
CLIM 1.0 Release Notes and Installation Guide

Overview of CLIM

CLIM, the Common Lisp Interface Manager, is a portable high-level object-oriented

user-interface management system. It provides a full spectrum of capabilities for

describing the user interface of an application and implementing that user inter-

face on a variety of computers and window systems.

CLIM is portable in several respects. It is written in a standard dialect of Common

Lisp and CLOS, and is therefore executable by numerous computers provided by

various vendors. Also, user interfaces described by CLIM are independent of any

particular window system or output device, so that CLIM applications are readily

portable to different hardware and software platforms.

CLIM provides high level facilities for describing a user interface. Complex user

interface behaviors such as incremental redisplay, formatting textual and graphical

output, context sensitive documentation, direct manipulation, and mixed keyboard-

mouse interaction are easily described with a minimum of specialized code.

CLIM is object-oriented in several respects. It is implemented in Common Lisp Ob-

ject System (CLOS), and uses object-oriented techniques to great advantage inter-

nally. More importantly, CLIM provides an object-oriented model for integrating an

application with its user interface. This presentation model associates user inter-

face behavior directly with application objects, which allows an application to de-

scribe its user interface in terms of its own semantics.

CLIM provides the following facilities:

• Windows  Convenient facilities for creating, placing, and manipulating win-

dows, including managing margins and scroll bars.

• Streams  Stream-oriented, device-independent input and output of arbitrarily

mixed text, graphics, and presentations.

• Graphics  A rich graphics model which includes a variety of common geomet-

ric shapes (such as lines, rectangles, polygons, and ellipses), drawing options

(such as line thickness and joint shape), a sophisticated inking model for de-

scribing patterns and color, and full affine coordinate transformations (transla-

tion, rotation, scaling).

• Styled text output  The appearance of textual output (font family, typeface, and

size) is specified with an abstract, device independent mechanism called text

style.

• Output recording  A facility for capturing all output done to a window, which

provides the basis for arbitrarily scrollable and redisplayable windows.

• Presentations  Presentations associate user interface behavior with application

objects, using object-oriented programming technniques. The user interface of an



Page 14

application may be described in terms of its own semantics, using the high level

language of presentation types, instead of the lower level language of

keystrokes, mouse events, and widgets.

• Menus and Dialogs  Many types of menus and dialogs may be automatically

generated, using the presentation type facility to describe the desired appear-

ance and behavior.

• Context-sensitive input  An application accepts direction from the user by es-

tablishing a context in which certain classes of operations and operands are

valid, using presentation types. The user interface system uses this context to

provide appropriate documentation and feedback to assist the user, and assures

the application that user-supplied values are appropriate.

• Commands  The user interface operations of an application are described by

commands, which operate on presentation types. This uniform mechanism is

used for all interaction styles, including direct manipulation, menus, dialogs,

keystroke accelerators, and command lines.

• Formatted output  High-level macros allow applications to produce neatly for-

matted tabular and graphical displays with little additional programming.

• Incremental Redisplay  Recorded output may be changed and the display incre-

mentally and efficiently updated, without extensive programming.

• Application frames  The screen layout and top level behavior of an application

are described by application frames.�

For detailed user and reference documentation about CLIM, see the document

Common Lisp Interface Manager (CLIM): Release 1.0.

CLIM incorporates refined versions of many features and concepts from Symbolics

Dynamic Windows. See the section "Comparing and Contrasting DW and CLIM" for

a description of their similarities and differences. There is a facility to assist in

the task of converting Dynamic Windows software to CLIM, see the section "Con-

verting from DW to CLIM". Note that conversion of existing Genera software to

CLIM is wholly optional, and that Dynamic Windows will continue to be supported.

The CLIM Standard

The Common Lisp Interface Manager was defined and developed by a consortium

of cooperating Lisp vendors, including Franz, International Lisp Associates, Lucid,

Symbolics, and Xerox PARC. We consider CLIM a de facto standard, though it may

be proposed for official standardization after the community has gained experience

using it.

Symbolics provides versions of CLIM for Symbolics computers running Genera and

IBM-compatible personal computers running CLOE. For other platforms, compati-

ble versions of CLIM are available from the vendors listed above among others.



Page 15

Contact your Lisp vendor for availability information, or International Lisp Asso-

ciates if your vendor has no current plans to offer CLIM.

Symbolics CLIM 1.0, and the CLIM implementations available in 1991 from other

vendors, are based on a reference implementation of CLIM called CLIM Version 1.

Throughout 1991, the CLIM consortium will be working on a new reference imple-

mentation which will incorporate the Silica technology developed at Xerox PARC.

Implementations derived from CLIM Version 2 will be compatible with CLIM Ver-

sion 1, but will provide additional functionality and better performance by integrat-

ing directly with popular window toolkits such as OSF/Motif, Open Look, and Mi-

crosoft Windows. 

CLIM 1.0 Implementation Notes

This section summarizes some known limitations of the Symbolics implementation

of CLIM 1.0, particularly with regard to rendering of graphic designs. Note that

other implementations of CLIM 1.0 may have different limitations.

• The Genera debugger does not work on CLIM streams. If a CLIM application

gets an error of any sort, the debugger will be invoked in a background window,

and a notification issued to that effect. You may find it useful to tailor the be-

havior of these notifications, see the section "Pop-up notifications".

• clim::make-contrasting-inks provides up to 8 different colors or patterns of ink.

• clim::make-contrasting-dash-patterns provides up to 16 different dash patterns.

• CLIM 1.0 does not support composite designs. Also, CLIM 1.0 provides very lim-

ited support for opacity: opacity inks are supported, but are interpreted for ren-

dering as either fully transparent or fully opaque.

• CLIM 1.0 contains limited support for patterned designs. The elements of a pat-

terned design (whether a pattern, stencil, or tile) must be a color or opacity,

and not a general design (a shape). Some previous versions of the documentation

have referred to more stringent limitations; these limitations are no longer

present.

• CLIM 1.0 does not support nonrectangular clipping regions. A clipping region is

interpreted as the bounding rectangle of the region supplied.

• Some CLIM 1.0 implementations may not support tilted ellipses (ellipses not

aligned with the X or Y axis). The Genera implementation does, but at some

performance penalty when using a window system such as X or Macintosh which

doesn’t support tilted ellipses directly.

• PostScript streams do not yet create Encapsulated PostScript files. Their output

can be printed on an Apple Laser Writer.



Page 16

• For PostScript streams, line styles which specify :line-unit :normal and a :line-

thickness other than 1 may not produce the desired effect.

• filling-output doesn’t work very well in the face of nontextual output (presenta-

tions and graphics).

• In Genera, there is no global user interface for changing the foreground and

background colors of a CLIM application, they are under program control only.

Using the Window Attributes menu to change the drawing and erasing alu

functions, or FUNCTION C to change to inverse video, will not affect the fore-

ground and background colors of a CLIM window. (At present, you must refresh

the CLIM window to restore proper appearance after such a change.)�

Installing CLIM in Genera 8.0

For Genera 8.0, CLIM is distributed as a layered system on a single distribution

tape, which contains loadable binaries for all 3600 and Ivory computers, all CLIM

source code, online CLIM documentation, and all necessary Genera patches since

the Genera 8.0.1 software ECO. CLIM may be installed on any Symbolics computer

running Genera 8.0.1 or later, using the following procedure.

1. Confirm that Genera 8.0.1 or Genera 8.0.2 is installed.

Show Herald�

2. Restore the CLIM distribution tape, and enter a tape spec at the prompt.

Restore Distribution

Enter a tape spec [default Local: Cart]: �

3. Load all Genera patches up to (and beyond) Genera 8.0.2.

Load Patches�

At this point, you should be up to System patch level 425.140. Confirm this

with Show Herald. Do not attempt to load CLIM into a system that is not up

to patch level.

4. Load the CLIM system.

Load System (a system [default System]) CLIM�

5. Load the CLIM online documentation.

Load System (a system [default CLIM]) CLIM-Doc�




