
Common Lisp Interface Manager (CLIM)

PREFACE

This book documents how to develop programs using the Common Lisp Interface

Manager (CLIM), Release 2.0. It is intended for use by programmers who are expe-

rienced with Common Lisp and CLOS programming concepts.

This book is useful for a programmer writing CLIM 2.0 applications on any Lisp

platform, but includes some material that is specific to CLIM on Genera and Cloe.

Organization

This document has these major parts:

"What is CLIM?" Describes the roots of CLIM 2.0, gives a technical

overview of it, and compares it to Genera’s Dynamic Win-

dows.

"CLIM Tutorial" Gets you started developing programs in CLIM with ex-

tended examples that you can run. This section introduces

the important concepts of CLIM via these examples.

"CLIM User’s Guide" Provides concept-oriented reference documentation cover-

ing topics in more detail than the Tutorial. The chapters

in the User’s Guide also include summaries of functions,

classes, macros, etc., which are documented more fully in

the Dictionary.

"CLIM Dictionary" Provides detailed reference documentation of CLIM func-

tions, classes, macros, and so forth, in alphabetic order.

You can use the CLIM Dictionary when you need to know

the syntax and semantics of a particular CLIM operator.

"Glossary of CLIM Terminology"
Provides a description of many CLIM terms.

How to Use This Book�

Start with "What is CLIM?" for background information and a technical overview

of CLIM.

When you are ready to start programming, proceed to the "CLIM Tutorial", and

experiment with the examples. Code for these examples can be found in the direc-

tory SYS:CLIM;REL-2;TUTORIAL;. The directory SYS:CLIM;REL-2;DEMO; is also a rich

source of example code.

When you want to learn about a topic in more detail, you can use the "CLIM

User’s Guide" and the "CLIM Dictionary").

Page 1140

Documentation Conventions�

This documentation uses the following notation conventions:

cond, clim:accept Printed representation of Lisp objects in running text.

Return, Abort, control-F Keys on the keyboard.

SPACE or Space The space bar.

login Literal typein.

(make-symbol "foo") Lisp code examples.

(my-find item list &optional test &key :start :end)

Syntax description of the invocation of the function

my-find.

item, list, test Arguments to the function my-find, usually expressed

as a word that reflects the type of argument (for ex-

ample, string).

:start, :end Keyword arguments to the function my-find.

&optional, &key Introduces optional or keyword argument(s).

Show File, Start Command processor command names appear with the

initial letter of each word capitalized.

m-X Insert File, Insert File (m-X)

Extended command names in Zmacs, Zmail, and Sym-

bolics Concordia appear with the m-X notation either

preceding the command name, or following it in

parentheses. Both versions mean press m-X and then

type the command name.

[Map Over] Menu items. Click Left to select a menu item, unless

other operations are indicated. (See the section

"Mouse Command Conventions".)

Left, Middle, Right Pointer gestures (also known as mouse clicks).

shift-Right, c-m-Middle Modified mouse clicks. For example, shift-Right

means hold down the SHIFT key while clicking Right

on the mouse, and c-m-Middle means hold down the

CONTROL and META keys while clicking Middle.

Modifier Key Conventions�

Modifier keys are designed to be held down while pressing other keys. They do not

themselves transmit characters. A combined keystroke like Meta-X is pronounced

"meta x" and written as m-X. This notation means that you press the META key and,

while holding it down, press the X key.

Modifier keys are abbreviated as follows:

CONTROL c- or control-

Page 1141

META m- or meta-

SUPER s- or super-

HYPER h- or hyper-

SHIFT sh- or shift-

These modifier key names are based on the labels on a Symbolics keyboard, and

most keyboards do not label their modifier key names the same way. This is just a

convention; non-Symbolics machines will simply use differently labelled keys on the

keyboard.

Modifier keys can be used in combination, as well as singly. For example, the nota-

tion c-m-Y indicates that you should hold down both the CONTROL and the META

keys while pressing Y.

Modifier keys can also be used, both singly and in combination, to modify mouse

commands. For example, the notation sh-Left means hold down the SHIFT key

while clicking Left on the mouse and c-m-Middle means hold down CONTROL and

META while clicking Middle.

The keys with white lettering (like X or SELECT) all transmit characters. Combina-

tions of these keys should be pressed in sequence, one after the other (for exam-

ple, SELECT L). This notation means that you press the SELECT key, release it, and

then press the L key.

Trademarks

CLIM is a registered trademark of International Lisp Associates (ILA). Microsoft

and MS-DOS are registered trademarks of Microsoft Corporation. Windows,

Windows/286 and Windows/386 are trademarks of Microsoft Corporation. Intel and

386 are trademarks of Intel Corporation. Adobe and PostScript are registered

trademarks of Adobe Systems Inc.

What is CLIM?

Technical Overview of CLIM

CLIM is an acronym for the Common Lisp Interface Manager. It is a portable,

powerful, high-level user interface management system toolkit intended for Com-

mon Lisp software developers. The important things to understand about CLIM

are:

• How it helps you achieve a portable user interface how it fits into an existing

host system; how you can achieve the look and feel of the target host system

without implementing it directly, and without using the low-level implementa-

tion language of the host system.

• The power inherent in its presentation model the advantages of having the vi-

sual representation of an object linked directly to its semantics.

Page 1142

• The set of high-level programming techniques it provides capabilities that en-

able you to develop a user interface conveniently, including formatted output,

graphics, windowing, and commands that are invoked by typing text or clicking

a mouse (or ‘‘pointer’’) button, among other techniques.

CLIM 2.0 does not currently provide any high-level user interface building tools,

nor does it provide any sort of high-level graphical or text editing substrate. These

are areas into which future releases of CLIM may extend.

CLIM is also not suitable for high performance, very high quality graphics of the

sort needed for sophisticated paint, animation, or video postproduction applications.

Of course, it is possible to write the bulk of such an application’s user interface

using CLIM, and use lower level facilities for drawing in the main ‘‘canvas’’ of the

application.

Introduction to CLIM’s Presentation Model

A software application typically needs to interact with the person using it. The

user interface is responsible for managing the interaction between the user and

the application program. The user interface gets information from the user (com-

mands, which might be entered by typing text or by clicking a mouse), gives that

information to the application, and later presents information (the program’s re-

sults) to the user. Figure 25 shows this common paradigm.

Input

Computation

Output

Figure 46. Cycle of Input/Computation/Output�

We might describe one conventional approach to the input/computation/output cycle

as follows. Invisibly to the user, the application takes the commands and interprets

them in terms the program can handle. For example, if the application uses object-

oriented techniques, it might build objects based on information garnered from the

command and arguments, then manipulate those objects internally, finish its com-

putation, and finally translate from the resulting objects to the appropriate re-

sponse which is then given to the user. Figure 26 depicts this sequence of events.

The conventional approach uses object-oriented techniques within the computation

phase, but the objects do not surface to the user interface. The program performs

two translations: from user input to objects, and later from objects to output in-

Page 1143

Input

Output

Computation

User enters command and arguments

User sees results of the program

Program interprets command and arguments

Program builds objects based on commands

Program manipulates its internal objects

Program translates objects to visible results

Program discards objects

Figure 47. Conventional Approach to the Input/Computation/Output Cycle�

tended for the user. CLIM revolutionizes the cycle by bringing the power of object-

oriented programming to the surface, all the way up to the user interface.

CLIM recognizes that many applications manipulate internal objects which we call

application objects and they have display objects, which are presented to the user.

A display object can appear as text or a graphic picture. CLIM supports a direct

linking between application objects and display objects. CLIM automatically main-

tains the association between application objects and display objects, so there is no

need for the application to do any translation. Figure 27 shows how CLIM views

the cycle of input/computation/output.

In effect, CLIM replaces some of the tedious and error-prone steps of the conven-

tional user-interface model with higher-level object-oriented techniques. The advan-

tages of the object-oriented user interface are subtle but extremely powerful (in

fact, you might not recognize them at first glance, but they will grow on you grad-

ually as you develop your CLIM applications):

• A command is structured so that the user interface understands something of

the semantics of its arguments. That is, each argument must be an object of a

specified type. This helps the user in several ways:

° The user is prevented from entering invalid input, because the user interface

automatically enforces the validity of each argument.

° The user can get online help or prompting from the user interface, based on

the type of the argument.

° The user can enter input in creative and convenient ways, such as by clicking

on object displayed on the screen by a previous command. The user interface

knows which displayed objects are valid within the current context, and can

make them sensitive (the objects are highlighted as the pointer passes over

them).

Page 1144

User enters command

Program prompts for and accepts valid arguments*

Application objects are created or reused automatically

Program manipulates its application objects

Display objects are created from application objects

User sees display objects

User can operate on display objects

Application and display objects continue to exist

Input

Output

Computation

Display objects remain linked to application objects

*The command and arguments can also come from a single gesture.

Figure 48. CLIM Approach to the Input/Computation/Output Cycle�

�

° The user has a flexible means of interacting with the application, and often

can choose whether to use the mouse or keyboard to communicate with the

application.

• In CLIM, the user interface directly reflects the application’s structure, because

the display objects stand for application objects. Unlike the conventional model,

a CLIM user interface is not tacked on the application as a separate entity

which can diverge from the application to ill effect. CLIM’s direct linking be-

tween the application and display objects ensures a natural consistency between

the application and its user interface.

• Display objects are organized in a type lattice in the usual object-oriented way,

so inheritance can be used to good advantage. For example, when the user is

entering an argument of a given type, objects of that type and its subtypes are

valid as input. For example, an application might define display objects repre-

senting buildings, schools, and houses. When the application needs a building as

input, the user can enter a school, because school is a subtype of building.

CLIM also offers a library of predefined types, saving the application program-

mer some effort when dealing with commonly used display types.

• Objects can be shared freely among different applications. CLIM’s ability to

share objects directly contrasts to some conventional systems, in which data can

be shared among applications only by reducing it to its lowest common denomi-

nator (usually text). �

Page 1145

How CLIM Helps You Achieve a Portable User Interface

CLIM provides a consistent stream-oriented interface to window systems across a

large set of hosts. When developing a portable user interface, you write your appli-

cation in terms of CLIM windows and their operations. You can also use Common

Lisp and CLOS. Figure 28 shows the elements on which your application depends.

CLIM

Portable application

Common Lisp

CLOS

Figure 49. Foundation of a Portable Application�

�

Your application is portable because it depends only on languages which have been

standardized: Common Lisp, CLOS, and CLIM. Of course, porting is never entirely

effortless, because different implementations of standardized languages can differ

from one another in minor ways.

From the perspective of your application, the details of the host window system,

host operating system, and host computer should be invisible. CLIM handles the

interaction with the underlying window system. Figure 29 shows the elements of

the host system from which CLIM shields your application.

CLIM shields you from the details of any one window system by abstracting out

the concepts that many window systems have in common. Using CLIM, you specify

the appearance of your application’s output in general, high-level terms. CLIM

turns your high-level description into the appropriate appearance for a given win-

dow system.

In some cases, you might prefer to control the appearance of your user interface

more directly. You can bypass CLIM and use functions provided in the underlying

window system or toolkit to achieve more explicit control, at the expense of porta-

bility.

Highlights of CLIM Tools and Techniques

CLIM offers the following tools and techniques:

Windows and events

A portable layer for implementing sheet classes (types of win-

dow-like objects) that are suited to support particular high lev-

el facilities or interfaces. The windowing module of CLIM de-

Page 1146

CLIM

Window System

Operating System

Hardware Platform

Portable application

Common Lisp

CLOS

Figure 50. How CLIM is Layered Over the Host System�

�

fines a uniform interface for creating and managing hierar-

chies of these objects regardless of their sheet class. This layer

also provides event management.

Graphics A rich set of drawing operations, including complex geometric

shapes, a wide variety of drawing options (such as line thick-

ness), and a sophisticated color inking model. CLIM provides

full affine transforms, so that you can perform arbitrary trans-

lations, rotations, and scaling of drawings.

Output recording A facility for capturing all output done to a stream, which pro-

vides the automatic support for scrollable windows. In many

cases, programs produce output in the form of display objects,

which can be manipulated directly by the user (see context-

sensitive input). Thus, not only is the output recorded
whether textual or graphic but it also retains its semantics

and can be reused when appropriate.

Formatted output High-level macros that enable you to produce neatly formatted

tabular and graphical displays with minimal effort.

Context-sensitive input

Simple, direct means of using a displayed output object as in-

put. As mentioned above, an application can produce output via

objects, which retain their semantics. Users can recycle visible

output into input for the same application or a different one.

Each CLIM application sets up a context for what kind of in-

put is expected at a given time. For example, a CAD program

that supports designing electrical circuits might have a com-

Page 1147

mand called Set Resistance which sets up an input context in

which a resistor object is expected. Any resistors appearing in

the CAD programs display are automatically made mouse-

sensitive in that context, so the user can click on one to enter

it as input.

Adaptive toolkit A uniform interface to the standard compositional toolkits

available in many environments. CLIM defines abstract panes

that are analogous to the gadgets or widgets of a toolkit like

Motif or OpenLook. CLIM fosters look and feel independence

by specifying the interface of these abstract panes in terms of

their function and not in terms of the details of their appear-

ance or operation. If an application uses these interfaces, its

user interface will adapt to use whatever toolkit is available in

the host environment. By using this facility, application pro-

grammers can easily construct applications that will automati-

cally conform to a variety of user interface standards. In addi-

tion, a portable CLIM-based implementation of the abstract

panes is provided.

Application-building facilities

High-level facilities for defining applications, helping you to lay

out windows and gadgets, manage command menus and menu

bars, and link user interface gestures (such as mouse clicks)

with application operations. The application-building tools help

you construct a flexible user interface that can grow from the

protototype to the delivery phase.

Comparing and Contrasting DW and CLIM

This section describes CLIM in terms of how it is similar to and how it differs

from Dynamic Windows. It also discusses conversion issues.

CLIM offers some advantages over Dynamic Windows. In brief, these are:

• Ability to develop a portable user interface.

• Support for using toolkits offered on various window systems to achieve the

look-and-feel of a given system.

• Simplification of some Dynamic Windows functionality, resulting in greater ease

of use and superior performance.

• Exposed underlying protocols, enabling you to modify or extend the behavior of

CLIM.�

Converting an Application From DW to CLIM

Genera users do not have to convert programs from Dynamic Windows to CLIM.

Symbolics will continue to support DW in Genera. In fact, it is possible that the

portions of Genera that use Dynamic Windows will not be reimplemented in CLIM.

Page 1148

One good reason to convert an existing program to CLIM is to take advantage of

the portability benefit that CLIM provides. If your goal is to deliver an application

with a user interface on a variety of Lisp platforms with different window systems,

you will probably want to convert the application’s user interface to CLIM.

Another good reason to convert a Dynamic Windows program to CLIM is that

many of the high level facilities in CLIM are faster than in Dynamic Windows.

Symbolics provides a conversion tool to help automate the procedure of converting

programs from DW to CLIM. For more information, see the section "Converting

from Dynamic Windows to CLIM".

When developing a new application, you will need to decide whether the user in-

terface should be programmed in Dynamic Windows or CLIM. Although both will

coexist in Genera, there is no direct compatibility between them, and hence no

mixed programming approach.

Converting an Application From TV to CLIM

Some Genera users have applications that depend on Release 6 window functions

in the tv package. In some cases, these applications were not converted to Dynam-

ic Windows because of performance reasons. CLIM’s performance is superior to

that of Dynamic Windows, so for performance reasons, users may want to convert

programs that use Release 6 window functions to CLIM.

Note that the Release 6 window system has a very different architecture from DW

or CLIM. For example, window programs typically define new flavors of the win-

dow with methods that handle very low-level events (such as refresh and mouse

motion). Because of this architectural difference, converting from tv to CLIM usu-

ally requires a careful redesign of an application’s user interface, and the useful-

ness of automatic conversion tools is limited.

Similarities Between Dynamic Windows and CLIM

• CLIM supports essentially the same presentation model as that in Dynamic

Windows. CLIM captures the Dynamic Windows’ philosophy that a program’s

user interface should reflect its semantics.

• CLIM provides a graphics model which is similar to that of Dynamic Windows,

but is simplified and more uniform.

• CLIM includes an application-building tool similar to the dw:define-program-

framework of Dynamic Windows.

• CLIM’s command processor is virtually identical to that of Dynamic Windows.

• CLIM’s input editor is a simplification of that of Dynamic Windows.

• CLIM supports a version of Genera’s character styles. In Dynamic Windows

characters, strings, and displayed text have style. In CLIM only displayed text

has style.

Page 1149

• CLIM supports completion and context-sensitive help in the spirit of Dynamic

Windows.

CLIM as a UIMS, and Not a Window System

Dynamic Windows plays two distinct roles. It is both a window system and a user

interface management system. CLIM is not a window system; it is layered on top

of some other window system, such as X, NeWS, or Microsoft Windows. Therefore,

CLIM recasts the interfaces of Dynamic Windows related to being a window sys-

tem in a portable manner. CLIM encompasses the functionality of many window

systems; it acts as an ‘‘abstract window system’’ or a ‘‘generic window system’’

which can be layered on top of another window system. CLIM enables you to devel-

op a portable user interface, whereas Dynamic Windows does not.

The portions of Dynamic Windows that are directly related to its role as a window

system are not included in CLIM. For example, in Dynamic Windows, you can op-

erate on a window by sending it a message because some dynamic windows are im-

plemented as flavors that use the message-sending paradigm. CLIM does not sup-

port that paradigm.

CLIM, like the second role of Dynamic Windows, is a user interface management

system. CLIM shares the philosophy that you as programmer should be able to ex-

press what you want to do in high-level terms, and the system should manage the

details for you.

CLIM is Built up From Layered Protocols

Whereas Dynamic Windows includes a great deal of flexibility in its single docu-

mented interface, CLIM is a layered protocol in the spirit of CLOS. In this docu-

ment, we refer to the higher level as the CLIM Application Programmer Interface

(or API) and the underlying level as the CLIM Class Protocol.

CLIM Programmer Interface

CLIM Class Protocol

Figure 51. CLIM Protocol Layers�

�

At the API level, an important design goal is that there should be one simple way

to do something. There can be some exceptions to this goal; when a very common

idiom is identified, it might be included even if there is another (more verbose)

way to do the same thing. Where some Dynamic Windows functions and macros of-

fer many keyword arguments, CLIM pares these down to a minimal set without

sacrificing functionality.

Page 1150

The CLIM Class Protocol is exposed to allow advanced users to modify or extend

CLIM in the object-oriented way. The API functions and macros are implemented

in terms of the CLIM Class Protocol. The CLIM Class Protocol, for the most part,

is not documented in this book. If you are interested in the CLIM Class Protocol,

you should consult the CLIM II Specification.

Comparing the Presentation Type Systems

Dynamic Windows allows the presentation type lattice to be computed at run-time.

In Dynamic Windows, using inheritance can get complicated, because you must

specify what happens at run-time. In CLIM, the type lattice is fixed at load-time,

as it is in CLOS. By fixing the type lattice at load-time, CLIM achieves a perfor-

mance improvement and simplifies the conceptual model. In practice, this restric-

tion has had no negative effects on any applications, and has the benefit of making

CLIM’s presentation type system far faster than the Dynamic Windows presenta-

tion type system.

The CLIM presentation type system is a straightforward extension of the CLOS

type system. In CLIM, defining a presentation type is similar to defining a CLOS

class. CLIM extends the CLOS type system by supporting parameterized types,

such as integer ranges. This has the benefit of making the CLIM presentation type

system ‘‘feel’’ almost exactly like CLOS.

CLIM’s Unified Geometric Model

CLIM includes a unified geometric model which is used to represent windows,

graphics, and widgets. In other words, everything from a window itself to the

graphics drawn on it conforms to the same geometric model. This enables you to

deal with windows and graphics in a uniform way. CLIM also provides a general

model for transforming, rotating, and scaling geometric objects. CLIM’s unified ge-

ometric model results in a simplification of some mechanisms used in Dynamic

Windows.

CLIM and User Interface Appearance

It is an ambitious goal of CLIM to bridge a wide gap between two styles of user

interface programming.

In Genera’s style, the principal goal is for the user interface to convey the appli-

cation’s semantics. This goal leads to a natural consistency between the application

and its user interface. However, Genera and Dynamic Windows have been weak in

enabling programmers to specify a unique and attractive appearance of the user

interface. In other words, Genera has tended to sacrifice form for content.

Many commercial toolkits have powerful means of controlling the visual appear-

ance of a user interface. Traditionally, these toolkits offer no support at all for

connecting the application’s semantics to its user interface. The user interface is

thus designed and implemented as a separate, add-on piece to the application. In

other words, the toolkits tend to sacrifice content for form.

Page 1151

What’s missing from each of these approaches is the connection between the se-

mantics and the appearance of a user interface. CLIM enables the programmer to

specify the semantics and appearance of the user interface in an integrated way. It

provides the glue between the two.

For example, suppose that your user interface wants to use a dialog to read a real

number in the range from zero to ten from the user. A conventional toolkit might

make it easy to provide a visually attractive slider to prompt the user, but when

the application receives the input, there are no semantics associated with it; the

programmer must write some callback that handles events on the slider and con-

verts them to the desired real number. In Genera, the straightforward way to get

the number is to give a textual prompt such as "Enter a number from 0 to 10".
The appearance of the prompt is not particularly appealing, but when the input

arrives, Genera knows its semantics; it is a real number in the correct range.

CLIM aims to include the strength of each of these paradigms. The presentation

model maintains the link between the application’s semantics and its user inter-

face. The adaptive toolkit enables you to provide a visually attractive user inter-

face. So, if you want to use a slider to get a real number in the range from 0 to

10 from the user, you can use the following:

(clim:accept ’((real 0 10)) :view clim:+slider-view+)�

A Tutorial on the Common Lisp Interface Manager (CLIM)

What is CLIM and Why Should I Learn About It?

The CLIM user interface manager provides a novel way to connect input and out-

put to the semantics of the application. It is not a window system but rather al-

lows you to write portable applications that use the underlying window system

and/or toolkit interface.

This tutorial provides several examples of working code and then discuss the fea-

tures of CLIM used in the code. While familiarity with Common Lisp programming

is definitely a prerequisite for using CLIM, there is no need to be a ‘‘wizard’’ to

read the examples. We have tried to shift the balance between simplicity and real-

ism of the examples toward simplicity as much as possible.

Many of the facilities described in this tutorial are not fully documented here; for

full documentation we refer you to the "CLIM User’s Guide" and the "Dictionary

of CLIM Operators". The intent of the tutorial is to familiarize you with the basic

use of the CLIM application-building facilities; this will prepare you to understand

the reference documentation.

Note for the advanced reader: Throughout this tutorial you will see text like this. This is an

indication to you that the material contained here is meant for the more knowledgeable reader.

The beginning reader is encouraged to skip this material; you will not lose any of the basic lesson

of the tutorial.

This tutorial simplifies a lot of material. The purpose of these notes is to warn the advanced

reader against reading too much into the simplified description of certain CLIM features presented

Page 1152

in the tutorial. In cases where a particularly simplified version of CLIM functionality is presented, a

note like this will follow, indicating what simplifications have been made.�

The Fifteen Puzzle an Elementary Application

This chapter and the following two chapters show the evolutionary development of

an elementary CLIM application. While the example is simple and short, it illus-

trates many of the features of a typical CLIM application. We present a series of

complete, working programs. The programs can be short and yet complete because

they make extensive use of high-level facilities provided by CLIM.

For this first example application, we have chosen the famous ‘‘Fifteen Puzzle’’, a

sliding block puzzle which dates back more than a century. [Ref: Sliding Piece

Puzzles, Edward Hordern, Oxford University Press, 1986.] The Fifteen Puzzle con-

sists of a 4 by 4 array of spaces, fifteen of which are filled by consecutively num-

bered pieces. The remaining space is open, which allows a piece to slide into that

space, effectively interchanging the piece and the space. Only pieces that are adja-

cent (horizontally or vertically) to the space can move.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

�

Figure 52. The Fifteen Puzzle�

What is an Application?

Page 1153

We have already used the term ‘‘application’’ in this tutorial. Now we will make

the use of this term a little more specific. An application is a program that con-

tains a user interface component that interacts directly with the user (as opposed

to, say, a library). CLIM lets you build what it calls an application which is a

Lisp object that encapsulates much of the information necessary for a program to

run.

Many applications fall into a simple framework: they consist of a ‘‘loop’’ doing
three things, one after the other, repeatedly:

Input Find out what to do;

Process Do it;

Output Show what happened.�

Chances are, many programs that you already know fall into this general scheme.

Consider an editor, a Lisp listener, or a spreadsheet, and see if you can see how

they can be regarded in this manner.

Note for the advanced reader: Of course, many applications don’t fall into this simple frame-

work. (Examples are applications that employ multiple processes, or applications that deal with

asynchronous input from another source as well as the user.) That doesn’t mean you can’t use

CLIM to build those applications too.�

Output
"show what happened"

Input
"find out what to do"

Process
"do it"

User Interface

�

Figure 53. The Simple Application Loop.�

Now it’s time to look at the first version of the Fifteen Puzzle application. If you

are reading this tutorial on-line, or if you have access to a machine, read the file

SYS:CLIM;REL-2;TUTORIAL;PUZZLE-1.LISP into an editor buffer. In case you don’t

have on-line access, see the section "Code for Puzzle-1".

If you can do so, run the application right now. Read the file SYS:CLIM;REL-

2;TUTORIAL;PUZZLE-1.LISP into an editor buffer. Then do the following:

Page 1154

1. Compile the buffer.

m-X Compile Buffer�

2. At the end of the file there are two or three forms commented out with #|

and |#. Evaluate those forms by marking them, wiping them, and yanking

them into a Listener and pressing END, or by marking them and pressing

c-sh-E.

To exit from this first version of the puzzle, select the window in which you evalu-

ated the clim:run-frame-top-level form. (This window should be visible immediate-

ly behind the puzzle.) You will need to press ABORT or otherwise tell the process to

stop executing the application’s top-level.

�

Figure 54. The First Version of the Fifteen Puzzle�

The application occupies a small amount of space on the screen and the space is

divided into two pieces a display of the puzzle, and a small menu at the bottom

with four menu items: Down, Up, Left, and Right. The whole area is the applica-

tion’s top level sheet; because it is subdivided we call it a frame, and the two pieces

are each called panes.

Notice that the menu items highlight when the mouse points at them. This is

CLIM’s indication to you that something will happen when you click the mouse at

that place. Try clicking the mouse on any of the four menu items. ‘‘Right’’ means

‘‘try to move a piece right into the space’’, and similarly for ‘‘Left’’, ‘‘Up’’, and

‘‘Down’’.

The most important defining form is at the beginning of the source file.

(clim:define-application-frame fifteen-puzzle-1 ()

 ((pieces :initform ...))

 (:panes

 (display ...)

 (menu ...)))�

Page 1155

clim:define-application-frame is used here to define a class of applications called

fifteen-puzzle-1. It is important to realize that this is the definition of the class,

not the creation of a member of the class.

CLIM is implemented using the Common Lisp Object System CLOS for short.

You don’t have to know a lot about CLOS to use CLIM, but if you do know about

CLOS you may find that you can apply that knowledge to writing CLIM programs.

Note that the name "fifteen-puzzle-1" is used in some other places in the source

file. You use the name of an application when making an instance of it or when

you write a new command or method for it. (Defining commands for applications is

discussed in the section "Application Commands".)

To understand this program there are several other concepts that we must intro-

duce. In the following sections we will discuss:

• an application’s state,

• an application’s commands,

• the panes, or sub-windows that have already been mentioned,

• and the display function associated with a pane.�

Application State

A dictionary definition of state is ‘‘a mode or condition of being with respect to a

set of circumstances’’.

It is often useful for a program to remember things, even when the user is not

running the program. Most operating systems let users switch their attention

among several activities; users are more productive if they can return to a partly

completed task and find the program’s appearance and behavior reflecting the state

of the task.

The Fifteen Puzzle has state. If you put it aside, and later return to it, you expect

the pieces to be where you left them.

As the implementor of a program, you might choose to use global variables to

store such state. Storing the state as part of the program itself is often a better

choice than using global variables because:

• you might want more than one copy of the program around each copy needs

its own state;

• the values representing the state are less vulnerable to being inappropriately

modified (for example, by another program in a shared Lisp environment);

• access to the state can be more efficient.�

In short, we encourage the practice of storing state as part of the application ob-

ject as good software engineering.

Page 1156

A CLIM application may contain state variables. State variables are CLOS slots.

They are described in the clim:define-application-frame form in the same manner

as slots are described in clos:defclass. For a full description of CLOS slots, see

the section "Accessing Slots of CLOS Instances".

A typical specification of an application state variable might include:

• the name (mandatory),

• an initial value,

• reader, writer, or accessor functions, and

• documentation.�

In the Fifteen Puzzle, we have a state variable called pieces which is an array

containing the current arrangement of pieces in the puzzle.

Application Commands

In CLIM, a command is the way to tell an application what to do. A command is a

lisp object with structure. It’s important to think of a command as an object you

(the user) may enter in several different ways. That’s how CLIM supports mixed-

mode interfaces where the user tells the application what to do in different ways.

Commands may be entered by:

• clicking on menu buttons

• clicking on items displayed in the interface (when a piece of a display responds

to the user clicking on it, we say the item is sensitive)

• typing strings of characters (the facility that turns a string into a command is

called a command parser)

• typing individual characters that each represent a command (such characters

are called keyboard accelerators, they are often ‘‘control’’ or ‘‘meta’’ characters

• a combination of the above.�

When you define a CLIM application by using clim:define-application-frame, one

of the results is the definition of a command-defining macro for your application.

Since the application is called fifteen-puzzle-1, the macro that gets defined is

named define-fifteen-puzzle-1-command. This is one of the results of naming the

class of applications as discussed in "What is an Application?".

Note for the advanced reader: You can override the name that CLIM chooses for the command-

defining macro if you wish. You can also decline to have one created at all if you wish.�

Here is one of the commands of the Fifteen Puzzle:

(define-fifteen-puzzle-1-command (right :menu t) ()

 (with-slots (pieces) clim:*application-frame*

 (find-empty-piece-and-do (y x)

 (unless (zerop x)

(rotatef (aref pieces y x) (aref pieces y (- x 1)))))))�

Page 1157

When you write a command, you make the state variables of the application frame

via clos:with-slots, since clim:*application-frame* will be bound to the application

frame. In the Fifteen Puzzle command above, we refer to the variable pieces in

just that way.

The name of the command is right. The option :menu t says that we want this

command to appear in the command menu for the application.

Application Panes

It is often useful to partition your application’s screen-area into functional divi-

sions. A menu is such a partition it groups all the menu buttons into one area.

A drawing program may have an area reserved for displaying small versions of

saved drawings, or for iconic representations of drawing tools. By placing like

things near each other, the application designer can make the interface easier to

use.

A pane is CLIM’s name for a sub-window, that is, a window-like region within a

window. The panes within a window form some configuration within a frame, and

cannot be exposed or deexposed individually.

CLIM lets you describe how you want your application’s window partitioned into

panes. There are two parts to the description of an application’s panes:

• describing each pane, individually;

• and describing how the panes are laid out to occupy the space available.�

The description of an individual pane names the pane, and its type. The descrip-

tion may also contain other options that apply to the pane, such as whether the

pane has scroll bars.

Descriptions of individual panes are introduced by the keyword :panes in the

defining form. In the Fifteen Puzzle, the pane descriptions look like this:

(clim:define-application-frame fifteen-puzzle-1 ()

 ...

 (:panes

 (display :application ...)

 (menu :command-menu ...)))�

Two panes are described, a pane named display and a pane named menu. Immedi-

ately following the pane is a keyword that assigns the type of the pane. The two

types of panes here are:

• :application a general purpose type of pane used for display;

• :command-menu a pane used for displaying a menu of commands.�

We will see other types of panes later.

We will discuss pane layout later in the tutorial. The definition for the Fifteen

Puzzle does not explicitly specify a layout, which means that CLIM will supply a

Page 1158

simple default layout. The default layout consists of stacking all the panes verti-

cally, in the order that the panes are mentioned in the :panes description.

Application Output

In the basic application loop that we discussed in "What is an Application?", one of

the main functions that an application performed was to update the display to re-

flect the changed internal state of the application.

In the definition of the Fifteen Puzzle, there is a keyword :display-function in the

pane description, followed by a name: draw-the-display.

(clim:define-application-frame fifteen-puzzle-1

 ...

 (:panes

 (display :application

 :text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :scroll-bars nil)

 ...))�

This is how you tell CLIM how to draw the display you want. Since CLIM is pro-

viding the application loop itself, all you need to do is provide the name of a func-

tion, and CLIM’s default loop will call it after executing a command.

Note for the advanced reader: CLIM offers many options for modifying this behavior. You

choose whether the pane should be cleared first or not. You can decline the facility completely

and call display functions yourself as part of your commands. You can employ more advanced

features of CLIM to incrementally redisplay only those parts of the display that have changed.�

CLIM expects to call a function or method that takes two arguments: the applica-

tion object and the stream on which the output should take place. Whatever func-

tion you write must have the correct argument list.

Here is the function that the Fifteen Puzzle uses for drawing the board.

Note for the advanced reader: We have chosen to make the function a method on the applica-

tion. This is a common choice in many circumstances: it may allow faster slot access to the

application’s state variables; it is also sometimes done to allow multiple classes of applications to

share code using, for example, :after methods.�

(defmethod draw-the-display ((application fifteen-puzzle-1) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

(let ((piece (aref pieces y x)))

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D " piece))))

 (terpri stream))))�

Page 1159

Note that this function draws the entire display. In a later chapter, "Further De-

velopment of the Fifteen Puzzle", we will see examples of how to draw part of the

display, while leaving part of the display unchanged.

Note also the use of &key and &allow-other-keys. This is because CLIM can pass

addition keyword arguments (:max-width and :max-height) to display functions, so

display functions must be prepared to handle them.

Summary

An application is a program that interacts with the user for a specific purpose. An

application frame is an object that helps you implement an application. The con-

tents of an application frame are specified by using clim:define-application-frame.

Applications have state. You can store values representing pieces of state in an

application’s state variables.

A command is an object that tells an application what to do. Commands can be en-

tered in several different ways, including clicking on menu buttons.

Many applications run the standard application loop which (1) reads a command,

(2) does what the command tells it to do, and (3) updates the display to reflect

what it did.

Applications generally have their own window, called a frame, and often subdivide

that window into smaller windows called panes. Common types of panes are menus

and display panes.

You can tell CLIM the name of a function that draws the display for a particular

pane by using the :display-function keyword. CLIM will run that function after

executing each command.

In the next chapter you’ll see how to make the pieces of the puzzle move when

you click the mouse directly on them (instead of on menu items).

Using Presentations in the Fifteen Puzzle

If you have not already done so, edit the file SYS:CLIM;REL-2;TUTORIAL;PUZZLE-

2.LISP and run the new version of the application.

1. Compile the buffer.

m-X Compile Buffer�

2. At the end of the file there are two or three forms commented out with #|

and |#. Evaluate those forms by marking them, wiping them, and yanking

them into a Listener and pressing END, or by marking them and pressing

c-sh-E.

The biggest difference from the previous version is that now you can move pieces

by clicking on them. Another difference is that the old menu commands Down,

Page 1160

�

Figure 55. The second version of the Fifteen Puzzle lets the user move pieces by

clicking on them.�

Right, Left and Up are no longer needed; they have been replaced by Exit and Re-

set.

This new interface is more pleasant to use. This style of interface, that lets you

move the piece you want to move by pointing at it, is called a direct manipulation

interface. In this chapter you will see how CLIM helps you build such an interface

with a very general and powerful mechanism based on the idea of a presentation.

The Concept of a Presentation

When CLIM does output it is doing more than just drawing bits on the screen and

forgetting about them. CLIM remembers what was drawn on the window. This fea-

ture is called output recording. Several other features of CLIM make use of output

recording; one of the most important features enabled by output recording is the

presentation.

The purpose of a presentation is to associate some output with an object in the

program. Any piece of output, whether text or graphics, can form the visual repre-

sentation of any Lisp object.

It is important to appreciate the general power that presentations give you, the ap-

plication writer. In a typical application, the majority of commands are concerned

with performing some action upon some object. It is part of the power of direct

manipulation interfaces that they eliminate, for the user, most of the difficulty of

specifying ‘‘what object’’ to operate upon. By providing a direct link from some-

thing the user can point at (the output) to the recipient of the desired action (the

application object), presentations let you implement direct manipulation with great

ease.

To make all this specific, consider the Fifteen Puzzle. In the first version of the

program that we saw in the previous chapter, we had a ‘‘Right’’ command, which

meant ‘‘move the piece that can move right into the space’’. As you can see by

running the second version of the program, it is much more preferable to move

Page 1161

‘‘that piece there’’ where the user points at the piece to indicate which piece is to

be moved.

If you haven’t already done so, you should now look at the source for the new ver-

sion of the Fifteen Puzzle: SYS:CLIM;REL-2;TUTORIAL;PUZZLE-2.LISP.

The application frame is the same as the previous version, but immediately follow-

ing the application definition is a new CLIM form. This is how you create a pre-

sentation-type: by using the form clim:define-presentation-type. In defining a type

called puzzle-piece we are expressing our intent to represent a piece of the Fif-

teen Puzzle by drawing something on the screen.

(clim:define-presentation-type puzzle-piece ())�

Note for the advanced reader: This is a very simple example of

clim:define-presentation-type. We haven’t even explained what makes this a type yet. Many

more examples will appear later.�

So far we have told CLIM that we want to do output which represents a piece of

the puzzle. Now we have to do it. Look at the new version of the output routine

draw-the-display. Notice that the code that writes the characters representing the

piece is wrapped in clim:with-output-as-presentation. This form means: the fol-

lowing output (that is, within this extent) represents this object.

(clim:with-output-as-presentation (stream position ’puzzle-piece)

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D" piece)))�

Here we are presenting the position, not the piece in that position.

clim:with-output-as-presentation needs to be given

• The stream on which you are presenting the object, in this case, the Fifteen

Puzzle display pane that was passed as an argument to the method;

• The lisp object you are presenting, in this case the value of position which is a

lisp object representing the position;

• The type of presentation you are presenting the object as, in this case, we are

presenting it as a puzzle-piece.

Making Commands From Presentations

Now that we have presentations on the window, we have to use them.

You have already been introduced to the idea of a command, and to the idea that

commands may be generated in several different ways, but the only method of en-

tering a command you have seen so far is by clicking on a menu item.

In this chapter you see another, very useful, way of making a command by

translating a mouse-click on a presentation into a command. Look at the following

form in the source:

Page 1162

(clim:define-presentation-to-command-translator move-a-piece

 (puzzle-piece move fifteen-puzzle-2)

 (object)

 (multiple-value-bind (yp xp) (floor object 4)

 (list yp xp)))�

The form clim:define-presentation-to-command-translator does exactly what its

name suggests: it says that ‘‘if you click on a presentation of this type, translate

that into the following command’’. In the example, a click on anything presented

as a puzzle-piece translates into a move command. The body of the presentation

translator returns the argument list for the command.

The move command is new to this version of the Fifteen Puzzle, but you should

have no difficulty in understanding what it does.

(define-fifteen-puzzle-2-command (move) ((yp ’integer) (xp ’integer))

 ...)�

When you compare this command to, say, the Right command of the previous Fif-

teen Puzzle there are a number of differences you should notice. Most importantly,

this command takes arguments (which are the X and Y coordinates of the piece to

move). Notice that the argument list for a command is a little more complicated

than the argument list to a function. Each element in the argument list is itself a

list which describes one argument.

There is no :menu option mentioned in this command, because this is not a com-

mand we want to put in the menu.

Exiting an Application

The second version of the Fifteen Puzzle contains two new menu commands. One

of them, Reset, simply resets the game board to its original state. You should be

able to understand the implementation of this command with what you have

learned already.

The other command, Exit, provides a way to ‘‘cleanly’’ exit an application, and its

implementation illustrates some new features of the CLIM substrate. Here is the

code for the Exit command:

(define-fifteen-puzzle-2-command (exit :menu t) ()

 (clim:frame-exit clim:*application-frame*))�

Notice a variable that we haven’t used before called clim:*application-frame*. As

part of running the application, CLIM binds this variable to the application object.

There are many times when this value will be useful to you, and this Exit com-

mand shows one of them. The application object is passed as an argument to the

clim:frame-exit function. This function causes the application loop (which we in-

troduced in the previous chapter) to terminate.

After an application terminates, the application object is still around in your Lisp

environment, but no process is running the application’s command loop. That

means you can start up the application again, but unless you do so, you can’t give

it commands. Even when it is not running, an application preserves its internal

Page 1163

state, so, for instance, if you restart the Fifteen Puzzle you will find the board in

the same position that you left it.

Summary

A presentation provides an association from output on the window to any Lisp ob-

ject. clim:define-presentation-type defines a class of presentations. Output done

within clim:with-output-as-presentation forms the presentation.

By translating presentations into commands you can provide commands to an appli-

cation by clicking on pieces of output. clim:define-presentation-to-command-

translator is used to define how presentations of a particular type translate into a

command.

The variable clim:*application-frame* is bound to the application object while

CLIM runs the application loop.

Calling the function clim:frame-exit on the application causes the application loop

to terminate.

In the next chapter we will fix one of the remaining major problems with the Fif-

teen Puzzle that the entire display is redrawn when only a portion of it

changes.

Further Development of the Fifteen Puzzle

In this chapter you will see how to make the Fifteen Puzzle redisplay only those

pieces of the puzzle that have changed positions. You will also see how to make

CLIM highlight only those pieces that can actually move.

The first of these topics is an introduction to a large area of user interface imple-

mentation which goes under the name incremental redisplay. In general, many ap-

plications need to change some small part of their display without spending the

time redrawing those parts of the display that haven’t changed. CLIM provides

several facilities to help you do such redisplay.

Despite the title of the first section, ‘‘Incremental Redisplay the Hard Way’’, we

recommend you read this section like any other. The ‘‘hard’’ way is not necessarily

the ‘‘bad’’ way; in fact the ‘‘hard’’ way may be the best way under certain cir-

cumstances.

Incremental Redisplay the Hard Way

The example for this section is found in SYS:CLIM;REL-2;TUTORIAL;PUZZLE-3.LISP (al-

so see the section "Code for Puzzle-3 "). As you run this example, notice that the

display flickers less than previous examples when you move a piece; only those

pieces that require redisplaying are drawn after each command. As explained in

the introduction to this chapter, incremental redisplay is a common requirement of

many applications.

Page 1164

�

Figure 56. The third version of the Fifteen Puzzle uses Incremental Redisplay�

We have already mentioned output recording: CLIM remembers what was written

to the window. This implies you can’t just overwrite old output with new you

have to clear pieces of the window.

As you read the source for this example you should notice several new state vari-

ables. The most important of these is presentations a second array the same

size as the board but instead of holding pieces it holds presentations. Presentations

are returned from clim:with-output-as-presentation.

 (:panes

 (display :application

 :text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :display-after-commands nil

 :scroll-bars nil

 :initial-cursor-visibility nil))�

Notice that draw-the-display now calls a separate method, draw-piece, to draw

each individual piece. That’s because the move command also calls draw-piece.

This is a significant difference. The command now explicitly requests the pieces of

redisplay that it needs. Note the :display-after-commands nil in the application

frame definition. Because the command requests redisplay, we don’t need to ask

for another complete redisplay.

Page 1165

(defmethod draw-piece ((application fifteen-puzzle-3)

 piece position-y position-x stream)

 (with-slots (char-width line-height presentations) application

 (clim:stream-set-cursor-position

 stream (* position-x 3 char-width) (* position-y line-height))

 (when (aref presentations position-y position-x)

 (clim:erase-output-record

 (aref presentations position-y position-x) stream))

 (setf (aref presentations position-y position-x)

 (let ((position (+ (* position-y 4) position-x)))

 (write-string " " stream)

 (clim:with-output-as-presentation (stream position ’puzzle-piece)

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D" piece)))))))

�

If you examine draw-piece some more you’ll see that not only does it draw the

piece, storing the presentation in presentations, but it also calls clim:erase-

output-record on the previous presentation. This clears the previous display of the

piece.

In the Fifteen Puzzle, we have a simple situation in which none of the presenta-

tions overlap each other. You should realize that the task would be more compli-

cated in the general case where presentations might overlap each other.

This is all rather cumbersome; we will see in the next section how CLIM provides

a facility to hide most of these details from the programmer.

Incremental Redisplay the Easy Way

The example for this section is found in SYS:CLIM;REL-2;TUTORIAL;PUZZLE-4.LISP.

(also see the section "Code for Puzzle-4").

�

Figure 57. The fourth version of the Fifteen Puzzle uses the CLIM facility for In-

cremental Redisplay.�

Page 1166

The fourth version of the Fifteen Puzzle runs exactly like the third version. How-

ever, when you examine the code, you should see that the code looks a lot simpler

than the third version. In fact, it looks very much like the second version. Note

that we don’t need a state variable to keep track of the presentations any more.

(defmethod draw-the-display ((application fifteen-puzzle-4) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

 (clim:updating-output (stream :unique-id (+ (* y 4) x)

 :cache-value (aref pieces y x)

 :cache-test #’=)

 (draw-piece application (aref pieces y x) y x stream))))))

The extra piece of CLIM functionality that you are seeing for the first time is con-

tained in the new version of the draw-the-display function; it is named

clim:updating-output.

When you run a piece of code using clim:updating-output for the first time it:

• runs the enclosed code (which presumably produces some output),

• it associates that output with a tag called its :unique-id, (it is your job as pro-

grammer to ensure that the :unique-id really is unique in your program)

• pairs with the :unique-id a value, called a :cache-value.�

When you run the same code again, CLIM:

• looks up the :unique-id (to find out if it has already run this output before, and

if so, what :cache-value was supplied last time),

• examines the :cache-value supplied this time and compares it to the :cache-

value supplied the last time,

• and if the two :cache-values do not match, then CLIM must replace the old out-

put with the new, so it:

° erases the old output, and

° runs the enclosed code to produce new output.�

So, in the display function for this version of the Fifteen Puzzle:

Page 1167

(defmethod draw-the-display ((application fifteen-puzzle-4) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

 (clim:updating-output (stream :unique-id (+ (* y 4) x)

 :cache-value (aref pieces y x)

 :cache-test #’=)

 (draw-piece application (aref pieces y x) y x stream))))))�

The :unique-id is a number that uniquely represents the position being displayed,

while the :cache-value is the piece being drawn in that position. The contract of

clim:updating-output, then, is to redraw that position in the puzzle whenever a

new piece is found in that position exactly what is needed to redraw only those

parts of the puzzle that change.

Presentation Translator Testers

The example for this section is found in SYS:CLIM;REL-2;TUTORIAL;PUZZLE-5.LISP.

�

Figure 58. The last version of the Fifteen Puzzle uses a presentation tester so

that non-movable pieces don’t highlight.�

The puzzle is essentially unchanged except that a presentation tester has been

added to the CLIM presentation-to-command-translator.

A presentation translator tester is a predicate that verifies or refuses to verify the

choice of object that CLIM makes. In this way, applications can further control the

availability of a translator based on information that was not in the presentation.

It is important to realize that the tester can only ‘‘filter out’’ choices made by

CLIM’s presentation substrate. It cannot make choices available that would not be

available without the tester. You should also realize that your code has to run ev-

ery time the mouse moves over a presentation of the type specified in the transla-

tor. Testers should, therefore, be kept small and fast, or else you can adversely af-

fect performance in your application.

Page 1168

(clim:define-presentation-to-command-translator move-a-piece

 (puzzle-piece move fifteen-puzzle-5

 :tester ((object)

 (multiple-value-bind (yp xp) (floor object 4)

(which-way-to-move

 yp xp (fifteen-puzzle-pieces clim:*application-frame*)))))

 (object)

 (multiple-value-bind (yp xp) (floor object 4)

 (list yp xp)))

�

In the example above, we use the which-way-to-move function, which already re-

turns nil if the piece cannot move, as the core of the tester.

Summary

If your application needs to hold onto presentations explicitly, clim:with-output-as-

presentation returns the presentation it created.

If you do not want the CLIM command loop to call its display function after every

command, give the keyword :display-after-commands the value nil in your appli-

cation frame definition.

This just about exhausts the Fifteen Puzzle as a teaching device. Once you have

learned about graphics in the coming chapters, you might return to the Fifteen

Puzzle and write another version yourself which displays the puzzle with graphics.

Or you might implement similar games (the book referenced in "The Fifteen Puz-

zle an Elementary Application" has hundreds of them) along similar lines.

Tic Tac Toe

This chapter describes the implementation of another small CLIM application a

program that plays Tic Tac Toe with the user. As with the Fifteen Puzzle, the

program is relatively simple, but it illustrates several CLIM features in the con-

text of a complete working application.

The code for this application is in SYS:CLIM;REL-2;TUTORIAL;TIC-TAC-TOE.LISP. If

you have not already done so, edit the file and run the application.

1. Compile the buffer.

m-X Compile Buffer�

2. At the end of the file there are two or three forms commented out with #|

and |#. Evaluate those forms by marking them, wiping them, and yanking

them into a Listener and pressing END, or by marking them and pressing

c-sh-E.

You can play against the program, with the program taking either player. To start

a game, click on one of "Play (user X)" or "Play (program X)" in the menu. At this

Page 1169

point, empty board positions will be sensitive for your move. When the game ends,

with either a win or a cat’s game, the status window underneath the board will

display the outcome of the game.

When a game is not in progress, you may edit the board to set up any arbitrary

situation. In this state, a click on any board position will cycle through empty, "X"
and "O". You may start a game from any situation.

Using a Presentation Type Hierarchy

In the Fifteen Puzzle of the previous chapters, we only used a single presentation

type. As you might have guessed, there is much more to presentation types than

simply naming something to be mouse-sensitive. Presentation types may have sub-

types and supertypes, forming a hierarchy of types that can be very useful in ex-

pressing the intent of a program.

For example, the Tic Tac Toe game lets the user both play the game and edit the

board at different times. The command that implements ‘‘play in this position’’ is

only applicable to an empty position on the board, but the command that imple-

ments ‘‘change the mark in this position’’ is applicable (at the appropriate time) to

any sort of position.

The relationship of presentation types to their supertypes is indicated using the

:inherit-from keyword to clim:define-presentation-type. So the most general type

is defined:

(clim:define-presentation-type board-position ())�

and then the subtypes are defined as follows:

(clim:define-presentation-type empty-board-position ()

 :inherit-from ’board-position)

�

(clim:define-presentation-type x-board-position ()

 :inherit-from ’board-position)

�

(clim:define-presentation-type o-board-position ()

 :inherit-from ’board-position)�

The command com-user-move is the command for playing a move in the game. Its

argument must be an empty-board-position.

(define-tic-tac-toe-command com-user-move

 ((pos ’empty-board-position :gesture :select))

 ...)�

The command com-edit-position is the command for editing the board when a

game is not in progress. Its argument can be any board-position.

(define-tic-tac-toe-command com-edit-position

 ((pos ’board-position :gesture :select))

 ...)�

Page 1170

You may have noticed another feature of the argument specifier to the above com-

mands there is an extra keyword and value after the name of the argument and

its presentation-type. This is a convenience feature of CLIM. Saying

(define-something-command command-name

 ((argument presentation-type :gesture gesture))

 ...)�

is a shorthand way of defining the command and a presentation-to-command-

translator. It is equivalent to

(define-something-command command-name

 ((argument presentation-type))

 ...)

�

(clim:define-presentation-to-command-translator translator-name

 (empty-board-position command-name something :gesture :select)

 (object)

 (list object))�

Enabling and Disabling Commands

An application may wish to temporarily prevent the use of certain commands. This

can be done by calling setf on clim:command-enabled to set its value to nil; the

command may be made available again by changing the value of clim:command-

enabled back to t.

The Tic Tac Toe program enables the commands that are only used for playing

the game alternately with the commands that are only used for editing the game.

For example, when the application enters the state where someone is playing the

game, the following method is called.

(defmethod go-to-playing-state ((frame tic-tac-toe))

 (setf (clim:command-enabled ’com-play-user-first frame) nil)

 (setf (clim:command-enabled ’com-play-program-first frame) nil)

 (setf (clim:command-enabled ’com-edit-position frame) nil)

 (setf (clim:command-enabled ’com-user-move frame) t))�

When in this state, the menu items "Play (user X)" and "Play (program X)" are
not sensitive, nor is the com-edit-position command available via the :select ges-

ture. The :select gesture does translate to the com-user-move command, but only

from empty positions, of course.

Command menus containing disabled commands may change their appearance; the

disabled commands will often be ‘‘grayed out’’ and will not highlight.

Note for the advanced reader: This behavior, like most of CLIM, can be changed by an applica-

tion programmer if desired. The default behavior is chosen to provide minimum change in the

appearance of the menu for minimum distraction of the user.�

Too much use of command disabling can lead to an interface that has many

‘‘modes’’, which in general is not a good thing. Use command disabling with re-

straint.

Page 1171

Introduction to Using Graphics Transformations

A significant feature of CLIM is that it uses transformations as part of performing

graphical output. Any function that performs graphical output may have its output

transformed before reaching the output device.

The Tic Tac Toe application demonstrates one advantage of this facility the

writer of a graphical function may write it in simpler coordinates than would oth-

erwise be possible. If you look at the method display-board in the Tic Tac Toe

source, you will see that the internal function that draws the "X"s and "O"s of the

board (draw-element) is written as if it is always going to draw the mark in the

square bounded by (0,0) and (1,1). Yet the internal routine is used to draw marks

in all nine positions of the board.

If you look at where draw-element is called, you will see how this is possible. The

macros clim:with-translation and clim:with-scaling establish new coordinate sys-

tems, related to the existing coordinate system by a transformation. (CLIM sup-

ports a variety of types of transformation, they are documented more fully in the

reference documentation. See the section "Transformations in CLIM".)

Summary

Presentation types form a hierarchy (or more precisely, a lattice). Use the :inherit-

from keyword inside clim:define-presentation-type to indicate inheritance.

Graphics transformations let you abstract what you are drawing from where you

are drawing it.

Calling setf on clim:command-enabled can be used to disable and enable an ap-

plication’s commands to allow only appropriate commands to be executable at a

certain time.

Plotting Data

Here we describe a simple application for the plotting of scientific data. The user

can enter a set of data points, perhaps the results of an experiment. The points

are plotted on a two dimensional graph. An alternate view allows the examination

of the data points sorted in a table. Least squares regression can be applied to fit

a curve to the data and derive an equation which models the process which gener-

ated the data.

While studying this application, you will learn about presentation translators,

pointer gestures, dialogs, transformations, and table formatting.

To try the application, read the file SYS:CLIM;REL-2;TUTORIAL;LEAST-SQUARES-1.LISP �

into an editor buffer.

1. Compile the buffer.

m-X Compile Buffer�

Page 1172

2. At the end of the file there are two or three forms commented out with #|

and |#. Evaluate those forms by marking them, wiping them, and yanking

them into a Listener and pressing END, or by marking them and pressing

c-sh-E.

Spend some time playing around with the application. Click the left mouse button

on the graph, above the X axis (the horizontal line) and to the right of the Y axis

(the vertical line). A point is plotted where you click the mouse. Plot a few points.

Now hold the Shift key down and move the mouse over a point. The point is

highlighted by a small circle drawn around it. In the pointer documentation at the

bottom of the screen it says something like "Sh-M: Delete Data Point". Click the

middle mouse button to delete the data point.

Now hold the Meta key down and move the mouse over another point. The point is

highlighted as before. Clicking the left mouse button on a point while the Meta key

is held down will edit that point. A small window will pop up and display the X

and Y values for the point. Clicking the left mouse button on one of these numbers

will allow you to change it. Hit the End key when you have finished entering a

number. If you decide not to change the point then hit Abort. When you have fin-

ished editing the coordinates of the point, hit End.

Once you have entered a few data points, try fitting a curve. Click on [Fit Curve]

at the bottom of the application’s window. A menu will pop up so that you can se-

lect whether to fit a linear, quadratic or cubic equation to the points you have

plotted. Click on one with the mouse. It takes a little time for the curve to be cal-

culated and drawn.

You can also look at your data arranged in a table. Click on [Switch Display] at

the bottom of the window. You can now view your data arranged in a table with

one row per datum. The X coordinate of a point is in the left column and the Y

coordinate in the right. Note that you can edit and delete points with the mouse

just as you could from the graphical display. If you have already fit a curve, you

can see its equation and the correlation coefficient displayed in the pane below the

one in which the data is tabulated. Try fitting a different curve to your data.

Input and the Mouse

Gestures�

The mouse clicks you used to plot, delete and edit data points are called gestures.

Not all systems have a three button mouse for an input device. Even if they do,

there might be other user interface considerations which might preclude the use of

certain mouse button combinations for input to a CLIM application. For this rea-

son, CLIM adds a layer of abstraction between the actual pointer gesture as per-

formed by the user and a gesture name representing the pointer gesture. The be-

havior of the application is defined in terms of gesture names. A system dependent

mapping is provided between pointer gestures and gesture names.

Page 1173

For the Symbolics implementations of CLIM, the gesture name :select is associated

with the mouse pointer gesture Left and the gesture named :delete with

shift-Middle. The gesture meta-Left is named :edit.

You should resist the temptation to define gesture names called :left, :middle, and

:right, because this conceptually adds non-portable gestures to your application.

Accept�

When the application is not busy performing some task, it is waiting for input.

The kind of input it is waiting for is referred to as the input context. For exam-

ple, the application might be waiting for a command, for further arguments to a

command, or for a menu choice. clim:accept is the function used to request input

from the user.

clim:accept prompts the user for input which matches a specified presentation

type. The user’s input is parsed in accordance with the syntax of the printed rep-

resentation of objects with the given presentation type. clim:accept returns what

the user entered as a lisp object.

The call to clim:accept specifies a presentation type to be used as the input con-

text. A prompt for the user can also be provided, as well as a default value to be

offered. clim:accept can be used in the traditional mode of alternating requests

for input from the application followed by input from the user, but today’s user ex-

pects a more sophisticated interface.

Often, higher level facilities like the command processor or clim:menu-choose will

invoke clim:accept rather than the applications programmer using it directly. The

programmer will commonly use clim:accept within the context of clim:accepting-

values to establish a dialog in which the user can respond to a number of in-

quiries in whatever order he feels comfortable.

Editing the Data Set Using Command Translators

The ability to add points is provided by a presentation translator from clim:blank-

area to the command com-create-data-point. When the application is idle, it is

waiting for the user to enter a command. When you click the :select gesture (the

left mouse button) in a blank part of the plot, that gesture is translated to the

com-create-data-point. The command takes two real numbers as arguments: the X

and Y values of the piece of data.

(define-lsq-command com-create-data-point ((x ’real) (y ’real))

 (add-data-point (make-data-point x y) clim:*application-frame*))�

Anyplace on the screen where there is no currently active presentation matches

the input context for the presentation type clim:blank-area. There is a translator

that will translate a gesture named :select on any clim:blank-area to this com-

mand.

Page 1174

(clim:define-presentation-to-command-translator new-point

 (clim:blank-area com-create-data-point lsq

 :gesture :select

 :tester

 ((x y window)

(let ((frame clim:*application-frame*))

 (with-slots (data-left-margin data-top-margin

 data-right-margin data-bottom-margin) frame

 (and (eql window (clim:get-frame-pane frame ’display))

 (<= data-left-margin x data-right-margin)

 (<= data-top-margin y data-bottom-margin))))))

 (x y)

 (with-slots (data-transform) clim:*application-frame*

 (multiple-value-bind (x y)

(clim:untransform-position data-transform x y)

 (list x y))))�

The value of the :tester keyword argument specifies the argument list and body of

a function to be used to constrain the applicability of the translator. We don’t

want the user to be able to invoke the com-create-data-point command for just

any blank area, only for blank area in the display pane which is within the con-

fines of our graph’s axes.

Note that the X and Y arguments to the command refer to coordinates in data-

space. The translator receives its arguments in window coordinates, and trans-

forms them to data coordinates so that they will be suitable as arguments to the

command. This relationship between our data points and the points on the screen

is discussed below.

The commands for deleting and editing data points are also provided through the

use of command translators. There is a translator to the command com-delete-

data-point which is invoked via the :delete gesture on a point which has been

plotted.

(define-lsq-command com-delete-data-point

 ((point ’data-point :gesture :delete))

 (delete-data-point point clim:*application-frame*))�

There is a similar translator from data points via the :edit gesture to the com-

mand com-edit-data-point. This command is described below in the section about

dialogs.

Fitting a Curve: Menus

When you click on [Fit Curve], the application asks you what kind of curve you

would like to fit. It does this through a pop-up menu. Menus can be used to ask

the user to select from a number of choices.

Page 1175

(clim:menu-choose *known-curves*

 :label "Curve to Fit"

 :printer #’(lambda (curve stream)

 (write-string (curve-name curve) stream)))�

The contract of clim:menu-choose is to allow the user to select one choice from a

list of choices. The list of Lisp objects representing the choices is the only manda-

tory argument to clim:menu-choose. In the example above, the user is asked to

select one curve from the list *known-curves*.

The appearance of items in the menu is controlled by the optional :printer argu-

ment. If you don’t supply one, clim:menu-choose will use a default printer for

Lisp objects. If you supply one, it must be a function of two arguments the ob-

ject to be printed and the stream. In the example above, we supply a printer that

prints the names of curve objects. We could have also supplied a printer that drew

an icon representing the type of curve; this is left as an exercise for the interested

reader.

The optional :label argument to clim:menu-choose allows the programmer to sup-

ply a descriptive label on the pop-up menu. Such a label helps add context to the

user interaction.

Groups of Related Questions: Dialogs

Sometimes an application must ask the user several related questions. This is done

through the use of dialogs. The application programmer describes a dialog in the

body of an invocation of clim:accepting-values. The command for altering the co-

ordinates of a data point provides us with an example of a dialog.

(define-lsq-command com-edit-data-point

 ((point ’data-point :gesture :edit))

 (let ((x (point-x point))

 (y (point-y point))

 (stream *standard-output*))

 (clim:accepting-values

 (stream

 :own-window ’(:right-margin (20 :character))

 :label "New coordinates for the point")

 (fresh-line stream)

 (setq x (clim:accept ’real

 :stream stream

 :prompt "X: "

 :default x))

 (fresh-line stream)

 (setq y (clim:accept ’real

 :stream stream

 :prompt "Y: "

 :default y)))

 (alter-data-point point clim:*application-frame* x y)))�

Page 1176

Within the dynamic context of clim:accepting-values, clim:accept is used to pose

each individual query. The usual CLIM output facilities (tables, indented output,

and so forth) could be used to describe the appearance of the dialog. In this exam-

ple fresh-line is used so that each request for input will appear on its own line.

Within clim:accepting-values, the user can answer the queries in any order, by

selecting with the mouse. Because he needn’t answer all of the queries, calls to

clim:accept from within clim:accepting-values must use :default to specify a de-

fault value to be returned by that call to clim:accept.

The [Set Axis Ranges] menu item implemented by the com-set-axis-ranges com-

mand is another example of the use of clim:accepting-values and clim:accept to

construct a dialog. In addition, it uses clim:accept-values-command-button to cre-

ate a button, appearing as the line of text "Set ranges to encompass all points",
which, when clicked on, changes the minimum and maximum values for the X and

Y axis ranges, such that the X axis extends from the point with the smallest X co-

ordinate to the point with the largest X coordinate and the Y axis extends from

the smallest Y coordinate to the largest Y coordinate.

Page 1177

(define-lsq-command (com-set-axis-ranges :menu t)

 ()

 (let ((frame clim:*application-frame*)

 (stream *standard-output*))

 (with-slots (data-x-min data-x-max data-y-min data-y-max

 data-points data-transform data-points-tick) frame

 (incf data-points-tick)

 (let ((min-x data-x-min)

 (max-x data-x-max)

 (min-y data-y-min)

 (max-y data-y-max))

 (clim:accepting-values

 (stream

 :own-window ’(:right-margin (20 :character))

 :label "Enter the ranges for the coordinate axes")

 (format stream "~&Range of X axis: ")

 (flet ((get-one (value id)

 (clim:accept ’real

 :stream stream

 :default value

 :query-identifier id

 :prompt nil)))

 (setq min-x (get-one min-x ’x-min))

 (format stream " to ")

 (setq max-x (get-one max-x ’x-max))

 (format stream "~&Range of Y axis: ")

 (setq min-y (get-one min-y ’y-min))

 (format stream " to ")

 (setq max-y (get-one max-y ’y-max)))

 (fresh-line stream)

 (terpri stream)

 (clim:accept-values-command-button

 (stream :query-identifier ’all-of-them)

 "Set ranges to encompass all points"

 (multiple-value-setq (min-x min-y max-x max-y)

 (data-range frame)))

 (fresh-line stream)

 (terpri stream))

 (setq data-x-min min-x

 data-x-max max-x

 data-y-min min-y

 data-y-max max-y))

 (determine-data-transform frame))))�

Also note the use of the :query-identifier keyword in the calls to clim:accept.

Within clim:accepting-values, every call to clim:accept must have a unique query

identifier associated with it. Under most circumstances, the value provided for the

:prompt keyword argument would be sufficient for use as the :query-identifier as

Page 1178

well. In fact, if no :query-identifier is specified, CLIM will default to using the

prompt as the query identifier.

Points, Transforms and Coordinate Spaces

Our application actually works with two coordinate spaces:

• an abstract coordinate space appropriate for the data being entered and manipu-

lated

• the coordinate space of the display pane in which the points are plotted.�

These two coordinate systems are related by a transform which maps from points

in the abstract coordinate space of the data to the coordinate space of the display

pane.

By establishing the transform as part of the drawing environment when we plot

the points, we can plot the points using their abstract coordinates and have them

drawn at the location corresponding to their display pane coordinates.

A Tabular Display of the Data

Layouts�

Our user might want to examine his data in tabular form. We’ve added another

pane to the application which displays the data in a table. Though the tabular dis-

play could be placed next to the plot, the user would probably want as much

screen real estate as possible devoted to his graph. We can put the tabular display

in a separate layout. CLIM applications can have their panes arranged in different

layouts. A layout describes an arrangement of some (or all) of the application’s

panes. You have already seen one layout, named drawing-layout, with the com-

mand menu and the display pane. We can add a second layout containing the

same command menu pane and a pane for the tabular display.

Page 1179

(clim:define-application-frame lsq ()

 (...)

 (:command-table (lsq :inherit-from (clim:accept-values-pane)))

 (:panes

 (display :application

 :display-function ’draw-data-display

 :incremental-redisplay t

 :display-after-commands t

 :scroll-bars nil)

 (table :application

 :incremental-redisplay t

 :scroll-bars :vertical

 :display-function ’tabulate-data-points)

 (equation :application

 :display-function ’print-equation-of-curve

 :display-after-commands t

 :incremental-redisplay t

 :scroll-bars nil))

 (:layouts

 (drawing-layout

 (clim:vertically () display))

 (tabular-layout

 (clim:vertically () (7/8 table) (1/8 equation)))))

�

Our pane for the tabular display is named table. It is visible in the layout named

tabular-layout. The table of data is drawn by the pane’s display function,

tabulate-data-points, which is described below.

Our user will need a way to switch between the two layouts. We can define the

[Switch Display] command in the command menu. It figures out what the currently

displayed layout is by calling clim:frame-current-layout and then sets the cur-

rent layout to the other layout by calling setf on clim:frame-current-layout.

(define-lsq-command (switch-configurations :menu "Switch Display") ()

 (let ((frame clim:*application-frame*))

 (let ((new-config

 (case (clim:frame-current-layout frame)

 (drawing-layout

 (setf (clim:command-enabled ’com-zoom-in frame) nil)

 (setf (clim:command-enabled ’com-zoom-out frame) nil)

 ’tabular-layout)

 (tabular-layout

 (setf (clim:command-enabled ’com-zoom-in frame) t)

 (setf (clim:command-enabled ’com-zoom-out frame) t)

 ’drawing-layout))))

 (setf (clim:frame-current-layout frame) new-config))))�

Page 1180

The Table�

The table pane displays the data in tabular form. The table has two columns: one

for X coordinates and one for Y coordinates. The table has a row at the top for

column headings (in italics). Each succeeding row represents a datum, with the

datum’s X and Y coordinates displayed in cells which fall under their respective

columns.

The function tabulate-data-points displays this table of data. It is invoked when

CLIM draws the contents of the table pane. tabulate-data-points uses the macros

clim:formatting-table, clim:formatting-row and clim:formatting-cell to describe

the contents of the table. The clim:formatting-table form describes the contents

of a single table.

Within it, clim:formatting-row is used to describe each row of the table. The rows

appear in the table in the same order in which their corresponding

clim:formatting-row forms are evaluated. In our table of data, there is a row for

column headings followed by one row for each point in the data set.

Within each row, clim:formatting-cell is used to describe the contents of each cell

of that row. Each row of our table has one cell for the X coordinate of the data

point and one cell for the Y coordinate. The clim:formatting-cell forms are evalu-

ated in the order such that the cell will fall into the appropriate column.

We want each row of our table to remember what data point it displays.

clim:with-output-as-presentation is used to associate the row with the datum it

displays. This allows each row to be sensitive as a data-point. One benefit of this

is that the :delete gesture will invoke the com-delete-data-point command for da-

ta points displayed as a row in the tabular view as well as for points displayed as

dots in the plot view. In the invocation of clim:with-output-as-presentation, we

specify :single-box t to emphasize that what is important is the datum, the entire

row, rather than the individual cells containing the coordinates.

Page 1181

(defmethod tabulate-data-points ((frame lsq) pane)

 (fresh-line pane)

 (flet ((do-point (point stream)

 (clim:with-output-as-presentation

 (stream point ’data-point :single-box t)

 (clim:formatting-row (stream)

 (clim:formatting-cell (stream)

 (format stream "~F" (point-x point)))

 (clim:formatting-cell (stream)

 (format stream "~F" (point-y point)))))))

 (clim:formatting-table (pane)

 ;; print column headings

 (clim:formatting-row (pane)

 (clim:with-text-face (pane :italic)

 (clim:formatting-cell (pane :min-width 20

 :align-x :center)

 (write-string "X" pane))

 (clim:formatting-cell (pane :min-width 20

 :align-x :center)

 (write-string "Y" pane))))

 (with-slots (data-points) frame

 (dolist (point data-points)

 (do-point point pane))))))�

Summary

CLIM’s primary facility for requesting input from the user is clim:accept. It

prompts the use and establishes an input context to help the user enter appropri-

ate responses.

CLIM provides gesture names as a layer of abstraction between applications and

pointer input devices.

A command can be invoked on an application object via a presentation translator

from a presentation of the object, independent of the appearance of the object pre-

sented. The :delete gesture on a data point deletes the point whether it appears as

a dot in the plotting pane or as a line of text in the table pane.

The presentation type clim:blank-area matches parts of the display where nothing

is displayed. A translator from clim:blank-area to the com-create-data-point com-

mand was used to allow the entry of new data points by clicking on the plotting

pane.

The application can prompt the use for input from a menu by calling clim:menu-

choose. This was used to allow the user to select which type of function to fit the

data to.

More complicated queries to the user take the form of accepting values dialogs.

Within the context of clim:accepting-values, clim:accept and any output format-

ting facilities can be used to describe a set of related queries for the user to re-

spond to.

Page 1182

Inside a dialog, a command button can be used to invoke a command. In the op-

tions dialog pane, a button was provided to widen the scope of the plotting pane to

encompass all the data points.

Transformations can be used to map between the abstract coordinate space of an

application and the coordinate space of the display.

The :layouts option to clim:define-application-frame can be used to describe the

arrangement of your applications panes. These arrangements are called layouts. An

application can have several such layouts. A pane can appear in more than one

layout. You select which layout is the active one using setf on clim:frame-current-

layout.

Output can be displayed in tabular form using clim:formatting-table,

clim:formatting-row and clim:formatting-cell. The table facility arranges the out-

put into regular rows and columns. clim:with-output-as-presentation can be used

in conjunction with the table facility (or anyplace else) to make table rows mouse

sensitive.

Appendices

Code for Puzzle-1

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;PUZZLE-1.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

(define-application-frame fifteen-puzzle-1 ()

 ((pieces :initform (make-array ’(4 4) :initial-contents ’((1 2 3 4)

 (5 6 7 8)

 (9 10 11 12)

 (13 14 15 0)))))

 (:menu-bar nil)

 (:panes

 (display :application

 :text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :scroll-bars nil)

 (menu :command-menu))

 (:layouts

 (main

 (vertically () display menu))))

�

;;; this draws the entire display

Page 1183

�

(defmethod draw-the-display ((application fifteen-puzzle-1) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

(let ((piece (aref pieces y x)))

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D " piece))))

 (terpri stream))))

�

;;; useful macrology - the body will be run with x and y bound to

;;; the coordinates of the empty cell

�

(defmacro find-empty-piece-and-do ((y x) &body body)

 ‘(block find-empty-piece

 (dotimes (,y 4)

 (dotimes (,x 4)

 (when (zerop (aref pieces ,y ,x))

 ,@body

 (return-from find-empty-piece))))))

�

(define-fifteen-puzzle-1-command (down :menu t) ()

 (with-slots (pieces) *application-frame*

 (find-empty-piece-and-do (y x)

 (if (not (zerop y))

 (rotatef (aref pieces y x) (aref pieces (- y 1) x))))))

�

(define-fifteen-puzzle-1-command (up :menu t) ()

 (with-slots (pieces) *application-frame*

 (find-empty-piece-and-do (y x)

 (if (not (= y 3))

 (rotatef (aref pieces y x) (aref pieces (+ y 1) x))))))

�

(define-fifteen-puzzle-1-command (left :menu t) ()

 (with-slots (pieces) *application-frame*

 (find-empty-piece-and-do (y x)

 (if (not (= x 3))

 (rotatef (aref pieces y x) (aref pieces y (+ x 1)))))))

�

(define-fifteen-puzzle-1-command (right :menu t) ()

 (with-slots (pieces) *application-frame*

 (find-empty-piece-and-do (y x)

 (if (not (zerop x))

 (rotatef (aref pieces y x) (aref pieces y (- x 1)))))))

Page 1184

�

#||

()

(setq fp1 (make-application-frame ’fifteen-puzzle-1

 :left 200 :right 400 :top 150 :bottom 350))

(run-frame-top-level fp1)

||#

�

Code for Puzzle-2

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;PUZZLE-2.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

(define-application-frame fifteen-puzzle-2 ()

 ((pieces :initform (make-array ’(4 4) :initial-contents ’((1 2 3 4)

 (5 6 7 8)

 (9 10 11 12)

 (13 14 15 0)))))

 (:panes

 (display :application

 :text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :scroll-bars nil

 :initial-cursor-visibility nil))

 (:layouts

 (main

 (vertically () display))))

�

(define-presentation-type puzzle-piece ())

�

(defmethod draw-the-display ((application fifteen-puzzle-2) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

(let ((piece (aref pieces y x))

 (position (+ (* y 4) x)))

 (write-string " " stream)

 (with-output-as-presentation (stream position ’puzzle-piece)

 (if (zerop piece)

(format stream " ")

(format stream "~2D" piece)))))

 (terpri stream))))

Page 1185

�

;;; if the piece at (xp,yp) can be moved, five values are returned:

;;; - the coordinates of the space in the puzzle,

;;; - delta-y and delta-x representing the direction on the puzzle from

;;; space towards the piece at (xp,yp)

;;; - and the number of pieces to move

;;; if the piece at (xp,yp) cannot be moved, nil is returned

�

(defun which-way-to-move (yp xp pieces)

 (macrolet ((is-space (y x) ‘(zerop (aref pieces ,y ,x))))

 (loop for x from (+ xp 1) to 3 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 -1 (- x xp)))))

 (loop for x from (- xp 1) downto 0 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 1 (- xp x)))))

 (loop for y from (+ yp 1) to 3 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp -1 0 (- y yp)))))

 (loop for y from (- yp 1) downto 0 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp 1 0 (- yp y)))))))

�

(define-fifteen-puzzle-2-command (move) ((yp ’integer) (xp ’integer))

 (with-slots (pieces) *application-frame*

 (multiple-value-bind (start-y start-x dy dx n-moves)

 (which-way-to-move yp xp pieces)

 (when dx

(loop repeat n-moves

 for x1 = start-x then x2

 for x2 = (+ x1 dx) then (+ x2 dx)

 for y1 = start-y then y2

 for y2 = (+ y1 dy) then (+ y2 dy)

 do (setf (aref pieces y1 x1) (aref pieces y2 x2))

 finally (setf (aref pieces yp xp) 0))))))

�

(define-presentation-to-command-translator move-a-piece

 (puzzle-piece move fifteen-puzzle-2)

 (object)

 (multiple-value-bind (yp xp) (floor object 4)

 (list yp xp)))

Page 1186

�

(define-fifteen-puzzle-2-command (reset :menu t) ()

 (with-slots (pieces) *application-frame*

 (loop for y from 0 to 3 do

 (loop with 4y+1 = (+ (* 4 y) 1)

 for x from 0 to 3 do

(setf (aref pieces y x) (mod (+ 4y+1 x) 16))))))

�

(define-fifteen-puzzle-2-command (exit :menu t) ()

 (frame-exit *application-frame*))

�

#||

()

(setq fp2 (make-application-frame ’fifteen-puzzle-2

 :left 400 :right 600 :top 150 :bottom 350))

(run-frame-top-level fp2)

||#

�

Code for Puzzle-3

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;PUZZLE-3.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

;;; things to fix - replace encoded position

;;; - auto-size window , get line-height, char-width

�

(define-application-frame fifteen-puzzle-3 ()

 ((pieces :initform (make-array ’(4 4) :initial-contents ’((1 2 3 4)

 (5 6 7 8)

 (9 10 11 12)

 (13 14 15 0))))

 (presentations :initform (make-array ’(4 4)))

 (char-width :initform 12)

 (line-height :initform 30))

 (:panes

 (display :application

 :text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :display-after-commands nil

 :scroll-bars nil

 :initial-cursor-visibility nil))

 (:layouts

 (main

 (vertically () display))))

Page 1187

�

(define-presentation-type puzzle-piece ())

�

(defmethod draw-piece ((application fifteen-puzzle-3)

 piece position-y position-x stream)

 (with-slots (char-width line-height presentations) application

 (stream-set-cursor-position stream (* position-x 3 char-width)

 (* position-y line-height))

 (when (aref presentations position-y position-x)

 (erase-output-record (aref presentations position-y position-x) stream))

 (setf (aref presentations position-y position-x)

 (let ((position (+ (* position-y 4) position-x)))

 (write-string " " stream)

 (with-output-as-presentation (stream position ’puzzle-piece)

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D" piece)))))))

�

(defmethod draw-the-display ((application fifteen-puzzle-3) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

(draw-piece application (aref pieces y x) y x stream)))))

�

(defun which-way-to-move (yp xp pieces)

 (macrolet ((is-space (y x) ‘(zerop (aref pieces ,y ,x))))

 (loop for x from (+ xp 1) to 3 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 -1 (- x xp)))))

 (loop for x from (- xp 1) downto 0 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 1 (- xp x)))))

 (loop for y from (+ yp 1) to 3 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp -1 0 (- y yp)))))

 (loop for y from (- yp 1) downto 0 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp 1 0 (- yp y)))))))

Page 1188

�

(define-fifteen-puzzle-3-command (move) ((yp ’integer) (xp ’integer))

 (with-slots (pieces) *application-frame*

 (let ((display-pane (get-frame-pane *application-frame* ’display)))

 (flet ((update (y x new-piece)

 (setf (aref pieces y x) new-piece)

 (draw-piece *application-frame* new-piece y x display-pane)))

(multiple-value-bind (start-y start-x dy dx n-moves)

 (which-way-to-move yp xp pieces)

 (when dx

 (loop repeat n-moves

 for x1 = start-x then x2

 for x2 = (+ x1 dx) then (+ x2 dx)

 for y1 = start-y then y2

 for y2 = (+ y1 dy) then (+ y2 dy)

 do (update y1 x1 (aref pieces y2 x2))

 finally (update yp xp 0))))))))

�

(define-presentation-to-command-translator move-a-piece

 (puzzle-piece move fifteen-puzzle-3)

 (object)

 (multiple-value-bind (yp xp) (floor object 4)

 (list yp xp)))

�

(define-fifteen-puzzle-3-command (reset :menu t) ()

 (with-slots (pieces presentations) *application-frame*

 (loop for y from 0 to 3 do

 (loop with 4y+1 = (+ (* 4 y) 1)

 for x from 0 to 3 do

(setf (aref pieces y x) (mod (+ 4y+1 x) 16))))

 (let ((display-pane (get-frame-pane *application-frame* ’display)))

 (window-clear display-pane)

 (dotimes (y 4)

(dotimes (x 4)

 (setf (aref presentations y x) nil)))

 (draw-the-display *application-frame* display-pane))))

�

(define-fifteen-puzzle-3-command (exit :menu t) ()

 (frame-exit *application-frame*))

�

#||

()

(setq fp3 (make-application-frame ’fifteen-puzzle-3

 :left 400 :right 600 :top 150 :bottom 350))

(run-frame-top-level fp3)

||#

�

Page 1189

Code for Puzzle-4

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;PUZZLE-4.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

(define-application-frame fifteen-puzzle-4 ()

 ((pieces :initform (make-array ’(4 4) :initial-contents ’((1 2 3 4)

 (5 6 7 8)

 (9 10 11 12)

 (13 14 15 0))))

 (char-width :initform 12)

 (line-height :initform 30))

 (:panes

 (display :application

 :default-text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :incremental-redisplay t

 :scroll-bars nil

 :initial-cursor-visibility nil))

 (:layouts

 (main

 (vertically () display))))

�

(define-presentation-type puzzle-piece ())

�

(defmethod draw-piece ((application fifteen-puzzle-4)

 piece position-y position-x stream)

 (with-slots (char-width line-height) application

 (stream-set-cursor-position stream (* position-x 3 char-width)

 (* position-y line-height)))

 (let ((position (+ (* position-y 4) position-x)))

 (write-string " " stream)

 (with-output-as-presentation (stream position ’puzzle-piece)

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D" piece)))))

�

(defmethod draw-the-display ((application fifteen-puzzle-4) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

(updating-output (stream :unique-id (+ (* y 4) x)

 :cache-value (aref pieces y x)

 :cache-test #’=)

 (draw-piece application (aref pieces y x) y x stream))))))

Page 1190

�

(defun which-way-to-move (yp xp pieces)

 (macrolet ((is-space (y x) ‘(zerop (aref pieces ,y ,x))))

 (loop for x from (+ xp 1) to 3 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 -1 (- x xp)))))

 (loop for x from (- xp 1) downto 0 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 1 (- xp x)))))

 (loop for y from (+ yp 1) to 3 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp -1 0 (- y yp)))))

 (loop for y from (- yp 1) downto 0 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp 1 0 (- yp y)))))))

�

(define-fifteen-puzzle-4-command (move) ((yp ’integer) (xp ’integer))

 (with-slots (pieces) *application-frame*

 (multiple-value-bind (start-y start-x dy dx n-moves)

 (which-way-to-move yp xp pieces)

 (when dx

(loop repeat n-moves

 for x1 = start-x then x2

 for x2 = (+ x1 dx) then (+ x2 dx)

 for y1 = start-y then y2

 for y2 = (+ y1 dy) then (+ y2 dy)

 do (setf (aref pieces y1 x1) (aref pieces y2 x2))

 finally (setf (aref pieces yp xp) 0))))))

�

(define-presentation-to-command-translator move-a-piece

 (puzzle-piece move fifteen-puzzle-4)

 (object)

 (multiple-value-bind (yp xp) (floor object 4)

 ‘(,yp ,xp)))

�

(define-fifteen-puzzle-4-command (reset :menu t) ()

 (with-slots (pieces) *application-frame*

 (loop for y from 0 to 3 do

 (loop with 4y+1 = (+ (* 4 y) 1)

 for x from 0 to 3 do

(setf (aref pieces y x) (mod (+ 4y+1 x) 16))))))

�

(define-fifteen-puzzle-4-command (exit :menu t) ()

 (frame-exit *application-frame*))

Page 1191

�

#||

()

(setq fp4 (make-application-frame ’fifteen-puzzle-4

 :left 600 :right 800 :top 150 :bottom 350))

(run-frame-top-level fp4)

||#

�

Code for Puzzle-5

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;PUZZLE-5.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

(define-application-frame fifteen-puzzle-5 ()

 ((pieces :initform (make-array ’(4 4) :initial-contents ’((1 2 3 4)

 (5 6 7 8)

 (9 10 11 12)

 (13 14 15 0)))

 :reader fifteen-puzzle-pieces)

 (char-width :initform 12)

 (line-height :initform 30))

 (:panes

 (display :application

 :default-text-style ’(:fix :bold :very-large)

 :display-function ’draw-the-display

 :incremental-redisplay t

 :scroll-bars nil

 :initial-cursor-visibility nil))

 (:layouts

 (main

 (vertically () display))))

�

(define-presentation-type puzzle-piece ())

�

(defmethod draw-piece ((application fifteen-puzzle-5)

 piece position-y position-x stream)

 (with-slots (char-width line-height) application

 (stream-set-cursor-position stream (* position-x 3 char-width)

 (* position-y line-height)))

 (let ((position (+ (* position-y 4) position-x)))

 (write-string " " stream)

 (with-output-as-presentation (stream position ’puzzle-piece)

 (if (zerop piece)

 (format stream " ")

 (format stream "~2D" piece)))))

Page 1192

�

(defmethod draw-the-display ((application fifteen-puzzle-5) stream

 &key &allow-other-keys)

 (with-slots (pieces) application

 (dotimes (y 4)

 (dotimes (x 4)

(updating-output (stream :unique-id (+ (* y 4) x)

 :cache-value (aref pieces y x)

 :cache-test #’=)

 (draw-piece application (aref pieces y x) y x stream))))))

�

(defun which-way-to-move (yp xp pieces)

 (macrolet ((is-space (y x) ‘(zerop (aref pieces ,y ,x))))

 (loop for x from (+ xp 1) to 3 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 -1 (- x xp)))))

 (loop for x from (- xp 1) downto 0 do

 (when (is-space yp x)

 (return-from which-way-to-move (values yp x 0 1 (- xp x)))))

 (loop for y from (+ yp 1) to 3 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp -1 0 (- y yp)))))

 (loop for y from (- yp 1) downto 0 do

 (when (is-space y xp)

 (return-from which-way-to-move (values y xp 1 0 (- yp y)))))))

�

(define-fifteen-puzzle-5-command (move) ((yp ’integer) (xp ’integer))

 (with-slots (pieces) *application-frame*

 (multiple-value-bind (start-y start-x dy dx n-moves)

 (which-way-to-move yp xp pieces)

 (when dx

(loop repeat n-moves

 for x1 = start-x then x2

 for x2 = (+ x1 dx) then (+ x2 dx)

 for y1 = start-y then y2

 for y2 = (+ y1 dy) then (+ y2 dy)

 do (setf (aref pieces y1 x1) (aref pieces y2 x2))

 finally (setf (aref pieces yp xp) 0))))))

Page 1193

�

(define-presentation-to-command-translator move-a-piece

 (puzzle-piece move fifteen-puzzle-5

 :tester ((object)

 (multiple-value-bind (yp xp) (floor object 4)

(which-way-to-move

 yp xp (fifteen-puzzle-pieces *application-frame*)))))

 (object)

 (multiple-value-bind (yp xp) (floor object 4)

 (list yp xp)))

�

(define-fifteen-puzzle-5-command (reset :menu t) ()

 (with-slots (pieces) *application-frame*

 (loop for y from 0 to 3 do

 (loop with 4y+1 = (+ (* 4 y) 1)

 for x from 0 to 3 do

(setf (aref pieces y x) (mod (+ 4y+1 x) 16))))))

�

(define-fifteen-puzzle-5-command (exit :menu t) ()

 (frame-exit *application-frame*))

�

#||

()

(setq fp5 (make-application-frame ’fifteen-puzzle-5

 :left 600 :right 800 :top 150 :bottom 350))

(run-frame-top-level fp5)

||#

�

Code for Tic Tac Toe

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;TIC-TAC-TOE.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

(defconstant *X* 1)

(defconstant *O* -1)

(defconstant *empty* 0)

�

(define-presentation-type board-position ())

�

(define-presentation-type empty-board-position ()

 :inherit-from ’board-position)

�

(define-presentation-type x-board-position ()

 :inherit-from ’board-position)

Page 1194

�

(define-presentation-type o-board-position ()

 :inherit-from ’board-position)

�

(clim:define-application-frame tic-tac-toe

 ()

 ((board :initform (make-array ’(3 3) :initial-element *empty*))

 (board-diagnosis :initform t)

 (whose-move :initform *X*)

 (user-plays :initform *X*))

 (:panes

 (board-display :application

 :display-function ’display-board

 :incremental-redisplay t

 :scroll-bars nil)

 (status :application

 :display-function ’display-status

 :incremental-redisplay t

 :scroll-bars nil))

 (:layouts

 (main

 (vertically ()

(9/10 board-display)

(1/10 status)))))

�

(defmethod clos:initialize-instance :after ((frame tic-tac-toe) &rest args)

 (declare (ignore args))

 (go-to-stopped-state frame))

�

(define-tic-tac-toe-command (com-tic-tac-toe-exit :menu "Exit") ()

 (clim:frame-exit *application-frame*))

�

(define-tic-tac-toe-command (com-reset-tic-tac-toe :menu "Reset") ()

 (reset-board *application-frame*)

 (go-to-stopped-state *application-frame*))

�

(defmethod reset-board ((frame tic-tac-toe))

 (window-clear (get-frame-pane frame ’board-display))

 (with-slots (board board-diagnosis) frame

 (setf board-diagnosis t)

 (dotimes (ix 3)

 (dotimes (iy 3)

(setf (aref board ix iy) *empty*)))))

�

;;; the display method for the board pane

Page 1195

�

(defmethod display-board ((frame tic-tac-toe) stream

 &key &allow-other-keys)

 (with-slots (board) frame

 (multiple-value-bind (width height) (window-inside-size stream)

 (multiple-value-bind (size x-offset y-offset)

 (if (< width height)

 (values (floor width 3) 0 (floor (- height width) 2))

 (values (floor height 3) (floor (- width height) 2) 0))

(flet ((draw-element (elt position stream)

 (cond ((= elt *X*)

(with-output-as-presentation

 (stream position ’x-board-position

 :single-box t)

 (draw-line* stream 0.1 0.1 0.9 0.9 :line-thickness 2)

 (draw-line* stream 0.1 0.9 0.9 0.1 :line-thickness 2)))

 ((= elt *O*)

(with-output-as-presentation

 (stream position ’o-board-position

 :single-box t)

 (draw-circle* stream 0.5 0.5 0.45

 :filled nil :line-thickness 2)))

 (t

(with-output-as-presentation

 (stream position ’empty-board-position)

 (draw-rectangle* stream 0.1 0.1 0.9 0.9 :ink +white+))))))

 (with-translation (stream x-offset y-offset)

 (with-scaling (stream size size)

 (dotimes (iy 3)

(with-translation (stream 0 iy)

 (dotimes (ix 3)

 (let ((elt (aref board ix iy))

 (position (+ (* 3 iy) ix)))

 (updating-output (stream :unique-id position

 :cache-value elt)

(with-translation (stream ix 0)

 (draw-element elt position stream)))))))

 (draw-line* stream 0.1 1.0 2.9 1.0)

 (draw-line* stream 0.1 2.0 2.9 2.0)

 (draw-line* stream 1.0 0.1 1.0 2.9)

 (draw-line* stream 2.0 0.1 2.0 2.9))))))))

�

;;; the display method for the status pane

Page 1196

�

(defmethod display-status ((frame tic-tac-toe) stream

 &key &allow-other-keys)

 (with-slots (board-diagnosis) frame

 (updating-output (stream :cache-value board-diagnosis)

 (let ((string (cond ((null board-diagnosis) "Cat’s game")

 ((eql board-diagnosis *X*) "Win for X")

 ((eql board-diagnosis *O*) "Win for O"))))

(when string

 (write-string string stream))))))

�

;;; make a move in the game

�

(define-tic-tac-toe-command com-user-move

 ((pos ’empty-board-position :gesture :select))

 (with-slots (board whose-move board-diagnosis) *application-frame*

 (multiple-value-bind (iy ix) (floor pos 3)

 (make-move *application-frame* ix iy))

 (if (eql board-diagnosis t)

(multiple-value-bind (ix iy) (find-next-ttt-move board whose-move)

 (make-move *application-frame* ix iy)

 (unless (eql board-diagnosis t)

 (go-to-stopped-state *application-frame*)))

(go-to-stopped-state *application-frame*))))

�

(defmethod make-move ((frame tic-tac-toe) ix iy)

 (with-slots (board whose-move board-diagnosis) frame

 (if (= (aref board ix iy) *empty*)

(progn (setf (aref board ix iy) whose-move)

 (setf whose-move (- whose-move))

 (setf board-diagnosis (diagnose-board board)))

(error "Not an empty position"))))

�

;;; edit a position by cycling through possibilities

�

(define-tic-tac-toe-command com-edit-position

 ((pos ’board-position :gesture :select))

 (with-slots (board board-diagnosis) *application-frame*

 (multiple-value-bind (iy ix) (floor pos 3)

 (setf (aref board ix iy)

 (let ((old (aref board ix iy)))

 (cond ((= old *empty*) *X*)

 ((= old *X*) *O*)

 (t *empty*)))))

 (setf board-diagnosis (diagnose-board board))))

Page 1197

�

(define-tic-tac-toe-command (com-play-user-first :menu "Play (user X)") ()

 (with-slots (user-plays) *application-frame*

 (setf user-plays *X*)

 (start-play *application-frame*)))

�

(define-tic-tac-toe-command (com-play-program-first :menu "Play (program X)") ()

 (with-slots (user-plays) *application-frame*

 (setf user-plays *O*)

 (start-play *application-frame*)))

�

(defmethod start-play ((frame tic-tac-toe))

 (with-slots (board whose-move user-plays board-diagnosis) *application-frame*

 (unless (eql board-diagnosis t)

 (reset-board *application-frame*))

 (go-to-playing-state *application-frame*)

 (setf whose-move (determine-whose-move board))

 (when (/= user-plays whose-move)

 (multiple-value-bind (ix iy) (find-next-ttt-move board whose-move)

(make-move *application-frame* ix iy)))))

�

;;; enable and disable appropriate commands

�

(defmethod go-to-playing-state ((frame tic-tac-toe))

 (setf (command-enabled ’com-play-user-first frame) nil)

 (setf (command-enabled ’com-play-program-first frame) nil)

 (setf (command-enabled ’com-edit-position frame) nil)

 (setf (command-enabled ’com-user-move frame) t))

(defmethod go-to-stopped-state ((frame tic-tac-toe))

 (setf (command-enabled ’com-play-user-first frame) t)

 (setf (command-enabled ’com-play-program-first frame) t)

 (setf (command-enabled ’com-edit-position frame) t)

 (setf (command-enabled ’com-user-move frame) nil))

�

;;; these are the game-playing functions

;;; they have no user-interface component

�

;;; picks the next move for the program

Page 1198

�

(defun find-next-ttt-move (board whose-move)

 (let ((me whose-move) (you (- whose-move)))

 (let (target (points nil))

 (labels ((pushnu (x y)

 (unless (find-if #’(lambda (xy)

 (and (= (first xy) x)

 (= (second xy) y)))

 points)

 (push (list x y) points)))

 (point-= (p1 p2)

 (and (= (first p1) (first p2)) (= (second p1) (second p2))))

 (pick-a-choice-if-ive-got-one ()

 (when points

 (let ((ran (random (length points))))

 (return-from find-next-ttt-move

 (values-list (nth ran points))))))

 (almost-complete-row (elt0 x0 y0 elt1 x1 y1 elt2 x2 y2)

 (cond ((and (= elt0 *empty*) (= elt1 elt2 target))

(pushnu x0 y0))

 ((and (= elt1 *empty*) (= elt0 elt2 target))

(pushnu x1 y1))

 ((and (= elt2 *empty*) (= elt0 elt1 target))

(pushnu x2 y2))))

 (row-with-one-only (elt0 x0 y0 elt1 x1 y1 elt2 x2 y2)

 (cond ((and (= elt0 elt1 *empty*) (= elt2 target))

(pushnu x0 y0)

(pushnu x1 y1))

 ((and (= elt1 elt2 *empty*) (= elt0 target))

(pushnu x1 y1)

(pushnu x2 y2))

 ((and (= elt0 elt2 *empty*) (= elt1 target))

(pushnu x0 y0)

(pushnu x2 y2))))

 (pair-of-rows-to-fork (elt0 x0 y0

 elt1a x1a y1a

 elt2a x2a y2a

 elt1b x1b y1b

 elt2b x2b y2b)

 (declare (ignore x1a y1a x2a y2a x1b y1b x2b y2b))

 (when (and (= elt0 *empty*)

 (or (and (= elt1a *empty*) (= elt2a target))

(and (= elt2a *empty*) (= elt1a target)))

 (or (and (= elt1b *empty*) (= elt2b target))

(and (= elt2b *empty*) (= elt1b target))))

 (pushnu x0 y0))))

;; look for immediate win

(setq target me)

Page 1199

(map-over-ttt-board-rows board #’almost-complete-row)

(pick-a-choice-if-ive-got-one)

;; look for immediate loss unless I block

(setq target you)

(map-over-ttt-board-rows board #’almost-complete-row)

(pick-a-choice-if-ive-got-one)

;; look for my fork

(setq target me)

(map-over-pairs-of-ttt-board-rows board #’pair-of-rows-to-fork)

(pick-a-choice-if-ive-got-one)

;; look for opponent’s fork

(setq target you)

(map-over-pairs-of-ttt-board-rows board #’pair-of-rows-to-fork)

(when points

 (if (= (length points) 1)

 ;; block the fork

 (pick-a-choice-if-ive-got-one)

 ;; two fork points - have to force

 (let ((fork-points points))

(setq points nil)

(map-over-ttt-board-rows board #’row-with-one-only)

(setq points (set-difference points fork-points :test #’point-=))

(pick-a-choice-if-ive-got-one))))))

 ;; an opening move in a corner requires a reply in the center

 ;; else prefer a corner

 (when (= (aref board 1 1) *empty*)

 (return-from find-next-ttt-move (values 1 1)))

 (loop for ix from 0 to 2 by 2 do

 (loop for iy from 0 to 2 by 2 do

(when (= (aref board ix iy) *empty*)

 (return-from find-next-ttt-move (values ix iy)))))))

�

;;; returns *X* or *O* for a winning board

;;; T for a board still playable, nil for a cats game

Page 1200

�

(defun diagnose-board (board)

 (flet ((diagnose-row (elt0 x0 y0 elt1 x1 y1 elt2 x2 y2)

 x0 y0 x1 y1 x2 y2

 ;; returns *X* or *O* for a winning row

 ;; T for a row still playable, nil for a blocked row

 (cond ((= elt0 elt1 elt2)

 (if (= elt0 *empty*) t elt0))

 ((= elt0 elt1)

 (if (or (= elt0 *empty*) (= elt2 *empty*)) t nil))

 ((= elt0 elt2)

 (if (or (= elt0 *empty*) (= elt1 *empty*)) t nil))

 ((= elt1 elt2)

 (if (or (= elt0 *empty*) (= elt1 *empty*)) t nil))

 (t nil))))

 (let ((x-win nil) (o-win nil) (cats-game t))

 (map-over-ttt-board-rows board

 #’(lambda (elt0 x0 y0 elt1 x1 y1 elt2 x2 y2)

 (let ((q (diagnose-row elt0 x0 y0 elt1 x1 y1 elt2 x2 y2)))

 (cond ((eql q *X*) (setq x-win t))

 ((eql q *O*) (setq o-win t))

 ((eql q t) (setq cats-game nil))))))

 (cond (x-win *X*)

 (o-win *O*)

 (cats-game nil)

 (t t)))))

�

;;; used when starting the program in the middle of a game

�

(defun determine-whose-move (board)

 (let ((xs 0) (os 0))

 (dotimes (x 3)

 (dotimes (y 3)

(let ((elt (aref board x y)))

 (cond ((= elt *X*) (incf xs))

((= elt *O*) (incf os))))))

 (if (> xs os) *O* *X*)))

Page 1201

�

(defun map-over-ttt-board-rows (board function)

 (macrolet ((dorow (x0 y0 dx dy)

 (let* ((x1 (+ x0 dx)) (y1 (+ y0 dy))

 (x2 (+ x1 dx)) (y2 (+ y1 dy)))

 (setq x2 (mod x2 3) y2 (mod y2 3))

 ‘(funcall function

 (aref board ,x0 ,y0) ,x0 ,y0

 (aref board ,x1 ,y1) ,x1 ,y1

 (aref board ,x2 ,y2) ,x2 ,y2))))

 (dorow 0 0 0 1)

 (dorow 1 0 0 1)

 (dorow 2 0 0 1)

 (dorow 0 0 1 0)

 (dorow 0 1 1 0)

 (dorow 0 2 1 0)

 (dorow 0 0 1 1)

 (dorow 0 2 1 -1)))

Page 1202

�

(defun map-over-pairs-of-ttt-board-rows (board function)

 (macrolet ((dorows (x0 y0 dxa dya dxb dyb)

 (let* ((x1a (+ x0 dxa)) (y1a (+ y0 dya))

 (x2a (+ x1a dxa)) (y2a (+ y1a dya))

 (x1b (+ x0 dxb)) (y1b (+ y0 dyb))

 (x2b (+ x1b dxb)) (y2b (+ y1b dyb)))

 (setq x2a (mod x2a 3) y2a (mod y2a 3)

 x2b (mod x2b 3) y2b (mod y2b 3))

 ‘(funcall function

 (aref board ,x0 ,y0) ,x0 ,y0

 (aref board ,x1a ,y1a) ,x1a ,y1a

 (aref board ,x2a ,y2a) ,x2a ,y2a

 (aref board ,x1b ,y1b) ,x1b ,y1b

 (aref board ,x2b ,y2b) ,x2b ,y2b))))

 (dorows 0 0 0 1 1 0)

 (dorows 0 0 0 1 1 1)

 (dorows 0 0 1 0 1 1)

 (dorows 0 1 1 0 0 1)

 (dorows 0 2 0 -1 1 0)

 (dorows 0 2 0 -1 1 -1)

 (dorows 0 2 1 0 1 -1)

 (dorows 1 0 0 1 1 0)

 (dorows 1 1 0 1 1 0)

 (dorows 1 1 0 1 1 1)

 (dorows 1 1 0 1 1 -1)

 (dorows 1 1 1 0 1 1)

 (dorows 1 1 1 0 1 -1)

 (dorows 1 1 1 1 1 -1)

 (dorows 1 2 0 -1 1 0)

 (dorows 2 0 0 1 -1 0)

 (dorows 2 0 0 1 -1 1)

 (dorows 2 0 -1 0 -1 1)

 (dorows 2 1 -1 0 0 1)

 (dorows 2 2 0 -1 -1 0)

 (dorows 2 2 0 -1 -1 -1)

 (dorows 2 2 -1 0 -1 -1)))

�

#||

()

(setq ttt (clim:make-application-frame ’tic-tac-toe

 :left 400 :right 800 :top 150 :bottom 400))

(clim:run-frame-top-level ttt)

||#

�

Page 1203

Code for Plotting Data

This code can be found in the file SYS:CLIM;REL-2;TUTORIAL;LEAST-SQUARES-1.LISP.

;;; -*- Mode: Lisp; Syntax: ANSI-Common-Lisp; Package: CLIM-USER; Base: 10 -*-

�

(defclass data-point ()

 ((x :accessor point-x :initarg :x)

 (y :accessor point-y :initarg :y)))

�

(defun make-data-point (x y)

 (make-instance ’data-point :x x :y y))

�

(define-presentation-type data-point ())

Page 1204

�

(define-application-frame lsq ()

 ((data-points :initform nil)

 (data-points-tick :initform 0)

 (data-x-min :initform 0.0)

 (data-x-max :initform 1.0)

 (data-y-min :initform 0.0)

 (data-y-max :initform 1.0)

 (data-left-margin)

 (data-top-margin)

 (data-right-margin)

 (data-bottom-margin)

 (data-transform)

 (current-curve :initform nil)

 (curve-correlation)

 (current-coefficients :initform (make-array 25 :fill-pointer t))

 (x-is-function-of-y :initform nil))

 (:command-table (lsq :inherit-from (accept-values-pane)))

 (:panes

 (display :application

 :display-function ’draw-data-display

 :incremental-redisplay t

 :display-after-commands t

 :scroll-bars nil)

 (table :application

 :incremental-redisplay t

 :scroll-bars :vertical

 :display-function ’tabulate-data-points)

 (equation :application

 :display-function ’print-equation-of-curve

 :display-after-commands t

 :incremental-redisplay t

 :scroll-bars nil))

 (:layouts

 (drawing-layout

 (vertically () display))

 (tabular-layout

 (vertically () (7/8 table) (1/8 equation)))))

�

�

;;; initializations

�

(defmethod frame-standard-output ((frame lsq))

 (if (eql (frame-current-layout frame) ’drawing-layout)

 (get-frame-pane frame ’display)

 (get-frame-pane frame ’table)))

Page 1205

�

(defmethod frame-standard-input ((frame lsq))

 (frame-standard-output frame))

�

(defmethod frame-query-io ((frame lsq))

 (frame-standard-output frame))

�

(defmethod run-frame-top-level :before ((frame lsq) &key)

 (enable-frame frame)

 (assign-margins-for-axes frame)

 (determine-data-transform frame))

�

;;; switching layouts

�

(define-lsq-command (switch-configurations :menu "Switch Display") ()

 (let ((frame *application-frame*))

 (let ((new-config (case (frame-current-layout frame)

(drawing-layout

 (setf (command-enabled ’com-zoom-in frame) nil)

 (setf (command-enabled ’com-zoom-out frame) nil)

 ’tabular-layout)

(tabular-layout

 (setf (command-enabled ’com-zoom-in frame) t)

 (setf (command-enabled ’com-zoom-out frame) t)

 ’drawing-layout))))

 (setf (frame-current-layout frame) new-config))))

�

;;; adding new points, deleting points

;;; points are maintained in sorted order:

�

(defun point< (point1 point2)

 (let ((x1 (point-x point1)) (x2 (point-x point2)))

 (cond ((< x1 x2) t)

 ((= x1 x2) (< (point-y point1) (point-y point2))))))

�

(defmethod add-data-point ((point data-point) (frame lsq))

 (with-slots (data-points-tick data-points) frame

 (setf data-points (merge ’list data-points (list point) #’point<))

 (incf data-points-tick)))

�

(defmethod delete-data-point ((point data-point) (frame lsq))

 (with-slots (data-points-tick data-points dummy-data-points) frame

 (setf data-points (delete point data-points))

 (incf data-points-tick)))

Page 1206

�

(defmethod alter-data-point ((point data-point) (frame lsq) x y)

 (with-slots (data-points-tick data-points dummy-data-points) frame

 (setf (point-x point) x)

 (setf (point-y point) y)

 (setf data-points (sort data-points #’point<))

 (incf data-points-tick)))

�

;;; table display

�

(defmethod tabulate-data-points ((frame lsq) pane &key &allow-other-keys)

 (fresh-line pane)

 (flet ((do-point (point stream)

 (with-output-as-presentation (stream point ’data-point

 :single-box t)

 (formatting-row (stream)

 (formatting-cell (stream)

 (format stream "~F" (point-x point)))

 (formatting-cell (stream)

 (format stream "~F" (point-y point)))))))

 (formatting-table (pane)

 ;; print column headings

 (formatting-row (pane)

(with-text-face (pane :italic)

 (formatting-cell (pane :min-width 20

 :align-x :center)

 (write-string "X" pane))

 (formatting-cell (pane :min-width 20

 :align-x :center)

 (write-string "Y" pane))))

 (with-slots (data-points) frame

(dolist (point data-points)

 (do-point point pane))))))

�

;;; graphic display

Page 1207

�

(defmethod draw-data-display ((frame lsq) pane &key &allow-other-keys)

 (with-slots (current-curve current-coefficients x-is-function-of-y

 data-x-min data-x-max data-y-min data-y-max data-points-tick

 data-right-margin data-left-margin data-transform)

 frame

 (draw-data-axes frame pane)

 (updating-output (pane :unique-id ’:the-curve

 :cache-value data-points-tick

 :cache-test #’=)

 (draw-data-points frame pane)

 (when current-curve

(with-drawing-options (pane :transformation data-transform)

 (draw-fitted-curve current-curve current-coefficients pane

 data-x-min data-x-max data-y-min data-y-max

 (- data-right-margin data-left-margin)

 x-is-function-of-y))))))

�

;;; methods on the data points

�

(defmethod data-range ((frame lsq))

 (with-slots (data-points) frame

 (let* ((min-x (point-x (first data-points)))

 (max-x min-x)

 (min-y (point-y (first data-points)))

 (max-y min-y))

 (dolist (point (rest data-points))

(macrolet ((maxminf (val min max)

 ‘(let ((v ,val))

(cond ((< v ,min) (setq ,min v))

 ((> v ,max) (setq ,max v))))))

 (maxminf (point-x point) min-x max-x)

 (maxminf (point-y point) min-y max-y)))

 (values min-x min-y max-x max-y))))

Page 1208

�

(defmethod determine-data-transform ((frame lsq)

 &optional left top right bottom)

 (with-slots (data-left-margin data-top-margin

 data-right-margin data-bottom-margin

 data-x-min data-x-max data-y-min data-y-max

 data-transform data-points-tick) frame

 (when (null left) (setq left data-left-margin))

 (when (null top) (setq top data-top-margin))

 (when (null right) (setq right data-right-margin))

 (when (null bottom) (setq bottom data-bottom-margin))

 (setf data-transform

 (make-3-point-transformation*

 data-x-min data-y-min

 data-x-min data-y-max

 data-x-max data-y-min

 left bottom

 left top

 right bottom))

 (incf data-points-tick)))

Page 1209

�

(define-lsq-command (com-set-axis-ranges :menu t)

 ()

 (let ((frame *application-frame*)

(stream *standard-output*))

 (with-slots (data-x-min data-x-max data-y-min data-y-max

 data-points data-transform data-points-tick) frame

 (incf data-points-tick)

 (let ((min-x data-x-min)

 (max-x data-x-max)

 (min-y data-y-min)

 (max-y data-y-max))

(accepting-values

 (stream

 :own-window ’(:right-margin (20 :character))

 :label "Enter the ranges for the coordinate axes")

 (format stream "~&Range of X axis: ")

 (flet ((get-one (value id)

 (accept ’real

 :stream stream

 :default value

 :query-identifier id

 :prompt nil)))

 (setq min-x (get-one min-x ’x-min))

 (format stream " to ")

 (setq max-x (get-one max-x ’x-max))

 (format stream "~&Range of Y axis: ")

 (setq min-y (get-one min-y ’y-min))

 (format stream " to ")

 (setq max-y (get-one max-y ’y-max)))

 (fresh-line stream)

 (terpri stream)

 (accept-values-command-button

 (stream :query-identifier ’all-of-them)

 "Set ranges to encompass all points"

 (multiple-value-setq (min-x min-y max-x max-y)

 (data-range frame)))

 (fresh-line stream)

 (terpri stream))

(setq data-x-min min-x

 data-x-max max-x

 data-y-min min-y

 data-y-max max-y))

 (determine-data-transform frame))))

Page 1210

�

(defmethod draw-data-points ((frame lsq) pane)

 (with-slots (data-points data-points-tick data-transform

 data-x-min data-x-max data-y-min data-y-max) frame

 (flet ((do-point (point window)

 (let ((x (point-x point)) (y (point-y point)))

 (when (and (<= data-x-min x data-x-max)

 (<= data-y-min x data-y-max))

 (with-output-as-presentation (window point ’data-point)

 (multiple-value-bind (x y)

 (transform-position data-transform x y)

 (draw-circle* window x y 3)))))))

 (dolist (point data-points)

(do-point point pane)))))

�

(define-lsq-command com-create-data-point ((x ’real) (y ’real))

 (add-data-point (make-data-point x y) *application-frame*))

�

(define-presentation-to-command-translator new-point

 (blank-area com-create-data-point lsq

 :gesture :select

 :tester

 ((x y window)

(let ((frame *application-frame*))

 (with-slots (data-left-margin data-top-margin

 data-right-margin data-bottom-margin) frame

 (and (eql window (get-frame-pane frame ’display))

 (<= data-left-margin x data-right-margin)

 (<= data-top-margin y data-bottom-margin))))))

 (x y)

 (with-slots (data-transform) *application-frame*

 (multiple-value-bind (x y)

(untransform-position data-transform x y)

 (list x y))))

�

(define-lsq-command com-delete-data-point

 ((point ’data-point :gesture :delete))

 (delete-data-point point *application-frame*))

Page 1211

�

(define-lsq-command com-edit-data-point

 ((point ’data-point :gesture :edit))

 (let ((x (point-x point))

(y (point-y point))

(stream *standard-output*))

 (accepting-values

(stream

 :own-window ’(:right-margin (20 :character))

 :label "New coordinates for the point")

 (fresh-line stream)

 (setq x (accept ’real

 :stream stream

 :prompt "X: "

 :default x))

 (fresh-line stream)

 (setq y (accept ’real

 :stream stream

 :prompt "Y: "

 :default y)))

 (alter-data-point point *application-frame* x y)))

�

;;; axes

�

(defmethod draw-data-axes ((frame lsq) pane)

 (with-slots (data-x-min data-x-max data-y-max data-y-min

 data-transform

 data-left-margin data-top-margin

 data-right-margin data-bottom-margin)

 frame

 (flet ((pair= (pair1 pair2)

 (and (= (car pair1) (car pair2))

 (= (cdr pair1) (cdr pair2)))))

 (declare (dynamic-extent #’pair=))

 (updating-output (pane :unique-id ’x-axis

 :cache-value (cons data-x-min data-x-max)

 :cache-test #’pair=)

(draw-horizontal-axis pane data-x-min data-x-max

 data-transform

 data-left-margin data-right-margin

 data-bottom-margin))

 (updating-output (pane :unique-id ’y-axis

 :cache-value (cons data-y-max data-y-min)

 :cache-test #’pair=)

(draw-vertical-axis pane data-y-min data-y-max data-transform

 data-left-margin data-top-margin

 data-bottom-margin)))))

Page 1212

�

(defvar *horizontal-scale-mark-density* 80)

�

(defun draw-horizontal-axis (window data-min data-max data-transform

 view-x-min view-x-max view-y)

 (let* ((tick-end view-y)

 (tick-start (+ tick-end 8))

 (text-top (+ tick-start 2)))

 (draw-line* window view-x-min view-y view-x-max view-y)

 (flet ((drawer (x)

 (multiple-value-bind (vx vy)

 (transform-position data-transform x 0.0)

 vy

 (draw-line* window vx tick-start vx tick-end)

 (draw-text* window (format nil "~7F" x) vx text-top

 :align-x :center :align-y :top))))

 (declare (dynamic-extent #’drawer))

 (axis-iterator data-min

 data-max

 #’drawer

 (max (round (- view-x-max view-x-min)

 horizontal-scale-mark-density)

 1)))))

�

(defvar *vertical-scale-mark-density* 50)

�

(defun draw-vertical-axis (window data-min data-max data-transform

 view-x view-y-min view-y-max)

 (let* ((tick-end view-x)

 (tick-start (- tick-end 8))

 (text-end (- tick-start 2)))

 (draw-line* window view-x view-y-min view-x view-y-max)

 (flet ((drawer (y)

 (multiple-value-bind (vx vy)

 (transform-position data-transform 0.0 y)

 vx

 (draw-line* window tick-start vy tick-end vy)

 (draw-text* window (format nil "~7F" y) text-end vy

 :align-x :right :align-y :center))))

 (declare (dynamic-extent #’drawer))

 (axis-iterator data-min

 data-max

 #’drawer

 (max (round (- view-y-max view-y-min)

 vertical-scale-mark-density)

 1)))))

Page 1213

�

(defun axis-iterator (min-val max-val drawit approx-number-of-steps)

 (let* ((step (float (stepsize-for-scale min-val max-val

 approx-number-of-steps)))

 (i0 (ceiling min-val step))

 (i1 (floor max-val step)))

 (loop for i from i0 to i1 do (funcall drawit (* i step)))))

�

(defun stepsize-for-scale (datamin datamax approx-number-of-steps)

 (declare (values stepsize mantissa))

 (assert (< datamin datamax))

 (let* ((step (/ (- datamax datamin) approx-number-of-steps))

 (step-exponent (expt 10 (floor (log step 10))))

 (step-mantissa (/ step step-exponent)))

 ;; at this point 1 <= step-mantissa < 10

 ;; we choose nearest (logarithmically) to 1, 2, or 5

 (cond ((< step-mantissa (sqrt 2)) (values step-exponent 1))

 ((< step-mantissa (sqrt 5/2)) (values (* 2 step-exponent) 2))

 ((< step-mantissa (* 5.0 (sqrt 2)))

 (values (* 5 step-exponent) 5))

 (t (values (* 10 step-exponent) 1)))))

�

(defmethod assign-margins-for-axes ((frame lsq))

 (with-slots (data-left-margin data-top-margin

 data-right-margin data-bottom-margin) frame

 (let* ((display (get-frame-pane frame ’display))

 (typical-text (with-output-to-output-record (display)

 (format display "~7F" 123.456))))

 (multiple-value-bind (width height)

 (bounding-rectangle-size (window-viewport display))

(setf data-left-margin

 (+ 10 (bounding-rectangle-width typical-text)))

(setf data-top-margin

 (bounding-rectangle-height typical-text))

(setf data-right-margin

 (- width (bounding-rectangle-width typical-text)))

(setf data-bottom-margin

 (- height

 (+ 10 (bounding-rectangle-height typical-text))))))))

�

;;; linear algebra utilities

�

;;; solves a lower triangular system

Page 1214

�

(defun solve-lower-tri (l x)

 (let ((ii (length x)))

 (dotimes (i ii)

 (let ((xi (aref x i)))

(dotimes (j i)

 (decf xi (* (aref l i j) (aref x j))))

(setf (aref x i) (/ xi (aref l i i)))))

 x))

�

;;; solves an upper triangular system stored in transposed form

�

(defun solve-upper-tri-trans (u x)

 (let ((ii (length x)))

 (do* ((i (1- ii) (1- i))) ((< i 0))

 (let ((xi (aref x i)))

(do ((j (1+ i) (1+ j))) ((= j ii))

 (decf xi (* (aref u j i) (aref x j))))

(setf (aref x i) (/ xi (aref u i i)))))

 x))

�

;;; in-place Cholesky decomposition of a positive definite matrix

�

(defun cholesky (a)

 (let ((n (array-dimension a 0)))

 (dotimes (k n)

 (let ((akk (aref a k k)))

(dotimes (j k) (decf akk (expt (aref a k j) 2)))

(setq akk (sqrt akk)) ;told you it must be positive definite

(setf (aref a k k) akk)

(do ((i (1+ k) (1+ i))) ((= i n))

 (let ((aik (aref a i k)))

 (dotimes (j k) (decf aik (* (aref a i j) (aref a k j))))

 (setf (aref a i k) (/ aik akk)))))))

 a)

�

;;; least squares

Page 1215

�

(defun general-linear-regression (value-mapper functions &optional

 result (compute-correlation t))

 (let* ((n-coef (length functions))

 (fx (make-array n-coef))

 (dims (list n-coef n-coef))

 (a (make-array dims :initial-element 0)))

 (declare (dynamic-extent fx dims a))

 (if (and (arrayp result)

 (or (= (array-dimension result 0) n-coef)

 (and (> (array-dimension result 0) n-coef)

 (array-has-fill-pointer-p result))))

(progn (dotimes (i n-coef) (setf (aref result i) 0.0))

 (if (array-has-fill-pointer-p result)

 (setf (fill-pointer result) n-coef)))

(setq result (make-array n-coef :initial-element 0.0)))

 (flet ((total-up-values (yi &rest xs)

 (let ((functions functions))

 (dotimes (i n-coef)

 (setf (aref fx i) (apply (pop functions) xs))))

 (dotimes (i n-coef)

 (let ((fxi (aref fx i)))

 (incf (aref a i i) (* fxi fxi))

 (incf (aref result i) (* fxi yi))

 (do ((j (1+ i) (1+ j)))

 ((= j n-coef))

 (let* ((fxj (aref fx j)) (fxi-fxj (* fxi fxj)))

 (incf (aref a i j) fxi-fxj)

 (incf (aref a j i) fxi-fxj)))))))

 (declare (dynamic-extent #’total-up-values))

 (funcall value-mapper #’total-up-values))

 (cholesky a)

 (solve-lower-tri a result)

 (solve-upper-tri-trans a result)

 (if compute-correlation

(let ((n 0)

 (sum-y 0.0)

 (sum-y2 0.0)

 (sum-fx 0.0)

 (sum-fx2 0.0))

 (flet ((calc-correlation (yi &rest xs)

 (let ((fxi (do ((j 0 (1+ j))

 (functions functions)

 (sum 0.0))

 ((null functions) sum)

(incf sum (* (aref result j)

 (apply (pop functions)

 xs))))))

Page 1216

 (incf n)

 (incf sum-y yi)

 (incf sum-y2 (* yi yi))

 (incf sum-fx fxi)

 (incf sum-fx2 (* fxi fxi)))))

 (declare (dynamic-extent #’calc-correlation))

 (funcall value-mapper #’calc-correlation))

 (values result (/ (+ sum-fx2 (* (/ sum-y n)

 (- sum-y (* 2 sum-fx))))

 (- sum-y2 (/ (* sum-y sum-y) n)))))

result)))

�

;;; curves to fit

�

(defclass fit-curve ()

 ((name :accessor curve-name :initarg :name)

 (n-coefs :accessor curve-n-coefs :initarg :n-coefs)

 (component-functions :initarg :component-functions)

 (printer :initarg :printer :accessor curve-printer)))

�

(defclass linear-fit-curve (fit-curve) ())

�

(defmethod function-value ((fit-curve fit-curve) coefficients

 &rest independent-variable-values)

 (declare (dynamic-extent independent-variable-values))

 (with-slots (component-functions n-coefs) fit-curve

 (let ((total 0.0) (components component-functions))

 (dotimes (i n-coefs)

(incf total

 (* (aref coefficients i)

 (apply (pop components) independent-variable-values))))

 total)))

�

(defmethod least-squares-fit ((fit-curve fit-curve) value-mapper coefficients)

 (with-slots (component-functions n-coefs) fit-curve

 (assert (>= (array-dimension coefficients 0) n-coefs))

 (general-linear-regression value-mapper

 component-functions

 coefficients)))

�

;;; utility component-functions

�

(defun unity (&rest args) (declare (ignore args)) 1)

�

(defun square (x) (* x x))

�

(defun cube (x) (expt x 3))

Page 1217

�

;;; the curves that are fitted

�

(defvar *known-curves* nil)

�

(defun def-fit-curve (name &key component-functions printer

 (curve-class ’fit-curve))

 (setq *known-curves* (delete name *known-curves*

 :test #’string-equal

 :key #’curve-name))

 (assert (listp component-functions))

 (let ((n-coefs (length component-functions)))

 (push (make-instance curve-class

 :name name

 :n-coefs n-coefs

 :component-functions component-functions

 :printer printer)

 known-curves)))

�

(def-fit-curve "Cubic"

 :component-functions (list #’cube #’square #’identity #’unity)

 :printer #’(lambda (stream var coefs)

 (format stream "~7F ~A^3 + ~7F ~A^2 + ~7F ~A + ~7F"

 (elt coefs 0) var (elt coefs 1) var

 (elt coefs 2) var (elt coefs 3))))

�

(def-fit-curve "Quadratic"

 :component-functions (list #’square #’identity #’unity)

 :printer #’(lambda (stream var coefs)

 (format stream "~7F ~A^2 + ~7F ~A + ~7F"

 (elt coefs 0) var (elt coefs 1) var

 (elt coefs 2))))

�

(def-fit-curve "Linear"

 :curve-class ’linear-fit-curve

 :component-functions (list #’identity #’unity)

 :printer #’(lambda (stream var coefs)

 (format stream "~7F ~A + ~7F" (elt coefs 0) var

 (elt coefs 1))))

�

�

;;; curve display

�

;;; the default method of drawing curves

Page 1218

�

(defmethod draw-fitted-curve ((curve fit-curve) coefficients pane

 data-x-min data-x-max data-y-min data-y-max

 n-plotting-steps x-is-function-of-y)

 (labels ((plotter (umin umax vmin vmax drawer)

 (let ((du (/ (- umax umin) n-plotting-steps)))

 (do* ((u0 nil u1)

 (v0 nil v1)

 (u1 umin (+ u1 du))

 (v1 (function-value curve coefficients u1)

 (function-value curve coefficients u1)))

 ((> u1 umax))

 (when (and u0

 (<= vmin v0 vmax)

 (<= vmin v1 vmax))

 (funcall drawer u0 v0 u1 v1)))))

 (y=fx-drawer (u0 v0 u1 v1)

 (draw-line* pane u0 v0 u1 v1))

 (x=fy-drawer (u0 v0 u1 v1)

 (draw-line* pane v0 u0 v1 u1)))

 (declare (dynamic-extent #’y=fx-drawer #’x=fy-drawer))

 (if x-is-function-of-y

(plotter data-y-min data-y-max data-x-min data-x-max #’x=fy-drawer)

(plotter data-x-min data-x-max data-y-min data-y-max #’y=fx-drawer))))

�

;;; the linear-fit-curve class has a faster method of drawing

Page 1219

�

(defmethod draw-fitted-curve ((curve linear-fit-curve) coefficients pane

 data-x-min data-x-max data-y-min data-y-max

 n-plotting-steps x-is-function-of-y)

 (declare (ignore n-plotting-steps))

 (labels ((linterp (x x0 x1 y0 y1)

 (let ((d0 (- x x0)) (d1 (- x1 x)))

 (/ (+ (* d0 y1) (* d1 y0)) (+ d0 d1))))

 (plotter (umin umax vmin vmax drawer)

 (let ((u0 umin)

 (v0 (function-value curve coefficients umin))

 (u1 umax)

 (v1 (function-value curve coefficients umax)))

 (macrolet ((v-clip (<< vlimit)

 ‘(if (,<< v0 ,vlimit)

 (if (,<< v1 ,vlimit)

 (return-from plotter)

 (setq u0 (linterp ,vlimit v0 v1 umin umax)

 v0 ,vlimit))

 (if (,<< v1 ,vlimit)

 (setq u1 (linterp ,vlimit v0 v1 umin umax)

 v1 ,vlimit)))))

 (v-clip < vmin)

 (v-clip > vmax))

 (funcall drawer u0 v0 u1 v1)))

 (y=fx-drawer (u0 v0 u1 v1)

 (draw-line* pane u0 v0 u1 v1))

 (x=fy-drawer (u0 v0 u1 v1)

 (draw-line* pane v0 u0 v1 u1)))

 (declare (dynamic-extent #’y=fx-drawer #’x=fy-drawer))

 (if x-is-function-of-y

(plotter data-y-min data-y-max data-x-min data-x-max #’x=fy-drawer)

(plotter data-x-min data-x-max data-y-min data-y-max #’y=fx-drawer))))

�

�

;;; curve printing

Page 1220

�

(defmethod print-equation-of-curve ((frame lsq) pane &key &allow-other-keys)

 (with-slots (current-curve x-is-function-of-y data-points-tick

 current-coefficients curve-correlation) frame

 (updating-output (pane :unique-id ’:printed-equation

 :cache-value (cons current-curve data-points-tick))

 (when current-curve

(multiple-value-bind (dep-var ind-var)

 (if x-is-function-of-y (values "X" "Y") (values "Y" "X"))

 (format pane "~A = " dep-var)

 (funcall (curve-printer current-curve) pane ind-var current-coefficients)

 (format pane "~& Correlation: ~7F ~& " curve-correlation))))))

�

;;; interface to least-squares

�

(define-lsq-command (com-fit-curve :menu "Fit Curve")

 ()

 (fit-curve *application-frame*))

�

;;; modifying the data set invalidates the least squares fit

�

(defmethod add-data-point :after ((point data-point) (frame lsq))

 (with-slots (current-curve) frame

 (setf current-curve nil)))

�

(defmethod delete-data-point :after ((point data-point) (frame lsq))

 (with-slots (current-curve) frame

 (setf current-curve nil)))

�

;;; here’s where we can control y-as-function-of-x vs x-as-function-of-y

;;; and limited data-sets, and other variables, etc by constructing the

;;; appropriate mapper

Page 1221

�

(defmethod fit-curve ((frame lsq))

 (with-slots (current-curve current-coefficients curve-correlation

 data-points data-points-tick x-is-function-of-y) frame

 (incf data-points-tick)

 (setf current-curve

 (menu-choose *known-curves*

 :label "Curve to Fit"

 :printer #’(lambda (curve stream)

 (write-string (curve-name curve) stream))))

 (when current-curve

 (if (>= (length data-points) (curve-n-coefs current-curve))

 (flet ((y-as-function-of-x-value-mapper (function)

 (dolist (point data-points)

 (funcall function (point-y point) (point-x point))))

 (x-as-function-of-y-value-mapper (function)

 (dolist (point data-points)

 (funcall function (point-x point) (point-y point)))))

 (declare (dynamic-extent #’y-as-function-of-x-value-mapper

 #’x-as-function-of-y-value-mapper))

 (multiple-value-setq (current-coefficients curve-correlation)

 (least-squares-fit current-curve

 (if x-is-function-of-y

 #’x-as-function-of-y-value-mapper

 #’y-as-function-of-x-value-mapper)

 current-coefficients)))

 (progn

 (notify-user frame

 (format nil "Not enough data points to fit a ~A function"

 (curve-name current-curve)))

 (setq current-curve nil))))))

�

(define-lsq-command (com-exit-lsq :menu "Exit")

 ()

 (frame-exit *application-frame*))

�

#||

()

(setq *lsq* (make-application-frame ’lsq

 :height 500 :width 500))

(run-frame-top-level *lsq*)

||#

�

CLIM User’s Guide

Page 1222

Using Symbolics CLIM

Using CLIM in Genera

For more information on getting started, see the section "Running a CLIM Appli-

cation".

Also, see the section "Using CLIM in CLOE Developer", and see the section "Using

the CLIM Demos".

First, you must load the CLIM systems. Note that you must load the system CLIM

before you can load GENERA-CLIM, CLX-CLIM, or POSTSCRIPT-CLIM.

Command: Load System CLIM

Command: Load System GENERA-CLIM ;if you want the Genera port

Command: Load System CLX-CLIM ;if you want the CLX port

Command: Load System POSTSCRIPT-CLIM ;if you want the PostScript port�

Note: The CLX port of CLIM is not currently a supported port of CLIM under

Genera. It exists only as a sample port for people who are interested in perhaps

implementing a port of their own.

Using the Debugger with CLIM

If you enter the Debugger with a full-screen CLIM window, you will see a pop-up

notification such as "Process CAD Demo 1 got an error". This is normal, since the

Debugger cannot display itself on the CLIM window. To enable the Debugger dis-

play (so you can find out about the error), you should select the Listener window.

Usually this is straightforward (for example, by clicking on the pop-up window).

Once you have finished debugging and want to return to the CLIM window, you

can press FUNCTION S. Another way to return to the CLIM window is to use the

[Select] command from the System Menu. CLIM windows made by application

frames appear in the menu with the name of the application.

In some cases, after you have finished experimenting with your application in the

Debugger, you need to restore the application to a running state before reselecting

the CLIM window. If you are offered a top-level restart for the application, that

can work well. Otherwise, you can try to return from a com-your-command frame,

if one happens to be in your stack.

For small experiments (such as running some example code from the documenta-

tion), you might try creating a small Lisp Listener so that both the experimental

CLIM window and the Lisp Listener on which the Debugger will appear are both

exposed and non-overlapping.

To do this, use the System Menu commands (available by clicking sh-Right) to

move, reshape, and expand the windows so that both are exposed. For example,

when you are in Lisp Listener, choose [Reshape] from the System Menu to make

the Lisp Listener window smaller. Then create the CLIM application frame. You

can use the [Move] command to move one of the windows so it does not overlap

the other. You can use the [Expand] command to make one of the windows take up

Page 1223

the space not occupied by the other window, so that the windows together take up

the whole screen.

You can easily switch from one window to the other by clicking Left on a window.

You can use the Lisp Listener window to use the Debugger, and use the CLIM

window to experiment with CLIM code.

Using CLIM with a Color Screen in Genera

In order to use CLIM on a ‘‘two headed’’ color system under Genera, you must

first find the color screen to use. Use color:find-color-screen to do this. Then call

clim:find-port to make a CLIM port, using the screen returned by color:find-

color-screen.

When you create an application frame, specify the port that corresponds to the

color screen as the port. For example, you can run the CLIM Lisp Listener on a

color screen as follows:

(clim:run-frame-top-level

 (clim-demo::do-lisp-listener

 :port (clim:find-port

 :server-path ‘(:genera :screen ,(color:find-color-screen)))))�

If you are using CLIM on a machine that has ‘‘native’’ color support (such as a

color MacIvory or a color DEC Alpha AXP or UX400/UX1200), you don’t need to do

anything special. CLIM will notice that the display supports color, and it will sim-

ply work as expected.

Using CLIM in CLOE

This section describes how to use CLIM in Cloe Runtime, and in Cloe Developer.

It also describes how to run the CLIM demos in Cloe.

For information on how to run CLIM in Genera, see the section "Using CLIM in

Genera".

Using CLIM in CLOE Runtime

Cloe and CLIM runs with MS-DOS 3.3 or later, and with Microsoft Windows 3.0 in

STANDARD mode. The Cloe Developer runs with Genera 8.1 and uses CLIM 1.0.

Getting Started

Use the following procedure to start up CLIM. Note that you must start up CLIM

from MS-DOS (that is, you cannot start up CLIM from within Windows). Also note

that you can save these commands in a Lisp startup file (INIT.L is loaded automati-

cally at startup).

1. Get into the DOS directory containing the CLIM files.

Page 1224

2. Enter the following command to start up Cloe with CLIM embedded.

cloeclim�

3. (Optional) Set win::*winfe-exe* to a string that points to the WINFE.EXE file.

For example:

(setq win::*winfe-exe* "c:\\clim\\winfe.exe")�

If winfe.exe is in your current working directory, or in a directory specified

in your PATH shell variable, you do not need to set this special variable in

Cloe.

If you do not set this variable, Cloe will search for the file based on the path

directory for MS-DOS.

4. To start up MS Windows evaluate the following Lisp form:

(win:start-windows)�

or create a CLIM port:

(clim:find-port :server-path ’(:cloe))

You will be in a terminal WINFE (Window Front End) window. Note that this

window wraps when you fill the screen (it does not scroll).

You can now run your CLIM application. Note that you can compile, write, or load

CLIM files anytime, but you must have MS Windows running to run the CLIM

code.

Running CLIM Applications�

Note that when you are running a CLIM application in Cloe:

• CLIM applications usually fill the whole screen.

• You must have the input focus to type to a window. (The window title bar is

highlighted for a window with input focus.) Click in a window to give it the in-

put focus.

• You can type c-C anytime to cause a break and set the input focus back to the

Cloe Front End window. This causes the Cloe Front End window to come to the

top, and to be de-iconified if necessary. (To continue after a break use the de-

bugger Continue option.)

• With Windows running, you can switch between the MS-DOS executive and

CLIM using the standard Windows commands. You can also run any other Win-

dows program, as long as it doesn’t use memory already used by Cloe (most

Windows programs don’t). See Microsoft Windows User Guide by Microsoft Cor-

poration.

Page 1225

For more information, see the section "Running a CLIM Application".

Exiting from CLIM�

Use one of the following methods to exit from CLIM after Windows has started

up.

• Use the [Close] option from the leftmost pulldown menu

• Press ALT-F4 once (to exit Cloe), then again (to exit from Windows), and press

RETURN (to confirm).

Do not use (exit). Windows acts as a subprocess of Cloe (since it was activated

after Cloe). If Cloe exits, the Windows process hangs and you must reboot the ma-

chine.

Using CLIM in CLOE Developer

CLIM is not a system that application developers need to migrate. Symbolics sup-

plies a Cloe Runtime image with CLIM built in. Therefore, we recommend Cloe

Developer users load CLIM into a regular Genera listener, and then access CLIM

from Cloe.

Getting Started�

First, in a Genera Lisp Listener, give the following commands:

Load System CLIM

Load System GENERA-CLIM ;if you want the Genera port

Load System POSTSCRIPT-CLIM ;if you want the PostScript port

Load System CLIM-DEMO ;if you want the CLIM demos�

Next, in the Cloe Listener, give the following command:

Make CLIM Available�

Using the Debugger with CLIM under the Cloe Developer�

While experimenting with CLIM or debugging a CLIM application, if you go into

the Debugger, the Debugger cannot be displayed on a CLIM window. Assuming

that a CLIM window is exposed when the error happens, we recommend the fol-

lowing two-window approach.

For small experiments (such as running some example code from the documenta-

tion), we recommend you resize the Cloe Listener so that both the experimental

CLIM window and the Cloe Listener (on which the Debugger will appear) are both

exposed and non-overlapping.

To do this, use the System Menu commands (available by clicking sh-Right) to

move, reshape, and expand the windows so that both are exposed. For example,

when you are in the Cloe Listener, choose Reshape from the System Menu to make

the Cloe Listener window smaller. Then create the CLIM window. You can use the

Page 1226

Move command to move one of the windows so it does not overlap the other. You

can use the Expand command to make one of the windows take up the space not

occupied by the other window, so that the windows together take up the whole

screen.

You can easily switch from one window to the other by clicking Left on a window.

You can use the Cloe Lisp Listener window to use the Debugger, and use the

CLIM window to experiment with CLIM code.

For experiments with program frames (where you usually want to see a full-screen

version of your program), the two-window strategy may not be appropriate. For

these applications, you should consider the size of the window on the 386 PC. A

standard VGA screen is 640 horizontal by 480 vertical pixels. If you use these val-

ues to size the application, you can still use the two-window approach. If you ex-

pect your 386-based users to use 800x600 or 1024x768 resolution, you should use

the full screen technique described in "Using CLIM in Genera"

Setting up Your Packages to Use CLIM

You can use any of the following approaches for setting up your packages to use

CLIM. Using these approaches will give a high likelihood that your application can

be ported from one Common Lisp platform to another with minimal effort.

• Use an explicit clim: package prefix whenever referencing a symbol in CLIM,

and define your package as usual.

• Define your package to inherit from the clim and clim-lisp packages.

For example,

 (defpackage clim-user

 (:use clim-lisp clim))�

Note that you must inherit from both packages. The clim-lisp package provides

an implementation of Common Lisp that is similar to the draft ANSI standard,

with modifications to work with CLIM.

• Define a package that inherits from the Common Lisp dialect of your choice and

from the clim package.

For example,

Page 1227

(defpackage another-clim-user

 (:use clim common-lisp)

 #-Cloe-Runtime

 (:shadowing-import

 clim:input-stream-p

 clim:output-stream-p

 clim:open-stream-p

 clim:streamp

 clim:stream-element-type

 clim:close

 clim:pathname

 clim:truename))�

Note that you may need to use shadowing to resolve conflicts (the exact set of

conflicts will vary depending on what other package you inherit from).

Converting from Dynamic Windows to CLIM

The Dynamic Windows to CLIM conversion tool is a series of special-purpose

Zmacs commands that can save you time and effort in editing large pieces of Dy-

namic Windows code in ways that can be done semi-automatically.

Note: these conversion tools are supported only in Genera.

Depending on the complexity of your Dynamic Windows code, these tools may or

may not perform the conversion completely. You will probably need to perform ad-

ditional editing of your Dynamic Windows programs in order to generate working

CLIM programs. The closer your Dynamic Windows source program is to standard

Dynamic Windows, the more automatic the conversion process will be.

For more information on conversion tools in general, see the section "Conversion

Tools".

Though using the conversion tool is simple, the conversion task is not. For this

reason you must use the conversion tool with knowledge and care.

Prerequisites�

• You should be sufficiently comfortable with both Dynamic Windows and CLIM

systems to be aware of function equivalences and to understand the possible ef-

fects of a conversion (such as a changed order of argument evaluation for func-

tions whose calling sequence is different).

• You should be familiar with the basic workings of the Zmacs editor.�

Note: these conversion commands are intended as an aid to conversion, not as a

fully automatic conversion tool. Used properly, they will save you time and effort,

but you must monitor the results carefully after each step and be aware that you

might have to do some manual work after conversion. For instance, comments

might not end up exactly in the right place in the rearranged program, indentation

might change, converted functions might need some additions to the code, and so

Page 1228

on. Many CLIM functions support fewer options than their Dynamic Windows

counterparts, so conversion often removes these options from the program or

leaves them unconverted, which will cause a run-time error. Either way, you’ll

need to decide what you want the CLIM version of the program to do and adjust it

accordingly.

Getting Started

Load the CLIM and Conversion Tools systems (in either order).

Command: Load System CLIM

Command: Load System GENERA-CLIM ;if you want the Genera port

Command: Load System POSTSCRIPT-CLIM ;if you want the PostScript port

Command: Load System Conversion Tools�

Note: The CLX port of CLIM is not currently a supported port of CLIM under

Genera. It exists only as a sample port.

Conversion Procedures

1. Most Dynamic Windows programs are written in Symbolics Common Lisp. If

yours is written in Zetalisp, first convert it to Symbolics Common Lisp using

the Zetalisp to Common Lisp conversion tool (see the section "Zetalisp to

Common Lisp Conversion").

2. Convert your program to a new package using either of these commands:

m-X Convert Package of Buffer

m-X Convert Package of Tag Table�

This step is optional, but it is useful because it allows you to run the Dynam-

ic Windows and CLIM versions of the program side by side without them in-

terfering with each other. When you test and fix the CLIM version, it’s often

useful to have the original Dynamic Windows version available for compari-

son.

If you plan to convert your program to a more portable dialect of Common

Lisp, along with converting to CLIM, you should select a package in the

CLtL, CLtL-Only, or Cloe package universe.

3. Compile any macro definitions that your program uses. This step is optional,

but helps the next step work better. Some conversions, for example of com-

mand definitions, analyze the source code of your program and having all the

macro definitions available results in more accurate analysis.

4. Convert the Dynamic Windows functions to CLIM using either of these com-

mands with the ‘‘DW to CLIM’’ conversion set:

Page 1229

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table�

Read the queries carefully before answering them, and don’t type ahead. It is

often useful to accept conversions that are not quite correct; you will probably

need to do some manual conversion afterwards anyway, so it may be useful to

accept an automatic conversion that gets you closer to the goal (even if it

may not be exactly what you want).

5. Review the warnings printed during the conversion, check over the code by

hand, and compile it. You can use c-m-Scroll to review the warnings printed

in the typeout window. While checking over the code, you might want to fix

up the indentation and formatting; some of the more complex conversions

tend to mangle the indentation and line divisions, producing code that works

but is difficult to read.

6. Note that since a Dynamic Windows program-framework is a Flavors object,

and a CLIM application frame is a CLOS object, you may need to run the Fla-

vors to CLOS conversion tool before your CLIM program will compile.

See the section "Flavors to CLOS Conversion".

7. You might want to run the ‘‘Symbolics Common Lisp to Portable Common

Lisp’’ and ‘‘Common Lisp to Common Lisp Developer’’ conversion tools at this

time, especially if you selected a package universe other than Common Lisp in

step 2. See the section "Symbolics Common Lisp to Portable Common Lisp

Conversion".

When you are satisfied with your CLIM program, and it compiles without errors or

warnings, you can run it.

For example, to run your CLIM program under Genera use clim:define-genera-

application and the Select Activity command.

You can also use the following procedure:

 (setq *port* (clim:find-port))

 (setq *frame* (clim:make-application-frame ’your-frame-type :parent *port*))

 (clim:run-frame-top-level *frame*)�

Summary of Differences Between CLIM 1.1 and CLIM 2.0

CLIM 2.0 is a more robust product than CLIM 1.1. Many customer-requested fea-

tures have been added, and many bugs have been fixed.

However, the main reason for the existence of CLIM 2.0 is to provide integrated

support for gadgets and event management so that CLIM applications can use

many of the facilities found in standard toolkits. Some of the new features of

CLIM 2.0 include the following:

Page 1230

• A new window and event management model that supports use of standard user

interface toolkits when running on standard platforms, such as Motif under Alle-

gro or Lucid Common Lisp. Since Genera does not support toolkits like Motif,

CLIM 2.0 includes a set of gadgets, including scroll bars, push buttons, toggle

buttons, radio and check boxes, pull-down menus, sliders, text editing panes, and

list and option panes.

• Integration between CLIM’s gadgets and clim:accepting-values.

• A set of drawing functions that draw multiple graphics, for example, clim:draw-

lines* and clim:draw-rectangles*.

• CLIM 2.0 supports use of pixmaps, and has clim:with-output-to-pixmap and

clim:copy-area functions. This can be used to cache portions of a display that

needs to be rapidly, repeatedly drawn.

• Functions to read X11 bitmap files and convert them to CLIM patterns, such as

clim:make-pattern-from-bitmap-file.

• Keyboard gestures are now specified in a more portable fashion. For example,

what would have been #\control-X in CLIM 1.1 is now specified as (:x :con-

trol). This allows greater portability, but it is an incompatible change from

CLIM 1.1.

• A new form for defining drag-and-drop translators, called clim:define-drag-and-

drop-translator.

• The completion presentation types now support :printer and :highlighter op-

tions.

• The input editor has a much richer set of editing commands. Type control-Help

to see the entire set of commands.

• The appearance of the mouse cursor can be changed, either directly by calling

setf on clim:pointer-cursor, or by changing the cursor associated with a CLIM

sheet by calling setf on clim:sheet-pointer-cursor.

• Command tables may now inherit menu items from superior command tables.

• The command processor now tells you what the defaults are for keyword argu-

ments when you type Help while reading a command.

• clim:surrounding-output-with-border now takes drawing options.

• The graph formatter is now more sophisticated.

• The new clim-sys package contains a number of generally useful utilities.

• A number of new demos, including a ‘‘color chooser’’, a simple bitmap editor, a

simple graphical editor, a Peek-like utility, a data plotting program, and a

graphical browser. Note that these are demo programs; they are not intended to

be of product quality, but are meant to be instructive in the use of CLIM 2.0.

The CLIM Lisp Listener is particularly useful when you are debugging frag-

ments of CLIM code; type Select Lambda (symbol-shift-L) in Genera to use it.

Converting From CLIM 1.1 to CLIM 2.0

Page 1231

The CLIM 1.1 to CLIM 2.0 conversion tools are another set of commands like the

Dynamic Windows to CLIM conversion tools. Like the Dynamic Windows to CLIM

conversion tools, the CLIM 1.1 to CLIM 2.0 tools will not perform the conversion

completely. You will need to perform additional editing of your CLIM 1.1 programs

in order to generate working CLIM 2.0 programs.

Again, these conversion commands are intended as an aid to conversion to CLIM

2.0, not as a fully automatic conversion tool. Used properly, they will save you

time and effort, but you must monitor the results carefully after each step and be

aware that you might have to do some manual work after conversion.

Note: these conversion tools are supported only in Genera.

For more information on conversion tools in general, see the section "Conversion

Tools" and see the section "Converting from Dynamic Windows to CLIM".

Getting Started

Load the CLIM and Conversion Tools systems (in either order).

Command: Load System CLIM

Command: Load System GENERA-CLIM ;if you want the Genera port

Command: Load System POSTSCRIPT-CLIM ;if you want the PostScript port

Command: Load System Conversion Tools�

Conversion Procedures

1. Convert the CLIM 1.1 functions to CLIM 2.0 using either of these commands

with the ‘‘CLIM 1.1 to CLIM 2.0’’ conversion set:

m-X Convert Functions of Buffer

m-X Convert Functions of Tag Table�

Read the queries carefully before answering them, and don’t type ahead. It is

often useful to accept conversions that are not quite correct; you will probably

need to do some manual conversion afterwards anyway, so it may be useful to

accept an automatic conversion that gets you closer to the goal (even if it

may not be exactly what you want).

2. Review the warnings printed during the conversion, check over the code by

hand, and compile it. You can use c-m-Scroll to review the warnings printed

in the typeout window. While checking over the code, you might want to fix

up the indentation and formatting; some of the more complex conversions

tend to mangle the indentation and line divisions, producing code that works

but is difficult to read.

3. The CLIM 1.1 to CLIM 2.0 conversion tools do not convert the :panes and

:layouts options from clim:define-application-frame. You must do this your-

self.

Page 1232

When you are satisfied with your CLIM 2.0 program, and it compiles without er-

rors or warnings, you can run it.

Here are some of the incompatible changes from CLIM 1.1 to CLIM 2.0. Most of

these are picked up by the CLIM 1.1 to CLIM 2.0 conversion tools.

• The :panes and :layouts clauses to clim:define-application-frame are now com-

pletely different. The conversion tools do not handle this, since it is not clear

what should be done in many cases.

• clim:run-frame-top-level now takes keyword arguments. You must include &key

in your methods for this function.

• clim:set-frame-layout has been removed in favor of using setf on clim:frame-

current-layout.

• clim:frame-top-level-window is now called clim:frame-top-level-sheet.

• clim:command-enabled-p is now called clim:command-enabled. clim:disable-

command and clim:enable-command have been removed in favor of using setf

on clim:command-enabled.

• clim:open-root-window has been removed. Its closest replacement is clim:find-

port, although you may find that you rarely need to explicitly specify a port.

• The :stream, :object, and :type keyword arguments to clim:with-output-as-

presentation are now required arguments, since it was always necessary to sup-

ply these arguments.

• clim:+background+ is now called clim:+background-ink+, and

clim:+foreground+ is now called clim:+foreground-ink+. This was done to be

consistent with clim:+flipping-ink+.

• clim:make-color-rgb is now called clim:make-rgb-color, and clim:make-color-

ihs is now called clim:make-ihs-color.

• clim:draw-character, clim:draw-character*, clim:draw-string, and clim:draw-

string* have all been removed in favor of using clim:draw-text and clim:draw-

text*.

• clim:draw-icon and clim:draw-icon* are now called clim:draw-pattern*.

• The argument order to clim:with-text-style, clim:with-text-family, clim:with-

text-face, and clim:with-text-size has been changed so that the stream argu-

ment is first.

• clim:stream-cursor-position* is now called clim:stream-cursor-position,

clim:stream-set-cursor-position* is now called clim:stream-set-cursor-position,

and clim:stream-increment-cursor-position* is now called clim:stream-

increment-cursor-position.

• clim:cursor-position* is now called clim:cursor-position, and clim:cursor-set-

position* is now called clim:cursor-set-position.

• The argument order to clim:with-end-of-line-action and clim:with-end-of-page-

action has been changed so that the stream argument is first.

• clim:stream-pointer-position* is now called clim:stream-pointer-position, and

clim:stream-set-pointer-position* is now called clim:stream-set-pointer-

position.

Page 1233

• clim:pointer-position* is now called clim:pointer-position, and clim:pointer-set-

position* is now called clim:pointer-set-position.

• clim:event-window is now called clim:event-sheet.

• clim:pointer-event-shift-mask is now called clim:event-modifier-state.

• The :inter-column-spacing, :inter-row-spacing, and :multiple-columns-inter-

column-spacing keyword arguments to clim:formatting-table have been re-

named to :x-spacing, :y-spacing, and :multiple-columns-x-spacing.

• The :minimum-width and :minimum-height keyword arguments to

clim:formatting-cell have been renamed to :min-width and :min-height.

• The :inter-column-spacing, :inter-row-spacing, and :no-initial-spacing keyword

arguments to clim:formatting-item-list and clim:format-items have been re-

named to :x-spacing, :y-spacing, and :initial-spacing.

• The :inter-column-spacing and :inter-row-spacing keyword arguments to

clim:menu-choose and clim:draw-standard-menu have been renamed to :x-

spacing and :y-spacing.

• The :draw-p and :record-p keyword arguments to clim:with-output-recording-

options have been renamed to :draw and :record.

• clim:*unsupplied-argument* is now called

clim:*unsupplied-argument-marker*.

• The :inter-column-spacing and :inter-row-spacing keyword arguments to

clim:display-command-table-menu has been renamed to :x-spacing and :y-

spacing.

• The :test keyword argument has been removed from clim:add-command-to-

command-table, clim:add-keystroke-to-command-table, and clim:remove-

keystroke-from-command-table.

• The :keystroke-test keyword argument has been removed from clim:read-

command and clim:read-command-using-keystrokes.

• clim:window-viewport-position* is now called clim:window-viewport-position,

and clim:window-set-viewport-position* is now called clim:window-set-

viewport-position.

• clim:position-window-near-carefully is now called

clim:position-sheet-carefully.

• clim:position-window-near-pointer is now called clim:position-sheet-near-

pointer.

• clim:size-menu-appropriately is now called clim:size-frame-from-contents.

• clim:stream-draw-p is now called clim:stream-drawing-p, and clim:stream-

record-p is now called clim:stream-recording-p.

• clim:output-record-position* is now called clim:output-record-position, and

clim:output-record-set-position* is now called clim:output-record-set-position.

• clim:output-record-element-count is now called clim:output-record-count.

• clim:output-record-elements is now called clim:output-record-children.

Page 1234

• clim:output-record-refined-sensitivity-test is now called clim:output-record-

refined-position-test.

• clim:output-recording-stream-output-record is now called clim:stream-output-

history.

• clim:output-recording-stream-current-output-record-stack is now called

clim:stream-current-output-record.

• clim:output-recording-stream-replay is now called clim:stream-replay.

• clim:add-output-record is now called clim:stream-add-output-record.

• clim:add-output-record-element is now called clim:add-output-record, and

clim:delete-output-record-element is now called clim:delete-output-record.

• clim:map-over-output-record-elements is now called clim:map-over-output-

records, clim:map-over-output-record-elements-containing-point* is now called

clim:map-over-output-records-containing-position, and clim:map-over-output-

record-elements-overlapping-region is now called clim:map-over-output-

records-overlapping-region.

• clim:dragging-output-record is now called clim:drag-output-record.

• The frame argument to clim:find-presentation-translators is now a command-

table argument.

• The :shift-mask keyword argument to clim:test-presentation-translator,

clim:find-applicable-translators, clim:presentation-matches-context-type, and

clim:find-innermost-applicable-presentation is now a :modifier-state argument.

• clim:define-gesture-name uses a completely different syntax for specifying the

gesture, and clim:add-pointer-gesture-name has been replace by clim:add-

gesture-name.

• clim:remove-pointer-gesture-name is now called clim:delete-gesture-name.

• clim:dialog-view is now called clim:textual-dialog-view, and clim:+dialog-view+
is now called clim:+textual-dialog-view+.

• clim:menu-view is now called clim:textual-menu-view, and clim:+menu-view+
is now called clim:+textual-menu-view+.

• clim:call-presentation-generic-function has been replaced by a pair of func-

tions, clim:apply-presentation-generic-function and clim:funcall-presentation-

generic-function.

• The :activation-characters, :additional-activation-characters, :blip-characters,

and :additional-blip-characters to clim:accept are now called :activation-

gestures, :additional-activation-gestures, :delimiter-gestures, and :additional-

delimiter-gestures.

• clim:*activation-characters* is now called clim:*activation-gestures*, and

clim:*standard-activation-characters* is now called clim:*standard-activation-

gestures*.

• clim:*blip-characters* is now called clim:*delimiter-gestures*.

• clim:activation-character-p is now called clim:activation-gesture-p, clim:blip-

character-p is now called clim:delimiter-gesture-p.

Page 1235

• clim:with-activation-characters is now called clim:with-activation-gestures,

and clim:with-blip-characters is now called clim:with-delimiter-gestures.

• clim:*abort-characters* is now called clim:*abort-gestures*.

• clim:*complete-characters* is now called clim:*completion-gestures*,

clim:*help-characters* is now called clim:*help-gestures*, and

clim:*possibilities-characters* is now called clim:*possibilities-gestures*.

• clim:input-position is now called clim:stream-scan-pointer, and clim:insertion-

pointer is now called clim:stream-insertion-pointer, and clim:rescanning-p is

now called clim:stream-rescanning-p.

• The right and bottom arguments to clim:with-bounding-rectangle* are now re-

quired.

• clim:point-position* is now called clim:point-position.

• clim:region-contains-point*-p is now called clim:region-contains-position-p.

• clim:bounding-rectangle-position* is now called clim:bounding-rectangle-

position, and clim:bounding-rectangle-set-position* is now called

clim:bounding-rectangle-set-position.

• The argument order to clim:make-3-point-transformation and clim:make-3-

point-transformation* has been changed.

• clim:compose-rotation-transformation is now called clim:compose-rotation-

with-transformation, clim:compose-scaling-transformation is now called

clim:compose-scaling-with-transformation, and clim:compose-translation-

transformation is now called clim:compose-translation-with-transformation.

• clim:transform-point* is now called clim:transform-position, and

clim:untransform-point* is now called clim:untransform-position.�

Using the CLIM Demos

The CLIM Demo system provides a number of examples of small and medium-sized

applications that use CLIM. They all run as part of a demo loop that uses a CLIM

menu to let you choose which demo to run. The source files for the CLIM demos

in included in SYS:CLIM;REL-2;DEMO;*.LISP. You may find that reading the source

code for the CLIM demos will provide many useful hints and techniques for writ-

ing your own CLIM applications.

This section describes how to run the CLIM demos.

To run the demos:

• Ensure that the CLIM system is loaded, plus an appropriate back-end (such as

Genera-CLIM). Then load the system CLIM-DEMOS.

• To run the demos, evaluate the form (clim-demo:start-demo). If you are run-

ning Genera, you can also use the :Demonstrate CLIM command. This will pop up

a menu of the demos to run.

Page 1236

If you are using Genera, you may also want to try the CLIM demos using the

‘‘gadget menu bar’’ style of frame manager. You can do this by evaluating the fol-

lowing:

(clim-demo:start-demo

 :framem (clim:find-frame-manager :gadget-menu-bar t))

�

The following sections describe the operation of each of the demos.

The CLIM Lisp Listener�

This is a simple Lisp Listener (in SYS:CLIM;REL-2;DEMO;LISTENER.LISP). It includes

a basic Lisp read-eval-print loop to which you can type either Lisp forms or CLIM

commands. It includes a mouse documentation line and provides a scrollable histo-

ry. The available commands include Show Directory, Show File, Compile File, Load

File, and so forth. You may find the CLIM Lisp Listener very useful when debug-

ging small CLIM programs.

Some of the techniques used in the CLIM Lisp Listener include:

• Use of a custom top-level loop that reads both commands and Lisp forms, and

uses keystroke accelerators.

• Use of patterns as a prompt.

• Use of some interesting presentation translators.�

Note that, by default, *debug-io* is not rebound to the CLIM Lisp Listener win-

dow, so any error needs to be dealt with in some other window.

You can use the Quit command to exit from the CLIM Lisp Listener back to the

demo menu. Under Genera, you can use Select λ (that is, lambda or symbol-

shift-L) to create a CLIM Lisp Listener that runs in its own process.

The Graphics Demo�

This is a simple application (in SYS:CLIM;REL-2;DEMO;GRAPHICS-DEMOS.LISP) that

demonstrates some of the graphics facilities in CLIM. This demo uses color, which

appears as stipple patterns on a monochrome system. It also uses transformations.

The CAD Demo�

This demo is a very simple CAD system (in SYS:CLIM;REL-2;DEMO;CAD-DEMO.LISP)

that lets you build up logic circuits using ‘‘and’’ and ‘‘or’’ gates. When you run it,

click on the [Setup] command menu button, and it will display an example circuit.

You can select gates or gate nodes with the mouse; look at the mouse documenta-

tion line to see what operations are available. You can also create new components

and connect them together.

Some of the techniques used in the CAD Demo include:

• Use of a custom output records that implement the logic components.

Page 1237

• Use of custom highlighting.

• Use of a purely menu-driven command interaction style.

• Use of clim:drag-output-record.�

Note: feedback circuits will cause the CAD demo program to crash.

The Flight Planning Demo �

This example (in SYS:CLIM;REL-2;DEMO;NAVFUN.LISP) sets up an application frame

with a map of most of the airports in eastern Massachusetts. The airports and vi-

sual references are selectable for various activities such as querying distance be-

tween airports and building up a flight plan. This application demonstrates the

power of inheritance of presentation types for accepting objects.

Some of the techniques used in the Flight Planner include:

• Use of a number presentation types, using specialization and inheritance to con-

trol user interface behavior.

• Use of custom highlighting.

• Use of dialogs.

• Use of table formatting.�

The 15 Puzzle�

This example (in SYS:CLIM;REL-2;DEMO;PUZZLE.LISP) is an implementation of the 15

puzzle described in the CLIM Tutorial.

The 15 Puzzle uses a simple direct-manipulation interaction style, and uses incre-

mental redisplay in conjunction with table formatting.

The Address Book Demo�

This example (in SYS:CLIM;REL-2;DEMO;ADDRESS-BOOK.LISP) is an implementation of

a simple address book. You can look up, add, or remove addresses, and edit exist-

ing entries.

The Thinkadot Demo�

This example (in SYS:CLIM;REL-2;DEMO;THINKADOT.LISP) is an implementation of the

mechanical ‘‘Thinkadot’’ game.

The Plotting Demo�

This example (in SYS:CLIM;REL-2;DEMO;PLOT.LISP) is a simple data plotting applica-

tion. There are a number of interesting techniques used in the application:

• Using clim:tracking-pointer to select a region on a window, including modifica-

tion of the pointer cursor.

• Sophisticated use of formatted output facilities.

Page 1238

• Use of a modeless dialog pane.

• Use of a presentation action to implement ‘‘drag scrolling’’.�

The Color Chooser�

This example (in SYS:CLIM;REL-2;DEMO;COLOR-EDITOR.LISP) uses slider gadgets to

implement a color chooser. You can drag a slider in either the RGB or IHS panes

to change the color of the color swatch. The main techniques used in this program

are:

• A custom pane to implement the color swatch.

• An ‘‘exit’’ push button.

• Two sets of ‘‘linked’’ sliders that track each other.�

The Boxes-and-Wires Editor�

The boxes-and-wires editor (in SYS:CLIM;REL-2;DEMO;GRAPHICS-EDITOR.LISP) is a pro-

gram that allows you to create diagrams consisting of boxes optionally connected

by wires. As you drag a box around, the wires track the boxes. You can also select

a box and perform some operations on the selected box.

The interesting techniques in the program are:

• Use of incremental redisplay and ‘‘redisplay ticks’’ that control when redisplay

should occur.

• Use of clim:tracking-pointer.

• Use of CLIM’s bounding rectangle functions.

• Use of multiple command tables to group related commands.

• Use of a presentation type with a graphical interface to represent line thickness

and style.�

The Bitmap Editor�

The bitmap editor (in SYS:CLIM;REL-2;DEMO;BITMAP-EDITOR.LISP) allows you to cre-

ate a little ‘‘bitmap’’ (actually, a CLIM pattern). The main interesting thing in

this program is the way the grid is built up, the way cells in the grid are modi-

fied, and how the grid is connected to the display of the pattern represented by

the grid pane.

The Icosahedron Demo�

The file SYS:CLIM;REL-2;DEMO;ICO.LISP implements the traditional ‘‘Ico’’ demo that

can be found on almost everywhere. You can ‘‘throw’’ or ‘‘catch’’ an icosahedral

‘‘ball’’, which bounces around the display pane.

Page 1239

The CLIM Browser�

The CLIM Browser (in SYS:CLIM;REL-2;DEMO;BROWSER.LISP) implements an extensi-

ble, graphical browser. To use it, first select the type of thing you want to browse

(classes, packages, or whatever), then the primary ‘‘axis’’ along which you want

browse (subclasses, superclasses, or whatever). Then use the Show Graph command

to get an initial display. Once there is an initial display, you can click on nodes in

the graph to add, remove, or hide nodes, ‘‘ellipsize’’ a node, or expand an ellipsis.

You can also get a hardcopy of a graph.

The interesting techniques in this program are:

• Sophisticated use of incremental redisplay in conjunction with graph formatting,

and use of ‘‘redisplay ticks’’ that control when redisplay should occur.

• Use of multiple command tables to group related commands.�

The ‘‘Peek’’ Demo�

The ‘‘Peek’’ Demo (in SYS:CLIM;REL-2;DEMO;PEEK-FRAME.LISP) is a small process sta-

tus program. It demonstrates another way to use incremental redisplay.

The Custom Output Records Demo�

The Customer Output Records Demo (in SYS:CLIM;REL-2;DEMO;CUSTOM-RECORDS.LISP)

shows the benefit of using special-purpose output records when you can take ad-

vantage of detailed knowledge of your application’s data. This program displays the

same data set three different ways. The simplest (and slowest) way simply creates

a new presentation for each point in the data set and display that. A somewhat

better technique is to use each data point as its own presentation; this is possible

because each point already has knowledge about where is will be displayed. The

best technique (at least for this application) is to create a ‘‘container’’ output

record that holds all of the data points, and then display that. For this application,

the third technique is about three times faster than the first.

Drawing Graphics in CLIM

Concepts of Drawing Graphics in CLIM

Drawing Functions and Options�

CLIM offers a set of drawing functions for drawing points, lines, polygons, rectan-

gles, ellipses, circles, and text. You can affect the way the geometric objects are

drawn by supplying drawing options to the drawing functions. The drawing options

support clipping, transformation, line style, text style, ink, and other aspects of the

graphic to be drawn (see the section "Using CLIM Drawing Options").

In many cases, it is convenient to use clim:with-drawing-options to surround sev-

eral calls to drawing functions, each using the same options. You can override one

Page 1240

or more drawing options in any given call by supplying keywords to the drawing

functions themselves. Using clim:with-drawing-options around several drawing

functions that would otherwise use the same options is also more efficient than

supplying the drawing options separately to each drawing function.

The Drawing Plane�

When drawing graphics in CLIM, you imagine that they appear on a drawing

plane. The drawing plane extends infinitely in four directions and has infinite reso-

lution (no pixels). A line that you draw on the drawing plane is infinitely thin. The

drawing plane provides an idealized version of the graphics you draw; it has no

material existence and cannot be viewed directly.

Of course, you intend that the graphics should be visible to the user, and must be

presented on a real display device. CLIM transfers the graphics from the drawing

plane to the display device via the rendering process. Because the display device is

hardware that has physical constraints, the rendering process is forced to compro-

mise when it draws the graphics on the device. The actual visual appearance on

the display device is only an approximation of the idealized drawing plane.

Figure 38 shows the conceptual model of the drawing functions sending graphical

output to the drawing plane, and the graphics being transferred to a screen by

rendering.

Drawing
Plane

Screen

Drawing
Functions

rendering

�

Figure 59. Rendering from Drawing Plane to Window�

The distinction between the idealized drawing plane and the real window enables

you to develop programs without considering the constraints of a real window or

other specific output device. This distinction makes CLIM’s drawing model highly

portable.

CLIM application programs can inquire about the constraints of a device, such as

its resolution and other characteristics, and modify the desired visual appearance

on that basis. This practice trades portability for a finer degree of control of the

appearance on a given device. (Note: Currently, this feature is not fully imple-

mented.)

Page 1241

Coordinates�

When producing graphic output on the drawing plane, you indicate where to place

the output with coordinates. Coordinates are a pair of numbers that specify the X

and Y placement of a point. When a window is first created, the origin (that is,

x=0, y=0) of the drawing plane is positioned at the top-left corner of the window.

Figure 39 shows the orientation of the drawing plane, X extends toward the right,

and Y extends downward.

X

Y

�

Figure 60. X and Y Axes of Drawing Plane�

As the window scrolls downward, the origin of the drawing plane moves above the

top edge of the window. Because windows maintain an output history, the Y-axis

can extend to a great length. In many cases, it is burdensome to keep track of the

coordinates of the drawing plane, and it can be easier to think in terms of a local

coordinate system.

For example, you might want to draw some business graphics as shown in Figure

40. For these graphics, it is more natural to think in terms of the Y-axis growing

upwards, and to have an origin other than the origin of the drawing plane, which

might be very far from where you want the graphics to appear. You can create a

local coordinate system in which to produce your graphics. The way you do this is

to define a transformation which informs CLIM how to map from the local coordi-

nate system to the coordinates of the drawing plane. For more information, see

clim:with-room-for-graphics.

Page 1242

local X

local Y

X

Y

�

Figure 61. Using a Local Coordinate System�

�

Sheets and Streams, and Mediums�

A sheet is the most basic window-like object supported by CLIM. It has two prima-

ry properties: a region, and a transformation that relates its coordinate system to

the coordinate system of its parent. A stream is a special kind of sheet that imple-

ments the stream protocol; streams include additional state such as the current

text cursor position (which is some point in the drawing plane).

A medium is an object on which drawing takes place. A medium has as attributes:

a drawing plane, the medium’s foreground and background, a drawing ink, a

transformation, a clipping region, a line style, a text style, and a default text style.

Sheets and streams that support output have a medium as one of their attributes.

The drawing functions take a medium argument that specifies the destination for

output. The drawing functions are specified to be called on mediums, but they can

be called on most sheets and streams as well.

The medium keeps track of default drawing options, so if drawing functions are

called and some options are unspecified, they default to the values maintained by

the medium.

Different medium classes are provided to allow users to draw on different sorts of

devices, such as displays and printers.

Examples of Using CLIM Drawing Functions

Figure 41 shows the result of evaluating the following forms:

(clim:draw-rectangle* *my-window* 10 10 200 150

 :filled nil :line-thickness 2)

Page 1243

�

(clim:draw-line* *my-window* 200 10 10 150)

(clim:draw-point* *my-window* 180 25)

(clim:draw-circle* *my-window* 100 75 40 :filled nil)

(clim:draw-ellipse* *my-window* 160 110 30 0 0 10 :filled nil)

(clim:draw-ellipse* *my-window* 160 110 10 0 0 30)

(clim:draw-polygon* *my-window* ’(20 20 50 80 40 20) :filled nil)

(clim:draw-polygon* *my-window* ’(30 90 40 110 20 110))

�

�

Figure 62. Simple Use of the Drawing Functions

�

�

CLIM Drawing Functions

Most of CLIM’s drawing functions come in pairs. One function takes two argu-

ments to specify a point by its X and Y coordinates; the corresponding function

takes one argument, a point object. The function accepting a point object has a

name without an asterisk (*), and the function accepting coordinates of the point

has the same name with an asterisk appended to it. For example, clim:draw-point

accepts a point object, and clim:draw-point* accepts coordinates of a point. We ex-

pect that using the functions that take spread point arguments and specifying

points by their coordinates will be more convenient in most cases. (If you prefer

to create and use point objects, see the section "CLIM Point Objects").

The drawing functions take keyword arguments specifying drawing options. For in-

formation on the drawing options, see the section "Using CLIM Drawing Options".

The following drawing functions operate on either either mediums, or sheets and

streams. When called on an output recording stream that has output recording en-

abled, these functions all record their output.

Page 1244

clim:draw-point medium point &key :line-style :line-thickness :line-unit :ink :clip-

ping-region :transformation

Draws a point on medium at the position indicated by point.

clim:draw-point* medium x y &key :line-style :line-thickness :line-unit :ink :clip-

ping-region :transformation

Draws a point on medium at the position indicated by x and y.

clim:draw-points medium point-seq &key :line-style :line-thickness :line-unit :ink

:clipping-region :transformation

Draws a set of points on medium. point-seq is a sequence of point objects

specifying where a point is to be drawn.

clim:draw-points* medium coord-seq &key :line-style :line-thickness :line-unit :ink

:clipping-region :transformation

Draws a set of points on medium. coord-seq is a sequence of pairs of X/Y

pairs. Each pair specifies a point to be drawn.

clim:draw-line medium point-1 point-2 &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation

Draws a line segment on medium. The line starts at the position speci-

fied by point-1 and ends at the position specified by point-2, two point

objects.

clim:draw-line* medium x1 y1 x2 y2 &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation

Draws a line segment on medium. The line starts at the position speci-

fied by (x1, y1), and ends at the position specified by (x2, y2).

clim:draw-lines medium point-seq &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation

Draws a set of disconnected line segments onto medium. point-seq is a

sequence of pairs of points. Each point pair specifies the starting and

ending point of a line.

clim:draw-lines* medium coord-seq &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation

Draws a set of disconnected line segments onto medium. coord-seq is a

sequence of pairs of X and Y positions. Each pair of X/Y pairs specifies

the starting and ending point of a line.

clim:draw-arrow medium start-point end-point &key :from-head (:to-head t) (:head-

length 10) (:head-width 5) :line-style :line-thickness :line-unit :line-dashes

:line-cap-shape :ink :clipping-region :transformation

Draws an arrow on medium. The arrow starts at the position specified

by start-point and ends with the arrowhead at the position specified by

end-point, two point objects.

clim:draw-arrow* medium x1 y1 x2 y2 &key :from-head (:to-head t) (:head-length

10) (:head-width 5) :line-style :line-thickness :line-unit :line-dashes :line-

cap-shape :ink :clipping-region :transformation

Draws an arrow on medium. The arrow starts at the position specified

Page 1245

by (x1,y1) and ends with the arrowhead at the position specified by

(x2,y2).

clim:draw-polygon medium point-seq &key (:closed t) (:filled t) :line-style :line-

thickness :line-unit :line-dashes :line-joint-shape :line-cap-shape :ink :clip-

ping-region :transformation

Draws a polygon, or sequence of connected lines, on medium. The key-

word arguments control whether the polygon is closed (each segment is

connected to two other segments) and filled. point-seq is a sequence of

points that indicate the start of a new line segment.

clim:draw-polygon* medium coord-seq &key (:closed t) (:filled t) :line-style :line-

thickness :line-unit :line-dashes :line-joint-shape :line-cap-shape :ink :clip-

ping-region :transformation

Draws a polygon, or sequence of connected lines, on medium. The key-

word arguments control whether the polygon is closed (each segment is

connected to two other segments) and filled. coord-seq is a sequence of

alternating X and Y positions that indicate the start of a new line seg-

ment.

clim:draw-rectangle medium point1 point2 &rest args &key :line-style :line-

thickness :line-unit :line-dashes :line-joint-shape :ink :clipping-region

:transformation (:filled t)

Draws an axis-aligned rectangle on medium. The boundaries of the rect-

angle are specified by the two points point1 and point2.

clim:draw-rectangle* medium x1 y1 x2 y2 &key (:filled t) :line-style :line-thickness

:line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation�

Draws an axis-aligned rectangle on medium. The boundaries of the rect-

angle are specified by x1, y1, x2, and y2.

clim:draw-rectangles medium point-seq &rest args &key :line-style :line-thickness

:line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation

(:filled t)

Draws a set of axis-aligned rectangles on medium. point-seq is a se-

quence of pairs of points.

clim:draw-rectangles* medium coord-seq &rest args &key :line-style :line-thickness

:line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation

(:filled t)

Draws a set of axis-aligned rectangles on medium. coord-seq is a se-

quence of 4-tuples x1, y1, x2, and y2, with (x1,y1) at the upper left and

(x2,y2) at the lower right in the standard +Y-downward coordinate sys-

tem.

clim:draw-ellipse medium point radius-1-dx radius-1-dy radius-2-dx radius-2-dy

&key :start-angle :end-angle (:filled t) :line-style :line-thickness :line-unit

:line-dashes :line-cap-shape :ink :clipping-region :transformation

Draws an ellipse or elliptical arc on medium. The center of the ellipse is

specified by point.

Page 1246

clim:draw-ellipse* medium center-x center-y radius-1-dx radius-1-dy radius-2-dx ra-

dius-2-dy &key :start-angle :end-angle (:filled t) :line-style :line-thickness

:line-unit :line-dashes :line-cap-shape :ink :clipping-region :transformation

Draws an ellipse or elliptical arc on medium. The center of the ellipse is

specified by center-x and center-y.

clim:draw-circle medium center radius &key :start-angle :end-angle (:filled t) :line-

style :line-thickness :line-unit :line-dashes :line-cap-shape :ink :clipping-

region :transformation

Draws a circle or arc on medium. The center of the circle is specified by

center, and the radius is specified by radius.

clim:draw-circle* medium center-x center-y radius &key :start-angle :end-angle

(:filled t) :line-style :line-thickness :line-unit :line-dashes :line-cap-shape

:ink :clipping-region :transformation

Draws a circle or arc on medium. The center of the circle is specified by

center-x and center-y, and the radius is specified by radius.

clim:draw-oval medium point x-radius y-radius &key (:filled t) :line-style :line-

thickness :line-unit :line-dashes :line-cap-shape :ink :clipping-region :trans-

formation

Draws an oval, that is, a ‘‘race-track’’ shape, centered on point, a point

object, with the specified X and Y radii.

clim:draw-oval* medium center-x center-y x-radius y-radius &key (:filled t) :line-

style :line-thickness :line-unit :line-dashes :line-cap-shape :ink :clipping-

region :transformation

Draws an oval, that is, a ‘‘race-track’’ shape, centered on (center-x

center-y), with the specified X and Y radii.

clim:draw-text medium text point &key (:start 0) :end (:align-x :left) (:align-y

:baseline) :towards-point :text-style :text-family :text-face :text-size :ink :clip-

ping-region :transformation

Draws text onto medium starting at the position specified by point. text

can be either a character or a string.

clim:draw-text* medium text x y &key (:start 0) :end (:align-x :left) (:align-y

:baseline) :towards-x :towards-y :text-style :text-family :text-face :text-size

:ink :clipping-region :transformation

Draws text onto medium starting at the position specified by x and y. text

can be either a character or a string.

clim:draw-design design stream &key :ink :clipping-region :transformation :line-style

:unit :thickness :joint-shape :cap-shape :dashes :text-style :text-family :text-

face :text-size

Draws design onto medium.

clim:draw-pattern* stream pattern x y &key :clipping-region :transformation

Draws the pattern pattern on stream at the position (x,y).

clim:draw-pixmap medium pixmap point &rest args &key :ink :clipping-region

:transformation (:function boole-1)

Page 1247

Draws the pixmap pixmap on medium at the position point, creating a

‘‘pixmap output record’’ if medium is an output recording stream. :func-

tion is a boolean operation that controls how the source and destination

bits are combined.

clim:draw-pixmap* medium pixmap x y &rest args &key :ink :clipping-region

:transformation (:function boole-1)

Draws the pixmap pixmap on medium at the position (x,y), creating a

‘‘pixmap output record’’ if medium is an output recording stream. :func-

tion is a boolean operation that controls how the source and destination

bits are combined.

CLIM also provides some drawing functions that operate only on mediums. These

functions take no drawing options directly, but instead use the drawing state in

the medium. You may want to use these functions when you need higher perfor-

mance than the ordinary drawing functions provide, but they are somewhat less

convenient and do not support output recording.

clim:medium-draw-point* medium x y

Draws a point on the medium medium. The point is drawn at (x,y),

transformed by the medium’s current transformation.

clim:medium-draw-points* medium position-seq

Draws a set of points on the medium medium. position-seq is a sequence

of coordinate pairs, which are real numbers. The coordinates in position-

seq are transformed by the medium’s current transformation.

clim:medium-draw-line* medium x1 y1 x2 y2

Draws a line on the medium medium. The line is drawn from (x1,y1) to

(x2,y2), with the start and end positions transformed by the medium’s

current transformation.

clim:medium-draw-lines* medium position-seq

Draws a set of disconnected lines on the medium medium. position-seq is

a sequence of coordinate pairs, which are real numbers. The coordinates

in position-seq are transformed by the medium’s current transformation.

clim:medium-draw-polygon* medium position-seq closed filled

Draws a polygon or polyline on the medium medium. position-seq is a se-

quence of coordinate pairs, which are real numbers. The coordinates in

position-seq are transformed by the medium’s current transformation.

clim:medium-draw-rectangle* medium x1 y1 x2 y2 filled

Draws a rectangle on the medium medium. The corners of the rectangle

are at (x1,y1) and (x2,y2), with the corner positions transformed by the

medium’s current transformation. If filled is t, the rectangle is filled,

otherwise it is not.

clim:medium-draw-rectangles* medium position-seq filled

Draws a set of rectangles on the medium medium. position-seq is a se-

quence of coordinate pairs, which are real numbers. The coordinates in

position-seq are transformed by the medium’s current transformation. If

filled is t, the rectangles are filled, otherwise they are not.

Page 1248

clim:medium-draw-ellipse* medium center-x center-y radius-1-dx radius-1-dy radius-

2-dx radius-2-dy start-angle end-angle filled

Draws an ellipse on the medium medium. The center of the ellipse is at

(x,y), and the radii are specified by the two vectors (radius-1-dx,radius-1-

dy) and (radius-2-dx,radius-2-dy). The center point and radii are trans-

formed by the medium’s current transformation.

clim:medium-draw-text* medium string-or-char x y start end align-x align-y to-

wards-x towards-y transform-glyphs

Draws a character or a string on the medium medium. The text is

drawn starting at (x,y), and towards (toward-x,toward-y); these positions

are transformed by the medium’s current transformation.

If you need even higher performance, you can draw directly on the underlying host

window system object, but using this technique sacrifices portability. The following

functions provide the necessary low-level access to the components of the medium

and its owning sheet.

clim:with-medium-state-cached (medium) &body body

Declares that all of the drawing operations within body will use exactly

the same drawing options. This allows CLIM back-ends to cache the

state of the medium so that the medium does not need to be ‘‘decoded’’
for each drawing operation.

clim:medium-sheet medium

Returns the sheet with which the medium medium is associated.

clim:medium-drawable medium

Returns the host window system object (or ‘‘drawable’’) that is drawn on

by the CLIM drawing functions when they are called on medium.

clim:sheet-device-region sheet

Returns a region object that describes the region that sheet occupies on

the display device. The coordinates are in the host’s native window coor-

dinate system.

clim:sheet-device-transformation sheet

Returns a transformation that converts coordinates in sheet’s coordinate

system into native coordinates on the display device.

For example, the following code might be used by a CLX-based port of CLIM to

draw lines (where convert-to-device-coordinates transforms and ‘‘fixes’’ its coor-

dinates, and decode-ink-and-region ‘‘decodes’’ the ink and region into a X Win-

dows gcontext).

Page 1249

(defmethod medium-draw-line* ((medium clx-medium) x1 y1 x2 y2)

 (let* ((sheet (clim:medium-sheet medium))

 (transform (clim:sheet-device-transformation sheet))

 (region (clim:sheet-device-region sheet))

 (ink (clim:medium-ink medium))

 (line-style (clim:medium-line-style medium))

 (drawable (clim:medium-drawable medium)))

 (convert-to-device-coordinates transform x1 y1 x2 y2)

 (xlib:draw-line drawable

 (decode-ink-and-region ink region)

 x1 y1 x2 y2)))�

General Geometric Objects in CLIM

Regions in CLIM

A region is an object that denotes a set of points in the plane. Regions include

their boundaries; that is, they are closed. Regions have infinite resolution.

A bounded region is a region that contains at least one point and for which there

exists a number, d, called the region’s diameter, such that if p1 and p2 are points

in the region, the distance between p1 and p2 is always less than or equal to d.

An unbounded region either contains no points or contains points that are arbitrar-

ily far apart.

Another way to describe a region is that it maps every (x,y) pair into either true

or false (meaning member or not a member, respectively, of the region).

The following classes are what CLIM uses to classify the various types of regions.

All regions are a subclass of region, and all bounded regions are also a subclass of

either clim:point, clim:path, or clim:area.

clim:region

The protocol class that corresponds to a set of points.

clim:point

The protocol class that corresponds to a mathematical point.

clim:path

This is a subclass of clim:region that denotes regions that have dimen-

sionality 1. If you want to create a new class that obeys the path proto-

col, it must be a subclass of clim:path.

clim:area

This is a subclass of clim:region that denotes regions that have dimen-

sionality 2 (that is, have area). If you want to create a new class that

obeys the area protocol, it must be a subclass of clim:area.

Page 1250

These two constants represent the regions that correspond, respectively, to all of

the points on the drawing plane and none of the points on the drawing plane.

clim:+everywhere+
The region that includes all the points on the infinite drawing plane.

clim:+nowhere+
The empty region (the opposite of clim:+everywhere+).

Region Predicates in CLIM

The following functions can be used to examine certain aspects of regions, such as

whether two regions are equal or if they overlap.

clim:region-equal region1 region2

Returns t if region1 and region2 contain exactly the same set of points,

otherwise returns nil.

clim:region-contains-region-p region1 region2

Returns t if all points in region2 are members of region1, otherwise re-

turns nil.

clim:region-contains-position-p region x y

Returns t if the point (x,y) is contained in region, otherwise returns nil.

This is a special case of clim:region-contains-region-p.

clim:region-intersects-region-p region1 region2

Returns nil if clim:region-intersection of the two regions would be

clim:+nowhere+, otherwise returns t.

Composition of CLIM Regions

Region composition in CLIM is the process in which two regions are combined in

some way (such as union or intersection) to produce a third region.

Since all regions in CLIM are closed, region composition is not always equivalent

to simple set operations. Instead, composition attempts to return an object that has

the same dimensionality as one of its arguments. If this is not possible, then the

result is defined to be an empty region, which is canonicalized to clim:+nowhere+.
(For instance, the intersection of two lines that cross each other at a point is

empty.) The exact details of this are specified with each function.

Sometimes, composition of regions can produce a result that is not a simple con-

tiguous region. For example, clim:region-union of two rectangular regions might

not be rectangular. In order to support cases like this, CLIM has the concept of a

region set, which is an object that represents one or more region objects related by

some region operation, usually a union.

clim:region-union region1 region2

Returns a region that contains all points that are in either region1 or

region2 (possibly with some points removed to satisfy the dimensionality

Page 1251

rule). The result of clim:region-union always has dimensionality that is

the maximum dimensionality of region1 and region2.

clim:region-intersection region1 region2

Returns a region that contains all points that are in both region1 and

region2 (possibly with some points removed to satisfy the dimensionality

rule). The result of clim:region-intersection has dimensionality that is

the minimum dimensionality of region1 and region2, or is

clim:+nowhere+.

clim:region-difference region1 region2

Returns a region that contains all points in region1 that are not in re-

gion2 (plus additional boundary points to make the result closed). The re-

sult of clim:region-difference has the same dimensionality as region1, or

is clim:+nowhere+.

clim:region-set

The class that represents region sets; a subclass of region.

clim:region-set-function region

Returns a symbol representing the operation that relates the regions in

region. This will be one of the symbols union, intersection, or set-

difference.

clim:region-set-regions region &key :normalize

Returns a sequence of the regions in region. Region can be either a re-

gion-set or any member of region, in which case the result is simply a

sequence of one element: region.

clim:map-over-region-set-regions function region &key :normalize

Call function on each region in region. This is often more efficient than

calling clim:region-set-regions.

CLIM Point Objects

A point is a mathematical point in the drawing plane, which is identified by its

coordinates, a pair of real numbers. Points have neither area nor length. Note that

a point is not the same thing as a pixel; CLIM’s model of the drawing plane has

continuous coordinates.

You can create point objects and use them as arguments to the drawing functions.

Alternatively, you can use the spread versions of the drawing functions, that is the

drawing functions with stars appended to their names. For example, instead of

clim:draw-point use clim:draw-point*, which takes two arguments that specify

the point by its coordinates. (We generally recommend the use of the spread ver-

sions.)

The operations for creating and dealing with points are:

clim:point

The protocol class that corresponds to a mathematical point.

Page 1252

clim:standard-point

The standard class CLIM uses to implement points. This is the class

that clim:make-point instantiates.

clim:make-point x y

Creates and returns a point object whose coordinates are x and y.

clim:point-position point

Returns two values, the X and Y coordinates of point.

clim:point-x point

Returns the X coordinate of point.

clim:point-y point

Returns the Y coordinate of point.

Other Region Types in CLIM

The other types of regions are polylines, polygons, elliptical arcs, and ellipses. All

of these region types are closed under affine transformations.

Polygons and Polylines in CLIM

A polyline is a path that consists of one or more line segments joined consecutively

at their end-points. A line is a polyline that has only a single segment.

Polylines that have the end-point of their last line segment coincident with the

start-point of their first line segment are called closed; you should not confuse this

use of the term ‘‘closed’’ with ‘‘closed’’ sets of points.

A polygon is an area bounded by a closed polyline.

If the boundary of a polygon intersects itself, the odd-even winding-rule defines the

polygon: a point is inside the polygon if a ray from the point to infinity crosses the

boundary an odd number of times.

The classes that correspond to polylines and polygons are:

clim:polyline

The protocol class that corresponds to a polyline. This is a subclass of

clim:path.

clim:polygon

The protocol class that corresponds to a mathematical polygon. This is a

subclass of clim:area.

clim:standard-polyline

The standard class CLIM uses to implement polylines. This is a subclass

of clim:polyline. This is the class that clim:make-polyline and

clim:make-polyline* instantiate.

clim:standard-polygon

The standard class CLIM uses to implement polygons. This is a subclass

Page 1253

of clim:polygon. This is the class that clim:make-polygon and

clim:make-polygon* instantiate.

Constructors for CLIM Polygons and Polylines

The following functions can be used to create polylines and polygons:

clim:make-polygon point-seq

Makes an object of class clim:standard-polygon consisting of the area

contained in the boundary that is specified by the segments connecting

each of the points in point-seq.

clim:make-polygon* coord-seq

Makes an object of class clim:standard-polygon consisting of the area

contained in the boundary that is specified by the segments connecting

each of the points represented by the coordinate pairs in coord-seq.

clim:make-polyline point-seq &key :closed

Makes an object of class clim:standard-polyline consisting of the seg-

ments connecting each of the points in point-seq.

clim:make-polyline* coord-seq &key :closed

Makes an object of class clim:standard-polyline consisting of the seg-

ments connecting each of the points represented by the coordinate pairs

in coord-seq.

Accessors for CLIM Polygons and Polylines

The following functions can be used to access the components of polygons and

polylines:

clim:polyline-closed polyline

Returns t if polyline is closed, otherwise returns nil.

clim:polygon-points polygon

Returns a sequence of points that specify the segments in polygon.

clim:map-over-polygon-coordinates function polygon

Applies function to all of the coordinates of the vertices of polygon. The

function takes two arguments, the X and Y coordinates.

clim:map-over-polygon-segments function polygon

Applies function to the line segments that compose polygon. The function

takes four arguments, the X and Y coordinates of the start of the line

segment, and the X and Y coordinates of the end of the line segment.

Lines in CLIM

Page 1254

A line is a special case of a polyline that has only a single segment. The functions

for making and dealing with line are the following:

clim:line The protocol class that corresponds to a mathematical line-segment, that

is, a polyline with only a single segment. This is a subclass of

clim:polyline.

clim:standard-line

The standard class CLIM uses to implement lines. This is a subclass of

clim:line. This is the class that clim:make-line and clim:make-line* in-

stantiate.

clim:make-line start-point end-point

Makes an object of class clim:standard-line that connects start-point to

end-point.

clim:make-line* start-x start-y end-x end-y

Makes an object of class clim:standard-line that connects (start-x,

start-y) to (end-x, end-y).

clim:line-start-point line

Returns the starting point of line.

clim:line-end-point line

Returns the ending point of line.

clim:line-start-point* line

Returns the starting point of line as two values representing the coordi-

nate pair.

clim:line-end-point* line

Returns the ending point of line as two values representing the coordi-

nate pair.

Rectangles in CLIM

A rectangle is a special case of a four-sided polygon whose edges are parallel to the

coordinate axes. A rectangle can be specified completely by four real numbers

(min-x, min-y, max-x, max-y). They are not closed under affine transformations.

CLIM uses rectangles extensively for various purposes, particularly in optimiza-

tions related to output recording.

The functions for creating and dealing with rectangles are the following:

clim:rectangle

The protocol class that corresponds to an axis-aligned mathematical

rectangle, that is, rectangular polygons whose sides are parallel to the

coordinate axes. This is a subclass of clim:polygon.

clim:standard-rectangle

The standard class CLIM uses to implement rectangles. This is a sub-

class of clim:rectangle. This is the class that clim:make-rectangle and

clim:make-rectangle* instantiate.

Page 1255

clim:make-rectangle min-point max-point

Makes an object of class clim:standard-rectangle whose edges are paral-

lel to the coordinate axes.

clim:make-rectangle* min-x min-y max-x max-y

Makes an object of class clim:standard-rectangle whose edges are paral-

lel to the coordinate axes.

clim:rectangle-min-point rectangle

Returns the minimum point of rectangle. The position of a rectangle is

specified by its minimum point.

clim:rectangle-max-point rectangle

Returns the maximum point of rectangle. (The position of a rectangle is

specified by its minimum point).

clim:rectangle-edges* rectangle

Returns the coordinate of the minimum X and Y and maximum X and Y

of rectangle as four values.

clim:rectangle-min-x rectangle

Returns the coordinate of the minimum X of rectangle.

clim:rectangle-min-y rectangle

Returns the coordinate of the minimum Y of rectangle.

clim:rectangle-max-x rectangle

Returns the coordinate of the maximum X of rectangle.

clim:rectangle-max-y rectangle

Returns the coordinate of the maximum Y of rectangle.

clim:rectangle-width rectangle

Returns the width of rectangle. The width of a rectangle is the difference

between the maximum X and the minimum X.

clim:rectangle-height rectangle

Returns the height of rectangle. The height is the difference between the

maximum Y and the minimum Y.

clim:rectangle-size rectangle

Returns two values, the width and the height of rectangle.

Ellipses and Elliptical Arcs in CLIM

An ellipse is an area that is the outline and interior of an ellipse. Circles are spe-

cial cases of ellipses.

An elliptical arc is a path consisting of all or a portion of the outline of an ellipse.

Circular arcs are special cases of elliptical arcs.

An ellipse is specified in a manner that is easy to transform, and treats all ellipses

on an equal basis. An ellipse is specified by its center point and two vectors that

describe a bounding parallelogram of the ellipse. The bounding parallelogram is

Page 1256

made by adding and subtracting the vectors from the center point in the following

manner:

x
c + dx1 + dx2

x
c + dx1 - dx2

x
c - dx1 - dx2

x
c - dx1 + dx2

y
c + dy1 + dy2

y
c + 1 - 2dy dy

y
c - 1 - 2dy dy

y
c - 1 + 2dy dy

dx2 2dy

dx1 1dy

x
c

y
c

Corners of Paralellogram

Vectors

Center of Ellipse

x coordinate y coordinate

�

The special case of an ellipse with its axes aligned with the coordinate axes can be

obtained by setting dx 2 and dy 1 to 0, or setting dx 1 and dy 2 to 0.

Note that several different parallelograms specify the same ellipse, as shown here:

�

One parallelogram is bound to be a rectangle the vectors will be perpendicular

and correspond to the semi-axes of the ellipse.

The following classes and functions are used to represent and operate on ellipses

and elliptical arcs.

clim:ellipse Class

The protocol class that corresponds to a mathematical ellipse. This is a subclass of

clim:area. If you want to create a new class that obeys the ellipse protocol, it

must be a subclass of clim:ellipse.

clim:elliptical-arc Class

The protocol class that corresponds to a mathematical elliptical arc. This is a sub-

class of clim:path. If you want to create a new class that obeys the elliptical arc

protocol, it must be a subclass of clim:elliptical-arc.

clim:standard-ellipse Class

Page 1257

The standard class CLIM uses to implement an ellipse. This is a subclass of

clim:ellipse. This is the class that clim:make-ellipse and clim:make-ellipse* in-

stantiate.

clim:standard-elliptical-arc Class

The standard class CLIM uses to implement an elliptical arc. This is a subclass of

clim:elliptical-arc. This is the class that clim:make-elliptical-arc and clim:make-

elliptical-arc* instantiate.

Constructor Functions for Ellipses and Elliptical Arcs in CLIM

clim:make-ellipse center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key

:start-angle :end-angle

Makes an object of class clim:standard-ellipse. The center of the ellipse

is center-point.

clim:make-ellipse* center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy

&key :start-angle :end-angle

Makes an object of class clim:standard-ellipse. The center of the ellipse

is (center-x, center-y).

clim:make-elliptical-arc center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy

&key :start-angle :end-angle

Makes an object of class clim:standard-elliptical-arc. The center of the

ellipse is center-point.

clim:make-elliptical-arc* center-x center-y radius-1-dx radius-1-dy radius-2-dx ra-

dius-2-dy &key :start-angle :end-angle

Makes an object of class clim:standard-elliptical-arc. The center of the

ellipse is (center-x, center-y).

Accessors for CLIM Elliptical Objects

The following accessor functions apply to both ellipses and elliptical arcs. In all

cases, the name ellipse means that the argument is an ellipse or an elliptical arc.

clim:ellipse-center-point ellipse

Returns the center point of ellipse.

clim:ellipse-center-point* ellipse

Returns the center point of ellipse as two values representing the coordi-

nate pair.

clim:ellipse-radii ellipse

Returns four values corresponding to the two radius vectors of ellipse.

clim:ellipse-start-angle ellipse

Returns the start angle of ellipse.

Page 1258

clim:ellipse-end-angle ellipse

Returns the end angle of ellipse.

Bounding Rectangles

Every bounded region in CLIM has a derived bounding rectangle, which is the

smallest rectangle that contains every point in the region, and may contain addi-

tional points as well. Unbounded regions do not have any bounding rectangle. For

example, all sheets and output records have bounding rectangles whose coordinates

are relative to the bounding rectangle of the parent of the sheet or output record.

See the section "Bounding Rectangles in CLIM".

The following functions can be used to access the bounding rectangle of a region.

clim:bounding-rectangle* region

Returns the bounding rectangle of region as four real numbers that spec-

ify the left, top, right, and bottom edges of the bounding rectangle.

clim:bounding-rectangle region

Returns a new bounding rectangle for region as a clim:standard-

bounding-rectangle object.

clim:bounding-rectangle-left region

Returns the coordinate of the left edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-top region

Returns the coordinate of the top edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-right region

Returns the coordinate of the right edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-bottom region

Returns the coordinate of the bottom edge of the bounding rectangle of

region.

clim:bounding-rectangle-position region

Returns the position of the bounding rectangle of region as two values,

the left and top coordinates of the bounding rectangle.

clim:bounding-rectangle-set-position region x y

Changes the position of the bounding rectangle of region to the new posi-

tion x and y.

clim:bounding-rectangle-size region

Returns the size (as two values, width and height) of the bounding rect-

angle of region.

clim:bounding-rectangle-width region

Returns the width of the bounding rectangle of region.

Page 1259

clim:bounding-rectangle-height region

Returns the height of the bounding rectangle of region.

For example, the size of a the output generated by body can be determined by call-

ing clim:bounding-rectangle-size on the output record:

(let ((record (clim:with-output-to-output-record (s) body)))

 (multiple-value-bind (width height)

 (clim:bounding-rectangle-size record)

 (format t "~&Width is ~D, height is ~D" width height)))�

Pixmaps in CLIM

A pixmap can be thought of as an ‘‘off-screen window’’, that is, a medium that can

be used for graphical output, but is not visible on any display device. Pixmaps are

provided to allow a programmer to generate a piece of output associated with some

display device that can then be rapidly drawn on a real display device. For exam-

ple, an electrical CAD system might generate a pixmap that corresponds to a com-

plex, frequently used part in a VLSI schematic, and then use clim:draw-pixmap or

clim:copy-from-pixmap to draw the part as needed.

The exact representation of a pixmap is explicitly unspecified. Some mediums may

not support pixmaps (such as PostScript mediums); in this case, CLIM will signal

an error.

Note that there is no interaction between most of the pixmap copying operations

and output recording. That is, copying a pixmap onto an output recording is a

pure drawing operation that affects only the display, not the output history.

The following functions are provided for managing pixmaps:

clim:copy-from-pixmap pixmap pixmap-x pixmap-y width height medium medium-x

medium-y &optional (op boole-1)

Copies the pixels from the pixmap pixmap starting at the position speci-

fied by (pixmap-x,pixmap-y) into the medium medium at the position

(medium-x,medium-y). op is a boolean operation that controls how the

source and destination bits are combined.

clim:copy-to-pixmap medium medium-x medium-y width height &optional pixmap

(pixmap-x 0) (pixmap-y 0) (op boole-1)

Copies the pixels from the medium medium starting at the position spec-

ified by (medium-x,medium-y) into the pixmap pixmap at the position

specified by (pixmap-x,pixmap-y). op is a boolean operation that controls

how the source and destination bits are combined.

clim:copy-area medium from-x from-y width height to-x to-y &optional (op boole-1)

Copies the pixels from the medium medium starting at the position spec-

ified by (from-x,from-y) to the position (to-x,to-y) on the same medium. op�

is a boolean operation that controls how the source and destination bits

are combined.

Page 1260

clim:allocate-pixmap medium width height

Allocates and returns a pixmap object that can be used on any medium

that shares the same characteristics as medium.

clim:deallocate-pixmap pixmap

Deallocates the pixmap pixmap.

clim:with-output-to-pixmap (medium-var medium &key :width :height) &body body�

Binds medium-var to a ‘‘pixmap medium’’, that is, a medium that does

output to a pixmap with the characteristics appropriate to the medium

medium, and then evaluates body in that context. All the output done to

the medium designated by medium-var inside of body is drawn on the

pixmap stream.

clim:draw-pixmap medium pixmap point &rest args &key :ink :clipping-region

:transformation (:function boole-1)

Draws the pixmap pixmap on medium at the position point, creating a

‘‘pixmap output record’’ if medium is an output recording stream. :func-

tion is a boolean operation that controls how the source and destination

bits are combined.

clim:draw-pixmap* medium pixmap x y &rest args &key :ink :clipping-region

:transformation (:function boole-1)

Draws the pixmap pixmap on medium at the position (x,y), creating a

‘‘pixmap output record’’ if medium is an output recording stream. :func-

tion is a boolean operation that controls how the source and destination

bits are combined.

Try the following example, which creates a pixmap and then draws it on a stream

wherever you click the pointer.

(defun test-pixmaps (&optional (function boole-1) (stream *standard-output*))

 (let* ((medium (clim:sheet-medium stream))

 (pixmap

 (clim:with-output-to-pixmap (mv medium)

 (clim:draw-circle* mv 50 50 20

 :filled t :ink (make-gray-color 1/2))

 (clim:draw-rectangle* mv 0 0 100 100

 :filled nil))))

 (block get-position

 (loop

 (clim:tracking-pointer (stream)

 (:pointer-button-press (x y)

 (clim:draw-pixmap* stream pixmap x y :function function))

 (:key-press ()

 (return-from get-position)))))

 pixmap))�

Page 1261

The CLIM Drawing Environment

There are a number of factors that affect drawing in CLIM. Drawing is affected

by transformations, style options, clipping, and by the ink which is used. All of

these are controlled by the drawing environment.

When you draw in CLIM, you do so on a medium. A medium can be thought of as

a drawing surface. The medium also keeps track of its drawing environment, the

current transformation, text style, foreground and background inks, etc.

The drawing environment is dynamic. The CLIM facilities for affecting the draw-

ing environment do so within their dynamic extent. For example, any drawing done

by the function draw-stuff (as well as any drawing performed by anything it calls)

below will be affected by the scaling transformation.

(clim:with-scaling (medium 2 1)

 (draw-stuff medium))�

The drawing environment is controlled through the use of drawing options.

Components of CLIM Mediums

Each CLIM medium contains components that correspond to the drawing options.

These components provide the default values for the drawing options. When draw-

ing functions are called and some options are unspecified, the options default to

the values maintained by the medium.

CLIM provides accessors for reading and writing the values of these components.

Also, these components are temporarily bound within a dynamic context by using

clim:with-drawing-options, clim:with-text-style, and related forms. Using setf of

a component while it is temporarily bound takes effect immediately, but is undone

when the dynamic context is exited. For convenience, these accessors generally

work on sheets and streams as well as on mediums.

clim:medium-foreground medium

Returns the current foreground design of the medium. You can use setf

on clim:medium-foreground to change the foreground design.

clim:medium-background medium

Returns the current background design of the medium. You can use setf

on clim:medium-background to change the background design.

clim:medium-ink medium

Returns the current drawing ink of the medium. You can use setf on

clim:medium-ink to change the current ink.

clim:medium-transformation medium

Returns the current transformation of the medium. You can use setf on

clim:medium-transformation to change the current transformation.

clim:medium-clipping-region medium

Returns the current clipping region of the medium. You can use setf on

clim:medium-clipping-region to change the clipping region.

Page 1262

clim:medium-line-style medium

Returns the current line style of the medium. You can use setf on

clim:medium-line-style to change the line style.

clim:medium-text-style medium

Returns the current text style of the medium. You can use setf on

clim:medium-text-style to change the current text style.

clim:medium-default-text-style medium

The default text style for medium. You can use setf on clim:medium-

default-text-style to change the default text style, but the text style

must be a fully specified text style.

Using CLIM Drawing Options

Drawing options control various aspects of the drawing process. You can supply

drawing options in a number of ways:

• The medium (the destination for graphic output) itself has default drawing op-

tions. If a drawing option is not supplied elsewhere, the medium supplies the

value. See the section "Components of CLIM Mediums".

• You can use clim:with-drawing-options and clim:with-text-style to temporarily

bind the drawing options of the medium. In many cases, it is convenient to use

clim:with-drawing-options to surround several calls to drawing functions, each

using the same options.

• You can supply the drawing options as keyword arguments to the drawing func-

tions. These override the drawing options specified by clim:with-drawing-

options.�

In some cases, it is important to distinguish between drawing options and subop-

tions. Both text and lines have an option that controls the complete specification of

the text and line style, and there are suboptions that affect one aspect of the text

or line style. For example, the value of the :text-style option is a text style object,

which describes a complete text style consisting of family, face, and size. There

are also suboptions called :text-family, :text-face, and :text-size. Each suboption

specifies a single aspect of the text style, while the option specifies the entire text

style. Line styles are analogous to text styles; there is a :line-style option and

some suboptions.

In a given call to clim:with-drawing-options or a drawing function, normally you

supply either the :text-style option or a text style suboption (or more than one

suboption), but you would not supply both. If you do supply both, then the text

style comes from the result of merging the suboptions with the :text-style option,

and then merging that with the prevailing text style.

clim:with-drawing-options (medium &key :ink :clipping-region :transformation

:line-style :line-unit :line-thickness :line-dashes :line-joint-shape :line-cap-

shape :text-style :text-family :text-face :text-size)

Binds the state of medium to correspond to the supplied drawing options,

Page 1263

and evaluates the body with the new drawing options in effect. Each op-

tion causes binding of the corresponding component of the medium for

the dynamic extent of the body.

Set of CLIM Drawing Options

The drawing options can be any of the following, plus any of the suboptions for

line styles and text styles.

:clipping-region Clim Drawing Option

Specifies the region of the drawing plane on which the drawing functions can

draw.

The clipping region must be an clim:area; furthermore, an error might be sig-

nalled if the clipping region is not a rectangle or a clim:region-set composed of

rectangles. Drawing is clipped both by this clipping region and by other clipping

regions associated with the mapping from the target drawing plane to the viewport

that displays a portion of the drawing plane. The default is clim:+everywhere+,
which means that no clipping occurs in the drawing plane, only in the viewport.

The :clipping-region drawing option temporarily changes the value of

clim:medium-clipping-region to clim:region-intersection of the argument and the

previous value. If both a clipping region and a transformation are supplied in the

same set of drawing options, the clipping region is transformed by the newly com-

posed transformation.

:ink Clim Drawing Option

A design used as the ink for drawing operations. The drawing functions draw with

the color and pattern specified by the :ink option, which can have any of the fol-

lowing values:

• clim:+foreground-ink+, clim:+background-ink+, or clim:+flipping-ink+.

• A color (created by clim:make-rgb-color or clim:find-named-color, for

example).

• An opacity (including clim:+transparent-ink+).

• A more general design, such as a pattern (created by

clim:make-pattern) or a tile (created by clim:make-rectangular-tile).

The default value is clim:+foreground-ink+.

The :ink drawing option temporarily changes the value of clim:medium-ink and

replaces the previous ink; the new and old inks are not combined in any way.

For more information on how to use the :ink drawing option, see the section

"Drawing in Color in CLIM".

Page 1264

:transformation Clim Drawing Option

Transforms the coordinates used as arguments to drawing functions to the coordi-

nate system of the drawing plane. The default value is clim:+identity-
transformation+.

The :transformation drawing option temporarily changes the value of

clim:medium-transformation to clim:compose-transformations of the argument

and the previous value.

:text-style Clim Drawing Option

Controls how text is displayed, both for the graphic drawing functions and ordi-

nary stream output. The value of the :text-style option is a text style object.

This drawing option temporarily changes the value of clim:medium-text-style to

the result of merging the value of :text-style with the prevailing text style.

If text style suboptions are also specified, they temporarily change the value of

clim:medium-text-style to the result of merging the specified suboptions with the

:text-style drawing options, which is then merged with the previous value of

clim:medium-text-style.

See the section "CLIM Text Style Suboptions".

:line-style Clim Drawing Option

Controls how lines and arcs are drawn. The value of the :line-style option is a line

style object.

This drawing option temporarily changes the value of clim:medium-line-style.

See the section "CLIM Line Style Suboptions".

For the set of line and text style options, see the section "CLIM Line Style Subop-

tions" , and see the section "CLIM Text Style Suboptions".

Using the :filled Option to Certain CLIM Drawing Functions

Certain drawing functions can draw either an area or the outline of that area.

This is controlled by the :filled keyword argument to these functions. If the value

is t (the default), then the function paints the entire area. If the value is nil, then

the function strokes the outline of the area under the control of the line-style

drawing option.

The :filled keyword argument is not a drawing option and cannot be specified to

clim:with-drawing-options.

These are functions that have a :filled keyword argument:

clim:draw-rectangle

clim:draw-rectangle*

clim:draw-rectangles

Page 1265

clim:draw-rectangles*

clim:draw-polygon

clim:draw-polygon*

clim:draw-circle

clim:draw-circle*

clim:draw-ellipse

clim:draw-ellipse*

�

Line Styles in CLIM

A line or other path is a one-dimensional object. In order to be visible, the render-

ing of a line must, however, occupy some non-zero area on the display hardware. A

line style object is used to represent the advice that CLIM supplies to the render-

ing substrate on how to perform the rendering.

CLIM Line Style Objects

It is often useful to create a line style object that represents a style you wish to

use frequently, rather than continually specifying the corresponding line style sub-

options.

The class of a line style object is clim:line-style. You create a line style object

with clim:make-line-style.

clim:make-line-style &key (:unit :normal) (:thickness 1) :dashes (:joint-shape :miter)

(:cap-shape :butt)

Creates a line style object with the supplied characteristics.

The following readers are provided for the components of line styles:

clim:line-style-thickness line-style

Returns the thickness component of a line style object, which is an inte-

ger.

clim:line-style-dashes line-style

Returns the dashes component of a line style object.

clim:line-style-joint-shape line-style

Returns the joint shape component of a line style object.

clim:line-style-cap-shape line-style

Returns the cap shape component of a line style object.

clim:line-style-unit line-style

Returns the unit component of a line style object, which will be one of

:normal or :point.

CLIM Line Style Suboptions

Page 1266

Each line style suboption has a reader function which returns the value of that

component from a line style object.

The line style suboptions are listed as follows:

:line-thickness Clim Drawing Option

The thickness (an integer in the units described by clim:line-style-unit) of the

lines or arcs drawn by a drawing function. The default is 1, which combined with

the default unit of :normal, means that the default line drawn is the ‘‘comfortably

visible thin line’’.

You can call clim:line-style-thickness on a line style object to get the value of the

:line-thickness, or :thickness component.

:line-dashes Clim Drawing Option

Controls whether lines or arcs are drawn as dashed figures, and if so, what the

dashing pattern is. Possible values are:

nil Lines are drawn solid, with no dashing. This is the default.

t Lines are drawn dashed, with a dash pattern that is unspecified and

may vary with the rendering substrate. This allows the underlying

display substrate to provide a default dashed line for the user whose

only requirement is to draw a line that is visually distinguished

from the default solid line. Using the default dashed line can be

more efficient than specifying customized dashes.

sequence Specifies a sequence of integers, usually a vector, controlling the

dash pattern of a drawing function. It is an error if the sequence

does not contain an even number of elements. The elements of the

sequence are lengths of individual components of the dashed line or

arc. The odd elements specify the length of inked components, the

even elements specify the gaps. All lengths are expressed in the

units described by clim:line-style-unit. You can use clim:make-

contrasting-dash-patterns to create a a sequence for the :dashes

option.

See the function clim:make-contrasting-dash-patterns.

You can call clim:line-style-dashes on a line style object to get the value of the

:line-dashes, or :dashes component.

:line-joint-shape Clim Drawing Option

Specifies the shape of joints between line segments of closed, unfilled figures,

when the :line-thickness or :thickness option to a drawing function is greater

than 1. The possible shapes are :miter, :bevel, :round, and :none; the default is

:miter.

Page 1267

Note that the joint shape is implemented by the host window system, so not all

platforms will necessarily fully support it.

You can call clim:line-style-joint-shape on a line style object to get the value of

the :line-joint-shape, or :joint-shape component.

:line-cap-shape Clim Drawing Option

Specifies the shape for the ends of lines and arcs drawn by a drawing function,

one of :butt, :square, :round, or :no-end-point. The default is :butt. Note that

the cap shape is implemented by the host window system, so not all platforms will

necessarily fully support it.

You can call clim:line-style-cap-shape on a line style object to get the value of the

:line-cap-shape, or :cap-shape component.

:line-unit Clim Drawing Option

The units in which the thickness, dash pattern, and dash phase are measured. Pos-

sible values are :normal and :point, described as follows:

:normal A relative measure in terms of the usual or ‘‘normal’’ line thick-

ness. The normal line thickness is the thickness of the ‘‘comfortably

visible thin line’’, which is a property of the underlying rendering

substrate. This is the default.

:point An absolute measure in terms of printer’s points (approximately

1/72 of an inch).�

You can call clim:line-style-unit on a line style object to get the value of the :line-

unit or :unit component.

This function can be used to generate a value for the :dashes line style suboption.

clim:make-contrasting-dash-patterns n &optional k

Makes a simple vector of n dash patterns with recognizably different ap-

pearances. If k (an integer between 0 and n-1) is supplied, clim:make-

contrasting-dash-patterns returns the k’th dash pattern. If the imple-

mentation does not have n different contrasting dash patterns,

clim:make-contrasting-dash-patterns signals an error.

clim:contrasting-dash-patterns-limit port

Returns the number of contrasting dash patterns that the port port can

generate.

Text Styles in CLIM

CLIM’s model for the appearance of text follows the same principle as the model

for creating formatted output. This principle holds that the application program

Page 1268

should describe how the text should appear in high-level terms, and that CLIM

will take care of the details of choosing a specific device font. This approach em-

phasizes portability.

Concepts of CLIM Text Styles

In CLIM, you specify the appearance of text by giving it an abstract text style.

Each CLIM medium defines a mapping between these abstract style specifications

and particular device-specific fonts. At runtime, CLIM chooses an appropriate de-

vice font to represent the characters.

A text style is a combination of three characteristics that describe how characters

appear. Text style objects have components for family, face, and size.

family Characters of the same family have a typographic integrity, so

that all characters of the same family resemble one another.

One of :fix, :serif, :sans-serif, or nil.

face A modification of the family, such as bold or italic. One of

:roman (meaning normal), :bold, :italic, (:bold :italic), or nil.

size The size of the character. One of the logical sizes (:tiny,

:very-small, :small, :normal, :large, :very-large, :huge,

:smaller, :larger), or a real number representing the size in

printer’s points, or nil.

Not all of these attributes need be specified for a given text style object. Text

styles can be merged in much the same way as pathnames are merged; unspecified

components in the style object (that is, components that have nil in them) may be

filled in by the components of a ‘‘default’’ style object:

clim:*default-text-style*

The default text style used by all streams.

The sizes :smaller and :larger are treated specially in that they are merged with

the default text style size to result in a size that is discernably smaller or larger.

For example, a text style size of :larger would merge with a default text size of

:small to produce the resulting size :normal.

Some systems include color in their notion of a text style. This is not the case in

CLIM. If you want to change the color of textual output, use the :ink option to

clim:draw-text*, or if you are using functions like write-string or format, use the

:ink option to clim:with-drawing-options.

A text style object is called fully specified if none of its components is nil, and the

size component is not a relative size (that is, is neither :smaller nor :larger).

When text is displayed on a medium, the text style is mapped to some medium

specific description of the glyphs for each character. This description is usually

that medium’s concept of a font object. This mapping is mostly transparent to the

application developer, but it is worth noting that not all text styles have mappings

associated with them on all media. If the text style used does not have a mapping

Page 1269

associated with it on the given medium, a special text style reserved for this case

will be used.

CLIM Text Style Objects

It is often useful to create a text style object that represents a style you wish to

use frequently, rather than continually specifying the corresponding text style sub-

options.

For example, you might want to have a completely different family, face and size

for menus. You could make a text style object and make it be the value of *menu-

text-style*.

You create text style objects using clim:make-text-style.

(clim:with-text-style

 (my-stream (clim:make-text-style :fix :bold :large))

 (write-string my-stream "Here is a text-style example."))

�

=>

�

In the current implementation of CLIM, text style objects are interned. That is,

two different invocations of clim:make-text-style with the same combination of

family, face and size will result in the same (in the sense of eq) text style object.

For this reason, you should not modify text style objects.

CLIM Text Style Suboptions

You can use text style suboptions to specify characteristics of a text style object.

Each text style suboption has a reader function which returns the current value of

that component from a text style object.

The text style suboptions are:

:text-family Clim Drawing Option

Specifies the family of the text style. The reader function is clim:text-style-family.

:text-face Clim Drawing Option

Specifies the face of the text style. The reader function is clim:text-style-face.

:text-size Clim Drawing Option

Specifies the size of the text style. The reader function is clim:text-style-size.

Page 1270

CLIM Text Style Functions

The following functions can be used to parse, merge, and create text style objects,

and read the components of the objects.

clim:parse-text-style text-style

Returns the text style object representing the text style described by text-

style.

clim:merge-text-styles style1 style2

Merges style1 against the defaults provided by style2.

clim:text-style-components text-style medium

Returns the components of text-style as three values (family, face, and

size).

clim:text-style-family text-style

Returns the family component of the text-style.

clim:text-style-face text-style

Returns the face component of the text-style.

clim:text-style-size text-style

Returns the size component of the text-style.

clim:text-style-ascent text-style medium

The ascent (a real number) of text-style as it would be rendered on medi-

um.

clim:text-style-descent text-style medium

The descent (a real number) of text-style as it would be rendered on

medium.

clim:text-style-height text-style medium

Returns the height (a real number) of the ‘‘usual character’’ in text-style

on medium.

clim:text-style-width text-style medium

Returns the width (a real number) of the ‘‘usual character’’ in text-style

on medium.

clim:text-style-fixed-width-p text-style medium

Returns t if text-style will map to a fixed-width font on medium, other-

wise returns nil.

clim:text-style-mapping port style &optional character-set

Returns the font object that will be used if characters in character-set in

the text style style are drawn on any medium on the port port.

clim:text-style-mapping-exists-p port style &optional character-set exact-size-required�

Returns t if there is a font associated with the text style style on the

port port, otherwise returns nil.

Page 1271

clim:make-text-style family face size

Creates a text style object with the given family, face, and style.

The following forms can be used to change the current text style for a stream by

merging the specified style with the stream’s current text style. They are intended

as abbreviations to be used instead of clim:with-drawing-options.

clim:with-text-style (medium style) &body body

Binds the current text style of medium to correspond to the new text

style, within the body. style is a text style object.

clim:with-text-face (medium face) &body body

Binds the current text face of medium to correspond to the new text face

face, within the body.

clim:with-text-family (medium family) &body body

Binds the current text family of medium to correspond to the new text

family family, within the body.

clim:with-text-size (medium size) &body body

Binds the current text size of medium to correspond to the new text size

size, within the body.

Transformations in CLIM

One of the features of CLIM’s graphical capabilities is the use of coordinate sys-

tem transformations. By using transformations you can often write simpler graph-

ics code, because you can choose a coordinate system in which to express the

graphics that simplifies the description of the drawing.

A transformation is an object that describes how one coordinate system is related

to another. A graphic function performs its drawing in the current coordinate sys-

tem of the stream or medium. A new coordinate system is defined by describing its

relationship to the old one (the transformation). The drawing can now take place

in the new coordinate system. The basic concept of graphic transformations is il-

lustrated in Figure42.

For example, you might define the coordinates of a five-pointed star, and a func-

tion to draw it.

(defvar *star* ’(0 3 2 -3 -3 1/2 3 1/2 -2 -3))

�

(defun draw-star (stream)

 (clim:draw-polygon* stream *star* :closed t :filled nil))�

Without any transformation, the function draws a small star centered around the

origin. By applying a transformation, the same function can be used to draw a star

of any size, anywhere. For example:

Page 1272

Transformation

Original Graphics
Graphics under the Transformation

The Original Coordinate System

The Transformed Coordinate System

Figure 63. Graphic Transformation�

 (clim:with-room-for-graphics (stream)

 (clim:with-translation (stream 100 100)

 (clim:with-scaling (stream 10)

(draw-star stream)))

 (clim:with-translation (stream 240 110)

 (clim:with-rotation (stream -0.5)

 (clim:with-scaling (stream 12 8)

 (draw-star stream)))))�

will draw a picture somewhat like the lower half of Figure 63 on stream.

The Transformations Used by CLIM

The type of transformations that CLIM uses are called affine transformations. An

affine transformation is a transformation that preserves straight lines. In other

words, if you take a number of points that fall on a straight line and apply an

affine transformation to their coordinates, the transformed coordinates will fall on

a straight line in the new coordinate system. Affine transformations include trans-

lations, scalings, rotations, and reflections.

Page 1273

A translation is a transformation that preserves length, angle, and orientation of

all geometric entities.

A rotation is a transformation that preserves length and angles of all geometric

entities. Rotations also preserve one point and the distance of all entities from that

point. You can think of that point as the ‘‘center of rotation’’ it is the point

around which everything rotates.

There is no single definition of a scaling transformation. Transformations that pre-

serve all angles and multiply all lengths by the same factor (preserving the

‘‘shape’’ of all entities) are certainly scaling transformations. However, scaling is

also used to refer to transformations that scale distances in the X direction by one

amount and distances in the Y direction by another amount.

A reflection is a transformation that preserves lengths and magnitudes of angles,

but changes the sign (or ‘‘handedness’’) of angles. If you think of the drawing

plane on a transparent sheet of paper, a reflection is a transformation that ‘‘turns
the paper over’’.

If we transform from one coordinate system to another, and then from the second

to a third coordinate system, we can regard the resulting transformation as a sin-

gle transformation resulting from composing the two component transformations. It

is an important and useful property of affine transformations that they are closed

under composition.

Note that composition is not commutative; in general, the result of applying trans-

formation A and then applying transformation B is not the same as applying B

first, then A.

Any arbitrary transformation can be built up by composing a number of simpler

transformations, but that same transformation can often be constructed by a differ-

ent composition of different transformations.

Transforming a region applies a coordinate transformation to that region, thus

moving its position on the drawing plane, rotating it, or scaling it. Note that

transforming a region creates a new region; it does not side-effect the region ar-

gument.

The user interface to transformations is the :transformation option to the draw-

ing functions. Users can create transformations with constructors; see the section

"CLIM Transformation Constructors". The other operators documented in this sec-

tion are used by CLIM itself, and are not often needed by users.

CLIM Transformation Constructors

The following functions can be used to create a transformation object that can be

used, for instance, in a call to clim:compose-transformations.

clim:make-translation-transformation delta-x delta-y

Makes a transformation that translates all points by delta-x in the X di-

rection and delta-y in the Y direction.

Page 1274

clim:make-rotation-transformation angle &optional origin

Makes a transformation that rotates all points clockwise by angle around

the point origin. The angle is specified in radians. If origin is supplied it

must be a point; if not supplied it defaults to (0,0).

clim:make-rotation-transformation* angle origin-x origin-y

Makes a transformation that rotates all points clockwise by angle around

the point, (origin-x, origin-y). The angle is specified in radians.

clim:make-scaling-transformation mx my &optional origin

Makes a transformation that multiplies the X-coordinate distance of ev-

ery point from origin by mx and the Y-coordinate distance of every point

from origin by my. If origin is supplied it must be a point; if not sup-

plied it defaults to (0,0).

clim:make-scaling-transformation* mx my origin-x origin-y

Makes a transformation that multiplies the X-coordinate distance of ev-

ery point from origin-x by mx and the Y-coordinate distance of every

point from origin-y by my.

clim:make-reflection-transformation point-1 point-2

Makes a transformation that reflects every point through the line pass-

ing through the points point-1 and point-2.

clim:make-reflection-transformation* x1 y1 x2 y2

Makes a transformation that reflects every point through the line pass-

ing through the points (x1, y1) and (x2, y2).

clim:make-transformation mxx mxy myx myy tx ty

Makes a general transformation whose effect is:

x’ = m xx x + m xy y + t x

y’ = m yx x + m yy y + t y�

Where x and y are the coordinates of a point before the transformation

and x’ and y’ are the coordinates of the corresponding point after.

clim:make-3-point-transformation point-1 point-2 point-3 point-1-image point-2-

image point-3-image

Makes a transformation that takes point-1 into point-1-image, point-2 into

point-2-image and point-3 into point-3-image. (Three non-collinear points

and their images under the transformation are enough to specify any

affine transformation.) If the points are collinear, the

clim:transformation-underspecified condition is signalled.

clim:make-3-point-transformation* x1 y1 x2 y2 x3 y3 x1-image y1-image x2-image

y2-image x3-image y3-image

Makes a transformation that takes (x1, y1) into (x1-image, y1-image), (x2,

y2) into (x2-image, y2-image) and (x3, y3) into (x3-image, y3-image).

(Three non-collinear points and their images under the transformation

are enough to specify any affine transformation.) If the points are

collinear, the clim:transformation-underspecified condition is signalled.

Page 1275

CLIM Transformation Protocol

clim:transformation Class

The protocol class for all transformations. There are one or more subclasses of

clim:transformation with implementation-dependent names that implement trans-

formations. If you want to create a new class that obeys the transformation proto-

col, it must be a subclass of clim:transformation.

clim:+identity-transformation+ Constant

An instance of a transformation that is guaranteed to be an identity transforma-

tion, that is, the transformation that ‘‘does nothing’’.

CLIM Transformation Predicates

The following predicates are provided in order to be able to determine whether or

not a transformation has a particular characteristic.

clim:transformation-equal transform1 transform2

Returns t if the two transformations have equivalent effects (that is, are

mathematically equal), otherwise returns nil.

clim:identity-transformation-p transform

Returns t if transform is equal (in the sense of clim:transformation-

equal) to the identity transformation, otherwise returns nil.

clim:translation-transformation-p transform

Returns t if transform is a pure translation, that is a transformation that

moves every point by the same distance in X and the same distance in Y,

otherwise returns nil.

clim:invertible-transformation-p transform

Returns t if transform has an inverse, otherwise returns nil.

clim:reflection-transformation-p transform

Returns t if transform inverts the ‘‘handedness’’ of the coordinate sys-

tem, otherwise returns nil.

clim:rigid-transformation-p transform

Returns t if transform transforms the coordinate system as a rigid ob-

ject, that is, as a combination of translations, rotations, and pure reflec-

tions. Otherwise, it returns nil.

clim:even-scaling-transformation-p transform

Returns t if transform multiplies all X-lengths and Y-lengths by the same

magnitude, otherwise returns nil. This includes pure reflections through

vertical and horizontal lines.

clim:scaling-transformation-p transform

Returns t if transform multiplies all X-lengths by one magnitude and all

Page 1276

Y-lengths by another magnitude, otherwise returns nil. This category in-

cludes even scalings as a subset.

clim:rectilinear-transformation-p transform

Returns t if transformation will always transform any axis-aligned rect-

angle into another axis-aligned rectangle, otherwise returns nil. This cat-

egory includes scalings as a subset, and also includes 90 degree rota-

tions.

CLIM Transformation Functions

The following functions can be used to compose transformations. The ‘‘compose

with’’ functions have exactly the same effect as clim:compose-transformations,

except that they are more efficient.

clim:compose-transformations transform1 transform2

Returns a transformation that is the composition of its arguments. Com-

position is in right-to-left order, that is the resulting transformation rep-

resents the effects of applying transform2 followed by transform1.

clim:compose-translation-with-transformation transform dx dy

Creates a new transformation by composing transform with a given

translation, as specified by dx and dy. The order of composition is that

the translation ‘‘transformation’’ is first, followed by transform.

clim:compose-rotation-with-transformation transform angle &optional origin

Creates a new transformation by composing transform with a given rota-

tion, as specified by angle and origin. The order of composition is that

the rotation ‘‘transformation’’ is first, followed by transform.

clim:compose-scaling-with-transformation transform mx my &optional origin

Creates a new transformation by composing transform with a given scal-

ing, as specified by mx, my, and origin. The order of composition is that

the scaling ‘‘transformation’’ is first, followed by transform.

clim:compose-transformation-with-translation transform dx dy

Creates a new transformation by composing the translation given by dx

and dy with transform. The order of composition is that transform is

first, followed by the translation ‘‘transformation’’.

clim:compose-transformation-with-rotation transform angle &optional origin

Creates a new transformation by composing the rotation given by angle

and origin with transform. The order of composition is that transform is

first, followed by the rotation ‘‘transformation’’.

clim:compose-transformation-with-scaling transform mx my &optional origin

Creates a new transformation by composing the scaling given by mx, my,

and origin with transform. The order of composition is that transform is

first, followed by the scaling ‘‘transformation’’.

clim:invert-transformation transform

Returns a transformation that is the inverse of transform. The result of

Page 1277

composing a transformation with its inverse is the identity transforma-

tion. If transform is singular, clim:invert-transformation signals the

clim:singular-transformation condition.

The following three forms can be used to compose a transformation into the cur-

rent transformation of a stream. They are intended as abbreviations for calling

clim:compose-transformations and clim:with-drawing-options directly.

clim:with-rotation (medium angle &optional origin) &body body

Establishes a rotation on medium that rotates clockwise by angle (in ra-

dians), and then evaluates body with that transformation in effect. If ori-

gin is supplied, the rotation is about that point. The default for origin is

(0,0).

clim:with-translation (medium dx dy) &body body

Establishes a scaling transformation on medium that scales by dx in the

X direction and dy in the Y direction, and then evaluates body with that

transformation in effect.

clim:with-scaling (medium sx &optional sy) &body body

Establishes a scaling transformation on medium that scales by sx in the

X direction and sy in the Y direction, and then evaluates body with that

transformation in effect. If sy is not supplied, it defaults to sx.

These three functions also compose a transformation into the current transforma-

tion of a stream, but have more complex behavior.

clim:with-room-for-graphics (&optional stream &key :height (:first-quadrant t)

(:move-cursor t) :record-type) &body body

Binds the dynamic environment to establish a local coordinate system for

doing graphics output.

clim:with-local-coordinates (&optional stream x y) &body body

Binds the dynamic environment to establish a local coordinate system

with the positive X-axis extending to the right and the positive Y-axis ex-

tending downward, with (0,0) at the current cursor position of stream.

clim:with-first-quadrant-coordinates (&optional stream x y) &body body

Binds the dynamic environment to establish a local coordinate system

with the positive X-axis extending to the right and the positive Y-axis ex-

tending upward, with (0,0) at the current cursor position of stream.

Applying CLIM Transformations

The following functions can be used to apply a transformation to some sort of a

geometric object, such as a region or a distance. Calling clim:transform-position

or clim:untransform-position on a spread points is generally more efficient than

calling clim:transform-region or clim:untransform-region on the unspread point

object.

Page 1278

clim:transform-region transformation region

Applies transformation to region, and returns a new transformed region.

clim:untransform-region transformation region

Applies the inverse of transformation to region and returns a new trans-

formed region.

clim:transform-position transform x y

Applies transform to the point whose coordinates are x and y, and re-

turns two values, the transformed X-coordinate and the transformed

Y-coordinate.

clim:untransform-position transform x y

Applies the inverse of transform to the point whose coordinates are x and

y, and returns two values, the transformed X-coordinate and the trans-

formed Y-coordinate.

clim:transform-rectangle* transform x1 y1 x2 y2

Applies the transformation transform to the rectangle specified by the

four coordinate arguments, which are real numbers. One corner of the

rectangle is at (x1,y1) and the opposite corner is at (x2,y2).

clim:untransform-rectangle* transform x1 y1 x2 y2

Applies the inverse of transform to the rectangle specified by the four

coordinate arguments, and returns four values that specify the minimum

and maximum points of the transformed rectangle.

clim:transform-distance transform dx dy

Applies transform to the distance represented by dx and dy, and returns

two values, the transformed dx and the transformed dy.

clim:untransform-distance transform dx dy

Applies the inverse of transform to the distance represented by dx and

dy, and returns two values, the transformed dx and the transformed dy.

clim:translate-coordinates x-delta y-delta &body coordinate-pairs

Translates each of the X and Y coordinate pairs in coordinate-pairs by

x-delta and y-delta.

Drawing in Color in CLIM

Concepts of Drawing in Color in CLIM

To draw in color, you can supply the :ink drawing option to CLIM’s drawing func-

tions when using streams opened on a color port (see the section "Functions for

Operating on Windows Directly")

The drawing functions work by selecting a region of the drawing plane and paint-

ing it with color.

Page 1279

The region to be painted is the intersection of the shape specified by the drawing

function and the :clipping-region drawing option, which is then transformed by

the :transformation drawing option. The shape can be a graphical area (such as a

rectangle or an ellipse), a path (such as a line segment or the outline of an el-

lipse), or the letterforms of text.

Use the :ink drawing option to specify how to color this region. The value for :ink

is usually a color, but you can also specify a design for :ink. When you use a de-

sign for :ink, you can control the coloring-in process by specifying a new color of

the drawing plane for each ideal point in the shape being drawn. (This can depend

on the coordinates of the point, and on the current color at that point in the draw-

ing plane). For more information, see the section "Drawing with Designs in CLIM".

Along with its drawing plane, a medium has a foreground and a background. The

foreground is the default ink when the :ink drawing option is not specified. The

background is drawn all over the drawing plane before any output is drawn. You

can erase by drawing the background over the region to be erased. You can change

the foreground or background at any time. This changes the contents of the draw-

ing plane. The effect is as if everything on the drawing plane is erased, the back-

ground is drawn on the entire drawing plane, and then everything that was ever

drawn (provided it was saved in the output history) is redrawn using the new fore-

ground and background.

Color Objects�

A color in CLIM is an object representing the intuitive definition of color: white,

black, red, pale yellow, and so forth. The visual appearance of a single point is

completely described by its color.

A color can be specified by three real numbers between 0 and 1 inclusive, giving

the amounts of red, green, and blue. Three 0’s mean black; three 1’s mean white.

A color can also be specified by three numbers giving the intensity, hue, and satu-

ration. A totally unsaturated color (a shade of gray) can be specified by a single

real number between 0 and 1, giving the amount of white.

You can obtain a color object by calling one of clim:make-rgb-color, clim:make-

ihs-color, or clim:make-gray-color, or by using one of the predefined colors listed

in "Predefined Color Names in CLIM". Specifying a color object as the :ink draw-

ing option, the foreground, or the background causes CLIM to use that color in the

appropriate drawing operations.

Rendering�

When CLIM renders the graphics and text in the drawing plane onto a real display

device, physical limitations of the display device force the visual appearance to be

an approximation of the drawing plane. Colors that the hardware doesn’t support

might be approximated by using a different color, or by using a stipple pattern.

Even primary colors such as red and green can’t be guaranteed to have distinct vi-

sual appearance on all devices, so if device independence is desired it is best to

use clim:make-contrasting-inks rather than a fixed palette of colors.

Page 1280

The region of the display device that gets colored when rendering a path or text is

controlled by the line-style or text-style, respectively.

CLIM Operators for Drawing in Color

clim:make-ihs-color intensity hue saturation

Creates a color object with the specified intensity, hue, and saturation.

clim:make-rgb-color red green blue

Creates a color object with color components red, green, and blue.

clim:make-gray-color luminosity

Creates a color object. luminosity is 0 for black, 1 for white, in between

for gray.

clim:color-ihs color

Returns three values, the intensity, hue, and saturation components of

color.

clim:color-rgb color

Returns three values, the red, green, and blue components of color. The

values are real numbers between 0 and 1 (inclusive).

clim:make-contrasting-inks n &optional k

Returns a simple vector of n inks with different appearances. If k (an in-

teger between 0 and n-1) is supplied, clim:make-contrasting-inks re-

turns the k’th design.

clim:contrasting-inks-limit port

Returns the number of contrasting inks that the port port can generate.

Predefined Color Names in CLIM

The color corresponding to the color names can be found by calling clim:find-

named-color, which looks the color name up in an object called a palette. A palette

is a table that maps color names to color objects. On some platforms, the palette

has a bounded size (typically around 256 entries), and serves as a way to allocate a

colormap resource.

clim:find-named-color name palette &key :errorp

Finds the color named name in the palette palette.

clim:frame-palette frame

Returns the palette associated with the application frame frame.

clim:frame-manager-palette frame-manager

Returns the palette that will be used, by default, by all the frames man-

aged by frame-manager, if those frame’s don’t have a palette of their

own.

clim:port-default-palette port

Returns the palette associated with the port port.

Page 1281

clim:palette-color-p palette

Returns t if the palette supports color, otherwise returns nil.

The following table lists the basic set of named colors in the default palette. You

can look up one of these colors, for example, by doing

(clim:find-named-color "lavender"

 (clim:frame-palette clim:*application-frame*))�

Applications can define other colors, but these are provided because they are com-

monly used in the X Windows community (not because there is anything special

about these particular colors). This table is a subset of the colors listed in the file

/X11/R4/mit/rgb/rgb.txt, from the X11 R4 distribution.

Page 1282

alice-blue antique-white aquamarine

azure beige bisque

black blanched-almond blue

blue-violet brown burlywood

cadet-blue chartreuse chocolate

coral cornflower-blue cornsilk

cyan dark-goldenrod dark-green

dark-khaki dark-olive-green dark-orange

dark-orchid dark-salmon dark-sea-green

dark-slate-blue dark-slate-gray dark-turquoise

dark-violet deep-pink deep-sky-blue

dim-gray dodger-blue firebrick

floral-white forest-green gainsboro

ghost-white gold goldenrod

gray green green-yellow

honeydew hot-pink indian-red

ivory khaki lavender

lavender-blush lawn-green lemon-chiffon

light-blue light-coral light-cyan

light-goldenrod light-goldenrod-yellow light-gray

light-pink light-salmon light-sea-green

light-sky-blue light-slate-blue light-slate-gray

light-steel-blue light-yellow lime-green

linen magenta maroon

medium-aquamarine medium-blue medium-orchid

medium-purple medium-sea-green medium-slate-blue

medium-spring-green medium-turquoise medium-violet-red

midnight-blue mint-cream misty-rose

moccasin navajo-white navy-blue

old-lace olive-drab orange

orange-red orchid pale-goldenrod

pale-green pale-turquoise pale-violet-red

papaya-whip peach-puff peru

pink plum powder-blue

purple red rosy-brown

royal-blue saddle-brown salmon

sandy-brown sea-green seashell

sienna sky-blue slate-blue

slate-gray snow spring-green

steel-blue tan thistle

tomato turquoise violet

violet-red wheat white

white-smoke yellow yellow-green

In addition to these named colors, CLIM also provides constants for the primary

colors: clim:+black+, clim:+white+, clim:+red+, clim:+green+, clim:+blue+,
clim:+cyan+, clim:+yellow+, and clim:+magenta+.

Page 1283

Drawing with Designs in CLIM

Concepts of Designs in CLIM

A design is an object that represents a way of arranging colors and opacities in

the drawing plane. The simplest kind of design is a color, which simply places a

constant color at every point in the drawing plane. See the section "Drawing in

Color in CLIM".

This chapter describes more complex kinds of design, which place different colors

at different points in the drawing plane or compute the color from other informa-

tion, such as the color previously at that point in the drawing plane. Not all of the

features described in this chapter are supported in the present implementation.

Recall that the drawing functions work by selecting a region of the drawing plane

and painting it with color, and that the :ink drawing option specifies how to color

this region. The value of the :ink drawing option can be any kind of design, any

member of the class clim:design. The values of clim:medium-foreground,

clim:medium-background, and clim:medium-ink are also designs. Not all designs

are supported as the arguments to the :ink drawing option, or as a foreground or

background in the present implementation.

A design can be characterized in several different ways:

All designs are either bounded or unbounded. Bounded designs are transparent ev-

erywhere beyond a certain distance from a certain point. Drawing a bounded de-

sign has no effect on the drawing plane outside that distance. Unbounded designs

have points of non-zero opacity arbitrarily far from the origin. Drawing an un-

bounded design affects the entire drawing plane.

All designs are either uniform or non-uniform. Uniform designs have the same

color and opacity at every point in the drawing plane. Uniform designs are always

unbounded, unless they are completely transparent.

All designs are either solid or translucent. At each point a solid design is either

completely opaque or completely transparent. A solid design can be opaque at some

points and transparent at others. In translucent designs, at least one point has an

opacity that is intermediate between completely opaque and completely transparent.

All designs are either colorless or colored. Drawing a colorless design uses a de-

fault color specified by the medium’s foreground design. This is done by drawing

with (clim:compose-in clim:+foreground-ink+ clim:+transparent-ink+).

A variety of designs are available. See

"Concepts of Drawing in Color in CLIM"
"Indirect Ink in CLIM"
"Flipping Ink in CLIM"
"Concepts of Patterned Designs in CLIM"
"Concepts of Translucent Ink in CLIM"
"Complex Designs in CLIM"�

Page 1284

Indirect Ink in CLIM

Drawing with an indirect ink is the same as drawing another design named direct-

ly. For example, clim:+foreground-ink+ is a design that draws the medium’s fore-

ground design.

Indirect inks exist for the benefit of output recording. For example, one can draw

with clim:+background-ink+, change to a different clim:medium-background, and

replay the output record; the replayed output will come out with a new background

color. If the current background is the color red, drawing with clim:+background-
ink+ means to draw with the background, whatever it is. On the other hand, draw-

ing with clim:+red+ means to draw with the color red, even if the background is

later changed to green.

You can change the foreground or background design at any time. This changes

the contents of the drawing plane. The effect is as if everything on the drawing

plane is erased, the background design is drawn all over the drawing plane, and

then everything that was ever drawn (provided it was saved in the output history)

is redrawn using the new foreground and background.

If an infinite recursion is created using an indirect ink, an error is signalled when

the recursion is created, when the design is used for drawing, or both.

clim:+foreground-ink+ is the default value of the :ink drawing option.

In the current implementation, the foreground and background must be colors.

Two indirect inks are defined:

clim:+foreground-ink+
An indirect ink that uses the medium’s foreground design.

clim:+background-ink+
An indirect ink that uses the medium’s background design.

Flipping Ink in CLIM

You can use a flipping ink to interchange occurrences of two colors. The purpose

of flipping is to allow the use of ‘‘XOR hacks’’ for temporary changes to the dis-

play. For example, CLIM uses clim:+flipping-ink+ when drawing highlighting box-

es.

In the present implementation, both designs must be colors.

clim:make-flipping-ink design1 design2

Returns a design that interchanges occurrences of two designs.

clim:+flipping-ink+
A flipping ink that flips clim:+foreground-ink+ and clim:+background-
ink+.

Concepts of Patterned Designs in CLIM

Page 1285

Patterned designs are non-uniform designs that have a certain regularity. These

include patterns, stencils, tiled designs, and transformed designs.

In the present implementation, patterned designs are not fully supported as a fore-

ground or background, and the only patterned designs supported as the :ink draw-

ing option are tilings of patterns of clim:+background-ink+ (or

clim:+transparent-ink+) and clim:+foreground-ink+. In Cloe there is an additional

restriction that the X offset and Y offset of the tiling must be 8.

Patterns and Stencils�

Patterning creates a bounded rectangular arrangement of designs, like a checker-

board. Drawing a pattern draws a different design in each rectangular cell of the

pattern. To create a pattern, use clim:make-pattern. To repeat a pattern so it fills

the drawing plane, apply clim:make-rectangular-tile to a pattern.

A stencil is a special kind of pattern that contains only opacities. The name

‘‘stencil’’ refers to their use with clim:compose-in and clim:compose-over.

Tiling�

Tiling repeats a rectangular portion of a design throughout the drawing plane.

This is most commonly used with patterns. Use clim:make-rectangular-tile to

make a tiled design.

Transforming Designs�

The functions clim:transform-region and clim:untransform-region accept any de-

sign as their second argument and apply a coordinate transformation to the design.

The result is a design that might be freshly constructed or might be an existing

object.

Transforming a uniform design simply returns the argument. Transforming a

composite, flipping, or indirect design applies the transformation to the component

design(s). Transforming a pattern, tile, or output record design is described in the

sections on those designs.

Operators for Patterned Designs in CLIM

clim:make-pattern array designs

Creates a pattern design that has (array-dimension 2d-array 0) cells in

the vertical direction and (array-dimension 2d-array 1) cells in the hori-

zontal direction.

clim:make-pattern-from-bitmap-file pathname &rest args &key (:type :x11) :designs�

:format &allow-other-keys

Reads the bitmap file specified by pathname and creates a CLIM pattern

object from it.

clim:make-stencil array

Make a pattern of opacities from a two-dimensional array.

Page 1286

clim:make-rectangular-tile design width height

Creates a design that tiles the specified rectangular portion of design

across the entire drawing plane.

Concepts of Translucent Ink in CLIM

Translucent ink supports the following drawing techniques:

• Controlling opacity

• Blending colors

• Compositing�

Controlling Opacity�

Opacity controls how new output covers previous output. Intermediate opacity val-

ues result in color blending so that the earlier picture shows through what is

drawn on top of it.

An opacity is a real number between 0 and 1; 0 is completely transparent, 1 is

completely opaque, and fractions are translucent. The opacity of a design is the de-

gree to which it hides the previous contents of the drawing plane when it is

drawn. Opacity can vary from totally opaque to totally transparent.

Use clim:make-opacity or clim:make-stencil to specify opacity.

Note: Opacity values that are not either fully transparent or fully opaque are

not currently fully supported.

Color Blending�

Drawing a design that is not completely opaque at all points allows the previous

contents of the drawing plane to show through. The simplest case is drawing a

solid design. Where the design is opaque, it replaces the previous contents of the

drawing plane. Where the design is transparent, it leaves the drawing plane un-

changed.

In the more general case of drawing a translucent design, the resulting color is a

blend of the design’s color and the previous color of the drawing plane. For pur-

poses of color blending, the drawn design is called the foreground and the drawing

plane is called the background.

The function clim:compose-over performs a similar operation. It combines two de-

signs to produce a design, rather than combining a design and the contents of the

drawing plane to produce the new contents of the drawing plane. For purposes of

color blending, the first argument to clim:compose-over is called the foreground

and the second argument is called the background.

Color blending is defined by an ideal function: F(r 1 ,g 1 ,b 1 ,o 1 ,r 2 ,g 2 ,b 2 ,o 2) to (r

3 ,g 3 ,b 3 ,o 3) that operates on the color and opacity at a single point.

(r 1 ,g 1 ,b 1 ,o 1) are the foreground color and opacity.

Page 1287

(r 2 ,g 2 ,b 2 ,o 2) are the background color and opacity.

(r 3 ,g 3 ,b 3 ,o 3) are the resulting color and opacity.

The color blending function is conceptually applied at every point in the drawing

plane.

The function F performs linear interpolation on all four components:

o 3 = o 1 + (1 - o 1) * o 2�

r 3 = (o 1 * r 1 + (1 - o 1) * o 2 * r 2) / o 3�

g 3 = (o 1 * g 1 + (1 - o 1) * o 2 * g 2) / o 3�

b 3 = (o 1 * b 1 + (1 - o 1) * o 2 * b 2) / o 3

Note that if o 3 is zero, these equations would divide zero by zero. In that case r 3 ,

g 3 , and b 3 are defined to be zero.

CLIM requires that F be implemented exactly if o 1 is zero or one or if o 2 is zero.

If o 1 is zero, the result is the background. If o 1 is one or o 2 is zero, the result is

the foreground. For fractional opacity values, an implementation can deviate from

the ideal color blending function either because the implementation has limited

opacity resolution or because the implementation can compute a different color

blending function much more quickly.

If a medium’s background design is not completely opaque at all points, the conse-

quences are unspecified. Consequently, a drawing plane is always opaque and draw-

ing can use simplified color blending that assumes o 2 = 1 and o 3 = 1. However,

clim:compose-over must handle a non-opaque background correctly.

Note that these (r,g,b,o) quadruples of real numbers between 0 and 1 are mathe-

matical and an implementation need not store information in this form. Most im-

plementations are expected to use a different representation.

Compositing�

Compositing creates a design whose appearance at each point is a composite of the

appearances of two other designs at that point. Three varieties of compositing are

provided: composing over, composing in, and composing out.

You can use clim:compose-over, clim:compose-in, or clim:compose-out to create

CLIM composite designs.

In the present implementation compositing is not fully supported.

Operators for Translucent Ink in CLIM

The following functions can be used to create an opacity object, and to compose a

new ink from a color and an opacity. (The three composition operators can also be

used to compose more complex designs.)

The present implementation of CLIM only fully supports opacities that are either

fully opaque or fully transparent. It uses stipples for translucent opacities, and

composition of translucent opacities does not work well.

Page 1288

clim:make-opacity value Creates a member of class clim:opacity whose opaci-

ty is value, which is a real number in the range from 0 to 1 (inclusive),

where 0 is fully transparent and 1 is fully opaque.

clim:+transparent-ink+ When you draw a design that has areas of

clim:+transparent-ink+, the former background shows through in those

areas.

clim:opacity-value opacity Returns the value of opacity, which is a real number

in the range from 0 to 1 (inclusive).

clim:compose-over design1 design2

Composes a design that is equivalent to design1 drawn on top of design2.

Drawing the resulting design produces the same visual appearance as

drawing design2 and then drawing design1, but might be faster and

might not allow the intermediate state to be visible on the screen.

clim:compose-in design1 design2

Composes a design by using the color (or ink) of design1 and clipping to

the inside of design2 (that is, design2 specifies the mask to use for

changing the shape of the design).

clim:compose-out design1 design2

Composes a design by using the color (or ink) of design1 and clipping to

the outside of design2 (that is, design2 specifies the mask to use for

changing the shape of the design).

Complex Designs in CLIM

Note that the designs described in this section are not supported as the :ink draw-

ing option in the present implementation, but you can use clim:draw-design to

draw them.

You can use clim:make-design-from-output-record to make a design that replays

the output record when the design is drawn using clim:draw-design.

clim:make-design-from-output-record record

Makes a design that replays record when the design is drawn by

clim:draw-design.

Since designs are a generalization of regions that include color, any member of the

class clim:region acts as a solid, colorless design. The design is opaque at points

in the region and transparent elsewhere.See the section "Regions in CLIM".

Achieving Different Drawing Effects in CLIM

Here are some examples of how to achieve a variety of commonly used drawing

effects:

• Drawing in the foreground color

Page 1289

Use the default, or specify :ink clim:+foreground-ink+

• Erasing

Specify :ink clim:+background-ink+

• Drawing in color

Specify :ink clim:+green+, or :ink (clim:make-color-rgb 0.6 0.0 0.4)

• Painting a gray or colored wash over a display

Specify a translucent design as the ink, such as

:ink (clim:compose-in clim:+black+ (clim:make-opacity 0.25))

:ink (clim:compose-in clim:+red+ (clim:make-opacity 0.1))

:ink (clim:compose-in clim:+foreground-ink+ (clim:make-opacity 0.75)) �

The last example can be abbreviated as :ink (clim:make-opacity 0.75). On a

non-color, non-grayscale display this will probably turn into a stipple.

• Drawing an opaque gray

Specify :ink (clim:make-gray-color 0.25) to draw in a shade of gray indepen-

dent of the window’s foreground color. On a non-color, non-grayscale display this

will probably turn into a stipple.

• Drawing a faded but opaque version of the foreground color

Specify :ink (clim:compose-over (clim:compose-in clim:+foreground-ink+

(clim:make-opacity 0.25)) clim:+background-ink+) to draw at 25% of the normal

contrast.

This technique is not fully supported in the present implementation. The design

will generally be displayed as a stippled pattern.

• Drawing a stipple of little bricks

Specify :ink bricks, where bricks is defined as

Page 1290

(clim:make-rectangular-tile

 (clim:make-pattern #2a((0 0 0 1 0 0 0 0)

 (0 0 0 1 0 0 0 0)

 (0 0 0 1 0 0 0 0)

 (1 1 1 1 1 1 1 1)

 (0 0 0 0 0 0 0 1)

 (0 0 0 0 0 0 0 1)

 (0 0 0 0 0 0 0 1)

 (1 1 1 1 1 1 1 1))

 (list clim:+background-ink+

 clim:+foreground-ink+))

 8 8)�

• Drawing a tiled pattern

Specify :ink (clim:make-rectangular-tile (clim:make-pattern array colors))

• Drawing a pattern

Use (clim:draw-pattern* medium (clim:make-pattern array colors) x y)

Presentation Types in CLIM

Concepts of CLIM Presentation Types

User Interaction with Application Objects�

In object-oriented programming systems, applications are built around internal ob-

jects that model something in the real world. For example, an application that

models a university has objects representing students, professors, and courses. A

CAD system for designing circuits has objects representing gates, resistors, and so

on. A desktop publishing system has objects representing paragraphs, headings,

and drawings.

Users need to interact with the application objects. A CLIM user interface enables

users to see a visual representation of the application objects, and to operate on

them. The objects that appear on the screen are not the application objects them-

selves; they are one step removed. The visual representation of an object is a

stand-in for the application object itself, in the same sense that the word ‘‘cat’’ (or

a picture of a cat) is a stand-in for a real cat.

A fundamental part of designing a CLIM user interface is to specify how users

will interact with the application objects. There are two directions of interaction:

you must present application objects to the user as output, and you must accept

input from the user that indicates application objects. This is done with two basic

functions, clim:present and clim:accept, and some related functions.

Page 1291

presentaccept

Application

Object

Presentation

Presentations�

CLIM directly couples the visual representation of an object with the object itself.

CLIM maintains this association in a data structure called a presentation. A pre-

sentation embodies three things:

• The underlying application object

• Its presentation type

• Its visual representation�

Output with its Semantics Attached�

For example, a university application has a ‘‘student’’ application object. The user

sees a visual representation of a student, which might be a textual representation,

or a graphical representation (such as a form with name, address, student id

number), or even an image of the face of the student. The presentation type of the

student is ‘‘student’’; that is, the semantic type of the object that appears on the

screen is ‘‘student’’. Since the type of the object is known, CLIM knows which op-

erations are appropriate to perform on it. For example, when a student is dis-

played, it is possible to perform operations such as ‘‘send-tuition-bill’’ or ‘‘show-

transcript’’.

Input Context�

Presentations are the basis of many of the higher-level application-building tools,

which use clim:accept to get input and clim:present to do output. A command

that takes arguments as input states the presentation type of each argument. This

sets up an input context, in which presentations of that type are sensitive (they are

highlighted when the pointer passes over them). When the user gives the send-

tuition-bill command, the input context is looking for a student, so any displayed

students are sensitive. Presentations that have been output in previous user inter-

actions retain their semantics. In other words, CLIM has recorded the fact that a

student has been displayed, and has saved this information so that whenever the

input context expects a student, all displayed students are sensitive.

Page 1292

Inheritance�

CLIM presentation types can be designed to use inheritance, just as CLOS classes

do. For example, a university might need to model night-student, which is a sub-

class of student. When the input context is looking for a student, night-students

are sensitive because they are represented as a subtype of student.

The set of presentation types forms a type lattice, an extension of the Common

Lisp CLOS type lattice. When a new presentation type is defined as a subtype of

another presentation type, it inherits all the attributes of the supertype except

those explicitly overridden in the definition.

Presentation Translators�

You can define presentation translators to make the user interface of your applica-

tion more flexible. For example, suppose the input context is expecting a command.

In this input context, all displayed commands are sensitive, so the user can point

to one to execute it. However, suppose the user points to another kind of presented

object, such as a student. In the absence of a presentation translator, the student

is not sensitive because the user must enter a command and cannot enter anything

else to this input context.

In the presence of a presentation translator that translates from students to com-

mands, however, the presented student would be sensitive. In one scenario, the

presented student is highlighted, and the middle pointer button does ‘‘Show Tran-

script’’ of that student.

What The Application Programmer Does�

By the time you get to the point of designing the user interface, you have probably

designed the rest of the application and know what the application objects are. At

this point, you need to do the following:

• Decide what types of application objects will be presented to the user as output

and accepted from the user as input.

• For each type of application object that the user will see, assign a corresponding

presentation type. In many cases, this means simply using a predefined presen-

tation type. In other cases, you need to define a new presentation type. Usually

the presentation type is the same as the class of the application object.

• Use the application-building tools to specify the windows, menus, commands, and

other elements of the user interface. Most of these elements will use the presen-

tation types of your objects.�

How to Specify a CLIM Presentation Type

This section describes how to specify a CLIM presentation type. For a complete de-

scription of CLIM presentation types, options, and parameters, see the section

"Predefined Presentation Types in CLIM".

Page 1293

Several CLIM operators take presentation types as arguments. You specify them

using a presentation type specifier.

Most presentation type specifiers are also Common Lisp type specifiers. Not all

presentation types are Common Lisp types (such as the clim:boolean presentation

type) and not all Common Lisp types are presentation types, but there is a lot of

overlap.

A presentation type specifier appears in one of the following three patterns:

name

(name parameters...)

((name parameters...) options...)�

Each presentation type has a name, which is usually a symbol naming the presen-

tation type. The name can also be a CLOS class object; this usage provides the

support for anonymous CLOS classes.

The first pattern, name, indicates a simple presentation type, which can be one of

the predefined presentation types or a user-defined presentation type.

Examples of the first pattern are:

integer A predefined presentation type

pathname A predefined presentation type

boolean A predefined presentation type

student A user-defined presentation type�

The second pattern, (name parameters...), supports parameterized presentation

types, which are analogous to parameterized Common Lisp types. The parameters

state a restriction on the presentation type, so a parameterized presentation type is

a specialization, or a subset, of the presentation type of that name with no param-

eters.

Examples of the second pattern are:

(integer 0 10) A parameterized type indicating an integer in the

range of zero through ten.

(string 25) A parameterized type indicating a string whose

length is 25.

(member :yes :no :maybe)

A parameterized type which can be one of the three

given values, :yes, :no, and :maybe.�

The third pattern, ((name parameters...) options...), enables you to additionally spec-

ify options that affect the use or appearance of the presentation, but not its se-

mantic meaning. The options are keyword/value pairs. The options are defined by

the presentation type. All presentation types accept the :description option, which

enables you to provide a string describing the presentation type. If provided, this

option overrides the description specified in the clim:define-presentation-type

form, and also overrides the clim:describe-presentation-type presentation method.

Page 1294

For example, you can use this form to specify an octal integer from 0 to 10:

((integer 0 10) :base 8)�

Some presentation type options may appear as an option in any presentation type

specifier. Currently, the only such option is :description.

Using CLIM Presentation Types for Output

The reason for using presentations for program output is so that the objects pre-

sented will be acceptable to input functions. Suppose, for example, you present an

object, such as 5, as a TV channel. When a command that takes a TV channel as

an argument is issued or when a presentation translation function is ‘‘looking for’’

such a thing, the system will make that object sensitive. Also, when a command

that is looking for a different kind of object (such as a highway number), the ob-

ject 5 is not sensitive, because that object represents a TV channel, not a highway

number.

A presentation includes not only the displayed representation itself, but also the

object presented and its presentation type. When a presentation is output to a

CLIM window, the object and presentation type are ‘‘remembered’’ that is, the

object and type of the display at a particular set of window coordinates are record-

ed in the window’s output history. Because this information remains available, pre-

viously presented objects are themselves available for input to functions for accept-

ing objects.

CLIM Operators for Presenting Typed Output

An application can use the following operators to produce output that will be asso-

ciated with a given Lisp object and be declared to be of a specified presentation

type. This output is saved in the window’s output history as a presentation.

Specifically, the presentation remembers the output that was performed (by saving

the associated output record), the Lisp object associated with the output, and the

presentation type specified at output time. The object can be any Lisp object.

CLOS provides these top-level facilities for presenting output. clim:with-output-as-

presentation is the most general operator, and clim:present and clim:present-to-

string support common idioms.

clim:with-output-as-presentation (stream object type &key :modifier :single-box (:al-

low-sensitive-inferiors t) :parent :record-type) &body body

Gives separate access to the two aspects of clim:present: recording the

presentation and drawing the visual representation. This macro gener-

ates a presentation from the output done in the body to the stream. The

presentation’s underlying object is object, and its presentation type is

type.

clim:present object &optional (presentation-type (clim:presentation-type-of object))

&key (:stream *standard-output*) (:view (clim:stream-default-view

stream)) :modifier :acceptably (:for-context-type presentation-type) :single-

Page 1295

box :allow-sensitive-inferiors :sensitive (:record-type ’clim:standard-

presentation) Creates a presentation on the stream of the specified ob-

ject, using the given type and view to determine visual appearance. The

manner in which the object is displayed depends on the presentation type

of the object; the display is done by the type’s clim:present method for

the given view.

clim:present-to-string object &optional (presentation-type (clim:presentation-type-

of object)) &key (:view clim:+textual-view+) :acceptably (:for-context-type

presentation-type) :string :index

Presents an object into a string in such a way that it can subsequently

be accepted as input by clim:accept-from-string.

Additional Functions for Operating on Presentations in CLIM

The following functions can be used to examine or modify presentations.

clim:presentationp object Returns t if and only if object is of type

clim:presentation.

clim:presentation-object presentation

Returns the application object represented by the presentation presenta-

tion. You can use setf on clim:presentation-object to change the object

associated with the presentation.

clim:presentation-type presentation

Returns the presentation type of the presentation presentation. You can

use setf on clim:presentation-type to change the presentation type asso-

ciated with the presentation.

clim:presentation The protocol class that corresponds to a presentation.

clim:standard-presentation The standard class used by CLIM to represent pre-

sentations.

Using CLIM Presentation Types for Input

The primary means for getting input from the end user is clim:accept. Characters

typed in at the keyboard in response to a call to clim:accept are parsed, and the

application object they represent is returned to the calling function. (The parsing

is done by the clim:accept method for the presentation type.) Alternatively, if a

presentation of the type specified by the clim:accept call (or one of its subtypes)

has previously been displayed, the user can click on it with the pointer and

clim:accept returns it directly (that is, no parsing of a textual representation is

required).

Examples:

Page 1296

(clim:accept ’string) ==>

Enter a string: abracadabra

"abracadabra"

�

(clim:accept ’string) ==>

Enter a string [default abracadabra]: abracadabra

"abracadabra"�

In the first call to clim:accept, "abracadabra" was typed at the keyboard. In the

second call to clim:accept, the user clicked on the keyboard-entered string of the

first function. In both cases, the same (in the sense of eq) string object "abra-

cadabra" was returned.

Typically, not just any kind of object is acceptable as input. Only an object of the

presentation type specified in the current clim:accept function (or one of its sub-

types) can be input. In other words, the clim:accept function establishes the cur-

rent input context. For example, if the call to clim:accept specifies an integer pre-

sentation type, only a typed-in or a displayed integer is acceptable. Numbers dis-

played as integer presentations would, in this input context, be sensitive, but those

displayed as part of some other kind of presentation, such as a file pathname,

would not. Thus, clim:accept controls the input context and thereby the sensitivity

of displayed presentations.

Clicking on a presentation of a type different from the input context may cause

translation to an acceptable object, if there is an appropriate presentation transla-

tor defined. For example, you could make a presentation of a file pathname trans-

late to an integer say, its length if you want. It is very common to translate

to a command that operates on a presented object. For more information on pre-

sentation translators, see the section "Presentation Translators in CLIM".

Typically, the range of acceptable input is restricted. How restricted it is, is strict-

ly up to you, the programmer. Using compound presentation types like and and or,

and other predefined or specially devised presentation types gives you a high de-

gree of flexibility and control over the input context.

CLIM Operators for Accepting Input

CLIM provides the following top-level operators for accepting typed input.

clim:with-input-context is the most general operator, and clim:accept and

clim:accept-from-string support common idioms.

Note that clim:accept does not insert newlines. If you want each call to

clim:accept to appear on a new line, use terpri.

clim:accept type &rest accept-args &key (:stream *standard-input*) (:view

(clim:stream-default-view stream)) :default (:default-type type) (:history

type) :provide-default (:prompt t) (:prompt-mode ’:normal) (:display-default

prompt) :query-identifier :activation-gestures :additional-activation-gestures

:delimiter-gestures :additional-delimiter-gestures :insert-default (:replace-

input t) (:active-p t)

Page 1297

Requests input of the type from the stream. clim:accept returns two val-

ues, the object and its presentation type. clim:accept works by prompt-

ing, then establishing an input context via clim:with-input-context, and

then calling the clim:accept CLIM presentation method for type and

:view.

clim:accept-from-string type string &key (:view clim:+textual-view+) :default (:de-

fault-type type) :activation-gestures :additional-activation-gestures :delim-

iter-gestures :additional-delimiter-gestures (:start 0) :end

Reads a printed representation of an object of type type from string. This

function is like clim:accept, except that the input is taken from string,

starting at :start and ending at :end. This function is analogous to read-

from-string.

clim:with-input-context (type &key :override) (&optional object-var type-var event-

var options-var) form &body clauses

Establishes an input context of type type, evaluates form in the new con-

text, and (optionally) evaluate one of clauses.

clim:*input-context* The current input context, which describes the presenta-

tion type(s) currently being input by CLIM.

clim:input-context-type context-entry

Given one element from clim:*input-context*, context-entry, this returns

the presentation type of the context entry.

Predefined Presentation Types in CLIM

This section documents predefined CLIM presentation types, presentation type op-

tions, and parameters. For more information on how to use these presentation

types, see the section "How to Specify a CLIM Presentation Type".

Note that any presentation type with the same name as a Common Lisp type ac-

cepts the same parameters as the Common Lisp type (and additional parameters in

a few cases).

Basic Presentation Types in CLIM

Here are basic presentation types that correspond to the Common Lisp types hav-

ing the same name.

t Clim Presentation Type

The supertype of all other presentation types.

Note that the clim:accept method for this type allows input only via the pointer;

if the user types anything on the keyboard, the clim:accept method just beeps.

Page 1298

null Clim Presentation Type

The presentation type that represents ‘‘nothing’’. The single object associated with

this type is nil, and its printed representation is "None".

clim:boolean Clim Presentation Type

The presentation type that represents t or nil. The textual representation is "Yes"
and "No", respectively.

symbol Clim Presentation Type

The presentation type that represents a symbol.

keyword Clim Presentation Type

The presentation type that represents a symbol in the keyword package. It is a

subtype of symbol.

Numeric Presentation Types in CLIM

The following presentation types represent the Common Lisp numeric types having

the same names.

number Clim Presentation Type

The presentation type that represents a general number. It is the supertype of all

the number types.

complex &optional type Clim Presentation Type

The presentation type that represents a complex number. It is a subtype of

number.

type is the type to use for the components. It must be a subtype of real.

future-common-lisp:real &optional low high Clim Presentation Type

The presentation type that represents either a ratio, an integer, or a floating point

number between low and high. low and high can be inclusive or exclusive, as in

Common Lisp type specifiers.

Options to this type are :base and :radix, which are the same as for the integer

type. This type is a subtype of number.

rational &optional low high Clim Presentation Type

Page 1299

The presentation type that represents either a ratio or an integer between low and

high. Options to this type are :base and :radix, which are the same as for the

integer type. It is a subtype of real.

integer &optional low high Clim Presentation Type

The presentation type that represents an integer between low and high. Options to

this type are :base (default 10) and :radix (default nil), which correspond to

print-base and *print-radix*, respectively. It is a subtype of rational.

ratio &optional low high Clim Presentation Type

The presentation type that represents a ratio between low and high. Options to

this type are :base and :radix, which are the same as for the integer type. It is a

subtype of rational.

float &optional low high Clim Presentation Type

The presentation type that represents a floating point number between low and

high. This type is a subtype of clim:real.

Character and String Presentation Types in CLIM

These two presentation types can be used for reading and writing character and

strings.

character Clim Presentation Type

The presentation type that represents a Common Lisp character object.

string &optional length Clim Presentation Type

The presentation type that represents a string. If length is specified, the string

must have exactly that many characters.

Pathname Presentation Type in CLIM

clim-lisp:pathname Clim Presentation Type

The presentation type that represents a pathname.

The options are :default-type (which defaults to nil), :default-version (which de-

faults to :newest), and :merge-default (which defaults to t). If :merge-default is

nil, clim:accept returns the exact pathname that was entered, otherwise

clim:accept merges against the default provided to clim:accept and :default-type

Page 1300

and :default-version, using merge-pathnames. If no default is specified, it de-

faults to *default-pathname-defaults*.

One-of and Some-of Presentation Types in CLIM

The ‘‘one-of’’ and ‘‘some-of’’ presentation types can be used to accept and present

one or more items from a set of items. The set of items can be specified as a

‘‘rest’’ argument, a sequence, or an alist.

This table summarizes single (‘‘one-of’’) and multiple (‘‘some-of’’) selection presen-

tation types. Each row represents a type of presentation. Columns contain the asso-

ciated single and multiple selection presentation types.

Args Single Multiple

most general clim:completion clim:subset-completion

&rest elements member clim:subset

sequence clim:member-sequence clim:subset-sequence

alist clim:member-alist clim:subset-alist

clim:completion sequence &key :test :value-key Clim Presentation Type

The presentation type that selects one from a finite set of possibilities, with

‘‘completion’’ of partial inputs. Several types are implemented in terms of the

clim:completion type, including clim:token-or-type, clim:null-or-type, member,

clim:member-sequence, and clim:member-alist.

The presentation type parameters are:

sequence A list or vector whose elements are the possibilities. Each possibili-

ty has a printed representation, called its name, and an internal

representation, called its value. clim:accept reads a name and re-

turns a value. clim:present is given a value and outputs a name.

:test A function that compares two values for equality. The default is

eql.

:value-key A function that returns a value given an element of sequence. The

default is identity.

The following presentation type options are available:

:name-key

A function that returns a name, as a string, given an element of se-

quence. The default is a function that behaves as follows:

Page 1301

Argument Returned Value

string the string

null the string "NIL"

cons string of the car

symbol string-capitalize of its name

otherwise princ-to-string of it�

:documentation-key

A function that returns nil or a descriptive string, given an element

of sequence. The default always returns nil.

:partial-completers

A (possibly empty) list of characters that delimit portions of a name

that can be completed separately. The default is a list of one char-

acter, #\Space.

member &rest elements Clim Presentation Type Abbreviation

The presentation type that specifies one of elements. The options (:name-key,

:value-key, and :partial-completers) are the same as for clim:completion.

clim:member-sequence sequence &key :test Clim Presentation Type Abbreviation

Like member, except that the set of possibilities is the sequence sequence. The pa-

rameter :test and the options (:name-key, :value-key, and :partial-completers) are

the same as for clim:completion.

clim:member-alist alist &key :test Clim Presentation Type Abbreviation

Like member, except that the set of possibilities is the alist alist. Each element of

alist is either an atom (as in clim:member-sequence) or a list whose car is the

name of that possibility and whose cdr is one of the following:

• The value (which must not be a cons)

• A list of one element, the value

• A property list containing one or more of the following properties:

:value the value

:documentation a descriptive string�

The :test parameter and the options are the same as for clim:completion except

that the :value-key and :documentation-key options default to functions that sup-

port the specified alist format.

clim:subset-completion sequence &key :test :value-key Clim Presentation Type

Page 1302

The presentation type that selects one or more from a finite set of possibilities,

with completion of partial inputs. The parameters and options are the same as for

clim:completion with the following additional options:

:separator The character that separates members of the set of possibili-

ties in the printed representation when there is more than one.

The default is comma.

:echo-space (t or nil) Whether to insert a space automatically after the

separator. The default is t.

The other subset types (clim:subset, clim:subset-sequence, and clim:subset-alist)

are implemented in terms of the clim:subset-completion type.

clim:subset &rest elements Clim Presentation Type Abbreviation

The presentation type that specifies a subset of elements. Values of this type are

lists of zero or more values chosen from the possibilities in elements. The printed

representation is the names of the elements separated by the separator character.

The options (:name-key, :value-key, :partial-completers, :separator, and :echo-

space) are the same as for clim:subset-completion.

clim:subset-sequence sequence &key :test Clim Presentation Type Abbreviation

Like clim:subset, except that the set of possibilities is the sequence sequence. The

parameter :test and the options (:name-key, :value-key, :partial-completers,

:separator, and :echo-space) are the same as for clim:subset-completion.

clim:subset-alist alist &key :test Clim Presentation Type Abbreviation

Like clim:subset, except that the set of possibilities is the alist alist. The parame-

ter :test and the options (:name-key, :value-key, :partial-completers, :separator,

and :echo-space) are the same as for clim:subset-completion. The parameter alist

has the same format as clim:member-alist.

Sequence Presentation Types in CLIM

The following two presentation types can be used to accept and present a sequence

of objects.

sequence type Clim Presentation Type

The presentation type that represents a sequence of elements of type type. The

printed representation of a sequence type is the elements separated by the separa-

tor character. It is unspecified whether clim:accept returns a list or a vector. You

can specify the following options:

Page 1303

:separator The character that separates members of the set of possibili-

ties in the printed representation when there is more than one.

The default is comma (#\,).

:echo-space If this is t, then CLIM will insert a space automatically after

the separator, otherwise it will not. The default is t.

type can be a presentation type abbreviation.

clim:sequence-enumerated &rest types Clim Presentation Type

clim:sequence-enumerated is like sequence, except that the type of each element

in the sequence is individually specified. It is unspecified whether clim:accept re-

turns a list or a vector. You can specify the following options:

:separator The character that separates members of the set of possibili-

ties in the printed representation when there is more than one.

The default is comma (#\,).

:echo-space If this is t, then CLIM will insert a space automatically after

the separator, otherwise it will not. The default is t.

The elements of types can be presentation type abbreviations.

Meta Presentation Types in CLIM

or &rest types Clim Presentation Type

The presentation type that is used to specify one of several types, for example,

(or (member :all :none) integer)�

clim:accept returns one of the possible types as its second value, not the original

or presentation type specifier.

The elements of types can be presentation type abbreviations.

The clim:accept method for the or type works by iteratively calling clim:accept

on each of the presentation types in types. It establishes a condition handler for

user::parse-error, calls clim:accept, and returns the result if no condition is sig-

nalled. If a user::parse-error condition is signalled, CLIM calls the clim:accept

method for the next type. If all of the calls to clim:accept fail, the clim:accept

method for or signals a user::parse-error.

and &rest types Clim Presentation Type

The presentation type that is used for multiple inheritance. and is usually used in

conjunction with satisfies. For example,

(and integer (satisfies oddp))�

Page 1304

The elements of types can be presentation type abbreviations.

The first type in types is in charge of accepting and presenting. The remaining el-

ements of types are used for type checking (for example, filtering applicability of

presentation translators).

The and type has special syntax that supports the two ‘‘predicates’’ satisfies and

not. satisfies and not cannot stand alone as presentation types and cannot be first

in types. not can surround either satisfies or a presentation type.

Compound Presentation Types in CLIM

The following compound presentation types are provided because they implement

some common idioms.

clim:token-or-type tokens type Clim Presentation Type Abbreviation

A compound type that is used to select one of a set of special tokens, or an object

of type type. tokens is anything that can be used as the alist parameter to

clim:member-alist; typically it is a list of keyword symbols.

type can be a presentation type abbreviation.

For example, the following is a common way of using clim:token-or-type:

(clim:accept ’(clim:token-or-type (:all :none) integer)

 :prompt "How many?")

�

clim:null-or-type type Clim Presentation Type Abbreviation

A compound type that is used to select nil, whose printed representation is the

special token "None", or an object of type type.

type can be a presentation type abbreviation.

clim:type-or-string type Clim Presentation Type Abbreviation

A compound type that is used to select an object of type type or an arbitrary

string, for example, (clim:type-or-string integer). Any input that clim:accept can-

not parse as the representation of an object of type type is returned as a string.

type can be a presentation type abbreviation.

Command and Form Presentation Types in CLIM

The command and form presentation types are complex types provided primarily

for use by the top level interactor of an application.

Page 1305

clim:expression Clim Presentation Type

The presentation type used to represent any Lisp object. The textual view of this

type looks like what the standard prin1 and read functions produce and accept.

This type has one option, :auto-activate, which controls whether the expression

terminates on a delimiter gestures, or when the Lisp expression ‘‘balances’’ (for

example, you type enough close parentheses to complete the expression). The de-

fault for :auto-activate is nil, meaning that the user must use an activation ges-

ture to terminate the input.

clim:form Clim Presentation Type

The presentation type used to represent a Lisp form. This type is a subtype of

clim:expression. It has one option, :auto-activate, which is treated the same way

as the :auto-activate option to clim:expression.

clim:command &key :command-table Clim Presentation Type

The presentation type used to represent a CLIM command processor command and

its arguments. :command-table can be either a command table or a symbol that

names a command table.

If :command-table is not supplied, it defaults to the command table for the current

application, that is, (clim:frame-command-table clim:*application-frame*).

When you call clim:accept on this presentation type, the returned value is a list;

the first element is the command name, and the remaining elements are the com-

mand arguments. You can use clim:command-name and clim:command-

arguments to access the name and arguments of the command object.

For more information about CLIM command objects, see the section "Command

Objects in CLIM".

clim:command-name &key :command-table Clim Presentation Type

The presentation type used to represent the name of a CLIM command processor

command in the command table :command-table.

:command-table may be either a command table or a symbol that names a com-

mand table. If :command-table is not supplied, it defaults to the command table for

the current application. The textual representation of a clim:command-name ob-

ject is the command-line name of the command, while the internal representation

is the command name.

clim:command-or-form &key :command-table Clim Presentation Type

The presentation type used to represent either a Lisp form or a CLIM command

processor command and its arguments. In order for the user to indicate that he

wishes to enter a command, a command dispatch character must be typed as the

first character of the command line.

Page 1306

See the variable clim:*command-dispatchers*.

:command-table may be either a command table or a symbol that names a com-

mand table. If :command-table is not supplied, it defaults to the command table for

the current application, that is, (clim:frame-command-table clim:*application-

frame*).

Defining a New Presentation Type in CLIM

Concept of Defining a New Presentation Type in CLIM

CLIM’s standard set of presentation types will be useful in many cases, but most

applications will need customized presentation types to represent the objects mod-

eled in the application.

By defining a presentation type, you define all of the user interface components of

the entity:

• A displayed representation, for example, textual or graphical

• A textual representation, for user input via the keyboard (a textual rep-

resentation is optional)

• Pointer sensitivity, for user input via the pointer�

In other words, by defining a presentation type, you describe in one place all the

information about an object necessary to display it to the user and interact with

the user for getting input.

The set of presentation types forms a type lattice, an extension of the Common

Lisp CLOS type lattice. When a new presentation type is defined as a subtype of

another presentation type, it inherits all the attributes of the supertype except

those explicitly overridden in the definition.

To define a new presentation type, you follow these steps:

1. Use the clim:define-presentation-type macro.

• Name the new presentation type.

• Supply parameters that further restrict the type (if appropriate).

• Supply options that affect the appearance of the type (if appropriate).

• State the supertypes of this type, to make use of inheritance (if appropri-

ate).�

2. Define CLIM presentation methods.

• Specify how objects are displayed with a clim:present presentation method.

(You must define a clim:present method, unless the new presentation type

inherits a method that is appropriate for it.)

Page 1307

• Specify how objects are parsed with a clim:accept presentation method. (In

most cases, you must define a clim:accept method, unless the new presen-

tation type inherits a method that is appropriate for it. If it is never neces-

sary to enter the object by typing its representation on the keyboard, you

don’t need to provide this method.)

• Specify the type/subtype relationships of this type and its related types, if

necessary, with clim:presentation-typep and clim:presentation-subtypep

presentation methods. (You must define or inherit these methods when

defining a presentation type that has parameters.)

CLIM Presentation Type Inheritance

Every presentation type is associated with a CLOS class. In the common case, the

name of the presentation type is a class object or the name of a class, and that

class is not a clos:built-in-class. In this case, the presentation type is the same as

the CLOS class.

When the class is a subclass of clos:built-in-class, the presentation type is a built

on a special class that is internal to CLIM. This class is not named name, since

that could interfere with built-in Common Lisp types such as and, member, and

integer. clos:class-name of this class returns a list (clim:presentation-type

name).

IMPORTANT NOTE: If the same name is defined with both clos:defclass (or

defstruct) and clim:define-presentation-type, the

clos:defclass (or defstruct) must be done first.�

Every CLOS class (except for built-in classes) is a presentation type, as is its

name. If it has not been defined with clim:define-presentation-type, it allows no

parameters and no options.

As in CLOS, inheriting from a built-in class does not work, unless you specify the

same inheritance that the built-in class already has; you may want to do this in

order to add presentation type parameters to a built-in class.

If you define a presentation type that does not have the same name as a CLOS

class, you must define a clim:presentation-typep presentation method for it. If

you define a presentation type that has parameters, you must define or inherit a

clim:presentation-subtypep for it.

If your presentation type has the same name as a class, doesn’t have any parame-

ters or options, doesn’t have a history, and doesn’t need a special description, you

do not need to call clim:define-presentation-type.

During method combination, presentation type inheritance is used both to inherit

methods (‘‘what parser should be used for this type?’’), and to establish the seman-

tics for the type (‘‘what objects are sensitive in this context?’’). Inheritance of

methods is the same as in CLOS and thus depends only on the type name, not on

the parameters and options.

Page 1308

Presentation type inheritance translates the parameters of the subtype into a new

set of parameters for the supertype, and translates the options of the subtype into

a new set of options for the supertype.

Example of Defining a New CLIM Presentation Type

This example shows how to define a new presentation type, and how to define the

presentation methods for the new type. First we define the application objects

themselves and create some test data. Then we define a simple presentation type,

and gradually add enhancements to it to show different CLIM techniques.

This example models a university. The application objects are students, courses,

and departments. This is such a simple example that there is no need to use in-

heritance.

Note that this example must be run in a package, such as clim-user, that has ac-

cess to symbols from the clim and clos packages.

These are the definitions of the application objects:

(defclass student ()

 ((name :reader student-name :initarg :name)

 (courses :accessor student-courses :initform nil)))

�

(defclass course ()

 ((name :reader course-title :initarg :title)

 (department :reader course-department :initarg :department)))

�

(defclass department ()

 ((name :reader department-name :initarg :name)))�

The following code provides support for looking up objects by name.

(defvar *student-table* (make-hash-table :test #’equal))

(defvar *course-table* (make-hash-table :test #’equal))

(defvar *department-table* (make-hash-table :test #’equal))

�

(defun find-student (name &optional (errorp t))

 (or (gethash name *student-table*)

 (and errorp (error "There is no student named ~S" name))))

�

(defun find-course (name &optional (errorp t))

 (or (gethash name *course-table*)

 (and errorp (error "There is no course named ~S" name))))

�

(defun find-department (name &optional (errorp t))

 (or (gethash name *department-table*)

 (and errorp (error "There is no department named ~S" name))))

Page 1309

�

(defmethod initialize-instance :after ((student student) &key)

 (setf (gethash (student-name student) *student-table*) student))

�

(defmethod initialize-instance :after ((course course) &key)

 (setf (gethash (course-title course) *course-table*) course))

�

(defmethod initialize-instance :after ((department department) &key)

 (setf (gethash (department-name department) *department-table*) department))

�

(defmethod print-object ((student student) stream)

 (print-unreadable-object (student stream :type t)

 (write-string (student-name student) stream)))

�

(defmethod print-object ((course course) stream)

 (print-unreadable-object (course stream :type t)

 (write-string (course-title course) stream))

 (format stream " (~A)" (department-name (course-department course))))

�

(defmethod print-object ((department department) stream)

 (print-unreadable-object (department stream :type t)

 (write-string (department-name department) stream)))

�

Here we create some test data:

(flet ((make-student (name &rest courses)

 (setf (student-courses (make-instance ’student :name name))

 (copy-list courses)))

 (make-course (title department)

 (make-instance ’course :title title :department department))

 (make-department (name)

 (make-instance ’department :name name)))

 (let* ((english (make-department "English"))

 (physics (make-department "Physics"))

 (agriculture (make-department "Agriculture"))

 (englit (make-course "English Literature" english))

 (mabinogion (make-course "Deconstructing the Mabinogion" english))

 (e&m (make-course "Electricity and Magnetism II" physics))

 (beans (make-course "The Cultivation and Uses of Beans" agriculture))

 (horses (make-course "Horse Breeding for Track and Field" agriculture))

 (corn (make-course "Introduction to Hybrid Corn" agriculture)))

 (make-student "Susan Charnas" englit e&m)

 (make-student "Orson Card" englit beans)

 (make-student "Roberta MacAvoy" horses mabinogion)

 (make-student "Philip Farmer" corn beans horses)))�

Page 1310

You can evaluate the following forms to test what you have done so far. A printed

representation of each object will be displayed.

(find-student "Philip Farmer")

=>#<STUDENT Philip Farmer>

�

(find-course "The Cultivation and Uses of Beans")

=>#<COURSE The Cultivation and Uses of Beans (Agriculture)>

�

(find-department "Agriculture")

=>#<DEPARTMENT Agriculture�

If you try to evaluate a form that has not yet been defined (for example, if you try

to look up a student that ‘‘doesn’t exist’’), you might see something like this:

�

Now we are ready to develop a user interface. This first example defines presenta-

tions of students, represented by their names. This simple presentation type does

not provide parameters or options. A real program would also provide presentation

types for courses and departments, but this example shows students only.

(clim:define-presentation-type student ())

�

(clim:define-presentation-method clim:present

 (student (type student) stream

 (view clim:textual-view) &key)

 (write-string (student-name student) stream))

�

(clim:define-presentation-method clim:accept

 ((type student) stream

 (view clim:textual-view) &key)

 (let* ((token (clim:read-token stream))

 (student (find-student token nil)))

 (when student

 (return-from clim:accept student))

 (clim:input-not-of-required-type token type)))�

Test this by evaluating the following forms in a CLIM Lisp Listener. Note that

there is no completion and find-student is case-sensitive, so the student’s name

must be entered exactly to be accepted.

Page 1311

(clim:describe-presentation-type ’student *standard-output*)

(clim:describe-presentation-type ’student *standard-output* 5)

(clim:present (find-student "Philip Farmer") ’student)

(clim:accept ’student :default (find-student "Philip Farmer"))�

We can improve the input interface by using completion over elements of *stu-

dent-table*.

(clim:define-presentation-method clim:accept

 ((type student) stream

 (view textual-view) &key)

 (values ;suppress values after the first

 (clim:completing-from-suggestions

 (stream :partial-completers ’(#\space))

 ;; SUGGEST takes arg of name, object

 (maphash #’clim:suggest *student-table*))))�

Test this by evaluating the following form in a CLIM Lisp Listener.

(clim:accept ’student :default (find-student "Philip Farmer"))�

Try the Help key, and try entering just the initials of a student, separated by a

space; they complete to the full name.

It would be useful to be able to select students in a particular department. We can

revise the presentation type for student by adding a parameter for the depart-

ment. A student is in a department if the student is taking any course in that de-

partment.

(defun student-in-department-p (student department)

 (find department (student-courses student) :key #’course-department))

�

(clim:define-presentation-type student (&optional department))

�

When a presentation type has parameters, the defaults for the clim:presentation-

typep and clim:presentation-subtypep presentation methods are not sufficient.

Therefore, we need to define these presentation methods. We also define a new

clim:describe-presentation-type method.

(clim:define-presentation-method clim:presentation-typep

 (object (type student))

 (or (eq department ’*)

 (student-in-department-p object department)))

Page 1312

�

(clim:define-presentation-method clim:presentation-subtypep

 ((type1 student) type2)

 (let ((department1 (clim:with-presentation-type-parameters

 (student type1) department))

 (department2 (clim:with-presentation-type-parameters

 (student type2) department)))

 (values (or (eq department1 department2)

 (eq department2 ’*))

 t)))

 �

(clim:define-presentation-method clim:describe-presentation-type

 ((type student) stream plural-count)

 (when (eql plural-count 1)

 (write-string (if (or (eq department ’*)

 (not (find (char (department-name department) 0) "aeiou"

 :test #’char-equal)))

 "a "

 "an ")

 stream))

 (format stream

 (if (and (integerp plural-count) (> plural-count 1))

 (if (eq department ’*) "~R student~:P" "~R ~A student~:*~:P")

 (if (eq department ’*) "student~P" "~*~A student~:*~:P"))

 (typecase plural-count

 (integer plural-count)

 (null 1)

 (otherwise 2))

 (unless (eq department ’*)

 (department-name department))))�

Evaluate the following forms to test these methods:

(clim:presentation-typep (find-student "Philip Farmer")

 ‘(student ,(find-department "Agriculture")))

�

(clim:presentation-typep (find-student "Philip Farmer")

 ‘(student ,(find-department "English")))

�

(clim:presentation-typep "Philip Farmer"

 ‘(student ,(find-department "Agriculture")))

�

(clim:presentation-subtypep ‘(student ,(find-department "Agriculture"))

 ‘(student *))

�

(clim:presentation-subtypep ‘(student ,(find-department "Agriculture"))

 ‘(student ,(find-department "English")))

Page 1313

�

(clim:describe-presentation-type ‘(student ,(find-department "Physics")))

�

(clim:describe-presentation-type ‘(student *))

�

The existing method for clim:accept suggests all the students, even the ones in

the wrong department, so we provide the following :around method to check that

we are returning a student in the right department.

(clim:define-presentation-method clim:accept :around

 ((type student) stream view &key)

 (declare (ignore stream view))

 (multiple-value-bind (object actual-type)

 (call-next-method)

 (unless (clim:presentation-typep object type)

 (clim:input-not-of-required-type object type))

 (values object actual-type)))�

Evaluate the following form in a CLIM Lisp Listener before and after defining the

above method.

(clim:accept ‘(student ,(find-department "Agriculture")))�

Type the following at the prompt:

susan RETURN �

Before defining the above method, clim:accept returns a student that is not in the

specified department. After defining the above method, CLIM asks the user to try

again. But if you press HELP, Susan Charnas is still listed as one of the possibili-

ties.

Another way to do this would be to filter out students in other departments before

calling clim:suggest. To do that, define this method instead of the preceding

method. This way works better because the completion possibilities won’t include

any extra students.

(clim:define-presentation-method clim:accept

 ((type student) stream

 (view clim:textual-view) &key)

 (values ;suppress values after the first

 (clim:completing-from-suggestions

 (stream :partial-completers ’(#\space))

 (maphash (if (eq department ’*)

 #’clim:suggest

 #’(lambda (name student)

 (when (student-in-department-p student department)

 (clim:suggest name student))))

 student-table))))�

On Genera, this gets rid of the :around method that we don’t want any more. (On

other platforms, you can use clos:remove-method.)

Page 1314

(scl:fundefine ’(clos:method clim:accept-method (student t t t t t) :around))�

Evaluate these forms in the CLIM Lisp Listener again. Try entering the names of

agricultural and non-agricultural students.

(clim:accept ‘(student ,(find-department "Agriculture")))

(clim:accept ‘student)�

You can also try the HELP key.

It is easy to define an abbreviation for a presentation type. Here we define aggie

as an abbreviation for a student in the Agriculture department:

(clim:define-presentation-type-abbreviation aggie ()

 ‘(student ,(find-department "Agriculture")))�

Evaluate these forms to test it.

(clim:describe-presentation-type ’aggie)

(clim:accept ’aggie)�

Now we refine our example by providing an option that controls the printing of

the student’s name.

(clim:define-presentation-type student (&optional department)

 :options (last-name-first))

�

(clim:define-presentation-method clim:present

 (student (type student) stream

 (view clim:textual-view) &key)

 (let* ((name (student-name student))

 (index (and last-name-first (position #\space name :from-end t))))

 (cond ((null index)

 (write-string name stream))

 (t

 (write-string name stream :start (1+ index))

 (write-string ", " stream)

 (write-string name stream :end index)))))

Page 1315

�

(clim:define-presentation-method clim:accept

 ((type student) stream

 (view clim:textual-view) &key)

 (values ;suppress values after the first

 (clim:completing-from-suggestions

 (stream :partial-completers ’(#\space #\,))

 (maphash #’(lambda (name student)

 (when (clim:presentation-typep student type)

 (clim:suggest

 (or (and last-name-first

 (let ((index (position #\space name

 :from-end t)))

 (and index

 (concatenate ’string

 (subseq name (1+ index))

 ", "

 (subseq name 0 index)))))

 name)

 student)))

 student-table))))�

Evaluate these forms to test it.

(clim:present (find-student "Philip Farmer") ’student)

�

(clim:present (find-student "Philip Farmer") ’((student) :last-name-first t))

�

(clim:accept ‘((student) :last-name-first t))

�

(clim:accept ‘((student ,(find-department "Physics")) :last-name-first t))�

Since presentation type options are not automatically inherited by subtypes and

abbreviations, the following example doesn’t work.

(clim:accept ’((aggie) :last-name-first t))�

This example works if you redefine aggie to accept the :last-name-first option:

(clim:define-presentation-type-abbreviation aggie ()

 ‘((student ,(find-department "Agriculture"))

 :last-name-first ,last-name-first)

 :options (last-name-first))�

You can override the presentation type’s description:

(clim:accept ‘((student ,(find-department "English"))

 :description "English major"))�

CLIM Operators for Defining New Presentation Types

Page 1316

clim:define-presentation-type name parameters &key :options :inherit-from :descrip-

tion :history :parameters-are-types

Defines a CLIM presentation type.

clim:define-presentation-method presentation-function-name [qualifiers]* special-

ized-lambda-list &body body

Defines a presentation method for the function named presentation-

function-name on the presentation type named in specialized-lambda-list.

For the names and lambda-lists of CLIM presentation methods, see the section

"Presentation Methods in CLIM".

Under rare circumstances, you may wish to define or call a new presentation

generic function. The following forms may be used to accomplish this.

clim:define-presentation-generic-function generic-function-name presentation-

function-name lambda-list &rest options

Defines a new presentation named presentation-function-name whose

methods are named by generic-function-name. lambda-list and options are

as for clos:defgeneric.

clim:define-default-presentation-method presentation-function-name [qualifiers]*

specialized-lambda-list &body body

This is like clim:define-presentation-method, except that it is used to

define a default method that will be used if there are no more specific

methods.

clim:funcall-presentation-generic-function presentation-function-name &body argu-

ments

Funcalls the presentation generic function presentation-function-name

with arguments arguments using funcall.

clim:apply-presentation-generic-function presentation-function-name &body argu-

ments

Applies the presentation generic function presentation-function-name to

arguments arguments using apply.

CLIM Operators for Defining Presentation Type Abbreviations

You can define an abbreviation for a presentation type for the purpose of naming a

commonly used cliche. The abbreviation is simply another name for a presentation

type specifier.

clim:define-presentation-type-abbreviation name parameters expansion &key :op-

tions

Defines a presentation type that is an abbreviation for the presentation

type specifier that is the value of expansion.

This example defines a presentation type to read an octal integer:

Page 1317

(clim:define-presentation-type-abbreviation octal-integer

 (&optional low high)

 ‘((integer ,low ,high) :base 8 :description "octal integer"))�

When writing presentation type abbreviations, it is sometimes useful to let CLIM

include or exclude defaults for parameters and options. In some cases, you may al-

so find it necessary to ‘‘expand’’ a presentation type abbreviation. The following

three functions are useful in these circumstances.

clim:expand-presentation-type-abbreviation type &optional environment

clim:expand-presentation-type-abbreviation is like clim:expand-

presentation-type-abbreviation-1, except that type is repeatedly expand-

ed until all presentation type abbreviations have been expanded.

clim:expand-presentation-type-abbreviation-1 type &optional environment

If the presentation type specifier type is a presentation type abbreviation,

or is an and, or, sequence, or clim:sequence-enumerated that contains

a presentation type abbreviation, then clim:expand-presentation-type-

abbreviation-1 expands the type abbreviation once, and returns two val-

ues, the expansion and t. If type is not a presentation type abbreviation,

then the values type and nil are returned.

clim:make-presentation-type-specifier type-name-and-parameters &rest options

Given a presentation type name and its parameters type-name-and-

parameters and some presentation type options, make a new presentation

type specifier that includes all of the type parameters and options.

Presentation Methods in CLIM

You define presentation methods using clim:define-presentation-method.

clim:define-presentation-method presentation-function-name [qualifiers]* special-

ized-lambda-list &body body

Defines a presentation method for the function named presentation-

function-name on the presentation type named in specialized-lambda-list.

All presentation methods have an argument named type that must be specialized

with the name of a presentation type. The value of type is a presentation type

specifier, which can be for a subtype that inherited the method.

All presentation methods except those for clim:presentation-subtypep have lexical

access to the parameters from the presentation type specifier. Presentation meth-

ods for the functions clim:accept, clim:present, clim:describe-presentation-type,

clim:presentation-type-specifier-p, and clim:accept-present-default also have lexi-

cal access to the options from the presentation type specifier.

Presentation methods inherit and combine in the same way as ordinary CLOS

methods. The reason presentation methods are not exactly the same as ordinary

CLOS methods revolves around the type argument. The parameter specializer for

type is handled in a special way and presentation method inheritance arranges the

type parameters and options seen by each method.

Page 1318

Here are the names of the various presentation methods defined by clim:define-

presentation-method , along with the lambda-list for each method. For a complete

description of these presentation methods,see the section "Dictionary of CLIM Op-

erators".

clim:accept type-key parameters options type stream view &key :default :default-type

&allow-other-keys

The presentation method responsible for ‘‘parsing’’ the representation of

type for a particular view.

clim:present type-key parameters options object type stream view &key :acceptably

:for-context-type

The presentation method responsible for displaying the representation of

object having type type for a particular view view.

clim:describe-presentation-type type-key parameters options type stream plural-

count

The presentation method that is responsible for textually describing the

type type.

clim:default-describe-presentation-type description stream plural-count

Given a string description that describes a presentation type (such as

‘‘integer’’) and plural-count (either nil or an integer), this function plu-

ralizes the string if necessary, prepends an indefinite article if appropri-

ate, and outputs the result onto stream.

clim:presentation-typep type-key parameters object type

The presentation method called when the clim:presentation-typep func-

tion requires type-specific knowledge.

clim:presentation-subtypep type-key type putative-supertype

The presentation method called when the clim:presentation-subtypep

function requires type-specific knowledge.

clim:presentation-type-specifier-p type-key parameters options type

The presentation method that is responsible for checking the validity of

the parameters and options.

clim:accept-present-default type-key parameters options type stream view default

default-supplied-p present-p query-identifier &key (:prompt t) (:active-p t)�

&allow-other-keys

The presentation method called when clim:accept turns into

clim:present inside of clim:accepting-values.

clim:highlight-presentation type-key parameters options type record stream state

The presentation method responsible for drawing a highlighting box for

the presentation record on the stream stream.

Utilities for clim:accept Presentation Methods

The utilities documented in this section are typically useful with clim:accept (and

sometimes clim:present) presentation methods.

Page 1319

The following two functions are used to read or write a token (that is, a string):

clim:read-token stream &key :timeout :input-wait-handler :pointer-button-press-

handler :click-only

Reads characters from stream until it encounters an activation gesture, a

delimiter gesture, or a pointer gesture. Returns the accumulated string

that was delimited by an activation or delimiter gesture, leaving the de-

limiter unread.

clim:write-token token stream &key :acceptably

Given the string token, clim:write-token writes it to the stream stream.

Sometimes, an clim:accept method may wish to signal an error while it is parsing

the user’s input, or a nested call to clim:accept may signal such an error itself.

The following functions and conditions may be used:

clim:simple-parse-error format-string &rest format-arguments

Signals an error of type clim:simple-parse-error while parsing an input

token. This function does not return.

clim:input-not-of-required-type object type

Reports that input does not satisfy the specified type.

clim:simple-parse-error

This condition is signalled when CLIM does not know how to parse some

sort of user input while inside of clim:accept.

clim:input-not-of-required-type

This condition is signalled when CLIM gets input that does not satisfy

the specified type while inside of clim:accept.

Some clim:accept methods will want to allow for the completion of partial input

strings by the user. The following functions are useful for doing that:

clim:complete-input stream function &key :partial-completers :allow-any-input :pos-

sibility-printer (:help-displays-possibilities t)

Reads input from stream, completing from a set of possibilities.

clim:complete-from-generator string generator delimiters &key (:action :complete)

:predicate

Given an input string string and a list of delimiter characters delimiters

that act as partial completion characters, clim:complete-from-generator

completes against the possibilities that are generated by the function

generator.

clim:complete-from-possibilities string completions delimiters &key (:action

:complete) :predicate (:name-key #’first) (:value-key #’second)
Given an input string string and a list of delimiter characters delimiters

that act as partial completion characters, clim:complete-from-

possibilities completes against the possibilities in the sequence comple-

tions.

Page 1320

clim:completing-from-suggestions (stream &rest options &key :partial-completers

:allow-any-input :possibility-printer (:help-displays-possibilities t)) &body

body

Reads input from stream, completing from a set of possibilities generated

by calls to clim:suggest in body. Returns three values: object, success,

and string.

clim:suggest name &rest objects

Specifies one possibility for clim:completing-from-suggestions. comple-

tion is a string, the printed representation. object is the internal repre-

sentation. This function has lexical scope and is defined only inside the

body of clim:completing-from-suggestions.

clim:*completion-gestures*

A list of gesture names that cause clim:complete-input to complete the

input as fully as possible.

clim:*possibilities-gestures*

A list of gesture names that cause clim:complete-input to display a help

message and the list of possibilities.

clim:*help-gestures*

A list of gesture names that cause clim:accept and clim:complete-input

to display a help message, and, for some presentation types, the list of

possibilities.

Sometimes after an clim:accept method has read some input from the user, it may

be necessary to insert a modified version of that input back into the input buffer.

The following two functions can be used to modify the input buffer:

clim:replace-input stream new-input &key :start :end :rescan :buffer-start

Replaces stream’s input buffer with the string new-input.

clim:presentation-replace-input stream object type view &key :rescan :buffer-start

Like clim:replace-input, except that the new input to insert into the in-

put buffer is gotten by presenting the object object with the presentation

type type and view view.

For example, the following clim:accept method reads a token followed by a ‘‘sys-
tem’’ or a pathname, but if the user clicks on either a ‘‘system’’ or a pathname, it

inserts that object into the input buffer and returns:

Page 1321

(clim:define-presentation-method clim:accept

 ((type library) stream (view clim:textual-view)

 &key default)

 (clim:with-input-context (’(or system pathname)) (object type)

 (let ((system (clim:accept ’(clim:token-or-type (:private) system)

 :stream stream :view view

 :prompt nil :display-default nil

 :default default

 :additional-delimiter-gestures ’(#\space)))

 file)

 (let ((char (clim:read-gesture :stream stream)))

 (unless (eql char #\space)

 (clim:unread-gesture char :stream stream))

 (when (eql system ’:private)

 (setq file (clim:accept ’pathname

 :stream stream :view view

 :prompt "library pathname"

 :display-default t)))

 (if (eql system ’:private) file system)))

 (t (clim:presentation-replace-input stream object type view)

 (values object type))))�

Occasionally, clim:accept methods will want to change the conditions under which

input fields (or the entire input line) should be terminated. The following macros

are useful for this:

clim:with-activation-gestures (additional-gestures &key :override) &body body

Specifies gestures that terminate input during the evaluation of body.

additional-gestures is a gesture spec or a form that evaluates to a list of

gesture specs.

clim:with-delimiter-gestures (additional-gestures &key :override) &body body

Specifies gestures that terminate an individual token but not the entire

input sentence during the evaluation of body. additional-gestures is a ges-

ture spec or a form that evaluates to a list of gesture specs.

clim:*standard-activation-gestures*

A list of gesture names that cause the current input to be activated.

clim:accept tries to generate meaningful help messages based on the name of the

presentation type, but sometimes this is not adequate. You can use clim:with-

accept-help to create more complex help messages.

clim:with-accept-help options &body body

Binds the local environment to control HELP and c-? documentation for

input to clim:accept.

Here are some examples of the use of clim:with-accept-help:

Page 1322

�

(clim:with-accept-help ((:subhelp "This is a test."))

 (clim:accept ’pathname))

�

==> You are being asked to enter a pathname. [ACCEPT did this for you]

 This is a test. [You did this via :SUBHELP]

�

(clim:with-accept-help ((:top-level-help "This is a test."))

 (clim:accept ’pathname))

�

==> This is a test. [You did this via :TOP-LEVEL-HELP

�

(clim:with-accept-help (((:subhelp :override) "This is a test."))

 (clim:accept ’pathname))

�

==> You are being asked to enter a pathname. [ACCEPT did this]

 This is a test. [You did this via :SUBHELP]

(clim:define-presentation-type test ())

(clim:define-presentation-method clim:accept ((type test) stream view &key)

 (values (clim:with-accept-help

 ((:subhelp "A test is made up of three things:"))

 (clim:completing-from-suggestions (...) ...))))

�

(clim:accept ’test) ==> You are being asked to enter a test.

 A test is made up of three things:

�

clim:accept uses the input editor to read textual input from the user. If you want

an clim:accept method to do any sort of typeout, you must coordinate it with the

input editor via the clim:with-input-editor-typeout macro. The input editor is dis-

cussed in more detail in "The Structure of the CLIM Input Editor".

clim:with-input-editing (&optional stream &key :input-sensitizer :initial-contents

:class) &body body

Establishes a context in which the user can edit the input he or she

types in on the stream stream. body is then evaluated in this context,

and the values returned by body are returned as the values of clim:with-

input-editing.

clim:with-input-editor-typeout (&optional stream &key :erase) &body body

If, when you are inside of a call to clim:with-input-editing, you want to

perform some sort of typeout, it should be done inside clim:with-input-

editor-typeout.

clim:input-editor-format input-editing-stream format-string &rest format-args

This function is like format, except that it is intended to be called on

input editing streams. It arranges to insert ‘‘noise strings’’ in the input

editor’s input buffer.

Page 1323

Input Editing and Built-in Keystroke Commands in CLIM

This is a list of the keystrokes that are built into CLIM’s input editor, the specific

keys assigned in Genera and in Cloe, and how to change them. For more detail on

the input editor, see the section "The Structure of the CLIM Input Editor".

Activation Gestures�

Activation gestures terminate an input ‘‘sentence’’, such as a command or any-

thing else being read by clim:accept. When you enter an activation gesture, CLIM

ceases reading input and executes the input that has been entered.

The default activation gesture is #\Newline (also known as #\Return). On Genera,

#\End is also an activation gesture.

clim:with-activation-gestures Macro

:activation-gestures to clim:accept Option

:additional-activation-gestures to clim:accept Option

clim:*standard-activation-gestures* Variable

clim:activation-gesture-p Function

�

Delimiter Gestures�

Delimiter gestures terminate an input ‘‘word’’, such as a recursive call to

clim:accept. There are no global default delimiter gestures; each presentation type

that recursively calls clim:accept specifies its own delimiter gestures and some-

times offers a way to change them (see Command Processor Gestures, below).

Delimiter gestures most commonly occur in command lines. When you type a de-

limiter gesture, CLIM’s command processor moves on to read the next field in the

command line.

clim:with-delimiter-gestures Macro

:delimiter-gestures to clim:accept Option

:additional-delimiter-gestures to clim:accept Option

:separator to clim:subset-completion Presentation Type Option

:separator to clim:subset Presentation Type Option

:separator to clim:subset-sequence Presentation Type Option

:separator to clim:subset-alist Presentation Type Option

clim:*delimiter-gestures* Variable

clim:delimiter-gesture-p Function�

Abort Gestures�

When an application reads an abort gesture while looking for input, CLIM signals

the conditions:abort restart. Aborting is caught by clim:default-frame-top-level,

which will abort what the application frame is doing and read another command.

The default abort gesture is #\Abort in Genera. In Cloe the default abort gesture

is #\Escape or #\Esc. (Note that this cannot be changed on Cloe).

Page 1324

Suspend Gestures�

In Cloe, c-C is similar to c-Suspend in Genera. Its difference is that it causes a

break in Lisp execution and you can then abort to top level, examine the stack, or

continue execution.

Completion Gestures�

Several presentation types, such as member and pathname, support completion of

partial inputs. When accepting input of one of these types, completion gestures

and possibilities gestures can be entered. A completion gesture completes the input

that has been entered so far; if there is more than one possible completion, CLIM

completes it as much as possible. A possibilities gesture causes CLIM to display

the possible completions of the input that has been entered so far.

The default completion gesture is #\Tab. On Genera, #\Complete is also a comple-

tion gesture.

The default possibilities gesture is #\control-? in Genera, and the F1 function

key for Cloe. You can also click the right-hand button on the pointer to get a

menu of possibilities.

On Genera, #\Help is also a possibilities gesture.

clim:*completion-gestures* Variable

clim:*possibilities-gestures* Variable

clim:*help-gestures* Variable�

Command Processor Gestures�

A command dispatcher character introduces a command (rather than a form) in

the clim:command-or-form presentation type. The default command dispatcher is

Colon (:).

The default character for both terminating and completing command names is

#\Space. This is a delimiter gesture while reading a command name.

The default character for terminating command arguments is #\Space. This is a

delimiter gesture while reading an argument to a command.

Pressing a command previewer gesture while entering a command allows a com-

mand to be entered via a dialog instead of the usual command line. This is an ac-

tivation gesture while reading a command. On Genera, the default command pre-

viewer gestures is #\m-Complete. On Cloe there is none.

clim:*command-dispatchers* Variable�

Input Editor Commands�

Keyboard input to clim:accept can be edited until an activation gesture is typed to

terminate it. After an activation gesture is entered, if CLIM cannot parse the in-

put, the user must edit and re-activate it. The input editor has a number of

Emacs-like keystroke commands, described in the table below. Prefix numeric argu-

Page 1325

ments to input editor commands can be entered using digits and minus sign (-)

with control, meta, super, or hyper (as in Genera and Emacs).

The function clim:add-input-editor-command can be used to bind one or more

keys to an input editor command. Any character can be an input editor command,

but by convention only non-graphic characters should be used.

Command Genera Key Cloe Key

Forward character control-F control-F

Right Arrow

Forward word meta-F meta-F

control-Right Arrow

Forward sexp c-m-F c-m-F

Backward character control-B control-B

Left Arrow

Backward word meta-B meta-B

control-Left Arrow

Backward sexp c-m-B c-m-B

Beginning of line control-A control-A

Home

End of line control-E control-E

End

Next line control-N control-N

Down Arrow

Previous line control-P control-P

Up Arrow

Beginning of buffer meta-< meta-<

control-HOME

End of buffer meta-> meta->

control-END

Delete character control-D control-D

Delete word meta-D meta-D

Delete sexp c-m-D c-m-D

Rubout character Rubout Rubout

Rubout word meta-Rubout meta-Rubout

Rubout sexp c-m-Rubout c-m-Rubout

Kill line control-K none

Clear all input Clear Input Delete

Insert new line control-O none

Insert parens control-(none

Transpose characters control-T control-T

Transpose words meta-T meta-T

Transpose sexps c-m-T c-m-T

Upcase word meta-U meta-U

Downcase word meta-L meta-L

Page 1326

Capitalize word meta-C meta-C

Show arglist c-sh-A c-sh-A

Show variable value c-sh-V c-sh-V

Show doc string c-sh-D c-sh-D

Yank from kill ring control-Y control-Y

Yank from history c-m-Y c-m-Y

Yank next thing meta-Y meta-Y

Scroll forward control-V control-V

Scroll

Scroll backward meta-V meta-V

meta-Scroll

�

Dialog Commands�

An clim:accepting-values dialog supports accelerators for exiting and aborting out

of dialogs. The key bindings can be changed using clim:add-keystroke-to-

command-table and clim:remove-keystroke-from-command-table in the usual

way.

Command Genera Key Cloe Key

Abort the dialog Abort Escape

Exit from the dialog End

 (assuming you are not editing a field) RETURN

 �

Menu Commands�

At present there are no special keystroke commands for menus.

Using Views with CLIM Presentation Types

The clim:present and clim:accept presentation methods can specialize on the view�

in order to define more than one view of the data. For example, a spreadsheet pro-

gram might define a presentation type for revenue, which can be displayed either

as a number or a bar of a certain length in a bar graph. Typically, at least one

canonical view should be defined for a presentation type. For example, the

clim:present method for the clim:textual-view view should be defined if the pro-

grammer wants to allow objects of that type to be displayed textually.

A more concrete example is the dialog view of the member presentation type,

which presents the choices in a sort of ‘‘radio pushbutton’’ style.

CLIM currently supports ‘‘default’’, menu, and dialog views, in both textual and

gadget styles. Some views act as ‘‘indirect’’ views that are decoded into a more

specific view; this typically arises for the gadget views.

Page 1327

Operators for Views of CLIM Presentation Types

The following two functions control what view should be used by default on a

stream, or for any dialog being managed by a particular frame manager.

clim:stream-default-view stream

Returns the default view for the stream stream. You can change the de-

fault view for a stream by using setf on clim:stream-default-view. Calls

to clim:accept default the :view argument from clim:stream-default-

view.

clim:frame-manager-dialog-view frame-manager

Returns the view object that should be used to control the look-and-feel

of clim:accepting-values dialogs.

The following classes and constants are all of the predefined ‘‘indirect’’ views

(that is, views that might be translated into another view depending on the pre-

sentation type). Normally, the textual views are not indirected to any other views,

and CLIM will just use some sort of textual representation for all of the presenta-

tion types that use a textual view. The gadget dialog view is usually indirected to

another view, for instance, the member type indirects to clim:+radio-box-view+.

clim:textual-view

The class that represents textual views. Textual views are used in most

command-line oriented applications.

clim:textual-menu-view

The class that represents the view that is used inside textual menus.

clim:textual-dialog-view

The class that represents the view that is used inside textual

clim:accepting-values dialogs.

clim:+textual-view+
An instance of the class clim:textual-view.

clim:+textual-menu-view+
An instance of the class clim:textual-menu-view. Inside clim:menu-

choose, the default view for the menu stream may be bound to

clim:+textual-menu-view+.

clim:+textual-dialog-view+
An instance of the class clim:textual-dialog-view. Inside clim:accepting-

values, the default view for the dialog stream may be bound to

clim:+textual-dialog-view+.

clim:gadget-view

The class that represents gadget views. Gadgets views are used for

toolkit-oriented applications.

clim:gadget-menu-view

The class that represents the view that is used inside toolkit-style

menus.

Page 1328

clim:gadget-dialog-view

The class that represents the view that is used inside toolkit-style

clim:accepting-values dialogs.

clim:+gadget-view+
An instance of the class clim:gadget-view.

clim:+gadget-menu-view+
An instance of the class clim:gadget-menu-view. Inside clim:menu-

choose, the default view for the menu stream may be bound to

clim:+gadget-menu-view+.

clim:+gadget-dialog-view+
An instance of the class clim:gadget-dialog-view. Inside clim:accepting-

values, the default view for the dialog stream may be bound to

clim:+gadget-dialog-view+.

The following is a table of presentation types and the actual view they map to:

Type Gadget

clim:completion clim:+radio-box-view+
clim:subset-completion clim:+check-box-view+
clim:boolean clim:+toggle-button-view+
real clim:+slider-view+
float clim:+slider-view+
integer clim:+slider-view+
All others clim:+text-field-view+ �

Functions that Operate on CLIM Presentation Types

These are some general-purpose functions that operate on CLIM presentation

types.

clim:describe-presentation-type presentation-type &optional (stream *standard-

output*) (plural-count 1)

Describes the presentation-type on the stream.

clim:presentation-typep object type

Returns t if object is of the type specified by type, otherwise returns nil.

clim:presentation-type-of object

Returns the presentation type of the object object.

clim:presentation-subtypep type putative-supertype

Answers the question ‘‘Is the type specified by type a subtype of the type

specified by putative-supertype?’’.

clim:with-presentation-type-decoded (name-var &optional parameters-var options-

var) type &body body

The specified variables are bound to the components of the presentation

type specifier, the forms in body are evaluated, and the values of the last

form are returned.

Page 1329

clim:with-presentation-type-options (type-name type) &body body

Variables with the same name as each option in the definition of the

presentation type are bound to the option values in type, if present, or

else to the defaults specified in the definition of the presentation type.

The forms in body are evaluated in the scope of these variables and the

values of the last form are returned.

clim:with-presentation-type-parameters (type-name type) &body body

Variables with the same name as each parameter in the definition of the

presentation type are bound to the parameter values in type, if present,

or else to the defaults specified in the definition of the presentation type.�

Presentation Translators in CLIM

Concept of Presentation Translators in CLIM

CLIM provides a mechanism for translating between types. In other words, within

an input context for presentation type A, the translator mechanism allows a pro-

grammer to define a translation from presentations of some other type B to objects

that are of type A.

You can define presentation translators to make the user interface of your applica-

tion more flexible. For example, suppose the input context is expecting a command.

In this input context, all displayed commands are sensitive, so the user can point

to one to execute it. However, suppose the user points to another kind of presented

object, such as a student. In the absence of a presentation translator, the student

is not sensitive because the user must enter a command and cannot enter anything

else to this input context.

In the presence of a presentation translator that translates from students to com-

mands, however, the presented student would be sensitive. In one scenario, the

presented student is highlighted, and the middle pointer button does ‘‘Show Tran-

script’’ of that student.

A presentation translator defines how to translate from one presentation type to

another. In the scenario above, the input context is clim:command. A user-defined

presentation translator states how to translate from the student presentation type

to the clim:command presentation type.

The concept of translating from an arbitrary presentation type to a command is so

useful that CLIM provides a special macro for this purpose, clim:define-

presentation-to-command-translator. You can think of these presentation-to-

command translators as a convenience for the users; users can select the command

and give the argument at the same time.

Presentation-to-command translators make it easier to write applications that give

a ‘‘direct manipulation’’ feel to the user.

What Controls Sensitivity in CLIM?

Page 1330

A presentation that appears on the screen can be sensitive. This means that the

presentation can be operated on directly by using the pointer. In other words, the

presentation is relevant to the current context. When the user moves the pointer

over a sensitive presentation, the presentation is highlighted to indicate that it is

sensitive. (In rare cases, the highlighting of some sensitive presentations is turned

off.)

Sensitivity is controlled by three factors: the current input context, the location of

the pointer, and the chord of modifier keys being pressed.

• Input context type a presentation type describing the type of input currently

being accepted.

• Pointer location the pointer is pointing at a presentation or a blank area on

the screen.

• Modifier keys these are control, meta, super, hyper, and shift. These keys ex-

pand the space of available gestures beyond what is available from the pointer

buttons. Note that some platforms might not provide any way to input all of the

modifier keys, but most provide at least control, meta, and shift.�

Presentation translators are the link among these three factors.

A presentation translator specifies the conditions under which it is applicable, a

description to be displayed, and what to do when it is invoked by clicking the

pointer.

A presentation is sensitive if there is at least one applicable translator that could

be invoked by clicking a button with the pointer at its current location and the

modifier keys in their current state. If there is no applicable translator, there is

no sensitivity, and no highlighting.

Each presentation translator has two associated presentation types, its from-

presentation-type and to-presentation-type, which are the primary factors in its ap-

plicability. The basic idea is that a presentation translator translates an output

presentation into an input presentation. Thus a presentation translator is applica-

ble if the type of the presentation at the pointer ‘‘matches’’ from-presentation-type

and the input context type ‘‘matches’’ to-presentation-type. (We define what

‘‘match’’ means below.) Each presentation translator is attached to a particular

pointer gesture, which is a combination of a pointer button and a set of modifier

keys. Clicking the pointer button while holding down the modifier keys invokes the

translator.

A translator produces an input presentation consisting of an object and a presenta-

tion type, to satisfy the program accepting input. The result of a translator might

be returned from clim:accept, or might be absorbed by a parser and provide only

part of the input. An input presentation is not actually represented as an object.

Instead, a translator’s body returns two values. The object is the first value. The

presentation type is the second value; it defaults to to-presentation-type if the body

returns only one value.

Page 1331

Applicability of CLIM Presentation Translators

When CLIM is waiting for input (that is, inside a clim:with-input-context), it is

responsible for determining what translators are applicable to which presentations

in a given input context. This loop both provides feedback in the form of highlight-

ing sensitive presentations, and is responsible for calling the applicable translator

when the user presses a pointer button.

clim:with-input-context uses clim:frame-find-innermost-applicable-presentation

(via clim:highlight-applicable-presentation) as its ‘‘input wait’’ handler, and

clim:frame-input-context-button-press-handler as its button press ‘‘event han-

dler’’.

Given a presentation, an input context established by clim:with-input-context, and

a user gesture, translator matching proceeds as follows.

The set of candidate translators is initially those translators accessible in the com-

mand table in use by the current application. For more information, see the sec-

tion "Command Objects in CLIM".

A translator ‘‘matches’’ if all of the following are true. These tests are performed

in the order listed.

1. The presentation’s type is clim:presentation-subtypep of the translator’s

from-presentation-type, ignoring type parameters (for example, if from-

presentation-type is number and the presentation’s type is integer or

float, or if from-presentation-type is (or integer string) and presenta-

tion’s type is integer).

2. The translator’s to-presentation-type is clim:presentation-subtypep of the

input context type, ignoring type parameters.

3. The translator’s gesture either is t, or is the same as the gesture that

the user could perform with the current chord of modifier keys.

4. If the from-presentation-type has parameters, the presentation’s object is

clim:presentation-typep of the translator’s from-presentation-type.

5. The translator’s tester returns a non-nil value. If there is no tester, the

translator behaves as though the tester always returns t.

6. If there are parameters in the input context type and the :tester-

definitive option is not used in the translator, the value returned by the

body of the translator must be clim:presentation-typep of the input con-

text type. In clim:define-presentation-to-command-translator and

clim:define-presentation-action the tester is always taken to be defini-

tive.�

The algorithm is somewhat more complicated in the face of nested presentations

and nested input contexts. In this case, the applicable presentation is the smallest�

presentation that matches the innermost input context (that is, translators match-

ing inner contexts precede translators matching outer contexts, and, in the same

input context, inner presentations precede outer presentations).

Page 1332

Sometimes there may be nested presentations that have exactly the same bounding

rectangle. In this case, it is not possible for a user to unambiguously point to just

one of the nested presentations. Therefore, when CLIM has located the innermost

applicable presentation in the innermost input context, it then searches for outer

presentations that have exactly the same bounding rectangle, and checks to see if

there are any applicable translators for those presentations. If there are multiple

applicable translators, CLIM chooses the one having the highest priority.

There can be more than one translator that matches a presentation for the same

gesture in a given input context. When this happens, the first translator is chosen,

based on the following ordering:

1. Translators with a higher ‘‘high order’’ priority precede translators with

a lower ‘‘high order’’ priority. This allows you to create an ‘‘overriding’’
translator that always precedes any other applicable translators.

2. Translators with a more specific from-presentation-type precede transla-

tors with a less specific from-presentation-type.

3. Translators with a higher ‘‘low order’’ priority precede translators with

a lower ‘‘low order’’ priority. This allows you to ‘‘break ties’’ between

translators that translate from the same type.

4. Translators from the current command table precede translators inherit-

ed from superior command tables.�

See the description of the :priority option in clim:define-presentation-translator.

Input Contexts in CLIM

Roughly speaking, the current input context indicates what type of input CLIM is

currently asking the user for. These are the ways you can establish an input con-

text in CLIM:

clim:accept

clim:accept-from-string

The command loop of an application�

Nested Input Contexts in CLIM�

The input context designates a presentation type. However, the way to accept one

type of object may involve accepting other types of objects as part of the proce-

dure. (Consider the request to accept a complex number. It is likely to involve ac-

cepting two real numbers.) Such input contexts are called nested. In the case of a

nested input context, several different context presentation types can be available

to match the to-presentation-types of presentation translators.

Each level of input context is established by a call to clim:accept. The macro

clim:with-input-context also establishes a level of input context.

The most common cause of input context nesting is accepting compound objects.

For example, you might define a command called Show File, which reads a se-

Page 1333

quence of pathnames. When reading the argument to the Show File command, the

input context contains pathname nested inside of (sequence pathname). Accept-

able keyboard input is a sequence of pathnames separated by commas. A presenta-

tion translator that translates to a (sequence pathname) supplies the entire argu-

ment to the command, and the command processor moves on to the next argument.

A presentation translator that translates to a pathname is also applicable. It sup-

plies a single element of the sequence being built up, and the command processor

awaits additional input for this argument, or entry of a SPACE or RETURN to termi-

nate the argument.

When the input context is nested, sensitivity computations consider only the inner-

most context type that has any applicable presentation translators for the currently

pressed chord of modifier keys.

Nested Presentations in CLIM

Presentations can overlap on the screen, so there can be more than one presenta-

tion at the pointer location. Often when two presentations overlap, one is nested

inside the other.

One cause of nesting is presentations of compound objects. For example, a se-

quence of pathnames has one presentation for the sequence, and another for each

pathname.

When there is more than one candidate presentation at the pointer location, CLIM

must decide which presentation is the sensitive one. It starts with the innermost

presentation at the pointer location and works outwards through levels of nesting

until a sensitive presentation is discovered. This is the innermost presentation that

has any applicable presentation translators, to any of the nested input context

types, for the currently pressed chord of modifier keys. Searching in this way en-

sures that a more specific presentation is sensitive. Note that nested input con-

texts are searched first, before nested presentations. For presentations that over-

lap, the most recently presented is searched first.

Gestures and Gesture Names in CLIM

A gesture in CLIM is an input action by the user, such as typing a character or

clicking a pointer button. A pointer gesture refers to those gestures that involve us-

ing the pointer.

A gesture spec is a portable way of naming a gesture. For example, the non-

portable ‘‘character’’ #\control-shift-C has a gesture spec of (:C :control

:shift). For convenience, the gesture spec for standard Common Lisp characters

(the printing characters, including alphanumerics, ASCII symbols, and #\Space),

you can use the character itself as the gesture spec.

An event is a CLIM object that represents a gesture by the user. (The most impor-

tant pointer events are those of class clim:pointer-button-event.)

A gesture name is a symbol that names a gesture or gesture spec. CLIM defines

the following gesture names:

Page 1334

:select For the most commonly used translator on an object. For example,

use the :select gesture while reading an argument to a command to

use the indicated object as the argument.

:describe For translators that produce a description of an object (such as

showing the current state of an object). For example, use the :de-

scribe gesture on an object in a CAD program to display the param-

eters of that object.

:delete For translators that delete an object.

:edit For translators that edit an object.

:modify For translators that somehow modify an object.

:menu For translators that pop up a menu.

These correspond to the following events in Genera and in Cloe:

Genera Cloe

Gesture Name Gesture Gesture

:select click Left click Left

:describe click Middle click Middle

click A-Right

:menu click Right click Right

:delete click sh-Middle

:edit click m-Left

:modify click c-m-Right�

The special gesture name nil is used in translators that are not directly invokable

by a pointer gesture. Such a translator can be invoked only from a menu.

The special gesture name t means that the translator is available on every ges-

ture.

You can use clim:define-gesture-name to define your own gesture names. Avoid

the temptation to define pointer gestures named :left, :middle, and :right; doing

so can lead you to write less portable applications. If your program use only ges-

ture names, they are more portable than if you to specific pointer buttons and key-

board keys.

Operators for Gestures in CLIM

The following operators can be used to add or remove new gesture names:

clim:add-gesture-name name type gesture-spec &key (:unique t)

Adds a gesture named name (a symbol) to the set of all gesture names.

If :unique is t, an error is signalled if there is already a gesture named

name.

Page 1335

clim:delete-gesture-name gesture-name

Removes the gesture named gesture-name.

clim:define-gesture-name name type gesture-spec &key (:unique t)

Defines a gesture named name by calling clim:add-gesture-name.

The following operators can be used to examine CLIM event objects or match

CLIM event objects against gesture names.

clim:event-sheet event

Returns the window on which event occurred.

clim:event-modifier-state event

Returns the state of the keyboard’s shift keys when the event event oc-

curred.

clim:pointer-event-button pointer-button-event

Returns the button number that was pressed when the pointer button

event pointer-button-event occurred. The values this can take are

clim:+pointer-left-button+, clim:+pointer-middle-button+, or

clim:+pointer-right-button+.

clim:pointer-event-x pointer-event

Returns the X position of the pointer when the pointer-event occurred.

clim:pointer-event-y pointer-event

Returns the Y position of the pointer when the pointer-event occurred.

clim:keyboard-event-key-name keyboard-event

Returns the name of the key that was pressed or released in order to

generate the keyboard event.

clim:keyboard-event-character keyboard-event

Returns the character corresponding to the key that was pressed or re-

leased, if there is a corresponding character.

clim:event-matches-gesture-name-p event gesture-name &optional port

Returns t if the device event event ‘‘matches’’ the gesture named by ges-

ture-name.

clim:modifier-state-matches-gesture-name-p state gesture-name

Returns t if the modifier state state ‘‘matches’’ the modifier state of the

gesture named by gesture-name.

clim:make-modifier-state &rest modifiers

Given a set of modifier key names, clim:make-modifier-state returns a

modifier state corresponding to those keys.

The following constants are the values that can be taken on by clim:event-

modifier-state. Note that these are bit values that can be combined with ‘‘logical
or’’ when multiple modifier keys are being held down by the user.

clim:+shift-key+
The modifier state bit that corresponds to the user holding down the

shift key on the keyboard.

Page 1336

clim:+control-key+
The modifier state bit that corresponds to the user holding down the

control key on the keyboard.

clim:+meta-key+
The modifier state bit that corresponds to the user holding down the me-

ta key on the keyboard.

clim:+super-key+
The modifier state bit that corresponds to the user holding down the su-

per key on the keyboard.

clim:+hyper-key+
The modifier state bit that corresponds to the user holding down the hy-

per key on the keyboard.

The following constants are the values that can be taken on by clim:pointer-

event-button.

clim:+pointer-left-button+
The value returned by clim:pointer-event-button that corresponds to the

user having pressed or released the lefthand button on the pointer.

clim:+pointer-middle-button+
The value returned by clim:pointer-event-button that corresponds to the

user having pressed or released the middle button on the pointer.

clim:+pointer-right-button+
The value returned by clim:pointer-event-button that corresponds to the

user having pressed or released the righthand button on the pointer.

CLIM Operators for Defining Presentation Translators

You can write presentation translators that apply to blank areas of the window,

that is, areas where there are no presentations. Use clim:blank-area as the from-

presentation-type. There is no highlighting when such a translator is applicable

since there is no presentation to highlight. You can write presentation translators

that apply in any context by supplying nil as the to-presentation-type.

clim:define-presentation-translator supports the general case, and clim:define-

presentation-to-command-translator supports a common idiom.

clim:define-presentation-translator name (from-type to-type command-table &key

(:gesture ’:select) :tester :tester-definitive :documentation :pointer-

documentation (:menu t) :priority) arglist &body body

Defines a presentation translator named name which translates from ob-

jects of type from-type to objects of type to-type.

clim:define-presentation-to-command-translator name (from-type command-name

command-table &key (:gesture ’:select) :tester :documentation :pointer-

documentation (:menu t) :priority (:echo t)) arglist &body body

Page 1337

Defines a presentation translator that translates a displayed presentation

into a command.

clim:define-presentation-action name (from-type to-type command-table &key (:ges-

ture ’:select) :tester :documentation :pointer-documentation (:menu t) :pri-

ority) arglist &body body

This is similar to clim:define-presentation-translator, except that the

body of the action is not intended to return a value, but should instead

side-effect some sort of application state. Note that actions do not satisfy

requests for input (as translators do).

clim:define-drag-and-drop-translator name (from-type to-type destination-type com-

mand-table &key (:gesture ’:select) :tester :documentation (:menu t) :priori-

ty :feedback :highlighting :pointer-cursor) arglist &body body

Defines a ‘‘drag and drop’’ (or ‘‘direct manipulation’’) translator named

name that translates from objects of type from-type to objects of type to-

type when a ‘‘from presentation’’ is ‘‘picked up’’, ‘‘dragged’’ over, and

‘‘dropped’’ on a ‘‘to presentation’’ having type destination-type.

clim:blank-area

The presentation type that represents all the places in a window where

there is no applicable presentation. CLIM provides a single ‘‘null pre-
sentation’’ (represented by the value of clim:*null-presentation*) of this

type.

clim:*null-presentation*

The ‘‘null’’ presentation, which occupies any part of a window where

there are no presentations matching the current input context.

Examples of Defining Presentation Translators in CLIM

Defining a Translation from Pathname to Integer�

Here is an example that defines a presentation translator to extract the version

number, an integer object, from a pathname presentation. Users have the options

of typing in a version number to the input prompt or clicking on a pathname pre-

sentation that includes a version number.

(clim:define-presentation-translator pathname-version

 (pathname integer my-command-table

 :documentation "File version number"

 :gesture :select

 ;; Only works for pathnames with numeric versions

 :tester ((object) (integerp (pathname-version object)))

 :tester-definitive t)

 (object)

 (pathname-version object))

�

(clim:present #P"KOALA:>KJones>foo.lisp.17" ’pathname)

(clim:accept ’integer)�

Page 1338

Defining a Presentation-to-Command Translator�

The following example defines the Delete File presentation-to-command translator:

(clim:define-presentation-to-command-translator delete-file

 (pathname com-delete-file my-command-table

 :documentation "Delete this file"

 :gesture :delete)

 (object)

 (list object))�

Defining a Presentation Translator from the Blank Area�

When you are writing an interactive graphics routine, you will probably encounter

the need to have commands available when the mouse is not over any object. To

do this, you write a translator from the blank area.

The presentation type of the blank area is clim:blank-area. You will often want to

use the x and y arguments to the translator.

For example:

(clim:define-presentation-to-command-translator add-circle-here

 (clim:blank-area com-add-circle my-command-table

 :documentation "Add a circle here.")

 (x y)

 (list x y))�

Defining a Presentation Action�

Presentation actions are only rarely needed. Often a presentation-to-command

translator is more appropriate. One example where actions are appropriate is when

you wish to pop up a menu during command input. Here is how CLIM’s general

menu action could be implemented:

(clim:define-presentation-action presentation-menu

 (t nil clim:global-command-table

 :tester-definitive t

 :documentation "Menu"

 :menu nil

 :gesture :menu)

 (presentation frame window x y)

 (clim:call-presentation-menu presentation clim:*input-context*

 frame window x y

 :for-menu t))�

Low Level Functions for CLIM Presentation Translators

Some applications may wish to deal directly with presentation translators, for ex-

ample, if you are tracking the pointer yourself and wish to locate sensitive presen-

tations, or want to generate a list of applicable translators for a menu. The follow-

ing functions are useful for finding and calling presentation translators directly.

Page 1339

clim:find-presentation-translators from-type to-type command-table

Returns a list of all the translators associated with frame’s current com-

mand table that translate from from-type to to-type, without taking into

account any type parameters or testers.

clim:find-applicable-translators presentation input-context frame window x y &key

:event :modifier-state :for-menu :fastp

Returns a list of translators that apply to presentation in the input con-

text input-context.

clim:presentation-matches-context-type presentation context-type frame window x y

&key :event (:modifier-state 0)

Returns t if there are any translators that translate from presentation’s

type to context-type.

clim:test-presentation-translator translator presentation context-type frame window

x y &key :event (:modifier-state 0) :for-menu

Returns t if the translator translator applies to the presentation presenta-

tion in input context type context-type.

clim:call-presentation-translator translator presentation context-type frame event

window x y

Calls the function that implements the body of translator on

presentation’s object, and passes presentation, context-type, frame, event,

window, x, and y to the body of the translator as well.

clim:document-presentation-translator translator presentation context-type frame

event window x y &key (:stream *standard-output*) :documentation-type

Computes the documentation string for translator, sending it to stream.

clim:call-presentation-menu presentation input-context frame window x y &key

(:for-menu t) :label

Finds all the applicable translators for presentation in the input context

input-context, creates a menu that contains all of the translators, and

pops up a menu from which the user can choose a translator.

The following functions are useful for finding an application presentation in an

output history.

clim:find-innermost-applicable-presentation input-context stream x y &key (:frame

clim:*application-frame*) :modifier-state :event

Given an input context input-context, an output recording window stream

window, and X and Y positions x and y, this function returns the inner-

most presentation that matches the innermost input context, using the

translator matching algorithm.

clim:throw-highlighted-presentation presentation input-context button-press-event

Calls the applicable translator for a given presentation, input-context, and

button-press-event (that is, the one corresponding to the user clicking a

pointer button while over the presentation), and returns an object and a

presentation type.

Page 1340

clim:frame-find-innermost-applicable-presentation frame input-context stream x y

Locates and returns the innermost applicable presentation on the window

stream at the position indicated by x and y, in the input context input-

context, on behalf of frame. The default method simply calls clim:find-

innermost-applicable-presentation.

clim:frame-input-context-button-press-handler frame stream button-press-event

This function is responsible for handling user pointer gestures on behalf

of frame. stream is the window on which button-press-event took place.

The default method calls clim:throw-highlighted-presentation on the

currently applicable presentation.

clim:highlight-applicable-presentation frame stream input-context &optional

(prefer-pointer-window t)

The ‘‘input wait’’ handler used by clim:with-input-context, responsible

for highlighting and unhighlighting presentations.

clim:set-highlighted-presentation stream presentation &optional (prefer-pointer-

window t)

Highlights the presentation presentation on stream.

clim:unhighlight-highlighted-presentation stream &optional (prefer-pointer-window

t)

Unhighlights any highlighted presentations on stream.

Most applications will never need to use any of these functions.

Defining Application Frames in CLIM

Concepts of CLIM Application Frames

Application frames (or simply, frames) are the central mechanism in CLIM for pre-

senting an application’s user interface. A frame contains the state of the applica-

tion and a hierarchy of panes.

The look and feel of an application frame is managed by a frame manager. The

frame manager is responsible for creating the concrete, window system dependent

gadget that corresponds to each abstract gadget. It is also responsible for the look

and feel of menus, dialogs, pointer documentation, and so forth.

Application frames provide support for a standard interaction processing loop, like

the Lisp ‘‘read-eval-print’’ loop. You are required to write only the code that imple-

ments the frame-specific commands and output display functions. A key aspect of

this interaction processing loop is the separation of the specification of the frame’s

commands from the specification of the end-user interaction style.

The standard interaction loop consists of reading an input ‘‘sentence’’ (a command

and all of its operands), processing the input (by executing the command), and up-

dating the displayed information as appropriate. CLIM implementations are free to

run the display update part of the loop at a lower priority than command execu-

Page 1341

tion. For example, some implementations may choose not to update the display if

there is typed-ahead input. Also, command execution and display will not occur si-

multaneously, so user-defined functions need not cope with multiprocessing.

Note that this definition of the standard interaction loop does not constrain the in-

teraction style to command-line interfaces. The input sentence may be entered via

single keystrokes, pointer input, menu selection, or by typing full command lines.

CLIM allows the application implementor to choose what subset of approaches will

be applicable for each individual command. Furthermore, an application’s interac-

tion loop isn’t constrained to read only commands; it could read lower-level events

in order to implement a completely different interaction style.

For more information about how to use CLIM application frames, see the section

"What is an Application?".

Defining CLIM Application Frames

clim:define-application-frame defines CLIM application frames. Application frames

are represented by CLOS classes which inherit from clim:standard-application-

frame. You can specify a name for the application class, the superclasses (if there

are any beyond clim:standard-application-frame), the slots of the application

class, and options.

clim:define-application-frame defines a class with the following characteristics:

• inherits some behavior and slots from the class clim:standard-

application-frame,

• inherits other behavior and slots from any other superclasses which you

specify explicitly, and

• has other slots, as explicitly specified by slots.

The following options are used by the class clim:standard-application-frame:

:panes or :pane

:layouts

:top-level

:command-table

:disabled-commands

:command-definer

:menu-bar

Note that :command-definer doesn’t actually affect a slot, but instead provides an

override for the name of the default application command definer macro that auto-

matically generated by clim:define-application-frame.

For detailed information about CLIM application frames, see the macro

clim:define-application-frame.

Page 1342

Panes in CLIM

CLIM panes are similar to the gadgets or widgets of other toolkits. They can be

used by application programmers to compose the top-level user interface of their

applications, as well as auxiliary components such as menus and dialogs. The ap-

plication programmer provides an abstract specification of the pane hierarchy,

which CLIM uses in conjunction with user preferences and other factors to select

a specific ‘‘look and feel’’ for the application. In many environments a CLIM appli-

cation can use the facilities of the host window system toolkit via a set of adaptive

panes, allowing a portable CLIM application to take on the look and feel of an ap-

plication written using the toolkits supplied by the underlying window system.

Panes are rectangular objects that are implemented as special sheet classes. An

application will typically construct a tree of panes that divide up the screen space

allocated to the application frame. The various CLIM pane types can be character-

ized by whether they have child panes or not: panes that can have other panes as

children are called composite panes, and those that don’t are called leaf panes.

Composite panes are used to provide a mechanism for spatially organizing (‘‘laying
out’’) other panes. There are two main kinds of leaf panes: gadgets and ‘‘applica-
tion’’ panes. Leaf panes that implement gadgets have a particular appearance

(often defined by the underlying window system toolkit) and react to user input by

invoking some kind of callback. ‘‘Application’’ panes provide an area of the appli-

cation’s screen real estate that can be used by the application to present applica-

tion specific information. CLIM provides a number of these application pane types

that allow the application to use CLIM’s graphics and extended stream facilities.

Abstract panes are gadget panes that are defined only in terms of their program-

mer interface, or behavior. The protocol for an abstract pane (that is, the specified

set of initialization options, accessors, and callbacks) is designed to specify the

pane in terms of its overall purpose, rather then in terms of its specific appear-

ance or particular interactive details. The purpose of this abstract definition is to

allow multiple implementations of the abstract pane, each defining its own specific

look and feel. CLIM can then select the appropriate pane implementation based on

factors outside the control of the application, such as user preferences or the look

and feel of the host operating environment. A subset of the abstract panes, the

adaptive panes, have been defined to integrate well across all CLIM operating

platforms.

Basic Pane Construction

Applications typically define the hierarchy of panes used in their frames using the

:pane or :panes options of clim:define-application-frame. These options generate

the body of methods on functions that are invoked when the frame is being adopt-

ed into a particular frame manager, so the frame manager can select the specific

implementations of the abstract panes.

There are two basic interfaces to constructing a pane: clim:make-pane of an

‘‘abstract’’ pane class name, or clos:make-instance of a ‘‘concrete’’ pane class.

The former approach is generally preferable, since it results in more portable code.

However, in some cases the programmer may wish to instantiate panes of a specif-

Page 1343

ic class (such as an clim:hbox-pane or a clim:vbox-pane). In this case, using

clos:make-instance directly circumvents the abstract pane selection mechanism.

However, the clos:make-instance approach requires the application programmer to

know the name of the specific pane implementation class that is desired, and so is

inherently less portable. By convention, all of the concrete pane class names, in-

cluding those of the implementations of abstract pane protocol specifications, end

in "-pane".

Using clim:make-pane instead of clos:make-instance invokes the ‘‘look and feel’’

realization process to select and construct a pane. Normally this process is imple-

mented by the frame manager, but it is possible for other ‘‘realizers’’ to imple-

ment this process. clim:make-pane is typically invoked using an abstract pane

class name, which by convention is a symbol in the CLIM package that doesn’t in-

clude the "-pane" suffix. (This naming convention distinguishes the names of the

abstract pane protocols from the names of classes that implement them.) Program-

mers, however, are allowed to pass any pane class name to clim:make-pane in

which case the frame manager will generally instantiate that specific class.

See the function clim:make-pane.

See the macro clim:make-clim-stream-pane.

Using the :panes Option to clim:define-application-frame

The :panes option to clim:define-application-frame is used to describe the panes

used by the application frame. It takes a list of pane-descriptions. Each pane-

description can be one of two possible formats:

• A list consisting of a pane-name (which is a symbol), a pane-type, and pane-

options, which are keyword-value pairs. pane-options is evaluated at load time.

• A list consisting of a pane-name (which is a symbol), followed by an expression

that is evaluated to create the pane. See the macro clim:make-clim-stream-

pane and the function clim:make-pane.

The pane-types are:

:application

Application panes are stream panes used for the display of applica-

tion-generated output. See the class clim:application-pane. See the

macro clim:make-clim-application-pane.

:interactor

Interactor panes are stream panes that provide a place for the user

to do interactive input and output. See the class clim:interactor-

pane. See the macro clim:make-clim-interactor-pane.

:accept-values

These panes provide for the display of a ‘‘modeless’’

clim:accepting-values dialog. See the class

clim:accept-values-pane. See the section "Using an :accept-values

Pane in a CLIM Application Frame".

Page 1344

:pointer-documentation

These panes provide for pointer documentation. If such a pane is

specified, then when the pointer moves over different areas of the

frame, this pane displays documentation of the effect of clicking the

pointer buttons.

If the host window system has its own way of displaying pointer

documentation, this pane may be omitted automatically from the

layout.

See the class clim:pointer-documentation-pane.

:command-menu

Command menu panes are used to hold a menu of application com-

mands. The default display function is clim:display-command-menu

which, by default, displays the current command table of the frame.

You can display a different command table by supplying the

:command-table argument to clim:display-command-menu.

Many host window systems provide a menu bar, so having panes of

type :command-menu is not common.

See the class clim:command-menu-pane.

:title Title panes are used for displaying the title of the application. The

default title is a ‘‘prettied up’’ version of the name of the applica-

tion frame’s class.

Many host window systems will automatically display the frame’s ti-

tle in a title bar, so this is only rarely useful.

See the class clim:title-pane.

The following pane-options are usable by all pane types, unless otherwise noted.

:width, :height, :min-width, :min-height, :max-width, and :max-height

Provide space requirement specs that specify the sized of the pane.

The values the space requirements can take are described in "Using

the :LAYOUTS Option to CLIM:DEFINE-APPLICATION-FRAME".

:background and :foreground ink

Provide initial values for clim:medium-foreground and

clim:medium-background for the pane.

:text-style text-style

Specifies a text style to use in the pane. The default depends on the

pane type.

:borders Controls whether borders are drawn around CLIM stream panes (t

or nil). The default is t. The value may also be a list, in which case

the value is used as options to clim:outlining.

:spacing Controls whether there is some whitespace between the border and

the viewport for a CLIM stream pane (t or nil). The default is t.

Page 1345

The value may also be a list, in which case the value is used as op-

tions to clim:spacing.

:scroll-bars scroll-bar-spec

A scroll-bar-spec can be :both (the default for :application panes),

:horizontal, :vertical, :none, or nil. The pane will have only those

scroll bars which were specified. :none means that the pane will

support scrolling, but does not have any visible scroll bars. nil

means that the pane will not support scrolling at all.

:display-after-commands

One of t, nil, or :no-clear. If t, the ‘‘print’’ part of the read-eval-

print loop runs the display function; this is the default for most

pane types. If nil, you are responsible for managing the display af-

ter commands.

:no-clear behaves the same as t, with the following change. If you

have not specified :incremental-redisplay t, then the pane is nor-

mally cleared before the display function is called. However, if you

specify :display-after-commands :no-clear, then the pane is not

cleared before the display function is called.

:display-function display-spec

Where display-spec is either the name of a function or a list whose

first element is the name of a function. The function is to be ap-

plied to the application frame, the pane, and the rest of display-spec

if it was a list when the pane is to be redisplayed.

The function must accept two required arguments (the frame and

the pane), plus the two keyword arguments :max-width and :max-

height.

One example of a predefined display function is clim:display-

command-menu.

:display-string string

(for :title panes only) The string to display. The default is the

frame’s pretty name.

:label string

A string to be used as a label for the pane, or nil (the default).

:incremental-redisplay boolean

If t, CLIM runs the display function inside of an clim:updating-

output form. The default is nil.

:end-of-line-action, :end-of-page-action

Initial values of the corresponding attributes. See the macro

clim:with-end-of-line-action and see the macro clim:with-end-of-

page-action.

:initial-cursor-visibility

:off means make the text cursor visible if the window is waiting for

input. :on means make it visible all the time. nil means that the

Page 1346

cursor is never visible. The default is :off for :interactor and

:accept-values panes, and nil for other panes.

:output-record

Specify this if you want a different output history mechanism than

the default (which is clim:standard-tree-output-history). For ex-

ample, a graphic editing program might supply a value of:

(make-instance ’clim:r-tree-output-history)�

Besides clim:standard-tree-output-history and clim:r-tree-output-

history, you can also use clim:standard-sequence-output-history.

:draw-p, :record-p boolean

Specifies the initial state of drawing and output recording.

:default-view view

Specifies the view object to use for the stream’s default view.

:text-margin integer

Text margin to use if clim:stream-text-margin isn’t set. This de-

faults to the width of the viewport.

:vertical-spacing integer

Amount of extra space between text lines.

:pointer-cursor

Specifies the pointer cursor to use when the pointer is over this

pane.

:event-queue

Specifies the event queue to be used by this pane. The default is to

share the event queue with the top-level sheet, so that all the panes

in the frame use the same event queue.

Using the :LAYOUTS Option to CLIM:DEFINE-APPLICATION-FRAME

A layout is an arrangement of panes within the application-frame’s top-level win-

dow. An application may have many layouts or it may have only one layout that re-

mains constant for the life of the program. If you do not specify any layout, CLIM

will construct a default layout for the application.

As the application is running, the current layout may be changed to any of the

layouts described in the :layouts option of the frame definition. See the generic

function clim:frame-current-layout.

The :layouts option specifies and names the layouts of the application. A layout

typically consists of rows, columns, and tables of panes, or more complicated nest-

ings of rows, columns and tables. The value of the :layouts option is a list of lay-

out descriptions. Each layout description is a two element list consisting of a sym-

bol, which names the layout, and a corresponding layout-spec.

Page 1347

A layout-spec is a simply a form consisting of the various layout macros that con-

structs a pane.

A size-spec can be :fill, :compute, or a real number between zero and one (exclu-

sive) (indicating that the size of the pane is that fraction of the available space),

an integer (indicating that the size of the pane is that many device units), or a

list whose first element is a real number and whose second element is a ‘‘unit’’
(one of :line, :character, :mm, :point, or :pixel).

This syntax can be expressed as follows:

:layouts (layout-name layout-panes)

layout-name is a symbol.

layout-panes is layout-panes1 or (size-spec layout-panes1).

layout-panes1 is a pane-name, or a layout-macro-form, or layout-code.

layout-code is Lisp code that generates a pane, which may

include the name of a named pane.

size-spec is a positive real number less than 1, or :fill, or

:compute. A real number (between zero and one, exclusive) is

the fraction of the available space to use. :fill means that the

pane will take as much space as remains when all its sibling panes

have been given space. :compute means that the pane’s display

function should be called in order to compute how much space it

requires. (Note that the display function is run at frame-creation

time, so it must be able to compute the size correctly at that time.)

size-spec can also be an integer indicating the size of the pane

in device units, or a list whose first element is a real number

and whose second element is a ‘‘unit’’ (one of :line,
:character, :mm, :point, or :pixel).�

layout-macro-form is (layout-macro-name (options) &rest layout-panes).

layout-macro-name is clim:vertically, clim:horizontally,

clim:tabling, clim:outlining, clim:spacing, or

clim:labelling.

�

The following macros and pane classes provide layout for other panes in CLIM.

clim:vertically (&rest options &key :spacing &allow-other-keys) &body contents

Lays out one or more child panes vertically, from top to bottom.

clim:vbox-pane

The layout pane class that arranges its children in a vertical stack.

Page 1348

clim:horizontally (&rest options &key :spacing &allow-other-keys) &body contents

Lays out one or more child panes horizontally, from left to right.

clim:hbox-pane

The layout pane class that arranges its children in a horizontal row.

clim:tabling (&rest options) &body contents

Lays out its child panes in a two-dimensional table arrangement.

clim:table-pane

The layout pane class that arranges its children in a tabular format.

clim:outlining (&rest options &key :thickness &allow-other-keys) &body contents

Puts an outlined border of the specified thickness around a single child

pane.

clim:outlined-pane

The layout pane class that draws a border around its child pane.

clim:spacing (&rest options &key :thickness :background &allow-other-keys) &body

contents

Reserves some margin space around a single child pane.

clim:spacing-pane

The layout pane class that leaves some empty space around its child

pane.

The following macro can be used to label any pane.

clim:labelling (&rest options &key :label (:label-alignment :bottom) &allow-other-

keys) &body contents

Creates a vertical stack consisting of two panes, a label and a single oth-

er pane.

The following macro can be used to provide scrolling for a pane.

clim:scrolling (&rest options) &body contents

Creates a composite pane that allows the single child specified by con-

tents to be scrolled.

Details of CLIM’s Layout Algorithm

CLIM uses a two pass algorithm to lay out a pane hierarchy. In the first pass

(called space composition), the top level pane is queried to find out how much

space it requires. This query may cause the same query to be made, recursively, of

all the panes in the hierarchy, with the answers being composed to produce the

top level pane’s answer. Each pane answers the query by returning a space require-

ment (or clim:space-requirement) object, which specifies the pane’s desired width

and height, as well as its willingness to shrink or grow along its width and height.

In the second pass (called space allocation), the frame manager attempts to obtain

the required amount of space from the host window system. The top level pane is

Page 1349

allocated the space that is actually available. Each pane, in turn, allocates space

recursively to each of its descendants in the hierarchy according to the pane’s

rules of composition.

For most types of panes, you can indicate the space requirements of the pane at

creation time by using the space requirement options (:width, :height, :max-width,

:min-height, and so on). For example, application panes are used to display appli-

cation-specific information, so the application can determine how much space

should normally be given to them.

Other pane types automatically calculate how much space they need based on the

information they need to display. For example, push button panes automatically

calculate their space requirement based on the amount of space required by the

push button’s label.

A composite pane calculates its space requirement based on the requirements of its

children and its own particular rule for arranging them. For example, a pane that

arranges its children in a vertical stack would return as its desired height the

sum of the heights of its children. Note however that a composite is not required

by the layout protocol to respect the space requests of its children; in fact, compos-

ite panes aren’t even required to ask their children how big they want to be.

Space requirements are expressed for each of the two dimensions as a preferred

size, a minimum size below which the pane cannot be shrunk, and a maximum size

above which the pane cannot be grown. (The minimum and maximum sizes can al-

so be specified as relative amounts.) All sizes are specified as a real number indi-

cating the number of device units (such as pixels).

The following functions are used in pane layout to compute and allocate space, and

to set the size and position of the panes.

clim:make-space-requirement &key (:width 0) (:min-width width) (:max-width

width) (:height 0) (:min-height height) (:max-height height)

Constructs and returns a space requirement object having the given

components.

clim:space-requirement-components space-req

Returns the components of the space requirement space-req as six values,

the width, minimum width, maximum width, height, minimum height,

and maximum height.

clim:space-requirement+ space-req
Returns a new space requirement whose components are the sum of each

of the components of sr1 and sr2.

clim:compose-space pane &key :width :height

The value returned by clim:compose-space is a space requirement object

that represents how much space the pane pane requires.

clim:allocate-space pane width height

During the space allocation pass, a composite pane will arranges children

within the available space and allocates space to them according to their

space requirements and its own composition rules by calling

clim:allocate-space on each of the child panes.

Page 1350

clim:move-sheet sheet x y

Moves sheet to the new position (x,y). x and y are in coordinates relative

to sheet’s parent.

clim:resize-sheet sheet width height

Changes the size of sheet to have width width and height height.

clim:move-and-resize-sheet sheet x y width height

Moves sheet to the new position (x,y), and simultaneously changes the

size of the sheet to have width width and height height. x and y are in

coordinates relative to sheet’s parent.

Examples of the :panes and :layouts Options to clim:define-application-frame

Here are some examples of how to use the :panes and :layouts options of

clim:define-application-frame to describe the appearance of your application.

We begin by showing an example of how CLIM supplies a default layout when you

don’t explicitly specify one in your frame definition. The default layout is a single

column of panes, in the order (top to bottom) that you specified them in the

:panes option. Command menus are allocated only enough space to display their

contents, while the remaining space is divided among the other types of panes

equally.

(clim:define-application-frame graphics-demo

 ()

 ()

 (:menu-bar nil)

 (:panes

 (commands :command-menu)

 (demo :application)

 (explanation :application :scroll-bars nil))))�

yadayadayada commands

explanation

demo

�

Figure 64. The default layout for the graphic-demo example when no explicit :lay-

out is specified.�

Page 1351

Now we add an explicit :layouts option to the frame definition from the previous

example. The pane named explanation occupies the bottom sixth of the screen.

The remaining five-sixths are occupied by the demo and commands panes, which

lie side by side with the command pane to the right. The commands pane is only

as wide as necessary to display the command menu.

(clim:define-application-frame graphics-demo

 ()

 ()

 (:menu-bar nil)

 (:panes

 (commands :command-menu)

 (demo :application)

 (explanation :application :scroll-bars nil))

 (:layouts

 (default

 (clim:vertically ()

 (5/6 (clim:horizontally () demo commands))

(1/6 explanation)))))�

yadayadayada

commands

explanation

demo

�

Figure 65. The layout for the graphic-demo example with an explicit :layout.�

Finally, here is a stripped-down version of the application frame definition for the

CAD demo (in the file SYS:CLIM;REL-2;DEMO;CAD-DEMO.LISP) which implements an

extremely simplistic computer-aided logic circuit design tool.

There are four panes defined for the application. The pane named title displays

the string "Mini-CAD" and serves to remind the user which application he is using.

There is a pane named menu which provides a menu of commands for the appli-

cation. The pane named design-area is the actual ‘‘work surface’’ of the applica-

tion on which various objects (logic gates and wires) can be manipulated. A pane

named documentation is provided to inform the user about what actions can be

performed using the pointing device (typically the mouse) and is updated based on

what object is pointed to.

The application has two layouts, one named main and one named other. Both lay-

outs have their panes arranged in vertical columns. At the top of both layouts is

Page 1352

the title pane, which is of the smallest height necessary to display the title string

"Mini-CAD". Both layouts have the documentation pane at the bottom.

The two layouts differ in the arrangement of the menu and design-area panes. In

the layout named main, the menu pane appears just below the title pane and ex-

tends for the width of the screen. Its height will be computed so as to be suffi-

cient to hold all the items in the menu. The design-area pane occupies the re-

maining screen real estate, extending from the bottom of the menu pane to the

top of the documentation pane, and is as wide as the screen.

The layout named other differs from the main layout in the shape of the design-

area pane. Here the implementor of the CAD demo realized that depending on

what was being designed, either a short, wide area or a narrower but taller area

might be more appropriate. The other layout provides the narrower, taller alterna-

tive by rearranging the menu and design-area panes to be side by side (forming a

row of the two panes). The menu and design-area panes occupy the space between

the bottom of the title pane and the top of the documentation pane, with the

menu pane to the left and occupying as much width as is necessary to display all

the items of the menu and the design-area occupying the remaining width.

(define-application-frame cad-demo

 (standard-application-frame output-record)

 ((object-list :initform nil))

 (:menu-bar nil)

 (:pointer-documentation t)

 (:panes

 (title :title :display-string "Mini-CAD")

 (menu :command-menu)

 (design-area :application))

 (:layouts

 (default

 (clim:vertically ()

 title menu design-area))

 (other

 (clim:vertically ()

 title

 (clim:horizontally () menu design-area)))))�

Using an :accept-values Pane in a CLIM Application Frame

:accept-values panes are used when you want one of the panes of your application

to be in the form of an clim:accepting-values dialog.

There are several things to remember when using an :accept-values pane in your

application frame:

• For an :accept-values pane to work your frame’s command table must inherit

from the clim:accept-values-pane command table.

Page 1353

Mini-CAD Mini-CAD

title

design-area

menu

documentation

yada

�

Figure 66. The two layouts of the Mini-CAD demo. Layout main is on the left,

layout other is on the right.�

• The :display-function option for an :accepting-values pane will typically be

something like

(clim:accept-values-pane-displayer

 :displayer my-acceptor-function)�

where my-acceptor-function is a function that you write. It contains calls to

clim:accept just as they would appear inside a clim:accepting-values for a dia-

log. It takes two arguments, the frame and a stream. my-acceptor-function

doesn’t need to call clim:accepting-values itself, since that is done automatical-

ly.

See the section "Menus and Dialogs in CLIM", and see the function clim:accept-

values-pane-displayer.

Initializing CLIM Application Frames

There are several ways to initialize an application frame:

1. The value of an application frame’s slot can be initialized using the :initform

slot option in the slot’s specifier in the clim:define-application-frame form.

This technique is suitable if the slot’s initial value does not depend on the

values of other slots, calculations based on the values of initialization argu-

ments, or other information which can not be determined until after the ap-

plication frame is created. See the macro clos:defclass to learn about slot-

specifiers.

Page 1354

2. For initializations which depend on information which may not be available

until the application frame has been created, an :after method can be defined

for clos:initialize-instance on the application frame’s class. Note that the

special variable clim:*application-frame* is not bound to the application

since the application is not yet running. You may use clos:with-slots,

clos:with-accessors, or any slot readers or accessors which have been defined.

3. A :before or :around method for clim:run-frame-top-level on the applica-

tion’s frame is probably the most versatile place to perform application frame

initialization. This method will not be executed until the application starts

running. clim:*application-frame* will be bound to the application frame.

4. If the application frame employs its own top-level function, then this function

can perform initialization tasks at the beginning of its body. This top-level

function may call clim:default-frame-top-level to achieve the standard behav-

ior for application frames.

Of course, these are only suggestions. Other techniques might be more appropriate

for your application. Of those listed, the :before or :around method on clim:run-

frame-top-level is probably the best for most circumstances.

Although application frames are CLOS classes, do not use clos:make-instance to

create them. To instantiate an application frame, always use clim:make-

application-frame. This function provides important initialization arguments spe-

cific to application frames which clos:make-instance does not. clim:make-

application-frame passes any keyword value pairs which it does not handle itself

on to clos:make-instance. Thus, it will respect any initialization options which you

give it, just as clos:make-instance would.

Here is an example of how an application frame’s behavior might be modified by

inheritance from a superclass.

Suppose we wanted our application to record all of the commands which were per-

formed while it was executing. This might be useful in the context of a program

for the financial industry where it is important to keep audit trails for all transac-

tions. As this is a useful functionality that might be added to any of a number of

different applications, we will separate it out into a special class which implements

the desired behavior. This class can then be used as a superclass for any applica-

tion which should keep a log of its actions.

The class has an initialization option :pathname which specifies the name of the

log file. It has a slot named transaction-stream whose value is a stream opened

to the log file when the application is running.

(defclass transaction-recording-mixin ()

((transaction-pathname :type pathname

 :initarg :pathname

 :reader transaction-pathname)

 (transaction-stream :accessor transaction-stream)))�

Page 1355

We use an :around method on clim:run-frame-top-level which opens a stream to

the log file, and stores it in the transaction-stream slot. unwind-protect is used

to clear the value of the slot when the stream is closed.

(defmethod clim:run-frame-top-level :around

 ((frame transaction-recording-mixin))

 (with-slots (transaction-pathname transaction-stream) frame

 (with-open-file (stream transaction-pathname

 :direction :output)

 (unwind-protect

 (progn

 (setq transaction-stream stream)

 (call-next-method))

(setq transaction-stream nil)))))�

This is where the actual logging takes place. The command loop in clim:default-

frame-top-level calls clim:execute-frame-command to execute a command. Here

we add a :before method which will log the command.

(defmethod clim:execute-frame-command :before

 ((frame transaction-recording-mixin) command)

 (format (transaction-stream frame)

 "~&Command: ~a" command))�

It is now an easy matter to alter the definition of an application to add the com-

mand logging behavior. Here is the definition of the puzzle application frame from

the CLIM demos suite (from the file SYS:CLIM;REL-2;DEMO;PUZZLE.LISP). Our modifi-

cations are shown in italics. We use the superclasses argument to specify that the

puzzle application frame should inherit from transaction-recording-mixin. Be-

cause we are using the superclass argument, we must also explicitly include

clim:standard-application-frame, which would be included by default when the

superclasses argument is empty.

(define-application-frame puzzle

 (transaction-recording-mixin standard-application-frame)

 ((puzzle :initform (make-array ’(4 4))

 :accessor puzzle-puzzle))

 (:default-initargs :pathname "puzzle-log.text")
 (:panes

 (display :application

 :display-function ’draw-puzzle

 :text-style ’(:fix :bold :very-large)

 :incremental-redisplay t

 :text-cursor nil

 :width :compute :height :compute

 :end-of-page-action :allow

 :end-of-line-action :allow))

 (:layouts

 (:default display)))�

Also note the use of

Page 1356

(:default-initargs :pathname "puzzle-log.text")�

to provide a default value for the log file name if the user doesn’t specify one.

The user might run the application by evaluating the following:

(clim:run-frame-top-level

 (clim:make-application-frame ’puzzle

 :parent (clim:find-port)

 :pathname "my-puzzle-log.text"))�

Here the :pathname initialization argument was used to override the default name

for the log file (as was specified by the :default-initargs clause in the above appli-

cation frame definition) and to use the name "my-puzzle-log.text" instead.

Accessing Slots and Components of CLIM Application Frames

CLIM application frames are instances of the defined subclass of the

clim:standard-application-frame class. You explicitly specify accessors for the

slots you have specified for storing application-specific state information, and use

those accessors as you would for any other CLOS instance. Other CLIM defined

components of application frame instances are accessed via documented functions.

Such components include frame panes, command tables, top-level window, and lay-

outs.

Running a CLIM Application

This section describes how to use CLIM application frames in Cloe Runtime and in

Genera, but the technique is similar on most platforms. For more information on

how to run CLIM in these environments,see the section "Using Symbolics CLIM".

Genera

In Genera and in Cloe Developer the recommended way to run CLIM applications

is to make them available to the Genera activity selection system. Call

clim:define-genera-application after clim:define-application-frame.

clim:define-genera-application frame-name &rest keys &key :pretty-name :select-key

:left :top :right :bottom :width :height

Makes a CLIM application available to the Select Activity command and

optionally to the SELECT key. This exists only in Genera.

Cloe Runtime

In Cloe Runtime clim:define-application-frame automatically does a cloe:define-

program. When you call cloe:save-program with the name of your application

frame, it saves a virtual memory image that will run your application when it is

started. For test purposes, you can use the :simulate argument to cloe:save-

program to run the program without saving it.

Page 1357

Programmatic Ways to Run CLIM Applications

You can also run a CLIM application using the functions clim:make-application-

frame and clim:run-frame-top-level. First use clim:find-port to create a port to

pass as the :parent argument to clim:make-application-frame. Here is a code

fragment which illustrates this technique under Genera:

(clim:run-frame-top-level

 (clim:make-application-frame ’frame-name

 :parent (clim:find-port :server-path ’(:genera))))�

clim:run-frame-top-level will not return until the application exits.

Note that clim:*application-frame* is not bound until clim:run-frame-top-level is

invoked.

For more information, see the section "Functions for Operating on Windows Di-

rectly".

Examples of CLIM Application Frames

These are examples of how to use CLIM application frames. For other examples,

see the section "CLIM Tutorial" and see the section "Using the CLIM Demos".

Example of defining a CLIM application frame�

Here is an example of an application frame. This frame has three slots, named

pathname, integer and member. It has two panes, an :accept-values pane named

avv and an :application pane named display. It uses a command table named

dingus, which will automatically be defined for it (see

clim:define-command-table) and which inherits from the clim:accept-values-pane

command table so that the accept-values pane will function properly.

(clim:define-application-frame dingus ()

 ((pathname :initform #p"foo")

 (integer :initform 10)

 (member :initform :one))

 (:panes

 (avv :accept-values

 :display-function ’(clim:accept-values-pane-displayer

 :displayer display-avv))

 (display :application

 :display-function ’draw-display

 :display-after-commands :no-clear))

 (:command-table (dingus :inherit-from (clim:accept-values-pane))))

�

This is the display function for the display pane of the dingus application. It just

prints out the values of the three slots defined for the application.

Page 1358

(defmethod draw-display ((frame dingus) stream)

 (with-slots (pathname integer member) frame

 (fresh-line stream)

 (clim:present pathname ’pathname :stream stream)

 (write-string ", " stream)

 (clim:present integer ’integer :stream stream)

 (write-string ", " stream)

 (clim:present member ’(member :one :two :three) :stream stream)

 (write-string "." stream)))�

This is the display function for the pane named avv. It invokes clim:accept for

each of the application’s slots so that the user can alter their values in the avv

pane.

(defmethod display-avv ((frame dingus) stream)

 (with-slots (pathname integer member) frame

 (fresh-line stream)

 (setq pathname (clim:accept ’pathname

 :prompt "A pathname" :default pathname

 :stream stream))

 (fresh-line stream)

 (setq integer (clim:accept ’integer

 :prompt "An integer" :default integer

 :stream stream))

 (fresh-line stream)

 (setq member (clim:accept ’(member :one :two :three)

 :prompt "One, Two, or Three" :default member

 :stream stream))

 (fresh-line stream)

 (clim:accept-values-command-button (stream :documentation "You wolf")

 (write-string "Wolf whistle" stream)

 (beep))))�

This function will start up a new dingus application. The argument is a port, such

as one returned by clim:find-port.

(defun run-dingus (port)

 (let ((dingus (clim:make-application-frame ’dingus

 :parent port :width 400 :height 400)))

 (clim:run-frame-top-level dingus)))�

All this application does is allow the user to alter the values of the three applica-

tion slots pathname, integer and member using the dialog pane, avv. The new

values will automatically be reflected in the display pane.

Example of constructing a function as part of running an application�

You can supply an alternate top level (which initializes some things and then calls

the regular top level) to construct a function as part of running the application.

Note that when you use this technique, you can close the function over other

pieces of the Lisp state that might not exist until application runtime.

Page 1359

(clim:define-application-frame different-prompts ()

 ((prompt-state ...) ...)

 (:top-level (different-prompts-top-level))

 ...)

�

(defmethod different-prompts-top-level

 ((frame different-prompts) &rest options)

 (flet ((prompt (stream frame)

 (with-slots (prompt-state) frame

 ...)))

 (apply #’clim:default-frame-top-level

 frame :prompt #’prompt options)))�

Operators for Defining CLIM Application Frames

The following operators are used to define and instantiate CLIM application

frames. clim:define-genera-application may only be used under Genera.

clim:define-application-frame name superclasses slots &rest options

Defines a frame and CLOS class named name that inherits from super-

classes and has state variables specified by slots.

clim:make-application-frame frame-name &key :frame-class :pretty-name :parent

:left :top :right :bottom :height :width &allow-other-keys

Makes an instance of the application frame of type frame-class. The key-

word arguments are passed as additional arguments to clos:make-

instance.

clim:find-application-frame frame-name &rest initargs &key (:create t) (:activate t)

(:own-process t) :port :frame-manager :frame-class &allow-other-keys

Calling this function is similar to calling clim:make-application-frame,

and then calling clim:run-frame-top-level on the newly created frame.

clim:define-genera-application frame-name &rest keys &key :pretty-name :select-key

:left :top :right :bottom :width :height

Makes a CLIM application available to the Select Activity command and

optionally to the SELECT key. This exists only in Genera.

CLIM Application Frame Accessors

The following functions may be used to access state of the application frame itself,

such as what the currently exposed panes are, what the current layout is, what

command table is being used, and so forth.

clim:*application-frame*

The current application frame.

clim:with-application-frame (frame) &body body

Evaluates body with the variable frame bound to the current application

frame.

Page 1360

clim:frame-name frame

Returns the name of frame.

clim:frame-pretty-name frame

Returns the pretty name of frame.

clim:frame-standard-input frame

Returns the value that should be used for *standard-input* for frame.

clim:frame-standard-output frame

Returns the value that should be used for *standard-output* for frame.

clim:frame-error-output frame

Returns the value that should be used for *error-output* for frame.

clim:frame-query-io frame

Returns the value that should be used for *query-io* for frame.

clim:frame-pointer-documentation-output frame

Returns the value that should be used for clim:*pointer-documentation-

output* for frame.

clim:frame-current-layout frame

Returns the name of current layout for frame. You can use setf on

clim:frame-current-layout to change the current layout.

clim:frame-all-layouts frame

Returns a list of all of the layout names for frame.

clim:frame-current-panes frame

Returns a list of all of the named CLIM stream panes that are contained

in the current layout for the frame frame.

clim:frame-panes frame

Returns the single pane acting as the ‘‘root’’ pane for the current lay-

out.

clim:get-frame-pane frame pane-name &key (:errorp t)

Returns the CLIM stream pane named by pane-name in frame.

clim:find-pane-named frame pane-name &optional errorp

Returns the CLIM stream pane named by pane-name in frame.

clim:frame-command-table frame

Returns the name of the command table currently being used by the

frame frame. You can use this function with setf to specify the command

table to be used.

clim:frame-maintain-presentation-histories frame

Returns t if the frame maintains histories for its presentations, other-

wise returns nil. The default method on the class clim:standard-

application-frame returns t if and only if the frame has an interactor

pane. You can specialize this generic function for your own application

frames.

Page 1361

clim:frame-top-level-sheet frame

Returns the window that corresponds to the top level window for the

frame frame.

clim:frame-state frame

Returns one of :enabled, :disabled, :disowned, or :shrunk, indicating

the current state of frame.

Operators on CLIM Application Frames

The following functions are used to start up an application frame, exit from it or

destroy it, and control the ‘‘read-eval-print’’ loop of the frame (for example, redis-

play the panes of the frame, and read, execute, enable, and disable commands).

clim:run-frame-top-level frame &key &allow-other-keys

Runs the top-level function for frame.

clim:default-frame-top-level frame &key :command-parser :command-unparser :par-

tial-command-parser (:prompt "Command: ")
The default top-level function for application frames, which provides a

‘‘read-eval-print’’ loop.

clim:enable-frame frame

Enables the application frame frame and changes the state of the frame

to :enabled.

clim:frame-exit frame

Exits from the application frame frame by signalling a clim:frame-exit

condition.

clim:raise-frame frame

Raises the application frame frame so that it is on top of all of the other

host windows by calling clim:raise-sheet on the frame’s top-level sheet.

clim:bury-frame frame

Buries the application frame frame so that it is underneath all of the

other host windows.

clim:destroy-frame frame

Disables the application frame frame, and then destroys it by deallocat-

ing all of its CLIM resources and disowning it from its frame manager.

clim:map-over-frames function &key :port :frame-manager

Applies function to all of the application frames that ‘‘match’’ :port and

:frame-manager. function is a function of one argument, the frame.

clim:display-command-menu frame stream &key :command-table :max-width :max-

height :n-rows :n-columns (:cell-align-x ’:left) (:cell-align-y ’:top)

Displays the menu described by the command table associated with the

application frame frame onto stream. Disabled items in the menu will be

‘‘grayed out’’.

Page 1362

clim:accept-values-pane-displayer frame pane &key :displayer :resynchronize-every-

pass (:check-overlapping t) :align-prompts :max-height :max-width

When you use an :accept-values pane, the display function must use

clim:accept-values-pane-displayer.

clim:redisplay-frame-pane frame pane-name &key :force-p

Causes the pane pane-name of frame to be redisplayed immediately.

clim:redisplay-frame-panes frame &key force-p

Causes all of the panes of frame to be redisplayed immediately.

clim:frame-replay frame stream &optional region

Replays all of the output records in stream’s output history on behalf of

the application frame frame that overlap the region region.

clim:read-frame-command frame &key :stream

clim:read-frame-command reads a command from the user on the

stream :stream, and returns the command object. frame is an application

frame. You can specialize this generic function for your own application

frames, for example, if you want to have your application be able to read

commands using keystroke accelerators.

clim:execute-frame-command frame command

clim:execute-frame-command executes the command command on behalf

of the application frame frame. You can specialize this function if you

want to change the behavior associated with the execution of commands.

clim:command-enabled command-name frame &optional command-table

Returns t if the command named by command-name is presently enabled

in command-table for the frame frame, otherwise returns nil. You can

use setf on clim:command-enabled in order to enable or disable a com-

mand.

clim:command-menu-enabled command-table frame

Returns t if the command table command-table is presently enabled in

the command menu for the frame frame, otherwise returns nil. This

function is like clim:command-enabled, except that it operates only on

the :menu items in a command table’s menu for a particular frame.

Using Gadgets in CLIM

CLIM supports the use of gadgets as panes within an application. The following

sections describe the basic gadget protocol, and the various gadgets supplied by

CLIM.

Basic Gadget Protocol in CLIM

Gadgets are panes that implement such common toolkit components as push but-

tons or scroll bars. Each gadget class has a set of associated generic functions

that serve the same role that callbacks serve in more traditional toolkits. For ex-

Page 1363

ample, a push button has an ‘‘activate’’ callback function that is invoked by CLIM

when the user ‘‘presses’’ the button; a scroll bar has a ‘‘value changed’’ callback

that is invoked by CLIM after the user moves its indicator. (Note that user code

will rarely, if ever, call a callback function itself.)

The gadget definitions specified by CLIM are abstract, that is, the gadget defini-

tion does not specify the exact user interface of the gadget, but only specifies the

semantics that the gadget should provide. For instance, it is not defined whether

the user clicks on a push button with the mouse or moves the mouse over the but-

ton and then presses some key on the keyboard to invoke the ‘‘activate’’ callback.
The user can control some high-level aspects of the gadgets, but each toolkit im-

plementation will specify the exact ‘‘look and feel’’ of their gadgets. Typically, the

look and feel will be derived directly from the underlying toolkit.

Every gadget has an id and a client, which are specified when the gadget is creat-

ed. The client is notified via the callback mechanism when any important user in-

teraction takes place. Typically, a gadget’s client will be an application frame or a

composite pane. Each callback generic function is invoked on the gadget, its client,

the gadget id (described below), and other arguments that vary depending on the

callback.

For example, the clim:activate-callback takes three arguments, a gadget, the

client, and the gadget-id. Assuming the programmer has defined an application

frame called button-test that has a CLIM stream pane in the slot output-pane, he

could write the following method:

(defmethod clim:activate-callback

 ((button clim:push-button) (client button-test) gadget-id)

 (with-slots (output-pane) client

 (format output-pane "The button ~S was pressed, client ~S, id ~S."

 button client gadget-id)))�

One problem with this example is that it differentiates on the class of the gadget,

not on the particular gadget instance. That is, the same method will run for every

push button that has the button-test frame as its client.

One way to distinguish between the various gadgets is via the gadget id, which is

also specified when the gadget is created. The value of the gadget id is passed as

the third argument to each callback generic function. In this case, if we have two

buttons, we might install start and stop as the respective gadget ids and then use

eql specializers on the gadget ids. We could then refine the above as:

(defmethod clim:activate-callback

 ((button clim:push-button) (client button-test) (gadget-id (eql ’start)))

 (start-test client))

�

(defmethod clim:activate-callback

 ((button clim:push-button) (client button-test) (gadget-id (eql ’stop)))

 (stop-test client))

Page 1364

�

;; Create the start and stop push buttons

(clim:make-pane ’clim:push-button

 :label "Start"

 :client frame :id ’start)

(clim:make-pane ’clim:push-button

 :label "Stop"

 :client frame :id ’stop)�

Still another way to distinguish between gadgets is to explicitly specify what func-

tion should be called when the callback is invoked. This is specified when the gad-

get is created by supplying an appropriate initarg. The above example could then

be written as follows:

;; No callback methods needed, just create the push buttons

(clim:make-pane ’clim:push-button

 :label "Start"

 :client frame

 :activate-callback

 #’(lambda (gadget) (start-test (gadget-client gadget))))

(clim:make-pane ’clim:push-button

 :label "Stop"

 :client frame

 :activate-callback

 #’(lambda (gadget) (stop-test (gadget-client gadget))))�

The following classes and functions constitute the basic protocol for all of CLIM’s

gadgets. See the section "Abstract Gadgets in CLIM".

clim:gadget

The protocol class that corresponds to a gadget.

clim:basic-gadget

The implementation class on which many CLIM gadgets are built.

clim:gadget-id gadget

Returns the gadget id of the gadget gadget.

clim:gadget-client gadget

Returns the client of the gadget gadget.

clim:armed-callback gadget client id

The callback that is invoked when the gadget gadget is armed.

clim:disarmed-callback gadget client id

The callback that is invoked when the gadget gadget is disarmed.

clim:activate-gadget gadget

Causes the gadget to become active, that is, available for input.

clim:deactivate-gadget gadget

Causes the gadget to become inactive, that is, unavailable for input.

Page 1365

clim:gadget-active-p gadget

Returns t if the gadget is active, that is, available for input. Otherwise,

it returns nil.

clim:note-gadget-activated client gadget

This function is invoked after a gadget is made active.

clim:note-gadget-deactivated client gadget

This function is invoked after a gadget is made inactive.

clim:value-gadget

The class used by gadgets that have a value.

clim:gadget-value gadget

Returns the value of the gadget value-gadget. You can use setf on

clim:gadget-value to change the value of a gadget.

clim:value-changed-callback gadget client id value

The callback that is invoked when the value of a gadget is changed, ei-

ther by the user or programatically. Generally, this function will call an-

other programmer-specified callback function.

clim:drag-callback gadget client id value

The callback that is invoked when the value of a slider or scroll bar is

changed while the indicator is being dragged. Generally, this function

will call another programmer-specified callback function.

clim:action-gadget

The class used by gadgets that perform some kind of action, such as a

push button.

clim:activate-callback gadget client id

The callback that is invoked when the gadget is activated.

clim:oriented-gadget-mixin

The class that is mixed in to a gadget that has an orientation associated

with it, for example, a slider.

clim:gadget-orientation oriented-gadget

Returns the orientation of the gadget oriented-gadget. Typically, this will

be a keyword such as :horizontal or :vertical.

clim:labelled-gadget-mixin

The class that is mixed in to a gadget that has a label, for example, a

push button.

clim:gadget-label labelled-gadget

Returns the label of the gadget labelled-gadget.

clim:range-gadget-mixin

The class that is mixed in to a gadget that has a range, for example, a

slider.

clim:gadget-min-value range-gadget

Returns the minimum value of the gadget range-gadget.

Page 1366

clim:gadget-max-value range-gadget

Returns the maximum value of the gadget range-gadget.

Abstract Gadgets in CLIM

Gadgets such as push buttons and sliders in CLIM are called abstract gadgets.

This is because the classes, such as clim:push-button and clim:slider, do not

themselves implement gadgets, but rather arrange for the frame manager layer of

CLIM to create concrete gadgets that correspond to the abstract gadgets. The call-

back interface to all of the various implementations of the gadget is defined by the

abstract class. In the :panes clause of clim:define-application-frame, the abbrevi-

ation for a gadget is the name of the abstract gadget class.

At pane creation time (that is, during clim:make-pane), the frame manager re-

solves the abstract class into a specific implementation class; the implementation

classes specify the detailed look and feel of the gadget. Each frame manager will

keep a mapping from abstract gadgets to an implementation class; if the frame

manager does not implement its own gadget for the abstract gadget classes in the

following sections, it should use the portable class provided by CLIM. Since every

implementation of an abstract gadget class is a subclass of the abstract class, they

all share the same programmer interface.

The following classes and functions comprise CLIM’s abstract gadgets. See the sec-

tion "Basic Gadget Protocol in CLIM".

clim:make-pane pane-class &rest pane-options

Selects a class that implements the behavior of the abstract pane pane-

class and constructs a pane of that class.

clim:push-button

The gadget class that provides press-to-activate switch behavior.

clim:toggle-button

The gadget class that provides ‘‘on/off’’ switch behavior.

clim:radio-box

A gadget that constrains one or more toggle buttons. At any one time,

only one of the buttons managed by the radio box may be ‘‘on’’.

clim:check-box

Like a radio box: this gadget constrains one or more toggle buttons. At

any one time, zero or more of the buttons managed by the check box

may be ‘‘on’’.

clim:with-radio-box (&rest options &key (:type ’:one-of) &allow-other-keys) &body

body

Creates a radio box or a check box whose buttons are created by the

forms in body.

clim:list-pane

The gadget class that corresponds to a pane whose semantics are similar

to a radio box or check box, but whose visual appearance is a list of

buttons.

Page 1367

clim:option-pane

The gadget class that corresponds to a pane whose semantics are identi-

cal to a list pane, but whose visual appearance is a single push button

which, when pressed, pops up a menu of selections.

clim:scroll-bar

The gadget class that corresponds to a scroll bar. The usual interface to

creating a scroll bar is to use the clim:scrolling macro.

clim:slider

The gadget class that corresponds to a slider.

clim:text-field

The gadget class that implements a text field. The value of a text field

is the text string.

clim:text-editor

The gadget class corresponds to a multi-line field containing text. The

value of a text editor is the text string.

Example of an Application That Uses Gadgets

The following is an example of the frame definition of an application frame that

uses several different gadgets.

(defclass color-chooser-pane (clim:clim-stream-pane) ())

�

(defmethod clim:handle-repaint :after ((stream color-chooser-pane) region)

 (declare (ignore region))

 (display-color (clim:pane-frame stream) stream))

�

(clim:define-application-frame color-chooser ()

 (color

 red blue green

 intensity hue saturation)

 (:menu-bar nil)�

 (:panes

 (display (clim:make-clim-stream-pane

 :type ’color-chooser-pane

 :scroll-bars nil

 :display-function ’display-color

 ;; Make sure we don’t have a useless cursor blinking away...

 :initial-cursor-visibility nil))

 (exit clim:push-button

 :label "Exit"

 :activate-callback #’(lambda (button)

Page 1368

 (clim:frame-exit (clim:pane-frame button))))�

 (rgb (with-slots (red green blue) clim:*application-frame*

 (clim:outlining ()

 (clim:horizontally ()

 (setq red (clim:make-pane clim:’slider

 :label "Red" :foreground clim:+red+

 :orientation :vertical

 :min-value 0.0 :max-value 1.0

 :show-value-p t :decimal-places 3

 :client ’color :id ’red))

 (setq green (clim:make-pane ’clim:slider

 :label "Green" :foreground clim:+green+

 :orientation :vertical

 :min-value 0.0 :max-value 1.0

 :show-value-p t :decimal-places 3

 :client ’color :id ’green))

 (setq blue (make-pane ’clim:slider

 :label "Blue" :foreground clim:+blue+

 :orientation :vertical

 :min-value 0.0 :max-value 1.0

 :show-value-p t :decimal-places 3

 :client ’color :id ’blue))))))�

 (ihs (with-slots (intensity hue saturation) clim:*application-frame*

 (clim:outlining ()

 (clim:horizontally ()

 (setq intensity (clim:make-pane ’clim:slider

 :label "Intensity"

 :orientation :vertical

 :min-value 0.0 :max-value (sqrt 3)

 :show-value-p t :decimal-places 3

 :client ’color :id ’intensity))

 (setq hue (clim:make-pane ’clim:slider

 :label "Hue"

 :orientation :vertical

 :min-value 0.0 :max-value 1.0

 :show-value-p t :decimal-places 3

 :client ’color :id ’hue))

 (setq saturation (clim:make-pane ’clim:slider

 :label "Saturation"

 :orientation :vertical

 :min-value 0.0 :max-value 1.0

 :show-value-p t :decimal-places 3

Page 1369

 :client ’color :id ’saturation)))))))�

 (:layouts

 (default

 (clim:horizontally ()

 (clim:outlining ()

 (clim:vertically () display exit))

 rgb ihs))))

�

(defmethod clim:run-frame-top-level :before ((frame color-chooser) &key)

 (with-slots (color) frame

 (setf color clim:+black+)))

�

(defmethod color ((frame color-chooser))

 (with-slots (color) frame

 color))

�

(defmethod (setf color) (new-color (frame color-chooser))

 (with-slots (color) frame

 (setf color new-color)))

�

(defmethod display-color ((frame color-chooser) stream)

 (clim:with-bounding-rectangle* (left top right bottom)

 (clim:window-viewport stream)

 (clim:with-output-recording-options (stream :record nil)

 (clim:draw-rectangle* stream left top right bottom

 :filled t :ink (slot-value frame ’color)))))

�

(defmacro define-rgb-callbacks (color)

 (check-type color (member red green blue))

 (let* ((rgb ’(red green blue))

 (new-rgb (substitute ’value color rgb)))

 ‘(progn

 (defmethod clim:value-changed-callback

 ((slider clim:slider)

 (client (eql ’color)) (id (eql ’,color)) value)

 (let ((frame (clim:pane-frame slider)))

 (multiple-value-bind (,@rgb) (clim:color-rgb (color frame))

 (declare (ignore ,color))

 (setf (color frame) (clim:make-rgb-color ,@new-rgb)))

Page 1370

 (update-ihs frame)))�

 (defmethod clim:drag-callback

 ((slider clim:slider)

 (client (eql ’color)) (id (eql ’,color)) value)

 (let ((frame (clim:pane-frame slider)))

 (multiple-value-bind (,@rgb) (clim:color-rgb (color frame))

 (declare (ignore ,color))

 (setf (color frame) (clim:make-rgb-color ,@new-rgb)))

 (update-ihs frame))))))

�

(define-rgb-callbacks red)

(define-rgb-callbacks green)

(define-rgb-callbacks blue)

�

(defmethod update-ihs ((frame color-chooser))

 (with-slots (intensity hue saturation) frame

 (multiple-value-bind (ii hh ss) (clim:color-ihs (color frame))

 (setf (clim:gadget-value intensity :invoke-callback nil) ii)

 (setf (clim:gadget-value hue :invoke-callback nil) hh)

 (setf (clim:gadget-value saturation :invoke-callback nil) ss))))

�

(defmacro define-ihs-callbacks (color)

 (check-type color (member intensity hue saturation))

 (let* ((ihs ’(intensity hue saturation))

 (new-ihs (substitute ’value color ihs)))

 ‘(progn

 (defmethod clim:value-changed-callback

 ((slider clim:slider)

 (client (eql ’color)) (id (eql ’,color)) value)

 (let ((frame (clim:pane-frame slider)))

 (multiple-value-bind (,@ihs) (clim:color-ihs (color frame))

 (declare (ignore ,color))

 (setf (color frame) (clim:make-ihs-color ,@new-ihs)))

 (update-rgb frame)))�

 (defmethod clim:drag-callback

 ((slider clim:slider)

 (client (eql ’color)) (id (eql ’,color)) value)

 (let ((frame (clim:pane-frame slider)))

 (multiple-value-bind (,@ihs) (clim:color-ihs (color frame))

 (declare (ignore ,color))

 (setf (color frame) (clim:make-ihs-color ,@new-ihs)))

 (update-rgb frame))))))

�

(define-ihs-callbacks intensity)

(define-ihs-callbacks hue)

(define-ihs-callbacks saturation)

Page 1371

�

(defmethod update-rgb ((frame color-chooser))

 (with-slots (red green blue) frame

 (multiple-value-bind (rr gg bb) (clim:color-rgb (color frame))

 (setf (clim:gadget-value red :invoke-callback nil) rr)

 (setf (clim:gadget-value green :invoke-callback nil) gg)

 (setf (clim:gadget-value blue :invoke-callback nil) bb))))

�

(defmethod clim:value-changed-callback :after

 ((slider clim:slider) (client (eql ’color)) id value)

 (declare (ignore id value))

 (let ((frame (clim:pane-frame slider)))

 (redisplay-frame-pane (pane-frame slider) ’display)))

�

Commands in CLIM

Introduction to CLIM Commands

In CLIM, users interact with applications through the use of commands. Com-

mands are a way of representing an operation in an application.

Commands are performed by the command loop, which accepts input of presenta-

tion type clim:command and then executes the accepted command. "Command Ob-

jects in CLIM" discusses how commands are represented.

CLIM also supports actions which are performed directly by the user interface. Ac-

tions are seldom necessary, as it is usually the functionality of commands which is

desired. See the macro clim:define-presentation-action for a discussion about the

appropriateness of presentation actions.

CLIM supports four main styles of interaction:

• Mouse interaction via command menus. A command is invoked by clicking on an

item in a menu.

• Mouse interaction via command translators, including direct manipulation

(‘‘drag and drop’’) interactions. A command can be invoked by clicking on any

object displayed by the interface. The particular combination of mouse-buttons

and modifier keys (such as shift or control) is called a gesture. As part of the

presentation system, a command translator turns a gesture on an object into a

command.

• Keyboard interaction using a command-line processor. The user types a complete

textual representation of command names and arguments. The text is parsed by

the command-line processor to form a command. A special character (usually

Newline) indicates to the command-line processor that the text is ready to be

parsed.

Page 1372

• Keyboard interaction using keystroke accelerators. A single keystroke invokes

the associated command.

The choice of interaction styles is independent of the command loop or the set of

commands, and is entirely under the control of the application programmer. The

relationship between a user’s interactions and the commands to be executed is gov-

erned by command tables. A command table is an object that serves to mediate be-

tween a command input context, a set of commands, and these interaction styles.

Commands may take arguments, which are specified by their presentation types.

For most CLIM applications, clim:define-application-frame will automatically cre-

ate a command table, a top level command input context, and define a command

defining macro for you.

Following a discussion of the simple approach, this chapter discusses command

tables and the command processor in detail. This information is provided for the

curious and for those who feel they require further control over their application’s

interactions. These are some circumstances which might suggest something beyond

the simple approach:

• Your application requires more than one command table, for example, if it has

multiple modes with different sets of commands available in each mode.

• If you have sets of commands that are common among several modes or even

among several applications, you could use several command tables and inheri-

tance to help organize your command sets.

• Your application may be complex enough that you may want to develop more

powerful tools for examining and manipulating command tables.�

If you do not require this level of detail, then you can just read "Defining Com-

mands the Easy Way" and skip the remainder of this chapter.

Defining Commands the Easy Way

CLIM provides utilities to make it easy to define commands for most applications.

clim:define-application-frame will automatically create a command table for your

application. This behavior is controlled by the :command-table option. It will also

define a command defining macro which you will use to define the commands for

your application. This is controlled by the :command-definer option.

This command definer macro will behave similarly to clim:define-command, but

will automatically use your application’s command table so you needn’t specify one.

Here is an example code fragment illustrating the usage of clim:define-

application-frame which defines an application named editor. A command table

named editor-command-table is defined to mediate the user’s interactions with

the editor application. It also defines a macro named define-editor-command

which the application programmer will use to define commands for the editor ap-

plication and install them in the command table editor-command-table.

Page 1373

(clim:define-application-frame editor ()

 ()

 (:command-table editor-command-table)

 (:command-definer define-editor-command)

 ...)�

Note that for this particular example, the :command-table and :command-definer

options need not have been specified, since the names that they specify would be

the ones which would be generated by default. These options normally are provided

only when you want different names other than the default ones, you don’t want a

command definer or you want to specify which command tables the application’s

command table inherits from. See the section "Defining Application Frames in

CLIM" and see the macro clim:define-application-frame for a description of these

options.

Command names and command line names�

Every command has a command name, which is a symbol. The symbol names the

function which implements the command. The body of the command is the function

definition of that symbol.

By convention, commands are named with a "com-" prefix, although CLIM does not

enforce this convention.

To avoid collisions among command names, each application should live in its own

package; for example, there might be several commands named com-show-chart

defined for each of a spreadsheet, a navigation program and a medical application.

CLIM supports a command line name which is separate from the command’s actual

name. For command line interactions, the end user sees and uses the command

line name. For example, the command com-show-chart would have a command

line name of ‘‘Show Chart’’. When defining a command using clim:define-

command (or the application’s command defining macro), you can have a com-

mand line name generated automatically.

The automatically generated command line name consists of the command’s name

with the hyphens replaced by spaces, and the words capitalized; furthermore, if

there is a prefix of "com-", the prefix is removed. For example, if the command

name is com-show-file, the command line name will be "Show File".

The define-editor-command macro, which would automatically be generated by

the above example fragment, is used to define a command for the editor applica-

tion. define-editor-command is used in the same way as clim:define-command.

However, rather than requiring that the programmer specify editor-command-

table as the command table in which to define the command, define-editor-

command will automatically use editor-command-table.

Through the appropriate use of the options to define-editor-command (the same

options as for clim:define-command), the programmer can provide the command

via any number of the above mentioned interaction styles. For example, you could

install the command in the editor application’s menu as well as specify a single

keystroke command accelerator for it.

Page 1374

This example defines a command whose command name is com-save-file. The

com-save-file command will appear in the application’s command menu, by the

name ‘‘Save File’’ (which is automatically generated from the command name

based on the same method as for command line names). The single keystroke con-

trol-S will also invoke the command.

(define-editor-command (com-save-file :menu t

 :keystroke (:s :control))

 ()

 ...)�

Here, a command line name of ‘‘Save File’’ is associated with the com-save-file

command. The user can then type "Save File" to the application’s interaction

pane to invoke the command.

(define-editor-command (com-save-file :name "Save File")

 ()

 ...)�

Since the command processor works by establishing an input context of presenta-

tion type clim:command and executing the resulting input, any displayed presenta-

tion can invoke a command so long as there is a translator defined which trans-

lates from the presentation type of the presentation to the presentation type

clim:command. By this mechanism, the programmer can associate a command

with a pointer gesture when applied to a displayed presentation. clim:define-

presentation-to-command-translator will create such an association.

clim:define-presentation-to-command-translator name (from-type command-name

command-table &key (:gesture ’:select) :tester :documentation :pointer-

documentation (:menu t) :priority (:echo t)) arglist &body body

Defines a presentation translator that translates a displayed presentation

into a command.

See the section "Making Commands From Presentations" for an example using

clim:define-presentation-to-command-translator.

Command Objects in CLIM

What is a command?�

A command is an object that represents a single user interaction. Each command

has a command name, which is a symbol. A command can also have arguments,

both positional and keyword arguments.

CLIM represents commands as command objects. The internal representation of a

command object is a cons of the command name and a list of the command’s argu-

ments and is therefore analogous to a Lisp expression. Functions are provided for

extracting the command name and the arguments list from a command object:

clim:command-name command

Given a command object command, returns the command name.

Page 1375

clim:command-arguments command

Given a command object command, returns the command’s arguments.

It is possible to represent a command for which some of the arguments have not

yet been specified. The value of the symbol clim:*unsupplied-argument-marker*

is used in place of any argument which has not yet been specified.

clim:*unsupplied-argument-marker*

The value of clim:*unsupplied-argument-marker* serves as a placehold-

er in a command object for required arguments which have not yet been

supplied.

clim:partial-command-p command

Returns t if the command object command is a partial command, other-

wise returns nil.

One can think of clim:define-command as defining templates for command ob-

jects. It defines a symbol as a command name and associates with it the presenta-

tion types corresponding to each of the command’s arguments.

clim:define-command name arguments &body body

Defines a command and characteristics of the command, including its

name, its arguments, and, as options: the command table in which it

should appear, its keystroke accelerator, its command-line name, and

whether or not (and how) to add this command to the menu associated

with the command table.

CLIM Command Tables

CLIM command tables are represented by instances of the CLOS class

clim:command-table. A command table serves to mediate between a command in-

put context, a set of commands and the interactions of the application’s user.

Command tables associate command names with command line names. Command

line names are used in the command line interaction style. They are the textual

representation of the command name when presented and accepted.

A command table can describe a menu from which users can choose commands. A

command table can support keystroke accelerators for invoking commands.

A command table can have a set of presentation translators and actions, defined by

clim:define-presentation-translator, clim:define-presentation-to-command-

translator, and clim:define-presentation-action. This allows the pointer to be

used to input commands, including command arguments.

We say that a command is present in a command table when it has been added to

the command table by being associated with some form of interaction. We say that

a command is accessible in a command table when it is present in the command ta-

ble or is present in any of the command tables from which the command table in-

herits.

Page 1376

clim:command-table

The class that represents command tables.

clim:command-table-name command-table

Returns the name of the command table command-table.

clim:command-table-inherit-from command-table

Returns a list of all of the command tables from which command-table

inherits.

clim:find-command-table name &key (:errorp t)

Returns the command table named by name.

clim:define-command-table name &key :inherit-from :menu :inherit-menu

Defines a new command table.

clim:make-command-table name &key :inherit-from :menu :inherit-menu (:errorp t)�

Creates a command table named name that inherits from :inherit-from

and has a menu specified by :menu.

A command table can inherit from other command tables. This allows larger sets

of commands to be built up through the combination of smaller sets. In this way, a

tree of command tables can be constructed. During command lookup, if a command

is not found in the application’s command table, then the command tables from

which that command table inherits are searched also. It is only when the entire

tree is exhausted that an error is signalled.

CLIM provides several command tables from which it is recommended that your

application’s command table inherit. See the section "CLIM’s Predefined Command

Tables" for a description of these command tables.

The macro clim:do-command-table-inheritance is provided as a facility for pro-

grammers to walk over a command table and the command tables it inherits from

in the proper precedence order.

clim:do-command-table-inheritance (command-table-var command-table) &body

body

Successively evaluates body with command-table-var bound first to the

command table command-table, and then to all of the command tables

from which command-table inherits.

These functions are provided for examining and altering the commands in a com-

mand table:

clim:add-command-to-command-table command-name command-table &key :name

:menu :keystroke (:errorp t)

Adds the command named by command-name to the command table com-

mand-table.

clim:remove-command-from-command-table command-name command-table &key

(:errorp t)

Removes the command named by command-name from the command ta-

ble command-table.

Page 1377

clim:command-present-in-command-table-p command-name command-table

Returns t if command-name is present in command-table.

clim:command-accessible-in-command-table-p command-name command-table

Returns t if command-name is accessible in command-table.

clim:map-over-command-table-commands function command-table &key (:inherited

t)

Applies function to all of the commands accessible in command-table.

CLIM’s Predefined Command Tables

CLIM provides these command tables:

clim:global-command-table

The ‘‘global’’ command table from which all command tables inherit.

clim:user-command-table

A command table reserved for user-defined commands.

clim:accept-values-pane

When you use an clim:accept-values pane in a clim:define-application-

frame, you must inherit from this command table.

It is recommended that an application’s command table inherit from clim:user-

command-table. clim:user-command-table inherits from clim:global-command-

table. If your application uses an :accept-values pane, then its command table

must inherit from the clim:accept-values-pane command table in order for it to

work properly.

Conditions Relating to CLIM Command Tables

Command table operations can signal these conditions:

clim:command-table-already-exists

This condition is signalled by clim:make-command-table when you try

to create a command table that already exists.

clim:command-table-not-found

This condition is signalled by functions such as clim:find-command-

table when the named command table cannot be found.

clim:command-not-present

A condition that is signalled when the command you are looking for is

not present in the command table.

clim:command-not-accessible

A condition that is signalled when the command you are looking for is

not accessible in the command table.

clim:command-already-present

A condition that is signalled when a command is already present in the

command table.

Page 1378

Styles of Interaction Supported by CLIM

CLIM supports four main styles of interaction:

• Mouse interaction via command menus.

• Mouse interaction via translators, including direct manipulation ("drag
and drop") interactions.

• Keyboard interaction using a command-line processor.

• Keyboard interaction using keystroke accelerators.�

See the section "Defining Commands the Easy Way" for a simple description of

how to use clim:define-command to associate a command with any of these inter-

action styles.

The following subsections describe these interaction styles.

CLIM’s Command Menu Interaction Style

Each command table may describe a menu consisting of an ordered sequence of

command menu items. The menu specifies a mapping from a menu name (the

name displayed in the menu) to either a command object or a submenu. The menu

of an application’s top-level command table may be presented in a window-system

specific way, for example, as a menu bar, or in a :menu application frame pane.

These menu items are typically defined using the :menu option to clim:define-

command (or the application’s command defining macro).

The following functions can be used to display a command menu in one of the

panes of an application frame, or to choose a command from a menu.

clim:display-command-table-menu command-table stream &key :max-width :max-

height :n-rows :n-columns :x-spacing :y-spacing (:cell-align-x ’:left) (:cell-

align-y ’:top) (:initial-spacing t) :row-wise :move-cursor

Displays the menu for command-table on stream.

clim:display-command-menu frame stream &key :command-table :max-width :max-

height :n-rows :n-columns (:cell-align-x ’:left) (:cell-align-y ’:top)

Displays the menu described by the command table associated with the

application frame frame onto stream. Disabled items in the menu will be

‘‘grayed out’’.

clim:menu-choose-command-from-command-table command-table &key (:associat-

ed-window (clim:frame-top-level-window clim:*application-frame*))

:text-style :label :cache (:unique-id clim:command-table) (:id-test #’eql)
:cache-value (:cache-test #’eql)
Displays a menu of all of the commands in command-table’s menu, and

waits for the user to choose one of the commands. The returned value is

a command object.

A number of lower level functions for manipulating command menus are also pro-

vided:

Page 1379

clim:add-menu-item-to-command-table command-table string type value &key :doc-

umentation (:after ’:end) :keystroke :text-style (:errorp t)

Adds a command menu item to command-table’s menu.

clim:remove-menu-item-from-command-table command-table string &key (:errorp

t)

Removes the item named by string from command-table’s menu.

clim:map-over-command-table-menu-items function command-table

Applies function to all of the menu items in command-table’s menu.

clim:find-menu-item menu-name command-table &key (:errorp t)

Given a menu-name and a command-table, return two values, the com-

mand menu item and the command table in which it was found.

clim:command-menu-item-type item

Returns the type of the command menu item item.

clim:command-menu-item-value item

Returns the value of the command menu item item. For example, if the

type of item is :command, this will return a command or a command

name.

clim:command-menu-item-options item

Returns a property list of the options for the command menu item item.

clim:command-enabled command-name frame &optional command-table

Returns t if the command named by command-name is presently enabled

in command-table for the frame frame, otherwise returns nil. You can

use setf on clim:command-enabled in order to enable or disable a com-

mand.

clim:command-menu-enabled command-table frame

Returns t if the command table command-table is presently enabled in

the command menu for the frame frame, otherwise returns nil. This

function is like clim:command-enabled, except that it operates only on

the :menu items in a command table’s menu for a particular frame.

Mouse Interaction Via Presentation Translators

A command table maintains a database of presentation translators. A presentation

translator translates from its from presentation type to its to presentation type when

its associated pointer gesture (that is, clicking a mouse button) is input. A presen-

tation translator is triggered when its to presentation type matches the input con-

text and its from presentation type matches the presentation type of the displayed

presentation (the appearance of one of your application’s objects on the display) on

which the gesture is performed.

clim:define-presentation-to-command-translator can be used to associate a pre-

sentation and a gesture with a command to be performed on the object which the

presentation represents.

Page 1380

Translators can also be used to translate from an object of one type to an object of

another type based on context. For example, consider an computer aided design

system for electrical circuits. You might have a translator which translates from a

resistor object to the numeric value of its resistance. When asked to enter a resis-

tance (as an argument to a command or for some other query), the user could

click on the presentation of a resistor to enter its resistance.

CLIM also supports a drag and drop interaction style via a special kind of presen-

tation translators that takes into account both a ‘‘source’’ object and a ‘‘destina-
tion’’ object. For example, an interaction that involves dragging a pathname object

over a trashcan object might result in a command that causes the specified file to

be deleted. You can use clim:define-drag-and-drop-translator to define such

translators.

For a discussion of the facilities supporting the mouse translator interaction style,

see the section "Presentation Types in CLIM".

CLIM’s Command Line Interaction Style

One interaction style supported by CLIM is the command line style of interaction

provided on most conventional operating systems. A command prompt is displayed

in the application’s :interactor pane. The user enters a command by typing its

command line name, followed by its arguments. What the user types (or enters via

the pointer) is echoed to the interactor window. When the user has finished typing

the command, it is executed.

In CLIM, this interaction style is augmented by the input editing facility which al-

lows the user to correct typing mistakes (see the section "Input Editing and Built-

in Keystroke Commands in CLIM") and by the prompting and help facilities, which

provide a description of the command and the expected arguments. Command entry

is also facilitated by the presentation substrate which allows the input of objects

matching the input context, both for command names and command arguments.

See the section "Presentation Types in CLIM" for a detailed description.

clim:find-command-from-command-line-name name command-table &key (:errorp

t)

Given a command-line name name and a command table, this function re-

turns two values, the command name and the command table in which

the command was found.

clim:command-line-name-for-command command-name command-table &key (:er-

rorp t)

Returns the command-line name for command-name as it is installed in

command-table.

clim:map-over-command-table-names function command-table &key (:inherited t)

Applies function to all of the command-line names accessible in com-

mand-table.

Page 1381

CLIM’s Keystroke Interaction Style

Each command table may have a mapping from keystroke accelerators to either

command objects or submenus. This mapping is similar to that for menu items as

the programmer might provide a single keystroke equivalent to a command menu

item.

Since the kinds of characters that can be typed in vary widely from one platform

to another, you should be careful in choosing keystroke accelerators. Some sort of

per-platform conditionalization is to be expected.

Keystroke accelerators will typically be associated with commands through the use

of the :keystroke option to clim:define-command (or the application’s command

defining macro).

clim:add-keystroke-to-command-table command-table keystroke type value &key

:documentation (:errorp t)

Adds a keystroke accelerator to the command-table.

clim:remove-keystroke-from-command-table command-table keystroke &key (:er-

rorp t)

Removes the item named by keystroke from command-table’s accelerator

table. command-table may be either a command table or a symbol that

names a command table.

clim:map-over-command-table-keystrokes function command-table

Applies function to all of the keystroke accelerators in command-table’s

accelerator table.

clim:find-keystroke-item keystroke command-table &key :test (:errorp t)

Given a keystroke accelerator keystroke and a command-table, returns two

values, the command menu item associated with the keystroke and the

command table in which it was found.

clim:lookup-keystroke-item keystroke command-table &key :test

Like clim:find-keystroke-item, except that it descends into sub-menus in

order to find a keystroke accelerator matching keystroke.

clim:lookup-keystroke-command-item keystroke command-table &key :test (:numer-

ic-argument 1)

Like clim:lookup-keystroke-item, except that it searches only for en-

abled commands.

Because of the potential ambiguity between keystroke accelerators and normal

typed input, the default CLIM command loop does not handle keyboard accelera-

tors.

In order to use keystroke accelerators, your application will need to specialize the

clim:read-frame-command generic function. The default method for clim:read-

frame-command just calls clim:read-command. You can specialize it to call

clim:read-command-using-keystrokes within the context of clim:with-command-

table-keystrokes:

Page 1382

(defmethod clim:read-frame-command ((frame my-application) &key)

 (let ((command-table (clim:find-command-table ’my-command-table)))

 (clim:with-command-table-keystrokes (keystrokes command-table)

 (clim:read-command-using-keystrokes command-table keystrokes))))�

clim:with-command-table-keystrokes (keystroke-var command-table) &body body

Binds keystroke-var to a list that contains all of the keystroke accelera-

tors in the command table command-table, and then evaluates body in

that context.

clim:read-command-using-keystrokes command-table keystrokes &key (:stream

query-io) (:command-parser clim:*command-parser*) (:command-

unparser clim:*command-unparser*) (:partial-command-parser

clim:*partial-command-parser*)

Reads a command from the user via a command line, the pointer, or typ-

ing a single keystroke.

If your application also employs the command line interaction style there is the po-

tential for ambiguity as to whether a character is intended as command line input,

a keystroke accelerator, or an input editing command (see the section "Input Edit-

ing and Built-in Keystroke Commands in CLIM"). For this reason, it is recommend-

ed that you choose keystroke accelerators that do not conflict with the standard

printed character set (which might be used for command names and the textual

representations of arguments) or with the input editor. CLIM will make some at-

tempt to resolve such conflicts if they arise. A keystroke accelerator can only be

invoked if there is no other pending command line input. If there is pending input,

keystroke accelerators will not be considered and the keystroke will be interpreted

as input or as an input editor command. If there is no pending input, the

keystroke accelerator behavior will take precedence over that of the input editor.

The way CLIM processes keystroke accelerators is that clim:stream-read-gesture

checks to see if keystroke is one of the gestures in clim:*accelerator-gestures*. If

it is, CLIM signals a condition of type clim:accelerator-gesture. If you need more

control over keystroke accelerators than is provided by clim:read-command-using-

keystrokes, you can use the following:

clim:*accelerator-gestures*

A list of gestures that CLIM will treat as keystroke accelerators when

reading commands.

clim:accelerator-gesture

CLIM signals an clim:accelerator-gesture condition whenever it reads

an accelerator gesture from the user.

clim:accelerator-gesture-event accelerator-gesture

Returns the event object that caused the accelerator gesture condition,

accelerator-gesture, to be signalled.

clim:accelerator-gesture-numeric-argument accelerator-gesture

Returns the numeric argument associated with the accelerator gesture

condition, accelerator-gesture.

Page 1383

For a description of the CLIM command processor, see the section "The CLIM

Command Processor".

Command Related Presentation Types

CLIM provides several presentation types pertaining to commands:

clim:command &key :command-table

The presentation type used to represent a CLIM command processor

command and its arguments.

clim:command-name &key :command-table

The presentation type used to represent the name of a CLIM command

processor command in the command table :command-table.

clim:command-or-form &key :command-table

The presentation type used to represent either a Lisp form or a CLIM

command processor command and its arguments.

The CLIM Command Processor

This section describes the default behavior of the CLIM command processor.

The command loop of a CLIM application is performed by the application’s top-

level function (see the section "Defining Application Frames in CLIM"). By default,

this is clim:default-frame-top-level. After performing some initializations,

clim:default-frame-top-level enters an infinite loop, reading and executing com-

mands. It invokes the generic function clim:read-frame-command to read a com-

mand which is then passed to the generic function clim:execute-frame-command

for execution. The specialization of these generic functions is the simplest way to

modify the command loop for your application. Other techniques would involve re-

placing clim:default-frame-top-level with your own top level function.

clim:read-frame-command invokes the command parser by establishing an input

context of clim:command. The input editor keeps track of the user’s input, both

from the keyboard and the pointer. Each of the command’s arguments is parsed by

establishing an input context of the arguments presentation type as described in

the command’s definition. Presentation translators provide the means by which the

pointer can be used to enter command names and arguments using the pointer.

clim:read-command command-table &key (:stream *query-io*) (:command-parser

clim:*command-parser*) (:command-unparser

clim:*command-unparser*) (:partial-command-parser clim:*partial-

command-parser*) :use-keystrokes

Reads a command. This function is not normally called by programmers.

clim:read-frame-command frame &key :stream

clim:read-frame-command reads a command from the user on the

stream :stream, and returns the command object. frame is an application

frame. You can specialize this generic function for your own application

Page 1384

frames, for example, if you want to have your application be able to read

commands using keystroke accelerators.

clim:execute-frame-command frame command

clim:execute-frame-command executes the command command on behalf

of the application frame frame. You can specialize this function if you

want to change the behavior associated with the execution of commands.

An application can control which commands are enabled and which are disabled on

an individual basis. Use setf on clim:command-enabled to control this mechanism.

The user is not allowed to enter a disabled command via any interaction style.

clim:command-enabled command-name frame &optional command-table

Returns t if the command named by command-name is presently enabled

in command-table for the frame frame, otherwise returns nil. You can

use setf on clim:command-enabled in order to enable or disable a com-

mand.

The special variable clim:*command-dispatchers* controls the behavior of the

clim:command-or-form presentation type.

clim:*command-dispatchers*

This is a list of characters that indicate that CLIM should read a com-

mand when CLIM is accepting input of type clim:command-or-form.

Menus and Dialogs in CLIM

Concepts of Menus and Dialogs in CLIM

CLIM provides three powerful menu interaction routines for allowing user interfac-

ing through pop-up menus and dialogs, and menus and dialogs embedded in an ap-

plication window:

• clim:menu-choose is a straightforward menu generator that provides a quick

way to construct menus. You can call it with a list of menu items. For a com-

plete definition of menu item, see the function clim:menu-choose.

• clim:menu-choose-from-drawer is a lower level routine that allows the user

much more control in specifying the appearance and layout of a menu. You can

call it with a window and a drawing function. Use this function for more ad-

vanced, customized menus.

• clim:accepting-values provides the ability to build a dialog. You can specify sev-

eral items that can be individually selected or modified within the dialog before

dismissing it. It differs from the ‘Select One’ style of clim:menu-choose and

clim:menu-choose-from-drawer.�

Page 1385

Operators for Dealing with Menus and Dialogs in CLIM

clim:menu-choose items &rest keys &key :associated-window :text-style :foreground

:background :default-item :label :scroll-bars :printer :presentation-type

:cache :unique-id :id-test :cache-value :cache-test :max-width :max-height :n-

rows :n-columns :x-spacing :y-spacing :row-wise :cell-align-x :cell-align-y :x-

position :y-position :pointer-documentation :menu-type

Displays a menu with the choices in item-list. It returns three values:

the value of the chosen item, the item itself, and the gesture that select-

ed it. If possible, CLIM will use the menu facilities provided by the host

window system when you use clim:menu-choose.

clim:menu-choose-from-drawer menu type drawer &key :x-position :y-position

:cache :unique-id (:id-test #’equal) (:cache-value t) (:cache-test #’eql) :leave-

menu-visible :default-presentation

The low-level routine used by CLIM for displaying menus.

clim:draw-standard-menu menu presentation-type items default-item &key (:item-

printer #’clim:print-menu-item) :max-width :max-height :n-rows :n-

columns :x-spacing :y-spacing :row-wise (:cell-align-x ’:left) (:cell-align-y

’:top)

The function used by CLIM to draw the contents of a menu, unless the

current frame manager determines that host window toolkit should be

used to draw the menu instead.

clim:print-menu-item menu-item &optional (stream *standard-output*)

Given a menu item menu-item, display it on the stream stream.

clim:with-menu (menu &optional associated-window &rest options &key :label

:scroll-bars) &body body

Binds menu to a temporary window, exposes the window on the same

screen as the associated-window, runs the body, and de-exposes the win-

dow.

clim:*abort-menus-when-buried*

Indicates whether or not CLIM should abort out of menus when they are

‘‘buried’’.

clim:accepting-values (&optional stream &key :frame-class :command-table :own-

window :exit-boxes :align-prompts :initially-select-query-identifier :modify-

initial-query :resynchronize-every-pass (:check-overlapping t) :label :x-

position :y-position :width :height :scroll-bars :text-style :foreground :back-

ground) &body body

A macro that builds a dialog for user interaction based on calls to

clim:accept within its body.

clim:accept-values-command-button ((&optional stream &key :documentation

:query-identifier (:cache-value t) (:cache-test #’eql) :view :resynchronize)

prompt &body body)

Displays prompt on stream and creates an area (the ‘‘button’’) which,

when the pointer is clicked within it, causes body to be evaluated. This

function can only be used within the clim:accepting-values form.

Page 1386

Examples of Menus and Dialogs in CLIM

Example of using clim:accepting-values�

This example sets up a dialog in the CLIM window stream that displays the cur-

rent Month, Date, Hour and Minute (as obtained by a call to get-universal-time)

and allows the user to modify those values. The user can select values to change

by using the mouse to select values, typing in new values, and pressing RETURN.

When done, the user selects ‘‘End’’ to accept the new values, or ‘‘Abort’’ to termi-

nate without changes.

(defun reset-clock (stream)

 (multiple-value-bind (second minute hour day month)

 (decode-universal-time (get-universal-time))

 (declare (ignore second))

 (format stream "Enter the time~%")

 (conditions:restart-case

 (progn

 (clim:accepting-values (stream)

 (setq month (clim:accept ’integer :stream stream

 :default month :prompt "Month"))

 (terpri stream)

 (setq day (clim:accept ’integer :stream stream

 :default day :prompt "Day"))

 (terpri stream)

 (setq hour (clim:accept ’integer :stream stream

 :default hour :prompt "Hour"))

 (terpri stream)

 (setq minute (clim:accept ’integer :stream stream

 :default minute :prompt "Minute")))

 ;; This could be code to reset the time, but instead

 ;; we’re just printing it out

 (format t "~%New values: Month: ~D, Day: ~D, Time: ~D:~2,’0D."

 month day hour minute))

 (abort () (format t "~&Time not set")))))�

In CLIM, calls to clim:accept do not automatically insert newlines. If you want to

put each query on its own line of the dialog, use terpri between the calls to

clim:accept.

Example of using clim:accept-values-command-button�

Here is the reset-clock example with the addition of a command button that will

set the number of seconds to zero.

Page 1387

(defun reset-clock (stream)

 (multiple-value-bind (second minute hour day month)

 (decode-universal-time (get-universal-time))

 (format stream "Enter the time~%")

 (conditions:restart-case

 (progn

 (clim:accepting-values (stream)

 (setq month (clim:accept ’integer :stream stream

 :default month :prompt "Month"))

 (terpri stream)

 (setq day (clim:accept ’integer :stream stream

 :default day :prompt "Day"))

 (terpri stream)

 (setq hour (clim:accept ’integer :stream stream

 :default hour :prompt "Hour"))

 (terpri stream)

 (setq minute (clim:accept ’integer :stream stream

 :default minute :prompt "Minute"))

 (terpri stream)

 (clim:accept-values-command-button (stream) "Zero seconds"

 (setq second 0)))

 ;; this could be code to reset the time, but

 ;; instead we’re just printing it out

 (format t "~%New values: Month: ~D, Day: ~D, Time: ~D:~2,’0D:~2,’0D."

 month day hour minute second))

 (abort () (format t "~&Time not set")))))�

Using :resynchronize-every-pass in clim:accepting-values�

It often happens that the programmer wants to present a dialog where the individ-

ual fields of the dialog depend on one another. For example, consider a spread-

sheet with seven columns representing the days of a week. Each column is headed

with that day’s date. If the user inputs the date of any single day, the other dates

can be computed from that single piece of input.

If you build CLIM dialogs using clim:accepting-values you can achieve this effect

by using the :resynchronize-every-pass argument to clim:accepting-values in

conjunction with the :default argument to clim:accept. There are three points to

remember:

• The entire body of the clim:accepting-values runs each time the user modifies

any field. The body can be made to run an extra time by specifying

:resynchronize-every-pass t. Code in the body may be used to enforce con-

straints among values.

• If the :default argument to clim:accept is used, then every time that call to

clim:accept is run, it will pick up the new value of the default.

• Inside clim:accepting-values, clim:accept returns a third value, a boolean that

indicates whether the returned value is the result of new input by the user, or

is just the previously supplied default.

Page 1388

In this example we show a dialog that accepts two real numbers, delimiting an in-

terval on the real line. The two values are labelled ‘‘Min’’ and ‘‘Max’’, but we

wish to allow the user to supply a ‘‘Min’’ that is greater than the ‘‘Max’’, and au-

tomatically exchange the values rather than signalling an error.

(defun accepting-interval (&key (min -1.0) (max 1.0) (stream *query-io*))

 (clim:accepting-values (stream :resynchronize-every-pass t)

 (fresh-line stream)

 (setq min (clim:accept ’real :default min :prompt "Min"

 :stream stream))

 (fresh-line stream)

 (setq max (clim:accept ’real :default max :prompt "Max"

 :stream stream))

 (when (< max min) (rotatef min max)))

 (values min max))�

(You may want to try this example after dropping the :resynchronize-every-pass

and see the behavior. Without :resynchronize-every-pass, the constraint is still

enforced, but the display lags behind the values and doesn’t reflect the updated

values immediately.)

Use of the third value from clim:accept in clim:accepting-values�

As a second example, consider a dialog that accepts four real numbers that delimit

a rectangular region in the plane, only we wish to enforce a constraint that the re-

gion be a square. We allow the user to input any of ‘‘Xmin’’, ‘‘Xmax’’, ‘‘Ymin’’ or

‘‘Ymax’’, but enforce the constraint that

Xmax - Xmin = Ymax - Ymin�

This constraint is a little harder to enforce. Presumably a user would be very dis-

turbed if a value that he or she had just input was changed. So for this example

we follow a policy that says if the user changed an X value, then only change Y

values to enforce the constraint, and vice versa. When changing values we pre-

serve the center of the interval. (This policy is somewhat arbitrary and only for

the purposes of this example.) We use the third returned value from clim:accept

to control the constraint enforcement.

Page 1389

(defun accepting-square (&key (xmin -1.0) (xmax 1.0) (ymin -1.0) (ymax 1.0)

 (stream *query-io*))

 (let (xmin-changed xmax-changed ymin-changed ymax-changed ptype)

 (clim:accepting-values (stream :resynchronize-every-pass t)

 (fresh-line stream)

 (multiple-value-setq (xmin ptype xmin-changed)

 (clim:accept ’real :default xmin :prompt "Xmin"

 :stream stream))

 (fresh-line stream)

 (multiple-value-setq (xmax ptype xmax-changed)

 (clim:accept ’real :default xmax :prompt "Xmax"

 :stream stream))

 (fresh-line stream)

 (multiple-value-setq (ymin ptype ymin-changed)

 (clim:accept ’real :default ymin :prompt "Ymin"

 :stream stream))

 (fresh-line stream)

 (multiple-value-setq (ymax ptype ymax-changed)

 (clim:accept ’real :default ymax :prompt "Ymax"

 :stream stream))

 (cond ((or xmin-changed xmax-changed)

 (let ((y-center (/ (+ ymax ymin) 2.0))

 (x-half-width (/ (- xmax xmin) 2.0)))

 (setq ymin (- y-center x-half-width)

 ymax (+ y-center x-half-width)))

 (setq xmin-changed nil xmax-changed nil))

 ((or ymin-changed ymax-changed)

 (let ((x-center (/ (+ xmax xmin) 2.0))

 (y-half-width (/ (- ymax ymin) 2.0)))

 (setq xmin (- x-center y-half-width)

 xmax (+ x-center y-half-width)))

 (setq ymin-changed nil ymax-changed nil)))))

 (values xmin xmax ymin ymax))�

Example of a dialog that uses gadgets�

Try the following example to see a dialog with gadgets in it.

Page 1390

(defun gadget-dialog-test (&optional (stream *standard-input*))

 (let ((dest :file)

 (name "")

 (copies 0)

 (strip nil))

 (clim:accepting-values (stream :align-prompts t)

 (setq dest (clim:accept ’(member :file :printer :window)

 :default dest :prompt "Destination type"

 :stream stream :view clim:+gadget-dialog-view+))

 (setq name (clim:accept ’string

 :default name :prompt "Destination name"

 :stream stream :view clim:+text-field-view+))

 (setq copies (clim:accept ’integer

 :default copies :prompt "Number of copies"

 :stream stream :view clim:+slider-view+))

 (setq strip (clim:accept ’boolean

 :default strip :prompt "Strip text styles"

 :stream stream :view clim:+gadget-dialog-view+)))

 (values dest name strip)))�

Examples of using clim:menu-choose�

These examples show how to use clim:menu-choose.

The simplest use of clim:menu-choose. If each item is not a list, the entire item

will be printed and the entire item is the value to be returned too.

(clim:menu-choose ’("One" "Two" "Seventeen"))�

If you want to return a value that is different from what was printed, the simplest

method is as below. Each item is a list; the first element is what will be printed,

the remainder of the list is treated as a plist the :value property will be re-

turned. (Note that nil is returned if you click on ‘‘Seventeen’’ since it has no

:value.)

(clim:menu-choose ’(("One" :value 1 :documentation "the loneliest number")

 ("Two" :value 2 :documentation "for tea")

 ("Seventeen" :documentation "what can be said about this?")))�

The list of items you pass to clim:menu-choose might also serve some other pur-

pose in your application. In that case, it might not be appropriate to put the print-

ed appearance in the first element. You can supply a :printer function which will

be called on the item to produce its printed appearance.

(clim:menu-choose ’(1 2 17)

 :printer #’(lambda (item stream)

 (format stream "~R" item)))�

The items in the menu needn’t be printed textually:

Page 1391

(clim:menu-choose ’(circle square triangle)

 :printer #’(lambda (item stream)

 (case item

 (circle (clim:draw-circle* stream 0 0 10))

 (square (clim:draw-polygon*

 stream ’(-8 -8 -8 8 8 8 8 -8)))

 (triangle (clim:draw-polygon*

 stream ’(10 8 0 -10 -10 8))))))�

The :items option of the list form of menu item can be used to describe a set of

hierarchical menus.

(clim:menu-choose

 ’(("Class: Osteichthyes"

 :documentation "Bony fishes"

 :style (nil :italic nil))

 ("Class: Chondrichthyes"

 :documentation "Cartilagenous fishes"

 :style (nil :italic nil)

 :items (("Order: Squaliformes" :documentation "Sharks")

 ("Order: Rajiformes" :documentation "Rays")))

 ("Class: Mammalia"

 :documentation "Mammals"

 :style (nil :italic nil)

 :items (("Order Rodentia"

 :items ("Family Sciuridae"

 "Family Muridae"

 "Family Cricetidae"

 ("..." :value nil)))

 ("Order Carnivora"

 :items ("Family: Felidae"

 "Family: Canidae"

 "Family: Ursidae"

 ("..." :value nil)))

 ("..." :value nil)))

 ("..." :value nil)))�

Examples of using clim:menu-choose-from-drawer�

This example displays in the window *page-window* the choices ‘‘One’’ through

‘‘Ten’’ in bold type face. When the user selects one, the string is returned along

with the gesture that selected it.

Page 1392

(clim:menu-choose-from-drawer *page-window* ’string

 #’(lambda (stream type)

 (clim:with-text-face (:stream bold)

(dotimes (count 10)

 (clim:present

 (string-capitalize

 (format nil "~R" (1+ count)))

 type :stream stream)

 (terpri stream)))))�

This example shows how you can use clim:menu-choose-from-drawer with

clim:with-menu to create a temporary menu:

(defun choose-compass-direction ()

 (labels ((draw-compass-point (stream ptype symbol x y)

 (clim:with-output-as-presentation (stream symbol ptype)

 (clim:draw-string* stream (symbol-name symbol)

 x y

 :align-x :center

 :align-y :center

 :text-style

 ’(:sans-serif :roman :large))))�

 (draw-compass (stream ptype)

 (clim:draw-line* stream 0 25 0 -25

 :line-thickness 2)

 (clim:draw-line* stream 25 0 -25 0

 :line-thickness 2)

 (loop for point in ’((n 0 -30) (s 0 30)

 (e 30 0) (w -30 0))

 do (apply #’draw-compass-point

 stream ptype point))))�

 (clim:with-menu (menu)

 (clim:menu-choose-from-drawer

 menu ’clim:menu-item #’draw-compass))))�

Output Recording in CLIM

Concepts of CLIM Output Recording

Output recording is a fundamental part of CLIM. It provides the basis for scrolling

windows, for formatted output of tables and graphs, for the ability of presentations

to retain their semantics, and for incremental redisplay.

The output recording mechanism is enabled by default. Unless you turn it off, all

output that occurs on a stream is captured and saved by the output recording

mechanism. The output is captured in output records. The top-level output record,

which contains all the output done on that stream, is called the history of the

stream.

Page 1393

An output record is:

• an object that contains more output records, or

• a displayed output record (that is, a record that corresponds directly to

something drawn on the display device).

Since output records can contain other output records, we can view the organiza-

tion of output records as a tree structure:

History

�

Each rectangle is an output record. The top-level record is an output record called

a history. Each output record that is a leaf of the tree is called a displayed output

record. The intermediate output records are both output records and children of

their immediate superior.

CLIM automatically segments the output into output records. The result of each

atomic drawing operation is put into a new output record. Each presentation is put

into a new output record. (Strings are treated differently; CLIM concatenates

strings into one output record until a newline is encountered, which begins a new

output record.)

One use of an output record is to replay it; to produce the output again. Scrolling

is implemented by replaying the appropriate output records. When using the tech-

niques of incremental redisplay, your code determines which portions of the display

have changed, then the appropriate output records are updated to the new state,

and the output records are replayed.

CLIM’s table and graph formatters use output records. For example, your code us-

es clim:formatting-table, and formats output into rows and cells; this output is

sent to a particular stream. Invisibly to you, CLIM temporarily binds this stream

to an intermediate stream, and runs a constraint engine over the code to deter-

mine the layout of the table. The result is a set of output records which contain

the table, its rows, and its cells. Finally, CLIM replays these output records to

your original stream.

Presentations are a special case of output records that remember the object and

the type of object associated with the output.

The concept of the tree structure organization of output records is illustrated by

the organization of output records of a formatted table. The table itself is stored

in an output record; each row has its own output record; each cell has its own out-

put record.

Page 1394

Table

Row Row

Cell Cell Cell Cell Cell Cell�

CLIM Operators for Output Recording

The purpose of output recording is to capture the output done by an application

onto a stream. The objects used to capture output are called output records and

displayed output records. An output record is an object that stores other output

records. Displayed output records are the leaf objects that correspond to something

visible on a display device. The following classes and predicates correspond to the

objects used in output recording.

clim:output-record

The protocol class that is used to indicate that an object is an output

record, that is, a CLIM object that contains other output records.

clim:output-record-p object

Returns t if and only object is of type clim:output-record.

clim:displayed-output-record

The protocol class that is used to indicate that an object is a displayed

output record, that is, a CLIM object that represents a visible piece of

output on an output device.

clim:displayed-output-record-p object

Returns t if and only object is of type clim:displayed-output-record.

The following functions and macros can be used to create and operate on CLIM

output records.

clim:replay record stream &optional region

Replays the output record record on stream.

clim:replay-output-record record stream &optional region x-offset y-offset

Replays all of the output captured by the output record record on stream.

If region is not nil, then record is replayed if and only if it overlaps re-

gion.

clim:with-output-recording-options (stream &key :draw :record) &body body

Used to disable output recording and/or drawing on the given stream,

within the extent of body.

clim:with-new-output-record (stream &optional record-type record &rest initargs)

&body body

Creates a new output record, installs it in the output history of the

stream, and then evaluates the body.

Page 1395

clim:with-output-to-output-record (stream &optional record-type record &rest ini-

targs) &body body

This is similar to clim:with-new-output-record except that the new out-

put record is not inserted into the output record hierarchy.

clim:output-record-parent record

Returns the output record that it the parent of record. If record has no

parent, clim:output-record-parent will return nil.

clim:output-record-children record

Returns a sequence of output records that are the children of the output

record record. If record has no children, this will return nil.

clim:erase-output-record record stream &optional (errorp t)

Erases the display of the output record record from stream, and removes

the record from stream’s output history.

clim:add-output-record child record

Adds the output record child to the output record record.

clim:delete-output-record child record &optional errorp

Removes the child output record child from the output record record.

clim:clear-output-record record

Removes all of the child output records from the output record record.

clim:recompute-extent-for-new-child record child

CLIM calls this function whenever a new child is added to an output

record. It updates the bounding rectangle of record to be large enough to

completely contain the new child output record child.

clim:recompute-extent-for-changed-child record child old-left old-top old-right old-

bottom

CLIM calls this function whenever the bounding rectangle of one of the

children of a record has been changed. It updates the bounding rectangle

of record to be large enough to completely contain the new bounding

rectangle of the child output record child.

clim:tree-recompute-extent record

You can use this function whenever the bounding rectangles of a number

of children of a record have been changed, such as happens during table

and graph formatting. clim:tree-recompute-extent computes the bound-

ing rectangle large enough to contain all of the children of record, ad-

justs the bounding rectangle of record accordingly, and then calls

clim:recompute-extent-for-changed-child on record.

The following functions can be used to apply a function to all of the children of an

output record.

clim:map-over-output-records function record &optional (x-offset 0) (y-offset 0)

&rest continuation-args

Applies function to all of the child output records in the output record

record. Normally, function is called with a single argument, an output

Page 1396

record. If continuation-args are supplied, they are passed to function as

well.

clim:map-over-output-records-containing-position function record x y &optional

x-offset y-offset &rest continuation-args

Applies function to all of the child output records in the output record

record that overlap the point (x,y). Normally, function is called with a

single argument, an output record. If continuation-args are supplied, they

are passed to function as well.

clim:map-over-output-records-overlapping-region function record region &optional

x-offset y-offset &rest continuation-args

Applies function to all of the child output records in the output record

record that overlap the region region. Normally, function is called with a

single argument, an output record. If continuation-args are supplied, they

are passed to function as well.

The following functions control pointer sensitivity and highlighting for output

records.

clim:output-record-refined-position-test record x y

CLIM uses clim:output-record-refined-position-test to definitively deter-

mine that the point (x,y) is contained within the output record record.

clim:highlight-output-record record stream state

CLIM calls this method in order to draw highlighting for the output

record record on stream. state is either :highlight (meaning to draw the

highlighting) or :unhighlight (meaning to erase the highlighting).

In the present implementation of CLIM, the coordinates of output records are

maintained relative to the coordinates of the output record’s parent. Therefore, you

must maintain the correct offsets while recursively mapping over output records,

as the following example shows.

Page 1397

(defun describe-record (record &optional region)

 (labels ((describe (record x-offset y-offset)

 (format t "~&~S: " record)

 (clim:with-bounding-rectangle* (left top right bottom) record

 (incf left x-offset)

 (incf top y-offset)

 (incf right x-offset)

 (incf bottom y-offset)

 (format t "~& (~D,~D):(~D,~D)" left top right bottom)

 (multiple-value-bind (xoff yoff)

 (clim:output-record-position record)

 (clim:map-over-output-records-overlapping-region

 record region #’describe

 (- x-offset) (- y-offset)

 (+ x-offset xoff) (+ y-offset yoff))))))

 (declare (dynamic-extent #’describe))

 (describe record 0 0)))�

The relevant functions for locating an output record are:

clim:output-record-position record

Returns the X and Y position of record as two real numbers. The posi-

tion is relative to the output record’s parent, where (0,0) is the upper-

left corner of the parent output record.

clim:output-record-set-position record x y

Changes the position of the output record record to the new position x

and y.

clim:convert-from-relative-to-absolute-coordinates stream output-record

Returns the X and Y offsets that map the parent-relative coordinates of

an output record to ‘‘absolute’’ coordinates.

clim:convert-from-absolute-to-relative-coordinates stream output-record

Returns the X and Y offsets that map the ‘‘absolute’’ coordinates of an

output record to parent-relative coordinates.

clim:translate-coordinates x-delta y-delta &body coordinate-pairs

Translates each of the X and Y coordinate pairs in coordinate-pairs by

x-delta and y-delta.

The following functions can be used to operate on output recording streams.

clim:output-recording-stream-p object

Returns t if and only if object is an output recording stream.

clim:stream-output-history stream

Returns the top level output record for the stream stream.

clim:stream-replay stream &optional region

Replays all of the output records in stream’s output history that overlap

the region region. If region is nil, all of the output records are replayed.

Page 1398

clim:stream-drawing-p stream

Returns t if and only if drawing is enabled on the output recording

stream stream. You can use setf on this to enable or disable drawing on

the stream, or you can use the :draw option to clim:with-output-

recording-options.

clim:stream-recording-p stream

Returns t if and only if output recording is enabled on the output

recording stream stream. You can use setf on this to enable or disable

output recording on the stream, or you can use the :record option to

clim:with-output-recording-options.

clim:stream-add-output-record stream record

Adds the new output record record to stream’s current output record

(that is, clim:stream-current-output-record).

clim:stream-current-output-record stream

The current ‘‘open’’ output record for the output recording stream

stream, that is, the one to which clim:stream-add-output-record will add

a new child record.

clim:copy-textual-output-history window stream &optional region record

Given a window window that supports output recording, this function

finds all of the textual output records that overlap the region region (or

all of the textual output records is region is not supplied), and outputs

that text to stream.

Bounding Rectangles in CLIM

Concepts of Bounding Rectangles

Every bounded region has a derived bounding rectangle, which is a rectangular re-

gion whose sides are parallel to the coordinate axes. The bounding rectangle for a

region is the smallest rectangle that contains every point in the region, and may

contain additional points as well. Unbounded regions do not have a bounding rect-

angle.

The bounding rectangle for an output record may have a different size depending

on the display device on which the output record is drawn. Consider the case of

drawing text on different output devices; the font chosen for a particular text style

may vary considerably in size from one device to another.

Bounding rectangles can be used for a variety of purposes. For example, repainting

of windows is driven from bounding rectangles. clim:formatting-table and

clim:format-graph-from-root run their constraint engines on bounding rectangles.

Bounding rectangles are also used internally by CLIM to achieve greater efficien-

cy. For instance, hit detection is done by initially seeing if a point is inside the

bounding rectangle.

Page 1399

For output records that establish a new coordinate system (for example, records

created by clim:formatting-row or clim:formatting-cell), the bounding rectangle

of that record plays an additional important role: it establishes the coordinate sys-

tem to which all inferior output records refer. The origin of the coordinate system

in which the inferior records reside is the top left corner of the superior’s bound-

ing rectangle.

CLIM Operators for Bounding Rectangles

clim:with-bounding-rectangle* (left top right bottom) region &body body

Binds left, top, right, and bottom to the edges of the bounding rectangle

of region, and then evaluates body in that context.

clim:bounding-rectangle* region

Returns the bounding rectangle of region as four real numbers that spec-

ify the left, top, right, and bottom edges of the bounding rectangle.

clim:bounding-rectangle region

Returns a new bounding rectangle for region as a clim:standard-

bounding-rectangle object.

clim:make-bounding-rectangle x1 y1 x2 y2

Makes an object of class clim:bounding-rectangle whose edges are par-

allel to the coordinate axes. One corner is at (left,top) and the opposite

corner is at (right,bottom).

clim:standard-bounding-rectangle

The standard instantiable class for bounding rectangles in CLIM.

clim:bounding-rectangle-left region

Returns the coordinate of the left edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-top region

Returns the coordinate of the top edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-right region

Returns the coordinate of the right edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-bottom region

Returns the coordinate of the bottom edge of the bounding rectangle of

region.

clim:bounding-rectangle-min-x region

Returns the coordinate of the left edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-min-y region

Returns the coordinate of the top edge of the bounding rectangle of re-

gion.

Page 1400

clim:bounding-rectangle-max-x region

Returns the coordinate of the right edge of the bounding rectangle of re-

gion.

clim:bounding-rectangle-max-y region

Returns the coordinate of the bottom edge of the bounding rectangle of

region.

clim:bounding-rectangle-position region

Returns the position of the bounding rectangle of region as two values,

the left and top coordinates of the bounding rectangle.

clim:bounding-rectangle-set-position region x y

Changes the position of the bounding rectangle of region to the new posi-

tion x and y.

clim:bounding-rectangle-width region

Returns the width of the bounding rectangle of region.

clim:bounding-rectangle-height region

Returns the height of the bounding rectangle of region.

clim:bounding-rectangle-size region

Returns the size (as two values, width and height) of the bounding rect-

angle of region.

For example, the size of a the output generated by body can be determined by call-

ing clim:bounding-rectangle-size on the output record:

(let ((record (clim:with-output-to-output-record (s) body)))

 (multiple-value-bind (width height)

 (clim:bounding-rectangle-size record)

 (format t "~&Width is ~D, height is ~D" width height)))�

Formatted Output in CLIM

Formatting Tables in CLIM

Concepts of CLIM Table Formatting

CLIM makes it easy to construct tabular output. The usual way of making tables

is by indicating what you want to put in the table and letting CLIM choose the

placement of the row and column cells. CLIM also allows you to specify constraints

on the placement of the table elements with some flexibility.

In the CLIM model of formatting tables, each cell of the table is handled sepa-

rately, as though it has its own drawing surface. You write code which is designed

to put ink on a drawing plane. That ink might be text, graphics, or both. CLIM

surrounds all the ink with a bounding box (or, more precisely, an axis-aligned

rectangle). That bounding box is snipped out of the drawing plane and placed in a

Page 1401

cell of the table. CLIM’s table formatter puts whitespace around the ink to make

sure that all the cells have the proper size and alignment.

You are responsible only for specifying the contents of the cell. CLIM’s table for-

matter is responsible for figuring out how to lay out the table so that all the cells

fit together properly. The table formatter determines the width of each column

based on the the widest cell within the column. Similarly, it determines the height

of each row based on the the tallest cell within the row.

All the cells in a row all have the same height. All the cells in a column have the

same width. The contents of the cells can be of irregular shapes and sizes. You

can control how CLIM should place the objects within the cell by aligning them

both vertically (to the top, bottom, or center of the cell) and horizontally (to the

left, right, or center of the cell).

You can specify other constraints that affect the appearance of the table (such as,

the spacing between rows or columns, or the width or length of the table).

Formatting Item Lists in CLIM

Where table formatting is a ‘‘two-dimensional’’ operation from the point of view of

the application, item list formatting is inherently one-dimensional output that is

presented two-dimensionally. The canonical example is a menu, where the pro-

grammer specifies a list of items to be presented, where a single column or row of

menu entries would be fine (if the list is small enough). In this case, formatting is

done when viewport requirements make it desirable.

These constraints affect the appearance of item lists:

• The number of rows (allowing CLIM to choose the number of columns)

• The number of columns (allowing CLIM to choose the number of rows)

• The maximum height (or width) of the column (letting CLIM determine

the number of rows and columns that satisfy that constraint)�

CLIM Operators for Table Formatting

This section summarizes the CLIM operators. For more complete documentation of

each operator, see the section "Dictionary of CLIM Operators".

These are the general-purpose table formatting operators:

clim:formatting-table (&optional stream &rest options &key :x-spacing :y-spacing

:record-type :multiple-columns :multiple-columns-x-spacing :equalize-column-

widths (:move-cursor t)) &body body

Establishes a ‘‘table formatting’’ context on the stream. All output per-

formed within the extent of this macro will be displayed in tabular form.

This must be used in conjunction with clim:formatting-row or

clim:formatting-column, and clim:formatting-cell.

clim:formatting-row (&optional stream &key :record-type) &body body

Establishes a ‘‘row’’ context on the stream. All output performed on the

Page 1402

stream within the extent of this macro will become the contents of one

row of a table. clim:formatting-row must be used within the extent of

clim:formatting-table, and it must be used in conjunction with

clim:formatting-cell.

clim:formatting-column (&optional stream &key :record-type) &body body

Establishes a ‘‘column’’ context on the stream. All output performed on

the stream within the extent of this macro will become the contents of

one column of the table. clim:formatting-column must be used within

the extent of clim:formatting-table, and it must be used in conjunction

with clim:formatting-cell.

clim:formatting-cell (&optional stream &rest options &key (:align-x ’:left) (:align-y�

’:top) :min-width :min-height :record-type &allow-other-keys) &body body

Establishes a ‘‘cell’’ context on the stream. All output performed on the

stream within the extent of this macro will become the contents of one

cell in a table. clim:formatting-cell must be used within the extent of

clim:formatting-row, clim:formatting-column, or clim:formatting-item-

list.

These are the one-dimensional table formatting operators:

clim:formatting-item-list (&optional stream &key :record-type :x-spacing :y-spacing

:initial-spacing :n-columns :n-rows :max-width :max-height :stream-width

:stream-height (:row-wise t) (:move-cursor t)) &body body

Use this macro to format the output in a tabular form, when the exact

ordering and placement of the cells is not important. clim:formatting-

item-list must be used with clim:formatting-cell.

clim:format-items items &key (:stream *standard-output*) :printer :presentation-

type :x-spacing :y-spacing :initial-spacing :n-rows :n-columns :max-width

:max-height (:row-wise t) :record-type (:cell-align-x ’:left) (:cell-align-y ’:top)�

Provides tabular formatting of a list of items. Each item in items is for-

matted as a separate cell within the table.

clim:format-textual-list sequence printer &key (:stream *standard-output*) (:sepa-

rator ", ") :conjunction
Outputs a sequence of items as a textual list.

clim:format-items is similar to clim:formatting-item-list. Both operators do the

same thing, except they accept their input differently:

• clim:formatting-item-list accepts its input as a body that calls

clim:formatting-cell for each item.

• clim:format-items accepts its input as a list of items with a specification

of how to print them.�

In CLIM, menus use the one-dimensional table formatting model.

Page 1403

Examples of CLIM Table Formatting

Formatting a table from a list�

The example1 function formats a simple table whose contents come from a list.

(defvar *alphabet* ’(a b c d e f g h i j k l m n o p q r s t u v w x y z))

�

(defun example1 (&optional (items *alphabet*)

 &key (stream *standard-output*)

 (n-columns 6) x-spacing y-spacing)

 (clim:formatting-table (stream :x-spacing x-spacing

 :y-spacing y-spacing)

 (do () ((null items))

 (clim:formatting-row (stream)

(do ((i 0 (1+ i)))

 ((or (null items) (= i n-columns)))

 (clim:formatting-cell (stream)

 (format stream "~A" (pop items))))))))

�

Evaluating (example1 *alphabet* :stream *my-window*) shows this table:

�

The table above shows the result of evaluating example1 form without providing

the :x-spacing and :y-spacing keywords. The defaults for these keywords makes

tables whose elements are characters look reasonable.

You can easily vary the number of columns, and the spacing between rows or be-

tween columns. In the following example, we provide keyword arguments that

change the appearance of the table.

Evaluating this form

(example1 *alphabet* :stream *my-window* :n-columns 10

 :x-spacing 10 :y-spacing 10)�

shows this table:

�

(Note that this example could also be done with clim:formatting-item-list or

clim:format-items, as shown in example4 below.)

Page 1404

Formatting a table representing a calendar month�

The calendar-month function shows how you can format a table that represents a

calendar month. The first row in the table acts as column headings representing

the days of the week. The following rows are numbers representing the day of the

month.

This example shows how you can align the contents of a cell. The column headings

(Sun, Mon, Tue, etc.) are centered within the cells. However, the dates themselves

(1, 2, 3, ... 31) are aligned to the right edge of the cells. The resulting calendar

looks good, because the dates are aligned in the natural way.

(defvar *days-of-the-week* (vector "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"))

�

(defvar *month-lengths* (vector 31 28 31 30 31 30 31 31 30 31 30 31))

(defun days-in-month (month year)

 (if (= month 2)

 (if (zerop (mod year 4))

 (if (zerop (mod year 400)) 28 29)

 28)

 (svref *month-lengths* (1- month))))

�

(defun display-calendar (month year &key (stream *standard-output*))

 (let ((days-in-month (days-in-month month year)))

 (multiple-value-bind (nil nil nil nil nil nil start-day)

 (decode-universal-time (encode-universal-time 0 0 0 1 month year))

 (setq start-day (mod (+ start-day 1) 7))

 (clim:formatting-table (stream :x-spacing " " :y-spacing 2)

(clim:formatting-row (stream)

 (dotimes (d 7)

 (clim:formatting-cell (stream :align-x :center)

 (clim:with-text-face (stream :italic)

(write-string (svref *days-of-the-week* (mod d 7)) stream)))))�

(do ((date 1)

 (first-week t nil))

 ((> date days-in-month))�

 (clim:formatting-row (stream)

 (dotimes (d 7)

 (clim:formatting-cell (stream :align-x :right)

(when (and (<= date days-in-month)

 (or (not first-week) (>= d start-day)))

 (format stream "~D" date)

 (incf date))))))))))�

Page 1405

Evaluating (calendar-month 5 90 :stream *my-window*) shows this table:

�

Formatting a table with regular graphic elements�

The example2 function shows how you can draw graphics within the cells of a ta-

ble. Each cell contains a rectangle of the same dimensions. Notice that, even

though the example passes the same coordinates to clim:draw-rectangle* for each

cell, the resulting table consists of a number of non-overlapping rectangles.

(defun example2 (&key (stream *standard-output*) x-spacing y-spacing)

 (clim:formatting-table (stream :x-spacing x-spacing

 :y-spacing y-spacing)

 (dotimes (i 3)

 (clim:formatting-row (stream)

(dotimes (j 3)

 (clim:formatting-cell (stream)

 (clim:draw-rectangle* stream 10 10 50 50)))))))�

Evaluating (example2 :stream *my-window* :y-spacing 5) shows this table:

�

Formatting a table with irregular graphics in the cells�

The example3 function shows how you can format a table in which each cell con-

tains graphics of different sizes.

Page 1406

(defun example3 (&optional (items *alphabet*)

 &key (stream *standard-output*)

 (n-columns 6) x-spacing y-spacing)

 (clim:formatting-table (stream :x-spacing x-spacing

 :y-spacing y-spacing)

 (do () ((null items))

 (clim:formatting-row (stream)

(do ((i 0 (1+ i)))

 ((or (null items) (= i n-columns)))

 (clim:formatting-cell (stream)

 (clim:draw-polygon* stream

(list 0 0 (* 10 (1+ (random 3)))

 5 5 (* 10 (1+ (random 3))))

 :filled nil)

 (pop items)))))))�

Evaluating (example3 *alphabet* :stream *my-window*) shows this table:

�

Formatting a table of a sequence of items: clim:formatting-item-list �

The example4 function shows how you can use clim:formatting-item-list to format

a table of a sequence of items, when the exact arrangement of the items and the

table is not important. Note that you must use clim:formatting-cell inside the

body of clim:formatting-item-list to output each item. You do not use

clim:formatting-column or clim:formatting-row, because CLIM figures out the

number of columns and rows automatically (or obeys a constraint given in a key-

word argument).

(defun example4 (&optional (items *alphabet*)

 &key (stream *standard-output*) n-columns n-rows

 x-spacing y-spacing max-width max-height)

 (clim:formatting-item-list

 (stream :x-spacing x-spacing :y-spacing y-spacing

 :n-columns n-columns :n-rows n-rows

 :max-width max-width :max-height max-height)

 (do () ((null items))

 (clim:formatting-cell (stream)

(format stream "~A" (pop items))))))�

Page 1407

Evaluating (example4 :stream *my-window*) shows this table:

�

You can easily add a constraint specifying the number of columns.

Evaluating (example4 :stream *my-window* :n-columns 8) shows this table:

�

Formatting Graphs in CLIM

Concepts of CLIM Graph Formatting

When you need to format a graph, you specify the nodes to be in the graph, and

the scheme for organizing them. CLIM’s graph formatter does the layout automat-

ically, obeying any constraints that you supply.

You can format any directed, acyclic graph (DAG). ‘‘Directed’’ means that the arcs

on the graph have a direction. ‘‘Acyclic’’ means that there are no loops (or cycles)

in the graph.

Here is an example of such a graph:

To specify the elements and the organization of the graph, you provide to CLIM

the following information:

• The root node.

• A ‘‘node printer’’, a function used to display each node. The function is

passed the object associated with a node and the stream on which to do

output.

• An ‘‘inferior producer’’, a function which takes one node and returns its

inferior nodes (the nodes to which it points).�

Based on that information, CLIM lays out the graph for you. You can specify a

number of options that control the appearance of the graph. For example, you can

specify whether you want the graph to grow vertically (downward) or horizontally

Page 1408

(to the right). Note that CLIM’s algorithm does the best layout it can, but compli-

cated graphs can be difficult to lay out in a readable way.

Examples of CLIM Graph Formatting

(defstruct node

 (name "")

 (children nil))

�

(defvar g1 (let* ((2a (make-node :name "2A"))

 (2b (make-node :name "2B"))

 (2c (make-node :name "2C"))

 (1a (make-node :name "1A" :children (list 2a 2b)))

 (1b (make-node :name "1B" :children (list 2b 2c))))

 (make-node :name "0" :children (list 1a 1b))))

�

(defun test-graph (root-node &rest keys)

 (apply #’clim:format-graph-from-root root-node

 #’(lambda (node s)

 (write-string (node-name node) s))

 #’node-children

 keys))�

Evaluating (test-graph g1 :stream *my-window*) results in the following graph:

�

As shown above, by default, the graph has a horizontal orientation and grows to-

ward the right. We can supply the :orientation keyword to control this. Evaluating

(test-graph g1 :stream *my-window* :orientation :vertical) results in the follow-

ing graph:

�

CLIM Operators for Graph Formatting

The following two functions can be used to format a graph.

clim:format-graph-from-roots root-objects object-printer inferior-producer &key

(:stream *standard-output*) (:orientation ’:horizontal) :center-nodes :cut-

Page 1409

off-depth :merge-duplicates :graph-type (:duplicate-key #’identity) (:dupli-

cate-test #’eql) :arc-drawer :arc-drawing-options :generation-separation

:within-generation-separation :maximize-generations (:store-objects t) (:move-

cursor t)

Constructs and displays a directed, acyclic graph. root-objects is a se-

quence of the root elements of the set, from which the graph can be de-

rived. object-printer is the function used to display each node of the

graph; it takes to arguments, the object to display and the stream. inferi-

or-producer is the function that to generates the inferiors from a node

object; it takes one argument, the node, and returns a list of inferior

nodes.

clim:format-graph-from-root root-object object-printer inferior-producer &key

(:stream *standard-output*) (:orientation ’:horizontal) :center-nodes :cut-

off-depth :merge-duplicates :graph-type (:duplicate-key#’identity)
(:duplicate-test #’eql) :arc-drawer :arc-drawing-options :generation-

separation :within-generation-separation :maximize-generations (:store-

objects t) (:move-cursor t)

Like clim:format-graph-from-roots, except that root-object is a single

root object instead of a sequence of roots.

Formatting Text in CLIM

CLIM provides the following two forms for breaking up lengthy output into multi-

ple lines and for indenting output.

clim:filling-output (&optional stream &rest keys &key (:fill-width ’(80 :character))

(:break-characters ’(#\Space)) :after-line-break :after-line-break-initially)

&body body

Binds stream to a stream that inserts line breaks into the output written

to it so that the output is no wider then :fill-width. The filled output is

then written on the stream that is the original value of stream.

clim:filling-output does not split ‘‘words’’ across lines.

clim:indenting-output (stream indentation &key (:move-cursor t)) &body body

Binds stream to a stream that inserts whitespace at the beginning of

each line, and writes the indented output as the stream that is the origi-

nal value of stream.

For example, you might use the following to generate a filled, indented list of the

first twenty-one counting numbers:

Page 1410

(let ((stream *standard-output*))

 (write-line "Here are the first twenty-one counting numbers:" stream)

 (clim:indenting-output (stream ’(2 :character))

 (clim:filling-output (stream :fill-width ’(60 :character))

 (dotimes (i 19)

 (format stream "~R, " i))

 (format stream "and ~R." 20))))�

Bordered Output in CLIM

CLIM provides a mechanism for surrounding arbitrary output with some kind of a

border. To specify that a border should be generated, you surround some code that

does output with clim:surrounding-output-with-border, an advisory macro that

describes the type of border to be drawn.

clim:surrounding-output-with-border (&optional stream &key (:shape :rectangle)

(:move-cursor t)) &body body

Binds the local environment in such a way that the output of body will

be surrounded by a border of the specified :shape.

clim:define-border-type shape arglist &body body

Defines a new kind of border named shape. arglist will typically be

(stream record left top right bottom).

For example, the following produces a piece of output surrounded by a rectangle.

(defun bordered-triangle (stream)

 (clim:surrounding-output-with-border (stream :shape :rectangle)

 (clim:draw-polygon* stream ’(40 120 50 140 30 140))))�

The following is the result of evaluating (bordered-triangle *my-window*):

�

Incremental Redisplay in CLIM

Many applications can benefit greatly by the ability to redisplay information on a

window only when that information has changed. This feature, called incremental

redisplay, can significantly improve the speed at which your application updates in-

formation on the screen. Incremental redisplay is very useful for programs that

display a window of changing information, where some portions of the window are

static, and some are continually changing. Genera’s PEEK application is an exam-

ple; this window displays the status of processes and other changing system infor-

mation.

CLIM’s output recording mechanism provides the foundation for incremental redis-

play. As an application programmer, you need to understand the concepts of output

recording before learning how to use the techniques of incremental redisplay.

Page 1411

Concepts of Incremental Redisplay in CLIM

Incremental redisplay is a facility to allow you to change the output in an output

history (and hence, on the screen or other output device). It allows you to redis-

play pieces of the existing output differently, under your control.

It is ‘‘incremental’’ in the sense that CLIM redisplays only the part of the output

history visible in the viewport, and only the portions of the output history that

have changed, and thus need to be redisplayed.

The way to do redisplay is to call clim:redisplay on an output record that was cre-

ated by clim:updating-output. This tells CLIM to start computing that output

record over from scratch. CLIM compares the results with the existing output and

tries to do minimal redisplay. The clim:updating-output form allows you to assist

CLIM by informing it that entire branches of the output history are known not to

have changed. clim:updating-output also allows you to communicate the fact that

a piece of the output record hierarchy has moved.

clim:redisplay is often quite easy to use, and is useful in cases where there might

be large changes between two passes, or where you have little idea as to what the

changes might be. However, clim:redisplay can be inefficient when you compare it

to the best redisplay algorithm that you can implement for any particular special

case. For example, a graphical editor whose operations affect only a single object

(or a small number of objects) in a drawing might be a poor candidate for

clim:updating-output. Because such an editor knows exactly what must be redis-

played after an operation, it is probably more efficient to do redisplay ‘‘by hand’’.

It is often appropriate to use incremental redisplay in order to get your application

running, and then implement your own display later if incremental redisplay

proves to be too slow.

CLIM Operators for Incremental Redisplay

The following functions are used to create an output record that should be incre-

mentally redisplayed, and then to redisplay that record.

clim:updating-output (stream &rest args &key (:record-type ’’clim:standard-

updating-output-record) :unique-id (:id-test ’#’eql) :cache-value (:cache-

test ’#’eql) :copy-cache-value :parent-cache :output-record :fixed-position :all-

new &allow-other-keys) &body body�

 Informs the incremental redisplay module of the characteristics of the

output done by body to stream. Within clim:updating-output, you name

a piece of output (with a unique id), and you state how to determine

whether the output changes (with a cache value).

clim:redisplay record stream &key (:check-overlapping t)

Causes the output of record to be recomputed. CLIM redisplays the

changes incrementally, that is, only redisplays those parts of the record

that changed.

Page 1412

clim:redisplay-output-record record stream &optional check-overlapping x y

parent-x parent-y

Causes the output of record to be recomputed. CLIM redisplays the

changes incrementally, that is, only redisplays those parts of the record

that changed.

Using clim:updating-output

The primary technique of incremental redisplay is to use clim:updating-output to

inform CLIM what output has changed, and use clim:redisplay to recompute and

redisplay that output.

The outermost call to clim:updating-output identifies a program fragment that

produces incrementally redisplayable output. A nested call to clim:updating-output

(that is, a call to clim:updating-output that occurs during the evaluation of the

body of the outermost clim:updating-output and specifies the same stream) identi-

fies an individually redisplayable piece of output, the program fragment that pro-

duces that output, and the circumstances under which that output needs to be re-

drawn.

The outermost call to clim:updating-output evaluates its body, producing the ini-

tial version of the output, and returns an updating output record that captures the

body in a closure. Each nested call to clim:updating-output caches its :unique-id

and :cache-value arguments and the portion of the output produced by its body.

clim:redisplay takes an updating output record and evaluates the captured body of

clim:updating-output over again. When a nested call to clim:updating-output is

evaluated during redisplay, clim:updating-output decides whether the cached out-

put records can be reused or the output needs to be redrawn. This is controlled by

the :cache-value argument to clim:updating-output. If its value matches its pre-

vious value, the body would produce output identical to the previous output and

thus is unnecessary. In this case the cached output records are reused and

clim:updating-output does not re-execute its body. If the :cache-value does not

match, the output needs to be redrawn, so clim:updating-output evaluates its

body and the new output drawn on the stream replaces the previous output. The

:cache-value argument is only meaningful for nested calls to clim:updating-

output.

If the :incremental-redisplay pane option is used, CLIM supplies the outermost

call to clim:updating-output, saves the updating output record, and calls

clim:redisplay. The function specified by the :display-function pane option per-

forms only the nested calls to clim:updating-output.

If you use incremental redisplay without using the :incremental-redisplay pane

option, you must perform the outermost call to clim:updating-output, save the up-

dating output record, and call clim:redisplay yourself.

In order to compare the cache to the output record, two pieces of information are

necessary:

Page 1413

• An association between the output being done by the program and a par-

ticular cache. This is supplied in the :unique-id option to clim:updating-

output.

• A means of determining whether this particular cache is valid. This is

the :cache-value option to clim:updating-output.

Normally, you would supply both options. The unique-id would be some data struc-

ture associated with the corresponding part of output. The cache value would be

something in that data structure that changes whenever the output changes.

It is valid to give the :unique-id and not the :cache-value. This is done to identify

a superior in the hierarchy. By this means, the inferiors essentially get a more

complex :unique-id when they are matched for output. (In other words, it is like

using a telephone area code.) The cache without a cache value is never valid. Its

inferiors always have to be checked.

It is also valid to give the :cache-value and not the :unique-id. In this case,

unique ids are just assigned sequentially. So, if output associated with the same

thing is done in the same order each time, it isn’t necessary to invent new unique

ids for each piece. This is especially true in the case of inferiors of a cache with a

unique id and no cache value of its own. In this case, the superior marks the par-

ticular data structure, whose components can change individually, and the inferiors

are always in the same order and properly identified by their superior and the or-

der in which they are output.

A :unique-id need not be unique across the entire redisplay, only among the infe-

riors of a given output cache; that is, among all possible (current and additional)

uses you make of clim:updating-output that are dynamically (not lexically) within

another.

To make your incremental redisplay maximally efficient, you should attempt to

give as many caches with :cache-value as possible. For instance, if you have a

deeply nested tree, it is better to be able to know when whole branches have not

changed than to have to recurse to every single leaf and check it. So, if you are

maintaining a modification tick in the leaves, it is better to also maintain one in

their superiors and propagate the modification up when things change. While the

simpler approach works, it requires CLIM to do more work than is necessary.

Example of Incremental Redisplay in CLIM

The following function illustrates the standard use of incremental redisplay:

Page 1414

(defun test (stream)

 (let* ((list (list 1 2 3 4 5))

 (record

 (clim:updating-output (stream)

 (do* ((elements list (cdr elements))

 (count 0 (1+ count))

 (element (first elements) (first elements)))

 ((null elements))

 (clim:updating-output (stream :unique-id count

 :cache-value element)

 (format stream "Element ~D" element)

 (terpri stream))))))

 (sleep 10)

 (setf (nth 2 list) 17)

 (clim:redisplay record stream)))�

When test is run on a window, the initial display looks like:

 Element 1

 Element 2

 Element 3

 Element 4

 Element 5�

After the sleep has terminated, the display looks like:

 Element 1

 Element 2

 Element 17

 Element 4

 Element 5�

Incremental redisplay takes care of ensuring that only the third line gets erased

and redisplayed. In the case where items moved around, incremental redisplay en-

sures that the minimum amount of work is done in updating the display, thereby

minimizing ‘‘flashiness’’ while providing a powerful user interface. For example,

try substituting the following for the form after the sleep:

(setf list (sort list #’(lambda (&rest args)

 (zerop (random 2)))))�

Here is a little ‘‘process status’’ program that shows how to use incremental redis-

play with table formatting. Notice the use of clim:updating-output around each

row of the table to ‘‘name’’ each process, and the use of clim:updating-output’s

:cache-value option in each cell in the rows to indicate when a field has changed.

Page 1415

(defun show-processes (&optional (stream *standard-output*))

 (clim:with-end-of-line-action (stream :allow)

 (clim:with-end-of-page-action (stream :allow)

 (let ((record

 (macrolet ((cell (stream item)

 ‘(clim:formatting-cell (,stream)

 (format ,stream "~A" ,item))))�

 (clim:updating-output (stream)

 (clim:formatting-table (stream)

 (clim:updating-output (stream :unique-id ’headings

 :cache-value ’constant)

 (clim:with-text-face (stream :italic)

 (clim:formatting-row (stream)

 (cell stream "Process")

 (cell stream "State")

 (cell stream "Activity"))))�

 (let ((list (copy-list (clim-sys:all-processes))))

 (dolist (p list)

 (let ((name (clim-sys:process-name p))

 (state (clim-sys:process-whostate p))

 (activity (clim-sys:process-state p)))

 (clim:updating-output (stream :unique-id p)

 (clim:formatting-row (stream)

 (clim:updating-output (stream :cache-value name)

 (cell stream name))

 (clim:updating-output (stream :cache-value state)

 (cell stream state))

 (clim:updating-output (stream :cache-value activity)

 (cell stream (string-capitalize activity)))))))))))))

 (loop

 (sleep 1)

 (clim:redisplay record stream))))))�

The following is an example of how to use incremental redisplay with graph for-

matting. Notice that you do not need to worry about redisplay of the graph’s

edges; CLIM does this for you.

(defun redisplay-graph (stream)

 (macrolet ((make-node (&key name children)

 ‘(list* ,name ,children))

 (node-name (node)

 ‘(car ,node))

 (node-children (node)

Page 1416

 ‘(cdr ,node)))�

 (let* ((3a (make-node :name "3A"))

 (3b (make-node :name "3B"))

 (2a (make-node :name "2A"))

 (2b (make-node :name "2B"))

 (2c (make-node :name "2C"))

 (1a (make-node :name "1A" :children (list 2a 2b)))

 (1b (make-node :name "1B" :children (list 2b 2c)))

 (root (make-node :name "0" :children (list 1a 1b)))�

 (graph

 (clim:updating-output (stream :unique-id root)

 (clim:format-graph-from-root

 root

 #’(lambda (node s)

 (clim:updating-output (s :cache-value node)

 (write-string (node-name node) s)))

 #’cdr ;really #’node-children

 :stream stream))))�

 (sleep 2)

 (setf (node-children 2a) (list 3a 3b))

 (clim:redisplay graph stream)

 (sleep 2)

 (setf (node-children 2a) nil)

 (clim:redisplay graph stream))))�

Streams and Windows in CLIM

CLIM performs many of its input and output operations on objects called streams.

A stream is a special kind of sheet that supports the stream protocols. These pro-

tocols are partitioned into two layers: the basic stream protocol and the extended

stream protocol.

The basic stream protocol is character-based and compatible with existing Common

Lisp programs. (Note that the basic stream protocol is not documented in this user

guide).

The standard Common Lisp stream functions work on CLIM streams in all CLIM

platforms.

You can use the extended stream protocol to include pointer events and syn-

chronous window-manager communication.

Extended Stream Input in CLIM

CLIM defines an extended input stream protocol. This protocol extends the basic

Common Lisp input stream model to allow manipulation of non-character user ges-

tures, such as pointer button presses. It also provides the basis for CLIM’s input

editor.

Page 1417

Operators for Extended Stream Input�

clim:extended-input-stream-p object

Returns t if the object is a CLIM extended input stream, otherwise it re-

turns nil.

clim:read-gesture &key (:stream *standard-input*) :timeout :peek-p :input-wait-test

:input-wait-handler :pointer-button-press-handler

Returns the next gesture available in the input stream. Note that

clim:read-gesture does not echo character input.

clim:stream-input-wait stream &key :timeout :input-wait-test

Waits until :timeout or :input-wait-test, if specified. Otherwise the func-

tion waits until there is input in the stream.

clim:unread-gesture gesture &key (:stream *standard-input*)

Places the specified gesture back into :stream’s input buffer. The next

clim:read-gesture request will return the unread gesture. The gesture

supplied must be the most recent gesture read from the stream.

Manipulating the Pointer in CLIM

Concepts of Manipulating the Pointer in CLIM

A pointer is an input device that enables pointing at an area of the screen (for

example, a mouse, or a a tablet). CLIM offers a set of operators that enable you to

manipulate the pointer.

Operators for Manipulating the Pointer in CLIM

These functions are the higher-level functions for doing input via the pointer.

clim:tracking-pointer (&optional stream &key :pointer :multiple-window :transformp

(:context-type t) :highlight) &body clauses

Provides a general means for running code while following the position

of a pointing device, and monitoring for other input events. Programmer-

supplied code may be run upon occurrence of events such as motion of

the pointer, clicking of a pointer button, or typing something on the

keyboard.

clim:drag-output-record stream output-record &key (:repaint t) :multiple-window

:erase :feedback (:finish-on-release t)

Enters an interaction mode in which user moves the pointer, and output-

record follows the pointer by being dragged on stream.

clim:dragging-output (&optional stream &key (:repaint t) :multiple-window :finish-

on-release) &body body

Evaluates body to produce the output, and then invokes clim:drag-

output-record to drag that output on stream.

Page 1418

clim:pointer-place-rubber-band-line* &key :start-x :start-y (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t)

Prompts for a line via the pointing device specified by :pointer.

clim:pointer-place-rubber-band-line* returns four values, the start-x,

start-y, end-x, and end-y of a line.

clim:pointer-input-rectangle* &key :left :top :right :bottom (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t)

Prompts for a rectangular area via the pointing device specified by

:pointer. clim:pointer-input-rectangle* returns four values, the left, top,

right, and bottom edges of a rectangle.

The following are lower level functions for managing the pointer more directly.

clim:stream-pointer-position stream &key :pointer

This function returns the position (two coordinate values) of the pointer

in the stream’s drawing plane coordinate system. You can use

clim:stream-set-pointer-position to set the pointer position.

clim:stream-set-pointer-position stream x y &key :pointer

This function sets the position (two coordinate values) of the :pointer in

the stream’s drawing plane coordinate system.

clim:port-pointer port

Returns the pointer object corresponding to the primary pointing device

for the port port.

clim:port-modifier-state basic-port

Returns the state of the modifier keys for the port port.

clim:pointer-button-state pointer

Returns the current button state for pointer.

clim:pointer-position pointer

This function returns the position (as two coordinate values) of the

pointer pointer in the coordinate system of the sheet that the pointer is

currently over.

clim:pointer-set-position pointer x y

This function changes the position of the pointer pointer to be (x,y).

clim:pointer-native-position pointer

This function returns the position (as two coordinate values) of the

pointer pointer in the coordinate system of the port’s graft (that is, its

‘‘root window’’).

clim:pointer-set-native-position pointer x y

This function changes the position of the pointer pointer to be (x,y).

clim:pointer-sheet pointer

Returns the sheet over which the pointer pointer is currently positioned.

clim:pointer-cursor pointer

Returns the current cursor type for pointer. You can use setf to change

it.

Page 1419

The Structure of the CLIM Input Editor

CLIM’s input editor provides interactive parsing and prompting by interacting with

the rest of CLIM’s input facility via rescanning. Rescanning is the process of reset-

ting the internal state of the input editor and rereading the user’s already-buffered

input. CLIM input editing streams encapsulate interactive streams, that is, most

stream operations are handled by the encapsulated interactive stream, but some

operations are handled directly by the input editing stream itself.

An input editing stream has the following components:

• The encapsulated interactive stream.

• A buffer with a fill pointer, which will be referred to as FP. The buffer

contains all of the user’s input, and FP is the length of that input.

• An insertion pointer, which will be referred to as IP. The insertion

pointer is the point in the buffer at which the ‘‘editing cursor’’ is.

• A scan pointer, which will be referred to as SP. The scan pointer is the

point in the buffer from which CLIM will get the next input gesture ob-

ject (via clim:read-gesture).

• A ‘‘rescan queued’’ flag indicating that the programmer (or the input ed-

itor itself) requested that a rescan operation should take place before the

next gesture is read from the user.

• A ‘‘rescan in progress’’ flag that indicates that CLIM is rescanning the

user’s input, rather than reading freshly supplied gestures from the user.�

The overall description of how the input editor works, is that it reads either

‘‘real’’ gestures from the user (such as characters from the keyboard or pointer

button events), or input editing commands. The input editing commands can modi-

fy the state of the input buffer. When such modifications take place, it is neces-

sary to rescan the input buffer, that is, the input editor resets the scan pointer SP

to its original state and reparses the contents of the input editor buffer before

reading any other gestures from the user. While this rescanning operation is tak-

ing place, the ‘‘rescan in progress’’ flag is set to t. The input editor always en-

sures that SP is no greater than FP.

The remainder of this section describes the input editor in more detail. If you plan

to write complex clim:accept methods, you may need to understand the input edi-

tor at this level of detail. Otherwise, you may skip the rest of this section.

The overall control structure of the input editor is:

(catch ’rescan ;thrown to when a rescan is invoked

 (reset-scan-pointer stream) ;sets STREAM-RESCANNING-P to T

 (loop

 (funcall continuation stream)))�

where stream is the input editing stream and continuation is the code supplied by

the programmer, which typically contains calls to such functions as clim:accept

and clim:read-token. When a rescan operation is invoked, it has the effect of

throwing to the rescan tag in the example above. The loop is terminated when an

Page 1420

activation gesture is seen, and at that point the values produced by continuation

are returned as values from the input editor.

The most important point is that functions such as clim:accept,

clim:read-gesture, and clim:unread-gesture read (or restore) the next gesture ob-

ject from the buffer at the position pointed to by the scan pointer SP. However,

insertion and input editing commands take place at the position pointed to by IP.

The purpose of the rescanning operation is to eventually ensure that all of the

user’s input (typed characters, pointer button presses, and so forth) have been read

by CLIM. During input editing, CLIM displays an editing cursor to remind you of

the position of IP.

The overall structure of clim:read-gesture on an input editing stream is:

(progn

 (rescan-if-necessary stream)

 (loop

 ;; If SP is less than FP

 ;; Then get the next gesture from the input editor buffer at SP

 ;; and increment SP

 ;; Else read the next gesture from the encapsulated stream

 ;; and insert it into the buffer at IP

 ;; Set the "rescan in progress" flag to false

 ;; Call STREAM-PROCESS-GESTURE on the gesture

 ;; If it was a "real" gesture

 ;; Then exit with the gesture as the result

 ;; Else it was an input editing command (which has already been

 ;; processed), so continue looping

))�

When a new gesture object is inserted into the input editor buffer, it is inserted at

the insertion pointer IP. If IP is equal to FP, this is accomplished by doing a

vector-push-extend-like operation on the input buffer and FP, and then increment-

ing IP. If IP is less than FP, CLIM first makes room for the new gesture in the

input buffer, then inserts the gesture at IP, and finally increments both IP and

FP.

When the user requests an input editor motion command, only the insertion point-

er IP is affected. Motion commands do not need to request a rescan operation.

When the user requests an input editor deletion command, the user input at IP is

removed, and IP and FP are modified to reflect the new state of the input buffer.

Deletion commands (and other commands that modify the input buffer) arrange for

a rescan to occur when they are done modifying the buffer, either by calling

clim:queue-rescan or clim:immediate-rescan.

CLIM sometimes inserts special objects in the input editor buffer, such as ‘‘noise
strings’’ and ‘‘accept results’’. A noise string is used to represent some sort of in-

line prompt and is never seen as user input; clim:input-editor-format and

clim:prompt-for-accept methods insert noise strings into the input buffer. An ac-

cept result is an object in the input buffer that is used to represent some object

that was inserted into the input buffer (typically via a pointer gesture) that has no

Page 1421

readable representation (in the Lisp sense); clim:presentation-replace-input may

create accept results. Noise strings are skipped over by input editing commands,

and accept results are treated as a single gesture.

The following forms are the most useful high-level operators for doing input edit-

ing in CLIM:

clim:with-input-editing (&optional stream &key :input-sensitizer :initial-contents

:class) &body body

Establishes a context in which the user can edit the input he or she

types in on the stream stream. body is then evaluated in this context,

and the values returned by body are returned as the values of clim:with-

input-editing.

clim:with-input-editor-typeout (&optional stream &key :erase) &body body

If, when you are inside of a call to clim:with-input-editing, you want to

perform some sort of typeout, it should be done inside clim:with-input-

editor-typeout.

clim:input-editor-format input-editing-stream format-string &rest format-args

This function is like format, except that it is intended to be called on

input editing streams. It arranges to insert ‘‘noise strings’’ in the input

editor’s input buffer.

The following functions are lower-level functions used in writing more sophisticat-

ed clim:accept methods:

clim:replace-input stream new-input &key :start :end :rescan :buffer-start

Replaces stream’s input buffer with the string new-input.

clim:presentation-replace-input stream object type view &key :rescan :buffer-start

Like clim:replace-input, except that the new input to insert into the in-

put buffer is gotten by presenting the object object with the presentation

type type and view view.

clim:stream-insertion-pointer input-editing-stream

Returns an integer corresponding to the current input position of input-

editing-stream, that is, the point in the buffer at which the next user in-

put gesture will be inserted.

clim:stream-scan-pointer input-editing-stream

Returns the current scan pointer (an integer) for input-editing-stream,

that is, the point in the buffer at which calls to clim:accept have

stopped parsing input.

clim:stream-rescanning-p input-editing-stream

Returns the state of the input editing stream’s ‘‘rescan in progress’’

flag, which is t if input-editing-stream is performing a rescan operation,

otherwise it is nil. Non-input editing streams always return nil.

clim:immediate-rescan input-editing-stream

Invokes a rescan operation immediately on input-editing-stream by

‘‘throwing’’ out to the beginning of the most recent invocation of

clim:with-input-editing.

Page 1422

clim:queue-rescan input-editing-stream &optional rescan-type

Indicates that a rescan operation on input-editing-stream should take

place after the next non-input editing gesture is read.

clim:rescan-if-necessary input-editing-stream &optional inhibit-activation

Invokes a rescan operation on the input editing stream input-editing-

stream if clim:queue-rescan was called on the same stream and no in-

tervening rescan operation has taken place. Resets the state of the ‘‘res-
can queued’’ flag to nil.

clim:reset-scan-pointer input-editing-stream &optional sp

Sets input-editing-stream’s scan pointer to sp (which defaults to 0) and

sets the state of clim:stream-rescanning-p to t.

clim:erase-input-buffer input-editing-stream &optional start-position

Erases the part of the display that corresponds to the input editor’s buf-

fer starting at the position start-position.

clim:redraw-input-buffer input-editing-stream &optional start-position

Displays the input editor’s buffer starting at the position start-position on

the interactive stream that is encapsulated by the input editing stream

input-editing-stream.

Extended Stream Output in CLIM

In addition to the basic output stream protocol, CLIM defines an extended output

stream protocol. This protocol extends the stream model to allow the manipulation

of a text cursor.

Manipulating the Cursor in CLIM

This protocol extends the stream model to allow manipulation of the cursor.

A CLIM stream has a text cursor position, which is the place on the drawing

plane where the next piece of text output will be drawn. Common Lisp stream out-

put operations place text at the cursor position and advance the cursor position

past the text. Certain CLIM output operations, such as clim:present and

clim:formatting-table, do the same. The CLIM draw functions, on the other hand,

pay no attention to the text cursor position.

Common Lisp stream input operations that echo, such as read-line, as well as

clim:accept, echo the input at the cursor position, and advance the cursor position.

Operators for Manipulating the Cursor�

clim:stream-cursor-position stream

Returns two values, the X and Y coordinates of the cursor position on

the drawing plane.

Page 1423

clim:stream-set-cursor-position stream x y

Moves the cursor position to the specified X and Y coordinates on the

drawing plane.

clim:stream-increment-cursor-position stream dx dy

Moves the cursor position on stream relatively, adding dx to the X coor-

dinate and adding dy to the Y coordinate. Either argument dx or dy can

be nil, which means not to change that coordinate.

clim:cursor

The protocol class that corresponds to a text cursor.

clim:cursor-position cursor

Returns the cursor position of cursor as two values (X and Y), relative to

the upper left corner of the sheet with which the cursor is associated.

clim:cursor-set-position cursor x y

Sets the cursor position of cursor to x and y, which are relative to the

upper left corner of the sheet with which the cursor is associated.

clim:cursor-visibility cursor

A convenience function that combines the functionality of both

clim:cursor-active and clim:cursor-state.

clim:cursor-sheet cursor

Returns the sheet with which cursor is associated.

Text Measurement Operations in CLIM

These functions compute the change in the cursor position that would occur if

some text were output (that is, without actually doing any output, and without

changing the cursor position).

Operators for Text Measurements�

clim:text-size medium string &key :text-style :start :end

Computes how the cursor position would move if the specified string or

character were output starting at cursor position (0,0). It does not take

into account the value of clim:stream-text-margin when computing the

size of the output.

clim:stream-character-width stream character &optional text-style

Returns the horizontal motion of the cursor position that would occur if

this character were output in this text-style. It does not take into account

the value of clim:stream-text-margin when computing the size of the

output.

clim:stream-string-width stream string &key :start :end :text-style

Computes how the cursor position would move horizontally if the speci-

fied string were output starting at the left margin. It does not take into

account the value of clim:stream-text-margin when computing the size

of the output.

Page 1424

clim:stream-line-height stream &optional text-style

Returns what the line height of a line containing text in that text-style

would be. text-style defaults to (clim:medium-text-style stream).

clim:stream-vertical-spacing stream

Returns the current inter-line spacing for the stream stream.

clim:stream-baseline stream

Returns the current text baseline for the stream stream.

clim:stream-text-margin stream

The X coordinate at which text wraps around (see clim:stream-end-of-

line-action). The default setting is the width of the viewport, which is

the right-hand edge of the viewport when it is horizontally scrolled all

the way to the left.

Attracting the User’s Attention in CLIM

CLIM supports the following operators for attracting the user’s attention:

clim:beep &optional (stream *standard-output*)

Attracts the user’s attention, usually with an audible sound.

clim:notify-user frame message &key :associated-window :title :exit-boxes :text-style�

:foreground :background :x-position :y-position

Notifies the user of some event on behalf of the application frame frame.

message is a message string.

Window Stream Operations in CLIM

It is sometimes useful to perform some window management operations directly on

a window.

Clearing and Refreshing the Drawing Plane in CLIM

CLIM supports the following operators for clearing and refreshing the drawing

plane:

clim:window-clear window

Clears the entire drawing plane of window, filling it with the back-

ground design, and discards the windows output history.

clim:window-erase-viewport window

Clears the visible part of the drawing plane of window, filling it with

the background design.

clim:window-refresh window

Clears the visible part of the drawing plane of window, and then replays

all of the output records in the visible part of the drawing plane.

Page 1425

The Viewport and Scrolling in CLIM

A window viewport is the region of the drawing plane that is visible through the

window. You can change the viewport by scrolling or by reshaping the window.

The viewport does not change if the window is covered by another window (that is,

the viewport is the region of the drawing plane that would be visible if the win-

dow were stacked on top).

A window stream has an end-of-line action and an end-of-page action, which con-

trol what happens when the cursor position moves out of the viewport (clim:with-

end-of-line-action and clim:with-end-of-page-action, respectively).

Viewport and Scrolling Operators�

clim:window-viewport-position window

Returns two values, the X and Y coordinates of the top-left corner of the

window’s viewport.

clim:window-set-viewport-position window x y

Moves the top-left corner of the window’s viewport. This is how you

scroll a window.

clim:note-viewport-position-changed frame pane x y

CLIM calls this function whenever a pane gets scrolled, whether it is

scrolled programmatically (by clim:window-set-viewport-position, for

example) or by a user gesture (such as clicking on a scroll bar).

clim:scroll-extent sheet x y

Scrolls the pane sheet in its viewport so that the position (x,y) of the

pane is at the upper-left corner of the viewport.

clim:window-viewport window

If the pane window is part of a scroller pane, this returns the region of

window’s viewport. Otherwise it returns the region of window itself.

clim:pane-viewport pane

If the pane pane is part of a scroller pane, this returns the viewport

pane for pane. Otherwise it returns nil.

clim:pane-viewport-region pane

If the pane pane is part of a scroller pane, this returns the region of

pane’s viewport. Otherwise it returns nil.

clim:stream-end-of-line-action stream

Controls what happens when the cursor position moves horizontally out

of the viewport (beyond the text margin). You can use setf on this to

change the end of line action.

clim:stream-end-of-page-action stream

Controls what happens when the cursor position moves vertically out of

the viewport. You can use setf on this to change the end of page action.

clim:with-end-of-line-action (stream action) &body body

Temporarily changes the end of line action for the duration of evaluation

of body.

Page 1426

clim:with-end-of-page-action (stream action) &body body

Temporarily changes the end of page action for the duration of evalua-

tion of body.

Functions for Operating on Windows Directly

You can use clim:open-window-stream to give you a CLIM window without incor-

porating it into a frame. First use clim:find-port to make a port to pass as the

:port argument. After calling clim:open-window-stream, call clim:window-expose

to make the resulting window stream visible.

Operators for Creating Ports and Frame Managers�

clim:find-port &rest initargs &key (:server-path clim:*default-server-path*) &al-

low-other-keys

Creates a port, a special object that acts as the ‘‘root’’ or ‘‘parent’’ of all

CLIM windows and application frames. In general, a port corresponds to

a connection to a display server. For making color windows under Gen-

era, use the :screen keyword in the server path argument to clim:find-

port and give it the argument color:color-screen.

clim:port object

Given a CLIM object object, clim:port returns the port associated with

object.

clim:destroy-port port

Destroys the connection to the display server represented by port.

clim:map-over-ports function

Applies function to all of the current ports.

clim:restart-port port

Restarts the event process that manages the port port.

clim:find-frame-manager &rest options &key :port (:server-path clim:*default-

server-path*) &allow-other-keys

Finds a frame manager that is on the port :port, or creates a new one if

none exists.

clim:frame-manager object

Given a CLIM object object, clim:frame-manager returns the frame man-

ager associated with object.

Operators for CLIM Primitive Layer for Window Streams�

clim:open-window-stream &key :port :frame-manager :left :top :right :bottom :width

:height :foreground :background :text-style (:vertical-spacing 2) (:end-of-line-

action :allow) (:end-of-page-action :allow) :output-record (:draw t) (:record

t) (:initial-cursor-visibility :off) :text-margin :default-text-margin :save-

under :input-buffer (:scroll-bars :vertical) :borders :label

Page 1427

A convenient interface for creating a CLIM window outside of an appli-

cation frame.

clim:window-parent window

Returns the window that is the parent (superior) of window.

clim:window-children window

Returns a list of all of the windows that are children (inferiors) of win-

dow.

clim:window-label window

Returns the label (a string) associated with window, or nil if there is

none.

clim:with-input-focus (stream) &body body

Temporarily gives the keyboard input focus to the given window (which

is most often an interactor pane). By default, a frame will give the input

focus to the clim:frame-query-io pane.

clim:stream-set-input-focus stream

Gives the input focus to stream, and returns as a value the stream or

sheet that previously had the input focus.

The following functions are most usefully applied to the top level window of a

frame. For example,

(clim:frame-top-level-sheet clim:*application-frame*) �

clim:window-expose window

Makes the window visible on the screen.

clim:window-stack-on-bottom window

Puts the window underneath all other windows that it overlaps.

clim:window-stack-on-top window

Puts the window on top of all other windows that it overlaps, so you can

see all of it.

clim:window-visibility stream

A predicate that returns true if the window is visible.

The following operators can be applied to a window to determine its position and

size.

clim:window-inside-edges window

Returns four values, the coordinates of the left, top, right, and bottom

inside edges of the window window.

clim:window-inside-left window

Returns the coordinate of the left edge of the window window.

clim:window-inside-top window

Returns the coordinate of the top edge of the window window.

Page 1428

clim:window-inside-right window

Returns the coordinate of the right edge of the window window.

clim:window-inside-bottom window

Returns the coordinate of the bottom edge of the window window.

clim:window-inside-size window

Returns the inside width and height of window as two values.

clim:window-inside-width window

Returns the inside width of window.

clim:window-inside-height window

Returns the inside height of window.

Hardcopy Streams in CLIM

CLIM supports hardcopy output through the macro clim:with-output-to-postscript-

stream:

clim:with-output-to-postscript-stream (stream-var file-stream &key :device-type

(:orientation :portrait) :multi-page :scale-to-fit :header-comments (:destina-

tion :printer)) &body body

Within body stream-var is bound to a stream that produces PostScript

code. This stream is suitable as a stream or medium argument to any

CLIM output utility. A PostScript program describing the output to the

stream-var stream will be written to stream.

clim:new-page stream

When called on a PostScript output stream, this causes a PostScript

‘‘newpage’’ command to be included in the output at the point clim:new-

page is called.

Example

This example writes a PostScript program which draws a square, a circle and a

triangle to a file named ICONS-OF-HIGH-TECH.PS.

Page 1429

(defun print-icons-of-high-tech-to-file ()

 (with-open-file (file-stream "icons-of-high-tech.ps"

 :direction :output)

 (clim:with-output-to-postscript-stream (stream file-stream)

 (let* ((x1 150) (y 250) (size 100)

 (x2 (+ x1 size))

 (radius (/ size 2))

 (base-y (+ y (/ (* size (sqrt 3)) 2))))

 (clim:draw-rectangle* stream

 (- x1 size) (- y size)

 x1 y)

 (clim:draw-circle* stream

 (+ x2 radius) (- y radius)

 radius)

 (clim:draw-triangle* stream

 (+ x1 radius) y

 x1 base-y

 x2 base-y)))))�

This example uses multi-page mode to draw a graph (by writing a PostScript pro-

gram to the file some-pathname) of the subclasses of the class clim:bounding-

rectangle.

(with-open-file (file some-pathname :direction :output)

 (clim:with-output-to-postscript-stream (stream file :multi-page t)

 (clim:format-graph-from-root (clos:find-class ’clim:bounding-rectangle)

 #’(lambda (object s)

 (write-string (string (clos:class-name object)) s))

 #’clos:class-direct-superclasses

 :stream stream)))�

You can then use standard system facilities to print the file, such as Genera’s

Hardcopy File or the Unix lpr command.

CLIM’s Windowing Substrate

Introduction to CLIM’s Windowing Substrate

One of the basic tasks in building user interfaces is allocating screen regions for

particular purposes and recursively subdividing these regions into subregions.

CLIM’s windowing layer defines an extensible framework for constructing, using,

and managing such hierarchies. This framework allows uniform treatment of the

following things:

• Window objects like those in X Windows.

• Lightweight gadgets typical of toolkit layers, such as Motif or OpenLook.

• Structured graphics like output records and presentations.�

Page 1430

From the perspective of most CLIM users, CLIM’s windowing layer plays the role

of a window system. However, CLIM actually uses the services of a window system

platform to provide efficient windowing, input, and output facilities.

The fundamental unit of windowing defined by CLIM is called a sheet. A sheet can

participate in a windowing relationship in which one sheet (the parent) provides

space to a number of other sheets (called children). Support for establishing and

maintaining this kind of relationship is the essence of what window systems pro-

vide.

Programmers can manipulate unrooted hierarchies of sheets (those without a con-

nection to any particular display server). However, a sheet hierarchy must be at-

tached to a display server to make it visible. Ports and grafts provide the function-

ality for managing this capability.

A port is a connection to a display service that is responsible for managing host

display server resources and for processing input events received from the host

display server.

A graft is a special kind of top-level sheet that represents a host window, typically

a root window (that is, a screen-level window). A sheet is attached to a display by

making it a descendant of a graft that represents the appropriate host window.

The sheet will then appear to be a child of that host window. So, a sheet is put

onto a particular screen by making it a child of an appropriate graft and enabling

it.

Basic Sheet Protocols

A sheet is the basic abstraction for implementing windows in CLIM. All sheets

have the following basic properties:

A coordinate system

Provides the ability to refer to locations in a sheet’s abstract

plane.

A region Defines an area within a sheet’s coordinate system that indi-

cates the area of interest within the plane, that is, a clipping

region for output and input. This typically corresponds to the

visible region of the sheet on the display.

A parent A sheet that is the parent in a windowing relationship in

which this sheet is a child.

Children An ordered set of sheets that are each a child in a windowing

relationship in which this sheet is a parent. The ordering of

the set corresponds to the stacking order of the sheets. Not all

sheets have children.

A transformation Determines how points in this sheet’s coordinate system are

mapped into points in its parent, if it has a parent.

An enabled flag Indicates whether the sheet is currently actively participating

in the windowing relationship with its parent and siblings.

Page 1431

An event handler A procedure invoked when the display server wishes to inform

CLIM of external events.

Output state A set of values used when CLIM causes graphical or textual

output to appear on the display. This state is often represented

by a medium.

clim:sheet

The protocol class that corresponds to a sheet.

clim:sheetp object

Returns t if and only if object is of type clim:sheet, otherwise returns

nil.

Furthermore, a sheet can participate in a number of protocols. Every sheet must

provide or inherit methods for the generic functions that make up these protocols,

or delegate some other sheet to handle the methods for it.

These protocols are:

The windowing protocol

Describes the relationships between the sheet and its parent

and children (and, by extension, all of its ancestors and de-

scendants).

The input protocol Provides the event handler for a sheet. Depending on the kind

of sheet, input events may be handled synchronously, asyn-

chronously, or not at all.

The output protocolProvides graphical and textual output, and manages descriptive

output state such as color, transformation, and clipping.

The repaint protocol

Invoked by the event handler and by user programs to ensure

that the output appearing on the display device appears as the

program expects it to appear.

The notification protocol

Invoked by the event handler and user programs to ensure that

CLIM’s representation of window system information is equiva-

lent to the display server’s.

Sheet Geometry Protocols

Every sheet has a region and a coordinate system. A sheet’s region refers to its

position and extent on the display device, and is represented by some sort of a re-

gion object, frequently a rectangle. A sheet’s coordinate system is represented by a

coordinate transformation that converts coordinates in its coordinate system to co-

ordinates in its parent’s coordinate system.

The following functions can be used to read or change the sheet’s region and

transformation:

Page 1432

clim:sheet-region sheet

Returns a region object that represents the set of points to which sheet

refers.

clim:sheet-device-region sheet

Returns a region object that describes the region that sheet occupies on

the display device. The coordinates are in the host’s native window coor-

dinate system.

clim:sheet-transformation sheet

Returns a transformation that converts coordinates in sheet’s coordinate

system into coordinates in its parent’s coordinate system.

clim:sheet-device-transformation sheet

Returns a transformation that converts coordinates in sheet’s coordinate

system into native coordinates on the display device.

clim:note-sheet-region-changed sheet

This function is invoked whenever the region of sheet is changed.

clim:note-sheet-transformation-changed sheet

This function is invoked whenever the transformation of sheet is

changed.

The following functions are more convenient interfaces used to change the region

or location of a sheet:

clim:move-sheet sheet x y

Moves sheet to the new position (x,y). x and y are in coordinates relative

to sheet’s parent.

clim:resize-sheet sheet width height

Changes the size of sheet to have width width and height height.

clim:move-and-resize-sheet sheet x y width height

Moves sheet to the new position (x,y), and simultaneously changes the

size of the sheet to have width width and height height. x and y are in

coordinates relative to sheet’s parent.

The following functions can be used to convert a position in the coordinate system

of one sheet to the coordinate system of a parent or child sheet:

clim:map-sheet-position-to-parent sheet x y

Applies sheet’s transformation to the point (x,y), returning the coordi-

nates of that point in sheet’s parent’s coordinate system.

clim:map-sheet-position-to-child sheet x y

Applies the inverse of sheet’s transformation to the point (x,y) (represent-

ed in sheet’s parent’s coordinate system), returning the coordinates of

that same point in sheet’s coordinate system.

The following functions can be used to map over the sheets that contain a given

position or region:

Page 1433

clim:map-over-sheets-containing-position function sheet x y

Applies function to all of the children of sheet containing the position

(x,y). x and y are expressed in sheet’s coordinate system.

clim:map-over-sheets-overlapping-region function sheet region

Applies function to all of the children of sheet overlapping the region re-

gion. region is expressed in sheet’s coordinate system.

Sheet Relationship Protocols

Sheets are arranged in a tree-shaped hierarchy. In general, a sheet has one parent

(or no parent) and zero or more children. A sheet may have zero or more siblings

(that is, other sheets that share the same parent).

The following terms are used to describe the relationships between sheets:

Adopted A sheet is said to be adopted if it has a parent. A sheet be-

comes the parent of another sheet by adopting that sheet.

Disowned A sheet is said to be disowned if it does not have a parent. A

sheet ceases to be a child of another sheet by being disowned.

Grafted A sheet is said to be grafted when it is part of a sheet hierar-

chy whose highest ancestor is a graft. In this case, the sheet

may be visible on a particular window server.

Degrafted A sheet is said to be degrafted when it is part of a sheet hier-

archy that cannot possibly be visible on a server, that is, the

highest ancestor is not a graft.

Enabled A sheet is said to be enabled when it is actively participating

in the windowing relationship with its parent. If a sheet is en-

abled and grafted, and all its ancestors are enabled (they are

grafted by definition), then the sheet will be visible if it occu-

pies a portion of the graft region that isn’t clipped by its an-

cestors or ancestor’s siblings.

Disabled The opposite of enabled.�

The following generic functions comprise the sheet protocol.

clim:sheet-parent sheet

Returns the sheet that is the parent of sheet, or nil if sheet has no par-

ent.

clim:sheet-children sheet

Returns a list of all of the sheets that are children of sheet.

clim:sheet-adopt-child sheet child

Adds the child sheet child to the set of children of sheet, and makes the

sheet the child’s parent. If child already has a parent, CLIM will signal

an error.

Page 1434

clim:sheet-disown-child sheet child &key (:errorp t)

Removes the child sheet child from the set of children of sheet, and

makes the parent of the child be nil.

clim:sheet-enabled-p sheet

Returns t if sheet is enabled by its parent, otherwise returns nil.

clim:map-over-sheets function sheet

Applies function to sheet, and then applies function to all of the descen-

dants of sheet.

Sheet Input Protocols

CLIM’s windowing substrate provides an input architecture and standard function-

ality for notifying clients of input that is distributed to their sheets. Input includes

such events as the pointer entering and exiting sheets, pointer motion, and pointer

button and keyboard events. At this level, input is represented as event objects.

In addition to handling input event, a sheet is also responsible for providing other

input services, such as controlling the pointer’s appearance, and polling for current

pointer and keyboard state.

Input events can be broadly categorized into pointer events and keyboard events.

By default, pointer events are dispatched to the lowest sheet in the hierarchy

whose region contains the location of the pointer. Keyboard events are dispatched

to the port’s keyboard input focus; the accessor clim:port-keyboard-input-focus

contains the event client that receives the port’s keyboard events.

Event objects and their accessors include:

clim:device-event

The superclass of all other CLIM device events.

clim:event-sheet event

Returns the window on which event occurred.

clim:event-modifier-state event

Returns the state of the keyboard’s shift keys when the event event oc-

curred.

clim:pointer-motion-event

The class that corresponds to the user moving the pointer.

clim:pointer-enter-event

The class that corresponds to the user moving the pointer into a sheet

from another sheet.

clim:pointer-exit-event

The class that corresponds to the user moving the pointer out of a sheet.

clim:pointer-button-press-event

The class that corresponds to the user pressing a button on the pointer.

Page 1435

clim:pointer-button-release-event

The class that corresponds to the user releasing a button on the pointer.

clim:pointer-event-x pointer-event

Returns the X position of the pointer when the pointer-event occurred.

clim:pointer-event-y pointer-event

Returns the Y position of the pointer when the pointer-event occurred.

clim:pointer-event-button pointer-button-event

Returns the button number that was pressed when the pointer button

event pointer-button-event occurred. The values this can take are

clim:+pointer-left-button+, clim:+pointer-middle-button+, or

clim:+pointer-right-button+.

clim:key-press-event

The class that corresponds to pressing a key on the keyboard.

clim:key-release-event

The class that corresponds to releasing a key on the keyboard.

clim:keyboard-event-key-name keyboard-event

Returns the name of the key that was pressed or released in order to

generate the keyboard event.

The following are the most useful functions in the sheet input protocol. These are

what you need to be aware of if you are writing your own classes of gadgets.

clim:handle-event sheet event

Handles the event event on behalf of sheet.

clim:queue-event sheet event

Inserts the event event into the queue of events for sheet.

clim:sheet-event-queue sheet

Returns the object that acts as the event queue.

For more information on gadgets, see the section "Using Gadgets in CLIM".

Sheet Output Protocols

The output protocol is concerned with the appearance of displayed output on the

window associated with a sheet. The sheet output protocol is responsible for pro-

viding a means of doing output to a sheet, and for delivering repaint requests to

the sheet’s client.

Each sheet maintains some output state that describes how output is to be ren-

dered on its window. Such information as the foreground and background ink, line

thickness, and transformation to be used during drawing are provided by this

state. This state may be stored in the medium associated with the sheet itself, or

it could be derived from a parent, or may have some global default, depending on

the sheet itself.

Page 1436

The following comprises the basic medium protocol. For more detail on this, see

the section "The CLIM Drawing Environment".

clim:medium

The protocol class that corresponds to a medium.

clim:mediump object

Returns t if and only if object is of type clim:medium, otherwise returns

nil.

clim:medium-foreground medium

Returns the current foreground design of the medium. You can use setf

on clim:medium-foreground to change the foreground design.

clim:medium-background medium

Returns the current background design of the medium. You can use setf

on clim:medium-background to change the background design.

clim:medium-ink medium

Returns the current drawing ink of the medium. You can use setf on

clim:medium-ink to change the current ink.

clim:medium-transformation medium

Returns the current transformation of the medium. You can use setf on

clim:medium-transformation to change the current transformation.

clim:medium-clipping-region medium

Returns the current clipping region of the medium. You can use setf on

clim:medium-clipping-region to change the clipping region.

clim:medium-line-style medium

Returns the current line style of the medium. You can use setf on

clim:medium-line-style to change the line style.

clim:medium-text-style medium

Returns the current text style of the medium. You can use setf on

clim:medium-text-style to change the current text style.

Before a sheet may be used for output, it must be associated with a medium. Some

sheets are permanently associated with mediums for output efficiency; for example,

CLIM stream panes have a medium that is permanently allocated to the window.

However, many kinds of sheets only perform output infrequently, and therefore do

not need to be associated with a medium except when output is actually required.

Sheets without a permanently associated medium can be more lightweight than

they otherwise would be. For example, in a program that creates a sheet for the

purpose of displaying a border for another sheet, the border sheet only needs to do

output only when the window’s shape is changed.

To associate a sheet with a medium, use the macro clim:with-sheet-medium. Only

sheets that support output may have a medium associated with them.

clim:sheet-medium sheet

Returns the medium associated with sheet.

Page 1437

clim:with-sheet-medium (medium sheet) &body body

Within the body, the variable medium is bound to sheet’s medium. If the

sheet does not have a medium permanently allocated, one will be allocat-

ed, associated with the sheet for the duration of the body, and deallocat-

ed as the when the body has been exited.

clim:medium-sheet medium

Returns the sheet with which the medium medium is associated.

clim:medium-drawable medium

Returns the host window system object (or ‘‘drawable’’) that is drawn on

by the CLIM drawing functions when they are called on medium.

Sheet Repainting Protocols

CLIM’s repainting protocol is the mechanism whereby a program keeps the display

up to date, reflecting the results of both synchronous and asynchronous events.

The repaint mechanism may be invoked by user programs each time through their

top-level command loop. It may also be invoked directly or indirectly as a result of

events received from the display server host. For example, if a window is on dis-

play with another window overlapping it, and the second window is buried, a

‘‘damage notification’’ event may be sent by the server; CLIM would cause a re-

paint to be executed for the newly-exposed region.

The following are the most useful functions in the repainting protocol. These are

what you need to be aware of if you are writing your own classes of gadgets.

clim:handle-repaint sheet region

Implements repainting for a given sheet class.

clim:queue-repaint sheet repaint-event

Inserts the repaint event repaint-event into sheet’s event queue.

clim:repaint-sheet sheet region

Causes sheet and all of its descendants that overlap the region region to

be repainted.

Ports and Mirrored Sheets

A sheet hierarchy must be attached to a display server so as to permit input and

output. This is managed by the use of ports and grafts.

A port is a connection to a display server. It is responsible for managing display

output and server resources, and for handling incoming input events. Typically, the

programmer will create a single port that will manage all of the windows on its

associated display.

A graft is a special sheet that is directly connected to a display server. A graft is

the CLIM sheet that represents the root window of the display. CLIM manages

grafts invisibly, so you do not need to worry about grafts except to be aware of

their existence.

Page 1438

To display a sheet on a display, it must have a graft for an ancestor. In addition,

the sheet and all of its ancestors must be enabled, including the graft. In general,

a sheet becomes grafted when it (or one of its ancestors) is adopted by a graft.

A mirrored sheet is a special class of sheet that is attached directly to a window on

a display server. Grafts, for example, are always mirrored sheets. However, any

sheet anywhere in a sheet hierarchy may be a mirrored sheet. A mirrored sheet

will usually contain a reference to a window system object, called a mirror. For

example, a mirrored sheet ‘‘attached’’ to a machine running Genera will have a

Genera window system object stored in one of its slots. Allowing mirrored sheets

at any point in the hierarchy enables the adaptive toolkit facilities; for example, in

Motif, scroll bars, sliders, push buttons, and so on, are all mirrored.

Since not all sheets in the hierarchy have mirrors, there is no direct correspon-

dence between the sheet hierarchy and the mirror hierarchy. However, on those

display servers that support hierarchical windows, the hierarchies must be parallel.

If a mirrored sheet is an ancestor of another mirrored sheet, their corresponding

mirrors must have a similar ancestor/descendant relationship.

CLIM interacts with mirrors when it must display output or process events. On

output, the mirrored sheet closest in ancestry to the sheet on which we wish to

draw provides the mirror on which to draw. The mirror’s drawing clipping region

is set up to be the intersection of the user’s clipping region and the sheet’s region

(both transformed to the appropriate coordinate system) for the duration of the

output. On input, events are delivered from mirrors to the sheet hierarchy. The

CLIM port must determine which sheet shall receive events based on information

such as the location of the pointer.

In both of these cases, we must have a coordinate transformation that converts co-

ordinates in the mirror (so-called ‘‘native’’ coordinates) into coordinates in the

sheet and vice-versa.

The following readers are useful when dealing with mirrored sheets:

clim:sheet-mirror sheet

Returns the host window that is used to display sheet.

clim:sheet-device-region sheet

Returns a region object that describes the region that sheet occupies on

the display device. The coordinates are in the host’s native window coor-

dinate system.

clim:sheet-device-transformation sheet

Returns a transformation that converts coordinates in sheet’s coordinate

system into native coordinates on the display device.

A port is described with a server path, which is a list whose first element is a

keyword that selects the kind of port. The remainder of the server path is a list of

alternating keywords and values whose interpretation is port type-specific.

The following functions are useful in creating and dealing with ports.

Page 1439

clim:find-port &rest initargs &key (:server-path clim:*default-server-path*) &al-

low-other-keys

Creates a port, a special object that acts as the ‘‘root’’ or ‘‘parent’’ of all

CLIM windows and application frames. In general, a port corresponds to

a connection to a display server. For making color windows under Gen-

era, use the :screen keyword in the server path argument to clim:find-

port and give it the argument color:color-screen.

clim:port object

Given a CLIM object object, clim:port returns the port associated with

object.

clim:map-over-ports function

Applies function to all of the current ports.

clim:port-name port

Returns the name of the port as a string.

clim:port-type port

Returns the type of the port, that is, the first element of the server path

specification.

clim:port-server-path port

Returns the server path associated with the port.

clim:restart-port port

Restarts the event process that manages the port port.

clim:destroy-port port

Destroys the connection to the display server represented by port.

The clim-sys Package

CLIM provides a number of useful ‘‘system-like’’ facilities, including multi-

processing, locks, and resources. The operators for these facilities are all in the

clim-sys package.

Resources in CLIM

CLIM provides a facility called resources that provides for reusing objects. A re-

source describes how to construct an object, how to initialize and deinitialize it,

and how an object should be selected from the resource of objects based on a set

of parameters.

clim-sys:defresource name parameters &key :constructor :initializer :deinitializer

:matcher :initial-copies

Defines a resource named name. parameters is a lambda-list giving

names and default values (for optional and keyword parameters) of pa-

rameters to an object of this type.

Page 1440

clim-sys:using-resource (variable resource &rest parameters) &body body

The forms in body are evaluated with variable bound to an object allocat-

ed from the resource named name, using the parameters given by param-

eters.

clim-sys:allocate-resource name &rest parameters

Allocates an object from the resource named name, using the parameters

given by parameters.

clim-sys:deallocate-resource name object &optional allocation-key

Returns the object object to the resource named name.

clim-sys:clear-resource resource

Clears the resource named name, that is, removes all of the resourced

objects from the resource.

clim-sys:map-resource function resource

Calls function once on each object in the resource named name.

Multi-processing in CLIM

Most Lisp implementations provide some form of multi-processing. CLIM provides

a set of functions that implement a uniform interface to the multi-processing

functionality. Using these functions provides a higher degree of portability for your

CLIM applications that use multi-processing.

Important note: CLIM currently does not guard against multiple processes doing

I/O on sheets, streams, mediums, and so forth. If you have an application that has

multiple processes doing I/O onto the same output device, you must manage these

processes and any locking issues yourself.See the section "Locks in CLIM".

clim-sys:*multiprocessing-p*

The value of this variable is t if the current Lisp environment supports

multi-processing, otherwise it is nil.

clim-sys:make-process function &key :name

Creates a process named name. The new process will evaluate the func-

tion function.

clim-sys:processp object

Returns t if object is a process, otherwise returns nil.

clim-sys:destroy-process process

Terminates the process process.

clim-sys:current-process

Returns the currently running process, which will be a process object.

clim-sys:all-processes

Returns a sequence of all of the currently running processes.

clim-sys:process-name process

Returns the name of the process process.

Page 1441

clim-sys:process-wait wait-reason predicate

Causes the current process to wait until predicate returns a non-nil val-

ue. predicate is a function of no arguments. reason is a ‘‘reason’’ for

waiting, usually a string.

clim-sys:process-wait-with-timeout wait-reason timeout predicate

Causes the current process to wait until either predicate returns a

non-nil value or the number of seconds specified by timeout has elapsed.

predicate is a function of no arguments. reason is a ‘‘reason’’ for waiting,

usually a string.

clim-sys:process-yield

Allows other processes to run. On systems that do not support multi-

processing, this does nothing.

clim-sys:process-interrupt process function

Interrupts the process process and causes it to evaluate the function

function.

clim-sys:disable-process process

Disables the process process, that is, prevents it from becoming runnable

until it is enabled again.

clim-sys:enable-process process

Allows the process process to become runnable again after it has been

disabled.

clim-sys:restart-process process

Restarts the process process by ‘‘unwinding’’ it to its initial state, and

reinvoking its top-level function.

clim-sys:without-scheduling &body forms

Evaluates body in a context that is guaranteed to be free from interrup-

tion by other processes.

Locks in CLIM

A lock is a software construct used for synchronization of two processes. A lock

protects some resource or data structure so that only one process at a time can

use it. A lock is either held by some process, or is free. When a process tries to

seize a lock, it waits until the lock is free, and then it becomes the process hold-

ing the lock. When it is finished, it unlocks the lock, allowing some other process

to seize it.

CLIM provides a portable interface to the locking primitives provided by most Lisp

platforms. Using this interface provides a higher degree of portability for your

CLIM applications that use locks.

clim-sys:make-lock &optional (lock-name "a CLIM lock")
Creates a lock whose name is name. name is a string.

Page 1442

clim-sys:with-lock-held (place &optional state) &body forms

Evaluates body while holding the lock named by place.

clim-sys:make-recursive-lock &optional (lock-name "a recursive CLIM lock")
Creates a recursive lock whose name is name.

clim-sys:with-recursive-lock-held (place &optional state) &body forms

Evaluates body while holding the recursive lock named by place.

CLIM Dictionary

Dictionary of CLIM Operators

clim:abort-gesture Condition

CLIM signals an clim:abort-gesture condition whenever it reads an abort gesture

from the user. For example, on Genera clim:read-gesture will signal this condition

if the user presses the ABORT key.

See the macro clim:catch-abort-gestures.

clim:abort-gesture-event abort-gesture Generic Function

Returns the event object that caused the abort gesture condition, abort-gesture, to

be signalled. The event will usually be a clim:key-press-event object.

clim:*abort-gestures* Variable

A list of gestures that cause CLIM to abort out of the current input.

When clim:stream-read-gesture reads a character, it checks to see if it is one of

gestures in clim:*abort-gestures*. If it is, CLIM signals a condition of type

clim:abort-gesture.

clim:*abort-menus-when-buried* Variable

Indicates whether or not CLIM should abort out of menus when they are ‘‘buried’’.

When clim:*abort-menus-when-buried* is t, clim:menu-choose and clim:menu-

choose-from-drawer return nil for all their values, if the menu is aborted by

burying it. When nil, the menu will await reexposure to become active again.

clim:accelerator-gesture Condition

CLIM signals an clim:accelerator-gesture condition whenever it reads an accelera-

tor gesture from the user. If you use clim:read-command-using-keystrokes, CLIM

will handle this condition transparently.

Page 1443

clim:*accelerator-gestures* Variable

A list of gestures that CLIM will treat as keystroke accelerators when reading

commands.

When clim:stream-read-gesture reads a character, it checks to see if it is one of

gestures in clim:*accelerator-gestures*. If it is, CLIM signals a condition of type

clim:accelerator-gesture.

clim:accelerator-gesture-event accelerator-gesture Generic Function

Returns the event object that caused the accelerator gesture condition, accelerator-

gesture, to be signalled. The event will usually be a clim:key-press-event object.

clim:accelerator-gesture-numeric-argument accelerator-gesture Generic Function

Returns the numeric argument associated with the accelerator gesture condition,

accelerator-gesture. If the user did not supply a numeric argument explicitly, this

will return 1.

clim:accept type &rest accept-args &key (:stream *standard-input*) (:view

(clim:stream-default-view stream)) :default (:default-type type) (:history type) :pro-

vide-default (:prompt t) (:prompt-mode ’:normal) (:display-default prompt) :query-

identifier :activation-gestures :additional-activation-gestures :delimiter-gestures :addi-

tional-delimiter-gestures :insert-default (:replace-input t) (:active-p t) Function

Requests input of the type from the stream. clim:accept returns two values (or

three values when inside of a call to clim:accepting-values), the object and its

presentation type. clim:accept works by prompting, then establishing an input con-

text via clim:with-input-context, and then calling the clim:accept presentation

method for type and :view.

For more information on using clim:accept, see the section "Using CLIM Presen-

tation Types for Input".

Note that clim:accept does not insert newlines. If you want to put prompts on sep-

arate lines, especially in dialogs, use terpri to separate the calls to clim:accept.

type A presentation type specifier. type may be an presentation type ab-

breviation. See the section "How to Specify a CLIM Presentation

Type". See the section "Predefined Presentation Types in CLIM".

stream

Specifies the input stream, and defaults to *standard-input*.

:view

An object representing a view. The default is (clim:stream-default-

view stream). For most streams, the default view is the textual

view, clim:+textual-view+. For dialog streams (that is, within

clim:accepting-values), the view will typically be either

clim:+textual-dialog-view+ or clim:+gadget-dialog-view+.

Page 1444

:default Specifies the object to be used as the default value for this call to

clim:accept. If this keyword is not supplied and :provide-default is t,

then the default is determined by taking the most recent item from

the presentation type history specified by the :history argument. If

:default is supplied and the input provided by the user is empty,

then :default and :default-type are returned as the two values from

clim:accept.

:default-type

If :default is supplied and the input provided by the user is empty,

then :default and :default-type are returned as the two values from

clim:accept. This defaults to type.

:history Specifies which presentation type’s history to use for the default

value for :default and for the input editor’s yanking commands. The

default is to use the history for type. If :history is nil, no history is

used.

:provide-default

Specifies whether or not to provide a default value for this call to

clim:accept if :default is not supplied.

:prompt If :prompt is t, the prompt is a description of the type. If :prompt is

nil, prompting is suppressed. If it is a string, the string is displayed

as the prompt. The default is t, which produces "Enter a type:" in a

top-level clim:accept or "(type)" in a nested clim:accept.

:prompt-mode

Can be :normal, the default, or :raw, which suppresses putting a

colon after the prompt in a top-level call to clim:accept and sup-

presses putting parentheses around the prompt in a nested call to

clim:accept. In general, you will only use :prompt-mode in nested

calls to clim:accept within a clim:accept method.

:display-default

When t, displays the default as part of the prompt, if one was sup-

plied. When nil, the default is not displayed. :display-default de-

faults to t if there was a prompt, otherwise it defaults to nil. In

general, you will only use :display-default in nested calls to

clim:accept within a clim:accept method.

:query-identifier

This option is used to supply a unique identifier for each call to

clim:accept inside clim:accepting-values. Outside of a call to

clim:accepting-values, :query-identifier has no effect. See the sec-

tion "Menus and Dialogs in CLIM".

:activation-gestures

A list of gestures that overrides the current activation gestures,

which terminate input. See the section "Input Editing and Built-in

Keystroke Commands in CLIM".

Page 1445

:additional-activation-gestures

A list of gestures that add to the activation gestures without over-

riding the current ones. See the section "Input Editing and Built-in

Keystroke Commands in CLIM".

:delimiter-gestures

A list of gestures that overrides the current delimiter gestures,

which terminate an individual token but not the entire input sen-

tence. You will generally only use this when you are writing a

clim:accept method that will read multiple fields. See the section

"Input Editing and Built-in Keystroke Commands in CLIM".

:additional-delimiter-gestures

A list of gestures that add to the delimiter gestures without over-

riding the current ones. See the section "Input Editing and Built-in

Keystroke Commands in CLIM".

:insert-default

When t, inserts the default determined by the values of :default and

:provide-default into the input buffer. The default is nil.

:replace-input

When t (the default) and the call to clim:accept was satisfied by

clicking on something with the pointer, CLIM uses

clim:presentation-replace-input to insert the input into the input

buffer.

:active-p When t (the default), the call to clim:accept will be considered

‘‘active’’ for input. When nil, clim:accept will simply return the

values of :default and :default-type without actually asking the user

for any input. You can use this option to have fields in an

clim:accepting-values dialog that are visible, but not active for in-

put.

clim:accept type-key parameters options type stream view &key :default :default-type

&allow-other-keys Clim Presentation Method

This presentation method is responsible for ‘‘parsing’’ the representation of type

for a particular view view on the stream stream. The clim:accept method should

return a single value, the object that was ‘‘parsed’’, or two values, the object and

its type (a presentation type specifier). The method’s caller takes care of establish-

ing the input context, defaulting, prompting, and input editing.

:default and :default-type are the same as they are for clim:accept.

The method must specify &key, but need only receive the keyword arguments that

it is interested in. The remaining keyword arguments will be ignored automatically

since the generic function specifies &allow-other-keys.

The clim:accept method can specialize on the view argument in order to define

more than one input view for the data. In particular, the clim:accept method spe-

cializing on the class clim:textual-view must be defined if the programmer wants

Page 1446

to allow the type to be used via the keyboard. CLIM uses the view argument to

generate gadget fields within clim:accepting-values.

clim:accept presentation methods can also call clim:accept recursively. Such

methods should be careful to call clim:accept with :prompt nil and :display-

default nil, unless nested prompting is really desired.

For more information on defining presentation types, see the section "Defining a

New Presentation Type in CLIM". CLIM offers a number of other functions that

are useful within clim:accept methods. See the section "Utilities for clim:accept

Presentation Methods".

clim:accept-from-string type string &key (:view clim:+textual-view+) :default (:de-

fault-type type) :activation-gestures :additional-activation-gestures :delimiter-gestures

:additional-delimiter-gestures (:start 0) :end Function

Reads the printed representation of an object of type type from string. This func-

tion is similar to clim:accept, except that the input is taken from string, starting

at :start, and ending at :end. :view, :default, :default-type, :activation-gestures, :addi-

tional-activation-gestures, :delimiter-gestures, and :additional-delimiter-gestures are

used as they are for clim:accept. This function is analogous to read-from-string.

clim:accept-from-string returns three values: the object, its presentation type, and

the index in string of the next character after the input.

If :default is supplied, then the values of :default and :default-type are returned

when the input string is empty.

clim:accept-present-default type-key parameters options type stream view default

default-supplied-p present-p query-identifier &key (:prompt t) (:active-p t) &allow-

other-keys Clim Presentation Method

This presentation method is called by clim:accept, which (in effect) turns into

clim:present inside of clim:accepting-values. The default method calls

clim:present or clim:describe-presentation-type depending on whether default-

supplied-p is t or nil.

type, stream, view, default, query-identifier, :prompt, and :active-p are as for

clim:accept. default-supplied-p will be t if and only if the :default argument was

explicitly supplied to the call to clim:accept.

clim:accept-values-command-button ((&optional stream &key :documentation

:query-identifier (:cache-value t) (:cache-test #’eql) :view :resynchronize) prompt &body

body) Function

Displays prompt on stream and creates an area (the ‘‘button’’) which, when the

pointer is clicked within it, causes body to be evaluated. This function can only be

used within the clim:accepting-values form. stream defaults to *standard-input*.

Page 1447

prompt A constant string, a compile-time constant that evaluates to a

string, or a form which is used to draw the contents of the ‘‘but-
ton’’.

:documentation

An object that will be used to produce pointer documentation for

the command button. If the object is a string, the string itself will

be used as the documentation. Otherwise, it must be a function of

one argument, the stream to which the documentation will be writ-

ten. The default is prompt.

:query-identifier

A query identifier that uniquely identifies the command button.

This option is the same as it is for clim:accept within

clim:accepting-values.

:view A view object, used to select how the button will appear. Some

frame managers will use a clim:push-button gadget for the com-

mand button.

:cache-value

A value that remains constant if the output produced by body does

not need to be recomputed. :cache-value is used by an internal call

to clim:updating-output.

:cache-testA function of two arguments that is used for comparing cache val-

ues. :cache-test is used by an internal call to clim:updating-output.

:resynchronize

When this is t, the dialog is redisplayed on additional time whenev-

er the command button is clicked on. See the :resynchronize-every-

pass argument to clim:accepting-values for more information.

See the section "Examples of Menus and Dialogs in CLIM".

clim:accept-values-command-parser command-name command-table stream partial-

command &key :own-window Function

Reads the remaining arguments of a partially filled-in command on behalf of an

application frame’s command loop by getting input via a dialog. User programs

should not call this function explicitly, but should rather bind clim:*partial-

command-parser* to it.

clim:command-line-read-remaining-arguments-for-partial-command uses this

function when the unsupplied arguments are in the middle of the command line

rather than at the very end of the command line.

clim:accept-values-pane Class

The pane class that is used to implement modeless clim:accepting-values dialog

panes. It corresponds to the pane type abbreviation :accept-values in the :panes

clause of clim:define-application-frame.

Page 1448

See the section "Using the :panes Option to clim:define-application-frame" and
see the section "Menus and Dialogs in CLIM".

clim:accept-values-pane Clim Command Table

When you use an clim:accept-values pane as one of the panes in a clim:define-

application-frame, you must inherit from this command table in order to get the

commands that operate on the dialog.

clim:accept-values-pane-displayer frame pane &key :displayer :resynchronize-every-

pass (:check-overlapping t) :align-prompts :max-height :max-width Function

When you use an :accept-values pane, the display function must use clim:accept-

values-pane-displayer. See the section "Using an :accept-values Pane in a CLIM

Application Frame".

:displayer is a function that is the body of an clim:accepting-values dialog. It

takes two arguments, the frame and a stream. The display function should not call

clim:accepting-values itself, since that is done by clim:accept-values-pane-

displayer.

The :resynchronize-every-pass, :check-overlapping, and :align-prompts argument are

the same as they are for clim:accepting-values.

:max-height and :max-width are used to constraint the maximum size of the dialog

within the pane. They are typically used only when CLIM is composing layout of

the entire application frame.

See the section "Examples of CLIM Application Frames".

clim:accepting-values (&optional stream &key :frame-class :command-table :own-

window :exit-boxes :align-prompts :initially-select-query-identifier :modify-initial-query

:resynchronize-every-pass (:check-overlapping t) :label :x-position :y-position :width

:height :scroll-bars :text-style :foreground :background) &body body Macro

Builds a dialog for user interaction based on calls to clim:accept on the stream

stream within its body. The user can select the values and change them, or use de-

faults if they are supplied. The dialog will also contain ‘‘Abort’’ and ‘‘End’’ choic-

es. If the ‘‘End’’ choice is selected then clim:accepting-values returns whatever

values the body returns. If the ‘‘Abort’’ choice is selected, clim:accepting-values

will invoke the conditions:abort restart. Callers of clim:accepting-values may

want to use conditions:restart-case or conditions:with-simple-restart in order to

locally establish a conditions:abort restart.

stream The stream clim:accepting-values will use to build up the dialog.

When stream is t, that means *standard-input*.

body The body of the macro, which contains calls to clim:accept that

will be intercepted by clim:accepting-values and used to build up

the dialog.

Page 1449

:frame-class

The type of dialog frame to create. The default is to use CLIM’s

‘‘usual’’ dialog class (either clim:accept-values or clim:accept-

values-own-window). This option allows you to specialize the

clim:accept-values class, and to customize some of the behavior of

dialogs.

:own-window

When :own-window is t, the dialog will appear in its own ‘‘popped-
up’’ window. In this case the initial value of stream is a window

with which the dialog is associated. This is similar to the

:associated-window argument to clim:menu-choose. Within the

body, the value of stream will be the ‘‘popped-up’’ window.

The value of :own-window can be nil, t, or a list of alternating key-

word options and values. The accepted options are :right-margin

and :bottom-margin; their values control the amount of extra space

to the right of and below the dialog (useful if the user’s responses

to the dialog take up more space than the initially displayed de-

faults). The allowed values for :right-margin are the same as for

the :x-spacing option to clim:formatting-table; the allowed values

for :bottom-margin are the same as for the :y-spacing option to

clim:formatting-table.

:exit-boxesAllows you to specify what the exit boxes should look like. The de-

fault behavior in Genera is as though you specified the following:

’((:exit "<End> uses these values")

 (:abort "<Abort> aborts"))�

See the generic function clim:display-exit-boxes.

:align-prompts

When t, CLIM formats the dialogs so that all of the prompts are

right-aligned in a vertical stack, and all of the input fields are left-

aligned in a stack just to the right of the prompts. This can some-

times make for more attractive dialogs. The default is nil.

:initially-select-query-identifier

Specifies that a particular field in the dialog should be pre-selected

when the user interaction begins. The field to be selected is tagged

by the :query-identifier option to clim:accept; use this tag as the

value for the :initially-select-query-identifier option, as shown in the

following example:

Page 1450

(defun simple-dialog ()

 (let (a b c)

 (clim:accepting-values

(*query-io* :initially-select-query-identifier ’the-tag)

 (setq a (clim:accept ’pathname :prompt "A pathname"))

 (terpri *query-io*)

 (setq b (clim:accept ’integer :prompt "A number"

 :query-identifier ’the-tag))

 (terpri *query-io*)

 (setq c (clim:accept ’string :prompt "A string")))

 (values a b c)))

�

When the initial display is output, the input editor cursor appears

after the prompt of the tagged field, just as if the user had selected

that field by clicking on it. The default value, if any, for the select-

ed field is not displayed.

:modify-initial-query

When :initially-select-query-identifier is supplied and :modify-initial-

query is t, the initially selected field will be selected in a ‘‘modify’’

mode. That is, the input buffer will contain the default for the field,

and the user can then edit it.

:resynchronize-every-pass

A boolean option specifying whether earlier queries depend on later

values; the default is nil.

When :resynchronize-every-pass is t, the contents of the dialog are

redisplayed an additional time after each user interaction. This has

the effect of ensuring that, when the value of some field of a dialog

depends on the value of another field, all of the displayed fields will

be up to date.

You can use this option to dynamically alter the dialog. The follow-

ing is a simple example. It initially displays an integer field that

disappears if a value other than 1 is entered; in its place a two-field

display appears.

(defun alter-multiple-accept ()

 (let ((flag 1))

 (clim:accepting-values (*query-io*

 :resynchronize-every-pass t)

 (setq flag (clim:accept ’integer

 :default flag :prompt "Number"))

 (when (= flag 1)

(terpri *query-io*)

(clim:accept ’string :prompt "String")

(terpri *query-io*)

(clim:accept ’pathname :prompt "Pathname")))))

�

Page 1451

As the example shows, to use this option effectively, the controlling

variable(s) must be initialized outside the lexical scope of the

clim:accepting-values macro.

:label Allows you to specify a label in :own-window t dialogs. This is just

like the :label option to clim:menu-choose.

:x-position and :y-position

Allow you to specify where an :own-window t dialog will come up.

By default, the dialog will come up ‘‘near’’ the current position of

the pointer. These are just like the options of the same name to

clim:menu-choose.

:text-style The default text style to use for the dialog.

:foreground and :background

These specify the default foreground and background for :own-

window t dialogs. These default from the associated window.

:scroll-bars

This can be nil, :none, :horizontal, :vertical, or :both. This speci-

fies whether or not there are scroll bars for :own-window t dialogs.

The default is :vertical.

Note: you must specify either a unique prompt or a query-identifier for each

clim:accept form within an clim:accepting-values form; otherwise, there will be

no way that the dialog can identify which clim:accept form is being run.

See the section "Examples of Menus and Dialogs in CLIM".

clim:action-gadget Class

The class used by gadgets that perform some kind of action, such as a push but-

ton; a subclass of clim:basic-gadget.

All subclasses of clim:action-gadget must handle the :activate-callback initarg,

which is used to specify the activate callback of the gadget. The activate callback

is nil or a function of one argument, the gadget.

clim:activate-callback gadget client id Generic Function

This callback is invoked when the gadget is activated.

The default method (on clim:action-gadget) calls the function specified by the

:activate-callback initarg with one argument, the gadget.

See the section "Using Gadgets in CLIM".

clim:activate-gadget gadget Generic Function

Causes the gadget to become active, that is, available for input. The function

clim:note-gadget-activated is called whenever the gadget is made active.

Page 1452

clim:activation-gesture-p gesture Function

Returns t if gesture is a currently active activation gesture.

clim:*activation-gestures* Variable

A list containing the gesture names of the currently active activation gestures.

clim:add-command-to-command-table command-name command-table &key :name

:menu :keystroke (:errorp t) Function

Adds the command named by command-name to the command table command-table.

command-table may be either a command table or a symbol that names a command

table. The keyword arguments are:

:name The command-line name for the command, which can be nil, t, or a

string. When it is nil, the command will not be available via com-

mand-line interactions. When it is a string, that string is the com-

mand-line name for the command. When it is t, the command-line

name is generated automatically by calling clim:command-name-

from-symbol.

For the purposes of command-line name lookup, the character case

of name is ignored.

:menu A command menu item for the command, which can be nil, t, a

string, or a cons. When it is nil, the command will not be available

via menus. When it is a string, the string will be used as the menu

name. When it is t, an automatically generated menu name will be

used. When it is a cons of the form (string . menu-options), then

string is the menu name and menu-options consists of keyword-value

pairs. The valid keywords are :after and :documentation, which are

interpreted as for clim:add-menu-item-to-command-table.

:keystroke The value for keystroke is either a standard character, a gesture

spec, or nil. When it is a character or gesture spec, it is the

keystroke accelerator for the command; otherwise the command will

not be available via keystroke accelerators.

:errorp If the command is already present in the command table and :errorp

is t, the clim:command-already-present condition will be signalled.

When the command is already present in the command table and

:errorp is nil, then the old command will first be removed from the

command table.

See the section "CLIM Command Tables".

clim:add-gesture-name name type gesture-spec &key (:unique t) Function

Page 1453

Adds a gesture named by the symbol name to the set of gesture names. type is the

type of gesture being created, and must be one of the symbols described below.

gesture-spec specifies the physical gesture that corresponds to the named gesture;

its syntax depends on the value of type.

If :unique is t, an error is signalled if there is already a gesture named gesture-

name. The default is nil.

When type is :keyboard, gesture-spec is a list of the form (key-name . modifier-key-

names). key-name is the name of a non-modifier key on the keyboard (see below).

modifier-key-names is a (possibly empty) list of modifier key names in the set

:shift, :control, :meta, :super or :hyper.

For the standard Common Lisp characters (the 95 ASCII printing characters in-

cluding #\Space), key-name is the character object itself. For the other ‘‘semi-

standard’’ characters, key-name is a keyword symbol naming the character

(:newline, :linefeed, :return, :tab, :backspace, :page, and :rubout).

When type is :pointer-button, gesture-spec is a list of the form (button-name . mod-

ifier-key-names). button-name is the name of a pointer button (:left, :middle, or

:right), and modifier-key-names is as above.

See the section "Gestures and Gesture Names in CLIM".

clim:add-keystroke-to-command-table command-table keystroke type value &key

:documentation (:errorp t) Function

Adds a keystroke accelerator to the command-table.

command-table

Either a command table or a symbol that names a command table.

keystroke A gesture spec that specifies the accelerator gesture. For applica-

tions that have an interactor pane, this will typically correspond to

a non-printing character, such as control-D, whose gesture spec is

(:D :control). For applications that do not have an interactor pane,

keystroke can correspond to a standard printing character as well,

such as #\X.

type When type is :command, value must be a command (a cons of a

command name followed by a list of the command’s arguments), or

a command name. (When value is a command name, it behaves as

though a command with no arguments was supplied.) In the case

where all of the command’s required arguments are supplied, typing

the keystroke invokes the command immediately. Otherwise, the

user will be prompted for the remaining required arguments.

value Meaning depends on the value of type, as described above.

:documentation

A documentation string, which can be used as documentation for

the keystroke accelerator.

Page 1454

:errorp If the command menu item associated with keystroke is already

present in the command table’s accelerator table and :errorp is t,

then the clim:command-already-present condition will signalled.

When the item is already present in the command table’s accelera-

tor table and :errorp is nil, the old item will first be removed.

The following example creates a keystroke accelerator for the com-next-frame on

control-N.

(define-debugger-command (com-next-frame :name t)

 ((nframes ’integer

 :default 1

 :prompt "number of frames"))

 (next-frame :nframes nframes))

�

(clim:add-keystroke-to-command-table

 ’debugger ’(:n :control) :command ’(com-next-frame 1))�

See the section "CLIM’s Keystroke Interaction Style".

clim:add-menu-item-to-command-table command-table string type value &key :doc-

umentation (:after ’:end) :keystroke :text-style (:errorp t) Function

Adds a command menu item to command-table’s menu. The arguments are:

command-table

Either a command table or a symbol that names a command table.

string The name of the command menu item. The character case of string

is ignored. This is how the item will appear in the menu.

type One of: :command, :function, :menu, or :divider. When type is

:command, value must be a command (a cons of a command name

followed by a list of the command’s arguments), or a command

name. (When value is a command name, it behaves as though a

command with no arguments was supplied.) In the case where all of

the command’s required arguments are supplied, clicking a com-

mand menu item invokes the command immediately. Otherwise, the

user will be prompted for the remaining required arguments.

When type is :menu, this item indicates that a sub-menu will be in-

voked, and so value should be another command table or the name

of another command table.

When type is :function, value is a function of two arguments (the

gesture and the accumulated numeric argument) that is called to

generate a command object.

When type is :divider, some sort of a dividing line is displayed in

the menu at that point. If the look-and-feel provided by the underly-

ing window system has no corresponding concept, :divider items

may be ignored. value is ignored. If string is a string, it will be

Page 1455

used as the divider. Otherwise, string is only useful insofar as other

calls to clim:add-menu-item-to-command-table may use it when

:after is supplied.

value Meaning depends on the value of type, as described above.

:documentation

A documentation string, which can be used as mouse documentation

for the command menu item.

:after States where the command menu item should appear in the menu:

either :start, :end, nil, a string, or :sort. :start means to add the

new item to the beginning of the menu. A value of :end (the de-

fault) or nil means to add the new item to the end of the menu. A

string naming an existing entry means to add the new item after

that entry. If :after is :sort, then the item is inserted in such a

way as to maintain the menu in alphabetical order.

:keystroke If supplied, the command menu item will be added to the command

table’s keystroke accelerator table. The value of :keystroke must be

a Common Lisp standard character or a gesture spec. This is exact-

ly equivalent to calling clim:add-keystroke-to-command-table with

the arguments command-table, keystroke, type, and value. When

:keystroke is supplied and type is :command, typing the accelerator

gesture will invoke the command specified by value. When type is

:menu, the command will continue to be read from the sub-menu

indicated by value in a window system specific manner.

:text-style Allows you to specify the text style for any particular menu item.

:errorp If the item named by string is already present in the command ta-

ble’s menu and :errorp is t, then the clim:command-already-

present condition will be signalled. When the item is already

present in the command table’s menu and :errorp is nil, the old

item will first be removed from the menu.

See the section "CLIM’s Command Menu Interaction Style".

clim:add-output-record child record Generic Function

Adds the output record child to the output record record, sets the parent of child

to be record, and calls clim:recompute-extent-for-new-child to inform record of

the new child.

Any class that is a subclass of clim:output-record must implement this method.

See the section "Concepts of CLIM Output Recording".

clim-sys:all-processes Function

Returns a sequence of all of the currently running processes.

Page 1456

clim:allocate-pixmap medium width height Function

Allocates and returns a pixmap object that can be used on any medium that shares

the same characteristics as medium. (The exact definition of ‘‘shared characteris-

tics’’ will vary from host to host.) medium can be a medium, a sheet, or a stream.

The resulting pixmap will be at least width units wide, height units high, and as

deep as is necessary to store the information for the medium.

The returned value is the pixmap.

See the section "Pixmaps in CLIM".

clim-sys:allocate-resource name &rest parameters Function

Allocates an object from the resource named name, using the parameters given by

parameters. name is a symbol that names a resource. The returned value is the al-

located object.

See the section "Resources in CLIM".

clim:allocate-space pane width height Generic Function

During the space allocation pass, a composite pane arranges its children within the

available space and allocates space to them according to their space requirements

and its own composition rules by calling clim:allocate-space on each of the child

panes. width and height are the width and height of pane in device units.

clim:allocate-space is intended to be specialized by most pane classes. For exam-

ple, the method for the class clim:vbox-pane allocates enough space for itself to

hold all of its child panes in a vertical stack.

See the section "Details of CLIM’s Layout Algorithm".

and &rest types Clim Presentation Type

The presentation type that is used for multiple inheritance. and is usually used in

conjunction with satisfies. For example,

(and integer (satisfies oddp))�

The elements of types can be presentation type abbreviations.

The first type in types is in charge of accepting and presenting. The remaining el-

ements of types are used for type checking (for example, filtering applicability of

presentation translators).

The and type has special syntax that supports the two ‘‘predicates’’ satisfies and

not. satisfies and not cannot stand alone as presentation types and cannot be first

in types. not can surround either satisfies or a presentation type.

clim:application-frame Class

Page 1457

The protocol class that corresponds to a CLIM application frame. If you want to

create a new class that obeys the application frame protocol, it must be a subclass

of clim:application-frame.

clim:*application-frame* Variable

The current application frame. The global value is CLIM’s default application. This

variable is typically used in the bodies of commands and translators to gain access

to the state variables of the application, usually in conjunction with clos:with-slots

or clos:slot-value.

This variable is bound by an :around method of clim:run-frame-top-level on

clim:application-frame. You should not rebind it, since CLIM depends on its val-

ue.

clim:application-pane Class

The pane class that is used to implement ‘‘application’’ panes. This is the type of

pane created by clim:make-clim-application-pane, and corresponds to the pane

type abbreviation :application in the :panes clause of clim:define-application-

frame. The default method for clim:frame-standard-output will return the first

pane of this type in a frame.

For clim:application-pane, the default for the :display-time option is :command-

loop, and the default for the :scroll-bars option is :both.

See the section "Using the :panes Option to clim:define-application-frame".

clim:application-frame-p object Function

Returns t if and only if object is of type clim:application-frame.

clim:apply-presentation-generic-function presentation-function-name &body argu-

ments Macro

Applies the presentation generic function presentation-function-name to arguments

arguments using apply.

The presentation-function-name argument is not evaluated. The value of presenta-

tion-function-name can be any of the presentation generic functions defined by

CLIM (clim:accept, clim:present, clim:describe-presentation-type,

clim:presentation-typep, clim:presentation-subtypep,

clim:accept-present-default, clim:presentation-type-specifier-p,

clim:presentation-refined-position-test, or clim:highlight-presentation) or any

presentation generic function you have defined yourself.

clim:area Class

Page 1458

This is a subclass of clim:region that denotes regions that have dimensionality 2

(that is, have area). If you want to create a new class that obeys the area protocol,

it must be a subclass of clim:area.

Making an clim:area object with no area canonicalizes it to clim:+nowhere+.

clim:areap object Generic Function

Returns t if and only if object is of type clim:area.

clim:armed-callback gadget client id Generic Function

This callback is invoked when the gadget gadget is armed. The exact definition of

arming varies from gadget to gadget, but typically a gadget becomes armed when

the pointer is moved into its region.

The default method for clim:armed-callback (on clim:basic-gadget) calls the func-

tion specified by the :armed-callback initarg.

See the section "Using Gadgets in CLIM".

clim:+background-ink+ Constant

An indirect ink that uses the medium’s background design. See the section "Indi-
rect Ink in CLIM".

clim:basic-gadget Class

The implementation class on which many CLIM gadgets are built.

clim:beep &optional (stream *standard-output*) Function

Attracts the user’s attention, usually with an audible sound.

clim:blank-area Presentation Type

The presentation type that represents all the places in a window where there is no

applicable presentation. CLIM provides a single ‘‘null presentation’’ (represented

by the value of clim:*null-presentation*) of this type.

clim:boolean Clim Presentation Type

The presentation type that represents t or nil. The textual representation is "Yes"
and "No", respectively.

clim:bounding-rectangle* region Generic Function

Page 1459

Returns the bounding rectangle of region as four real numbers that specify the

left, top, right, and bottom edges of the bounding rectangle. region must be a

bounded region, such as an output record, a sheet or window, or a geometric ob-

ject such as a line or an ellipse.

The coordinates of the bounding rectangle of sheets and output records are main-

tained relative to the parent of the sheet or output record.

See the section "Bounding Rectangles in CLIM".

clim:bounding-rectangle Class

The protocol class that corresponds to a bounding rectangle. If you want to create

a new class that obeys the bounding rectangle protocol, it must be a subclass of

clim:bounding-rectangle.

clim:bounding-rectangle region Generic Function

Returns a new bounding rectangle for region as a clim:standard-bounding-

rectangle object. region is as for clim:bounding-rectangle*.

clim:bounding-rectangle-bottom region Function

Returns the coordinate of the bottom edge of the bounding rectangle of region. re-

gion is as for clim:bounding-rectangle*.

clim:bounding-rectangle-height region Function

Returns the height of the bounding rectangle of region. region is as for

clim:bounding-rectangle*.

clim:bounding-rectangle-left region Function

Returns the coordinate of the left edge of the bounding rectangle of region. region

is as for clim:bounding-rectangle*.

clim:bounding-rectangle-max-x region Generic Function

Returns the coordinate of the right edge of the bounding rectangle of region. In

Symbolics CLIM 2.0, this is the same thing as clim:bounding-rectangle-left.

clim:bounding-rectangle-max-y region Generic Function

Returns the coordinate of the bottom edge of the bounding rectangle of region. In

Symbolics CLIM 2.0, this is the same thing as clim:bounding-rectangle-bottom.

Page 1460

clim:bounding-rectangle-min-x region Generic Function

Returns the coordinate of the left edge of the bounding rectangle of region. In

Symbolics CLIM 2.0, this is the same thing as clim:bounding-rectangle-left.

clim:bounding-rectangle-min-y region Generic Function

Returns the coordinate of the top edge of the bounding rectangle of region. In

Symbolics CLIM 2.0, this is the same thing as clim:bounding-rectangle-top.

clim:bounding-rectangle-p object Function

Returns t if and only if object is of type clim:bounding-rectangle.

clim:bounding-rectangle-position region Generic Function

Returns the position of the bounding rectangle of region as two values, the left

and top coordinates of the bounding rectangle.

The coordinate system of the position returned by clim:bounding-rectangle-

position depends on the type of region. If region is an output record, the position

will be relative to the parent output record of region. If region is a subclass of

clim:region, the position will be an ‘‘absolute’’ position.

clim:bounding-rectangle-right region Function

Returns the coordinate of the right edge of the bounding rectangle of region. re-

gion is as for clim:bounding-rectangle*.

clim:bounding-rectangle-set-position region x y Generic Function

Changes the position of the bounding rectangle of region to the new position x and

y. x and y are the new left and top coordinates of the bounding rectangle.

The coordinate system of x and y depends on the type of region. If region is an

output record, x and y should be relative to the parent output record of region. If

region is a subclass of clim:region, x and y should be an ‘‘absolute’’ position.

clim:bounding-rectangle-size region Function

Returns the size (as two values, width and height) of the bounding rectangle of re-

gion. region is as for clim:bounding-rectangle*.

clim:bounding-rectangle-top region Function

Returns the coordinate of the top edge of the bounding rectangle of region. region

is as for clim:bounding-rectangle*.

Page 1461

clim:bounding-rectangle-width region Function

Returns the width of the bounding rectangle of region. region is as for

clim:bounding-rectangle*.

clim:bury-frame frame Generic Function

Buries the application frame frame so that it is underneath all of the other host

windows. clim:bury-frame works by calling clim:bury-sheet on the frame’s top-

level sheet. This does not change the state of the frame.

clim:call-presentation-menu presentation input-context frame window x y &key

(:for-menu t) :label Function

Finds all the applicable translators for presentation in the input context input-

context, creates a menu that contains all of the translators, and pops up a menu

from which the user can choose a translator. After the translator is chosen, it is

called and the values are returned to the appropriate call to clim:with-input-

context.

frame, window, x, and y are as for clim:find-applicable-translators. :for-menu,

which defaults to t, is used to decide which presentation translators go in the

menu (the value of their :menu option must match :for-menu). :label is used as a

label for the menu, and defaults to nil, meaning the menu will not be labelled.

See the section "Low Level Functions for CLIM Presentation Translators".

For example, CLIM’s ‘‘menu’’ translator could be defined as follows:

(clim:define-presentation-action presentation-menu

 (t nil clim:presentation-menu-command-table

 :documentation "Menu"

 :menu nil ;this doesn’t go into any menu

 :gesture :menu)

 (presentation frame window x y)

 (clim:call-presentation-menu presentation clim:*input-context*

 frame window x y

 :for-menu t))�

clim:call-presentation-translator translator presentation context-type frame event

window x y Function

Calls the function that implements the body of translator on presentation’s object,

and passes presentation, context-type, frame, event, window, x, and y to the body of

the translator as well.

frame, window, x, and y are as for clim:find-applicable-translators. context-type is

the presentation type for the context that matched. event is the event correspond-

ing to the user’s gesture.

Page 1462

The returned values are the same as the values returned by the body of the trans-

lator, which should be the translated object and the translated type.

See the section "Low Level Functions for CLIM Presentation Translators".

clim:catch-abort-gestures (format-string &rest format-args) &body body Macro

clim:catch-abort-gestures is a convenient macro that you can use in the top level

loop of an application (or in any call to clim:accept) that establishes a restart for

conditions:abort and a handler for clim:abort-gesture, and then evaluates body.

format-string and format-args are used in conditions:abort restart.

This macro could be written as follows:

(defun handle-abort-gesture (condition)

 (declare (ignore condition))

 (abort))

�

(defmacro catch-abort-gestures ((format-string &rest format-args) &body body)

 ‘(conditions:with-simple-restart

 (abort ,format-string ,@format-args)

 (conditions:handler-bind

 ((clim:abort-gesture #’handle-abort-gesture))

 ,@body)))�

The top level loop of an application could use this as follows:

(loop

 (clim:catch-abort-gestures

 ("Return to ~A command level" (clim:frame-pretty-name frame))

 (clim:redisplay-frame-panes frame)

 (when interactor

 (fresh-line *standard-input*)

 (write-string prompt *standard-input*))

 (let ((command (clim:read-frame-command frame :stream command-stream)))

 (when interactor

(terpri *standard-input*))

 (when command

(clim:execute-frame-command frame command)))))�

character Clim Presentation Type

The presentation type that represents a Common Lisp character object.

clim:check-box Class

A check box is similar to a radio box: it is a special kind of gadget that contains

one or more toggle buttons. At any one time, zero or more of the buttons managed

by the check box may be ‘‘on’’. The contents of a check box are its buttons, and as

such a check box is responsible for laying out the buttons that it contains.

Page 1463

It is a subclass of clim:value-gadget and clim:oriented-gadget-mixin.

See the section "Using Gadgets in CLIM".

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:selectionThis is used to specify which button, if any, should be initially se-

lected.

:choices This is used to specify all of the buttons that serve as choices.�

As the user changes the selections, the newly selected (or deselected) button will

have its clim:value-changed-callback handler invoked.

Calling clim:gadget-value on a check box will return a sequence of the currently

selected toggle buttons. The value of the check box can be changed by calling setf

on clim:gadget-value.

A check box might be created as follows, although it is generally more convenient

to use clim:with-radio-box:

(let* ((choices

 (list (clim:make-pane ’clim:toggle-button

 :label "One" :width 80)

 (clim:make-pane ’clim:toggle-button

 :label "Two" :width 80)

 (clim:make-pane ’clim:toggle-button

 :label "Three" :width 80)))

 (current (second choices)))

 (clim:make-pane ’clim:check-box

 :choices choices

 :selection (list current)

 :value-changed-callback ’radio-value-changed-callback))

�

(defun radio-value-changed-callback (radio-box value)

 (declare (ignore radio-box))

 (format t "~&Radio box toggled to ~S" value))�

clim:check-box-current-selection check-box Generic Function

Returns a sequence of the currently selected items in the check box. Each of the

selections will be one of the toggle buttons in the check box.

You can use setf on this in order to set the current selection for the check box, or

you can use setf on clim:gadget-value of the check box to accomplish the same

thing.

clim:check-box-selections check-box Generic Function

Page 1464

Returns a sequence of all of the selections in the check box. The elements of the

sequence will be toggle buttons.

clim:check-box-view Class

The class that represents the view corresponding to a check box. This is usually

used for a ‘‘some of’’ choice, such as a clim:subset presentation type.

clim:+check-box-view+ Constant

An instance of the class clim:check-box-view.

clim:clear-output-record record Generic Function

Removes all of the child output records from the output record record.

Any class that is a subclass of clim:output-record must implement this method.

clim-sys:clear-resource resource Function

Clears the resource named name, that is, removes all of the resourced objects from

the resource. name is a symbol that names a resource.

See the section "Resources in CLIM".

clim:clim-stream-pane Class

This class implements a pane that supports the CLIM graphics, extended input and

output, and output recording protocols. Most non-gadget application panes are sub-

classes of this class, including clim:application-pane and clim:interactor-pane.

See the section "Panes in CLIM".

clim:close stream &key :abort Generic Function

In CLIM, close is defined as a generic function. Otherwise, it behaves the same as

the normal Common Lisp close function.

clim:color Class

A color is a completely opaque design that represents the intuitive definition of

color (such as white, black, red, or pale yellow). clim:color is the class that repre-

sents colors in CLIM.

clim:color-ihs color Generic Function

Page 1465

Returns three values, the intensity, hue, and saturation components of color. The

first value is a real number between 0 and the square root of 3 (inclusive). The

second and third values are real numbers between 0 and 1 (inclusive).

clim:color-rgb color Generic Function

Returns three values, the red, green, and blue components of color. The values are

real numbers between 0 and 1 inclusive.

clim:colorp object Function

Returns t if and only if object is of type clim:color.

clim:command &key :command-table Clim Presentation Type

The presentation type used to represent a CLIM command processor command and

its arguments. :command-table can be either a command table or a symbol that

names a command table.

If :command-table is not supplied, it defaults to the command table for the current

application, that is, (clim:frame-command-table clim:*application-frame*).

When you call clim:accept on this presentation type, the returned value is a list;

the first element is the command name, and the remaining elements are the com-

mand arguments. You can use clim:command-name and clim:command-

arguments to access the name and arguments of the command object.

For more information about CLIM command objects, see the section "Command

Objects in CLIM".

clim:command-accessible-in-command-table-p command-name command-table

Function

If the command named by command-name is not accessible in command-table, then

this function returns nil. Otherwise, it returns the command table in which the

command was found. command-table may be either a command table or a symbol

that names a command table.

A command is present in a command table when it has been added to that com-

mand table. A command is accessible in a command table when it is present in

that command table or is present in any of the command tables from which that

command table inherits.

clim:command-already-present Condition

A condition that is signalled when a command is already present in the command

table in functions such as clim:add-command-to-command-table.

Page 1466

clim:command-arguments command Function

Given a command object command, returns the command’s arguments.

clim:*command-dispatchers* Variable

This is a list of characters that indicate that CLIM should read a command when

CLIM is accepting input of type clim:command-or-form. The default value for this

is colon (#\:).

clim:command-enabled command-name frame &optional command-table

Generic Function

Returns t if the command named by command-name is presently enabled in com-

mand-table for the frame frame, otherwise returns nil. If command-name is not ac-

cessible in command-table, clim:command-enabled will return nil. command-table

defaults to the current command table for frame.

You can use setf on clim:command-enabled in order to enable or disable a com-

mand.

clim:command-line-command-parser command-table stream Function

Reads a command line on behalf of an application frame’s command loop. User

programs should not call this function explicitly, but should rather bind

clim:*command-parser* to it.

This is the function CLIM uses to parse commands in a command-line driven in-

terface.

clim:command-line-command-unparser command-table stream args-to-go &rest

keys &key :for-context-type (:acceptably t) &allow-other-keys Function

‘‘Unparses’’ a command line on behalf of an application frame’s command loop.

User programs should not call this function explicitly, but should rather bind

clim:*command-unparser* to it.

clim:command-line-name-for-command command-name command-table &key (:er-

rorp t) Function

Returns the command-line name for command-name as it is installed in command-

table. If the command is not accessible in command-table (or the command has no

command-line name and :errorp is t), then the clim:command-not-accessible con-

dition is signalled.

If the command does not have a command-line name in the command-table and :er-

rorp is :create, then the returned value will be an automatically created command-

line name.

Page 1467

command-table may be either a command table or a symbol that names a command

table.

This function is the inverse of clim:find-command-from-command-line-name.

clim:command-line-read-remaining-arguments-for-partial-command partial-

command command-table stream start-location &key :for-accelerator Function

Reads the remaining arguments of a partial command line on behalf of an applica-

tion frame’s command loop. User programs should not call this function explicitly,

but should rather bind clim:*partial-command-parser* to it.

clim:command-menu-enabled command-table frame Generic Function

Returns t if the command table command-table is presently enabled in the com-

mand menu for the frame frame, otherwise returns nil.

You can use setf on clim:command-menu-enabled in order to enable or disable a

command table in the command menu for frame.

This function is like clim:command-enabled, except that it operates only on the

:menu items in a command table’s menu for a particular frame.

clim:command-menu-item-options item Function

Returns a property list of the options for the command menu item item. Currently,

the only option is :text-style, which specifies what text style the item should be

displayed in.

clim:command-menu-item-type item Function

Returns the type of the command menu item item. This will be one of :command,

:function, :menu, or :divider.

clim:command-menu-item-value item Function

Returns the value of the command menu item item. For example, if the type of

item is :command, this will return a command or a command name.

clim:command-menu-pane Class

The pane class that is used to implement command menu panes (but not menu

bars). It corresponds to the pane type abbreviation :command-menu in the :panes

clause of clim:define-application-frame. The default display function for panes of

this type is clim:display-command-menu.

For clim:command-menu-pane, the default for the :display-time option is

:command-loop, the default for the :incremental-redisplay option is t, and the de-

fault for the :scroll-bars option is nil.

Page 1468

Note that many applications will not use any panes of this type, since most frame

managers automatically provide a menu bar for the frame.

clim:command-name command Function

Given a command object command, returns the command name.

clim:command-name &key :command-table Clim Presentation Type

The presentation type used to represent the name of a CLIM command processor

command in the command table :command-table.

:command-table may be either a command table or a symbol that names a com-

mand table. If :command-table is not supplied, it defaults to the command table for

the current application. The textual representation of a clim:command-name ob-

ject is the command-line name of the command, while the internal representation

is the command name.

clim:command-name-from-symbol symbol Function

Generates a string suitable for use as a command line name from the symbol sym-

bol. The string consists the symbol name with the hyphens replaced by spaces, and

the words capitalized. If the symbol name is prefixed by "com-", the prefix is re-

moved. For example, if the symbol is com-show-file, the resulting string will be

"Show File".

clim:command-not-accessible Condition

A condition that is signalled when the command you are looking for is not accessi-

ble in the command table, for example, clim:find-command-from-command-line-

name.

clim:command-not-present Condition

A condition that is signalled when the command you are looking for is not present

in the command table.

clim:command-or-form &key :command-table Clim Presentation Type

The presentation type used to represent either a Lisp form or a CLIM command

processor command and its arguments. In order for the user to indicate that he

wishes to enter a command, a command dispatch character must be typed as the

first character of the command line.

See the variable clim:*command-dispatchers*.

:command-table may be either a command table or a symbol that names a com-

mand table. If :command-table is not supplied, it defaults to the command table for

Page 1469

the current application, that is, (clim:frame-command-table clim:*application-

frame*).

clim:*command-parser* Variable

The currently active command parsing function.

The default for this is clim:command-line-command-parser when there is at least

one interactor pane in the application frame, otherwise the default is clim:menu-

command-parser.

If you want a dialog-driven command processing loop, you can use the parsing

function clim:accept-values-command-parser.

clim:command-present-in-command-table-p command-name command-table

Function

Returns t if command-name is present in command-table.

A command is present in a command table when it has been added to that com-

mand table. A command is accessible in a command table when it is present in

that command table or is present in any of the command tables from which that

command table inherits.

clim:command-table Class

The class that represents command tables.

clim:command-table-already-exists Condition

This condition is signalled by clim:make-command-table when you try to create a

command table that already exists.

clim:command-table-inherit-from command-table Generic Function

Returns a list of all of the command tables from which command-table inherits.

You can setf this in order to change the inheritance of command-table.

clim:command-table-name command-table Generic Function

Returns the name of the command table command-table.

clim:command-table-not-found Condition

This condition is signalled by functions such as clim:find-command-table when

the named command table cannot be found.

Page 1470

clim:*command-unparser* Variable

The currently active command unparsing function.

The default for this is clim:command-line-command-unparser when there is at

least one interactor pane in the application frame, otherwise there is no command

unparser.

clim-sys:current-process Function

Returns the currently running process, which will be a process object.

See the section "Multi-processing in CLIM".

clim:complete-from-generator string generator delimiters &key (:action :complete)

:predicate Function

Given an input string string and a list of delimiter characters delimiters that act

as partial completion characters, clim:complete-from-generator completes against

the possibilities that are generated by the function generator. generator is a func-

tion of two arguments, the string string and another function that it calls in order

to process the possibility.

:action must be one of :complete, :complete-maximal, :complete-limited, or

:possibilities. See the function clim:complete-input.

:predicate is nil or a function of one argument, an object. If the predicate returns

t, the possibility corresponding to the object is processed, otherwise it is not. You

can supply this when you want to prevent some objects from being part of the

completion set.

clim:complete-from-generator returns five values, the completed input string, the

success value (t if the completion was successful, otherwise nil), the object match-

ing the completion (or nil if unsuccessful), the number of matches, and a list of

possible completions if :action was :possibilities.

You might use clim:complete-from-generator inside the clim:accept method for a

cardinal number presentation type as follows:

(let ((possibilities ’(("One" 1) ("Two" 2) ("Three" 3))))

 (flet ((generator (string suggester)

 (declare (ignore string))

 (dolist (possibility possibilities)

 (funcall suggester (first possibility) (second possibility)))))

 (clim:complete-input

 stream

 #’(lambda (string action)

 (clim:complete-from-generator

 string #’generator nil

 :action action)))))�

Page 1471

clim:complete-from-possibilities string completions delimiters &key (:action

:complete) :predicate (:name-key #’first) (:value-key #’second) Function

Given an input string string and a list of delimiter characters delimiters that act

as partial completion characters, clim:complete-from-possibilities completes

against the possibilities in the sequence (a list or a vector) completions.

The completion string is extracted from the possibilities in completions by applying

:name-key. The object is extracted by applying :value-key.

:action must be one of :complete, :complete-maximal, :complete-limited, or

:possibilities. See the function clim:complete-input.

:predicate is either nil or a function of one argument, an object. If the predicate

returns t, the possibility corresponding to the object is processed, otherwise it is

not. You can supply this when you want to prevent some objects from being part

of the completion set.

clim:complete-from-possibilities returns five values, the completed input string,

the success value (t if the completion was successful, otherwise nil), the object

matching the completion (or nil if unsuccessful), the number of matches, and a list

of possible completions if :action was :possibilities.

You might use clim:complete-from-possibilities inside the clim:accept method for

a cardinal number presentation type as follows:

(let ((possibilities ’(("One" 1) ("Two" 2) ("Three" 3))))

 (clim:complete-input

 stream

 #’(lambda (string action)

 (clim:complete-from-possibilities

 string possibilities nil

 :action action))))�

clim:complete-input stream function &key :partial-completers :allow-any-input :pos-

sibility-printer (:help-displays-possibilities t) Function

Reads input from stream, completing from a set of possibilities.

function is a function of two arguments which is called to generate the possibili-

ties. Its first argument is a string containing the input so far. Its second argument

is the completion mode, one of the following:

• :complete Completes the input as much as possible, except that if the

user’s input exactly matches one of the possibilities, even if it is a left

substring of another possibility, the shorter possibility is returned as the

result.

• :complete-limited Completes the input up to the next partial delim-

iter.

• :complete-maximal Completes the input as much as possible.

Page 1472

• :possibilities Causes clim:complete-input to return a list of the possi-

ble completions. �

function must return five values:

• string The completed input string.

• success t if completion was successful (otherwise nil).

• object The accepted object (nil if unsuccessful).

• nmatches The number of possible completions of the input.

• possibilities An alist of completions ((string object) ...), returned only

when the completion mode is :possibilities.

clim:complete-input returns three values: object, success, and string.

:partial-completers is a (possibly empty) list of characters that delimit portions of a

name that can be completed separately. The default is an empty list. Typical par-

tial completers are spaces and dashes.

If :allow-any-input is t, clim:complete-input will return as soon as the user types

an activation gesture, even if the input is not any of the possibilities. The default

is nil. Use this when you want to complete from a set of existing objects, but want

to allow the user to enter a new object.

If :possibility-printer is supplied, it must be a function of three arguments: a possi-

bility, a presentation type, and a stream. The function should display the possibili-

ty on the stream. The possibility will be a list of two elements, the first being a

string and the second being the object corresponding to the string.

If :help-display-possibilities is t (the default), then when the user types a help ges-

ture (one of the gestures in clim:*help-gestures*), CLIM will display all the

matching possibilities. If nil, then CLIM will not display the possibilities unless

the user types a possibility gesture (one of the gestures in clim:*possibilities-

gestures*).

clim:completing-from-suggestions (stream &rest options &key :partial-completers

:allow-any-input :possibility-printer (:help-displays-possibilities t)) &body body Macro

Reads input from stream, completing from a set of possibilities generated by calls

to clim:suggest in body. Returns three values: object, success, and string.

:partial-completers, :allow-any-input, :possibility-printer, and :help-displays-

possibilities are as for clim:complete-input.

You could use the following in a clim:accept method for cardinal numbers.

Page 1473

(clim:completing-from-suggestions (stream)

 (map nil

 #’(lambda(x)

 (clim:suggest (car x) (cdr x)))

 ’(("One" . 1)

 ("Two" . 2)

 ("Three" . 3))))�

clim:completion sequence &key :test :value-key Clim Presentation Type

The presentation type that selects one from a finite set of possibilities, with

‘‘completion’’ of partial inputs. Several types are implemented in terms of the

clim:completion type, including clim:token-or-type, clim:null-or-type, member,

clim:member-sequence, and clim:member-alist.

The presentation type parameters are:

sequence A list or vector whose elements are the possibilities. Each possibili-

ty has a printed representation, called its name, and an internal

representation, called its value. clim:accept reads a name and re-

turns a value. clim:present is given a value and outputs a name.

:test A function that compares two values for equality. The default is

eql.

:value-key A function that returns a value given an element of sequence. The

default is identity.

The following presentation type options are available:

:name-key

A function that returns a name, as a string, given an element of se-

quence. The default is a function that behaves as follows:

Argument Returned Value

string the string

null the string "NIL"

cons string of the car

symbol string-capitalize of its name

otherwise princ-to-string of it�

:documentation-key

A function that returns nil or a descriptive string, given an element

of sequence. The default always returns nil.

:partial-completers

A (possibly empty) list of characters that delimit portions of a name

that can be completed separately. The default is a list of one char-

acter, #\Space.

Page 1474

clim:*completion-gestures* Variable

A list of gesture names that cause clim:complete-input to complete the input as

fully as possible. On most systems, this includes the gesture corresponding to the

#\Tab character. On Genera, it includes the gesture for #\Complete as well.

complex &optional type Clim Presentation Type

The presentation type that represents a complex number. It is a subtype of

number.

type is the type to use for the components. It must be a subtype of real.

clim:compose-in design1 design2 Generic Function

Composes a design by using the color (or ink) of design1 and clipping to the inside

of design2. That is, design2 specifies the mask to use for changing the shape of

the design.

More precisely, at each point in the drawing plane the resulting design specifies a

color and an opacity as follows: the color is the ink of design1. The opacity is the

opacity of design1, multiplied by the stencil opacity of design2.

The stencil opacity of a design at a point is defined as the opacity that would re-

sult from drawing the design onto a fictitious medium whose drawing plane is ini-

tially completely transparent black (opacity and all color components are zero), and

whose foreground and background are both opaque black. (With this definition, the

stencil opacity of a member of class clim:opacity is simply its value.)

If design2 is a solid design, the effect of clim:compose-in is to clip design1 to de-

sign2. If design2 is translucent, the effect is a soft matte.

If both arguments are regions, clim:compose-in is the same as clim:region-

intersection.

The result returned by clim:compose-in might be freshly constructed or might be

an existing object.

See the section "Drawing with Designs in CLIM".

clim:compose-out design1 design2 Generic Function

Composes a design by using the color (or ink) of design1 and clipping to the out-

side of design2. That is, design2 specifies the mask to use for changing the shape

of the design.

More precisely, at each point in the drawing plane the resulting design specifies a

color and an opacity as follows: the color is the ink of design1. The opacity is the

opacity of design1, multiplied by 1 minus the stencil opacity of design2.

If design2 is a solid design, the effect of clim:compose-out is to clip design1 to the

complement of design2. If design2 is translucent, the effect is a soft matte.

Page 1475

If both arguments are regions, clim:compose-out is the same as clim:region-

difference.

The result returned by clim:compose-out might be freshly constructed or might

be an existing object.

See the section "Drawing with Designs in CLIM".

clim:compose-over design1 design2 Generic Function

Composes a design that is equivalent to design1 drawn on top of design2. Drawing

the resulting design produces the same visual appearance as drawing design2 and

then drawing design1, but might be faster and might not allow the intermediate

state to be visible on the screen.

If both arguments are regions, clim:compose-over is the same as clim:region-

union.

The result returned by clim:compose-over might be freshly constructed or might

be an existing object.

See the section "Drawing with Designs in CLIM".

clim:compose-rotation-with-transformation transform angle &optional origin

Generic Function

Creates a new transformation by composing transform with a given rotation, as

specified by angle and origin. angle is in radians. If origin is supplied it must be a

point; if not supplied it defaults to (0,0). The order of composition is that the rota-

tion ‘‘transformation’’ is first, followed by transform.

This function could have been implemented as follows:

(defun compose-rotation-with-transformation

 (transform angle &optional origin)

 (clim:compose-transformations

 transform

 (clim:make-rotation-transformation angle origin)))�

clim:compose-scaling-with-transformation transform mx my &optional origin

Generic Function

Creates a new transformation by composing transform with a given scaling, as

specified by mx, my, and origin. If origin is supplied it must be a point; if not sup-

plied it defaults to (0,0). The order of composition is that the scaling ‘‘transfor-
mation’’ is first, followed by transform.

This function could have been implemented as follows:

Page 1476

(defun compose-scaling-with-transformation

 (transform mx my &optional origin)

 (clim:compose-transformations

 transform

 (clim:make-scaling-transformation mx my origin)))�

clim:compose-space pane &key :width :height Generic Function

During the space composition pass, a composite pane queries each of its children

to find out how much space they requires by calling clim:compose-space. Each

child pane answers by returning a clim:space-requirement object. The composite

then forms its own space requirement by composing the space requirements of its

children according to its own rules for laying out its children.

The value returned by clim:compose-space is a space requirement object that rep-

resents how much space the pane pane requires for itself and its children.

:width and :height are real numbers that the clim:compose-space method for a

pane may use as ‘‘recommended’’ values for the width and height of the pane.

These are used to drive top-down layout, such as occurs when the overall size for

a frame is explicitly supplied.

clim:compose-space is intended to be specialized by most pane classes. For exam-

ple, the method for the class clim:vbox-pane requests enough space for itself to

hold all of its child panes in a vertical stack.

See the section "Details of CLIM’s Layout Algorithm".

clim:compose-transformation-with-rotation transform angle &optional origin

Generic Function

Creates a new transformation by composing the rotation given by angle and origin

with transform. The order of composition is that transform is first, followed by the

rotation ‘‘transformation’’. The angle is specified in radians. If origin is supplied it

must be a point; if not supplied it defaults to (0,0).

clim:compose-transformation-with-scaling transform mx my &optional origin

Generic Function

Creates a new transformation by composing the scaling given by mx, my, and ori-

gin with transform. The order of composition is that transform is first, followed by

the scaling ‘‘transformation’’. Multiplies the X-coordinate distance of every point

from origin by mx and the Y-coordinate distance of every point from origin by my.

If origin is supplied it must be a point; if not supplied it defaults to (0,0).

clim:compose-transformation-with-translation transform dx dy Generic Function

Page 1477

Creates a new transformation by composing the translation given by dx and dy

with transform. The order of composition is that transform is first, followed by the

translation ‘‘transformation’’. dx gives the amount to translate in the X direction,

and dy gives the amount to translate in the Y direction.

clim:compose-transformations transform1 transform2 Generic Function

Returns a transformation that is the composition of its arguments. Composition is

in right-to-left order, that is, the resulting transformation represents the effects of

applying transform2 followed by transform1. This is consistent with the order in

which clim:with-translation, clim:with-rotation, and clim:with-scaling compose.

For example, the following two forms result in the same transformation, presum-

ing that the stream’s transformation is the identity transformation:

(clim:compose-transformations

 (clim:make-translation-transformation dx dy)

 (clim:make-rotation-transformation angle))

�

(clim:with-translation (stream dx dy)

 (clim:with-rotation (stream angle)

 (clim:medium-transformation stream)))

�

Any arbitrary transformation can be built up by composing a number of simpler

transformations, but that composition is not unique.

clim:compose-translation-with-transformation transform dx dy Generic Function

Creates a new transformation by composing transform with a given translation, as

specified by dx and dy. The order of composition is that the translation ‘‘transfor-
mation’’ is first, followed by transform.

This function could have been implemented as follows:

(defun compose-translation-with-transformation

 (transform dx dy)

 (clim:compose-transformations

 transform

 (clim:make-translation-transformation dx dy)))

�

clim:contrasting-dash-patterns-limit port Generic Function

Returns the number of contrasting dash patterns that the port port can generate.

On most ports, this number is presently 16.

clim:contrasting-inks-limit port Generic Function

Page 1478

Returns the number of contrasting inks that the port port can generate. On most

ports, this number is presently 8.

clim:+control-key+ Constant

The modifier state bit that corresponds to the user holding down the control key

on the keyboard. See the section "Operators for Gestures in CLIM".

clim:convert-from-absolute-to-relative-coordinates stream output-record Function

Returns the X and Y offsets that map the ‘‘absolute’’ coordinates of an output

record to parent-relative coordinates. This is the inverse of clim:convert-from-

relative-to-absolute-coordinates.

clim:convert-from-relative-to-absolute-coordinates stream output-record Function

The coordinates of output records in CLIM are maintained so that each record’s

coordinates are relative to its parent. Many CLIM functions, such as clim:replay-

output-record, must compute the absolute coordinates of a record in order to work

properly. See the section "Output Recording in CLIM".

clim:convert-from-relative-to-absolute-coordinates returns the X and Y offsets

that map the parent-relative coordinates of an output record to ‘‘absolute’’ coordi-

nates.

Here is an example of using clim:replay-output-record in a way that maintains

the X and Y offsets correctly:

(multiple-value-bind (x-offset y-offset)

 (clim:convert-from-relative-to-absolute-coordinates

 stream (clim:output-record-parent record))

 (clim:replay-output-record record stream region x-offset y-offset))�

The following function will map over all of the descendants of an output record

that overlap a given region:

Page 1479

(defun map-over-output-record-tree

 (function record &optional (region clim:+everywhere+))

 (declare (dynamic-extent function))

 (labels ((map-internal (rec x-offset y-offset)

 (multiple-value-bind (xoff yoff)

 (clim:output-record-position rec)

 (clim:translate-coordinates x-offset y-offset xoff yoff)

 (unless (eql rec record) ;not the first time

 (funcall function rec))

 (clim:map-over-output-records-overlapping-region

 #’map-internal rec region

 (- x-offset) (- y-offset) xoff yoff))))

 (declare (dynamic-extent #’map-internal))

 (multiple-value-bind (x-offset y-offset)

 (clim:convert-from-relative-to-absolute-coordinates

 nil (output-record-parent record))

 (map-internal record x-offset y-offset))))�

clim:coordinate Type Specifier

The type used by CLIM to represent a coordinate. This will be either t or a sub-

type of real.

In Symbolics CLIM, the clim:coordinate type is currently the same as real, but

some implementations might use a more restricted type such as fixnum.

clim:coordinate x Function

Converts the real number x to a user::clim-coordinate object.

clim:copy-area medium from-x from-y width height to-x to-y &optional (op boole-1)

Generic Function

Copies the pixels from the medium medium starting at the position specified by

(from-x,from-y) to the position (to-x,to-y) on the same medium. A rectangle whose

width and height is specified by width and height is copied. from-x, from-y, to-x,

and to-y are specified in user coordinates. (If medium is a sheet or a stream, then

from-x and from-y are transformed by the user transformation.)

op is a boolean operation that controls how the source and destination bits are

combined. It defaults to boole-1, that is, the source bits are copied unchanged into

the destination. Other useful values for op are boole-ior, boole-xor, and boole-clr.

See the section "Pixmaps in CLIM".

clim:copy-from-pixmap pixmap pixmap-x pixmap-y width height medium medium-x

medium-y &optional (op boole-1) Function

Page 1480

Copies the pixels from the pixmap pixmap starting at the position specified by

(pixmap-x,pixmap-y) into the medium medium at the position (medium-x,medium-y).

A rectangle whose width and height is specified by width and height is copied.

medium-x and medium-y are specified in user coordinates. (If medium is a sheet or

a stream, then medium-x and medium-y are transformed by the user transforma-

tion.)

pixmap must be an object returned by clim:allocate-pixmap that has the appropri-

ate characteristics for medium.

op is a boolean operation that controls how the source and destination bits are

combined. It defaults to boole-1, that is, the source bits are copied unchanged into

the destination.

The returned value is the pixmap.

See the section "Pixmaps in CLIM".

clim:copy-textual-output-history window stream &optional region record Function

Given a window window that supports output recording, this function finds all of

the textual output records that overlap the region region (or all of the textual out-

put records is region is not supplied), and outputs that text to stream. This can be

used when you want to capture all of the text on a window into a disk file for

later perusal.

clim:copy-to-pixmap medium medium-x medium-y width height &optional pixmap

(pixmap-x 0) (pixmap-y 0) (op boole-1) Function

Copies the pixels from the medium medium starting at the position specified by

(medium-x,medium-y) into the pixmap pixmap at the position specified by (pixmap-

x,pixmap-y). A rectangle whose width and height is specified by width and height is

copied. medium-x and medium-y are specified in user coordinates. (If medium is a

sheet or a stream, then medium-x and medium-y are transformed by the user

transformation.)

If pixmap is not supplied, a new pixmap will be allocated. Otherwise, pixmap must

be an object returned by clim:allocate-pixmap that has the appropriate character-

istics for medium.

op is a boolean operation that controls how the source and destination bits are

combined. It defaults to boole-1, that is, the source bits are copied unchanged into

the destination.

The returned value is the pixmap.

See the section "Pixmaps in CLIM".

clim:cursor Class

Page 1481

The protocol class that corresponds to a text cursor. If you want to create a new

class that obeys the cursor protocol, it must be a subclass of clim:cursor.

clim:cursor-active cursor Generic Function

An active cursor is one that is being actively maintained by its owning sheet.

clim:cursor-active returns t if the cursor is active.

You can use setf on this to change the ‘‘active’’ attribute of the cursor.

clim:cursor-focus cursor Generic Function

Returns the ‘‘focus’’ attribute of the cursor. When this returns t, the sheet owning

the cursor has the input focus.

You can use setf on this to change the ‘‘focus’’ attribute of the cursor.

clim:cursor-position cursor Generic Function

Returns the cursor position of cursor as two values (X and Y), relative to the up-

per left corner of the sheet with which the cursor is associated.

See the section "Manipulating the Cursor in CLIM".

clim:cursor-set-position cursor x y Generic Function

Sets the cursor position of cursor to x and y, which are relative to the upper left

corner of the sheet with which the cursor is associated.

See the section "Manipulating the Cursor in CLIM".

clim:cursor-sheet cursor Generic Function

Returns the sheet with which cursor is associated.

clim:cursor-state cursor Generic Function

Returns t if the cursor is active and visible on its associated sheet.

You can use setf on this to change the visibility of the cursor.

clim:cursor-visibility cursor Generic Function

This is a convenience function that combines the functionality of both clim:cursor-

active and clim:cursor-state. The visibility can be either :on (meaning that the

cursor is both active and visible at its current position), :off (meaning that the

cursor is active, but not visible), or nil (meaning that the cursor is not active).

You can use setf on this to change the visibility of the cursor.

Page 1482

clim:cursorp object Generic Function

Returns t if and only if object is of type clim:cursor, otherwise returns nil.

clim:deactivate-gadget gadget Generic Function

Causes the gadget to become inactive, that is, unavailable for input. In some envi-

ronments this may cause the gadget to become grayed over; in others, no visual ef-

fect may be detected. The function clim:note-gadget-deactivated is called whenev-

er the gadget is made inactive.

clim:deallocate-pixmap pixmap Function

Deallocates the pixmap pixmap.

See the section "Pixmaps in CLIM".

clim-sys:deallocate-resource name object &optional allocation-key Function

Returns the object object to the resource named name. name is a symbol that

names a resource. object must be an object that was originally allocated from the

same resource.

See the section "Resources in CLIM".

clim:default-describe-presentation-type description stream plural-count Function

Given a string description that describes a presentation type (such as ‘‘integer’’)
and plural-count (either nil or an integer), this function pluralizes the string if

necessary, prepends an indefinite article if appropriate, and outputs the result onto

stream.

This function is useful when you are writing your own clim:describe-presentation-

type method, but want to get most of CLIM’s default behavior.

clim:default-frame-top-level frame &key :command-parser :command-unparser :par-

tial-command-parser (:prompt "Command: ") Function

The default top-level function for application frames. This function enables the

frame (by calling clim:enable-frame), and then enters a ‘‘read-eval-print’’ loop

that calls clim:read-frame-command, then calls clim:execute-frame-command,

and finally redisplays all of the panes that need to be redisplayed.

clim:default-frame-top-level establishes a simple restart for conditions:abort, so

that anything that invokes an conditions:abort restart will by default throw to the

top level command loop of the application frame. (Of course, the programmer can

specify a restart-case for the conditions:abort restart.)

clim:default-frame-top-level binds several of Lisp’s standard stream variables.

standard-output is bound to the value returned by clim:frame-standard-output.

Page 1483

standard-input is bound to the value returned by clim:frame-standard-input.

query-io is bound to the value returned by clim:frame-query-io.

:prompt controls the prompt. You can supply either a string or a function of two

arguments (stream and frame) that outputs the prompt on the stream. The default

for :prompt is the string "Command: ".

To set your own prompt string supply :prompt to the :top-level option of

clim:define-application-frame:

(clim:define-application-frame different-prompt ()

 (...)

 (:top-level (clim:default-frame-top-level

:prompt "What next, mate? "))

 ...)

�

If you want the prompt to change as a function of the state of the application, you

can supply a function (instead of a string):

(defun promptfun (stream frame)

 (with-slots (prompt-state) frame

 (format stream "Prompt ~D: " prompt-state)))

�

(clim:define-application-frame different-prompts ()

 ((prompt-state ...) ...)

 (:top-level (clim:default-frame-top-level

:prompt promptfun))

 ...)�

The frame’s top level loop binds clim:*command-parser*, clim:*command-

unparser*, and clim:*partial-command-parser* to the values of :command-parser,

:command-unparser, and :partial-command-parser.

If there is an interactor pane in the frame, :command-parser defaults to

clim:command-line-command-parser, :command-unparser defaults to

clim:command-line-command-unparser, and :partial-command-parser defaults to

clim:command-line-read-remaining-arguments-for-partial-command.

If there is no interactor pane, :command-parser defaults to clim:menu-command-

parser and :partial-command-parser defaults to clim:menu-read-remaining-

arguments-for-partial-command; there is no need for an unparser when there is

no interactor.

See the section "Examples of CLIM Application Frames".

clim:*default-text-style* Variable

This is the ‘‘default default’’ text style used by all mediums and streams. That is,

unless a default text style can be computed another way (such as by querying the

display server), CLIM uses clim:*default-text-style* as the default text style for

mediums and streams.

Page 1484

When doing any kind of text output, if the text style is not fully specified, it is

merged against the medium’s default text style using clim:merge-text-styles.

Therefore, if you change the value of clim:*default-text-style*, the new value

must be a fully specified text style.

clim:define-application-frame name superclasses slots &rest options Macro

Defines an application frame. You can specify a name for the application class, the

superclasses (if any), the slots of the application class, and options.

For an overview of how to define CLIM application frames, see the section "Defin-

ing CLIM Application Frames".

clim:define-application-frame defines a class with the following characteristics:

• inherits some behavior and slots from the class clim:standard-

application-frame,

• inherits other behavior and slots from any other superclasses which you

specify explicitly, and

• has other slots, as explicitly specified by slots.

None of the arguments is evaluated. The arguments are:

name A symbol naming the new frame and class.

superclasses

A list of superclasses from which the new class should inherit, as in

clos:defclass. When superclasses is nil, it behaves as though a su-

perclass of clim:standard-application-frame was supplied. If you do

specify superclasses to inherit from, you must arrange to inherit

from clim:standard-application-frame explicitly.

slots A list of slot specifiers, as in clos:defclass. Each instance of the

frame will have slots as specified by these slot specifiers. These

slots will typically hold any per-instance frame state.

options You can use the CLOS :default-initargs option to customize the ini-

tial values of slots in either your specified superclasses, or in the

application frame. The following options are also supported:

:panes pane-descriptions

Specifies the application’s panes. There is no default for this

option. The syntax of pane-descriptions is given below.

:pane form

Another way of specifying the application’s panes. There is no

default for this option. form is a Lisp form that creates the

panes of the frame. You may only provide one of :pane or

:panes.

Page 1485

:layouts layout

Specifies the layout of the panes. The default layout is to lay

the panes out in a vertical stack. The syntax of layout is

given below.

:top-level top-level

Allows you to specify the main loop for your application. By

default, the top level loop is clim:default-frame-top-level

(which is adequate for most applications).

Note: if you use a function other than clim:default-frame-

top-level as the top level function, you should be sure that it

calls clim:enable-frame.

top-level is a list whose first element is the name of a func-

tion to be called to execute the top level loop. The function

should take at least one required argument, the frame. The

rest of the list consists of additional keyword arguments to be

passed to the function. The default function is clim:default-

frame-top-level. (You can use the :prompt keyword of

clim:default-frame-top-level to control application frame

prompts in the interactor.)

If you supply your own function, it must be prepared to re-

ceive the keyword arguments :command-parser, :command-

unparser, :partial-command-parser, and :prompt.

:command-table name-and-options

Allows you to specify a particular command table for the ap-

plication.

name-and-options is a list consisting of the name of the ap-

plication’s command table followed by some keyword-value

pairs. The keywords can be :inherit-from or :menu (which

are as the same as in clim:define-command-table). The de-

fault is to create a command table with the same name as

the application.

:command-definer value

When value is nil, no command-defining macro is defined.

When it is t, a command-defining macro is defined, whose

name is of the form define-name-command. When it is anoth-

er symbol, the symbol names the command-defining macro.

The default is t.

:menu-bar value

When value is t (the default), the frame will automatically be

provided with a menu bar. The exact format of the menu bar

varies from one window system to another. When value is nil,

the frame will not have or use the menu bar. value can also

name a command table; in this case, the commands to put in

the menu bar are gotten from the named command table.

Page 1486

:disabled-commands commands

Allows you to specify a particular set of initially disabled com-

mands for the application. The default is nil.

:default-initargs alist

Provides a set of default initargs for the application frame.

This is the same as it is for clos:defclass.

Syntax of the :panes option�

The :panes option keyword is followed by one or more pane-descriptions. Each

pane-description can be one of two possible formats:

• A list consisting of a pane-name (which is a symbol), a pane-type, and pane-

options, which are keyword-value pairs. pane-options is evaluated at load time.

• A list consisting of a pane-name (which is a symbol), followed by an expression

that is evaluated to create the pane. See the macro clim:make-clim-stream-

pane. See the function clim:make-pane.

The pane-types are:

:application

Application panes are stream panes used for the display of applica-

tion-generated output. See the class clim:application-pane. See the

macro clim:make-clim-application-pane.

:interactor

Interactor panes are stream panes that provide a place for the user

to do interactive input and output. See the class clim:interactor-

pane. See the macro clim:make-clim-interactor-pane.

:accept-values

These panes provide for the display of a ‘‘modeless’’

clim:accepting-values dialog. See the class

clim:accept-values-pane. See the section "Using an :accept-values

Pane in a CLIM Application Frame".

:pointer-documentation

These panes provide for pointer documentation. If such a pane is

specified, then when the pointer moves over different areas of the

frame, this pane displays documentation of the effect of clicking the

pointer buttons.

If the host window system has its own way of displaying pointer

documentation, this pane may be omitted automatically from the

layout.

See the class clim:pointer-documentation-pane.

:command-menu

Command menu panes are used to hold a menu of application com-

mands. The default display function is clim:display-command-menu

Page 1487

which, by default, displays the current command table of the frame.

You can display a different command table by supplying the

:command-table argument to clim:display-command-menu.

Many host window systems provide a menu bar, so having panes of

type :command-menu is not common.

See the class clim:command-menu-pane.

:title Title panes are used for displaying the title of the application. The

default title is a ‘‘prettied up’’ version of the name of the applica-

tion frame’s class.

Many host window systems will automatically display the frame’s ti-

tle in a title bar, so this is only rarely useful.

See the class clim:title-pane.

In addition to pane-types, pane-options may be specified as keyword/value pairs.

Most pane-options can be used by all pane types (exceptions are noted as appro-

priate). The defaults for the options often vary from one pane type to another.

:width, :height, :min-width, :min-height, :max-width, and :max-height

Provide space requirement specs that specify the sized of the pane.

The values the space requirements can take are described in "Using

the :LAYOUTS Option to CLIM:DEFINE-APPLICATION-FRAME".

:background and :foreground ink

Provide initial values for clim:medium-foreground and

clim:medium-background for the pane.

:text-style text-style

Specifies a text style to use in the pane. The default depends on the

pane type.

:borders Controls whether borders are drawn around CLIM stream panes (t

or nil). The default is t. The value may also be a list, in which case

the value is used as options to clim:outlining.

:spacing Controls whether there is some whitespace between the border and

the viewport for a CLIM stream pane (t or nil). The default is t.

The value may also be a list, in which case the value is used as op-

tions to clim:spacing.

:scroll-bars scroll-bar-spec

A scroll-bar-spec can be :both (the default for :application panes),

:horizontal, :vertical, :none, or nil. The pane will have only those

scroll bars which were specified. :none means that the pane will

support scrolling, but does not have any visible scroll bars. nil

means that the pane will not support scrolling at all.

:display-after-commands

One of t, nil, or :no-clear. If t, the ‘‘print’’ part of the read-eval-

print loop runs the display function; this is the default for most

Page 1488

pane types. If nil, you are responsible for managing the display af-

ter commands.

:no-clear behaves the same as t, with the following change. If you

have not specified :incremental-redisplay t, then the pane is nor-

mally cleared before the display function is called. However, if you

specify :display-after-commands :no-clear, then the pane is not

cleared before the display function is called.

:display-function display-spec

Where display-spec is either the name of a function or a list whose

first element is the name of a function. The function is to be ap-

plied to the application frame, the pane, and the rest of display-spec

if it was a list when the pane is to be redisplayed.

The function must accept two required arguments (the frame and

the pane), plus the two keyword arguments :max-width and :max-

height.

One example of a predefined display function is clim:display-

command-menu.

:display-string string

(for :title panes only) The string to display. The default is the

frame’s pretty name.

:label string

A string to be used as a label for the pane, or nil (the default).

:incremental-redisplay boolean

If t, CLIM runs the display function inside of an clim:updating-

output form. The default is nil.

:end-of-line-action, :end-of-page-action

Initial values of the corresponding attributes. See the macro

clim:with-end-of-line-action and see the macro clim:with-end-of-

page-action.

:initial-cursor-visibility

:off means make the text cursor visible if the window is waiting for

input. :on means make it visible all the time. nil means that the

cursor is never visible. The default is :off for :interactor and

:accept-values panes, and nil for other panes.

:output-record

Specify this if you want a different output history mechanism than

the default (which is clim:standard-tree-output-history). For ex-

ample, a graphic editing program might supply a value of:

(make-instance ’clim:r-tree-output-history)�

Besides clim:standard-tree-output-history and clim:r-tree-output-

history, you can also use clim:standard-sequence-output-history.

Page 1489

:draw-p, :record-p boolean

Specifies the initial state of drawing and output recording.

:default-view view

Specifies the view object to use for the stream’s default view.

:text-margin integer

Text margin to use if clim:stream-text-margin isn’t set. This de-

faults to the width of the viewport.

:vertical-spacing integer

Amount of extra space between text lines.

:pointer-cursor

Specifies the pointer cursor to use when the pointer is over this

pane.

:event-queue

Specifies the event queue to be used by this pane. The default is to

share the event queue with the top-level sheet, so that all the panes

in the frame use the same event queue.

Syntax of the :layouts option�

Here is a brief description of the syntax of the :layouts option:

:layouts (layout-name layout-panes)

layout-name is a symbol.

layout-panes is layout-panes1 or (size-spec layout-panes1).

layout-panes1 is a pane-name, or a layout-macro-form, or layout-code.

layout-code is Lisp code that generates a pane, which may

include the name of a named pane.

size-spec is a positive real number less than 1, or :fill, or

:compute. A real number (between zero and one, exclusive) is

the fraction of the available space to use. :fill means that the

pane will take as much space as remains when all its sibling panes

have been given space. :compute means that the pane’s display

function should be called in order to compute how much space it

requires. (Note that the display function is run at frame-creation

time, so it must be able to compute the size correctly at that time.)

size-spec can also be an integer indicating the size of the pane

in device units, or a list whose first element is a real number

and whose second element is a ‘‘unit’’ (one of :line,
:character, :mm, :point, or :pixel).�

Page 1490

layout-macro-form is (layout-macro-name (options) &rest layout-panes).

layout-macro-name is clim:vertically, clim:horizontally,

clim:tabling, clim:outlining, clim:spacing, or

clim:labelling.

�

For a detailed explanation of the :layouts option see the section "Using the :LAY-

OUTS Option to CLIM:DEFINE-APPLICATION-FRAME".

See the section "Examples of CLIM Application Frames".

clim:define-border-type shape arglist &body body Macro

Defines a new kind of border named shape for use by clim:surrounding-output-

with-border. arglist will typically be (stream record left top right bottom).

body is the code that actually draws the border. It has lexical access to stream,

record, left, top, right, and bottom, which are respectively, the stream being

drawn on, the output record being surrounded, and the coordinates of the left, top,

right, and bottom edges of the bounding rectangle of the record.

After the border has been drawn, clim:surrounding-output-with-border positions

the text cursor at the end of the bordered output. Since the size of a border may

vary greatly, CLIM needs a hint as to where the text cursor should be placed rela-

tive to the bordered output. If the returned value of body is a small real number,

it is used as the hint that controls the Y offset of the final text cursor.

The predefined border types, :rectangle, :oval, :drop-shadow, and :underline are

defined using this macro. Here is how the rectangular border type is defined:

(define-border-type :rectangle

 (stream left top right bottom

 &rest drawing-options &key (filled nil) &allow-other-keys)

 (declare (dynamic-extent drawing-options))

 (let ((offset 2))

 (apply #’draw-rectangle* stream

 (- left offset) (- top offset)

 (+ right offset) (+ bottom offset)

 :filled filled drawing-options))

 ;; Y offset for text cursor is 3

 3)�

clim:define-command name arguments &body body Macro

Defines a command and its characteristics, including its name, its arguments, and

optionally the command table in which it should appear, its keystroke accelerator,

its command-line name, and whether or not (and how) to add this command to the

menu associated with the command table. For example, the follow defines a com-

Page 1491

mand that has a command-line name, appears in a command menu, and has a

keystroke accelerator.

 (clim:define-command (com-my-favorite-command

 :name "my fave"

 :keystroke #\F

 :menu "favorite"

 :command-table my-command-table)

 ((arg1 ’(or integer string)

 :default "none"

 :display-default t))

 body)�

clim:define-command is the most basic command-defining form. Usually, the pro-

grammer will not use clim:define-command directly, but will instead use a de-

fine-application-command form that is automatically generated by clim:define-

application-frame. define-application-command adds the command to the appli-

cation’s command table. By default, clim:define-command does not add the com-

mand to any command table.

clim:define-command defines two functions. The first function has the same name

as the command name, and implements the body of the command. It takes as argu-

ments the arguments to the command as specified in the clim:define-command

form, as required and keyword arguments.

The second function defined by clim:define-command is used internally by CLIM

and implements the code responsible for parsing and returning the command’s ar-

guments.

name Either a command name, or a cons of the command name and a list

of keyword-value pairs. The keyword-value pairs in name can be:

:command-table command-table-name

Specifies that the command should be added to a command

table. command-table-name either names a command table to

which the command should be added, or is nil (the default) to

indicate that the command should not be added to any com-

mand table. This keyword is only accepted by clim:define-

command, not by define-application-command functions.

:name string

Provides a name to be used as the command-line name for

the command for keyboard interactions in the command table

specified by the :command-table option. string is a string to

be used; or nil (the default) meaning that the command will

not be available via command-line interactions; or t, which

means the command-line name will be generated automatical-

ly. See the function clim:add-command-to-command-table.

:menu menu-item

Specifies that this command will be an item in the menu of

Page 1492

the command table specified by the :command-table option.

The default is nil, meaning that the command will not be

available via menu interactions. If menu-item is a string, then

that string will be used as the menu name. If menu-item is t,

then the menu name will be generated automatically. See the

function clim:add-command-to-command-table. Otherwise,

menu-item is a cons of the form (string . menu-options), where

string is the menu name and menu-options consists of key-

word-value pairs. The valid keywords are :after and

:documentation, which are interpreted as for clim:add-menu-

item-to-command-table.

:keystroke gesture-spec

Specifies a gesture to be used as a keystroke accelerator in

the command table specified by the :command-table option.

For applications with interactor panes, these gesture should

correspond to non-printing characters such as #\control-D�

(whose gesture spec is (:D :control)). The default is nil,

meaning that there is no keystroke accelerator.

The :name, :menu, and :keystroke options are allowed only if the

:command-table option was supplied explicitly or implicitly, as in

define-application-command.

If the command takes any non-keyword arguments and you have

supplied either :menu or :keystroke, then when you select this

command via a command menu or keystroke accelerator, a partial

command parser will be invoked in order to read the unsupplied ar-

guments; the defaults will not be filled in automatically. If this be-

havior is not desired, then you must call clim:add-menu-item-to-

command-table or clim:add-keystroke-to-command-table yourself

and fully specify the command. For example, use the following in-

stead of supplying :keystroke for the com-next-frame command:

(define-debugger-command (com-next-frame :name t)

 ((nframes ’integer

 :default 1

 :prompt "number of frames"))

 (next-frame :nframes nframes))

�

(clim:add-keystroke-to-command-table

 ’debugger ’(:n :control) :command ’(com-next-frame 1))

�

arguments

A list consisting of argument descriptions. A single occurrence of

the symbol &key may appear in arguments to separate required

command arguments from keyword arguments. Each argument de-

scription consists of a list containing a parameter variable, followed

by a presentation type specifier, followed by keyword-value pairs.

The keywords can be:

Page 1493

:default value

Provides a value which is the default that should be used for

the argument, as for clim:accept.

:default-type type

The same as for clim:accept. If :default is supplied, then the

:default and the :default-type are returned if the input is

empty.

:mentioned-default value

Provides a value which is the default that should be used for

the argument when a keyword is explicitly supplied via the

command-line processor, but no value is supplied for it.

:mentioned-default is allowed only for keyword arguments.

This is most often used for boolean keyword arguments in

conjunction with :default

(delete-after-printer ’boolean

 :default nil :mentioned-default t

 :prompt "yes or no")�

:display-default boolean

The same as for clim:accept. When true, displays the default

if one was supplied. When nil, the default is not displayed.

:prompt string

Provides a string which is a prompt to print out during com-

mand-line parsing, as for clim:accept.

:documentation string

Provides a documentation string that describes what the ar-

gument is. When you type Help when entering keyword argu-

ments, this documentation will be displayed.

:when form

Provides a form that indicates whether this keyword argu-

ment is available. The form is evaluated in a scope where the

parameter variables for the required parameters are bound,

and if the result is nil, the keyword argument is not avail-

able. :when is allowed only on keyword arguments, and form

cannot use the values of other keyword arguments.

:gesture pointer-gesture-name

Provides a gesture name that will be used for a translator

that translates from the argument to a command. :gesture is

allowed only when the :command-table option was supplied

to the command-defining form. The default is that no transla-

tor will be created. Explicitly supplying :gesture nil creates a

translator that will appear only in the translator menus.

pointer-gesture-name can also be a list whose car is a pointer

gesture name, and whose cdr is a list of translator options

Page 1494

that may include :tester, :menu, :priority, :echo,

:documentation, and :pointer-documentation.

body Provides the body of the command. It has lexical access to all of the

command’s arguments. If the body of the command needs access to

the application frame, it should use clim:*application-frame*. The

returned values of body are ignored.

clim:define-command arranges for the function that implements the body of the

command to get the proper values for unsupplied keyword arguments.

name-and-options and body are not evaluated. In the argument descriptions, the pa-

rameter variable name is not evaluated, and everything else is evaluated at run-

time when argument parsing reaches that argument, except that the value for

:when is evaluated when parsing reaches the keyword arguments, and :gesture is

not evaluated at all.

See the section "Commands in CLIM".

clim:define-command-table name &key :inherit-from :menu :inherit-menu Macro

Defines a command table whose name is the symbol name. The keyword arguments

are:

:inherit-from

A list of either command tables or command table names. The new

command table inherits from all of the command tables specified by

:inherit-from. The inheritance is done by union with shadowing. In

addition to inheriting from the explicitly specified command tables,

every command table defined with clim:define-command-table also

inherits from CLIM’s system command table. (This command table,

clim:global-command-table, contains such things as the ‘‘menu’’

translator that is associated with the right-hand button on pointers.)

:menu Specifies a menu for the command table. The value of :menu is a

list of clauses. Each clause is a list with the syntax (string type val-

ue &key documentation keystroke), where string, type, value, docu-

mentation, and keystroke are as for clim:add-menu-item-to-

command-table.

:inherit-menu

Normally, a menu does not inherit any menu items or keystroke ac-

celerators from its parents. When :inherit-menu is t, the menu items

and keystroke accelerators will be inherited. When it is :menu, only

the menu items will be inherited. When it is :keystrokes, only the

keystroke accelerators will be inherited.

If the command table named by name already exists, clim:define-command-table

will modify the existing command table to have the new value for :inherit-from and

:menu, but will otherwise leave the other attributes for the existing table alone.

Page 1495

None of the arguments to clim:define-command-table arguments is evaluated.

See the section "CLIM Command Tables".

clim:define-default-presentation-method presentation-function-name [qualifiers]*

specialized-lambda-list &body body Macro

This is like clim:define-presentation-method, except that it is used to define a de-

fault method that will be used if there are no more specific methods.

None of the arguments is evaluated.

clim:define-drag-and-drop-translator name (from-type to-type destination-type com-

mand-table &key (:gesture ’:select) :tester :documentation (:menu t) :priority :feed-

back :highlighting :pointer-cursor) arglist &body body Macro

Defines a ‘‘drag and drop’’ (or ‘‘direct manipulation’’) translator named name that

translates from objects of type from-type to objects of type to-type when a ‘‘from
presentation’’ is ‘‘picked up’’, ‘‘dragged’’ over, and ‘‘dropped’’ on a ‘‘to presenta-

tion’’ having type destination-type. from-type, to-type, and destination-type are pre-

sentation type specifiers, but must not include any presentation type options. from-

type, to-type and destination-type may be presentation type abbreviations. See the

section "Presentation Translators in CLIM".

The interaction style used by these translators is that a user points to a ‘‘from
presentation’’ with the pointer, picks it up by pressing a pointer button matching

:gesture, drags the ‘‘from presentation’’ to a ‘‘to presentation’’ by moving the

pointer, and then drops the ‘‘from presentation’’ onto the ‘‘to presentation’’. The

dropping might be accomplished by either releasing the pointer button or clicking

again, depending on the frame manager. When the pointer button is released, the

translator whose destination-type matches the presentation type of the ‘‘to presen-

tation’’ is chosen. For example, dragging a file to the TrashCan on a Macintosh

could be implemented by a drag and drop translator.

While the pointer is being dragged, the function specified by :feedback is invoked

to provide feedback to the user. The function is called with eight arguments: the

application frame object, the ‘‘from presentation’’, the stream, the initial X and Y

positions of the pointer, the current X and Y positions of the pointer, and a feed-

back state (either :highlight to draw feedback, or :unhighlight to erase it). The

feedback function is called to draw some feedback the first time pointer moves,

and is then called twice each time the pointer moves thereafter (once to erase the

previous feedback, and then to draw the new feedback). It is called a final time to

erase the last feedback when the pointer button is released. :feedback defaults to

clim:frame-drag-and-drop-feedback, whose default method simply draws the

bounding rectangle of the object being dragged.

When the ‘‘from presentation’’ is dragged over any other presentation that has an

applicable direct manipulation translator, the function specified by :highlighting is

invoked to highlight that object. The function is called with four arguments: the

application frame object, the ‘‘to presentation’’ to be highlighted or unhighlighted,

Page 1496

the stream, and a highlighting state (either :highlight or :unhighlight). :highlight-

ing defaults to clim:frame-drag-and-drop-highlighting, whose default method sim-

ply draws a box around the object over which the dragged object may be dropped.

The other arguments to clim:define-drag-and-drop-translator are the same as for

clim:define-presentation-translator. See the macro clim:define-presentation-

translator.

It is possible for there to be more than one drag and drop translator that applies

to the same from type, to type, destination type, and gesture. In this case, the ex-

act translator that is chosen for use during the dragging phase is unpredictable. If

these translators have different feedback, highlighting, documentation, or pointer

documentation, the feedback and highlighting behavior is unpredictable.

For example, suppose you are implementing some sort of desktop interface to a file

system editor that has commands such as ‘‘Hardcopy File’’, ‘‘Delete File’’, and so

forth, and you want a drag-and-drop interface. Assuming you have some icons that

represent a hardcopy device, a trashcan, and so forth, and presentation types that

correspond to those icons, you could do the following:

(clim:define-drag-and-drop-translator dm-hardcopy-file

 (pathname command printer fsedit-comtab

 :documentation "Hardcopy this file")

 (object destination-object)

 ‘(com-hardcopy-file ,object ,destination-object))

�

(clim:define-drag-and-drop-translator dm-delete-file

 (pathname command trashcan fsedit-comtab

 :documentation "Delete this file")

 (object)

 ‘(com-delete-file ,object))

�

(clim:define-drag-and-drop-translator dm-copy-file

 (pathname command folder fsedit-comtab

 :documentation "Copy this file")

 (object destination-object)

 ‘(com-copy-file ,object

 ,(make-pathname :name (pathname-name object)

 :type (pathname-type object)

 :defaults destination-object)))�

clim:define-genera-application frame-name &rest keys &key :pretty-name :select-key

:left :top :right :bottom :width :height Macro

Makes a CLIM application available to the Select Activity command and optional-

ly to the SELECT key. frame-name is the symbol used as the name argument to

clim:define-application-frame.

Note: clim:define-genera-application exists only under Genera. Therefore, you

should put #+Genera in front of any calls to it.

Page 1497

frame-name

A symbol which is the name argument to clim:define-application-

frame.

:pretty-name

A string which is the name used as a title and as the activity

name. It defaults to a prettified version of frame-name.

:select-key A character to be used with the SELECT key. It defaults to nil which

means that no SELECT character is assigned.

:left, :top, :right, :bottom

The coordinates of the frame. :left and :top default to 0, and :right

and :bottom default to nil.

:height, :width

The size of the frame. :height and :width default to clim:+fill+,
meaning the frame will fill the entire screen.

None of the arguments is evaluated.

clim:define-gesture-name name type gesture-spec &key (:unique t) Macro

Defines a gesture named name by calling clim:add-gesture-name.

For more information, see clim:add-gesture-name.

None of the arguments is evaluated.

CLIM’s standard pointer gestures on a platform with a 3-button mouse (such as

Genera) could be defined with the following forms:

(clim:define-gesture-name :select :pointer (:left))

(clim:define-gesture-name :describe :pointer (:middle))

(clim:define-gesture-name :menu :pointer (:right))

(clim:define-gesture-name :delete :pointer (:middle :shift))

(clim:define-gesture-name :edit :pointer (:left :meta))

(clim:define-gesture-name :modify :pointer (:right :control :meta))�

clim:define-presentation-action name (from-type to-type command-table &key (:ges-

ture ’:select) :tester :documentation :pointer-documentation (:menu t) :priority) arglist

&body body Macro

This is similar to clim:define-presentation-translator, except that the body of the

action is not intended to return a value, but should instead side-effect some sort of

application state. A typical presentation action might scroll a window in an appli-

cation, or select another translator from a menu.

name The name of the presentation action.

from-type The presentation type of the presentation on a window. Presentation

type options are not allowed in from-type.

Page 1498

to-type The presentation type of the current input context. Presentation

type options are not allowed in to-type. When to-type is nil, this ac-

tion is applicable in all input contexts.

command-table

This specifies which command table the translators should be stored

in. It should be either a command table or the name of a command

table. This translator will be applicable only when this command ta-

ble is one of the command tables from which the current applica-

tion frame’s command table inherits.�

The other arguments to clim:define-presentation-action are the same as for

clim:define-presentation-translator. For information on the arguments, see the

macro clim:define-presentation-translator.

None of the arguments to clim:define-presentation-action is evaluated.

Note that an action does not satisfy requests for input as translators do. An ordi-

nary translator satisfies a request for input, but an action is something that hap-

pens while waiting for input. After executing an action, the program continues to

wait for the same input it was waiting for prior to executing the action.

In general, if you are using clim:define-presentation-action to execute any kind of

an application command, you should be using clim:define-presentation-translator

or clim:define-presentation-to-command-translator instead.

From time to time, it is appropriate to write application-specific presentation ac-

tions. The key test for whether something should be an action is that it makes

sense for the action to take place while the user is entering a command sentence

and performing the action will not interfere with the input of the command sen-

tence. For example, an application framework might have an action that changes

what information is displayed in one of its panes. It makes sense to do this in the

middle of entering a command because information displayed in that pane might

be used in formulating the arguments to the command. This needn’t interfere with

the input of the command since a pane can be redisplayed without discarding the

pending partial command. It is for these cases that the presentation action mecha-

nism is provided. A simple rule of thumb is that actions may be used to alter how

application objects are presented or displayed, but anything having to do with mod-

ification of application objects should be embodied in a command, with an appropri-

ate set of translators.

clim:define-presentation-generic-function generic-function-name presentation-

function-name lambda-list &rest options Macro

Defines a new presentation named presentation-function-name whose methods are

named by generic-function-name. lambda-list and options are as for clos:defgeneric.

The first few arguments in lambda-list are treated specially. The first argument

must be either type-key or type-class. If you wish to be able to access type pa-

rameters or options in the method, the next arguments must be either or both of

parameters and options. Finally, a required argument called type must also be

included in lambda-list.

Page 1499

Most user programs will never need to define their own presentation type generic

function. CLIM uses it internally. For example, clim:describe-presentation-type

might be have been defined by the following:

(clim:define-presentation-generic-function

 describe-presentation-type-method clim:describe-presentation-type

 (type-key parameters options type stream plural-count))�

None of the arguments is evaluated.

clim:define-presentation-method presentation-function-name [qualifiers]* special-

ized-lambda-list &body body Macro

Defines a presentation method for the function named presentation-function-name

on the presentation type named in specialized-lambda-list. The value of presenta-

tion-function-name can be any of the presentation generic functions defined by

CLIM (clim:accept, clim:present, clim:describe-presentation-type,

clim:presentation-typep, clim:presentation-subtypep,

clim:accept-present-default, clim:presentation-type-specifier-p,

clim:presentation-refined-position-test, or clim:highlight-presentation) or any

presentation generic function you have defined yourself.

specialized-lambda-list is a CLOS specialized lambda list for the method, and its

contents varies depending on what presentation-function-name is. qualifier* is zero

or more of the usual CLOS method qualifiers. body defines the body of the method.

None of the arguments is evaluated.

For example, the following might be used to implement the clim:accept and

clim:present methods for the null type:

(clim:define-presentation-method clim:present

 (object (type null) stream (view clim:textual-view) &key)

 (declare (ignore object))

 (write-string "None" stream))

�

(clim:define-presentation-method clim:accept

 ((type null) stream (view clim:textual-view) &key)

 (let ((token (clim:read-token stream)))

 (unless (string-equal token "None")

 (clim:input-not-of-required-type token type))

 nil))�

For more information about presentation methods, see the section "Presentation

Methods in CLIM".

clim:define-presentation-to-command-translator name (from-type command-name

command-table &key (:gesture ’:select) :tester :documentation :pointer-documentation

(:menu t) :priority (:echo t)) arglist &body body Macro

Page 1500

Defines a presentation translator that translates a displayed presentation into a

command.

This is similar to clim:define-presentation-translator, except that the to-type will

be derived to be the command named by command-name in the command table

command-table. command-name is the name of the command that this translator

will translate to. See the section "Presentation Translators in CLIM".

The :echo argument controls whether or not the command should be echoed in the

command line when a user invokes this translator. The default for :echo is t.

The other arguments to clim:define-presentation-to-command-translator are the

same as for clim:define-presentation-translator. For information on the argu-

ments, see the macro clim:define-presentation-translator.

The body of the translator should return a list of the arguments to the command

named by command-name. body is run in the context of the application. The re-

turned value of the body, appended to the command name, is eventually passed to

clim:execute-frame-command.

For example, the following translators can be found in the CLIM Lisp Listener:

(clim:define-presentation-to-command-translator show-file-translator

 (pathname com-show-file lisp-listener

 :gesture :select

 :pointer-documentation "Show File")

 (object)

 (list object))

�

(clim:define-presentation-to-command-translator edit-file-translator

 (pathname com-edit-file lisp-listener

 :gesture :edit

 :pointer-documentation "Edit File")

 (object)

 (list object))�

None of the arguments to clim:define-presentation-to-command-translator is

evaluated.

clim:define-presentation-translator name (from-type to-type command-table &key

(:gesture ’:select) :tester :tester-definitive :documentation :pointer-documentation

(:menu t) :priority) arglist &body body Macro

Defines a presentation translator named name which translates from objects of

type from-type to objects of type to-type. From-type and to-type are presentation type

specifiers, but must not include presentation type options. From-type and to-type

may also be presentation type abbreviations. to-type can also be nil , in which case

the translator applies in any input context since nil is a subtype of all presentation

types. See the section "Presentation Translators in CLIM".

None of the arguments to clim:define-presentation-translator is evaluated. The

arguments are described as follows:

Page 1501

name The name of the presentation translator.

from-type The presentation type of the presentation on a window. Presentation

type options are not allowed in from-type. When from-type is t, this

translator is applicable to all presentation types.

to-type The presentation type of the returned object. Presentation type op-

tions are not allowed in to-type. When to-type is nil, this translator

is applicable in all input contexts.

command-table

This specifies which command table the translators should be stored

in. It should be either a command table or the name of a command

table. This translator will be applicable only when this command ta-

ble is one of the command tables from which the current applica-

tion frame’s command table inherits.

:gesture A gesture-name (see the section "Gestures and Gesture Names in

CLIM"). The body of the translator will be run only if the translator

is applicable and the pointer event corresponding to the user’s ges-

ture matches the gesture name in the translator. For more infor-

mation, see the section "Applicability of CLIM Presentation Transla-

tors". :gesture defaults to :select.

:gesture t means that any user gestures will match this translator,

and :gesture nil, means that no user gesture will match this trans-

lator. :gesture nil is commonly used when the translator should ap-

pear only in a menu.

:tester Either a function or a list of the form (tester-arglist . tester-body),

where tester-arglist takes the same form as arglist (see below), and

tester-body is the body of the tester. The tester should return either

t or nil. If it returns nil, then the translator is definitely not appli-

cable. If it returns t, then the translator might be applicable, and

the body of the translator may be run in order to definitively decide

if the translator is applicable (for more information, see the section

"Applicability of CLIM Presentation Translators"). If no tester is

supplied, CLIM arranges for a tester that always returns t.

Use this when you want to restrict the cases when a translator will

be applicable.

:tester-definitive

When this is t and the tester returns t, this translator is definitely

applicable. When this is nil and the tester returns t, this translator

might be applicable; in order to find out for sure, the body of the

translator is run, and, if it returns an object that matches the input

context type (using clim:presentation-typep), this translator is ap-

plicable.

:documentation

An object that will be used to document the translator. For exam-

Page 1502

ple, in menus: if the object is a string, the string itself will be used

as the documentation. Otherwise, it should be either a function or a

list of the form (doc-arglist . doc-body), where doc-arglist takes the

same form as arglist, but includes a stream argument as well (see

below), and doc-body is the body of the documentation function. The

body of the documentation function should write the documentation

to stream. The default is nil, meaning that there is no documenta-

tion.

:pointer-documentation

Like the :documentation option except that :pointer-documentation

is used in the pointer documentation line. This documentation is

usually more succinct than normal documentation. If :pointer-

documentation is not supplied, it defaults to :documentation.

:menu

The value should be t or nil. The default is t, meaning the transla-

tor is to be included in the menu popped-up by the :menu gesture

(click Right on a three-button mouse). Use :menu t :gesture nil to

make the translator accessible only through the menu. :menu nil

means that the translator should not appear in the menu.

:priority A non-negative integer that represents the priority of the translator.

The default is 0. When there are several translators that match for

the same gesture, the one with the highest priority is chosen.

The priority is broken into a ‘‘high order’’ part and a ‘‘low order’’

part. The high order part of the priority is the ‘‘tens’’ place (base

10), and the low order part is the ‘‘ones’’ place.

You can create an ‘‘overriding’’ translator that always precedes any

other applicable translators by supplying a high order priority

greater than the high order priority of other translators. You can

‘‘break ties’’ between translators that translate from the same type

by supplying a low order priority greater than the low order priority

of other translators. Since the high order priority always overrides

all other applicable translators, you should be careful about supply-

ing priorities that have a high order part.

arglist, tester-arglist, doc-arglist

An argument list that must be a subset (using string-equal to com-

pare symbol names) of the ‘‘canonical’’ argument list:

(object presentation context-type frame event window x y) �

In the body of the translator (or the tester), object will be bound to

the presentation’s object, presentation will be bound to the presenta-

tion that was clicked on, context-type will be bound to the presenta-

tion type of the context that actually matched, frame will be bound

to the application frame that is currently active (usually

clim:*application-frame*), event will be bound to the object repre-

senting the gesture that the user used, window will be bound to the

Page 1503

window stream from which the event came, and x and y will be

bound to the X and Y positions within window where the pointer

was when the user issued the gesture. The special variable

clim:*input-context* will be bound to the current input context.

body The body of the translator, and may return one, two, or three val-

ues. The first returned value is an object that must be

clim:presentation-typep of to-type. The second value is either nil or

a presentation type that must be clim:presentation-subtypep of to-

type.

The third returned value is either nil or a list of options (as key-

word-value pairs) that will be interpreted by clim:accept. The only

option currently used by clim:accept is :echo. If :echo is t (the de-

fault), the object returned by the translator will be ‘‘echoed’’ by in-

serting its textual representing into the input buffer. If :echo is nil,

the object will not be echoed.

body is run in the context of the application. The first two values

returned by body are used, in effect, as the returned values for the

call to clim:accept that established the matching input context.

clim:define-presentation-type name parameters &key :options :inherit-from :descrip-

tion :history :parameters-are-types Macro

Defines a CLIM presentation type. See the section "Defining a New Presentation

Type in CLIM".

name The name of the presentation type. name is a symbol or a class ob-

ject.

parameters

Parameters of the presentation type. These parameters are lexically

visible within the :inherit-from form and within the methods creat-

ed with clim:define-presentation-method. For example, the parame-

ters are used by clim:presentation-typep to refine its tests for type

inclusion.

:options A list of option specifiers, which defaults to nil. An option specifier

is either a symbol or a list (symbol &optional default supplied-p pre-

sentation-type accept-options). The elements symbol, default, and sup-

plied-p are as in a normal lambda-list. If presentation-type and ac-

cept-options are present, they specify how to accept a new value for

this option from the user. symbol can also be specified in the (key-

word variable) form allowed for Common Lisp lambda lists. symbol

is a variable that is visible within the :inherit-from form and with-

in most of the methods created with clim:define-presentation-

method. The keyword corresponding to symbol can be used as an

option in the third form of a presentation type specifier. An option

specifier for the standard option :description is automatically added

to :options if an option with that keyword is not present.

Page 1504

:inherit-from

A form that evaluates to a presentation type specifier for another

type from which the new type inherits. :inherit-from can access the

parameter variables bound by the parameters lambda list and the

option variables specified by options. If name is or names a CLOS

class, then :inherit-from must specify the class’s direct superclasses

(using and to specify multiple inheritance). It is useful to do this

when you want to parameterize previously defined CLOS classes.

If :inherit-from is unsupplied, it defaults as follows: If name is or

names a CLOS class, then the type inherits from the presentation

type corresponding to the direct superclasses of that CLOS class

(using and to specify multiple inheritance). Otherwise, the type in-

herits from clos:standard-object.

Note: you cannot use clim:define-presentation-type to create a new

subclass any of the built-in types, such as integer or symbol.

:history Specifies what history to use for the presentation type.

nil (the default) Uses no history.

t Uses its own history.

type-name Uses type-name’s history.�

If you want more flexibility, you can define a clim:presentation-

type-history presentation method.

:description

A string or nil. If nil or unsupplied, a description is automatically

generated; it will be a ‘‘prettied up’’ version of the type name. For

example, small-integer would become ‘‘small integer’’. You can also

write a clim:describe-presentation-type presentation method. �

Unsupplied optional or keyword parameters default to * (as they do in deftype) if

no default is specified in parameters. Unsupplied options default to nil if no default

is specified in :options.

There are certain restrictions on the :inherit-from form, to allow it to be analyzed

at compile time. The form must be a simple substitution of parameters and options

into positions in a fixed framework. It cannot involve conditionals or computations

that depend on valid values for the parameters or options; for example, it cannot

require parameter values to be numbers. It cannot depend on the dynamic or lexi-

cal environment. The form will be evaluated at compile time with uninterned sym-

bols used as dummy values for the parameters and options. In the type-specifier

produced by evaluating the form, the type name must be a constant that names a

type, the type parameters cannot derive from options of the type being defined,

and the type options cannot derive from parameters of the type being defined. All

presentation types mentioned must be already defined. and can be used for multi-

ple inheritance, but or, not, and satisfies cannot be used.

Page 1505

clim:define-presentation-type-abbreviation name parameters expansion &key :op-

tions Macro

Defines a presentation type that is an abbreviation for the presentation type speci-

fier that is the value of expansion. Note that you cannot define any presentation

methods on a presentation type abbreviation. If you need to define methods, use

clim:define-presentation-type instead.

name must be a symbol and must not be the name of a CLOS class. parameters

and :options are the same as they are for clim:define-presentation-type.

The type-specifier produced by evaluating expansion can be a real presentation

type or another abbreviation.

This example defines a presentation type to read an octal integer:

(clim:define-presentation-type-abbreviation octal-integer

 (&optional low high)

 ‘((integer ,low ,high) :base 8 :description "octal integer"))�

clim-sys:defresource name parameters &key :constructor :initializer :deinitializer

:matcher :initial-copies Macro

Defines a resource named name; name must be a symbol. parameters is a lambda-

list giving names and default values (for optional and keyword parameters) of pa-

rameters to an object of this type.

:constructor is a form that is responsible for creating an object, and is called when

someone tries to allocate an object from the resource and no suitable free objects

exist. The constructor form can access the parameters as variables. This argument

is required.

:initializer is a form that is used to initialize an object gotten from the resource. It

can access the parameters as variables, and also has access to a variable called

name, which is the object to be initialized. The initializer is called both on newly

created objects and objects that are being reused.

:deinitializer is a form that is used to deinitialize an object when it is about to be

returned to the resource. It can access the parameters as variables, and also has

access to a variable called name, which is the object to be deinitialized. It is

called whenever an object is deallocated back to the resource, but is not called by

clim-sys:clear-resource. Deinitializers are typically used to clear references to oth-

er objects.

:matcher is a form that ensures that an object in the resource ‘‘matches’’ the spec-

ified parameters, which it can access as variables. In addition, the matcher also

has access to a variable called name, which is the object in the resource being

matched against. If no matcher is supplied, the system remembers the values of

the parameters (including optional ones that defaulted) that were used to construct

the object, and assumes that it matches those particular values for all time. This

comparison is done with equal. The matcher should return t if there is a match,

otherwise it should return nil.

Page 1506

:initial-copies is used to specify the number of objects that should be initially put

into the resource. It must be an integer or nil (which is the default), meaning that

no initial copies should be made. If initial copies are made and there are parame-

ters, all the parameters must be optional; in this case, the initial copies have the

default values of the parameters.

The following example defines a resource of strings that can be used to avoid con-

stantly allocating and garbage collecting strings:

(clim-sys:defresource temporary-string

 (&key (length 100) (adjustable t))

 :constructor

 (make-array length

 :element-type ’character

 :fill-pointer 0

 :adjustable adjustable)

 :matcher

 (and (eq adjustable (adjustable-array-p temporary-string))

 (or (and (not adjustable)

 (= length (array-dimension temporary-string 0)))

 (<= length (array-dimension temporary-string 0))))

 :initializer (setf (fill-pointer temporary-string) 0))

�

(defmacro with-temporary-string

 ((var &key (length 100) (adjustable t)) &body body)

 ‘(clim-sys:using-resource (,var temporary-string

 :length ,length :adjustable ,adjustable)

 ,@body))�

See the section "Resources in CLIM".

clim:delete-gesture-name gesture-name Function

Removes the gesture named gesture-name.

clim:delete-output-record child record &optional errorp Generic Function

Removes the child output record child from the output record record. If child is

not contained in record and errorp is t, an error is signalled.

Any class that is a subclass of clim:output-record must implement this method.

See the section "Concepts of CLIM Output Recording".

clim:delimiter-gesture-p gesture Function

Returns t if gesture is a currently active delimiter gesture.

clim:*delimiter-gestures* Variable

Page 1507

A list containing the gesture names of the currently active delimiter gestures.

clim:describe-presentation-type presentation-type &optional (stream *standard-

output*) (plural-count 1) Function

Describes the presentation-type on the stream.

If stream is nil, a string containing the description is returned. plural-count is ei-

ther nil (meaning that the description should be the singular form of the name), t

(meaning that the description should the plural form of the name), or an integer

greater than zero (the number of items to be described).

The presentation-type can be a presentation type abbreviation.

clim:describe-presentation-type type-key parameters options type stream plural-

count Clim Presentation Method

This presentation method is responsible for textually describing the type type.

stream will be a stream of some sort, never nil. plural-count is as for the

clim:describe-presentation-type function.

For example, CLIM’s complex number is described with the following methods. It

is written as an :after method because CLIM provides a default method that does

most of the work.

(clim:define-presentation-method clim:describe-presentation-type :after

 ((type complex) stream plural-count)

 (declare (ignore type plural-count))

 (unless (eq type ’*)

 (format stream " whose components are ")

 (clim:describe-presentation-type type stream t)))�

clim:design Class

A design is an object that represents a way of arranging colors and opacities in

the drawing plane. clim:design is a generalization of clim:region to include color.

clim:destroy-frame frame Generic Function

Disables the application frame frame, and then destroys it by deallocating all of its

CLIM resources and disowning it from its frame manager. After the frame has

been destroyed, its state will be :disowned.

clim:destroy-port port Generic Function

Destroys the connection to the display server represented by port. All of the appli-

cation frames, frame managers, and sheets associated with port will be destroyed.

All server resources used by the frames and sheets (such as graphics contexts) are

released as part of the shutdown.

Page 1508

clim-sys:destroy-process process Function

Terminates the process process. process is a process object, such as is returned by

clim-sys:make-process.

clim:device-event Class

The superclass of all other CLIM device events. This is a subclass of clim:event.

clim-sys:disable-process process Function

Disables the process process, that is, prevents it from becoming runnable until it is

enabled again.

clim:disarmed-callback gadget client id Generic Function

This callback is invoked when the gadget gadget is disarmed. The exact definition

of disarming varies from gadget to gadget, but typically a gadget becomes dis-

armed when the pointer is moved out of its region.

The default method for clim:disarmed-callback (on clim:basic-gadget) calls the

function specified by the :disarmed-callback initarg.

clim:display-command-menu frame stream &key :command-table :max-width :max-

height :n-rows :n-columns (:cell-align-x ’:left) (:cell-align-y ’:top) Function

Displays the menu described by the command table associated with the application

frame frame onto stream. This is generally used as the display function for applica-

tion panes of type :command-menu.

:command-table is the command table to display; it defaults to frame’s current com-

mand table. The following options are used to control the appearance of the com-

mand menu.

:max-width

Specifies the maximum width, in device units, of the table display.

:max-height

Specifies the maximum height, in device units, of the table display.

:n-rows

Specifies the number of rows of the table. Specifying this overrides

:max-width.

:n-columns

Specifies the number of columns of the table. Specifying this over-

rides :max-height.

:cell-align-x

Specifies the horizontal placement of each of the cells in the com-

mand menu. This is like the :align-x option to clim:formatting-cell.

Page 1509

:cell-align-y

Specifies the horizontal placement of each of the cells in the com-

mand menu. This is like the :align-y option to clim:formatting-cell.

clim:display-command-menu displays the disabled command menu items as well

as the enabled ones, but the disabled items will be ‘‘grayed out’’.

clim:display-command-table-menu command-table stream &key :max-width :max-

height :n-rows :n-columns :x-spacing :y-spacing (:cell-align-x ’:left) (:cell-align-y ’:top)

(:initial-spacing t) :row-wise :move-cursor Function

Displays the menu for command-table on stream. The following options are used to

control the appearance of the command menu.

:max-width

Specifies the maximum width, in device units, of the table display.

:max-height

Specifies the maximum height, in device units, of the table display.

:n-rows

Specifies the number of rows of the table. Specifying this overrides

:max-width.

:n-columns

Specifies the number of columns of the table. Specifying this over-

rides :max-height.

:x-spacing

Determines the amount of space inserted between columns of the

table; the default is the width of a space character. :x-spacing can

be specified in one of the following ways:

Integer

A size in the current units to be used for spacing.

String or character

The spacing is the width or height of the string or char-

acter in the current text style.

Function

The spacing is the amount of horizontal or vertical space

the function would consume when called on the stream.

List of form (number unit)

The unit is :point, :pixel, or :character.�

:y-spacing

Specifies the amount of blank space inserted between rows of the

table; the default is the vertical spacing for the stream. The possi-

ble values for this option are the same as for the :x-spacing option.

Page 1510

:cell-align-x

Specifies the horizontal placement of each of the cells in the com-

mand menu. This is like the :align-x option to clim:formatting-cell.

:cell-align-y

Specifies the horizontal placement of each of the cells in the com-

mand menu. This is like the :align-y option to clim:formatting-cell.

:initial-spacing

When doing the layout, CLIM tries to evenly space items across the

entire width of the stream. When this option is t, no whitespace is

inserted before the first item on a line.

:row-wise When this is nil, if there are multiple columns in the item list, the

entries in the item list are arranged in a manner similar to entries

in a phone book. Otherwise the entries are arranged in a ‘‘row-

wise’’ fashion. The default is t.

:move-cursor

When t (the default), CLIM moves the text cursor to the end (lower

right corner) of the output. Otherwise, the cursor is left at the be-

ginning (upper left corner) of the output.

clim:display-exit-boxes frame stream view Generic Function

Displays the exit boxes for the clim:accepting-values frame frame on the stream

stream using the view view. The exit boxes specification is not passed in directly,

but is a slot in the frame.

CLIM has default methods that either writes a line of text associating the Exit

and Abort strings with presentations that either exit or abort from the dialog (in

the textual view), or create push buttons that contain the Exit and Abort strings.

You can create your own subclass of the clim:accepting-values frame class, and

then specialize clim:display-exit-boxes for you own kind of exit boxes. In this case,

you will need to provide the :frame-class option to clim:accepting-values. It is

often sufficient to simply provide the :exit-boxes option to clim:accepting-values.

clim:displayed-output-record Class

The protocol class that is used to indicate that an object is a displayed output

record, that is, a CLIM object that represents a visible piece of output on an out-

put device. If you want to create a new class the obeys the displayed output record

protocol, it must be a subclass of clim:displayed-output-record.

If you think of output records being arranged in a tree, displayed output records

are the leaves of the tree. Displayed text and graphics are examples of things that

are displayed output records.

See the section "Output Recording in CLIM".

Page 1511

clim:displayed-output-record-p object Function

Returns t if and only object is of type clim:displayed-output-record.

clim:do-command-table-inheritance (command-table-var command-table) &body

body Macro

Successively evaluates body with command-table-var bound first to the command ta-

ble command-table, and then to all of the command tables from which command-

table inherits. The recursion follows a depth-first path, considering the ‘‘inheri-
tees’’ of the first inheritee before considering the second inheritee. This is the

precedence order for command table inheritance.

clim:document-presentation-translator translator presentation context-type frame

event window x y &key (:stream *standard-output*) :documentation-type Function

Computes the documentation string for translator, and displays it on the stream

:stream. presentation, context-type, frame, gesture, window, x, and y are as for

clim:find-applicable-translators.

:documentation-type should be either :normal or :pointer. When it is :normal, the

translator should generate ‘‘normal’’ documentation. Otherwise it should generate

the pointer documentation, which is usually shorter.

clim:dolist-noting-progress (var listform name &optional stream note-var) &body

body Function

Binds the dynamic environment such that the progress of a dolist special form is

noted by a progress bar displayed in the specified stream (usually the pointer doc-

umentation pane).

var is a variable bound to each successive element in listform on each successive

iteration. listform is the list. name is a string naming the operation being noted;

this string is displayed with the progress bar.

note-var is a variable bound to the current note object; the default is

clim:*current-progress-note*.

(defun note-element-printing (list)

 (clim:dolist-noting-progress (element list "Printing elements")

 (print element)

 (sleep 1)))�

clim:dotimes-noting-progress (var countform name &optional stream note-var)

&body body Macro

Binds the dynamic environment such that the progress of a dotimes special form

is noted by a progress bar displayed in the specified stream (usually the pointer

documentation pane).

Page 1512

var is a variable bound to the count (0, 1, 2, and so on) on each successive itera-

tion. countform is the number of iterations. name is a string naming the operation

being noted; this string is displayed with the progress bar.

note-var is a variable bound to the current note object; the default is

clim:*current-progress-note*.

�

(defun note-square-roots (n)

 (clim:dotimes-noting-progress

 (count n "Calculating square roots")

 (sqrt count) ;whoopee!

 (sleep 1)))�

clim:drag-callback gadget client id value Generic Function

This callback is invoked when the value of a slider or scroll bar is changed while

the indicator is being dragged. This is implemented by calling the function speci-

fied by the :drag-callback initarg with two arguments, the slider (or scroll bar)

and the new value. Generally, this function will call another programmer-specified

callback function.

clim:drag-output-record stream output-record &key (:repaint t) :multiple-window

:erase :feedback (:finish-on-release t) Function

Enters an interaction mode in which user moves the pointer, and output-record fol-

lows the pointer by being dragged on stream.

:repaint Allows you to specify the appearance of windows as the pointer is

dragged. If :repaint is t (the default), displayed contents of windows

are not disturbed as output-record is dragged over them (that is,

those regions of the screen are repainted).

:erase Allows you to identify a function to erase the output record (the de-

fault effectively uses clim:erase-output-record). :erase is a function

of two arguments, the output record to erase, and the stream.

:feedback Allows you to identify a feedback function. :feedback is a function of

seven arguments: the output record, the stream, the initial X and Y

position of the pointer, the current X and Y position of the pointer,

and a drawing argument (either :erase, or :draw).

Use :feedback if you want more complex feedback than is supplied

by default, for instance, if you want to draw a ‘‘rubber band’’ line

as the user moves the mouse. The default for :feedback is nil.

:multiple-window

When t, specifies that the pointer is to be tracked across multiple

windows. The default is nil.

Page 1513

:finish-on-release

When this is t (the default), the body is exited when the user re-

leases the mouse button currently being held down. When this is

nil, the body is exited when the user clicks a mouse button.

Note that if :feedback is supplied, :erase is ignored.

clim:dragging-output (&optional stream &key (:repaint t) :multiple-window :finish-

on-release) &body body Macro

Evaluates body to produce the output, and then invokes clim:drag-output-record

to drag that output on stream. stream defaults to *standard-input*.

:repaint allows you to control the appearance of windows as the pointer is dragged.

If :repaint is t (the default), displayed contents of windows are not disturbed as

output-record is dragged over them (that is, those regions of the screen are re-

painted).

:multiple-window is as for clim:drag-output-record.

If :finish-on-release is t (the default), clim:dragging-output is exited when the

user releases the mouse button currently being held down. When it is nil,

clim:dragging-output is exited when the user clicks a mouse button.

clim:draw-arrow medium start-point end-point &key :from-head (:to-head t) (:head-

length 10) (:head-width 5) :line-style :line-thickness :line-unit :line-dashes :line-cap-

shape :ink :clipping-region :transformation Function

Draws an arrow on medium. The arrow starts at the position specified by start-

point and ends with the arrowhead at the position specified by end-point, two point

objects.

This function is the same as clim:draw-arrow*, except that the positions are spec-

ified by points, not by X and Y positions.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-arrow* medium x1 y1 x2 y2 &key :from-head (:to-head t) (:head-length

10) (:head-width 5) :line-style :line-thickness :line-unit :line-dashes :line-cap-shape

:ink :clipping-region :transformation Function

Draws an arrow on medium. The arrow starts at the position specified by (x1,y1)

and ends with the arrowhead at the position specified by (x2,y2).

Page 1514

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-circle medium center radius &key :start-angle :end-angle (:filled t) :line-

style :line-thickness :line-unit :line-dashes :line-cap-shape :ink :clipping-region :trans-

formation Function

Draws a circle or arc on medium. The center of the circle is specified by the point

center, and the radius is specified by radius.

This function is the same as clim:draw-circle*, except that the center position is

expressed as a point instead of X and Y positions. See the function clim:draw-

circle*.

:start-angle and :end-angle

Enable you to draw an arc rather than a complete circle in the

same manner as that of the ellipse functions. See the function

clim:draw-ellipse*.

The defaults for :start-angle and :end-angle are nil (that is, a full

circle).

:filled Specifies whether the circle should be filled, a boolean value.�

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-circle* medium center-x center-y radius &key :start-angle :end-angle

(:filled t) :line-style :line-thickness :line-unit :line-dashes :line-cap-shape :ink :clip-

ping-region :transformation Function

Draws a circle or arc on medium. The center of the circle is specified by center-x

and center-y, and the radius is specified by radius.

:start-angle and :end-angle

Enable you to draw an arc rather than a complete circle in the

same manner as that of the ellipse functions. See the function

clim:draw-ellipse*.

Page 1515

The defaults for :start-angle and :end-angle are nil (that is, a full

circle).

:filled Specifies whether the circle should be filled, a boolean value.

Both clim:draw-circle* and clim:draw-circle call clim:medium-draw-ellipse* to do

the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-design design stream &key :ink :clipping-region :transformation :line-style

:unit :thickness :joint-shape :cap-shape :dashes :text-style :text-family :text-face :text-

size Generic Function

Draws design on stream. The additional keyword arguments are used in a manner

that depends upon the type of the design. For example, for designs that are paths

(such as lines and unfilled circles), you may include the :line-style keyword.

The design types are:

area Paints the specified region of the drawing plane with stream’s

current ink.

path Strokes the path with stream’s current ink under control of the

line-style.

point The same as clim:draw-point.

a color or an opacity

Paints the entire drawing plane (subject to the medium’s clip-

ping region).

clim:+nowhere+
This has no effect.�

If design is a non-uniform design this paints the design positioned at coordinates

(x=0, y=0).

clim:draw-design is currently supported for the following designs:

• Designs created by the geometric object constructors (such as

clim:make-line and clim:make-ellipse).

• Designs created by clim:compose-in, where the first argument is an

ink and the second argument is a design.

• clim:compose-over of designs created by clim:compose-in.

Page 1516

• Designs returned by clim:make-design-from-output-record.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-ellipse medium point radius-1-dx radius-1-dy radius-2-dx radius-2-dy

&key :start-angle :end-angle (:filled t) :line-style :line-thickness :line-unit :line-dashes

:line-cap-shape :ink :clipping-region :transformation Function

Draws an ellipse or elliptical arc on medium. The center of the ellipse is specified

by point.

This function is the same as clim:draw-ellipse*, except that the center position is

expressed as a point instead of X and Y. See the function clim:draw-ellipse*.

Two vectors, radius-1-dx, radius-1-dy, and radius-2-dx, radius-2-dy specify the

bounding parallelogram of the ellipse. Those two vectors must not be collinear in

order for the ellipse to be well defined. The special case of an ellipse with its ma-

jor axes aligned with the coordinate axes can be obtained by setting both radius-1-

dy and radius-2-dx to 0. For more information about the bounding parallelogram of

an ellipse, see the section "Ellipses and Elliptical Arcs in CLIM".

:start-angle and :end-angle

Enable you to draw an arc rather than a complete ellipse. Angles

are measured with respect to the positive X-axis. The elliptical arc

runs positively from :start-angle to :end-angle. The angles are mea-

sured from the positive X-axis toward the positive Y-axis. In a right-

handed coordinate system this direction is counter-clockwise.

The defaults for :start-angle and :end-angle are nil (that is, a full

ellipse). If you supply :start-angle, then :end-angle defaults to 2pi. If

you supply :end-angle, then :start-angle defaults to 0.

:filled Specifies whether the ellipse should be filled, a boolean value.�

In the case of a filled arc, the figure drawn is the ‘‘pie slice’’ area swept out by a

line from the center of the ellipse to a point on the boundary as the boundary

point moves from :start-angle to :end-angle.

When drawing unfilled ellipses, the current line style affects the drawing as usual,

except that the joint shape has no effect. The dashing of an elliptical arc starts at

:start-angle.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

Page 1517

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-ellipse* medium center-x center-y radius-1-dx radius-1-dy radius-2-dx ra-

dius-2-dy &key :start-angle :end-angle (:filled t) :line-style :line-thickness :line-unit

:line-dashes :line-cap-shape :ink :clipping-region :transformation Function

Draws an ellipse or elliptical arc on medium. The center of the ellipse is specified

by center-x and center-y.

This function is the same as clim:draw-ellipse, except that the center position is

expressed as its X and Y coordinates, instead of as a point. See the function

clim:draw-ellipse.

Both clim:draw-ellipse* and clim:draw-ellipse call clim:medium-draw-ellipse* to

do the actual drawing.

Two vectors, radius-1-dx, radius-1-dy, and radius-2-dx, radius-2-dy specify the

bounding parallelogram of the ellipse. Those two vectors must not be collinear in

order for the ellipse to be well defined. The special case of an ellipse with its ma-

jor axes aligned with the coordinate axes can be obtained by setting both radius-1-

dy and radius-2-dx to 0. For more information about the bounding parallelogram of

an ellipse, see the section "Ellipses and Elliptical Arcs in CLIM".

:start-angle and :end-angle

Enable you to draw an arc rather than a complete ellipse. Angles

are measured with respect to the positive X-axis. The elliptical arc

runs positively from :start-angle to :end-angle. The angles are mea-

sured from the positive X-axis toward the positive Y-axis. In a right-

handed coordinate system this direction is counter-clockwise.

The defaults for :start-angle and :end-angle are nil (that is, a full

ellipse). If you supply :start-angle, then :end-angle defaults to 2pi. If

you supply :end-angle, then :start-angle defaults to 0.

:filled Specifies whether the ellipse should be filled, a boolean value.�

In the case of a filled arc, the figure drawn is the ‘‘pie slice’’ area swept out by a

line from the center of the ellipse to a point on the boundary as the boundary

point moves from :start-angle to :end-angle.

When drawing unfilled ellipses, the current line style affects the drawing as usual,

except that the joint shape has no effect. The dashing of an elliptical arc starts at

:start-angle.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

Page 1518

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-line medium point-1 point-2 &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation Function

Draws a line segment on medium. The line starts at the position specified by

point-1 and ends at the position specified by point-2, two point objects.

This function is the same as clim:draw-line*, except that the positions are speci-

fied by points, not by X and Y positions.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-line* medium x1 y1 x2 y2 &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation Function

Draws a line segment on medium. The line starts at the position specified by (x1,

y1), and ends at the position specified by (x2, y2).

Both clim:draw-line* and clim:draw-line call clim:medium-draw-line* to do the

actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-lines medium point-seq &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation Function

Draws a set of disconnected line segments onto medium. point-seq is a sequence of

pairs of points. Each point pair specifies the starting and ending point of one line.

This function is semantically equivalent to calling clim:draw-line repeatedly, but it

can be more convenient and efficient when drawing more than one line segment.

See the function clim:draw-line.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

Page 1519

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-lines* medium coord-seq &key :line-style :line-thickness :line-unit :line-

dashes :line-cap-shape :ink :clipping-region :transformation Function

Draws a set of disconnected line segments onto medium. coord-seq is a sequence of

pairs of X and Y positions. Each pair of pairs specifies the starting and ending

point of one line.

This function is equivalent to calling clim:draw-line* repeatedly, but it can be

more convenient and efficient when drawing more than one line segment. See the

function clim:draw-line*.

Both clim:draw-lines* and clim:draw-lines call clim:medium-draw-lines* to do

the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-oval medium point x-radius y-radius &key (:filled t) :line-style :line-

thickness :line-unit :line-dashes :line-cap-shape :ink :clipping-region :transformation

Function

Draws an oval, that is, a ‘‘race-track’’ shape, centered on point, a point object. If

x-radius or y-radius is 0, draws a circle with the specified non-zero radius; other-

wise, draws the figure that results from drawing a rectangle with dimensions x-ra-

dius and y-radius and then replacing the two short sides with semicircular arc of

appropriate size.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-oval* medium center-x center-y x-radius y-radius &key (:filled t) :line-

style :line-thickness :line-unit :line-dashes :line-cap-shape :ink :clipping-region :trans-

formation Function

Page 1520

Draws an oval, that is, a ‘‘race-track’’ shape, centered on (center-x center-y): if x-ra-

dius or y-radius is 0, draws a circle with the specified non-zero radius; otherwise,

draws the figure that results from drawing a rectangle with dimensions x-radius

and y-radius and then replacing the two short sides with semicircular arc of appro-

priate size.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-pattern* stream pattern x y &key :clipping-region :transformation

Function

Draws the pattern pattern on stream at the position (x,y). pattern is a design creat-

ed by calling clim:make-pattern, for example,

(clim:make-pattern #2A((0 0 0 1 1 0 0 0)

 (0 0 1 1 1 1 0 0)

 (0 1 1 1 1 1 1 0)

 (1 1 1 0 0 1 1 1)

 (1 1 1 0 0 1 1 1)

 (0 1 1 1 1 1 1 0)

 (0 0 1 1 1 1 0 0)

 (0 0 0 1 1 0 0 0))

 (list clim:+background-ink+

 clim:+foreground-ink+))�

You could also make the above pattern translucent by using clim:+transparent-
ink+ instead of clim:+background-ink+. In that case, the output underneath the

pattern will show through wherever there is a zero value in the pattern.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-pixmap medium pixmap point &rest args &key :ink :clipping-region

:transformation (:function boole-1) Function

Draws the pixmap pixmap on medium at the position point. This function is the

same as clim:draw-pixmap*, except that the position is specified by a point object,

not by an X/Y position.

Page 1521

:function is a boolean operation that controls how the source and destination bits

are combined.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-pixmap* medium pixmap x y &rest args &key :ink :clipping-region

:transformation (:function boole-1) Function

Draws the pixmap pixmap on medium at the position (x,y). pixmap is a pixmap cre-

ated by using clim:copy-area or clim:with-output-to-pixmap. Unlike clim:copy-

area, clim:draw-pixmap* will create a ‘‘pixmap output record’’ when called on an

output recording stream.

:function is a boolean operation that controls how the source and destination bits

are combined.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-point medium point &key :line-style :line-thickness :line-unit :ink :clip-

ping-region :transformation Function

Draws a point on medium at the position indicated by point.

CLIM uses the medium’s line style to decide how to draw a point on a display de-

vice. The :line-unit and :line-thickness arguments control the size on the display de-

vice of the ‘‘blob’’ used to render the point.

The :line-unit and :line-thickness arguments control the size on the display device

of the ‘‘blob’’ used to render the point.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

Page 1522

clim:draw-point* medium x y &key :line-style :line-thickness :line-unit :ink :clip-

ping-region :transformation Function

Draws a point on medium at the position indicated by x and y.

CLIM uses the medium’s line style to decide how to draw a point on a display de-

vice. The :line-unit and :line-thickness arguments control the size on the display de-

vice of the ‘‘blob’’ used to render the point.

Both clim:draw-point* and clim:draw-point call clim:medium-draw-point* to do

the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-points medium point-seq &key :line-style :line-thickness :line-unit :ink

:clipping-region :transformation Function

Draws a set of points on medium. point-seq is a sequence of point objects specify-

ing where a point is to be drawn.

This function is equivalent to calling clim:draw-point repeatedly, but it can be

more convenient and efficient when drawing more than one point.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-points* medium coord-seq &key :line-style :line-thickness :line-unit :ink

:clipping-region :transformation Function

Draws a set of points on medium. coord-seq is a sequence of pairs of X/Y pairs

(that is, a sequence of alternating X coordinates and Y coordinates which when

taken pairwise specify the points to be drawn).

This function is equivalent to calling clim:draw-point* repeatedly, but it can be

more convenient and efficient when drawing more than one point.

Both clim:draw-points* and clim:draw-points call clim:medium-draw-points* to

do the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

Page 1523

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-polygon medium point-seq &key (:closed t) (:filled t) :line-style :line-

thickness :line-unit :line-dashes :line-joint-shape :line-cap-shape :ink :clipping-region

:transformation Function

Draws a polygon, or sequence of connected lines, on medium. The keyword argu-

ments control whether the polygon is closed (each segment is connected to two

other segments) and filled. point-seq is a sequence of points that indicate the start

of a new line segment.

This function is the same as clim:draw-polygon*, except that the segments are

specified by points, not X and Y positions.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-polygon* medium coord-seq &key (:closed t) (:filled t) :line-style :line-

thickness :line-unit :line-dashes :line-joint-shape :line-cap-shape :ink :clipping-region

:transformation Function

Draws a polygon, or sequence of connected lines, on medium. The keyword argu-

ments control whether the polygon is closed (each segment is connected to two

other segments) and filled. coord-seq is a sequence of alternating X and Y positions

that indicate the start of a new line segment.

:filled Specifies whether the polygon should be filled, a boolean value. If t,

a closed polygon is drawn and filled in. In this case, :closed is as-

sumed to be t.

:closed When t, specifies that a segment is drawn connecting the ending

point of the last segment to the starting point of the first segment.

Both clim:draw-polygon* and clim:draw-polygon call clim:medium-draw-

polygon* to do the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

Page 1524

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-rectangle medium point1 point2 &rest args &key :line-style :line-

thickness :line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation

(:filled t) Function

Draws an axis-aligned rectangle on medium. The boundaries of the rectangle are

specified by the two points point1 and point2.

This function is the same as clim:draw-rectangle*, except that the positions are

specified by points, not by X and Y positions.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-rectangle* medium x1 y1 x2 y2 &key (:filled t) :line-style :line-thickness

:line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation Function

Draws an axis-aligned rectangle on medium. The boundaries of the rectangle are

specified by x1, y1, x2, and y2, with (x1,y1) at the upper left and (x2,y2) at the low-

er right in the standard +Y-downward coordinate system.

:filled Specifies whether the rectangle should be filled, a boolean value. If

t, a closed rectangle is drawn and filled in.

Both clim:draw-rectangle* and clim:draw-rectangle call clim:medium-draw-

rectangle* to do the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-rectangles medium point-seq &rest args &key :line-style :line-thickness

:line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation (:filled t)

Function

Draws a set of axis-aligned rectangles on medium. point-seq is a sequence of pairs

of points. Each point specifies the upper left and lower right corner of the rectan-

gle in the standard +Y-downward coordinate system.

Page 1525

This function is equivalent to calling clim:draw-rectangle repeatedly, but it can

be more convenient and efficient when drawing more than one rectangle. See the

function clim:draw-rectangle.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-rectangles* medium coord-seq &rest args &key :line-style :line-thickness

:line-unit :line-dashes :line-joint-shape :ink :clipping-region :transformation (:filled t)

Function

Draws a set of axis-aligned rectangles on medium. coord-seq is a sequence of 4-tu-

ples x1, y1, x2, and y2, with (x1,y1) at the upper left and (x2,y2) at the lower right

in the standard +Y-downward coordinate system.

:filled Specifies whether the rectangle should be filled, a boolean value. If

t, a closed rectangle is drawn and filled in.

This function is equivalent to calling clim:draw-rectangle* repeatedly, but it can

be more convenient and efficient when drawing more than one rectangle. See the

function clim:draw-rectangle*.

Both clim:draw-rectangles* and clim:draw-rectangles call clim:medium-draw-

rectangles* to do the actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-standard-menu menu presentation-type items default-item &key (:item-

printer #’clim:print-menu-item) :max-width :max-height :n-rows :n-columns :x-

spacing :y-spacing :row-wise (:cell-align-x ’:left) (:cell-align-y ’:top) Function

clim:draw-standard-menu is the function used by CLIM to draw the contents of a

menu, unless the current frame manager determines that host window toolkit

should be used to draw the menu instead. menu is the stream onto which to draw

the menu, and presentation-type is the presentation type to use for the menu items

(usually clim:menu-item).

:item-printer is a function of two arguments used to draw each item. The first ar-

gument is the menu item, and the second is the stream.

Page 1526

The other arguments are as for clim:menu-choose.

clim:draw-text medium text point &key (:start 0) :end (:align-x :left) (:align-y

:baseline) :towards-point :text-style :text-family :text-face :text-size :ink :clipping-

region :transformation Function

Draws text onto medium starting at the position specified by point. text can be ei-

ther a character or a string.

This function is the same as clim:draw-text*, except that the position is expressed

as a point instead of as X and Y coordinate values. See the function clim:draw-

text*.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:draw-text* medium text x y &key (:start 0) :end (:align-x :left) (:align-y

:baseline) :towards-x :towards-y :text-style :text-family :text-face :text-size :ink :clip-

ping-region :transformation Function

Draws text onto medium starting at the position specified by x and y. text can be

either a character or a string.

The exact definition of ‘‘starting at’’ is dependent on :align-x and :align-y; by de-

fault, the first glyph is drawn with its left edge and its baseline at the position

specified by x and y.

:start and :end

Delimit a substring of text when text is a string. :start defaults to 0,

and :end defaults to the length of text.

:align-x Specifies the horizontal placement of the text string. Can be one of:

:left (the default), :right, or :center.

:left means that the left edge of the first character of the string is

at the specified X coordinate. :right means that the right edge of

the last character of the string is at the specified X coordinate.

:center means that the string is horizontally centered over the spec-

ified X coordinate.

:align-y Specifies the vertical placement of the string. Can be one of:

:baseline (the default), :top, :bottom, or :center.

:baseline means that the baseline of the string is placed at the

specified Y coordinate. :top means that the top of the string is at

the specified Y coordinate. :bottom means that the bottom of the

Page 1527

string is at the specified Y coordinate. :center means that the

string is vertically centered over the specified Y coordinate.

:towards-x and :towards-y

Changes the direction of the baseline from one glyph to the next.

Normally, glyphs are drawn from left to right no matter what

transformation is in effect. If, however, :towards-x is less than x,

then glyphs will be drawn from right to left. If :towards-y is less

than y, then glyphs will be drawn from bottom to top.

Note that :towards-x and :towards-y are not presently implemented

on all platforms.

Note that the medium’s transformation does not affect the text size. It only affects

the starting position (x,y), and the ending position (and hence the orientation of

the baseline) if :towards-x or :towards-y is supplied.

Both clim:draw-text* and clim:draw-text call clim:medium-draw-text* to do the

actual drawing.

For background information on drawing graphics, see the section "Drawing Graph-

ics in CLIM", and see the section "Using CLIM Drawing Options".

For detailed information about CLIM line style suboptions, see the section "CLIM

Line Style Suboptions".

For detailed information about CLIM drawing options, see the section "Set of

CLIM Drawing Options".

clim:ellipse Class

The protocol class that corresponds to a mathematical ellipse. This is a subclass of

clim:area. If you want to create a new class that obeys the ellipse protocol, it

must be a subclass of clim:ellipse.

clim:ellipse-center-point ellipse Generic Function

Returns the center point of ellipse.

clim:ellipse-center-point* ellipse Generic Function

Returns the center point of ellipse as two values representing the coordinate pair.

clim:ellipse-end-angle ellipse Generic Function

Returns the end angle of ellipse. If elliptical-object is a full ellipse or closed path

then clim:ellipse-end-angle will return nil; otherwise the value will be a number

greater than zero, and less than or equal to 2pi.

Page 1528

clim:ellipse-radii ellipse Generic Function

Returns four values corresponding to the two radius vectors of ellipse. These val-

ues may be canonicalized in some way, and so may not be the same as the values

passed to the constructor function.

clim:ellipse-start-angle ellipse Generic Function

Returns the start angle of ellipse. If elliptical-object is a full ellipse or closed path

then clim:ellipse-start-angle will return nil; otherwise the value will be a number

greater than or equal to zero, and less than 2pi.

clim:ellipsep object Function

Returns t if and only if object is of type clim:ellipse.

clim:elliptical-arc Class

The protocol class that corresponds to a mathematical elliptical arc. This is a sub-

class of clim:path. If you want to create a new class that obeys the elliptical arc

protocol, it must be a subclass of clim:elliptical-arc.

clim:elliptical-arc-p object Function

Returns t if and only if object is of type clim:elliptical-arc.

clim:enable-frame frame Generic Function

Enables the application frame frame and changes the state of the frame to

:enabled. This involves creating and laying out the panes of the frame (if they

have not been created already) and exposing the frame.

Note: If your application frame has its own top level loop (that is, something other

than clim:default-frame-top-level), it must call clim:enable-frame in order to en-

able the frame.

clim-sys:enable-process process Function

Allows the process process to become runnable again after it has been disabled.

clim:erase-input-buffer input-editing-stream &optional start-position

Generic Function

Erases the part of the display that corresponds to the input editor’s buffer starting

at the position start-position.

Page 1529

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:erase-output-record record stream &optional (errorp t) Function

Erases the display of the output record record from stream, and removes the record

from stream’s output history. After the record is erased, all of the output records

that overlapped it are replayed in order to ensure that the appearance of the rest

of the output on stream is correct.

If record is not in the stream’s output history and errorp is t, CLIM will signal an

error.

If record is a list of output records rather than a single output record, the replay

operation will be delayed until after all of the output records have been removed

from the output history. Passing a list of output records to clim:erase-output-

record can be substantially faster than calling clim:erase-output-record multiple

times.

clim:even-scaling-transformation-p transform Generic Function

Returns t if transform multiplies all X-lengths and Y-lengths by the same magni-

tude, otherwise returns nil. This includes pure reflections through vertical and

horizontal lines.

clim:event Class

The class that corresponds to any kind of CLIM event. This includes device events

(such as keyboard and pointer events), window manager events, and timer events.

clim:event-matches-gesture-name-p event gesture-name &optional port Function

Returns t if the device event event ‘‘matches’’ the gesture named by gesture-name.

For pointer button events, the event matches the gesture name when the pointer

button from the event matches the name of the pointer button one of the gesture

specifications named by gesture-name, and the modifier key state from the event

matches the names of the modifier keys in that same gesture specification.

For keyboard events, the event matches the gesture name when the key name

from the event matches the key name of one of the gesture specifications named

by gesture-name, and the modifier key state from the event matches the names of

the modifier keys in that same gesture specification.

clim:event-modifier-state event Generic Function

Returns the state of the keyboard’s shift keys when the event event occurred. The

returned value is an integer with 1 bits that correspond to the shift keys that were

being held down.

Page 1530

Key Mask

:shift clim:+shift-key+
:control clim:+control-key+
:meta clim:+meta-key+
:super clim:+super-key+
:hyper clim:+hyper-key+ �

clim:event-sheet event Generic Function

Returns the window on which the device event event occurred.

clim:event-type event Generic Function

For the event event, returns a keyword symbol with the same name as the class

name, except stripped of the "-event" ending. For example, when you call

clim:event-type on an object who class is clim:key-press-event, the returned value

will be :key-press.

clim:eventp object Function

Returns t if and only if object is an event.

clim:+everywhere+ Constant

The region that includes all the points on the infinite drawing plane. This is the

opposite of clim:+nowhere+.

clim:execute-frame-command frame command Generic Function

clim:execute-frame-command executes the command command on behalf of the

application frame frame. If you call clim:execute-frame-command from a process

that is different from the process in which frame is running, CLIM will queue the

command for later execution in frame’s own process.

The default method for clim:execute-frame-command simply applies to command

name to the command arguments. You can specialize this function if you want to

change the behavior associated with the execution of commands.

clim:expand-presentation-type-abbreviation type &optional environment Function

clim:expand-presentation-type-abbreviation is like clim:expand-presentation-

type-abbreviation-1, except that type is repeatedly expanded until all presentation

type abbreviations have been expanded.

The optional argument environment conveys information about the local macro defi-

nitions that might be defined by macrolet. It is used the same as it would be for

macroexpand.

Page 1531

clim:expand-presentation-type-abbreviation-1 type &optional environment Function

If the presentation type specifier type is a presentation type abbreviation, or is an

and, or, sequence, or clim:sequence-enumerated that contains a presentation

type abbreviation, then clim:expand-presentation-type-abbreviation-1 expands the

type abbreviation once, and returns two values, the expansion and t. If type is not

a presentation type abbreviation, then the values type and nil are returned.

The optional argument environment conveys information about the local macro defi-

nitions that might be defined by macrolet. It is used the same as it would be for

macroexpand.

clim:expression Clim Presentation Type

The presentation type used to represent any Lisp object. The textual view of this

type looks like what the standard prin1 and read functions produce and accept.

This type has one option, :auto-activate, which controls whether the expression

terminates on a delimiter gestures, or when the Lisp expression ‘‘balances’’ (for

example, you type enough close parentheses to complete the expression). The de-

fault for :auto-activate is nil, meaning that the user must use an activation ges-

ture to terminate the input.

clim:extended-input-stream-p object Generic Function

Returns t if the object is a CLIM extended input stream, otherwise it returns nil.

clim:extended-output-stream-p object Generic Function

Returns t if the object is a CLIM extended output stream, otherwise it returns nil.

clim:+fill+ Constant

This constant can be used as a value to any of the min or max size options in

clim:make-space-requirement or the layout pane macros. It indicates a pane’s

willingness to adjust an arbitrary amount in the specified direction (width or

height).

clim:filling-output (&optional stream &rest keys &key (:fill-width ’(80 :character))

(:break-characters ’(#\Space)) :after-line-break :after-line-break-initially) &body body

Function

Binds stream to a stream that inserts line breaks into the output written to it so

that the output is no wider then :fill-width. The filled output is then written on

the stream that is the original value of stream. clim:filling-output does not split

‘‘words’’ across lines, so it can produce output wider than :fill-width.

Page 1532

‘‘Words’’ are separated by the characters indicated by :break-characters. When a

line is broken to prevent wrapping past the end of a line, the line break is made

at one of these separators.

stream The output stream; the default is *standard-output*.

:fill-width Specifies the width of filled lines. The default is 80 characters. It can be

specified in one of the following ways:

integer The width in device units (for example, pixels).

string The spacing is the width of the string.

function The spacing is the amount of space the function would con-

sume when called on the stream.

list The list is of the form (number unit), where unit is one of

:pixel The width in pixels.

:point The width in printers points.

:character The width of the ‘‘usual’’ character in the

stream’s current text style.

If CLIM cannot find a break character that would make the output nar-

row enough, the output might be wider than :fill-width

:break-characters

Specifies a list of characters at which to break lines. The default in-

cludes only the #\Space character.

:after-line-break

Specifies a string to be sent to stream after line breaks; the string ap-

pears at the beginning of each new line. The string must not be wider

than :fill-width.

:after-line-break-initially

Boolean option specifying whether the :after-line-break text is to be writ-

ten to stream before doing body, that is, at the beginning of the first

line; the default is nil.

Here is an example of using clim:filling-output. Notice that this example uses

clim:format-textual-list to generate the text to fill.

(let ((stream *standard-output*)

 (alphabet ’(a b c d e f g h i j k l m

 n o p q r s t u v w x y z)))

 (clim:filling-output (stream :fill-width ’(30 :character))

 (clim:format-textual-list alphabet #’princ

 :stream stream

 :separator ", " :conjunction "and")

 (write-char #\. stream)))�

Page 1533

clim:find-applicable-translators presentation input-context frame window x y &key

:event :modifier-state :for-menu :fastp Function

Returns a list of translators that apply to presentation in the input context input-

context. Since input contexts can be nested, clim:find-applicable-translators iter-

ates over all of contexts in input-context. See the section "Applicability of CLIM

Presentation Translators".

frame is the application frame. window, x, and y are the window the presentation

is on, and the X and Y position of the pointer (respectively).

:event (which defaults to nil) is a pointer button event, and may be supplied to fur-

ther restrict the set of applicable translators to only those whose gesture matches

the pointer button event.

:modifier-state (which defaults to the current modifier state for the window) may

also be supplied to restrict the set of applicable translators to only those who ges-

ture matches the shift mask. Only one of :event or :modifier-state may be supplied.

When :for-menu is t (the default), this returns every possible translator, disregard-

ing :event and :modifier-state.

When :fastp is t, this will simply return t if there are any translators. :fastp de-

faults to nil.

clim:find-application-frame frame-name &rest initargs &key (:create t) (:activate t)

(:own-process t) :port :frame-manager :frame-class &allow-other-keys Function

Calling this function is similar to calling clim:make-application-frame, and then

calling clim:run-frame-top-level on the newly created frame.

If :create is t, a new frame will be created if one does not already exist. If :create

is :force, a new frame will be created regardless of whether there is one already.

If :activate is t (the default), the frame’s top level function will be invoked. If

:own-process is t (the default), the frame will run in its own process.

:port and :frame-manager can be used to name the parent of the frame. :frame-class

is as for clim:make-application-frame. initargs are CLOS initargs that are passed

along to clim:make-application-frame.

clim:find-command-from-command-line-name name command-table &key (:errorp

t) Function

Given a command-line name name and a command-table, this function returns two

values, the command name and the command table in which the command was

found. If the command is not accessible in command-table and :errorp is t, the

clim:command-not-accessible condition will be signalled.

name is a command-line name. command-table may be either a command table or a

symbol that names a command table.

clim:find-command-from-command-line-name ignores character case.

Page 1534

This function is the inverse of clim:command-line-name-for-command.

clim:find-command-table name &key (:errorp t) Function

Returns the command table named by name. If name is itself a command table, it

is returned. If the command table is not found and :errorp is t, the

clim:command-table-not-found condition will be signalled.

clim:find-frame-manager &rest options &key :port (:server-path clim:*default-

server-path*) &allow-other-keys Generic Function

Finds a frame manager that is on the port :port, or creates a new one if none ex-

ists. If :port is not supplied and a new port must be created, :server-path may be

supplied for use by clim:find-port.

options may include other initargs for the frame manager.

On Genera, you may supply the :gadget-menu-bar option. When you supply

:gadget-menu-bar t, the Genera frame manager will use a toolkit-style menu bar.

The default Genera frame manager does not use gadget-style menu bars.

clim:find-innermost-applicable-presentation input-context stream x y &key (:frame

clim:*application-frame*) :modifier-state :event Function

Given an input context input-context, an output recording window stream stream,

and X and Y positions x and y, clim:find-innermost-applicable-presentation re-

turns the innermost presentation that matches the innermost input context. See

the section "Applicability of CLIM Presentation Translators".

:frame is the application frame. :modifier-state is a mask that describes what shift

keys are held down on the keyboard, and defaults to the window’s current modifier

state. :event is a pointer button event. You may supply only one of :modifier-state

or :event.

clim:find-keystroke-item keystroke command-table &key :test (:errorp t) Function

Given a keystroke accelerator keystroke and a command-table, returns two values,

the command menu item associated with the accelerator and the command table in

which it was found. (Since keystroke accelerators are not normally inherited, the

second returned value will usually be command-table.) keystroke is gesture spec,

such as (:C :control :shift).

:test specifies a function to use for looking up the items in the command table. It

must be a function of two arguments, both of which are events or gesture specs.

The default is a function that matches keyboard events against gesture names.

If the keystroke accelerator is not present in any command table and :errorp is t,

then the clim:command-not-accessible condition will be signalled. command-table

may be either a command table or a symbol that names a command table.

Page 1535

clim:find-menu-item menu-name command-table &key (:errorp t) Function

Given a menu-name and a command-table, return two values, the menu item and

the command table in which it was found. (Since menus are not normally inherit-

ed, the second returned value will usually be command-table.) If the command

menu item is not present in any command table and :errorp is t, then the

clim:command-not-accessible condition will be signalled. command-table may be

either a command table or a symbol that names a command table.

clim:find-named-color name palette &key :errorp Function

Finds the color named name in the palette palette. The palette associated with the

current application frame can be found by calling clim:frame-palette. The re-

turned value is a CLIM color object.

If the color is not found and :errorp is t, the clim:color-not-found error is sig-

nalled. Otherwise if the color is not found, this function returns nil.

Palettes are described in more detail in "Predefined Color Names in CLIM".

clim:find-pane-named frame pane-name &optional errorp Function

Returns the pane named by pane-name in frame. If pane-name is a pane object, it

is simply returned. This differs from clim:get-frame-pane in that the returned val-

ue can be any pane type, not just a subclass of clim:clim-stream-pane.

If the pane named pane-name is not found and :errorp is t, an error will be sig-

nalled. Otherwise if :errorp is nil, the return value will be nil.

clim:find-presentation-translators from-type to-type command-table Function

Returns a list of all the translators in the command table command-table that

translate from from-type to to-type, without taking into account any type parame-

ters or testers. from-type and to-type must not be presentation type abbreviations.

clim:find-port &rest initargs &key (:server-path clim:*default-server-path*) &al-

low-other-keys Function

Creates a port, a special object that acts as the ‘‘root’’ or ‘‘parent’’ of all CLIM

windows and application frames. In general, a port corresponds to a connection to

a display server.

:server-path is a list that specifies the server path. The first element of the list is

a keyword naming the type of port to be created (such as :genera, :clx, or :cloe).

The rest of the list are keyword-value pairs of options.

In Genera, the only option is :screen, which defaults to the main screen. If you

are on a Genera Color system, and you give :screen the value returned by

color:find-color-screen, CLIM will create a color port.

Under Cloe, the only supported port type is :cloe and there are no options.

Page 1536

If the CLX system (part of the X Remote Screen system) is loaded under Genera,

the options are :host (a host name or object), and :display (a display number) that

identify the X Server to be used.

Note: You should call clim:find-port only at runtime, not at load time. This

function captures information about the screen currently in use.

You may supply a :allow-loose-text-style-size-mapping initarg for any type of port

to specify whether or not the port will use ‘‘loose’’ text style mapping. A port that

uses ‘‘loose’’ text style mapping picks the closest available font size, rather than

picking an exact font size.See the generic function clim:text-style-mapping.

clim:+flipping-ink+ Constant

A flipping ink that flips clim:+foreground-ink+ and clim:+background-ink+. You
can think of this as an ‘‘xor’’ on monochrome displays.

float &optional low high Clim Presentation Type

The presentation type that represents a floating point number between low and

high. This type is a subtype of clim:real.

clim:+foreground-ink+ Constant

An indirect ink that uses the medium’s foreground design.

clim:form Clim Presentation Type

The presentation type used to represent a Lisp form. This type is a subtype of

clim:expression. It has one option, :auto-activate, which is treated the same way

as the :auto-activate option to clim:expression.

clim:formatting-cell (&optional stream &rest options &key (:align-x ’:left) (:align-y�

’:top) :min-width :min-height :record-type &allow-other-keys) &body body Macro

Establishes a ‘‘cell’’ context on the stream (which defaults to *standard-output*).

All output performed on the stream within the extent of this macro will become

the contents of one cell in a table. clim:formatting-cell must be used within the

extent of clim:formatting-row, clim:formatting-column, or clim:formatting-item-

list.

A cell can contain text, graphics, or both. The alignment keywords enable you to

specify constraints that affect the placement of the contents of the cell. Each cell

within a column may have a different alignment; thus it is possible, for example,

to have centered legends over flush-right numeric data.

For background information, examples, and overviews of related functions, see the

section "Formatting Tables in CLIM".

Page 1537

stream

The stream to which output should be sent. The default is

standard-output.

:align-x Specifies the horizontal placement of the contents of the cell.

Can be one of: :left (the default), :right, or :center.

:left means that the left edge of the cell is at the specified X

coordinate. :right means that the right edge of the cell is at

the specified X coordinate. :center means that the cell is hori-

zontally centered over the specified X coordinate.

:align-y Specifies the vertical placement of the contents of the cell. Can

be one of: :top (the default), :bottom, or :center.

:top means that the top of the cell is at the specified Y coor-

dinate. :bottom means that the bottom of the cell is at the

specified Y coordinate. :center means that the cell is vertically

centered over the specified Y coordinate.

:min-width Specifies the minimum width of the cell. The default, nil, caus-

es the width of the cell to be only as wide as is necessary to

contain the cell’s contents.

:min-width can be specified in one of the following ways:

Integer

A size in the current units to be used for spacing.

String or character

The spacing is the width or height of the string or

character in the current text style.

Function

The spacing is the amount of horizontal or vertical

space the function would consume when called on the

stream.

List of form (number unit)

The unit is :point, :pixel, or :character.�

:min-height

Specifies the minimum height of the cell. The default, nil,

causes the height of the cell to be only as high as is necessary

to contain the cell’s contents.

:min-height is specified in the same way as :min-width.

:record-type

This option is useful when you have defined a customized

record type to replace CLIM’s default record type. It specifies

the class of the output record to be created.

Page 1538

clim:formatting-column (&optional stream &key :record-type) &body body Macro

Establishes a ‘‘column’’ context on the stream (which defaults to *standard-

output*). All output performed on the stream within the extent of this macro will

become the contents of one column of the table. clim:formatting-column must be

used within the extent of clim:formatting-table, and it must be used in conjunc-

tion with clim:formatting-cell.

For background information, examples, and overviews of related functions, see the

section "Formatting Tables in CLIM".

stream

The stream to which output should be sent. The default is

standard-output.

:record-type

This option is useful when you have defined a customized

record type to replace CLIM’s default record type. It specifies

the class of the output record to be created.

clim:formatting-item-list (&optional stream &key :record-type :x-spacing :y-spacing

:initial-spacing :n-columns :n-rows :max-width :max-height :stream-width :stream-

height (:row-wise t) (:move-cursor t)) &body body Macro

Establishes a ‘‘menu formatting’’ context on the stream (which defaults to

standard-output). Use this macro to format the output in a tabular form when

the exact ordering and placement of the cells is not important. clim:formatting-

item-list must be used with clim:formatting-cell.

This macro expects its body to output a sequence of items using clim:formatting-

cell, which delimits each item. (You do not use clim:formatting-column or

clim:formatting-row within clim:formatting-item-list.) If no keyword arguments

are supplied, CLIM chooses the number of rows and columns for you. You can

specify a constraint such as the number of columns or the number of rows (but

not both). Or you can constrain the size of the entire table display, by using :max-

width or :max-height (but not both). If you specify one of these constraints, CLIM

will adjust the table accordingly.

For background information, examples, and overviews of related functions, see the

section "Formatting Tables in CLIM".

stream

The stream to which output should be sent. The default is

standard-output.

:max-width

Specifies the maximum width, in device units, of the table display.

:max-height

Specifies the maximum height, in device units, of the table display.

Page 1539

:n-rows

Specifies the number of rows of the table. Specifying this overrides

:max-width.

:n-columns

Specifies the number of columns of the table. Specifying this over-

rides :max-height.

:x-spacing

Determines the amount of space inserted between columns of the

table; the default is the width of a space character. :x-spacing can

be specified in one of the following ways:

Integer

A size in the current units to be used for spacing.

String or character

The spacing is the width or height of the string or char-

acter in the current text style.

Function

The spacing is the amount of horizontal or vertical space

the function would consume when called on the stream.

List of form (number unit)

The unit is :point, :pixel, or :character.�

:y-spacing

Specifies the amount of blank space inserted between rows of the

table; the default is the vertical spacing for the stream. The possi-

ble values for this option are the same as for the :x-spacing option.

:initial-spacing

When doing the layout, CLIM tries to evenly space items across the

entire width of the stream. When this option is t, no whitespace is

inserted before the first item on a line.

:row-wise When this is nil, if there are multiple columns in the item list, the

entries in the item list are arranged in a manner similar to entries

in a phone book. Otherwise the entries are arranged in a ‘‘row-

wise’’ fashion. The default is t.

:stream-width

The width of the stream (in device units).

:stream-height

The height of the stream (in device units).

:move-cursor

When t (the default), CLIM moves the text cursor to the end (lower

right corner) of the output. Otherwise, the cursor is left at the be-

ginning (upper left corner) of the output.

Page 1540

clim:format-items items &key (:stream *standard-output*) :printer :presentation-

type :x-spacing :y-spacing :initial-spacing :n-rows :n-columns :max-width :max-height

(:row-wise t) :record-type (:cell-align-x ’:left) (:cell-align-y ’:top) Function

Provides tabular formatting of a list of items. Each item in items is formatted as a

separate cell within the table. items can be a list or a general sequence.

For background information, examples, and overviews of related functions, see the

section "Formatting Tables in CLIM".

The options :stream, :x-spacing, :y-spacing, :initial-spacing, :n-rows, :n-columns,

:max-width, :max-height, :row-wise, and :record-type are the same as for

clim:formatting-item-list.

Note that you must specify one of :printer or :presentation-type.

:printer A function that takes two arguments, an item and a stream. It

should output the item to the stream. You cannot use this keyword

option with :presentation-type.

:presentation-type

A presentation type. You cannot use this keyword option with :print-

er.

The items will be printed as if :printer were:

#’(lambda (item stream)

 (clim:present item presentation-type :stream stream))�

:cell-align-x

Supplies the :align-x option to an implicitly used clim:formatting-

cell.

:cell-align-y

Supplies the :align-y option to an implicitly used clim:formatting-

cell.

clim:format-graph-from-roots root-objects object-printer inferior-producer &key

(:stream *standard-output*) (:orientation ’:horizontal) :center-nodes :cutoff-depth

:merge-duplicates :graph-type (:duplicate-key #’identity) (:duplicate-test #’eql) :arc-

drawer :arc-drawing-options :generation-separation :within-generation-separation

:maximize-generations (:store-objects t) (:move-cursor t) Function

Constructs and displays a directed, acyclic graph. The output from graph format-

ting takes place in a normalized +Y-downward coordinate system.

root-objects

A sequence of the root elements of the set, from which the graph

can be derived.

object-printer

A function of two arguments used to display each node of the

graph. The function is passed the object associated with that node

and the stream on which to do output.

Page 1541

inferior-producer

A function that knows how to generate the inferiors (children) from

a node object. It takes one argument, the node, and returns a list of

inferior nodes.�

:stream Specifies the output stream; the default is *standard-output*.

:orientation

Specifies :vertical or :horizontal orientation for the ‘‘parent node

to child node’’ direction of the graph display. The default for :orien-

tation is :vertical.

:graph-type

The type of the graph to be displayed, either :digraph (the default

when :merge-duplicates is t) or :tree (the default when :merge-

duplicates is nil).

:merge-duplicates

When t, duplicate objects in the graph are displayed in the same

node in the output. Otherwise, each object is given a unique node.

:center-nodes

When t, the display of each node is placed at the center of the

space allocated for it. The default, nil, causes each node to be

placed in the upper left of the space allocated to it.

:cutoff-depth

An integer that specifies how many levels of each branch of the

tree should be explored. The default is nil, which specifies no cut-

off.

:duplicate-key

Specifies the function used to extract the node object attribute used

for duplicate comparison. The default is identity, that is, the object

itself.

:duplicate-test

Specifies the function used to test for duplicates comparison. The

default is eql, that is, the object itself.

:generation-separation

The amount of space to leave between successive generations of the

graph.

:within-generation-separation

The amount of space to leave between nodes in the same generation

of the graph.

:arc-drawer

A function (taking 7 required arguments and a rest argument) used

to draw the arc between nodes. The default is a function that be-

have like clim:draw-line. The required arguments are: the stream,

the ‘‘from’’ object, the ‘‘to’’ object, the ‘‘from’’ X and Y positions,

Page 1542

and the ‘‘to’’ X and Y positions. If :store-objects is nil, the ‘‘from’’

and ‘‘to’’ objects will be nil. The rest argument is a list of drawing

options.

:store-objects

When this is t (the default), the objects will be stored in the graph

and will be available to the arc drawing function. If the objects in

your graph have dynamic extent or you require that they be subject-

ed to garbage collection, you should supply :store-objects nil.

:move-cursor

When t (the default), CLIM moves the text cursor to the end (lower

right corner) of the output. Otherwise, the cursor is left at the be-

ginning (upper left corner) of the output.

For background information, examples, and overviews of related functions, see the

section "Formatting Graphs in CLIM".

clim:format-graph-from-root root-object object-printer inferior-producer &key

(:stream *standard-output*) (:orientation ’:horizontal) :center-nodes :cutoff-depth

:merge-duplicates :graph-type (:duplicate-key#’identity) (:duplicate-test #’eql) :arc-

drawer :arc-drawing-options :generation-separation :within-generation-separation

:maximize-generations (:store-objects t) (:move-cursor t) Function

Like clim:format-graph-from-roots, except that root-object is a single root object

instead of a sequence of roots. This function is provided only as a convenience.

clim:format-textual-list sequence printer &key (:stream *standard-output*) (:sepa-

rator ", ") :conjunction Function

Outputs a sequence of items as a textual list. For example, the list

(1 2 3 4)�

could be printed as

1, 2, 3, and 4�

The arguments provide control over the appearance of each element of the se-

quence and over the separators used between each pair of elements. The separator

string is output after every element but the last one. The conjunction is output be-

fore the last element.

sequence The sequence to output.

printer is a function of two arguments: an element of the sequence and a

stream. It is used to output each element of the sequence.

:stream Specifies the output stream. The default is *standard-output*.

:separator Specifies the characters to use to separate elements of a textual

list. The default is ", " (comma followed by a space).

Page 1543

:conjunction

Specifies a string to use in the position between the last two ele-

ments. Typical values are "and" and "or". It defaults to nil.�

clim:formatting-row (&optional stream &key :record-type) &body body Macro

Establishes a ‘‘row’’ context on the stream (the default is *standard-output*). All

output performed on the stream within the extent of this macro will become the

contents of one row of a table. clim:formatting-row must be used within the ex-

tent of clim:formatting-table, and it must be used in conjunction with

clim:formatting-cell.

For background information, examples, and overviews of related functions, see the

section "Formatting Tables in CLIM".

stream

The stream to which output should be sent. The default is

standard-output.

:record-type

This option is useful when you have defined a customized

record type to replace CLIM’s default record type. It specifies

the class of the output record to be created.

clim:formatting-table (&optional stream &rest options &key :x-spacing :y-spacing

:record-type :multiple-columns :multiple-columns-x-spacing :equalize-column-widths

(:move-cursor t)) &body body Macro

Establishes a ‘‘table formatting’’ context on the stream (the default is *standard-

output*). All output performed within the extent of this macro will be displayed in

tabular form. This must be used in conjunction with clim:formatting-row or

clim:formatting-column, and clim:formatting-cell.

For background information, examples, and overviews of related functions, see the

section "Formatting Tables in CLIM".

stream

The stream to which output should be sent. The default is

standard-output.

:x-spacing

Determines the amount of space inserted between columns of

the table; the default is the width of a space character. :x-

spacing can be specified in one of the following ways:

Integer

A size in the current units to be used for spacing.

Page 1544

String or character

The spacing is the width or height of the string or

character in the current text style.

Function

The spacing is the amount of horizontal or vertical

space the function would consume when called on the

stream.

List of form (number unit)

The unit is :point, :pixel, or :character.�

:y-spacing

Specifies the amount of blank space inserted between rows of

the table; the default is the vertical spacing for the stream.

The possible values for this option are the same as for the :x-

spacing option.

:multiple-columns

Is either nil, t, or an integer. If it is t or an integer, the table

rows are broken up into multiple columns. If it is t, CLIM will

determine the optimal number of columns. If it is an integer,

it will be interpreted as the desired number of columns.

:multiple-columns-x-spacing

Controls the spacing between the multiple columns. This option

defaults to the value of the :x-spacing option. It has the same

format as :x-spacing.

:equalize-column-widths

When t, CLIM makes all the columns have the same width,

which is the width of the widest cell in any column of the ta-

ble.

:record-type

This option is useful when you have defined a customized

record type to replace CLIM’s default record type. It specifies

the class of the output record to be created.

:move-cursor

When t (the default), CLIM moves the text cursor to the end

(lower right corner) of the output. Otherwise, the cursor is left

at the beginning (upper left corner) of the output.

clim:frame-all-layouts frame Generic Function

Returns a list of all of the layout names for frame. These are the names of the

layouts that you use when you call setf on clim:frame-current-layout.

clim:frame-command-table frame Generic Function

Page 1545

Returns the name of the command table currently being used by the frame frame.

You can use this function with setf to change the command table to be used.

clim:frame-current-layout frame Generic Function

Returns the name of the current layout for frame.

You can use setf on clim:frame-current-layout to change the current layout.

Note: changing the layout currently causes CLIM to throw out of the application’s

command loop, all the way back to clim:run-frame-top-level. This is done so that

CLIM can perform some window management functions, such as rebinding I/O

streams that correspond to the windows in the new layout. Therefore, when you

call setf on clim:frame-current-layout, you should only do so after you have done

everything else in the sequence of operations and the application is prepared to re-

turn to command input.

clim:frame-current-panes frame Generic Function

Returns a list of all of the named CLIM stream panes that are contained in the

current layout for the frame frame. The elements of the list will be CLIM pane

objects.

clim:frame-error-output frame Generic Function

Returns the value that should be used for *error-output* for frame.

The default method (defined on clim:application-frame) uses the first pane of type

:application in the current layout.

It can be useful to specialize clim:frame-error-output on your own frame class

when you want to use a different pane for *error-output*.

clim:default-frame-top-level calls this to determine what to bind *error-output*

to.

clim:frame-exit frame Generic Function

Exits from the application frame frame by signalling a clim:frame-exit condition.

If you call clim:frame-exit from a process that is different from the process in

which frame is running, CLIM will queue the request for later execution in

frame’s own process.

clim:frame-exit Class

The condition signalled by clim:frame-exit.

clim:frame-exit-frame frame-exit Generic Function

Page 1546

Returns the frame being exited from. frame-exit is a clim:frame-exit object.

clim:frame-find-innermost-applicable-presentation frame input-context stream x y

Generic Function

Locates and returns the innermost applicable presentation on the window stream at

the pointer position indicated by x and y, in the input context input-context, on be-

half of the application frame frame.

You can specialize this generic function for your own application frames. The de-

fault method calls clim:find-innermost-applicable-presentation.

clim:frame-input-context-button-press-handler frame stream button-press-event

Generic Function

This function is responsible for handling user pointer gestures on behalf of frame.

stream is the window on which button-press-event took place.

The default method on clim:standard-application-frame calls clim:frame-find-

innermost-applicable-presentation to find the innermost applicable presentation,

and then calls clim:throw-highlighted-presentation to execute the translator that

corresponds to the user’s gesture.

clim:frame-maintain-presentation-histories frame Generic Function

Returns t if the frame maintains histories for its presentations, otherwise returns

nil. The default method on the class clim:standard-application-frame returns t if

and only if the frame has an interactor pane.

You can specialize this generic function for your own application frames.

clim:frame-manager Class

The protocol class that corresponds to a frame manager. If you want to create a

new class that obeys the frame manager protocol, it must be a subclass of

clim:frame-manager.

clim:frame-manager object Function

Given a CLIM object object, clim:frame-manager returns the frame manager asso-

ciated with object. If object is not presently ‘‘owned’’ by any frame manager,

clim:frame-manager will return nil.

You can call clim:frame-manager on sheets and frames.

clim:frame-manager-dialog-view frame-manager Generic Function

Page 1547

Returns the view object that should be used to control the look-and-feel of

clim:accepting-values dialogs. Typically, this will be either clim:+textual-dialog-
view+ or clim:+gadget-dialog-view+.

You can use setf to change the default dialog view.

clim:frame-manager-p object Generic Function

Returns t if and only if object is of type clim:frame-manager, otherwise returns

nil.

clim:frame-manager-palette frame-manager Generic Function

Returns the palette that will be used, by default, by all the frames managed by

frame-manager, if those frame’s don’t have a palette of their own. You can use setf

on this to change the frame manager’s palette.

A palette is an object that contains mappings from color names (which are strings

or symbols) to CLIM color objects. See the section "Predefined Color Names in

CLIM".

The frame manager’s palette defaults to the palette for its port, clim:port-default-

palette.

clim:frame-name frame Generic Function

Returns the name of the application frame. The name is a symbol. You can change

the name of an application frame by using setf on clim:frame-name.

clim:frame-palette frame Generic Function

Returns the palette associated with the application frame frame. The palette for a

frame defaults to the default palette for the frame’s frame manager.

A palette is an object that contains mappings from color names (which are strings

or symbols) to CLIM color objects. See the section "Predefined Color Names in

CLIM".

The frame’s palette defaults to the palette for its frame manager, clim:frame-

manager-palette.

clim:frame-panes frame Generic Function

Returns the single pane acting as the ‘‘root’’ pane for the current layout.

The pane returned by this function will typically be some sort of layout pane, such

as a clim:vbox-pane that holds the menu bar and the rest of the panes, or an

clim:outlined-pane that serves as the border around an application frame.

Page 1548

clim:frame-pointer-documentation-output frame Generic Function

Returns the value that should be used for clim:*pointer-documentation-output*

for frame.

The default method (defined on clim:application-frame) uses the first pane of type

:pointer-documentation in the current layout.

clim:default-frame-top-level calls this to determine what to bind clim:*pointer-

documentation-output* to.

clim:frame-pretty-name frame Generic Function

Returns the pretty name of the application frame. The pretty name is a string. You

can change the pretty name of an application frame by using setf on clim:frame-

pretty-name.

clim:frame-replay frame stream &optional region Generic Function

Replays all of the output records in stream’s output history on behalf of the appli-

cation frame frame that overlap the region region. If region is nil, all of the output

records in the stream’s viewport are replayed.

You can specialize this generic function for your own application frames. The de-

fault method for this calls clim:stream-replay.

clim:frame-query-io frame Generic Function

Returns the value that should be used for *query-io* for frame.

The default method (defined on clim:standard-application-frame) first tries to use

the value returned by clim:frame-standard-input, and if it is nil, it uses the value

returned by clim:frame-standard-output.

clim:default-frame-top-level calls this to determine what to bind *query-io* to.

clim:frame-standard-input frame Generic Function

Returns the value that should be used for *standard-input* for frame.

The default method (defined on clim:standard-application-frame) uses the first

pane of type clim:interactor-pane. If there are no interactor panes, the value re-

turned by clim:frame-standard-output is used.

It is often useful to specialize clim:frame-standard-input on your own frame class

when you want to use a different pane for *standard-input*.

clim:default-frame-top-level calls this to determine what to bind *standard-input*

to.

clim:frame-standard-output frame Generic Function

Page 1549

Returns the value that should be used for *standard-output* for frame.

The default method (defined on clim:standard-application-frame) uses the first

pane of type clim:application-pane in the current layout.

It is often useful to specialize clim:frame-standard-output on your own frame

class when you want to use a different pane for *standard-output*.

clim:default-frame-top-level calls this to determine what to bind *standard-

output* to.

clim:frame-state frame Generic Function

Returns one of :enabled, :disabled, :disowned, or :shrunk, indicating the current

state of frame.

:enabled means the frame currently enabled and visible on some port; this is the

state that a frame is in when it is actively running. clim:enable-frame causes a

frame to enter the :enabled state.

:disabled means that the frame is owned by a frame manager, but is not visible

anywhere; this is the state that a frame is in when it has been exited but not de-

stroyed. clim:disable-frame causes a frame to enter the :disabled state. When a

frame is initially created, it starts in the :disabled state.

:disowned means that no frame manager owns the frame; this is the state a frame

is in when it has been destroyed. clim:destroy-frame causes a frame to enter the

:disowned state.

:shrunk means that the frame has been iconified.

clim:frame-top-level-sheet frame Generic Function

Returns the window that corresponds to the top level window for the frame frame.

This is the window that has as its children all of the panes of the frame.

By default, all of the panes of an application frame share their event queue with

the event queue of the frame’s top level sheet.

clim:funcall-presentation-generic-function presentation-function-name &body argu-

ments Macro

Funcalls the presentation generic function presentation-function-name with argu-

ments arguments using funcall.

The presentation-function-name argument is not evaluated. The value of presenta-

tion-function-name can be any of the presentation generic functions defined by

CLIM (clim:accept, clim:present, clim:describe-presentation-type,

clim:presentation-typep, clim:presentation-subtypep,

clim:accept-present-default, clim:presentation-type-specifier-p,

clim:presentation-refined-position-test, or clim:highlight-presentation) or any

presentation generic function you have defined yourself.

Page 1550

clim:gadget Class

The protocol class that corresponds to a gadget.

See the section "Using Gadgets in CLIM".

All subclasses of clim:gadget must handle the four initargs :id, :client, :armed-

callback, and :disarmed-callback, which are used to specify, respectively, the gad-

get id, client, armed callback, and disarmed callback of the gadget.

The armed callback and disarmed callback are either nil or a function that takes a

single argument, the gadget that was armed (or disarmed).

clim:gadget-active-p gadget Generic Function

Returns t if the gadget is active, that is, available for input. Otherwise, it returns

nil.

clim:gadget-client gadget Generic Function

Returns the client of the gadget gadget. The client is usually an application frame,

but it could be another gadget (for example, in the case of a push button that is

contained in a radio box).

You can use setf on clim:gadget-client to change the gadget’s client.

clim:gadget-dialog-view Class

The class that represents the view that is used inside toolkit-style clim:accepting-

values dialogs.

The gadget dialog view is one example of an indirect view. When you use this

view when calling clim:accepting-values, CLIM decodes the view into a more spe-

cific view based on the presentation type. These more specific views include

clim:+radio-box-view+, clim:+check-box-view+, clim:+toggle-button-view+,
clim:+slider-view+, clim:+text-field-view+, clim:+text-editor-view+, clim:+list-
pane-view+, and clim:+option-pane-view+.

The following is a table of presentation types and the actual view they map to:

Type Gadget

clim:completion clim:+radio-box-view+
clim:subset-completion clim:+check-box-view+
clim:boolean clim:+toggle-button-view+
real clim:+slider-view+
float clim:+slider-view+
integer clim:+slider-view+
All others clim:+text-field-view+ �

Try the following example in a CLIM Lisp Listener.

Page 1551

(defun gadget-dialog-test (&optional (stream *standard-input*))

 (let ((dest :file)

 (name "")

 (strip nil))

 (clim:accepting-values (stream :align-prompts t)

 (setq dest (clim:accept ’(member :file :printer :window)

 :default dest :prompt "Destination type"

 :stream stream :view clim:+gadget-dialog-view+))

 (setq name (clim:accept ’string

 :default name :prompt "Destination name"

 :stream stream :view clim:+text-field-view+))

 (setq strip (clim:accept ’boolean

 :default strip :prompt "Strip text styles"

 :stream stream :view clim:+gadget-dialog-view+)))

 (values dest name strip)))�

clim:+gadget-dialog-view+ Constant

An instance of the class clim:gadget-dialog-view. Inside clim:accepting-values,

the default view for the dialog stream may be bound to clim:+gadget-dialog-view+.

clim:gadget-id gadget Generic Function

Returns the gadget id of the gadget gadget. The id is typically a simple Lisp object

that uniquely identifies the gadget.

You can use setf on clim:gadget-id to change the id of the gadget.

clim:gadget-label labelled-gadget Generic Function

Returns the label of the gadget labelled-gadget. The label must be a string or a

pixmap.

You can use setf to change the label of a gadget, but this may result in invoking

the layout protocol on the gadget and its ancestor sheets (that is, the entire appli-

cation frame may be re-layed out).

clim:gadget-max-value range-gadget Generic Function

Returns the maximum value of the gadget range-gadget, such as a slider. It will be

a real number.

You can use setf to change the maximum value of the gadget.

clim:gadget-min-value range-gadget Generic Function

Page 1552

Returns the minimum value of the gadget range-gadget, such as a slider. It will be

a real number.

You can use setf to change the minimum value of the gadget.

clim:gadget-menu-view Class

The class that represents the view that is used inside toolkit-style menus.

clim:+gadget-menu-view+ Constant

An instance of the class clim:gadget-menu-view. Inside clim:menu-choose, the de-

fault view for the menu stream may be bound to clim:+gadget-menu-view+.

clim:gadget-orientation oriented-gadget Generic Function

Returns the orientation of the gadget oriented-gadget. Typically, this will be a key-

word such as :horizontal or :vertical.

clim:gadget-value gadget Generic Function

Returns the value of the gadget value-gadget. The interpretation of the value

varies from gadget to gadget. For example, a scroll bar’s value might be a number

between 0 and 1, while a toggle button’s value is either t or nil. (The documenta-

tion for each individual gadget specifies how to interpret the value.)

You can use setf on clim:gadget-value to change the value of a gadget. When the

value is changed, the value change callback will be called if you also specify

:invoke-callback t.

For example, the following fragment is from a color chooser that has two sets of

linked sliders, one of which selects the RGB components of a color and the other

of which selects the IHS components. When a slider from one set is changed, the

other slider set is updated. Updating the other slider set should not cause any call-

backs to be invoked.

(defmethod update-ihs ((frame color-chooser))

 (with-slots (intensity hue saturation) frame

 (multiple-value-bind (ii hh ss) (clim:color-ihs (color frame))

 (setf (clim:gadget-value intensity :invoke-callback nil) ii)

 (setf (clim:gadget-value hue :invoke-callback nil) hh)

 (setf (clim:gadget-value saturation :invoke-callback nil) ss))))

clim:gadget-view Class

The class that represents gadget views. Gadgets views are used for toolkit-oriented

applications.

Page 1553

clim:+gadget-view+ Constant

An instance of the class clim:gadget-view.

clim:gadgetp object Generic Function

Returns t if and only if object is of type clim:gadget.

clim:get-frame-pane frame pane-name &key (:errorp t) Function

Returns the CLIM stream pane (that is, a pane that is a subclass of clim:clim-

stream-pane) named by pane-name in frame. If pane-name is a pane object, it is

simply returned.

If the pane named pane-name is not found and :errorp is t, an error will be sig-

nalled. Otherwise if :errorp is nil, the return value will be nil.

clim:global-command-table Clim Command Table

The ‘‘global’’ command table from which all command tables inherit.

clim:handle-event sheet event Generic Function

Handles the event event on behalf of sheet.

If you implement your own gadget classes, you will probably write one or more

clim:handle-event methods that manage such things as pointer button presses,

pointer motion into the gadget, and so on. For example, if you want to highlight a

sheet in response to an event that informs it that the pointer has entered its ter-

ritory, you might write a method on your sheet class and clim:pointer-enter-event

that highlights the sheet, and another method on clim:pointer-exit-event that un-

highlights the sheet.

This function is called by CLIM’s event dispatcher, so you will not generally need

to call this function yourself.

See the section "Using Gadgets in CLIM". See the section "Sheet Input Protocols".

clim:handle-repaint sheet region Generic Function

Implements repainting for a given sheet class. sheet is the sheet to repaint and re-

gion is the region to repaint.

If you implement your own gadget classes, you will probably write a clim:handle-

repaint method that draws the gadget. This function is called by CLIM’s event

dispatcher, so you will not generally need to call this function yourself.

See the section "Using Gadgets in CLIM". See the section "Sheet Input Protocols".

Page 1554

clim:hbox-pane Class

The layout pane class that arranges its children in a horizontal row.

clim:horizontally generates a pane of this type.

In addition to the usual sheet initargs (the space requirement initargs,

:foreground, :background, and :text-style), this class supports two other initargs:

:spacing An integer that specifies the amount of space to leave between each

of the child panes, in device units.

:contents A list of panes that will be the child panes of the box pane.

clim:*help-gestures* Variable

A list of gesture names that cause clim:accept and clim:complete-input to display

a help message, and, for some presentation types, the list of possibilities. On Gen-

era, this includes the gesture corresponding to the #\Help character.

clim:highlight-applicable-presentation frame stream input-context &optional

(prefer-pointer-window t) Function

This is the ‘‘input wait’’ handler used by clim:with-input-context. It is responsible

for locating the innermost applicable presentation, unhighlighting presentations

that are not applicable, and highlighting the presentation that is applicable, if

there is one.

frame is the application frame, stream is the output recording stream, and input-

context is the input context.

When prefer-pointer-window is t (the default), CLIM will use the window under the

pointer instead of stream. This is the usual behavior.

clim:highlight-output-record record stream state Generic Function

CLIM calls this method in order to draw highlighting for the output record record

on stream. state is either :highlight (meaning to draw the highlighting) or

:unhighlight (meaning to erase the highlighting).

The default method (on CLIM’s basic output record class) simply draws a rectan-

gle around the bounding rectangle of record. Some displayed output records provide

their own methods, for example, output records for ellipses implement a method

that draws a slightly larger ellipse around the ellipse being highlighted.

The following example shows how you might implement this method for an output

record that records a filled-in circle:

Page 1555

(defmethod clim:highlight-output-record

 ((record circle-output-record) stream state)

 (declare (ignore state))

 (multiple-value-bind (xoff yoff)

 (clim:convert-from-relative-to-absolute-coordinates

 stream (clim:output-record-parent record))

 (with-slots (center-x center-y radius) record

 (clim:with-output-recording-options (stream :record nil)

 (clim:draw-circle*

 stream (+ center-x xoff) (+ center-y yoff) (+ radius 2)

 :filled nil :ink clim:+flipping-ink+)))))�

clim:highlight-presentation type-key parameters options type record stream state

Clim Presentation Method

This method is responsible for drawing a highlighting box for the presentation

record on the stream stream. state will be either :highlight or :unhighlight, mean-

ing that the highlighting box should either be drawn or erased.

It can be useful to define a clim:highlight-presentation method when you want to

have special highlighting behavior, such as ‘‘inverse video’’, for a presentation

type.

Here is an example from an application that displays the floor plan of a suite of

offices. In one pane, there is a list of the names of the people in the offices, and

in another pane there is the floor plan itself. When a user waves the mouse over

either pane, the relevant office and names are highlighted in both panes.

(clim:define-presentation-type room ())

�

(clim:define-presentation-method clim:highlight-presentation

 ((type room) record stream state)

 (declare (ignore state))

 (let ((room (clim:presentation-object record)))

 (clim:draw-polygon* stream (room-coords room)

 :ink clim:+flipping-ink+)

 (when (room-associated-people room)

 (let ((stream (clim:get-frame-pane clim:*application-frame* ’people)))

 (clim:with-output-recording-options (stream :record nil)

 (dolist (person (room-associated-people room))

 (let ((person-presentation (person-directory-presentation person)))

 (when person-presentation

 (clim:with-bounding-rectangle* (rl rt rr rb)

 person-presentation

 (clim:draw-rectangle* stream rl rt rr rb

 :ink clim:+flipping-ink+))))))))))

�

(clim:define-presentation-type person ())

Page 1556

�

(clim:define-presentation-method clim:highlight-presentation

 ((type person) record stream state)

 (declare (ignore state))

 (clim:with-bounding-rectangle* (rl rt rr rb) record

 (clim:draw-rectangle* stream rl rt rr rb

 :ink clim:+flipping-ink+))

 (let ((person (clim:presentation-object record)))

 (when (person-office person)

 (let ((stream (clim:get-frame-pane clim:*application-frame* ’map))

 (office (person-office person)))

 (clim:with-output-recording-options (stream :record nil)

 (clim:draw-polygon* stream (room-coords office)

 :ink clim:+flipping-ink+))))))

�

clim:horizontally (&rest options &key :spacing &allow-other-keys) &body contents

Macro

The clim:horizontally macro lays out one or more child panes horizontally, from

left to right. The clim:horizontally macro serves as the usual interface for creat-

ing an clim:hbox-pane.

:spacing is an integer that specifies how much space should be left between each

child pane, in device units. options may include other pane initargs, such as space

requirement options, :foreground, :background, :text-style, and so forth.

contents is one or more forms that produce the child panes. Each form in contents

is of the form:

• A pane. The pane is inserted at this point and its space requirements are used

to compute the size.

• A number. The specified number of device units should be allocated at this

point.

• The symbol clim:+fill+. This means that an arbitrary amount of space can be

absorbed at this point in the layout.

• A list whose first element is a number and whose second element evaluates to a

pane. If the number is less than 1, then it means that that percentage of excess

space or deficit should be allocated to the pane. If the number is greater than

or equal to 1, then that many device units are allocated to the pane. For exam-

ple:

(clim:horizontally ()

 (1/3 (clim:make-pane ’label-button-pane))

 (2/3 (clim:make-pane ’label-button-pane)))�

Page 1557

would create a horizontal row of two ‘‘label button’’ panes. The first pane takes

one-third of the space, and the second takes two-thirds of the space.

See the section "Using the :LAYOUTS Option to CLIM:DEFINE-APPLICATION-

FRAME".

clim:+hyper-key+ Constant

The modifier state bit that corresponds to the user holding down the hyper key on

the keyboard. See the section "Operators for Gestures in CLIM".

clim:+identity-transformation+ Constant

An instance of a transformation that is guaranteed to be an identity transforma-

tion, that is, the transformation that ‘‘does nothing’’.

clim:identity-transformation-p transform Generic Function

Returns t if transform is equal (in the sense of clim:transformation-equal) to the

identity transformation, otherwise returns nil.

clim:immediate-rescan input-editing-stream Generic Function

Invokes a rescan operation immediately on input-editing-stream by ‘‘throwing’’ out

to the beginning of the most recent invocation of clim:with-input-editing.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:indenting-output (stream indentation &key (:move-cursor t)) &body body

Function

Binds stream to a stream that inserts whitespace at the beginning of each line,

and writes the indented output to the stream that is the original value of stream.

stream The output stream.

indentation

What gets inserted at the beginning of each line output to the

stream. Four possibilities exist:

integer The width in device units (for example, pixels).

string The spacing is the width of the string.

function The spacing is the amount of space the function would

consume when called on the stream.

list The list is of the form (number unit), where unit is one

of

Page 1558

:pixel The width in pixels.

:point The width in printers points.

:character The width of the ‘‘usual’’ character in

the stream’s current text style.

:move-cursor

When t (the default), CLIM moves the text cursor to the end (lower

right corner) of the output. Otherwise, the cursor is left at the be-

ginning (upper left corner) of the output.

You should begin the body with (terpri stream) (or the equivalent) to position the

stream to the initial indentation.

Note: if you use clim:indenting-output in conjunction with clim:filling-output,

you should put the call to clim:indenting-output outside of the call to clim:filling-

output. This is necessary because clim:filling-output does not track what sort of

output is being done inside it, except for pure textual output.

clim:*input-context* Variable

The current input context, which describes the presentation type(s) currently being

input by CLIM. clim:*input-context* gets bound by calls to clim:with-input-

context.

clim:*input-context* is a list, each element of which is a list consisting of a pre-

sentation type and a tag. The tag corresponds to a point in the control structure

of CLIM at which that input context for the presentation type was established.

The first element of clim:*input-context* is the most recently establish context,

and the last element is the oldest context.

The value of clim:*input-context* and all of the sublists within clim:*input-

context* have dynamic extent.

clim:input-context-type context-entry Function

Given one element from clim:*input-context*, context-entry, this returns the pre-

sentation type of the context entry.

clim:input-editor-format input-editing-stream format-string &rest format-args

Function

This function is like format, except that it is intended to be called on input edit-

ing streams. It arranges to insert ‘‘noise strings’’ in the input editor’s input buf-

fer. You can use this to display in-line prompts in clim:accept methods.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

Page 1559

clim:input-not-of-required-type Condition

This condition is signalled when CLIM gets input that does not satisfy the speci-

fied type while inside of clim:accept. It is built on conditions:parse-error.

clim:input-not-of-required-type object type Function

Reports that input does not satisfy the specified type. object is a parsed object or

an unparsed token (a string). type is a presentation type specifier. This function

does not return.

clim:input-stream-p stream Generic Function

Returns t if the object passed in is a CLIM basic input stream.

clim:input-editing-stream-p object Generic Function

Returns t if the object is a CLIM input editing stream, that is, the sort of stream

created by clim:with-input-editing.

integer &optional low high Clim Presentation Type

The presentation type that represents an integer between low and high. Options to

this type are :base (default 10) and :radix (default nil), which correspond to

print-base and *print-radix*, respectively. It is a subtype of rational.

clim-lisp:interactive-stream-p stream Generic Function

Returns t if object is an interactive stream, that is, a bidirectional stream intended

for user interactions. Otherwise it returns nil. This is exactly the same function as

in Common Lisp, except that in CLIM it is a generic function.

CLIM’s input editor is intended to work only on interactive streams.

clim:interactor-pane Class

The pane class that is used to implement ‘‘interactor’’ panes. This is the type of

pane created by clim:make-clim-interactor-pane, and corresponds to the pane type

abbreviation :interactor in the :panes clause of clim:define-application-frame.

The default method for clim:frame-standard-input will return the first pane of

this type in a frame.

For clim:interactor-pane, the default for the :display-time option is nil, and the

default for the :scroll-bars option is :vertical.

See the section "Using the :panes Option to clim:define-application-frame".

Page 1560

clim:invert-transformation transform Generic Function

Returns a transformation that is the inverse of transform. The result of composing

a transformation with its inverse is the identity transformation.

If transform is singular, clim:invert-transformation signals the clim:singular-

transformation condition, with a named restart that is invoked with a transforma-

tion and makes clim:invert-transformation return that transformation. This is to

allow a drawing application, for example, to use a generalized inverse to transform

a region through a singular transformation.

With finite-precision arithmetic there are several conditions that might occur dur-

ing the attempt to invert a singular or ‘‘almost singular’’ transformation. These

include computation of a zero determinant, floating-point underflow during compu-

tation of the determinant, or floating-point overflow during subsequent multiplica-

tion.) clim:invert-transformation signals the clim:singular-transformation error

for all of these cases.

clim:invertible-transformation-p transform Generic Function

Returns t if transform has an inverse, otherwise returns nil.

clim:invoke-with-drawing-options stream continuation &rest options

Generic Function

The functional equivalent of clim:with-drawing-options. This binds the stream’s

drawing options to the new drawing options specified by options. options may in-

clude any of the drawing options allowed in clim:with-drawing-options. When the

drawing options are in effect, continuation is called. continuation is a function of

zero arguments.

The returned value is the value returned by continuation.

See the macro clim:with-drawing-options.

clim:invoke-with-new-output-record stream continuation record-type constructor

&rest initargs &key :parent &allow-other-keys Generic Function

The functional equivalent of clim:with-new-output-record. This creates a new out-

put record of type record-type using the supplied initargs. If constructor is not nil,

it is a constructor function that creates the new output record.

When the record has been created, continuation is called in order to create the

contents of the record. continuation is a function of one argument, the stream.

The returned value is the value returned by continuation.

See the macro clim:with-new-output-record.

clim:invoke-with-output-recording-options stream continuation record draw

Generic Function

Page 1561

The functional equivalent of clim:with-output-recording-options. This binds

recording and drawing state of the stream stream to the new state record and

draw, and then calls the continuation. continuation is a function of zero arguments.

The returned value is the value returned by continuation.

See the macro clim:with-output-recording-options.

clim:invoke-with-text-style medium style continuation original-stream

Generic Function

The functional equivalent of clim:with-text-style. This binds the current text style

of medium to the new text style style, and then calls the continuation. continuation

is a function of one argument, the stream.

The returned value is the value returned by continuation.

See the macro clim:with-text-style.

clim:key-press-event Class

The class that corresponds to pressing a key on the keyboard. This is a subclass of

clim:keyboard-event.

clim:key-release-event Class

The class that corresponds to releasing a key on the keyboard. This is a subclass

of clim:keyboard-event.

clim:keyboard-event Class

The class that corresponds to a keyboard event. This is a subclass of clim:device-

event.

clim:keyboard-event-character keyboard-event Generic Function

Returns the character corresponding to the key that was pressed or released, if

there is a corresponding character in the Common Lisp character set. If there is

no corresponding Common Lisp character, this will return nil.

clim:keyboard-event-key-name keyboard-event Generic Function

Returns the name of the key that was pressed or released in order to generate the

keyboard event. The name of the key will be a symbol.

keyword Clim Presentation Type

Page 1562

The presentation type that represents a symbol in the keyword package. It is a

subtype of symbol.

clim:labelled-gadget-mixin Class

The class that is mixed into a gadget that has a label, for example, a push button.

The label may be a string, a pattern, or a pixmap.

All subclasses of clim:labelled-gadget-mixin must handle the initargs :label,

:alignment, and :text-style, which are used to specify the label, the label’s align-

ment within the gadget, and the label’s text style.

clim:labelling (&rest options &key :label (:label-alignment :bottom) &allow-other-

keys) &body contents Macro

Creates a vertical stack consisting of two panes. One pane contains the specified

label, which is a string, a pattern, or a pixmap. The other pane is specified by con-

tents.

The clim:labelling macro is the usual way of creating a pane of type clim:label-

pane.

options may include other pane initargs, such as space requirement options,

:foreground, :background, :text-style, and so forth.

clim:line Class

The protocol class that corresponds to a mathematical line-segment, that is, a poly-

line with only a single segment. This is a subclass of clim:polyline. If you want to

create a new class that obeys the line protocol, it must be a subclass of clim:line.

clim:linep object Generic Function

Returns t if and only if object is of type clim:line.

clim:line-end-point line Generic Function

Returns the ending point of line.

clim:line-end-point* line Generic Function

Returns the ending point of line as two values representing the coordinate pair.

clim:line-start-point line Generic Function

Returns the starting point of line.

Page 1563

clim:line-start-point* line Generic Function

Returns the starting point of line as two values representing the coordinate pair.

clim:line-style Class

The class that represents line styles.

clim:line-style-cap-shape line-style Generic Function

Returns the cap shape component of a line style object. This will be one of :butt,

:square, :round, or :no-end-point. See the section "CLIM Line Style Suboptions".

clim:line-style-dashes line-style Generic Function

Returns the dashes component of a line style object. This will be nil to indicate a

solid line, t to indicate a dashed line whose dash pattern is unspecified, or will be

a sequence specifying some sort of a dash pattern. See the section "CLIM Line

Style Suboptions".

clim:line-style-joint-shape line-style Generic Function

Returns the joint shape component of a line style object. This will be one of

:miter, :bevel, :round, or :none. See the section "CLIM Line Style Suboptions".

clim:line-style-p object Generic Function

Returns t if and only if object is of type clim:line-style.

clim:line-style-thickness line-style Generic Function

Returns the thickness component of a line style object, which is an integer. See

the section "CLIM Line Style Suboptions".

clim:line-style-unit line-style Generic Function

Returns the unit component of a line style object, which will be one of :normal or

:point. See the section "CLIM Line Style Suboptions".

clim:list-pane Class

The clim:list-pane gadget class corresponds to a list pane, that is, a pane whose

semantics are similar to a radio box or check box, but whose visual appearance is

a list of buttons. It is a subclass of clim:value-gadget.

See the section "Using Gadgets in CLIM".

Page 1564

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:mode Either :one-of or :some-of. When it is :one-of, the list pane acts

like a radio box, that is, only a single item can be selected. Other-

wise, the list pane acts like a check box, in that zero or more items

can be selected. The default is :one-of.

:items A list of items.

:name-key

A function of one argument that generate the name of an item from

the item. The default is princ-to-string.

:value-key

A function of one argument that generate the value of an item from

the item. The default is identity.

:test A function of two arguments that compares two items. The default

is eql.

Calling clim:gadget-value on a list pane will return the single selected item when

the mode is :one-of, or a sequence of selected items when the mode is :some-of.

The clim:value-changed-callback is invoked when the select item (or items) is

changed.

Here are some examples of list panes:

(clim:make-pane ’clim:list-pane

 :value "Symbolics"

 :test ’string=

 :value-changed-callback ’list-pane-changed-callback

 :items ’("Franz" "Lucid" "Harlequin" "Symbolics"))

�

(clim:make-pane ’clim:list-pane

 :value ’("Lisp" "C++")

 :mode :some-of

 :value-changed-callback ’list-pane-changed-callback

 :items ’("Lisp" "Fortran" "C" "C++" "Cobol" "Ada"))

�

(defun list-pane-changed-callback (tf value)

 (format t "~&List pane ~A changed to ~S" tf value))�

clim:list-pane-view Class

The class that represents the view corresponding to a list pane. List panes are an-

other way of representing ‘‘one of’’ or ‘‘some of’’ fields.

Page 1565

clim:+list-pane-view+ Constant

An instance of the class clim:list-pane-view.

clim:lookup-keystroke-command-item keystroke command-table &key :test (:numer-

ic-argument 1) Function

This is like clim:lookup-keystroke-item, except that it searches only for enabled

commands. If it cannot find an accelerator associated with an enabled command,

clim:lookup-keystroke-command-item returns nil.

:test is a function of two arguments used to compare the keystroke to the gestures

in the command table. It defaults to clim:event-matches-gesture-name-p.

:numeric-argument is the accumulated numeric argument. It will be substituted for

any occurrences of clim:*numeric-argument-marker* in the resulting command.

clim:lookup-keystroke-item keystroke command-table &key :test Function

This is like clim:find-keystroke-item, except that it descends into sub-menus in

order to find a keystroke accelerator matching keystroke. If it cannot find any such

accelerator, clim:lookup-keystroke-item returns nil.

:test is a function of two arguments used to compare the keystroke to the gestures

in the command table. It defaults to clim:event-matches-gesture-name-p.

clim:make-3-point-transformation point-1 point-2 point-3 point-1-image point-2-

image point-3-image Function

Makes a transformation that takes point-1 into point-1-image, point-2 into point-2-

image and point-3 into point-3-image. (Three non-collinear points and their images

under the transformation are enough to specify any affine transformation.)

It is an error for point-1, point-2, and point-3 to be collinear; if they are collinear,

the clim:transformation-underspecified condition is signalled. If point-1-image,

point-2-image, and point-3-image are collinear, the resulting transformation will be

singular, but this is not an error.

clim:make-3-point-transformation* x1 y1 x2 y2 x3 y3 x1-image y1-image x2-image

y2-image x3-image y3-image Function

Makes a transformation that takes (x1, y1) into (x1-image, y1-image), (x2, y2) into

(x2-image, y2-image) and (x3, y3) into (x3-image, y3-image). (Three non-collinear

points and their images under the transformation are enough to specify any affine

transformation.)

It is an error for (x1, y1), (x2, y2) and (x3, y3) to be collinear; if they are collinear,

the clim:transformation-underspecified condition is signalled. If (x1-image, y1-

image), (x2-image, y2-image), and (x3-image, y3-image) are collinear, the resulting

transformation will be singular, but this is not an error.

Page 1566

clim:make-application-frame frame-name &key :frame-class :pretty-name :parent

:left :top :right :bottom :height :width &allow-other-keys Function

Makes an instance of the application frame of type :frame-class. In addition to the

keyword arguments listed, you can also supply initialization arguments for :frame-

class. The keyword arguments not handled by clim:make-application-frame are

passed as initargs to clos:make-instance.

frame-name

A symbol. This will be the same as one of the name arguments

to clim:define-application-frame.

:frame-class

The class to instantiate, defaults to frame-name. For special

purposes you can supply a subclass of frame-name.

:pretty-name

A string that is used as a title. It defaults to a ‘‘prettified’’
version of frame-name.

:parent The ‘‘parent’’ of the application. This can be either a port or a

frame manager. If it is not supplied, it defaults to the current

port. You should provide this argument when you want to cre-

ate an application frame on some display server other than the

current one, or with a non-default frame manager. See the

function clim:find-port and the function clim:find-frame-

manager.

:left, :top, :right, :bottom

The coordinates of the left, top, right, and bottom edges of the

frame, in device units. :left and :top default to 0, and :right and

:bottom default to nil.

:width, :height

The size of the frame in device units. :width and :height de-

fault so that the frame will fill the entire screen.

clim:make-bounding-rectangle x1 y1 x2 y2 Function

Makes an object of class clim:standard-bounding-rectangle whose edges are par-

allel to the coordinate axes. One corner is at (x1,y1) and the opposite corner is at

(x2,y2).

The representation of rectangles in CLIM is chosen to be efficient. CLIM repre-

sents rectangles by storing the coordinates of two opposing corners of the rectan-

gle. Because this representation is not sufficient to represent the result of arbi-

trary transformations of arbitrary rectangles, CLIM is allowed to return a polygon

as the result of such a transformation. (The most general class of transformations

that is guaranteed to always turn a rectangle object into another rectangle object

is the class of transformations that satisfy clim:rectilinear-transformation-p.)

Page 1567

clim:make-ihs-color intensity hue saturation Function

Creates a color object. intensity is a real number between 0 and the square root of

3 inclusive. hue and saturation are real numbers between 0 and 1 inclusive.

clim:make-rgb-color red green blue Function

Creates a color object. red, green, and blue are real numbers between 0 and 1 in-

clusive that specify the values of the corresponding color components.

clim:make-clim-application-pane &rest options Macro

Like clim:make-clim-stream-pane, except that the type is forced to be

clim:application-pane.

clim:make-clim-interactor-pane &rest options Macro

Like clim:make-clim-stream-pane, except that the type is forced to be

clim:interactor-pane.

clim:make-clim-stream-pane &rest options &key (:type ’’clim:clim-stream-pane)

:label (:label-alignment :bottom) (:scroll-bars ’:vertical) (:borders t) :spacing :display-

after-commands &allow-other-keys Macro

Creates a pane of type :type, which defaults to clim:clim-stream-pane.

If :label is supplied, it is a string used to label the pane. :label-alignment is either

:bottom or :top, and specifies whether to place the label at the bottom or top of

the window.

:scroll-bars may be t to indicate that both vertical and horizontal scroll bars should

be included, :vertical (the default) to indicate that vertical scroll bars should be

included, or :horizontal to indicate that horizontal scroll bars should be included.

If :scroll-bars is :none, the pane will be scrollable but will not have scroll bars. If

:scroll-bars is nil, the pane will not be scrollable.

If :borders is t, the pane will have a border drawn around it.

:display-after-commands may be t (meaning that the pane should be redisplayed af-

ter each command is executed), nil (meaning that the pane should not be redis-

played except by an explicit call to clim:redisplay-frame-pane), or :no-clear

(which is like t, except that the pane is not cleared before the display function is

called).

Other options may include all of the valid CLIM application pane options, includ-

ing :incremental-redisplay, the space requirement initargs, :foreground,

:background, :text-style, and so forth.

Page 1568

clim:make-command-table name &key :inherit-from :menu :inherit-menu (:errorp t)�

Function

Creates a command table named name that inherits from :inherit-from and has a

menu specified by :menu. :inherit-from, :menu, and :inherit-menu are as for

clim:define-command-table. If the command table already exists and :error-p is t,

then a clim:command-table-already-exists condition will be signalled.

clim:make-contrasting-dash-patterns n &optional k Function

Makes a simple vector of n dash patterns with recognizably different appearances.

If k (an integer between 0 and n-1) is supplied, clim:make-contrasting-dash-

patterns returns the k’th dash pattern.

If the implementation does not have n different contrasting dash patterns,

clim:make-contrasting-dash-patterns signals an error. This will not happen un-

less n is greater than sixteen.

clim:make-contrasting-inks n &optional k Function

Makes a simple vector of n inks with different appearances.

If k (an integer between 0 and n-1) is supplied, clim:make-contrasting-inks re-

turns the k’th design.

If the implementation does not have n different contrasting inks, clim:make-

contrasting-inks signals an error. This will not happen unless n is greater than

eight.

The rendering of the design may be a color or a stippled pattern, depending on

whether the output medium supports color.

clim:make-design-from-output-record record Function

Makes a design that replays the output record record when the design is drawn by

clim:draw-design.

Presently, only output records whose displayed representation consists only of

graphics (such as the output records created by clim:draw-line* and clim:draw-

ellipse*) can be turned into designs by clim:make-design-from-output-record.

You can use clim:transform-region on the result of clim:make-design-from-

output-record in order to apply a transformation to it.

clim:make-ellipse center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key

:start-angle :end-angle Function

Makes an object of class clim:standard-ellipse. The center of the ellipse is center-

point.

Page 1569

This function is the same as clim:make-ellipse* except that the location of the

center of the ellipse is specified as a point rather than as X and Y coordinates.

clim:make-ellipse* center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy

&key :start-angle :end-angle Function

Makes an object of class clim:standard-ellipse. The center of the ellipse is

(center-x, center-y).

Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy) specify the

bounding parallelogram of the ellipse as explained above. It is an error for those

two vectors to be collinear (in order for the ellipse to be well-defined). The special

case of an ellipse with its axes aligned with the coordinate axes can be obtained by

setting both radius-1-dy and radius-2-dx to 0.

If :start-angle or :end-angle are supplied, the ellipse is the ‘‘pie slice’’ area swept

out by a line from the center of the ellipse to a point on the boundary as the

boundary point moves from :start-angle to :end-angle. Angles are measured counter-

clockwise with respect to the positive X axis. If :end-angle is supplied, the default

for :start-angle is 0; if :start-angle is supplied, the default for :end-angle is 2pi; if

neither is supplied then the region is a full ellipse and the angles are meaningless.

See the section "Ellipses and Elliptical Arcs in CLIM".

clim:make-elliptical-arc center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy

&key :start-angle :end-angle Function

Makes an object of class clim:standard-elliptical-arc. The center of the ellipse is

center-point.

This function is the same as clim:make-elliptical-arc* except that the location of

the center of the arc is specified as a point rather than as X and Y coordinates.

clim:make-elliptical-arc* center-x center-y radius-1-dx radius-1-dy radius-2-dx ra-

dius-2-dy &key :start-angle :end-angle Function

Makes an object of class clim:standard-elliptical-arc. The center of the ellipse is

(center-x,center-y).

Two vectors, (radius-1-dx, radius-1-dy) and (radius-2-dx, radius-2-dy), specify the

bounding parallelogram of the ellipse as explained above. It is an error for those

two vectors to be collinear (in order for the ellipse to be well-defined). The special

case of an elliptical arc with its axes aligned with the coordinate axes can be ob-

tained by setting both radius-1-dy and radius-2-dx to 0.

The arc is swept from :start-angle to :end-angle. Angles are measured counter-

clockwise with respect to the positive X-axis. If :end-angle is supplied, the default

for :start-angle is 0; if :start-angle is supplied, the default for :end-angle is 2pi; if

neither is supplied then the region is a closed elliptical path and the angles are

meaningless.

Page 1570

See the section "Ellipses and Elliptical Arcs in CLIM".

clim:make-flipping-ink design1 design2 Function

Returns a design that interchanges occurrences of two designs. Drawing this de-

sign over a background changes the color in the background that would have been

drawn by design1 at that point into the color that would have been drawn by de-

sign2 at that point, and vice versa.

In the present implementation, both designs must be colors. On the basic CLX

port, only clim:+flipping-ink+ is supported at present.

clim:make-gray-color luminosity Function

Creates a color object whose ‘‘brightness’’ is luminosity. luminosity is a real num-

ber between 0 and 1 inclusive. 0 means black and 1 means white.

clim:make-line start-point end-point Function

Makes an object of class clim:standard-line that connects start-point to end-point.

clim:make-line* start-x start-y end-x end-y Function

Makes an object of class clim:standard-line that connects (start-x, start-y) to (end-

x, end-y).

clim:make-line-style &key (:unit :normal) (:thickness 1) :dashes (:joint-shape :miter)

(:cap-shape :butt) Function

Creates a line style object with the supplied characteristics.

For information about the keyword arguments, see the section "CLIM Line Style

Suboptions".

These line style keywords correspond to the CLIM line style suboptions that begin

with ‘‘:line-’’ (for example, :unit corresponds to the line style suboption :line-unit).

clim-sys:make-lock &optional (lock-name "a CLIM lock") Function

Creates a lock whose name is name. name is a string.

On systems that do not support locking, this will return a new list of one element,

nil.

See the section "Locks in CLIM".

clim:make-modifier-state &rest modifiers Function

Page 1571

Given a set of modifier key names, clim:make-modifier-state returns a modifier

state corresponding to those keys. The returned value is a fixnum.

The modifier key names may be zero or more of :shift, :control, :meta, :super,

and :hyper. See the section "Gestures and Gesture Names in CLIM".

clim:make-opacity value Function

Creates a member of class clim:opacity whose opacity is value, which is a real

number in the range from 0 to 1 (inclusive), where 0 is fully transparent and 1 is

fully opaque.

clim:make-pane pane-class &rest pane-options Function

Selects a class that implements the behavior of the abstract pane pane-class and

constructs a pane of that class. clim:make-pane must be used either within the

dynamic scope of a call to clim:with-look-and-feel-realization, which is automati-

cally established within the :pane, :panes, and :layouts options of a clim:define-

application-frame.

clim:make-pane passes pane-options to the pane constructor function to be used as

initargs for the pane.

See the section "Panes in CLIM". See the section "Using Gadgets in CLIM".

clim:make-pattern array designs Function

Creates a pattern design that has (array-dimension 2d-array 0) cells in the verti-

cal direction and (array-dimension 2d-array 1) cells in the horizontal direction.

array must be a two-dimensional array of non-negative integers, each of which is

less than the length of designs. designs must be a sequence of designs. The design

in cell (i,j) of the resulting pattern is the nth element of designs, if n is the value

of (aref array i j). For example, array can be a bit-array and designs can be a

list of two designs, the design drawn for 0 and the one drawn for 1.

Each cell of a pattern can be regarded as a hole that allows the design in it to

show through. Each cell might have a different design in it. The portion of the de-

sign that shows through a hole is the portion on the part of the drawing plane

where the hole is located. In other words, incorporating a design into a pattern

does not change its alignment to the drawing plane, and does not apply a coordi-

nate transformation to the design. Drawing a pattern collects the pieces of designs

that show through all the holes and draws the pieces where the holes lie on the

drawing plane. The pattern is completely transparent outside the area defined by

the array.

Each cell of a pattern occupies a 1 by 1 square. You can use clim:transform-

region to scale the pattern to a different cell size and shape, or to rotate the pat-

tern so that the rectangular cells become diamond-shaped. Applying a coordinate

transformation to a pattern does not affect the designs that make up the pattern.

Page 1572

It only changes the position, size, and shape of the cells’ holes, allowing different

portions of the designs in the cells to show through. Consequently, applying

clim:make-rectangular-tile to a pattern of nonuniform designs can produce a dif-

ferent appearance in each tile. The pattern cells’ holes are tiled, but the designs

in the cells are not tiled and a different portion of each of those designs shows

through in each tile.

If array or designs is modified after calling clim:make-pattern, the consequences

are unspecified.

In the present implementation, patterned designs are not fully supported as a fore-

ground or background, and the only patterned designs supported as the :ink draw-

ing option are tilings of patterns of colors. In Cloe there is an additional restric-

tion that the X offset and Y offset of the tiling must be 8.

The following creates a pattern that consists of a little arrow, which could be used

as a command-line prompt.

(defvar *prompt-arrow*

 (clim:make-pattern

 #2A((0 0 0 0 0 0 0 0 0 0 0 0)

 (0 0 0 0 0 1 0 0 0 0 0 0)

 (0 0 0 0 0 1 1 0 0 0 0 0)

 (0 1 1 1 1 1 1 1 0 0 0 0)

 (0 1 1 1 1 1 1 1 1 0 0 0)

 (0 0 0 0 0 0 0 1 1 1 0 0)

 (0 0 0 0 0 0 0 0 1 1 1 0)

 (0 0 0 0 0 0 0 1 1 1 0 0)

 (0 1 1 1 1 1 1 1 1 0 0 0)

 (0 1 1 1 1 1 1 1 0 0 0 0)

 (0 0 0 0 0 1 1 0 0 0 0 0)

 (0 0 0 0 0 1 0 0 0 0 0 0))

 (list clim:+background-ink+ clim:+foreground-ink+)))�

See the section "Drawing with Designs in CLIM".

clim:make-pattern-from-bitmap-file pathname &rest args &key (:type :x11) :designs�

:format &allow-other-keys Function

Reads the bitmap file specified by pathname and creates a CLIM pattern object

from it. The only file type currently supported is :x11, in the two formats :bitmap

and :pixmap.

If the bitmap file did not supply colors for use in the image, you must also supply

a sequence of designs. This has the same format as for clim:make-pattern. For a

bitmap, you should probably supply the following as the value for the :designs ar-

gument:

(list clim:+background-ink+ clim:+foreground-ink+)�

If you use clim:+transparent-ink+ instead of clim:+background-ink+, the result-

ing pattern will be translucent instead of opaque.

Page 1573

The directory SYS:X11;INCLUDE;BITMAPS; (or its equivalent) usually has a number of

X11 bitmap files in it. You might want try try calling clim:make-pattern-from-

bitmap-file on some of the files in this directory.

clim:make-point x y Function

Creates and returns a point object whose coordinates are x and y. The point object

is an instance of clim:standard-point.

clim:make-polygon point-seq Function

Makes an object of class clim:standard-polygon consisting of the area contained

in the boundary that is specified by the segments connecting each of the points in

point-seq.

clim:make-polygon* coord-seq Function

Makes an object of class clim:standard-polygon consisting of the area contained

in the boundary that is specified by the segments connecting each of the points

represented by the coordinate pairs in coord-seq.

clim:make-polyline point-seq &key :closed Function

Makes an object of class clim:standard-polyline consisting of the segments con-

necting each of the points in point-seq.

If :closed is t, the segment connecting the first point and the last point is included

in the polyline.

clim:make-polyline* coord-seq &key :closed Function

Makes an object of class clim:standard-polyline consisting of the segments con-

necting each of the points represented by the coordinate pairs in coord-seq.

If :closed is t, the segment connecting the first point and the last point is included

in the polyline.

clim:make-presentation-type-specifier type-name-and-parameters &rest options

Function

Given a presentation type name and its parameters type-name-and-parameters and

some presentation type options, make a new presentation type specifier that in-

cludes all of the type parameters and options. This is useful for assembling a pre-

sentation type specifier with options equal to their default values omitted. This is

useful for clim:define-presentation-type-abbreviation, but not for the :inherit-

from clause of clim:define-presentation-type.

For example,

Page 1574

(clim:make-presentation-type-specifier ’(integer 1 10) :base 10)

 ==> (integer 1 10)

�

(clim:make-presentation-type-specifier ’(integer 1 10) :base 8)

 ==> ((integer 1 10) :base 8)

�

clim-sys:make-process function &key :name Function

Creates a process named name. The new process will evaluate the function func-

tion (that is, function will be its top-level function). name is a string, and function

is a function of no arguments.

On systems that do not support multi-processing, clim-sys:make-process will sig-

nal an error.

The exact representation of a process object varies from one platform to another.

clim-sys:processp will return t for any process object returned by clim-sys:make-

process.

See the section "Multi-processing in CLIM".

clim:make-rectangle min-point max-point Function

Makes an object of class clim:standard-rectangle whose edges are parallel to the

coordinate axes. One corner is at min-point and the opposite corner is at

max-point.

clim:make-rectangle* min-x min-y max-x max-y Function

Makes an object of class clim:standard-rectangle whose edges are parallel to the

coordinate axes. One corner is at (min-x, min-y) and the opposite corner is at (max-

x,max-y).

The representation of rectangles in CLIM is chosen to be efficient. CLIM repre-

sents rectangles by storing the coordinates of two opposing corners of the rectan-

gle. Because this representation is not sufficient to represent the result of arbi-

trary transformations of arbitrary rectangles, CLIM is allowed to return a polygon

as the result of such a transformation. (The most general class of transformations

that is guaranteed to always turn a rectangle object into another rectangle object

is the class of transformations that satisfy clim:rectilinear-transformation-p.)

clim:make-rectangular-tile design width height Function

Creates a design that tiles the specified rectangular portion of design across the

entire drawing plane. The resulting design repeats with a period of width horizon-

tally and height vertically. The portion of the argument design that appears in

each tile is a rectangle whose top-left corner is at (0,0) and whose bottom-right

corner is at (width,height).

Page 1575

The repetition of design is accomplished by applying a coordinate transformation to

shift design into position for each tile, and then extracting an width by height por-

tion of that design.

Applying a coordinate transformation to a rectangular tile does not change the por-

tion of the argument design that appears in each tile. It can change the period,

phase, and orientation of the repeated pattern of tiles.

For example, the following creates several ‘‘stipple’’ tilings that can used as an

ink to draw filled-in graphics.

(defun make-stipple (height width patterns)

 (assert (= height (length patterns)) (height patterns)

 "Height should be same as number of patterns supplied")

 (check-type width (integer 0))

 (clim:make-rectangular-tile

 (clim:make-pattern (make-stipple-array height width patterns)

 (vector clim:+background-ink+ clim:+foreground-ink+))

 width height))

�

(defun make-stipple-array (height width patterns)

 (let ((array (make-array (list height width) :element-type ’bit)))

 (let ((h -1))

 (dolist (pattern patterns)

(incf h)

(let ((w width))

 (dotimes (pos width)

 (decf w)

 (setf (aref array h w) (ldb (byte 1 pos) pattern))))))

 array))

�

(defvar *tiles-stipple*

(make-stipple 8 8 ’(#b10000000

 #b10000000

 #b01000001

 #b00111110

 #b00001000

 #b00001000

 #b00010100

 #b11100011)))

Page 1576

�

(defvar *hearts-stipple*

(make-stipple 8 8 ’(#b01101100

 #b10010010

 #b10010010

 #b01000100

 #b00101000

 #b00010000

 #b00000000

 #b00000000)))

�

(defvar *parquet-stipple*

(make-stipple 8 8 ’(#b10000000

 #b11000001

 #b00100010

 #b00011100

 #b00001000

 #b00010000

 #b00100000

 #b01000000)))�

See the section "Drawing with Designs in CLIM".

clim-sys:make-recursive-lock &optional (lock-name "a recursive CLIM lock")
Function

Creates a recursive lock whose name is name. name is a string. A recursive lock

differs from an ordinary lock in that a process that already holds the recursive

lock can call clim-sys:with-recursive-lock-held on the same lock without blocking.

On systems that do not support locking, this will return a new list of one element,

nil.

See the section "Locks in CLIM".

clim:make-reflection-transformation point-1 point-2 Function

Makes a transformation that reflects every point through the line passing through

the points point-1 and point-2.

clim:make-reflection-transformation* x1 y1 x2 y2 Function

Makes a transformation that reflects every point through the line passing through

the points (x1, y1) and (x2, y2).

A reflection is a transformation that preserves lengths and magnitudes of angles,

but changes the sign (or ‘‘handedness’’) of angles. If you think of the drawing

plane on a transparent sheet of paper, a reflection is a transformation that ‘‘turns
the paper over’’.

Page 1577

clim:make-rotation-transformation angle &optional origin Function

Makes a transformation that rotates all points clockwise by angle around the point

origin. The angle is specified in radians. If origin is supplied it must be a point; if

not supplied it defaults to (0,0).

clim:make-rotation-transformation* angle origin-x origin-y Function

Makes a transformation that rotates all points clockwise by angle around the point,

(origin-x, origin-y). The angle is specified in radians.

A rotation is a transformation that preserves length and angles of all geometric

entities. Rotations also preserve one point and the distance of all entities from that

point.

clim:make-scaling-transformation mx my &optional origin Function

Makes a transformation that multiplies the X-coordinate distance of every point

from origin by mx and the Y-coordinate distance of every point from origin by my.

If origin is supplied it must be a point; if not supplied it defaults to (0,0).

clim:make-scaling-transformation* mx my origin-x origin-y Function

Makes a transformation that multiplies the X-coordinate distance of every point

from origin-x by mx and the Y-coordinate distance of every point from origin-y by

my.

There is no single definition of a scaling transformation. Transformations that pre-

serve all angles and multiply all lengths by the same factor (preserving the

‘‘shape’’ of all entities) are certainly scaling transformations. However, scaling is

also used to refer to transformations that scale distances in the X-direction by one

amount and distances in the Y-direction by another amount.

clim:make-space-requirement &key (:width 0) (:min-width width) (:max-width

width) (:height 0) (:min-height height) (:max-height height) Function

Constructs and returns a space requirement object having the given components.

The space requirement object will generally be used to indicate the preferred sizes

for a pane.

:width specifies the preferred width of the pane, and :height specifies the preferred

height.

:min-width specifies that minimum size a pane can take, and :min-height specifies

the minimum height.

:max-width specifies the maximum width a pane can take, and :max-height specifies

the maximum height. If the maximum width or height is clim:+fill+, the pane may

stretch to fill the available space in that direction.

Page 1578

clim:make-stencil array Function

Creates a pattern design that has (array-dimension array 0) cells vertically and

(array-dimension array 1) cells horizontally. array must be a two-dimensional ar-

ray of real numbers between 0 and 1. The design in cell (i,j) of the resulting pat-

tern is the value of the following:

(clim:make-opacity (aref array i j))�

The stencil opacity of the result at a given point in the drawing plane depends on

which cell that point falls in. If the point is in cell (i,j), the stencil opacity is (aref

array i j). The stencil opacity is 0 outside the region defined by the array.

Each cell of a pattern occupies a 1 x 1 square. The entity protocol can be used to

scale the pattern to a different cell size and shape, or to rotate the pattern so that

the rectangular cells become diamond-shaped.

If array is modified after calling clim:make-stencil, the consequences are unspeci-

fied.

clim:make-text-style family face size Function

Creates a text style object with the supplied characteristics. Generally, there is no

need to call clim:make-text-style; you should use clim:parse-text-style or

clim:merge-text-styles instead.

family One of :fix, :serif, :sans-serif, or nil.

face One of :roman, :bold, :italic, (:bold :italic), or nil.

size One of the logical sizes (:tiny, :very-small, :small, :normal,

:large, :very-large, :huge, :smaller, :larger), or a real number

representing the size in printer’s points, or nil.

For example,

(clim:with-text-style

 (my-stream (clim:make-text-style :fix :bold :large))

 (write-string my-stream "Here is a text-style example."))

�

=> Here is a text-style example.�

A text style object is called fully specified if each of its components has a non-nil

value, and the size component is not a relative size (that is, is neither :smaller

nor :larger).

You can use clim:text-style-family, clim:text-style-face, and clim:text-style-size to

extract components from a text style object.

See the section "Text Styles in CLIM".

clim:make-transformation mxx mxy myx myy tx ty Function

Makes a general transformation whose effect is,

Page 1579

x’ = m xx x + m xy y + t x

y’ = m yx x + m yy y + t y�

where x and y are the coordinates of a point before the transformation and x’ and

y’ are the coordinates of the corresponding point after.

clim:make-translation-transformation delta-x delta-y Function

Makes a transformation that translates all points by delta-x in the X direction and

delta-y in the Y direction.

A translation is a transformation that preserves length, angle, and orientation of

all geometric entities.

clim:map-over-command-table-commands function command-table &key (:inherited

t) Function

Applies function to all of the commands accessible in command-table. function is a

function that takes a single argument, the command name.

If :inherited is nil instead of t, this applies function only to those commands

present in command-table, that is, it does not map over any inherited command

tables.

clim:map-over-command-table-keystrokes function command-table Function

Applies function to all of the keystroke accelerators in command-table’s accelerator

table. function is a function of three arguments, the menu name (which will be nil

if there is none), the keystroke accelerator, and the menu item.

clim:map-over-command-table-keystrokes does not descend into sub-menus. If

you require this behavior, you should examine the type of the menu item to see if

it is :menu.

clim:map-over-command-table-menu-items function command-table Function

Applies function to all of the menu items in command-table’s menu. function is a

function of three arguments, the menu name, the keystroke accelerator (which will

be nil if there is none), and the menu item. The menu items are mapped in the

order specified by clim:add-menu-item-to-command-table.

clim:map-over-command-table-menu-items does not descend into sub-menus. If

you require this behavior, you should examine the type of the menu item to see if

it is :menu and make the recursive call from function.

clim:map-over-command-table-names function command-table &key (:inherited t)

Function

Page 1580

Applies function to all of the command-line names accessible in command-table.

function is a function of two arguments, the command-line name and the command

name.

If :inherited is nil instead of t, this applies function only to those command-line

names present in command-table, that is, it does not map over any inherited com-

mand tables.

clim:map-over-frames function &key :port :frame-manager Generic Function

Applies function to all of the application frames that ‘‘match’’ :port and :frame-

manager. If :frame-manager is supplied, only those frames that use that frame

manager match. If :port is supplied, only those frames that use that port match. If

neither :port nor :frame-manager is supplied, clim:map-over-frames will call func-

tion on all of the existing application frames.

function is a function of one argument, the frame.

clim:map-over-output-records function record &optional (x-offset 0) (y-offset 0)

&rest continuation-args Function

Applies function to all of the child output records in the output record record.

Normally, function is called with a single argument, an output record. If continua-

tion-args are supplied, they are passed to function as well.

x-offset and y-offset are output record offsets that are necessitated by CLIM’s repre-

sentation of output records. In a later release of CLIM, the representation of out-

put records may change in such a way that the x-offset and y-offset arguments are

removed.

clim:map-over-output-records-containing-position function record x y &optional

x-offset y-offset &rest continuation-args Generic Function

Applies function to all of the child output records in the output record record that

overlap the point (x,y). Normally, function is called with a single argument, an out-

put record. If continuation-args are supplied, they are passed to function as well.

x-offset and y-offset are output record offsets that are necessitated by CLIM’s repre-

sentation of output records. In a later release of CLIM, the representation of out-

put records may change in such a way that the x-offset and y-offset arguments are

removed.

When clim:map-over-output-records-containing-position maps over the children

in the record, it does so in such a way that, when it maps over overlapping chil-

dren, the bottommost (least recently inserted) child is hit last. This is because this

function is used for things like locating the presentation under the pointer, where

the topmost child should be the one that is found.

Any class that is a subclass of clim:output-record must implement this method.

See the section "Output Recording in CLIM".

Page 1581

clim:map-over-output-records-overlapping-region function record region &optional

x-offset y-offset &rest continuation-args Generic Function

Applies function to all of the child output records in the output record record that

overlap the region region. Normally, function is called with a single argument, an

output record. If continuation-args are supplied, they are passed to function as well.

x-offset and y-offset are output record offsets that are necessitated by CLIM’s repre-

sentation of output records. In a later release of CLIM, the representation of out-

put records may change in such a way that the x-offset and y-offset arguments are

removed.

When clim:map-over-output-records-overlapping-region maps over the children

in the record, it does so in such a way that, when it maps over overlapping chil-

dren, the topmost (most recently inserted) child is hit last. This is because this

function is used for things such as replaying, where the most recently drawn thing

must come out on top (that is, must be drawn last).

Any class that is a subclass of clim:output-record must implement this method.

See the section "Output Recording in CLIM".

clim:map-over-polygon-coordinates function polygon Generic Function

Applies function to all of the coordinates of the vertices of polygon. The function

takes two arguments, the X and Y coordinates.

clim:map-over-polygon-segments function polygon Generic Function

Applies function to the line segments that compose polygon. The function takes

four arguments, the X and Y coordinates of the start of the line segment, and the

X and Y coordinates of the end of the line segment.

When clim:map-over-polygon-segments is called on a closed polyline, it will call

function on the line segment that connects the last point back to the first point.

clim:map-over-ports function Generic Function

Applies function to all of the current ports. function is a function of one argument.

clim:map-over-region-set-regions function region &key :normalize Generic Function

Calls function on each region in region. This is often more efficient than calling

clim:region-set-regions. region can be either a clim:region-set or any member of

clim:region, in which case function is called once on region itself.

:normalize can be either :x-banding or :y-banding, and is interpreted as it is for

clim:region-set-regions.

clim:map-over-sheets function sheet Generic Function

Page 1582

Applies function to sheet, and then applies function to all of the descendants (the

children, the children’s children, and so forth) of sheet. function is a function of

one argument, the sheet.

clim:map-over-sheets-containing-position function sheet x y Generic Function

Applies function to all of the children of sheet containing the position (x,y). x and y

are expressed in sheet’s coordinate system.

function is a function of one argument, the sheet.

clim:map-over-sheets-overlapping-region function sheet region Generic Function

Applies function to all of the children of sheet overlapping the region region. region

is expressed in sheet’s coordinate system.

function is a function of one argument, the sheet.

clim-sys:map-resource function resource Function

Calls function once on each object in the resource named name. function is a func-

tion of three arguments, the object, a boolean value that is t if the object is in use

or nil if it is free, and name.

See the section "Resources in CLIM".

clim:map-sheet-position-to-parent sheet x y Function

Applies sheet’s transformation to the point (x,y), returning the coordinates of that

point in sheet’s parent’s coordinate system.

See the section "Sheet Geometry Protocols".

clim:map-sheet-position-to-child sheet x y Function

Applies the inverse of sheet’s transformation to the point (x,y) (represented in

sheet’s parent’s coordinate system), returning the coordinates of that same point in

sheet’s coordinate system.

See the section "Sheet Geometry Protocols".

clim:medium Class

The protocol class that corresponds to a medium. If you want to create a new class

that obeys the medium protocol, it must be a subclass of clim:medium.

clim:medium-background medium Generic Function

Page 1583

Returns the current background design of the medium. You can use setf on

clim:medium-background to change the background design. You must not set the

background ink to an indirect ink.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:medium-clipping-region medium Generic Function

Returns the current clipping region of the medium. You can use setf on

clim:medium-clipping-region to change the clipping region.

In the current implementation of CLIM, the clipping region must be either a rect-

angle or a rectangle set.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:medium-default-text-style medium Generic Function

The default text style for medium. clim:medium-default-text-style must be a fully

specified text style, unlike clim:medium-text-style which can have null compo-

nents. Any text styles that are not fully specified by the time they are used for

rendering are merged against clim:medium-default-text-style using clim:merge-

text-styles.

You can use setf on clim:medium-default-text-style to change the default text

style, but the text style must be a fully specified text style.

See the section "Text Styles in CLIM".

clim:medium-draw-ellipse* medium center-x center-y radius-1-dx radius-1-dy radius-

2-dx radius-2-dy start-angle end-angle filled Generic Function

Draws an ellipse on the medium medium. The center of the ellipse is at (x,y), and

the radii are specified by the two vectors (radius-1-dx,radius-1-dy) and (radius-2-

dx,radius-2-dy). The center point and radii are transformed by the medium’s cur-

rent transformation.

start-angle and end-angle are real numbers that specify an arc rather than a com-

plete ellipse. The medium transformation must be applied to the angles as well.

If filled is t, the ellipse is filled, otherwise it is not.

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-line* medium x1 y1 x2 y2 Generic Function

Draws a line on the medium medium. The line is drawn from (x1,y1) to (x2,y2),

with the start and end positions transformed by the medium’s current transforma-

tion.

Page 1584

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-lines* medium position-seq Generic Function

Draws a set of disconnected lines on the medium medium. position-seq is a se-

quence of coordinate pairs, which are real numbers. It is an error if the length of

position-seq is not evenly divisible by 4. The coordinates in position-seq are trans-

formed by the medium’s current transformation.

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-point* medium x y Generic Function

Draws a point on the medium medium. The point is drawn at (x,y), transformed by

the medium’s current transformation.

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-points* medium position-seq Generic Function

Draws a set of points on the medium medium. position-seq is a sequence of coordi-

nate pairs, which are real numbers. It is an error if position-seq does not contain

an even number of elements. The coordinates in position-seq are transformed by

the medium’s current transformation.

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-polygon* medium position-seq closed filled Generic Function

Draws a polygon or polyline on the medium medium. position-seq is a sequence of

coordinate pairs, which are real numbers. It is an error if position-seq does not

contain an even number of elements. The coordinates in position-seq are trans-

formed by the medium’s current transformation.

If filled is t, the polygon is filled, otherwise it is not. If closed is t, the coordinates

in position-seq are considered to define a closed polygon, otherwise the polygon will

not be closed.

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-rectangle* medium x1 y1 x2 y2 filled Generic Function

Draws a rectangle on the medium medium. The corners of the rectangle are at

(x1,y1) and (x2,y2), with the corner positions transformed by the medium’s current

transformation. If filled is t, the rectangle is filled, otherwise it is not.

Page 1585

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-rectangles* medium position-seq filled Generic Function

Draws a set of rectangles on the medium medium. position-seq is a sequence of co-

ordinate pairs, which are real numbers. It is an error if the length of position-seq

is not evenly divisible by 4. The coordinates in position-seq are transformed by the

medium’s current transformation. If filled is t, the rectangle is filled, otherwise it

is not.

The ink, clipping region, and line style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-draw-text* medium string-or-char x y start end align-x align-y to-

wards-x towards-y transform-glyphs Generic Function

Draws a character or a string on the medium medium. The text is drawn starting

at (x,y), and towards (toward-x,toward-y); these positions are transformed by the

medium’s current transformation.

The ink, clipping region, and text style are gotten from the medium. See the sec-

tion "The CLIM Drawing Environment".

clim:medium-drawable medium Generic Function

Returns the host window system object (or ‘‘drawable’’) that is drawn on by the

CLIM drawing functions when they are called on medium. If medium is not associ-

ated with any sheet, or the sheet with which it is associated is not ‘‘mirrored’’ on

a display server, this function will return nil.

When some part of a program must be able to draw on a window with maximum

speed and portability is less important than performance, you can use

clim:medium-drawable to get the host window system object and then draw di-

rectly on that using the host window system’s drawing functions. See the macro

clim:with-medium-state-cached.

clim:medium-foreground medium Generic Function

Returns the current foreground design of the medium. You can use setf on

clim:medium-foreground to change the foreground design. You must not set the

foreground ink to an indirect ink.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:medium-ink medium Generic Function

Page 1586

Returns the current drawing ink of the medium. You can use setf on

clim:medium-ink to change the current ink.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:medium-line-style medium Generic Function

Returns the current line style of the medium. You can use setf on clim:medium-

line-style to change the line style.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:medium-merged-text-style medium Generic Function

Returns the fully merged text style that will be used when drawing text on medi-

um. It returns the result of

(clim:merge-text-styles (clim:medium-text-style medium)

 (clim:medium-default-text-style medium))�

That is, the components of the current text style that are not nil will replace the

defaults from medium’s default text style. Unlike the preceding clim:medium-text-

style and clim:medium-default-text-style, clim:medium-merged-text-style is read-

only.

clim:medium-sheet medium Generic Function

Returns the sheet with which the medium medium is associated. See the section

"Sheet Output Protocols".

clim:medium-text-style medium Generic Function

Returns the current text style of the medium. You can use setf on clim:medium-

text-style to change the current text style.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:medium-transformation medium Generic Function

Returns the current transformation of the medium. You can use setf on

clim:medium-transformation to change the current transformation.

For background information and related operations, see the section "Components of

CLIM Mediums".

clim:mediump object Generic Function

Page 1587

Returns t if and only if object is of type clim:medium, otherwise returns nil.

member &rest elements Clim Presentation Type Abbreviation

The presentation type that specifies one of elements. The options (:name-key,

:value-key, and :partial-completers) are the same as for clim:completion.

clim:member-sequence sequence &key :test Clim Presentation Type Abbreviation

Like member, except that the set of possibilities is the sequence sequence. The pa-

rameter :test and the options (:name-key, :value-key, and :partial-completers) are

the same as for clim:completion.

clim:member-alist alist &key :test Clim Presentation Type Abbreviation

Like member, except that the set of possibilities is the alist alist. Each element of

alist is either an atom (as in clim:member-sequence) or a list whose car is the

name of that possibility and whose cdr is one of the following:

• The value (which must not be a cons)

• A list of one element, the value

• A property list containing one or more of the following properties:

:value the value

:documentation a descriptive string�

The :test parameter and the options are the same as for clim:completion except

that the :value-key and :documentation-key options default to functions that sup-

port the specified alist format.

clim:menu-choose items &rest keys &key :associated-window :text-style :foreground

:background :default-item :label :scroll-bars :printer :presentation-type :cache :unique-

id :id-test :cache-value :cache-test :max-width :max-height :n-rows :n-columns :x-

spacing :y-spacing :row-wise :cell-align-x :cell-align-y :x-position :y-position :pointer-

documentation :menu-type Function

Displays a menu with the choices in items. It returns three values: the value of

the chosen item, the item itself, and the event corresponding to the gesture that

the user used to select it. items can be a list or a general sequence.

If possible, clim:menu-choose will use the menu facilities provided by the host

window system. It is generally possible for CLIM to use the native menu facilities

when you do not supply any of the arguments that require the menu to be format-

ted in any special way.

When enabled by clim:*abort-menus-when-buried*, this function returns nil for

all values if the menu is aborted by burying it.

Page 1588

items A sequence of menu items. Each menu item has a visual represen-

tation derived from a display object, an internal representation

which is a value object, and a set of menu item options.

The form of a menu item is one of the following:

an atom The item is both the display object and the val-

ue object.

a cons The car is the display object and the cdr is the

value object. The value object must be an atom.

If you need to return a list as the value, use the

:value option in the list menu item format de-

scribed below.

a list The car is the display object and the cdr is a

list of alternating option keywords and values.

The value object is specified with the keyword

:value and defaults to the display object if

:value is not present.

The menu item options are:

:value Specifies the value object.

:style Specifies the text style used to princ the display

object when neither the :presentation-type nor

the :printer option is specified.

:items Specifies an item list for a sub-menu used if

this item is selected.

:documentation

Associates some documentation with the menu

item. When :pointer-documentation is not nil,

this documentation will be used as pointer docu-

mentation for the item.

The visual representation of an item depends on the :printer and

:presentation-type keyword arguments. If :presentation-type is sup-

plied, the visual representation is produced by clim:present of the

menu item with that presentation type. Otherwise, if :printer is

supplied, the visual representation is produced by the :printer func-

tion which receives two arguments, the item and a stream to write

on. The :printer function should output some text or graphics at the

stream’s cursor position, but need not call clim:present. If neither

:presentation-type nor :printer is supplied, the visual representation

is produced by princ of the display object. If :presentation-type or

:printer is supplied, the visual representation is produced from the

entire menu item, not just from the display object.

Page 1589

:associated-window

The CLIM window with which the menu is associated. This defaults

to the top-level sheet of the current application frame. You should

only rarely need to supply this argument.

:text-style A text style that defines how the menu items are presented.

:foreground and :background

These specify the default foreground and background for the menu.

These default from the associated window.

:scroll-bars

This can be nil, :none, :horizontal, :vertical, or :both. The default

is :vertical.

:label The string that the menu title will be set to.

:printer The function used to print the menu items in the menu. The func-

tion must take two arguments, the menu item and the stream to

print it to. The default is a function that displays an ordinary menu

item.

:presentation-type

Specifies the presentation type of the menu items. The default is

clim:menu-item.

:max-width

Specifies the maximum width of the table display (in device units).

(Can be overridden by :n-rows.)

:max-height

Specifies the maximum height of the table display (in device units).

(Can be overridden by :n-columns.)

:n-rows Specifies the number of rows in the menu.

:n-columns

Specifies the number of columns in the menu.

:x-spacing

Determines the amount of space inserted between columns of the

table; the default is the width of a space character. :x-spacing can

be specified in one of the following ways:

Integer

A size in the current units to be used for spacing.

String or character

The spacing is the width or height of the string or char-

acter in the current text style.

Function

The spacing is the amount of horizontal or vertical space

the function would consume when called on the stream.

Page 1590

List of form (number unit)

The unit is :point, :pixel, or :character.�

:y-spacing

Specifies the amount of blank space inserted between rows of the

table; the default is the vertical spacing for the stream. The possi-

ble values for this option are the same as for the :x-spacing option.

:cell-align-x

Specifies the horizontal placement of the contents of the cell. Can

be one of: :left, :right, or :center. The default is :left.

:cell-align-y

Specifies the vertical placement of the contents of the cell. Can be

one of: :top, :bottom, or :center. The default is :top.

:pointer-documentation

Either nil (the default), meaning the no pointer documentation

should be computed, or a stream on which pointer documentation

should be displayed.

:x-position and :y-position

These can be supplied to position the menu. If the are not supplied,

the menu will be positioned near the pointer.

:default-item

The menu item over which the mouse will appear.

:cache Indicates whether CLIM should cache this menu for later use. If t,

then :unique-id and :id-test serve to uniquely identify this menu.

Caching menus can speed up later uses of the same menu. The de-

fault is nil.

:unique-idIf :cache is non-nil, this is used to identify the menu. It defaults to

the items, but can be set to a more efficient tag.

:id-test The function that compares unique-ids. Defaults to equal.

:cache-value

If :cache is non-nil, this is the value that is compared to see if the

cached menu is still valid. It defaults to items, but you may be able

to supply a more efficient cache value than that.

:cache-testThe function that compares cache-values. Defaults to equal.

See the section "Examples of Menus and Dialogs in CLIM".

clim:menu-choose-from-drawer menu type drawer &key :x-position :y-position

:cache :unique-id (:id-test #’equal) (:cache-value t) (:cache-test #’eql) :leave-menu-

visible :default-presentation Function

A lower-level routine for displaying menus that allows you much more flexibility in

the menu layout. Unlike clim:menu-choose, which automatically creates and lays

Page 1591

out the menu, clim:menu-choose-from-drawer takes a programmer-provided win-

dow and drawing function. Then it draws the menu items into that window using

the drawing function. The drawing function gets called with arguments (stream

type). It can use type for its own purposes, the usual being to use it in a call to

clim:present.

clim:menu-choose-from-drawer returns two values; the object the user clicked on,

and the gesture.

You can create a temporary window for drawing their menu using clim:with-menu.

When enabled by clim:*abort-menus-when-buried*, this function returns nil for

all values if the menu is aborted by burying it.

menu The CLIM window to use for the menu.

type The presentation type of the mouse-sensitive items in the menu.

This is the input context that will be established once the menu is

displayed. For users who don’t need to define their own types, a

useful presentation-type is clim:menu-item.

drawer A function that takes arguments (stream type) that draws the con-

tents of the menu.

:x-positionThe requested left edge of the menu (if supplied).

:y-position

The requested top edge of the menu (if supplied).

:leave-menu-visible

If non-nil, the window will not be deexposed once the selection has

been made. The default is nil, meaning that the window will be de-

exposed once the selcetion has been made.

:default-presentation

Identifies the presentation that the mouse is pointing to when the

menu comes up.�

:cache, :unique-id, :id-test, :cache-value, and :cache-test are as for clim:menu-choose.

See the section "Examples of Menus and Dialogs in CLIM".

clim:menu-choose-command-from-command-table command-table &key (:associat-

ed-window (clim:frame-top-level-window clim:*application-frame*)) :text-style :la-

bel :cache (:unique-id clim:command-table) (:id-test #’eql) :cache-value (:cache-test

#’eql) Function

Displays a menu of all of the commands in command-table’s menu, and waits for

the user to choose one of the commands. The returned value is a command object.

clim:menu-choose-command-from-command-table can invoke itself recursively if

there are sub-menus.

:associated-window, :text-style, :label, :cache, :unique-id, :id-test, :cache-value, and

:cache-test are as for clim:menu-choose.

Page 1592

clim:menu-command-parser command-table stream &key :timeout Function

Reads a command on behalf of an application frame’s command loop by soliciting

input via command menus. User programs should not call this function explicitly,

but should rather bind clim:*command-parser* to it.

This is the function CLIM uses to parse commands in a menu driven interface.

clim:menu-read-remaining-arguments-for-partial-command partial-command com-

mand-table stream start-location &key :for-accelerator Function

Reads the remaining arguments of a partially filled-in command on behalf of an

application frame’s command loop by getting input via the mouse. User programs

should not call this function explicitly, but should rather bind clim:*partial-

command-parser* to it.

clim:merge-text-styles style1 style2 Generic Function

Merges style1 against the defaults provided by style2. That is, any nil components

in style1 are filled in from style2.

If the size component of style1 is a relative size, the resulting size will be the size

component of style2 as modified by the relative size.

If the face component of style1 is :bold and the face component of style2 is :italic

(or vice-versa), the resulting face will be (:bold :italic).

Here are some examples of text style merging.

(clim:merge-text-styles ’(:fix :bold 12) ’(nil :roman nil))

=> #<STANDARD-TEXT-STYLE :FIX.:BOLD.12 1116707341>

(clim:merge-text-styles ’(:fix :bold nil) ’(nil :roman 10))

=> #<STANDARD-TEXT-STYLE :FIX.:BOLD.10 1116707675>

(clim:merge-text-styles ’(:fix :bold 12) ’(nil :italic 10))

=> #<STANDARD-TEXT-STYLE :FIX.(:BOLD :ITALIC).12 1116707454>

�

See the section "Text Styles in CLIM".

clim:+meta-key+ Constant

The modifier state bit that corresponds to the user holding down the meta key on

the keyboard. See the section "Operators for Gestures in CLIM".

clim:modifier-state-matches-gesture-name-p state gesture-name Function

Returns t if the modifier state state ‘‘matches’’ the modifier state of the gesture

named by gesture-name. state is an integer such as is returned by clim:make-

modifier-state.

Page 1593

clim:move-sheet sheet x y Generic Function

Moves sheet to the new position (x,y). x and y are in coordinates relative to sheet’s

parent.

clim:move-sheet works by modifying the sheet’s transformation, and could be im-

plemented as follows:

(defmethod clim:move-sheet

 ((sheet clim:basic-sheet) x y)

 (let ((transform (clim:sheet-transformation sheet)))

 (multiple-value-bind (old-x old-y)

 (clim:transform-position transform 0 0)

 (setf (clim:sheet-transformation sheet)

 (clim:compose-translation-with-transformation

 transform (- x old-x) (- y old-y))))))�

You should not generally use this function to move a sheet, because it does not in-

teract directly with the frame layout protocol. That is, moving a sheet with

clim:move-sheet may appear not to have any effect until you invoke the entire lay-

out protocol. If you need to move a top-level sheet, use clim:position-sheet-

carefully.

clim:move-and-resize-sheet sheet x y width height Generic Function

Moves sheet to the new position (x,y), and simultaneously changes the size of the

sheet to have width width and height height. x and y are in coordinates relative to

sheet’s parent.

clim:move-and-resize-sheet could be implemented as follows:

(defmethod clim:move-and-resize-sheet

 ((sheet clim:basic-sheet) x y width height)

 (clim:move-sheet sheet x y)

 (clim:resize-sheet sheet width height))�

You should not generally use this function to move or resize a sheet, because it

does not interact directly with the frame layout protocol. That is, moving and re-

sizing a sheet with clim:move-and-resize-sheet may appear not to have any effect

until you invoke the entire layout protocol. If you need to move and resize a top-

level sheet, use clim:position-sheet-carefully and clim:size-frame-from-contents.

clim-sys:*multiprocessing-p* Variable

The value of this variable is t if the current Lisp environment supports multi-

processing, otherwise it is nil.

clim:new-page stream Generic Function

When called on a PostScript output stream, this causes a PostScript ‘‘newpage’’

command to be included in the output at the point clim:new-page is called.

Page 1594

The exact effect of clim:new-page is undefined if you specified either :multi-page

t or :scale-to-fit t to clim:with-output-to-postscript-stream.

See the section "Hardcopy Streams in CLIM".

clim:note-gadget-activated client gadget Generic Function

This function is invoked after a gadget is made active. You can specialize this

generic function on the client or gadget in order to modify the behavior when the

gadget is activated.

clim:note-gadget-deactivated client gadget Generic Function

This function is invoked after a gadget is made inactive. You can specialize this

generic function on the client or gadget in order to modify the behavior when the

gadget is deactivated.

clim:note-progress numerator &optional (denominator 1) (note clim:*current-

progress-note*) Function

Notes the progress of an operation by updating the progress bar. This function is

only used in the body of the clim:noting-progress macro. The progress bar is up-

dated by fractional amounts between 0 and 1.

numerator is the numerator of the fraction by which to update the bar. denomina-

tor is the denominator of the fraction by which to update the bar; the default is 1.

note-var is a variable bound to the current note object; the default is

clim:*current-progress-note*.

(clim:noting-progress ("Working Away By Tenths")

 (loop for i from 0.1 to 1.0 by 0.1 do

 (tv:note-progress i)

 (sleep 1)))�

clim:note-sheet-region-changed sheet Generic Function

This function is invoked whenever the region of sheet is changed. See the section

"Sheet Geometry Protocols".

clim:note-sheet-transformation-changed sheet Generic Function

This function is invoked whenever the transformation of sheet is changed. See the

section "Sheet Geometry Protocols".

clim:note-viewport-position-changed frame pane x y Generic Function

Page 1595

CLIM calls this function whenever a pane gets scrolled, whether it is scrolled pro-

grammatically (by clim:window-set-viewport-position, for example) or by a user

gesture (such as clicking on a scroll bar).

pane is that pane that was scrolled, frame is the frame in which the pane resides,

and x and y are the new viewport position.

You can specialized this function when you want to extend the scrolling behavior

of a pane. This might be used to ‘‘link’’ to panes together, so that when one pane

is scrolled, the other pane gets scrolled as well. If you want to implement com-

pletely new scrolling behavior for a sheet, you should specialize clim:scroll-extent

instead.

clim:notify-user frame message &key :associated-window :title :exit-boxes :text-style�

:foreground :background :x-position :y-position Generic Function

Notifies the user of some event on behalf of the application frame frame. message

is a message string. :associated-window is the window with which the notification

is associated. :title is a string used to label the notification. :exit-boxes is as for

clim:accepting-values.

:text-style, :foreground, and :background are the text style, foreground ink, and

background ink to use in the notification window. :x-position and :y-position can be

supplied to position the notification window.

On Genera, this pops up a small dialog box containing the message. On other

platforms, this may use an alert box or the equivalent.

clim:noting-progress (stream name &optional note-var) &body body Macro

Binds the dynamic environment such that the progress of an operation performed

within the body of the macro is noted by a progress bar displayed in the specified

stream (such as the pointer documentation pane). The function clim:note-progress

does the updating of the progress bar.

name is a string naming the operation being noted; this string is displayed with

the progress bar.

note-var is a variable bound to the current note object; the default is

clim:*current-progress-note*.

(clim:noting-progress ("Working Away By Tenths")

 (loop for i from 0.1 to 1.0 by 0.1 do

 (tv:note-progress i)

 (sleep 1)))�

clim:+nowhere+ Constant

The empty region (the opposite of clim:+everywhere+).

Page 1596

null Clim Presentation Type

The presentation type that represents ‘‘nothing’’. The single object associated with

this type is nil, and its printed representation is "None".

clim:null-or-type type Clim Presentation Type Abbreviation

A compound type that is used to select nil, whose printed representation is the

special token "None", or an object of type type.

type can be a presentation type abbreviation.

clim:*null-presentation* Constant

The ‘‘null’’ presentation, which occupies any part of a window where there are no

presentations matching the current input context. The presentation type of this ob-

ject is clim:blank-area.

number Clim Presentation Type

The presentation type that represents a general number. It is the supertype of all

the number types.

clim:*numeric-argument-marker* Variable

If you are building a command object that has numeric arguments that have not

yet been supplied (for example, a numeric argument gotten from a keystroke ac-

celerator), CLIM uses the value of clim:*numeric-argument-marker* as a place-

holder for those arguments. The command processor will fill in the places so

marked by inserting the value of the input editor’s accumulated numeric argu-

ment.

The following might come from a debugger. When the user types control-5 con-

trol-N, the debugger will move ‘‘down’’ five frames in the stack.

(define-debugger-command (com-next-frame :name t)

 (&key (n-frames ’((integer) :base 10)

 :default 1

 :documentation "Move this many frames")

 (detailed ’boolean

 :default nil :mentioned-default t

 :documentation "Show locals and disassembled code"))

 "Show the next frame in the stack"�

 (cond ((and (plusp n-frames)

 (bottom-frame-p (current-frame clim:*application-frame*)))

 (format t "~&You are already at the bottom of the stack."))

 (t

 (show-frame (nth-frame n-frames) :detailed detailed))))

Page 1597

�

(clim:add-keystroke-to-command-table

 ’debugger ’(:n :control) :command

 ‘(com-next-frame :n-frames ,clim:*numeric-argument-marker*))�

clim:opacity Class

A member of the class clim:opacity is a completely colorless design that is typical-

ly used as the second argument to clim:compose-in to adjust the opacity of anoth-

er design.

clim:opacity-value opacity Generic Function

Returns the value of opacity, which is a real number in the range from 0 to 1

(inclusive).

clim:opacityp object Generic Function

Returns t if and only if object is of type clim:opacity.

clim:open-stream-p stream Generic Function

In CLIM, open-stream-p is defined as a generic function. Otherwise, it behaves

the same as the normal Common Lisp open-stream-p function.

clim:open-window-stream &key :port :frame-manager :left :top :right :bottom :width

:height :foreground :background :text-style (:vertical-spacing 2) (:end-of-line-action

:allow) (:end-of-page-action :allow) :output-record (:draw t) (:record t) (:initial-cursor-

visibility :off) :text-margin :default-text-margin :save-under :input-buffer (:scroll-bars

:vertical) :borders :label Function

clim:open-window-stream is a convenient interface for creating a CLIM window

outside of an application frame. This function is not used often. Instead, you will

usually use windows that are created by an application frame or by the menu and

dialog functions.

Note that some of these keyword arguments are also available as pane options in

clim:define-application-frame.

:port, :frame-manager

The port or frame manager on which to create the window.

You must supply one of these two arguments.

:left, :top, :right, :bottom, :width, :height

Position and shape of the window within its parent, in device

units. The default is locate the window at (0,0) and to fill the

entire parent.

Page 1598

:foreground, :background, :text-style, :draw, :record, :end-of-line-action, :end-of-page-

action, :text-margin

Initial values for the corresponding stream attributes.

:default-text-margin Text margin to use if clim:stream-text-margin isn’t set. This

defaults to the width of the viewport.

:borders Controls whether borders are drawn around the window (t or

nil). The default is t.

:initial-cursor-visibility

:off (the default) means make the cursor visible if the window

is waiting for input. :on means make it visible all the time. nil

means the cursor is never visible.

:label nil or a string label for the window. The default is nil for no

label.

:output-record Specify this if you want a different output history mechanism

than the default.

:scroll-bars Indicates whether the new window should have scroll bars. One

of nil, :none, :vertical, :horizontal, or :both. The default is

:both.

:vertical-spacing Amount of extra space between text lines, in device units.

:input-buffer The event queue to use for this window.

The remaining keyword arguments are internal and should not be used.

You can use clim:position-sheet-carefully and clim:size-frame-from-contents to

set the size and position of windows created using clim:open-window-stream.

clim:option-pane Class

The clim:option-pane gadget class corresponds to an option pane, that is, a pane

whose semantics are identical to a list pane, but whose visual appearance is a sin-

gle push button which, when pressed, pops up a menu of selections. It is a sub-

class of clim:value-gadget.

See the section "Using Gadgets in CLIM".

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:mode Either :one-of or :some-of. When it is :one-of, the option pane acts

like a radio box, that is, only a single item can be selected. Other-

wise, the option pane acts like a check box, in that zero or more

items can be selected. The default is :one-of.

:items A list of items.

Page 1599

:name-key

A function of one argument that generate the name of an item from

the item. The default is princ-to-string.

:value-key

A function of one argument that generate the value of an item from

the item. The default is identity.

:test A function of two arguments that compares two items. The default

is eql.�

Calling clim:gadget-value on an option pane will return the single selected item

when the mode is :one-of, or a sequence of selected items when the mode is

:some-of.

The clim:value-changed-callback is invoked when the select item (or items) is

changed.

Here are some examples of option panes:

(clim:make-pane ’clim:option-pane

 :label "Select a vendor"

 :value "Symbolics"

 :test ’string=

 :value-changed-callback ’option-pane-changed-callback

 :items ’("Franz" "Lucid" "Harlequin" "Symbolics"))

�

(clim:make-pane ’clim:option-pane

 :label "Select some languages"

 :value ’("Lisp" "C++")

 :mode :some-of

 :value-changed-callback ’option-pane-changed-callback

 :items ’("Lisp" "Fortran" "C" "C++" "Cobol" "Ada"))

�

(defun option-pane-changed-callback (tf value)

 (format t "~&Option menu ~A changed to ~S" tf value))�

clim:option-pane-view Class

The class that represents the view corresponding to an option pane. Options panes

are another way of representing ‘‘one of’’ or ‘‘some of’’ fields.

clim:+option-pane-view+ Constant

An instance of the class clim:option-pane-view.

or &rest types Clim Presentation Type

The presentation type that is used to specify one of several types, for example,

Page 1600

(or (member :all :none) integer)�

clim:accept returns one of the possible types as its second value, not the original

or presentation type specifier.

The elements of types can be presentation type abbreviations.

The clim:accept method for the or type works by iteratively calling clim:accept

on each of the presentation types in types. It establishes a condition handler for

user::parse-error, calls clim:accept, and returns the result if no condition is sig-

nalled. If a user::parse-error condition is signalled, CLIM calls the clim:accept

method for the next type. If all of the calls to clim:accept fail, the clim:accept

method for or signals a user::parse-error.

clim:oriented-gadget-mixin Class

The class that is mixed in to a gadget that has an orientation associated with it,

for example, a slider.

All subclasses of clim:oriented-gadget-mixin must handle the :orientation initarg,

which is used to specify the orientation of the gadget.

clim:outlining (&rest options &key :thickness &allow-other-keys) &body contents

Macro

The clim:outlining layout macro puts an outlined border of the specified thickness

around a single child pane. :thickness is the thickness in device units. contents is a

form that produces a single pane.

The clim:outlining macro is the usual way of creating a pane of type

clim:outlined-pane.

options may include other pane initargs, such as space requirement options,

:foreground, :background, :text-style, and so forth.

clim:outlined-pane Class

The layout pane class that draws a border around its child pane. clim:outlining

generates a pane of this type.

In addition to the usual sheet initargs (the space requirement initargs,

:foreground and :background), this class supports two other initargs:

:thickness

An integer that specifies the thickness of the border, in device

units.

:contents The pane that will be the child.�

clim:output-record Class

Page 1601

The protocol class that is used to indicate that an object is an output record, that

is, a CLIM object that contains other output records. If you want to create a new

class the obeys the output record protocol, it must be a subclass of clim:output-

record.

If you think of output records being arranged in a tree, output records are the

non-leaf nodes of the tree.

See the section "Output Recording in CLIM".

clim:output-record-count record Generic Function

Returns the number of output records that are children of record.

clim:output-record-children record Function

Returns a sequence of output records that are the children of the output record

record. If record has no children, this will return nil.

For some classes of output records, this function may create a new sequence hold-

ing the child output records. Because of this, you should use clim:map-over-

output-records instead of this, if it is possible to do so.

See the section "Output Recording in CLIM".

clim:output-record-p object Function

Returns t if and only object is of type clim:output-record.

clim:output-record-parent record Generic Function

Returns the output record that it the parent of record. If record has no parent,

clim:output-record-parent will return nil.

See the section "Output Recording in CLIM".

clim:output-record-position record Generic Function

Returns the X and Y position of record as two real numbers. The position of an

output record is the position of the upper-left corner of its bounding rectangle.

The position is relative to the output record’s parent, where (0,0) is the upper-left

corner of the parent output record.

See the section "Output Recording in CLIM". See the function clim:convert-from-

relative-to-absolute-coordinates.

clim:output-record-refined-position-test record x y Generic Function

Page 1602

CLIM uses clim:output-record-refined-position-test to definitively determine that

the point (x,y) is contained within the output record record. Once the position (x,y)

has been determined to lie within the bounding rectangle of the record, CLIM calls

clim:output-record-refined-position-test.

You can define methods for this generic function for your own output record class-

es in order to provide a more precise definition of a hit. For example, output

records for ellipses implement a method that detects whether the pointer cursor is

within the ellipse.

The following example shows how you might implement this method for an output

record that records a filled-in circle:

(defmethod clim:output-record-refined-position-test

 ((record circle-output-record) x y)

 (with-slots (center-x center-y radius) record

 (point-inside-circle-p (- x center-x) (- y center-y) radius)))�

clim:output-record-set-position record x y Generic Function

Changes the position of the output record record to the new position x and y. x

and y are the new left and top coordinates of the record. The position is relative

to the output record’s parent, where (0,0) is the upper-left corner of the parent

output record.

See the section "Output Recording in CLIM". See the function clim:convert-from-

absolute-to-relative-coordinates.

clim:output-recording-stream-p object Function

Returns t if and only if object is an output recording stream.

clim:output-stream-p stream Generic Function

Returns t if stream is a CLIM output stream, otherwise returns nil.

clim:palette-color-p palette Generic Function

Returns t if the palette supports color, otherwise returns nil.

You can determine whether or not a particular stream or medium supports color

with the following function:

(defun color-stream-p (stream)

 (clim:palette-color-p

 (clim:port-default-palette (clim:port stream))))

�

Page 1603

clim:pane Class

The protocol class that corresponds to any kind of CLIM pane (that is, a sheet

that participates in the layout protocol within an application frame).

clim:pane-frame pane Generic Function

Returns the application frame in which pane is one of the panes.

clim:pane-name pane Generic Function

Returns the name of the pane pane if it is a named pane, otherwise returns nil.

clim:pane-viewport pane Generic Function

If the pane pane is part of a scroller pane, this returns the viewport pane for

pane. Otherwise it returns nil.

clim:pane-viewport-region pane Generic Function

If the pane pane is part of a scroller pane, this returns the region of pane’s view-

port. Otherwise it returns nil.

The region is usually an instance of clim:standard-bounding-rectangle.

clim:panep object Generic Function

Returns t if and only if object is of type clim:pane.

conditions:parse-error Condition

This is the superclass of both clim:simple-parse-error and clim:input-not-of-

required-type.

clim:parse-text-style text-style Generic Function

If text-style is either a text style object or a device font, clim:parse-text-style re-

turns text-style. Otherwise, text-style must be a list of three elements, the text style

family, face, and size. In this case, text-style is parsed and a text style object is re-

turned.

(clim:parse-text-style ’(:fix :roman :normal))

 => #<CLIM:STANDARD-TEXT-STYLE :FIX.:ROMAN.:NORMAL 20153772131>

�

(clim:parse-text-style ’(:serif :bold-italic :normal))

 => #<CLIM:STANDARD-TEXT-STYLE :SERIF.(:BOLD :ITALIC).:NORMAL 401035455>�

See the section "Text Styles in CLIM".

Page 1604

clim:partial-command-p command Function

Returns t if the command object command is a partial command, otherwise returns

nil.

clim:*partial-command-parser* Variable

The currently active partial command parsing function.

The default for this is clim:command-line-read-remaining-arguments-for-partial-

command when there is at least one interactor pane in the application frame, oth-

erwise the default is clim:menu-read-remaining-arguments-for-partial-command.

clim:path Class

This is a subclass of clim:region that denotes regions that have dimensionality 1.

If you want to create a new class that obeys the path protocol, it must be a sub-

class of clim:path.

Making a clim:path object with no length canonicalizes it to clim:+nowhere+.
When paths are used to construct an area by specifying its outline, they need to

have a direction associated with them.

clim:pathp object Generic Function

Returns t if and only if object is of type clim:path.

clim-lisp:pathname Clim Presentation Type

The presentation type that represents a pathname.

The options are :default-type (which defaults to nil), :default-version (which de-

faults to :newest), and :merge-default (which defaults to t). If :merge-default is

nil, clim:accept returns the exact pathname that was entered, otherwise

clim:accept merges against the default provided to clim:accept and :default-type

and :default-version, using merge-pathnames. If no default is specified, it de-

faults to *default-pathname-defaults*.

clim:pattern-height pattern Generic Function

Returns the height of the pattern pattern.

clim:pattern-width pattern Generic Function

Returns the width of the pattern pattern.

clim:pixmap-depth pixmap Generic Function

Page 1605

Returns the depth of the pixmap pixmap.

clim:pixmap-height pixmap Generic Function

Returns the height of the pixmap pixmap.

clim:pixmap-width pixmap Generic Function

Returns the width of the pixmap pixmap.

clim:point Class

The protocol class that corresponds to a mathematical point. If you want to create

a new class that obeys the point protocol, it must be a subclass of clim:point.

clim:point-position point Generic Function

Returns two values, the X and Y coordinates of point.

clim:point-x point Generic Function

Returns the X coordinate of point.

clim:point-y point Generic Function

Returns the Y coordinate of point.

clim:pointer Class

The protocol class that corresponds to a pointing device, such as a mouse. If you

want to create a new class that obeys the pointer protocol, it must be a subclass of

clim:pointer.

clim:pointer-button-event Class

The class that corresponds to some sort of CLIM pointer button event, such as a

button press or release. This is a subclass of clim:pointer-event.

clim:pointer-button-press-event Class

The class that corresponds to the user pressing a button on the pointer. This is a

subclass of clim:pointer-button-event.

clim:pointer-button-release-event Class

Page 1606

The class that corresponds to the user releasing a button on the pointer. This is a

subclass of clim:pointer-button-event.

Note that CLIM will usually not pass button release events to the stream layer,

except in specific circumstances, such as inside of clim:tracking-pointer. That is,

functions like read-char and clim:read-gesture will not generally ever seen point-

er button release events.

clim:pointer-button-state pointer Generic Function

Returns the current button state for pointer. This is a bit mask that can be

checked against the values of clim:+pointer-left-button+, clim:+pointer-middle-

button+, and clim:+pointer-right-button+.

clim:pointer-cursor pointer Generic Function

Returns the current cursor type for pointer.

You can use setf on clim:pointer-cursor to temporarily change the cursor type.

Note that some window managers can change the pointer cursor without notifying

the application, so it is generally better to change the pointer cursor by setting

the clim:sheet-pointer-cursor attribute of the sheets for which you want the cur-

sor to change.

The valid cursor types are :default, :vertical-scroll, :scroll-up, :scroll-down,

:horizontal-scroll, :scroll-left, :scroll-right, :busy, :upper-left, :upper-right,

:lower-left, :lower-right, :vertical-thumb, :horizontal-thumb, :button, :prompt,

:move, :position, and :i-beam.

For example, you can temporarily change the pointer cursor to indicate that the

current program is busy using the following code:

(defmacro with-busy-cursor ((&optional (frame ’clim:*application-frame*))

 &body body)

 (let ((pointer ’#:pointer)

(old-cursor ’#:old-cursor))

 ‘(let* ((,pointer (clim:port-pointer (port ,frame)))

 (,old-cursor (clim:pointer-cursor ,pointer)))

 (setf (clim:pointer-cursor ,pointer) :busy)

 (unwind-protect

 ,@body

 (setf (clim:pointer-cursor ,pointer) ,old-cursor)))))

�

clim:pointer-documentation-pane Class

The pane class that is used to implement the pointer documentation pane. It corre-

sponds to the pane type abbreviation :pointer-documentation in the :panes clause

of clim:define-application-frame.

Page 1607

For clim:pointer-documentation-pane, the default for the :display-time option is

nil, and the default for the :scroll-bars option is nil.

clim:pointer-documentation-view Class

The view that is used for pointer documentation.

clim:*pointer-documentation-output* Variable

Either nil or a stream to which pointer documentation should be written. If nil, no

pointer documentation is computed.

clim:+pointer-documentation-view+ Variable

An instance of the class clim:pointer-documentation-view.

clim:pointer-event Class

The class that corresponds to some sort of CLIM pointer event. This is a subclass

of clim:device-event.

clim:pointer-event-button pointer-button-event Generic Function

Returns the button number that was pressed when the pointer button event point-

er-button-event occurred. The returned value is an integer with 1 bits that corre-

spond to the button that was pressed.

Button Mask

Left clim:+pointer-left-button+
Middle clim:+pointer-middle-button+
Right clim:+pointer-right-button+

�

clim:pointer-event-x pointer-event Generic Function

Returns the X position of the pointer when the pointer event pointer-event oc-

curred.

clim:pointer-event-y pointer-event Generic Function

Returns the Y position of the pointer when the pointer event pointer-event oc-

curred.

clim:pointer-enter-event Class

Page 1608

The class that corresponds to the user moving the pointer into a sheet from anoth-

er sheet. This is a subclass of clim:pointer-event.

clim:pointer-exit-event Class

The class that corresponds to the user moving the pointer out of a sheet. This is a

subclass of clim:pointer-event.

clim:pointer-input-rectangle* &key :left :top :right :bottom (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t) Function

You can use this function to prompt for and input the corners of a rectangle on

the stream :stream (which defaults to *standard-input*). :pointer,

:multiple-window, and :finish-on-release are as for clim:drag-output-record.

If :left and :top are provided, the upper left corner of the rectangle will be placed

at (:left,:top). If :right and :bottom are provided, the lower right corner of the rect-

angle will be place at (:right,:bottom). Otherwise, the upper left corner of the rect-

angle is selected by pressing a button on the pointer.

clim:pointer-input-rectangle* returns four values, the left, top, right, and bottom

corners of the rectangle.

clim:+pointer-left-button+ Constant

The value returned by clim:pointer-event-button that corresponds to the user hav-

ing pressed or released the lefthand button on the pointer.

clim:+pointer-middle-button+ Constant

The value returned by clim:pointer-event-button that corresponds to the user hav-

ing pressed or released the middle button on the pointer.

clim:pointer-motion-event Class

The class that corresponds to the user moving the pointer. This is a subclass of

clim:pointer-event.

clim:pointer-native-position pointer Generic Function

This function returns the position (as two coordinate values) of the pointer pointer�

in the coordinate system of the port’s graft (that is, its ‘‘root window’’).

You can use clim:pointer-set-position to set the pointer’s native position.

clim:pointer-place-rubber-band-line* &key :start-x :start-y (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t) Function

Page 1609

You can use this function to prompt for and input the end points of a line on the

stream stream (which defaults to *standard-input*). :pointer, :multiple-window, and

:finish-on-release are as for clim:drag-output-record.

If :start-x and :start-y are provided, the start point of the line is at (:start-x,:start-y).

Otherwise, the start point of the line is selected by pressing a button on the

pointer.

clim:pointer-place-rubber-band-line* returns four values, the start X and Y posi-

tions, and the end X and Y positions.

clim:pointer-position pointer Generic Function

This function returns the position (two coordinate values) of the pointer pointer in

the coordinate system of the sheet that the pointer is currently over.

You can use clim:pointer-set-position to set the pointer’s position.

clim:+pointer-right-button+ Constant

The value returned by clim:pointer-event-button that corresponds to the user hav-

ing pressed or released the righthand button on the pointer.

clim:pointer-set-native-position pointer x y Generic Function

This function changes the position of the pointer pointer to be (x,y). x and y are in

the coordinate system of the port’s graft (that is, its ‘‘root window’’).

clim:pointer-set-position pointer x y Generic Function

This function changes the position of the pointer pointer to be (x,y). x and y are in

the coordinate system of the sheet that the pointer is currently over.

clim:pointer-sheet pointer Generic Function

Returns the sheet over which the pointer pointer is currently positioned.

clim:pointerp object Generic Function

Returns t if and only if object is of type clim:pointer, otherwise returns nil.

clim:pointp object Generic Function

Returns t if and only if object is of type clim:point.

clim:polygon Class

Page 1610

The protocol class that corresponds to a mathematical polygon. This is a subclass

of clim:area. If you want to create a new class that obeys the polygon protocol, it

must be a subclass of clim:polygon.

clim:polygon-points polygon Generic Function

Returns a sequence of points that specify the segments in polygon.

clim:polygonp object Generic Function

Returns t if and only if object is of type clim:polygon.

clim:polyline Class

The protocol class that corresponds to a polyline. This is a subclass of clim:path.

If you want to create a new class that obeys the polyline protocol, it must be a

subclass of clim:polyline.

clim:polyline-closed polyline Generic Function

Returns t if polyline is closed, otherwise returns nil.

clim:polylinep object Generic Function

Returns t if and only if object is of type clim:polyline.

clim:port Class

The protocol class that corresponds to a port. If you want to create a new class

that obeys the port protocol, it must be a subclass of clim:port.

clim:port object Generic Function

Given a CLIM object object, clim:port returns the port associated with object. If ob-

ject is not presently ‘‘owned’’ by any port, clim:port will return nil.

You can call clim:port on sheets, mediums, frames, frame managers, pointers, cur-

sors, and pixmaps.

clim:port-default-palette port Generic Function

Returns the palette associated with the port port.

A palette is an object that contains mappings from color names (which are strings

or symbols) to CLIM color objects. See the section "Predefined Color Names in

CLIM".

Page 1611

clim:port-modifier-state basic-port Generic Function

Returns the state of the modifier keys for the port port. This is a bit mask that

can be checked against the values of clim:+shift-key+, clim:+control-key+,
clim:+meta-key+, clim:+super-key+, and clim:+hyper-key+.

clim:port-name port Generic Function

Returns the name of the port as a string whose syntax varies from port to port.

For example, a Genera port might have a name of "Summer:Main Screen".

clim:port-pointer port Generic Function

Returns the pointer object corresponding to the primary pointing device for the

port port.

The pointer is of type clim:pointer.

clim:port-server-path port Generic Function

Returns the server path associated with the port. For example, a Genera port

might return the following:

(:genera :screen #<MAIN-SCREEN Main Screen 20006600000 exposed>)�

clim:port-type port Generic Function

Returns the type of the port, that is, the first element of the server path specifica-

tion (:genera, :clx, and so on).

clim:portp object Generic Function

Returns t if and only if object is of type clim:port, otherwise returns nil.

clim:position-sheet-carefully sheet x y Function

Moves the sheet sheet to the position specified by x and y, taking care not to move

the sheet outside of its parent (for example, off the screen).

This function is intended to work only on top level sheets. If you call it on a sheet

that is not a top level sheet, the results are unpredictable. For example, if you

want to position an application frame, do the following:

(clim:position-sheet-carefully

 (clim:frame-top-level-sheet frame) x y))�

clim:position-sheet-near-pointer sheet &optional x y Function

Page 1612

Moves the sheet sheet to a position near the current pointer position. If x and y

are supplied, these override the pointer position. clim:position-sheet-near-pointer

takes care not to move the sheet outside of its parent (for example, off the

screen).

This function is intended to work only on top level sheets. If you call it on a sheet

that is not a top level sheet, the results are unpredictable.

clim:*possibilities-gestures* Variable

A list of gesture names that cause clim:complete-input to display a help message

and the list of possibilities. On most systems, this includes the gesture correspond-

ing to the #\Control-? character.

clim:present object &optional (presentation-type (clim:presentation-type-of object))

&key (:stream *standard-output*) (:view (clim:stream-default-view stream)) :mod-

ifier :acceptably (:for-context-type presentation-type) :single-box :allow-sensitive-

inferiors :sensitive (:record-type ’clim:standard-presentation) Function

Creates a presentation on the stream of the specified object, using the given type

and view to determine visual appearance. The manner in which the object is dis-

played depends on the presentation type of the object; the display is done by the

type’s clim:present method for the given view.

For background information, see the section "Presentation Types in CLIM".

object The object to be presented.

presentation-type

A presentation type specifier, which may be a presentation type ab-

breviation. This defaults to the most specific type that CLIM can

determine, based on the Lisp data type of object.

stream

The stream to which output should be sent. The default is

standard-output.

:view

An object representing a view. The default is (clim:stream-default-

view stream). For most streams, the default view is the textual

view, clim:+textual-view+. For dialog streams (that is, within

clim:accepting-values), the view will typically be either

clim:+textual-dialog-view+ or clim:+gadget-dialog-view+.

:modifier

Specifies a function of one argument (the new value) that can be

called in order to store a new value for object after the user edits

the presentation. The default is nil.

:acceptably

Defaults to nil, which requests the clim:present method to produce

Page 1613

output designed to be read by the user. If t, this option requests

the clim:present method to produce output that can be parsed by

the clim:accept method. This option makes no difference for most

presentation types.

:for-context-type

A presentation type indicating an input context. The present method

can look at this to determine if the object should be presented dif-

ferently. For example, the clim:present method for the

clim:command presentation type uses this in order to determine

whether or not to display a colon (":") before commands in

clim:command-or-form contexts. :for-context-type defaults to presen-

tation-type.

:single-box

Controls how CLIM determines whether the pointer is pointing at

this presentation and controls how this presentation is highlighted

when it is sensitive.

The possible values are:

t If the pointer’s position is inside the bounding

rectangle of this presentation, it is considered to

be pointing at this presentation. This presentation

is highlighted by highlighting its bounding rectan-

gle.

nil If the pointer is pointing at a visible piece of out-

put (text or graphics) drawn as part of the visual

representation of this presentation, it is considered

to be pointing at this presentation. This presenta-

tion is highlighted by highlighting every visible

piece of output that is drawn as part of its visual

representation. This is the default.

:position Like t for determining whether the pointer is

pointing at this presentation, like nil for high-

lighting.

:highlighting Like nil for determining whether the pointer is

pointing at this presentation, like t for highlight-

ing.

Supplying :single-box :highlighting is useful when the default be-

havior produces an ugly appearance (for example, a very jagged

highlighting box).

Supplying :single-box :position is useful when the visual represen-

tation of a presentation consists of one or more small graphical ob-

jects with a lot of space between them. In this case the default be-

havior offers only small targets that the user might find difficult to

position the pointer over.

Page 1614

:allow-sensitive-inferiors

When :allow-sensitive-inferiors is nil, it indicates that nested calls to

clim:present or clim:with-output-as-presentation inside this one

should not generate presentations. The default is t.

:sensitive

If :sensitive is nil, no presentation is produced. The default is t.

:record-type

This option is useful when you have defined a customized record

type to replace CLIM’s default record type. It specifies the class of

the output record to be created.

clim:present type-key parameters options object type stream view &key :acceptably

:for-context-type Clim Presentation Method

This presentation method is responsible for displaying the representation of object

having type type for a particular view view. The method’s caller takes care of cre-

ating the presentation, so the method need only display the content of the presen-

tation.

The method must specify &key, but need only receive the keyword arguments that

it is interested in. The remaining keyword arguments will be ignored automatically

since the generic function specifies &allow-other-keys.

The clim:present method can specialize on the view argument in order to define

more than one view of the data. For example, a spreadsheet program might define

a presentation type for revenue, which can be displayed either as a number or a

bar of a certain length in a bar graph. Typically, at least one canonical view

should be defined for a presentation type; for example, you should define a

clim:present method specializing on the class clim:textual-view if you want to al-

low the type to be displayed textually.

Note that CLIM stores the presentation type for its own use, so you should not

modify it once you have handed it to CLIM.

For more information on defining presentation types, see the section "Defining a

New Presentation Type in CLIM".

clim:present-to-string object &optional (presentation-type (clim:presentation-type-

of object)) &key (:view clim:+textual-view+) :acceptably (:for-context-type

presentation-type) :string :index Function

Presents an object into a string in such a way that it can subsequently be accept-

ed as input by clim:accept-from-string. clim:present-to-string is the same as

clim:present within with-output-to-string.

object, presentation-type, :view, :acceptably, and :for-context-type are as for

clim:present.

For background information, see the section "Presentation Types in CLIM".

Page 1615

clim:presentation Class

The protocol class that corresponds to a presentation. If you want to create a new

class that obeys the presentation protocol, it must be a subclass of

clim:presentation.

clim:presentationp object Function

Returns t if and only if object is of type clim:presentation.

clim:presentation-matches-context-type presentation context-type frame window x y

&key :event (:modifier-state 0) Function

Returns a non-nil value if there are any translators that translate from presenta-

tion’s type to context-type. (There is no from-type argument because it is derived

from presentation.) frame, window, x, y, :event, and :modifier-state are as for

clim:find-applicable-translators.

If there are no applicable translators, clim:presentation-matches-context-type will

return nil.

clim:presentation-object presentation Generic Function

Returns the application object represented by the presentation presentation. You

can use setf on clim:presentation-object to change the object associated with the

presentation.

Any class that is a subclass of clim:presentation must implement this method.

clim:presentation-refined-position-test type-key parameters options type record x y

Clim Presentation Method

CLIM uses this method to definitively answer hit detection queries for a presenta-

tion, that is, determining whether or not the point (x,y) is contained within the

output record record. Its contract is exactly the same as for clim:output-record-

refined-position-test, except that it is intended to specialize on the presentation

type type.

It can be useful to define a clim:presentation-refined-position-test method when

the displayed output records that represent the presentation do not themselves im-

plement the desired hit detection behavior. In practice, this comes up only rarely,

since using the :single-box option to clim:present and clim:with-output-as-

presentation will often produce the desired behavior.

clim:presentation-replace-input stream object type view &key :rescan :buffer-start

Generic Function

This is like clim:replace-input, except that the new input to insert into the input

buffer is gotten by presenting the object object with the presentation type type and

view view.

Page 1616

:rescan and :buffer-start are the same as for clim:replace-input.

For example, the following clim:accept method reads a token followed by a ‘‘sys-
tem’’ or a pathname, but if the user clicks on either a ‘‘system’’ or a pathname, it

inserts that object into the input buffer and returns:

(clim:define-presentation-method clim:accept

 ((type library) stream (view clim:textual-view)

 &key default)

 (clim:with-input-context (’(or system pathname)) (object type)

 (let ((system (clim:accept ’(clim:token-or-type (:private) system)

 :stream stream :view view

 :prompt nil :display-default nil

 :default default

 :additional-delimiter-gestures ’(#\space)))

 file)�

 (let ((char (clim:read-gesture :stream stream)))

 (unless (eql char #\space)

 (clim:unread-gesture char :stream stream))

 (when (eql system ’:private)

 (setq file (clim:accept ’pathname

 :stream stream :view view

 :prompt "library pathname"

 :display-default t)))

 (if (eql system ’:private) file system)))

 (t (clim:presentation-replace-input stream object type view)

 (values object type))))�

See the section "Utilities for clim:accept Presentation Methods". See the section

"The Structure of the CLIM Input Editor".

clim:presentation-subtypep type putative-supertype Function

Answers the question ‘‘Is the type specified by type a subtype of the type specified

by putative-supertype?’’. Neither type nor putative-subtype may be presentation type

abbreviations.

This function is analogous to subtypep.

clim:presentation-subtypep returns two values, subtypep and known-p. subtypep

can be t (meaning that type is definitely a subtype of putative-supertype) or nil

(meaning that type is definitely not a subtype of putative-supertype when known-p

is t, or that the answer cannot be determined if known-p is nil).

See the clim presentation method clim:presentation-subtypep for a detailed de-

scription of how this works.

clim:presentation-subtypep type-key type putative-supertype

Clim Presentation Method

Page 1617

This presentation method is called when the clim:presentation-subtypep function

requires type-specific knowledge.

The clim:presentation-subtypep function walks the type lattice to determine that

type is a subtype of putative-supertype, without looking at the type parameters.

When a supertype of type has been found whose name is the same as the name of

putative-supertype, then the clim:presentation-subtypep method for that type is

called in order to resolve the question by looking at the type parameters (that is,

if the clim:presentation-subtypep method is called, type and putative-supertype are

guaranteed to be the same type, differing only in their parameters).

Unlike all other presentation methods, clim:presentation-subtypep receives a type

argument that has been translated to the presentation type for which the method

is specialized; type is never a subtype. The method is only called if putative-

supertype has parameters and the two presentation type specifiers do not have

equal parameters.

clim:presentation-subtypep returns two values, subtypep and known-p. subtypep

can be t (meaning that type is definitely a subtype of putative-supertype) or nil

(meaning that type is definitely not a subtype of putative-supertype when known-p

is t, or that the answer cannot be determined if known-p is nil).

Since clim:presentation-subtypep takes two arguments that are presentation

types, the parameters are not lexically available as variables in the body of a pre-

sentation method. Use clim:with-presentation-type-parameters if you want to ac-

cess the parameters of the presentation types.

Note: You must define a clim:presentation-subtypep method if the presentation

type has parameters.

For example, the CLIM presentation type complex has a type parameter that indi-

cates what numeric type the real and imaginary components of the number must

be. Its clim:presentation-subtypep method could be written as follows:

(clim:define-presentation-method clim:presentation-subtypep

 ((type complex) putative-supertype)

 (let ((type1

 (clim:with-presentation-type-parameters

 (complex type) type))

 (type2

 (clim:with-presentation-type-parameters

 (complex putative-supertype) type)))

 (cond ((eq type2 ’*)

 (values t t))

 ((eq type1 ’*)

 (values nil t))

 (t

 (clim:presentation-subtypep type1 type2)))))�

clim:presentation-type presentation Generic Function

Page 1618

Returns the presentation type of the presentation presentation. You can use setf on

clim:presentation-type to change the presentation type associated with the pre-

sentation.

Any class that is a subclass of clim:presentation must implement this method.

clim:presentation-type-of object Function

Returns the presentation type of the object object. If the type cannot be readily

computed, this may return t or clim:expression.

This function is analogous to type-of.

clim:presentation-type-specifier-p type-key parameters options type

Clim Presentation Method

This presentation method is responsible for checking the validity of the parameters

and options. The default method returns t.

clim:presentation-typep object type Function

Returns t if object is of the type specified by type, otherwise returns nil. type may

not be a presentation type abbreviation.

This function is analogous to typep.

clim:presentation-typep type-key parameters object type Clim Presentation Method

This presentation method is called when the clim:presentation-typep function re-

quires type-specific knowledge. If the type name in type is or names a CLOS class,

the method is called only if object is a member of the class and type contains pa-

rameters, and the method simply tests whether object is a member of the subtype

specified by the parameters. For non-class types, the method is always called.

Note: You must define a clim:presentation-typep method if the presentation type

does not have the same name as a CLOS class.

For example, the CLIM presentation type complex has a type parameter that indi-

cates what numeric type the real and imaginary components of the number must

be. Its clim:presentation-typep method could be written as follows:

(clim:define-presentation-method clim:presentation-typep

 (object (type complex))

 (declare (ignore type))

 (or (eq type ’*)

 (and (clim:presentation-typep (realpart object) type)

 (clim:presentation-typep (imagpart object) type))))�

clim:print-menu-item menu-item &optional (stream *standard-output*) Function

Page 1619

Given a menu item menu-item, display it on the stream stream. This is the func-

tion that clim:menu-choose uses to display menu items if no printer is supplied.

clim-sys:process-name process Function

Returns the name of the process process.

clim-sys:processp object Function

Returns t if object is a process, otherwise returns nil.

See the section "Multi-processing in CLIM".

clim-sys:process-interrupt process function Function

Interrupts the process process and causes it to evaluate the function function.

On systems that do not support multi-processing, this is equivalent to simply call-

ing function.

clim-sys:process-wait wait-reason predicate Function

Causes the current process to wait until predicate returns a non-nil value. predi-

cate is a function of no arguments. reason is a ‘‘reason’’ for waiting, usually a

string.

On systems that do not support multi-processing, clim-sys:process-wait will simply

loop until predicate returns a non-nil value.

See the section "Multi-processing in CLIM".

clim-sys:process-wait-with-timeout wait-reason timeout predicate Function

Causes the current process to wait until either predicate returns a non-nil value or

the number of seconds specified by timeout has elapsed. predicate is a function of

no arguments. reason is a ‘‘reason’’ for waiting, usually a string.

On systems that do not support multi-processing, clim-sys:process-wait-with-

timeout will simply loop until predicate returns a non-nil value, or the timeout has

elapsed.

See the section "Multi-processing in CLIM".

clim-sys:process-yield Function

Allows other processes to run. On systems that do not support multi-processing,

this does nothing.

See the section "Multi-processing in CLIM".

Page 1620

clim:push-button Class

The clim:push-button gadget class provides press-to-activate switch behavior. It is

a subclass of clim:action-gadget and clim:labelled-gadget-mixin.

See the section "Using Gadgets in CLIM".

In addition to the initargs for clim:action-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:label A string or pixmap that is used to label the button.

:show-as-default-p

When t, the push button will be drawn with a heavy border, which

indicates that this button is the ‘‘default operation’’. The default is

nil.

:pattern If supplied, this is a pattern (created by clim:make-pattern) that

specifies that shape of the button. The default pattern for CLIM’s

‘‘native’’ gadgets is a rectangular button that is just big enough to

enclose the label.

:external-label

If supplied, this is a string that will be used as a label that is

drawn outside of the push button instead of inside of the button.

clim:armed-callback will be invoked when the push button becomes armed (such

as when the pointer moves into it, or a pointer button is pressed over it). When

the button is actually activated (by releasing the pointer button over it),

clim:activate-callback will be invoked. Finally, clim:disarmed-callback will be in-

voked after clim:activate-callback, or when the pointer is moved outside of the

button.

A push button might be created as follows:

(clim:make-pane ’clim:push-button

 :label "Button"

 :activate-callback ’push-button-callback)

�

(defun push-button-callback (button)

 (format t "~&Button ~A pushed" (clim:gadget-label button)))

�

clim:queue-event sheet event Generic Function

CLIM’s event processor calls this function to insert the event event into the queue

of events for sheet.

CLIM always handles some events immediately, such as window repaint events. In

this case, instead of inserting the event into the event queue, the clim:queue-

event method will call clim:handle-event directly.

Page 1621

Some sheets in CLIM also handle certain other events immediately. For example,

scroll bars in CLIM respond to pointer events even when user applications are not

waiting for input. Such sheets specialize the clim:queue-event method to call

clim:handle-event directly.

clim:queue-repaint sheet repaint-event Generic Function

Inserts the repaint event repaint-event into sheet’s event queue. A program that

reads events out of the queue will be expected to call clim:handle-repaint for the

sheet using the repaint region gotten from the event.

clim:queue-rescan input-editing-stream &optional rescan-type Generic Function

Indicates that a rescan operation on input-editing-stream should take place after

the next non-input editing gesture is read. This works by setting the ‘‘rescan
queued’’ flag to t. Use this function when you are writing new ‘‘destructive’’ input

editing commands.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:radio-box Class

A radio box is a special kind of gadget that contains one or more toggle buttons.

At any one time, only one of the buttons managed by the radio box may be ‘‘on’’.
The contents of a radio box are its buttons, and as such a radio box is responsible

for laying out the buttons that it contains.

It is a subclass of clim:value-gadget and clim:oriented-gadget-mixin.

See the section "Using Gadgets in CLIM".

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:selectionThis is used to specify which button, if any, should be initially se-

lected.

:choices This is used to specify all of the buttons that serve as choices.

As the current selection changes, the previously selected button and the newly se-

lected button both have their clim:value-changed-callback handlers invoked.

Calling clim:gadget-value on a radio box will return the currently selected toggle

button. The value of the radio box can be changed by calling setf on clim:gadget-

value.

A radio box might be created as follows, although it is generally more convenient

to use clim:with-radio-box:

Page 1622

(let* ((choices

 (list (clim:make-pane ’clim:toggle-button

 :label "One" :width 80)

 (clim:make-pane ’clim:toggle-button

 :label "Two" :width 80)

 (clim:make-pane ’clim:toggle-button

 :label "Three" :width 80)))

 (current (second choices)))

 (clim:make-pane ’clim:radio-box

 :choices choices

 :selection current

 :value-changed-callback ’radio-value-changed-callback))

�

(defun radio-value-changed-callback (radio-box value)

 (declare (ignore radio-box))

 (format t "~&Radio box toggled to ~S" value))

�

clim:radio-box-current-selection radio-box Generic Function

Returns the current selection for the radio box. The current selection will be one

of the toggle buttons in the radio box.

You can use setf on this in order to set the current selection for the radio box, or

you can use setf on clim:gadget-value of the radio box to accomplish the same

thing.

clim:radio-box-selections radio-box Generic Function

Returns a sequence of all of the selections in the radio box. The elements of the

sequence will be toggle buttons.

clim:radio-box-view Class

The class that represents the view corresponding to a radio box. This is usually

used for a ‘‘one of’’ choice, as in a member presentation type.

clim:+radio-box-view+ Constant

An instance of the class clim:radio-box-view.

clim:raise-frame frame Generic Function

Raises the application frame frame so that it is on top of all of the other host win-

dows by calling clim:raise-sheet on the frame’s top-level sheet. This does not

change the state of the frame, it simply makes it visible on the screen.

Page 1623

clim:range-gadget-mixin Class

The class that is mixed in to a gadget that has a range, for example, a slider.

All subclasses of clim:range-gadget-mixin must handle the two initargs :min-

value and :max-value, which are used to specify the minimum and maximum val-

ue of the gadget.

ratio &optional low high Clim Presentation Type

The presentation type that represents a ratio between low and high. Options to

this type are :base and :radix, which are the same as for the integer type. It is a

subtype of rational.

rational &optional low high Clim Presentation Type

The presentation type that represents either a ratio or an integer between low and

high. Options to this type are :base and :radix, which are the same as for the

integer type. It is a subtype of real.

clim:read-command command-table &key (:stream *query-io*) (:command-parser

clim:*command-parser*) (:command-unparser clim:*command-unparser*) (:partial-

command-parser clim:*partial-command-parser*) :use-keystrokes Function

Reads a command from the user via command lines or the pointer. This function

is not normally called by programmers.

command-table

Specifies the command table from which commands should be read.

:stream The stream from which to read the command.

:use-keystrokes

The default for this is nil. If it is t, clim:read-command calls

clim:read-command-using-keystrokes to read the command. The

keystroke accelerators are those generated by clim:with-command-

table-keystrokes.

:command-parser

A function of two arguments, command-table and stream. This func-

tion should read a command from the user and return a command

object.

:command-unparser

A function of three arguments, command-table, stream, and com-

mand-to-unparse. The function should print a textual description of

the command and the set of arguments supplied on stream.

:partial-command-parser

A function of four arguments, command-table, stream, partial-

command, and start-position. A partial command is a command

Page 1624

structure with clim:*unsupplied-argument-marker* in place of any

argument that remains to be filled in. The function should read the

remaining arguments in any way it sees fit and should return a

command object. start-position is the original input-editor scan posi-

tion of stream if stream is an interactive stream.

You should not normally supply the :command-parser, :command-unparser, or :par-

tial-command-parser arguments. CLIM will arrange to choose the correct default

values for these.

clim:read-command-using-keystrokes command-table keystrokes &key (:stream

query-io) (:command-parser clim:*command-parser*) (:command-unparser

clim:*command-unparser*) (:partial-command-parser clim:*partial-command-

parser*) Function

Reads a command from the user via a command line, the pointer, or typing a sin-

gle keystroke. It returns either a command object, or a key press event if the user

typed a keystroke that is in keystrokes but does not have a command associated

with it in the command table.

keystrokes is a list of gesture specs. The other arguments are as for clim:read-

command.

See also clim:with-command-table-keystrokes.

clim:read-frame-command frame &key :stream Generic Function

clim:read-frame-command reads a command from the user on the stream :stream,

and returns the command object. frame is an application frame.

The default method for clim:read-frame-command calls clim:read-command on

frame’s current command table. You can specialize this generic function for your

own application frames, for example, if you want to have your application be able

to read commands using keystroke accelerators.

clim:read-gesture &key (:stream *standard-input*) :timeout :peek-p :input-wait-test

:input-wait-handler :pointer-button-press-handler Function

Returns the next gesture available in the input stream (either a character or a

pointer button event). Note that clim:read-gesture does not echo its input; CLIM’s

input editor does this when reading input inside of a call to clim:with-input-

editing.

When a user types any sort of abort gesture (such as #\Abort on Genera), the

clim:abort-gesture condition is signalled.

:timeout Specifies the number of seconds that clim:read-gesture will wait

for input to become available. If no input is available, clim:read-

gesture will return the two values, nil and :timeout. The default is

that there is no timeout.

Page 1625

:peek-p If t, specifies that the gesture returned will be left in the stream’s

input buffer. The default is nil.

:input-wait-test

The value of this argument is a function. The function will be in-

voked with one argument, the stream. This argument will be passed

on to clim:stream-input-wait.

:input-wait-handler

The value of this argument is a function. The function will be in-

voked with one argument, the stream, when the invocation of

clim:stream-input-wait returns, but no input gesture is available.

This option can be used in conjunction with :input-wait-test to han-

dle conditions other than user keystroke gestures.

:pointer-button-press-handler

The value of this is a function of one argument, a pointer button

event. This function is invoked when the user clicks the pointer.

You will rarely, if ever, need to supply :input-wait-test, :input-wait-handler, or

:pointer-button-press-handler. CLIM uses these arguments to connect presentation

types to streams.

clim:read-token stream &key :timeout :input-wait-handler :pointer-button-press-

handler :click-only Function

Reads characters from stream until it encounters an activation gesture, a delimiter

gesture, or a pointer gesture. All printing standard characters are acceptable

(CLtL p. 336, CLtLII p. 512). clim:read-token returns the accumulated string that

was delimited by an activation or delimiter gesture, leaving the delimiter unread,

that is, still in the stream’s input buffer.

:timeout Specifies the number of seconds that clim:read-token will wait

for input to become available. If no input is available,

clim:read-token will return the two values, nil and :timeout.

The default is that there is no timeout.

:click-only If true, only pointer gestures are expected and anything else

will result in a beep. The default is nil.

:input-wait-handler Passed along to clim:read-gesture . The default is a function

that supports highlighting for clim:with-input-context.

:pointer-button-press-handler

Passed along to clim:read-gesture. The default is a function

that supports presentation translators for clim:with-input-

context.

You will rarely, if ever, need to supply :input-wait-handler or :pointer-button-press-

handler. CLIM uses these arguments to connect presentation types to streams.

Page 1626

future-common-lisp:real &optional low high Clim Presentation Type

The presentation type that represents either a ratio, an integer, or a floating point

number between low and high. low and high can be inclusive or exclusive, as in

Common Lisp type specifiers.

Options to this type are :base and :radix, which are the same as for the integer

type. This type is a subtype of number.

clim:rectangle Class

The protocol class that corresponds to an axis-aligned mathematical rectangle, that

is, rectangular polygons whose sides are parallel to the coordinate axes. This is a

subclass of clim:polygon. If you want to create a new class that obeys the rectan-

gle protocol, it must be a subclass of clim:rectangle.

clim:rectangle-edges* rectangle Generic Function

Returns the coordinate of the minimum X and Y and maximum X and Y of rectan-

gle as four values.

clim:rectangle-height rectangle Function

Returns the height of rectangle. The height is the difference between the maxi-

mum Y and the minimum Y.

clim:rectangle-max-point rectangle Generic Function

Returns the maximum point of rectangle. (The position of a rectangle is specified

by its minimum point).

clim:rectangle-max-x rectangle Function

Returns the coordinate of the maximum X of rectangle.

clim:rectangle-max-y rectangle Function

Returns the coordinate of the maximum Y of rectangle.

clim:rectangle-min-point rectangle Generic Function

Returns the minimum point of rectangle. The position of a rectangle is specified by

its minimum point.

clim:rectangle-min-x rectangle Function

Returns the coordinate of the minimum X of rectangle.

Page 1627

clim:rectangle-min-y rectangle Function

Returns the coordinate of the minimum Y of rectangle.

clim:rectangle-size rectangle Function

Returns two values, the width and the height of rectangle.

clim:rectangle-width rectangle Function

Returns the width of rectangle. The width of a rectangle is the difference between

the maximum X and the minimum X.

clim:rectanglep object Generic Function

Returns t if and only if object is of type clim:rectangle.

clim:rectilinear-transformation-p transform Generic Function

Returns t if transform will always transform any axis-aligned rectangle into anoth-

er axis-aligned rectangle, otherwise returns nil. This category includes scalings as

a subset, and also includes 90 degree rotations.

Rectilinear transformations are the most general category of transformations for

which the bounding rectangle of a transformed object can be found by transform-

ing the bounding rectangle of the original object.

clim:recompute-extent-for-changed-child record child old-left old-top old-right old-

bottom Generic Function

CLIM calls this function whenever the bounding rectangle of one of the children of

a record has been changed. It updates the bounding rectangle of record to be large

enough to completely contain the new bounding rectangle of the child output

record child. CLIM notifies all of the ancestors of record by recursively calling

clim:recompute-extent-for-changed-child.

CLIM provides an :after method on clim:delete-output-record that calls

clim:recompute-extent-for-changed-child to inform the parent of the record that a

change has taken place, so you will rarely need to call this yourself.

See the section "Concepts of CLIM Output Recording".

clim:recompute-extent-for-new-child record child Generic Function

CLIM calls this function whenever a new child is added to an output record. It up-

dates the bounding rectangle of record to be large enough to completely contain

the new child output record child. CLIM notifies the parent of record, and all its

ancestors, of the change in size by calling clim:recompute-extent-for-changed-

child on all of record’s ancestors.

Page 1628

CLIM provides and :after method on clim:add-output-record that calls

clim:recompute-extent-for-new-child, so you will rarely need to call it yourself.

See the section "Concepts of CLIM Output Recording".

clim:redisplay record stream &key (:check-overlapping t) Function

Causes the output of record to be recomputed by calling clim:redisplay-output-

record on record. CLIM redisplays the changes incrementally, that is, only redis-

plays those parts of the record that changed. record must be an output record cre-

ated by a previous call to clim:updating-output, and may be any part of the out-

put history of stream.

The :check-overlapping argument insures that clim:redisplay will correctly redis-

play output records that overlap at the same level in the output record hierarchy.

It defaults to t. If you have output that you know does not not have any such over-

lapping output records, you can pass in nil; this will speed up incremental redis-

play, but at the risk of failing to draw some records due to overlap.

See the section "Example of Incremental Redisplay in CLIM".

clim:redisplay-frame-pane frame pane-name &key :force-p Generic Function

Causes the pane pane-name of frame to be redisplayed immediately. CLIM either

calls the pane’s display function, or uses clim:redisplay if the pane is using incre-

mental redisplay.

If :force-p is t, then the pane is forcibly redisplayed even if it is an incrementally

redisplayed pane that would not otherwise require redisplay.

clim:redisplay-frame-panes frame &key force-p Generic Function

Causes all of the panes of frame to be redisplayed immediately. If :force-p is t,

then the panes are forcibly redisplayed even if they are incrementally redisplayed

panes that would not otherwise require redisplay.

clim:redisplay-output-record record stream &optional check-overlapping x y

parent-x parent-y Generic Function

Causes the output of record to be recomputed. CLIM redisplays the changes incre-

mentally, that is, only redisplays those parts of the record that changed. record

must be an output record created by a previous call to clim:updating-output, and

may be any part of the output history of stream.

The optional arguments can be used to specify where on the stream the output

record should be redisplayed. x and y represent where the cursor should be, rela-

tive to the parent output record of record, before the record is redisplayed. The de-

fault values for x and y are the starting position of the output record.

Page 1629

parent-x and parent-y can be supplied to say: do the output as if the superior start-

ed at positions parent-x and parent-y (which are in absolute coordinates). The de-

fault values for parent-x and parent-y are the absolute coordinate of the output

record’s parent.

The check-overlapping argument insures that clim:redisplay checks for overlapping

records. It defaults to t. If you make it nil it speeds up redisplay, at the risk of

failing to draw some records due to overlap. If you are sure that no sibling records

overlap, you can use this argument to optimize redisplay.

You can specialize this generic function for your own classes of output records, but

you should not generally call this function yourself.

clim:redraw-input-buffer input-editing-stream &optional start-position

Generic Function

Displays the input editor’s buffer starting at the position start-position on the in-

teractive stream that is encapsulated by the input editing stream input-editing-

stream.

You will rarely need to call this function yourself, since the input editor will al-

most always do this for you. For more information on the input editor, see the sec-

tion "The Structure of the CLIM Input Editor".

clim:reflection-transformation-p transform Generic Function

Returns t if transform inverts the ‘‘handedness’’ of the coordinate system, other-

wise returns nil. Note that this is a very inclusive category. Transformations are

considered reflections even if they distort, scale, or skew the coordinate system, as

long as they invert the handedness.

clim:region Class

The protocol class that corresponds to a closed set of points. If you want to create

a new class that obeys the region protocol, it must be a subclass of clim:region.

clim:regionp object Generic Function

Returns t if and only if object is of type clim:region.

clim:region-contains-position-p region x y Generic Function

Returns t if the point (x,y) is contained in region, otherwise returns nil. Since re-

gions in CLIM are closed, this will return t if (x,y) is on the region’s boundary.

This is a special case of clim:region-contains-region-p.

clim:region-contains-region-p region1 region2 Generic Function

Page 1630

Returns t if all points in region2 are members of region1, otherwise returns nil.

clim:region-difference region1 region2 Generic Function

Returns a region that contains all points in region1 that are not in region2 (plus

additional boundary points to make the result closed). The result of clim:region-

difference has the same dimensionality as region1, or is clim:+nowhere+. For ex-

ample, the difference of an area and a path produces the same area; the difference

of a path and an area produces the path clipped to stay outside of the area.

clim:region-equal region1 region2 Generic Function

Returns t if region1 and region2 contain exactly the same set of points, otherwise

returns nil.

clim:region-intersection region1 region2 Generic Function

Returns a region that contains all points that are in both region1 and region2 (pos-

sibly with some points removed to satisfy the dimensionality rule). The result of

clim:region-intersection has dimensionality that is the minimum dimensionality of

region1 and region2, or is clim:+nowhere+. For example, the intersection of two

areas is either another area or clim:+nowhere+; the intersection of two paths is

either another path or clim:+nowhere+; the intersection of a path and an area

produces the path clipped to stay inside of the area.

clim:region-intersects-region-p region1 region2 Generic Function

Returns nil if clim:region-intersection of the two regions would be

clim:+nowhere+, otherwise returns t.

clim:region-set Class

The class that represents region sets; a subclass of region.

clim:region-set-function region Generic Function

Returns a symbol representing the operation that relates the regions in region.

This will be one of the Common Lisp symbols union, intersection, or set-

difference. For the case of region sets that are composed entirely of rectangular

regions, CLIM canonicalizes the set so that the symbol will always be union. If re-

gion is a region that is not a region-set, the result is always union.

clim:region-set-regions region &key :normalize Generic Function

Returns a sequence of the regions in region. region can be either a clim:region-set

or any member of clim:region, in which case the result is simply a sequence of

Page 1631

one element: region. For the case of region sets that are unions of rectangular re-

gions, CLIM canonicalizes the set so that the rectangles returned by clim:region-

set-regions are guaranteed not to overlap.

If :normalize is supplied, it may be either :x-banding or :y-banding. If it is :x-

banding and all the regions in region are rectangles, the result is normalized by

merging adjacent rectangles with banding done in the X direction. If it is :y-

banding and all the regions in region are rectangles, the result is normalized with

banding done in the Y direction.

x-banding y-banding�

Normalizing a region set that is not composed entirely of rectangles using X- or

Y-banding causes CLIM to signal the clim:region-set-not-rectangular error.

clim:region-union region1 region2 Generic Function

Returns a region that contains all points that are in either region1 or region2 (pos-

sibly with some points removed to satisfy the dimensionality rule).

The result of clim:region-union always has dimensionality that is the maximum

dimensionality of region1 and region2. For example, the union of a path and an

area produces an area; the union of two paths is a path.

clim:remove-command-from-command-table command-name command-table &key

(:errorp t) Function

Removes the command named by command-name from the command table com-

mand-table. command-table may be either a command table or a symbol that names

a command table.

If the command is not present in the command table and :errorp is t, the

clim:command-not-present condition will be signalled.

clim:remove-keystroke-from-command-table command-table keystroke &key (:er-

rorp t) Function

Removes the item named by keystroke from command-table’s accelerator table. com-

mand-table may be either a command table or a symbol that names a command ta-

ble. keystroke is gesture spec, such as (:C :control :shift).

If the command menu item associated with keystroke is not present in the com-

mand table’s menu and :errorp is t, then the clim:command-not-present condition

will be signalled.

Page 1632

clim:remove-menu-item-from-command-table command-table string &key (:errorp

t) Function

Removes the item named by string from command-table’s menu. command-table

may be either a command table or a symbol that names a command table.

If the command menu item is not present in the command table’s menu and :er-

rorp is t, then the clim:command-not-present condition will be signalled.

This function ignores the character case of the command menu item’s name when

searching through the command table’s menu.

clim:repaint-sheet sheet region Generic Function

Causes sheet and all of its descendants that overlap the region region to be re-

painted. clim:handle-repaint is called to repaint each affected sheet.

You can call this function when you want to redraw the whole hierarchy of panes

that start at sheet. If you want to repaint only sheet, use the function clim:handle-

repaint instead.

clim:replace-input stream new-input &key :start :end :rescan :buffer-start

Generic Function

Replaces stream’s input buffer with the string new-input. :start and :end specify

what part of new-input will be inserted into the buffer, and default to 0 and the

end of the string, respectively.

:buffer-start specifies where new-input should be inserted, and defaults to the cur-

rent position in the input line. If rescan is t, a rescan operation will be queued;

the default is nil. Usually, you should use the default values for :buffer-start and

:rescan, since the input editor automatically arranges for the correct behavior to

occur under those circumstances.

You can use this in an clim:accept method that needs to replace some of the

user’s input by something else. For example, clim:complete-input uses it to re-

place partial input with the completed input.

The returned value is the position in the input buffer.

See the section "Utilities for clim:accept Presentation Methods". See the section

"The Structure of the CLIM Input Editor".

clim:replay record stream &optional region Function

Replays all of the output captured by the output record record on stream by calling

clim:replay-output-record. If region is not nil, then record is replayed if and only

if it overlaps region. region defaults to the intersection of stream’s viewport and

record’s bounding rectangle.

Changing the transformation of the stream during replaying has no effect on what

is output by clim:replay.

Page 1633

clim:replay-output-record record stream &optional region x-offset y-offset

Generic Function

Replays all of the output captured by the output record record on stream. If region

is not nil, then record is replayed if and only if it overlaps region.

x-offset and y-offset are output record offsets that are necessitated by CLIM’s repre-

sentation of output records. In a later release of CLIM, the representation of out-

put records may change in such a way that the x-offset and y-offset arguments are

removed.

Changing the transformation of the stream during replaying has no effect on what

is output by clim:replay-output-record.

You can specialize this generic function for your own classes of output records, but

you should not generally call this function yourself. Any class that is a subclass of

clim:displayed-output-record must implement this method.

Here is an example of using clim:replay-output-record in a way that supplies the

X and Y offsets correctly:

(multiple-value-bind (x-offset y-offset)

 (clim:convert-from-relative-to-absolute-coordinates

 stream (clim:output-record-parent record))

 (clim:replay-output-record record stream region x-offset y-offset))�

clim:rescan-if-necessary input-editing-stream &optional inhibit-activation

Generic Function

Invokes a rescan operation on the input editing stream input-editing-stream if

clim:queue-rescan was called on the same stream and no intervening rescan oper-

ation has taken place. Resets the state of the ‘‘rescan queued’’ flag to nil.

If inhibit-activation is nil, the input line will not be activated even if there is an

activation gesture in it.

You will rarely need to call this function yourself. Most programs should use

clim:queue-rescan or clim:immediate-rescan instead. For more information on the

input editor, see the section "The Structure of the CLIM Input Editor".

clim:reset-scan-pointer input-editing-stream &optional sp Generic Function

Sets input-editing-stream’s scan pointer to sp (which defaults to 0) and sets the

state of clim:stream-rescanning-p to t.

You will rarely need to call this function yourself. For more information on the in-

put editor, see the section "The Structure of the CLIM Input Editor".

clim:resize-sheet sheet width height Generic Function

Changes the size of sheet to have width width and height height.

Page 1634

clim:resize-sheet works by modifying the sheet’s region, and could be implemented

as follows:

(defmethod clim:resize-sheet

 ((sheet clim:basic-sheet) width height)

 (setf (clim:sheet-region sheet)

 (clim:make-bounding-rectangle 0 0 width height)))�

You should not generally use this function to resize a sheet, because it does not

interact directly with the frame layout protocol. That is, resizing a sheet with

clim:resize-sheet may appear not to have any effect until you invoke the entire

layout protocol. If you need to resize a top-level sheet, use clim:size-frame-from-

contents.

clim:restart-port port Generic Function

Restarts the event process that handles the port port.

Occasionally the event process that handles a port may hang for some reason, al-

though this is rather uncommon. Symptoms that this has happened include lack of

pointer highlighting, and no echoing of typein. In the event that this happens, you

can call clim:restart-port to restart the event process.

clim-sys:restart-process process Function

Restarts the process process by ‘‘unwinding’’ it to its initial state, and reinvoking

its top-level function.

clim:rigid-transformation-p transform Generic Function

Returns t if transform transforms the coordinate system as a rigid object, that is,

as a combination of translations, rotations, and pure reflections. Otherwise, it re-

turns nil.

Rigid transformations are the most general category of transformations that pre-

serve magnitudes of all lengths and angles.

clim:r-tree-output-history Class

A standard class provided by CLIM for use as a top-level output history. This is a

subclass of both clim:r-tree-output-record and clim:stream-output-history-mixin.

You should consider using this as the output history for any pane that will have

lots of overlapping output records, such as a complex graphical editor. You can

create a pane using this history class as follows:

(clim:make-clim-application-pane

 :output-record (make-instance ’clim:r-tree-output-history))

�

Page 1635

clim:r-tree-output-record Class

CLIM provides this output record class to store sequences of output records that

tend to overlap a great deal. The ordering of the tree is based on all four corners

of the bounding rectangles of the records contained in it.

The insertion and retrieval complexity of this class is O(log n), but the overhead is

fairly high. However, this output record class maintains temporal ordering (that is,

stacking) very well.

clim:run-frame-top-level frame &key &allow-other-keys Generic Function

Runs the top-level function for frame. The default method merely runs the top-

level function of frame as specified by the :top-level option of clim:define-

application-frame. If no :top-level was specified, clim:default-frame-top-level is

used.

The returned values are the values returned by the top level function of frame.

clim:application-frame provides an :around method which binds

clim:*application-frame* to frame.

clim:scaling-transformation-p transform Generic Function

Returns t if transform multiplies all X-lengths by one magnitude and all Y-lengths

by another magnitude, otherwise returns nil. This category includes even scalings

as a subset.

clim:scroll-bar Class

The clim:scroll-bar gadget class corresponds to a scroll bar. It is a subclass of

clim:value-gadget, clim:oriented-gadget-mixin, and clim:range-gadget-mixin.

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, space requirement options, and so forth), the following

initargs are supported:

:orientation

Either :vertical or :horizontal.

:drag-callback

Specifies the callback to be invoked when the scroll bar indicator is

dragged.

:scroll-to-bottom-callback

Specifies the callback to be invoked when the scroll bar will scroll

to the bottom of the viewport.

:scroll-to-top-callback

Specifies the callback to be invoked when the scroll bar will scroll

to the top of the viewport.

Page 1636

:scroll-down-line-callback

Specifies the callback to be invoked when the scroll bar will scroll

down one line.

:scroll-up-line-callback

Specifies the callback to be invoked when the scroll bar will scroll

up one line.

:scroll-down-page-callback

Specifies the callback to be invoked when the scroll bar will scroll

down one page.

:scroll-up-page-callback

Specifies the callback to be invoked when the scroll bar will scroll

up one page.�

The clim:value-changed-callback is invoked only after the indicator is released af-

ter dragging it.

Calling clim:gadget-value on a scroll bar will return a real number within the

specified range of the scroll bar, usually between 0 and 1 (inclusive).

clim:scroll-extent sheet x y Generic Function

If the pane sheet is part of a scroller pane, this scrolls the pane in its viewport so

that the position (x,y) of sheet is at the upper-left corner of the viewport. Other-

wise, it does nothing.

clim:scroll-extent, and all other functions that change the position of the viewport,

also call clim:note-viewport-position-changed to notify the sheet that it has been

scrolled.

You can specialize clim:scroll-extent when you want to implement new scrolling

behavior for a sheet. If you want to simply do something in addition to the normal

scrolling behavior, you should specialize clim:note-viewport-position-changed in-

stead.

clim:scrolling (&rest options) &body contents Macro

Creates a composite pane that allows the single child specified by contents to be

scrolled. options may include a :scroll-bar option. The value of this option may be

t (the default), which indicates that both horizontal and vertical scroll bars should

be created; :vertical, which indicates that only a vertical scroll bar should be cre-

ated; :horizontal, which indicates that only a horizontal scroll bar should be cre-

ated; or :none, which indicates that the pane is scrollable but will have no visible

scroll bars.

The pane created by the clim:scrolling macro is a composite pane that includes a

‘‘scroller pane’’. The ‘‘scroller pane’’ has as children the scroll bars and a ‘‘view-

port pane’’. The viewport of a pane is the portion of the window’s drawing plane

that is currently visible to the user. The viewport has as its child the specified

contents.

Page 1637

clim:select-file frame &key :default :associated-window :title :exit-boxes :text-style�

:foreground :background :x-position :y-position Generic Function

Pops up a file selection dialog in order to input a pathname from the user. The

default pathname is specified by :default. The returned value is the pathname.

:associated-window is the window with which the notification is associated. :title is

a string used to label the notification. :exit-boxes is as for clim:accepting-values.

:text-style, :foreground, and :background are the text style, foreground ink, and

background ink to use in the notification window. :x-position and :y-position can be

supplied to position the notification window.

sequence type Clim Presentation Type

The presentation type that represents a sequence of elements of type type. The

printed representation of a sequence type is the elements separated by the separa-

tor character. It is unspecified whether clim:accept returns a list or a vector. You

can specify the following options:

:separator The character that separates members of the set of possibili-

ties in the printed representation when there is more than one.

The default is comma (#\,).

:echo-space If this is t, then CLIM will insert a space automatically after

the separator, otherwise it will not. The default is t.

type can be a presentation type abbreviation.

clim:sequence-enumerated &rest types Clim Presentation Type

clim:sequence-enumerated is like sequence, except that the type of each element

in the sequence is individually specified. It is unspecified whether clim:accept re-

turns a list or a vector. You can specify the following options:

:separator The character that separates members of the set of possibili-

ties in the printed representation when there is more than one.

The default is comma (#\,).

:echo-space If this is t, then CLIM will insert a space automatically after

the separator, otherwise it will not. The default is t.

The elements of types can be presentation type abbreviations.

clim:set-highlighted-presentation stream presentation &optional (prefer-pointer-

window t) Function

Highlights the presentation presentation on stream. If presentation is nil, any high-

lighted presentations are unhighlighted.

Page 1638

If prefer-pointer-window is t (the default), this sets the highlighted presentation for

the window that is located under the pointer. Otherwise it sets the highlighted

presentation for the window stream.

clim:sheet Class

The protocol class that corresponds to a sheet. If you want to create a new class

that obeys the sheet protocol, it must be a subclass of clim:sheet.

clim:sheet-adopt-child sheet child Generic Function

Adds the child sheet child to the set of children of sheet, and makes the sheet the

child’s parent. If child already has a parent, CLIM will signal an error.

Some sheet classes support only a single child. For such sheets, attempting to

adopt more than a single child will cause CLIM to signal an error.

See the section "Sheet Relationship Protocols".

clim:sheet-children sheet Generic Function

Returns a list of all of the sheets that are children of sheet.

clim:sheet-children may cons a new list each time it is called. It may be more ef-

ficient to use clim:map-over-sheets instead of clim:sheet-children.

See the section "Sheet Relationship Protocols".

clim:sheet-device-region sheet Generic Function

Returns a region object that describes the region that sheet occupies on the display

device. The coordinates are in the host’s native window coordinate system.

The device region is usually an instance of clim:standard-bounding-rectangle.

Note that the region object returned by this function is volatile, so you must not

depend on the components of the object remaining constant.

clim:sheet-device-transformation sheet Generic Function

Returns a transformation that converts coordinates in sheet’s coordinate system in-

to native coordinates on the display device.

Note that the transformation object returned by this function is volatile, so you

must not depend on the components of the object remaining constant.

clim:sheet-disown-child sheet child &key (:errorp t) Generic Function

Removes the child sheet child from the set of children of sheet, and makes the par-

ent of the child be nil. If child is not actually a child of sheet and :errorp is t,

then an error will be signalled.

Page 1639

See the section "Sheet Relationship Protocols".

clim:sheet-enabled-p sheet Generic Function

Returns t if sheet is enabled by its parent, otherwise returns nil.

You can used setf on this in order to enable or disable a sheet.

In order for a sheet to be enabled and ‘‘viewable’’, all of a sheet’s ancestors must

be enabled and ‘‘viewable’’ as well.

clim:sheet-event-queue sheet Generic Function

Any sheet that can process events will have an event queue from which the events

are gotten. clim:sheet-event-queue returns the object that acts as the event

queue.

Typically, you will only use this function in order to cause one or more sheets to

share the same event queue. For example, you can cause a window created with

clim:open-window-stream to share the event queue of another frame as follows:

(setf (clim:sheet-event-queue window)

 (clim:sheet-event-queue

 (clim:frame-top-level-sheet frame)))

�

See the section "Sheet Input Protocols".

clim:sheet-medium sheet Generic Function

Returns the medium associated with sheet. If sheet does not have a medium allocat-

ed to it, clim:sheet-medium returns nil.

This function will signal an error if sheet does not support doing output.

See the section "Sheet Output Protocols".

clim:sheet-mirror sheet Generic Function

Returns the host window that is used to display sheet.

Note that this will nearly always return the same result as calling clim:medium-

drawable on clim:sheet-medium of sheet.

clim:sheet-parent sheet Generic Function

Returns the sheet that is the parent of sheet, or nil if sheet has no parent.

clim:sheet-pointer-cursor sheet Generic Function

Page 1640

Returns the type of cursor that will be used for the pointer when the pointer is

over sheet.

The valid cursor types are :default, :vertical-scroll, :scroll-up, :scroll-down,

:horizontal-scroll, :scroll-left, :scroll-right, :busy, :upper-left, :upper-right,

:lower-left, :lower-right, :vertical-thumb, :horizontal-thumb, :button, :prompt,

:move, :position, and :i-beam.

You can use setf on clim:sheet-pointer-cursor to change the cursor type.

clim:sheet-region sheet Generic Function

Returns a region object that represents the set of points to which sheet refers. The

region is usually a bounding rectangle object. Its coordinates are in the sheet’s co-

ordinate system (that is, the upper left corner of the region will typically be at

(0,0)).

The region is usually an instance of clim:standard-bounding-rectangle.

You can use setf on this to change the sheet’s region, although it is generally

preferable to use clim:resize-sheet instead. When you change a sheet’s region,

CLIM will call clim:note-sheet-region-changed sheet to notify the sheet of the

change.

See the section "Sheet Geometry Protocols".

clim:sheet-transformation sheet Generic Function

Returns a transformation that converts coordinates in sheet’s coordinate system in-

to coordinates in its parent’s coordinate system.

You can use setf on this to change the sheet’s transformation, although it is gen-

erally preferable to use clim:move-sheet instead. When you change a sheet’s re-

gion, CLIM will call clim:note-sheet-transformation-changed sheet to notify the

sheet of the change.

See the section "Sheet Geometry Protocols".

clim:sheetp object Generic Function

Returns t if and only if object is of type clim:sheet, otherwise returns nil.

clim:+shift-key+ Constant

The modifier state bit that corresponds to the user holding down the shift key on

the keyboard.

clim:simple-parse-error Condition

Page 1641

This condition is signalled when CLIM does not know how to parse some sort of

user input while inside of clim:accept. It is built on conditions:parse-error.

clim:simple-parse-error format-string &rest format-arguments Function

Signals an error of type clim:simple-parse-error. This can be called while parsing

an input token, for example, by a method on clim:accept. This function does not

return.

clim:singular-transformation Condition

The condition that is signalled when you try to invert a singular (non-invertible)

transformation.

clim:size-frame-from-contents stream &key :width :height (:right-margin 10) (:bot-

tom-margin 10) (:size-setter #’clim:window-set-inside-size) Function

This function resizes the frame that contains the pane stream to have the size

:width and :height. If :width and :height are not supplied, they are computed by

taking the size of the output contained within stream. The width and height are

incremented by :right-margin and :bottom-margin.

This function is intended to be called on streams that are the only pane in their

parent frame. For example, CLIM uses this function to properly size pop-up menus

and own-window dialogs.

clim:slider Class

The clim:slider gadget class corresponds to a slider. It is a subclass of clim:value-

gadget, clim:oriented-gadget-mixin, clim:range-gadget-mixin, and clim:labelled-

gadget-mixin.

See the section "Using Gadgets in CLIM".

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:orientation

Specifies the orientation of the slider, either :horizontal or

:vertical. The default is :horizontal.

:drag-callback

Specifies the drag callback for the slider.

:show-value-p

Whether the slider should show its current value. The default is

nil.

Page 1642

:decimal-places

An integer that specifies the number of decimal places that should

be shown if the current value is being shown. The default is to

show all significant digits.

:min-label

A string to use to label the minimum end of the slider. By default,

there is no min label.

:max-label

A string to use to label the maximum end of the slider. By default,

there is no max label.

:range-label-text-style

The text style to use for the min and max labels.

:number-of-tick-marks

The number of tick marks to draw on the slider. By default, there

are no tick marks on the slider.

:number-of-quanta

Either nil (the default) or an integer. If an integer, specifies the

number of ‘‘quanta’’ in the slider. In this case the slider is not

continuous, and can only assume a value that falls on one of the

‘‘quanta’’. For example, a slider for real numbers will not be quan-

tized, whereas a slider for integers will be quantized.

The clim:drag-callback callback is invoked when the value of the slider is

changed while the indicator is being dragged. This is implemented by calling the

function specified by the :drag-callback initarg with two arguments, the slider

and the new value.

The clim:value-changed-callback is invoked only after the indicator is released af-

ter dragging it.

Calling clim:gadget-value on a slider will return a real number within the speci-

fied range of the slider.

Here are some examples of sliders:

(clim:make-pane ’clim:slider

 :label "A slider"

 :value-changed-callback ’slider-changed-callback

 :drag-callback ’slider-dragged-callback)

�

(clim:make-pane ’clim:slider

 :label "A slider with tick marks and range labels"

 :number-of-tick-marks 20

 :min-label "0" :max-label "20"

 :value-changed-callback ’slider-changed-callback

 :drag-callback ’slider-dragged-callback)

Page 1643

�

(clim:make-pane ’clim:slider

 :label "A vertical slider with visible value"

 :orientation :vertical

 :show-value-p t)

�

(clim:make-pane ’clim:slider

 :label "A very hairy quantized slider"

 :orientation :vertical

 :number-of-tick-marks 20

 :number-of-quanta 20

 :show-value-p t

 :min-value 0 :max-value 20

 :min-label "Min" :max-label "Max"

 :value-changed-callback ’slider-changed-callback

 :drag-callback ’slider-dragged-callback)

�

(defun slider-changed-callback (slider value)

 (format t "~&Slider ~A changed to ~S" (clim:gadget-label slider) value))

�

(defun slider-dragged-callback (slider value)

 (format t "~&Slider ~A dragged to ~S" (clim:gadget-label slider) value))�

clim:slider-view Class

The class that represents the view corresponding to a slider. This is usually used

for fields that represent a continuous range of values (such as a bounded range of

real numbers).

clim:+slider-view+ Constant

An instance of the class clim:slider-view.

clim:space-requirement Class

The object that specifies a pane’s desired width and height, as well as the amount

it is willing to shrink or grow along its width and height.

clim:space-requirement+ space-req Function

Returns a new space requirement whose components are the sum of each of the

components of sr1 and sr2.

clim:space-requirement-components space-req Function

Page 1644

Returns the components of the space requirement space-req as six values, the

width, minimum width, maximum width, height, minimum height, and maximum

height.

clim:spacing (&rest options &key :thickness :background &allow-other-keys) &body

contents Macro

The clim:spacing reserves some margin space around a single child pane. :thick-

ness specifies the amount of space in device units, and :background specifies the

ink to be used as the pane’s background (that is, the color of the margin space).

contents is a form that produces a single pane.

The clim:spacing macro is the usual way of creating a pane of type clim:spacing-

pane.

options may include other pane initargs, such as space requirement options,

:foreground, :background, :text-style, and so forth.

clim:spacing-pane Class

The layout pane class that leaves some empty space around its child pane.

clim:spacing generates a pane of this type.

In addition to the usual sheet initargs (the space requirement initargs,

:foreground and :background), this class supports two other initargs:

:thickness

An integer that specifies the amount of space to leave around the

child pane, in device units.

:contents The pane that will be the child.�

clim:*standard-activation-gestures* Variable

A list of gesture names that cause the current input to be activated. On most sys-

tems, this includes the gestures corresponding to the #\Newline (or #\Return)

characters. On Genera, it includes the gesture for the #\End character as well.

clim:standard-application-frame Class

This is the class on which all standard CLIM application frames are based.

Typically when you make a new class of application frame, it should inherit from

clim:standard-application-frame. If you do not explicitly supply any superclasses

in a clim:define-application-frame form, CLIM will arrange for the new frame

class to inherit from clim:standard-application-frame.

clim:standard-bounding-rectangle Class

Page 1645

The standard instantiable class for bounding rectangles in CLIM. All of CLIM’s

output record classes are built on clim:standard-bounding-rectangle.

clim:standard-ellipse Class

The standard class CLIM uses to implement an ellipse. This is a subclass of

clim:ellipse. This is the class that clim:make-ellipse and clim:make-ellipse* in-

stantiate.

clim:standard-elliptical-arc Class

The standard class CLIM uses to implement an elliptical arc. This is a subclass of

clim:elliptical-arc. This is the class that clim:make-elliptical-arc and clim:make-

elliptical-arc* instantiate.

clim:standard-line Class

The standard class CLIM uses to implement lines. This is a subclass of clim:line.

This is the class that clim:make-line and clim:make-line* instantiate.

clim:standard-point Class

The standard class CLIM uses to implement points. This is the class that

clim:make-point instantiates.

clim:standard-polygon Class

The standard class CLIM uses to implement polygons. This is a subclass of

clim:polygon.

This is the class that clim:make-polygon and clim:make-polygon* instantiate.

clim:standard-polyline Class

The standard class CLIM uses to implement polylines. This is a subclass of

clim:polyline. This is the class that clim:make-polyline and clim:make-polyline*

instantiate.

clim:standard-presentation Class

The standard class used by CLIM to represent presentations. By default,

clim:present and clim:with-output-as-presentation create presentations using this

class.

clim:standard-rectangle Class

Page 1646

The standard class CLIM uses to implement rectangles. This is a subclass of

clim:rectangle. This is the class that clim:make-rectangle and clim:make-

rectangle* instantiate.

clim:standard-sequence-output-history Class

A standard class provided by CLIM for use as a top-level output history. This is a

subclass of both clim:standard-sequence-output-record and clim:stream-output-

history-mixin.

clim:standard-sequence-output-record Class

The standard class provided by CLIM to store a relatively short sequence of output

records; a subclass of clim:output-record.

The insertion and retrieval complexity of this class is O(n). Most of the formatted

output facilities (such as clim:formatting-table) create output records that are a

subclass of clim:standard-sequence-output-record.

clim:standard-tree-output-history Class

The class used by CLIM as the default top-level output history. This is a subclass

of both clim:standard-tree-output-record and clim:stream-output-history-mixin.

clim:standard-tree-output-record Class

The standard class provided by CLIM to store longer sequences of output records.

The child records of a tree output record area maintained in a sorted order, based

on the lexicographic ordering on the X and Y coordinates of the children.

The insertion and retrieval complexity of this class is O(log n), but it is highly op-

timized for doing textual-style output where most new output comes at the end

(lower right) of the record.

clim:stream-add-output-record stream record Generic Function

Adds the new output record record to stream’s current output record (that is,

clim:stream-current-output-record). This also takes care of other bookkeeping,

such as adjusting stream’s scroll bars if the stream supports scrolling.

clim:stream-baseline stream Generic Function

Returns the current text baseline for the stream stream.

clim:stream-character-width stream character &optional text-style Generic Function

Page 1647

Returns the horizontal motion of the cursor position that would occur if this char-

acter were output onto stream in the text style text-style. clim:stream-character-

width does not take into account the value of clim:stream-text-margin when com-

puting the size of the output.

text-style defaults to the stream’s current text style. The answer depends on the

current cursor position when the character is #\Tab or #\Newline.

clim-lisp:stream-clear-input stream Generic Function

Clears all pending input from stream’s input buffer.

In CLIM, clear-input is implemented by call clim-lisp:stream-clear-input.

clim:stream-current-output-record stream Generic Function

The current ‘‘open’’ output record for the output recording stream stream, that is,

the one to which clim:stream-add-output-record will add a new child record. Ini-

tially, this is the same as clim:stream-output-history. As applications created

nested output records, this acts as a stack of open output records.

clim:stream-cursor-position stream Generic Function

Returns two values, the X and Y coordinates of the cursor position on the drawing

plane. You can use clim:stream-set-cursor-position or clim:stream-increment-

cursor-position to change the cursor position.

clim:stream-default-view stream Generic Function

Returns the default view for the stream stream. You can change the default view

for a stream by using setf on clim:stream-default-view. Calls to clim:accept de-

fault the :view argument from clim:stream-default-view.

Many CLIM streams will have the textual view, clim:+textual-view+, as their de-

fault view. Inside of clim:menu-choose, the default view will be clim:+textual-
menu-view+. Inside of clim:accepting-values, the default view will be either

clim:+textual-dialog-view+ or clim:+gadget-dialog-view+.

clim:stream-drawing-p stream Generic Function

Returns t if and only if drawing is enabled on the output recording stream stream.

You can use setf on this to enable or disable drawing on the stream, or you can

use the :draw option to clim:with-output-recording-options.

clim:stream-element-type stream Generic Function

In CLIM, stream-element-type is defined as a generic function. Otherwise, it be-

haves the same as the normal Common Lisp stream-element-type function.

Page 1648

clim:stream-end-of-line-action stream Generic Function

Controls what happens when the cursor position moves horizontally out of the

viewport (beyond the text margin). You can use setf on this to change the end of

line action.

The possible values for clim:stream-end-of-line-action are:

:wrap When doing text output, wrap the text around (that is, break

the text line and start another line). When setting the cursor

position, scroll the window horizontally to keep the cursor posi-

tion inside the viewport. This is the default.

:scroll Scroll the window horizontally to keep the cursor position in-

side the viewport, then keep doing output.

:allow Ignore the text margin and just keep doing output.

You can use clim:with-end-of-line-action to temporarily change the end-of-line ac-

tion.

clim:stream-end-of-page-action stream Generic Function

Controls what happens when the cursor position moves vertically out of the view-

port. You can use setf on this to change the end of page action.

The possible values for clim:stream-end-of-page-action are:

:scroll Scroll the window vertically to keep the cursor position inside

the viewport, then keep doing output. This is the default.

:allow Ignore the viewport and just keep doing output.

:wrap Wrap the text around (that is, go back to the top of the view-

port). This is not currently implemented.�

You can use clim:with-end-of-page-action to temporarily change the end-of-page

action.

clim-lisp:stream-finish-output stream Generic Function

Some streams are implemented in an asynchronous, or buffered, manner. clim-

lisp:stream-finish-output attempts to ensure that all output sent to stream has

reached its destination, and only then returns nil.

In CLIM, finish-output is implemented by calling clim-lisp:stream-finish-output.

clim-lisp:stream-force-output stream Generic Function

Some streams are implemented in an asynchronous, or buffered, manner. clim-

lisp:stream-force-output initiates the emptying of any internal buffers, and re-

turns nil without waiting for completion or acknowledgment.

Page 1649

In CLIM, force-output is implemented by calling clim-lisp:stream-force-output.

clim-lisp:stream-fresh-line stream Generic Function

Outputs a newline only if stream is not already at the start of a line. If for any

reason this cannot be determined, then a newline is output anyway. This guaran-

tees that the stream will be on a fresh line while consuming as little vertical

space as possible.

In CLIM, fresh-line is implemented by calling clim-lisp:stream-fresh-line.

clim:stream-increment-cursor-position stream dx dy Generic Function

Moves the cursor position on stream relatively, adding dx to the X coordinate and

adding dy to the Y coordinate. Either argument dx or dy can be nil, which means

not to change that coordinate.

clim:stream-input-wait stream &key :timeout :input-wait-test Generic Function

Waits until :timeout has expired or :input-wait-test returns a non-nil value. Other-

wise the function waits until there is input in the stream.

:timeout Specifies the number of seconds that clim:stream-input-wait

will wait for input to become available. If no input is available

when the timeout expires, clim:stream-input-wait will return

the two values nil and :timeout. If nil (the default), it will

wait indefinitely.

:input-wait-test The value of this argument is a function. The function will be

invoked with one argument, the stream. If the function returns

nil, clim:stream-input-wait will continue to wait for user in-

put. If it returns t, clim:stream-input-wait will return the two

values nil and :input-wait-test.

clim:stream-insertion-pointer input-editing-stream Generic Function

Returns an integer corresponding to the current input position of input-editing-

stream, that is, the point in the buffer at which the next user input gesture will

be inserted. The insertion pointer will always be less than (fill-pointer

(clim:stream-input-buffer stream)). The insertion pointer is used as the location of

the editing cursor.

You can use setf on clim:stream-insertion-pointer to change the insertion pointer.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:stream-line-height stream &optional text-style Generic Function

Page 1650

Returns what the line height of a line containing text in that text-style would be.

text-style defaults to (clim:medium-text-style stream).

clim-lisp:stream-listen stream Generic Function

Returns t if there is input available on stream, nil if not.

In CLIM, listen is implemented by calling clim-lisp:stream-listen.

clim:stream-output-history stream Generic Function

Returns the top level output record for the stream stream.

clim-lisp:stream-peek-char stream Generic Function

Returns the next character available in the input stream. The character is not re-

moved from the input buffer. Thus, the same character will be returned by a sub-

sequent call to clim-lisp:stream-read-char.

In CLIM, peek-char is implemented by calling clim-lisp:stream-peek-char.

clim:stream-pointer-position stream &key :pointer Generic Function

This function returns the position (two coordinate values) of the :pointer in the

stream’s drawing plane coordinate system. If :pointer is not supplied, the default

pointer for stream’s port is used.

You can use clim:stream-set-pointer-position to set the pointer position.

Manipulating the Pointer in CLIM

Concepts of Manipulating the Pointer in CLIM

A pointer is an input device that enables pointing at an area of the screen (for

example, a mouse, or a a tablet). CLIM offers a set of operators that enable you to

manipulate the pointer.

Operators for Manipulating the Pointer in CLIM

These functions are the higher-level functions for doing input via the pointer.

clim:tracking-pointer (&optional stream &key :pointer :multiple-window :transformp

(:context-type t) :highlight) &body clauses

Provides a general means for running code while following the position

of a pointing device, and monitoring for other input events. Programmer-

supplied code may be run upon occurrence of events such as motion of

the pointer, clicking of a pointer button, or typing something on the

keyboard.

Page 1651

clim:drag-output-record stream output-record &key (:repaint t) :multiple-window

:erase :feedback (:finish-on-release t)

Enters an interaction mode in which user moves the pointer, and output-

record follows the pointer by being dragged on stream.

clim:dragging-output (&optional stream &key (:repaint t) :multiple-window :finish-

on-release) &body body

Evaluates body to produce the output, and then invokes clim:drag-

output-record to drag that output on stream.

clim:pointer-place-rubber-band-line* &key :start-x :start-y (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t)

Prompts for a line via the pointing device specified by :pointer.

clim:pointer-place-rubber-band-line* returns four values, the start-x,

start-y, end-x, and end-y of a line.

clim:pointer-input-rectangle* &key :left :top :right :bottom (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t)

Prompts for a rectangular area via the pointing device specified by

:pointer. clim:pointer-input-rectangle* returns four values, the left, top,

right, and bottom edges of a rectangle.

The following are lower level functions for managing the pointer more directly.

See the generic function clim:stream-pointer-position.

clim:stream-set-pointer-position stream x y &key :pointer

This function sets the position (two coordinate values) of the :pointer in

the stream’s drawing plane coordinate system.

clim:port-pointer port

Returns the pointer object corresponding to the primary pointing device

for the port port.

clim:port-modifier-state basic-port

Returns the state of the modifier keys for the port port.

clim:pointer-button-state pointer

Returns the current button state for pointer.

clim:pointer-position pointer

This function returns the position (as two coordinate values) of the

pointer pointer in the coordinate system of the sheet that the pointer is

currently over.

clim:pointer-set-position pointer x y

This function changes the position of the pointer pointer to be (x,y).

clim:pointer-native-position pointer

This function returns the position (as two coordinate values) of the

pointer pointer in the coordinate system of the port’s graft (that is, its

‘‘root window’’).

Page 1652

clim:pointer-set-native-position pointer x y

This function changes the position of the pointer pointer to be (x,y).

clim:pointer-sheet pointer

Returns the sheet over which the pointer pointer is currently positioned.

clim:pointer-cursor pointer

Returns the current cursor type for pointer. You can use setf to change

it.

clim:stream-recording-p stream Generic Function

Returns t if and only if output recording is enabled on the output recording

stream stream. You can use setf on this to enable or disable output recording on

the stream, or you can use the :record option to clim:with-output-recording-

options.

clim-lisp:stream-read-char stream Generic Function

Returns the next character available in the input stream. If no character is avail-

able, this function will wait until one becomes available.

In CLIM, read-char is implemented by calling clim-lisp:stream-read-char. Note

that, unlike read-char, clim-lisp:stream-read-char does not echo the character it

reads; CLIM’s input editor does this when reading input inside of a call to

clim:with-input-editing.

clim-lisp:stream-read-char-no-hang stream Generic Function

Like clim-lisp:stream-read-char except that if no character is available the func-

tion returns nil.

In CLIM, read-char-no-hang is implemented by calling clim-lisp:stream-read-

char-no-hang.

clim:stream-read-gesture stream &key :timeout :peek-p :input-wait-test :input-wait-

handler :pointer-button-press-handler Generic Function

Returns the next gesture available in the input stream. The arguments are as for

clim:read-gesture. Note that clim:stream-read-gesture does not echo its input;

CLIM’s input editor does this when reading input inside of a call to clim:with-

input-editing.

This function invokes clim:stream-input-wait on the stream and processes the

subsequent input, if any. CLIM’s input editor is implemented by specializing

clim:stream-read-gesture to process input editing commands.

clim:read-gesture is implemented by calling clim:stream-read-gesture. This func-

tion is a generalization of clim-lisp:stream-read-char to extended input streams.

Page 1653

clim-lisp:stream-read-line stream Generic Function

Returns a string containing a line of text, delimited by the #\Newline character.

In CLIM, read-line is implemented by calling clim-lisp:stream-read-line.

clim:stream-replay stream &optional region Generic Function

Replays all of the output records in stream’s output history that overlap the region

region. If region is nil, all of the output records are replayed.

clim:stream-rescanning-p input-editing-stream Generic Function

Returns the state of the input editing stream’s ‘‘rescan in progress’’ flag, which is

t if input-editing-stream is performing a rescan operation, otherwise it is nil. Non-

input editing streams always return nil.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:stream-scan-pointer input-editing-stream Generic Function

Returns the current scan pointer (an integer) for input-editing-stream, that is, the

point in the buffer at which calls to clim:accept have stopped parsing input. The

scan pointer will always be less than or equal to clim:stream-insertion-pointer of

input-editing-stream.

The next call to clim:read-gesture on input-editing-stream will return the gesture

at the scan pointer.

You can use setf on clim:stream-scan-pointer to change the scan pointer.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:stream-set-cursor-position stream x y Generic Function

Moves the cursor position to the specified X and Y coordinates on the drawing

plane.

clim:stream-set-input-focus stream Generic Function

Gives the input focus to stream, and returns as a value the stream or sheet that

previously had the input focus.

clim:stream-set-pointer-position stream x y &key :pointer Generic Function

This function sets the position (two coordinate values) of the pointer in the

stream’s drawing plane coordinate system (if possible). If not possible, the function

Page 1654

leaves the pointer where it was. If :pointer is not supplied, the pointer for stream’s

port is used.

Be careful when you use this function. It is often best to avoid creating user inter-

faces where the pointer jumps around unexpectedly.

Manipulating the Pointer in CLIM

Concepts of Manipulating the Pointer in CLIM

A pointer is an input device that enables pointing at an area of the screen (for

example, a mouse, or a a tablet). CLIM offers a set of operators that enable you to

manipulate the pointer.

Operators for Manipulating the Pointer in CLIM

These functions are the higher-level functions for doing input via the pointer.

clim:tracking-pointer (&optional stream &key :pointer :multiple-window :transformp

(:context-type t) :highlight) &body clauses

Provides a general means for running code while following the position

of a pointing device, and monitoring for other input events. Programmer-

supplied code may be run upon occurrence of events such as motion of

the pointer, clicking of a pointer button, or typing something on the

keyboard.

clim:drag-output-record stream output-record &key (:repaint t) :multiple-window

:erase :feedback (:finish-on-release t)

Enters an interaction mode in which user moves the pointer, and output-

record follows the pointer by being dragged on stream.

clim:dragging-output (&optional stream &key (:repaint t) :multiple-window :finish-

on-release) &body body

Evaluates body to produce the output, and then invokes clim:drag-

output-record to drag that output on stream.

clim:pointer-place-rubber-band-line* &key :start-x :start-y (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t)

Prompts for a line via the pointing device specified by :pointer.

clim:pointer-place-rubber-band-line* returns four values, the start-x,

start-y, end-x, and end-y of a line.

clim:pointer-input-rectangle* &key :left :top :right :bottom (:stream *standard-

input*) :pointer :multiple-window (:finish-on-release t)

Prompts for a rectangular area via the pointing device specified by

:pointer. clim:pointer-input-rectangle* returns four values, the left, top,

right, and bottom edges of a rectangle.

The following are lower level functions for managing the pointer more directly.

Page 1655

clim:stream-pointer-position stream &key :pointer

This function returns the position (two coordinate values) of the pointer

in the stream’s drawing plane coordinate system. You can use

clim:stream-set-pointer-position to set the pointer position.

See the generic function clim:stream-set-pointer-position.

clim:port-pointer port

Returns the pointer object corresponding to the primary pointing device

for the port port.

clim:port-modifier-state basic-port

Returns the state of the modifier keys for the port port.

clim:pointer-button-state pointer

Returns the current button state for pointer.

clim:pointer-position pointer

This function returns the position (as two coordinate values) of the

pointer pointer in the coordinate system of the sheet that the pointer is

currently over.

clim:pointer-set-position pointer x y

This function changes the position of the pointer pointer to be (x,y).

clim:pointer-native-position pointer

This function returns the position (as two coordinate values) of the

pointer pointer in the coordinate system of the port’s graft (that is, its

‘‘root window’’).

clim:pointer-set-native-position pointer x y

This function changes the position of the pointer pointer to be (x,y).

clim:pointer-sheet pointer

Returns the sheet over which the pointer pointer is currently positioned.

clim:pointer-cursor pointer

Returns the current cursor type for pointer. You can use setf to change

it.

clim:stream-string-width stream string &key :start :end :text-style Generic Function

Computes how the cursor position would move horizontally if the specified string�

were output starting at the left margin. clim:stream-string-width does not take

into account the value of clim:stream-text-margin when computing the size of the

output.

The first value is the X coordinate the cursor position would move to. The second

value is the maximum X coordinate the cursor would visit during the output. (This

is the same as the first value unless the string contains a #\Newline.)

:start and :end default to 0 and the length of the string, respectively.

Page 1656

:text-style defaults to the stream’s current text style.

Note that clim:stream-string-width is a low level function. Unless you are writing

your own ‘‘formatting engine’’, if you find you need to use it very often, you may

be working at too low a level of abstraction.

clim-lisp:stream-terpri stream Generic Function

Outputs a newline to stream, and returns nil. It is identical in effect to:

(write-char #\Newline stream)

�

In CLIM, terpri is implemented by calling clim-lisp:stream-terpri.

clim:stream-text-cursor stream Generic Function

Returns the text cursor for the stream stream.

The text cursor is of type clim:cursor.

clim:stream-text-margin stream Generic Function

The X coordinate at which text wraps around (see clim:stream-end-of-line-action).

The default setting is the width of the viewport, which is the right-hand edge of

the viewport when it is horizontally scrolled to the ‘‘initial position’’.

You can use setf on clim:stream-text-margin. If a value of nil is specified, the

width of the viewport will be used. If the width of the viewport is later changed,

the text-margin will change too.

clim-lisp:stream-unread-char stream character Generic Function

Places the specified character back into stream’s input buffer. The next read-char

request will return the unread character. The character supplied must be the most

recent character read from the stream.

In CLIM, unread-char is implemented by calling clim-lisp:stream-unread-char.

clim:stream-unread-gesture stream gesture Generic Function

Places the specified gesture back into stream’s input buffer. The next clim:stream-

read-gesture request will return the unread gesture. The gesture supplied must be

the most recent gesture read from the stream.

clim:read-gesture is implemented by calling clim:stream-read-gesture. This func-

tion is a generalization of clim-lisp:stream-unread-char to extended input

streams.

clim:stream-vertical-spacing stream Generic Function

Page 1657

Returns the current inter-line spacing for the stream stream.

clim-lisp:stream-write-char stream char Generic Function

Writes char to stream and returns char as its value.

In CLIM, write-char is implemented by calling clim-lisp:stream-write-char.

clim-lisp:stream-write-string stream string &optional start end Generic Function

Writes the string string to stream. If start and end are supplied, they specify what

part of string to output. string is returned as the value.

In CLIM, write-string is implemented by calling clim-lisp:stream-write-string.

string &optional length Clim Presentation Type

The presentation type that represents a string. If length is specified, the string

must have exactly that many characters.

clim:subset &rest elements Clim Presentation Type Abbreviation

The presentation type that specifies a subset of elements. Values of this type are

lists of zero or more values chosen from the possibilities in elements. The printed

representation is the names of the elements separated by the separator character.

The options (:name-key, :value-key, :partial-completers, :separator, and :echo-

space) are the same as for clim:subset-completion.

clim:subset-completion sequence &key :test :value-key Clim Presentation Type

The presentation type that selects one or more from a finite set of possibilities,

with completion of partial inputs. The parameters and options are the same as for

clim:completion with the following additional options:

:separator The character that separates members of the set of possibili-

ties in the printed representation when there is more than one.

The default is comma.

:echo-space (t or nil) Whether to insert a space automatically after the

separator. The default is t.

The other subset types (clim:subset, clim:subset-sequence, and clim:subset-alist)

are implemented in terms of the clim:subset-completion type.

clim:subset-sequence sequence &key :test Clim Presentation Type Abbreviation

Like clim:subset, except that the set of possibilities is the sequence sequence. The

parameter :test and the options (:name-key, :value-key, :partial-completers,

:separator, and :echo-space) are the same as for clim:subset-completion.

Page 1658

clim:subset-alist alist &key :test Clim Presentation Type Abbreviation

Like clim:subset, except that the set of possibilities is the alist alist. The parame-

ter :test and the options (:name-key, :value-key, :partial-completers, :separator,

and :echo-space) are the same as for clim:subset-completion. The parameter alist

has the same format as clim:member-alist.

clim:substitute-numeric-argument-marker command numeric-arg Function

Given a command object command, this substitutes the value of numeric-arg for all

occurrences of the value of clim:*numeric-argument-marker* in the command,

and returns a command object with those substitutions.

clim:suggest name &rest objects Function

Specifies one possibility for clim:completing-from-suggestions. completion is a

string, the printed representation. object is the internal representation.

This function has lexical scope and is defined only inside the body of

clim:completing-from-suggestions.

clim:+super-key+ Constant

The modifier state bit that corresponds to the user holding down the super key on

the keyboard. See the section "Operators for Gestures in CLIM".

clim:surrounding-output-with-border (&optional stream &key (:shape :rectangle)

(:move-cursor t)) &body body Macro

Binds the local environment in such a way that the output of body will be sur-

rounded by a border of the specified :shape.

:shape The shape of the border to draw. The default is :rectangle.

Other valid shapes are :oval, :drop-shadow, and :underline.

:move-cursor

When t (the default), CLIM moves the text cursor to the end

(lower right corner) of the output. Otherwise, the cursor is left

at the beginning (upper left corner) of the output.

symbol Clim Presentation Type

The presentation type that represents a symbol.

t Clim Presentation Type

The supertype of all other presentation types.

Page 1659

Note that the clim:accept method for this type allows input only via the pointer;

if the user types anything on the keyboard, the clim:accept method just beeps.

clim:table-pane Class

The layout pane class that arranges its children in a tabular format. clim:tabling

generates a pane of this type.

clim:tabling (&rest options) &body contents Macro

The clim:tabling macro lays out its child panes in a two-dimensional table ar-

rangement. Each of the table is specified by an extra level of list in contents. For

example,

(clim:tabling ()

 (list

 (clim:make-pane ’label :text "Red")

 (clim:make-pane ’label :text "Green")

 (clim:make-pane ’label :text "Blue"))

 (list

 (clim:make-pane ’label :text "Intensity")

 (clim:make-pane ’label :text "Hue")

 (clim:make-pane ’label :text "Saturation")))�

The clim:tabling macro serves as the usual interface for creating a clim:table-

pane.

clim:test-presentation-translator translator presentation context-type frame window

x y &key :event (:modifier-state 0) :for-menu Function

Returns t if the translator translator applies to the presentation presentation in in-

put context type context-type. (There is no from-type argument because it is derived

from presentation.)

frame is the application frame. window, x, and y are the window the presentation

is on, and the X and Y position of the pointer (respectively).

:event and :modifier-state are, respectively, a pointer button event and a modifier

state. These are compared against the translator’s gesture-name. :event defaults to

nil, and :modifier-state defaults to 0, meaning that no shift keys are held down.

Only one of :event or :modifier-state may be supplied.

If :for-menu is t, the comparison against :event and :modifier-state is not done.

presentation, context-type, frame, window, x, y, and :event are passed along to the

translator’s tester if and when the tester is called.

If the translator is not applicable, clim:test-presentation-translator will return

nil.

Page 1660

clim:test-presentation-translator is responsible for matching type parameters and

calling the translator’s tester. Under some circumstances, clim:test-presentation-

translator may also call the body of the translator to ensure that its value match-

es to-type.

clim:text-editor Class

The clim:text-editor gadget class corresponds to a multi-line field containing text,

a subclass of clim:text-field.

The value of a text editor is the text string.

See the section "Using Gadgets in CLIM".

In addition to the usual pane initargs (:foreground, :background, :text-style,

space requirement options, and so forth), the following initargs are supported:

:editable-p

When nil, the text field cannot be modified. When t (the default),

the text field can be modified.

:ncolumns

An integer specifying the width of the text editor in characters.

:nlines An integer specifying the height of the text editor in lines.

(clim:make-pane ’clim:text-editor

 :value "Isn’t Lisp the greatest?"

 :value-changed-callback ’text-field-changed

 :ncolumns 40 :nlines 5)

�

(defun text-field-changed (tf value)

 (format t "~&Text field ~A changed to ~S" tf value))�

clim:text-editor-view Class

The class that represents the view corresponding to a text editor pane (that is, a

multi-line text editing field).

clim:+text-editor-view+ Constant

An instance of the class clim:text-editor-view.

clim:text-field Class

The gadget class that implements a text field. This is a subclass of both

clim:value-gadget and clim:action-gadget.

The value of a text field is the text string.

Page 1661

See the section "Using Gadgets in CLIM".

In addition to the usual pane initargs (:foreground, :background, :text-style,

space requirement options, and so forth), the following initargs are supported:

:editable-p

When nil, the text field cannot be modified. When t (the default),

the text field can be modified.

You might create a text field as follows:

(clim:make-pane ’clim:text-field

 :value "Name of your product here"

 :value-changed-callback ’text-field-changed

 :width 400)

�

(defun text-field-changed (tf value)

 (format t "~&Text field ~A changed to ~S" tf value))�

clim:text-field-view Class

The class that represents the view corresponding to a text editor pane (that is, a

single line text editing field).

clim:+text-field-view+ Constant

An instance of the class clim:text-field-view.

clim:text-size medium string &key :text-style :start :end Generic Function

Computes how the cursor position would move if the specified string or character

were output to medium starting at cursor position (0,0). clim:text-size does not

take into account the value of clim:stream-text-margin when computing the size

of the output.

clim:text-size returns five values;

• The total width of the string in device units;

• The total height of the string in device units;

• The final X cursor position, which is the same as the width if there are no

#\Newline characters in the string;

• The final Y cursor position, which is 0 if the string has no #\Newline char-

acters in it, and is incremented by the line height for each #\Newline char-

acter in the string

• The string’s baseline.

:text-style defaults to (clim:medium-text-style medium).

Page 1662

You can use :start and :end to specify a substring of string.

Note that clim:text-size is a low level function. Unless you are writing your own

‘‘formatting engine’’, if you find you need to use it very often, you may be working

at too low a level of abstraction.

clim:text-style Class

The class that represents text styles. CLIM text styles have family, face, and size

components. Each of these components has a corresponding reader accessor that

can be used to extract a particular component from a text style.

See the section "Text Styles in CLIM".

clim:text-style-ascent text-style medium Generic Function

The ascent (a real number) of text-style as it would be rendered on medium.

The ascent of a text style is the ascent of the medium’s font corresponding to text-

style. The ascent of a font is the distance between the top of the tallest character

in that font and the baseline.

clim:text-style-components text-style medium Generic Function

Returns the components of text-style as three values (family, face, and size).

clim:text-style-descent text-style medium Generic Function

The descent (a real number) of text-style as it would be rendered on medium.

The descent of a text style is the descent of the medium’s font corresponding to

text-style. The descent of a font is the distance between the baseline and the bot-

tom of the lowest descending character (usually ‘‘y’’, ‘‘q’’, ‘‘p’’, or ‘‘g’’).

clim:text-style-face text-style Generic Function

Returns the face component of the text-style.

clim:text-style-family text-style Generic Function

Returns the family component of the text-style.

clim:text-style-fixed-width-p text-style medium Generic Function

Returns t if text-style will map to a fixed-width font on medium, otherwise returns

nil.

Page 1663

clim:text-style-height text-style medium Generic Function

Returns the height (a real number) of the ‘‘usual character’’ in text-style on medi-

um.

The height of a text style is the sum of its ascent and descent.

clim:text-style-mapping port style &optional character-set Generic Function

Returns the font object that will be used if characters in character-set in the text

style style are drawn on any medium on the port port. character-set defaults to the

standard character set.

If the port is using exact text style mapping, CLIM will choose a font whose size

exactly matches the size specified in the text style. Otherwise if the port is using

loose text style mappings, CLIM will choose the font whose size is closest to the

desired size.

If no mapping exists, CLIM will signal an error.

clim:text-style-mapping-exists-p port style &optional character-set exact-size-required�

Generic Function

Returns t if there is a font associated with the text style style on the port port,

otherwise returns nil. character-set defaults to the standard character set. If exact-

size-required is t, only fonts whose size is the exact size specified in the text style

will be considered to match.

clim:text-style-p object Generic Function

Returns t if and only if object is a CLIM text style, otherwise returns nil.

clim:text-style-size text-style Generic Function

Returns the size component of the text-style.

clim:text-style-width text-style medium Generic Function

Returns the width (a real number) of the ‘‘usual character’’ in text-style on medi-

um.

clim:textual-dialog-view Class

The class that represents the view that is used inside textual clim:accepting-

values dialogs.

clim:+textual-dialog-view+ Constant

Page 1664

An instance of the class clim:textual-dialog-view. Inside clim:accepting-values,

the default view for the dialog stream may be bound to

clim:+textual-dialog-view+.

clim:textual-menu-view Class

The class that represents the view that is used inside textual menus.

clim:+textual-menu-view+ Constant

An instance of the class clim:textual-menu-view. Inside clim:menu-choose, the de-

fault view for the menu stream may be bound to clim:+textual-menu-view+.

clim:textual-view Class

The class that represents textual views. Textual views are used in most command-

line oriented applications.

clim:+textual-view+ Constant

An instance of the class clim:textual-view.

clim:throw-highlighted-presentation presentation input-context button-press-event

Function

Calls the applicable translator for the presentation, input-context, and button-press-

event (that is, the one corresponding to the user clicking a pointer button while

over the presentation). This function returns an object and a presentation type.

These values are returned from the translator to the call to clim:with-input-

context that establish the matching input context.

When you call clim:throw-highlighted-presentation yourself, you should be careful

to ensure that clim:*application-frame* is bound to the relevant application frame

clim:title-pane Class

The pane class that is used to implement a title pane. It corresponds to the pane

type abbreviation :title in the :panes clause of clim:define-application-frame. The

default display function for panes of this type is clim:display-title.

For clim:title-pane, the default for the :display-time option is t, and the default

for the :scroll-bars option is nil.

clim:toggle-button Class

The clim:toggle-button gadget class provides ‘‘on/off’’ switch behavior. It is a sub-

class of clim:value-gadget and clim:labelled-gadget-mixin. This gadget typically

Page 1665

appears as a box that is optionally highlighted with a check-mark. If the check-

mark is present, the gadget’s value is t, otherwise it is nil.

See the section "Using Gadgets in CLIM".

In addition to the initargs for clim:value-gadget and the usual pane initargs

(:foreground, :background, :text-style, space requirement options, and so forth),

the following initargs are supported:

:label A string or pixmap that is used to label the button.

:indicator-type

This is used to initialize the indicator type property for the gadget,

and must be either :one-of or :some-of. The indicator type controls

the appearance of the toggle button. For example, many toolkits

present a one-of-many choice differently from a some-of-many

choice.

clim:armed-callback will be invoked when the toggle button becomes armed (such

as when the pointer moves into it, or a pointer button is pressed over it). When

the toggle button is actually activated (by releasing the pointer button over it),

clim:value-changed-callback will be invoked. Finally, clim:disarmed-callback will

be invoked after clim:value-changed-callback, or when the pointer is moved out-

side of the toggle button.

Calling clim:gadget-value on a toggle button will return t if the button is select-

ed, otherwise it will return nil. The value of the toggle button can be changed by

calling setf on clim:gadget-value.

A toggle button might be created as follows:

(clim:make-pane ’clim:toggle-button

 :label "Toggle" :width 80

 :value-changed-callback ’toggle-button-callback)

�

(defun toggle-button-callback (button value)

 (format t "~&Button ~A toggled to ~S" (clim:gadget-label button) value))

�

clim:toggle-button-view Class

The class that represents the view corresponding to a toggle button. This is usual-

ly used for boolean (yes or no) values.

clim:+toggle-button-view+ Constant

An instance of the class clim:toggle-button-view.

clim:token-or-type tokens type Clim Presentation Type Abbreviation

Page 1666

A compound type that is used to select one of a set of special tokens, or an object

of type type. tokens is anything that can be used as the alist parameter to

clim:member-alist; typically it is a list of keyword symbols.

type can be a presentation type abbreviation.

For example, the following is a common way of using clim:token-or-type:

(clim:accept ’(clim:token-or-type (:all :none) integer)

 :prompt "How many?")

�

clim:tracking-pointer (&optional stream &key :pointer :multiple-window :transformp

(:context-type t) :highlight) &body clauses Macro

Provides a general means for running code while following the position of a point-

ing device on the stream stream, and monitoring for other input events. stream de-

faults to *standard-input*.

Programmer-supplied code may be run upon occurrence of any of the following

types of events:

• Motion of the pointer

• Motion of the pointer over a presentation

• Clicking or releasing a pointer button

• Clicking or releasing a pointer button over a presentation

• Keyboard event (typing a character)�

The keyword arguments to clim:tracking-pointer are:

:pointer Specifies a pointer to track. It defaults to (clim:port-pointer

(clim:port stream)). Unless there is more than one pointing device

available, it is unlikely that this option will be useful.

:multiple-window

When t, specifies that the pointer is to be tracked across multiple

windows. The default is nil.

Note that when :multiple-window is t, the clim:tracking-pointer

clauses will be invoked on many different types of panes besides

just CLIM stream panes, including scroll bars, borders, and so

forth. Your program must filter out any panes it is not interested

in.

:transformp

When t, specifies that coordinates supplied to the :pointer-motion�

clause are to be expressed in the user coordinate system. The de-

fault is nil.

:context-type

Specifies the type of presentations that will be ‘‘visible’’ to the

Page 1667

tracking code. It defaults to t, meaning that all presentations are

visible.

:highlight Specifies whether or not CLIM should highlight presentations. It de-

faults to t when there are any presentation clauses, meaning that

presentations that match :context-type should be highlighted. If there

are no presentation clauses, it defaults to nil.

The body of clim:tracking-pointer consists of clauses. Each clause in clauses is of

the form (clause-keyword arglist &body clause-body) and defines a local function to

be run upon occurrence of each type of event. The possible clause-keywords, their

arglists, and their uses are:

:pointer-motion (window x y)

Defines a clause that runs whenever the pointer moves. In the

clause, window is bound to the window in which the motion oc-

curred, and x and y to the coordinates of the pointer. (See the key-

word argument :transformp above for a description of the coordi-

nate system in which x and y is expressed.)

When both :presentation and :pointer-motion clauses are provided,

only one of them will be run for a given motion event. The :presen-

tation clause will run if it is applicable, otherwise the :pointer-

motion clause will run.

:pointer-button-press (event x y)

Defines a clause that runs whenever a pointer button is pressed. In

the clause, event is bound to the event object. (The window and the

coordinates of the pointer are part of event.)

When both :presentation-button-press and :pointer-button-press

clauses are provided, only one of them will be run for a given but-

ton press event. The :presentation-button-press clause will run if

it is applicable, otherwise the :pointer-button-press clause will run.

x and y are the transformed X and Y positions of the pointer. These

will be different from clim:pointer-event-x and clim:pointer-

event-y if stream is using a non-identity transformation.

:pointer-button-release (event x y)

Defines a clause that runs whenever the pointer button is released.

In the clause, event is bound to the event object. (The window and

the coordinates of the pointer are part of event.)

When both :presentation-button-release and :pointer-button-

release clauses are provided, only one of them will be run for a

given button release event. The :presentation-button-release clause

will run if it is applicable, otherwise the :pointer-button-release

clause will run.

x and y are the transformed X and Y positions of the pointer. These

will be different from clim:pointer-event-x and clim:pointer-

event-y if stream is using a non-identity transformation.

Page 1668

:presentation (presentation window x y)

Defines a clause that runs whenever the pointer moves over a pre-

sentation of the desired type. (See the keyword argument :context-

type above for a description of how to specify the desired type.) In

the clause, presentation is bound to the presentation, window to the

window in which the motion occurred, and x and y to the coordi-

nates of the pointer. (See the keyword argument :transformp above

for a description of the coordinate system in which x and y is ex-

pressed.)

:presentation-button-press (presentation event x y)

Defines a clause that runs whenever the pointer button is pressed

while the pointer is over a presentation of the desired type. (See the

keyword argument :context-type above for a description of how to

specify the desired type.) In the clause, presentation is bound to the

presentation, and event to the event object. (The window and the co-

ordinates of the pointer are part of event.)

x and y are the transformed X and Y positions of the pointer. These

will be different from clim:pointer-event-x and clim:pointer-

event-y if stream is using a non-identity transformation.

:presentation-button-release (presentation event x y)

Defines a clause that runs whenever the pointer button is released

while the pointer is over a presentation of the desired type. (See the

keyword argument :context-type above for a description of how to

specify the desired type.) In the clause, presentation is bound to the

presentation, and event to the event object. (The window and the co-

ordinates of the pointer are part of event.)

x and y are the transformed X and Y positions of the pointer. These

will be different from clim:pointer-event-x and clim:pointer-

event-y if stream is using a non-identity transformation.

:keyboard (event)

Defines a clause that runs whenever a key is typed on the keyboard.

In the clause, event is bound to the keyboard event typed. If the

event corresponds to a standard printing character, event may be a

character object.

A simple version of clim:pointer-place-rubber-band-line* could be implemented in

the following manner using clim:tracking-pointer.

Page 1669

(defun pointer-place-rubber-band-line* (&optional (stream *standard-input*))

 (let (start-x start-y end-x end-y)

 (flet ((finish (event finish &optional press)

 (let ((x (clim:pointer-event-x event))

 (y (clim:pointer-event-y event))

 (window (clim:event-sheet event)))

 (when (eq window stream)

 (cond (start-x

 (clim:with-output-recording-options

 (window :draw t :record nil)

 (clim:draw-line* window start-x start-y end-x end-y

 :ink clim:+flipping-ink+))

 (clim:draw-line* window start-x start-y end-x end-y)

 (when finish

 (return-from pointer-place-rubber-band-line*

 (values start-x start-y end-x end-y))))

 (press (setq start-x x start-y y)))))))

 (declare (dynamic-extent #’finish))�

 (clim:tracking-pointer (stream)

 (:pointer-motion (window x y)

 (when (and start-x (eq window stream))

 (clim:with-output-recording-options (window :draw t :record nil)

 (when end-x

 (clim:draw-line* window start-x start-y end-x end-y

 :ink clim:+flipping-ink+))

 (setq end-x x end-y y)

 (clim:draw-line* window start-x start-y end-x end-y

 :ink clim:+flipping-ink+))))

 (:pointer-button-press (event)

 (finish event nil t))

 (:pointer-button-release (event)

 (finish event t))))))�

clim:transform-distance transform dx dy Generic Function

Applies transform to the distance represented by dx and dy, and returns two val-

ues, the transformed dx and the transformed dy.

A distance represents the difference between two points. It does not transform like

a point.

clim:transform-position transform x y Generic Function

Applies transform to the point whose coordinates are x and y, and returns two val-

ues, the transformed X-coordinate and the transformed Y-coordinate.

clim:transform-position is the spread version of clim:transform-region in the

case where the region is a point.

Page 1670

clim:transform-rectangle* transform x1 y1 x2 y2 Generic Function

Applies the transformation transform to the rectangle specified by the four coordi-

nate arguments, which are real numbers. One corner of the rectangle is at (x1,y1)�

and the opposite corner is at (x2,y2). If transform is not a rectilinear transforma-

tion, this will signal an error.

This returns four values that specify the minimum and maximum points of the

transformed rectangle in the order min-x, min-y, max-x, and max-y.

clim:transform-rectangle* is the spread version of clim:transform-region in the

case where the transformation is rectilinear and the region is a rectangle.

clim:transform-region transformation region Generic Function

Applies transformation to region, and returns a new transformed region.

Transforming a region applies a coordinate transformation to that region, thus

moving its position on the drawing plane, rotating it, or scaling it. Note that this

creates a new region, it does not side-effect the region argument.

clim:transformation Class

The protocol class for all transformations. There are one or more subclasses of

clim:transformation with implementation-dependent names that implement trans-

formations. If you want to create a new class that obeys the transformation proto-

col, it must be a subclass of clim:transformation.

clim:transformation-equal transform1 transform2 Generic Function

Returns t if the two transformations have equivalent effects (that is, are mathe-

matically equal), otherwise returns nil.

clim:transformation-underspecified Condition

The condition that is signalled when you try to make a 3-point transformation

from three collinear points.

clim:transformationp object Function

Returns t if an only if object is a CLIM transformation.

clim:translate-coordinates x-delta y-delta &body coordinate-pairs Function

Translates each of the X and Y coordinate pairs in coordinate-pairs by x-delta and

y-delta. x-delta and y-delta are real numbers.

Page 1671

clim:translation-transformation-p transform Generic Function

Returns t if transform is a pure translation, that is a transformation that moves

every point by the same distance in X and the same distance in Y, otherwise re-

turns nil.

clim:+transparent-ink+ Constant

When you draw a design that has areas of clim:+transparent-ink+, the former

background shows through in those areas. Typically, clim:+transparent-ink+ is

used as one of the inks in a pattern so that parts of the pattern are transparent.

clim:tree-recompute-extent record Generic Function

You can use this function to ensure that the bounding rectangles for a tree of out-

put records are up to date. Use this whenever the bounding rectangles of a num-

ber of children of a record have been changed, such as happens during table and

graph formatting. clim:tree-recompute-extent computes the bounding rectangle

large enough to contain all of the children of record, adjusts the bounding rectan-

gle of record accordingly, and then calls clim:recompute-extent-for-changed-child

on record.

If you write a new formatting facility that rearranges many of the descendants of

an output record (for example, a new kind of graph formatting), you should call

clim:tree-recompute-extent on the parent of the highest level record that was af-

fected. It is preferable to use clim:tree-recompute-extent instead of repeatedly

calling clim:recompute-extent-for-changed-child, because you will get better per-

formance.

See the section "Concepts of CLIM Output Recording".

clim:type-or-string type Clim Presentation Type Abbreviation

A compound type that is used to select an object of type type or an arbitrary

string, for example, (clim:type-or-string integer). Any input that clim:accept can-

not parse as the representation of an object of type type is returned as a string.

type can be a presentation type abbreviation.

clim:unhighlight-highlighted-presentation stream &optional (prefer-pointer-window

t) Function

Unhighlights any highlighted presentations on stream.

If prefer-pointer-window is t (the default), this clears the highlighted presentation

for the window that is located under the pointer. Otherwise it clears the highlight-

ed presentation for the window stream.

clim:unread-gesture gesture &key (:stream *standard-input*) Function

Page 1672

Places the specified gesture back into :stream’s input buffer. The next clim:read-

gesture request will return the unread gesture. The gesture supplied must be the

most recent gesture read from the stream.

clim:*unsupplied-argument-marker* Variable

If you are building a command object that has required arguments that have not

yet been supplied, use the value of clim:*unsupplied-argument-marker* as a

placeholder for those arguments. When CLIM goes to execute a command that has

any unsupplied arguments, it will first gather those arguments from the user via a

menu or a dialog.

For example, if you have a Hardcopy File command that takes two required argu-

ments, a pathname and a printer, you might write a translator as follows:

(clim:define-presentation-to-command-translator printer-to-hardcopy-file

 (printer com-hardcopy-file hardcopy

 :gesture :select

 :pointer-documentation "Hardcopy File")

 (object)

 (list clim:*unsupplied-argument* object))�

clim:untransform-distance transform dx dy Generic Function

Applies the inverse of transform to the distance represented by dx and dy, and re-

turns two values, the transformed dx and the transformed dy.

A distance represents the difference between two points. It does not transform like

a point.

clim:untransform-position transform x y Generic Function

Applies the inverse of transform to the point whose coordinates are x and y, and

returns two values, the transformed X-coordinate and the transformed Y-coordi-

nate.

clim:untransform-position is the spread version of clim:untransform-region in

the case where the region is a point.

clim:untransform-rectangle* transform x1 y1 x2 y2 Generic Function

Applies the inverse of transform to the rectangle specified by the four coordinate

arguments, and returns four values that specify the minimum and maximum points

of the transformed rectangle.

clim:untransform-rectangle* is the spread version of clim:untransform-region in

the case where the region is a rectangle.

Page 1673

clim:untransform-region transformation region Generic Function

Applies the inverse of transformation to region and returns a new transformed re-

gion.

This is equivalent to:

(clim:transform-region

 (clim:invert-transformation transform) region)

�

clim:updating-output (stream &rest args &key (:record-type ’’clim:standard-

updating-output-record) :unique-id (:id-test ’#’eql) :cache-value (:cache-test ’#’eql)
:copy-cache-value :parent-cache :output-record :fixed-position :all-new &allow-other-

keys) &body body�

Macro

Informs CLIM’s incremental redisplay facilities of the characteristics of the output

done by body to stream. Within clim:updating-output, you name a piece of output

(with a unique id), and you state how to determine whether the output changes

(with a cache value).

For related information, see the section "Using clim:updating-output".

:unique-idProvides a means to uniquely identify this output. If :unique-id is

not supplied, CLIM will generate one that is guaranteed to be

unique.

:id-test A function of two arguments that is used for comparing unique ids.

It defaults to eql.

:cache-value

A value that remains constant if and only if the output produced by

body does not need to be recomputed. If the cache value is not sup-

plied, CLIM will not use a cache for this piece of output.

:cache-testA function of two arguments that is used for comparing cache val-

ues. It defaults to eql.

:copy-cache-value

Controls whether the specified cache value should be copied using

copy-seq before it is stored in the output record.

:fixed-position

Declares that the location of this output is fixed relative to its su-

perior. When CLIM redisplays an output record which specified

:fixed-position t, if the contents have not changed, the position of

the output record will not change. If the contents have changed,

CLIM assumes that the code will take care to preserve its position.

:all-new Indicates that all of the output done by body is new, and will never

match output previously recorded.

Page 1674

:record-type

The type of output record that should be constructed. This defaults

to CLIM’s standard clim:updating-output-record class.

clim:user-command-table Clim Command Table

A command table reserved for user-defined commands.

clim-sys:using-resource (variable resource &rest parameters) &body body Macro

The forms in body are evaluated with variable bound to an object allocated from

the resource named name, using the parameters given by parameters. The parame-

ters (if any) are evaluated, but name is not.

After the body has been evaluated, clim-sys:using-resource returns the object in

variable back to the resource. If some form in the body sets variable to nil, the ob-

ject will not be returned to the resource. Otherwise, the body should not changes

the value of variable.

See the section "Resources in CLIM".

clim:value-changed-callback gadget client id value Generic Function

This callback is invoked when the value of a gadget is changed, either by the user

or programatically.

The default method (on clim:value-gadget) calls the function specified by the

:value-changed-callback initarg with two arguments, the gadget and the new val-

ue.

Although you can specialize this function yourself, generally this function will sim-

ply call another programmer-specified callback function.

See the section "Using Gadgets in CLIM".

clim:value-gadget Class

The class used by gadgets that have a value; a subclass of clim:basic-gadget.

All subclasses of clim:value-gadget must handle the two initargs :value and

:value-changed-callback, which are used to specify, respectively, the initial value

and the value changed callback of the gadget. The value changed callback is either

nil or a function of two arguments, the gadget and the new value.

clim:vertically (&rest options &key :spacing &allow-other-keys) &body contents

Macro

The clim:vertically macro lays out one or more child panes vertically, from top to

bottom. The clim:vertically macro serves as the usual interface for creating a

clim:vbox-pane.

Page 1675

:spacing is an integer that specifies how much space should be left between each

child pane, in device units. options may include other pane initargs, such as space

requirement options, :foreground, :background, :text-style, and so forth.

contents is one or more forms that produce the child panes. Each form in contents

is of the form:

• A pane. The pane is inserted at this point and its space requirements are used

to compute the size.

• A number. The specified number of device units should be allocated at this

point.

• The symbol clim:+fill+. This means that an arbitrary amount of space can be

absorbed at this point in the layout.

• A list whose first element is a number and whose second element evaluates to a

pane. If the number is less than 1, then it means that that percentage of excess

space or deficit should be allocated to the pane. If the number is greater than

or equal to 1, then that many device units are allocated to the pane. For exam-

ple:

(clim:vertically ()

 (9/10 (clim:make-clim-application-pane))

 (1/10 (clim:make-clim-interactor-pane)))�

would create a vertical stack of two stream panes. The application pane takes

nine-tenths of the space, and the interactor pane takes one-tenth of the space.

See the section "Using the :LAYOUTS Option to CLIM:DEFINE-APPLICATION-

FRAME".

clim:vbox-pane Class

The layout pane class that arranges its children in a vertical stack. clim:vertically

generates a pane of this type.

In addition to the usual sheet initargs (the space requirement initargs,

:foreground, :background, and :text-style), this class supports two other initargs:

:spacing An integer that specifies the amount of space to leave between each

of the child panes, in device units.

:contents A list of panes that will be the child panes of the box pane.�

clim:window-children window Generic Function

Returns a list of all of the windows that are children (inferiors) of window.

Page 1676

This is identical to clim:sheet-children, and is included only for compatibility with

CLIM 1.1.

clim:window-clear window Generic Function

Clears the entire drawing plane of window, filling it with the background design.

clim:window-clear also discards the window’s output history and resets the cursor

position to the upper left corner.

clim:window-erase-viewport window Generic Function

Clears the visible part of the drawing plane of window, filling it with the back-

ground design.

clim:window-event Class

The class that corresponds to any sort of window event.

clim:window-event-region window-event Generic Function

Returns the region that was affected by the window event window-event.

clim:window-expose window Generic Function

Makes the window visible on the screen.

This is identical to (setf (clim:window-visibility window) t), and is included only

for compatibility with CLIM 1.1.

clim:window-inside-bottom window Function

Returns the coordinate of the bottom edge of the window window.

clim:window-inside-edges window Generic Function

Returns four values, the coordinates of the left, top, right, and bottom inside edges

of the window window. The inside edges are computed by subtracted the window’s

margins from the window’s outside edges. (The outside edges of a window can be

obtained by calling clim:bounding-rectangle* on the window.)

clim:window-inside-height window Function

Returns the inside height of window.

clim:window-inside-left window Function

Page 1677

Returns the coordinate of the left edge of the window window.

clim:window-inside-right window Function

Returns the coordinate of the right edge of the window window.

clim:window-inside-size window Generic Function

Returns the inside width and height of window as two values.

clim:window-inside-top window Function

Returns the coordinate of the top edge of the window window.

clim:window-inside-width window Function

Returns the inside width of window.

clim:window-label window Generic Function

Returns the label (a string) associated with window, or nil if there is none. You

can use setf of clim:window-label to give window a new label.

clim:window-parent window Generic Function

Returns the window that is the parent (superior) of window.

This is identical to clim:sheet-parent, and is included only for compatibility with

CLIM 1.1.

clim:window-refresh window Generic Function

Clears the visible part of the drawing plane of window, and then replays all of the

output records in the visible part of the drawing plane.

clim:window-set-viewport-position window x y Generic Function

Moves the top-left corner of the window’s viewport. This is how you scroll a win-

dow. This function is provided as a more convenient interface to clim:scroll-extent

for the benefit of CLIM 1.1 programs.

clim:window-set-viewport-position, and all other functions that change the posi-

tion of the viewport, also call clim:note-viewport-position-changed to notify the

window that it has been scrolled.

clim:window-stack-on-bottom window Generic Function

Page 1678

Puts the window underneath all other windows that it overlaps.

clim:window-stack-on-top window Generic Function

Puts the window on top of all other windows that it overlaps, so you can see all of

it.

clim:window-viewport window Generic Function

If the pane window is part of a scroller pane, this returns the region of window’s

viewport. Otherwise it returns the region of window itself.

It is often more convenient to use this function instead of clim:pane-viewport-

region.

clim:window-viewport-position window Generic Function

Returns two values, the X and Y coordinates of the top-left corner of the window’s

viewport.

clim:window-visibility stream Generic Function

A predicate that returns true if the window is visible. You can use setf on

clim:window-visibility to expose or deexpose the window.

Note that it is implementation-dependent whether this is true when the window is

partially visible (or partially covered by an overlapping window).

clim:with-accept-help options &body body Macro

Binds the local environment to control Help and control-? documentation for input

to clim:accept.

options is a list of option specifications. Each specification is itself a list of the

form (help-option help-string). help-option is either a symbol that is a help-type or a

list of the form (help-type mode-flag).

help-type must be one of:

:top-level-help

Specifies that help-string be used instead of the default help docu-

mentation provided by clim:accept.

:subhelp Specifies that help-string be used in addition to the default help doc-

umentation provided by clim:accept.

mode-flag must be one of:

:append Specifies that the current help string be appended to any previous

help strings of the same help type. This is the default mode.

Page 1679

:override Specifies that the current help string is the help for this help type;

no lower-level calls to clim:with-accept-help can override this.

(That is, :override works from the outside in.)

:establish-unless-overridden

Specifies that the current help string be the help for this help type

unless a higher-level call to clim:with-accept-help has already es-

tablished a help string for this help type in the :override mode.

This is what clim:accept uses to establish the default help.

help-string is a string or a function that returns a string. If it is a function, it re-

ceives three arguments, the stream, an action (either :help or :possibilities) and

the help string generated so far.

None of the arguments is evaluated.

See the section "Utilities for clim:accept Presentation Methods".

clim:with-activation-gestures (additional-gestures &key :override) &body body

Macro

Specifies gestures that terminate input during the evaluation of body. additional-

gestures is a gesture spec or a form that evaluates to a list of gesture specs.

If :override is t, then then additional-gestures will override the existing activation

gestures. If it is nil (the default), then additional-gestures will be added to the ex-

isting set of activation gestures.

See the :activation-gestures option to clim:accept. See also see the variable

clim:*standard-activation-gestures*.

clim:with-application-frame (frame) &body body Macro

Evaluates body with the variable frame bound to the current application frame.

clim:with-delimiter-gestures (additional-gestures &key :override) &body body Macro

Specifies gestures that terminate an individual token but not the entire input sen-

tence during the evaluation of body. additional-gestures is a gesture spec or a form

that evaluates to a list of gesture specs.

If :override is t, then then additional-gestures will override the existing delimiter

gestures. If it is nil (the default), then additional-gestures will be added to the ex-

isting set of delimiter gestures.

See the :delimiter-gestures option to clim:accept .

clim:with-bounding-rectangle* (left top right bottom) region &body body Macro

Binds left, top, right, and bottom to the edges of the bounding rectangle of region,

and then evaluates body in that context.

Page 1680

left X coordinate of the left side of the region.

top Y coordinate of the top side of the region.

right X coordinate of the right side of the region.

bottom Y coordinate of the bottom side of the region.

region A bounded region or a sheet that has a bounded region. For exam-

ple, a window, and output record, or a geometric object such as a

line or an ellipse.

See the section "Bounding Rectangles in CLIM".

clim:with-command-table-keystrokes (keystroke-var command-table) &body body

Macro

Binds keystroke-var to a list that contains all of the keystroke accelerators in the

command table command-table, and then evaluates body in that context.

(clim:with-command-table-keystrokes (keystrokes command-table)

 (let ((command (clim:read-command-using-keystrokes

 command-table keystrokes

 :stream command-stream)))

 (if (and command (not (typep command ’clim:key-press-event)))

(clim:execute-frame-command frame command)

(clim:beep stream))))�

In general, the keystroke accelerators you choose should not be any characters that

a user can normally type in during an interaction. So for an application using a

command-line interface style, they will typically be non-printing characters such as

#\control-E.

This macro generates keystrokes suitable for use by clim:read-command-using-

keystrokes.

clim:with-drawing-options (medium &key :ink :clipping-region :transformation

:line-style :line-unit :line-thickness :line-dashes :line-joint-shape :line-cap-shape :text-

style :text-family :text-face :text-size) Macro

Binds the state of medium to correspond to the supplied drawing options, and eval-

uates the body with the new drawing options in effect. Each option causes binding

of the corresponding component of the medium for the dynamic extent of the body.

medium can be a medium, a sheet that supports output, or a stream.

Any call to a drawing function can supply a drawing option to override the prevail-

ing one. In other words, the drawing functions effectively do a clim:with-drawing-

options when drawing option arguments are supplied to them.

The default value specified for a drawing option is the value to which the corre-

sponding component of a medium is normally initialized.

Page 1681

For information on the drawing options, see the section "Set of CLIM Drawing Op-

tions".

You can often realize performance improvements when doing graphical output by

wrapping a single call to clim:with-drawing-options around calls to multiple draw-

ing functions that use the same drawing options. See the macro clim:with-

medium-state-cached.

clim:with-end-of-line-action (stream action) &body body Macro

Temporarily changes the end of line action for the duration of evaluation of body.

The end of line action controls what happens if the cursor position moves horizon-

tally out of the viewport, or if text output reaches the text margin. (By default the

text margin is the width of the viewport, so these are usually the same thing.)

The end of line action is one of:

:wrap When doing text output, wrap the text around (that is, break

the text line and start another line). When setting the cursor

position, scroll the window horizontally to keep the cursor posi-

tion inside the viewport. This is the default.

:scroll Scroll the window horizontally to keep the cursor position in-

side the viewport, then keep doing output.

:allow Ignore the text margin and just keep doing output.

clim:with-end-of-page-action (stream action) &body body Macro

Temporarily changes the end of page action for the duration of evaluation of body.

The end of page action controls what happens if the cursor moves vertically out of

the viewport.

The end of page action is one of:

:scroll Scroll the window vertically to keep the cursor position inside

the viewport, then keep doing output. This is the default.

:allow Ignore the viewport and just keep doing output.

:wrap Wrap the text around (that is, go back to the top of the view-

port). This is not currently implemented.

clim:with-first-quadrant-coordinates (&optional stream x y) &body body Macro

Binds the dynamic environment to establish a local coordinate system with the pos-

itive X-axis extending to the right and the positive Y-axis extending upward, with

(0,0) at the current cursor position of stream.

Page 1682

clim:with-input-context (type &key :override) (&optional object-var type-var event-

var options-var) form &body clauses Macro

Establishes an input context of type type. When :override is nil (the default), this

invocation of clim:with-input-context adds its context presentation type to the ex-

tant context. In this way an application can solicit more than one type of input at

the same time. When :override is t, it overrides the current input context rather

than nesting inside the current input context.

After establishing the new input context, form is evaluated. If no pointer gestures

are made by the end user during the evaluation of form, all of the values of form

are returned. Otherwise, if the user invoked a translator by clicking on an object,

one of the clauses is evaluated, based on the presentation type of the object re-

turned by the translator. All of the values of that clause are are returned as the

values of clim:with-input-context. During the evaluation of one of the clauses, ob-

ject-var is bound to the object returned by the translator, type-var is bound to the

presentation type returned by the translator, and event-var is bound to the event

corresponding to the user’s gesture. options-var is bound to any options that the

translator might have returned, and will be either nil or a list of keyword-value

pairs.

clauses is constructed like a typecase statement clause list whose keys are presen-

tation types.

Note that, when one of the clauses is evaluated, nothing is inserted into the input

buffer. If you want to insert input corresponding to the object the user clicked on,

you must call clim:replace-input or clim:presentation-replace-input.

Only the arguments type and :override are evaluated.

(clim:with-input-context (’pathname)

 (path)

 (read)

 (pathname

 (format t "~&The pathname ~A was clicked on." path)))

�

clim:with-input-editing (&optional stream &key :input-sensitizer :initial-contents

:class) &body body Macro

Establishes a context in which the user can edit the input he or she types in on

the stream stream. body is then evaluated in this context, and the values returned

by body are returned as the values of clim:with-input-editing. stream defaults to

standard-input.

:class defaults to CLIM’s standard input editing stream class. :input-sensitizer, if it

is supplied, is a function of two arguments, a stream and a continuation. The :in-

put-sensitizer function should call the continuation on the stream. For example, the

implementation of clim:accept uses something like the following in order to make

the user’s input sensitive as a presentation for later use:

Page 1683

�

(flet ((input-sensitizer (continuation stream)

 (if (clim:stream-record-p stream)

 (clim:with-output-as-presentation (stream object type)

 (funcall continuation stream))

 (funcall continuation stream))))

 (clim:with-input-editing (stream :input-sensitizer #’input-sensitizer)

 ...))

�

:initial-contents is a string to use as the initial contents of the buffer for the

stream to be edited.

See the section "Input Editing and Built-in Keystroke Commands in CLIM".

clim:with-input-editor-typeout (&optional stream &key :erase) &body body Macro

If, when you are inside of a call to clim:with-input-editing, you want to perform

some sort of typeout, it should be done inside clim:with-input-editor-typeout.

stream is the input editing stream and body is the code that will do output to the

stream. stream defaults to *standard-input*.

For more information on the input editor, see the section "The Structure of the

CLIM Input Editor".

clim:with-input-focus (stream) &body body Macro

Temporarily gives the keyboard input focus to the given window (which is most

often an interactor pane). By default, a frame will give the input focus to the

clim:frame-query-io pane.

For example, suppose you want the user to supply some input in a ‘‘pop up’’, after

which the window ‘‘pops down’’ again. The following function will do this.

(defun do-pop-up-text-editing (window)

 (setf (clim:window-visibility window) t)

 (unwind-protect

 (clim:with-input-focus (window)

(clim:with-input-editing (window)

 (clim:with-activation-gestures (’(:end) :override t)

 (unwind-protect

(clim:read-token window)

 ;; Eat the activation gesture if it’s still there

 (clim:read-gesture :stream window :peek-p t :timeout 0)))))

 (setf (clim:window-visibility window) nil)))�

clim:with-local-coordinates (&optional stream x y) &body body Macro

Page 1684

Binds the dynamic environment to establish a local coordinate system with the pos-

itive X-axis extending to the right and the positive Y-axis extending downward,

with (0,0) at the current cursor position of stream.

clim-sys:with-lock-held (place &optional state) &body forms Macro

Evaluates body while holding the lock named by place. place is a reference to a

lock created by clim-sys:make-lock.

On systems that do not support locking, clim-sys:with-lock-held is equivalent to

progn.

See the section "Locks in CLIM".

clim:with-medium-state-cached (medium) &body body Macro

Declares that all of the drawing operations within body will use exactly the same

drawing options. This allows CLIM back-ends to cache the state of the medium so

that the medium does not need to be ‘‘decoded’’ for each drawing operation. Used

in conjunction with clim:with-drawing-options, this can result in substantial per-

formance improvements when doing graphical output, whether or not output

recording is enabled or disabled.

clim:with-menu (menu &optional associated-window &rest options &key :label

:scroll-bars) &body body Macro

Binds menu to a temporary window, exposes the window on the same screen as the

associated-window, runs the body, and then deexposes the window. The values re-

turned by clim:with-menu are the values returned by body.

menu The name of a variable which is bound to the window to be used

for the menu.

associated-window

A window that this window is associated with, typically a pane of an

application frame. If not supplied, associated-window will default to

the top-level window of the current application frame.

:label A string to use to label the menu. The default is nil, meaning that

there is no label.

:scroll-bars

Indicates whether the new window should have scroll bars. One of

nil, :none, :vertical, :horizontal, or :both. The default is :vertical.

Example

This example shows how to use clim:with-menu with clim:menu-choose-from-

drawer to draw a temporary menu.

Page 1685

(defun choose-compass-direction ()

 (labels ((draw-compass-point (stream ptype symbol x y)

 (clim:with-output-as-presentation (stream symbol ptype)

 (clim:draw-string* stream (symbol-name symbol)

 x y

 :align-x :center

 :align-y :center

 :text-style

 ’(:sans-serif :roman :large))))�

 (draw-compass (stream ptype)

 (clim:draw-line* stream 0 25 0 -25

 :line-thickness 2)

 (clim:draw-line* stream 25 0 -25 0

 :line-thickness 2)

 (loop for point in ’((n 0 -30) (s 0 30)

 (e 30 0) (w -30 0))

 do (apply #’draw-compass-point

 stream ptype point))))�

 (clim:with-menu (menu)

 (clim:menu-choose-from-drawer

 menu ’clim:menu-item #’draw-compass))))�

clim:with-menu can also be used to allocate a temporary window for other uses.

You can use clim:position-sheet-carefully and clim:size-frame-from-contents to

set the size and position of windows created using clim:with-menu.

clim:with-new-output-record (stream &optional record-type record &rest initargs)

&body body Macro

Creates a new output record of type record-type (which defaults to CLIM’s default

‘‘linear’’ output record) and then captures the output of body into the new output

record. The new record is then inserted into the current ‘‘open’’ output record as-

sociated with stream (or the top level output record if there is no currently ‘‘open’’
one).

If record is supplied, it is the name of a variable that will be lexically bound to

the new output record inside of body. init-args are initialization arguments that

are passed to clos:make-instance when the new output record is created.

clim:with-new-output-record returns the output record it creates.

See the section "Concepts of CLIM Output Recording".

clim:with-output-as-gadget (stream &rest options) &body body Macro

Evaluates body to create a gadget, creates a gadget output record containing the

gadget, and installs the output record into the output history of the stream. The

returned value of body must be the gadget.

Page 1686

The options in options are passed as CLOS initargs to the call to clim:invoke-

with-new-output-record that is used to create the gadget output record.

For example, the following could be used to create an output record containing a

radio box that itself contains several toggle buttons:

(clim:with-output-as-gadget (stream)

 (let* ((radio-box

 (clim:make-pane ’clim:radio-box

 :client stream :id ’radio-box)))

 (dolist (item sequence)

 (clim:make-pane ’clim:toggle-button

 :label (princ-to-string (item-name item))

 :value (item-value item)

 :id item :parent radio-box))

 radio-box))�

A more complex (and somewhat contrived) example of a push button that calls

back into the presentation type system to execute a command might be as follows:

(clim:with-output-as-gadget (stream)

 (clim:make-pane ’clim:push-button

 :label "Click here to exit"

 :activate-callback

 #’(lambda (button)

 (declare (ignore button))

 (clim:throw-highlighted-presentation

 (make-instance ’clim:standard-presentation

 :object ‘(com-exit ,clim:*application-frame*)

 :type ’command)

 clim:*input-context*

 (make-instance ’clim:pointer-button-press-event

 :sheet (clim:sheet-parent button)

 :x 0 :y 0

 :modifiers 0

 :button clim:+pointer-left-button+)))))�

clim:with-output-as-presentation (stream object type &key :modifier :single-box (:al-

low-sensitive-inferiors t) :parent :record-type) &body body Macro

Gives separate access to the two aspects of clim:present: recording the presenta-

tion and drawing the visual representation. This macro generates a presentation

from the output done in the body to the stream. The presentation’s underlying ob-

ject is object, and its presentation type is type. For information on the syntax of

specifying a presentation type, see the section "How to Specify a CLIM Presenta-

tion Type".

All arguments of this macro are evaluated.

clim:with-output-as-presentation returns a presentation.

Page 1687

Note that CLIM captures the presentation type for its own use, so you should not

modify it once you have handed it to CLIM.

Each invocation of this macro results in the creation of a presentation object in

the stream’s output history unless output recording has been disabled or :allow-

sensitive-inferiors nil was specified at a higher level, in which case the presenta-

tion object is not inserted into the history.

For background information, see the section "Presentation Types in CLIM".

stream

The stream to which output should be sent. The default is

standard-output.

:modifier

Specifies a function of one argument (the new value) that can

be called in order to store a new value for object after the user

edits the presentation. The default is nil.

:single-box Controls how CLIM determines whether the pointer is pointing

at this presentation and controls how this presentation is high-

lighted when it is sensitive.

The possible values are:

t If the pointer’s position is inside the bound-

ing rectangle of this presentation, it is con-

sidered to be pointing at this presentation.

This presentation is highlighted by highlight-

ing its bounding rectangle.

nil If the pointer is pointing at a visible piece of

output (text or graphics) drawn as part of the

visual representation of this presentation, it

is considered to be pointing at this presenta-

tion. This presentation is highlighted by high-

lighting every visible piece of output that is

drawn as part of its visual representation.

This is the default.

:position Like t for determining whether the pointer is

pointing at this presentation, like nil for

highlighting.

:highlighting Like nil for determining whether the pointer

is pointing at this presentation, like t for

highlighting.

Supplying :single-box :highlighting is useful when the default

behavior produces an ugly appearance (for example, a very

jagged highlighting box).

Page 1688

Supplying :single-box :position is useful when the visual rep-

resentation of a presentation consists of one or more small

graphical objects with a lot of space between them. In this

case the default behavior offers only small targets that the

user might find difficult to position the pointer over.

:allow-sensitive-inferiors

When :allow-sensitive-inferiors is nil, it indicates that nested

calls to clim:present or clim:with-output-as-presentation in-

side this one should not generate presentations. The default is

t.

:record-type

This option is useful when you have defined a customized

record type to replace CLIM’s default record type. It specifies

the class of the output record to be created.

clim:with-output-recording-options (stream &key :draw :record) &body body Macro

Used to disable output recording and/or drawing on the given stream, within the

extent of body.

If :draw is nil, output to the stream is not drawn on the viewport, but can still be

recorded in the output history. If :record is nil, output recording is disabled but

output otherwise proceeds normally.

clim:with-output-to-output-record (stream &optional record-type record &rest ini-

targs) &body body Macro

This is similar to clim:with-new-output-record except that the new output record

is not inserted into the output record hierarchy. That is, when you use clim:with-

output-to-output-record no drawing on the stream occurs and nothing is put into

the stream’s normal output history. Unlike in facilities such as with-output-to-

string, stream must be an actual stream, but no output will be done to it.

record-type is the type of output record to create, which defaults to CLIM’s default

output record type. init-args are CLOS init keywords which are used to initialize

the record.

If record is supplied, it is a variable which will be bound to the new output record

while body is evaluated.

See the section "Concepts of CLIM Output Recording".

clim:with-output-to-pixmap (medium-var medium &key :width :height) &body body�

Macro

Binds medium-var to a ‘‘pixmap medium’’, that is, a medium that does output to a

pixmap with the characteristics appropriate to the medium medium, and then eval-

uates body in that context. All the output done to the medium designated by medi-

um-var inside of body is drawn on the pixmap stream.

Page 1689

In Genera, you may call stream output functions (such as write-char and write-

string) from within body, but not all CLIM implementations will necessarily sup-

port this.

:width and :height are integers that give the width and height of the pixmap. If

they are unsupplied, the result pixmap will be just large enough to contain all of

the output done by body.

medium-var must be a symbol; it is not evaluated.

The returned value is a pixmap that can be drawn onto medium using clim:copy-

from-pixmap.

clim:with-output-to-postscript-stream (stream-var file-stream &key :device-type

(:orientation :portrait) :multi-page :scale-to-fit :header-comments (:destination�

:printer)) &body body Macro

Within body, stream-var is bound to a stream that produces PostScript code. This

stream is suitable as a stream or medium argument to any CLIM output utility. A

PostScript program describing the output to the stream-var stream will be written

to file-stream.

:device-type The class of PostScript display device to use. The only device

class currently provided is is suitable for generating PostScript

for the printers such as the Apple LaserWriter.

:orientation Specifies the orientation (portrait or landscape) of the output.

It can be either :portrait or :landscape. The default is

:portrait.

:multi-page When supplied as t, any output that is larger than the size of

a page will automatically be broken up into several pages. (No

hints are given as to how the resulting pages should be pieced

together; you’re on your own here.) This defaults to nil.

:scale-to-fit When supplied as t, this causes the output to be scaled so that

it fits on a single page. This defaults to nil. It does not make

sense to supply both :multi-page and :scale-to-fit.

:header-comments This allows you to specify some PostScript header comment

fields for the resulting PostScript program. The argument

should be a list of alternating keyword and value pairs. These

are the supported keywords:

:title Specifies a title for the document, as it will

appear in the "%%Title:" header comment.

:for Specifies who the document is for. The as-

sociated value will appear in a "%%For:"

document comment.�

Page 1690

:destination One of either :printer or :document. When it is :printer, the

output file will include a PostScript ‘‘showpage’’ command that

causes the output to be sent to the printer. When it is

:document, the ‘‘showpage’’ command will not be included in

the output file, making it suitable for inclusion in other docu-

ments.

See the section "Hardcopy Streams in CLIM".

Note: The PostScript programs written by this implementation do not conform

to the conventions described under "Appendix C: Structuring Conven-

tions" of the PostScript Language Reference Manual. Software tools which

attempt to determine information about these PostScript programs based

on "%%" comments within them will be unsuccessful.

clim:with-presentation-type-decoded (name-var &optional parameters-var options-

var) type &body body Macro

The specified variables are bound to the components of the presentation type spec-

ifier, the forms in body are evaluated, and the values of the last form are re-

turned. The value of the type must be a presentation type specifier. name-var, if

non-nil, is bound to the presentation type name. parameters-var, if present and

non-nil, is bound to a list of the parameters. options-var, if present and non-nil, is

bound to a list of the options.

clim:with-presentation-type-options (type-name type) &body body Macro

Variables with the same name as each option in the definition of the presentation

type are bound to the option values in type, if present, or else to the defaults spec-

ified in the definition of the presentation type. The forms in body are evaluated in

the scope of these variables and the values of the last form are returned.

The value of the form type must be a presentation type specifier whose name is

type-name. type-name is not evaluated.

clim:with-presentation-type-parameters (type-name type) &body body Macro

Variables with the same name as each parameter in the definition of the presenta-

tion type are bound to the parameter values in type, if present, or else to the de-

faults specified in the definition of the presentation type. The value of the form

type must be a presentation type specifier whose name is type-name. type-name is

not evaluated. The forms in body are evaluated in the scope of these variables and

the values of the last form are returned.

clim:with-radio-box (&rest options &key (:type ’:one-of) &allow-other-keys) &body

body Macro

Page 1691

Creates a radio box or a check box whose buttons are created by the forms in

body. The macro clim:radio-box-current-selection (or clim:check-box-current-

selection) can be wrapped around one of forms in body in order to indicate that

that button is the current selection. If :type is :one-of, this macro creates a radio

box. If :type is :some-of, it creates a check box.

See the section "Using Gadgets in CLIM".

For example, the following creates a radio box with three buttons in it, the second

of which is initially selected.

(clim:with-radio-box ()

 (clim:make-pane ’clim:toggle-button :label "Mono")

 (clim:radio-box-current-selection

 (clim:make-pane ’clim:toggle-button :label "Stereo"))

 (clim:make-pane ’clim:toggle-button :label "Quad"))�

The following simpler form can also be used when you do not need to control the

appearance of each button closely:

(clim:with-radio-box ()

 "Mono" "Stereo" "Quad")�

clim-sys:with-recursive-lock-held (place &optional state) &body forms Macro

Evaluates body while holding the recursive lock named by place. place is a refer-

ence to a recursive lock created by clim-sys:make-recursive-lock.

On systems that do not support locking, clim-sys:with-recursive-lock-held is

equivalent to progn.

See the section "Locks in CLIM".

clim:with-room-for-graphics (&optional stream &key :height (:first-quadrant t)

(:move-cursor t) :record-type) &body body Macro

Binds the dynamic environment to establish a local coordinate system for doing

graphics output onto stream. body is evaluated to produce the output.

If :first-quadrant is t (the default), a local Cartesian coordinate system is estab-

lished with the origin (0,0) of the local coordinate system placed at the current

cursor position; (0,0) is in the lower left corner of the area created.

If :move-cursor is t (the default), then after the graphic output is completed, the

cursor is positioned past (immediately below) this origin. The bottom of the verti-

cal block allocated is at this location (that is, just below point (0,0), not necessarily

at the bottom of the output done).

If :height is supplied, it should be a number that specifies the amount of vertical

space to allocate for the output, in device units. If it is not supplied, the height is

computed from the output.

Page 1692

:record-type specifies the class of output record to create to hold the graphical out-

put. The default is clim:standard-sequence-output-record.

clim:with-rotation (medium angle &optional origin) &body body Macro

Establishes a rotation on medium that rotates clockwise by angle (in radians), and

then evaluates body with that transformation in effect. If origin is supplied, the ro-

tation is about that point. The default for origin is (0,0).

This is equivalent to using clim:with-drawing-options with the :transformation

keyword argument supplied:

(clim:with-drawing-options

 (medium :transformation

 (clim:make-rotation-transformation angle origin))

 body)�

clim:with-scaling (medium sx &optional sy) &body body Macro

Establishes a scaling transformation on medium that scales by sx in the X direc-

tion and sy in the Y direction, and then evaluates body with that transformation in

effect. If sy is not supplied, it defaults to sx.

This is equivalent to using clim:with-drawing-options with the :transformation

keyword argument supplied:

(clim:with-drawing-options

 (medium :transformation

 (clim:make-scaling-transformation sx sy))

 body)�

clim:with-sheet-medium (medium sheet) &body body Macro

Within the body, the variable medium is bound to sheet’s medium. If the sheet

does not have a medium permanently allocated, one will be allocated, associated

with the sheet for the duration of the body, and deallocated as the when the body

has been exited. The values of the last form of the body are returned as the val-

ues of clim:sheet-medium.

The medium argument is not evaluated, and must be a symbol that is bound to a

medium.

See the section "Sheet Output Protocols".

clim:with-text-face (medium face) &body body Macro

Binds the current text face of medium to correspond to the new text face face,

within the body. face is one of :roman, :bold, :italic, (:bold :italic), or nil. The de-

fault for medium is *standard-output*.

Page 1693

This is the same as:

(clim:with-drawing-options (medium :text-face face)

 body)�

Using clim:with-text-family affects clim:medium-text-style.

See the section "CLIM Text Style Objects".

clim:with-text-family (medium family) &body body Macro

Binds the current text family of medium to correspond to the new text family fam-

ily, within the body. family is one of :fix, :serif, :sans-serif, or nil. The default for

medium is *standard-output*.

This is the same as:

(clim:with-drawing-options (medium :text-family family)

 body)�

Using clim:with-text-family affects clim:medium-text-style.

See the section "CLIM Text Style Objects".

clim:with-text-size (medium size) &body body Macro

Binds the current text size of medium to correspond to the new size text size,

within the body. size is one of the logical sizes (:normal, :small, :large, :very-

small, :very-large, :smaller, :larger), or a real number representing the size in

printer’s points, or nil. The default for medium is *standard-output*.

This is the same as:

(clim:with-drawing-options (medium :text-size size)

 body)�

Using clim:with-text-size affects clim:medium-text-style.

See the section "CLIM Text Style Objects".

clim:with-text-style (medium style) &body body Macro

Binds the current text style of medium to correspond to the new text style, within

the body. style is a text style object. The default for medium is *standard-output*.

This is the same as:

(clim:with-drawing-options (medium :text-style style)

 body)�

Using clim:with-text-style affects clim:medium-text-style.

See the section "CLIM Text Style Objects".

Page 1694

clim:with-translation (medium dx dy) &body body Macro

Establishes a scaling transformation on medium that scales by dx in the X direc-

tion and dy in the Y direction, and then evaluates body with that transformation

in effect.

This is equivalent to using clim:with-drawing-options with the :transformation

keyword argument supplied:

(clim:with-drawing-options

 (medium :transformation

 (clim:make-translation-transformation dx dy))

 body)�

clim-sys:without-scheduling &body forms Macro

Evaluates body in a context that is guaranteed to be free from interruption by oth-

er processes. This returns the value of the last form in body.

On systems that do not support multi-processing, clim-sys:without-scheduling is

equivalent to progn.

clim:write-token token stream &key :acceptably Function

clim:write-token is the opposite of clim:read-token: given the string token, it

writes it to the stream stream. If :acceptably is t and there are any characters in

token that are delimiter gestures (see the macro clim:with-delimiter-gestures),

then clim:write-token will surround the token with quotation marks, #\".

It is appropriate to use clim:write-token instead of write-string inside of

clim:present methods.

CLIM Glossary

Glossary of CLIM Terminology

adopted (of a sheet) A sheet is said to be adopted when it has a parent

sheet.

affine transformation

See transformation.

ancestors The parent of a sheet or an output record, and all of the ances-

tors of the parent, recursively.

applicable (of a presentation translator) A presentation translator is said to

be applicable when the pointer is pointing to a presentation

whose presentation type matches the current input context, and

the other criteria for translator matching have been met.

Page 1695

application frame In general, a program that interacts directly with a user to

perform some specific task. In CLIM, a frame is the central

mechanism for presenting an application’s user interface. Also,

a Lisp object that holds the information associated with such a

program, including the panes of the user interface and applica-

tion state variables.

background The design that is used when erasing, that is, drawing on a

medium using clim:+background-ink+.

bounding rectangle

The smallest rectangle that surrounds a bounded region and

contains every point in the region; it may contain additional

points as well. The sides of a bounding rectangle are parallel

to the coordinate axes. Also, a Lisp object that represents a

bounding rectangle.

coordinates A pair of real numbers that identify a point in the drawing

plane.

cache value During incremental redisplay, CLIM uses the cache value to de-

termine whether or not a piece of output has changed.

children (of a sheet or output record) The direct descendants of a sheet

or an output record.

color An object representing the intuitive definition of a color, such

as black or red. Also, a Lisp object that represents a color. See

also ink.

command An object that represents a user interaction. Each command

has a name, which is a symbol. A command can also have ar-

guments, both positional and keyword arguments. A user may

enter a command in several different ways, by typing, by using

a menu, or by directly clicking the mouse on some output. Al-

so, a Lisp object that represents a command; a cons of the

command name and the list of the command’s arguments.

command-defining macro

A Lisp macro for defining the commands specific to a particu-

lar application frame, defined by CLIM when the application

frame is defined.

command-line name

The name that the end user sees and uses during command

line interactions. This is not the same thing as the command

name. For example, the command com-show-chart might have

a command-line name of "Show Chart".

command name A symbol that names a CLIM command.

command parser The part of CLIM’s command loop that performs the conver-

sion of strings of characters (usually what the user typed) into

a command.

Page 1696

command table A way of collecting and organizing a group of related com-

mands, and defining the interaction styles that can be used to

invoke those commands. Also, a Lisp object that represents a

command table.

completion A facility provided by CLIM for completing user input from a

set of possibilities.

compositing (of designs) The creation of a new design whose appearance at

each point is a composite of the appearances of two other de-

signs at that point. There are three varieties of compositing:

composing over, composing in, and composing out.

composition (of transformations) The transformation from one coordinate

system to another, then from the second to a third can be rep-

resented by a single transformation that is the composition of

the two component transformations. Transformations are closed

under composition. Composition is not commutative. Any arbi-

trary transformation can be built up by composing a number of

simpler transformations, but that composition is not unique.

context sensitive input

The facility in CLIM that allows an interface to describe what

sort of input it expects by specifying the input’s type. That

type is called a presentation type.

cursor The place in the drawing plane of a stream where the next

piece of text output will appear.

degrafted (of a sheet) Not grafted, that is, not attached to any display

server.

descendants All of the children of a sheet or an output record, and all of

their descendants, recursively.

design An object that represents a way of arranging colors and opaci-

ties in the drawing plane. A mapping from an (x,y) pair into

color and opacity values. A design is the generalization of a re-

gion into the color domain.

direct manipulation

A style of interaction with an application where the user indi-

cates the desired task by performing an analogous action in

the interface. For instance, deleting a file by dragging an icon

representing the file over another icon that looks like a trash

can, or connecting two components in a circuit simulation by

drawing a line representing a connection between two icons

representing the components.

disabled (of a sheet) Not enabled.

disowned (of a sheet) Not adopted, that is, not having any parent sheet.

Page 1697

display function The function, associated with a particular pane in an applica-

tion frame, that performs the ‘‘appropriate’’ output for that

pane.

display server A device on which output can appear, such as an X console or

a PostScript printer.

displayed output record

An output record that corresponds to a visible piece of output,

such as text or graphics. A leaf in an output record tree.

drawing plane An imaginary two-dimensional plane, on which graphical output

occurs, that extends infinitely in all directions and has infinite

resolution. A drawing plane contains an arrangement of colors

and opacities that is modified by each graphical output opera-

tion. The drawing plane provides an idealized version of the

graphics you draw. CLIM transfers the graphics from the

drawing plane to a host window by a process called rendering.

enabled (of a sheet) A sheet is said to be enabled when it is actively

participating in the windowing relationship with its parent.

event Some sort of significant event, such as a user gesture (such as

moving the pointer, pressing a pointer button, or typing a

keystroke) or a window configuration event (such as resizing a

window). Also, a Lisp object that represents an event.

flipping ink An ink that interchanges occurrences of two designs, such as

might be done by ‘‘XOR’’ on a monochrome display. Also, a

Lisp object that represents a flipping ink.

foreground The design that is used when drawing on a medium using

clim:+foreground-ink+.

formatted output Output that obeys some high level constraints on its appear-

ance, such as being arranged in a tabular format, or justified

within some margins. The CLIM facility that provides a pro-

grammer the tools to produce such output.

frame See application frame.

frame manager An object associated with a port that controls the realization of

the look and feel of an application frame. It is responsible for

creating panes and gadgets, laying out menus and dialogs, and

doing other tasks related to look and feel.

fully specified (of a text style) Having components none of which are nil, and

not having a relative size (that is, neither :smaller nor

:larger).

gesture Some sort of input action by a user, such as typing a character

or clicking a pointer button. User gestures are frequently rep-

resented by event objects.

Page 1698

gesture name A symbol that gives a name to a class of gestures, for example,

:select is commonly used to indicate a left pointer button click.

gesture spec A platform-independent way of specifying some sort of input

gesture, such as a pointer button press or a key press. For ex-

ample, the control-D ‘‘character’’ is specified by the gesture

spec (:D :control).

graft A kind of mirrored sheet that represents a host window, typi-

cally a ‘‘root’’ window.

grafted (of a sheet) Having an ancestor sheet that is a graft. A grafted

sheet will be visible on a display server, unless it is clipped or

occluded by some other window on the same display.

highlighted A visual indication that the presentation under the pointer is

sensitive, and can thus be entered as input to the program cur-

rently accepting input. Highlighting might appear as a box

drawn around the presentation, or as a different appearance of

the presentation, such as a bold text style.

incremental redisplay

The redrawing of part of some output while leaving other out-

put unchanged. The CLIM facility that implements this behav-

ior.

indirect ink An ink whose exact behavior depends on the context in which

it is used. Drawing with an indirect ink is the same as draw-

ing with another ink named directly. clim:+foreground-ink+
and clim:+background-ink+ are both indirect inks.

ink Any member of the class design supplied as the :ink argument

to a CLIM drawing function.

input context A state in which a program is expecting input of a certain

type. A command that takes arguments as input specifies the

presentation type of each argument. When the command is

given, an input context is set up in which presentations that

are appropriate are sensitive (they are highlighted when the

pointer passes over them). Also, a Lisp object that represents

an input context.

input editor The CLIM facility that allows a user to modify typed-in input.

input editing stream

A CLIM stream that supports input editing.

interactive stream A stream that supports both input from and output to the user

in an interactive fashion.

keyboard accelerator

A single key or key chord (that is, set of keys pressed togeth-

er) used to issue an entire command.

Page 1699

line style Advice to CLIM’s rendering substrate on how to draw a path,

such as a line or an unfilled ellipse or polygon. Also, a Lisp ob-

ject that represents a line style.

medium A destination for output, having a drawing surface, two designs

called the medium’s foreground and background, a transforma-

tion, a clipping region, a line style, and a text style. Also, a Lisp

object that represents a medium.

mirror The host window system object associated with a mirrored

sheet, such as a window on Genera or an X11 display server.

mirrored sheet A special class of sheet that is attached directly to a window on

a display server. A graft is one kind of a mirrored sheet. On

some platforms, many of the gadgets (such as scroll bars and

push buttons) will be mirrored sheets as well.

mixed mode interface

An interface to an application that allows more than one style

or mode of interaction. For example a user might be able to

enter the same command by typing it, by clicking on a menu

button, or by dragging an icon.

opacity A way of controlling how new graphical output covers previous

output, such as fully opaque to fully transparent, and levels of

translucency between. Also, a Lisp object that represents an

opacity.

output history The highest level output record for an output recording stream.

output record An object that remembers the output performed to an output

recording stream. Also, a Lisp object that represents an output

record.

output recording The process of remembering the output performed to a stream.

Output recording is the basis for other CLIM facilities, such as

formatted output, incremental redisplay, and context-sensitive

input.

output recording stream

A CLIM stream that remembers and can replay its output.

pane A sheet or window that appears as the child of some other win-

dow or frame. A composite pane can hold other panes; a leaf

pane cannot. An application frame is normally composed of a

hierarchy of panes.

parameterized presentation type

A presentation type whose semantics are modified by parame-

ters. A parameterized presentation type is always a subtype of

the presentation type without parameters. For example,

(integer 0 10) is a parameterized type indicating an integer in

the range of zero to ten. Parameterized presentation types are

analogous to Common Lisp types that have parameters.

Page 1700

parent The direct ancestor of a sheet or an output record.

patterning The process of creating a bounded rectangular arrangement of

designs, like a checkerboard. A pattern is a design created by

this process.

pixmap An ‘‘off-screen window’’, that is, an object that can be used for

graphical output, but is not visible on any display device.

point A region that has dimensionality 0, that is, has only a position.

Also, a Lisp object that represents a point.

pointer An input device that enables pointing to an area of the screen,

such as a mouse, tablet, or other pointing device.

pointer documentation

Short documentation associated with a presentation that de-

scribes what will happen when any button on the pointer is

pressed.

port A connection to a display server that is responsible for manag-

ing host display server resources and for processing input

events received from the host display server.

position A location on a plane, such as CLIM’s abstract drawing plane.

A pair of real number values (x,y) that represent a position.

presentation An association between an object and a presentation type with

some output on an output recording stream. Also, a Lisp object

that represents a presentation, consisting of at least three

things: the underlying application object, its presentation type,

and its displayed appearance.

presentation method

A method that supports some part of the behavior of a presen-

tation type, such as the clim:accept method (which parses key-

board input into an object of this type) and the clim:present

method (which displays the object as a presentation which will

be sensitive in matching contexts).

presentation testerA predicate that restricts the applicability of a presentation

translator. It is used only to prevent a translation that would

otherwise happen.

presentation-to-command translator

A particular type of presentation translator where the ‘‘to type’’

(that is, the type of presentation resulting from the transla-

tion) is a command.

presentation translator

A mapping from an object of one presentation type, an input

context, and a gesture to an object of another presentation type.

In effect, a translator broadens an input context so that some

presentations are sensitive when the program seeking input is

Page 1701

expecting a different type. A presentation translator enables

the user to enter a presentation of a related type which can be

translated into input of the expected type.

presentation type A description of a class of presentations. The semantic type of

an object to be displayed to the user.

presentation type specifier

The syntax for specifying a presentation type to CLIM func-

tions such as clim:accept, clim:present, and others. There are

three patterns for specifying presentation types, the first being

simply its name, and the other two enabling you to specify its

parameters and options.

programmer A person who writes application programs using CLIM.

rectangle A four-sided polygon whose sides are parallel to the coordinate

axes. Also, a Lisp object that represents a rectangle.

redisplay See incremental redisplay.

region A set of mathematical points in the plane; a mapping from an

(x,y) pair into either true or false (meaning member or not a

member, respectively, of the region). In CLIM, all regions in-

clude their boundaries (that is, they are closed) and have infi-

nite resolution. Also, a Lisp object that represents a region.

rendering The process of drawing a shape (such as a line or a circle) on

a display device. Rendering is an approximate process, since an

abstract shape exists in a continuous coordinate system having

infinite precision, whereas display devices must necessarily

draw discrete points having some measurable size.

repainting The act of redrawing all of the sheets or output records in a

‘‘damage region’’, such as occurs when a window is raised

from underneath occluding windows.

replaying The process of redrawing a set of output records.

sensitive (of a presentation) Relevant to the current input context. A pre-

sentation is sensitive if some action will take place when the

user clicks on it with the pointer, that is, there is at least one

presentation translator that is applicable. In this case, the pre-

sentation will usually be highlighted.

sheet The basic unit of windowing in CLIM. A sheet’s attributes al-

ways include a region and a mapping to the coordinate system

of its parent, and may include other attributes, such as a medi-

um and event handling. Also, a Lisp object that represents a

sheet.

sheet region The region that a sheet occupies.

sheet transformation

A transformation that maps the coordinates of a sheet to the

coordinate system of its parent, if it has a parent.

Page 1702

stream A kind of sheet that implements the stream protocol (such as

doing textual input and output, and maintaining a text cursor).

text face The component of a text style that specifies a variety or modifi-

cation of a text family, such as bold or italic.

text family The highest level component of a text style that specifies the

common appearance of all the characters. Characters of the

same family have a typographic integrity so that all characters

of the same family resemble one another, such as :sans-serif.

text size The component of a text style that specifies the size of text.

text style A description of how textual output should appear, consisting

of family, face code, and size. Also, a Lisp object that repre-

sents a text style.

tiling The process of repeating a rectangular portion of a design

throughout the drawing plane. A tile is a design created by this

process.

top level sheet The single, topmost sheet associated with an entire application

frame. All the panes of the frame are descendants of this

sheet.

transformation A mapping from one coordinate system onto another that pre-

serves straight lines. General transformations include all the

sorts of transformations that CLIM uses, namely, translations,

scaling, rotations, and reflections. Also, a Lisp object that rep-

resents a transformation.

unique id During incremental redisplay, the unique id is an object used to

uniquely identify a piece of output. The output named by the

unique id will often have a cache value associated with it.

When incremental redisplay finds a unique id that it has seen

before and its cache value has changed since the last time re-

display was done, then CLIM will redraw that piece of output.

user A person who uses an application program that was written us-

ing CLIM.

view A way of displaying a presentation. Views can serve to mediate

between presentations and gadgets. Also, a Lisp object that

represents a view.

viewport The region of the drawing plane that is visible on a window.

