s name is

derived from this by a simple character mapping (hyphen to underscore, uppercase

to lowercase). The function name for a handler is entry-name-handler.

module-name is a symbol that identifies what remote module this entry belongs to.

Valid options are:

(:number integer) An identifying number. This option is mandatory. integer must

be unique within the module. Because this number is also used

to index an array, it is more efficient to number entries in or-

der starting with 1.

(:arguments (name type)...)

Declares the names and types of the arguments. name is a

symbol that can name a Lisp variable. type is a symbol that

names a previously defined remote type, or a list of such a

symbol and parameters. Only required arguments are allowed,

Page 53

not &optional, &rest, or &key arguments. This option is manda-

tory.

An argument specifier can also be (name type :output value).

This means that the argument name, besides being transmitted

with the call in the normal way, supplies storage that can be

reused for the value named value. This reuse occurs only on

the client side; the server knows nothing of it.

(:arguments (name type :extent :dynamic ...) ...)

An argument that is declared with :extent :dynamic may be

stack-consed in the Lisp server. For further information on this

topic, see the section "Consing Lists on the Control Stack".

(:values (name type)...)

Declares the names and types of the values. A Lisp stub re-

turns these values in the normal way. A C stub takes pointer

parameters after the normal arguments and stores the values

through those parameters. This option is mandatory unless

:asynchronous is used.

A value specifier can also be (name type :overwrite argument),

which means that the argument argument supplies storage that

can be reused for this value. Also note that argument is not

transmitted with the call; that is, it is an output argument, not

an input/output argument.

(:future boolean) If boolean is non-nil, this suboption generates start-name-

future, finish-name-future, and abort-name-future stubs that al-

low RPC futures programming in Lisp. This option is only

meaningful if the :asynchronous option is nil. RPC futures

programming is not supported in C.

(:asynchronous t/nil)

If t, calls do not wait for a reply and no values can be re-

turned.

(:whostate string) String is the whostate for a process executing this RPC entry

while waiting for a reply. This option is meaningful only if the

:asynchronous option is nil.

(:authentication authentication-flavors)

Like the :authentication option to rpc:define-remote-module,

which it overrides. This option is useful for modules that re-

quire some level of authentication, but that have an entry that

allows null authentication, for example.

(:lisp suboptions...) Suboptions for a Lisp-language stub and/or handler:

(:server body...)

The body of a handler.

Page 54

In the (:lisp (:server body...)) suboption, the body is

a group of Lisp forms. The arguments are available

as Lisp variables, values can be returned with the

rpc:rpc-values macro, and errors can be reported by

means of the rpc:rpc-error macro. Arguments to

rpc:rpc-error are the name of the error (not evalu-

ated) and argument forms.

(:c suboptions...) Suboptions for a C-language stub and/or handler:

(:server body)

The body of a handler.

In the (:c (:server body)) suboption, the body is a

Lisp form that evaluates to a sequence of C tokens

(use the #{ ... } reader syntax). The resulting C pro-

gram will be enclosed in a block (thus it can start

with declarations). The arguments are available as C

variables, values can be returned with the RPCVal-

ues macro, and errors can be reported by means of

the RPCError macro. Errors can also be reported by

returning an operating system error code with a re-

turn statement.

(:server-cleanup statement)

Causes statement to be executed when the server ex-

its, whether it exits normally or due to an error.

This provides the same functionality for C that

unwind-protect provides for Lisp. �

Notes:

When storage is reused by :output or :overwrite, the type of the argument and

the type of the value must agree. In Lisp, a vector must have a fill-pointer, which

will be adjusted. In C, the vector is always a structure with length and elements,

the length is modified, and there is no checking that sufficient storage was allo-

cated. :output is for input/output arguments, while :overwrite is for output-only

arguments.

rpc:define-remote-error error-name module-name &rest options Macro

Defines an error that can be reported from a server back to a client. In Lisp, the

error is reported by signalling a condition. In C, the remote call returns an error

code.

error-name is a symbol that names the error. In Lisp, this symbol can be used with

the rpc:rpc-error macro to report the error; in C, it can be used with RPCError.

module-name is a symbol that identifies what remote module this error belongs to.

Use nil for global errors.

Page 55

Valid options are:

(:number integer) An identifying number. This option is mandatory. integer must

be unique within the module, or if module-name is nil, integer

must be unique system-wide and must be negative. Because

this number is used to index an array, it is more efficient to

number errors in order starting with 1 or -1.

(:arguments (name type)...)

Declares the names and types of the arguments, which are

specified after the error-name when calling rpc:rpc-error or

RPCError.

(:condition name) The name of the condition to be signalled by a Lisp stub when

this error is reported. This defaults to a reasonable error con-

dition.

(:handler body) Code folded into the Lisp stub, responsible for selecting and

signalling the appropriate error condition. The error arguments

are lexically apparent to body. When :handler is specified,

:condition (if any) is ignored.

rpc:rpc-values &rest forms Macro

Returns values. This is used in a remotely callable function to return values to its

caller. This macro can only be called from within the body of a handler; that is,

the :server suboption of the :lisp option of rpc:define-remote-entry.

rpc:rpc-error error-name &rest arg-forms Macro

Reports errors. This is used in a remotely callable function to report errors to its

caller. Arguments to rpc:rpc-error are the name of the error (not evaluated) and

argument forms. This macro can only be called from within the body of a handler;

that is, the :server suboption of the :lisp option of rpc:define-remote-entry. See

the macro rpc:define-remote-error for related information.

rpc:define-remote-c-program module-name &rest options Macro

During compilation, writes out the C source file(s) for the remote module, based

on information recorded by the macros rpc:define-remote-module, rpc:define-

remote-entry, and rpc:define-remote-error. The expansion of the macro is an

(eval-when (compile eval) ...).

Valid options are:

(:client suboptions...)

Specifies which side of the program to generate. At least one

of :client, :server, :client-extern, or :server-extern must be

specified.

Page 56

(:server suboptions...)

Specifies which side of the program to generate. At least one

of :client, :server, :client-extern, or :server-extern must be

specified.

(:client-extern suboptions...)

Specifies which side of the program to generate. :client-extern

is an include file with function prototypes for the remote en-

tries of a client. At least one of :client, :server, :client-extern,

or :server-extern must be specified.

(:server-extern suboptions...)

Specifies which side of the program to generate. :server-extern

is an include file with function prototypes for the remote en-

tries of a server. At least one of :client, :server, :client-extern,

or :server-extern must be specified.�

Suboptions are:

(:file filename) Specifies what file to write. This option is mandatory. If you

specify a filename only, the file is put in the directory of the

file containing the rpc:define-remote-c-program form.

(:include strings...) Specifies what include files are included.

(:prefix #{...}) Specifies the text to go at the front of the file.

(:suffix #{...}) Specifies the text to go at the end of the file.

(:symbolics-trade-secret t)

If specified, includes standard boilerplate.

(:init #{...}) Designates initialization code  valid inside :server only.

(:errors remote-error-names)

Reports RPC errors. A suboption to the :client and :client-

extern options only.

(:type module-type) Declares the type of module. This option is valid only as a

suboption of :server. For information on use of this option

with MacIvories, see the section "Types of RPC Servers for

MacIvory". For information on use of this option with

UX400, see the section "Overview of RPC for the Symbolics

UX".

module-type is one of:

:linked  The module is linked into the RPC program. Call

initialize_module_name_server to set it up. This is the de-

fault.

:auto-load  The module is automatically loadable and can-

not use any static data. The :init option cannot be used with

this type module. This module type is valid only for the

MacIvory.

Page 57

:auto-load-with-static-data  The module is automatically

loadable and can have static data. This module type is valid

only for the macIvory.

You can split the remote entries of a module into several submodules. Each sub-

module is written to a separate .c file, reducing the size (but increasing the num-

ber) of .c source files. Use an rpc:define-remote-c-program form for each sub-

module, including the following suboptions:

(:entries-only remote-entry-name ...)

Include only code for the named remote entries. You should al-

so use the :include suboption with this suboption to specify the

inclusion of the server’s function prototypes header file that

was generated using the :server-extern option.

(:glue-only t) Include only the "glue" code. You should use the :server-extern

option when specifying this suboption to generate the server’s

function prototypes header file. Be sure to specify that this file

is included in the other source files by using the :include sub-

option when generating those files.

(:submodule-name submodule-name)

Name to include in the comment written at the front of the

file.�

rpc:define-remote-error-number system-type number string Macro

Defines a translation from operating system error codes to strings that can be

used in error messages.

system-type is :symbolics or a keyword symbol that can be used as the system type

of a host namespace object, such as :unix42 or :macintosh.

With the :unix42 system type, number is the UNIX error number potentially re-

turned by a server function running on the UNIX system.

With the :macintosh system type, number is an error code used by that type of op-

erating system and potentially returned (as the function value, not by means of

RPCValues or RPCError) by a server function running on that system.

In the :symbolics case, number is an error code offset relative to

first_Symbolics_error_code  these are error codes used by the Symbolics RPC

software or by Symbolics RPC-based servers (these are distinct from operating sys-

tem error codes). The operating-system-dependent values first_Symbolics_error_code

and last_Symbolics_error_code indicate the range of error code numbers used for

this purpose.

string is a description of the situation, which will be included in an error message.

The RPC Data Representation Layer

Page 58

This layer defines a common representation for data. It translates representations

used by different machines and by different programming languages to and from

the common representation.

The data representation layer provides a mechanism for defining a data type by

defining its common representation, its Lisp representation, and its C representa-

tion, along with code to translate between these representations. Several types are

predefined using this mechanism, and you can define additional types yourself. See

the macro rpc:define-remote-type for further information on defining remote

types.

Predefined RPC Data Types

Atomic Types�

rpc:integer-32 signed 32-bit integer

rpc:cardinal-32 unsigned 32-bit integer

rpc:integer-16 signed 16-bit integer (packed vector element)

rpc:cardinal-16 unsigned 16-bit integer (packed vector element)

rpc:integer-8 signed 8-bit integer (packed vector element)

rpc:cardinal-8 unsigned 8-bit integer (packed vector element)

rpc:character-8 ASCII character (packed vector element)

rpc:cardinal-4 unsigned 4-bit integer (packed vector element)

bit array &rest subscripts

unsigned 1-bit integer (packed vector element). Possible values

are 0 or 1.

boolean true or false: in Lisp, t or nil, in C, 1 or 0.

single-float IEEE single-precision floating point

rpc:enumeration Similar to the remote type member, except the XDR value is

explicitly given. In Lisp, this is done with an ALIST, in C,

with an "=" in the enum declaration.

The common representation of each atomic type is 32 bits, except for those com-

mented as packed. These are represented as 32 bits normally, but as 16, 8, 4, or 1

bits when elements of a vector.

Examples of Using the bit remote type and the rpc:enumeration remote type�

Note that before you can use the following examples, you have to compile the fol-

lowing form:

Page 59

(RPC:DEFINE-REMOTE-MODULE TPC-TEST

(:NUMBER #X7F0080001) ; (or other appropriate number)

(:VERSION 1)

(:CLIENT :C :LISP)

(:SERVER :LISP :C)

(:ALLOW-UNTRUSTED-ACCESS NIL))�

Example of a remote entry that uses the bit remote type:

(rpc:define-remote-entry bit-entry rpc-test

 (:number 13)

 (:arguments (x bit))

 (:values (y bit))

 (:lisp (:server (rpc:rpc-values x)))

 (:c (:server #{ RPCValues(x); }

)))�

This can be called by (bit-entry 0) or (bit-entry 1).

Example of the rpc:enumeration remote type:

(defvar *coins* ’((penny 1) (nickle 5) (dime 10) (quarter 25)

 (half-dollar 50) (silver-dollar 100)))

�

(rpc:define-remote-type us-coin ()

 (:abbreviation-for

 ‘(rpc:enumeration ,@*coins*)))

Page 60

�

(rpc:define-remote-entry enumeration-entry rpc-test

 (:number 15)

 (:arguments (coin us-coin))

 (:values (n-coins-make-a-dollar rpc:integer-8))

 (:lisp

 (:server

 (rpc:rpc-values (case coin

 (penny 100) (nickle 20) (dime 10) (quarter 4)

 (half-dollar 2) (silver-dollar 1) (t -1)))))

 (:c

 (:server

 #{ short int n = -1;

 switch(coin) {

 case penny: n=100;

 break;

 case nickle: n=20;

 break;

 case dime: n=10;

 break;

 case quarter: n=4;

 break;

 case half_dollar: n=2;

 break;

 case silver_dollar: n=1;

 break;

 }

 RPCValues(n);

 }

))

)�

This can be called by (enumeration-entry ’penny) or (enumeration-entry ’quarter),

for example.

Compound Types�

� structure (field-name field-type) (field-name field-type)... (language structure-name

sub-options...)... Remote Type

A heterogeneous sequence of named fields each of any type. The common represen-

tation is simply a sequence of field representations in the order declared. Each

field occupies an integral number of 32-bit words. The Lisp representation is a

structure or an instance and the C representation is a struct.

The language options allow additional control over the representation in each lan-

guage. Note that no suboptions are currently defined for the :lisp and :c options.

Page 61

If no :lisp option is specified, the Lisp representation is a vector with one field per

element. If the :lisp option is specified, the Lisp representation is a defstruct

structure or a flavor instance, with slots (fields or instance variables) with the

given field names. The remote type system automatically finds the correct accessor

and constructor functions. The defstruct or defflavor of structure-name must be

done before compiling anything that uses the remote type.

If no :c option is specified, the C representation is a struct automatically declared

with the specified field names and types. If the :c option is specified, structure-

name is a typedef already defined elsewhere (usually in an include file) with the

specified field names and types. structure-name must be a #{...} expression.

Example a remote entry that uses the structure remote type:

(defflavor box ((height 0) (depth 0) (width 0)) ()

 :initable-instance-variables

 :readable-instance-variables)

�

(rpc:define-remote-type box ()

 (:abbreviation-for ’(structure (:lisp box)

 (height rpc:cardinal-32)

 (depth rpc:cardinal-32)

 (width rpc:cardinal-32))))

�

(rpc:define-remote-entry structure-entry rpc-test

 (:number 16)

 (:arguments (b box))

 (:values (x box))

 (:lisp (:server (rpc:rpc-values s)))

 (:c (:server #{ RPCValues(s); })))�

This can be called by (structure-entry (make-instance ’box)), for example.

vector element-type &optional length Remote Type

(vector element-type)

A variable-length sequence of elements, each of the same type.

The common representation is a 32-bit word containing the

number of elements, followed by the element representations.

The Lisp representation is a vector. The C representation is a

pointer to a struct with fields named length and element; ele-

ment is an array of elements.

(vector element-type length)

A fixed-length sequence of elements, each of the same type.

The common representation is simply the element representa-

tions. The Lisp representation is a vector. The C representa-

tion is a pointer to an array of elements.

Page 62

rpc:spread-vector element-type Remote Type

The same as (vector element-type) except that in C this is passed around as two

separate values, a pointer and a length, rather than as a single value, a struct

with fields named length and element.

or type type... Remote Type

A discriminated union of several types. The common representation is a 32-bit

word containing the zero-origin ordinal number of the type selected, followed by

the representation of the value.

In Lisp, the types must be distinguishable by typep, as the representation is sim-

ply the value.

In C, the representation is a struct containing fields named type, the discriminant,

and value, which is a union. The discriminant is of type enum with constants

named type_type after each of the types. You have to be careful how you use this.

Because C does not scope enumeration constants properly, it is possible to get

name conflicts.

string &optional length Remote Type

(string) A variable-length string of ASCII characters. The common rep-

resentation is a 32-bit word containing the number of charac-

ters, followed by the characters packed into 8-bit bytes. The

Lisp representation is a thin-string. The C representation is a

pointer to a struct with fields named length and element

where element is an array of chars.

(string length) A fixed-length sequence of ASCII characters. The common rep-

resentation is the characters packed into 8-bit bytes. The Lisp

representation is a thin-string. The C representation is a point-

er to an array of chars.�

Only the 95 ASCII characters should be used. In particular, do not use the car-

riage return character. Non-ASCII characters require more elaborate treatment,

and there is no predefined type for them.

rpc:c-string Remote Type

Same as string except that the C representation is a pointer to a null-terminated

string.

rpc:pascal-string Remote Type

Same as string except that the C representation is a pointer to a string whose

first element is a character count.

Page 63

rpc:opaque-bytes options... Remote Type

Data in its foreign-language representation.

In Lisp, this is a vector of unsigned 8-bit bytes. The option (:length n-bytes) speci-

fies a fixed length. If this option is not present, the length is variable. The option

(language typename) specifies that the representation in language is the type type-

name. If this option is omitted, the representation in language is the same as in

Lisp, for example, (rpc:opaque-bytes (:length 8) (:c #{Rect}).

Example of the rpc:opaque-bytes remote type:

(rpc:define-remote-entry opaque-bytes-entry rpc-test

 (:number 19)

 (:arguments (bytes (rpc:opaque-bytes (:length 3))))

 (:values (bites (rpc:opaque-bytes (:length 3))))

 (:lisp (:server (rpc:rpc-values bytes)))

 (:c (:server #{ RPCValues(bytes); })))

�

(opaque-bytes-entry (make-array 3 :element-type ’(unsigned-byte 8)

 :initial-contents ’(1 2 3)))

�

list element-type Remote Type

Provides a way to transmit variable length lists. The Lisp representation is a list.

The C representation is a series of linked structs with slots called element and

rest. The element slot holds an object of type element-type. The rest slot holds a

pointer to the next struct, or 0 if it is the end of the list.

Example of the list remote type:

(rpc:define-remote-entry list-entry rpc-test

 (:number 20)

 (:arguments (list (list rpc:cardinal-16)))

 (:values (l (list rpc:cardinal-16)))

 (:lisp (:server (rpc:rpc-values list)))

 (:c (:server #{ RPCValues(list); })))

�

(list-entry ’(100 200 300))�

� member sym sym... Remote Type

Similar to the rpc:enumeration remote type. In Lisp the representation is a sym-

bol. In C, the representation is an enum. Note that, because C does not scope enu-

meration constants properly, name conflicts are possible.

Example of the member remote type:

Page 64

(rpc:define-remote-entry member-entry rpc-test

 (:number 21)

 (:arguments (item (member foo :bar baz)))

 (:values (index rpc:cardinal-4))

 (:lisp

 (:server

 (rpc:rpc-values (ecase item

 (foo 0) (:bar 1) (baz 2)))))

 (:c

 (:server

 #{ short int n;

 switch(item) {

 case foo: n=0; break;

 case bar: n=1; break;

 case baz: n=2; break;

 }

 RPCValues(n); }

)))

�

(member-entry ’foo)�

The RPC Data Type Extension Language

rpc:define-remote-type name arglist &body options Macro

Tells the data representation layer about a data type to be used for RPC argu-

ments and/or values.

name is a symbol. arglist destructures the cdr of the remote type specifier when

the remote type specifier is a list. When a remote type specifier is a symbol, it is

the same as a list with a null cdr. The default for unsupplied optional arguments

is nil (not * as in Lisp’s deftype).

The variables bound by arglist are available within all forms in the options and

suboptions of rpc:define-remote-type. The variables type and rpc:original-type

are also available; their values are remote type specifiers after and before

:abbreviation-for expansion, respectively. The variable rpc:language is also avail-

able; its value is the current language.

The general options for rpc:define-remote-type are:

(:abbreviation-for type)

Allows inheritance from another type. type is a Lisp form, usu-

ally a backquote expression, that evaluates to a remote type

specifier. If this option is omitted, all the suboptions for all the

languages you need must be included.

Page 65

(:size n-words) Specifies the number of 32-bit words occupied by the common

representation of this type, if it is fixed, or nil if it is variable.

Fixed-size types are a little more efficient because some com-

putations can be done at compile time. n-words is a form that

evaluates to a non-negative integer or to nil. If this option is

omitted, it defaults to nil.

(:packed unit) Specifies that values of this type can be elements of a packed

vector. This implies that the C and Lisp representations are bit

for bit identical to the XDR representation so that block-move

techniques can be used.

unit is a Lisp form that evaluates to one of :bit, :nibble, :byte,

:halfword, or :word, that is, 1, 4, 8, 16, or 32 bits respectively,

or to nil, which disables packing. If this option is omitted, it

defaults to nil.

(:signed form) form evaluates to true if the values of this type can be packed

negative numbers. The default is false.

(:prologue ((var val)...) forms...)

Before doing anything else, each variable var is bound to the

result of evaluating the form val, and then the forms are eval-

uated. The forms should signal an error if the type parameters

are not good.

The macro rpc:type-error may be helpful. It automatically in-

serts a comment about original-type into the error message if

necessary. The variables bound here are available while evalu-

ating forms in other options.

Two special options are

 (:lisp (sub-option arguments...)...)�

and

 (:c (sub-option arguments...)...)�

whose suboptions define the characteristics of this type specific to the Lisp or C

programming language.

Suboptions for Lisp�

Suboptions for Lisp all contain an argument list followed by a form that is evalu-

ated to produce a Lisp form to perform some action. Backquote is typically used.

The argument list receives arguments that are specific to the particular suboption.

(:size (value) n-words)

Computes the number of XDR words needed to encode value.

This suboption must be specified instead of the :size option if

Page 66

the type has a variable size common representation. If unspec-

ified, this defaults from :size (the option), then from

:abbreviation-for.

(:send (value) code) Stores the common representation of value in the transport

medium.

The form returned by the :send suboption of the :lisp option of

rpc:define-remote-type can call any of the following macros to

send data in the common representation.

rpc:send-word word

rpc:send-words &rest words

rpc:send-word-vector vector &optional start end

rpc:send-halfword-vector vector &optional start end

rpc:send-signed-halfword-vector vector &optional start end

rpc:send-byte-vector vector &optional start end

rpc:send-signed-byte-vector vector &optional start end

rpc:send-nibble-vector vector &optional start end

rpc:send-bit-vector vector &optional start end

rpc:send-char-vector vector &optional start end

rpc:send-single-float-vector vector &optional start end�

(:encode (value) code)

Converts value to a single-word common representation and re-

turns it. This is a convenient abbreviation for :send. If neither

:send nor :encode is specified, suboptions inherited from

:abbreviation-for are used.

(:receive (variable storage-mode) code)

 Receives the common representation of a value of this type

from the transport medium and returns it. The arguments are

normally ignored. However, if the type is an array, then stor-

age-mode controls how storage is allocated. storage-mode is a

compile-time test, not a run-time test. Possible values are:

nil  the value must be allocated in the heap, that is, nor-

mally.

:stack  the value is allowed to have dynamic lifetime (be al-

located in the stack or share storage with the call block).

:overwrite  variable is already initialized to a value, so over-

write that storage. This is the only case in which the variable

argument is not ignored.

The form returned by the :receive suboption of the :lisp option

of rpc:define-remote-type can call any of the following macros

to receive data in the common representation.

rpc:receive-word

rpc:receive-word-vector vector &optional start end

Page 67

rpc:receive-halfword-vector vector &optional start end

rpc:receive-signed-halfword-vector vector &optional start end

rpc:receive-byte-vector vector &optional start end

rpc:receive-signed-byte-vector vector &optional start end

rpc:receive-nibble-vector vector &optional start end

rpc:receive-bit-vector vector &optional start end

rpc:receive-char-vector vector &optional start end

rpc:receive-single-float-vector vector &optional start end�

(:decode (word) code)

Converts word, a single-word common representation, into a

Lisp value and returns it. This is a convenient abbreviation for

:receive. If neither :receive nor :decode is specified, subop-

tions inherited from :abbreviation-for are used.

(:typep (value) test)Tests whether value is a member of this type. This is used by

a union (the or remote type specifier) to determine which re-

mote type should be used when sending a Lisp value.

(:preprocess (variable) code)

Does something to the value of variable that has to be done be-

fore :send and :size. code typically involves a setq of variable.

If unspecified, this is inherited from :abbreviation-for, but if

there is no inherited :preprocess, preprocessing does nothing.

(:optimizable-common-subexpressions (value) form)

form evaluates to a list of Lisp forms that are common subex-

pressions that may be evaluated multiple times in computing

the size and transmitting the value. A typical form would be

‘((length ,:value)). The RPC system binds temporary variables

to these forms, if necessary, and substitutes the variables for

occurrences of the forms, in order to improve efficiency.�

Suboptions for C�

Suboptions for C contain an argument-list followed by a Lisp form that is evaluat-

ed to produce C code to perform some action. #{...} is typically used. For each sub-

option we specify whether the C code it produces is a statement or an expression.

Statements must include a trailing semicolon. A "statement" can actually be multi-

ple statements separated by semicolons, and can be no statements at all (NIL, an

empty token list).

The argument-list receives arguments that are specific to the particular suboption;

irrelevant trailing arguments can be omitted from the argument-list.

The Lisp form can call the function rpc:declare-c-variable to add declarations for

temporary variables to the C function being constructed. Temporary variables have

to be declared by side-effect, rather than just being included in the code being re-

turned, because of the irregular structure of the C language  declarations cannot

be nested inside expressions.

Page 68

(:declare (name) dcl)

A C declaration for the variable named name without a trailing

semicolon. name is a token list, not a single token. Defaults

from :abbreviation-for.

(:size (value) n-words)

Computes the number of XDR words needed to encode value.

n-words evaluates to a C expression. n-words can return a sec-

ond value, which is a statement that must be executed before

the expression can be evaluated. This suboption must be speci-

fied instead of the :size option if the type has a variable size

common representation. If unspecified, this defaults from :size

(the option), then from :abbreviation-for.

(:send (value) statement)

Stores the common representation of value into the transport

medium.

The statement returned by the :send suboption of the :c option

of rpc:define-remote-type can call any of the following macros

to send data in the common representation.

send_word word

send_word_vector vector length

send_halfword_vector vector length

send_signed_halfword_vector vector length

send_byte_vector vector length

send_signed_byte_vector vector length

send_nibble_vector vector length

send_bit_vector vector length

send_char_vector vector length

send_single_float_vector vector length�

(:encode (value) expression)

Converts value to a single-word common representation and re-

turn it. This is a convenient abbreviation for :send. If neither

:send nor :encode is specified, suboptions inherited from

:abbreviation-for are used.

(:receive (variable storage-mode) statement)

Receives the common representation of a value of this type

from the transport medium and stores the C value into

variable. If the value is a pointer as opposed to a scalar value

(some remote types use pointers as their C representation),

then storage-mode controls how storage is allocated. storage-

mode is a compile-time test, not a run-time test. Possible val-

ues of storage-mode are:�

nil  the value must be allocated in the heap.

Page 69

:stack  the value is allowed to have dynamic lifetime (be al-

located in the stack or share storage with the call block).

:overwrite  the variable is already initialized to a value, so

overwrite that storage.

The statement returned by the :receive suboption of the :c op-

tion of rpc:define-remote-type can call any of the following

macros to receive data in the common representation.

receive_word

receive_word_vector vector length

receive_halfword_vector vector length

receive_signed_halfword_vector vector length

receive_byte_vector vector length

receive_signed_byte_vector vector length

receive_nibble_vector vector length

receive_single_float_vector vector length

receive_char_vector vector length

receive_bit_vector vector length

get_receive_pointer

advance_receive_pointer n-words�

(:decode (word) expression)

Converts word, a single-word common representation, into a C

value and returns it. This is a convenient abbreviation for

:receive. If neither :receive nor :decode is specified, subop-

tions inherited from :abbreviation-for are used. (:free (value)

statement)

Disposes of heap storage, if any, occupied by value. This is

used in combination with :receive with storage-mode = :stack.

Thus, if :receive does not use the heap when storage-mode =

:stack, :free can do nothing.

If unspecified, :free defaults from :abbreviation-for, and if no

default is found that way, it defaults to a null statement

(rather than signaling an error).

(:optimizable-common-subexpressions (value) form)

form evaluates to a list of C expressions that are common

subexpressions that may be evaluated multiple times in com-

puting the size and transmitting the value.

Examples Using rpc:define-remote-type

Here is how the built-in type rpc:cardinal-16 is defined:

Page 70

�

 (define-remote-type cardinal-16 ()

 (:size 1)

 (:packed :halfword)

 (:lisp (:encode (value) value)

 (:decode (value) value)

 (:typep (value) ‘(typep ,value ’(unsigned-byte 16))))

 (:c (:declare (name) #{unsigned short ↓name })
 (:encode (value) #{(long)↓value })
 (:decode (value) #{(unsigned short)↓value }

)))�

Here is a very simple remote type definition that is just used as an abbreviation:

 (rpc:define-remote-type answer ()

 (:abbreviation-for ‘(member :yes :no :maybe)))�

Here is a MacIvory example of a simple remote type definition that just expands

into the predefined structure type with appropriate arguments:

�

 ;; Macintosh points. The Lisp representation is just (VECTOR V H).

 (rpc:define-remote-type point ()

 (:abbreviation-for ‘(rpc:structure (v rpc:integer-16) (h rpc:integer-16)

 (:c #{ Point }))))�

Here is an example of a more complex remote type definition that uses the :send

and :receive clauses. It does Macintosh points again, but in a less automatic way.

The C representation is the predefined Point structure, the Lisp representation is

a list of x and y, and the common representation is two 32-bit words, first x then

y. It’s preferable to use :abbreviation-for to expand into a remote type that pro-

vides the :send and :receive routines, rather than writing your own, when possi-

ble.

Page 71

�

 (rpc:define-remote-type point ()

 (:size 2)

 (:lisp

 (:send (pt)

 ‘(progn (rpc:send-words (first ,pt) (second ,pt))))

 (:receive ()

 ‘(list (rpc:receive-word) (rpc:receive-word)))

 (:typep (pt)

 ‘(typep ,pt ’cons)))

 (:c

 (:declare (name)

 #{ Point ↓name })
 (:send (pt)

 #{ send_word(↓pt .h);
 send_word(↓pt .v); }
)

 (:receive (pt)

 #{ ↓pt .h = receive_word();
 ↓pt .v = receive_word(); }
)))

�

Tracing RPC Transactions

rpc:show-rpc-trace n-newest-to-show &optional (n-newest-to-skip 0) Function

Prints the RPC operations that were previously recorded in the trace buffer while

tracing was enabled. If tracing is still enabled, this disables it before printing any-

thing. n-newest-to-show is the number of events to print; if n-newest-to-skip is 0,

these are the most recent events, otherwise the most recent n-newest-to-skip events

are skipped and the n-newest-to-show older events are printed.

Note that even while the machine appears idle, RPC events to manage the screen

are occurring. The best way to use this is to set up a process that calls

rpc:enable-rpc-trace, does the operation of interest (or sleeps while another pro-

cess does it), then calls rpc:disable-rpc-trace. This should minimize the intrusion

of irrelevant screen management operations into the RPC trace buffer. At this

point the information has been captured and rpc:show-rpc-trace can be called in

any process, if necessary more than once, to print it out.

Each event is an outgoing call, an incoming call, an incoming reply to an outgoing

call, or an outgoing reply to an incoming call. The information printed for a call

looks like:

5993 O Timer@151 [12]: Call 15943 to RPC-CONSOLE-SYNCH: 1 35111332245

Page 72

5993 is the number of microseconds since the previous event. O (outgoing) is the

direction of transmission. Timer is the name of the process. 151 is the depth in

that process’s stack. 12 is the size of the block of data being transferred, including

control information. 15943 is the RPC transaction ID; use this to match calls and

corresponding replies. RPC-CONSOLE-SYNCH is the name of the function that

was called. What follows is the external data representation of the arguments,

printed in octal and truncated to fit.

The information printed for a reply looks like:

1436 I RPC dispatch@97 [7]: Reply to 15943: 0 35111332245�

1436, I (incoming), RPC dispatch, 97, 7, and 15943 are as explained above. What

follows is the octal external data representation of the success/failure status (0

means success) followed by the values (if success) or error information (if failure).

rpc:enable-rpc-trace &optional (buffer-size 100) Function

Enables tracing of RPC operations. buffer-size is the number of operations to fit in

the buffer; only the most recent calls and returns that happened while tracing is

enabled are saved.

rpc:disable-rpc-trace Function

Disables tracing of RPC operations.

Sync-Link Gateways

This is a light-duty synchronous-link gateway facility for linking two Symbolics

sites into a single network that can share files, send mail, copy worlds (albeit

slowly), and exchange Converse messages using the Chaos and Internet (IP/TCP)

protocols. (Sync-link gateways should be considered an additional Symbolics feature

and not a full-service gateway.)

Hardware Requirements for Sync-Link Gateways

To use the sync-link gateways, the two sites must be connected by a dedicated syn-

chronous link. In addition, the sites at each end of the link must have the follow-

ing:

• Symbolics gate-array machine  Models 3610, 3620, 3630, 3650, or 3653  to

be used as a gateway. The processor load of being a gateway is light, approxi-

mately 5 percent, so this can be either a user or server machine.

• For gateway service at 9600 baud: a CSU/DSU modem connected to the bulk-

head RS-232 port of the Symbolics machine by a male-to-female RS-232 exten-

sion cable.

Page 73

• For gateway service at up to 56 kilobaud: a CSU/DSU modem plus an RS-232-to-

V.35 interface converter such as the Black Box Model GA-IC221, or equivalent.

The alternative to the dedicated line  a switched dial line  is feasible, but not

recommended.

The full hardware setup should be prepared before you enable the software.

Configuring Sync-Link Gateways

The sync-link gateway works by connecting two subnets through a third "subnet"

that is the synchronous link. For example, assume that you have one site in Akron,

one in Toledo and a trans-Ohio synchronous link. In fact, the two sites can be

across the country or across the room. Only the two gateway systems are on the

third subnet, but both must have addresses on that subnet. Machines on all three

of these subnets must have different Chaos and Internet addresses.

Sync-link gateways can be configured such that there is one global network with

one namespace or one network with two or more namespaces.

In general, if you have a site with several machines and are setting up a new

satellite site with only a few machines, a single namespace is the better choice.

On the other hand, if you have two long-standing sites with several machines, you

will probably find it preferable to keep the namespaces separate. For more infor-

mation: See the section "Bootstrapping Sync-link Gateways". Gateways can be con-

figured for Chaos-only networks, or for networks with Chaos and Internet. Configu-

ration of these two kinds of gateways is closely related, but discussed separately.

Configuring Chaos-only Sync-Link Gateways

If the gateway is to use the Chaos protocol only, use the Namespace Editor to edit

the host objects of both gateway machines as follows.

First, add a Chaos address for the gateway machine on the link. This is different

from the host’s Chaos address on the local subnet. That is, the gateway ma-

chine has addresses both on the local subnet and the synchronous link, which is

also a subnet.

Address: CHAOS 401

Now add a Peripheral: attribute for a Sync-Interface.

Peripheral: None Graphics-Tablet Kanji-Tablet Modem Pad

Sdlc-Interface Serial-Pseudonet Sync-Interface Other

 Unit: 1

 Baud: 300 600 1200 1800 2000 2400 3600 4800 7200 9600 19200 56000

 Chaos: 401

 Internet: an Internet address of the form A.B.C.D

 Clock-master: Yes No

 Clock-constant: a decimal integer

 Rts-cts-protocol: Yes No�

Page 74

The Chaos: attribute must have the same Chaos address number as the Chaos Ad-

dress: attribute you just added.

The Internet: attribute is not used.

The Clock-master: and Clock-constant: attributes are not used. Timing is supplied

by the dedicated synchronous link or the modem.

The Rts-cts-protocol: attribute should be No unless you are using a dial-up line,

which is not recommended.

Configuring Sync-Link Gateways with Both Chaos and Internet

If the sync-link gateway is to use both the Chaos and Internet protocols, use the

Namespace Editor to edit the host objects of both gateway machines as follows.

You must have the Symbolics IP/TCP product to use the Internet protocol.

First, add a Chaos address and an Internet address for the gateway machine on

the link. These addresses are different from the host’s Chaos and Internet ad-

dresses on the local subnet. That is, the gateway machine has addresses both on

the local subnet and the synchronous link, which is also a subnet.

Address: CHAOS 401

Address: INTERNET 128.81.1.1

Now add a Peripheral: attribute for a Sync-Interface.

Peripheral: None Graphics-Tablet Kanji-Tablet Modem Pad

Sdlc-Interface Serial-Pseudonet Sync-Interface Other

 Unit: 1

 Baud: 300 600 1200 1800 2000 2400 3600 4800 7200 9600 19200 56000

 Chaos: 401

 Internet: 128.81.1.1

 Clock-master: Yes No

 Clock-constant: a decimal integer

 Rts-cts-protocol: Yes No

The Chaos: attribute must have the same Chaos address number as the Chaos Ad-

dress: attribute you just added.

The Internet: attribute must have the same Internet address number as the Inter-

net Address: attribute you just added.

The Clock-master: and Clock-constant: attributes are not used. Timing is supplied

by the dedicated synchronous link or the modem.

The Rts-cts-protocol: attribute should be No unless you are using a dial-up line,

which is not recommended.

Now add a Service: attribute with the following service, medium, and protocol

triple.

Service: GATEWAY IP INTERNET-GATEWAY

Now add a User Property: attribute.

User Property: DEFAULT-INTERNET-GATEWAY hostname

Page 75

In this case, hostname is the name of the host that serves as the Internet gateway

to other networks. If you have no such system at your site, you do not have to

supply this attribute.

Bootstrapping Sync-link Gateways

Before creating your sync-link gateways, you have to decide whether you want the

two sites to share a single namespace or to have separate namespaces. In general,

if you have a site with several machines and are setting up a new satellite site

with only a few machines, a single namespace is the better choice. On the other

hand, if you have two long-standing sites with several machines, you will probably

find it preferable to keep the namespaces separate.

If you intend to have separate namespaces, all hosts you wish to have in communi-

cation must be running Genera 7.2 or a later release. If you intend to have a sin-

gle namespace, only the gateway systems must be running Genera 7.2 or a later

release.

Access is equal with either approach.

Bootstrapping Sync-Link Gateways with a Single Namespace

In general, if you have a site with several machines and are setting up a new

satellite site with only a few machines, a single namespace is the better choice.

Here is the procedure to follow to set up gateways with a single namespace.

Both gateway machines must be running Genera 7.2 or a later release.

1. Create a host object for a gateway machine at the local site.See the section

"Configuring Sync-Link Gateways".

2. Find a current world with namespace information in it. This is a world that

has had Define Site or Set Site run on it, built after the gateway was config-

ured in the namespace.

3. Load that world on the local gateway machine and boot it.

4. Take the same world to the new site and load it on the gateway machine

there.

5. Boot the world at the new site.

6. Test the link using zl:hostat, specifying the octal Chaos address, not the host

name. Use tcp:send-icmp-echo, specifying the Internet address in the format

Internet|A.B.C.D, to test an Internet link.

7. Now you can make new worlds at the new site.

For an alternate technique: See the section "Bootstrapping Sync-Link Gateways

with Separate Namespaces".

Page 76

Bootstrapping Sync-Link Gateways with Separate Namespaces

If you have two long-standing sites with several machines, you will probably find it

preferable to keep the namespaces separate.

Here are the constraints for this configuration:

• Both gateway systems must be running Genera 7.2 or a later release.

• All systems that you wish to be able to communicate across the gateways must

also be running Genera 7.2 or a later release. Machines running earlier releases

will be able to communicate within the local namespace, but when they are

booted users will see notifications that the Global Network Name attribute is

not recognized.

• Neither gateway server can be a primary namespace server in this configura-

tion.�

Here is the procedure to follow to set up sync-link gateways with separate names-

paces.

1. Edit the host objects for the gateway systems at each site. See the section

"Configuring Sync-Link Gateways". Reboot both systems or issue the Reset

Network command on both systems.

2. Test the link using zl:hostat, specifying the octal Chaos address, not the host

name. Use tcp:send-icmp-echo, specifying the Internet address in the format

Internet|A.B.C.D, to test an Internet link.

3. Edit the Chaos and Internet network namespace objects at both sites and add

a common Global Network Name to each object.See the section "The Global

Network Name Network Attribute".

4. Reboot the namespace server for one site.

5. Use neti:find-site at that site, naming the second site. Now the first name-

space knows about the other.

6. Save the world on the namespace server. Never go back to a world built be-

fore this time.

7. Reboot the namespace server at the other site.

8. Use neti:find-site at that site, naming the first site. Now both namespaces

are aware of each other.

9. Save the world at the second site.

Page 77

10. Optionally, add each site name to the other site’s search list. Whether you do

this depends on the amount of traffic you expect between the sites. If you do

not do this, users will have to specify the other site’s name when communi-

cating with it.

11. Optionally, make each gateway machine a secondary namespace server for the

other. Remember that the gateway machine cannot be a primary namespace

server if there are separate namespaces. There are two ways of making the

gateway machines secondary namespace servers:

• Use the Secondary Name Server: namespace attribute. At the first site,

name the second site; at the second site, name the first site. This will

cause any namespace search to search of all namespaces known to each

sync-link gateway namespace.See the section "The Secondary Name Server

Namespace Attribute".

• Use the Default Secondary Name Server: host attribute for the two gateway

machines. At the first site, name the second site; at the second site, name

the first site. This will cause any namespace search to search only the two

namespaces in the global network.See the section "The Default Secondary

Name Server Host Attribute".

For an alternate technique: See the section "Bootstrapping Sync-Link Gateways

with a Single Namespace".

Software Interface to the Namespace System

Symbolics computer programmers who want to use the capabilities provided by the

network database should read this section. It describes the Lisp data types, vari-

ables, and functions for interacting with the network facilities.

Namespace System Lisp Data Types

The various database data types are implemented on the Symbolics computer as

follows:

object An instance of some flavor based on net:object.

name An instance of flavor neti:name.

global-name A symbol in the keyword package.

token A string.

set A list.

pair A list of two elements.

triple A list of three elements. �

Page 78

Namespace System Variables

net:*local-site* Variable

Specifies the site object representing the local site, that is, the value of this vari-

able answers the question "What site am I at?" This variable can be queried for

the name of the site as follows:

(send net:*local-site* :name) => :SCRC�

net:*local-host* Variable

Specifies the host object representing the local host, that is, the value of this vari-

able answers the question "What host am I?"

si:*user* Variable

Specifies the user object representing the user logged in to the machine, that is,

the value of this variable answers the question "What user am I?"

net:*namespace* Variable

Specifies the current namespace object.

net:*namespace-search-list* Variable

Specifies the search rules, represented as a list of namespace objects.

Namespace System Functions

net:find-object-named class name &optional (error-p t) Function

Returns the object of the given class named name. class is a keyword symbol; name

is a string. This function searches through all namespaces in the search rules in

order. If no object is found, the action taken depends on error-p:

t Signals a neti:object-not-found-in-search-list error. This is the

default.

nil Returns nil.�

net:find-object-named also returns a second value, which is t if the object is valid

and nil if it is not.

Page 79

(net:find-object-named :host "apple")

=> #<HOST APPLE>

 T

�

(net:find-object-named :host "yale|orange")

=> #<HOST YALE|ORANGE>

 T�

net:find-object-from-property-list class property-list... Function

Returns the first object of class that matches all of the properties in property-list.

class is a keyword symbol; property-list is an alternating list of keywords and val-

ues. If no object is found, the function returns nil. If many objects are found, it

returns one of them. This function searches through all namespaces in the search

rules in order.

For example, to find one UNIX host:

(net:find-object-from-property-list

 :host

 :system-type :unix)�

net:find-objects-from-property-list class property-list... Function

Returns a list of all objects of class that match all of the properties in

property-list. class is a keyword symbol; property-list is an alternating list of key-

words and values. If no objects are found, it returns nil. Objects from all names-

paces in the search rules are accumulated.

Example: To get a list of all Symbolics computers at the local site:

(net:find-objects-from-property-list

 :host

 :system-type :lispm

 :site net:*local-site*)�

A property value from an object matches a pattern from the arguments to this

function if one of the following conditions holds:

• The Lisp function zl:equal returns t.

• The attribute is of the element or pair type and each element of the pattern list

matches some element of the value; wildcards in the elements of a pattern are

considered to match anything.

A wildcard is the keyword symbol :* or the string "*". (Note: The symbol * is

not a wildcard.)

Page 80

Example: To find a user who has an account on the blue host, use the :* to

match any login name.

(net:find-objects-from-property-list

 :user

 :login-name ‘((:* ,(net:parse-host "blue"))))�

si:get-site-option keyword Function

Finds out the value of a site option. keyword is the keyword symbol naming the

option. This function returns the value of the option.

�

(si:get-site-option :timezone)

:EST

�

net:parse-host host &optional no-error-p ignore Function

host is a string representing the name of a host. The namespace database is

searched for a host object corresponding to the name supplied. If the host is not

found, an error is signalled unless no-error-p is supplied and is non-null.

cl-neti::link-namespaces site-to-find &key :merge-networks Function

Enables a primary namespace server to find other namespaces not in the search

rules, and to forcibly merge the networks between the two namespaces. Before at-

tempting to use this function, you should consider exactly what your goal in terms

of namespace administration is. If you have two namespaces you want to merge, it

may be preferable to select one of them to be the final namespace and move the

objects from the other into that one. Alternatively, if it is important to have two

separate namespaces for administrative reasons but you want connectivity, you

should consider using the Domain system to have the two sites know about each

other. See the section "The Domain System and the Namespace System". If you are

unsure about these alternatives, please contack Symbolics Customer Support. cl-

neti::link-namespaces replaces the namespace linking functionality of neti:find-

site.

Messages to Namespace Names and Objects

Messages to neti:name

:namespace Message

Returns the namespace for the name.

Page 81

(send (send si:*user* :name) :namespace) => #<NAMESPACE HARVARD>�

:qualified-string Message

Returns a qualified character string representation of a name.

(send (send si:*user* :name) :qualified-string) => "HARVARD|GEORGE"�

:string Message

Returns an unqualified character string representation of a name.

(send (send si:*user* :name) :string) => "GEORGE"�

:possibly-qualified-string Message

Returns the qualified name if shadowed. The single argument is a class name.

(send (send si:*user* :name) :possibly-qualified-string :user)

=> "GEORGE" (or "HARVARD|GEORGE")�

Messages to net:object

:class Message

Returns the name of the class of the object, as a keyword symbol.

(send net:*local-host* :class) => :host�

:get indicator Message

Looks up the object’s indicator property. If it finds such a property, it returns the

value; otherwise it returns nil.

:name Message

Returns the primary name of the object, as a name object.

(send si:*user* :name) => #<NAME HARVARD|GEORGE 2346253>�

:primary-name Message

Returns the primary name of the object, as a name object.

(send net:*local-host* :primary-name)

=> #<NAME SCRC|JUNCO 36747263>�

Page 82

:names Message

Returns a list of all of the names by which an object can be found.

(send net:*local-host* :names) => (#<NAME HARVARD|JUNCO 2346253>

 #<NAME HARVARD|J 2346267>

 #<NAME HARVARD|JUNKO 2346303>)�

:user-get indicator Message

Gets the value of this object’s particular user-property attribute as indicated by

indicator. indicator is a keyword symbol. If no such user-property attribute exists,

:user-get returns nil.

(send si:*user* :user-get :favorite-color) => "Dusty Plum"�

Namespace Server Access Paths

For a definition of service access paths: See the section "Service Access Path".

Once the network system has computed a service access path for the :namespace

service for a given host, it does not recompute that path again unless you use

neti:recompute-namespace-server-access-paths, or neti:recompute-all-

namespace-server-access-paths, or cold boot.

neti:show-namespace-server-access-paths &optional namespace Function

Displays the currently cached service access paths for the given namespace, along

with the desirability of each path. If namespace is not given, only those service ac-

cess paths for the local namespace are displayed.

neti:recompute-all-namespace-server-access-paths Function

Forces the generic network system to compute fresh service access paths for all

namespaces instead of depending on paths computed earlier. It is necessary to use

this function after altering the host-protocol-desirability site attribute to make

the change take effect.

neti:recompute-namespace-server-access-paths &optional namespace Function

Forces the generic network system to compute fresh service access paths for the

given namespace, instead of depending on paths computed earlier. If namespace is

not given, this function operates on service access paths for the local namespace.

Defining Namespace Classes

Page 83

New namespace classes can be defined with the special operator neti:define-class.

The definitions for the classes used in the system can be found in

SYS:NETWORK;CLASS-DEFINITIONS.LISP.

Interfacing to the Generic Network System

This section describes how to write programs that interface to the Generic Net-

work System, including how to invoke network services in a program and how to

implement new services.

It is also possible to write new mediums and even new types of networks. Howev-

er, implementing new code at the medium and network level is considerably more

complex than at the service level. For more information, see the section "Imple-

mentation of the Generic Network System".

How a Network Service is Performed

This section describes the course of events that takes place when a generic service

is requested and performed:

1. A program on the user side makes a request for a generic network service.

Usually the request occurs via net:invoke-service-on-host (used when the

service must be performed by a particular host, such as for access to a file),

or net:invoke-multiple-services (used when it is unimportant which network

host provides the service, such as returning the time of day).

2. The user side tries to find a path to the service.

When net:invoke-service-on-host is used, the generic network system on the

user side tries to find the best path to the given service on the host. When

net:invoke-multiple-services is used, the generic network system seeks multi-

ple paths to the service. In either case, the application program that request-

ed the generic service is not involved in finding the path; this is accom-

plished by the generic network system.

The generic network system uses one of several functions to find a path. It

uses net:find-paths-to-service-on-host when the service must be performed

by a particular host, and net:find-paths-to-service when it is unimportant

which host provides the service. These two functions return a service access

path, a structure representing a path to a service on a host, including a de-

scription of the protocol and medium to be used. For more information, see

the section "Service Access Path".

The user side uses the namespace database to locate paths to services and

hosts. For more information, see the section "Finding a Path to a Service on

a Remote Host".

Page 84

If the generic network system cannot find a path to the service, the service

cannot be performed. An error is signalled.

3. The user side gets the contact identifier for the service.

The service access path describes the protocol and medium to be used; the

next step is to find the contact identifier for that protocol. Each medium has

a function that associates a contact identifier with a protocol.

Medium Function that Defines a Contact Identifier

CHAOS chaos:add-contact-name-for-protocol

TCP tcp:add-tcp-port-for-protocol

UDP tcp:add-udp-port-for-protocol

DNA dna:add-dna-contact-id-for-protocol �

If the contact name is defined, the user side makes a request for connection

to the server host (or hosts) on that contact identifier. If no contact name for

this protocol is defined on the user host, an error is signalled.

4. The user side tries to make initial contact with the server side using the con-

tact identifier.

The server operating system examines the contact identifier and creates a

server process. The operating system can either reject the request from the

user side, or complete the connection. When the server side is a Symbolics

computer, the same form that defines the contact identifier also identifies

where the code that performs the service is defined. The server process finds

that code (in a net:define-server form).

If no server for this contact identifier is defined on the server host, an error

is signalled (on the user host).

5. The user and server side exchange data.

When the service is implemented with the generic :byte-stream or :byte-

stream-with-mark medium, the user program often opens a stream via one of

the possible mechanisms. The stream is set up to receive whatever informa-

tion comes from the server side. When the :datagram medium is used, no

stream is opened; instead, the server fills in an array with data and sends it

to the user side.

All actions of the user program are defined in the net:define-protocol form.

All actions of the server program are defined in the net:define-server form.

6. The user side finishes its job.

Page 85

The user program typically processes the data in some way. If the :byte-

stream or :byte-stream-with-mark medium is used, the user program closes

the stream. �

Invoking Network Services

This section describes the functions, variables, and data structures related to in-

voking network services. The primary data structures of interest are service access

paths and file access paths:

See the section "Service Access Path".

See the section "File Access Path".�

The functions and variables for invoking network services are:

net:invoke-service-on-host

Provides the simplest way to invoke a network service. Appro-

priate when it is important which host should perform the ser-

vice, such as for :login or :file service.

neti:*invoke-service-automatic-retry*

Controls whether net:invoke-service-on-host automatically

tries all paths.

net:invoke-multiple-services

Provides a way to follow multiple paths to a service at once.

Useful when it is unimportant which host provides the service;

for example, for :time service.

net:find-paths-to-service

Returns a list of service access paths for a given service on

any hosts to which a path exists. Often used to compute ser-

vice access paths for net:invoke-multiple-services. �

For information on the lower-level functions that implement service lookup and in-

vocation, see the section "Implementation of the Service Lookup Mechanism".

Service Access Path

Application programs request services using either net:invoke-service-on-host or

net:invoke-multiple-services. The generic network system then has two steps to

accomplish: find a path to the service, and invoke it.

A service access path is a structure that represents a path to a service on a host.

It describes the name of the service, any arguments to the service, the server host,

the protocol, the medium, and the desirability of the path.

Several functions used by the generic network system return one or more service

access paths, including:

Page 86

net:find-paths-to-service

net:find-path-to-service-on-host

net:find-paths-to-service-on-host

net:find-path-to-protocol-on-host

net:find-paths-to-protocol-on-host�

For example:

(net:find-path-to-service-on-host :send (net:parse-host ’card))

-->#<SERVICE-ACCESS-PATH SEND (CONVERSE) -- CARDINAL on CHAOS 61631064>

�

(describe *)

-->#<SERVICE-ACCESS-PATH SEND (CONVERSE) -- CARDINAL on CHAOS 100156265>

 is a NETI:SERVICE-ACCESS-PATH

 NETI:SERVICE: :SEND

 ZL:ARGS: NIL

 NET:HOST: #<LISPM-HOST CARDINAL 6406456>

 NETI:PROTOCOL: #<PROTOCOL CONVERSE 245141204>

 NETI:MEDIUM: #<MEDIUM-DESCRIPTION on CHAOS 100156261>

 NETI:DESIRABILITY: 0.9

 NETI:STREAM: NIL

 #<SERVICE-ACCESS-PATH SEND (CONVERSE) -- CARDINAL on CHAOS 100156265>

 is implemented as an ART-Q type array.

 It uses %ARRAY-DISPATCH-WORD; it is 8 elements long.�

Several functions used by the generic network system require one or more service

access paths as an argument, including:

net:invoke-service-access-path

neti:most-desirable-service-access-path

net:start-service-access-path-future

net:service-access-path-future-connected-p

net:continue-service-access-path-future

net:abort-service-access-path-future�

For information on how the generic network system finds one or more service ac-

cess paths, see the section "Finding a Path to a Service on a Remote Host".

File Access Path

A file access path is an internal data structure that represents a path from one

host (on which an application program requested :file service) to a file. That file

can be stored on a remote host, or on the local FEP file system. If the file access

path describes a path to a file on a remote host, part of the data structure is a

service access path. For more information, see the section "Service Access Path".

A file access path is created by the generic network system when an application

program performs an operation on a file. For example, when you give the Delete

File command, the generic network system creates a file access path to the target-

ed file, and then invokes the "DELETE" operation on it.

Page 87

The most important operation done on file access paths is the "OPEN" operation,

which returns a stream. The type of stream depends on the network protocol being

used and the arguments given to "OPEN".

In summary, when an application program performs file operations, a file access

path provides a link to the file. Some file operations are performed directly on file

access paths (such as "DELETE", "RENAME", and so on). When significant input

or output is necessary, the program sends an "OPEN" command to the file access

path, and receives a stream in return. The program then sends input or output

commands to the stream, finally closing the stream.

When you select the Peek program, and click on [File Systems], the display shows

the active and inactive file access paths. A file access path is represented as fol-

lows:

Host STONY-BROOK

 Access path to S using NFILE�

You can click Left on "Access path to S using NFILE" for a menu of operations to

perform on the access path, which typically includes:

Reset

Describe

Inspect�

Functions for Invoking Network Services

The following functions (and variable) provide an interface to the part of the

generic network system that finds paths to services and invokes them.

The internal functions that implement this mechanism are described elsewhere:

See the section "Implementation of the Service Lookup Mechanism".

net:invoke-service-on-host service host &rest service-args Function

service is a keyword symbol, host a host object. service-args are any arguments the

specified service takes. service-args and the values returned are service-dependent.

For example, the following invocation prints host Junco’s idea of the current time.

(time:print-universal-time

 (net:invoke-service-on-host :time (net:parse-host "Junco"))) �

Whether or not net:invoke-service-on-host automatically tries all paths depends

on the value of the variable neti:*invoke-service-automatic-retry*.

neti:*invoke-service-automatic-retry* Variable

If the value of this variable is not nil, net:invoke-service-on-host automatically

tries all paths. The default is nil.

Page 88

net:invoke-multiple-services (service-access-paths timeout &optional whostate ser-

vice-variable) (host-variable &rest results-variables) &body clauses Function

A useful function for following multiple paths to a service at once. It starts up

service futures for multiple hosts, and invokes the service on each host when the

connection is complete. The argument service-access-paths includes the information

on the services requested of the hosts.

A service future is a request for a service whose connection establishment is out-

standing. For simple services, like :time, this allows you to have requests outstand-

ing to more than one host at the same time. You can then pick the first or best of

several responses without a long waiting period.

Note that unlike net:invoke-service-on-host, this function is not given service-args.

net:invoke-multiple-services is intended for simple services that do not take ar-

guments. If you need to invoke services that do take arguments on multiple hosts,

you can use some of the internal functions in the generic networks system, such

as net:start-service-access-path-future. See the section "Implementation of the

Service Lookup Mechanism".

service-access-paths A form that will return a list of service access paths. Often

this is a call to net:find-paths-to-service.

timeout The maximum time to wait for any one host to respond, in six-

tieths of a second.

whostate Optional; the state to put in the status line while waiting for a

future to complete. Defaults to "service wait".

service-variable Optional; the name of a variable to be bound to the service ac-

cess path describing the service.

host A variable name to be bound to the host on which the service

was invoked.

results-variables Variables to be bound to the results of invoking the service.

clauses Clauses as for condition-case. Actually, that means that the

service-results variables are bound inside the condition-case

form, so that the first of service-results would be the error ob-

ject if an error were generated.�

For example:

(defun all-hosts-time ()

 (net:invoke-multiple-services

 ((net:find-paths-to-service :time) (* 60. 10.) "Time")

 (host time)

 (sys:network-error

 (format t "~&~A: ~A" host time))

 (:no-error

 (format t "~&~A: ~:[unknown~;~\TIME\~]"

 (if (eq host net:*local-host*) "local" host)

 time time))))�

Page 89

net:find-paths-to-service service Function

Returns a list of service access paths for the particular service and only one ser-

vice access path for any given host. The list is sorted by decreasing desirability.

For example:

(net:find-paths-to-service :time) �

net:find-paths-to-service-using-broadcast Function

Returns a list of service access paths for the particular service with access paths

using broadcast. For example:

(net:find-paths-to-service-using-broadcast :time)�

Defining a New Network Service

You can define a new network service built on the foundation of the generic net-

work system, taking advantage of the layers of network software already in place

on Symbolics computers. The new service should use a medium that is already de-

fined.

The steps for defining a new network service are:

• Defining the the server host with net:define-server.

• Defining the client host with net:define-protocol.

• Editing the namespace database on the client host.

• Adding contact identifiers for the new service on both client and server hosts.

• Defining the client host for the :local medium on the client host (optional).

Note that when you build a server, if you are using a protocol (such as Eval, Send,

Converse, NFILE, and so on) not requiring a specific medium, you can use a

generic medium such as :byte-stream.

The functions for defining new client and server sides of protocols are described in

detail at the end of this section: See the section "Functions for Defining Users and

Servers".

Defining the Server Host

Use net:define-server for defining the server side of the protocol. You can build a

server that handles all requests sent by servers using any :byte-stream medium.

The generic :byte-stream medium works for all network media implementing

:byte-stream network connections. Networks implementing the byte-stream medi-

um include Chaos, TCP, DNA, Serial-pseudonet, SNA, XNS, and many more. You

Page 90

do not have to worry about the specifics of the underlying network as long as the

server you build uses a :byte-stream medium.

Building a server that uses the byte-stream mediums enables you to avoid working

with the low-level code for other protocols such as Chaos, TCP, and DNA, just to

name a few. For example, building a :byte-stream server enables you to avoid

working with the following for a Chaos server:

(net:define-server :example-1 (:medium :chaos ...)

 (server-function-1 network-connection-stream))

Additionally, building a :byte-stream server enables you to avoid working with the

following for a TCP server:

(net:define-server :example-1 (:medium :tcp ...)

 (server-function-1 network-connection-stream))

Additionally, building a :byte-stream server enables you to avoid working with the

following for a DNA server:

(net:define-server :example-1 (:medium :dna ...)

 (server-function-1 network-connection-stream))

Defining the Client Host

After you define the server host protocol in the network stream, you have to define

the client host protocol. Use net:define-protocol for defining the client side.

Editing the Namespace Database

When the network system determines whether the client host and the server host

have a common path, the client host consults the net:define-protocol forms to de-

termine the protocols supported for the desired service. The network system con-

sults the namespace host object for the server host to determine which protocols

and mediums the server host supports for the desired service. The network system

then matches the protocols and mediums for the desired service on both hosts and

chooses the most desirable path. Therefore, the namespace host object for the serv-

er host has to contain names for service, medium, and protocol equivalent to those

in the net:define-protocol form evaluated on the client host.

(net:define-protocol :protocol (:service :medium) ...) �

Typically, the net:define-protocol form contains a generic medium (such as :byte-

stream), but the namespace host object indicates a specific medium, such as

:chaos or :tcp. A protocol server defined to use the generic :byte-stream medium

can use the specific medium :chaos, :tcp, or :dna.

Adding Contact Identifiers

The client host initially makes contact with the server host using a contact identi-

fier specifying the service requested. Make sure the contact identifier is known to

both hosts, and that it is the same on both hosts. The contact identifier serves two

purposes:

Page 91

1. It enables both hosts to communicate by informing the server host to listen

on a specific contact identifier, and by informing the client host to request a

service on that contact identifier.

2. It links the contact identifier with the actual code performing the service (on

the server host) and the code requesting the service (on the client host).

The functions for adding contact identifiers are:

Medium Function for Defining Contact Identifier

CHAOS chaos:add-contact-name-for-protocol

TCP tcp:add-tcp-port-for-protocol

UDP tcp:add-udp-port-for-protocol

DNA dna:add-dna-contact-id-for-protocol�

Defining a Client Host for the :local Medium

You can define a user side for the :local medium, which is an optimization for the

case when the user and server host are the same machine. There is no need to

edit the namespace database for a local service. Note that defining a user side for

the :local medium is an optional step.

Example of Defining a Server Using Network Server Code

1. You can specify the following code for handling all requests sent by client

hosts using any :byte-stream medium, by supplying :byte-stream as the

medium.

(net:define-server :example-1 (:medium :byte-stream

 :stream network-connection-stream)

 (server-function-1 network-connection-stream))

�

This code automatically adds an entry titled :example-1 to the list of known

protocols. When you make a request using any :byte-stream medium for pro-

tocol :example-1, the connection completes and the local variable network-

connection-stream is bound to the network connection.

2. Most network streams are buffered streams. If you write a line of code such

as (print foo stream), the data is not sent; it is placed in a buffer and waits

for further instruction. In order to send the data, you must place a zl-

user:force-output operation in your program. For example, the following pro-

gram adds two numbers and sends the result over the network:

Page 92

(defun server-function-1 (stream)

 (let* ((num1 (read stream))

 (num2 (read stream)))

 (print (+ num1 num2) stream)

 (send stream ’:force-output)))�

3. You have to make sure that both hosts are closed at the proper time. If you

do not specify a message that closes the stream, one or both of your hosts

can remain open indefinitely. In order to avoid this situation, you can perform

a closing operation within your program. Consider the following example:

(net:define-server :example-1 (:medium :byte-stream :stream

network-connection-stream)

 (server-function-1 network-connection-stream)

 (send network-connection-stream ’:close ’:abort))�

4. In order to make a server functional, you have to tell the network media

when to use a given protocol.

• For Chaos, you must associate a contact name (which is a string) with ev-

ery protocol that you use.

For example, you can inform the network medium of the Chaos protocol as

follows:

(chaos:add-contact-name-for-protocol :example-1)�

• For TCP or UDP, you must assign a port number to the protocol.

For example, you can inform the network medium of the TCP protocol as

follows:

(tcp:add-tcp-port-for-protocol :example-1 portnumber)

For more information concerning currently used port numbers, see the RFC

for assigned numbers.

• For a UDP server, you can inform the network medium of the UDP proto-

col as follows:

(tcp:add-udp-port-for-protocol :example-1 portnumber)�

For more information concerning currently used port numbers, see the RFC

for assigned numbers.

• For DNA, you associate a contact name (a string) with the protocol.

For example, you can inform the network medium of the DNA protocol as

follows:

(dna:add-dna-contact-id-for-protocol :example-1 string)�

Page 93

5. In order to define the protocol on the client host, you can use net:define-

protocol as follows:

(net:define-protocol :example-1 (:example-1 :chaos)

 (:invoke-with-stream-and-close (stream num-1 num-2)

(client-function-1 stream num-1 num-2)))

�

(defun client-function-1 (stream num1 num2)

 (print num1 stream)

 (print num2 stream)

 (send stream ’:force-output)

 (read stream))

Note that you do not have to forcibly close any connections (the server closes

the connections). The network system does a default close.

6. In order to execute a server on the server host, you inform the client host.

Consider the following example:

 (net:invoke-service-on-host service host args...)

You can also define a function enabling you to automate the procedure for ex-

ecuting a server on the server host. Consider the following:

(defun test-ex-1 (host number1 number2)

 (setq host (net:parse-host host)) ; make sure it’s real

 (net:invoke-service-on-host :example-1 host number1 number2))

You can now execute (test-ex-1 host 1 2), which returns 3.�

For information on building servers using RPC code: See the section "Example of

Creating a Simple UNIX Application for the UX".

Summary of Functions for Defining Users and Servers

net:define-protocolDefines the user side of a protocol.

net:get-connection-for-service

Can be used inside of an :invoke clause of net:define-protocol

to get a network stream to the service on the correct medium.

net:define-server Defines the server side of a protocol.

chaos:add-contact-name-for-protocol

Associates a Chaosnet contact name with the protocol name.

neti:with-server-error-disposition

Creates an environment for handling errors within a server.

Used in conjunction with net:define-server.

neti:change-server-error-disposition

Changes the error disposition for a server. Used in conjunction

with net:define-server.�

Page 94

Functions for Defining Users and Servers

net:define-protocol protocol-name (service-name base-medium) &body options

Special Form

Defines the protocol protocol-name, a keyword symbol, which provides the generic

network service service-name. base-medium is the minimum medium needed for this

protocol; it can be a specific medium, such as :chaos, for protocols that require

those features, or a generic medium such as :datagram or :byte-stream. It can al-

so be :local, meaning that the protocol is not implemented in the network at all,

but via some functions running on the local machine.

Each option is a list whose first element is a keyword. Exactly one of the following

options is required to specify the type of protocol:

(:invoke function) When the service is invoked, function is called with the service

access path as an argument. (The service access path is re-

turned by the network system when it finds a path to the re-

mote host; this happens automatically.)

(:invoke lambda-list &body body)

Defines a function to be called when a service is invoked. As

with (:invoke function), this function is called with the service

access path as its argument.

(:invoke-with-stream function)

Similar to :invoke, except that a network stream is obtained

first via the appropriate medium, using net:get-connection-for-

service. The first argument to function is the stream, and the

remaining arguments are the arguments to the service invoca-

tion.

(:invoke-with-stream lambda-list &body body)

Defines a function which is called when the service is invoked.

As with (:invoke-with-stream function), the first argument

passed to this function is the stream, and the remaining argu-

ments are the arguments to the service invocation. The code in

body is responsible for closing the stream when it is done us-

ing the stream.

(:invoke-with-stream-and-close function)

Similar to :invoke-with-stream, except that when function re-

turns, the network system closes the stream, so the function

need not do that.

(:invoke-with-stream-and-close lambda-list &body body)

Analogous to (:invoke-with-stream lamdba-list &body body)

above, except that when body returns, the network system clos-

es the stream, so body need not do that.

The following options are optional:

Page 95

(:desirability number)

number is a number between 0.0 and 1.0 that describes how

well this protocol provides the service. The default is 1.0.

(:property indicator property)

Used for higher-level protocol-defining macros that save their

own information.

In :invoke, :invoke-with-stream, and :invoke-with-stream-and-close, function can

either be a symbol, which is the name of a function, or the rest of the list can be

a lambda-list and body for the function.

For :invoke-with-stream and :invoke-with-stream-and-close the first element of

the lambda-list is the stream variable, which will be bound to the stream returned

by net:get-connection-for-service; the other elements are arguments to the service

invocation. See the function net:get-connection-for-service. If you want to pass

connection-args to net:get-connection-for-service, the first element of the lambda-

list should not be a stream variable, but rather a list whose first element is the

stream variable and whose other elements are the connection-args.

Higher-level protocols such as LOGIN and FILE provide their own mechanisms for

informing the service system of the implementation of new protocols. These are

macros that expand into a net:define-protocol form with suitable options. They

are not documented.

The following example defines a local version of the time service. Note that nil is

returned if the time is not known locally. In general, how a protocol indicates that

it cannot provide a service is defined by the service itself. For some services, such

as time, this is done via the returned value. For others, an error is signalled. This

error can then be caught by the net:invoke-multiple-services macro.

(net:define-protocol :local-time (:time :local)

 (:invoke (ignore)

 (and time:*time-is-known-p*

 (time:get-universal-time))))�

The following example defines the Chaosnet RFC/ANS version of the time protocol.

time-simple is a function that just takes the bytes from the :read-input-buffer

message to stream and deposits them together into a 32-bit time, returning nil if

the datagram is formatted incorrectly (for example, does not contain exactly four

data bytes).

(net:define-protocol :time-simple (:time :datagram)

 (:desirability .75)

 (:invoke-with-stream-and-close (stream)

 (time-simple stream nil)))�

The following example defines a simple remote EVAL protocol over TCP and

Chaos. The purpose of the protocol is to ship a form to another host, evaluate the

form, and ship the results back.

Note that this protocol is defined to use ASCII characters. This is so non-

Symbolics hosts may define servers for this protocol. If ASCII compatibility is not

Page 96

an issue, removing :ascii-translation t from the stream creation options would al-

low the full Symbolics character set to be used.

Also note that this example uses a generic :byte-stream medium. This option

gives both TCP and Chaos versions with no extra effort. The system handles the

details.

(net:define-protocol :simple-eval (:simple-eval :byte-stream)

 ;; The list (stream :ascii-translation t :characters t)

 ;; tells the network system to bind STREAM to a

 ;; bidirectional network stream created by

 ;; NETI:GET-CONNECTION-FOR-SERVICE with options

 ;; :ASCII-TRANSLATION T, etc.

 ;; If you trust the defaults for

 ;; NETI:GET-CONNECTION-FOR-SERVICE, you can replace

 ;; this entire list with the symbol STREAM.

 ;;

 ;; The rest of the arglist represents the arguments

 ;; passed to INVOKE-SERVICE-ON-HOST. In this case,

 ;; there is only one, the form to be evaluated.

�

 (:invoke-with-stream-and-close

 ((stream :ascii-translation t :characters t)

 form)

 ;; Print form and read result in known environment

 (with-standard-io-environment

 (print form stream)

 (force-output stream)

 (apply ’values (read stream)))))�

Below is the local protocol. This is just an optimization in case this protocol is in-

voked with the intention of being executed on the local machine.

(net:define-protocol :local-simple-eval (:simple-eval :local)

 (:invoke (ignore form)

 ;; Read form and print result in known environment

 (with-standard-io-environment

 (eval form))))�

net:get-connection-for-service service-access-path &rest connection-args Function

Can be used inside of an :invoke clause of net:define-protocol to get a network

stream to the service on the correct medium. connection-args are passed on to the

stream creator; normally they would be keyword pairs such as :ascii-translation t,

specifying that the ASCII character set be used over the network.

This gets the contact identifier from the protocol field of the service access path,

over the medium given by the medium field.

Page 97

net:define-server protocol-name options &body body Function

Define the top-level function of a network server. When a host receives a request

for connection for this service, the generic network system creates a process, and

the body given here is run in that process.

protocol-name is a keyword, the same as for net:define-protocol. options is an al-

ternating list of keywords and values. Some of these keyword-value pairs specify

the names of variables which are bound inside body, which is the server itself.

This is, in fact, implemented by the system’s defining a function whose arguments

are those variables and whose body is body.

The main keyword in the options list is :medium, whose value is a keyword speci-

fying the medium type over which this protocol operates. Normally, this is a

generic medium, such as :byte-stream, :byte-stream-with-mark or :datagram.

Sometimes, it is a specific medium, such as :chaos. It is usually preferable to use

the generic medium, when possible, even if the protocol is only used over some

particular type of network.

The following other keywords are recognized for all values of the :medium key-

word:

:address The value of this keyword is the name of a variable that is

bound to the parsed address of the user host.

:error-disposition A keyword that determines what should happen if an unhan-

dled error condition is signalled in the server. Valid error dis-

positions are:

nil or :notify

A notification is given on the server machine when any

error occurs, and the server exits (abnormally because of

the error). :notify is the default.

For finer control of error notification, you can specify

the :notify keyword with one or more error flavors, as

follows: (:notify error-flavor-1 error-flavor-2 ...). For ex-

ample, :error-disposition (:notify sys:remote-network-

error) means to send notifications of errors of the

sys:remote-network-error flavor and ignore all others.

:ignore

The server exits but no notification is given. As with

:notify you can exercise finer control over error notifica-

tion by specifying one or more error flavors with the

:ignore keyword. For example, :error-disposition (:ig-

nore sys:remote-network-error) means ignore errors of

the sys:remote-network-error flavor but notify for all

others.

:debugger

The server process enters the Debugger when an error

occurs.�

Page 98

:host The value of this keyword is the name of a variable that is

bound to the host object that is the user host.

:network The value of this keyword is the name of a variable that is

bound to the network object through which the user is con-

nected.

:process-name A string, defaulting to "protocol-name server", which is the

name of the process created to run the server.

:reject-unless-trusted

The value of this keyword is t by default. It causes the server

request to be rejected if the host requesting service is not

trusted.

:trusted-p The value of this keyword is the name of a variable that is

bound to t if the host using the service is "trusted".

:who-line The value of this keyword is t by default. It causes a message

to be displayed in the status line while the server is active. It

also causes the server to appear in the Peek active server dis-

play.

The following keywords are recognized for the :byte-stream and :byte-stream-

with-mark medium types:

:stream The value of this keyword is either a symbol, which is the

name of a variable that is bound to a bidirectional stream, or a

list of such a variable name and alternating keyword and value

options that specify how the stream is made. Keywords at this

level are:

:accept-p

If nil, :accept-p says that the stream should not be fully

opened, but the body is allowed to decide whether to ac-

cept, by sending the :accept message, or reject the ser-

vice by sending the stream a :reject message along with

a reason for rejection.

:direction

:input or :output if server needs only one direction.

Note that the connection itself is bidirectional, but the

stream accepts only one class of messages. Default is a

bidirectional stream.

:token-list

A token list stream is constructed on the supplied medi-

um, which must be :byte-stream-with-mark. For more

information, see the section "Token List Transport

Layer".

Page 99

:translation

Enables you to specify the character set that the protocol

uses. Possible values are nil, :ascii, or :unix. Note that

specifying nil causes the protocol to use the Symbolics

character set. For more information on character set

translation, see the section "NFILE Character Set Trans-

lation".

:no-close The value of this keyword is t by convention. It causes the net-

work stream to be left untouched when the body returns,

rather than closed or aborted. This is used for some protocols

in which closing the stream is part of the protocol.

:no-eof The value of this keyword is t by convention. It causes the net-

work stream to be aborted when the body returns, rather than

closed. This is used for some protocols in which closing the

stream is part of the protocol.�

The following keywords are recognized for the :datagram medium type:

:request-array The value of this keyword is a list of three variable names,

which are bound to an array, its starting index, and its ending

index. If any of the variable names is nil, or the list is not

long enough to include it, no such variable is bound. The array

within the given bounds contains any arguments to the service

that the user specified. On the Chaos network, that means that

it points to the portion of the RFC packet after the space fol-

lowing the contact name.

:response-array The value of this keyword is a list of variable names such as

:request-array. The server fills in the array with the response

data and returns two values; the first is t, if the service is

successful, or nil, if the request is rejected. The second value

is the byte index after the last byte stored in the array. Alter-

natively, the body can return a second value that is a string,

which the system stores as the contents of the array itself. In

that case, it is not necessary to specify the :response-array

keyword.�

The :chaos medium is provided for use by any network protocols that take advan-

tage of special features of Chaosnet, and would be inconvenient to implement over

a generic medium. The following keyword is recognized for the :chaos medium

type:

:conn The value is a variable to be bound to the Chaos connection,

which will be in RFC-Received state. It is not necessary to do

a chaos:listen. It is still necessary to do chaos:accept or

chaos:reject as appropriate, and to do chaos:remove-conn

when done.�

Page 100

chaos:add-contact-name-for-protocol protocol &optional contact-name Function

Creates an association between a protocol and a Chaosnet contact name when

opening connections. protocol is a keyword that identifies the protocol. contact-name

is a string that the Chaosnet uses when opening a connection (sending an RFC or

listening for a request). contact-name defaults to (string protocol).

Examples:

(chaos:add-contact-name-for-protocol :11load)

(chaos:add-contact-name-for-protocol :chaos-status "STATUS")�

neti:with-server-error-disposition server &body body Function

Creates an environment for handling errors within a server. Using the server’s

error-disposition property, this macro sets up a condition-case-if to handle any

errors not caught by the server itself.

A server’s error-disposition property is set in one of two ways: by explicit specifi-

cation when the server is defined (using the :error-disposition keyword argument

to net:define-server) or by explicitly changing the error-disposition of a defined

server with the neti:change-server-error-disposition function.

A server’s error-disposition property is ignored when neti:*server-debug-flag*

evaluates to something other than nil; if this is the case, the server process always

enters the Debugger on an error not caught by the server itself.

Note that the environment for error disposition is set up when the server is start-

ed, and subsequent use of neti:change-server-error-disposition or binding of

neti:*server-debug-flag* has no effect on that server.

neti:change-server-error-disposition protocol-name new-disposition Function

Changes the error disposition for the server handling protocol-name. Valid disposi-

tions are the same as those used in net:define-server.

Finding a Path to a Service on a Remote Host

This section describes how the Symbolics Generic Network system finds paths to a

service. In this section, the user host is a Symbolics computer. When a service is

requested, it is possible that the remote host has more than one way of providing

the desired service; it is also possible that the remote host has no way of provid-

ing the service. The user host is responsible for determining which paths (if any)

are possible, and choosing the most efficient path.

The user host must find the answers to the following questions:

• What kinds of connections is it capable of making?

Page 101

This question has two parts. First, which mediums and protocols does this host

support for the desired service? Symbolics hosts store that information in

net:define-medium and net:define-protocol forms. Second, which network con-

nections are available to this host? The networks that a Symbolics host supports

are listed in the address attributes of its host object.

• What kinds of connections is the server host capable of making?

To determine which mediums and protocols the server host supports for the de-

sired service, the user host consults the service attributes of the server’s host

object. To determine which networks are supported by the server host, the user

host consults the address attributes of the server’s host object. (When a service

is requested locally, there is no need to consult the namespace database.)�

When the user host has gathered all the required information, it generates a list

of possible paths, and chooses the best path.

See the section "Implementation of the Service Lookup Mechanism".

Finding a Path to a Local Service

Some network services can be satisfied locally, without actually using the network.

For example, some computers have their own built-in time-of-day clocks, and

servers can be provided for the time-of-day service. Symbolics computers support a

medium called :local for this purpose. When the :local medium is used, the user

and server sides communicate by Lisp function calls, passing Lisp objects directly,

rather than by sending bytes through a network.

When a service is requested that can be satisfied locally, there is no need to con-

sult the namespace. Thus, there is no need to have a service attribute with the

:local medium in its host object.

Determining What Kinds of Connections a Symbolics Computer Can Make

To answer the question "Which protocols and mediums does the local host support

for the desired service?" the user host looks up all the net:define-protocol forms

that define a user side for the desired service. If the desired service is :file, the

host might find that it supports :file service as follows:

• With :nfile protocol and the :byte-stream-with-mark medium.

• With :qfile protocol and the :chaos medium.�

To answer the question "Which networks does this host support?", the user host

looks at the address attributes in its own host object. For example:

Address: Pair: CHAOS 413

Address: Pair: INTERNET 192.10.41.135 �

Page 102

This host is on two networks: one is named CHAOS and the other is named IN-

TERNET.

Determining What Kinds of Connections a Remote Host Can Make

It is the user host that must determine what kinds of connections the server host

can make. In all networking environments, the user host has some mechanism for

figuring out what services, protocols, and mediums are supported by the other

hosts on the network. Symbolics computers use the namespace database for this

purpose.

Specifically, the Symbolics computer consults the host object for the server host.

To answer the question "Which mediums and protocols does the server host sup-

port for the desired service?", the user host looks at the service attributes. For ex-

ample if the desired service is :file, these service attributes apply:

Service: Set: FILE CHAOS NFILE

Service: Set: FILE TCP NFILE

Service: Set: FILE CHAOS QFILE�

This host can provide :file service using the :nfile protocol over the :chaos medi-

um or the :tcp medium. It can also provide :file service using the :qfile protocol

over the :chaos medium.

To answer the question "Which networks does the server host support?", the user

host looks at the address attributes of the server’s host object.

To see how the :address attributes are interpreted: See the section "Determining

What Kinds of Connections a Symbolics Computer Can Make".

Finding the Possible Paths to a Host

To find paths to a remote host, the user host needs detailed information on the

mediums it supports. The definition of a medium (in the net:define-medium form)

describes in detail what criteria must be satisfied for a connection to be possible.

The definition of a medium includes a set of possible implementations of the medi-

um. Each implementation describes a way to form a network connection using that

medium. See the function net:define-medium.

Each implementation contains one or more steps. A one-step implementation is a

way to connect directly to the server host. A two-step implementation is a way to

connect first to a gateway (a host on more than one network); the gateway then

connects to the server host. (A three-step implementation is a way to go through

two levels of gateway. None of the defined mediums actually do this, but it could

be done to any number of levels.)

Steps are of the following three types:

:network

:medium

:service�

Page 103

The last step of any implementation must be either :network or :medium; steps

other than the last step must be :service. This means that a one-step path must

be either :network or :medium.

Steps and implementations are represented as lists in the net:define-medium spe-

cial form. An implementation is a list of steps. A step is a two-element list whose

first element is the type of step (either :network, :medium, or :service).

The three types of steps are defined as follows:

(:network network-type)

A connection is possible if the user host and the server host

are both on the same network of type network-type. The con-

nection can be formed directly over that network. For net-

works of type CHAOS, DIAL, or INTERNET, the "same

network" means that the name of the network is the same

(in the address attribute of the host object) for both hosts.

For networks of type DNA, the area number must also be

the same for both hosts.

(:medium medium) A connection is possible if the two hosts can connect with

the specified medium.

(:service service) A connection is possible if a a connection can be formed to

a server providing service, and that server can complete the

remaining steps of the path. �

For example, the following form defines the :chaos medium:

(define-medium :chaos (:byte-stream)

 (((:network :chaos))

 (service-access-path &rest connection-args)

 body))�

The :chaos medium includes only one implementation, which is a one-step imple-

mentation. To establish a :chaos or :chaos-simple connection to a target host,

both hosts must be on the same :chaos network. (Note that the keyword :chaos is

being used in two independent ways here: as a medium, and as a network type.)

For the purposes of this example, the following form defines the medium called

:tcp and provides two implementations:

(define-medium :tcp (:byte-stream)

 ((:network :internet))

 ((:service :tcp-gateway) (:medium :tcp)))�

The first implementation is a one-step implementation; it says that you can estab-

lish a :tcp connection with a host if you are on the same :internet as it. The sec-

ond implementation says that you can establish a :tcp connection by finding a path

to any gateway host that provides the :tcp-gateway service, and that can, itself,

form a :tcp connection to the target host. Note that the second step is a :medium

step. This allows many levels of gateway to be used.

Page 104

This becomes clearer with an example: See the section "Example of Finding a Path

to a Host".

Example of Finding a Path to a Host

This section provides an example to show how the user host finds a path to a de-

sired service on the server host.

In this example, the host named Pokey requests :file service from the host named

Gumby. Both Pokey and Gumby are Symbolics computers.

The request for :file service happened when the user of Pokey gave the Edit File

command, and entered the pathname of a file stored on Gumby. Thus, Pokey is the

user side and Gumby is the server side of this transaction.

Pokey needs to answer the question "Which protocols and mediums are supported

locally for the desired service?" It checks the net:define-protocol forms, and finds

that it supports three different user protocols for :file service:

• :qfile protocol over the :chaos medium

• :nfile protocol over the :byte-stream-with-mark medium

• :dap protocol over the :dna medium�

Pokey supports the :nfile protocol over the generic :byte-stream-with-mark medi-

um, which is built on :byte-stream, another generic medium. With generic medi-

ums, it is necessary to find the set of specific mediums that support it; a generic

medium is not sufficient in itself to make a connection. Each definition of a specif-

ic medium that implements :byte-stream (and hence, :byte-stream-with-mark) in-

cludes information on how Pokey can make a connection using that medium.

Pokey finds three net:define-medium forms that provide implementations for the

:byte-stream medium: :tcp, :chaos, and :dna. Thus Pokey has determined that it

supports :nfile over the :tcp, :chaos, and :dna mediums. Pokey thus supports the

following user protocols and specific mediums:

• :qfile protocol over the :chaos medium

• :nfile protocol over the :chaos medium

• :nfile protocol over the :tcp medium

• :dap protocol over the :dna medium�

Pokey must now answer the question "Which protocols and mediums are supported

by the remote host for the desired service?" It checks the host object for Gumby,

and sees the following two attributes:

Service: Set: FILE CHAOS QFILE

Service: Set: FILE CHAOS NFILE

Service: Set: FILE TCP NFILE�

This indicates that Gumby supports the following server protocols for :file service:

Page 105

• :qfile protocol over the :chaos medium

• :nfile protocol over the :chaos medium

• :nfile protocol over the :tcp medium�

Pokey eliminates the :dna medium as a possibility because Gumby does not sup-

port a server side for :dap protocol over the :dna medium.

At this point there are two possibilities that Pokey must investigate: using the

:chaos medium or the :tcp medium.

Pokey investigates the first possibility: using the :chaos medium. The definition of

the :chaos medium contains a single implementation, which is:

(:network :chaos)�

This implementation means that to establish a connection to a remote host using

the :chaos medium, both hosts must be on the same Chaos network. Pokey must

now determine whether Pokey and Gumby are on the same :chaos network. Pokey

checks its own host object for the address attributes, and finds:

Address: Pair: CHAOS 1043

Address: Pair: INTERNET 192.10.41.135

Address: Pair: DNA 3.7�

Pokey then looks at the host object for Gumby, and finds the following address

attribute:

Address: Pair: PRIVATE-CHAOS 424

Address: Pair: INTERNET 139.5.17.135�

Both Pokey and Gumby are on networks of type CHAOS. (To find out the type of a

network, look in the network object for its type attribute.) Pokey is on a network

called CHAOS, and Gumby is on a network called PRIVATE-CHAOS. Since the

networks have different names, they are different Chaos networks. Thus Pokey

eliminates the possibility of using the :chaos medium to connect to Gumby.

Pokey now considers the :tcp medium. The definition of the :tcp medium contains

two implementations:

((:network :internet))

((:service :tcp-gateway) (:medium :tcp)))�

The first implementation of the :tcp medium indicates that you can establish a

:tcp connection with a host if you are on the same :internet as it. Pokey looks at

the address attributes again to decide whether Pokey and Gumby are on the same

Internet. They are both on the network named INTERNET, so they are on the

same Internet network. Pokey has succeeded in finding the first possible path: us-

ing the :tcp medium to make a one-step connection to Gumby, over the same In-

ternet network.

The second implementation of the :tcp medium says that you can establish a :tcp

connection by finding a path to any gateway host that provides the :tcp-gateway

service, and that can, itself, form a :tcp connection to the target host.

Page 106

Pokey searches the namespace database for hosts that provide :tcp-gateway ser-

vice. This time Pokey is not asking for that service on a specific host, but on any

host.

Pokey finds a host named Collie, whose host object contains the following service

attribute:

Service: Set: TCP-GATEWAY CHAOS TCP-GATEWAY�

(Note that Symbolics computers do not support :tcp-gateway service; Collie is a

different kind of host.)

To be able to connect to Collie and request the :tcp-gateway service, Pokey must

use the :chaos medium, and Pokey and Collie must be on the same Chaosnet.

Collie’s host object contains the following address attributes:

Address: Pair: CHAOS 1055

Address: Pair: INTERNET 192.10.41.266�

Both Pokey and Collie are on the network named CHAOS. Pokey can request the

:tcp-gateway service using the :chaos medium.

Pokey now investigates whether Collie can connect to Gumby using :tcp. Both Col-

lie and Gumby are on the same Internet network, so this too is possible.

Pokey has succeeded in finding a second path to :file service on Gumby. Pokey can

connect to Collie using :chaos medium. In turn, Collie can connect to Gumby us-

ing the :tcp medium.

It is up to Pokey to choose the more efficient of the two possible paths. Pokey

chooses the one-step path (using :tcp to connect directly) rather than the more

time-consuming two-step path (using :chaos to connect to Collie, and then :tcp to

connect to Gumby).

For information on how application programs can interface to this mechanism: See

the section "Invoking Network Services".

For more details on the implementation of the mechanism described here: See the

section "Implementation of the Service Lookup Mechanism".

Desirability of Network Protocols

When you request a network service the Symbolics generic network system finds

the possible paths to that service. When more than one path to the service exists,

the generic network system tries to choose the most efficient path. The network

system computes a number representing the desirability of each path.

Desirability is a floating-point number between 0 and 1. When computing desir-

ability, the network system takes into account three factors: the desirability of the

protocols (as indicated in the net:define-protocol forms), the host-protocol-

desirability attribute of site objects in the namespace, and per-network dynamic

information.

Page 107

The relative desirability factors of the various Symbolics network protocols are as

follows:

• IP/TCP protocols have the highest desirability.

• Chaos protocols are less desirable than IP/TCP.

• DNA protocols are less desirable than Chaos. �

You cannot change the desirability of the protocol, or the dynamic information. But

you can alter the desirability factors at your site by entering a value for the host-

protocol-desirability site attribute in the namespace database. See the section

"The Host Protocol Desirability Site Attribute".

Implementation of the Generic Network System

This section describes the internals of the network system, including the imple-

mentation of packets (the basic unit of communication), interfaces (software to

move packets from one machine to another), networks, mediums, the service lookup

mechanism, and servers. Before reading this section, you should be familiar with

the standard issues involved with implementing networks.

The functions described here are not intended to be used by application programs

nor directly by the service mechanism. Application programs interact with the user

interface described elsewhere: See the section "Interfacing to the Generic Network

System".

Note that the term "protocol" is used in this section to mean something different

than it does at the higher network levels. In this section, protocols are at a lower

level than mediums.

Packets

Packets are the basic unit of communication between network hosts. The Symbol-

ics computer implements a packet as an array of fixnums, typically sys:art-8b or

sys:art-16b. A Chaosnet packet is a sys:art-16b array, but a TCP packet might be

a sys:art-8b array.

sys:art-string is another useful array type. The Chaosnet often views the data por-

tion of the packet as a string, and it uses the subpacket mechanism to make a

sys:art-string "packet" out of the data portion of the Chaos packet.

The Packet Pool

Packets are the most volatile item of the network. They are allocated and deallo-

cated at rates of possibly hundreds per second. It is inefficient and impractical in

both time and space to create a new packet each time one is needed. Therefore, a

pool of packets exists; users request packets from that pool, and later return pack-

ets to it.

Page 108

This section describes the implementation of packets and provides some of the de-

sign considerations.

The microcode operates under one restriction: the packets with which it deals

must be wired (that is, not pageable), because it is not allowed to take a page

fault during packet transmission or reception. This restriction leaves the network

four ways to implement packets:

• Have two pools of packets: one pool is wired, and thus acceptable to the mi-

crocode; the other pool is available to users and networks, and is not wired. Un-

wired packets are copied to wired packets for transmission, and wired packets

are copied to unwired packets after reception.

• Have one pool of packets. Some packets are wired and accessible to the mi-

crocode for reception, and are unwired after reception. The other packets are

available to users and networks and are wired before transmission.

• Have one pool of packets that are always wired.

• Have two pools of packets: one pool is wired and acceptable to the microcode;

the second pool is composed of packets that are created and wired when needed.

When a user requests a packet, the wired pool is checked first. If the wired pool

is empty, the unwired pool is checked. If the unwired pool is empty, more pack-

ets are created (with restrictions) and put on the unwired pool. When a packet

is taken from the unwired pool, it is wired and is considered part of the wired

pool.�

The first two possibilities allow for a large number of user packets, because these

packets do not need to be wired in physical memory and can therefore be created

if more are needed immediately. However, the first possibility requires copying be-

tween the wired and unwired packets. Copying can be a time-consuming operation

and might take a page fault on the unwired packet. The second possibility does not

require copying, but wiring and unwiring also take time.

The third possibility does not require extra time to copy or to wire and unwire,

nor can it take page faults on the packets. It also removes the need to keep track

of the exact state of each packet (copied, wired, or unwired). For these reasons,

the core network system for Release 5 implemented one pool of always-wired pack-

ets.

This implementation had a few drawbacks. Because all packets were wired, there

had to be a limited number so they would not take up too much physical space.

Extreme measures had to be taken to ensure that applications and protocol imple-

mentations deallocated all packets.

The Release 6.0 network implementation used the fourth possibility; it is still in

use now. The rationale is that under extreme circumstances or heavy load, as on a

file server, the preallocated number of wired packets might not be enough. How-

ever, to keep from wiring and unwiring packets continuously, the user still sees a

wired packet.

Page 109

The restriction for creating more packets is that not more than one-fifth of the

physical memory is wired. Therefore, a server machine with four memory boards

might have more packets than a user machine with one memory board.

To minimize the number of wired packets, the system unwires packets in an at-

tempt to make the number of wired packets no greater than the value of

neti:*target-number-of-wired-packet-buffers*. Packets are created and wired as

the need arises, and possibly unwired to minimize physical memory requirements.

You should use unwind-protect to be sure to deallocate all packets that are allo-

cated. For example:

(defun do-something-eventually-freeing-packet (packet)

 (unwind-protect

 (progn ... do some things ...

 (pass-the-packet-along-eventually-freeing-packet

 (prog1 packet (setq packet nil)))

 ... do some more things ...)

 (when packet (deallocate-packet packet))))�

If an error occurs during do some things and the function is exited, the unwind-

protect frees the packet, which is part of the function’s contract. When the packet

is passed along, the prog1 arranges for the packet to be passed as an argument

and the variable to be set to nil in the scoping of the outer function. It is now the

responsibility of the called function to return the packet. Do some more things is

not allowed to use the packet (because it is supposed to have been freed) and the

unwind-protect clause does not free the packet, both because the variable packet

was set to nil.

Functions Related to Packets

neti:allocate-packet-buffer &optional (wait-p t) Function

Gets a packet from the free pool if there is one available and returns it to the

caller. If there is no available packet and wait-p is nil, neti:allocate-packet-buffer

returns nil. Otherwise the function waits for an available packet and returns it.

There is also an :allocate-packet message to interfaces, which might be useful in

some applications. See the message :allocate-packet.

neti:allocate-packet-buffer is the lowest level function to allocate a packet and is

not normally the function for networks or applications to call directly. Networks

usually define their own packet allocation routine which, in addition to calling

neti:allocate-packet-buffer, coerces the packet to its own format and fills in de-

fault fields. See the section "Example of Programming with Packets".

The variable neti:raw-packet-buffer-size has the number of bytes in the array re-

turned by the function. See the variable neti:raw-packet-buffer-size.

neti:deallocate-packet-buffer packet-buffer Function

Page 110

Gives packet-buffer back to the free pool of packets. packet-buffer may be a packet

or any of its subpackets. neti:deallocate-packet-buffer is the lowest-level function

to deallocate a packet. Networks usually define their own packet deallocate routine,

which can be a stub (that is, it just calls neti:deallocate-packet-buffer) or which

can adjust meters and do other internal bookkeeping.

neti:raw-packet-buffer-size Variable

Stores the number of bytes in the array returned by neti:allocate-packet-buffer.

This is the maximum number of bytes that any packet can have. The value de-

pends on the architecture of the machine and, to a lesser extent, on the particular

system release. It is not guaranteed to be the same from one release to another.

Nevertheless, since packet buffers can be used as temporary storage, knowing their

size can be important.

neti:*target-number-of-wired-packet-buffers* Variable

The number of packet buffers the system tries to keep wired. Users can set this to

a higher value on machines that have a need for many packets (for example, on a

server machine).

neti:*actual-number-of-wired-packet-buffers* Meter

The number of wired packet buffers actually wired. When a packet is returned to

the packet pool this is compared with neti:*target-number-of-wired-packet-

buffers* to determine whether the packet should be unwired.

neti:*number-of-unwired-packet-buffers* Meter

The number of unwired packet buffers. This can be thought of as the number of

extra packets needed during the most extreme use of the network.

Subpackets and Coercing Packets

The packet that neti:allocate-packet-buffer returns is a sys:art-8b array of some

length that is dependent on the architecture of the machine: See the variable

neti:raw-packet-buffer-size. Raw sys:art-8b arrays are insufficient for some net-

work purposes. For example:

• Chaosnet views the packet as 16-bit words, so it prefers an sys:art-16b array.

Chaosnet also views the data portion of a Chaos packet (that is, offset 16 bytes

from the beginning of the packet) as a string. Control information is associated

with each packet that is not part of the packet data.

• It is often desirable to give the array a name using the named-structure-symbol

feature of arrays so the packet prints out nicely and describe prints out the

fields of the packet.�

Page 111

The array type and byte offset can be done with displaced arrays. The extra con-

trol information can be stored in the array leader. The named-structure-symbol can

also be stored in the array leader. We refer to an array of this type that is dis-

placed to a packet as a subpacket. The function neti:get-sub-packet takes a packet

or subpacket and returns a subpacket with the desired attributes.

neti:get-sub-packet sub-packet array-type nbytes &optional leader-length named-

structure-symbol Function

Returns an array of type array-type that is displaced nbytes (not array elements)

from the beginning of sub-packet with a leader length of leader-length, if supplied,

and a named structure symbol of named-structure-symbol, if supplied. Note: array-

type must be a symbol. For example, the following is wrong:

(neti:get-sub-packet sub-packet art-8b 0)�

It should be:

(neti:get-sub-packet sub-packet ’art-8b 0).�

The byte offset is from the beginning of the subpacket passed as the argument,

which is not necessarily the beginning of the network packet. The byte offset is in

bytes, not array elements. For example, a TCP packet is offset from the beginning

of an Internet packet, and the data portion of the TCP packet is offset from the

beginning of the TCP packet, not the beginning of the Internet packet. A simpli-

fied TCP/IP implementation might look like this:

(setq ip-packet (neti:get-sub-packet packet ’art-8b 0))

(setq tcp-packet (neti:get-sub-packet ip-packet ’art-8b tcp-packet-offset))

(setq tcp-data (neti:get-sub-packet tcp-packet ’art-string tcp-data-offset))�

A common way to define the elements of an array leader is to use the :array-

leader option of defstruct. However, this is not sufficient for subpackets. The sys-

tem requires several array-leader elements for its own use. The proper method is

to include the neti:sub-packet structure using the :include option of defstruct.

You should also use the :size-symbol option to get the size of the resulting leader,

which can then be used as the leader-length argument to neti:get-sub-packet. See

the section "Example of Programming with Packets".

The leader-length argument to neti:get-sub-packet is not required. If it is not

supplied, the system supplies its own. Subpackets always have a fill-pointer that is

available for general use. The named-structure-symbol argument to neti:get-sub-

packet is also not required.

neti:get-sub-packet creates new displaced arrays only if it is necessary. When it is

necessary to create a new subpacket with specific attributes, neti:get-sub-packet

caches the information in the packet buffer. The next time the same attributes are

requested, neti:get-sub-packet returns the cached subpacket instead of creating a

new one.

Note: When using sys:art-16b arrays, the first byte is the least significant byte of

the 16-bit word and the second byte is the most significant. This Symbolics com-

Page 112

puter byte ordering (known as little-ender) is the same as that of PDP-11s and

VAX-11s, but is reversed from the big-ender ordering used by PDP-10s, PDP-20s

and 68000s. Chaosnet is a little-ender protocol, but the DoD Internet Protocol (IP)

and the DoD Transmission Control Protocol (TCP) are big-ender protocols. Thus,

care must be taken when forming multibyte words from a packet or depositing a

multibyte word into a packet.

A negative byte offset can be used to get space for a header at the beginning of a

subpacket. When this is done, it is necessary to copy the packet if there is not

enough space at the beginning for the new header. Unless the caller knows that

enough space is available, it should call neti:get-sub-packet-maybe-copying in-

stead of neti:get-sub-packet.

neti:get-sub-packet-maybe-copying free-flag length sub-packet array-type nbytes

&optional (leader-length neti:sub-packet-size) (named-structure-symbol nil) Function

Returns an array of type array-type that is displaced nbytes (not array elements)

from the beginning of sub-packet with a leader length of leader-length, if supplied,

and a named structure symbol of named-structure-symbol, if supplied. It also re-

turns a new value for the free-flag. If a negative offset (nbytes) forces copying of

the data, free-flag indicates whether the old packet should be freed. In this case, t

is returned as its new value.

Example of Programming with Packets

In this example we define a packet named my-packet that we abbreviate to

mypkt. mypkts have a protocol header that is 16-bit words, so we view a mypkt

as a sys:art-16b array. We view the data, however, as a string (an array of type

sys:art-string). In order to link mypkts together, we define a link slot in the

packet’s array-leader. This avoids creating conses that are likely to be scattered

throughout virtual memory and that will soon be discarded.

First we define the packet structure and the byte offset to the data portion. Note

that my-packet-leader includes the structure neti:sub-packet. This is required for

all packets that have a meaningful array leader.

(defstruct (my-packet :array

 (:conc-name mypkt-)

 (:constructor nil)

 (:size-symbol mypkt-data-start))

 opcode ;packet opcode

 destination-address ;protocol address of packet’s destination

 source-address ;protocol address of packet’s origin

 number) ;packet number for sequencing

Page 113

�

(defstruct (my-packet-leader (:include neti:sub-packet)

 (:constructor nil)

 (:conc-name mypkt-)

 (:size-symbol mypkt-leader-length))

 link) ;the link to the next packet in a list

 ;NIL means end of list, T means not on list

�

;;; we multiply by 2 because we consider my-packet an art-16b array

;;; which has two bytes per element.

(defconst mypkt-data-start-byte-offset (* mypkt-data-start 2))�

We now define coercion routines to convert a packet given to us by somebody else

into a mypkt. We also define a routine that, given a mypkt, extracts the data por-

tion as a string. Note in packet-my-packet both the leader length and the named

structure symbol are supplied. The leader length is required here since we define

and use a link slot in the array leader. The named structure symbol is supplied so

a packet will print as #<MY-PACKET 7042346> and so describe will print the

header fields. my-packet-data-string supplies neither the leader length nor a

named structure symbol because we have no immediate need for either of them.

The string does have a fill-pointer, which we are allowed to modify.

�

(defun packet-my-packet (packet)

 (neti:get-sub-packet packet ’art-16b 0

 mypkt-leader-length ’my-packet))

�

(defun my-packet-data-string (mypkt)

 (neti:get-sub-packet mypkt ’art-string

 mypkt-data-start-byte-offset))�

Here we define allocation and deallocation meters, and a simple routine that allo-

cates a mypkt.

;;; Allocation and deallocation meters.

(defvar *mypkts-allocated* 0)

(defvar *mypkts-deallocated* 0)

�

(defun get-mypkt ()

 (prog1 (packet-my-packet (neti:allocate-packet-buffer))

 (incf *mypkts-allocated*)))�

Alternatively, if we want to wait optionally and fill in some extra fields, we could

define get-mypkt this way:

Page 114

(defun get-mypkt (&optional (wait-p t))

 (let* ((packet (neti:allocate-packet-buffer wait-p))

 (mypkt nil))

 (when packet

 (incf *mypkts-allocated*)

 (setq mypkt (packet-my-packet packet))

 (alter-my-packet mypkt

 opcode initial-opcode

 destination-address initial-destination-address

 source-address initial-destination-address

 number initial-number)

 (alter-my-packet-leader mypkt link T)) ;not on a list

 mypkt))�

Finally, we create a routine to free a mypkt:

(defun return-mypkt (mypkt)

 (incf *mypkts-deallocated*)

 (neti:deallocate-packet-buffer mypkt))�

Miscellaneous Notes on Packets

neti:packet-being-transmitted sub-packet Function

Returns non-nil if sub-packet is on the transmit list of some interface and nil if

not. A packet can be deallocated when it is on a transmit list (neti:deallocate-

packet-buffer is careful), but packets cannot be queued for transmission more

than once. This routine is commonly used by retransmission routines. If a packet

is already on some transmit list, it cannot be requeued for transmission.

neti:map-packet-buffers function &rest other-function-args Function

Applies function (with any given arguments other-function-args) to each packet buf-

fer or allocated packet buffers, not just free packet buffers. For example:

(neti:map-packet-buffers #’print)�

prints each packet buffer. This is primarily a debugging tool to scan all the pack-

ets. A network implementor might determine some module is not freeing packets.

By scanning all existing packet buffers, the implementor might be able to find the

missing packets and determine why and/or where they were not freed.

Because there are a limited number of packet buffers, and because some network

implementations have internal packet buffering (for example, the Chaosnet buffers

packets that arrive out of order), it is possible to run out of packets in the free

pool. When this happens a deadlock is reached, since no packets can be allocated

to cause communication to relieve the deadlock and no packets can be received by

the microcode. neti:allocate-packet-buffer is usually the first to notice when there

are no packet buffers in the free pool. After too long a period of inactivity, connec-

Page 115

tions might timeout, close down, and return packets. This might spark a complete

recovery, but at the expense of losing one or more connections.

To try and recover before timeouts happen a packet buffer panic is triggered. A

packet buffer panic informs all known networks and all known interfaces that a

packet buffer panic is happening. Networks and interfaces then try to deallocate

packet buffers in such a way that no information is lost. For example, interfaces

that do not guarantee packet delivery might free packets on the transmit list, and

networks that do not depend on reliable transmission might free packets on out of

order lists. In both of these cases the packets will be retransmitted eventually so

no information is lost.

Packet buffer panics can be triggered for two reasons:

• neti:allocate-packet-buffer will trigger one if there are no packets in the free

pool of packets.

• The free pool can be periodically checked and a packet buffer panic triggered if

it is empty. �

These are accomplished using the following two functions:

neti:packet-buffer-panic Function

Triggers a packet buffer panic. All known networks and all known interfaces are

sent a :packet-buffer-panic message inside a without-interrupts. This function

should not be called unless a packet buffer panic is needed.

neti:maybe-packet-buffer-panic Function

Triggers a packet buffer panic if the free pool of packets is empty. It is safe to

call this function periodically; the Chaosnet does so every 15 seconds.

Network Interfaces

In this discussion, interface means the software that communicates with an indi-

vidual piece of hardware (or sometimes software) that causes packets to be moved

from one host to another. An interface’s contract is twofold. On transmit, an inter-

face formats the packet so that it is acceptable to the hardware. For example, the

3600 family determines the Ethernet address, does some extra formatting of the

packet, and puts the packet on the microcode’s transmit list. On receive, an inter-

face accepts a packet from the hardware, performs some validity checks, deter-

mines for what network the packet is, and delivers the packet to the network.

An interface can also be an encapsulation interface. For example, it is possible to

put non-Chaosnet protocol packets in Chaos UNC packets and use the Chaosnet as

the transmission medium. In this case the interface puts the non-Chaosnet packet

in a Chaos UNC packet for transmitting. On reception it extracts the non-Chaosnet

packet from the UNC packet (using neti:get-sub-packet) and delivers it to the ap-

propriate network.

Page 116

Interfaces (and networks) are represented as flavor instances. Interfaces and net-

works send messages to each other to agree on parameters, to determine state,

and to transmit and receive packets.

Standard Communication with Interfaces

This section describes the common uses of interfaces. It does not describe how to

write your own interface. The information here should be sufficient for you to

make your network protocol implementation communicate correctly with the exist-

ing software.

All active interfaces are kept on the variable neti:*interfaces*. Networks should

use this list when they need to know about all the available interfaces. When a

network is enabled it usually adds itself as one of the network users of each inter-

face that supports the network protocol. This list can also be used to initialize

routing information and to distribute routing information.

neti:*interfaces* Variable

The list of all active interfaces. Interfaces add themselves to this list as part of

network initialization.

Interfaces and networks do not automatically start sending packets back and forth;

they are explicitly informed about each other. Specifically, for each interface in

neti:*interfaces* a network should determine if the interface supports the network

and if there is a local protocol address that can be assigned to the interface. If

these conditions are met, the interface can add itself as one of the network users

of the interface. This is done with the :add-network message to interfaces.

:add-network network local-address Message

Requests the interface to start receiving packets for, and to start accepting packets

for transmit from, network. protocol-address is to be the interface’s local protocol

address for network.

If the network wishes, all of this can be performed automatically by the function

neti:find-network-interfaces.

neti:find-network-interfaces network Function

Asks all known interfaces whether they support network. Returns a list of conses,

one cons for each interface that supports network. Each cons is of the form (inter-

face . protocol-address). An interface that requests a specific address gets it if it is

available; other interfaces are assigned the remaining addresses arbitrarily.

neti:find-network-interfaces returns nil if no interface supports network. An :add-

network message is sent to each interface that is assigned an address.

It is not necessary for networks to remember the protocol address of each inter-

face. Instead, you can use the :protocol-address message to an interface. This can

Page 117

be useful for initializing and distributing routing information, and for determining

if the interface is currently supporting the network.

:protocol-address network Message

Returns network’s local protocol address of the interface if the interface is current-

ly supporting the network. Otherwise, nil is returned.

Sending a Packet to an Interface

After networks and interfaces negotiate and a network adds itself as one of the

users of an interface, it is possible to receive and transmit packets on the inter-

face. Networks transmit packets by sending a message to the appropriate interface,

as described in this section. In the other direction, interfaces deliver packets to

networks. See the section "Packet Reception".

Simply asking an interface to transmit a raw (sub)packet is not sufficient. If the

packet contains data that may need to be retransmitted, the interface should not

free the packet. Networks also send control information that is not retransmitted,

so it is allowable for the interface to free such a packet after transmission. There-

fore, an interface needs to be told whether or not it must free the (sub)packet af-

ter transmission.

The interface must also know to whom to send the packet. A network is responsi-

ble for determining to what protocol address the packet should be sent, but it is

not responsible for determining the hardware address of the foreign host. An inter-

face is given both the network and the protocol address of the destination and does

whatever is necessary to deliver the packet to the network implementation of the

foreign host.

:transmit-packet protocol-packet free-flag network protocol-address Message

Causes protocol-packet to be transmitted on the interface. The destination of the

packet is protocol-address within network’s addressing domain. It is the responsibil-

ity of the interface to convert the protocol address into a hardware address, if

necessary. It uses protocol-address, network, and the information communicated

during the :add-network message to do the conversion. If free-flag is nil the pack-

et is not freed by the interface after it is transmitted. This is common for packets

that might need to be retransmitted. If free-flag is not nil, the packet will be freed

by the interface after transmission.

Miscellaneous Notes on Interfaces

Some interfaces need to prepend bytes to a packet before transmission. A Chaosnet

UNC encapsulation interface would require 16 bytes for the Chaosnet header. If it

can be determined beforehand which interface will probably transmit a packet, it is

desirable to allocate a packet with the necessary number of available bytes at the

Page 118

beginning. Otherwise, the packet would have to be copied in order to make room

for the additional bytes. The :allocate-packet message to a network interface re-

turns such a packet.

:allocate-packet &optional (wait-p t) Message

Similar to the neti:allocate-packet-buffer function. It gets a packet from the free

pool of packets if one is available, possibly waiting. The (sub)packet that is re-

turned to the caller might have an additional byte offset, depending on the trans-

mit needs of the interface.

Implementation of Networks

An implementor of a network protocol or protocols usually writes code for routing

packets on output, processing packets on input, connection control, handling over-

due events (timeouts), opening and closing of connections, and receiving packets

from and delivering packets to users and applications. These issues are quite spe-

cific to the particular protocol(s) being implemented and are beyond the scope of

this document. What is documented here are the conventions for integrating a net-

work protocol implementation with the mechanisms of the system.

Defining a Network

Networks are represented as flavor instances. Networks that are in the namespace

database are based on the net:network flavor. Each network flavor has a keyword

associated with it that identifies the type of the network. The namespace system

uses this to convert from the network type to the appropriate flavor to instantiate.

The flavor the namespace system uses is stored on the net:network-type-flavor

property of the type keyword.

net:network Flavor

The flavor on which networks that are in the namespace database are built.

net:network-type-flavor Property

A property given to keyword symbols. The symbol identifies the type of network;

the value is the flavor to instantiate. If there is no such property, the namespace

system defaults the flavor to net:network.

For example, the first step in the system’s definition of the Chaosnet is:

(defflavor chaos-network () (network))

(defprop :chaos chaos-network net:network-type-flavor)�

You can define a network that is not in the namespace database. This is useful

when developing and debugging a network or when implementing a private net-

work that does not need to be in the namespace database. You must define appro-

Page 119

priate methods to sufficiently masquerade as a network based on the net:network

flavor. As part of this masquerading, simply define a flavor without any base fla-

vors. You need not define a type and give the type symbol a net:network-type-

flavor, but it will not do any harm. For example:

(defflavor magic-network () ())

(defprop :magic magic-network net:network-type-flavor)�

As an inverse of the net:network-type-flavor property, networks based on the

net:network flavor can be sent a :type message that returns the keyword identify-

ing the type of the network. By convention, a method should be defined for mas-

querading networks as well.

:type Message

Returns the type keyword of the network.

For our magic network, this would be defined as:

(defmethod (:type magic-network) () ’:magic)�

Implementation of Network Addresses

People usually refer to hosts by textual names. Applications usually convert the

name into a host object by calling net:parse-host. The lower-level portions of net-

works, however, deal with parsed addresses. A parsed address is an object that rep-

resents the network address of a host in the form most convenient for the machine

and network implementation. This representation is often not very useful for a hu-

man or for transmitting as text (for example, when transacting with a namespace

server). The textual form of an address is the unparsed address and is a string.

For example, the hexadecimal number #X+0A000006 is the parsed form of the un-

parsed Internet address "10.0.0.6". To convert between the two formats, methods

for :parse-address and :unparse-address need to be defined.

:parse-address address Message

Returns a network address by parsing address, which is a string. address is a tex-

tual representation of a network address. The result may be any object and de-

pends on the addressing format and needs of the network, and is usually a number

or sys:art-8b array. The method of the net:network base flavor returns the argu-

ment address.

:unparse-address parsed-address Message

Returns a string that is the textual representation of the network address parsed-

address. The methods for :parse-address and :unparse-address should be inverses;

eq-ness is not required. The method of the net:network base flavor returns the

argument parsed-address.

Page 120

For example, parsing "401" as a Chaosnet address returns the octal number 401,

which in turn unparses as a string "401". This is accomplished by the following

definitions.

�

(defmethod (:parse-address chaos-network) (string)

 (parse-number string 0 nil 8 t))

�

(defmethod (:unparse-address chaos-network) (address)

 (format nil "~O" address))�

Invoking Mediums

Once a path to the service is chosen, the service lookup mechanism has enough in-

formation to know what to do, but it is not quite able to do it yet. It can ask the

network to convert a base medium for a protocol into a network-specific medium.

It must also be able to invoke the specific medium. To do this, you use the

net:define-medium macro. If the network medium implements a generic base

medium (for example, :byte-stream or :datagram), then existing protocol imple-

mentations defined with net:define-protocol will be able to use the network medi-

um. For nongeneric mediums you can use net:define-protocol to support high-level

protocols in the ways specific to the network.

See the function net:define-medium.

Packet Reception

After a network adds itself as a user of an interface, using the :add-network mes-

sage to interfaces, the interface may start receiving packets on behalf of the net-

work. When a packet arrives and the interface determines to which network the

packet should be delivered, it sends the network a :receive-packet message with

the packet as the first argument. The interface supplies two more arguments: the

interface on which the packet was received, and the network’s protocol address of

the interface. These arguments might be useful in updating routing tables or im-

plementing an interface keep-alive count.

The packet that is delivered to the network is just a packet. One of the first

things that should be done is to extract the protocol packet from the packet by us-

ing neti:get-sub-packet or by using a function for that purpose as in the packet-

my-packet example described elsewhere: See the section "Example of Programming

with Packets".

Note: There are some circumstances when the interface argument is nil. This usu-

ally happens when a network or an interface determines that the packet is des-

tined for itself. In this case, the interface on which the packet was received does

not really have a meaning since the packet was not really received. Even though

the interface is nil, the network’s protocol address of the intended interface is still

supplied.

Page 121

:receive-packet packet interface interface-protocol-address Message

Processes packet according to the definition of the network. interface is the inter-

face from which the packet was received, or possibly nil if the packet was not real-

ly received by an interface. interface-protocol-address is the network’s protocol ad-

dress of the interface and is always valid even if interface is nil.

Packet Transmission

The routing layer of a network determines the interface and the immediate desti-

nation host for a packet by using algorithms and databases defined by the particu-

lar network. The routing layer then sends the packet and immediate destination

host as arguments in the :transmit-packet message to the interface. See the sec-

tion "Sending a Packet to an Interface".

Initializing, Resetting, and Enabling Networks

Once a network is fully defined, instances of it can be made. This is often done

automatically by the namespace system as needed. Of all the known networks, only

local networks, networks to which the machine is attached, actually receive and

transmit packets. They must be initialized when the machine is cold or warm

booted. You may also reinitialize individual networks or the entire network system

manually.

The first part of initializing local networks is for the networks to be declared lo-

cal. This is done by putting them on the list neti:*local-networks*. When Lisp is

initialized during booting, the system scans the network addresses of the local ma-

chine, as determined by the namespace database, and puts the networks it finds

there on neti:*local-networks*.

neti:*local-networks* Variable

The list of networks to which the local machine is directly attached.

If a network is local but is masquerading as a namespace object, it will not be au-

tomatically put on net:*local-networks*. To interact with global network opera-

tions, the network should add itself to net:*local-networks*. The proper time to do

this is after the primary network is enabled but before the system enables all oth-

er local networks. This is done by adding an initialization to the following list.

net:after-network-initialization-list Variable

An initialization list that contains initializations that are performed after the pri-

mary network is determined and enabled.

For example (remember, this is only for masquerading networks):

Page 122

;;; make an instance that we always consider to be local

(defvar *magic-network* (make-instance ’magic-network))

�

;;; put it on *local-networks* when the file is loaded

(push *magic-network* neti:*local-networks*)

�

;;; and make sure it gets on *local-networks* when the

;;; machine is warm or cold booted.

(add-initialization "Add Magic Network"

 ’(push *magic-network* neti:*local-networks*)

 nil ’neti:after-network-initialization-list)�

You can perform two major operations on networks: reset and enable. There is also

a minor operation that some networks support optionally or internally: disable. Re-

setting a network completely shuts down the operation of the network and every-

thing associated with it. Enabling a network initializes databases, attaches the net-

work to interfaces that support it, and makes the network available for use. Dis-

abling a network puts it in a quiescent state where packets are not processed. The

network can later be enabled and should continue operation from the point at

which it was disabled. As part of the system’s initialization of the network system

it sends each network on net:*local-networks* a :reset message followed by an

:enable message.

:reset Message

Requests the network to reset itself. This normally involves closing down connec-

tions, freeing queued packets awaiting processing, entering a state that refuses to

receive or transmit packets, and perhaps informing users and applications of the

network that it is shutting down.

:enable Message

Requests the network to enable itself. This normally involves (re)initializing

databases, attaching to interfaces that support the network, and perhaps announc-

ing to users and applications that the network is now available.

:disable Message

Requests the network to disable itself. This normally involves freeing queued-up

packets and entering a state that refuses to receive or transmit packets. It does

not affect connections. If the network is then enabled, all connections should be in-

tact (provided timeout intervals did not expire) and the network should be able to

continue from the point just before disabling. If disabling is supported, it is usual-

ly the first step in a reset operation.

Byte Stream Conventions

Page 123

If the network provides a byte-stream interface, the stream should support some

additional messages in addition to the standard stream messages.

:foreign-host Message

Returns the host object of the foreign side of the connection.

:accept Message

Accepts a request for connection.

:reject &optional reason Message

Rejects a request for connection. Reason, if supplied, is a textual reason for refusal

and should be communicated to the requestor if the network is able to do so.

Interfacing to Ethernets

To convert from protocol addresses to Ethernet hardware addresses, Symbolics us-

es the address resolution scheme as described in "An Ethernet Address Resolution

Protocol", ARPA document RFC 826. Part of the initial negotiation between Ether-

net interfaces and networks is for the interface to determine what the value of the

Ethernet type field is for the network and other relevant parameters for address

resolution.

:address-resolution-parameters Message

Returns multiple values describing the network’s Ethernet attributes. Inapplicable

values need not be returned or may be returned as nil. The values are:

1. The 16-bit Ethernet type field as assigned to this network protocol by Xerox.

Note: The first byte that is transmitted is the most significant byte of this 16-

bit word. This is the opposite of the normal Symbolics byte ordering within

words.

2. The number of bytes in a protocol address for the network.

3. A keyword describing the format of an address for the network. This may be

:little if the address is a number and the first byte is the least significant

byte of the address, :big if the address is a number and the first byte is the

most significant byte of the address, :array if the address is a sys:art-8b ar-

ray, or :fixnum-big if the address is a fixnum and the first byte is the most

significant.

4. The network protocol address that should cause hardware broadcast if the in-

terface supports hardware broadcast and if the interface is asked to transmit

a packet to this protocol address.�

Page 124

For example, the Chaosnet defines this method as:

(defmethod (:address-resolution-parameters chaos-network) ()

 (values #x+0804 2 ’:little 0))�

Interaction with Peek Network Mode

The Peek program can maintain visual information about networks and interfaces.

Networks that are not based on the net:network base flavor may define methods

for the following messages that return nil.

:peek-header Message

Returns a scroll item that is the header display for the network. The method of

the net:network base flavor returns a scroll item that enables one to reset, en-

able, describe or inspect the network. It is usually unnecessary to provide a prima-

ry method.

:peek Message

Returns a scroll item (usually a list of scroll items) detailing various parts of the

network. This can include details of connections, meters, debugging information,

and routing tables. The method of the net:network base flavor returns nil.

Implementation of Network Mediums

Network mediums are defined with the special form net:define-medium:

net:define-medium medium types &body implementations Function

Defines a medium named medium, which supports types, which is either a list of

mediums, or an empty list. When defining a generic medium, types is often an

empty list. For example, the following forms define the generic mediums :byte-

stream and :datagram:

(define-medium :byte-stream ())

(define-medium :datagram ())�

When defining a specific medium that supports one or more generic mediums,

types contains the names of the generic mediums supported. For example, this

form defines the :chaos medium, which is a specific medium that supports two

generic mediums, :byte-stream and :byte-stream-with-mark:

(define-medium :chaos (:byte-stream :byte-stream-with-mark)

 implementations...)�

An element of the body can either be an implementation or a list of the following

form:

Page 125

(implementation lambda-list . body)�

This syntax provides a function associated with the last step of the implementa-

tion. Note that in a multi-step implementation, steps before the last must be

:service steps, which cannot have an associated function.

Each implementation describes a way to form a network connection using this

medium. Each implementation contains one or more steps. A one-step implementa-

tion is a way to connect directly to the server host. A two-step implementation is a

way to connect first to a gateway (a host on more than one network); the gateway

then connects to the server host. (A three-step implementation is a way to go

through two levels of gateway. None of the defined mediums actually do this, but

it could be done to any number of levels.)

Steps are of the following three types:

:network

:medium

:service�

The last step of any implementation must be either :network or :medium; steps

other than the last step must be :service. This means that a one-step path must

be either :network or :medium.

Steps and implementations are represented as lists in the net:define-medium spe-

cial form. An implementation is a list of steps. A step is a two-element list whose

first element is the type of step (either :network, :medium, or :service).

The three types of steps are defined as follows:

(:network network-type)

A connection is possible if the user host and the server host

are both on the same network of type network-type. The con-

nection can be formed directly over that network. For net-

works of type CHAOS or INTERNET, the "same network"

means that the name of the network is the same (in the

address attribute of the host object) for both hosts. For net-

works of type DNA, the area number must also be the same

for both hosts.

(:medium medium) A connection is possible if the two hosts can connect with

the specified medium. See below for additional notes on the

syntax of a :medium step.

(:service service) A connection is possible if a connection can be formed to a

server providing service, and that server can complete the

remaining steps of the path. �

The syntax of an encapsulating :medium step is:

(((:medium underlying-medium))

 (service-access-path-arg

 underlying-connection/connection-args

 {connection-args}) . body)�

Page 126

service-access-path-arg is a variable that is bound to the service access path.

underlying-connection/connection-args may be a symbol or a list. If it is a symbol, it

is bound to the underlying connection obtained via underlying-medium. If underly-

ing-medium is a stream medium, this is a stream.

If underlying-connection/connection-args is a list, it is of the form:

(underlying-connection {underlying-connection-args})�

underlying-connection is as above. {underlying-connection-args} are passed to the

stream as connection arguments. Note that they must be compile-time constants.

Here is an example of this syntax:

(define-medium :byte-stream-with-mark ()

 (((:medium :byte-stream))

 (ignore (raw-stream :characters nil) &rest connection-args)

 (make-instance (if (get (locf connection-args) :token-list)

 ’buffered-token-stream

 ’buffered-stream-with-mark)

 :raw-stream raw-stream)))�

Normally, a medium with a :medium step receives the following arglist:

(service-access-path stream &rest args)

However, you can include the form (declare (neti:call-with-medium t)) in the

body of the medium step, which makes the arglist:

(service-path medium &rest args)

This allows the medium function to obtain its own connection. For more informa-

tion,

see the section "Examples of Defined Mediums".

Examples of Defined Mediums

:byte-stream-with-mark Medium

The following form defines the generic medium :byte-stream-with-mark:

(define-medium :byte-stream-with-mark ()

 (((:medium :byte-stream)) (ignore (raw-stream :characters nil)

 &rest connection-args)

 (make-instance (if (get (locf connection-args) :token-list)

 ’buffered-token-stream

 ’buffered-stream-with-mark)

 :raw-stream raw-stream))) �

Page 127

:chaos Medium

The following form defines the :chaos medium:

(define-medium :chaos (:byte-stream :byte-stream-with-mark)

 (((:network :chaos)) (service-access-path &allow-other-keys &key

 byte-size (characters t)

 &rest args)

 ;;++ futures

 (setf args (si:rem-keywords args ’(:byte-size)))

 (lexpr-funcall #’open-stream

 (neti:service-access-path-host service-access-path)

 (get-chaos-contact-name-for-protocol service-access-path)

 :byte-size (and (not characters) (or byte-size 8))

 args)

))�

:chaos is a specific medium that supports two generic mediums: :byte-stream and

:byte-stream-with-mark.

The :chaos medium includes only one implementation, which is a one-step imple-

mentation. To establish a :chaos connection to a target host, both hosts must be

on the same :chaos network. (Note that the keyword :chaos is being used in two

independent ways here: as a medium, and as a network type.)

:chaos-simple Medium

The following form defines the :chaos-simple medium:

(define-medium :chaos-simple (:datagram)

 (((:network :chaos)) (service-access-path &rest connection-args)

 (let ((host (neti:service-access-path-host service-access-path))

 (contact-name (get-chaos-contact-name-for-protocol

 service-access-path)))

 (if (eq host ’:broadcast)

 (lexpr-funcall #’open-broadcast-simple-stream contact-name

 connection-args)

 (lexpr-funcall #’open-simple-stream host contact-name

 connection-args))))) �

:tcp Medium

The following form defines the medium called :tcp:

(define-medium :tcp (:byte-stream)

 (((:network :internet)) (service-access-path &rest connection-args)

 (multiple-value-bind (host network ignore)

 (neti:decode-service-access-path-for-medium service-access-path)

 (ignore network)

 (let* ((protocol-name (neti:protocol-name

Page 128

 (neti:service-access-path-protocol

 service-access-path)))

 (port-number (tcp:protocol-name-tcp-port protocol-name t)))

 (cl:apply #’tcp:open-tcp-stream host port-number

 nil

 connection-args))))

 ((:service :tcp-gateway) (:medium :tcp))

 ((:service :byte-stream-gateway) (:medium :tcp)))�

:tcp is a specific medium that supports one generic medium: :byte-stream.

This form defines three implementations of the :tcp medium. The one-step imple-

mentation of the :tcp medium is:

(:network :internet)

This implementation says you can establish a :tcp connection with a host if you

are on the same :internet as it.

The two-step implementations are:

((:service :tcp-gateway) (:medium :tcp))

((:service :byte-stream-gateway) (:medium :tcp))�

These implementations say that you can establish a :tcp connection by finding a

path to any gateway host that provides either the :tcp-gateway or the :byte-

stream-gateway service, and that can, itself, form a :tcp connection to the target

host. Note that the second step is a :medium step. This allows many levels of

gateway to be used.

:pseudonet Medium

The :pseudonet medium always uses a gateway to access a network of type

:gateway-pseudonet. This is used for accessing hosts that are not really on a net-

work but are connected to some other host via something weaker, such as serial

lines.

(define-medium :pseudonet (:byte-stream)

 ((:service :pseudonet-gateway)

 (:network :gateway-pseudonet)))�

Implementation of the Service Lookup Mechanism

This section describes the internal functions and variables that are used by the

generic network system when the Symbolics computer is requesting a service from

another host. Thus in this section the Symbolics computer is the user side. For in-

formation on activities performed when the Symbolics computer is the server side:

See the section "Starting Network Servers".

Summary of Functions for Service Lookup and Invocation

Page 129

The user interface for looking up and invoking services is described elsewhere: See

the section "Invoking Network Services".

Finding Paths to Services and Protocols

A service access path is a structure that represents a path to a service on a host.

It describes the name of the service, any arguments to the service, the server host,

the protocol, the medium, and the desirability. See the section "Service Access

Path".

Note that the functions that find paths are not given service-args, because the

mechanism that finds service access paths does not implement a very fine weed-

ing-out process. The namespace database knows whether network protocols and

hosts implement a service, but does not contain information on whether that ser-

vice can be performed under some restricted set of arguments. Thus service-args

are given only to the functions that invoke services.

net:find-paths-to-service-on-host

Returns a list of all possible service access paths for a particu-

lar service on a given host.

net:find-path-to-service-on-host

Returns a single service access path for a particular service on

a given host, or signals an error if none can be found.

net:find-paths-to-protocol-on-host

Similar to net:find-paths-to-service-on-host, except that the

protocol itself is specified.

net:find-path-to-protocol-on-host

Similar to net:find-path-to-service-on-host, except that the

protocol itself is specified.

net:invoke-service-access-path

Takes a service access path and returns the service-dependent

values, as net:invoke-service-on-host would.

neti:most-desirable-service-access-path

Takes a list of service access paths sorted by desirability and

randomly chooses one from the equally desirable subset at the

front. This distributes the server load evenly in the long run. �

Service Futures

A service future is a request for a service whose connection establishment is out-

standing. For simple services, like :time, this allows you to have requests outstand-

ing to more than one host at the same time. You can then pick the first or best of

several responses without a long waiting period.

net:start-service-access-path-future

Initiates a request for service on a given service access path.

Page 130

net:service-access-path-future-connected-p

Takes a service path previously given to net:start-service-

access-path-future and returns t if the connection is now

complete.

net:continue-service-access-path-future

Takes a service access path that is connected, and returns the

values that invoking the service would. If the connection was

not completed successfully, an error is signalled.

net:abort-service-access-path-future

Takes a service path previously given to net:start-service-

access-path-future and cancels the outstanding connection.�

Functions for Service Lookup and Invocation

The functions and variables that provide a user interface for invoking network ser-

vices include:

net:invoke-service-on-host

neti:*invoke-service-automatic-retry*

net:invoke-multiple-services

net:find-paths-to-service

�

They are described elsewhere: See the section "Functions for Invoking Network

Services".

net:find-paths-to-service-on-host service host &optional only-need-best must-have-

one Function

Returns a list of all possible paths to a particular service on a given host. The list

is sorted by decreasing desirability. For example:

(net:find-paths-to-service-on-host :time (net:parse-host "bronx"))�

If only-need-best is supplied and non-nil, this indicates that we are going to use the

best path only, which saves time searching for many longer paths.

If must-have-one is supplied and non-nil, this function signals an error if no paths

are found. Otherwise nil is returned.

net:find-path-to-service-on-host service host Function

Returns a single access path or signals an error if none can be found. For exam-

ple:

(net:find-path-to-service-on-host :time (net:parse-host "bronx"))�

Page 131

net:find-paths-to-protocol-on-host protocol host Function

Similar to net:find-paths-to-service-on-host, except that the actual protocol is

specified and only the network path is computed by the system. It is preferable to

specify a service rather than a specific protocol in order to allow future transpar-

ent extension to a new protocol.

net:find-path-to-protocol-on-host protocol host Function

Similar to net:find-path-to-service-on-host, except that the actual protocol is spec-

ified and only the network path is computed by the system. It is preferable to

specify a service rather than a specific protocol in order to allow future transpar-

ent extension to a new protocol.

neti:most-desirable-service-access-path service-access-path-list Function

Takes a list of service access paths sorted by desirability, as returned by net:find-

paths-to-service or net:find-paths-to-service-on-host, and randomly chooses one

from the equally desirable subset at the front. Since most paths to a service are

equally desirable (such as a service provided by all Symbolics computers at the lo-

cal site), this function should be used in preference to first for selection, since it

distributes the server load evenly in the long run.

net:invoke-service-access-path service-access-path service-args Function

Takes a service access path and returns the service dependent values, as

net:invoke-service-on-host would.

net:start-service-access-path-future service-access-path &rest service-args Function

Initiates the request for service. service-access-path and service-args are as for

net:invoke-service-access-path. If the service is implemented locally, or the con-

nection medium does not support asynchronous connections, the values nil and the

values normally returned by this service are returned. Otherwise, the value t is

returned.

net:service-access-path-future-connected-p service-access-path Function

Takes a service access path previously given to net:start-service-access-path-

future and returns t if the connection is now complete. This can mean either suc-

cessful or unsuccessful completion. This is useful for constructing wait predicates.

net:continue-service-access-path-future service-access-path Function

Takes a service access path which is connected (or which you have timed out on)

and returns the values that invoking the service would. If the connection was not

completed successfully, an error is signalled. If you are starting up several services

Page 132

but looking for only one answer, that means you must be prepared to intercept the

error sys:network-error and go on to the next one. This is in practice necessary

anyway, since byte-stream-oriented protocols can crash in the middle, datagram-

oriented protocols can return malformatted answers that are not detected by the

NCP itself, and so on. The net:invoke-multiple-services macro aids in writing pro-

grams that do this.

net:abort-service-access-path-future service-access-path Function

Takes a service access path previously given to net:start-service-access-path-

future and cancels the outstanding connection. Useful for cleanup handlers.

Messages Related to Service Lookup

All networks are not created equal. Networks (and implementations) can differ in

processing speed, amount of overhead, time to recover from lost packets or errors,

size of packets, and supported features (for example, broadcast or existence of out-

of-band signals). Desirability is the result of weighing these factors. See the sec-

tion "Desirability of Network Protocols".

The desirability is a floating-point number between 0.0 and 1.0. Most networks

have a constant desirability, though a network may determine the desirability dy-

namically. For example, a network based on telephone calls might compute the de-

sirability based on time of day.

:desirability Message

Returns a floating-point number between 0.0 and 1.0 that is the relative desirabili-

ty of using the network as a medium.

Some networks can support broadcasting a request for a service throughout the

network. Sometimes the ability to broadcast is based on the protocol. For example,

it is often reasonable to broadcast a request for the current time, but it might not

be reasonable to broadcast a request for login service.

:supports-broadcast protocol-name Message

Returns non-nil if protocol-name, a keyword, can be supported by broadcasting a

request throughout the network. Otherwise, nil is returned. The method of the

net:network base flavor returns nil.

The implementation of a protocol communicates over a medium. General protocols

usually use a :byte-stream or :datagram medium. More specialized protocols can

use more specialized mediums. To actually implement a protocol and its base medi-

um over a particular network, the network-specific medium must be determined.

:possible-medium-for-protocol protocol-name base-medium Message

Page 133

Returns the name of the medium to use to implement base-medium on the net-

work. If protocol is not supported, or a medium cannot be determined from base-

medium, then nil may be returned. The method of the net:network base flavor re-

turns nil.

Some networks have services that all machines on the network are expected

(though not required) to support.

:default-services Message

Returns a list of three-element lists that are the default services that each host

that implements the network is expected to provide. The elements of the lists are:

1. Generic protocol name

2. Network-specific medium name

3. Network-specific protocol name�

For example, the Chaosnet might return the following:

 ((:chaos-status :chaos-simple :chaos-status)

 (:uptime :chaos-simple :uptime-simple))�

The method of the net:network base flavor returns nil.

Starting Network Servers

This section describes the actions taken by a Symbolics computer when it is the

server side of a connection, responding to a request for a network service from an-

other host. For information on activities performed when the Symbolics computer

is the user side, see the section "Implementation of the Service Lookup

Mechanism".

Finding a Server Description

The network first converts the network specific request (for example, contact name

in Chaosnet or port number in TCP) into a protocol keyword. This is done in a

network-dependent manner using a database defined and maintained by the net-

work.

The network next finds a server description for the protocol. In this discussion a

server description is a structure that identifies what protocol the server imple-

ments, what medium the implementation uses, the function to call to provide the

service, the number and type of arguments the function expects, and a list of addi-

tional properties associated with the server. Server descriptions are kept in the list

neti:*servers* and the protocol the server implements can be obtained by calling

neti:server-protocol-name with the server as the argument.

If a server is found for the protocol, it is customary to spawn a process at this

point (using process-run-function). This allows the network to continue its duties

independently of server establishment and operation. One of the properties on the

Page 134

property list of the server description is :process-name. Its value is the suggested

name for the process.

Calling the Server Function

The function neti:funcall-server-internal-function is called to set up for calling

the server function. The first argument is the server description. The rest of the

arguments are keyword-value pairs. Some of the pairs are based on the property

list of the server, some are based on which medium the server uses, and some are

based on the arguments to the server. It is acceptable to supply pairs that are not

necessarily needed. Arguments to the server that are needed but not supplied de-

fault to nil.

Commonly Used Arguments to Servers

This section describes several commonly used arguments to servers. You can use

neti:server-argument-descriptions to find out what arguments a server takes.

:reject-unless-trusted

If this property is non-nil and the host requesting the service

is not trusted, the request for the service should be refused.

:trusted-p If this is one of the arguments to the server, :trusted-p and a

determination of the requesting host’s trustedness should be

one of the keyword-value pairs given to neti:funcall-server-

internal-function.

:host If this is one of the arguments to the server, :host and the

host object for the foreign host should be one of the keyword-

value pairs given to neti:funcall-server-internal-function.

:network If this is one of the arguments to the server, :network and the

network invoking the server should be one of the keyword-

value pairs given to neti:funcall-server-internal-function.

Commonly Used Arguments to Mediums

The major dispatch is based on which medium the server uses. Networks can sup-

port several generic mediums: :byte-stream, :byte-stream-with-mark, and

:datagram. A network can also implement network-specific mediums and network-

specific servers that use them.

If the server uses the :byte-stream or :byte-stream-with-mark medium, :stream

and a stream should be one of the keyword-value pairs given to neti:funcall-

server-internal-function. Unless there is an explicit :accept-p nil pair in the

:stream-options property of the server, the request for connection is automatically

accepted. If the :accept-p property is nil, the server is responsible for accepting or

rejecting the request by sending either the :accept or :reject message, respective-

ly, to the stream. If the server returns normally and if the :no-eof property of the

Page 135

server is nil or not specified, the stream should be closed synchronously. Other-

wise, the stream should be closed in abort mode.

If the server uses the :datagram medium, a different set of arguments is passed

to neti:funcall-server-internal-function. Three keyword-value pairs are always

supplied. The server does not need to accept these keywords.

• :response-array is a sys:art-8b or sys:art-string array for the response

• :response-array-start is the first array index available for the response

• :response-array-end is the last array index (exclusive) available for the re-

sponse

If :request-array is one of the arguments to the server, three additional keyword-

value pairs are supplied.

• :request-array is a sys:art-8b or sys:art-string array that contains the request

• :request-array-start is the first array index that contains the request

• :request-array-end is the last array index (exclusive) that contains the request�

Server functions for datagram protocols return two values. The first is a success

flag. If this is nil, the request is refused. If it is not nil, a reply is generated. The

second value is either a number that is the number of bytes in the response array

that are valid, or a string that is the response and that must be copied into the

response array.

If the server uses a network-specific medium, the network should supply whatever

keyword-value pairs it determines are needed by the server.

Remember, it is acceptable to supply keyword-value pairs to neti:funcall-server-

internal-function that are not needed by the server. This might make setting up

the argument list to neti:funcall-server-internal-function easier.

Functions Related to Starting Servers

The following functions and variables are used by Symbolics computers that are

responding to a request from another host. The Symbolics computer is the server

side of the connection.

neti:*servers* Variable

The list of all supported servers, as defined by the net:define-server macro.

neti:server-protocol-name server Function

Returns the keyword that identifies the protocol the server implements.

neti:server-medium-type server Function

Page 136

Returns the keyword that identifies what medium the server uses.

neti:server-function server Function

Returns the function that gets called to perform the service.

neti:server-number-of-arguments server Function

Returns the number of arguments the function expects.

neti:server-argument-descriptions server Function

Returns a list of keywords that identify the expected arguments. For example, the

list (:stream :host) means the first argument is a stream and the second argu-

ment is the host object of the requesting host.

neti:server-property-list server Function

Additional properties of the server. This might include a suggested process name

and stream options.

neti:funcall-server-internal-function server &rest arguments Function

This is the general function for invoking a server after the network has deter-

mined the necessary arguments for the server function. server is a server descrip-

tion structure. arguments are keyword-value pairs containing any information the

server might need to know. neti:funcall-server-internal-function matches the sup-

plied keywords with the argument descriptions in server and invokes the server

function. This function is just an argument matcher and does not close byte

streams or handle the result of a datagram server.

Network, Medium, and Protocol Descriptions

This chapter describes four types of networks: Chaosnet, Dialnet, Internet, and

DNA. All Symbolics computers are equipped to support Chaosnet. All Symbolics

computers have the software to support Dialnet; however, a modem is also needed

to use Dialnet.

Sites that purchase the optional IP/TCP software package can support Internet

networks. Similarly, sites that purchase the optional DNA software package can

support DNA networks. A DNA network is one in which hosts communicate using

DECnet protocols.

The Internet and DECnet protocols are fully documented by other sources. See the

section "References to IP/TCP Protocol Specifications".

See the section "References to DECnet Protocol Specifications".

Page 137

In addition to describing the four types of networks, this chapter contains protocol

specifications for the BYTE-STREAM-WITH-MARK network medium, the token list

transport layer, the NFILE file protocol, and two namespace protocols. All Symbol-

ics computers support these protocols.

Internet Networks

Introduction to Internet Networks

In Symbolics terminology, Internet is a type of network. If a site supports Internet:

• The site’s namespace database has a network object of type Internet.

• One or more hosts have Internet addresses; the addresses are stored in the

address attribute of the host objects. See the section "How to Obtain an Inter-

net Address". See the section "Format of Internet Addresses".

• Hosts can communicate with other hosts on the Internet using standard IP/TCP

protocols; the known protocols are stored in the service attributes of the host

object. �

The optional IP/TCP software package enables Symbolics computers to communi-

cate with IP/TCP protocols. These protocols are listed elsewhere: See the section

"TCP and UDP Protocols Supported by Symbolics Computers as Users". See the

section "TCP and UDP Protocols Supported by Symbolics Computers as Servers".

Two kinds of sites could take advantage of the IP/TCP software package:

• A site that has other computers that can communicate with IP/TCP protocols,

but cannot communicate with Chaosnet; the IP/TCP software package would en-

able the Symbolics computers at the site to communicate with the other hosts.

• A site that has hosts connected to the ARPA Internet; the IP/TCP software

package would enable the Symbolics computers at the site to have ARPA Inter-

net access as well. �

Extensive documentation on IP/TCP protocols and other aspects of Internet is

made available by the ARPA Network Information Center. For more information:

See the section "References to IP/TCP Protocol Specifications".

The document Symbolics IP/TCP Software Package describes the installation and

site configuration procedure.

Internet Domain Names

Introduction to Internet Domain Names

Page 138

The Internet Domain Names system is a collection of specifications and procedures

which implement the DOMAIN protocol, which is commonly used on the ARPA In-

ternet. The DOMAIN protocol deals extensively with naming. It was created to ad-

dress several problems.

One major problem that the Domain system addresses is the management of the

ever-growing number of hosts on the Internet. When there were only a few hun-

dred hosts, it was reasonable to keep a master file of hosts in a central location to

be copied across the network periodically. As more and more hosts were registered,

the Internet administrators found that they wanted to separate the hosts into

smaller administrative units. Information about these hosts would then be main-

tained locally. As a result, the Domain system places these hosts in a tree-

structured administrative system.

The second major problem that the Domain system attempts to address is the diffi-

culty encountered when sending mail between different networks. Each network

has a different naming scheme. These different naming schemes have hindered the

interconnection of various networks. The Domain system attempts to allow connec-

tions between networks as diverse as Internet, CSnet, BITnet, UUCP, Symbolics

Dialnet, and others.

For instance, in the past, mail addresses looked like:

• user%host.CSnet@CSnet-Relay.ARPA

• random-host!uninteresting-host!host!user@UCBVAX.ARPA

• adi/user%host.BITnet@WISCVM.ARPA

When addresses are automatically generated by various mailers, the results can be

combined to make long and complex addresses.

If all the hosts involved are using the Domain system, all these mail addresses

may be viewed as:

• user@domain

Symbolics implements the Domain specification described in several Requests for

Comments (RFCs) available from the Network Information Center, SRI Interna-

tional. Symbolics implements the Domain specification on both TCP and Chaosnet.

See the section "References to IP/TCP Protocol Specifications".

How the Domain System is Structured

Domains are administrative entities. There are no geographical, topological, or

technological constraints on a domain. The hosts in a domain need not have com-

mon hardware or software, nor even common protocols. Most of the requirements

and limitations on domains are designed to ensure responsible administration.

The Domain system is a tree-structured global namespace that has a few top-level

domains. The top-level domains are themselves subdivided into domains. These do-

mains can be further subdivided into yet more domains, and so on.

Page 139

The administration of a domain requires controlling the assignment of names with-

in that domain and providing access to the names, addresses, and list of valid ser-

vices to users both inside and outside the domain.

The top-level domains are:

• GOV Government

• EDU Education

• COM Commercial

• MIL Military

• ORG Organization (an "other" category)

• NET Network administrative entities

Temporarily, the top-level domains also include:

• ARPA The current ARPA-Internet hosts

Additionally, the English two-letter codes identifying a country according to the In-

ternational Standards Organization (ISO) Standard for Codes for the Representation

of Names of Countries (ISO 3166, International Standards Organization, May 1981)

can be used as top-level domains.

Sufficiently large companies can qualify for their own top-level domain. As of this

writing, no company has attempted to qualify for a top-level domain.

How Domain Names Are Structured

The structure of a domain name is formally prescribed. Domains names are print-

ed with each level of the domain name separated by a period. The Domain system

knows nothing about hosts or sites; it deals only with names. The order of appear-

ance in a domain name goes from the most specific to the most encompassing. For

example, one of the Symbolics domain names is:

SCRC.Symbolics.COM

Based on the structure of the name, we can surmise that SCRC is the particular do-

main within Symbolics, and indeed it corresponds to a site in the Symbolics name-

space. Continuing, we deduce that Symbolics is the name of the company that has

a domain name of Symbolics.COM, and that COM is the top-level domain for commer-

cial organizations. It is equally possible that SCRC is the name of a host. There is

no way to tell from the name what SCRC is.

A host named "Rocky" in the Aerospace department at Whatsamatta University

might have the domain name of:

Rocky.Aero.Whatsamatta.EDU

Page 140

Looking from the most general to the most specific, this host is a part of the EDU

domain. More specifically, it is a part of the domain Whatsamatta.EDU. Within the

domain Whatsamatta.EDU, there is another domainAero.Whatsamatta.EDU. At this

point, there is nothing to tell us if Rocky is a domain or a host in a domain. We

know that Rocky is a host, because it is stated above. But you should always be

aware of this potential ambiguity when reading domain names.

A domain name is just a name. The naming convention requires that some authori-

tative entity agree that it will be responsible for providing information about some

domain and will guarantee that the information provided will follow the domain

conventions. There is nothing implicitly better, worse, different, or otherwise un-

usual about the number of segments in a domain name.

As a consequence of the above convention, periods are effectively reserved charac-

ters. The domain Whatsamatta.EDU should not be referred to as Whats.a.matta.EDU.

The latter is in an entirely different domain. A name must contain either a char-

acter, a numeral, a dash, an underscore, or some combination of these elements.

Domain implementations are currently required to be case-insensitive.

How Genera Uses Internet Domain Names

This section describes how Genera implements Internet Domain Names, and how

they are related to the Namespace system. For related information, see the section

"The Domain System and the Namespace System".

How do Symbolics computers find network-related information?

In the Symbolics networking environment hosts must be able to obtain certain

types of information about hosts and users of the network. The Namespace system

stores that information in its database, and provides it to hosts that request infor-

mation. A typical site has one designated namespace server.

Along with the namespace database, Symbolics computers support the Internet Do-

main Names style of requesting and obtaining network-related information.

Symbolics computers look for naming information as follows:

• They first seek it in the namespace database.

• If the information is not found, and the request involves an Internet Domain

Name, they seek the information from hosts on the network called Name

servers.�

What kind of sites benefit from Internet Domain Names?

This facility is useful for:

• Sites with one or more hosts that use IP/TCP and are connected to the ARPA

Internet, or any Internet that uses Domain Names.

• Sites that use Dialnet.

Page 141

• Any site that uses the Internet Domain Names style of addressing. �

When is the Internet Domain Names facility used?

The Internet Domain Names facility is integrated with the generic network sys-

tem’s procedure for finding a path to a host. When a network service is requested

from a remote host, the generic network system must find a path to that host. For

example, when you send an electronic mail message, the "To" field can contain an

Internet Domain Names style of name, such as:

To: Customer-Reports@STONY-BROOK.SCRC.SYMBOLICS.COM

The generic network system must find the network address of the host named

STONY-BROOK.SCRC.SYMBOLICS.COM in order to send the message.

How does Genera find a host’s network address?

The part of Genera that does this is called the name resolver. Specifically, it is

code that is part of net:parse-host, which is used often by the generic network

system. The name resolver first consults the namespace database for this kind of

information. If the information is not found, and the name is an Internet Domain

Names style of name (with periods separating the components), the name resolver

uses the Internet Domain Names facility. These steps are described below.

How does the name resolver search the namespace for an Internet Domain style

name?

In this case, the name resolver looks for a namespace whose internet-domain-

name attribute is SCRC.SYMBOLICS.COM, and then looks for a host named STONY-

BROOK in that namespace. If no such namespace is found, or no host is found in

such as namespace, the resolver begins to seek the information from Name

servers. A name must contain at least one period to be a candidate for this kind of

resolution.

How does the name resolver seek the Internet Domain Names information?

The name resolver determines whether it has the requested information stored in

a local cache; this would happen if it had already processed a similar request. This

step saves the resolver from making an unnecessary search for information. If the

information is not found in the local cache, the resolver seeks the information

from another host on the network. The resolver makes a request of the central

name resolver, if any host at the site provides the :domain service. If not, it

makes a request of one of several designated hosts on the network known as Name

servers.

How does the name resolver know if the site has a central name resolver?

When a host is booted, or the Reset Network command is given, the host looks in

the namespace database in the current site for any hosts that provide :domain

service. If so, the resolver always makes requests of the central name resolver in-

stead of making requests directly of the Name servers. If no host provides

:domain service, the host makes direct requests of Name servers. The host con-

sults the root-domain-server-address attribute of the site object to find out the

addresses of the servers for the top-level ("root") domain.

Page 142

What namespace objects does the name resolver create?

Because so much of the network software depends on objects being present in the

namespace, the name resolver was implemented to create a host object for hosts

that were not already stored in the namespace, but were located via some Name

server. For the host named STONY-BROOK.SCRC.SYMBOLICS.COM, a namespace called

DOMAIN is created, if not already present. A host object named STONY-

BROOK.SCRC.SYMBOLICS.COM is created in the DOMAIN namespace, if it is not already

present.

Symbolics Computers as Central Name Resolvers

Name servers are hosts that provide a service to all hosts on the Internet. A cen-

tral name resolver is a host that provides a service to all hosts at a site; that ser-

vice is described here.

Some sites gain advantages when they designate a single host to perform most of

the name resolution for the entire site. Each host at the site contains the name

resolver software, but in this configuration that code does not make requests to

Name servers on the network. Instead, it makes a request of the central name re-

solver host. Note that you can configure your site to have multiple hosts designat-

ed as central name resolvers.

A central name resolver receives requests from hosts at the site, and processes

them by requesting the desired information from Name servers. When information

is returned, the central name resolver shares it with the user host, and also stores

it in a local cache. Thus, if a second host at the site requests the same informa-

tion, the central name resolver can return it quickly, without resorting to another

network request.

To designate a host as a central name resolver, you should add the following ser-

vice attribute to its host object:

Service: Set: DOMAIN CHAOS DOMAIN�

If the resolver supports IP/TCP protocols, you should also add the following:

Service: Set: DOMAIN TCP DOMAIN�

Symbolics Computers as Name Servers

The name resolver lets a Symbolics computer go out to the network to request in-

formation from Name servers. In addition, Symbolics computers can be Name

servers themselves.

When a Symbolics computer is designated as a Name server, it has a responsibility

to provide information to other hosts on the network regarding hosts, users, and

other network objects within its domain. When it is booted, it loads a file that de-

Page 143

fines its domain and some other configuration data. Much of the information that

the Name server needs resides in the namespace database. The Genera implemen-

tation takes advantage of that, and does not require that the Name server dupli-

cate information already stored in the namespace. When the Name server needs

information not present in the namespace, it can be stored elsewhere. The file

SYS:SITE;LAUNCH-DOMAIN-SERVER.TEXT contains the pathnames of any additional data

files.

A computer that is designated to be a Name server for the ARPA Internet must

support IP/TCP, because it must be capable of communicating with other hosts on

the Internet using IP/TCP.

Note that a Symbolics computer can be a Name server even if it is not connected

to the ARPA Internet and does not support IP/TCP. For example, a site that sup-

ports only Chaosnet protocols could still use Internet Domain Names to name

users and hosts. All that is required is that each host on the network is capable of

requesting Name resolution and that the designated Name server is capable of

storing and providing the information necessary to resolve Internet Domain

Names.

It is not necessary that a Symbolics computer acting as a Name server have the

:domain service attribute in its host object.

Internet Domain Name Namespace Attribute

During installation you specify the Internet Domain Name to be associated with

the namespace in which local hosts are registered, by editing the Internet

Domain Name attribute of the namespace object that represents the local name-

space itself. All hosts that are named within that namespace then inherit the In-

ternet Domain Name that is entered in the namespace object.

For example, the SCRC namespace object might have this attribute:

Internet Domain Name: SCRC.Symbolics.COM�

SCRC|JUNCO is a host named Junco in the SCRC namespace. Junco inherits the

Internet Domain Name of its namespace, so its Internet Domain Name is:

Junco.SCRC.Symbolics.COM

In some cases a host in that namespace is not in the same Internet domain. An in-

dividual host can override the Internet domain of its namespace by entering a val-

ue in the Internet Domain Name attribute of its host object. In this example the

host SCRC|GRACKLE has the Internet Domain Name Grackle.MIT.EDU.

Internet Domain Name: Grackle.MIT.EDU �

The Internet Domain Name attribute of the host object is used solely to override

the attribute of the namespace object.

The Domain System and the Namespace System

Page 144

In many ways, the Domain system and the Namespace system attempt to solve the

same problems. Both the Namespace system and Domain System attempt to deal

with the issue of naming. Both systems deal with a collection of names that refer

to a grouping of machines. In the case of the Namespace system, this collection is

called the namespace. In the case of the Domain system, we shall refer to this as

a domain or a subtree. However, it is important not to draw too close an analogy

between the two.

It might appear that both systems map to "administrative entities". Actually, the

Domain system returns attributes that are connected to names. The Namespace

system goes beyond the Domain system in describing the hosts, users, printers,

and networks within an entity known as a Site. There is nothing in the Domain

system that is equivalent to a Site. Humans make the connection between a name

and an administrative entity like a site; the Domain system software deals only

with names.

The major difference between the Symbolics Namespace system and the Domain

system is that the space containing the set of all Namespace names is flat, where-

as the Domain system is organized as a hierarchy. From one perspective, this hier-

archy can be viewed as a tree-structured administrative hierarchy.

Any site which has Symbolics computers must use the Namespace system. Commu-

nication with other Symbolics machines within a site can occur without use of the

Domain system if the Symbolics machines are in the Namespace system. Any site

which wants to communicate with other sites must use the Domain system. If

there are non-Symbolics machines at your site and you want to communicate with

them via IP/TCP, you should run the Domain system. If you are running Dialnet

and Genera, you must use the Domain system.

The Domain system and the Namespace system appear to have information which

overlaps. In point of fact, you cannot describe information via the Domain system

that is also represented in the Namespace system. In other words, the Namespace

System is always asked first, and it always wins any argument about the validity

of any piece of data. If a query about a host that is mentioned in both the Name-

space system and in the Domain system occurs, the information from the Name-

space system will be used.

There is only one way of assuring that the information in the Namespace system

and the Domain system don’t conflict: by making a Symbolics computer the prima-

ry domain resolver for machines that are in the Symbolics namespace at your site.

If this is done, the namespace information will be used to complete the domain in-

formation. If this is not done, data integrity will be compromised, since you must

manually update all host information in both the Namespace system and the Do-

main system at the same time.

If you have machines that are not part of the Symbolics namespace, you should

have a Symbolics machine serve as the piece of the domain tree that corresponds

to the Symbolics namespace, and let any other machine deal with other parts of

the domain tree. There is no useful way a machine can be a server for only part

of a namespace/subtree. Note that nowhere in this discussion have we mentioned

"site", only namespace.

Page 145

You cannot have a partial representation of the hosts in the Namespace system

and the remainder in a domain server elsewhere. Partial representation of informa-

tion in one domain server and the rest in another domain server is also not al-

lowed. Confusion occurs when there is not a single authority for a block of names,

when one server has one piece of the namespace/subtree and some other server

has the rest of the namespace/subtree. This restriction is not a characteristic of the

namespace implementation nor of any domain implementation. Rather, it is a fact

common to naming schemes. If partial information were allowed, it is easy to see

that problems would arise as soon as one server’s information differed with an-

other’s. There must be an authoritative server in any naming scheme.

If your organization already has a domain resolver running on another system, you

have two options:

• Move the domain resolver to a Symbolics machine.

• Create a new sub-domain containing the Symbolics machines with a Symbolics

machine as a domain resolver.

Summary of the Internet Domain Names Facility

Name resolver

This code is used to resolve network names, such as turning a host

name into the correct network address for that host. The code is part of

net:parse-host. If a name (such as a host name) contains periods, it is

an Internet Domain Names style of name. In these cases, the name re-

solver checks to see if the namespace database contains the information.

If not, the name resolver makes a network query for the needed infor-

mation. The name resolver queries a central name resolver if any are

designated at the site. If not, it queries one of the Name servers direct-

ly. The host can look at the Root-Domain-Server-Address attribute of

the site object to find out the addresses of the top-level Name servers. If

that attribute of the site object is empty, and no central name resolvers

have been designated for the site, then the name resolver cannot resolve

the requested name.

Central name resolver

This is a host that the site depends upon to perform name resolution for

all Symbolics computers at the site. A central name resolver is designat-

ed by having one or two service attributes for :domain service in its

host object.

Service: Set: DOMAIN CHAOS DOMAIN

Service: Set: DOMAIN TCP DOMAIN�

To resolve a name, a host first checks the namespace database. If the

name is not present in the namespace, the host submits a request to the

Page 146

central name resolver, using the :domain protocol. The central name re-

solver checks its local cache to see if it contains the requested informa-

tion. If not, it makes a request to a designated Name server. The central

name resolver decides which Name server to ask by looking at the Root-

Domain-Server-Address attribute of the site object. If that attribute of

the site object is empty, the central name resolver cannot perform the

resolution.

Name server

This is any host that provides information on names and addresses to

other hosts, using the DOMAIN protocol. Symbolics computers are capa-

ble of being Name servers. The server software is a separately loadable

system. Note that a central name resolver serves the hosts within the

site, but a Name server also serves hosts outside of the site. Sites can

configure one Symbolics computer to be both a central name resolver

and a Name server. �

References to IP/TCP Protocol Specifications

All documents identified as ARPANET Requests for Comments (RFCs) are avail-

able from the ARPA Network Information Center:

ARPA Network Information Center

USC - Information Sciences Institute

4676 Admiralty Way

Marina del Rey, California 90292

ARPANET: NIC@SRI-NIC�

For those with ARPA Internet access, they are also available online as

NIC.DDN.MIL:<RFC>RFC###.TXT

where ### is the RFC number.

Internet References

Partridge, Craig, Mail Routing and the Domain System, RFC 974, January 1986.

Stahl, Domain Administrators Guide, RFC1032.

Lottor, Domain Administrators Operations Guide, RFC1033.

Mockapetris, P., Domain Names - Concepts and Facilities, RFC 1034.

Mockapetris, P., Domain Names - Implementations and Specifications, RFC 1035.

Reynolds, J. & Postel, J., Domain Requirements, RFC 920, October 1984.

Reynolds, J. & Postel, J., Official Protocols, RFC 880, October 1983.

Information Sciences Institute, Internet Protocol, RFC 791, September 1981.

Information Sciences Institute, Internet Control Message Protocol, RFC 792, Septem-

ber 1981.

Page 147

Information Sciences Institute, Transmission Control Protocol, RFC 793, September

1981.

Postel, J., User Datagram Protocol, RFC 768, August 1980.

Postel, J., Reynolds, J., TELNET Protocol Specification, RFC 854, May 1983.

Postel, J., File Transfer Protocol, RFC 765, June 1980.

Sollins, K. R., The TFTP Protocol, RFC 783, June 1981.

Postel, J., Simple Mail Transfer Protocol, RFC 821, August 1982.

Harrenstein, K., NAME/FINGER, RFC 742, December 1977.

Postel, J., Harrenstein, K., Time Protocol, RFC 868, May 1983.

Crispin, M., SUPDUP Display Protocol, RFC 734, October 1977.

Harrenstein, K., White, V., Feinler, E., Hostnames Server, RFC 811, March 1982.

Reynolds, J., Postel, J., Assigned Numbers, RFC 870, October 1983.

DNA Networks

Introduction to DNA Networks

In Symbolics terminology, DNA is a type of network. On a DNA network, hosts

communicate using standard DECnet protocols. See the section "References to

DECnet Protocol Specifications".

If a site supports DNA:

• The site’s namespace database has a network object of type DNA.

• One or more hosts have DNA addresses. DNA addresses are stored in the

address attributes of the host objects. See the section "Format of DNA Address-

es".

• Symbolics computers can communicate with other hosts on the DNA network us-

ing standard DNA protocols; the known protocols are stored in the service at-

tributes of the host object.�

The optional Digital Network Architecture (DNA) software package enables the

Symbolics computer to access services provided by a VAX/VMS systems using the

DNA protocols. These systems can be located either on the local Ethernet or on

some other DNA network connected to the local Ethernet via a router node.

The primary goal of the Symbolics DNA software package is to enable a VAX/VMS

machine to provide services (such as FILE, LOGIN, and MAIL services) to Symbol-

ics computers using DECnet protocols. Symbolics computers support DNA user pro-

grams that communicate with DNA server programs on the VAX/VMS machine.

Page 148

The supported protocols are listed elsewhere: See the section "DNA Protocols Sup-

ported by Symbolics Computers as Users". See the section "DNA Protocols Support-

ed by Symbolics Computers as Servers".

Symbolics does not support the use of DNA protocols between two Symbolics com-

puters.

The document Symbolics DNA Software Package describes the installation and site

configuration procedure.

References to DECnet Protocol Specifications

These documents are available from Digital Equipment Corporation:

Software Documentation

1925 Andover Street TW/E07

Tewksbury, Massachusetts 01876

�

• DECnet Digital Network Architecture (Phase IV) General Description, Order No.

AA-N149A-TC

• DECnet Digital Network Architecture (Phase IV) Ethernet Node Product Architec-

ture Specification, Order No. AA-X440A-TK

• DNA Session Control Functional Specification, Version 1.0.0, Order No. AA-

K182A-TK

• DNA Data Access Protocol (DAP) Functional Specification, Version 5.6.0, Order

No. AA-K177A-TK

• DNA Routing Layer Functional Specification, Version 2.0.0, Order No. AA-

X435A-TK

• DNA Network Services Protocol (NSP) Functional Specification, Version 4.0.0, Or-

der No. AA-X439A-TK

• Guide to Networking on VAX/VMS, Order No. AA-Y512A-TE�

Dial Network Medium

The dial network transport mechanism is interfaced to the Symbolics generic net-

work system and can be used via the :dial medium. This medium is a reliable byte

stream, built on the bare serial line connection between two modems. It provides

the error detection and retransmission functions associated with most other net-

works, to protect the communication against line noise and against the loss of

characters due to slow system response.

Page 149

Any sufficiently generic network protocol can operate using the :dial medium. Of

course, the low transfer rates provided by modems make most interactive uses im-

practical. The supplied Symbolics software uses the :dial medium only for trans-

mitting electronic mail and for limited (that is, text-only) remote login.

BYTE-STREAM-WITH-MARK Network Medium

Introduction to BYTE-STREAM-WITH-MARK Network Medium

A BYTE-STREAM-WITH-MARK implements a reliable, bidirectional byte stream

with one out-of-band (but not out-of-sequence) signal called a mark. The design of

BYTE-STREAM-WITH-MARK ensures that the mark is always recognizable on the

receiving end.

The BYTE-STREAM-WITH-MARK is an encapsulation of an underlying stream,

which must support the transmission of 8-bit bytes.

The Mark as a Synchronization Signal

Marks are used to resynchronize the stream when something has occurred to inter-

rupt normal operations. For example, an application layer sending data over the

BYTE-STREAM-WITH-MARK can abort in the middle of sending that data. Recov-

ery is handled by sending a mark.

BYTE-STREAM-WITH-MARK and NFILE

BYTE-STREAM-WITH-MARK is the network medium used for NFILE. NFILE uses

the marks implemented in BYTE-STREAM-WITH-MARK to resynchronize any un-

safe control connections or data channels. For a description of NFILE’s use of

marks to resynchronize streams: See the section "NFILE Resynchronization Proce-

dure".

BYTE-STREAM-WITH-MARK and Underlying Protocols

The BYTE-STREAM-WITH-MARK medium has been implemented to run on TCP

and Chaos. Marks are implemented differently on the two protocols. However, the

basic design of the BYTE-STREAM-WITH-MARK requires that a mark always be

recognizable in the byte stream. Higher-level protocols ensure that transmissions

are received intact.

Marks on Chaosnet

A mark is recognized on Chaosnet by a packet bearing the opcode 201 (octal).

There are no data in a mark packet, so the data portion of the packet is ignored.

For other (non-Chaos) encapsulated streams that support opcode-bearing packets,

the recommended implementation is the reservation of an opcode for the mark.

Page 150

Marks on TCP: Record Mode

It is crucial for marks to always be unambiguously identified. Therefore, for TCP

(and any transport media that do not implement packets natively) a simple record

stream is imposed on the medium. The record boundaries serve only to distinguish

where a mark can occur.

A record consists of a two-byte byte count, most significant byte first, followed by

that many bytes of data. A byte count of zero is recognized as a mark.

Both the sending side and the receiving side must rigorously maintain the integri-

ty of the record boundaries. A writer to the stream must never output a byte

count without that number of data bytes following. Similarly, a reader of the

stream, after reading a byte count, has effectively contracted to read that many

bytes from the encapsulated stream, regardless of whether those bytes are request-

ed by the application layer.

Maintaining Record Integrity

This subsection deals with maintaining record integrity on non-Chaos networks.

Since Chaos implements packets natively, no special care is required to maintain

record integrity on the Chaos network.

The design discussed here guarantees record integrity; the underlying stream must

guarantee data integrity.

The basic design of BYTE-STREAM-WITH-MARK on TCP (and other transport

protocols that do not implement packets natively) is to preserve record integrity by

putting clearly demarcated, byte-counted records in the natural records of the en-

capsulated stream. Therefore, when the outer stream requests a buffer’s worth of

data from the encapsulated stream, it expects to receive a buffer containing one

entire, integral, record of that stream, complete with byte count.

Because of diverse network implementations on different operating systems, the

software that implements the encapsulated stream might not be able to provide in-

tegral record buffers to the BYTE-STREAM-WITH-MARK implementation. For ex-

ample, the writing stream could have written records that are much longer than

available buffers on the receiving system. In this case, a request to read from the

encapsulated stream returns some buffer or some amount of data representing less

than an entire BYTE-STREAM-WITH-MARK record. The input subroutine of the

BYTE-STREAM-WITH-MARK implementation must therefore return a region of

this (smaller) buffer, representing less than the full BYTE-STREAM-WITH-MARK

record. Nevertheless, the BYTE-STREAM-WITH-MARK must extract the count of

the full BYTE-STREAM-WITH-MARK record from the first such buffer of each

BYTE-STREAM-WITH-MARK record, and maintain and update this count as suc-

ceeding component buffers are read.

In this case, if the program reading from the BYTE-STREAM-WITH-MARK aborts

while reading data, the implementation of BYTE-STREAM-WITH-MARK must con-

tinue to read through the remaining buffers of the BYTE-STREAM-WITH-MARK

record that has been subdivided in this fashion.

Page 151

The user side program will have determined that an abort has occurred, and will

request the BYTE-STREAM-WITH-MARK to read up to and through the next

mark. The BYTE-STREAM-WITH-MARK will have processed a fractional record,

and must discard the remaining buffers of the record now being read.

BYTE-STREAM-WITH-MARK Abortable States

BYTE-STREAM-WITH-MARK is designed to provide end-to-end stream consistency

in the face of user program aborts. This section describes user program aborts,

and how BYTE-STREAM-WITH-MARK handles them.

Definition of User Program Aborts

Aborting the current execution of a program means to halt that execution and to

abandon it, never to complete it. The data representing the state of the execution

are irrevocably discarded.

User Program Aborts and I/O Streams

Aborting the execution of the code that manipulates I/O streams, in general, poses

significant problems. Given that a stream is a static data object, and is intended to

be used over and over again, aborting the execution of any routine manipulating a

stream can leave it in an inconsistent, unusable state.

Many operating systems solve this problem by manipulating a large subset of

streams within the confines of the supervisor or executive program, which is not

vulnerable to aborts, short of system failure. Nevertheless, the need still exists to

implement streams outside of the boundaries of the supervisor. Furthermore, the

Genera environment has no supervisor or executive program, and is thus vulnera-

ble to aborts everywhere.

BYTE-STREAM-WITH-MARK Handling of User Program Aborts

The BYTE-STREAM-WITH-MARK medium is designed to be nearly impervious to

the aborting of programs using it. Its design is based on careful analysis of all

possible states of the stream, and of the effect of aborts of the programs using the

stream in each of these states. This section provides that analysis.

A transmission is a collection of user data sent by the application level through

the BYTE-STREAM-WITH-MARK whose end is well-defined, once its start has

been recognized. For instance, the token list stream, when using BYTE-STREAM-

WITH-MARK, sends token lists. When a token list TOP-LEVEL-LIST-BEGIN has been

sent, the containing transmission is not considered complete until the correspond-

ing TOP-LEVEL-LIST-END is read. See the section "Token List Transport Layer".

The following cases are possible states of the stream when an abort occurs:

1. Abort occurs when the user program is not manipulating the stream.

This case presents no problem.

Page 152

2. Abort occurs after a transmission has been partially sent, at a packet or

record boundary.

This implies that the datum that would indicate the successful complete send-

ing of that transmission has been not yet been sent.

The BYTE-STREAM-WITH-MARK state is consistent, but the application level

state is not. The application level must determine that the execution of the

code composing and sending its transmission was, in fact, aborted, and initi-

ate resynchronization via marks.

The receiving side must be careful not to act upon a transmission (that is, to

perform any action or side effect) until the transmission has been successfully

received in entirety. This protects the user program from the possibility that

an abort can occur after a transmission has been partially sent.

3. Abort occurs during the sending or receiving of a record.

This is the most vulnerable state of the mechanism. This case does not occur

on packet media; it is subsumed by the next case.

This case is handled by minimizing the extent of this window, and killing the

connection when and if the situation is detected. Depending on the operating

system involved, you might minimize this window by using interrupt-disabling

mechanisms, auxiliary processes or tasks, or some other technique.

For buffered streams, input and output waiting can be done in consistent

states, thus minimizing the amount of time manipulating the actual encapsu-

lated stream. For unbuffered streams, a lot of time can be spent in this win-

dow. It is expected that unbuffered streams will be exceedingly uncommon.

Nevertheless, the implementation of BYTE-STREAM-WITH-MARK must de-

tect this case.

4. Abort occurs during the sending or receiving of fundamental units of the low-

est-level underlying stream (packets, buffers, or bytes).

This case is usually handled by inhibiting interrupts, or other forms of mask-

ing, in the code implementing the encapsulated stream, since no waiting is

possible at unexpected times. �

Interfacing to the Lisp Machine Byte-Stream-With-Mark

This section describes the messages and underlying protocols of the Genera imple-

mentation of BYTE-STREAM-WITH-MARK, with two goals in mind.

This section enables you to:

Page 153

• Construct applications built on the BYTE-STREAM-WITH-MARK medium.

• Utilize a lower-level medium (other TCP and Chaos, which are both already im-

plemented) as a foundation for the BYTE-STREAM-WITH-MARK medium.

In either case, you accrue the benefits of the design and implementation of BYTE-

STREAM-WITH-MARK, most notably the benefit that this medium is nearly imper-

vious to user program aborts.

Any programmer designing an application using BYTE-STREAM-WITH-MARK

should also consider using the token list stream, a powerful intermediate-level ap-

plication that uses BYTE-STREAM-WITH-MARK. See the section "Token List

Transport Layer".

A Genera BYTE-STREAM-WITH-MARK is a bidirectional, buffered, binary (8-bit

bytes) stream, supporting all the usual stream messages (:string-in, :string-out,

:tyi, :read-input-buffer, and so forth). See the section "Streams".

The raw stream is expected to also be a bidirectional, buffered, binary (8-bit bytes)

stream, supporting the messages:

• :read-input-buffer

• :advance-input-buffer

• :get-output-buffer

• :advance-output-buffer

• :force-output

• :finish �

The flavor neti:buffered-stream-with-mark can be instantiated to create such a

stream. This flavor implements the record protocol, which implements marks as

zero-length records. The implementation of BYTE-STREAM-WITH-MARK via TCP

on the Symbolics machines uses this flavor. The encapsulated stream is accessible

via the :raw-stream message. For further discussion of the record protocol used by

BYTE-STREAM-WITH-MARK: See the section "Introduction to BYTE-STREAM-

WITH-MARK Network Medium".

If a network medium can implement marks natively, as does Chaos on Symbolics

Machines, you can directly support the functionality described here, without the

record layer and the encapsulating stream, as long as the semantics of the BYTE-

STREAM-WITH-MARK are preserved and both sides agree upon the data and

mark representations.

:byte-stream-with-mark is a network medium that produces a BYTE-STREAM-

WITH-MARK when a connection via it is established on Symbolics Machines. This

medium supports the "connection argument" :token-list, whose value, when non-

NIL, causes a token list stream to be created and returned, encapsulating the

BYTE-STREAM-WITH-MARK. The :stream connection argument identifies the

stream to be encapsulated. See the section "Token List Transport Layer".

The BYTE-STREAM-WITH-MARK passes the following messages on to its encapsu-

lated stream, intact:

Page 154

• :close

• :foreign-host

• :accept

• :reject

• :connected-p

• :close-with-reason

• :complete-connection

• :set-output-exception

• :set-input-exception

• :check-output-exception

• :check-input-exception�

:start-open-auxiliary-stream passes through the request for the new stream to the

encapsulated stream, but encapsulates it with a BYTE-STREAM-WITH-MARK after

it has been created. If the parameter :token-list appears among the stream options

with a non-nil value, a token list BYTE-STREAM-WITH-MARK is created.

In addition to the usual buffered stream messages, a BYTE-STREAM-WITH-MARK

supports the :send-mark message. When this message is sent to the BYTE-

STREAM-WITH-MARK, the latter forces all output it has buffered, that is, all byte

stream records (in the non-packet case), sends a mark, and forces all this output

into the encapsulated stream.

When, during an input operation from a BYTE-STREAM-WITH-MARK, the BYTE-

STREAM-WITH-MARK encounters a mark, it signals the error condition of flavor

neti:mark-seen.

The higher-level application must handle this error and interpret it in accordance

with its usage of marks. The signalling routines expect to be aborted after this

condition is signalled. The stream is then in a consistent state, and further input

can be read.

neti:mark-seen Flavor

Signalled during an attempt to read from a BYTE-STREAM-WITH-MARK when a

mark is encountered.

This typically occurs when a :read-token-list message is sent to a token list

stream.

:stream can be sent to this condition to access the stream of interest.

Token List Transport Layer

Introduction to the Token List Transport Layer

The token list transport layer is a general-purpose protocol. The token list trans-

port layer sends tokens through its underlying stream. Each token usually repre-

sents a simple quantity, such as a string or integer.

Page 155

Tokens can be organized into token lists. Special tokens are provided to denote the

starting and ending point of lists. The token list transport layer differentiates be-

tween top-level token lists, which are not contained in other lists, and embedded to-

ken lists, which are contained in other lists. Using lists makes it convenient to

send structured records, such as commands and command responses.

The token list transport layer is a general term that includes two separate but re-

lated subjects: the token list stream and the token list data stream. The token list

stream is commonly used for applications that can easily organize the information

to be transmitted into tokens and lists. The token list data stream is more appro-

priate for transmitting a large volume of data that cannot easily be structured into

tokens and lists, such as file data, which are just a sequence of characters or

bytes.

The following table illustrates the main differences between token list streams and

token list data streams:

Token List Data Stream Token List Stream

Built on: Token list stream BYTE-STREAM-WITH-MARK

Accepts these

Messages: Normal stream I/O :send-token-list

messages, like :read-token-list

:tyi, :tyo, :string-in

Transmits: Stream data Tokens, token lists

Example

of use: NFILE data channels NFILE control connection

�

NFILE and the Token List Transport Layer

NFILE uses the the token list transport layer, and provides an excellent example

of its usefulness. The NFILE commands and command responses are sent over the

control connection in a token list stream. File data are sent across each data chan-

nel in a token list data stream. For more information, see the section "NFILE File

Protocol".

Token List Stream

Types of Tokens and Token Lists

All numbers in the token list documentation are represented in decimal notation.

Bytes are 8 bits long.

Page 156

Types of Tokens

Tokens are of the following types:

1. Atomic tokens.

Atomic tokens are of the following subtypes:

• Data tokens. A data token consists of a sequence of bytes with an effective-

ly infinite maximum length. In some contexts a data token represents a

string; in other contexts, a data token is other arbitrary data.

Each data token is preceded in the token list stream by a representation of

its length in bytes.

Data tokens that are under 200 bytes long are preceded by one byte con-

taining their length in bytes. That is, a data token of 34 bytes is preceded

by one byte of value 34.

Data tokens 200 bytes or over are preceded by the byte known as PUNCTUA-

TION-LONG, of value 201. After the 201 comes a four-byte-long number (least

significant byte first) containing the length of the data token that follows.

• Numeric tokens. A sequence of bytes that represent and encode a nonnega-

tive binary integer. The largest valid integer is 2^63 - 1.

Numeric tokens are either short integers (less than 256) or long integers

(greater than or equal to 256). Short integers are preceded by the byte

known as PUNCTUATION-SHORT-INTEGER, of value 206.

Long integers are begun by PUNCTUATION-LONG-INTEGER, of value 207. One

byte follows, containing the length (in bytes) of the long integer. The inte-

ger itself is next, least significant byte first.

• Keyword tokens. A sequence of bytes that represent and encode a named

identifier of the implemented protocol. Keyword tokens are important only

for their names.

Each keyword is preceded by the byte known as PUNCTUATION-KEYWORD, of

value 208. The data token following PUNCTUATION-KEYWORD represents the

name of the keyword as a string. The characters are in upper-case.

• Boolean truth. A special token that represents the Boolean truth value.

This token is known as BOOLEAN-TRUTH, of value 209.

2. Control tokens.

Page 157

The token list stream supports four control tokens to delimit token lists, and

one padding token.

TOP-LEVEL-LIST-BEGIN 202 This control token appears

 at the start of every top-level

 token list.

TOP-LEVEL-LIST-END 203 This control token appears at

 the end of every top-level token list.

LIST-BEGIN 204 This control token appears at the

 start of every embedded token list.

LIST-END 205 This control token appears at the

 end of every embedded token list.

PUNCTUATION-PAD 200 This padding token should be ignored

 by the token list stream. It can be

 sent to fill buffers.

�

Token Lists

A token list consists of a sequence of atomic tokens or token lists. Token lists are

begun and ended by control tokens that delimit the token lists. There are three

types of token lists:

1. Top-level token lists.

Top-level token lists begin with TOP-LEVEL-LIST-BEGIN and end with TOP-LEVEL-

LIST-END. Top-level token lists are not contained in other lists.

2. Embedded token lists.

These token lists occur inside other token lists. They begin with LIST-BEGIN

and end with LIST-END.

3. The empty token list.

This is a special example of the embedded token list. In some contexts, the

empty token list represents Boolean falsity. An embedded empty token list is

composed of a LIST-BEGIN followed immediately by a LIST-END. A top-level

empty token list is composed of TOP-LEVEL-LIST-BEGIN followed immediately by

TOP-LEVEL-LIST-END.

Token List Stream Example

Page 158

This section contains an example of some data that can appear on a token list

stream. The example is a top-level token list encoding an NFILE DELETE com-

mand.

The DELETE command is composed of the following pieces: a TOP-LEVEL-LIST-

BEGIN, the keyword DELETE, a data token containing the transaction identifier, a

LIST-BEGIN, a LIST-END, a data token containing a pathname, and a TOP-LEVEL-LIST-

END. Let’s use T105 as the transaction identifier, and /usr/max/temp as the path-

name.

All numbers in this section are expressed in decimal notation.

The pieces of the command are displayed here in order:

1. TOP-LEVEL-LIST-BEGIN

2. The keyword token whose name is DELETE

3. The data token containing the characters: T105

4. LIST-BEGIN

5. LIST-END

6. The data token containing the characters: /usr/max/temp

7. TOP-LEVEL-LIST-END�

Now, let’s translate each piece of the command into the bytes that are transmitted

through the token list stream.

1. TOP-LEVEL-LIST-BEGIN

202 represents TOP-LEVEL-LIST-BEGIN�

2. The keyword token whose name is DELETE.

A keyword token is begun by PUNCTUATION-KEYWORD, which is represented in the

token list stream as the byte 208.

A data token follows, containing the string "DELETE". A data token under

200 bytes long is begun by one byte containing its length in bytes. The length

of this data token is 6 bytes.

The data token continues with the Symbolics character set representation of

each character in the string DELETE:

208 represents PUNCTUATION-KEYWORD

006 represents the length of this data token

068 represents "D"

069 represents "E"

076 represents "L"

069 represents "E"

084 represents "T"

069 represents "E"�

Page 159

3. The data token containing the characters: T105

This data token is begun by its length in bytes (4), and continues with the

Symbolics character set representation of each character in the string:

004 represents the length of this data token

084 represents "T"

049 represents "1"

048 represents "0"

053 represents "5"�

4. LIST-BEGIN

204 represents LIST-BEGIN�

5. LIST-END

205 represents LIST-END�

6. The data token containing the characters: /usr/max/temp

013 represents length of this data token

047 represents "/"

117 represents "u"

115 represents "s"

114 represents "r"

047 represents "/"

109 represents "m"

097 represents "a"

120 represents "x"

047 represents "/"

116 represents "t"

101 represents "e"

109 represents "m"

112 represents "p"�

7. TOP-LEVEL-LIST-END

203 represents TOP-LEVEL-LIST-END�

Mapping of Lisp Objects to Token List Stream Representation

The Genera interface to the token list stream sends Lisp objects through the un-

derlying BYTE-STREAM-WITH-MARK and produces Lisp objects on the other end.

Not all Lisp objects can be sent in this way: specifically, compound objects other

than lists are not handled. An appropriate analogy is the sending and reconstruc-

Page 160

tion of list structure via printed representation. These are the types of objects that

can be sent, and their representations:

• Lisp strings are represented as data tokens in the Symbolics character set. Only

8-bit strings can be sent; no fat-strings can be sent.

• Keyword symbols are represented as keyword tokens. Although identifiable and

reconstructable as keyword symbols, only their names are sent; their properties,

bindings, and so on are not sent.

• t is represented as BOOLEAN-TRUTH.

• nil is represented as the empty token list.

• Lists are represented as token lists. The ambiguity between nil and the empty

list presents no problems for Symbolics Machines, although this concession of

the protocol to Symbolics Machines can present problems on other systems. Cir-

cular lists cannot be sent.

• Integers are represented as numeric tokens. Only nonnegative integers less than

2^63 can be sent.�

Flavors and Messages Related to the Token List Stream

This section describes the flavors and messages of the Symbolics implementation

of the token list transport layer.

Token list streams are created in two ways:

• If no underlying stream is present, token list streams are implemented as in-

stances of the flavor neti:token-list-stream.

• If an underlying stream is present, it is not possible to compose a new flavor to

support the token list functionality. For this purpose, the flavor neti:buffered-

token-stream is provided. �

In both cases, the token list stream is built on a BYTE-STREAM-WITH-MARK.

For more information, see the section "BYTE-STREAM-WITH-MARK Network

Medium".

The flavor neti:mark-seen is part of the BYTE-STREAM-WITH-MARK layer, but

it might be of interest to users of token list streams. For more information, see

the flavor neti:mark-seen.

neti:token-list-stream Flavor

Page 161

Token list streams are implemented as instances of the neti:token-list-stream fla-

vor.

This flavor expects to be mixed into the instantiation of its underlying BYTE-

STREAM-WITH-MARK. It expects the stream into which it is mixed to implement

the following messages:

• :listen

• :tyi

• :string-in

• :send-mark

• :tyo

• :string-out

• :force-output

• :read-input-buffer

• :advance-input-buffer

• :get-output-buffer

• :advance-output-buffer

• :finish�

Often an existing underlying stream is present, and it is not possible to compose a

new flavor to support the token list stream functionality. For this purpose, the fla-

vor neti:buffered-token-stream is provided.

neti:buffered-token-stream Flavor

When an 8-bit binary bidirectional stream is present (usually not a BYTE-

STREAM-WITH-MARK), the flavor neti:buffered-token-stream can be instantiat-

ed. The init keyword :raw-stream identifies the stream to be encapsulated. The re-

sult is a token list stream built on a BYTE-STREAM-WITH-MARK, using the

record (non-packet) mode of BYTE-STREAM-WITH-MARK. The BYTE-STREAM-

WITH-MARK is built on the stream supplied with the :raw-stream init keyword.

For a description of record mode of BYTE-STREAM-WITH-MARK,

see the section "Introduction to BYTE-STREAM-WITH-MARK Network Medium".

:send-token-list object &optional mark-p Message

object is a simple Lisp object to be sent through the token list stream. All token

list streams support this message. The given object is sent in its entirety before

any other data is allowed to be sent by the stream (perhaps from another process).

Not all Lisp objects can be sent through the token list. For more information, see

the section "Mapping of Lisp Objects to Token List Stream Representation".

If mark-p is non-nil, a mark is sent on the underlying BYTE-STREAM-WITH-

MARK before the supplied datum is sent. It is an error to send this message if the

stream is unsafe (on the output side) unless mark-p is non-nil. If the stream is un-

Page 162

safe on the output side and mark-p is non-nil, the stream is declared to be safe

again. If the execution of this message is aborted, the stream becomes unsafe on

the output side.

Note that since the token list stream is built on its underlying stream (in the fla-

vor sense), miscellaneous control messages need not be forwarded. Implementations

should not ask the underlying stream to send a mark via :send-mark; use :send-

token-list instead.

:read-token-list &optional discard-until-mark dont-wait-but-return-this Message

Reads from the token list stream, and returns the representation of one data ob-

ject. All token list streams support this message.

If the beginning of a top-level list is encountered, the whole list is read, construct-

ed according to the mapping of token list representations to Lisp objects and re-

turned. For more information, see the section "Mapping of Lisp Objects to Token

List Stream Representation".

If a mark is encountered instead of the data object being read, or at any point in-

side it, the neti:mark-seen condition is signalled, and the stream is marked unsafe

on the input side. Note that this implies that a second mark must be forthcoming

to resynchronize the stream. It is an error to issue this message to a stream that

is unsafe on the input side, unless discard-until-mark is non-nil. If the execution of

this message is aborted, the stream becomes unsafe on the input side.

discard-until-mark specifies that all data are to be discarded until a mark is read.

At that point, the stream is to be declared safe again, on the input side. When the

stream is unsafe on the input side, this is the only valid operation (other than

closing the stream). Note that the only valid response to receiving an unexpected

mark is to supply this argument. This implies that resynchronizations via marks

must either be initiated by some other communication channel, (as in NFILE), or

involve two marks, the first one of which is no more than an instruction to read

for the second. Higher level protocols usually want to send some kind of meaning-

ful identifier immediately following the mark.

dont-wait-but-return-this allows the caller to determine if input is present. If this

argument is non-nil (it should be some object that cannot be transmitted via the

token list medium, such as a specific list or a non-keyword symbol), it is returned

as the return value of this message if and only if input is not available. While it

might seem that this duplicates the functionality of :listen, the locking and other

aspects of the potential multiprocess nature of applications of the token-list stream

require this more sophisticated technique. (If :listen were used instead, there

would be a race between processes that had determined that input was available,

and the loser of the race would block.)

neti:token-io-unsafe Flavor

This condition is signalled when any I/O operation is attempted on a token list

stream that is unsafe in the given direction. For example, an input operation was

attempted on an unsafe input token list stream.

Page 163

:stream can be sent to this condition to access the stream of interest.

:direction can be sent to this condition, to determine the direction (:input or

:output) of the stream.

neti:token-stream-data-error Flavor

This condition is signalled during :read-token-list, if the data being read do not

conform to the defined token list stream organization. For example, mismatched to-

ken list delimiters would signal :neti-token-stream-data-error. That is, a TOP-

LEVEL-LIST-END was found that does not correspond to a TOP-LEVEL-LIST-BEGIN.

:stream can be sent to this condition to access the stream of interest.

This condition indicates a serious problem. The problem could be:

• A hardware problem.

• A bug in the implementation of the token list stream (on either side).

• A bug in any protocol or network underlying the token list stream.�

Aborting and the Token List Stream

A token list stream accrues the benefits of the abort management policy of the

BYTE-STREAM-WITH-MARK on which it is built. In order to fully realize this

benefit, some simple rules must be obeyed by any implementation of the token list

stream.

The term transmission, used often in the following paragraphs, means a complete

top-level token list. The transmission starts with the control token TOP-LEVEL-LIST-

BEGIN and ends with TOP-LEVEL-LIST-END. The top-level token list can contain em-

bedded token lists.

The interface that writes to the token list stream must be capable of writing the

representation of entire transmissions. When this interface is called, it must effec-

tively lock the token list stream, excluding access by other processes until the en-

tire transmission has been encoded and sent.

If the sending is aborted while the stream is locked, the stream enters an unsafe

state. Trying to send data while the stream is unsafe signals an error. The appli-

cation and the token list stream must send a mark to cause resynchronization, and

allow the token list stream to be used again. When the reading side encounters

this mark, it resynchronizes itself according to whatever higher-lever protocol is in

use.

Similarly, the interface that reads from the token list stream must be capable of

reading entire transmissions. When this interface is called, it must lock the

stream, excluding access by other processes until the entire transmission has been

read.

Page 164

If the reading is aborted while the stream is locked, the stream enters an unsafe

state. The only exit from this unsafe state is by means of receiving a mark. When

the stream is unsafe, the only valid operation that can be performed upon it is

"read and discard all tokens until a mark is encountered; read and discard that

mark; declare the stream safe again".

Depending on the higher-level protocol, the receipt of a mark might cause the

reading side to read for further marks. NFILE implements the resynchronization

of token list streams, and serves as a useful example. For more information, see

the section "NFILE Control Connection Resynchronization".

The implementation has implemented the two mark-handling primitives in this

way:

1. Send token (or list) preceded by a mark. When the stream is in the unsafe

state (on the output side), this is the only permitted output operation (other

than closing).

2. Read through to a mark and read the token (or list) following the mark.

When the stream is in the unsafe state (on the input side), this is the only

permitted input operation (other than closing).�

Token List Data Stream

The token list data stream is a facility to transmit stream data through a token

list stream. The Symbolics implementation avoids consing the data tokens as

strings on the receiving side.

Format of Data Transmitted

The token list data stream imposes the following protocol on the data transmitted:

• Data are sent in the format of loose data tokens, not contained in token lists.

• The keyword token EOF indicates that the end of data has been reached.

• Token lists can be transmitted through the token list data stream.

• No loose tokens other than data tokens or the keyword token EOF can be sent.

The token list data stream is most appropriate for sending file data. It is expected

(but not required) that its typical mode of use is to send a large number of data

tokens, with an occasional token list. The design intent was that token lists would

be used by the application program to indicate exceptional situations.

Data tokens, the keyword token EOF, and token lists are defined in the token list

stream documentation. For more information, see the section "Types of Tokens and

Token Lists".

Page 165

Normal Stream I/O Messages Are Accepted

There are no special messages to token list data streams; their whole purpose is to

allow normal I/O stream messages to be used to transfer data through token list

streams. A program can copy files or other massive data through a token list

stream, using normal stream operations and tools such as stream-copy-until-eof.

Data can be read out of the token list data input stream by normal stream opera-

tions without consing strings. The :eof message to an output token list data

stream sends the keyword token EOF, which is in turn recognized by the receiving

side as the end of file indicator.

The Underlying Token List Stream

The token list data stream encapsulates an existing token list stream. As with

most encapsulating streams, :force-output and :eof implicitly force output through

the encapsulated stream, as well. Control messages are not forwarded; for those

purposes the program must deal directly with the underlying token list stream.

The :raw-stream message to a token list data stream accesses the encapsulated

stream.

NFILE’s Use of the Token List Data Stream

The NFILE file protocol provides a good example of the use of token list data

streams. NFILE sends file data through token list data streams; each NFILE data

channel is a token list data stream. Errors such as disk errors during the reading

of a file are conveyed as token lists through the token list data stream.

Flavors Related to the Token List Data Stream

neti:token-list-input-data-stream Flavor

Instantiating this flavor creates a token list input data stream. The underlying to-

ken list stream must be supplied via the :raw-stream init option.

Stream data are transmitted though the underlying token list stream by a token

list output data stream, and can be read by normal stream operations. End of file

is indicated when the keyword token EOF is encountered.

If you should want to use a token list input data stream after receiving the end-of-

file indicator, :clear-eof must be sent to the token list input data stream.

This stream expects to encounter only loose data tokens, whose undifferentiated

data content is treated as stream data, and the keyword token EOF, which is

treated as an end-of-file indicator. If a list is encountered, a condition of flavor

neti:token-data-was-list is signalled. For more information, see the flavor

neti:token-data-was-list.

When a :proceed message is sent to the error object, the token list stream data

can once again be read. This capability can be used to embed asynchronous signals

in stream data. Any other kind of token is an error, and marks are not intercepted

or dealt with by the token list data stream at all.

Page 166

neti:token-list-output-data-stream Flavor

Instantiating this flavor creates a token list output data stream. The underlying

token list stream must be supplied via the :raw-stream init option.

The token list output data stream accepts data via normal stream output opera-

tions. The data are sent as undifferentiated loose data tokens through the encapsu-

lated stream. The tokens bear no correspondence to the order or type of output

operations.

:force-output forces the data through the encapsulated stream as well as the outer

stream that receives the message. :eof sends a :force-output, and sends and forces

through the keyword token EOF.

Should the program wish to send a token list through the underlying stream in

the midst of data, it must force the output of the token list data stream, and send

the list through the encapsulated stream.

No special action must be taken to reuse a token list data output stream. The

message :clear-eof is an input stream message only: do not send it to output

streams, or to bidirectional streams to address output state.

neti:token-list-bidirectional-data-stream Flavor

Instantiating this flavor creates a bidirectional token list data stream. The under-

lying token list stream must be supplied via the :raw-stream init option.

It combines the behaviors of the token list data input and token list data output

streams, encapsulating one bidirectional stream. It is important not to confuse in-

put and output messages when using a bidirectional stream.

neti:token-data-was-list Flavor

This condition is signalled when a token list is encountered in a token list stream

as it is being read by a token list data stream.

The :list message can be sent to this condition to access the value of the list that

was read.

:stream can be sent to identify the erring stream.

The proceed type :proceed can be sent to proceed the condition, to continue use of

the token list data stream after handling the just-read list.

NFILE File Protocol

Introduction to NFILE

NFILE is a file protocol that enables you to perform a large set of operations on

files and directories on remote systems, including:

Page 167

• Read and write entire files

• Read and write portions of files

• Delete files

• Rename files

• Create links

• List directories

• Create directories

• Expunge directories

• Obtain properties of files

• Change properties of files�

NFILE can be used over any reliable byte-stream medium, such as TCP or

CHAOS. It performs better than the older QFILE protocol in the following areas:

• NFILE is not restricted to the Chaos medium, as is QFILE. NFILE can be used

over any reliable byte-stream medium, including Chaos and TCP.

• NFILE can transfer data faster than QFILE can. NFILE’s performance running

on TCP is better than either its performance or QFILE’s running on the Chaos

medium.

• NFILE has a robust scheme for handling aborts on the user side; QFILE is vul-

nerable to aborts.

• The NFILE server provides more complete information about errors than does

the QFILE server.

• NFILE commands return useful values; in some cases, the analogous QFILE

command does not return any value.

• NFILE offers 25 commands, in comparison to QFILE’s 18.

At present, NFILE server programs are provided only for Symbolics machines.

Therefore, the NFILE file protocol runs only between two Symbolics machines, un-

less you write an NFILE server program for another system.

As part of the generic network system, NFILE is invoked when the user needs to

read or write a file on a remote host; NFILE then does its job invisibly. For ex-

ample, when a user in the Zmacs editor uses the Find File command, the generic

network system goes to work to find the file and bring it into the user’s environ-

ment. In certain circumstances NFILE is be called upon to transmit the data in

the file residing on a remote Symbolics Machine to the user’s Symbolics Machine,

or from the Symbolics Machine to a remote Symbolics Machine.

If you wish to set up your site to use NFILE: See the section "Starting to Use

NFILE".

If you intend to write NFILE server or user programs for another system: See the

section "Reference Information on NFILE".

Page 168

Starting to Use NFILE

The NFILE file protocol is used to communicate between two Symbolics machines

when the namespace database at the site contains the information that NFILE is

available on the server machine.

To set up your site to use NFILE, edit the namespace database. If you are unfa-

miliar with the namespace database: See the section "Setting Up and Maintaining

the Namespace Database".

Edit the host object for each Symbolics machine that will run the NFILE server.

Any Symbolics machine used as a file server (that is, one machine providing file

service to many other machines at the site) should be set up to run the NFILE

server. It is not necessary to edit the host objects for Symbolics machines that will

use NFILE protocols only to get FILE service from other machines.

The NFILE protocol provides the FILE service over the Chaos and TCP media.

Therefore, since all Symbolics machines use the Chaos medium, all sites should

add this entry to the host objects:

Service: Set: FILE CHAOS NFILE Global-name

Sites that use the TCP medium should add this entry to the host objects:

Service: Set: FILE TCP NFILE Global-name

Sites that use both Chaos and TCP should add both service entries.

Once the NFILE entry or entries are included in the namespace database, the

NFILE protocol is invoked automatically.

If a site runs both NFILE and QFILE, the network usually chooses NFILE over

QFILE.

Reference Information on NFILE

NFILE Concepts

NFILE is a layered file protocol. The NFILE commands and command responses

constitute the top layer. These commands and responses are transmitted in token

lists; the token list transport layer is the middle level of protocol. The token list

transport layer is built upon the BYTE-STREAM-WITH-MARK network medium.

Both the token list transport layer and the BYTE-STREAM-WITH-MARK network

medium were originally designed for NFILE, but are general layers of protocol

that are intended to be used for other applications as well.

See the section "Token List Transport Layer".

See the section "BYTE-STREAM-WITH-MARK Network Medium".�

Throughout the NFILE documentation, the data types of arguments, return values,

asynchronous error descriptions, and notifications are described as being:

Page 169

• strings

• keywords

• keyword lists

• integers

• Boolean values

• dates

• time intervals

• date-or-never’s�

However, a string as such is not transmitted over the token list stream; the string

must be expressed in token list representation. Each of the conceptual data types

must be mapped into the appropriate token list representation.

See the section "Mapping Data Types into Token List Representation".�

An NFILE session is a dialogue between two hosts. The host that initiates the

NFILE session is known as the user side, and the other host is the server side. The

user side sends all NFILE commands. The server receives each command, process-

es it, and responds to it, indicating the success or failure of the command.

The user side keeps track of commands sent and command responses received by

using transaction identifiers to identify each command. The user side generates a

unique transaction identifier for each command, and sends the transaction identifi-

er to the server along with the command. Each NFILE server response includes

the transaction identifier of the command with which the response is associated.

The server need not respond to commands in the same order that the user gave

them.

See the section "NFILE Command Descriptions".

See the section "NFILE Commands".�

The user side sends NFILE commands over a bidirectional network connection

called the control connection. The server sends its command responses on the same

control connection. All communication over the control connection is in the format

of token lists. The control connection governing the NFILE session is established

at the beginning of the session. If the control connection is ever broken, the

NFILE session is ended.

Whereas NFILE commands and responses are transmitted on the control connec-

tion, file data are transferred over data channels. An input data channel is used to

send data from server to user; an output data channel is used to send data from

user to server. Each input data channel is associated with an output data channel;

together these two channels constitute a data connection. Most communication

over data channels is in the format of loose data tokens. In some cases, token lists

are transmitted over the data channels.

See the section "NFILE Control and Data Connections".�

In the case of a user program abort, control connections and data channels can be

marked unsafe. Any unsafe control connection or data channel must be made safe

again before further use, by undergoing a resynchronization procedure.

Page 170

See the section "NFILE Resynchronization Procedure".

�

NFILE File Transfer Philosophy

This section describes how files are transferred from one system to another, using

the NFILE file protocol. NFILE supports two ways of transferring file data, data

stream mode and direct access mode.

Data Stream Mode

Data stream mode of file transfer is the default mode of NFILE’s OPEN command.

Data stream mode is appropriate when the entire file is transferred, either from

user to server, or from server to user. Data stream mode is more common than di-

rect access mode.

When a data stream opening is requested with the OPEN command, a stream is

opened and the data begin to flow immediately. The OPEN command requires a

handle argument to be supplied, which specifies the data channel to be used to

transfer the data. The handle is used in future commands to reference the open

stream.

The sending side transmits the entire contents of the specified file over the speci-

fied data channel as fast as the network medium and path allow. When the send-

ing side reaches the end of the file, it transmits a special control token to signal

end of file. The receiving side expects an uninterrupted stream of bytes to appear

immediately on its side of the data channel.

The user gives the CLOSE command to terminate a data stream transfer. CLOSE

results in closing the open stream.

Direct Access Mode

Direct access mode enables reading and writing data from specific starting points

in a file, through a specified number of bytes. In direct access mode, data are re-

quested and sent in individual transactions. To request a direct access mode open-

ing, the OPEN command is used with a DIRECT-FILE-ID argument. (In data

stream mode, no DIRECT-FILE-ID is supplied.) The direct file identifier is used in

later commands to reference the direct access stream.

When a file is opened in direct access mode, the flow of data does not start imme-

diately. Rather, the user gives either a READ command (to request data to flow

from server to user) or a DIRECT-OUTPUT command (to request data to flow

from user to server). In either case, the user specifies the starting point and the

number of bytes of data to transfer. The user can give many READ and DIRECT-

OUTPUT commands, one after another.

The user side terminates the direct access transfer by using the CLOSE command.

The ABORT command prematurely terminates a direct access transfer.

Page 171

Direct access file streams are supported by LMFS. For further information on how

LMFS supports direct access file streams: See the section "Direct Access File

Streams".

NFILE Character Set Translation

NFILE was designed to provide access between two Symbolics computers, and to

provide access from Symbolics computers to ASCII-based file systems. Symbolics

computers support 8-bit characters and have 256 characters in their character set.

This causes difficulties when communicating with ASCII machines which have

7-bit characters.

NFILE file transfers are always done using the 8-bit Symbolics computer character

set.

In this section, all numbers designating values of character codes are to be inter-

preted in octal.

Servers on machines not using the Symbolics computer character set are required

to perform character set translations for any character opening. Two Symbolics

Computers communicating with NFILE need not perform any character set trans-

lation.

Table 1 shows the translations between Symbolics computer characters and the

standard ASCII representation, as used on the PDP-10 (where the sequence CRLF,

015 012 represents a new line). Some Symbolics characters expand to more than

one ASCII character. Thus, for character files, when we speak of a given position

in a file or the length of a file, we must specify whether we are speaking in Sym-

bolics units or server units, for the counting of characters is different.

This causes major problems in file position reckoning. Specifically, it is futile for

the Symbolics computer (or other user side) to carefully monitor file position,

counting characters, during output, when character translation is in effect. This is

because the operating system interface for "position to point x in a file", which the

server must use, operates in server units, but the Symbolics computer (or other

user end) has counted in Symbolics units. The user end cannot try to second-guess

the translation-counting process without losing host-independence. (Although the

Symbolics mail reader, Zmail, does anyway, as certain types of PDP-10 mail files

contain embedded encoded character counts that are measured in server units.)

See the section "FILEPOS NFILE Command".

Table 1 contains the standard ASCII table (all values octal). The notation x in

<c1, c2> means "for all character codes x such that c1 <= x <= c2." Hosts using

other variations of ASCII, or other character sets, must translate accordingly.

Table 1. Translations Between Symbolics Characters and Standard ASCII�

Page 172

Symbolics character ASCII character(s)�

x in <000, 007> x

x in <010, 012> 177 x

013 013

x in <014, 015> 177 x

x in <016, 176> x

177 177 177

x in <200, 207> 177 <x - 200>

x in <210, 212> <x - 200>

213 177 013

214 014

215 015 012

x in <216, 376> 177 <x - 200>

377 no corresponding code�

Table 1 might seem confusing at first, but there are some general rules about it

that should make it appear more sensible. First, Symbolics characters in the range

<000, 177> are generally represented as themselves, and x in <200, 377> is gener-

ally represented as 177 followed by <x - 200>. That is, 177 is used to quote the

second 200 Symbolics characters. It was deemed that 177 is more useful and com-

mon character than 377, so 177 177 means 177, and there is no way to describe

377 with ASCII characters. On the Symbolics computer, the formatting control

characters appear offset up by 200. This explains why the preferred mode of ex-

pressing 210 (backspace) is 010, and 010 turns into 177 010. The same reasoning

applies to 211 (Tab), 212 (Linefeed), 214 (Formfeed), and 215 (Newline).

More special care is needed for the Newline character, which is the mapping of

the system-independent representation of "the start of a new line". Thus, for ASCII

as used on many systems, Symbolics Newline (215) is equivalent to 015 012 (CRLF)

in ASCII characters. When converting ASCII characters to Lisp machine charac-

ters, an 015 followed by an 012 therefore turns into a 215. A "stray CR", that is,

an 015 not followed by an 012, therefore causes character-counting problems. To

address this, a stray CR is arbitrarily translated into a single M (115).

Table 1 applies in the case of NORMAL translation, that is, the default character

translation mode.

The other translation modes available are:

RAW Performs no translation. ASCII characters are obtained by sim-

ply discarding the high order bit of Symbolics characters, and

Symbolics characters supplied by an ASCII server are always in

the range <000, 177>.

SUPER-IMAGE Suppresses the use of Rubout for quoting. That is, each entry

beginning with a 177 in the ASCII column of the translation

table presented above has the 177 removed. The ASCII charac-

ter 015 always maps to the Symbolics character 215, as in nor-

mal translation. Here is the SUPER-IMAGE mode table:

In SUPER-IMAGE mode as well, stray CR is translated to

Page 173

Table 2. Translations in SUPER-IMAGE Mode

Symbolics character ASCII character(s)�

x in <000, 177> x

x in <200, 214> <x - 200>

215 015 012

x in <216, 376> <x - 200>

377 no corresponding code�

Symbolics character M.

Mapping Data Types into Token List Representation

The following list shows how each conceptual data type is expressed in token list

representation. This mapping is also illustrated by an extended example of trans-

lating an NFILE command and its arguments into its token list representation:

See the section "Token List Stream Example".

Keyword Transmitted as a keyword token.

Keyword list Transmitted as a token list of keyword tokens.

Integer Transmitted as a numeric data token.

String Transmitted as a data token containing the characters of the

string in the Symbolics character set.

Boolean Truth Transmitted as the token known as BOOLEAN-TRUTH.

Boolean False Transmitted as the empty token list.

Dates Transmitted as numeric data tokens. The date is expressed in

Universal Time format, which measures a time as the number

of seconds since January 1, 1900, at midnight GMT.

Date-or-never Can be either a date or the empty token list, representing

"never". "Never" is used for values such as the time a directo-

ry was last expunged, if it has never been expunged.

Time interval Transmitted as a numeric data token. The time interval is ex-

pressed in seconds. A time interval of zero seconds (including

the concept of "never") is represented by the empty token list.

NFILE Control and Data Connections

The user and server communicate through a single control connection and zero or

more data connections. The user side sends NFILE commands to the server over

the control connection. The server responds to every user command, also over this

control connection. The actual file data are transmitted over the data connections.

User aborts can disturb the normal flow of data on the control connection and da-

ta connections. An important aspect of any file protocol is the way it handles user

aborts. NFILE supports a resynchronization procedure to bring the affected control

Page 174

connection or data channel from an unknown, unsafe state into a known state, en-

abling the control connection or data channel to be reused. See the section "NFILE

Resynchronization Procedure".

The Control Connection

The control connection is established at the beginning of the NFILE session. See

the section "Establishing an NFILE Control Connection". The control connection is

the vehicle used by the user to send its commands, and the server to send its com-

mand responses.

These types of communication occur over the NFILE control connection:

• The user side sends NFILE commands.

• The server sends command responses.

• The server sends notifications.

• The server sends asynchronous errors.

• During resynchronization (a special circumstance) either the user or server

sends a mark. �

For further information on each type of communication:

See the section "NFILE Command Descriptions".

See the section "Notifications from the NFILE Server".

See the section "NFILE Error Handling".

See the section "NFILE Resynchronization Procedure".�

Format of Control Connection Communication

All commands, command responses, and other data flowing over the NFILE control

connection are transmitted in the format of top-level token lists. The control con-

nection expects never to receive loose tokens; that is, tokens not contained in token

lists. For a definition of token lists:

See the section "Token List Transport Layer".

 �

Data Connections

Data connections are established and discarded at user request, by means of two

NFILE commands: DATA-CONNECTION and UNDATA-CONNECTION. Each data

connection is associated with a specific control connection, which is the same con-

trol connection that caused the data connection to be established.

See the section "DATA-CONNECTION NFILE Command".

See the section "UNDATA-CONNECTION NFILE Command".�

Page 175

Each data connection is composed of two data channels. Each data channel is capa-

ble of sending data in one direction. The term input channel refers to the data

channel that sends data from the server to the user side; output channel refers to

the data channel that sends data from the user to the server side. Throughout the

NFILE documentation, the terms input and output channels are seen from the per-

spective of the user side.

Data channels can be used for many data transfers, in sequence.

Format of Data Channel Communication

The data being transferred on the data channels are typically loose tokens, that is,

tokens not contained in a token list. When the end of data is reached, the keyword

token EOF is sent. Occasionally, token lists are transmitted over the data chan-

nels. For example, notifications and asynchronous error descriptions are token lists

that are transmitted on data channels. The format of the data transferred on the

data channels is defined as a token list data stream:

See the section "Token List Data Stream".

�

Establishing an NFILE Control Connection

NFILE is built upon the BYTE-STREAM-WITH-MARK medium, which is imple-

mented to use either the Chaos or TCP protocol. This section gives the necessary

information on how to establish a control connection on Chaos and TCP.

The NFILE user program connects to a remote host and establishes a network

connection. This is the control connection of the dialogue that has just begun.

NFILE’s Chaos Contact Name

The contact name referring to NFILE on Chaos is: NFILE.

Other sections describe the significance and use of the contact name in establish-

ing a Chaos connection:

See the section "Chaosnet Contact Names".

See the section "Chaosnet Connection Establishment".

�

NFILE’s Well-known TCP Port

The well-known port for NFILE on TCP is 59.

Symbolics does not document the TCP protocol, since documentation on TCP and

the other Internet protocols is readily available elsewhere.

Notifications from the NFILE Server

Page 176

The NFILE server can send asynchronous notifications to the user side over the

control connection. The text of the notification contains information of interest to

the person using NFILE, such as a warning that the server’s operating system will

be going down soon. Notifications can come from the server side at any time that

the server is not sending something else.

The format of NFILE notifications is:

(NOTIFICATION "" text)

The empty string "" takes the place of a transaction identifier. Notifications are

initiated by the server, and are not associated with any transaction originated by

the user side.

Servers should not allow aborting during the sending of notifications. A server

abort could cause the control connection to become unsafe on the server side.

NFILE Resynchronization Procedure

Ordinarily, the user side sends NFILE commands to the server side over the con-

trol connection; the server side responds to every user command, and file data is

transmitted over the data channels. This section describes a resynchronization pro-

cedure that takes place when something disturbs the usual course of events.

First, if the server side aborts while sending or receiving data, nothing can be

done to salvage the connection between the two hosts. The control connection and

any data channels associated with this connection are broken. This happens rarely,

if at all.

It is not unusual for the user side to abort file operations, either commands or da-

ta transfer. On a Symbolics machine, the user could do this by pressing c-ABORT.

An important aspect of any file protocol is the way it handles the situation when

the user side aborts file operations.

NFILE reacts to user side aborts by immediately marking the connection unsafe.

When a control connection is unsafe, it must be resynchronized before it can be

used again. Data channels can also be marked unsafe, and must also be resynchro-

nized before further use. The resynchronization process rids the connection

(whether control or data connection) of data that are now unwanted, and thus

cleans up the channel so it can be used again.

NFILE Control Connection Resynchronization

NFILE requires any unsafe control connection to undergo a resynchronization pro-

cedure before further use. Therefore, the resynchronization does not necessarily oc-

cur immediately after the control connection is marked unsafe. NFILE control con-

nections are marked unsafe by the user side upon aborting, for example, when a

person using NFILE on a Symbolics machine presses c-ABORT. The user side initi-

ates the control connection resynchronization when another operation on the con-

trol connection is attempted.

Page 177

User Side Steps: Control Connection Resynchronization

1. The user side sends a mark over the control connection to the server.

2. The user side sends the ASCII characters USER-RESYNC-DUMMY (as a data

token) to the server.

3. The user side sends a second mark to the server.

4. The user side declares the control connection safe (at the token list level).

5. The user side generates and sends a unique data token to the server.

6. The user side then waits, expecting to detect a mark followed by the unique

data token. The user side reads and discards all tokens and marks until the

desired match is found.

Once the user side detects the mark and unique data token, the control connection

has been fully resynchronized, and can be used again.

Server Side Steps: Control Connection Resynchronization

1. The server side detects a mark instead of the token list normally received

from the user side. The server is thus alerted that the control connection is

unsafe, and that resynchronization is in progress.

2. The server continues to read data coming from the user side until it detects

the second mark, and the token following it.

3. The server checks to see if the token following the mark is USER-RESYNC-

DUMMY. This rare situation occurs if the user aborts during the course of

the resynchronization itself. If so, the server side discards the USER-

RESYNC-DUMMY token. The control connection is still unsafe, and the user

side restarts the resynchronization procedure; the server side therefore begins

at Step 2 again.

4. If the token following the mark is not USER-RESYNC-DUMMY (this is the

expected circumstance), the server should have received a single data token

that is the unique data token generated by the user side.

5. a. The server sends a mark to the user side.

b. The server declares control connection safe (at the token list level).

c. The server sends the unique data token to the user side.�

6. If the server detects something following the mark that was neither USER-

RESYNC-DUMMY nor a single data token, a protocol error has occurred. �

Page 178

NFILE Data Connection Resynchronization

The NFILE data channel resynchronization procedure is similar to the NFILE con-

trol connection resynchronization. Both procedures are based on a mark signalling

the unsafe condition, then a second mark followed by a unique identifier. One im-

portant difference between the two procedures is the circumstances in which they

occur. Control connections are put into unsafe states only when the user aborts

during control connection I/O operations. Data channels are made unsafe by a larg-

er set of circumstances:

• User aborts occur during the file protocol operations that assign and deassign

data channels. This is the most common cause of data channels becoming un-

safe.

• A server receives a CLOSE command (with abort-p supplied as Boolean truth)

specifying an open file that has not finished transmitting data. That is, file

reading is aborted.

• The ABORT command is issued, causing data channels to be made unsafe.

• The FILEPOS command is issued, causing the input data channel to become

unsafe. �

The resynchronization clears the data channel of unwanted data from aborted oper-

ations and puts the data channel in a known state. The data channel resynchro-

nization procedure is invoked when the user side gives the RESYNCHRONIZE-

DATA-CHANNEL command over the control connection.

In the Symbolics machine implementation, the user side initiates resynchronization

only if it needs the data channel, having first tried to use a free data channel that

does not require resynchronization. Also, the user side periodically resynchronizes

all unsafe data channels.

In giving the RESYNCHRONIZE-DATA-CHANNEL command, the user side indi-

cates which data channel should be resynchronized. Data channels are unidirec-

tional, which means that depending on the direction (either input or output) of the

data channel, either the user side or the server side sends the resynchronization

data. This is another difference from the resynchronization of the control connec-

tion, in which the resynchronization data is always sent by the user side. The

resynchronization steps for input data channels are different than the steps for

output data channels.

Input Data Channel Resynchronization

1. The user side gives the RESYNCHRONIZE-DATA-CHANNEL command on the

control connection, with only one argument, the handle of the data channel to

be resynchronized.

2. The server side of the data channel generates a unique identifier, and sends

that data token in its regular command response to the user side.

Page 179

3. The server side sends a mark over the data channel.

4. The server side sends the unique identifier token over the data channel.

5. The user side reads until it detects a mark followed by the unique identifier

token. The resynchronization is then complete. The data channel is no longer

in an unsafe state.

Output Data Channel Resynchronization

1. The user side gives the RESYNCHRONIZE-DATA-CHANNEL command on the

control connection, with two arguments: the handle of the data channel to be

resynchronized, and a unique identifier that it has just generated.

2. The user side of the data channel sends a mark.

3. The user side of the data channel sends a dummy identifier token. The dum-

my identifier can be any token that the server could not interpret as being

the unique identifier. One suggestion is the data token DUMMY-IDENTIFIER.

4. The server side of the data channel was alerted by the RESYNCHRONIZE-

DATA-CHANNEL command that resynchronization is in progress. The server

side now reads the data, seeking the first mark.

5. The server side reads and discards the first mark and the dummy identifier.

6. The user side sends a second mark.

7. The user side sends the unique identifier.

8. The server side recognizes the mark and the unique identifier that follows,

and the resynchronization is complete. The data channel is no longer in the

unsafe state. �

NFILE Command Descriptions

Conventions Used in NFILE Command Descriptions

This section defines the conventions used in the NFILE command descriptions and

explains some syntax rules that apply to NFILE commands and responses. A com-

plete understanding of this section is necessary before you begin to write an

NFILE server.

The conceptual data types mentioned in the command descriptions must be mapped

into token list representation to be transmitted in the token list stream. Argu-

Page 180

ments and return values are defined as being a "string", "integer", "keyword", "key-

word list", "Boolean truth", and so on. To determine the mapping of these concep-

tual data types into token list representation: See the section "Mapping Data Types

into Token List Representation".

Command and Response Format

Each of the command descriptions begins by giving the command format and re-

sponse format. Here is the beginning of the DATA-CONNECTION command de-

scription:

Command Format:

(DATA-CONNECTION tid new-input-handle new-output-handle)

Response Format:

(DATA-CONNECTION tid connection-identifier)

The command descriptions follow these conventions:

1. NFILE commands and responses are transmitted as top-level token lists.

Top-level token lists are enclosed in parentheses in these command descrip-

tions. These parentheses are not sent literally across the control or data con-

nections, but are a shorthand representation of special control tokens that de-

limit top-level token lists. Specifically, TOP-LEVEL-LIST-BEGIN starts a top-level

token list; TOP-LEVEL-LIST-END ends a top-level token list.

2. NFILE command names are keywords.

The command name is required in every command and command response. All

NFILE command names are keywords. Keywords appear in the NFILE docu-

mentation as their names in uppercase. For example, DATA-CONNECTION

and DELETE are NFILE command names.

3. A unique transaction identifier (tid) identifies each command.

The transaction identifier is a string made up by the user side to identify this

particular transaction, which is composed of the command and the response

associated with this command. The transaction identifier is abbreviated in the

command descriptions as tid. Transaction identifiers are limited to fifteen

characters in length. The transaction identifier is required in every command

and command response.

4. Italics are used for placeholder arguments.

The transaction identifier, command arguments, and command return values

are italicized to indicate that they are placeholders for real values. �

Page 181

Optional Arguments

Many NFILE commands have optional arguments. Optional arguments can be sup-

plied (with appropriate values), or left out. If optional arguments are left out, their

omission must be made explicit by means of substituting the empty token list in

their place. Any optional arguments or return values that are trailing can be omit-

ted without including the empty token list.

For example, the text of the DELETE command description explains that either a

handle or a pathname must be supplied, but not both; therefore, one of them is an

optional argument. Here is the command format of DELETE:

(DELETE tid handle pathname)

If you supply a handle and no pathname, the command format is:

�

(DELETE tid handle)

�

If you supply a pathname and no handle, the command format is:

�

(DELETE tid empty-token-list pathname).

�

The empty token list in the token list stream appears as a LIST-BEGIN followed im-

mediately by a LIST-END.

Optional Keyword/Value Pairs

Four NFILE commands have optional keyword/value pairs. These commands are:

COMPLETE, LOGIN, OPEN, and READ. Optional keyword/value pairs can be ei-

ther included in the command or omitted entirely. There is no need to explicitly

omit optional keyword tokens, unlike optional arguments. The order of the option

keyword/value pairs is not significant.

If included, optional keyword/value pairs are composed of the keyword itself, fol-

lowed by its associated value. The values associated with the keywords can be key-

words, lists, strings, Booleans, integers, dates, date-or-never’s, and time intervals.

The text of each command description states what type of value is appropriate for

each optional keyword.

Optional keyword/value pairs appear in the text as the keyword only, in italicized

uppercase letters. For example, here is the format of the LOGIN command:

Command Format:

�

(LOGIN tid user password FILE-SYSTEM USER-VERSION)

�

FILE-SYSTEM and USER-VERSION are two optional keywords associated with the

LOGIN command. The user side can supply USER-VERSION, and omit FILE-

SYSTEM as shown in this example:

Page 182

�

(LOGIN T105 tjones abc123 USER-VERSION 2)

�

As seen above, the optional keyword/value pair USER-VERSION, if supplied in a

command, is replaced by the keyword USER-VERSION, followed by the value to be

used for that keyword (in this example, 2).

Data Channel Handles and Direct File Identifiers

Several NFILE commands require an argument that specifies an open stream. This

kind of argument is called a handle in the command description. It is always a

string type argument. A handle can be either a data channel handle or a direct file

identifier, depending on the mode of the opening:

Data Stream The handle must identify a data channel that is bound to an

open stream.

Direct Access The general rule is that the handle must be a direct file iden-

tifier. A direct file identifier specifies a direct access stream. It

is the same as the value supplied in the DIRECT-FILE-ID

keyword/value pair in the OPEN command. It is used for all

operations that identify an open server stream rather than a

data channel.

Two NFILE commands applicable to direct access openings are

exceptions to the general rule. The handle supplied in ABORT

and CONTINUE cannot be a direct file identifier, but must be

a data channel handle instead.

Full Pathname Syntax of the Server Host

Some arguments and return values in the NFILE command descriptions are strings

in the full pathname syntax of the server host. These pathnames contain no host

identifiers of any kind. These pathnames are fully defaulted, in the sense that they

have a directory and file name (and file type, if the server operating system sup-

ports file types). If appropriate, a device is referenced in the pathname. If the

server file system supports version numbers, there is always an explicit version

number, even if that number or other specification is that system’s representation

of "newest" or "oldest".

Format of NFILE File Property/Value Pairs

Several NFILE commands request information regarding the properties of files or

directories. These commands include: DIRECTORY, MULTIPLE-FILE-PLISTS,

PROPERTIES, and CHANGE-PROPERTIES. This section describes how file prop-

erty information is conveyed over the token list stream.

Page 183

File property information is usually sent in property/value pairs, where the property

identifies the property, and the following value gives the value of that property for

the specified file. For a list of keywords related to file properties, and the type of

value associated with each keyword: See the section "Recognized Keywords Denot-

ing File Properties".

Each property is denoted either by a keyword or an integer. You can mix both

ways of specifying properties (keyword or integer) within a single description. An

integer is interpreted as an index into the Property Index Table, an array of prop-

erty keywords. The server can optionally send a Property Index Table to the user

during the execution of the LOGIN command, although it is not required.

In command arguments, file properties cannot be specified with integers; keywords

must be used to specify file properties in command arguments. Integers can be

used to denote file properties only in command responses.

Property values can be any of the following: keywords, keyword lists, integers,

strings, Boolean values, dates, date-or-never’s, or time intervals. For information

on how each type of value is mapped into token list representation: See the section

"Mapping Data Types into Token List Representation".

Recognized Keywords Denoting File Properties

This section lists the keywords associated with file properties. This list is not in-

tended to be restrictive. If a programmer implementing NFILE needs a new key-

word, a new keyword (not on this list) can be invented. The type of value of any

new keywords is by default string.

The keywords are sorted here by type. For further information on the meaning of

each keyword: See the function fs:directory-list.

Integers BLOCK-SIZE, BYTE-SIZE, GENERATION-RETENTION-

COUNT, LENGTH-IN-BLOCKS, LENGTH-IN-BYTES, DE-

FAULT-GENERATION-RETENTION-COUNT

Dates CREATION-DATE, MODIFICATION-DATE

Date-or-never’s REFERENCE-DATE, INCREMENTAL-DUMP-DATE, COM-

PLETE-DUMP-DATE, DATE-LAST-EXPUNGED, EXPIRA-

TION-DATE

Time intervals AUTO-EXPUNGE-INTERVAL

Keyword Lists SETTABLE-PROPERTIES, LINK-TRANSPARENCIES, DE-

FAULT-LINK-TRANSPARENCIES

Boolean values DELETED, DONT-DELETE, DONT-DUMP, DONT-REAP, SU-

PERSEDE-PROTECT, NOT-BACKED-UP, OFFLINE, TEMPO-

RARY, CHARACTERS, DIRECTORY

Strings ACCOUNT, AUTHOR, LINK-TO, PHYSICAL-VOLUME, PRO-

TECTION, VOLUME-NAME, PACK-NUMBER, READER,

DISK-SPACE-DESCRIPTION, and any keywords not on this list�

Page 184

NFILE Commands

It is important to understand the conventions used in each of the following com-

mand descriptions. See the section "NFILE Command Descriptions".

ABORT NFILE Command

Command Format:

(ABORT tid input-handle)

Response Format:

(ABORT tid)

ABORT cleanly interrupts and prematurely terminates a single direct access mode

data transfer initiated with READ. The required input-handle string argument

identifies a data channel on which an input transfer is currently taking place; this

must be a direct access transfer. input-handle must identify a data channel; it can-

not be a direct file identifier.

Upon receiving the ABORT command, the server checks to see if a transfer is still

active on that channel. If so, the server terminates the transfer by telling the data

connection logical process to stop transferring bytes of data. The user side need is-

sue this command only when there are outstanding unread bytes. This excludes

the case of the data channel having been deestablished or reallocated by the user

side.

Whether or not a transfer is active on that channel, the user side puts the data

channel into the unsafe state. Before the data channel can be used again, it must

be resynchronized.

CHANGE-PROPERTIES NFILE Command

Command Format:

(CHANGE-PROPERTIES tid handle pathname property-pairs)

Response Format:

(CHANGE-PROPERTIES tid)

CHANGE-PROPERTIES changes one or more properties of a file. Either a handle

or a pathname must be given, but not both. Whichever one is given must be sup-

plied as a string. handle identifies a data channel that is bound to an open file.

pathname identifies a file on the server machine.

property-pairs is a required token list of keyword/value pairs, where the name of

the property to be changed is the keyword, and the desired new property value is

the value.

The properties that can be changed are host-dependent, as are any restrictions on

the values of those properties. The properties that can be changed are the same as

those returned as settable-properties, in the command response for the PROPER-

TIES command. See the section "PROPERTIES NFILE Command".

Page 185

The server tries to modify all the properties listed in property-pairs to the desired

new values. There is currently no definition about what should be done if the serv-

er can successfully change some properties but not others.

For further information on file property keywords and associated values:

See the section "Format of NFILE File Property/Value Pairs".

See the section "Recognized Keywords Denoting File Properties".

�

CLOSE NFILE Command

Command Format:

(CLOSE tid handle abort-p)

Response Format:

(CLOSE tid truename binary-p other-properties)

CLOSE terminates a data transfer, and frees a data channel. The handle must be

a data channel handle for a data stream opening, or a direct file identifier for a

direct access opening. If a data channel is given, a transfer must be active on that

handle. If abort-p is supplied as Boolean truth, the file is close-aborted, as described

below.

"Closing the file" has different implications specific to each operating system. It

generally implies invalidation of the pointer or logical identifier obtained from the

operating system when the file was "opened", and freeing of operating system

and/or job resources associated with active file access. For output files, it involves

ensuring that every last bit sent by the user has been successfully written to disk.

The server should not send a successful response until all these things have com-

pleted successfully.

The server sends the keyword token EOF on the data channel, to indicate that the

end of data has been reached.

In either data stream or direct access mode, the user can request the server to

close-abort the open stream, instead of simply closing it. To close-abort a stream

means to close it in such a way, if possible, that it is as if the file had never been

opened. In the specific case of a file being created, it must appear as if the file

had never been created. This might be more difficult to implement on certain op-

erating systems than others, but tricks with temporary names and close-time re-

namings by the server can usually be used to implement close-abort in these cases.

In the case of a file being appended to, close-abort means to forget the appended

data.

An Unsuccessful CLOSE Operation

For the normal CLOSE operation (not a close-abort), after writing every last bit

sent by the user to disk, and before closing the file, the server checks the data

channel specified by handle to see if an asynchronous error description is outstand-

Page 186

ing on that channel. That is, the server must determine whether it has sent an

asynchronous error description to the user, to which the user has not yet respond-

ed with a CONTINUE command. If so, the server is unable to close the file, and

therefore sends a command error response indicating that an error is pending on

the channel. The appropriate three-letter error code is EPC. See the section

"NFILE Error Handling".

A Successful CLOSE Operation

The return values for OPEN and CLOSE are syntactically identical, but the values

might have changed somewhat between the file being opened and closed. For ex-

ample, the truename return value is supplied after all the close-time renaming of

output files is done and the version numbers resolved (for operating systems sup-

porting version numbers). Therefore, on some systems the truename when the file

was opened is different than the truename after it has been closed.

For a description of the CLOSE return values: See the section "NFILE OPEN Re-

sponse Return Values".

If the user gives the CLOSE command with abort-p supplied as Boolean truth, thus

requesting a close-abort of the file, the server need not check whether an asyn-

chronous error description is outstanding on the channel. The server simply close-

aborts the file.

COMPLETE NFILE Command

Command Format:

(COMPLETE tid string pathname DIRECTION NEW-OK DELETED)

Response Format:

(COMPLETE tid new-string success)

COMPLETE performs file pathname completion.

string is a partial filename typed by the user and pathname is the default name

against which it is being typed. Both string and pathname are required arguments,

and are of type string.

The other arguments are optional keyword/value pairs. NEW-OK is Boolean; if fol-

lowed by Boolean truth, the server should allow either a file that already exists, or

a file that does not yet exist. The default of NEW-OK is false; that is, the server

does not consider files that do not already exist.

DELETED is a Boolean type argument; if followed by Boolean truth, the server is

instructed to look for files that have been deleted but not yet expunged, as well as

non-deleted files. The default is to ignore soft-deleted files.

DIRECTION can be followed by READ, to indicate that the file is to be read. If

the file is to be written, DIRECTION can be followed by WRITE. The default is

READ.

Page 187

The filename is completed according to the files present in the host file system,

and the expanded string new-string is returned. new-string is always a string con-

taining a file name: either the original string, or a new, more specific string. The

value of success indicates the status of the completion. Either OLD or NEW means

complete success, whereas the empty token list means failure. The following key-

word values of success are possible:

OLD The string completed to the name of a file that exists.

NEW The string completed to the name of a file that could be created.

Empty token list

The operation failed for one of the following reasons:

• The file is on a file system that does not support completion. new-string

is supplied as the unchanged string.

• There is no possible completion. new-string is supplied as the unchanged

string.

• There is more than one possible completion. The given string is complet-

ed up to the first point of ambiguity, and the result is supplied as new-

string.

• A directory name was completed. Completion was not successful because

additional components to the right of this directory remain to be speci-

fied. The string is completed through the directory name and the delim-

iter that follows it, and the result is returned in new-string.�

Filename completion is a host-dependent operation. Genera performs filename com-

pletion with the function fs:complete-pathname. The documentation on that func-

tion contains some useful guidelines: See the function fs:complete-pathname.

CONTINUE NFILE Command

Command Format:

(CONTINUE tid handle)

Response Format:

(CONTINUE tid)

CONTINUE resumes a data transfer that was temporarily suspended due to an

asynchronous error. Each asynchronous error description has an optional argument

of RESTARTABLE, indicating whether it makes any sense to try to continue after

this particular error occurred. CONTINUE tries to resume the data transfer if the

error is potentially recoverable, according to the RESTARTABLE argument in the

asynchronous error description. For a discussion of asynchronous errors: See the

section "NFILE Error Handling".

Page 188

handle is a required string-type argument that refers to the handle of the data

channel that received an asynchronous error. That data channel could have been in

use for a data stream or direct access transfer. handle cannot be a direct file

identifier.

If the asynchronous error description does not contain the RESTARTABLE argu-

ment, and the user issues the CONTINUE command anyway, the server gives a

command error response.

CREATE-DIRECTORY NFILE Command

Command Format:

(CREATE-DIRECTORY tid pathname property-pairs)

Response Format:

(CREATE-DIRECTORY tid dir-truename)

CREATE-DIRECTORY creates a directory on the remote file system. The required

pathname argument is a string identifying the pathname of the directory to be

created. The return value dir-truename is the pathname of the directory that was

successfully created. Both of these pathnames are examples of pathname as directo-

ry. For a discussion of the concept of pathname as directory: See the section "Di-

rectory Pathnames and Directory Pathnames as Files".

property-pairs is a keyword/value list of properties that further define the at-

tributes of the directory to be created; the allowable keywords and associated val-

ues are operating system dependent. If property-pairs is supplied as the empty to-

ken list, default access and creation attributes apply and should be assured by the

server.

For further information on file property keywords and associated values:

See the section "Format of NFILE File Property/Value Pairs".

See the section "Recognized Keywords Denoting File Properties".

�

CREATE-LINK NFILE Command

Command Format:

(CREATE-LINK tid pathname target-pathname property-pairs)

Response Format:

(CREATE-LINK tid link-truename)

CREATE-LINK creates a link on the remote file system.

pathname is the pathname of the link to be created; target-pathname is the place in

the file system to which the link points. Both are required arguments. The return

value link-truename names the resulting link.

Page 189

If a server on a file system that does not support links receives the CREATE-

LINK command, it sends a command error response.

The arguments pathname and target-pathname, and the return value link-truename,

are all strings in the full pathname syntax of the server host. For further details

on full pathname syntax: See the section "Full Pathname Syntax of the Server

Host".

The required property-pairs argument is a token list of keyword/value pairs. These

properties and their values specify certain attributes to be given to the link. If no

property pairs are given in the command, the server should apply a reasonable de-

fault set of attributes to the link.

For further information on file property keywords and associated values:

See the section "Format of NFILE File Property/Value Pairs".

See the section "Recognized Keywords Denoting File Properties".

�

DATA-CONNECTION NFILE Command

Command Format:

(DATA-CONNECTION tid new-input-handle new-output-handle)

Response Format:

(DATA-CONNECTION tid connection-identifier)

DATA-CONNECTION enables the user side to coordinate the establishment of a

new data connection. The user side supplies two required string arguments, new-

input-handle and new-output-handle. These arguments are used by future com-

mands to reference the two data channels that constitute the data connection now

being created. new-input-handle describes the server-to-user data channel, and new-

output-handle describes the user-to-server channel. new-input-handle and new-

output-handle cannot refer to any data channels already in use.

Upon receiving the DATA-CONNECTION command, the server arranges for a logi-

cal port (called socket or contact name on some networks) to be made available on

the foreign host machine. When the server has made that port available, it must

inform the user of its identity. The server relays that information in the command

response, in the required connection-identifier, a string. The server then listens on

the port named by connection-identifier, and waits for the user side to connect to

it.

Upon receiving the success command response, the user side supplies the connec-

tion-identifier to the local network implementation, in order to connect to the spec-

ified port. The data connection is not fully established until the user side connects

successfully to that port. This command is unusual in that the successful command

response does not signify the completion of the command; it indicates only that the

server has fulfilled its responsibility in the process of establishing a data connec-

tion.

Page 190

The connection-identifier is used only once; it provides the the user with the cor-

rect identity of the logical port that the server has provided. NFILE expects the

connection-identifier to be a string, but places no further restrictions on the nature

or character of the connection-identifier; the network and its implementation deter-

mine the connection-identifier. In all future NFILE commands that need to refer-

ence either of the data channels that constitute this data connection, the new-

input-handle and new-output-handle are used.

The DATA-CONNECTION command is used to establish a data connection when-

ever one is needed. The two data channels that comprise this data connection can

be used either for data stream transfers or direct access transfers.

For more information about data connections: See the section "NFILE Control and

Data Connections".

DELETE NFILE Command

Command Format:

(DELETE tid handle pathname)

Response Format:

(DELETE tid)

DELETE deletes a file on the remote file system.

Either a handle or a pathname must be supplied, but not both. If given, the handle

must be a data channel handle for a data stream opening, or a direct file identifier

for a direct access opening. pathname is a string in the full pathname syntax of

the server host. For further details on full pathname syntax: See the section "Full

Pathname Syntax of the Server Host".

With a pathname supplied, the DELETE command causes the specified file to be

deleted. DELETE has different results depending on the operating system involved.

That is, DELETE causes soft deletion on TOPS-20 and LMFS, and hard deletion

on UNIX and Multics. If you try to delete a delete-through link on a LMFS, you

delete its target instead.

If the handle argument is supplied to DELETE, the server deletes the open file

bound to the data channel specified by handle at close time. This is true in both

the output and input cases.

The NFILE DELETE command differs from the QFILE DELETE command, specif-

ically when the handle argument is supplied, to indicate that a stream is to be

"deleted". In QFILE, when a DELETE command is sent to a stream while it is

open, the file is "close-aborted" instead of closed normally. NFILE also offers a

way to close-abort a file: give the NFILE CLOSE command and supply the abort-p

argument as Boolean truth. The NFILE DELETE command cannot be used to

close-abort a file.

DIRECT-OUTPUT NFILE Command

Page 191

Command Format:

(DIRECT-OUTPUT tid direct-handle output-handle)

Response Format:

(DIRECT-OUTPUT tid)

DIRECT-OUTPUT starts and stops output data flow for a direct access file open-

ing. DIRECT-OUTPUT explicitly controls binding and unbinding of an output data

channel to an open direct stream.

direct-handle is a required argument, and output-handle is optional.

If supplied, output-handle is a request to bind a currently free, user-side-selected

output data connection (indicated by the output-handle) to the open direct stream

designated by the direct-handle. The server binds the data channel and begins ac-

cepting data from that connection and writing it to the stream.

If the output-handle is omitted, this is a request to unbind the channel and termi-

nate the active output transfer.

DIRECTORY NFILE Command

Command Format:

(DIRECTORY tid input-handle pathname control-keywords properties)

Response Format:

(DIRECTORY tid)

DIRECTORY returns a directory listing including the identities and attributes for

logically related groups of files, directories, and links. If the command is success-

ful, a single token list containing the requested information is sent over the data

channel specified by input-handle, and the data channel is then implicitly freed by

both sides. For details on the format of the token list: See the section "NFILE DI-

RECTORY Data Format".

pathname specifies the files that are to be described; it is a string in the full path-

name syntax of the server host. For further details on full pathname syntax: See

the section "Full Pathname Syntax of the Server Host".

The pathname generally contains wildcard characters, in operating-system-specific

format, describing potential file name matches. Most operating systems provide a

facility that accepts such a pathname and returns information about all files

matching this pathname. Some operating systems allow wildcard (potential multi-

ple) matches in the directory or device portions of the pathname; other operating

systems do not. There is no clear contract at this time about what is expected of

servers on systems that do not allow wildcard matches, when presented with a

wildcard.

properties is a token list of keyword/value pairs. If properties is omitted or supplied

as the empty token list, the server sends along all properties. If any properties are

supplied, the user is requesting the server to send only those properties. However,

it is never an error for the server to send more information than is requested.

Page 192

control-keywords Argument to DIRECTORY

control-keywords is a token list of keyword/value pairs. The control-keywords affect

the way the DIRECTORY command works on the server machine. Although some

of the options below request the server to limit (by some filter) the data to be re-

turned, it is never an error if the server returns more information than is re-

quested.

The following keywords are recognized:

DELETED Treats soft-deleted files as though they still exist. Without this

option, they are not to be included among the files listed. Such

files have the DELETED property indicated as "true" among

their properties. DELETED is ignored on systems that do not

support soft deletion.

FAST Speeds up the operation and data transmission by not listing

any properties for the files concerned.

NO-EXTRA-INFO Specifies that the server is to suppress listing those properties

that are generally more difficult or expensive to obtain. For ex-

ample on Symbolics computers, NO-EXTRA-INFO speeds up

the File System Editor (FSEdit) when listing the top level of

hierarchical directory systems. This option affects the appear-

ance of directories in the listing by shortening set of properties

listed for directories (as opposed to files and links). The set of

properties is abbreviated by the following rule: Any property

requiring that the file system go to the actual directory file to

extract information (as opposed to extracting information from

the directory entry) need not be listed. This typically elimi-

nates listing of directory-specific properties such as information

about default generation counts and expunge dates.

DIRECTORIES-ONLY

This option changes the semantics of DIRECTORY fairly dras-

tically. Normally, the server returns information about all files,

directories, and links whose pathnames match the supplied

pathname. This means that for each file, directory, or link to

be listed, its directory name must match the (potentially wild-

carded) directory name in the supplied pathname, its file name

must match the file name in the supplied pathname, and so on.

When DIRECTORIES-ONLY is supplied, the server is to list

only directories, not whose pathname matches the supplied

pathname, but whose pathnames expressed as directory path-

names match the (potentially wildcarded) directory portion of

the supplied pathname. The description of the PROBE-

DIRECTORY keyword that can be supplied as the direction ar-

gument of the OPEN command discusses this: See the section

"OPEN NFILE Command".

Page 193

It is not yet established what servers on hosts that do not sup-

port this type of action natively are to do when presented with

DIRECTORIES-ONLY and a pathname with a wildcard directo-

ry component.

SORTED This causes the directory listing to be sorted. In a sorted direc-

tory listing, multiple versions of a file are consecutive in in-

creasing version number.

NFILE DIRECTORY Data Format

If the NFILE DIRECTORY command completes successfully, a single token list

containing the requested directory information is sent on the data channel speci-

fied by the input-handle argument in the DIRECTORY command. This section de-

scribes the format of that single token list, and gives further detail on the proper-

ties argument to DIRECTORY.

The token list is a top-level token list, so it is delimited by TOP-LEVEL-LIST-BEGIN

and TOP-LEVEL-LIST-END. The top-level token list contains embedded token lists.

The first embedded token list contains the empty token list followed by prop-

erty/value pairs describing property information of the file system as a whole

rather than of a specific file. NFILE requires one property of the file system to be

present: DISK-SPACE-DESCRIPTION is a string type property describing the

amount of free file space available on the system. The following embedded token

lists contain the pathname of a file, followed by property/value pairs describing the

properties of that file.

The following example shows the format of the top-level token list returned by DI-

RECTORY, for two files. It is expected that the server return several proper-

ty/value pairs for each file; the number of pairs returned is not constrained. In

this example, two property/value pairs are returned for the file system, two pairs

are returned for the first file, and only one pair is returned for the second file.

TOP-LEVEL-LIST-BEGIN

LIST-BEGIN -- the first embedded token list starts here

LIST-BEGIN -- an empty embedded token list

LIST-END

prop1/value1 -- property/value pairs of file system

prop2/value2

LIST-END

LIST-BEGIN

pathname1 -- pathname of the first file

prop1/value1 -- property/value pairs of first file

prop2/value2

LIST-END

LIST-BEGIN

pathname2 -- pathname of the second file

prop1/value1 -- property/value pairs of second file

LIST-END

TOP-LEVEL-LIST-END�

Page 194

The following example is designed to better show the structure of the top-level to-

ken list by depicting TOP-LEVEL-LIST-BEGIN and TOP-LEVEL-LIST-END by parentheses

and LIST-BEGIN and LIST-END by square brackets. respectively. The indentation,

blank spaces, and newlines in the example are not part of the token list, but are

used here to make the structure of the token list clear.

 ([[] prop1 value1 prop2 value2]

 [pathname1 prop1 value1 prop2 value2]

 [pathname2 prop1 value1 prop2 value2]) �

The pathname is a string in the full pathname syntax of the server host. For fur-

ther details on full pathname syntax: See the section "Full Pathname Syntax of the

Server Host".

For further information on file property/value pairs: See the section "Format of

NFILE File Property/Value Pairs". See the section "Recognized Keywords Denoting

File Properties".

DISABLE-CAPABILITIES NFILE Command

Command Format:

(DISABLE-CAPABILITIES tid capability)

Response Format:

(DISABLE-CAPABILITIES tid cap-1 success-1 cap-2 success-2 ...)

DISABLE-CAPABILITIES causes a capability to be disabled on the server machine.

capability is a string naming the capability to be disabled. The meaning of the ca-

pability is dependent on the operating system.

The return values cap-1, cap-2, and so on, are strings specifying names of capabili-

ties. If the capability named by cap-1 was successfully disabled, the corresponding

success-1 is supplied as Boolean truth; otherwise it is the empty token list.

Although the user can specify only one capability to disable, it is conceivable that

the result of disabling that particular capability is the disabling of other, related

capabilities. That is why the command response can contain information on more

than one capability.

ENABLE-CAPABILITIES NFILE Command

Command Format:

(ENABLE-CAPABILITIES tid capability password)

Response Format:

(ENABLE-CAPABILITIES tid cap-1 success-1 cap-2 success-2 ...)

ENABLE-CAPABILITIES causes a capability to be enabled on the server machine.

The password argument is optional, and should be included only if it is needed to

enable this particular capability. Both password and capability are strings. The

meaning of the capability is dependent on the operating system.

Page 195

The return values cap-1, cap-2 and so on, are strings specifying names of capabili-

ties. If the capability named by cap-1 was successfully enabled, the corresponding

success-1 is supplied as Boolean truth; otherwise it is the empty token list.

Although the user can specify only one capability to enable, it is conceivable that

the result of enabling that particular capability is the enabling of other, related

capabilities. That is why the command response can contain information on more

than one capability.

EXPUNGE NFILE Command

Command Format:

(EXPUNGE tid directory-pathname)

Response Format:

(EXPUNGE tid number-of-server-storage-units-freed)

EXPUNGE causes the directory specified by pathname to be expunged. Expunging

means that any files that have been soft deleted are to be permanently removed.

For file systems that do not support soft deletion, the command is to be ignored; a

success command response is sent, but no action is performed on the file system.

In this case, the number-of-server-storage-units-freed return value should be omitted.

directory-pathname is a required string argument in the pathname as directory for-

mat. The directory-pathname must refer to a directory on the server file system,

and not to a file. For a discussion of pathname as directory: See the section "Di-

rectory Pathnames and Directory Pathnames as Files".

The return value number-of-server-storage-units-freed is an integer specifying how

many records, blocks, or whatever unit is used to measure file storage on the host

system, were recovered. This return value should be omitted if the server does not

know how many storage units were freed.

The protocol does not define whether directory-pathname is really a pathname as

directory or a wildcard pathname of files to be expunged. The protocol does not de-

fine whether or not wildcards are permitted, or required to be supported, in the di-

rectory portion of the pathname (representing an implicit request to expunge many

directories).

FILEPOS NFILE Command

Command Format:

(FILEPOS tid handle position resync-uid)

Response Format:

(FILEPOS tid)

Page 196

FILEPOS sets the file access pointer to a given position. The handle indicates the

file to be affected. handle must be a data channel handle for a data stream open-

ing, or a direct file identifier for a direct access opening. Both handle and position

are required arguments.

position is an integer indicating to which point in the file the file access pointer is

to be reset. position is either a byte number according to the current byte size be-

ing used, or characters for character openings. Position zero is the beginning of

the file. If this is a character opening, position is measured in server units, not in

Symbolics units.

If the FILEPOS command is given on an input data channel (that is, a data chan-

nel currently sending data from server to user), the affected data channel must be

resynchronized after the FILEPOS is accomplished. The resync-uid is a unique

identifier associated with the resynchronization of the data channel. resync-uid

must be supplied if handle is an input handle, but it is not supplied otherwise. For

more information on the resynchronization procedure, see the section "NFILE Data

Connection Resynchronization".

In the output case, the user must somehow indicate to the server, on the output

data channel, when the data have come to an end. The user side sends the key-

word token EOF to do so. Upon receiving that control token, the server is free to

position the file pointer according to the position given. When the new file position

is established, the server resumes accepting data at the new file position.

In most cases, using the direct access mode of transfer is more convenient and ef-

ficient than using FILEPOS with a data stream opening.

There are problems inherent in trying to set a file position of a character-oriented

file on a foreign host, if one machine is a Symbolics computer and the other is

not. Character set translation must take place. See the section "NFILE Character

Set Translation". Because of these difficulties, FILEPOS might not be supported in

the future on character files. FILEPOS is not problematic for binary files.

Implementation Hint for FILEPOS NFILE Command

This section provides an implementation hint from the designers and implementors

of the Symbolics Lisp Machine NFILE. This section is useful for any programmer

implementing an NFILE server program.

The server processing of this command (by the control channel handler) must not

attempt to wait for the resynchronization procedure to complete. It is possible that

the user could abort between sending the FILEPOS command and reading for the

mark and resynchronization identifier. That scenario could leave the sender of the

resynchronization identifier, on the server side, blocked for output indefinitely.

Only two commands received on the control connection can break the data channel

out of the blocked state described above: CLOSE with abort-p supplied as Boolean

truth, and the RESYNCHRONIZE-DATA-CHANNEL. Therefore, the control connec-

tion must not wait for the control channel to finish performing the resynchroniza-

tion procedure. This wait should instead be performed by the process managing

the data channel.

Page 197

FINISH NFILE Command

Command Format:

(FINISH tid handle)

Response Format:

(FINISH tid truename binary-p other-properties)

FINISH closes a file and reopens it immediately with the file position pointer

saved, thus leaving it open for further I/O. The arguments, results, and their

meaning are identical to those of the CLOSE command. See the section "CLOSE

NFILE Command". FINISH requires a handle, which has the same meaning as the

handle of the CLOSE command.

In the output case, for both direct mode and data stream mode of openings, the

server writes out all buffers and sets the byte count of the file. The server sends

the keyword token EOF on the data channel, to indicate that the end of data has

been reached. The server leaves the file in such a state that if the system or serv-

er crashes anytime after the FINISH command was given, it would later appear as

though the file had been closed by this command. However, the file is not closed

now; it is left open for further I/O operations. FINISH is a reliability feature.

FINISH is somewhat pointless in the input case, but valid. The native Symbolics

file system (LMFS) implements FINISH on an output file by an internal operation

that effectively goes through the work of closing but leaves the file open for ap-

pending.

An Unsuccessful FINISH Operation

After writing every last bit sent by the user to disk, and before closing the file,

the server checks the data channel specified by handle to see if an asynchronous

error description is outstanding on that channel. That is, the server must deter-

mine whether it has sent an asynchronous error description to the user, to which

the user has not yet responded with a CONTINUE command. If so, the server is

unable to finish the file, and it must send a command error response response, in-

dicating that an error is pending on the channel. The appropriate three-letter er-

ror code is EPC. See the section "NFILE Error Handling".

A Successful FINISH Operation

After the user receives the successful response from the server, active data trans-

fer is resumed. That is, for a data stream input opening, or a direct opening with

an input channel active, the data channel is reactivated and resumes sending data

from the file at the point where the control channel interrupted it. In the case of

a data stream output opening, or a direct opening with an output channel active,

the output channel is set back into a state where it is prepared to receive data to

transmit to the file at the point where it was interrupted by the FINISH com-

mand.

HOME-DIRECTORY NFILE Command

Page 198

Command Format:

(HOME-DIRECTORY tid user)

Response Format:

(HOME-DIRECTORY tid directory-pathname)

HOME-DIRECTORY returns the full pathname of the home directory on the server

machine for the given user.

user is a string that should be recognizable as a user’s login name on the server

operating system. directory-pathname is a string in the pathname as directory for-

mat. For a discussion of pathname as directory: See the section "Directory Path-

names and Directory Pathnames as Files".

LOGIN NFILE Command

Command Format:

(LOGIN tid user password FILE-SYSTEM USER-VERSION)

Response Format:

(LOGIN tid keyword/value-pairs)

LOGIN logs the given user in to the server machine, using the password if neces-

sary. Both user and password are string arguments; user is required, password is

optional. An omitted password is valid if the host allows the specified user to log

in without a password. Depending on the operating system and server, it might be

necessary to log in to run a program (in this case the NFILE server program) on

the host. LOGIN establishes a user identity that is used by the operating system

to establish the file author and determine file access rights during the current

session.

The server has the option to reject with an error any command except LOGIN if a

successful LOGIN command has not been performed. This is recommended. Many

operating systems perform the login function in a different process and/or environ-

ment than user programs. The portion of the NFILE server running in the special

login environment could conceivably be capable only of processing the LOGIN

command; this is an implementation detail.

FILE-SYSTEM and USER-VERSION are optional keyword/value pairs. The FILE-

SYSTEM keyword/value pair has the same effect as does QFILE’s SET-FILE-

SYSTEM command; it selects the identity of the file system to which all following

commands in this session are to be directed. This argument has meaning only if

the server host machine has multiple file systems, and the targeted file system is

other than the default file system that a user would get by initiating a dialogue

with that host. The FILE-SYSTEM argument is an arbitrary token list. If the

server does not recognize it, the server gives an appropriate command error re-

sponse.

Currently, the only use of FILE-SYSTEM is for Symbolics Lisp Machine servers to

select the FEP hosts. In this case, the first element in the token list is the key-

Page 199

word FEP, and the second element in the token list is an integer, indicating the

desired FEP disk unit number. If the server discovers there is no such file system,

the server gives a command error response including the three-letter code NFS,

meaning "no file system".

The user tells the server what version of NFILE it is running by including the op-

tional USER-VERSION keyword/value pair. The value associated with USER-

VERSION can be a string, an integer, or a token list. This document describes

NFILE user version 2 and server version 2.

Upon receiving the representation of the user version, the server can either adjust

certain parameters to handle this particular version, or simply ignore the user ver-

sion altogether. Currently, the only released versions of NFILE are user version 2

and server version 2.

LOGIN Return Values: keyword/value-pairs

The keyword/value-pairs is a token list composed of keywords followed by their val-

ues. The server includes any or all of the following keywords and their values;

they are all optional. The following keywords are recognized:

NAME The value associated with NAME is a string specifying the

user identity, in the server host’s terms.

PERSONAL-NAME The value associated with PERSONAL-NAME is a string repre-

senting the user’s personal name, last name first. For example:

"McGillicuddy, Aloysius X.".

HOMEDIR-PATHNAME

The value associated with HOMEDIR-PATHNAME is a string

in the pathname as directory format, indicating the home di-

rectory of the user. For a discussion of pathname as directory:

See the section "Directory Pathnames and Directory Pathnames

as Files".

GROUP-AFFILIATION

The value associated with GROUP-AFFILIATION is a string

specifying the group to which the user belongs.

SERVER-VERSION The value associated with SERVER-VERSION can be a string,

an integer, or a token list. The value is a representation of the

version of the server is running. Upon receiving the server

version, the user can: adjust certain parameters to handle this

particular version; accept the version; or close the connection.

Currently, the only released versions of NFILE are user ver-

sion 2 and server version 2.

PROPERTY-INDEX-TABLE

The value associated with PROPERTY-INDEX-TABLE is a to-

ken list of keywords. This return value enables the server to

inform the user which file properties are meaningful on its file

system. The keywords in PROPERTY-INDEX-TABLE can be

Page 200

used by the DIRECTORY command (a user request for infor-

mation on file properties of a specified directory or directories).

The server can specify a certain property by giving an integer

that is the index of that file property into the PROPERTY-

INDEX-TABLE. This reduces the volume of data sent during

directory listings. The first element in PROPERTY-INDEX-

TABLE is indexed by the number 0. See the section "DIREC-

TORY NFILE Command".

MULTIPLE-FILE-PLISTS NFILE Command

Command Format:

(MULTIPLE-FILE-PLISTS tid input-handle pathlist characters properties)

Response Format:

(MULTIPLE-FILE-PLISTS tid)

MULTIPLE-FILE-PLISTS returns file property information of one or more files.

The server sends the information in a data structure (the format is described later

in this section) on the given input-handle. pathlist is a token list composed of the

pathnames in which the user is interested. The pathnames in pathlist are strings

in the full pathname syntax of the server host. Unlike for the DIRECTORY com-

mand, wildcards are not allowed in these pathnames. For further details on full

pathname syntax: See the section "Full Pathname Syntax of the Server Host".

characters is either Boolean truth (indicating that each file is a character file), the

empty token list (each file is a binary file), or the keyword DEFAULT. DEFAULT

indicates that the server itself is to figure out whether a file is a character or bi-

nary file. For more information on the meaning of the DEFAULT keyword: See the

section "OPEN NFILE Command". The value of characters can influence some

servers’ idea of a file’s length.

properties is a token list of keywords indicating which properties the user wants

returned. The server is always free to return more properties than those requested

in the properties argument. If properties is supplied as the empty token list, the

server should transmit all known properties on the files. For a list of keywords as-

sociated with file properties: See the section "Recognized Keywords Denoting File

Properties".

The server transmits as much of the requested information as possible on the

given input-handle. The information is contained in a top-level token list of ele-

ments. Each element corresponds with a supplied pathname; the order of the origi-

nal pathlist must be retained in the returned token list. An element is an empty

token list if the corresponding file or any of its containing directories does not ex-

ist. The elements that correspond to successfully located files are lists composed of

truename followed by any properties. properties are keyword/value pairs. truename is

a string in the full pathname syntax of the server host.

The following example shows TOP-LEVEL-LIST-BEGIN and TOP-LEVEL-LIST-END as

parentheses, and LIST-BEGIN and LIST-END with square brackets.

Page 201

For example, the user supplied a pathlist argument resembling:

[file1 file2 file3]

The server could not locate file1 or file3, but did locate file2, and found the length

and author of file2. The top-level token list transmitted by the server is:

([] [truename-of-file2 LENGTH 381 AUTHOR williams] [])�

For further details on how file properties and values are expressed: See the section

"Format of NFILE File Property/Value Pairs".

OPEN NFILE Command

Command Format:

(OPEN tid handle pathname direction binary-p

TEMPORARY RAW SUPER-IMAGE DELETED PRESERVE-DATES

SUBMIT DIRECT-FILE-ID ESTIMATED-LENGTH BYTE-SIZE

IF-EXISTS IF-DOES-NOT-EXIST)�

Response Format:

(OPEN tid truename binary-p other-properties)

OPEN opens a file for reading, writing, or direct access at the server host. That

means, in general, asking the host file system to access the file and obtaining a

file number, pointer, or other quantity for subsequent rapid access to the file.

The OPEN command has the most complicated syntax of any NFILE command.

The OPEN command has required arguments, an optional argument, and many op-

tional keyword/value pairs. For details on the sytnax of each of these parts of the

OPEN command, See the section "NFILE Command Descriptions".

The following arguments are required: pathname, direction, and binary-p. handle is

an optional argument, which must either be supplied or explicitly omitted by

means of substituting in its place the empty token list.

The OPEN command has many optional keyword/value pairs, which encode concep-

tual arguments to the server file system for the OPEN operation. The OPEN op-

tional keyword/value pairs include:

• TEMPORARY

• RAW

• SUPER-IMAGE

• DELETED

• PRESERVE-DATES

• SUBMIT

• DIRECT-FILE-ID

• ESTIMATED-LENGTH

• BYTE-SIZE

• IF-EXISTS

• IF-DOES-NOT-EXIST

Page 202

For a detailed description of all the supported OPEN optional keywords: See the

section "NFILE OPEN Optional Keyword/Value Pairs".

The OPEN return values reflect information about the file opened, when the open-

ing is successful. In the case of a probe-type opening, this information is returned

when the given file (or link, or directory) exists and is accessible, even though the

file (or link, or directory) is not actually opened. For detail on the OPEN return

values: See the section "NFILE OPEN Response Return Values".

The pathname OPEN Argument

The pathname is a required argument specifying the file to be opened. pathname is

a string in the full pathname syntax of the server host. See the section "Full Path-

name Syntax of the Server Host".

For some purposes (for example, when the OPEN argument direction is supplied as

PROBE-DIRECTORY), only the directory specified by this pathname is utilized. See

the section "NFILE OPEN Optional Keyword/Value Pairs".

The handle OPEN Argument

The handle argument of the OPEN command specifies a data channel to be used

for the transfer. Future commands in this session use the same handle to specify

the open stream that is created by opening the file. It is the user side’s responsi-

bility to ensure that handle refers to an existing and free data channel that does

not require resynchronization before use. A handle must be supplied, unless a

probe-type opening is desired (that is, the direction is supplied as PROBE, PROBE-

DIRECTORY, or PROBE-LINK) or a direct access opening is being requested (that

is, a DIRECT-FILE-ID is supplied). In those cases, the empty token list is supplied

for handle.

The direction OPEN Argument

The direction argument must be supplied as one of these keywords: INPUT, OUT-

PUT, IO, PROBE, PROBE-DIRECTORY, and PROBE-LINK. The meanings of the

direction keywords are as follows:

INPUT Specifies that the file is to be opened for input (server-to-user

transfer). To request a direct access opening, supply a value

for DIRECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the

opening is a data stream opening.

OUTPUT Specifies that the file is to be opened for output (user-to-server

transfer). To request a direct access opening, supply a value

for DIRECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the

opening is a data stream opening.

IO Specifies that interspersed input and output will be performed

on the file. This is only meaningful in direct access mode. A

DIRECT-FILE-ID must also be supplied. See the section

"NFILE OPEN Optional Keyword/Value Pairs".�

Page 203

If direction is supplied as PROBE, PROBE-LINK, or PROBE-DIRECTORY, the

opening is said to be a probe-type opening. The DIRECT-FILE-ID option is mean-

ingless and an error for probe-type openings. The file handle must be supplied as

an empty token list for probe-type openings.

PROBE Specifies that the file is not to be opened at all, but simply

checked for existence. If the file does not exist or is not acces-

sible, the error indications and actions are identical to those

that would be given for an INPUT opening. If the file does ex-

ist, the successful command response contains the same infor-

mation as it would have if the file had been opened for IN-

PUT. If it is a link, the link is followed to its source.

PROBE-LINK Like PROBE, with one difference. PROBE-LINK specifies that

if the pathname is found to refer to a link, that link is not to

be followed, and information about the link itself is to be re-

turned.

PROBE-DIRECTORY

PROBE-DIRECTORY requests information about the directory

designated by the pathname argument. In the PROBE-

DIRECTORY case, the pathname argument refers to the direc-

tory on which information is requested. In all other cases, the

pathname refers to a file to be opened. If pathname contains a

file name and file type, these parts of the pathname are ig-

nored for PROBE-DIRECTORY openings as long as they are

syntactically valid. This option exists because on some systems

it is syntactically impossible to explicitly specify a directory

any way other than as the directory portion of a pathname. �

The binary-p OPEN Argument

The binary-p argument is supplied as Boolean truth (meaning that the data to be

transferred are binary data), the empty token list (meaning that character type da-

ta are to be transferred), or the keyword DEFAULT. The value of binary-p affects

the mode in which the server opens the file, as well as informing it whether or

not character set translation must be performed.

If binary-p is supplied as the empty token list, the opening is said to be a charac-

ter opening. The server performs character set translation between its native char-

acter set and the Symbolics character set. The data are transferred over the data

connection one character per eight-bit byte. See the section "NFILE Character Set

Translation". The check (described in the DEFAULT OPEN option) for Symbolics

object files is not performed.

If binary-p is supplied as Boolean truth, the opening is said to be a binary opening.

The user side supplies the byte size via the BYTE-SIZE option; if not supplied, the

default byte size is 16 bits. If byte size is less than 8, the file data are transferred

byte by byte. If the byte size is 8 or greater, the server transfers each byte of the

file as two eight-bit bytes, low-order first. The check for Symbolics object files is

not performed.

Page 204

binary-p can also be supplied as the keyword DEFAULT. DEFAULT specifies that

the server itself is to determine whether to transfer binary or character data. DE-

FAULT is meaningful only for input openings; it is an error for OUTPUT, IO, or

probe-type openings. For file systems that maintain the innate binary or character

nature of a file, the server simply asks the file system which case is in force for

the file specified by pathname.

When binary-p is supplied as DEFAULT, on file systems that do not maintain this

information, the server is required to perform a heuristic check for Symbolics ob-

ject files on the first two 16-bit bytes of the file. If the file is determined to be a

Symbolics object file, the server performs a BINARY opening with BYTE-SIZE of

16; otherwise, it performs a CHARACTER opening.

The details of the check are as follows: if the first 16-bit byte is the octal number

170023 and the second 16-bit byte is any number between 0 and 77 octal (inclu-

sive), the file is recognized as a Symbolics object file. In any other case, it is not.

NFILE OPEN Optional Keyword/Value Pairs

The OPEN command has many optional keyword/value pairs that encode conceptu-

al arguments to the file system for the OPEN operation.

The following options are used often:

BYTE-SIZE Must be followed by an integer between 1 and 16, inclusive, or

the empty token list. BYTE-SIZE is meaningful only for binary

openings. BYTE-SIZE can be ignored for probe-type openings.

It can be omitted entirely for character openings, but if sup-

plied, must be followed by the empty token list. If binary-p is

supplied as DEFAULT, BYTE-SIZE can be omitted entirely, or

followed by the empty token list.

If a binary opening is requested and BYTE-SIZE is not sup-

plied, the assumed value is 16 for output openings. For input

binary openings, the default is the host file system’s stored

conception of the file’s byte size (for those hosts that natively

support byte size). This information is of great value to the

Symbolics computer file copier when it does not know about

the particular file type involved. For file systems that do not

natively support byte size, the default byte-size on binary input

is 16.

For file systems that maintain the innate byte-size of each file,

the server should supply this number to the appropriate operat-

ing system interface that performs the semantics of opening

the file. For other operating systems, a file written with a

given byte size must produce the same bytes in the same order

when read with that byte size. In this case, the server or host

operating system can choose any packing scheme that complies

with this rule.

Page 205

Operating systems that do not support byte size must ensure

that binary files written from user ends of the current protocol

can be read back correctly. However, the server can increase

the utility of the Symbolics computer at a customer site by

choosing packing schemes that allow all bits of the server

host’s word to be accessed and concur with other packing

schemes used by native host software.

For example, it would be appropriate for a Multics NFILE

server to pack:

Byte Size Packing Scheme

7, 8, or 9 bits four per 36-bit word

10, 11, or 12 bits three per 36-bit word

13, 14, 15, or 16 bits two per 36-bit word

�

In the 9-bit packing mode, native Multics character-oriented

software can access each logical byte sequentially. In 18-bit

packing mode, each Symbolics byte is in a halfword, easily ac-

cessible and visible in an octal representation. To achieve max-

imum data transfer rate and access all bits of a Multics word,

a byte size of 12 must be specified.

DELETED If supplied as Boolean truth, DELETED specifies that "deleted"

files are to be treated as though they were not "deleted".

DELETED is meaningful only for operating systems that sup-

port "soft deletion" and subsequent "undeletion" of files. Other

operating systems must ignore this option. Normally, deleted

files are not visible to the OPEN operation; this option makes

them visible.

DELETED can also be followed by the empty token list, which

has the same effect as omitting the DELETED keyword/value

pair entirely. For output openings, DELETED is meaningless

and an error if supplied.

DIRECT-FILE-ID If supplied, the DIRECT-FILE-ID indicates that the opening is

to be a direct access mode opening. If not supplied, the open-

ing is a data stream opening. The value of DIRECT-FILE-ID is

a string, generated by the user, never before used as a DI-

RECT-FILE-ID, and not designating any data channel. The DI-

RECT-FILE-ID is a unique identifier for the direct access

stream. It is used for all operations that identify an open serv-

er stream rather than a data channel. The DIRECT-FILE-ID is

used to identify a stream for a direct access opening, just as a

file handle is used to identify an open stream for a data

stream opening. The PROPERTIES, CLOSE, and RENAME

Page 206

commands use the DIRECT-FILE-ID in this way. There are

only two NFILE commands applicable to direct access openings

(ABORT and CONTINUE) that do not use the DIRECT-FILE-

ID, but use a data channel handle instead.

PRESERVE-DATES

If supplied as Boolean truth, PRESERVE-DATES specifies that

the server is to attempt to prevent the operating system from

updating the "reference date" or "date-time used" of the file.

This is meaningful only for input openings, and is an error

otherwise.

Genera invokes this option for operations such as Show File in

the editor, where it wishes to assert that the user did not

"read" the file, but just "looked at it". Servers on operating sys-

tems that do not support reference dates or users revising or

suppressing update of the reference dates must ignore this op-

tion.

ESTIMATED-LENGTH

The value of ESTIMATED-LENGTH is an integer estimating

the length of the file to be transferred. This option is mean-

ingful and permitted only for output openings. ESTIMATED-

LENGTH enables the user end to suggest to the server’s file

system how long the file is going to be. This can be useful for

file systems that must preallocate files or file maps or that ac-

crue performance benefits from knowing this information at

the time the file is first opened. This estimate, if supplied, is

not required to be exact. It can be ignored by servers to which

it is not useful or interesting. The units of the estimate are

characters for character openings, and bytes of the agreed-upon

byte size for binary openings. The character units should be

server units, if possible, but since this is only an estimate,

Symbolics units are acceptable. See the section "NFILE Char-

acter Set Translation".

IF-EXISTS Meaningful only for output openings, ignored otherwise, but

not diagnosed as an error. The value of IF-EXISTS is a key-

word that specifies the action to be taken if a file of the given

name already exists. The semantics of the values are derived

from the Common Lisp specification and repeated here for

completeness. If the file does not already exist, the IF-EXISTS

option and its value are ignored.

If the user side does not give the IF-EXISTS option, the action

to be taken if a file of the given name already exists depends

on whether or not the file system supports file versions. If it

does, the default is ERROR (if an explicit version is given in

the file pathname) or NEW-VERSION (if the version in the

file pathname is the newest version). For file systems not sup-

Page 207

porting versions, the default is SUPERSEDE. These actions are

described below.

IF-EXISTS provides the mechanism for overwriting or append-

ing to files. With the default setting of IF-EXISTS, new files

are created by every output opening.

Operating systems supporting soft deletion can take different

actions if a "deleted" file already exists with the same name

(and type and version, where appropriate) as a file to be creat-

ed. The Symbolics Lisp Machine file system (LMFS) effectively

uses SUPERSEDE, even if not asked to do so. Other servers

and file systems are urged to do similarly. Recommended ac-

tion is to not allow deleted files to prevent successful file cre-

ation (with specific version number) even if an IF-EXISTS op-

tion weaker than SUPERSEDE, RENAME, or RENAME-AND-

DELETE is specified or implied.

Here are the possible values and their meanings:

ERROR Reports an error.

NEW-VERSION Creates a new file with the same file name

but with a larger version number. This is

the default when the version component of

the filename is newest. File systems with-

out version numbers can implement this by

effectively treating it as SUPERSEDE.

RENAME Renames the existing file to some other

name and then creates a new file with the

specified name. On most file systems, this

renaming happens at the time of a success-

ful close.

RENAME-AND-DELETE

Renames the existing file to some other

name and then deletes it (but does not ex-

punge it, on those systems that distinguish

deletion from expunging). Then it creates a

new file with the specified name. On most

file systems, this renaming happens at the

time of a successful close.

OVERWRITE Output operations on the stream destruc-

tively modify the existing file. New data

start replacing old data at the beginning of

the file; however, the file is not truncated

to length zero upon opening.

TRUNCATE Output operations on the stream destruc-

tively modify the existing file. The file

Page 208

pointer is initially positioned at the begin-

ning of the file; at that time, TRUNCATE

truncates the file to length zero and frees

disk storage occupied by it.

APPEND Output operations on the stream destruc-

tively modify the existing file. New data

are placed at the current end of the file.

SUPERSEDE Supersedes the existing file. This means

that the old file is removed or deleted and

expunged. The new file takes its place. If

possible, the file system does not destroy

the old file until the new stream is closed,

against the possibility that the stream will

be close-aborted. This differs from NEW-

VERSION in that SUPERSEDE creates a

new file with the same name as the old

one, rather than a file name with a higher

version number.�

There are currently no standards on what a server can do if it

cannot implement some of these actions.

IF-DOES-NOT-EXIST

Meaningful for input openings, never meaningful for probe-type

openings, and sometimes meaningful for output openings. IF-

DOES-NOT-EXIST takes a value token, which specifies the ac-

tion to be taken if the file does not already exist. Like IF-

EXISTS, it is a derivative of Common Lisp. The default is as

follows: If this is a probe-type opening or read opening, or if

the IF-EXISTS option is specified as OVERWRITE, TRUN-

CATE, or APPEND, the default is ERROR. Otherwise, the de-

fault is CREATE.

These are the values for IF-DOES-NOT-EXIST:

ERROR Reports an error.

CREATE Creates an empty file with the specified

name and then proceeds as if it already

existed.�

The following optional keyword/value pairs are rarely used, if ever:

RAW If supplied as Boolean truth, RAW specifies that character set

translation is not to be performed, but that characters are to

be transferred intact, without inspection. This option is mean-

ingful only for character openings; it is an error otherwise. It

is also an error to supply RAW as Boolean truth for probe-type

openings. Servers operating natively in the Symbolics character

Page 209

set (for example, Symbolics computers) can ignore this option.

RAW can also be followed by the empty token list, which has

the same effect as if the RAW keyword/value pair were omitted

entirely.

TEMPORARY Used by the TOPS-20 server only. TEMPORARY says to use

GJ%TMP in the GTJFN. This is useful mainly when writing

files, and indicates that the foreign operating system is to

treat the file as temporary. See TOPS-20 documentation for

more about the implications of this option. Other servers can

ignore it. This option is meaningless and an error for input or

probe-type openings. TEMPORARY can also be followed by the

empty token list, which has the same effect as if the TEMPO-

RARY keyword/value pair were omitted entirely.

SUPER-IMAGE If supplied as Boolean truth, SUPER-IMAGE specifies that

Rubout quoting is not to be performed. This operation is mean-

ingful only for character openings; it is an error otherwise. It

is also an error for probe-type openings. SUPER-IMAGE can

also be followed by the empty token list, which has the same

effect as if the SUPER-IMAGE keyword/value pair were omit-

ted entirely.

SUPER-IMAGE mode causes the server to read or write char-

acter files where ASCII Rubout characters are a significant

part of the file content (such as ITS XGP files), not where

they are an escape for this protocol. Nevertheless, this is dif-

ferent than RAW, for other translations are still to be per-

formed: See the section "NFILE Character Set Translation".

SUBMIT SUBMIT is meaningful for output only. If supplied as Boolean

truth, SUBMIT causes the server to submit the contents of the

file being written to the operating system as a job, after the

file is closed. VMS is an example of an operating system that

could conveniently support SUBMIT. SUBMIT can also be fol-

lowed by the empty token list, which has the same effect as if

the SUBMIT keyword/value pair were omitted entirely. Servers

that do not implement this option should give an error re-

sponse if requested to submit a file to the operating system.

NFILE OPEN Response Return Values

The results of a successful OPEN operation are reported in the command re-

sponse. Here is the specification of the OPEN response format:

Response Format:

(OPEN tid truename binary-p other-properties)

The return values for OPEN and CLOSE are syntactically identical, but the values

can change in the time between open and close time.

Page 210

truename is a string representing the pathname of the file in the full pathname

syntax of the server host. It should be determined by the server once it has opened

the file, via some request to its operating system. The request can be of the form:

"What file corresponds to this JFN, file number, pointer, etc.?" If the operating

system supports version numbers, this string always contains an explicit version

number. It always contains a directory name, a file name, and so on.

Some operating systems might not know the truename of an output file until it is

closed. It is permissible not to supply an explicit version number in the pathname

in the OPEN response in this specific case. On these systems the truename when

the file is opened is different than the truename after it has been closed.

The return value binary-p indicates whether the opening is a binary or character

opening. For binary openings, binary-p is supplied as Boolean truth; for character

openings it is the empty token list.

other-properties is a list of keyword/value pairs. other-properties must contain CRE-

ATION-DATE and LENGTH. AUTHOR should be included if the server operating

system has a convenient mechanism for determining the author of the file. The

other properties described here can be included if desired.

CREATION-DATE The creation date of the file. The date is expressed in Univer-

sal Time format, which measures a time as the number of sec-

onds since January 1, 1900, at midnight GMT. Creation date

does not necessarily mean the time the file system created the

directory entry or records of the file. For systems that support

modification or appending to files, it is usually the modification

date of the file. Creation date can mean the date that the bit

count or byte count of the file was set by an application pro-

gram.

Some types of file systems support a user-settable quantity,

which the user can set to an arbitrary time, to indicate that

the data in this file were created a long time ago by someone

else on another computer. The default value of this quantity, if

the user has not set it, is the time someone last modified the

information in the file.

This quantity, in the OPEN response for an output file, is dis-

regarded by the user side, but must nevertheless be present.

The Symbolics computer system software uses this quantity as

a unique identifier of file contents, for a given file name, type,

and version, to prove that a file has not changed since it last

recorded this quantity for a file.

LENGTH An integer reporting the length of the file, in characters for

character openings and in bytes of the agreed-upon size for bi-

nary openings. LENGTH should be reported as zero for output

openings, even if appending to an existing file. The server usu-

ally only knows the length for a character opening in server

units; thus, it reports length in server units.

Page 211

AUTHOR The value of AUTHOR is a string representing the name of

the author of the file. This is some kind of user identifier,

whose format is highly system-specific.

In the best possible case, AUTHOR is a user-settable quantity

that the Symbolics computer software can set to assert a time-

and-space distant creation of the data in the file. The Symbol-

ics software also uses AUTHOR as part of a unique identifier

of the data content of the file.

BYTE-SIZE The byte-size agreed upon via the rules described for the

BYTE-SIZE option. The value of BYTE-SIZE is an integer. For

details on the ramifications of BYTE-SIZE: See the section

"NFILE OPEN Optional Keyword/Value Pairs". This parameter

is only meaningful for BINARY openings. However, if FILE-

POS is returned in the other-properties list, BYTE-SIZE should

also be included, even for character openings.

FILEPOS An integer giving the position of the logical file pointer, in

characters or bytes as appropriate for the type of opening. This

is always zero for an input opening and for an output opening

creating a new file. For an output opening appending to an ex-

isting file, FILEPOS is the number of characters or bytes, as

appropriate, currently in the file. This number, for character

openings, is measured in server units: See the section "NFILE

Character Set Translation".�

PROPERTIES NFILE Command

Command Format:

(PROPERTIES tid handle pathname control-keywords properties)

Response Format:

(PROPERTIES tid property-element settable-properties)

PROPERTIES requests the property information about one file. The file is identi-

fied by the pathname argument or the handle argument, but not both. If pathname

is supplied, it is a string in the full pathname syntax of the server host. For fur-

ther details on full pathname syntax: See the section "Full Pathname Syntax of the

Server Host".

If handle is supplied, its value is a string identifying an open stream, which im-

plicitly identifies a file. For direct access mode openings, handle must be a direct

file identifier.

control-keywords is reserved in the current design. However, it is a required argu-

ment, and must be supplied as the empty token list. Its presence in the NFILE

specification allows for future expansion. In the future the value of control-

keywords might affect the listing mode.

Page 212

properties is a token list of keywords indicating the properties the user wants re-

turned. (In command arguments, properties cannot be specified with integers that

are indices into the Property Index Table). For a list of keywords associated with

file properties: See the section "Recognized Keywords Denoting File Properties".

The server is always free to return more properties than those requested in the

properties argument. If properties is supplied as the empty token list, the server

transmits all known properties on the file.

PROPERTIES Command Response

The server returns the property information for the given file in the command re-

sponse. The PROPERTIES command does not use any data channels. If the speci-

fied file does not exist or is not accessible, the server signals an error and in-

cludes an appropriate three-letter error code in the command error response. See

the section "NFILE Error Handling".

The return value property-element is a token list. The first element in that token

list is the pathname of the file, in the full pathname syntax of the server host.

The following elements of the property-element token list are property/value pairs.

The server is expected to return several property/value pairs; the number of pairs

is not constrained. For further details on file properties and their associated val-

ues: See the section "Format of NFILE File Property/Value Pairs".

The return value settable-properties is a token list of keywords. The number of key-

words is not constrained. (Note that integers cannot be used in settable-properties

to indicate the file property; keywords are to be used instead.) Each keyword sup-

plied in settable-properties identifies a property considered settable by the server.

The server is implicitly guaranteeing a mechanism for changing the properties re-

ported as settable. The user can change any of the settable properties for this file

by using the CHANGE-PROPERTIES command. See the section "CHANGE-

PROPERTIES NFILE Command".

The following example shows the format of the PROPERTIES command response.

Remember that the number of property/value pairs and keywords is not con-

strained; this example has two property/value pairs and three settable-properties

keywords returned:

Page 213

TOP-LEVEL-LIST-BEGIN

PROPERTIES -- the name of the command

tid -- the transaction identifier

LIST-BEGIN

pathname of file

prop1/value1 -- property/value pairs of the file

prop2/value2

LIST-END

LIST-BEGIN

keyword-1 -- file’s settable properties

keyword-2

keyword-3

LIST-END

TOP-LEVEL-LIST-END�

The following example is designed to better show the structure of the top-level to-

ken list by depicting TOP-LEVEL-LIST-BEGIN and TOP-LEVEL-LIST-END by parentheses

and LIST-BEGIN and LIST-END by square brackets. The indentation and newlines in

the example are not part of the token list, but are used here to make the struc-

ture of the token list clear.

(PROPERTIES tid [pathname prop1 value1 prop2 value2 ...]

 [keyword1 keyword2 keyword3 ...])

�

READ NFILE Command

Command Format:

(READ tid direct-file-id input-handle count FILEPOS)

Response Format:

(READ tid)

READ requests input data flow for direct access openings. The direct-file-id is the

same as the DIRECT-FILE-ID argument that was given when opening the file; it

designates the open stream from which the characters or bytes are to be trans-

ferred. The input-handle specifies which data channel should be used for the trans-

fer of data from server to user. The data channel should have been already estab-

lished, cannot have been deestablished, and must not currently be in use.

count is an integer specifying how many bytes (or Symbolics unit characters, as

appropriate) to read. count can be supplied as the empty token list, meaning read

to the end of the file. If the user specifies a count greater than the number of

bytes remaining in the file, the server sends the keyword EOF to mark the end of

the file.

FILEPOS is an optional keyword/value pair. If the keyword FILEPOS is supplied,

it must be followed by an integer. Before any data are transferred, the open

stream is positioned to the point specified by the value of FILEPOS. The position

Page 214

of the point is measured in server units for character openings; for binary open-

ings it is measured in binary bytes. See the section "FILEPOS NFILE Command".

Upon receiving the READ command, the server binds the data channel to the open

stream and immediately begins transferring data. The server stops when they are

all transferred. After the server sends the last requested byte, it unbinds the data

channel, freeing it for other use. When the user side has processed the last byte,

the user side assumes that the data channel can now be reused for another data

transfer.

RENAME NFILE Command

Command Format:

(RENAME tid handle pathname to-pathname)

Response Format:

(RENAME tid from-pathname to-pathname)

RENAME requests the server to give a file a new name. This is NFILE’s interface

to the system’s native rename operation, with all of its system-specific semantics

and constraints.

Either a handle or a pathname (but not both) specifies the file that is to receive a

new name. The argument to-pathname designates that new name. The return value

from-pathname gives the full original name of the file, and to-pathname gives the

full new name of the file. For systems that support version numbers, the return

values can differ in version number from the values of the arguments given to

RENAME.

The arguments pathname and to-pathname and the return values from-pathname

and to-pathname are strings in the full pathname syntax of the server host. See

the section "Full Pathname Syntax of the Server Host".

If the file to be renamed is specified by a pathname, the file should be renamed

immediately. If the file is specified by handle, it is acceptable to wait until close-

time to rename the file.

Some operating systems can rename only within a directory. Nevertheless, the to-

pathname of the RENAME must be fully specified; the server on these systems

must check for and reject an attempted cross-directory rename.

RESYNCHRONIZE-DATA-CHANNEL NFILE Command

Command Format for an Input Handle:

(RESYNCHRONIZE-DATA-CHANNEL tid handle)

Response Format for an Input Handle:

(RESYNCHRONIZE-DATA-CHANNEL tid identifier)

Command Format for an Output Handle:

Page 215

(RESYNCHRONIZE-DATA-CHANNEL tid handle identifier)

Response Format for an Output Handle:

(RESYNCHRONIZE-DATA-CHANNEL tid)

RESYNCHRONIZE-DATA-CHANNEL begins a prescribed procedure between user

and server over the unsafe data channel specified by handle. The resynchronization

procedure clears the data channel of any unwanted data, and restores the data

channel to a safe state, ready to transfer data again.

All arguments to RESYNCHRONIZE-DATA-CHANNEL are required.

For a detailed description of how the user and server coordinate the resynchroniza-

tion of data channels: See the section "NFILE Data Connection Resynchronization".

Implementation Hints for RESYNCHRONIZE-DATA-CHANNEL NFILE Com-

mand

This section provides implementation hints from the designers and implementors

of Symbolics NFILE. This section is useful for any programmer implementing an

NFILE server program.

Resynchronizing an Output Data Channel

• The server will probably want to dispatch the looping and reading to the logical

data process. Looping reading for the resynchronization identifier in the control

channel is not a viable option. If the user side fails to send the resynchroniza-

tion identifier (for example, due to a user abort) the control channel can never

be broken out of this loop.

• The user side can either send the control channel command first, or send the

marks and identifiers first.

Sending the marks first is problematic, because the data channel at the other

end might not be reading them (for it has not yet been so instructed by the con-

trol channel). The user might then become blocked for output, thus prohibiting

sending of the RESYNCHRONIZE-DATA-CHANNEL command.

On the other hand, sending the control channel command first requires that the

user side can send the marks and identifiers between sending the control chan-

nel command and receiving a response for it. The response will never come un-

til the marks and identifiers have been successfully received. The user imple-

mentation must allow for this one case of a command where a subroutinal "send

command and wait for response" is inapplicable.�

Resynchronizing an Input Data Channel

• The server control process should dispatch the data process to send the mark,

and not wait, lest the data process become blocked for output due to a user

Page 216

abort. The control process must go back to its command loop, to possibly receive

a command that might break the data process out of that block.�

UNDATA-CONNECTION NFILE Command

Command Format:

(UNDATA-CONNECTION tid input-handle output-handle)

Response Format:

(UNDATA-CONNECTION tid)

UNDATA-CONNECTION explicitly deestablishes a data connection from the user

side. The user side has the option of deestablishing data connections at its discre-

tion. There is no place in the protocol where deestablishment of data connections

is required, other than at the end of the session, where it is implicit.

The data connection to be deestablished is the one designated by the input-handle

and output-handle arguments. These two handles must refer to the same data con-

nection.

It is not permitted to explicitly deestablish a data connection either of whose chan-

nels is active. If the session is terminated by the breaking of the control connec-

tion, all file handles become meaningless, and the server must close all data con-

nections known to it and close-abort all files opened on behalf of the user during

the dialogue.

The Symbolics user implementation deestablishes data connections that have not

been used for a long time.

For more information about data connections: See the section "NFILE Control and

Data Connections".

NFILE Error Handling

NFILE recognizes two types of errors: command response errors and asynchronous

errors.

Command response errors:

• Signify an error associated with the command

• Occur frequently in normal operations�

Asynchronous errors:

• Are not related to any specific command

• Are associated with an erring data channel

• Typically indicate a problem in the transfer, such as running out of disk space

or allocation, or a bad disk record

• Occur rarely in normal operations�

Page 217

NFILE Command Response Errors

NFILE command response errors are sent over from the server to the user across

the control connection as top-level token lists, in this format:

(ERROR tid three-letter-code error-vars message)

ERROR is a keyword. The tid is the transaction identifier of the command that en-

countered this error. The arguments three-letter-code, error-vars, and message are

all required.

The three-letter-code provides the information on what kind of an error was en-

countered. For a table of the three-letter codes and their meanings: See the sec-

tion "NFILE Three-letter Error Codes".

message is a string that is displayed to the human user of the protocol.

error-vars is a keyword/value list. The three possible keywords are: PATHNAME,

OPERATION, and NEW-PATHNAME. Before transmitting an error, the server

looks at the type of error to see if it can easily determine the value of any of the

keywords. If so, the server includes the keyword/value pair in its error. If not, the

keyword/value pair is omitted. The value associated with OPERATION is the key-

word naming the NFILE command that failed. The values associated with PATH-

NAME and NEW-PATHNAME are strings in the full pathname syntax of the serv-

er host.

For example, the server failed in an attempt to rename a file. The server can then

determine the pathname of the original file, the operation (RENAME), and the

new pathname (the target pathname) of the file; the server includes all three key-

words and their values in its error description.

NFILE Asynchronous Errors

When a data channel process, in either direction, encounters an error condition,

the server sends an asynchronous error description. An asynchronous error descrip-

tion consists of a top-level token list. Typically, asynchronous errors indicate error

conditions in the transfer, such as running out of disk space or allocation, or a bad

disk record.

The format of asynchronous error descriptions is:

(ASYNC-ERROR handle three-letter-code error-vars message)

ASYNC-ERROR is a keyword. The handle argument identifies the erring data

channel. The arguments three-letter-code, error-vars, and message are all required.

Their meanings are the same as in NFILE command error responses: See the sec-

tion "NFILE Command Response Errors".

When the server detects an asynchronous error on an input data channel, the serv-

er sends an asynchronous error description on that data channel itself. When an

asynchronous error occurs on an output data channel, the asynchronous error de-

scription is sent on the control connection.

Page 218

Some asynchronous errors are restartable. In this context, restartable means it

makes sense to try to resume the operation. One example of a restartable error is

an attempt to write a file to a file system that is out of room. The server side in-

dicates whether an asynchronous error is restartable by prepending the keyword

RESTARTABLE and the associated value Boolean truth to the error-vars list. To

proceed from a restartable error, the user side sends a CONTINUE command over

the control connection.

On any asynchronous error, either input or output, the data channel on the server

side enters an asynchronous error received state. The server can exit that state in

one of two ways: by receiving a CONTINUE command or a CLOSE command with

the abort-p argument supplied as Boolean truth.

On a normal CLOSE (not a close-abort), the server side checks the channel it was

requested to close. If an asynchronous error description has been sent on the data

channel, but not yet processed by CONTINUE, the server side does not close the

channel, but sends a command error response. The same thing happens on a FIN-

ISH command received on a channel that has an asynchronous error pending. In

both cases, the three-letter code included in the command error response is EPC,

for Error Pending on Channel.

NFILE Three-letter Error Codes

NFILE recognizes a set of three-letter codes, each one representing an error condi-

tion. The set of codes enables all operating systems to use one error-reporting

mechanism. Some operating systems will never encounter certain of the error con-

ditions. Upon detecting an error, the NFILE server should characterize the error

by choosing the three-letter code that best describes the error. The three-letter

code is an argument in both the command response error and asynchronous error

messages from the server to the user.

Some errors fit logically into two error codes. For example, suppose the server

could not delete a file because the file was not found. This error could be consid-

ered either CDF (Cannot Delete File) or FNF (File Not Found). In this case, File

Not Found gives more specific and valuable information than Cannot Delete File.

Since the protocol does not allow more than one error code to be reported when an

error occurs, the server must choose the most appropriate error code.

This is the error table:

ACC Access error. This indicates a protection-violation error.

ATD Incorrect access to directory. A directory could not be accessed because the

user’s access rights to it did not permit this type of access.

ATF Incorrect access to file. A file could not be accessed because the user’s ac-

cess rights to it did not permit this type of access.

BUG File system bug. This includes all protocol violations detected by the server,

as well as by the host file system.

Page 219

CCD Cannot create directory. An error occurred in attempting to create a direc-

tory.

CDF Cannot delete file. The file system reported that it cannot delete a file.

CCL Cannot create link. An error occurred in attempting to create a link.

CIR Circular link. An operation was attempted on a pathname that designates a

link that eventually links back to itself.

CRF Cannot rename file. An error occurred in attempting to rename a file.

CSP Cannot set property. An error occurred in attempting to change the proper-

ties of a file. This could mean that you tried to set a property that only the

file system is allowed to set, or a property that is not defined on this type

of file system.

DAE Directory already exists. A directory or file of this name already exists.

DAT Data error. The file system contains bad data. This could mean data errors

detected by hardware or inconsistent data inside the file system.

DEV Device not found. The device of the file was not found or does not exist.

DND "Don’t delete" flag set. Deleting a file with a "don’t delete" flag was at-

tempted.

DNE Directory not empty. An invalid deletion of a nonempty directory was at-

tempted.

DNF Directory not found. The directory was not found or does not exist. This

refers specifically to the containing directory; if you are trying to access a

directory, and the actual directory you are trying to access is not found,

you should signal FNF, for File Not Found.

EPC Error pending on channel. The server cannot close the channel in attempt-

ing to close or finish the channel. This code is used only by NFILE, and

not by QFILE. See the section "CLOSE NFILE Command". See the section

"FINISH NFILE Command".

FAE File already exists. The file could not be created because a file or directory

of this name already exists.

FNF File not found. The file was not found in the containing directory. The

TOPS-20 and TENEX "no such file type" and "no such file version" errors

should also report this condition.

FOO File open for output. Opening a file that was already opened for output was

attempted.

FOR Filepos out of range. Setting the file pointer past the end-of-file position or

to a negative position was attempted.

FTB File too big. File is larger than the maximum file size supported by the file

system.

Page 220

HNA Host not available The file server or file system is intentionally denying

service to user. This does not mean that the network connection failed; it

means that the file system is explicitly not available.

IBS Invalid byte size. The value of the "byte size" option was not valid.

ICO Inconsistent options. Some of the options given in this operation are incon-

sistent with others.

IOD Invalid operation for directory. The specified operation is invalid for direc-

tories, and the given pathname specifies a directory, in directory pathname

as file format.

IOL Invalid operation for link. The specified operation is invalid for links, and

this pathname is the name of a link.

IP? Invalid password. The specified password was invalid.

IPS Invalid pathname syntax. This includes all invalid pathname syntax errors.

IPV Invalid property value. The new value provided for the property is invalid.

IWC Invalid wildcard. The pathname is not a valid wildcard pathname.

LCK File locked. The file is locked. It cannot be accessed, possibly because it is

in use by some other process.

LIP Login problems. A problem was encountered while trying to log in to the

file system.

MSC Miscellaneous problems.

NAV Not available. The file or device exists but is not available. Typically, the

disk pack is not mounted on a drive, the drive is broken, or the like. Oper-

ator intervention is probably required to fix the problem, but retrying the

operation is likely to succeed after the problem is solved.

NER Not enough resources.

NET Network problem. The file server had some sort of trouble trying to create

a new data connection, or perform some other network operation, and was

unable to do so.

NFS No file system. The file system was not available. For example, this host

does not have any file systems, or this host’s file system cannot be initial-

ized or accessed for some reason, or the file system simply does not exist.

NLI Not logged in. A file operation was attempted before logging in. Normally

the file system interface always logs in before doing any operation, but this

problem can occur in certain unusual cases in which logging in has been

aborted.

NMR No more room. The file system is out of room. This can mean any of sever-

al things:

• The entire file system is full.

• The particular volume involved is full.

Page 221

• The particular directory involved is full.

• The allocate quota has been exceeded. �

RAD Rename across directories. The devices or directories of the initial and tar-

get pathnames are not the same, but on this file system they are required

to be.

REF Rename to existing file. The target name of a rename operation is the name

of a file that already exists.

UKC Unknown operation. An unsupported file system operation was attempted, or

an unsupported command was attempted.

UKP Unknown property. The property is unknown.

UNK Unknown user. The specified user name is unknown to this host.

UUO Unimplemented option. An option to a command is not implemented.

WKF Wrong kind of file. This includes errors in which an invalid operation for a

file, directory, or link was attempted.

WNA Wildcard not allowed.

Namespace Protocols

Network Namespace Protocol

Queries and updates to the network database are done over a byte stream with the

namespace protocol. The general format of a request is a single record. The re-

sponse is a series of records followed by a blank line. Queries can be serviced by a

primary or secondary namespace server or by a non-server Symbolics computer;

but in case of a secondary namespace server, the information in the response

might be incomplete or out-of-date. Updates can be serviced by the primary name-

space server only.

In the case of a query, you send a record which must at least specify a namespace

and a class. Any additional attributes in the record are matched against objects in

that namespace of that class. The response records describe those objects. Here,

the name of the object is given by the name attribute, rather than the value of

the class name attribute. For attribute values that are pairs or elements, the spe-

cial token * matches anything. Actually, * matches anything at any level, but

putting it in as a value with a simple indicator is equivalent to leaving out that

attribute entirely.

For example, the query

NAMESPACE MIT

CLASS HOST

NAME AI�

might elicit the response

Page 222

HOST MIT-AI

NICKNAME AI

SYSTEM-TYPE ITS

MACHINE-TYPE KA-10

ADDRESS CHAOS 2026

�

(Note the two blank lines at the end; the first ends the record describing MIT-AI.

The second ends the blank record that marks the end of the response.)

Or the query

NAMESPACE MIT

CLASS HOST

SYSTEM-TYPE ITS

ADDRESS CHAOS *�

might elicit

HOST MIT-AI

NICKNAME AI

SYSTEM-TYPE ITS

MACHINE-TYPE KA-10

ADDRESS CHAOS 2026

�

HOST MIT-MC

NICKNAME MC

SYSTEM-TYPE ITS

MACHINE-TYPE KL-10

ADDRESS CHAOS 1440

�

The format of an update is the same as that of a query, except that the additional

update-by attribute is included. The value of this attribute is the user name of

the person changing the information, for logging purposes. Additional tokens might

be required by some servers for a password if security of the database is impor-

tant.

A database deletion request has the special indicator delete in addition to update-

by. The value of this attribute is the name of the object to be deleted from the

database.

Incremental updates are accomplished in two ways. Any attribute list can have a

timestamp indicator in addition to the match requests. The server reply lists only

objects that have changed after that timestamp. In other words, the timestamp cor-

responds to the user’s idea of when encached information was last valid.

A user can also request an incremental update of the database by supplying the

incremental indicator. The value of this indicator is one of the special tokens

brief, full, or complete. In this case, the timestamp indicator is mandatory and

indicates the time from which the user is requesting an update. A brief incremen-

tal update starts with a record that is one of these:

Page 223

• The word current, if the timestamp supplied is still the correct timestamp for

the namespace.

• A record with just a too-old attribute whose value is the current timestamp.

• A record that starts with a timestamp attribute whose value is the current

timestamp and is followed by the class and name of each object that has been

deleted from the namespace since the given timestamp. This last case is then

followed by a record with a line giving the class and name of each object that

has been changed or added to the namespace.�

A full update has the same format as a changes file. See the section "Namespace

Database Changes Files".

Finally, an incremental complete update results in one record containing a times-

tamp attribute for the namespace, followed by all the objects in the namespace.

Namespace Timestamp Protocol

A simple protocol is provided for determining whether any information in a name-

space has changed. On the Chaosnet, this is implemented via an RFC/ANS trans-

action. The RFC specifies the name of the namespace and the corresponding ANS

contains the timestamp as characters representing a decimal number.

Chaosnet

The documentation in this section describing Chaosnet was originally part of the

Massachusetts Institute of Technology Artificial Intelligence Lab Memo 628 copy-

right June, 1981.

Introduction to Chaosnet

Chaosnet is a local network, that is, a system of communications among a group of

computers located within one or two kilometers of each other. The name Chaosnet

refers to the lack of any centralized control element in the network.

All Symbolics computers support Chaosnet. In Symbolics terminology, Chaos is a

type of network. If a site supports Chaosnet:

• The site’s namespace database has a network object of type Chaos.

• Hosts have Chaosnet addresses; the addresses are stored in the address at-

tribute of the host objects.

• Hosts can communicate with other hosts on the Chaosnet using Chaos protocols;

these protocols are stored in the service attributes of the host object. �

Page 224

The design of Chaosnet was greatly simplified by ignoring problems irrelevant to

local networks. Chaosnet contains no special provisions for problems such as low-

speed links, noisy (very high error-rate) links, multiple paths, and long-distance

links with significant transit time. This means that Chaosnet is not particularly

suitable for use across the continent or in satellite applications. Chaosnet also

makes no attempt to provide features unnecessary for local-area networks, such as

multiple levels of service or secure communication (other than by end-to-end en-

cryption).

The original design of Chaosnet consisted of two partsthe hardware and the soft-

warewhich, while logically separable, were designed for each other. Symbolics no

longer uses the Chaosnet-specific hardware, but uses standard Ethernet hardware

instead.

Network nodes contend for access to an Ethernet cable, over which they can trans-

mit packets addressed to other network nodes. The software defines higher-level

protocols in terms of packets.

See the section "Format of Chaosnet Addresses".

References to Chaosnet Protocol Specifications

The Symbolics documentation describing Chaosnet was originally part of the Mas-

sachusetts Institute of Technology Artificial Intelligence Lab Memo 628, copyright

June 1981.

Chaosnet implements several standard Arpanet protocols, which are documented as

ARPANET Requests for Comments. See the section "References to IP/TCP Protocol

Specifications".

For information on NFILE: See the section "NFILE File Protocol".

The following documents are of some related interest:

[CPR] C. Ryland, TOPS-20 Chaosnet Manual, unpublished.

[UNIBUS] PDP-11 Peripherals Handbook, Digital Equipment Corporation.

Overview of the Chaosnet Software Protocol

The purpose of the basic software protocol of Chaosnet is to allow high-speed com-

munication among processes on different machines, with no undetected transmis-

sion errors.

The Chaosnet protocol was designed to be simple, for the sake of reliability and to

allow its use by modest computer systems. A minimal implementation exists for a

single-chip microcomputer. It was important to design out bottlenecks like those

that were found in the Arpanet prior to the advent of IP/TCP, such as the control-

link that was shared between multiple connections and the need to acknowledge

each message before the next message could be sent.

Page 225

Chaosnet Connections

The principal service provided by Chaosnet is a connection between two user pro-

cesses. This is a full-duplex reliable packet-transmission channel. The network un-

dertakes never to garble, lose, duplicate, or resequence the packets; in the event of

a serious error it can break the connection off entirely, informing both user pro-

cesses. User programs can either deal in terms of packets, or ignore packet bound-

aries and treat the connection as two unidirectional streams of 8-bit or 16-bit

bytes.

On top of the connection facility, "user" programs build other facilities, such as

file access, interactive terminal connections, and data in other byte sizes, such as

36 bits. The meaning of the packets or bytes transmitted through a connection is

defined by the particular higher-level protocol in use.

In addition to reliable communication, the network provides flow control, includes

a way by which prospective communicants can get in touch with each other (called

contacting or rendezvous), and provides various network maintenance and house-

keeping facilities.

Chaosnet Contact Names

When first establishing a connection, it is necessary for the two communicating

processes to contact each other. In addition, in the usual user/server situation, the

server process does not exist beforehand and needs to be created and made to exe-

cute the appropriate program.

We chose to implement contacting in an asymmetric way. (Once the connection

has been established, everything is completely symmetric.) One process is designat-

ed the user, and the other is designated the server. The server has some contact

name to which it listens. The user process requests its local operating system to

connect it to the server, specifying the network node and contact name of the

server. The local operating system sends a message (a Request for Connection) to

the remote operating system, which examines the contact name and creates a con-

nection to a listening process, creates a new server process and connects to it, or

rejects the request.

The capability of automatically discovering which host to connect to in order to ob-

tain a particular service is a subject for higher-level protocols and for further re-

search. Chaosnet makes no provisions for this capability.

Once a connection has been established, there is no more need for the contact

name and it is discarded. Indeed, often the contact name is simply the name of a

service (such as "TELNET") and several users should be able to have simultaneous

connections to separate instances of that service, so contact names must be

reusable.

When two existing processes that already know about each other want to establish

a connection, we arbitrarily designate one as the listener (server) and the other as

the requester (user). The listener somehow generates a "unique" contact name,

somehow communicates it to the requester, and listens for it. The requester re-

Page 226

quests to connect to that contact name and the connection is established. In the

most common case of establishing a second connection between two processes

which are already connected, the index number of the first connection can serve as

a unique contact name.

Contact names are restricted to strings of uppercase letters, numbers, and ASCII

punctuation. The maximum length of a contact name is limited only by the packet

size, although on ITS hosts, the file system limits the names of automatically

started servers to six characters.

The contact names for Chaosnet connections are retained in the connection data

structures. The accessor function is chaos:contact-name.

The complete details about establishing a connection are given elsewhere: See the

section "Chaosnet Connection Establishment".

Chaosnet Addresses and Indices

Each node (or host) on the network is identified by a unique address: See the sec-

tion "Format of Chaosnet Addresses".

These addresses are used in the routing of packets. There is a table that relates

symbolic host names to numeric host addresses; for Symbolics computers this is

the namespace database.

An address consists of two fields. The most-significant 8 bits identify a subnet, and

the least-significant 8 bits identify a host within that subnet. Both fields must be

nonzero. A subnet corresponds to a single transmission path. Some subnets are

physical Chaosnet or Ethernet cables, while others are other media, for instance

an interface between a PDP-10 and a PDP-11. The significance of subnets will be-

come clear when routing is discussed: See the section "Chaosnet Routing".

When a host is connected to an Ethernet cable, its hardware address and Chaosnet

address are coordinated through Address Resolution Protocol [ARP]. When a host

is connected to a Chaosnet cable, the host’s hardware address on that Chaosnet ca-

ble is the same as its software address, including the subnet field.

A connection is specified by the names of its two ends. Such a name consists of a

16-bit host address and a 16-bit connection index, which is assigned by that host,

as the name of the entity inside the host that owns the connection. The only re-

quirements placed by the protocol on indices are that they be nonzero and that

they be unique within a particular host; that is, a host may not assign the same

index number to two different connections unless enough time has elapsed between

the closing of the first connection and the opening of the second connection that

confusion between the two is unlikely.

Typically the least-significant n bits of an index are used as a subscript into the

operating system’s tables, and the most-significant 16-n bits are incremented each

time a table slot is reused, to provide uniqueness. The number of unique-guarantee

bits must be sufficiently large, compared to the rate at which connection-table

slots are reused, that if two connections have the same index, a packet from the

old connection cannot sit around in the network (for example, in buffers inside

hosts or bridges) long enough to be seen as belonging to the new connection.

Page 227

It is important to note that packets are not sent between hosts (physical comput-

ers). They are sent between user processes; more exactly, between channels at-

tached to user processes. Each channel has a 32-bit identification, which is divided

into subnet, host, index, and unique-guarantee fields. From the point of a view of a

user process using the network, the Network Control Program section of the host’s

operating system is part of the network, and the multiplexing and demultiplexing

it performs is no different from the routing performed by other parts of the net-

work. It makes no difference whether two communicating processes run in the

same host or in different hosts.

Certain control packets, however, are sent between hosts rather than users. This is

visible to users when opening a connection; a contact name is only valid with re-

spect to a particular host. This is a compromise in the design of Chaosnet, which

was made so that an operational system could be built without first solving the re-

search and engineering problems associated with making a diverse set of hosts in-

to a uniform, one-level namespace.

Chaosnet Packet Numbers

There are two kinds of packets, controlled and uncontrolled. Controlled packets are

subject to error-control and flow-control protocols, which guarantee that each con-

trolled packet is delivered to its destination exactly once, that the controlled pack-

ets belonging to a single connection are delivered in the same order they were

sent, and that a slow receiver is not overwhelmed with packets from a fast sender.

(See the section "Chaosnet Flow and Error Control".) Uncontrolled packets are sim-

ply transmitted; they usually, but not always, arrive at their destination exactly

once. The protocol for using them must take this into account.

Each controlled packet is identified by an unsigned 16-bit packet number. Succes-

sive packets are identified by sequential numbers, with wrap-around from all 1s to

all 0s. When a connection is first opened, each end numbers its first controlled

packet (RFC or OPN) however it likes, and that sets the numbering for all follow-

ing packets.

Packet numbers should be compared modulo 65536 (2 to the 16th), to ensure cor-

rect handling of wraparound cases. On a PDP-11, use the instructions

CMP A,B

BMI A_is_less�

Do not use the BLT or BLO instruction. On a PDP-10, use the instructions

SUB A,B

TRNE A,100000

JRST A_is_less�

Do not use the CAMGE instruction. On a Symbolics computer, use the code

(IF (LOGTEST #o(00000 (- A B))

 <A is less>)�

Do not use the LESSP (or <) function.

Page 228

Chaosnet Packet Contents

A packet consists of a header, which is eight 16-bit words, and zero or more 8-bit

or 16-bit bytes of accompanying data.

The following are the eight header words:

Operation

The most-significant 8 bits of this word are the Opcode of the packet, a

number which tells what the packet means. The 128 opcodes with high-

order bit 0 are for the use of the network itself. The 128 opcodes with

high-order bit 1 are for use by users. The various opcodes are described

elsewhere. See the section "Technical Details of the Chaosnet Software Pro-

tocol".

The least-significant 8 bits of this word are reserved for future use, and

must be zero.

Count The most-significant 4 bits of this word are the forwarding count, which

tells how many times this packet has been forwarded by bridges. Its use is

explained elsewhere; See the section "Chaosnet Routing".

The least-significant 12 bits of this word are the data byte count, which

tells the number of 8-bit bytes of data in the packet. The minimum value is

0 and the maximum value is 488. Note that the count is in 8-bit bytes even

if the data are regarded as 16-bit bytes.

The byte count must be consistent with the actual length of the hardware

packet. Since the hardware cyclic redundancy check algorithm is not sensi-

tive to extra zero bits, packets whose hardware length disagrees with their

software length are discarded as hardware errors.

Destination Address

This word contains the network address of the destination host to which

this packet should be sent.

Destination Index

This word contains the connection index at the destination host of the con-

nection to which this packet belongs, or 0 if this packet does not belong to

any connection.

Source Address

This word contains the network address of the source host which originated

this packet.

Source Index

This word contains the connection index at the source host of the connec-

tion to which this packet belongs, or 0 if this packet does not belong to any

connection.

Packet Number

If this is a controlled packet, this word contains its identifying number.

Page 229

Acknowledgement

The use of this word is described elsewhere. See the section "Chaosnet

Flow and Error Control".

Chaosnet Data Formats

Data transmitted through Chaosnet generally follow Symbolics standards. Bits and

bytes are numbered from right to left, or least-significant to most-significant. The

first 8-bit byte in a 16-bit word is the one in the arithmetically least-significant

position. The first 16-bit word in a 32-bit double-word is the one in the arithmeti-

cally least-significant position.

The character set used is dictated by the higher-level protocol in use. Telnet and

Supdup, for example, each specifies its own ASCII-based character set. The "de-

fault" character set, used for new protocols and for text that appears in the basic

Chaosnet protocol (such as contact names) is the Symbolics character set. See the

section "The Character Set". This is basically ASCII, augmented with additional

printing characters and a different set of format-effector (or "control") characters.

Because the rules for bit numbering conflict with the native byte-ordering in PDP-

10s, and because it is quite expensive to rearrange the bytes using the PDP-10 in-

struction set, PDP-11s that act as front-ends for PDP-10s must reformat packets

passing through them, and PDP-10s interfaced directly to the network must have

interfaces capable of rearranging the bytes. This requires that the network proto-

cols explicitly specify which portions of each type of packet are 8-bit bytes and

which are 16-bit bytes. In general the header is 16-bit bytes and the data field is

8-bit bytes, but certain packet types (OPN, STS, RUT, and opcodes 300 through

377) have 16-bit bytes in the data field. Use of 32-bit data is rare, so no provision

is made for putting 32-bit data into the standard format for PDP-10s. On our cur-

rent network, PDP-10s are the only hosts that require this packet reformatting as-

sistance, because most modern computers number their bits and bytes from least-

significant to most-significant.

The effect of this is that user programs see the data in a packet, and its header in

the native form of the machine they are running on. The Chaosnet automatically

applies the necessary conversions. This statement applies to the order of bits and

bytes within a word, but not to the character set (when packets contain textual

data), which is dictated by protocols.

Unlike some other network protocols, Chaosnet does not use any software check-

summing. Because of the diversity of hosts with different architectures attached to

the Chaosnet, it is impossible to devise a checksumming algorithm that can be ex-

ecuted compatibly and efficiently on all hosts. Instead, Chaosnet relies on error-

checking hardware in the network interfaces, and assumes that other sources of

packet damage checksums could detect, such as software bugs in a Network Con-

trol Program, either do not occur or will produce symptoms so obvious they will be

detected and fixed immediately.

Chaosnet Routing

Page 230

Routing consists of deciding how to deliver a packet to the network node specified

by the destination address field of the packet. Having reached that node, the pack-

et can trivially be delivered to the destination user process via the destination in-

dex. In general, routing can be a multistep process involving transmission through

several subnets, since there might not be a direct hardware connection between

the source and the destination. Note that the routing decision is made separately

for each packet, with no reference to the concept of connections.

Any host connected to more than one subnet acts as a bridge and forwards packets

from one subnet to another when necessary. Since routing does not depend on

connections, a bridge is a very simple device (or program), which does not need

much state. This makes the bridge function inexpensive to piggyback onto a com-

puter that is also performing other functions, and makes reliable bridge software

easy to implement.

Bridges and gateways differ, in our terminology, in this way: A bridge forwards

packets from one sub-Chaosnet to another, without modifying the packets or under-

standing them (other than to look at the destination address and increment the

forwarding count), and does not handle connections or flow control. A gateway, on

the other hand, interconnects two networks with differing protocols and must un-

derstand and translate the information passing through it. Gateways might also

have to handle flow and error control because they connect networks with slow or

differing speeds. Bridges are suitable for local networks, while gateways are suit-

able for long-distance networks and for connecting networks not produced by the

same organization.

To prevent routing loops, each packet contains a forwarding-count field. Each

bridge that forwards the packet increments this count; if the count reaches its

maximum value, the packet is discarded. The error-control protocol recovers dis-

carded packets, or decides that no viable connection can be established between

the two hosts.

The implementation of routing in an operating system is as follows, given a packet

to be routed, which can have come in from the network or can have been originat-

ed by the local host. First, check the packet’s destination address. If it is this host,

receive the packet. Otherwise, increment the forwarding count and discard the

packet if it has been forwarded too many times. If the destination is some other

host on a subnet to which this host is directly connected, transmit the packet on

that subnet; the destination host should receive it. If the destination is a host on a

subnet of which this host has no knowledge, look up the subnet in the host’s rout-

ing table to find the best bridge to that subnet, and transmit the packet to that

bridge.

Each host has a routing table, indexed by subnet number, which tells how to get

packets to hosts on that subnet. Each entry contains (exact details can vary de-

pending on implementation):

type The type of connection between the host and this subnet. This

can be one of Direct, Bridge, or Fixed Bridge. Direct means a

physical connection, such as a Chaosnet interface. Bridge

means an indirect connection, via a packet-forwarding bridge.

Page 231

The routing mechanism discovers which bridge is best to use.

Fixed Bridge is the same, except that the automatic mechanism

does not change which bridge is used. This is useful to set up

explicit routing for purposes such as network debugging.

Address Identifies the connection to this subnet in a way that depends

on the type. For a direct connection, this identifies the piece of

hardware that implements the connection. (It might be a

UNIBUS address.) For a bridge or a fixed bridge, this is the

network address of the bridge.

Cost A measure of the cost of sending a packet through this route.

Costs are used to select the best route from among alterna-

tives, in a way described below. For a direct connection, the

cost is 10 for a direct interface between two computers (for

example, between a PDP-10 and its front-end PDP-11), 11 for a

Chaosnet ether cable, 20 for a slow medium such as an asyn-

chronous line, and so on. For a bridge or a fixed bridge, the

cost is specified by the bridge in a RUT packet.�

The routing table is initialized with the number of a more or less arbitrary exist-

ing host and a high cost, for each subnet to which the host is not directly con-

nected. Until the correct bridge is discovered (which normally happens within a

minute of coming up), packets for that subnet are bounced off of that arbitrary

host, which probably knows the right bridge to forward them to.

The cost for subnets accessed via bridges is increased by 1 every 4 seconds, thus

typically doubling after a minute. When the cost reaches a "high" value, it sticks

there, preventing problems with arithmetic overflow. The purpose of the increasing

cost is to discount the value of old information. The cost for subnets accessed via

direct connections and fixed bridges does not increase.

Every 15 seconds, a bridge advertises its presence by broadcasting a routing (RUT)

packet on each subnet to which it is directly connected. Each host on that subnet

receives the RUT packet and uses it to update its routing table. If the host’s rout-

ing table says to access a certain subnet via bridges, and the RUT packet says

that this is the best bridge to that subnet, the routing table is updated to say that

this bridge should be used.

Note that it is important that the rate at which the costs increase with time be

slow enough that it takes more than twice the broadcast interval to increase the

cost of one hop to more than the cost of two hops. Otherwise the routing algo-

rithm is not well-behaved. Suppose subnet A has two bridges (α and β) on it, and

bridge α is connected to subnet B but bridge β is not (it goes to some irrelevant

subnet). Then if the costs increase too fast and bridges α and β do not broadcast

their RUT packets exactly simultaneously, sometimes packets for subnet B might

be sent to bridge β because its cost appears lower. Bridge β then sends them to

bridge α, where they should have gone directly. In more complicated situations

packets can go around in a circle some of the time.

Page 232

The source address of a RUT packet must be the hardware address of the bridge

on the particular subnet on which the packet is broadcast. The destination address

of a RUT packet must be zero; RUT packets are not forwarded onto other subnets.

The byte count of a RUT packet is a multiple of 4 and the packet contains up to

122 pairs of 16-bit words:

word 1 The subnet number of a subnet to which this bridge can get,

directly or indirectly, right-adjusted.

word 2 The cost of sending to that subnet via this bridge. This is the

current cost from the bridge’s routing table, plus the cost for

the subnet on which the routing packet is broadcast. Adding

the subnet cost eliminates loops, and selects one-hop paths over

two-hop paths.�

When a host receives a RUT packet, it processes each 2-word entry by comparing

the cost for that subnet against its current cost; if it is less than or equal to the

current cost, the cost and the address of the bridge are entered into the routing

table, provided that the subnet’s routing table entry is not of the Direct or Fixed

Bridge type.

When multiple equivalent bridges exist, the traffic is spread among them only by

virtue of their RUT packets being sent at different times, so that sometimes one

bridge has the lower cost, and sometimes the other. If this isn’t adequate, hosts

could have more complex routing tables, which remember more than one possible

route and use them according to their relative costs. So far, however, this has not

been necessary, since the network traffic is not so high as to saturate any one

bridge.

The design of this routing scheme is predicated on the assumption that the net-

work geometry is simple, there are few multiple paths, and the length of any path

is quite short. This makes more sophisticated schemes unnecessary.

An important feature of this routing scheme is that the size of the table is propor-

tional to the number of subnets, not to the number of hosts. Thus it does not take

up an inordinate amount of memory in a small computer, and no complicated dy-

namic allocation schemes are required.

In the case of a PDP-10 that accesses the Chaosnet through a front-end PDP-11,

we define the interface between the two computers as a subnet, and regard the

PDP-11 as a bridge that forwards packets between the network and the PDP-10.

This gives the PDP-10 and the PDP-11 separate addresses so that we can choose to

talk to either one, even though they are part of the same computer system. This is

occasionally useful for maintenance purposes. It becomes more useful when the

front-end PDP-11 has peripherals that are to be accessed through the Chaosnet,

since they can simply look like hosts on the PDP-11’s private subnet.

In the case of a host attached to more than one subnet, it is undesirable for the

host to have more than one address, since this would complicate user programs

that use addresses. Instead, one of the host’s network attachments is designated as

primary, and that address is used as the host’s single address. The other attach-

Page 233

ments are regarded as bridges that can forward to that host. Sometimes, we sim-

plify the routing by inventing a new subnet that contains only that host and has

no physical realization. The host’s address is an address on the fake subnet. All of

the host’s network attachments are regarded as bridges that know how to forward

packets to that subnet.

The ITS host table allows a host to have multiple addresses on multiple networks,

but when you ask for the address of a certain host on a certain network you only

get back the primary address. All packets coming from that host have that as their

source address.

Chaosnet Flow and Error Control

The Network Control Programs (NCPs) conspire to ensure that data packets are

sent from user to user with no garbling, duplications, omissions, or changes of or-

der. Secondarily, the NCPs attempt to achieve a maximum rate of flow of data,

and a minimum of overhead and retransmission.

The fundamental basis of flow-control and error-control in Chaosnet is retransmis-

sion. Packets that are damaged in transmission, that won’t fit in buffers, that are

duplicated or out-of-sequence, or that otherwise are embarrassing are simply dis-

carded. Packets are periodically retransmitted until an indication that they have

been successfully received is returned. This retransmission is end-to-end; any inter-

mediate bridges do not participate in flow-control and error-control, and hence are

free to discard any packets they wish.

There are actually two kinds of packets, controlled and uncontrolled. Controlled

packets are retransmitted and delivered reliably; most packets, including all pack-

ets used by the user (except for UNC packets), are of this type. Uncontrolled pack-

ets are not retransmitted; these are used for certain lower-level functions of the

protocol such as the implementation of flow and error control. The usage of these

packets is designed so that they need not be delivered reliably.

Retransmission of a packet continues until stopped by a signal from the receiver to

the sender, called a receipt. A receipt contains a packet number, and indicates that

all controlled packets with a packet number less than or equal (modulo 65536) to

that number have been successfully received, and therefore need not be retrans-

mitted any more. A receipt does not indicate that these packets have been pro-

cessed by the destination user process; it simply indicates that they have success-

fully arrived in the destination host, and are guaranteed to be there when the user

process asks for them.

There is another signal from the receiver to the sender, called an

acknowledgement. An acknowledgement also contains a packet number, and indi-

cates that all controlled packets with a packet number less than or equal (modulo

65536) to that number have been read by the destination user process. This is

used to implement flow-control. Note that acknowledgement of a packet implies re-

ceipt of that packet. In fact, if the receiving process does not fall behind, explicit

receipts need not be sent, because the receiving host does not have to buffer any

packets, but acknowledges them as soon as they arrive.

Page 234

The purpose of flow-control is to match the speeds of the sending and receiving

processes. The extremes to be avoided are, on the one hand, too small a "buffer

size" causing the data transmission rate to be slower than it could be, and on the

other hand, large numbers of packets piling up in the network because the sender

is sending faster than the receiver is receiving. It is also necessary to be aware

that receipts and acknowledgements must be transmitted through the network, and

hence have an associated cost.

Chaosnet flow-control operates by controlling the number of packets "in the net-

work". These are packets that have been emitted by the sending user process, but

have not been acknowledged. We define a window into the set of packet numbers.

The beginning of this window is the first packet number that has not been ac-

knowledged, and the width of the window is a fixed number established when the

connection is opened. The sending process is only allowed to emit packets whose

packet numbers lie within the window. Once it has emitted all of the packets in

the window, the window is said to be full. Thus, the size of the window is the

"buffer size" for the connection, and is the maximum number of packets that

might need to be buffered inside an NCP (sending or receiving). Acknowledge-

ments move the window, making it not full, and allowing the sending process to

emit additional packets.

We do not receipt and acknowledge every single controlled packet that is transmit-

ted through a connection, since that would double or triple the number of packets

sent through the network to move a given amount of data. Instead we batch the

receipts and acknowledgements. But if acknowledgements are not sent often

enough, the data does not flow smoothly, because the window often appears full to

the sender when it is not. If receipts are not sent often enough, there are unneces-

sary retransmissions.

Whenever a packet is sent through a connection, an acknowledgement for the re-

verse direction of that connection is "piggy-backed" onto it, using the Acknowledge-

ment field in the packet header. For interactive applications, where there is much

traffic in both directions, this provides all the necessary acknowledgement and re-

ceipting, with no need to send any extra packets through the network.

When this does not suffice, STS (status) packets are generated to carry receipts

and acknowledgements. STS packets are uncontrolled, since they are part of the

mechanism that implements controlled packets. If an STS packet is duplicated, it

does no harm. If an STS packet is lost, mechanisms exist that cause a replacement

to be generated later. An STS packet carries separate receipt and acknowledge-

ment packet numbers.

When a user process reads a packet from the network, if the number of packets

that should have been acknowledged but have not been is more than one third the

window size, an STS is generated to acknowledge them. Thus the preferred batch

size for acknowledgement is one third the window size. The advantage of this size

is that if one STS is lost, another is generated before the window fills up (at the

two-thirds point).

When a packet is received with the same packet number as one that has already

been successfully received, this is evidence of unnecessary retransmission, and an

Page 235

STS is generated to carry a receipt back to the sender. If this STS is lost, the

next retransmission stimulates another one. Thus, receipts are normally implied by

acknowledgements, and only sent separately when there is evidence of unnecessary

retransmission.

Retransmission consists of sending all unreceipted controlled packets, except those

that were last sent very recently (within 1/30 of a second in ITS.) Retransmission

occurs every half second. This interval is somewhat arbitrary, but should be close

to the response time of the systems involved. Retransmission also occurs in re-

sponse to an STS packet, so that a receiver can cause a faster retransmission rate

than twice a second if it so desires. This should never cause useless retransmis-

sion, since STS carries a receipt, and very-recently-transmitted packets, which

might still be in transit through the network, are not retransmitted.

Another operation is probing, which consists of sending an SNS packet, in the hope

of eliciting either an STS or a LOS, depending on whether the other side believes

the connection exists. Probing is used periodically as a way of testing that the con-

nection is still open, and also serves as a way to get STS packets retransmitted as

a hedge against the loss of an acknowledgement, which could otherwise stymie the

connection. SNS packets are uncontrolled.

We probe every five seconds on connections that have unacknowledged packets out-

standing (a nonempty window) and on connections that have not received any pack-

ets (neither data nor control) for one minute. If a connection receives no packets

for 1-1/2 minutes, this means that at least 5 probes have been ignored, and the

connection is declared broken; either the remote host is down or there is no viable

path through the network between the two hosts.

The receiver can generate "spontaneous" STSs, to stimulate retransmission and

keep things moving on fast devices with insufficient buffering for one half second’s

worth of packets. This provides a way for the receiver to speed up the retransmis-

sion timeout in the sender, and to make sure that acknowledges are happening

often enough.

Note that the network still functions if either or both parties to a connection ig-

nore the window. The window is simply an improver of efficiency. Receipts have

the same property. This allows very small implementations to be compatible with

the same protocol, which is useful for applications such as bootstrapping through

the network.

It would be possible to have dynamic adjustment of the window size in response to

observed behavior. The STS packet includes the window size so that changes to it

can be communicated. However, this has not been found necessary in practice.

Each higher-level protocol has a standard window size, which it establishes when

it first opens a connection, and this seems to be close enough to optimum that

careful dynamic adjustment of it wouldn’t make a big difference.

This scheme for flow-control and error-control is based on several assumptions. It

is assumed that the underlying transmission media have their own checking, so

that they discard all damaged packets, making packet checksums unnecessary at

the protocol level. The transit time through the network is assumed to be fast, so

that a fairly small retransmission interval is practical, and negative acknowledge-

Page 236

ments are not necessary. The error rate is assumed to be low so that overall effi-

ciency is not affected by the simple error recovery scheme of retransmitting all

outstanding packets. It is assumed that no reformatting of packets occurs inside

the network, so that flow-control and error-control can operate on a packet basis

rather than a byte basis.

Technical Details of the Chaosnet Software Protocol

In the following sections, each of the packet opcodes and the use of that packet

type in the protocol is described. Opcodes are given as a three-letter code.

Unless otherwise specified, the use of the fields in the packet header is as follows.

The source and destination address and index denote the two ends of the connec-

tion; when an end does not exist, as during initial connection establishment, that

index is zero. The opcode, byte count, and forwarding count fields have no varia-

tions. The packet number field contains sequential numbers in controlled packets;

in uncontrolled packets it contains the same number as the next controlled packet

will contain. The acknowledgement field contains the packet number of the last

packet seen by the user.

Chaosnet Connection Establishment

This section presents the protocols and packet types associated with creating and

destroying connections. First the various connection-establishment protocols are de-

scribed and then the packets are detailed.

There are several connection-initiation protocols implemented in Chaosnet. In addi-

tion to those described here, there is also a broadcast mechanism. For more infor-

mation, see the section "Chaosnet Broadcast".

Note that Chaosnet does not have a symmetric close protocol. For more informa-

tion, see the section "Chaosnet Connection Closing".

All connections are initiated by the transmission of an RFC from the user to the

server. The data field of the packet contains the contact name. The contact name

can be followed by arbitrary arguments to the server, delimited by a space charac-

ter. The destination index field of an RFC contains 0 since the destination index is

not known yet.

RFC is a controlled packet; it is retransmitted until some sort of response is re-

ceived. Because RFCs are not sent over normal, error-controlled connections, a spe-

cial way of detecting and discarding duplicates is required. When an NCP receives

an RFC packet, it checks all pending RFCs and all connections that are in the

Open or RFC-received state, to see if the source address and index match; if so,

the RFC is a duplicate and is discarded. For more information, see the section

"Chaosnet Connection States".

A server process informs the local NCP of the contact name to which it is listen-

ing by sending a LSN packet, with the contact name in the data field. This packet

is never transmitted anywhere through the network. It simply serves as a conve-

Page 237

nient buffer to hold the server’s contact name. When an RFC and a LSN contain-

ing the same contact name meet, the LSN is discarded and the RFC is given to

the server, putting its connection into the RFC-received state. For more informa-

tion, see the section "Chaosnet Connection States". The server reads the RFC and

decides whether or not to open the connection.

OPN is the usual positive response to RFC. The source index field conveys the

server’s index number to the user; the user’s index number was conveyed in the

RFC. The data field of OPN is the same as that of STS; it serves mainly to convey

the server’s window-size to the user. The Acknowledgement field of the OPN ac-

knowledges the RFC so that it will no longer be retransmitted.

OPN is a controlled packet; it is retransmitted until it is acknowledged. Duplicate

OPN packets are detected in a special way; if an OPN is received for a connection

that is not in the RFC-sent state, it is simply discarded and an STS is sent. For

more information, see the section "Chaosnet Connection States". This happens if

the connection is opened while a retransmitted OPN packet is in transit through

the network, or if the STS that acknowledges an OPN is lost in the network.

CLS is the negative response to RFC. It indicates that no server was listening to

the contact name, and one couldn’t be created, or for some reason the server

didn’t feel like accepting this request for a connection, or the destination NCP was

unable to complete the connection (for example, connection table full.)

CLS is also used to close a connection after it has been open for a while. Any data

packets in transit might be lost. Protocols that require a reliable end-of-data indi-

cation should use the mechanism for that before sending CLS. For more informa-

tion, see the section "Chaosnet End-of-Data".

The data field of a CLS contains a character-string explanation of the reason for

closing, intended to be returned to a user as an error message.

CLS is an uncontrolled packet, so that the program that sends it might go away

immediately afterwards, leaving nothing to retransmit the CLS. Since there is no

error recovery or retransmission mechanism for CLS, the use of CLS is necessarily

optional; a process could simply stop responding to its connection. However, it is

desirable to send a CLS when possible to provide an error message for the user.

FWD is a response to RFC that indicates that the desired service is not available

from the process contacted, but might be available at a possibly different contact

name at a possibly different host. The data field contains the new contact name

and the Acknowledgement fieldexceptionallycontains the new host number. The

issuer of the RFC should issue another RFC to that address. FWD is an uncon-

trolled packet; if it is lost in the network, the retransmission of the RFC will pre-

sumably stimulate an identical FWD.

ANS is another kind of response to RFC. The data field contains the entirety of

the response, and no connection is established. ANS is an uncontrolled packet; if it

is lost in the network, the retransmission of the RFC will presumably stimulate an

identical ANS.

When an RFC arrives at a host, the NCP finds a user process that is listening for

this RFC’s contact name, or creates a server process to provide the desired ser-

Page 238

vice, or responds to the RFC itself, if it knows how to provide the requested ser-

vice, or refuses the request for connection. The process that serves the RFC choos-

es which connection-initiation protocol to follow. This process is given the RFC as

data, so that it can look at the contact name and any arguments that might be

present.

A stream connection is initiated by an RFC, transmitted from user to server. The

server returns an OPN to the user, which responds with an STS. These three

packets convey the source and destination addresses, indices, initial packet num-

bers, and window sizes between the two NCPs. In addition, a character-string ar-

gument can be conveyed from the user to the server in the RFC.

The OPN serves to acknowledge the RFC and extinguish its retransmission. It also

carries the server’s index, initial packet number, and window size. The STS serves

to acknowledge the OPN and extinguish its retransmission. It also carries the

user’s window size; the user’s index and initial packet number were carried by the

RFC. Retransmission of the RFC and the OPN provides reliability in the face of

lost packets. If the RFC is lost, it is retransmitted. If the STS is lost, the OPN

will be retransmitted. If the OPN is lost, the RFC is retransmitted superfluously

and the OPN is retransmitted, since no STS will be sent.

The exchange of an OPN and an STS tells each side of the connection that the

other side believes the connection is open; once this has happened data can begin

to flow through the connection. The user process can begin transmitting data

when it sees the OPN. The server process can begin transmitting data when it

sees the STS. These rules ensure that data packets cannot arrive at a receiver be-

fore it knows and agrees that the connection is open. If data packets did arrive be-

fore then, the receiver would reject them with an LOS, believing them to be a vio-

lation of protocol, and this would destroy the connection before it was fully estab-

lished.

Once data packets begin to flow, they are subject to the flow and error control

protocol. For more information, see the section "Chaosnet Flow and Error Control".

Thus a stream connection provides the desired reliable, bidirectional data stream.

A refusal is initiated by an RFC in the same way, but the server returns a CLS

rather than an OPN. The data field of the CLS contains the reason for refusal to

connect.

A forwarded connection is initiated by an RFC in the same way, but the server re-

turns an FWD, telling the user another place to look for the desired service.

A simple transaction is initiated by an RFC from user to server, and completed by

an ANS from server to user. Since a full connection is not established and the re-

liable-transmission mechanism of connections is not used, the user process cannot

be sure how many copies of the RFC the server saw, and the server process can-

not be sure that its answer got back to the user. This means that simple transac-

tions should not be used for applications where it is important to know whether

the transaction was really completed, nor for applications in which repeating the

same query might produce a different answer. Simple transactions are a simple, ef-

ficient mechanism for applications such as extracting a small piece of information

(for example, the time of day) from a central database.

Page 239

A connection is initiated by the transmission of an RFC from the user to the serv-

er. The data field of the packet contains the contact name. The contact name can

be followed by arbitrary arguments to the server, delimited by a space character.

The destination index field of an RFC contains 0 since the destination index is not

known yet.

An RFC is a controlled packet; it is retransmitted until some sort of response is

received. Because RFCs are not sent over normal, error-controlled connections, a

special way of detecting and discarding duplicates is required. When an NCP re-

ceives an RFC packet, it checks all pending RFCs and all connections that are in

the Open or RFC-received state, to see if the source address and index match; if

so, the RFC is a duplicate and is discarded. For more information, see the section

"Chaosnet Connection States".

A server process informs the local NCP of the contact name to which it is listen-

ing by sending a LSN packet, with the contact name in the data field. This packet

is never transmitted anywhere through the network. It simply serves as a conve-

nient buffer to hold the server’s contact name. When an RFC and an LSN contain-

ing the same contact name meet, the LSN is discarded and the RFC is given to

the server, putting its connection into the RFC-received state. For more informa-

tion, see the section "Chaosnet Connection States". The server reads the RFC and

decides whether or not to open the connection.

An OPN is the usual positive response to an RFC. The source index field conveys

the server’s index number to the user; the user’s index number was conveyed in

the RFC. The data field of an OPN is the same as that of an STS; it serves main-

ly to convey the server’s window-size to the user. The Acknowledgement field of

the OPN acknowledges the RFC so that it is no longer retransmitted.

An OPN is a controlled packet; it is retransmitted until it is acknowledged. Dupli-

cate OPN packets are detected in a special way; if an OPN is received for a con-

nection that is not in the RFC-sent state, it is simply discarded and an STS is

sent. For more information, see the section "Chaosnet Connection States". This

happens if the connection is opened while a retransmitted OPN packet is in transit

through the network, or if the STS that acknowledges an OPN is lost in the net-

work.

A CLS is the negative response to an RFC. It indicates that no server was listen-

ing to the contact name and one couldn’t be created, or for some reason the server

didn’t feel like accepting this request for a connection, or the destination NCP was

unable to complete the connection (for example, connection table full.)

A CLS is also used to close a connection after it has been open for a while. Any

data packets in transit might be lost. Protocols requiring a reliable end-of-data in-

dication should use the mechanism for that before sending a CLS. For more infor-

mation, see the section "Chaosnet End-of-Data".

The data field of a CLS contains a character-string explanation of the reason for

closing, intended to be returned to a user as an error message.

A CLS is an uncontrolled packet, so the program that sends it might go away im-

mediately afterwards, leaving nothing to retransmit the CLS. Since there is no er-

Page 240

ror recovery or retransmission mechanism for a CLS, its use is necessarily option-

al; a process could simply stop responding to its connection. However, it is desir-

able to send a CLS when possible, to provide an error message for the user.

This is a response to an RFC that indicates that the desired service is not avail-

able from the process contacted, but might be available at a different contact

name at a possibly different host. The data field contains the new contact name

and the Acknowledgement field  exceptionally  contains the new host number.

The issuer of the RFC should issue another RFC to that address. An FWD is an

uncontrolled packet; if it is lost in the network, the retransmission of the RFC pre-

sumably stimulates an identical FWD.

This is another kind of response to RFC. The data field contains the entirety of

the response, and no connection is established. An ANS is an uncontrolled packet;

if it is lost in the network, the retransmission of the RFC presumably stimulates

an identical ANS.

Chaosnet Status Packets

An STS is an uncontrolled packet that is used to convey status information be-

tween NCPs. The Acknowledgement field in the packet header contains an ac-

knowledgement, that is, the packet number of the last packet given to the receiv-

ing user process. The first 16-bit byte in the data field contains a receipt, that is,

a packet number such that all controlled packets up to and including that one

have been successfully received by the NCP. The second 16-bit byte in the data

field contains the window size for packets sent in the opposite direction (to the

end of the connection that sent the STS). The byte count is currently always 4.

This will change if the protocol is revised to add additional items to the STS

packet.

An SNS is an uncontrolled packet whose sole purpose is to cause the other end of

the connection to send back an STS. This is used by the probing mechanism. For

more information, see the section "Chaosnet Flow and Error Control".

An LOS is an uncontrolled packet that is used by one NCP to inform another of

an error. The data field contains a character-string explanation of the problem.

The source and destination addresses and indices are simply the destination and

source addresses and indices, respectively, of the erroneous packet, and do not nec-

essarily correspond to a connection. When an NCP receives an LOS whose destina-

tion corresponds to an existing connection and whose source corresponds to the

supposed other end of that connection, it breaks the connection and makes the data

field of the LOS available to the user as an error message. LOSs that don’t corre-

spond to connections are simply ignored.

An LOS is sent in response to situations such as the arrival of:

• A data packet or an STS for a connection that does not exist or is not open

• A packet from the wrong source for its destination

Page 241

• A packet containing an undefined opcode or too large a byte count, and so on

LOSs are given to the user process so that it can read the error message.

No LOS is given in response to an OPN to a connection not in the RFC-Sent

state, nor in response to an SNS to a connection not in the Open state, nor in re-

sponse to an LOS to a nonexistent or broken connection. These rules are important

to make the protocols work without timing errors. An OPN or an SNS to a nonex-

istent connection elicits an LOS.

Chaosnet Data

Opcodes 200 through 277 (octal) are controlled packets with user data in 8-bit

bytes in the data field. The NCP treats all 64 of these opcodes identically; some

higher-level protocols use the opcodes for their own purposes. The standard default

opcode is 200.

Opcodes 300 through 377 (octal) are controlled packets with user data in 16-bit

bytes in the data field. The NCP treats all 64 of these opcodes identically; some

higher-level protocols use the opcodes for their own purposes. The standard default

opcode for 16-bit data is 300.

UNC is an uncontrolled packet with user data in 8-bit bytes in the data field. It

exists so that user-level programs can bypass the flow-control mechanism of Chaos-

net protocol. Note that the NCP is free to discard these packets at any time, since

they are uncontrolled. Since UNCs are not subject to flow control, discarding

might be necessary to avoid running out of buffers. A connection cannot have

more input packets queued, awaiting the attention of the user program than the

window size of the connection, except that you can always have one UNC packet

queued. If no normal data packets are in use, up to one more UNC packet than

the window size can be queued.

UNC packets are also used by the standard protocol for encapsulating packets of

foreign protocols for transmission through Chaosnet. For more information, see the

section "Using Foreign Protocols in Chaosnet".

Chaosnet End-of-Data

An EOF is a controlled packet that serves as a "logical end of data" mark in the

packet stream. When the user program is ignoring packets and treating a Chaos-

net connection as a conventional byte-stream I/O device, the NCP uses the EOF

packet to convey the notion of conventional end-of-file from one end of the connec-

tion to the other. When the user program is working at the packet level, it can

transmit and receive EOFs.

It is illegal to put data in an EOF packet; in other words, the byte count should

always be zero. Most Chaosnet implementations simply ignore any data in an EOF.

EOF packets are used in the recommended protocol for closing a Chaosnet connec-

tion. For more information, see see the section "Chaosnet Connection Closing".

Page 242

Chaosnet Connection Closing

This section describes the recommended way to determine reliably that all data

have been transferred before closing a connection (for applications where that is

an important consideration).

The important issue is that neither side can send a CLS until both sides are sure

that all the data have been transmitted. After sending all the data it is going to

send, including an EOF packet to mark the end, the sending process waits for all

packets to be acknowledged. This ensures that the receiver has seen all the data

and knows that no more data are to come. The sending process then closes the

connection. When the receiving process sees an EOF, it knows that there are no

more data. It does not close the connection until it sees the sender close it, or un-

til a brief timeout elapses. The timeout is to provide for the case where the

sender’s CLS gets lost in the network (a CLS cannot be retransmitted). The time-

out is long enough (a few seconds) to make it unlikely that the sender will not

have seen the acknowledgement of the EOF by the end of the timeout.

To use this protocol in a bidirectional fashion, where both parties to the connec-

tion are sending data simultaneously, you must use an asymmetrical protocol. Arbi-

trarily call one party the user and the other the server. The protocol is that after

sending all its data, each party sends an EOF and waits for it to be acknowledged.

The server, having seen its EOF acknowledged, sends a second EOF. The user,

having seen its EOF acknowledged, looks for a second EOF and then sends a CLS

and goes away. The server goes away when it sees the user’s CLS, or after a brief

timeout. This asymmetrical protocol guarantees that each side gets a chance to

know that both sides agree all the data have been transferred. The first CLS is

only sent after both sides have waited for their (first) EOF to be acknowledged.

Chaosnet Broadcast

Chaosnet includes a generalized broadcast facility, intended to satisfy such needs

as:

• Locating services when it is not known what host they are on.

• Internal communications of other protocols using Chaosnet as a transmission

medium, such as routing in their own address spaces.

• Reloading and remote debugging of Chaosnet bridge computers.

• Experiments with radically different protocols.�

A BRD packet works much like an RFC packet; it contains the name of a server to

be communicated with, and possibly some arguments. Unlike an RFC, which is de-

livered to a particular host, a BRD is broadcast to all hosts. Only hosts that under-

stand the service it is looking for respond. The response can be any valid response

to an RFC. Typically, a BRD is used in a simple-transaction mode, and the re-

sponse is an ANS packet. Actually, it can be any number of ANS packets since

Page 243

multiple hosts can respond. BRD can also be used to open a full byte-stream con-

nection to a server whose host is not known. In this case, the response is an OPN

packet; only the first OPN succeeds in opening a connection. A CLS is also a valid

response, but only as a true negative response; BRDs for unrecognized or unavail-

able services should be ignored and no CLS should be sent, since some other host

might be able to provide the service.

The TIME and STATUS protocols will work through BRD packets as well as RFC

packets. For more information, see the section "Application-Level Chaosnet Proto-

cols". No other standard protocols need to be able to work with BRD packets.

The data field of a BRD contains a subnet bit map followed by a contact name and

possible arguments. The subnet bit map has a "1" for each subnet on which this

packet is to be broadcast to all hosts; these bits are turned off as the packets flow

through the network, to avoid loops. The sender initializes the bit map with a 1

for each desired subnet (often all of them).

In the packet header, the destination host and index are 0. The source host and in-

dex are the intended recipient of the reply (ANS or OPN). The acknowledgement

field contains the number of bytes in the bit map (this is normally 32). The num-

ber of bytes in the bit map is required to be a multiple of 4. Bits in the bitmap

are numbered from right to left within a byte and from earlier to later bytes; thus

the bit for subnet 1 is the bit with weight 2 in the first byte of the data field. Bits

that lie outside the declared length of the bit map are considered zero; thus the

BRD is not transmitted to those subnets.

After the subnet bit map there is a contact name and arguments, exactly as in an

RFC. Operating systems should treat incoming BRD packets exactly like RFCs,

even to the extent that a contact name of STATUS must retrieve the host’s net-

work throughput and error statistics. BRD packets are never refused with a CLS,

however; broadcast requests to nonexistent servers should simply be ignored, and

no CLS reply should be sent. Most operating systems simplify incoming BRD han-

dling for themselves and their users by reformatting incoming BRD packets to look

like RFCs; deleting the subnet bit map from the data field and decreasing the byte

count. For consistency when this is done, the bit map length (in the acknowledge-

ment field) should be set to zero. The packet opcode remains BRD (rather than

RFC).

Operating systems should handle outgoing BRD packets as follows. When a user

process transmits a BRD packet over a closed connection, the connection enters a

special "Broadcast Sent" state. In this state, the user process is allowed to trans-

mit additional BRD packets. All incoming packets other than OPNs should be

made available for the user process to read, until the allowed buffering capacity is

exceeded; further incoming packets are then discarded. These incoming packets

would normally be expected to consist of ANS, FWD, and CLS packets only. If an

OPN is received, and there are no queued input packets, a regular byte-stream

connection is opened. Any OPNs from other hosts elicit an LOS reply as usual, as

do any ANSs, CLSs, and so on, received at this point.

Operating systems should not retransmit BRD packets, but should leave this up to

the user program, since only it knows when it has received enough answers (or a

satisfactory answer).

Page 244

BRD packets can be delivered to a host in multiple copies when there are multiple

paths through the network between the sender and that host. The bit map only

serves to cut down looping more than the forwarding-count would, and to allow the

sender to broadcast selectively to portions of the net, but cannot eliminate multiple

copies. The usual mechanisms for discarding duplicated RFCs also apply to most

duplicated BRDs.

BRD packets put a noticeable load on every host on the network, so they should be

used judiciously. "Beacons" that send a BRD every 30 seconds all day long should

not be used.

Chaosnet Low-level Details

MNT is a special packet type reserved for the use of network maintenance pro-

grams. Normal NCPs should discard any MNT packets they receive. MNT packets

are an escape mechanism to allow special programs to send packets guaranteed not

to get confused with normal packets. MNT packets are forwarded by bridges, al-

though usually one would not depend on this.

RUT is a special packet type broadcast by bridges to inform other nodes of the

bridge’s ability to forward packets between subnets. The source address is the net-

work address of the bridge on the subnet from which the RUT was broadcast. The

destination address is zero. The byte count is a multiple of 4, and the data field

contains a series of pairs of 16-bit bytes: a subnet number and the cost of getting

to that subnet via this bridge. The packet number and acknowledgement fields are

not used and should contain zero. For more information, see the section "Chaosnet

Routing".

Chaosnet Connection States

A user process gets to Chaosnet by means of a capability or channel (dependent on

the host operating system) that corresponds to one end of a connection. Associated

with this channel are a number of buffers containing controlled packets, output by

the user and not yet receipted, and data packets received from the network but not

yet read by the user; some of these incoming packets are in-order by packet num-

ber and hence can be read by the user, while others are out of order and cannot

be read until packets earlier in the stream have been received. Certain control

packets are also given to the user as if they were data packets. These are RFC,

ANS, CLS, LOS, EOF, and UNC. EOF is the only type that can ever be out-of-

order.

Also associated with the channel is a state, usually called the connection state. Full

understanding of these states depends on the descriptions of packet-types. The

state can be one of:

Open The connection exists and data can be transferred.

Closed The channel does not have an associated connection. Either it

never had one or it has received or transmitted a CLS packet,

which destroyed the connection.

Page 245

Listening The channel does not have an associated connection, but it has

a contact name (usually contained in an LSN packet) for which

it is listening.

RFC Received A Listening channel enters this state when an RFC arrives. It

can become Open if the user process accepts the request.

RFC Sent The user has transmitted an RFC. The state changes to Open

or Closed when the reply to the RFC comes back.

Broadcast Sent The user has transmitted a BRD. In this state, the user pro-

cess is allowed to transmit additional BRD packets. All incom-

ing packets other than OPNs are made available for the user

process to read, until the allowed buffering capacity is exceed-

ed; further incoming packets are then discarded. These incom-

ing packets would normally be expected to consist of ANS,

FWD, and CLS packets only. If an OPN is received, and there

are no queued input packets, a regular byte-stream connection

is opened (the connection enters the Open state). Any OPNs

from other hosts elicit an LOS reply as usual, as do any ANSs,

CLSs, and so on, received at this point.

Lost The connection has been broken by receipt of an LOS packet.

Incomplete Transmission

The connection has been broken because the other end has

ceased to transmit and to respond to the SNS. Either the net-

work or the foreign host is down. (This can also happen when

the local host goes down for a while and then is revived, if its

clock runs in the meantime.)

Foreign The channel is talking some foreign protocol, whose packets

are encapsulated in UNC packets. As far as Chaosnet is con-

cerned, there is no connection. For more information, see the

section "Using Foreign Protocols in Chaosnet".

Application-Level Chaosnet Protocols

This section briefly documents the higher-level protocols of the most general in-

terest. All protocols other than STATUS are optional and are implemented only by

hosts that need them. All hosts are required to implement the STATUS protocol

since it is used for network maintenance.

Chaosnet Status Protocol

The STATUS protocol is used to:

• Determine whether a host is up.

Page 246

• Determine whether an operable path through the network exists between two

hosts.

• Monitor network error statistics.

• Debug new Network Control Programs and new Chaosnet hardware.�

The zl:hostat function and the Show Hosts command use this protocol.

All network nodes, even bridges, are required to answer RFCs with contact name

STATUS, returning an ANS packet in a simple transaction. This protocol is used

primarily for network maintenance. To provide a rapid response, the reply to a

STATUS request should be generated by the Network Control Program, rather

than by starting up a server process.

The first 32 bytes of the ANS contain the name of the node, padded on the right

with zero bytes. The rest of the packet contains blocks of information expressed in

16-bit and 32-bit words, low byte first (PDP-11/Symbolics style). The low-order half

of a 32-bit word comes first. Since ANS packets contain 8-bit data (not 16-bit), ma-

chines such as PDP-10s, which store numbers high byte first, have to shuffle the

bytes when using this protocol. The first 16-bit word in a block is its identification.

The second 16-bit word is the number of 16-bit words to follow. The remaining

words in the block depend on the identification.

All items are optional, according to the count field, and extra items not defined

here can be present and should be ignored. Note that items after the first two are

32-bit words.

word 0 A number between 400 and 777 octal. This is 400 plus a sub-

net number. This block contains information on this host’s di-

rect connection to that subnet.

word 1 The number of 16-bit words to follow, usually 16.

words 2-3 The number of packets received from this subnet.

words 4-5 The number of packets transmitted to this subnet.

words 6-7 The number of transmissions to this subnet aborted by colli-

sions or because the receiver was busy, or for any other rea-

son.

words 8-9 The number of incoming packets from this subnet lost because

the host had not yet read a previous packet out of the inter-

face and consequently the interface could not capture the

packet, or any other reason involving data arriving faster than

the host can store it.

words 10-11 The number of incoming packets from this subnet with CRC

errors. These were either transmitted wrong from the start, or

damaged in transmission.

Page 247

words 12-13 The number of incoming packets from this subnet that had no

CRC error when received, but did have an error after being

read out of the packet buffer. This error indicates either a

hardware problem with the packet buffer or an incorrect pack-

et length. This is zero on most Ethernet hardware.

words 14-15 The number of incoming packets from this subnet that were

rejected due to incorrect length (typically not a multiple of 16

bits).

words 16-17 The number of incoming packets from this subnet rejected for

other reasons (for example, too short to contain a header,

garbage byte-count, forwarded too many times.)

If the identification is a number between 0 and 377 octal, this is an obsolete block

format. The identification is a subnet number and the counts are as above, except

that they are only 16 bits instead of 32 and consequently might overflow. This for-

mat should no longer be sent by any hosts.

Identification numbers of 1000 octal and up are reserved for future use.

Chaosnet Telnet and Supdup Protocols

The standard Internet Telnet and Supdup protocols exist in identical form in

Chaosnet. These protocols provide :login service, allowing access to a computer

system as an interactive terminal from another network node.

The contact names are TELNET and SUPDUP. The direct borrowing of the Telnet and

Supdup protocols was eased by their use of 8-bit byte streams and only a single

connection. Note that these protocols define their own character sets, which differ

from each other and from the Chaosnet standard character set.

Chaosnet contains no counterpart to the INR/INS attention-getting feature of the

Arpanet. The Telnet protocol sends a packet with opcode 201 in place of the INS

signal. This is a controlled packet and hence does not provide the "out of band"

feature of the Arpanet INS; however, it is satisfactory for the Telnet "interrupt

process" and "discard output" operations on the kinds of hosts attached to Chaos-

net.

Chaosnet File Access Protocols

The NFILE and QFILE protocols provide :file service, enabling Symbolics comput-

ers to access files on network file servers. NFILE has a higher desirability than

QFILE, and is the recommended Chaosnet file access protocol. Because NFILE is

built on the :byte-stream-with-mark medium, it provides enhanced reliability (es-

pecially against interrupts) when compared to QFILE, which is built on :chaos.

For a complete description of NFILE: See the section "NFILE File Protocol".

Some computers running ITS, TOPS-20, UNIX, or VAX/VMS are equipped to act

as file servers for QFILE. A user end for QFILE also exists for each of these sys-

tems, and is used for general-purpose file transfer.

Page 248

Chaosnet Send Protocol

The SEND protocol is used to transmit an interactive message (requiring immedi-

ate attention) between users. The sender connects to contact name SEND at the

machine to which the recipient is logged in. The remainder of the RFC packet con-

tains the name of the person being sent to. A stream connection is opened and the

message is transmitted, followed by an EOF. Both sides close after following the

end-of-data protocol: See the section "Chaosnet End-of-Data".

The fact that the RFC got an affirmative response indicates that the recipient is

in fact present and accepting messages. The message text should begin with a

suitable header, naming the user who sent the message. The standard for such

headers, not currently adhered to by all hosts, is one line formatted as in the fol-

lowing example:

Moon@MIT-MC 6/15/81 02:20:17�

Automatic reply to the sender can be implemented by searching for the first "@"

and using the SEND protocol to the host following the "@", with the argument

preceding it.

Chaosnet Name Protocol

The standard Internet Name/Finger protocol exists in identical form on the Chaos-

net. Both Symbolics computers and timesharing machines support this protocol and

provide a display of the user(s) currently logged in to them.

The contact name is NAME, which can be followed by a space and a string of ar-

guments like the command line of the Arpanet protocol. A stream connection is es-

tablished and the finger display is output in Symbolics character set, followed by

an EOF.

Symbolics computers also support the FINGER protocol, a simple-transaction ver-

sion of the NAME protocol. An RFC with contact name FINGER is transmitted

and the response is an ANS containing the following items of information separat-

ed by carriage returns: the logged-in user ID, the location of the terminal, the idle

time in minutes or hours:minutes, the user’s full name, and the user’s group affil-

iation.

Chaosnet Time Protocol

The standard Internet Time protocol exists on Chaosnet as a simple transaction.

An RFC to contact name TIME evokes an ANS containing the number of seconds

since midnight Greenwich Mean Time, Jan 1, 1900 as a 32-bit number in four 8-bit

bytes, least-significant byte first. Some computers, which do not have hardware

calendar-clocks, use this protocol to find out the date and time when they first

come up.

Using Foreign Protocols in Chaosnet

Page 249

Foreign protocols that are based on the idea of a bidirectional (or unidirectional)

stream of 8-bit bytes can simply be adopted wholesale into Chaosnet, using a

Chaosnet stream connection instead of whatever stream protocol the protocol was

originally designed for. This was done with the Arpanet Telnet protocol, for exam-

ple.

When using such protocols between a Chaosnet process and a process on a foreign

network, a protocol-translating gateway stands at the boundary between the two

networks and has a connection on both networks. Bytes received from one connec-

tion are transmitted out the other. If the protocol uses any features besides a sim-

ple stream of bytes, for instance special out-of-band signals, these are translated

appropriately by the gateway. The connection is initially set up by the user end

connecting explicitly to the protocol-translating gateway and demanding of it a cer-

tain service from a certain host on the other network; the gateway then opens the

appropriate pair of connections.

However, there are many packet-oriented protocols in the world and sometimes it

is desirable to access these protocols at the packet level rather than the connection

level, and to transport the packets of these protocols through Chaosnet links with-

out using a Chaosnet connection. For example, there are gateways attached to

Chaosnet that provide connections to other networks that use Internet as their

packet protocol. User processes in Chaosnet hosts may talk to these other networks

in those networks’ own protocols by using the foreign-protocol protocol of Chaos-

net.

A foreign packet is transmitted through Chaosnet by storing it in the data field of

a UNC packet. The foreign packet is regarded as being composed of 8-bit bytes.

The source and destination addresses of the UNC packet are used in the usual

fashion to control the delivery of the packet within Chaosnet. The packet number

and acknowledgement fields of the packet header are not used for their normal

purposes, since this packet is not associated with a Chaosnet stream connection.

By convention, the acknowledgement field of the packet contains a protocol num-

ber. The number 100000 octal means Internet. Other numbers will be assigned as

needed. The packet number field of the packet can be used for any purpose.

If a user process transmits a UNC packet through a Chaosnet channel that is in

the Closed state, the channel goes into the Foreign state and the NCP assumes

that the user is not using normal Chaosnet protocol, but is using Chaosnet to

transport packets of some other protocol. See the section "Chaosnet Connection

States". The NCP fills in the source address and index in these packets, but ac-

cepts whatever destination address and index are placed in the packet by the user.

The packet number and acknowledgement fields of the UNC packets are not

touched by the NCP. Any incoming UNC packets addressed to the user’s index on

this host are given to the user, regardless of their source address/index; it is up to

the user program to filter out any unwanted packets. The NCP should also provide

a way for one user to receive any unclaimed incoming UNC packets, so that ren-

dezvous subprotocols of foreign protocols may be simulated.

When a packet-translating gateway to a foreign network receives a UNC packet

with the appropriate protocol number, it extracts the foreign packet from the data

field and fires it into the foreign network. When it receives packets from the for-

Page 250

eign network, it maps the destination address of the packet into a Chaosnet ad-

dress and index in some suitable fashion, encapsulates the packet in a UNC, and

launches it into Chaosnet.

In the case of Internet, only protocols built on the idea of ports can be straightfor-

wardly supported without a table of connections in the gateway. The Internet ad-

dress space includes the Chaosnet host address space as a subset but does not pro-

vide any address breakdown within a host unless ports are used. However, it ap-

pears that most protocols are built on a protocol that uses ports, such as the User

Datagram Protocol [UDP] or the Transmission Control Protocol [TCP].

In the case of foreign protocols where the addressing structure is not identical to

Chaosnet, a program must somehow know the Chaosnet address of a packet-

translating gateway to the foreign network. By sending UNC packets to this gate-

way, a user program can initiate connections to processes on that other network

without requiring the local NCP (nor any bridges involved in routing the packets)

to know anything about the protocol the program is using. If the inter-network

gateway translates rendezvous protocols appropriately, connections may be initiated

in the reverse direction also  from a user process on the foreign network to a

server for the foreign protocol that resides on a Chaosnet host.

The foreign-protocol protocol may also be used between two user processes on

Chaosnet, with no foreign network involved, if they simply wish to use a different

protocol from Chaosnet. They are on their own for a rendezvous mechanism, how-

ever, unless they use a Chaosnet simple transaction for rendezvous, or otherwise

have some way of conveying their addresses and index numbers to each other.

When foreign packets are too large to fit in the data field of a Chaosnet packet

(more than 488 bytes), the user program and the packet-translating gateway must

agree on a technique for dividing packets into fragments and reassembling them,

unless the foreign protocol itself provides for this, as Internet does. The packet-

number field in an UNC packet is available for use by such a technique, since

UNC packets are not normally numbered.

UNC packets not associated with a connection are useful for other things besides

encapsulating foreign protocols. Any application that wants to use Chaosnet as

simply a packet transmission medium, essentially the raw hardware, should use

UNC packets, so that its packets do not interfere with standard packets and so

that the standard routing mechanisms may be used. For example, the M.I.T. Archi-

tecture Machine uses UNC packets to communicate with non-stream-oriented I/O

devices such as graphic tablets. Here, Chaosnet is used as an I/O bus which may

be attached to more than one computer.

Numbers between 140000 and 177777 octal in the acknowledgement field of a UNC

packet are reserved for such applications. Note that this number is not part of the

protocol; it is simply a hint about what a packet is being used for. Normally a pro-

gram that is not specifically supposed to deal with such packets would never re-

ceive one.

Symbolics Implementation of Chaosnet

Page 251

The Symbolics implementation of Chaosnet consists of a set of Lisp functions and

data structure definitions in the chaos package. There are three important data

structures:

chaos:conn Represents a connection.

chaos:pkt Represents a packet.

chaos:stream Is a standard I/O stream, which transmits to and receives from

a connection.�

The details of these data structures are described later.

There are two processes that belong to the Chaosnet NCP. The receiver process

looks at packets as they arrive from the network. Control packets are processed

immediately. Data packets are put on the input packet queue of the connection to

which they are directed. The background process wakes up periodically to do re-

transmission, probing, and certain "background tasks" such as starting up a server

when an RFC arrives and processing "connection interrupts."

Opening and Closing Chaosnet Connections

Opening and Closing Chaosnet Connections on the User Side

chaos:connect host contact-name &optional window-size timeout Function

Opens a stream connection, and returns a chaos:conn if it succeeds, or signals an

error. host can be a number or the name of a known host. contact-name is a string

containing the contact name and any additional arguments to go in the RFC pack-

et. If window-size is not specified, it defaults to 13. If timeout is not specified, it

defaults to 600 (ten seconds).

chaos:simple host contact-name &optional timeout Function

Taking arguments similar to those of chaos:connect, this performs the user side

of a simple-transaction. chaos:simple returns an ANS packet or signals an error.

The ANS packet should be disposed of (using chaos:return-pkt) when you are

done with it.

chaos:remove-conn conn Function

Makes conn null and void. It becomes inactive, all its buffered packets are freed,

and the corresponding Chaosnet connection (if any) goes away.

chaos:close-conn conn &optional reason Function

Page 252

Closes and removes the connection. If conn is open, a CLS packet is sent contain-

ing the string reason. To reject RFCs, use chaos:reject instead of this function.

chaos:open-foreign-connection host index &optional pkt-allocation distinguished-

port Function

Creates a chaos:conn that can be used to transmit and receive foreign protocols

encapsulated in UNC packets. host and index are the destination address for pack-

ets sent with chaos:send-unc-pkt. pkt-allocation is the "window size", that is, the

maximum number of input packets that can be buffered. It defaults to 10. If distin-

guished-port is supplied, the local index is set to it. This is necessary for protocols

that define the meanings of particular index numbers.

Opening and Closing Chaosnet Connections on the Server Side

chaos:listen contact-name &optional window-size wait-for-rfc Function

Waits for an RFC for the specified contact name to arrive, then returns a

chaos:conn which will be in the RFC Received state. If window-size is not speci-

fied, it defaults to 13. If wait-for-rfc is specified as nil (it defaults to t), the

chaos:conn is returned immediately without waiting for an RFC to arrive.

chaos:accept conn Function

conn must be in the RFC Received state. An OPN packet is transmitted and conn

enters the Open state. If the RFC packet has not already been read with

chaos:get-next-pkt, it is discarded. You should read it before accepting, if it con-

tains arguments in addition to the contact name.

chaos:reject conn reason Function

conn must be in the RFC Received state. A CLS packet containing the string rea-

son is sent and conn is removed.

chaos:answer-string conn string Function

conn must be in the RFC Received state. An ANS packet containing string is sent

and conn is removed.

chaos:answer conn pkt Function

conn must be in the RFC Received state. pkt is transmitted as an ANS packet and

conn is removed. Use this function when the answer is some binary data rather

than a text string.

Page 253

chaos:fast-answer-string contact-name string Function

If a pending RFC exists to contact-name, an ANS containing string is sent in re-

sponse to it and t is returned. Otherwise nil is returned. This function involves

the minimum possible overhead. No chaos:conn is created.

chaos:enable-monitor-screen-server &key (:server-enabled :no) (:wholine-appearance

:visible) Function

Allows someone else to monitor your screen using the Monitor Screen CP com-

mand. Calling this function without any arguments disables monitoring your screen

(the default). Note that, if your screen is already being monitored, the current

monitoring session will not be terminated.

:server-enabled One of :yes, :no, or :notify. The default is :no. :no means no

one can monitor your screen. :yes means anyone can monitor

your screen, and you will not see a notification that they are

doing so. :notify means that anyone can monitor your screen,

but you will see a notification first when they start.

:wholine-appearance

One of :visible or :invisible. The default is :visible. When

:server-enabled is :yes or :notify, :visible means that the

wholine area will display the fact that the server is operating

if someone is monitoring your screen. :invisible means that the

wholine area will not note whether anyone is monitoring your

screen.

Note that the server side of this capability has existed for many releases, though

no easily-accessible user side existed. Even then, the default for the server was to

disallow access.

Site administrators, and others who build worlds, should not enable this facility in

their world-building scripts, since allowing arbitrary monitoring of others’ screens

is generally considered a serious invasion of privacy. Users may wish to ensure

that the worlds they run do not have this turned on by default.

This is a Chaos-only protocol, meaning that only Chaosnet users can monitor

screens. This means that sites which communicate with the outside world via

TCP/IP, rather than Chaos (that is essentially all sites) do not have to worry about

users elsewhere on the Internet monitoring any screens at their site, regardless of

whether individual users enable monitoring.

Functions for Chaosnet Connection States

The following two functions return information on the state of the Chaosnet con-

nection (chaos:state), and implement a wait-or-timeout functionality (chaos:wait).

chaos:state conn Function

Page 254

Returns the current state of the specified connection, as one of the following sym-

bols:

chaos:inactive-state

A chaos:conn which does not correspond to any Chaosnet connection.

chaos:open-state

An open connection.

chaos:rfc-sent-state

An RFC has been transmitted and no response has yet been received.

chaos:answered-state

An ANS has been received.

chaos:cls-received-state

A CLS has been received.

chaos:los-received-state

An LOS has been received.

chaos:host-down-state

The connection is in the Incomplete Transmission state; communications

with the foreign host have broken down.

chaos:listening-state

An LSN has been "transmitted" and the connection is awaiting an RFC.

chaos:rfc-received-state

An RFC has been received while listening and has not yet been responded

to.

chaos:foreign-state

The connection is being used with a foreign protocol, encapsulated in UNC

packets.�

chaos:wait conn state timeout &optional whostate Function

Waits until the state of conn is not the symbol state, or until timeout 60ths of a

second have elapsed. If the timeout occurs, nil is returned; otherwise t is returned.

whostate is the process state to put in the status line; it defaults to "net wait".

Chaosnet Stream I/O

chaos:make-stream connection &key (direction ’:bidirectional) (characters t) (byte-

size nil) (ascii-translation nil) (accept-p t) (token-list nil) Function

Creates a bidirectional stream that accesses connection, which should be open as a

stream connection, as 8-bit bytes. In addition to the usual I/O operations, the fol-

lowing special operations are supported:

Page 255

:force-output Any buffered output is transmitted. Normally, output is accu-

mulated until a full packet’s worth of bytes are available, so

that maximum-size packets are transmitted.

:finish Waits until either all packets have been sent and acknowl-

edged, or the connection ceases to be open. If successful, re-

turns t; if the connection goes into a bad state, returns nil.

:eof Forces out any buffered output, sends an EOF packet, and does

a :finish.

:clear-eof Allows you to read past an EOF packet on input. Each :tyi re-

turns nil or signals the specified eof error until a :clear-eof is

done.

:close Behaves like the :eof message if not given an abort-p argu-

ment. The connection is also freed, so this need not be done

manually.

Keyword arguments are:

:direction :input, :output, or :bidirectional. The default is

:bidirectional.

:characters Boolean. The default is t. If not nil, character rather than bi-

nary data are to be sent.

:byte-size 8 or 16. The default is 16. :byte-size can be specified only if

:characters nil is specified.

:ascii-translation If not nil, characters are translated from ASCII to the Symbol-

ics internal character set on input, and to ASCII on output.

The default is nil.

:accept-p When not nil and the connection is in RFC Received state, ac-

cepts the connection. The default is t.

:token-list When not nil, this stream is a token list stream. You can oper-

ate on the stream with token list stream and BYTE-STREAM-

WITH-MARK messages.�

Chaosnet Packet I/O

Input and output on a Chaosnet connection can be done at the whole-packet level,

using the functions in this section. A packet is represented by a chaos:pkt data

structure. The system controls allocation of chaos:pkts; each chaos:pkt that it

gives you must be given back. There are functions to convert between chaos:pkts

and strings. A chaos:pkt is a sys:art-16b array containing the packet header and

data; the chaos:first-data-word-in-pkt’th element of the array is the first 16-bit

data word. The leader of a chaos:pkt contains a number of fields used by the sys-

tem.

Page 256

chaos:pkt-opcode pkt Function

Accessor for the opcode field of pkt’s header. For each standard opcode, a symbol

exists in the chaos package, consisting of the standard 3-letter code and a suffix

of "-op". chaos:rfc-op is an example of this. The value of the symbol is the numer-

ic opcode.

chaos:pkt-nbytes pkt Function

Accessor for the number-of-data-bytes field of pkt’s header.

chaos:pkt-string pkt Function

An indirect array, which is the data field of pkt as a string of 8-bit bytes. The

length of this string is equal to (chaos:pkt-nbytes pkt).

chaos:set-pkt-string pkt &rest strings Function

Copies the strings into the data field of pkt, concatenating them, and sets

(chaos:pkt-nbytes pkt) accordingly.

chaos:get-pkt Function

Allocates a chaos:pkt for use by the user.

chaos:return-pkt pkt Function

Deallocates a chaos:pkt.

chaos:send-pkt conn pkt &optional (opcode chaos:dat-op) stream Function

Transmits pkt on conn. pkt should have been allocated with chaos:get-pkt and

then had its data field and n-bytes filled in. opcode must be a data opcode (200 or

more) or EOF. An error is signalled if conn is not open. chaos:send-pkt automati-

cally returns the packet via chaos:return-pkt.

chaos:send-unc-pkt conn pkt &optional pkt-number ack-number Function

Transmits pkt, a UNC packet, on conn. The opcode, packet number, and acknowl-

edge number fields in the packet header are filled in (the latter two only if the op-

tional arguments are supplied). chaos:send-unc-pkt does an implicit chaos:return-

pkt, which returns the packet to the free pool at the appropriate time.

chaos:may-transmit conn Function

A predicate that returns t if there is any space in the window.

Page 257

chaos:finish-conn conn &optional (whostate "chaos finish") stream Function

Waits until either all packets have been sent and acknowledged, or the connection

ceases to be open. If successful, returns t; if the connection goes into a bad state,

returns nil. whostate is the process state to display in the status line while wait-

ing.

chaos:conn-finished-p conn Function

A predicate that returns something other than nil if all data that have been out-

put have been received and acknowledged by the foreign side of the connection.

chaos:get-next-pkt conn &optional (no-hang-p nil) Function

Returns the next input packet from conn. When you are done with the packet, you

must give it back to the system with chaos:return-pkt. This can return an RFC,

CLS, or ANS packet, in addition to data, UNC, or EOF. If no-hang-p is t, nil is re-

turned if there are no packets available or the connection is in a bad state. Other-

wise an error is signalled if the connection is in a bad state, with condition name

chaos:host-down, chaos:los-received-state, or chaos:read-on-closed-connection. If

no packets are available and no-hang-p is nil, chaos:get-next-pkt waits for packets

to come in or the state to change. The process state in the status line is "NETI".

chaos:data-available conn Function

A predicate that returns t if any input packets are available from conn.

Chaosnet Connection Interrupts

chaos:interrupt-function conn Function

This attribute of a chaos:conn is a function to be called in the background pro-

cess when certain events occur on this connection. Normally this is nil, which

means not to call any function, but you can use zl:setf to store a function here.

Since the function is called in the Chaosnet background process, it should not do

any operations that might have to wait for the network, since that could perma-

nently hang the background process.

The function’s first argument is one of the following symbols, giving the reason

for the "interrupt". The function’s second argument is conn. Additional arguments

can be present depending on the reason. The possible reasons are:

:input A packet has arrived for the connection when it had no input

packets queued. It is now possible to do chaos:get-next-pkt

without waiting. There are no additional arguments.

:output An acknowledgement has arrived for the connection and made

space in the window when formerly it was full. Additional out-

Page 258

put packets can now be transmitted with chaos:send-pkt with-

out waiting. There are no additional arguments.

:change-of-state The state of the connection has changed. The third argument

to the function is the symbol for the new state.

chaos:read-pkts conn Function

Some interrupt functions want to look at the queued input packets of a connection

when they get an :input interrupt. chaos:read-pkts returns the first packet avail-

able for reading. Successive packets can be found by following chaos:pkt-link.

chaos:pkt-link pkt Function

Lists of packets in the NCP are threaded together by storing each packet in the

chaos:pkt-link of its predecessor. The list is terminated with nil.

Chaosnet Information and Control

chaos:host-data &optional host Function

host can be a number or a known host name, and defaults to the local host. Two

values are returned: the host name and host number. If the host is a number not

in the table, it is asked its name using the STATUS protocol; if no response is

received, the name "Unknown" is returned.

zl:hostat &rest hosts Function

Asks each of the hosts for its status, and prints the results. If no hosts are speci-

fied, asks all hosts on the Chaosnet. Hosts can be specified by either name or octal

number.

For each host, a line is displayed that either says that the host is not responding

or gives metering information for the host’s network attachments. If a host is not

responding, probably it is down or there is no such host at that address. A Symbol-

ics host can fail to respond if it is looping inside without-interrupts or paging ex-

tremely heavily, such that it is simply unable to respond within a reasonable

amount of time.

See the section "Show Hosts Command".

To abort the host status report produced by zl:hostat or FUNCTION H, press

c-ABORT.

chaos:print-conn conn &optional (verbose t) Function

Page 259

Prints everything the system knows about the connection. If verbose is non-nil it

also prints everything the system knows about each queued input and output pack-

et on the connection.

chaos:print-pkt pkt &optional (verbose t) (indent 0) Function

Prints everything the system knows about the packet, except its data field. If ver-

bose is nil, only the first line of the information is printed.

neti:reset Function

Resets the local networks. Disables and then resets the interfaces. After using

neti:reset you must call neti:enable if you want to turn the network back on.

neti:general-network-reset Function

Disables and resets the local networks as does neti:reset, and resets the name-

space system. Resetting the namespace system clears information related to the

namespace system from memory. Your host then requests any needed information

from the namespace system. This cures problems that would occur if that informa-

tion was somehow corrupt. (Resetting the namespace system is also done at warm

and cold boot.)

After using neti:general-network-reset you must call neti:enable if you want to

turn the network back on.

chaos:assure-enabled Function

Turns on the network if it is not already on. It is normally always on unless you

call one of these functions.

neti:enable Function

Enables the local networks and interfaces.

neti:disable Function

Disables the local networks and interfaces. If you want to reset the local networks

and interfaces and then turn them back on, you should call neti:reset and then

neti:enable.

chaos:host-up host &optional timeout Function

Asks a host whether or not it is up (responding). If it is up, this function returns

t; if not, it returns two values: nil, and the error that occurred (usually "Host not

responding."). host can be a host object or the name of a host; timeout is in 60ths

Page 260

of a second and defaults to three seconds. If the host does not respond after this

much time, it is assumed to be down.

Note that if this function returns nil, it is possible that the host is up but is not

connected to the Chaosnet. This function tests whether the Symbolics computer is

capable of communicating with the host over the Chaosnet.

net:notify-local-lispms &optional message &key (:error-p) (:report) (:output-stream)

Function

Sends message to all Symbolics machines at your site based upon information it

gets from the namespace database about the Symbolics machines at the local site.

message should be a string; if it is not provided, the function prompts for a mes-

sage. Each recipient receives the message as a notification, rather than as an in-

teractive message.

Keyword arguments are:

:error-p

Setting this keyword to t enables the function to report all errors encountered.

Specifying nil (default) for this keyword enables the function to ignore all errors

encountered.

:report

Setting this keyword to t (default) enables the function to report whether it suc-

ceeded in delivering the message. Specifying nil enables the function to only report

failures in delivering messages.

:output-stream

Using this keyword enables you to redirect output to a specific stream.

net:notify host &optional message &key (:error-p) (:report) (:error-stream) Function

Sends a message to the specified host. host should be a host (the host name, as a

string, or a host object). message is a string; if it is not provided, the function

prompts for a message. The recipient receives the message as a notification, rather

than as an interactive message.

Keyword arguments are:

:error-p

Setting this keyword to t enables the function to report all errors encountered.

Specifying nil (default) for this keyword enables the function to ignore all errors

encountered.

:report

Setting this keyword to t enables the function to report whether it succeeded in

delivering the message. Specifying nil (default) enables the function to only report

failures in delivering messages.

:error-stream

Using this keyword enables you to redirect error output to a specific stream.

Page 261

net:finger-location Variable

This variable sets the location reported by the finger functions. Its value should be

a string to print as the location part of a finger display. When this variable is nil,

(the default), the system uses the value net:local-finger-location, which is set

from the local host’s finger-location attribute in its host object. When the variable

has a string value, it overrides the value in net:local-finger-location.

net:finger-local-lispms Function

Displays a list of who is using each of the Symbolics computers at the current

site.

net:finger-all-lispms Function

Displays a list of who is using each of the Symbolics computers in the host table.

