SUNSTONE ARCHITECTURE

11/03/87

SUNSTONE ARCHITECTURE

Symbolics Company Confidential

Draft formatted on 30 Oct 87 at 23:24

We appreciate any comments on the organization, technical completeness, and technical accuracy of this
draft. (Comments about the product design should go to the appropriate mailing list instead.) Thanks.

Name: , Date:

This document may not be reproduced in whole or in part without the prior written consent of
Symbolics, Inc.

Printed in the United States of America.
Copyright © 1987, 1986, 1985, 1984, 1983, 1982, 1981, 1980

Symbolics, Inc.
All Rights Reserved

SUNSTONE ARCHITECTURE
October 1987

The software, data, and information contained herein are proprietary to, and comprise valuable trade
secrets of, Symbolics, Inc. They are given in confidence by Symbolics pursuant to a written license
agreement, and may be used, copied, transmitted, and stored only in accordance with the terms of such
license. This document may not be reproduced in whole or in part without the prior written consent of
Symbolics, Inc.

Copyright © 1987, 1986, 1985, 1984, 1983, 1982, 1981, 1980 Symbolics, Inc. All Rights Reserved.
Restricted Rights Legend

Use, duplication, and disclosure by the Government are subject to restrictions as set forth in subdivision
(c)(1)(ii) of the Rights in Trademark Data and Computer Software Clause at FAR 52.227-7013.

Symbolics, Inc.
11 Cambridge Center
Cambridge, MA 02142

Text masters produced on Symbolics 3600™-family computers and printed on Symbolics LGP2 Laser
Graphics Printers.

Printed in the United States of America.

Printing year and number: 88 87987654321

Symbolics Company Confidential

i

October 1987 SUNSTONE ARCHITECTURE

Table of Contents

1. INSTRUCTION SET ARCHITECTURE
1.1 DATA TYPES

1.1.1 Data Types Whose Definition Is Different Than I-Machines.

1.1.2 Array Descriptors
1.1.3 Compiled Functions
1.2 VIRTUAL AND PHYSICAL ADDRESS SPACE
1.2.1 Memory Caches
1.3 REGISTERS
1.3.1 Window Registers
1.3.2 Internal Registers
1.4 INSTRUCTION FORMATS
1.4.1 Register To Register (RR) Format
1.4.2 Register Immediate Short (RIS) Format
1.4.3 Register Immediate Long (RIL) Format
1.4.4 Direct Branch Format
1.4.5 Instruction Sequencing
1.4.6 Instruction Field Descriptions
1.4.7 Data Type Checking
1.4.8 Data Type Setting
1.49 Memory Operations
1.5 INSTRUCTIONS
1.5.1 Arithmetic Operations
1.5.2 Logical Operations
1.5.3 Bit and Byte Operations
1.5.4 Call Operations
1.5.5 Return Operations
1.5.6 Move Operations
1.5.7 Direct Branch Operation
1.5.8 Conditional Operations
1.59 Type Operations
1.5.10 Load Operations
1.5.11 Store Operations
1.5.12 Coprocessor Operations
1.5.13 MC Register Operations
1.6 STACK GROUPS
1.6.1 Window Stack
1.6.2 Data Stack
1.6.3 Binding Stack
1.6.4 Stack Group Switching
1.7 FUNCTION CALLING
1.7.1 Calling
1.7.2 Entry
1.7.3 Generic Functions
1.7.4 Message Passing
1.7.5 Lexical Closures

Page

[
NN B W LIRN N e e e

iv Symbolics Company Confidential

SUNSTONE ARCHITECTURE : October 1987
1.7.6 Return . 120

1.8 EXCEPTIONS 120
1.8.1 Interrupts 121

1.8.2 Traps 121

1.9 GARBAGE COLLECTION (GC) 134

1.10 ARRAY REFERENCES. 134
1.10.1 Array Hardware Support 135

1.10.2 Array Header Register , 136

1.10.3 Array Length Register 137

1.104 Array Descriptors 137

1.10.5 Trap Conditions 138

1.11 STORE CONDITIONAL 139

1.12 INSTRUCTION RESTRICTIONS 140
1.12.1 Load Instruction Restrictions 140

1.12.2 Special Register Restrictions 140

1.12.3 MC Register Restrictions 141

1.12.4 Instruction Sequence Restriction Table 142
APPENDIX A. TABLE OF INSTRUCTION SIDE EFFECTS 143

Index . 145

Symbolics Company Confidential

v

October 1987

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

List of Figures

Window Registers Before Call
Window Registers After Call
RR Formats
RIS Formats
RIL Formats
Direct Branch Format
Arithmetic Operation Formats
Logical Operation Formats
Bit and Byte Operation Formats
Call Instruction Formats
Return Operation Formats
Move Operation Formats
Direct Branch Format
Conditional Operation Formats
Type Operation Formats
Load Operation Formats
Store Operation Formats _
Coprocessor Operation Formats
MC Reg Operation Formats
Window Stack
Data Stack
Windows After a Trap
Trap Vector Format

SUNSTONE ARCHITECTURE

vi ' Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

Symbolics Company Confidential

vii

October 1987

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.

List of Tables

Special Registers
Status Control Register Fields
Global Registers
Memory Control Registers
Instruction Field Descriptions
Opcodes
Condition Field Definitions
Memory Operations
Instruction Classes
Instructions
Stack Group Registers
Misc Opcode Specific Traps
Trap Vector Addresses
Exception Priorities
Valid Array Types

Instruction Sequence Restrictions
Instructions/Conditions Side Effecting Special Registers

SUNSTONE ARCHITECTURE

142
143

Symbolics Company Confidential 1
October 1987 SUNSTONE ARCHITECTURE

1. INSTRUCTION SET ARCHITECTURE

This document describes the software architecture of the sunstone processor. It assumes a knowledge of
the I-machine architecture as described in the I-Machine Architecture Specification, Revision 2
document.

1.1 DATA TYPES

Sunstone uses essentially the same data types as the I-Machine. See "Chapter 1, Lisp-Machine Data
Types" as presented in the Symbolics Document I-Machine Architecture Specification, Revision 2 for a
description of the I-Machine’s data types. There are some differences however, which are listed below.

All data types exist in the Sunstone machine, though their definitions may differ from the I-Machine
data types. ’

1.1.1 Data Types Whose Definition Is Different Than I-Machines.
Data types with octal values 46 to 77 have different meaning in Sunstone than in the I-Machine.

dtp-even-pc octal 46, will be dtp-pc on Sunstone. dtp-odd-pc octal 47, will be a breakpoint trap on
Sunstone dtp-breakpoint.

dtp-packed-instruction, dtp-call-compiled-even, dtp-call-compiled-odd, dtp-call-indirect,
dtp-call-generic, dtp-call-compiled-even-prefetch, dip-call-compiled-odd-prefetch,
dtp-call-indirect-prefetch, dtp-call-gencric-prefetch, and dtp-packed-instruction octal values 50 to 77
will all be dtp-instruction. For a more in-depth description of these see section 1.4 on page 15.

1.1.2 Array Descriptors

Sunstone has a different implementation of array registers than does the I-Machine. See section 1.10.4
on page 137 for a complete description of Sunstone’s array support.

1.1.3 Compiled Functions

Compiled function structure is the same as I-Machine’s with a 2 word prefix, body, and suffix. The
instructions are completely different as described in subsequent sections. Sunstone has no half word
instructions, only full word, and double word instructions. The data type of pc values is always dtp-pc.
Where I-Machine uses the cdr-code bits as sequencing information, Sunstone uses the cdr-code bits for
disabling interrupts and preempt. See section 1.4.6 on page 20.

2 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.2 VIRTUAL AND PHYSICAL ADDRESS SPACE

Sunstone provides support for a virtual memory system that is essentially identical to the I-Machine’s,
see "Chapter 2, Memory Layout and Addressing” as presented in the Symbolics Document I-Machine
Architecture Specification, Revision 2. However Sunstone does not have microcode, thus the details of
the implementation are somewhat different. The principal difference is that it is possible to get a
Map-Cache miss on any virtual address reference, even if the addressed word resides in physical
memory. However, it is always possible to access words that are addressed with VMA=PMA addresses.
Therefore certain structures, like the PHT, the trap vectors, most trap routines and all the data that they
access must be in VMA=PMA space.

The searching of the PHT and reloading of the Map-Cache, which is done in microcode in the I-
Machine, is done in macrocode on Sunstone. The hash-box register in the memory control section makes
this a quick operation.

1.2.1 Memory Caches

Sunstone’s memory cache scheme has certain characteristics that must be understood in order to insure
correct program behavior in all cases. There are two caches of interest: the small, on-chip, instruction
cache and the large off-chip data/instruction cache.

Both of the caches are addressed by virtual, rather than physical, addresses. That means that care must
be taken to not address the same physical location with more than one virtual address. If two different
virtual addresses refer to the same physical address it will be possible that if the data at one of the virtual
addresses is modified that change will not be visible to the other virtual addresses. This problem can
occur if, for example, a word is addressed both by a normal mapped virtual address and also by a
VMA=PMA address.

Since the instruction cache and the large cache are independent, updates to the large cache will not
necessarily be reflected in the instruction cache. This will not ordinarily be a problem for normal
compiled code since code modification is expected to be a very rare occurance. However, since certain
"data" structures, most notably the function definition cell, are executed as instructions, care must be
taken when those structures are modified. Whenever an instruction word is stored to a location that was
previously used to store a different instruction word, it is possible that the old instruction word has been
retained in the instruction cache. The instruction cache can be cleared by executing a word which will
occupy the same cache line as the word stored. This can be done by maintaining a block of 64 return
instructions and executing a call to the appropriate instruction:

store [r0] «rl ;store an instruction word
and r0 «#77,x0 ;mask the low bits
add r0 ¢« #returns,r0 ;index into the routine

call pc «x0

Symbolics Company Confidential 3
October 1987 SUNSTONE ARCHITECTURE

returns: <block of 64 return instructions>

1.3 REGISTERS

Sunstone has access to 32 general purpose window registers which implement an overlapping window
scheme. Sunstone also has access to many other internal registers that are described below. The
window scheme implemented resembles that of the RISC chips developed at Berkeley. None of the
registers store the cdr-code bits.

1.3.1 Window Registers

Window Registers provide the means to pass arguments and return values between one function and
another during a Call/Return sequence without having to write them out to slower memory. The
window used by a function is referred to as the current window, and the window used for passing
arguments and receiving values is called the build window. Sunstone permits access to 32 of the
window registers at any given point in time, 16 in the current window and 16 in the build window. See
figure 1 on page 3, and figure 2 on page 4.

The current window registers labeled RO - R15 have register values 0 - 15 (0 - 17 octal); the build
window registers labeled AO - A15 have register values 16 - 31 (20 - 37 octal.)

Figure 1. Window Registers Before Call

<- Window Stack Pointer (WSP)

AlS
Al4

Al3 <- Build Window

Al
A0

R15
R14
R13
<- Current Window

RO

<- Window Stack Base (WSB)
Window Stack (WS)

4

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

October 1987

Figure 2. Window Registers After Call

AlS5
Al4
Al3
A2
Al
A0

R15
R14
R13

RO

Window Stack (WS)

1.3.2 Internal Registers

<- Window Stack Pointer (WSP)

<= Build Window

<- Current Window (previous build window)

<- previous current window

<- Window Stack Base (WSB)

The internal registers are split up into three categories: Special, Global, and Memory Control (MC).

I There are 12 special registers which use 10 register addresses; they are hardwired and typically have

I special hardware attached directly. There are 22 global registers which are completely software
definable. There are also provisions for many MC registers (up to 256); presently 40 of them have been
assigned. The global and special registers are accessible in all instructions as are the window registers.
The MC registers are loaded and stored via a read-mc-reg and write-mc-reg instruction.

1.3.2.1 Special Registers

I There are 12 defined special registers which use 10 register addresses. All special registers can be used
as a source or a destination in the instructions. See table 1 on page 5.

Symbolics Company Confidential N 5
October 1987 SUNSTONE ARCHITECTURE

Table 1. Special Registers

Special Registers
Name Reg No | Abbr Rd-Wr Type Size | Side-Effected
by
Array Header 76 AHR R-W - 38
'Array Length 60 ALR R-W fixnum | 32 load instruction
Byte Rotate 61 BRR R-W fixnum | 10 load-array,
store-array
Memory Address | 64 MAR R-W - 38 load-cdr,
load-car-cdr,
load-header,
load-structure
NIL 65 NIL R nil 32
Number of Args 62 N-ARGS | R-W fixnum | 5 call,
Jjeall, return,
return-subvert
Program Counter | 67 PC w pc 32 every instruction
Status Control 63 SCR R-W fixnum | 32 many,
load instruction
Status Control 24 | 66 SCR-24 w fixnum | 24 many
T 66 T R symbol | 32
Trap Result 77 TRR R-W - 38
Zero 67 ZERO R fixnum | 32

1. Array Header Register - This is typically loaded by a load-header instruction when
preparing to perform array references (see section 1.10.2 on page 136. The hardware uses
the bits in this register to help perform the load-array and store-array instructions (see
section 1.5.10 on page 78 for a description of the load-array instruction and section 1.5.11
on page 93 for a description of the store-array instructions). This 38-bit register can be
both read and written.

2. Array Length Register - The hardware uses the value of this register to check for out of
bounds array references, using the load-array and store-array instructions. This register is
side-effected any time Array Header Register is used as a destination on a load instruction.
For a more complete description of this see 1.10.4 on page 137. This 32-bit register can be
both read and written. When read it will have a data type of dtp-fixnum.

3. Byte Rotate Register - This 10 bit register can be read and written. When read it has a data
type of dtp-fixnum and the most significant 22 bits are 0. It is used by the dpb instruction
in the Register to Register format, and it is used in the trap handlers for the load-array and

6 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

store-array instructions, when a packed array is being accessed. A load-array or
store-array instruction will load the Byte Rotate Register with a byte specifier determined
from the Array Header Register, which helps to support the trap handling of packed arrays.
This side effect occurs even if the instruction traps. For more details on this see 1.10 on
page 134.

4. Memory Address Register - A 38 bit register that can be both read and written. The
memory address register is loaded by hardware with the address and type of calculated
memory address in the load-cdr, load-car-cdr, load-structure and load-header
instructions. This side effect occurs even if the instruction traps.

5. NIL - This is a 32-bit constant, and cannot be written, it can only be read, it is the Lisp .
symbol NIL with data type of dtp-nil.

6. Number of Args - This 5-bit register can be read and written. When read it has a data type
of dtp-fixnum and bits 31:5 are 0. The call and return instructions can cause the N-Args
Register to be loaded with bits in the instruction (see section 1.5.4 on page 49 for a
description of the call instruction and section 1.5.5 on page 52 for a description of the
return instruction).

7. Program Counter - A 32-bit write only register, this register contains the address of the
current instruction. The execution of every instruction affects the contents of the PC. This

shares its address with the Zero register,i.e., an attempt to write the Zero, will instead write
the Program Counter.

8. Status Control Register - A 32-bit register that is read or written, when read it has a data
type of dtp-fixnum. There are many things that side effect this register. See table 2 on
page 7 for a description of the Status Control Register Fields.

9. Status Control 24 - A separate write only address that allows an instruction to write only
the most significant 24 bits of the Status Control Register leaving the cdr and type register
portion of this register intact. This register shares its address with the T Register, i.e., an
attempt to read this register yields the output of the T Register.

10. Trap Result Register - This 38-bit register is used by the hardware after a return-subvert
instruction is executed. (See the Return-Subvert Instruction section 1.5.5 on page 54.)

11. T - This 32-bit constant is the lisp representation for T. It has a data type of dtp-symbol.
As a constant it cannot be written, it can only be read. This shares its address with the
status control 24 register,i.e., an attempt to write the T Register, will instead write SCR-24.

12. Zero - This 32-bit constant is 0. When read it has a data type of dp-fixnum, it cannot be
written. (This register shares its address with the Program Counter,i.e., an attempt to write
this register, results in a write to the Program Counter.) Among other uses, the Zero
Register will be used for unary minus.

Symbolics Company Confidential 7
October 1987 SUNSTONE ARCHITECTURE

Table 2. Status Control Register Fields

Status Control Register

Field Bits Action Taken on Trap or Interrupt
Type Register 5:0 -
CDR Register 7:6 -
Subvert 8 clear
Trap On Call 9 clear
Trap On Return 10 clear
Trap On Instruction Completion 11 clear
Take Instruction Completion Trap | 12 clear
Interrupt Level 15:13 set on interrupt only
Inhibit Preempts 16 copied from inhibit preempt condition
Inhibit Interrupts 17 copied from inhibit interrupt condition

The following describes the fields of the status control register.

1. Type reg - These 6 bits hold the data type of the word read by the most recent load
instruction. Some store instructions use this register as a source for the data type bits to be
written. All load instructions load these bits.

2. Cdr reg - These 2 bits hold the cdr-code bits of the word read by the most recent load
instruction. Some of the store instructions use this register as a source for the cdr-code bits
to write. All load instructions load these bits.

3. Subvert Instruction - Set automatically by the hardware when a return-subvert instruction
occurs (typically in an "emulating” trap routine), this bit tells the next instruction -- the
re-executing instruction -- to move the Trap Result Register contents into its destination.
The re-executing instruction then clears this bit. If an interrupt occurs in-between the
return-subvert and the re-executing instructions, the saved control status register will have
this bit set. In that case, the interrupt routine must return with a return-subvert instruction
rather than a return instruction. Setting this bit with other than the return-subvert
instruction is undefined.

4. Trap on Instruction Completion, Trap on Call, Trap on Return, Take Instruction
Completion Trap - Whenever an instruction completes, the processor copies the Trap on
Instruction Completion Bit to the Take Instruction Completion Trap. At the same time, it
clears the Trap on Instruction Completion Bit. The Take Instruction Completion Trap will
trap an instruction. The handler for this trap decides whether or not to set the Trap On
Instruction Completion Bit again when it returns.

Trap On Call and Trap On Return are special versions of Trap On Instruction Completion.
After code sets the Trap On Call bit, the processor will set the Take Instruction

8 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

Completion Trap only when a Call instruction completes. At this time it will also clear the
Trap On Call. The Trap on Return bit performs the analogous function.

5. Interrupt Level - This field contains the currently executing interrupt level. The currently
executing level only allows higher level interrupts. The real time user may use the highest
levels to implement wired routines that may typically operate on tight time constraints.

6. Inhibit Interrupt and Inhibit Preempt - When a trap or an interrupt occurs, the processor
sets these bits from the inhibit interrupt or inhibit preempt condition. A trapping or
interrupting instruction will not reset the bits; only an instruction that writes or restores the
Status/Control register can clear them. The hardware signals an inhibit interrupt or inhibit
preempt condition from either these bits or the inhibit bits maintained from instruction to
instruction. Each-instruction writes inhibit bits from its cdr-code bits. So each instruction
controls the inhibit condition of the following instruction. Inhibit interrupt inhibits all
interrupt levels; inhibit preempt only inhibits Interrupt Level 1 interrupts. See also the
description of Inhibit Interrupts and Inhibit Preempts in section 5 on page 20.

1.3.2.2 Global Registers

I These 22 registers are completely software definable. The names listed in table 3 on page 8 are a
Isuggested assignment of 17 of these registers. They are all 38-bit registers and fully readable and
writable. These registers are selected as source or destination registers in any of the instructions.

Table 3. Global Registers

Global Registers

Name RegNo | Abbr Name RegNo | Abbr
Binding Stack Limit 40 BSL | List Block Length 50 LBL
Binding Stack Pointer | 41 BSP | List Block Pointer 51 LBP
Catch Block Pointer 42 CBP | Structure Block Base 52 SBB
Data Stack Block 43 DSB | Structure BlockLength | 53 | SBL
Data Stack Base 44 DSA | Structure Block Pointer | 54 SBP
Data Stack Limit 45 DSL | Window Stack Base 55 WSB
Data Stack Pointer 46 DSP | Window Stack Limit 56 WSL
List Block Base 47 LBB | Window Stack Pointer 57 WSP

Flag Register 70 FR

Symbolics Company Confidential 9
October 1987 SUNSTONE ARCHITECTURE

1.3.2.3 Memory Control Registers

These registers are only accessible via read-mc-reg and write-mc-reg instructions. (For more
information on the read-mc-reg and write-mc-reg instructions, see section 1.5.12 pages 110 and 111
respectively.) The Memory Control Registers are located in a space of 256 registers. An MC-Register
is chosen by the least-significant 8 bits of the computed virtual address of a read-mc-reg or
write-mc-reg. The remaining 24 bits of the address are ignored except when reading/writing the Map
Cache (see Map-Cache and Map-Cache-Validbit below). Registers that are smaller than 32 bits are read
and written in the least significant bits, and the most significant bits are undefined. All MC registers are
read with a type of dtp-fixnum. The MC-Register space is divided such that MC-Register codes 000-017
(octal) are internal to the processor and codes 020-377 are external to the processor. For a list of MC
registers see table 4 on page 10.

10 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

Table 4. Memory Control Registers

Memory Control Registers
Name Abbr Rd-Wr MC-Reg Size
Code in
Octal

Ephemeral Oldspace EOR R-W 000 32
Zone Oldspace ZOR R/W 001 32
PHT Hashbox PHTH R-W 002 24
FPU Configuration FPC R-W 003 3
Microsecond Clock MSC R-W 004 32
Timer CLKA R-W 005 32
Trap Base Register TBR R-W 006 13
Return Address RAR R-W 007 32
Window Buffer Control WBC R-W 010 21
Memory-Error-Status MERR R-W 011 7
spare 012-017

etering Counter A MCA R-W 020 32
Metering Counter B MCB R-W 021 - 32
Metering Mode A MMA R-W 022 4
Metering Mode B MMB R-W 023 4
Cache Control CCR R-w 024 16
reserved 025
spare 026 - 027
reserved 030
Interruptl INT1 R-W 031 8
Interrupt2 INT2 R-W 032 8
Interrupt3 INT3 R-W 033 8
Interrupt4 INT4 R-W 034 8
InterruptS INTS5 R-W 035 8
Interrupt6 INT6 R-W 036 8
Interrupt7 INT? R-W 037 8
Map-Cache-MSH * MCM | R-W 040 16
Map-Cache-LSH * MCL R-W 041 16
Map-Cache-Validbit * MCV R-W 042 1
reserved * 043 ‘
Diagnostic-MSH * DIAM | R-W 044 32
Diagnostic-LSH * DIAL R-W 045 32
IBUS-Error-Status-MSH * I[ERRM | R-W 046 2
IBUS-Error-Status-LSH * IERRL | R-W 047 2
IBUS-Error-Addr-MSH * IEAM R-W 050 16
IBUS-Error-Addr-LSH * IEAL R-W 051 16
ECC Log Counter-MSH * ECCM | R-W 052 32
ECC Log Counter-LSH * ECCL | R-W 053 32
Slot Number * SLOT | R 054 6
reserved * 055
IBUS Lock * IBL R-W 056 1
reserved * 057
Spare 060 - 377

* Items specific to the IBUS implementation of Sunstone.

10

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

Table 4. Memory Control Registers

February 1988

Memory Control Registers
Name Abbr Rd-Wr MC-Reg Size
Code in
Octal

Ephemeral Oldspace EOR R-W 000 32
Zone Oldspace ZOR R/W 001 32
FPU Configuration FPC R-W 002 3
Trap Base Register TBR R-W 003 13
Return Address RAR R-W 004 32
Window Buffer Control WBC R-W 005 21
Memory-Error-Status MERR R-W 006 7
spare 007 - 017

etering Counter A MCA R-W 020 32
Metering Counter B MCB R-W 021 32
Metering Mode A MMA R-W 022 4
Metering Mode B MMB R-W 023 4
Cache Control CCR R-W 024 16
reserved 025
Microsecond Clock MSC R-W 026 32
Timer CLKA R-W 027 32
spare 026 - 027
reserved 030
Interruptl INTI1 R-W 031 8
Interrupt2 INT2 R-W 032 8
Interrupt3 R-W 033 8
Interrupt4 INT4 R-W 034 8
InterruptS INTS R-W 035 8
Interrupt6 INT6 R-W 036 8
Interrupt7 INT7 R-W 037 8
I-Map-Cache * IMC R-W 040-043 32
D-Map-Cache * DMC R-W 044-047 32
Diagnostic-MSH * DIAM | R-W 050 32
Diagnostic-LSH * DIAL R-W 051 32
IBUS-Error-Status-MSH * IERRM | R-W 052 2
IBUS-Error-Status-LSH * IERRL | R-W 053 2
IBUS-Error-Addr-MSH * I[EAM | R-W 054 16
IBUS-Error-Addr-LSH * IEAL R-W 055 16
ECC Log Counter-MSH * ECCM | R-W 056 32
ECC Log Counter-LSH * ECCL | R-W 057 32
Slot Number * SLOT | R 060 6
reserved * 061
IBUS Lock * IBL R-W 062 1
reserved * 063
Spare 064 - 377

* Items specific to the IBUS implementation of Sunstone.

[HPORTANT

Symbolics Company Confidential 11

October 1987 SUNSTONE ARCHITECTURE

1. Ephemeral Oldspace - The ephemeral oldspace register contains a bit map that specifies,
for each of the 32 ephemeral levels, which half of the level is newspace and which half is
oldspace. A set bit indicates the upper half is oldspace, a reset bit indicates the lower half
is oldspace. This register is identical to the I-Machine’s Ephemeral Oldspace Register.

2. Zone Oldspace Register - This register is identical to the Zone Oldspace Register in the
I-Machine. The Zone Oldspace Register contains a bit map that specifies whether each
zone of dynamic space (there are 29 zones) is newspace or oldspace. Bits 31 and O of the
Zone Oldspace Register are typically 0. Bit 31 represents physical memory zones, and bit
0 represents the ephemeral zone. Since new/old space is a characteristic of virtual
memory, bit 31 is set to O (the physical memory space). Since bit O refers to ephemeral
space it is never used. '

3. PHT Hashbox - This register is used to perform a hashing function used in the PHT lookup
algorithm. It implements the hashing function described in the I-Machine architecture
document. When written, the PHT hashbox hashes the written data. The next read of the
PHT hashbox will return the hashed version of the written data.

4. FPU Configuration - A 3-bit register that identifies the existence of a Floating-Point Unit
and which floating-point/integer operations are implemented by it. The word is positive
true logic and the bits are assigned as follows:

bit <2> Fixed Point Multiply Hardware available

bit <1> Single Floating Point Add, Subtract and Multiply
Hardware available

bit <0> Single Floating Point Compare Hardware available
5. Microsecond Clock - A 32-bit free-running clock which counts microseconds.

6. Timer - An independent 32-bit count down timer is used for event scheduling. The timer,
when written with a 32-bit count, begins counting micro-seconds until the count is zero. At
zero, the timer sets an interrupt and stops. The interrupt service routine must reload the
count down timer to start it again. Writing a timer with 0 causes the longest interval; about
1hr. 15 min. ’

7. Trap Base Register - This 13-bit register is the base of a trap vector that is located in
VMA=PMA space, so that the most significant 5 bits are 1, bits 26 - 14 are the trap-base
register, and the least significant bits are based on the trap that occurs. See table 13 on
page 128.

8. Return Address Register - A 32-bit register that is read or written, when read it has a data
type of dtp-pc. This register is the top of the return address stack. This is side effected by
calls, returns, traps, and possibly if the destination of an instruction is the window buffer
control register.

9. Window Buffer Control Register - This 21-bit register encodes the Window Buffer Pointer,
Window Buffer Overflow Limit, and Window Buffer Underflow Limit. Bits 20:16 are the
Window Buffer Underflow Limit, bits 12:8 are the Window Buffer Overflow Limit, and
bits 4:0 are the Window Buffer Pointer.

10. Memory-Error-Status - This register contains the error status of the memory system. The
setting of any bit in this register is accompanied by a Hardware-Error Trap. The read/write
formats are:

bits<31:7> is unknown on reads, ignored on writes

12

Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987

11.

bit<6> is S-Cache tags parity error
bits<5:4> is S-Cache data parity errors
bit<3> is Map-Cache tags parity error
bits<2:1> is Map-Cache data parity errors

bit<0> is External to processor error

When bit<0> is set, a memory system error outside of the Caches has occured. Software
may read externally defined MC-Register(s) to determine error information. The IBUS
implementation of Sunstone has the IBUS-Error-Status and IBUS-Error-Address registers
defined for this purpose.

Metering Counters and Metering Modes - There are two independent counters for
metering. Each metering counter is 32 bits wide and meters 8 different events. A
write-mc-reg to the Metering Mode sets the mode according to the 4 LSBs of the written
word. The four bits are interpreted as :

bits<2:0> Event Metered
0 number of clocks
1 number of clocks servicing S-Cache

Instruction misses

2 number of clocks servicing S-Cache
Data misses

3 number of clocks servicing writes -
4 number of Instruction S-Cache misses
5 number of Data S-Cache misses
6 number of Map-Cache misses that cause traps
7 number of writes
bit<3>
1 start the counter
0 stop the counter

A read-mc-reg of a Metering Counter reads the present value of the count and does not
affect the counter nor event metered. A read-mc-reg of the Metering Mode returns a 4-bit
code where bits<2:0> identify the event being metered; bit<3>, when set indicates the
counter is running.

12. Cache Control - Cache Control Register is the mechanics by which the processor writes

cache mode and reads cache status. Read only bits are unchanged by writes. The Cache
Control Register is written/read with the following fields:

Symbolics Company Confidential 13
February 1988 SUNSTONE ARCHITECTURE

o Write Buffer Empty (bit 0, read-only): a set bit indicates that the write buffer is
empty.

e S-Cache Inhibit (bit 1, read/write): a set bit forces all reads of the S-Cache to miss.
Writes to the S-Cache, either by a store instruction or by cache refill, are not
inhibited. This allows validation of the S-Cache on power-up.

o I-Cache Inhibit (bit 2, read/write): a set bit indicates that instructions are to be
inhibited from the I-Cache. Instructions in pages marked with Cache-inhibit in the
PHT are inhibited from the I-Cache regardless of the state of this bit.

o Other status and test points (bits 15:3, read-only): used to monitor any points of
interest in the machine.

13. Interrupt 1 thru 7 - These seven registers correspond to seven interrupt levels. Each
contains eight bits that requesters on the IBUS may set. An interrupt bit is cleared when it
is written with a 1.

14. Map-Cache - D-Map and I-Map-Cache - These are used for reading and writing Map-
Cache entries. The Map Cache is read/written using the read-mc-reg and write-mc-reg
instructions where the computed virtual address is defined to be:

virtual-address<31:8> Virtual Page Number to be read/written.

virtual-address<7:0> D-Map-Cache code when reading/writing the D-Map Cache;
I-Map-Cache code when reading/writing the I-Map Cache.

The read/written map-cache data is identical for both the I-Map and D-Map Caches and
has format below:

data<37:32> Data Type. The data type of a valid map-cache entry is
dtp-fixnum (#010). An invalid map-cache entry has data
type dtp-single-float (#012). All other data types may
produce undefined results, potentially including hardware
error (map cache parity) traps on subsequent memory
references.

data<31:8> Physical Page Number. The VPN to PPN mapping for this
map-cache entry. It is ignored during unmapped references;
Unmapped references do not have Map-Cache entries.

data<7> Modified. If this bit is clear in the map-cache entry
used by a store instruction, the instruction takes a
page-modified trap. Unmapped references (those in which
address<31:27> = 37, or the address type is DTP-Physical)
behave as if this bit were set.

data<é6> Write-Protect. If this bit is set in the map-cache
entry used by a store instruction, the instruction takes
a write-protect trap. Unmapped references behave as if
this bit were clear.

data<5> Cache-Inhibit. If this bit is set in the Map-Cache

entry used by a load or store instruction fetches the
addressed data from main memory and leaves the contents

PORTANY

14

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

data<4d>

data<3:0>

February 1988

of the S-Cache unchanged. References with address type
DTP-Physical behave as if this bit were set; otherwise, if
address<31:27> = #037, as if this bit were clear.

Transport-Trap. If this bit is clear in the map-cache
entry used by a load instruction, the processor will
not take a transport trap on the instruction, even
when it encounters a pointer to an oldspace zone.
Unmapped references behave as if this bit were clear.

Ephemeral Reference. When the data written by a store
instruction is a pointer to ephemeral space, bits 25:24 of
the pointer are used to select one of these four bits from
the map-cache entry selected by the store address. 1If

the selected bit is clear, the store instruction takes an
ephemeral-reference-update trap. Stores to unmapped
addresses behave as if the selected bit were set.

Map data bits 31:0 are assigned to match the PHT1 word of a PHT entry.

15. Diagnostic - Registers used to aid in machine checkout and debugging. Possible uses are:
set/scan interface, monitoring test points, generating sync or trigger signals, etc. Since the
IBUS implementation of memory control hardware is bit-sliced, there are two Diagnostic
registers, each associated with one-half of the SBUS. The exact function of each is to be
further defined by the hardware.

16. IBUS-Error-Status - These registers contain the error status of the IBUS. Since the
implementation of the IBUS interface is bit-sliced, there are two registers, each responsible
for one half of the IBUS. The register bits are assigned as:

MSH word: bits<31:2> is unknown on reads, ignored on writes

bit<1> is IBUS acknowledge error

bit<0> is IBUS uncorrectable ECC Error in MSH

word of IBUS

LSH word: bits<31l:2> is unknown on reads, ignored on writes

bit<1l> is IBUS acknowledge error

bit<0> is IBUS uncorrectable ECC Error in LSH

word of IBUS"

17. IBUS-Error-Address - These registers are generally set by hardware. Upon an
uncorrectable ECC Error or an IBUS Acknowledge Error, the registers are loaded with the
address of the erroneous word. Since the IBUS interface is bit-sliced, the 32-bit address is
available as two 16-bit values. The format for reading/writing the IBUS-Error-Address is:

MSH word: bits<31:16> is unknown on reads, ignored on writes
bits<15:0> is error address<31:16>

LSH word: bits<31:16> is unknown on reads, ignored on writes
bits<15:0> is error address<1l5:0>"

[FPORTANT

Symbolics Company Confidential 13
October 1987 SUNSTONE ARCHITECTURE

¢ Write Buffer Empty (bit 0, read-only): a set bit indicates that the write buffer is
empty.

o S-Cache Inhibit (bit 1, read/write): a set bit indicates that instructions and data are to
be inhibited from the S-Cache. Instructions and data in pages marked with Cache-
inhibit in the PHT are inhibited from the S-Cache regardless of the state of this bit.

e I-Cache Inhibit (bit 2, read/write): a set bit indicates that instructions are to be
inhibited from the I-Cache. Instructions in pages marked with Cache-inhibit in the
PHT are inhibited from the I-Cache regardless of the state of this bit.

¢ Other status and test points (bits 15:3, read-only): used to monitor any points of
interest in the machine.

13. Interrupt 1 thru 7 - These seven registers correspond to seven interrupt levels. Each
contains eight bits that requesters on the IBUS may set. An interrupt bit is cleared when it
is written with a 1.

- 14. Map-Cache - This is used for reading and writing the Map-Cache entries. The Map Cache
is read/written using the read-mc-reg and write-mc-reg instructions where computed
virtual address is defined to be:

virtual-address<31:8> is the Virtual Page Number
to be read/written

virtual-address<7:0> is the Map-Cache MC-Register
code (MSH or LSH)

Since the IBUS implementation of the Map-Cache control logic is bit-sliced, reading and
writing the 32 bits of the Map Cache requires two read/writes, each 16 bits wide. The
read/write formats for the two words are:

MSH worxd: data<31:16> is ignored on writes, unknown
on reads

data<15:4> 1is PPN<23:12>

data<3> is Modified
data<2> is Write-Protect
data<l> is Cache Inhibit
data<0> is Transport-Trap
LSH word: data<31:16> is ignored on writes, unknown
on reads

data<l5:4> is PPN<11:0>

data<3:0> is Ephemeral Reference bits<3:0>

Writing to either the MSH or LSH of the Map Cache automatically validates the selected
entry. When read, the valid bit for the selected entry is unchanged. The state of the valid
bit can be read using the Map-Cache-Validbit MC-Register below.

14 Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987

15. Map-Cache-Validbit - This is used to access the valid bit of Map Cache entries.
Addressing of the Map Cache valid bit is the same as addressing the Map Cache itself
except that the virtual-address<7:0> is Map-Cache-Validbit code. When the Map-Cache-
Validbit MC-Register is written, the selected Map Cache entry is invalidated. When the
Map-Cache-Validbit is read, the LSB of the returned data is the state of the valid bit of the
selected Map Cache entry. All other returned bits are unknown.

16. Diagnostic - Registers used to aid in machine checkout and debugging. Possible uses are:
set/scan interface, monitoring test points, generating sync or trigger signals, etc. Since the
IBUS implementation of memory control hardware is bit-sliced, there are two Diagnostic
registers, each associated with one-half of the SBUS. The exact function of each is to be -

. further defined by the hardware.

17. IBUS-Error-Status - These registers contain the error status of the IBUS. Since the
implementation of the IBUS interface is bit-sliced, there are two registers, each responsible
for one half of the IBUS. The register bits are assigned as:

MSH word: bits<31:2> is unknown on reads, ignored on writes
bit<1> is IBUS acknowledge error

bit<0> is IBUS uncorrectable ECC Error in MSH
word of IBUS

LSH word: bits<31:2> is unknown on reads, ignored on writes
bit<1l> is IBUS acknowledge error

bit<0> is IBUS uncorrectable ECC Error in LSH
word of IBUS"

18. IBUS-Error-Address - These registers are generally set by hardware. Upon an
uncorrzctable ECC Error or an IBUS Acknowledge Error, the registers are loaded with the
address of the erroneous word. Since the IBUS interface is bit-sliced, the 32-bit address is
available as two 16-bit values. The format for reading/writing the IBUS-Error-Address is:

MSH word: bits<31:16> is unknown on reads, ignored on writes
bits<15:0> is error address<31:16>

LSH word: bits<31l:16> is unknown on reads, ignored on writes
bits<15:0> is error address<15:0>"

19. ECC Log Counter - The ECC Log Register counts the number of single bit errors
occurring on the IBUS. When the ECC Log Counter overflows, it sets an interrupt bit in
its associated interrupt register. Since the IBUS interface is bit-sliced, single bit errors are
counted seperately for each half of the IBUS. Reading the ECC-Log-Counter-MSH returns
the number of single bit errors for the MSH of the IBUS. Reading the ECC-Log-Counter-
LSH returns the number of single bit errors for the LSH of the IBUS.

20. Slot Number - A read-only register that returns the slot number that the Sunstone processor
is plugged into.

21. IBUS Lock - This single bit indicates when a Locked IBUS transaction is to be done.
When set, the next load or store instruction will become a locked IBUS read or write cycle.
The IBUS Lock remains set until the IBUS-Lock MC-Register is reset.

Symbolics Company Confidential 15
February 1988 SUNSTONE ARCHITECTURE

18. ECC Log Counter - The ECC Log Register counts the number of single bit errors
occurring on the IBUS. When the ECC Log Counter overflows, it sets an interrupt bit in
its associated interrupt register. Since the IBUS interface is bit-sliced, single bit errors are
counted seperately for each half of the IBUS. Reading the ECC-Log-Counter-MSH returns
the number of single bit errors for the MSH of the IBUS. Reading the ECC-Log-Counter-
LSH returns the number of single bit errors for the LSH of the IBUS.

19. Slot Number - A read-only register that returns the slot number that the Sunstone processor
is plugged into.

20. IBUS Lock - This single bit indicates when a Locked IBUS transaction is to be done.
When set, the next load or store instruction will become a locked IBUS read or write cycle.
The IBUS Lock remains set until the IBUS-Lock MC-Register is reset.

1.4 INSTRUCTION FORMATS

Four different formats of Sunstone instructions specify the operation, type, and operands to use. The
Register-to-Register (RR), Register Immediate Short (RIS), and Direct Branch formats all use a single
word, 40 bit instruction. Register Inmediate Long (RIL) instruction is a double word, 80 bit instruction.
Each format, except the direct branch, uses a data type of dip-instruction, these are data type codes 50 to
77. Sunstone interprets a data type of dip-compiled-function as a direct branch instruction; all other data
types trap if encountered as instructions.

Each instruction format breaks down into fields that further define the general operation of the

instruction. The sourcel, source2, and destination fields refer to one of 64 registers. 32 of the registers
they refer to are special purpose registers such as Number-of-Arguments, Program-Counter, etc. The 1|
other 32 registers refer to the Register Window sets, 16 registers for the Current Window and 16

registers for the Build Window.

1.4.1 Register To Register (RR) Format

All opcodes except read-coproc are available in the RR format. All RR instructions are one word in
length, or 40-bits. The decoding varies slightly among opcodes (see figure 3 on page 16.) For a
complete description of each field see section 1.4.6 on page

21

Symbolics Company Confidential 15
October 1987 SUNSTONE ARCHITECTURE

1.4 INSTRUCTION FORMATS

Four different formats of Sunstone instructions specify the operation, type, and operands to use. The
Register-to-Register (RR), Register Immediate Short (RIS), and Direct Branch formats all use a single
word, 40 bit instruction. Register Immediate Long (RIL) instruction is a double word, 80 bit instruction.
Each format, except the direct branch, uses a data type of dtp-instruction, these are data type codes 50 to
77. Sunstone interprets a data type of dtp-compiled-function as a direct branch instruction; all other data
types trap if encountered as instructions.

Each instruction format breaks down into fields that further definé the general operation of the

instruction. The sourcel, source2, and destination fields refer to one of 64 registers. 32 of the registers
they refer to are special purpose registers such as Number-of-Arguments, Program-Counter, etc. The 1
other 32 registers refer to the Register Window sets, 16 registers for the Current Window and 16

registers for the Build Window.

1.4.1 Register To Register (RR) Format

All opcodes are available in the RR format. All RR instructions are one word in length, or 40-bits. The
decoding varies slightly among opcodes (see figure 3 on page 16.) For a complete description of each
field see section 1.4.6 on page 20

16

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

Figure 3. RR Formats

add, add-no-trap, sub, sub-no-trap, multiply, and, or,
xor, rot, ash, Ish, ldb, dpb, move, move-type, load, read-mc-reg:

October 1987

P | I I
|I|P|110] OPCODE | SOURCEl | SOURCE2
I_1_l I I |

| I
| DESTINATION|

39 37 34 28 22

store, write-mc-reg:

5 0

NN | I
|T|P|110] OPCODE | SOURCE1 | SOURCE2
I_1_1__1 I I

UNUSED |

39 37 34 28 22

call,jcall, return, return-subvert:

o | ! |
|T|P|110] OPCODE | SOURCEl | UNUSED

I !
|DESTINATION|

39 37 34 28 22

read-coproc:

5 0

1 |
IT|P|110] OPCODE

UNUSED | COPROC REG. | COPROC OPCODE

I |
| DESTINATION|

|

|
I_I_I | | . |
39 37 34 28 22

write-coprcc, load-coproc, store-coproc:

5 0

COPROC OPCODE

I |
| COPROC REG. |

5 0

PAGE OFFSET I

| |
|T|P|110] OPCODE | SOURCEl | SOURCE2
1_1_1 | | |
39 37 34 28 22

branch-next, branch-take, trap:

P | | |
|T|P|110] OPCODE | SOURCE1 | SOURCE2
1_1_l | | |
39 37 34 28 22

branch-next-type, branch-take-type, trap-type:

I N I I ,
IT|P|110] OPCODE | SOURCEl | SOURCE2

39 37 34 28 22

PAGE OFFSET |

Symbolics Company Confidential 17
February 1988 SUNSTONE ARCHITECTURE

1.4.2 Register Inmediate Short (RIS) Format

RIS format instructions are one word long, or 40-bits. There are eleven opcodes that are not available in
the RIS format: write-coproc, load-coproc, store-coproc, branch-next-type, branch-take-type, trap-type,
call, jcall, return, and return-subvert. The hardware does not check for these opcodes, and their
operation is undefined. The decoding varies slightly among opcodes (see figure 4 on page 17). For a
complete description of each field see section 1.4.6 on page 21.

Figure 4. RIS Formats

add, add-no-trap, sub, sub-no-trap, multiply, and, or,
xor, rot, ash, Ish, ldb, move, move-type, load, read-mc-reg:

|I|P|111| OPCODE | SOURCE1l |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED
I_1_l | | | | |
39 37 34 28 22 16 11
dpb:
[| | | SOURCEZ | I
|Z|P|111]|] OPCODE | SOURCEl1 |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED
1_1_1I | | | | |
39 37 34 28 22 16 11
read-coproc:

Pl I - I I !
ITIP|111| OPCODE UNUSED |DESTINATION| COPROC OPCODE |COPROC REG

I
|
__ |
39 37 34 28 22 16 5 0

store, write-mc-reg:

AN I | I I !
II|P|111] OPCODE | SOURCE1L | SOURCE2 | TYPE | 12-BIT-SIGNED-IMMED

39 37 34 28 22 16 11

branch-next, branch-take, trap:

P | | I | |
II|P|111] OPCODE | SOURCEl |6-BIT-IMMED| COND | PAGE OFFSET

39 37 34 28 22 16 11

Symbolics Company Confidential 17
October 1987 SUNSTONE ARCHITECTURE

1.4.2 Register Immediate Short (RIS) Format

RIS format instructions are one word long, or 40-bits. There are eleven opcodes that are not available in
the RIS format: read-coproc, write-coproc, load-coproc, store-coproc, branch-next-type, branch-take-
type, trap-type, call, jcall, return, and return-subvert. The hardware does not check for these opcodes,
and their operation is undefined. The decoding varies slightly among opcodes (see figure 4 on page 17).
For a complete description of each field see section 1.4.6 on page 20.

Figure 4. RIS Formats

add, add-no-trap, sub, sub-no-trap, multiply, and, or,
xor, rot, ash, Ish, ldb, move, move-type, load, read-mc-reg:

II|P|111|] OPCODE | SOURCEl |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
I_l_l I | | 1 I I
39 37 34 28 22 16 11

dpb:
I I I | SOURCE2 | | |
|I|P|111]] OPCODE | SOURCEl |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
I_I_l | | I | | |
39 37 34 28 22 16 11

store, write-mc-reg:

I I | | I | I
|I|P|111] OPCODE | SOURCE1 | SOURCE2 | TYPE | 12-BIT-SIGNED-IMMED |
I_l_l | I I | I |
39 37 34 28 22 16 11

branch-next, branch-take, trap:
I I I | | I I
|II|P|111] OPCODE | SOURCEl |6-BIT-IMMED| COND | PAGE OFFSET |
I_1_l | I | | | I
39 37 34 28 22 16 11

1.4.3 Register Inmediate Long (RIL) Format

RIL format instructions are two words long, or 80-bits. There are seven opcodes that are undefined in 1
the RIL format: rot, ash, Ish, ldb, dpb, read-coproc and move-type. The hardware does not check for 1
these opcodes, and their operation is undefined. The second word of each RIL instruction is a 40-bit
immediate value. The decoding of the first word of the instruction varies slightly among opcodes (see
figure 5 on page 18). For a complete description of each field see section 1.4.6 on page 20.

18

Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987
Figure 5. RIL Formats
add, add-no-trap, sub, sub-no-trap, multiply, and, or,
xor, move, load, read-mc-reg:
I I | | | | | I I
I1T|P|101] OPCODE | SOURCEl | UNUSED | TYPE | UNUSED | DESTINATION]|
I_I_l | | | | | | |
39 37 34 28 22 16 11 5 0
call, jcall, return, return-subvert:
I I | | | | | | I
|T|P|101] OPCODE | SOURCEl1l | UNUSED | TYPE | N-ARGS |DESTINATION|
I_I_l | | | | | | I
39 37 34 28 22 16 11 5 0
store, write-mc-reg:
111 | | | | | I
IT|P]101] OPCODE | SOURCE1l | SOURCE2 | TYPE | UNUSED |
1_1_l | | | | | |
39 37 34 28 22 le6 11 0
write-coproc, load-coproc, store-coproc:
I I | | | | | |
IT|P|101] OPCODE | SOURCEl | UNUSED | COPROC OPCODE |COPROC REG. |
I_I_l | | | | | |
39 37 34 28 22 16 5 0
branch-next, branch-take, trap:
P | | | | | |
|TI|P|101|] OPCODE | SOURCE1l | UNUSED | COND | PAGE OFFSET |
1_1_1 | | | | I |
39 37 34 28 22 16 11 0
branch-next-type, branch-take-type, trap-type
Pl | | | I I B |
|I|P]101] OPCODE | SOURCEl | UNUSED |C|H|UN| PAGE OFFSET |
I_l_1 | | I i1l |
39 37 34 28 22 16 15 11 0

The second word for all RIL instructions:

I I
| UNUSED |

38 BIT IMMEDIATE I

39 37

Symbolics Company Confidential 19
October 1987 SUNSTONE ARCHITECTURE

1.4.4 Direct Branch Format

The direct branch format is a single word, 40-bit instruction with a 6-bit data type of
dtp-compiled-function, and the 32 least significant bits are interpreted as a 32-bit virtual address to use
as the new PC. See figure 6 on page 19.

Figure 6. Direct Branch Format

|
ITIP| 34 | ADDRESS
1_1_l |

39 37 31

1.4.5 Instruction Sequencing

Instructions that do not explicitly affect the PC behave as follows:
* RR and RIS instructions increment the PC by 1
¢ RIL instructions on even boundries increment the PC by 2
¢ RIL instructions on odd boundries increment the PC by 1

Note that normal RIL instructions will be aligned on an even word boundary. RIL instructions on an
odd boundary is a special case that is used to align normal RIL instructions with an instruction that can
be executed in zero cycles. Since these odd word RIL instructions might be executed in some cases of
interrupts or traps, the instruction must not have any harmful side-effects.

Note also that only the low order 12 bits of the PC are incremented, i.e. there is no carry from bit 11 to
bit 12 of the PC. Consequently, the PC wraps around 4K boundaries.

20

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

1.4.6 Instruction Field Descriptions

Table 5 on page 20 lists the various instruction fields and describes how they are used.

Table 5. Instruction Field Descriptions

Instruction Field Descriptions
Bits Length Use
39 1 Inhibit interrupts
38 1 Inhibit preemption
3735 | 3 Format
3732 | 6 Data type
3429 | 6 Opcode
31:0 32 PC address
28:23 | 6 Sourcel
22:17 Source2, destination, 6-bit-signed-immediate,
coproc-reg
16:12 | § Type Check, Cond
16:6 11 coproc-opcode
16 1 High/Low
15 condition
11:6 6 N-Args
11:0 12 Page Offset, 12-bit-signed-immediate
5:0 6 Destination, coproc-reg

October 1987

1. Inhibit Interrupts - Bit 39, when set causes an Inhibit Interrupt condition on instruction

completion. This inhibits interrupts for the next instruction. When clear, it allows

interrupts on instruction completion, unless the Status Control Inhibit Interrupt is set. If a
trap occurs, the inhibit interrupts condition will be saved by the hardware into the Status
Control Inhibit Interrupts Bit (see table 2 on page 7).

2. Inhibit Preemption - Bit 38, when set causes an Inhibit Preempts condition on instruction
completion. This means that preempts cannot occur between the instruction with the
preempts inhibited bit set and the completion of the following instruction. When clear, it
allows preempts on instruction completion, unless the Status Control Inhibit Preempt is
set. If a trap occurs, the inhibit preempts condition will be saved by the hardware into the
Status Control Inhibit Preempts bit (see table 2 on page 7).

3. Format - The three bit field 37:35 specifies what the instruction format is: 6 - RR, 7 - RIS,
and 5 - RIL. For the direct-branch format this field will be 3 and bits 33:32 will be a 4.

Symbolics Company Confidential 21
February 1988 SUNSTONE ARCHITECTURE

1.4.6 Instruction Field Descriptions

Table S on page 21 lists the various instruction fields and describes how they are used.

Table 5. Instruction Field Descriptions

Instruction Field Descriptions

Bits Length Use
39 1 Inhibit interrupts
38 1 Inhibit preemption
3735 | 3 Format
3732 | 6 Data type
3429 | 6 Opcode
31:0 32 PC address
2823 | 6 Sourcel
22:17 | 6 Source2, destination, 6-bit-signed-immediate,
16:12 | § Type Check, Cond
16:6 11 coproc-opcode
16 1 High/Low
15 1 condition
11:6 6 N-Args
11:0 12 Page Offset, 12-bit-signed-immediate
5:0 6 Destination, coproc-reg »

1. Inhibit Interrupts - Bit 39, when set causes an Inhibit Interrupt condition on instruction
completion. This inhibits interrupts for the next instruction. When clear, it allows
interrupts on instruction completion, unless the Status Control Inhibit Interrupt is set. If a
trap occurs, the inhibit interrupts condition will be saved by the hardware into the Status
Control Inhibit Interrupts Bit (see table 2 on page 7).

2. Inhibit Preemption - Bit 38, when set causes an Inhibit Preempts condition on instruction
completion. This means that preempts cannot occur between the instruction with the
preempts inhibited bit set and the completion of the following instruction. When clear, it
allows preempts on instruction completion, unless the Status Control Inhibit Preempt is
set. If a trap occurs, the inhibit preempts condition will be saved by the hardware into the
Status Control Inhibit Preempts bit (see table 2 on page 7).

3. Format - The three bit field 37:35 specifies what the instruction format is: 6 - RR, 7 - RIS,
and S - RIL. For the direct-branch format this field will be 3 and bits 33:32 will be a 4.

Symbolics Company Confidential 21
October 1987 SUNSTONE ARCHITECTURE

4. Data Types - All instructions have a data type of dtp-instruction, or dtp-compiled-function.
There are 24 different values for dtp-instruction, octal values 50 - 77, and
dtp-compiled-function has a value of 34 octal. All other data type values cause a trap to
occur, though it may not be an error. It is the software’s responsibility when setting the PC

to test for an illegal data type.
5. Opcode - This six bit field bits 34 - 29 specifies which of 58 instructions to execute. See
table 6 on page 21.
Table 6. Opcodes
Table of Opcodes
Instruction Opcode Instruction Opcode
load-ephemeralp | 00 or 40
load-oldspacep 01 Xor 41
load-raw 02 and 42
undefined 03 move 43
load-cdr 04 ash 44
load-structure 05 Ish 45
load-gc-copy 06 rot 46
load-scavenge 07 write-mc-reg 47
load-bind 10 1db 50
load-header 11 dpb 51
load-data 12 add-no-trap 52
load-data-iv 13 sub-no-trap 53
load-car-cdr 14 add 54
load-cdr-finish 15 sub 55
load-array 16 mult 56
load-coproc 17 write-coproc 57
store-cdr-next 20 jeall 60
store-cdr-nil 21 call 61
store-cdr-normal | 22 return 62
store-cdr-3 23 return-subvert 63
store-cdr-reg 24 branch-take-type | 64
store-gg)e-_reg 25 branch-take 65
store-38-bits 26 move-type 66
undefined 27 read-mc-reg 67
store-bind 30 trap-type 70
undefined 31 trap 71
store-data 32 undefined 72
store-data-iv 33 undefined 73
undefined 34 branch-next-type | 74
store-rplacd 35 branch-next 75
store-array 36 undefined 76
store-coproc 37 read-coproc 77

6. PC Address - This field is used in the direct branch format. It is loaded into the PC as the
address of the next instruction to execute.

7. Sourcel - A six bit field,it is comprised of bits 28 - 23 of the instruction. The bits are
interpreted the same as the the source2 and destination fields. This field specifies one of
64 registers to be read: 16 in the current window, 16 in the build window, 10 special
registers, or 22 global registers (see section 1.3.2 on page 4).

22

Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987

8. Source2 - A six bit field, it is comprised of bits 22 - 17 of the instruction. This field is not

present for every instruction in every format. When it is present the bits are interpreted the
same as the sourcel and destination fields. The six bit field specifies one of 64 registers to
be read: 16 in the current window, 16 in the build window, 10 special registers, and 22
global registers (see section 1.3.2 on page 4).

9. Destination - This 6 bit value specifies one of 64 registers to store the results of the

10.

11

operation in. The registers are defined as in the sourcel and source2 fields. The field
specifies one of 64 registers to store the result of the operation in: 16 in the current
window, 16 in the build window, 10 special registers, and 22 global registers. The
destination is present in all instructions but: store, branch-next, branch-take, trap, branch-
next-type, branch-take-type, trap-typeload-coproc, write-mc-reg, write-coproc. The data
type stored in the destination is that of sourcel except for the RIS and RIL formats for
instructions: move, return, and return-subvert also RR and RIS formats for move-type. In
the case of move, return, and return-subvert the data type of the result will be that of the
immediate, which in the case of the RIS format will always be dtp-fixnum. Move-type is a
special case, see section 1.4.8 on page 27. For read-mc-reg, read-coproc, and load
instructions, the data type loaded into the destination register is the data type of the word
read.

6-bit-signed-immediate - Used only in the RIS format by the branch instructions:
branch-next, branch-take, trap. This 6 bit field is bits 22:17 and is a sign extended value
with a data type of dtp-fixnum.

. Type Check - This 5 bit field uses bits 16 to 12 to represent what data types to trap on.

This field is not present in the read-coproc, write-coproc, load-coproc, store-coproc,
branch-next, branch-next-type, branch-take, branch-take-type, trap, and trap-type
instructions. Some of the instructions that have no type field still have data type checking.
The branch-next, branch-take, and trap instructions (all which use the COND field instead
of the TYPE field) will test the type according to the condition. See the COND field
description below. Some of these traps will always be error traps, and some will be errors
only for certain data types. See table 7 on page 24. The names for type checks in this field
typically are the names of the data types that are legal. There is one notable exception,
#hardware-arith. The #hardware-arith type check will always check both sources, even
in the immediate formats. It checks that the data types are the same or it traps. It also
traps if the data types are not dtp-fixnum if there 1s no floating point coprocessor present,
or it traps if the data types are not both dtp-fixnum or both dtp-flonum if there is a floating
point coprocessor present. The data type traps are listed according to the value of the type
field, are as follows:

® None - Type Check Field = 0 ; No data types will trap.

o #fixnum - Type Check Field = 1; Trap if data type is not dtp-fixnum. This is always
an error trap.

o #flonum - Type Check Field = 2; Trap if data type is not dtp-single-float. This is an
error trap if the data type is not one of the numeric data types 10 - 17: dtp-fixnum,
dtp-small-ratio, dtp-double-float, dtp-bignum, dtp-big-ratio, dtp-complex, or
dtp-spare-number.

e #instance - Type Check Field = 3; Trap if the data type is not one of: dtp-instance,
dtp-list-instance dip-array-instance, or dip-string-instance. This is always an error
trap. '

e #array - Type Check Field = 4; Trap if the data type is not dtp-array. This is
always an error trap.

Symbolics Company Confidential , 23
October 1987 SUNSTONE ARCHITECTURE

o #locative - Type Check Field = 5; Trap if the data type is not dtp-locative. This is
always an error trap.

o #compiled-function - Type Check Field = 6; Trap if the data type is not
dtp-compiled-function. This is an error trap if the data type is not one of:
dtp-generic-function, dip-instance, dtp-symbol, dtp-lexical-closure, or
dtp-dynamic-closure.

e #character - Type Check Field = 7; Trap if the data type is not dtp-character. This
is always an error trap.

o #list - Type Check Field = #010; Trap if the data type is not dtp-list. This is always
an error trap.

e #list-locative - Type Check Field = #011; Trap if the data type is not dtp-list or
dtp-locative. This is always an error trap.

o #[ist-nil - Type Check Field = #012; Trap if the data type is not dtp-list or dtp-nil.
This is an error trap if the data type is anything but dtp-list-instance.

o #list-loc-nil - Type Check Field = #013; Trap if the data type is not dtp-list,
dtp-locative, or dtp-nil. This is an error trap for all data types but dip-list-instance.

o #array-string - Type Check Field = #014; Trap if the data type is not dtp-array or
dtp-string. This is an error trap if the data type is not dtp-array-instance or
dtp-string-instance.

e #hardware-arith - Type Check Field = #015; This trap depends on the floating
point and fixnum multiply support offered by a hardware coprocessor, as indicated
by the FPU Configuration Register (see page 11). Without hardware support, trap if
both sources are not dtp-fixnum for add, sub, branch-take, branch-next, and trap
instructions, and always for multinstruction. However, when the FPU Configuration
register indicates support for fixnum multiply, then a mult instruction will not trap if
both sources are dtp-fixnum. Additionally, when it indicates support for floating
point add, subtract and multiply, the add, sub, and mult instructions will not trap if
both sources are dtp-single-float. The same is true for branch-take, branch-next, and
trap, when it indicates support for floating point compares. Regardless of the FPU
Configuration, this is an error trap if both sources’ data types are not one of the
numeric data types #010-#017: dtp-small-ratio, dtp-double-float, dtp-bignum, dtp-
big-ratio, dtp-complex, or dip-spare-number.

o #pointer - Type Check Field = #016; Trap if the data type is not a legal pointer.
The legal pointer types are: dtp-monitor-forward, dtp-header-p dtp-external-value-
cell-pointer, dtp-one-q-forward, dip-header-forward, dtp-element-forward, dip-
double-float, dtp-bignum, dip-big-ratio, dtp-complex, dtp-spare-number, dtp-
instance, dip-list-instance, dtp-array-instance, dtp-string-instance, dtp-nil, dtp-list,
dtp-array, ditp-string, dtp-symbol, ditp-locative, dtp-lexical-closure, dip-dynamic-
closure, dtp-compiled-function, dtp-generic-function, dtp-spare-pointer-1, dtp-
spare-pointer-2, dip-bound-location, dtp-logic-variable, dtp-gc-forward, dtp-pc, and
dpt-null.

o #list-locative - Type Check Field = #031; Trap if the data type is not dtp-lisi or
dip-locative. This is an error trap for all data types except dip-list-instance.

12. Cond - This 5 bit field in bits 16:12 for instructions: branch-next,branch-take, and trap.
See table 7 on page 24. K

24

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

Table 7. Condition Field Definitions

Table of Cond Field Definition

Value Definition Data Type Test
0 < #hardware-arith

1 > #hardware-arith
2 2 #hardware-arith
3 < #hardware-arith
4 = #hardware-arith
5 # #hardware-arith
6 32 bit = none
7 none

10 32 bit < none

11 32 bit > none

12 unsigned < #fixnum

13 unsigned > #fixnum

14 logtest #fixnum

15 endp #list-nil-list-instance
16 char = #char

17 eql non-immediate-number
20 not < #hardware-arith
21 not > #hardware-arith
22 not 2 #hardware-arith
23 not < #hardware-arith
24 not = #hardware-arith
25 not # #hardware-arith
26 not 32 bit = | none
27 not eq none

30 32 bit £ none

31 32 bit > none
32 unsigned > #fixnum

33 unsigned < #fixnum

34 not logtest #fixnum

35 not endp #list-nil-list-instance
36 not char = #cChar

37 not eql non-immediate-number

October 1987

The four least significant bits of the cond field define the test condition and type check.
The msb, if set, indicates the negation of the test condition. All of the test condmons,
except endp, test as sourcel<cond>source2. Endp tests sourcel.

Of the 16 test conditions, six of them, namely <, >, 2, <,=,# are signed numeric
comparisons, using the #hardware-arith type check. Two unsigned numeric comparisons,
unsigned- < and unsigned- >, use the #fixnum type check. Four of the test conditions do
not have type checks; they are: eq, 32-bit-=, 32-bit- <, and 32-bit->. Note that the eq is a
38 bit equality check. The eql condition is the same as eq-except for a type check that traps
for non immediate numbers of identical data types. The char= condition is a 32-bit-= with
a #char type check. The logtest condition indicates a true condition if a bitwise logical
and (ie, logand) of the two sources leaves any bit set, and type checks for #fixnum. The
endp condtion checks to see if the data type of source 1 is dtp-nil. Endp has a type check
that traps if the sourcel data type is not one of dip-nil, dip-list, or dip-list-instance.

Symbolics Company Confidential 25
October 1987 SUNSTONE ARCHITECTURE
13. Coproc-Opcode - This 11 bit field, bits 16:6, is available for support of coprocessor

14.

15.

16.

17

18.

hardware. The definition of this field is dependent upon the coprocessor.

High/Low - This bit 15 is used only in the type instructions: branch-next-type,
branch-take-type, and trap-type. This bit determines if the 32-bit mask is applied to the
upper half or the lower half of the 64-bit value (see section 1.5.9 on page 66). When this
bit is a 1 the mask is applied to the upper half, when this bit is 0 the mask is applied to the
lower half.

Condition - This bit 16 is used only in the type instructions: branch-next-type,
branch-take-type, and trap-type. This bit indicates branching on a true or false result of
the type test being done. If the bit is 1, the branch is taken if the result of the type test is
non-zero, if the bit is 0, the branch is taken if the result of the type test is zero (see section
1.5.8 on page 61).

N-Args - This 6 bit field, bits 11:6, is used by the call and return instructions. If the most
significant bit is a 1, the N-Args register is loaded with the value in the least significant 5
bits of this field, if the most significant bit is a O, the N-Args register is unchanged.

. Page Offset - This 12 bit field, when present, is in bits 11 to 0. This field is used by the

branch and trap instructions. For the branch instructions, this field represents the least
significant 12 bits of the address to branch to if the condition being tested is true. The
most significant 20 bits are the most significant 20 bits of the address of the instruction
being executed. It can be thought of as an offset within the current page. For the trap
instructions, this field is the least significant 12 bits of the trap address. The most
significant 5 bits of the trap address are 1s. Bits 13 and 12 of the trap address are Os. Bits
26 to 14 come from the trap base register. See section 1.8.2.8 on page 126).

12-Bit Signed-Immediate - Bits 11 to 0 in the RIS format for non branch and trap
instructions. This field is sign extended and has a data type of dtp-fixnum.

26 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.4.7 Data Type Checking

The data types of either, neither or both source registers of an instruction are checked. The instruction
format and the opcode determine what data gets type checked and the Type Check Field in the
instruction determines what data type check to perform. In the case of a load or store instruction, the
data at the referenced address is also type checked as specified by the opcode. A trap occurs if the result
of the data type check is not what was specified by the instruction.

Not all traps on data types are errors, so the trap handler sometimes has to test the data types of the
sources and determine what the proper method of handling the trap is. Therefore the trap vector
addresses for data type traps include information on the data type being checked, the opcode, and
possibly the data type of the sources. See section 1.8 on page 120 for a more detailed description of
trapping.

Sunstone provides two methods of data type checking. The first method uses a combination of the
1 opcode, instruction format and the type check field to determine what condition to trap on. The second
method utilizes a special instruction, trap-type, to specify what conditions to trap on.

11In the first method, the Type Check Field, a 5 bit field in the instruction, specifies what data types to trap
on. The instruction format determines which Source registers are tested. If the instruction format is RIL
or RIS, the data type checking mechanism checks only the Sourcel Register. If the instruction format is
RR, the data type checking mechanism checks to see if both the Sourcel and the Source2 Registers are
the same type, and that they are the type specified by the Type Field. An exception to the above occurs
when the opcode indicates either a load or store instruction. Load and store instructions use the type
field only to check the Sourcel register. In the RR format,the load instruction traps if the Source2
register is not a fixnum. The opcode for the load and store instructions specifies what data types of
referenced data to trap on and how to handle the trap, see section 1.4.9 on page 27 on memory

I operations. Also, if the 5 bit type check field in the instruction specifies #hardware-arith and the format
is RIS or RIL, both sources are checked.

The second method, using the trap-type instruction, allows you to explicitly specify what to trap on.
The trap-type instruction, applies a mask to a 64 bit decoded representation of the data type of Sourcel.
One bit in the instruction selects which half of the 64 bit word the mask is applied to, and another bit

I selects whether to trap on true or false results. In the RR instruction format, the Source2 register
contains the mask data. In the RIL instruction format, the immediate data word contains the 32 bit
mask.

Of the two methods, the first method is considerably more efficient. Although the trap-type instruction
allows more flexibility, it is at the cost of one or two cycles. This is because the second method uses a
separate instruction just to test the data types, whereas the first method tests the data types as part of
normal instruction execution,

The first method also provides a means to efficiently handle the case where instructions are identical,
but the data type trap handler needs to do something different according to the application. An example

Symbolics Company Confidential : 27
November 1987 SUNSTONE ARCHITECTURE

of this situation is a store-data instruction with the data type check specified as #list-locative. This
instruction is used when emulating the I-Machine instructions rplaca and pop-lexical-var-n. When
emulating pop-lexical-var-n, the trap handler is always an error trap routine. When emulating rplaca, if
the data type of the source is dip-list-instance it is not an error. Although the instruction traps in both
cases on a source with data type dtp-list-instance, the trap handler needs two separate entry points to
handle both cases. The most significant bit of the Type Check Field solves this problem. Four bits of
the type field specify what data types to trap on, and one bit of the five bit field is used as part of the trap
vector, providing 2 unique trap vector addresses for each of the data type traps.

There are a few instructions that have no data type checking on themselves, they are: read-coproc,
write-coproc,load-coproc,store-coproc, branch-next-type, branch-take-type and trap-type. The
instructions: branch-next, branch-take, and trap, all test the source according to the type check defined
by the Cond field. See section 1.4 on page 15 for further explanation.

1.4.8 Data Type Setting

The data type is set when it is moved to its destination, either the destination register or a memory
location. Typically the data type is set to that of Sourcel. There are, however, a few exceptions. The 1
read-mc-reg, read-coproc, and load instructions, move the full 38 bits read into the destination register. I
Also, with the exception of the store-type instruction, store instructions store into memory all 38 bits of
Source2. The return and return-subvert instructions when in the RR format, get the data type stored in
the destination register from Sourcel. When in the RIL format they get the data type stored in the
destination register from the immediate field. When in the RR format, the MOVE instruction sets the

data type of the destination register from the Sourcel register. When in the RIS or RIL formats, the

move instruction sets the data type of the result stored in the destination register from the immediate
value. For the move-type instruction, the data type of the result stored in the destination register comes
from the least significant six bits of the Source2 register (Source2<5:0>). When the move-type

instruction is in the RIS format, the data type of the result stored in the destination register comes from
the least significant six bits of the immediate field (Immediate<5:0>).

1.4.9 Memory Operations

Load and Store are the only instructions which access memory. The table 1.4.9 on page 29 lists the
many variations of both instructions. Referencing the table reveals the difference between the load
instructions is mostly a matter of what data types are trapped on, and what the trap handler does for each
of these cases. Note that many of the memory operations are functionally identical to the I-Machine
versions, and the hardware traps to allow software to handle all of cases shown. For example the
hardware traps to allow the software to load or store indirectly through forwarding pointers. For a more
complete description of each instruction, see section 1.5.10 on page 70, and section 1.5.11 on page &9.

28

Symbolics Company Confidential

SUNSTONE ARCHITECTURE November 1987
Table 8. Memory Operations
Memory Operations
Operation I-Data | P-Data I-Head | P-Head Null Bound Logic
load-data - TRNSPT ERR ERR ERR BTRP LOGIC
load-data-iv - TRNSPT ERR ERR ERR BTRP LOGIC
load-cdr - - ERR ERR - - -
load-car-cdr - TRNSPT ERR ERR ERR BTRP LOGIC
load-cdr-finish - TRNSPT ERR ERR ERR BTRP LOGIC
load-structure - - - - - - -
load-header ERR ERR - TRNSPT | ERR ERR ERR
load-array - TRNSPT ERR ERR BTRP LOGIC
load-coproc - TRNSPT ERR ERR ERR BTRP LOGIC
load-bind - TRNSPT ERR ERR TRNSPT | TRNSPT | TRNSPT
load-scavenge - TRNSPT - TRNSPT | TRNSPT | TRNSPT | TRNSPT
load-gc-copy - - - - - - -
load-raw - - - - - - -
load-ephemeralp | - - - - - - -
load-oldspacep - - - - - - -
store-data - - ERR ERR - BTRP LOGIC
store-data-iv - - ERR ERR - BTRP LOGIC
store-rplacd - - ERR ERR - BTRP LOGIC
store-array - - ERR ERR - BTRP LOGIC
store-coproc - - ERR ERR - BTRP LOGIC
store-bind - - ERR ERR - - -
store-cdr-nil - - - - - - -
store-cdr-next - - - - - - -
store-cdr-normal | - - - - - - -
store-cdr-3 - - - - - - -
store-cdr-reg - - - - - - -
store-type-reg - - - - - - -
store-%q%its - < - - - - -
Legend:
- Normal action
ERR This is an error trap.
TRNSPT If the data type of the word read contains an address in oldspace, and if
transport traps are enabled for the page containing the word read, a transport -
trap will occur to evacuate the object.
MTRP Take a monitor forward trap. However, if the word meets the transport
trap condition as described above, take a transport trap instead.
IND Take an indirect trap to follow the forwarding pointer chain.
However, if the word meets the transport trap condition as described above,
take a transport trap instead.
BTRP Take a bound location trap to a routine to search the deep binding cache.
However, if the word meets the transport trap condition as described above,
take a transport trap instead.
LOGIC Take a logic variable trap to a routine that replaces the data type of the

value read with DTP-EVCP. However, if the word meets the transport trap
condition as described above, take a transport trap instead.

Symbolics Company Confidential 29
November 1987 SUNSTONE ARCHITECTURE

Memory Operations Cont.
Operation Hfwd Efwd 1fwd Evcp Monitor GC
load-data IND IND IND IND MTRP ERR
load-data-iv IND IND IND IND MTRP ERR
load-cdr IND IND - - - ERR
load-car-cdr IND IND IND IND MTRP ERR
load-cdr-finish IND IND IND IND MTRP ERR
load-structure IND - - - - ERR
load-header IND ERR ERR ERR ERR ERR
load-array IND IND IND IND MTRP ERR
load-coproc IND IND IND IND MTRP ERR
load-bind IND TRNSPT | MTRP ERR
load-scavenge TRNSPT | TRNSPT | TRNSPT | TRNSPT | TRNSPT | ERR
load-gc-copy - - - - - ERR
load-raw - - - - -
load-ephemeralp | - - - - -
load-oldspacep - - - - -
store-data IND IND IND IND MTRP ERR
store-data-iv IND IND IND IND MTRP ERR
store-rplacd IND IND IND IND MTRP ERR
store-array IND IND IND IND MTRP ERR
store-coproc IND IND IND IND MTRP ERR
store-bind IND IND IND - MTRP ERR
store-cdr-nil - - - - -
store-cdr-next - - - - -
store-cdr-normal | - - - - -
store-cdr-3 - - - - -
store-cdr-reg - - - - -
store-type-reg - - - - -
store-?gziits - - - - -
Data type classifications:

[-Data dtp-fixnum, dtp-small-ratio, dtp-single-float, dtp-character,
dip-physical-address, dip-spare-immediate-1, dip-instruction

P-Data dtp-double-float, dtp-bignum , dtp-big-ratio, dtp-complex,
dtp-spare-number, dtp-instance, dtp-list-instance, dtp-array-instance,
dtp-string-instance, dip-nil, dtp-list, dtp-array, dtp-string, dtp-symbol,
dtp-locative, dtp-lexical-closure, dtp-dynamic-closure,
dtp-compiled-function, dtp-generic-function, dtp-spare-pointer-1,
dtp-spare-pointer-2, dtp-bound-location, dtp-logic-variable, dtp-pc,
dtp-breakpoint

I-Head dpt-header-i

P-Head dtp-header-p

Null dip-null

Bound dtp-bound-location

Logic dtp-logic-variable

Hfwd dtp-header-forward

Efwd dtp-element-forward

1fwd dtp-one-q-forward

Evcp dtp-external-value-cell-pointer

Monitor dtp-monitor-forward
GC dpt-gc-forward

30 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

In calculating the memory address, Sourcel and source2 are added together in the RR format for loads
and sourcel and the MAR are added together for stores. Sourcel and the 12-bit-signed-immediate field
are added for the RIS format, and sourcel and the 38-bit-immediate are added for the RIL format. The
data type of the calculated memory address is the data type of sourcel for the RR and RIS format
instructions, and is the data type of the 38-bit immediate for the RIL format instruction.

1.5 INSTRUCTIONS

There are 58 defined instructions for Sunstone, see table 10 on page 31. The instructions are listed in
this document by class, see table 9 on page 30 for a listing of classes.

Table 9. Instruction Classes

Table of Instruction Classes
Class Instructions
arithmetic add, add-no-overflow, sub, sub-no-overflow, mult
logical and, or, xor)
bit & byte ash, Ish, rot, ldb, dpb
call call
return return, return-subvert
move move, move-type
direct branch | branch
conditional branch-next, branch-take, trap
type branch-next-type, branch-take-type, trap-type
load load-array, load-bind, load-car-cdr, load-cdr-finish, load-cdr,
load-data, load-data-iv, load-ephemeralp, load-gc-copy, load-header,
load-oldspacep, load-raw, load-scavenge, load-structure
store store-38-bits, store-array, store-bind, store-cdr-3,
store-cdr-next, store-cdr-nil, store-cdr-normal, store-cdr-reg, store-data,
store-data-iv, store-rplacd, store-type-reg
coprocessor read-coproc, write-coproc, load-coproc, store-coproc
mc reg read-mc-reg, write-mc-reg

Symbolics Company Confidential 31
February 1988 SUNSTONE ARCHITECTURE

In calculating the memory address, Sourcel and Source2 are added together in the RR format for loads;
sourcel and the MAR are added together for stores. Sourcel and the 12-bit-signed-immediate field are
added for the RIS format, and sourcel and the 38-bit-immediate are added for the RIL format. The data
type of the calculated memory address is the data type of sourcel for the RR and RIS format load
instructions and for RIS format store instructions; it is the data type of the 38-bit immediate for RIL
format instructions; and it is the data type of the MAR for RR format store instructions.

Format Load-Address Type Store-Address Type
RR Srcl+Src2 Srcl Srcl+MAR MAR
RIS Srcl+Imm-12 Srcl Srcl+Imm-12 Srcl
RIL Srcl+Imm-38 Imm-38 Srcl+Imm-38 Imm-38

1.5 INSTRUCTIONS

There are 58 defined instructions for Sunstone, see table 10 on page 33. The instructions are listed in
this document by class, see table 9 on page 32 for a listing of classes.

Symbolics Company Confidential

33

February 1988

Table 10. Instructions

SUNSTONE ARCHITECTURE

Table of Instructions

Instructions Class Opcode Formats
add arithmetic 54 RR, RIS, RIL
add-no-overflow | arithmetic 52 RR, RIS, RIL
and logical 42 RR, RIS, RIL
ash bit and byte 44 RIS
branch direct branch | *** DIRECT BRANCH
branch-next conditional 75 RR, RIS, RIL
branch-next-type | type 74 RIL
branch-take conditional 65 RR, RIS, RIL
branch-take-type | t: 64 RR, RIL
call call 61 RR, RIL
jeall call 60 RR, RIL
dcfb bit and byte 51 RR, RIS
1db bit and byte 50 RR, RIS
load-arra load 16 RR, RIS, RIL
load-bin load 10 RR, RIS, RIL
load-car-cdr load 14 RR, RIS, RIL
load-cdr-finish load 15 RR, RIS, RIL
load-cdr load 04 RR, RIS, RIL
load-coproc coprocessor 17 RR, RIL
load-data load 12 RR, RIS, RIL
load-data-iv load 13 RR, RIS, RIL
load-ephemeralp | load 00 RR, RIS, RIL
load-gc-copy load 06 RR, RIS, RIL
load-header load 11 RR, RIS, RIL
load-oldspacep load 01 RR, RIS, RIL
load-raw load 02 RR, RIS, RIL
load-scavenge load 07 RR, RIS, RIL
load-structure load 05 RR, RIS, RIL
Ish bit and byte 45 RR, RIS
move move 43 RR, RIS, RIL
move-type move 66 RIS
mult arithmetic 56 RR, RIS, RIL
or logical 40 RR, RIS, RIL
read-coproc COprocessor 77 RR, RIL
read-mc-reg mc reg 67 RR, RIS, RIL
return return 62 RR,
return-subvert return 63 RR, RIL
rot bit and byte 46 RR, RIS
store-38-bits store 26 RR, RIS, RIL
store-arra store 36 RR, RIS, RIL
store-bin store 30 RR, RIS, RIL
store-cdr-3 store 23 RR, RIS, RIL
store-cdr-next store 20 RR, RIS, RIL
store-cdr-nil store 21 RR, RIS, RIL
store-cdr-normal | store 22 RR, RIS, RIL
store-cdr-reg store 24 RR, RIS, RIL
store-coproc coprocessor 37 RIL
store-data store 32 RR, RIS, RIL
store-data-iv store 33 RR, RIS, RIL
store-rplacd store 35 RR, RIS, RIL
store-type-reg store 25 RR, RIS, RIL

***direct-branch has a data type of dip-compiled-function and has no opcode.

34 Symbolics Company Confidential

SUNSTONE ARCHITECTURE February 1988
Table of Instructions (cont.)
Instructions Class Opcode Formats

sub arithmetic 55 RR, RIS, RIL
sub-no-overflow | arithmetic 53 RR, RIS, RIL
trap conditional | 71 RR, RIS, RIL
trap-type type 70 RR, RIL

wrlte-Coproc coprocessor | 57 RR, RIL

write-mc-reg mc .rezﬁ 47 RR, RIS, RIL
xor logic 41 RR, RIS, RIL

Symbolics Company Confidential

31

October 1987

Table 10. Instructions

SUNSTONE ARCHITECTURE

Table of Instructions
Instructions Class Opcode Formats
add arithmetic 54 RR, RIS, RIL
add-no-overflow | arithmetic 52 RR, RIS, RIL
and logical 42 RR, RIS, RIL
ash bitand byte | 44 RIS
branch direct branch | *** DIRECT BRANCH
branch-next conditional 75 RR, RIS, RIL
branch-next-type | type 74 ,
branch-take conditional 65 RR, RIS, RIL
branch-take-type t);;l)le 64 RR, RIL
call c 61 RR, RIL
jeall call 60 RR, RIL
dpb bit and byte 51 RR, RIS
1db bit and byte 50 RR,RIS
load-arra load 16 RR, RIS, RIL
load-bin load 07 RR, RIS, RIL
load-car-cdr load 1 14 RR, RIS, RIL
load-cdr-finish load 15 RR, RIS, RIL
load-cdr load 10 RR, RIS, RIL
load-coproc COprocessor 17 RR, RIL
load-data _ load 12 RR, RIS, RIL
load-data-iv load 13 RR, RIS, RIL
load-ephemeralp | load 00 RR, RIS, RIL
load-ﬁc-copy load 04 RR, RIS, RIL
load-header load 06 RR, RIS, RIL
load-oldspacep load 01 RR, RIS, RIL
load-raw load 02 RR, RIS, RIL
load-scavenge load 05 RR, RIS, RIL
load-structure load 11 RR, RIS, RIL
Ish bit and oyte 45 RR, RIS
move move 43 RR, RIS, RIL
move-type move 66 , RIS
mult arithmetic 56 RR, RIS, RIL
or logical 40 RR, RIS, RIL
read-coproc coprocessor 71 RR,
read-mc-reg mc reg 67 RR, RIS, RIL
return return 62 RR, RIL
return-subvert return 63 RR, RIL
rot . bit and byte 46 RR,RIS
store-38-bits store 26 RR, RIS, RIL
store-arra store 36 RR, RIS, RIL
store-bin store 27 RR, RIS, RIL
store-cdr-3 store 23 RR, RIS, RIL
store-cdr-next store 20 RR, RIS, RIL
store-cdr-nil store 21 RR, RIS, RIL
store-cdr-normal store 22 RR, RIS, RIL
store-cdr-reg store 24 RR, RIS, RIL
store-coproc Coprocessor 37 RR, RIL
store-data store 32 RR, RIS, RIL
store-data-iv store 33 RR, RIS, RIL
store-rplacd store 35 RR, RIS, RIL
store-type-reg store 25 RR, RIS, RIL
*** direct-branch has a data type of dtp-compiled-function and has no opcode.

32 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

Table of Instructions (cont.)

Instructions Class Opcode Formats
sub arithmetic 54 RR, RIS, RIL
sub-no-overflow | arithmetic 55 RR, RIS, RIL
trap conditional 66 RR, RIS, RIL
trap-type type 65 RR, RIL
wrlte-cCoproc coprocessor | 57 RR, RIL
write-mc-reg mc re 67 RR, RIS, RIL
xor logic 56 RR, RIS, RIL.

Symbolics Company Confidential

33

October 1987

1.5.1 Arithmetic Operations

SUNSTONE ARCHITECTURE

The arithmetic operations are as follows: add, add-no-overflow, sub, sub-no-overflow, mult. All of these
operations are available in all three formats: RR, RIS, and RIL. The general description of these

operations is:

Destination « value op Sourcel

where OP is one of the arithmetic operations, and value is either Source2 in the RR format or the
immediate field in the RIS and RIL formats. The data type, of both Sourcel (and source2 in the RR
format) is checked according the the value of the instructions type field. The type field of the instruction

for add, sub and mult will usually be #hardware-arith. The type field of the instruction for

add-no-overflow and sub-no-overflow will typically be #fixnum. If #hardware-arith is specified as the
type check, both sources will be checked regardless of the instruction format. For all other type
checking only sourcel is type checked, except in the RR format when both sourcel and source2 are type
checked. See the description of the type field on page 22. The data type of the result stored in the
register specified by the destination field in the instruction word is the data type of sourcel. See figure 7

on page 33.

Figure 7. Arithmetic Operation Formats

RR:

11 | | | | | | |
|T|P|110} OPCODE | SOURCEl | SOURCE2 | TYPE | UNUSED | DESTINATION|
I_I_I | | | | | | [
39 37 34 28 22 16 11 5 0
RIS:

(I | | | | | |
|I|P|111] OPCODE | SOURCEl1l |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
I_1_I | | | | | |
39 37 34 28 22 16 11 0
RIL:

I | | 1 | 1 | |
|T1P]101]| OPCODE | SOURCEl1l | UNUSED | TYPE | UNUSED |DESTINATION|
1_I_1 | | | | | | |
39 37 34 28 22 16 11 5 0
| | I
| CC| 38 BIT IMMEDIATE |
| | |
39 37 0

34 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

ADD

Opcode: 54

Formats:
RR destination ¢« sourcel + source2
RIS destination ¢« sourcel + l1l2-bit-signed-immediate
RIL destination ¢« sourcel + 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #hardware-arith which will test

the data type of both sources even in the RIS and RIL formats. See the examples below and section
1.8.2 on page 121. '

Traps: Overflow trap if the addition results in an overflow condition. If a floating point coprocessor is
present then coprocessor traps may occur.

Description: Implements the Lisp + operation, and adds the contents of the register specified by
sourcel and the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked, except when the type check is # hardware-arith With type check
#hardware-arith, fixnum operations are performed by the normal data path. Floating point operations
will trap unless a coprocessor is present to handle that operation.

Examples:

(setq baz (+ foo bar)) add baz ¢« foo,bar #hardware-arith ;RR
(setq foo (1+ foo0)) add foo « foo,#1l #hardware-arith ;RIS
(setq foo (1- £f00)) add foo « foo,#-1 #hardware-arith ;RIS
(setq baz (+ foo 2047)) add baz ¢« foo, #2047 #hardware-arith ;RIS
(setqg foo (- foo 1234)) add - foo ¢« f£foo,#-1234 #hardware-arith ;RIS
(setq baz (+ foo 4096)) add Dbaz « foo, #4096 #hardware-arith ;RIL

Symbolics Company Confidential 35
October 1987 SUNSTONE ARCHITECTURE

ADD-NO-OVERFLOW

Opcode: 52

Formats:
RR destination ¢« sourcel + source2
RIS destination ¢« sourcel + l1l2-bit-signed-immediate
RIL destination ¢« sourcel + 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None.

Description: Performs twos complement addition on the contents of the register specified by sourcel
and the immediate field (for RIS and RIL formats) or the contents of the register specified by source2
(for RR format) and stores the result in the register specified by destination. The immediate fields are
not type checked.

Examples:

(setqg baz (sys:%32-bit-plus foo bar))
add-no-overflow baz ¢« foo,bar #fixnum ;RR

(setq baz (sys:%32-bit-plus foo 2047))
add-no-overflow baz ¢« f£oo0, #2047 #fixnum ;RIS

(setq baz (sys:%32-bit-plus foo 4096))
add-no-overflow baz <« foo, #4096 #fixnum ;RIL

36 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

SuB

Opcode: 55

Formats:
RR destination ¢« source2 - sourcel
RIS destination ¢« 12-bit-signed-immediate - sourcel
RIL destination ¢« 32-bit-signed-immediate - sourcel

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #hardware-arith which will test
the data type of both sources even in the RIS and RIL formats. See the examples below and section 1.8.2
on page 121.

Traps: Overflow trap if the subtraction results in an overflow condition. If a floating point coprocessor
is present then coprocessor traps may occur.

Description: Implements the Lisp - operation and subtracts the contents of the register specified by
sourcel from the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked, except when the type check is # hardware-arith. NOTE: None of the above
formats support subtracting an immediate value from the contents of a register. To do so you must use
the add instruction. Adding a negative immediate value is equivalent to subtracting a like value with a
positive sign. See example below. With type check #hardware-arith, fixnum operations are performed
by the normal data path. Floating point operations will trap unless a coprocessor is present to handle
that operation. ‘

Examples:

|(setq baz (- bar foo)) sub baz ¢« foo,bar #hardware-arith ;RR
(setqg baz (- 2047 foo)) sub baz « foo, #2047 #hardware-arith ;RIS
(setq baz (- 4096 foo)) sub baz « foo, #4096 #hardware-arith ;RIL
Subtracting an immediate value from the contents of a register:

(setqg foo (- foo 1234)) add foo « foo,#-1234 #hardware-arith ;RIS

Symbolics Company Confidential 37
October 1987 SUNSTONE ARCHITECTURE
SUB-NO-OVERFLOW
Opcode: 53

Formats:

RR destination ¢« source2 - sourcel
RIS destination <« 12-bit-signed-immediate - sourcel
RIL destination ¢« 32-bit-signed-immediate - sourcel

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for #fixnum. See the examples

below and section 1.8.2 on page 121.

Traps: None.

Description: Performs twos complement subtraction on the contents of the register specified by
sourcel and the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate

fields are not type checked. NOTE: None of the above formats support subtracting an immediate value

from the contents of a register. To do so you must use the add-no-overflow instruction. Adding a
negative immediate value is equivalent to subtracting a like value with a positive sign. See example

below.

Examples:

(setq baz (sys:

(setq baz (sys:

(setg baz (sys:

Subtracting an

(setqg baz (sys:

$32-bit~-difference bar £00))
sub-no-overflow baz < £fo00,bar #fixnum ;RR

$32-bit-difference 2047 £00))
sub-no-overflow baz « foo,#2047_ #fixnum ;RIS

$32-bit-difference 4096 £00))
sub-no-overflow baz ¢« foo,#4096 #fixnum ;RIL

immediate value from the contents of a register:

%$32-bit-plus foo 2047))
add-no-overflow baz « foo,#2047 #fixnum ;RIS

38 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

MULT

Opcode: 56

Formats:
RR destination ¢« sourcel * source2
RIS destination ¢« sourcel * 12-bit-signed-immediate
RIL destination ¢« sourcel * 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #hardware-arith which will test
the data type of both sources even in the RIS and RIL formats. See the examples below and section
1.8.2 on page 121.

Traps: Overflow trap if the multiplication results in an overflow condition. If a floating point
coprocessor is present then coprocessor traps may occur.

Description: Implements the Lisp * function on the contents of the register specified by sourcel and

the immediate field (for RIS and RIL formats) or the contents of the register specified by source2 (for

RR format) and stores the result in the register specified by destination. The immediate fields are not

type checked, except when the type check is # hardware-arith. No multiply operations are performed
by the normal data path. All mult instructions will trap unless a coprocessor is present that can handle
the operation. The coprocessor might handle fixnum and/or single-float multiplications.

Examples:

(setq baz (* foo bar)) mult baz < foo,bar #hardware-arith ;RR
(setqg baz (* foo 2047)) mult baz < foo,#2047 #hardware-arith ;RIS
(setqg baz (* foo 4096)) mult baz < foo,#4096 #hardware-arith ;RIL

Symbolics Company Confidential 39

October 1987 SUNSTONE ARCHITECTURE

1.5.2 Logical Operations

The logical operations are: and, or, xor. All of these operations are available in all three formats: RR,
RIS, and RIL. The general description of these operations is: Destination « Sourcel op value where
OP is one of the Logical Operations, and value is either Source2 in the RR format or the immediate field
in the RIS and RIL formats. The data type of Sourcel (and source2 in the RR format) is checked
according the the value of the instructions type field. The type field of the instruction will usually be
#fixnum, which will cause a trap if the data type of sourcel (and source2 in the RR format) are not the
same, or if the data type is not dtp-fixnum. The data type of the result stored in the destination is the
same as that of sourcel. See figure 8 on page 39.

Figure 8. Logical Operation Formats

RR:

111 | | | | | | |
|TIP1110] OPCODE | SOURCEl | SOURCE2 | TYPE | UNUSED | DESTINATION|
1_1_1 | | | | | | |
39 37 34 28 22 16 11 5 0
RIS:

111 | | | | | |
]I1P|111] OPCODE | SOURCEl1l |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
1_1_l | | | | | |
39 37 34 28 22 16 11 0
RIL:

I | | | | | | : |
|TIP|101} OPCODE | SOURCEl | UNUSED | TYPE | UNUSED | DESTINATION|
1_1_I | | | | | I |
39 37 34 28 22 16 11 5 0
| | |
| ccl 38 BIT IMMEDIATE |
| | |
39 37 0

40 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

AND

Opcode: 42

Formats:
RR destination ¢« sourcel and source2
RIS destination ¢« sourcel and 12-bit-signed-immediate
RIL destination ¢« sourcel and 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and

source2 in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None

Description: Performs 32-bit bitwise logical AND between the contents of the register specified by
sourcel and the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked.

Examples:
(setqg baz (logand foo bar)) and baz ¢« foo,bar # f£ixnum ;RR
(setqg baz (logand foo 2047)) and baz « foo,#2047 #fixnum ;RIS

(setq baz (logand foo 4096)) and baz « foo, #4096 #fixnum ;RIL

Symbolics Company Confidential 41
October 1987 SUNSTONE ARCHITECTURE

OR

Opcode: 40

Formats:
RR destination <« sourcel or source2
RIS destination ¢« sourcel or 12-bit-signed-immediate
RIL destination ¢« sourcel or 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None

Description: Performs 32-bit bitwise logical OR between the contents of the register specified by
sourcel and the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked.

Examples:

(setq baz (logior foo bar)) or baz« foo,bar #fixnum ;RR
(setq baz (logior foo 2047)) or baz « foo,#2047 #fixnum ;RIS
(setq baz (logior foo 4096)) or baz ¢« foo,#4096 #fixnum ;RIL

42 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

XOR

Opcode: 41

Formats:
RR destination ¢« sourcel xor source2
RIS destination ¢« sourcel xor 1l2-bit-signed-immediate
RIL destination ¢« sourcel xor. 32-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None

Description: Performs 32-bit bitwise exclusive-or between the contents of the register specified by
sourcel and the immediate field (for RIS and RIL formats) or the contents of the register specified by
source2 (for RR format) and stores the result in the register specified by destination. The immediate
fields are not type checked.

Examples:
(setqg baz (logxor foo bar)) xor baz « foo,bar #fixnum ;RR
(setqg baz (logxor foo 2047)) =xor baz < foo, #2047 #fixnum ;RIS

(setq baz (logxor foo 4096)) =xor baz « foo,#4096 #fixnum ;RIL

Symbolics Company Confidential

43

October 1987

1.5.3 Bit and Byte Operations

SUNSTONE ARCHITECTURE

The bit and byte operations are: ash, Ish, rot, ldb, dpb. All of these operations are available in only RR
and RIS formats, and are not available in the RIL format. The data type of Sourcel (and source2 for RR
format) is checked according the the value of the instructions type field. The type field of the instruction
will usually be #fixnum, which will cause a trap if the data type of sourcel (or Source2 in the RR
format) are not both fixnum. The data type of the result is the data type of sourcel. See figure 9 on

page 43.

Figure 9. Bit and Byte Operation Formats

RR:

I I | | | | | | |
|T1P]1110] OPCODE | SOURCE1 | SOURCE2 | TYPE | UNUSED | DESTINATION|
1_1_l | | | I | | |
39 37 34 28 22 16 11 5 0
RIS:

(N | : | | SOURCEZ2 | | |
|T|P|101] OPCODE | SOURCEl1l |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
I_1_l | | | | | |
39 37 34 28 22 16 11 0

44 " Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

ASH

Opcode: 44

Formats: v
RR destination ¢« Shift sourcel by source2
RIS destination ¢« Shift sourcel by 12-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: Traps on overflow. An overflow trap will occur if the shift amount is greater than 31, or if any
significant bits are lost in the course of a left shift.

Description: Shifts the contents of the sourcel register arithmetically according to the contents of the

I source2 register (or the immediate field if RIS format) and places the result in the destination register.
Shift right if the sign of the source2 register (or immediate field) is negative, shift left if the sign is
positive. A right shift will shift in the sign bit; a left shift will shift in zeros. The immediate fields are
not type checked.

Examples:

(setq baz (ash foo bar)) ash baz « foo,bar #£fixnum ;RR
(setq baz (ash foo 10)) ash baz « foo,#10 #fixnum ;RIS

Symbolics Company Confidential 45
October 1987 SUNSTONE ARCHITECTURE

LSH

Opcode: 45

Formats: ’
RR destination ¢« Shift sourcel by source2
RIS destination ¢« Shift sourcel by 12-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

.

Traps: None.

Description: Shifts the contents of the sourcel register logically according to the contents of the
source? register (or the immediate field if RIS format) and places the result in the destination register.
Shift right if the sign of the source2 register (or immediate field) is negative, shift left if the sign is
positive. Zeros are shifted in. A |shift amount| > 31 results in 0. The immediate fields are not type
checked. '

Examples:

(setq baz (lsh foo bar)) lsh baz ¢« foo,bar #fixnum ;RR
(setqg baz (1lsh foo 10)) lsh baz « foo,#10 #:fixnum ;RIS

46 “ Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

ROT

Opcode: 46

Formats:
RR destination ¢« Rotate sourcel by source2
RIS destination ¢« Rotate sourcel by 1l2-bit-signed-immediate

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None.

I Description: Rotates the contents of the sourcel register left according to the contents of the source2
register (or the immediate field if RIS format) and places the result in the destination register. Only the
least significant S bits are considered for the rotate amount, in part this means that the sign bit is ignored.
The immediate fields are not type checked.

Examples:

(setq baz (rot foo bar)) rot baz & £foo,bar #fixnum ;RR
(setqg baz (rot foo 10)) rot baz « foo,#10 #fixnum ;RIS

Symbolics Company Confidential 47
November 1987 ‘ SUNSTONE ARCHITECTURE

LDB

Opcode: 50

Formats:
RR destination ¢« (ldb source2 sourcel)
RIS destination « (1ldb 1l2-bit-signed-immediate sourcel)

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None.

Description: Helps to implement the lisp LDB function. Extracts the field specified by the contents of
the source? register (or the immediate field for RIS format) from the contents of the register specified by
sourcel and places it in the register specified by the destination field. Only the least significant 10 bits
of the contents specified by the source2 field (or the immediate field) are used to specify the byte to be
extracted.Bits O through 4 of the byte specifier indicate the location of the bottom bit of the field, and
bits 5 through 9 specify the (field-size - 1). The byte specifier is not type checked.

Examples:

(setq baz (1db (byte 10 0) foo)) 1ldb baz ¢« foo,#440 #fixnum;RIS |

48 Symbolics Company Confidential

SUNSTONE ARCHITECTURE November 1987
DPB
Opcode: 51
Formats:
RR destination ¢« (dpb sourcel byte-rotate-register source2)
RIS source2 < (dpb sourcel 12-bit-signed-immediate source2)

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for #fixnum. See the examples
below and section 1.8.2 on page 121.

Traps: None.

Description: Helps to implement the lisp DPB function. Deposits the contents of the sourcel register
into a field of the contents of the register specified by the source2 field, and places the result in the
register specified by the destination field. The field where the value is being deposited is specified by
the byte-rotate-register for the RR format, or the immediate field for the RIS format. In either case only
the least significant 10 bits are considered. Bits O through 4 of the byte specifier indicate the location of
the bottom bit of the field, and bits 5 through 9 specify the (field-size - 1). The byte specifier is not type
checked.

Examples:

(setq foo (dpb bar (byte 10 0) foo))
| dpb foo ¢« bar, #440,foo #fixnum ;RIS

(setq baz (dpb bar (byte 10 0) foo))
move baz ¢« foo
| dpb baz ¢« bar, #440,baz #fixnum ;RIS

Symbolics Company Confidential 49
October 1987 SUNSTONE ARCHITECTURE

1.5.4 Call Operations

The call and jcall instruction are available in formats: RR and RIL. Data Type check of sourcel
according to the type field, this will typically test for none in the RIL format and for a legal PC type in
the RR format. See figure 10 on page 49.

Figure 10. Call Instruction Formats

: o
RR %
i

| |

|T|P|110] OPCODE | SOURCEl | UNUSED | TYPE | N-ARGS |DESTINATION]|
I_1_l | | | | | | |
39 37 34 28 22 16 11 5 0
RIL:

[| | | | | | I
|T1P]101] OPCODE | SOURCEl | UNUSED | TYPE | N-ARGS |DESTINATION|
I_1_1 | | | | | | I
39 37 34 28 22 16 11 5 0
| | |
| cC| 38 BIT IMMEDIATE |

50 Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987
Call
Opcode: 61
Formats:
RR Destination ¢« Sourcel,
N-Args < n-args<4:0> if n-args<5> =1
RIL PC ¢ 38-bit-immediate,
Destination ¢« Sourcel
N-args ¢« n-args<4:0> if n-args<5> =1

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for none. See the examples below
and in section 1.8.2 on page 121.

Traps: If the window buffer overflows. Window Buffer Overflow occurs if the Window Buffer Pointer
= Window Buffer Overflow Limit, before the instruction increments the Window Buffer Pointer.

Description: The PC is set according to the format (see above). The return address is pushed onto the
return stack, the return address is PC+1 for the RR format, and is PC+2 for the RIL format. The window
pointer is incremented by 1. The N-args register is loaded with the least significant five bits of the
n-args field if the most significant bit of the field is a 1. The contents of the register addressed by
sourcel is moved into the register specified by the destination field in the instruction. In the case of the
RR instruction the destination is typically the PC. Note that indirect calls are implemented by having
the call point to the word containing the address of the thing to be called, like the function cell of a
symbol, since this cell will have a dtp-compiled-function, it will branch to the desired destination (see
sectica 1.5.7 on page 59 for a description of direct branches). The immediate fields are not type
checked. In the RR format the destination is typically PC.

Examples:
(assoc item a-list)
move a0 « item
call @assoc,n-args ¢« #l,al « a-list ; RIL

(funcall function item a-list)
move a0 « item
move al « a-list
call function,n-args « #2 #Compiled-function ; RR

Symbolics Company Confidential 51

October 1987 SUNSTONE ARCHITECTURE
Jeall
Opcode: 60
Formats:
RR Destination <« Sourcel,
N-Args < n-args<4:0> if n-args<5> =1

RIL Destination « Sourcel,
N-args < n-args<4:0> if n-args<5>

]
[

PC < 38-bit-immediate,

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for none.

Traps: None.

Description: . The PC is set according to the format (see above). The N-args register is loaded with the
least significant five bits of the n-args field if the most significant bit of the field is a 1. And in the RIL
format, the contents of the register specified by sourcel are moved into the register specified by the
destination field in the instruction. The immediate fields are not type checked. In the RR format the
destination is typically PC. This instruction is intended to support Tail Recursion Elimination (TRE).
The Jcall instruction differs from the call instruction in that it does not increment the Window Buffer
Pointer.

52 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.5.5 Return Operations

The return operations are return and return-subvert instructions. The return instructions are available in
two formats: RR and RIL. Data Type check of sourcel according to the type field, this will typically
test for none. The data type of the result depends on the format, in the RR format it will be the data type

of sourcel, and in the RIL format it will be the data type of the 38-bit immediate. See figure 11 on page
52.

Figure 11. Return Operation Formats

B

RR:

| |

II|P|110] OPCODE | SOURCEL | SOURCE2 | TYPE | N-ARGS |DESTINATION|

I_l1_I I I | I I | I

39 37 34 28 22 16 11 5 0

RIL

1 ! | ! I I | I

II|P|101] OPCODE | UNUSED | ©UNUSED | TYPE | N-ARGS |DESTINATION|

I_I_l I I I I I | I

39 37 34 28 22 16 11 5 0
|

| ccl 38 BIT IMMEDIATE I

39 37 0

Symbolics Company Confidential 55

February 1988 SUNSTONE ARCHITECTURE
Return
Opcode: 62
Formats:
RR PC < Top of Return Stack,
destination ¢« sourcel<37:32>|source2<31l:0>
N-args ¢ n-args<4:0> if n-args<5> =1
RIL PC < Top of Return Stack,
destination ¢« 38-bit-immediate
N-args < n-args<4:0> if n-args<5> =1

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for none. See the examples below
and the section section 1.7.2 on page 118.

Traps: Take a Window Buffer Underflow Trap if the Window Buffer underflows. See section 1.7.2.7,
General Traps, on page 122 for a description of the trap.

Description: The PC is set to the value on the top of the return stack. The Window Buffer Pointer I
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least
significant five bits of the n-args field if the most significant bit of the field is a 1. And the register
specified by the destination field of the instruction is loaded with, depending on format, merging of
sourcel data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate
field is not type checked.

Examples:

(defun foo (a) a) return rl5 « r0 n-args « 1 ;a 1

Symbolics Company Confidential 53

October 1987 SUNSTONE ARCHITECTURE
Return
Opcode: 62
Formats:
RR PC ¢« Top of Return Stack,
destination ¢« sourcel<37:32>|source2<31l:0>
N-args ¢« n-args<4:0> if n-args<5> =1
RIL PC < Top of Return Stack,
destination ¢« 38-bit-immediate
N-args ¢« n-args<4:0> if n-args<5> = 1

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for none. See the examples below
and the section section 1.8.2 on page 121.

Traps: If the window buffer underflows. Window Buffer Underflow occurs if the Window Buffer
Pointer = Window Buffer Underflow Limit, before the instruction decrements the Window Buffer
Pointer.

Description: The PC is set to the value on the top of the return stack. The Window Buffer Pointer
{(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least I
significant five bits of the n-args field if the most significant bit of the field is a 1. And the register
specified by the destination field of the instruction is loaded with, depending on format, merging of

- sourcel data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate
field is not type checked.

Examples:

(defun foo (a) a) return rl5 « r0 n-args < 1 ;a i

54 Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987
Return-subvert
Opcode: 63
Formats:
RR PC < Top of Return Stack,
destination ¢« sourcel<37:32>|source2<31:0>
N-args ¢ n-args<4:0> if n-args<5> =1
RIL PC ¢« Top of Return Stack,
destination ¢ 38-bit-immediate
N-args ¢ n-args<4:0> if n-args<5> =1

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for none. See the examples below
and section 1.8.2 on page 121.

Traps: If the window buffer underflows. Window Buffer Underflow occurs if the Window Buffer
Pointer = Window Buffer Underflow Limit, before the instruction decrements the Window Buffer
Pointer.

Description: The PC is set to the value on the top of the return stack. The Window Buffer Pointer
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least
significant five bits of the n-args field if the most significant bit of the field is a 1. And the register
specified by the destination field of the instruction is loaded with, depending on format, merging of
sourcel data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate
field is not type checked.

The subvert bit is set in the status control register. In essence, this causes the next instruction to operate
like a move instruction, that is, it subverts (or perverts) the execution of the instruction being returned to.
An example of where this might be used is upon returning from a data type trap of an add operation
where the operands were both bignums. The trap routine performs the add of the bignums in software
and does a return-subvert. The instruction returned to is the trapped instruction, the add, which has
already been performed, and whose operation needs to be subverted. The immediate fields are not type
checked. The usual use of this instruction is in the RR format with the destination being the Status
Control Register, and the source being the saved version of the Status Control Register.

All arithmetic, logical, bit & byte, read-coproc, and load instructions that are subverted will move the
contents of the trap-result register into the destination register specified by the subverted instruction. All
side-effects of the MAR, byte rotate register, and status control register are inhibited. Data type
checking of the operands is inhibited.

Subverted call and return instructions operate normally except that the contents of the Trap Result
register is moved into the specified destination register. For the calls, the data type checking of the Trap
‘IResult Register is done as specified by the type field of the instruction being subverted. For the returns,
data type checking of the operands is inhibited.

56 Symbolics Company Confidential
SUNSTONE ARCHITECTURE February 1988

Return-subvert

Opcode: 63

Formats:
RR PC < Top of Return Stack,
destination ¢« sourcel<37:32>|source2<31:0>
N-args ¢ n-args<4:0> if n-args<5> =1
RIL PC < Top of Return Stack,
destination ¢« 38-bit-immediate
N-args ¢« n-args<4:0> if n-args<5> =1

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. This field will typically test for none. See the examples below
and section 1.7.2 on page 118.

Traps: Take a Window Buffer Underflow Trap if the Window Buffer underflows. See section 1.7.2.7,
General Traps, on page 122 for a description of the trap.

Description: The PC is set to the value on the top of the return stack. The Window Buffer Pointer
(which is also the return stack pointer) is decremented by 1. The N-args register is loaded with the least
significant five bits of the n-args field if the most significant bit of the field is a 1. And the register
specified by the destination field of the instruction is loaded with, depending on format, merging of
sourcel data type and source2 data (RR format), or the 38-bit-immediate (RIL format). The immediate
field is not type checked.

The subvert bit is set in the status control register. In essence, this causes the next instruction to operate
like a move instruction, that is, it subverts (or perverts) the execution of the instruction being returned to.
An example of where this might be used is upon returning from a data type trap of an add operation
where the operands were both bignums. The trap routine performs the add of the bignums in software
and does a return-subvert. The instruction returned to is the trapped instruction, the add, which has
already been performed, and whose operation needs to be subverted. The immediate fields are not type
checked. The usual use of this instruction is in the RR format with the destination being the Status
Control Register, and the source being the saved version of the Status Control Register.

All arithmetic, logical, bit & byte, read-coproc, and load instructions that are subverted will move the
contents of the trap-result register into the destination register specified by the subverted instruction. All
side-effects of the MAR, byte rotate register, and status control register are inhibited. Data type
checking of the operands is inhibited.

Subverted call and return instructions operate normally except that the contents of the Trap Result
register is moved into the specified destination register. For the calls, the data type checking of the Trap
Result Register is done as specified by the type field of the instruction being subverted. For the returns,
data type checking of the operands is inhibited.

Symbolics Company Confidential 55
October 1987 SUNSTONE ARCHITECTURE

Conditional instructions that are subverted use the least significant bit of the trap-result register and the
most significant bit of the cond field in the instruction, bit 16, to determine if the branch is to be taken.
If the two bits are different the branch is taken, if the bits are the same then the branch is not taken. Data
type checking of the operands is inhibited.

Store instructions that are subverted are just treated as nops. Data type checking of the operands is
inhibited

The effect of subverting write-coproc, load-coproc, store-coproc, direct branches and type instructions is
undefined. ;

56) Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987

1.5.6 Move Operations

The move operations are: move, and move-type. The move instruction is available in all three formats,
and the move-type instruction is only available in the RR and RIS formats. Data Type check of Sourcel
(and Source2 in the RR format) according to the type field, this will typically test for none. The data
type of the result depends on the format and the instruction. For the move instruction, in the RR format
it will be the data type of sourcel, in the RIS format it will be fixnum, and in the RIL format it will be
the data type of the 38-bit immediate. For the move-type instruction,the data type of the result will be
the 6 bits of the immediate field (RIS format) or the least significant 6 bits of the source2 register.See
figure 12 on page 56.

Figure 12. Move Operation Formats

RR: move, move-type

|ITIP|110] OPCODE : SOURCE1l : SOURCE2 | TYPE | UNUSED |DESTINATION|
:Ia'9'l".147 ;4 éa éz 16 Jl.l é 0 !
RIS: move, move-type
I | | | | | |
|I|P|111} OPCODE | SOURCEl |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
;'g'l_;7 :IM ée éz 15 11 0 !
RIL: move
(I | | | : | | | |
|1Z1P1101]| OPCODE | SOURCE1l | UNUSED | TYPE | UNUSED |DESTINATION |
:la'§l_|37 :|a4 ;8 éz :ILG 11 é 0 !
I |
| CCl 38 BIT IMMEDIATE |
I39 I37 0 !

Symbolics Company Confidential 57
October 1987 SUNSTONE ARCHITECTURE

Move

Opcode: 43

Formats:
RR destination ¢« sourcel<37:32>|source2<31:0>
RIS destination ¢« 1l2-bit-immediate
RIL destination « 38-bit-immediate
Source Data Type Traps: The type field of the instruction specifies what data types of Sourcel (and
Source2 in the RR Format) to trap on. This field will typically test for none.

Traps: None

Description: If the Format is immediate, moves the immediate value into the destination register. If the
Format is RR, merges the type of sourcel with the data of source2 and stores the result in the register
specified by the destination field of the instruction.

58 Symbolics Company Confidential

SUNSTONE ARCHITECTURE October 1987
Move-type
Opcode: 66
Formats:
RR destination ¢« source2<5:0> |sourcel<3l:0>
RIS destination ¢« immediate<5:0>]|sourcel<31:0>

Source Data Type Traps: The type field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on. This field will typically test for none.

Traps: None
Description: Sourcel data is moved into the register specified by the destination field of the instruction

with the data type of the result being the least significant 6 bits of the immediate field (RIS format) or
the source?2 register.

Symbolics Company Confidential 59
October 1987 SUNSTONE ARCHITECTURE

1.5.7 Direct Branch Operation

Instructions with data type of dtp-compiled-function are interpreted by the hardware to be direct branch
operations. See figure 13 on page 59.

Figure 13. Direct Branch Format

|
|I|P| 34] ADDRESS

60 Symbolics Company Confidential
SUNSTONE ARCHITECTURE . October 1987

Branch

Opcode: None, it has a data type of dtp-compiled-function

Formats: Direct branch PC « address
Traps: None

Description: The address field is used as the address of the next instruction.

Symbolics Company Confidential ‘ 61
October 1987 SUNSTONE ARCHITECTURE

1.5.8 Conditional Operations

The conditional operations are: branch-next, branch-take, and trap. Available in all three Formats.
Data Type check of Sourcel (and Source2 in the RR Format) according to the Cond Field. The Cond
Field specifies the conditions and type trap enables listed.

If the cond of the operands is not true, the branch is not taken. If the branch is to be taken, the 12 bit
page offset is inserted into the low 12 bits of the current PC as the branch address. The -take is an
indication that the branch is expected to be taken, that is, the result will be true. The -next is an
indication that the branch is expected not to be taken, that is, the cond result will not be true. See figure
14 on page 62.

In the RIS format, the 6 bit field is a sign extended field.

In the case of the trap instruction, a trap occurs if the condition is true. If the trap occurs, the page offset
field is used as the low 12 bits of the trap address; the high bits are taken from the trap base register, and
bits 13:12 of the address are zeros.

All fixnum compares are handled by the normal data path. The compares that specify #hardware-arith
type checks will trap for floating point operations unless a coprocessor is present that can handle the
operation.

62

Symbolics Company Confidential

SUNSTONE ARCHITECTURE

Figure 14. Conditional Operation Formats

October 1987

RR:

1| | | | | |

1TIP]110] OPCODE | SOURCEl | SOURCE2 | COND | PAGE OFFSET
1_1_I | | | I |

39 37 34 28 22 16 11

RIS:

| | | | | |

|T1P|111] OPCODE | SOURCEl1l |6-BIT-IMMED| COND | PAGE OFFSET
1_I_l | | | | |

39 37 34 28 22 16 11

RIL:

111 I | | | |

|]I|P|101] OPCODE | SOURCEl | UNUSED | COND | PAGE OFFSET
I_1_lI I | | | |

39 37 34 28 22 16 11

| |

| CCJ| 38 BIT IMMEDIATE

Symbolics Company Confidential 65
February 1988 SUNSTONE ARCHITECTURE

Branch-next

Opcode: 75

Formats:
RR if sourcel cond source2
PC ¢« PC<31l:12>|page-offset<ll:0>
else
PC « PC+1l

RIS if sourcel cond 6-bit-immediate
PC ¢« PC<31:12>|page-offset<11:0>
else
PC ¢« PC+1

RIL if sourcel cond 38 bit immediate
PC ¢« PC<3l:12>|page-offset<ll:0>
else
PC ¢« PC+2

Source Data Type Traps: The cond field of the instruction specifies what data types of sourcel (and
source? in the RR format) to trap on.

Traps: None.

Description: The two operands are compared as specified by the cond field in the instruction. If the
result of the cond is T, the branch is taken, the page offset is inserted into the low 12 bits of the current
PC. If the result of the COND is not T, the next instruction is executed. This instruction is used when
the result of the cond is anticipated to be False.

Symbolics Company Confidential 63
October 1987 SUNSTONE ARCHITECTURE

Branch-next

Opcode: 71

Formats:
RR if sourcel cond source2
PC ¢« PC<3l:12>|page-offset<l1l:0>
else
PC « PC+1

RIS if sourcel cond 6-bit-immediate
PC ¢ PC<3l:12>|page-offset<11l:0>
else
PC « PC+1l

RIL if sourcel cond 38 bit immediate
PC ¢« PC<3l:12>|page-offset<11:0>
else
PC « PC+2

Source Data Type Traps: The cond field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on. ‘

Traps: None.

Description: The two operands are compared as specified by the cond field in the instruction. If the
result of the cond is T, the branch is taken, the page offset is inserted into the low 12 bits of the current
PC. If the result of the COND is not T, the next instruction is executed. This instruction is used when
the result of the cond is anticipated to be False.

64 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

Branch-take

Opcode: 65

Formats:
RR if sourcel cond source2
PC ¢« PC<31l:12>|page-offset<ll:0>
else
PC « PC+1l

RIS if sourcel cond 6-bit-immediate
PC ¢« PC<31l:12>|page-offset<ll:0>
else
PC ¢« PC+1l

RIL if sourcel cond 38 bit immediate
PC ¢« PC<31l:12>|page-offset<ll:0>
else
PC « PC+2

Source Data Type Traps: The cond field of the instruction specifies what data types of sourcel (and
source2 in the RR format) to trap on.

Traps: None.

Description: The two operands are compared as specified by the cond field in the instruction. If the
result of the cond is T, the branch is taken, the page offset is inserted into the low 12 bits of the current
PC. If the result of the COND is not T, the next instruction is executed. This instruction is used when
the result of the cond is anticipated to be True.

Symbolics Company Confidential 65
October 1987 SUNSTONE ARCHITECTURE

Trap

Opcode: 71

Formats:
RR if sourcel cond source2
PC ¢« <11111>|trap-base-register|<00>|page-offset, TRAP
else .
PC ¢« PC+1

RIS if sourcel cond 6-bit-immediate
PC & <11111>|trap-base-register|<00>|page-offset, TRAP
else '
PC ¢« PC+1

RIL if sourcel cond 38 bit immediate
PC ¢« <111l1l1>|trap-base-register|<00>|page-offset, TRAP
else
PC « PC+2

Source Data Type Traps: Specified by the COND field,these traps check both operands to be of the
same data type and traps if they are not. Checks both operands to be of the type specified by the cond
field, and traps if they are not.

Traps: If the condition results in true, trap.

Description: The two operands are compared as specified by the cond field in the instruction, If the
result of the cond is T, the incremented PC is pushed onto the return stack, the page offset is inserted
into the low 12 bits of the new PC, the most significant five bits of the new pc are ones, bits 26:14 of the
new PC is the trap base register, and bits 13 and 12 are zero and the WBP is incremented. If the result
of the COND is not T, the next instruction is executed. Itis anticipated that the trap will not occur.

66 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

1.5.9 Type Operations

The type operations are: branch-next-type, branch-take-type,and type-trap. The type operations are
available in the RR and RIL formats. These operations test the data type of Sourcelaccording to a mask
obtained from the second operand, which is the Source2 register contents in RR format or the low 32
bits of the immediate in RIL format. The data type of the first operand is decoded to set a single bitin a
64 bit field, e.g. if the data type of sourcel is DTP-CHARACTER (#043), then bit #043 will be set in the
64 bit field. This 64 bit field is then LOGANDed with the 32 bit mask; depending on the H bit in the
instruction, the mask is either LOGANDed with the high half (representing data types #040 to #077), if
H is one, or the low half (representing data types #00 to #037) if H is zero. If the result’of the LOGAND
is non-zero, then the instruction’s result is true. The C bit in the instruction is used, as in the cond field
of other branch and trap instructions, to determine if the instruction is testing for true or false. If the C
bit is set, the branch or trap will occur only if the instruction’s result is true; if the C bit is clear the
branch or trap will occur only if the result is false.

Figure 15. Type Operation Formats

RR:

| |
|I|P|110] OPCODE | SOURCE1l | SOURCE2 |C|H|UN] PAGE OFFSET
I_1_l | | | I_l_l1__I
39 37 34 28 22 16 15 11
RIL:
11 | | I | I I
|II|P|101] OPCODE | SOURCEl1l | UNUSED |C|H|UN]| PAGE OFFSET
I_1_I | . | | I_1_1__
39 37 34 28 . 22 16 15 11
| |
| CCJ 38 BIT IMMEDIATE

Symbolics Company Confidential 67
October 1987 SUNSTONE ARCHITECTURE

Branch-next-type

Opcode: 74

Formats:
RR if sourcel type source2
PC ¢« PC<31l:12>|page-offset<11:0>
else
PC ¢« PC+l

RIL if sourcel type 38 bit immediate
PC « PC<3l:12>|page-offset<ll:0>
else
PC « PC+2

Source Data Type Traps: None.
Traps: None.

Description: Branches to the specified location if the type condition (as described on page 66) indicates
that the branch should be taken. This instruction is used if it is predicted that the branch will not be
taken.

Example: Branch to true-address if the data type of the word in 16 is dtp-header-p or
dip-one-q-forward:

branch-next-type @true-address, ré6, #044,H=0,C=1

68 Symbolics Company Confidential
SUNSTONE ARCHITECTURE October 1987

Branch-take-type

Opcode: 64

Formats:
RR if sourcel type source2
PC ¢ PC<31l:12>|page-offset<ll:0>
else .
PC « PC+1l

RIL if sourcel type 38 bit immediate
PC ¢« PC<31l:12>|page-offset<ll:0>
else
PC « PC+2

Source Data Type Traps: None.
Traps: None.

Description: Description: Branches to the specified location if the type condition (as described on page
66) indicates that the branch should be taken. This instruction is used if it is predicted that the branch
will be taken.

Example: Branch to true-address if the data type of the word in r6 is not one of the instruction types.
branch-take-type @true-address, ré6,#037777777400,H=1,C=0

Symbolics Company Confidential 69
October 1987 SUNSTONE ARCHITECTURE

Trap-type

Opcode: 70

Formats:
RR if sourcel type source2
PC ¢« <111lll>|trap-base-register|<00>|page-offset, TRAP
else
PC ¢« PC+1

RIL if sourcel type 38 bit immediate
PC ¢« <11l1ll1ll1>|trap-base-register|<00>|page-offset, TRAP
else .
PC « PC+2

Source Data Type Traps: None.
Traps: Traps if the type results in True.

Description: Traps if the type condition (as described on page 66) indicates that the trap should be
taken. If the trap is taken, the incremented PC is pushed onto the return stack and the WBP is
incrmented. The new PC value has the most significant five bits equal to ones (VM A=PMA space), bits
26:14 are taken from the trap base register, bits 13:12 are zeros, and the low twelve bits are taken from
the instruction page offset field. If the trap is not taken, execute the next instruction normally.

Example: Trap to not-number-trap if the data type of the word in 16 is not one of the number types.
Note that not-number-trap must be in VMA=PMA space and have bits 26:14 equal to the value in the -
trap base register and bits 13:12 equal to zero.

trap-type @not-number-trap,r6,#0177400,H=0,C=0

70 Symbolics Company Confidential
SUNSTONE ARCHITECTURE ‘ October 1987

1.5.10 Load Operations

The load operations are as follows: load-data, load-cdr, load-car-cdr, load-cdr-finish, load-array, load-
structure, load-bind, load-header, load-scavenge, load-gc-copy, load-raw, load-data-iv, load-
ephemeralp, load-oldspacep. Available in all three formats, RR, RIS and RIL, load operations load data
from memory into the register specified by the destination field in the instruction. The address of
memory is calculated by adding the contents of the sourcel register with the second operand, either the
contents of source2 (RR format) or the immediate field (RIS and RIL formats). See figure 16 on page
71. The type check field specifies what data types to trap on for sourcel. In RR format only, source2 is
always checked for dtp-fixnum. Typically in the RIL format the type field will select #fixnum or none,
and in the RR and RIS format it will vary widely with each load instruction. All load operations load the
cdr-reg and the type-reg. Typically the cdr-reg is loaded with bits 39:38 and the type-reg is loaded with
bits 37:32, of the data being loaded. The exception to this is for instructions load-cdr, load-car-cdr,
load-header, and load-structure. These four instructions will load the type-reg and cdr-reg as above
except when the sourcel data type is dtp-nil. In this case the cdr-reg is loaded with cdr-nil (a value of
1), and the type-reg is loaded with dtp-nil (a value of #024). As a side effect of these four instructions,
the MAR is loaded with the calculated data type and address, except when the data type of sourcel is
dtp-nil in which case MAR is loaded with NIL. If the destination of any load instruction is the Array
Header Register, the Array Length Register is loaded as a side effect. The Array Length register is
loaded with the second word read if it is a long prefix array, otherwise the array length register is loaded
with the length field of the array header that was read. (See Table 8 on page 28.)

See coprocessor operations for the load-coproc instruction which has a special format.

Symbolics Company Confidential 71
November 1987 SUNSTONE ARCHITECTURE

Figure 16. Load Operation Formats

RR:

I | |
II|P|110| OPCODE | SOURCE1 | SOURCE2 | TYPE | UNUSED |DESTINATION|
I_i_l___1 ! | I I I l
39 37 34 28 22 16 11 5 0
RIS:
el I | I I ' [
IT|P|111] OPCODE | SOURCEl |DESTINATION| TYPE | 12-BIT-SIGNED-IMMED |
I_____| | | I | !
39 37 34 28 22 16 11 0
RIL:
I I I I ! I I
[T|P{101] OPCODE | SOURCEL | UNUSED | TYPE | UNUSED |DESTINATION]|
| I | ! I I l
39 37 34 28 22 16 11 5 0
o [
| ccl 38 BIT IMMEDIATE |

72 Symbolics Company Confidential

SUNSTONE ARCHITECTURE November 1987
load-data
Opcode: 12
Formats:
RR destination ¢« [sourcel + source2]
RIS destination <« [sourcel + 12-bit-signed-immediate]
RIL destination ¢« [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-fixnum).

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i
or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q-
forward, dip-header-forward or dip-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-location, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-logic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This is the typical load instruction. This reads a word from memory located at the
specified address and stores the data read in the register specified by the destination field. If the data
type of the word read is one of: null, header-p, header-i, gc-forward monitor-forward, external-value-
cell-pointer, one-q-forward, header-forward, element-forward, external-value-cell-pointer, one-q-
forward, header-forward, element-forward, or a pointer to oldspace, a trap occurs as described above.
This is similar to an I-Machine read with the data-read cycle type.

Symbolics Company Confidential 73
November 1987 SUNSTONE ARCHITECTURE

load-data-iv

Opcode: 13

Formats:
RR destination <« [sourcel + source2]
RIS destination ¢« [sourcel + 12-bit-signed-immediate]
RIL destination ¢« [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dtp-fixnum).

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i
or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-g-
Sforward, dtp-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-location, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-logic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This reads a word from memory located at the specified address and stores the data read
in the register specified by the destination field. This is identical to load-data, but is used to present a
separate trap entry address (particularly for arg2 not being a fixnum, a speedup hack for currently
unimplemented feature dealing with common lisp object oriented standard with-slots construct). If the
data type of the word read is one of: null, header-p, header-i, gc-forward, monitor-forward, external-
value-cell-pointer, one-q-forward, header-forward, element-forward, external-value-cell-pointer, one-q-
Sforward, header-forward, element-forward, or pointer to oldspace, a trap occurs as described above.

%

74 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

load-car-cdr

Opcode: 14

Formats:
RR destination ¢« [sourcel + source2]
RIS destination ¢« [sourcel + 12-bit-signed-immediate]
RIL destination ¢« [38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dip-fixnum).

Memory Error Trap: If the data type of the word read is one of: dip-null, dtp-header-p, dtp-header-i
or ditp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-monitor-forward, take a monitor trap, unless the
conditions for a transport trap are present, in which case the transport trap takes priority.

Indirect trap: If the data type of the word read is one of: dtp-external-value-cell-pointer, dtp-one-q-
forward, dip-header-forward or dtp-element-forwarding, take an indirect trap, unless the conditions for
a transport trap are present, in which case the transport trap takes priority. The indirect trap routine will
follow the forwarding pointer chain.

Bound location trap: If the data type of the word read is dtp-bound-location, take a bound location trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Logic variable trap:If the data type of the word read is dtp-logic-variable, take a logic variable trap,
unless the conditions for a transport trap are present, in which case the transport trap takes priority.

Description: This is used for implementing the lisp car function. This is also used when a lisp cdr
function follows a lisp car function (see the example below). The cdr-reg gets loaded as if it were a
load-cdr operation,and the destination register gets loaded as if it were a load-data operation. With the
exception that, if the data type of the sourcel is dfp-nil, then nil is loaded in the MAR and the
destination register. See the load-cdr-finish on page 76. As a side effect of this instruction executing,
the MAR gets loaded with the calculated address.

Symbolics Company Confidential

75
November 1987 SUNSTONE ARCHITECTURE
Example:
(dolist (foo bar) ...)
move temp ¢« bar
Loop:
load-car-cdr foo ¢« [temp] #1list-loc-nil

load-cdr-finish temp <« [mar,#1] #list-loc-nil

branch-take-eq not-endp,temp,nil, @loop

76 Symbolics Company Confidential
SUNSTONE ARCHITECTURE November 1987

load-cdr-finish

Opcode: 15
Formats:
RR destination ¢« [sourcel + source2]
RIS destination ¢« [sourcel + 12-bit-signed-immediate]
RIL destination ¢« ([38-bit-immediate + sourcel]

Source Data Type Traps: Specified by the type field, checks sourcel to be of the data type specified
(and in the RR format tests source2 to be dip-fixnum).

Traps: Trap if cdr-reg is illegal value.

Memory Error Trap: If the data type of the word read is one of: dtp-null, dtp-header-p, dtp-header-i
or dtp-gc-forward - trap to the error trap handler.

Transport Trap: If the word read is a pointer to oldspace, and if transport traps are enabled for the page
containing the word read, a transport trap will occur to evacuate the object.

Monitor trap: If the data type of the word read is dtp-mo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>