cover-letter.text >schnorr>distribution V: (1) 12/17/86 15:25:22 Page i

{

SYMBOLICS, INC.

This document +s COMPANY CONFIDENTVIAL. It contains extremely
sensitive and proprietary. information. Reasonable and
appropriate care should be taken to protect this information.
Copies of this document are individually numbered with the
recipient’s name recorded. You are responsible for your copy of
this document. As newer versions of this document are created,
older versions will be collected for centralized destruction.
Under no circumstances 1s this document to be copied. If you
need to have someone added to the distribution 1ist or if more
copies of this document are needed, contact i.inda Birch

(Birch or x7605).) : :

#0

Document Number _ .= : Recipient ..

I-Machine Architecture Specification

Revision 2 _ Company Confidential .

Symbolics,' Ine.

i | -:Table-ef Contents ,

1. Lisp-Machine Data Types

1.1 ‘Introduction to Lisp-Machine Objects
111 Memeory Words
1.1.2 Classes of Stored Ob_]ect Representations
1.1.3 Components of Stored Representations
_ 1.1.4 Operand-Reference Clasmﬂcatmn
1.2 Data-Type Descriptions .
'1.2.1 Representations of Symbols
1.2.2 Representations of Instances and Related Data. Types
1.2.3 Representation of Chatracters
1.2.4 Representations of Numbers
-1.2.5 Representations of Lists
1.2.6 Representations of Arrays and Strings
1.2.7 I.-Machine Array Registers - _
1.2,8 Representationg of Functions and Closures
1.2.9 Instruction Representation
"1.2.10 Program-Counter Representations
1.2.11 Representation of Locatives
1.2.12 Representation of Physical Addresses
1.3 Data-Type Code Assignments :
1.3.1 Headers, Special Markers, and Forwarding Pointers
1.3.2 Number Data Types -
1.3.3 Instance Data Types
1.3.4 Primitive Data Types
1.3.5 Special Marker for Garbage Co]lector
1.3.6 Data Types for Program Counter Values
1.3.7 Full-Word Instruction Data Types .
1.3.8 Half-Word Instruction Data Types-
1.4 Appendix: Comparison of 3600-Family and I-Machme Data
Representations
1.4.1 Array Differences :
1.4.2 Compiled Function leferences

2. Memory Layout and Addressmg

2.1 rddress Space
21,1 Virtual A_ddresses

i

~ Symbolies, Inc.

| _ Page

T L0 b2 e

1

13

13

14
17
19

24

30

36

40

. 43
46
46
46

- 48
48

48

49

49

50

50

51
51
52

54
56
87
57
87

~ Symmbolics, Inc.’,

© 2.1.2 Ephemeral Addresses -
2.1.3 Unmapped Addresses
¢ 214 Wired Addresses
- 2.1.5 Pages
2,2 GC Support
‘2.3 Address Translation
231 Page Hash Table
' 2.3.2 PHT Lookup Algonthm
2.3.3 Translation Algorithm

2.4 Appendix: Comparigon of 3600-family and I—machlne Memory Layout -

and. Addressing

3. Maecroinstruction Set

3.1 Introduction
3.1.1 Instruction Sequencing
3.1.2 Internal Registers
3.1.3 Explanation of Instruction Deﬁmtmns
3.2 The Instructions
3.21 List-Function Operatmns
3.2.2 Predicate Instructions
3.2.3 Numeric Operations:
'8.2.4 Data-Movement Instructions
3.2.5 Field-Extraction Imstructions
.3.2.6 Array Operations
3.2.7 Block Instructions
3.2.8 Function-Calling Instructions
3.2.9 Binding Instructions '
3.210 Catch Instructions .
3.2.11 Lexical Variable Accessors
3.2.12 Instance Variable Accessors
3.2.13 Subprimitive Instructions

4. Function Calling, Message Passing, Stack-Group Switching

4.1 Stacks
411 Control Stack
412 Binding Stack
41,3 Data Stack
4,2 Registers Important to. Function Calling and Returning
4.3 Function Calling
4.3.1 Starting a Function Call
- 4.3.2 Pushing the Arguments
4.8.3 Finishing the Call

w

58 -

58
59

59
59
60
60
63

66
69

73

73
73
75
75
91
92

- 102

118
141
149
154
169
175
188
192
188
201

213

241

241
241
244

245

245
249
249
253
253

4.4 Function Entry _
' 4.4.1 Push-apply-args
. 4.4.2 Pull-apply-args '
- 4.4.3 Trapping Out of Entry and Restartmg
4.5 Function Returning
- 4.5.1 Function Return Instructmns
4,5.2 Frame Cleanup .
_ 4.5.3 Value Matchup
4.6 Catech, Throw and Unwind-Protect
4.7 Generic Functions and Message Passing
4.7.1 Flavor _
-4.7.2 Handler Table
4.7.3 Calling a Generic Function
4.7.4 Sending a Message _
.. - 475 Accessing Instance Variables
4.8 Btack-Group Switching :

4.9 Appendix: Comparison of 3600-Family and I-Machine Functmn- '

 Calling

5. Exception Handling

5.1 Traps in General
5.2 ‘The Extra Stack
5.3 Trap Modes
5.4 Trap Vector
- 5,5 Exceptions _
5.5.1 Error Traps
'5.5.2 - Instruction Exceptions
5.5.3 Arithmetic Traps
5.5.4 Memory Exceptions
~ 5.5.5 Stack Overflow
5.5.6 . Sequence Breaks
5.5.7 Preemption
5.5.8 Trace Traps
5.5.9 PULL-APPLY-ARGS Exception
5.5.10 FEP-mode Traps :
5.5.11 Processor Faults
5.6 Trap Vector Layout
5.7 Reset and Init
‘5.8 Appendix: Comparison of 3600-Fa1mly and I-Machine Exception
Handlmg

APPENDIX A. Revision 0 Implementation Features

Symbolics, Inc.

257
259
261"

986 .

- 266
- 266

- 270
oMl
271

©. 275
276
276,
277
278
278
- 280
282

283

283
285
285
286

286

286
287
287
. 289
290
290
291
292
293
293
283
294
295
295

297

Symbolics, Inc.

C . A0L Revision_ 0 Imple_rmerntation Memory Features
- A.0.2 Revision 0 Implementation Instruction Features ‘
A.0.3 Revision 0 Implementation Function-Calling Features

- A0.4 Revision 0 Implementation Excgption Handling Features
" APPENDIX B. Summary of Omitted 3600 Instructions
APPENDIX C. Notes on I-Machine Architecture }Iistdry

APPENDIX D. Hints for Software Developers
D01 Stack Groups on the I Machine

APPENDIX E. Notes on Future Implementations of 'thg Ivoiy Chip - '

APPENDIX F. Instruction Classifications for Packed Instructions

F.1 Formats

F.2 Operand-from-stack Instructions
F.3 10-bit-immediate Instructions
F.4 Encodings

Index

vi

297
208

300

300

303

305

300

310

315

317 -

317
317
319
321

325

o Figure_ L
. Figure 2,

Figure 3.

Figure 4.
Figure 5.
Figure 6.
. Figure 7.
Figure 8.
- Figure 9.

‘Figure 10.

- Figure 11.

Figure 12.
Figure 13.
Figure 14.
Figure 15.
- Figure 16.
Figure 17.
Figure 18.

Figure 19.

Figure 20.
Figure 21.
. . Figure 22,

. Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

List of Figures

Classes of stored object representations.

The effect of the locate-locals instruction

vit

Symbolics, Inc. -

26

80

4
Three types of object references. -7
Use of forwarding pointers to move an array 9
Use of forwarding pointers to expand a cons. 1
Structure of a symbol object.” ;18
The structure of an instance. ' 18
Structure of an object of type dtp-blgnum 21
-Representation of a big ratio. . 23
‘Representation of a double-precision ﬂoatmg-pomt number 25
Representation of a complex number.
Ordinary and compact list structures. 28
An object reference to the eddr of a list. 29
Short-prefix arrays with and without leaders. 33
A two-dimensional array. 35
A simple displaced array. - 37,
' A one-dimensional array indirected to a two-dimensional array - 38
The structure of a compiled function. 42
The structure of a lexical closure. 44
The structure of a dynamic closure. 45
Comparison of array prefix structures. 55
I-machine instruction formats.
An I-machine control stack frame. 243
The stack at the end of a start-call instruction 282
The stack after completion of the finigh-call’ mstmctmn 256
The argument matchup algorithm 260
The push-apply-args operation 262
The pull-apply-args operation 263
- 265

Symbolics, Inc.

viii

. Table 1.~
. "Table 2.
Table 3.

_Table 4.
Table 5.

. Table 6.
- Table 7. -

“Table 8.
Table 9.

" Table 10.
- Table 11,
Table 12.
Table 13.

List bf_"l_'ab.le_s.f o

‘Header Types S .

Valid Array Types for Byte-Packing. Values

- Headers, Special Markers, and Forwarding Pointers

Number Data Types -
Instance Data Types
Primitive Data Types : i
Special Marker for Garbage Collector

- Data Types for Program Counter Values
- Full-Word Instruction Data Types

Half-Word Instruction Data Types
I-Machine Internal Registers
I-Machine Instruction Formats
Memory Cycles

Symboﬁqs, fnc.

40
48
49
49 -
50

50 -

Bl

Bl

52
76
78
85

Symbolics, Ine.

Symbolics, inc.

1. Lisp-Machine Data Types

'***?F*%S#’E********P‘Fﬁﬂiﬂ‘s .

This file is confidential. Don’t show it to anybody, don’t hand it out to people,
don’t give it to customers, don’t hardcopy and leave it lying around, don’t talk
about it on airplanes, don’t use it as sales material, don’t give it as background to
TSSEs, don’t show it off as an example of our (erodable) technical lead, and don’t
let our competition, potential competition, or even friends learn all about it. Yes,
this ‘means you. This notice. is to be replaced by the real notice when someone

defines what the real notice is.
' ******************#**********************#*******************:}:**:ﬁ********k*;}-*:&ygﬁ

- The purpose of th.ls chapter is to categorize and define all the objects that oceur
in I-machine memory, both visible and invisible. The categorization of a storage
object is done according to its data type as specified by its type code. The -
definitions are presented in order by Lrsp object type. :

The essence of I-machine architecture is its support of the execution of the LlSp
language at the hardware level. This dictates the salient features of individual _
architectural components. In particular, I-machine data representations reflect the
fact that, in a Lisp machine, every datum is a Lisp object. Every word in memory
therefore contains either a Lisp object reference or part of the stored
representation of a Lisp object. (The only exceptions are forwarding pointers and
special markers. "Invisible" to ordinary Lisp code, these are used primarily for
system memory management, including garbage collection.) ’

I-machine architecture is fully type coded: every word in memory has a data-type
field. The function of the data-type encoding, to be described in this chapter, is to
~allow I-machine hardware to discriminate between the types of data it is operating
on in order to handle each appropriately. More information in how I-machine

. instructions use different types of data is contained in another chapter. See the
section "Macroinstruction Set.”

The chapter first introduces the I-machine’s basic storage unit. It then lists the
. different ways that a Lisp ohject can be .stored in memory and describes the
components of these representations. Note the interrelation between object
references and stored representations of ohjects: while a stored representation is
the target of an ohject reference, it can also contain cbject references as part of
its structure. This relationship reflects the nature of the Lisp language.

As part of its introduction to stored representations, the chapter discusses those

' stored objects that are not object references, including those that are invisible.

" This includes forwarding pointers, which are used when list or structure objects
are moved. These are discussed here, despite the fact that the structures they are

:

Symboiics, Inc.

© used in have not yet been defined. The general overview of data types '

Lo

N

'encountered in I-machme memory makes forward references to some structures

necessary. The reader can make use of the cross references supphed to help
clarify these sectlons

After the introduction, the body of the chapter descrlbes and defines the structure
of each of the Lisp objects that the I-machine architecture accommodates with a
specifically assigned data type. The concluding section summarizes the data—type
information, : :

1.1 Introduction to Lisp-Machine Obje_cts _

1.1.1Memory Words

1.1.1.1 Length and Format

Words are the basic unit of storage on the I machine. Every item in memory,
including object references and object representations, is made up of one or more
words. Whenever we refer to an address, it is the address of some word. More
information on addresses is available elsewhere, See the section "Memory Layout
and Addressing.”

A word contains 40 bits, which are assigned to the following fields:

Position = Length - Field Name

<39:38> 2 bits Cdr Code

<37:32> B bits Data Type

<31:8> 32 bits - Address or Immediate Data
ICOR] TYPE | - ADDRESS/DATA |
Fmemdm i e e e . ———
39 37 31 ' o B

1.1.1.2 Fields

The data-type field indicates what kind of information is stored in a word. Each
Lisp object referenced by its own assigned data type is explained in detail in the
data-type section. See the section "Data-type Definitions." The funections of data
types that do not serve as Lisp object references are described in an introductory
section. See the section "Components of Stored Representations.”

The address or immediate data field is interpreted according to the data type of”
the word. This field contains either the address of the stored representation of an

2

Symbolics, Inc.

‘used in have not yet been defined. The general overview of data types
encountered in I-machine memory makes forward references to some structures
necessary. The reader can make use of the cross references supplied to help
clarlfy these sections. -

After the mtroductlon, the body of the chapter describes and defines the structure
of each of the Lisp objects that the I-machine architecture accommeodates with a
specifically assigned data type. The concluding section summarizes the data-type
information.

1.1 Introduction to Lisp-Madhine Objects

1.1.1- Memory Words
1144 Length and Format -

Words are the bagic unit of storage on the I machine. Every item in memory,
mcludmg object references and object representations, is made up of one or more
words. Whenever we refer to an address, it is the address of some word. More -

* information on addresses is avaﬂable elsewhere. See the section "Memory Layout
and Addressing.” -

A word contains 40 bits, whlch are assigned to the followmg fields:

Position Length Field Name

© <39:38> 2 bits Cdr Code

<37:32> 6 bits Data Type

<31:8> 32 bits Address or Immediate Data
U e +
" ICORl TYPE . | ADDRESS/DATA . B
———t + e +
39 37 31 : a

 Words in actual physical memory may be more than 40 bits wide to allow for
parity or ECC schemes. The architecture does not require the existence of parity
or ECC nor does it specify any specific ECC algorithm. Such information and its
implications are part of the documentation of each unplementatlon and of the
system units that support the implementatien.

1.1.1.2 Fields

The data-type field 1ndlcates what kind of information is stored in a word. Each
Lisp ohject. referenced by its own assigned data type is explained in detail in the

2

o Symbolics, Inc.

object or the actual representatlon of an ob_}ect Thls is explamed in the Sectmns
covering the 1nd1v1dua1 data types

- The edr-code field is used for various purposes.. For header data types, the cdr- o
‘code field is used as an extension of the data-type field, For stored
representations of lists, the contents of this field indicate how the ‘data that
constitute the list are stored. Other uses of the cdr-code field are for instruction
seguencing. Usge of the cdr code 1s explained in the sections on llsts headers, and
compﬂed functions.

1.1.2 _Classes of Stored Object Representaﬁons

Figure 1 ﬂlustratés. the ways in which objects are represented.

-The storage structures for Lisp cbjects are introduced here so that the readsr wili’
be able to see how the various data types function within them. '

There are three fundamentally different ways that Lisp ob_]ects are stored in
memary. An object can be stored

" e as a list,
" o as immediate data,
= or as a structure.

A list object is an object built out of one or more conses. Refer to the Reference
Guide to Symbolics-Lisp for the definition of a cons. The representation consists
.of a block of memory words strung together by means of the edr codes. Often the
block consists of only one or two words, so it is important to avoid the overhead of
‘having an extra header word: this is why list representation and structure
representation are different. The following types of objects have list
representations: : :

conses,
lists,
big ratios,
double-preclslon floating-point numbers,
comnplex numbers,
- dynamic closures,
lexical closures, and
generic functions

Note that there is a difference between the concept of a list as a type of structure
and the concept of the data type dip-list. All the above data types use list
structure, ineluding cdr coding (described later). Only the ohbject references to
lists and conses use the data type dtp-list. (There is no dtp-cons)

3

. Object Representations

"oUf ‘saloqLuAS

Figure 1.

Classes of stored object representations.

’ Structure Objects
Compiled Funclions - Instances Amays éymhols Bignums
Immediate Objacts
A cor | pata | o
i CODE| TYPE Byte[Byte|BylelByle
Numbers: Pritltiv . Instructions: : .
Physical Addresoas mitiva Types: Half-word instructions ICDR DATA Byte[BytelBytoiByts
Fixnums Characiare . CODE;} TYPE
Small Ralios
Single-precision | OB | DATA BytolBylojByslBylo
Flaating-paint Numbaers
HDA § DATA ' i - X - I
[_Tv\’PE TYPE El-typajPacking]Prix-ly pa[Struc-flag|Arr-lypa
Contro! bits|SiytajChar-set|Subindex f - DTP-HEADER-
List Objacts DTP-CHARAGTER
¢ Gonario Funclions
onses :
. Big Ratios)
~ Compact Lists ClosUres Double-pracision
NIL Floafing-point Numbers
- Complex Numbers {increasi
\l/ i -address;sg)
| COR_[DATA 32-bit acdress of CADR
ggge %?;E 32-bit address of CAR]
NEXT

Symbolics, ina, .

.An immediate objeét does not recihire any additional memory‘*‘-_words for its =
representation; Instead the entire object représentation is contained right in the

object reference. To be an immediate object, an object type must not be subject to. '_ |

- side-effects, must have a small representation, and must have a need for very
efficient allocation of new objects of that type. The following types of objects have
nnmedlate representatmns

‘small mtegers (fixnums),
single-precision floating-point numbers,
small ratios,

characters,
' packed instructions, and

physmal addresses

A structure object is represented as a block of memory words. The first word

. contains a header with a special data type code. Usually all words after the first
contain object references.. ‘The header contains enough information to determine
the size of the. object’s representation in memory. Further, it contains enough
information about the type of the object so that a legal object reference
designating this object can be constructed. Structure representation is designed to
work for large objects. Some attention is also paid to minimizing overhead for
small objects, but there is always at least one word of overhead. Th& objects
'represented as structures are:

symbols,

instances,
bignums,

arrays, and
compiled functions.

The stored representation of a list or structure objeét is contained in some number
of consecutive words of memory. Each memory word within the structure may
contain

an object reference,

a header,

a forwarding pointer, or
a special marker.

The data-type code identifies the word type. For example, an array is represented
as a header word, which contains such information as the length of the array, and,
following the header, memory words that contain the elements of the array. An
object reference to an array without a leader contains the address of the first
memory word in the stored representation of the array. :

s ymbolics, Inc.

1.1.3 Components of Stored _Represe.ntations

- The components of the stored representations to be found in Llsp machine memory
are either object references, headers, forwardmg (1nv151ble) pomters, or speCLal
markers

o1 31 Object References

Object references are the mechamsm by wh1ch one refers to an object. The ob_}ect
reference is the fundamental form of data in this and any Lisp system. Object
references are similar in function to the "pointers" of other languages. As noted
before, an object reference can both point to the representation of a Lisp object
and be a component part of such a representation.

There are three types of object references:

5 object references by address
immediate object references, and
potinters.

Figure 2 illustrates the three types of object references.

Object references by address are implemented by a memory word whose address
field contains the virtual address of the stored representation of the object. Such
memory words are categorized as pointer data. Examples of this type of ob_]ect
reference are symbols, lists, and arrays.

Immediate object references are implemented by memory words that directly

contain the entire representation of the object. These are implemented by memory

words that centain the object in the 32-bit immediate data field. Examples of this

type of object reference are small integers (fixnums) and single-precision floating-
point numbers, :

Pointers are implemented. in the same way as object references by address. The
difference between these two types is that pointers contain the virtual addresses of -
locations that do not contain objects: they point insfead to locations within objects
- for example, to the value cell of a symbol. Pointers are also categorized as
pointer data.

1.1.3.2 Headers

- A header is the first word in the stored representation of structure objects. The
header marks the boundary between the stored representations of two objects and
contains information about the ohject that it heads. This information is either
immediate data, when the header type is dtp-header-i, or it is the address of some
descriptive data, when the header type is dtp-header-p. The header-i format
contains object-specific immediate data in bits <31:0>, The header-p format
‘contains the address of an object-specific item in bits <31:0>. Object references
usually use the address of an object’s header as the address of the object. (The
only exceptions are the object reference to a compiled funetion and the ohject

6

Object References

MEMORY WCRD

cor | pata
Icooe el ADDR_ESSOHDATﬁ
N
- T
2bils 6bils 32 bits

Single-precision Floaling-point Numbssr

Pointer Immediate ijac't Reterence
(o e ekt e B ot ool il Py ISRy T P IR R RSN IR T IRY) v . itk Edode kbbb PP FE T RY IR RN NIRRT R
Y. A V :" """ AEEE rrr FTITFFFTFIVIYYYrryY o L s ryrrry TrrrYrrrryrryr ¥
~3 1 32-bit address 4 - 32-bit data :
. oA Ly j:-:al"'"‘;’a’%}_ffaaaar “““““ oy l_f_;_o.’.-.--A/ ’.,..-..‘.‘..-,,1‘1;;, kel K gk 3 g i gl b
.
. Fixnum
Localive Physical Address . (Externat-value-cefi-- i '
EXAMPLES . P P
visible for binding onty)
3

FlgureE 2,

Three types of object references.

R

Objoct Referance by Addrass

(5 TR

rrrrrey

YA rrrry

32-bit addrass

'y

YT

iy

rs

List

Amay.

"oul ‘sooquiAg

Symboiics, Inc.

reference to an array with a leader, in which case the reference pomts to a
specified location inside the structure.

The edr-code field of a header word is used as. the header-type field: it :
distinguishes what kind of object the structure represents. The four header types
for each type of header format are shown in Table 1. c '
Table 1. Header Types '

 DTP-HEADER-P

Header . Symbolic Name Object Type
Type ' |
3 %header-type-symbol Symbaol
1 %header-type-instance Instance
2 %header-type-leader . Array leader
-3 Reserved

DTP-HEADER-1

Header Symbolic Name Object Type
Type
%headerwtype-complled-functlon
. Compiied Function
1 %header-type-array Array
2 %header-type-number - Number
3 . - Reserved

It is possible to change the memory location of an object represented by a
“structure, In this case, the object’s header is moved to 2 new location and the
object’s old location is filled with a word of data type dip-header-forward, an
invisible pointer that contains the address of the new location of the reference.
The object references in the locations of the old structure are all replaced with
pointers of the type dtp-element-forward, which contain the addresses of the new
.locations of the objects. This arrangement allows all existing references to the
object to .continue to work. Refer to Figure 3. Forwarding pointers are described
" more fully in the next section. See the section "Forwarding (Invisible) Pointers,"

1.1.3.3 Forwarding (Invisible} Pointers

A forwarding pointer specifies that a reference to the location conteumng it should
be redirected to another memory location, just as in postal forwarding. These are
also called invisible pointers. They are used for a number of internal bookkeeping
purposes by the storage management software, including the 1mp1ementat1on of
extendable arrays.

The data types of the forwarding pointers are:

Use of Forwarding Polnters

DTP-FIXNUM

"coR | DATA T T B
-]-conel- Tvee | Byle|Bite|Bys|Byte] -
COR | DATA — _
. IC_DD TYPE ByloiByte|Byte[Byte <
coR | paTa T I
CODE] TYPE EvtﬁlBy_lell's_'yel yle _E .
DATA | : —] _ |
|“RRA‘! TYPE ARHAYTYP; FIELDS < -
DTP-HEADER:
CDHJ DATA o I s
e . addresssrg
DTP-FIXNUM |
con | pata : _
’ﬁODE TYPE] Address >7 I
-SSEE'T”.?FTQ] Byte|Byte}Byle|Byla ! | |
coR JoATA | DTP-ARHAY DTP-ELEMENT-FORWARD _
CODE| TYPE Byte|Byta[Byte|Hyte I - .l |
. | SBR | DATA - Addrass .
| coDE] TYPE Byle|Byto]Byte[Byte _ con T oA | | |
. A } CDAL.{ DATA | -
9,;“"", iy ARRAY TYPE FIELDS ! lcooe DATA . >
. cor | paTa | -]
1\ CODE _TYPE Address = |
. | I
DTP-HEADER-) I ggg EI Ag@ge — = = |
Avray Structure belore Moving . | ¢
DTP-HEADER-FORWARD g
a
=
o

. Array Sirqclure after Moving '

Figure 3. Use of forwarding pointers to move an array.

Symbolics, Inc.

dtp-external-value-cell-pointer

dtp-one-q-forward '
 dtp-header-forward

dtp-element-forward .=

- An external-value-cell pointer is used to Tink a symbol’ \value cell to a closure or
instance value cell. It is not invisible to binding and unbinding. See the section
"Binding Stack.”

A one-g-forward pointer forwards only the cell that contains it, that is, it indicates
that the cell is contained at the address specified in the address field of the
ditp-one-q-forward word and that the cdr-code of the required data is the edr code
" of the dtp-one-g-forward word. This pointer is used to link a symbol value or
function cell to a wired cell or a compiled-function’s function cell, as well as. for
many other applications.

A header-forward pointer is used when a whole structure is forwarded. This word
marks where the header used to be, and contains the address of where the header
is now. When an array with a leader is forwarded, dtp-header-forward pointers
replace both the prefix header and the leader header. The other words of the
structure are forwarded with dtp-element-forward pointers. The address field of
an element-forward pointer contains the new address of the word that used to be
there. The cdr code of the required data is stored with the relocated data -- the
cdr. code of the header-forward pointer is ignored. Every word of the structure
except the headers contains an element-forward pointer.

A header-forward pomter is also used in connectlon with list representation. List
representation is explamed fully in another section. See the section -
"Representation of Lists."” When a one-word cons must be expanded to a two-word

" cons by rplacd, a new two-word cons is allocated and the old one-word cons is
replaced by a header-forward pointer containing the address of the new cons. (The
cdr code of the header-forward pointer is required to be edr-nil for garbage-
collection purposes. It is ignored by cdr and rplacd operations.) The cdr code in
the location containing the forwarding pointer is ignered. This is one difference
between a header-forward pointer and a one-g-forward pointer: the cdr code in the
lecation containing a one-g-forward pointer is used rather than ignored. See
Figure 4. This figure illustrates how a cons whose car contains a reference fo a
fisnum and whose cdr is nil is changed when an rpiacd instruction changes 1ts
cdr to another fixnum.

1.1.3.4 Special Markers

A special marker indicates that the memory location containing it does not
currently contain an object reference, An attempt to use the contents of that
location signals an error. The address field of a special marker is used by error-
handling software to determine what kind of error should be reported. (The
hardware does not use the special-marker address field.)

10

_ Use of Forwarding Polnier with rplacd

. NIL DTP-FIXNUM

Symbolics, Inc.

'R | DATA
on l l 32.bit immediate data

CODEL TYPE

Two-word cons’

1ol DATAI o
R 32-bit immediate data -

TDE TY/FP’E

NORMAL DTP-FIXNUM

A

" Address of s I-CDR DATAI - Addrass
. oﬂg‘ma]cgns R [e{e]s] _TYF'E .

U

- DTP-HEADER-FORWARD

Y

CDR | DATA j
co'as] TYPE ! Address

DTP.LIST /1\
i After rplacd .

{increasing
. addrasses)

T]e—

One-word corss ' '
@SIT\’};QI .. 32uitimmedidte data

NIL DTP-FIXNUM

CDR | DATA L -
| .copel rvee Address >

L

OTP-LUST - - }

Before rplacd

Figure 4. Use of forwarding pointers to expand a cons.

11

.Symbolics, Inc.

The data types of the special markers are:

‘dtp-null
dtp-monitor-forward °
dip-ge-forward '

A null special marker is placed in the value cell or function cell of a symbol or in
-the instance-variable value cell in an instance, in those cases when no value has
" been assigned. The address field of the null marker contains the address of the
name of the variable. This makes it possible for an error handler to report the
name of the offending variable when an attempt to use - the value of an unbound
variable is detected.

A null special marker is also used to initialize a freshly—created virtual meniory
pagé in case it is accidentally accessed before an obJect is created in it. The
addregs field contains the word’s own address.

The encoding of the null-special-marker data type is zero. Memory that is
initialized to all bits zero thus contains all null words, whu:h will cause a trap if
referenced.

" The monitor special marker is intended for use with a debugging feature that will
allow modifications of a particular storage location to be intercepted. See the
~ section "Exception Handling.”

A marker of type dtp-ge-forward is used by the garbage collector and may only
appear in oldspace. When an ohject is evacuated from oldspace, each word of the
object’s former representation contains a dip-ge-forward that points to the new
location of that word. - It is categorized here as a special marker, rather than as a
pointer, since it is visible only to the garbage-collectmg system, never to Lisp
code

1.1.4 Operand-Reference Classification

Immediate data dtp-fixnum, dtp-smali-ratio, dtp-single-float, dtp-character,
dtp-physical-address, dtp-packed-instruction,
dtp-spare-immediate-1 (22 type codes)

Pointer data dip-double-float, dtp-bignum, dtp-big-ratio, dip-complex,

' : dtp-spare-number, dip-instance, dtp-list-instance,
dtp-array-instance, dtp-string-instanece, dtp-nil, dtp-hst
dip-array, dtp-string, dtp-symbol, dtp-locative,
dtp-lexical-closure, dip-dynamiec-closure,
dtp-compiled-function, dtp-generie-function,
dtp-spare-pointer-1, dtp-spare-pointer-2, dtp-spare-pomter-s
dtp-spare-pointer-4, dtp-even-pc, dip-odd-pc,
dip-call-compiled-even, dtp-call-compiled-odd,

2

Null

Symboﬁcs, inc.

' dtp-c'all-"indlrec't dtp-call-generic,

dip-call-compiled-even-prefetch,

- dtp-call-compiled-odd-prefetch, dti) call- mdlrect-prefetch .

dtp-call-generie-prefetch (33 type codes)
dtp-null (1 type code)

Immediate Headerdtp-header-i (1 type code)

Pointer' Header

HFWD
EFWD
1FWD
'EVCP
Gc
Monitor -
Data

Header
Immediate
Pointer

-Numeric

Ingtance

dtp-header-p (1 type code)
dtp-header-forward (1 type code)

. dtp-element-forward a type code)

dip-one-g-forward (1 type code)
dip-external-value-cell-pointer (1 type code)

- dtp-ge-forward (1 type’ code)

dtp-monitor-forward (1 type code) -

- The union of immediate data and pointer data (55 type codes)

The union-of immediate header and pointer header (2 typ'.e'
codes)

The union of immediate data and immediate header (23 type
codes)

The union of pointer data, null pointer header, HFWD, EFWD,
1FWD, EVCP, and monitor (40 type codes)

dtp-fixnum, dtp-small-ratlo, dip-single-float, dtp-dc‘uble-ﬂoat,
dip-bignum, dtp-big-ratio, dtp-complex, dtp-spare-number (8

-type codes)

dip-instance, dip-lst-instance, dip-array-instance,
dtp-string-instance

1.2 Data-Type Descriptions

This section defines how each type of object is represented in storage and explains
how the stored representations ma.ke use of type-coded objects.

1 2.1 Representations of Symbols

The object reference to a symbol is a word of data type dtp-symbol or dtp- ml
The address field of this word contains the address of a header of type

‘13

Symbolics, Inc.

dtp-header-p. The header is followed by four words. The header’s header-type
field equals %header-type-symbol and the address field of the header contains the
address of the symbol's name, a string. 'I‘he ﬁve Words that const1tute a syrnbol
object, in order, are:

SYMBOL-NAME-CELL . address of the symbol’s name

%}
© 4 SYMBOL-VALUE-CELL “the value, or an unbound marker
2 SYMBOL-FUNCTION-CELL the definition, or an unbound marker
3 SYMBOL-PROPERTY-LELL ~ the property list
4 SYMBOL-PACKAGE-CELL +the home package, or N_IL
See Fxg‘ure 5,

The special symbols nil and t res1de in ﬁxed memory locations: (vma=pma
1011000) and (vma=pma 1011065), respectively. See the section "Wired Addresses.”
The fixed address and separate data type for nil speed up operations such as
predicate functions.

1.2.2 Representations of Instances and Related Data Types

The data types described in this section are used by the flavor system, which deals
with flavors, instances, instance variables, generic functions, and message passing.
A flavor describes the behavior of a family of similar instances. An instance is an
object whose behavior is described by a flavor. An instance varlable is a variable
that has a separate value associated with each instance. A generlc function is a
function whose implementation dispatches on the flavor of its first argument and
selects a2 method that gets called as the body of the generic function. Generic
functions are described in the section on function data types. See the section
“Representation of Functions and Closures.” In message pass.ng, an instance is
called as a function; the function’s first argument, known as the message name, is
a symbol that is dispatched upon to select a method that gets called.

See the Ligp documentation for more information about flavors, instances, instance
variables, and messages.

1.2.2.1 Flavor Instances

The object reference to an instance is a word of data type dtp-instance whose
address field points te the instance structure. The stored representation of an
instance consist of a header with type dtp-header-p, whose header-type field
equals %header-type-instance. The words following the header of the ingtance
are the value cells of the instance variables. They contain either object references
or an unbound marker. The cdr codes are not used. The address field of the
header contains the address of the hash-imask field of a flavor-description
structure. This description structure is called a flavor.

A flavor contains information shared by all instances of that flavor. The
archltecturally defined fields of a flavor %Ze

symbol-packags-cell

symboz;pm;ierly—oell

symbal-function-cell

symbol-value-cell

symbol-name-cell

Symbol Representation

CDR ST '
CODEl %&;2 I Addrass or nil
CDR | DATA l

CoDE| TYPE Addiess

coR oo [Addrass or nul

[COR I %};‘E I Address or immediate data or nul

[HOR | DATA Address of pame

TYPE| TYPE

i

AR

Pt

- 8YMBOL. DTP-HEADER-P

CDR | DATA] Addreds

Symbolics, Inc.

1y

' CODE; TYPE

DTP-SYMBOL

Figure 5. Structure of a symbol object.

15

Symbolics, Inc.

¢ the array header part of the packagmg of the structure (It must be a short--'
prefix array format, but is not checked)

s the named- structure symbol part of the packagmg of the structure

o the size of an instance, used by the garbage collector and by the mstance
: referencmg instructions (%mstance—ref and the like)

» the hash mask, used by the hardware for method lookup

» the hand.lerhash table address, used by the hardware r‘or method llookup'
 » the ne.me of the flavor, used by the type-of function -

' additional fields kniown only to the ﬂauor system

‘A handler table is a hash table that maps from a generic function or a message to
the function to be invoked and a parameter to that function. Typically, the
function is a method and the parameter is a mapping table used by that method to
access instance variables. The mapping table is a simple, short-prefix ART-Q
array. For speed, the format of handler tables is architecturally defined and
known by hardware. Handler hash tables are packaged inside arrays, but this 1s
software dependent, not hardware or architecture dependent.

A handler table consists of a sequence of three-word elements. The address of the
first word of the first element is in the flavor. FEach element consists of:

the key : This is a generic function (dtp-g‘e,neric-function), a message
name (dtp-symbeol)}, or nil, which is a default that matches
wyerything (dtp-nil), .

the method This is a program-counter value (dip-even-pe or dtp-odd-pc)
: addressing the instruction at which the compiled function
corresponding to the method is to be entered. '

the parameter This is a parameter that gets passed from the function or
' : message to the method as an extra argument. If the parameter
in the handler table is nil, the genenc function or message is
used ag the parameter.

Method entries are normally of type dip-even-pe or dip-odd-pe. An interpreted
method invokes a special entry point to the Lisp interpreter; this is implemented
by storing the interpreter (a dip-even-pc or dip-odd-pe) as the method functmn
and storing the actual method as the parameter.

Each unused three-word slot in the handler hash table-, plus a fence slot at the
end of the table, is filled with nil, a default method function, and nil. The default

16

Symbolics, Inc.

method functlon takes care of rehashmg after a garbage collectlon default
handlmg, and. error signalling.

- Figure 6 jllustrates the structure of an'instance ob_]ect a flavor, and a handler _
table. Refer to the chapter.on function calling to see how instances, methods, and
generic functions are apphed See the section "Handler Table."

1.2.2.2 List Instances

.The object reference to a list mstance is a'word of data type dtp-hst-mstance
whose address field pomts to an instance structure. The instance structure for a -
list instance is the same ag that for an ordinary mstance. Trap handlers written
in Lisp enable list-manipulation instructions to operate in a generic manner on

' _ohjects of the hst-mstance data type. See the section "Flaver Instances

1.2.23 Array Instances

" The ob_;ect reference to an array instance is a word of data type _
dtp-array-instance whose address field points to an instance structure. The
instance structure for an array instance is the same as.that for an ordinary
instance. Trap handlers written in Lisp enable array-manipulation instructions to
operate in a generic manner on-objects of the array-instance data type. See the
section "Flavor Instances.”

1.2.24 Sti‘ing Instances

The object reference to a string instance is a word of data type
dtp-string-instance whose address field points to an instance structure. The
instance structure for a string instance is the same as that for an erdinary _
instance. Trap handlers written in Lisp enable string-manipulation instruections to -
operate in a generic manner on ob_]ects of the string-instance data type. See the
- section "Flavor Instances.”

1.2.3 Representation of Characters

The object reference to a character is an immediate object of data type
 dtp-character, which contains the following fields in its data field:

17

Instance
value
colls

Instance Representation

" 4 DTP-EVEN-PC or DTP-ODD-PC

"ouf ‘soljoquIAS

\

Figure 6. The structure of an instance.

(.
: . / DTP-GENERIC-FUNCTION, DTP-SYMBOL, or DTP-NIL
[33'35 %‘,‘gg PARAMETER (MAPPING TABLE)
CDR | DATA ‘
cope) Tyee METHOD .
GDR | DATA KEY
cone{ TYPE
Handlar gggs %};2 PARAMETER (MAPPING TABLE)
iable § = -
COR | DATA ’
CoDE| TYPE METHOD
coR | DATA
—> | |cope] TvpE - KEY
L‘;‘$§E DATA ARRAY HEADER FIELDS
T OTP-SYMBOL
o ARRAY HEADERA -
i DTP-LOCATIVE
' /_DTP-FIXNUM :
CDRA { DATA R '
coDE| TYPE CDR :
fcon [Dara | CODE %FLAVOR-TYPENAME
Fr———
CODE] TYPE -
CDR | DATA cove %FLAVOR-HASH-ADDRESS >
copel TYPE P N —
HOA | DATA 32.bit address— CODE 4FLAVOR-HASH-MASK
Tyee | TYPE : : foog 1 : ‘ —
1\)]\ Flavor coR | DAIA %FLAVOR-NSTANCE-SIZE - - {= din this case)
cpR - | DATA R
INSTANGE OTP-HEADER-P R | e %FLAVOR-NAMED-STRUGTURE-SYMBOL
: DR | DATA . : :
!ggge ! DoTa 32:bit address : _Il TYPE | TYPE %FLAVOR-HEADER
DTP-INSTANCE, DTP-LIST-INSTANGE, DTP-ARRAY:INSTANCE, or DTP-STRING-INSTANCE ARRAY HEADER-|

- Symbolics, Inc,

" Position o Symbol_ic‘Name' . Description -

. <31:28> (4 bits). -%Z%CHAR-BITS . Control, Meta, Super, Hyper bits
- <27:16> (12 bits) - ZZCHAR-STYLE " Italic, large, bold, -
«15:8> (8 bits) = Z%CHAR-CHAR-SET Character set :

<7:8> (B hits) ZZCHAR-SUBINDEX Index within this character set
+ + e o + t ~-—-+
ICC] TYPE [BITS{ ~ STYLE ICHAR SET ISUBINDEX|
o mm fim == ————— -t -—+
3937 - 31 27 15 7.8

Note that the ﬁelds in a character ohject are not used by the hardware character
‘format is invisible to it. The fields may change in future software.

1.2.4 Representations of Numbers

1.2.4.1 Fixnum Representation

A fixnum is represented by an immediate object whose data field contains a 32-b1t
two’ s-complement integer. Its data type is dtp-fixnum,

1.2. 4 2 Blgnum Representatlon

The object reference to a bignum is a word of data type dtp-bignum, whose
address field points to-a bignum structure. The header word of the structure
contains. data type dtp-header-i, with the header-type field equal to
%header-type-number, and %header-subtype-bignum. (Note that fifteen values
of the 4-bit header subtype field are available for expansion.) See’ Flg'ure 7. 'The
following fields in the header word are specific to blgnums

Position Symbolic Name Description

<31:28> ZZHEADER-SUBTYPE-FIELD B for a bignum)

<@T> ZZBIGNUM-SIGN _ @ for a positive number, 1 for a
: - negative number

<26:0> %%BIGNUM-LENGTH " the number of fixnums that follow

Note that the hardware does not make use of these header-word fields. Following
the header is a sequence of fixnums that make up the bignum. The least-
significant part of the bignum is stored in the first fixnum. The fixnums are -
two’s complement and use all 32 bits for each digit. The bignum sign bit is the -
value of all the most significant bits not explicitly stored in the bignum.
Therefore, -1_32. would -occupy 2 words: the header with sign 1 and length 1, and
a fixnum of 0. (The notation -1_32 stands for a two’s complement -1 that has been
multiplied by 2°82, that is, shifted left 32 places.) '

19

Symbolics, Inc.

A e e e —— +
38 B

+ - — e e e +

ICC| FIXNUM |BOBB0NGEResaHRaER80RERRDEARARARN | |

+— - _ R —— +

39 _ _ ' o 0

“1_3L Would also occupy 2 words: the header with sign © and length 1, and a
fixnum that happens to be -1_31

o o i e e e S —
iNMIHEADER IIBIGNIBGBBBBBB99893939833888888811
o e e - —_— +
38 B

- e e o o T o 2 o e P +

[CEL. FIXNUM]1BBB@BGGEBGQBBBBBBEBEBBBBBBQBBBBl

e
T

ke o g
* * -

39 | R

1.2.4.3 Small-Ratio Representation ‘

A small ratio is represented by an immediate object of data type dtp-small-ratio.
The data field is divided into two subfields as follows:

Position . . Description

<31:16> . form a two's~complement numerator. 6 is an
itiegal value.
<15:8> is an unsigned denominator. and 1 are

illegal values.

PR t o e S +
|CEISH-RAT] NUMERATOR .| - DENOMINATOR |
s b e -— +
39 37 3 18 g

The illegal values are so because of either division by zero, or because the number
is an integer and should be represented as such. The ratic is reduced to lowest
terms. Note that the hardware does not make use of the fields of the small ratio. .

20 .

Symbolics, inc.

Representation of a Bignurh

DTP-FINUM

I CDA | DATA
CODE] TYPE

lcoﬂ' DATA |
GOREl TYPE

CDA | DATA
CODE} TYPE

CDR DATA_] ' : _
_Gonsl TYRE . -
HOR | DATA | suB ' _-—_———.I addresses
TYPE| TYPE LTveE| - SIGN) LENGTH) . : croas) .
T 1\ /E—'BfGNUM :

NUMBER = OTP-HEADER-
COR | DATA i] ' - - =l
{CODE 'TYPJ - 32-bit address > i

P

DTP-BIGNUM

I SO § S—

Figure 7. Structure of an object of type dip-bignum

21

.8ymbolics, Inc.

1.2.4.4 B:g-Ra‘tro Hepresentatlon

* The object reference to a big ratio is a word of data type dtp- bxg-ratm, Whose ,
. address field points to a cons pair. ‘The car of the cons contains the numerator of
the ratio, and the edr contains the denominator. As with small ratios, a numerator
of 0, or a denominator of 0, 1, or a negative number, is illegal. The ratio is
reduced to lowest terms. See Figure 8.

1 2.4.5 Single-Precision Fioatmg-Pomt Representation

A single-precision floating-point number is represented as an immediate dbject of
data type dtp-single-float whose data field contains a 32-bit IEEE smgle basic
floating-point number. The followlng ﬁelds are defined:

Position Symbolic Name Description
<31> . ZZSINGLE~SIGN B for positive numbers,
1 for negative numbers
<36:23> ZZSINGLE-EXPONENT excess-127 exponent
<22:8> ZZSINGLE-FRACTION positive fraction, with
hidden 1 on the Teft
e e + s e +
ICC[SNG FL]S| EXPONENT FRACTION : [
e N b e e
39 37 31 22 —— 8

1.2.4.6 Double-Precision Floating-Point Representation

The object reference to a double-precision floating-point number is a word of data
‘type dip-double-float. The address field of the double-float word contains the
address of a cons pair. See Figure 9. The data fields in the words of the cons
pair hold two fixnums, containing the sign, exponent, and fraction as packed fields,
The most-significant word is stored first, violating normal hyte-order conventions.
The second fixnum contains the low 32 bits of the fraction. The first fixnum
contains the following fields:

22

Symbolics, Inc.

"Representation of a Big-ratio

NIL . DTP-FIXNUM"

1 cor t DaTA . . : —
CODEJJYFE DENOMINATOR : n l
—]CDH DATA | ' : I
CODE] TYPE NUMERATOR
NORMAL DTR-FIXNUM
COR I DATA ' _ ' |
E:ODE TYPE | 32.bitaddress o> i
DTP-BIG-RATIO

* The nutnerator or denominator could also be a bignum.

Figure 8. Representation of a big ratio.

23

. Symboiics, inc.

Position Symbolic Name _ Description. -

<31> . Z7DOUBLE-SIGN 8 for a positive number,
o _ -1 for a negative number -

<38:28> - ZZDOUBLE-EXPONENT : excess-1823. exponent

<19:08> ZZDQUBLE—FRACTIDN-HIGH .top 2@ bits of fraction
' : (excluding the hidden bit)

- b m e e m N +
[CC} FXNM IS| EXPONENT |-

e on e frm e e — —+
39 37 Kl 18 @

- The second fixnum contains one field:

Position Symbolic Name Description

<31:8> ZAFRACTION-LOW - _ bottom 32 bits of fraction
A ' e ———
ICCl FXNM | . FRACT ION-LOW |
oo o o e e} - - - - —
39 37 31 _ : e

This conforms to the IEEE standard 64-bit representation. In non-generic code
double-precision floating-point numbers are often represented as a pair of fixnums.
Avoiding the normal in-memory object representation saves consing overhead.

1.2.4.7 Complex-Number Representation

The ohject reference to a complex nyjumber is a word of data type dtp-complex,
whose address points to a cons pair. The car of the cons contains the real part of
the number, and the cdr contains the imaginary part. See Figure 10.

1.2.4.8 The Spare-Number Type

An object reference using dtp-spare-number can be employed by software to
implement additional numeric data fypes. Functions that require numeric data
types as arguments will behave properly (usually trapping out to user-defined
handlers) with dtp-spare-number operands.

1.2.5 Representations of Lisis

The ohiect reference to a list is a word of data type dtp-list, whose address field
contains the address of 2 word that contains the car of a cons. The storage
representation of a list is usually a linked collection of conses. Refer to the
Reference Guide to Symbolics Lisp for a complete description of conses and lists, In

24

Symbolics, Inc.

Representation of Double-precision Floating-point Number -

NIL DTP-FIXNUM

CDA | DATA ' —
lcone TY,,E-I . . FRACTION-LOW l

—— | COR DATA | _ - .
Imn,: TYPE I SIGN| EXPONENT | FRACTIONHIGH I

t

NORMAL DTP-FDXNUM

CDR | DATA) }] . -
: , CODEI IYPE S - 32-bit address > 1

)

DTP-DOUBLE-FLOAT

Figure 9. Representation of a double-precision floating-point number.

25

Symbolics, Inc.

Representation of 2 Complex Number

NIL ANY NUMERIC DATA TYPE

gggEl _?3;2 i IMAGINARY-PART
3 | CDR lDATA. : -
,rom; TYPE REALPART

NORMAL ANY NUMERIC DATA TYPE

COR [DATA ' D
CODE TYPE 1 . 32-bt address -

|

f

DTP-COMPLEX

Figure 10. Representation of a complex number.

26

Symbolics, Ine.

- compact form, hoWever a list can be stored ina sequence of ad_]acent memory
words. See Figure 11 : :

The cdr-code tag of a memory. Word that constltutes an element of a llst gpecifies
how to get the cdr of its associated cons according to whether the list is stored in
. normal linked-list form or in compact form. The cdr-code tag works as follows:
Code Symbolzc Na:me - Description

0 cdr-next . Increment the address to get a reference to the
- cdr, itself a cons. This is used for compact lists.

1 edrnil . The cdr is nil. This is used for both kinds of
o list. ' : : :
2 cdr-normal - Fetch the next memory word; it contains a

‘reference to the cdr. This is used for
normal lists.

3 (illegal)

A typical, that is, not compact, two-word cons has edr-normal in the cdr-code tag
of its first word and edr-nil in that-of its second. The car and edr operations
- ‘ignore the cdr code in the second word, but it is helpful to the garbage collector.

In general, a compact list representation consists of a contiguous block of one or
more memory words. The cdr code of the last word is always cdr-nil. The cdr
code of the second-to-last word may be edr-normal or cdr-next. The cdr code of
each of the remaining words is edr-next. Note that when a cons consists of
exactly two words, the edr-normal form is used in its representation, and the cdr
~ code of the second word is always edr-nil. In a two-element. list consisting of two
words, the cdr code of the first word is edr-next.

Note that a dtp-list pointer can point into the middle of a list representation.
This happens any time cdr-next is used; for instance, if a list of four elements is
fully cdr-coded - that is, it is stored in compact form -- its representation consists
of four words. The contents of each word is an element of the list. The cdr
codes -of the first three words are cdr-next; the cdr code -of the last word is
cdr-nil. An object reference to the cddr of this list has data type dtp-list and the
address of the third word. The garbage collector protects the entire block of
storage if any word in it is referenced. See Figure 12.

The rplacd operation interacts with cdr coding. An illustration of this was
presented in an earlier section. See the section "Forwarding (Invisible) Pointers.”
rplacd of a cons represented with cdr-normal simply stores into the second word.
But rplaed of a cons represented with cdr-next or edr-nil must change the
representation so that the cdr is represented explicitly before it can be changed.

27

83

List Representations of the List (a b)
ML DTP-NIL : '

(COR | D : >__l._> ;
. DATA P . > NiL
R COEJEJ TYPE 32-bil address

ouf ‘sojfoquuis

Cons - :
IR
g T ' o SYMBOL DTP-HEADER-P |
il J NOAMAL DTP.SYMBOL . |
Struciure NIL DTP-LIST Hone| Data 32bitaddiess of printname ®) |
coR | pATA
.) ECOD TYPE | 42-oit adduiess
’ oo co.n DATA
C CObH TYPE 32-bit addrass

U

NORMAL DTP-SYMBOL

SYMHOL DTP-HEADER-P

32-bit address of prirtname

CDR | DATA 32-4it address
Lcon TYPE ahasknd
DTP-LIST
? Note: the objects contained in the lists in these
examplos happen to be symbols: they could ba any Lisp shjacls.
: {incraasing
NI - DTP.SYMBOL ' addresses)

CDR | paTA] . |—- : SYMEOL DTR-HEADER-P
CODE| TYPE | 32-bit address T

Sirueture T T \LE \l’ — o
NEXT DTP-SYMBOL _ _ |
. . SYMBOL DTR-HEADER-P
. CDR DATA 2; it addross ’ J/ ¢ — _.
lcoo TYPE s2bi _

)

GTR-LIST

CDR " . y
Compact E AONE .?.,‘?gﬁ} 32-bit address >_\
m| l -

32-bit address of prih(name

Figure 11. Ordinary and compact list structures.

63

NIL DTP-5YMBOL

List Representations of the Lists (abed)andcddr(abe d)

{increasing ‘ : . SYMBOL DTR-HEADER-P
addresses) '

?

NEXT DTP-SYMBOL

. _ 32-bit addr_ess - of ‘;.szrrlnar_ne
COR T DATA Addess — SYMBOL DTP-HEADER-P
"""-"_—9 CDR | DATA Address . . ’
conel TYPE
' [COR { DATA | " a1 address > - or | o "
on oo : : . N vee| voee 32-btt address * efprintname . {c)
CODE{ TYPE 92-bil address > ' SYMBOL DTP-HEADER-P : '

: ’ - DATA 32-bit address of prinlname ib) I
:l svurail. DTj;HEADER—P ' o

[con | oA a2:bit address P
| T ;1\?FE‘E 'Iqﬁé;’!ré 32-bit address of printname " {a)
OTP-LIST o .
Referanceto {a b ¢ d) . i
I COR_ 10_“’:;"2 32-bit actdiress >g_ . -

Of) ! "Note: the objects conlained in tha lists in these)

1\ T . . examples happen to be symbols; they could be any 1isp ubjed51
DTP-LIST

Rsfarence fo cddr {a b d)

"OUf 'SOOQUUIAS

Figui‘e 12, An object reference to the eddr of a list.

Symbolics, Inc.

There is one exception; if the edr is being changed to nil, the’ cedr-nil c&r code is
used fo represent it. Use of rplaed can split an object representation into two
independent object representations, one of which might then be garbage-collected.

dtp-header-forward is used to implement list forwarding. If the data-type tag (of
the car) is dtp-header-forward, the cdr code is ignored (except by the garbage

. collector, which expects it to be edr-nil). The address in the forwardmg pointer
pomts to a pair of words that contain the car and edr, :

1.2.6 Representations of Arrays a-nd-Strings

The object reference to an array or string is a word with data type dtp-array or
dtp-string. The representation of arrays described here does not apply to ob_}ect
references with data type dip-array-instance or dtp- -string-instance.

Whether an array is referred to by ditp-array or dtp-string has no effect on its
stored representation: the data type of the object reference simply serves to make
the stringp predicate faster.

An array is a structure consisting of a prefix followed by optional data. (Data does
not follow the prefix of an array structure if, for example, the array is displaced.)
A prefix is defined to be a word whose data type is dtp-header-i and whose header
type is %header-type-array, followed by zero or more additional words. The prefix
defines the type and shape of the array. This is similar to the 3600. The detailed
" format of the prefix is different from the 3600, and simpler. The data is a
sequence of object references or of fixnums containing packed bytes.

The byte fields in a prefix header’s 32-bit immediate field are:

. 30

Symboiics, Inc.

- Posttion Symbolic Name 'Des¢ription

<31:;26> 6 ARRAY-TYPE-FIELD ~ - Combination of fields below
<31:38> 2 - ARRAY-ELEMENT-TYPE ~ Element type, one of: fixnum,

o - * character, boolean, object-reference.
«29:27> 3. ARRAY-BYTE-PACKING Byte packing. Base 2 logarithm (8 to

5) of the number of elements per word
' 6 or 7 in this field is undefined.
<26> 1 ARRAY-LIST-BIT "1 in ART- Q LIST arrays, B otherwise
<25> . 1 . ARRAY-NAMED- STRUCTURE-BIT
) 1_1n;named—structures, 8 otherwise
24> 1 ARRAYeSPARE—1- (spare for software use)
<23> 1 ARRAY-LONG- PREFIX BIT 1 if prefix is multiple words
" <22:15> 8 ARRAY- LEADER LENGTH-FLELD
: " Number of elements in the leader
<14:8> 15 ARRAY- _ " Use of these bits depends on the
prefix type, as described below
in the definj

“[ARIHDR~1|TY{BPBILIS|-IPIL-LEN|

e T S T : e

39 38 3138 27 23 15 e

~ L

+

Bits <31:27> correspond to the same bits of the control word of an array register.

Array registers are discussed in the following section. See the section "I-Machine

Array Registers.". Bits <26:24> are not used by hardware. Bits <31:27,23> enable

various special pieces of hardware (or microcode dispatches). Bits <22:0> are used

by hardware under microcode control. Bits <31:26> are sometimes grouped
together as ARRAY-TYPE-FIELD.

Some arrays include packed deta in their stored representation. For example,
character strings store each character in a single 8-bit byte. This is more -
efficient than general arrays, which require an entire word for each element.
Accessing the nth character of a string fetches the n/4th word of the string,
- extracts the mod(n,4)th byte of that word, and constructs an object reference to
the character whose code is equal to the contents of the byte. Machine
instructions in compiled functions are stored in a similar packed form. For
uniformity, the stored representation of an object containing packed data remains
"a sequence of object references. Each word in an array of element-type fixnum,
boolean, or character is an immediate ohject reference, data type dtp-fixnum,
whose thirty-two bits are broken down into packed fields as required, such as four
8 blt bytes in the case of some character -strings.

31

Symbolics, Inc.

An array can optionally be preceded by a leader, a sequence of object references
~that implements the array-leader feature. If there is a leader, the leader is

. preceded by a header of its own, tagged dip-header-p and %header-type-leader;
the address field of this header contains the address of the array’s main header

- -- that is, the address of the header of the array prefix - Note that if an array has
a leader, the address field of an object reference designating that array contains
the address of the main header, the one after the leader, not the address of the
header at the beginning of the array 8 storage, before the leader Refer to the:
dlagram, Figure 13.

-The address of leader element i of an array whose address is a, regardless of
whether the prefix is long or short, is given by (- a i D.

The two array formats (%array-prefix-short and %arrav-preflx-long) are provided
to optimize speed and space for simple, small arrays, which are the most common,
Wherever possible fields have been Inade identical in both formats to simplify the
implementation. :

Description of the two prefix types:
%array-prefix-short:

Position Bits Symbolic Name Description
<T4:8> 15 ARRAY=-SHORT-LENGTH-FIELD Length of the array.

s o o

[ARIHDR-I1TY{BPBILISI~|B]1L-LEN| AR-LENGTH |

+ % o

- 5
+ umied e sled St o .2 +

39 38 3138 27 23 i4 8

The prefix is one word, The array is one-dimensional and not displaced, but may
have a leader. Most common arrays including defstructs, editor lines and mest
arrays with fill-pointers use this type. (You can find out about fill pointers by
using the Document Examiner, or refer to the Reference Guide to Symbolws Lisp.)
See Figure 13.

The address of data element i of a short-prefix array whose address is a and
whose ARRAY-BYTE-PACKING field is b is given by (+ a (ash i (- b» 1). When
b is greater than zero, packed array elements are stored right-to-left within words,
thus the right shift to right-justify data element i is

(ash (logand i (1- (ash 1 B))) (- 5 b)).

32

Symbolics, Inc.

Arrays with Prefix Type %array-preﬁ)t-short

Last aclive
element

Aray data FX Egg E28 E27 E26 E25 E24 £23 E22 E21
d eon FXNM|_ E15 E14 E13 E12 E11 F10 B0 E8 E7 £6 E5 E4 E3 £2 E1 EG
Aray Anay prefix E 1 AFIFIY' HOR- [FX! -~ 4 fof1 I 0 I L oFtL J -
Fill poirter
=kiremo > ggﬁ;lFx\lM] : 2
Named-struct,
Array loader s;nr:lhm s idr auta |SMBVL ___82-bit address _ > -
' 1oR | HoR-P 82bt address > - {""’
CDR | DATA . -~ |
cond Tyee 32-bit address > 1
DTP-ARRAY
With Leader
{increasing
addresses)
EAE™ '
Array data cane | FXNM | E29 E28 ER7 E26 E25 E24 £23 E22 E21 E20 E19 E18 E17 E1
Aray : ml E15 E14 EY3 E12E11 E10 EQEB E7 £6 ES EAE3E2 EL E
] ARRY| HDR-i [FX | 4 olol- o! 0 30,
Artay preiix
2-bii element-type field
¢DR | DATA] -~ |
CODA TYPE 32-bit addness .~ :)
DTP-ARRAY
Generatad by:
Without Leacier " {make-array 30 element-lype (unsigned-byte 2))
Figure 13, - Short-prefix arrays with and without leaders.

33

Symbolics, Inc.

%array-prefix-long:

Position.- Bits Symbolic Name _ Description
<14 1 ARRAY-DISPLACED-BIT e for normal array, 1
for displaced array.
—el3v35 7 12 ARRAY=LBNG=SPARE-—— " "Spare: ——TS
<2:8> 3 ARRAY-LONG-DIMENSIONS-FIELD ~

Number of dimensions.

o o e o S SR S ST S S [RS
=+ aaaints o T | B o =1 +

I ARIHDR- IITYIBPBILISl FHIE- LEN[DISPAREIDIMSI
+_ ,_+____ + J_ N ‘ . : _l - J_ t - _:

39 38 31 38 2? 23 1413 2 B

The long prefix format is used for displaced arrays (including indirect arrays),
arrays that are too large to fit in the short-prefix format, and multidimensional
(including zero-dimensional) arrays. The first word of the prefix contains the -
number of dimensions in place of the length of the data. The total length of the
prefix is (+ 4 (* d 2)) where d is the number of dimensions.

The second word of the prefix is the length of the array. For conformally
displaced arrays, this is the maximum legal linear subscript, not the number of
elements (which may be smaller)

The third word of the prefix is the index offset. This word is always present,
even for non-indirect arrays. Zero should be stored here in nhon-displaced arrays,
since the this word is always added to the subscript.. Always having an index offset
keeps the format uniform and allows the feature that d1splaced arrays of packed

- elements ean be non-word-aligned.

-The fourth word of the prefix is the address of the data, This is a locative to the
first word after the prefix for normal arrays, except for normal arrays with no
elements, in which case it is a locative to the array itself to avoid pointing to
garbage For displaced arrays, this is a locative or a fixnum. For indirect arrays,
this is an array.

The remaining words of the prefix consist of two words for each dimension. The
first word is the length of that dimension and the second word is the value to
multiply that subscript by. Note that this is different from the 3600 See
Figure 14.

A one-dimensional array with a subscript multiplier not equal to 1 cannot be
encached in an array register. Currently the software considers such arrays
illegal and will never create one.

34

Symbolics, Inc.

%array—prefix—long- '
Position Bits Symbolic Name : Description
<14> 1 ARRAY- DISPLAEED BIT 8 for normal array, 1

g . . , for displaced array.
<13> 1 ARRAY-DISCONTIGUOUS-BIT =~ 8 for nermal array, 1
_ ' ' for conformal array.
<12:3> 12 ARRAY-LONG-SPARE . Spare.
<2:8> 3 ARRAY-LONG-DIMENSIONS-FIELD
' ' Number of dimensions.

B
JAR|HOR-IITY|BPBILIS{-|1|L~-LENIDISPARE |DIMS]|
B s 1k B B

3938 3138 27 . 23 1413 2 @

The long prefix format is used for displaced arrays (including indirect arrays),
arrays that are too large to fit in the short-prefix format, and multidimensicnal
(including zero-dimensional) arrays. The first word of the prefix contains the
number of dimensions in place of the length of the data. The total length of the
preﬁx is (+ 4 (* d 2)) where d is the number of dimensions.

" The second word of the prefix is the length of the array. For conformally _
displaced arrays, this is the maximum legal linear subscript, not the number of
elements (which may be smaller)

The third word of the prefix is the index offset This word is always present,
even for non-indirect arrays. Zero should be stored here in non-displaced arrays,

since the this word is always added to the subscript. Always having an index offset

keeps the format uniform and allows the feature that displaced arrays of packed
elements can be non-word-aligned.

The fourth word of the prefix is the address of the data. This is a locatlve to the
~first word after the prefix for normal arrays, except for normal arrays with no
elements, in which case it is a locative to the array itself to avoid pointing to
garbage. For displaced arrays, this is a locative or a ﬁxmun For mdn-ect arrays,
this is an array. o

The remaining words of the prefix consist of two words for each dimension. The
" first word is the length of- that dimension and the second word is the value to
multiply that subscnpt by. Note that this is d1fferent from the 3600. See
Figure 14.

A one-dimensional array w1th a subscript mu1t1pher not equal to 1 cannot he
encached in an array register. Currently the software considers such arrays
illegal and will never create one 24

Symbolics, In_c_

' de-Dlmens!onal Array

_ s - FEOR o I : . AB3.AB2 AB1 A80
Array data ~{oo8 | oonml Asa Ase Ast ASD A3 Ad2 At Ak -
ODR | | - A33 AS2 A31°A30 A23 A22 A21 A0
‘1 | coR
_ k CODEI EXNM 13 A2 A1 ATD AD3 AD2 AOT ACO-
- - -
L C .
Second dimension uiplier BD l nrD,ﬁEJ x| -~y
o engn —> [SOR | o] 4
- First dimer;sion mutipier [3Rﬁ= FXNMI : 4
Array prefix . < longth]EE,;‘F J — I -
Data = [cDA - y
Imeloncaiion nnm:l Lec | 32-bit addrass = >>-
X —=» [CDR 5 ; :
A offset IFXNM | 0 —
“Amay o= [eDR : _
tengih cong | FXNM - _ .
L ARRY| HDR-| F)_(l o Iolol. |1| 0 | SPARE | 2 |2
{increasing ’ -
addresses)
I ggggl ?é;é ' 7 32-bit addrass = IF
DTP-ARRAY

Figure 14. A two-dimensional array.

Symbolics, Inc.

The way you tell a displaced/indirect array from & normal array is by checking the
array-displaced bit of the array header (assuming the array has its long prefix bit
set). - Indirect arrays can be can detected by the data type tag of the fourth word.
Figure 15 shows a simple displaced array, while the figure in Figure 16 shows a

- one-dimensional array indirected to another two-dimensional array. 'I‘he following
code generates two such arrays: '

{setq a (make-array ’(7 4) :element-type ’(unsigned-byte 4))
- b (make-array 4 :displaced-io a
:dispaced-index-nffset 18.
:etement-type ' (unsigned-byte 4)))
. Software defines the precise algorithm to be used when accessing an indirect
array.

1.2.7 IFMachine Array Registers - | _ g

An array register is four words on the stack that contain a decoded form of an
array, permitting faster access because no reference to the prefix is required. I-
machine array registers are essentially the same as those on the L-machine, with
the addition of an index-offset feature to allow non-word-aligned array registers
with reasonable speed (on the L-machine they are very slow).

The four array-register words on the stack are, in order:

Array | Object reference
Contro! word a fixnum containing the following packed fields:

Position Bits Symbolic Name ‘Description
<31:368> 2 . ZZELEMENT-TYPE . One of: fixnum, character,
boolean, or object-reference
<29:27> 3 Z7ZBYTE-PACKING Base 2 Togarithm (8 to 5) of
_ o the number of elements per word
<26:22> 5 ZZBYTE-OFFSET 0ffset from word boundary in
units of array elements

«21:8> 22 ZZEVENT-COUNT Used for validity checking

Base address The address of the ﬁrst elemeﬁt in the array

Array length The number of elements in the array

" The %%EVENT-COUNT field is a copy of the internal processor register array-
event-count. This copy is set when the array register is created, and updated by
Lisp code whenever an exception is taken because the Z%EVENT-COUNT fi¢ld

36

Symbolies, Inc.

" The way you tell a displaced/indirect array from a normal array is by checking the
array-displaced bit of the array header (assuming the array has its long prefix bit
set). Indirect arrays can be can detected by the data type tag of the fourth word.

" Figure 15 shows a simple displaced array, while the figure in Figure 16 shows a

~ one-dimensional array i‘ndirected to another two-dimensional array., The following

code generates two such arrays: '

(setq a (make-array (7 4) :element-type ' (unsigned-byte 4))
b (make-array 4 :displaced-to a
:dispaced-index—uffset 18.
:element-type ’ (unsigned-byte 4)))

Software defines the prec:se algorlthm to be used when accessing an 1nd1rect
array.

Conformal arrays are 'detect_ed_ ty testing ARRAY-DISCONTIGUOUS—BI—T. Software
may be able to do certain optimizations with this knowledge. ARRAY-
DISCONTIGUOUS-BIT and ARRAY—DISPLAC_ED—BIT are not rused_ by hardware.

1.2.7 I-Machine Array Registers

An array register is four words on the stack that contain a decoded form of an
array, permitting faster access because no reference to the prefix is required. I-
machine array registers are essentially the same as those on the L-machine, with
the addition of an index-offset feature to allow non-word- ahgned array registers
with reasonable speed (on the L-machine they are very slow).

The four array-register words on the stack are, in order:

Array ‘Object reference 7
Control word a fixnum containing the following packed fields:
Position. Bits Symbolic Name Description
-<31:38> 2 ZZELEMENT-TYPE - Ghe of: fixnum, character,
S o ' " boolean, or object-reference
<29:27> 3 ZABYTE-PACKING _) Base 2 logarithm (8 to 5) of
7 ' the number of elements per word
<26:22> 5 -ZZBYTE—OFFSET : 0ffset from word boundary in
C ' :) units of array elements
T <21:8> 22 ZZEVENT-CGUNT Used for Va11dity checking

Base address The address of the first element in the array

Array length The number of elernents in the array

36

Symbolics, Ine.

" Displaced Array with Prefix
Type %array-prefix-long

cor_ | wal ' E35 E34 E33 EA2
[897 o] E31 £30 E25 o5 27 £26 E26 E2d
SR [mom| — E2e Ee et Eoo Edo Ete EN7 E16

Exnm| . E15 E1d E19 E12 Et1 E10° E9 EB

Array data

E? E6 E5 E4 E3 E2 E1 EQ _
i) {incraasing
addrosses)

Subscript

multipier : 2.25\: \IMl : 1

\

o : Dlmensmn "

Iengeh ' 36.

) . Data GDR : .

Amayprefis - i jgcaj[qn renel LOC - 32-bit address - -
: Index ’ CDR
Arra offset g
Y — CDR
tength FXNM 36.

" =

(ARHY HDR- | FX | 3 -ol1|-i1 2 SPARE | =
Fill . - '

. Narmeffainter EREX 2. I
structure .
Anay leader oymbel > loone | s _ 32-bit address > > Name
LDR | HDR-P 32-bit address - :
gg'g oate 32-bit address > f
DTP-ARAAY

Figure 15. . A simple displaced array.

37

Symbolics, Inc.

Indirected Array
A - FEOR T moum | _ AB3 ABZ AB] ABO
rray data ’ . —
: : : | cor_| FX_NMJ AS3 AS AS1 AS0 ALY Ad2 AGL AJD
. : o CDR l FXNM[A33 A32 A31-B3 ASD=R2 A23-B1 A22-B0 AZ1 A2D
> . SOR | exm] A13 A2 AT1 A10 AQS AD2 AD1 AOO
multiplier — CDR : :
-+ Second dimension P FXNM | 1
. lengtn. === | SR | mavm 4 _
: muliiplier —3» |CDR £
First dimension o FXNM| - — ——
) length - E?am: EXNM 7 :
Array pratix Data R - . : — .
: location > conel LOC | 32-bil address > ——
Index 5 i CDR l 1 .
. oftset cone | FXNM o]
Arral —]
Ieng{h' ! EJ?\R FX&RL 28 : .
IA_RRY HOR- | FX| 8 [0 |1] 1 I 2 I SPARE | 2 If“
Fil. =
| AR |
Armay leader My :;{:_g:{e "94[rl SMBL[32-bit addrass = = Name
l LDR l HDA-P i 82-bit address - !...._. .
. N 4 _ I
32-bit address ™ ' i 5
Array prafix g pm
Arra) I
it 4
[
2 | SPARE f 1 —
)
i : ‘
I — [ors,
Nam é)é)lmer ’{\ﬁ?\!:l FXNMI . 4
Array lgader structure ——2» 32-bit address S = Name
symbol < = Nam
LDR' 22-bit addrese >
CDR | DATA T - i
ot :—ITYPE _ 30-bitaddess > E
DTP-ARRAY _ : .
Figure 16. A one-dimensional array indirected to a two-dimensional array.

38

Synibolfcs, Iné.

does not match the-afré._yé_vent-couht i'egistei'. The array-e\?en't-count -regiSter is
.-incremented by Lisp code whenever the size of an array is changed, invalidating

. all array registers that have been created. The array-event-count register is by -

convention always nenzero, forcing the Lisp code to do an extra increment if the

- mew contents would be zero. This convention permits the creation of array -
registers that always trap (by giving them a zero event count), which may be used_
for encaching objects of type dtp-array-mstance and dtp-strmg instance. that do
not have encacheable arrays.

To read an element of an array encached in a array register:

1. If the event count is not equal to the contents of the internal processor
. register array-register-event-count, take an instruction exception and re-
decode the array into the array register. This exception need not be handled .
in hardware/firmware since it will not happen often. It is a post trap, which
is responsihle for'either backing up the PC or for doing the. read itself.

2. Compare the subscript against the array length take an 1nstruct1on
‘exception unless

(Zunsigned-<lessp ‘subscript Jength)
18 true. |

3. Add %%byte-offset-to the subscript.

4. Read the memory ‘word at _ 7
{+ base-address (1sh subscmpt (- ZZbyte- packmg)))

5. Use the low-order bits of the subscript, %%byte-packing, and %%element-type -
to extract the array element from the word read from memory. Take an
instruction exceptmn if the %%element-type requires a data type different
from what was read

Much of the above happens in parallel, as it does on the L-machine. The
_comparison against the array length actually happens after the address is sent to
memory, but if the subscript is out of bounds the memory read is cancelled and no
page fault occurs. Large integers (dtp-bignum) are not truncated when stored into
an art-nb array; rather, an instruction exception is taken which signals an error.

. Setting .a character with nonzero high bItS inte an art string also causes an

" instruetion exception.

Table 2 lists the valid array types for each array element type for all possible
values of array byte packing.

39

Symbolics, Inc.

Table 2, . Valid Array Types for Byte-Packing Values

: : fixnum ~ character . boolean object
array-byte-packing _ ' : _

0 art-fixnum art-fat-string xxx - art-g
1 art-16b . 16-bit-string = xxx XXX
2 art-8b art-string XXX XXX
3 art-db = xxX XXz XXX

4 art-2b XXX _ XXX XXX
5

art-1b XXX art-boolean xxx

1.2.8 Representations of Functions and closure_s

1.2.8.1 Representation of Compiied Functions

. The object reference to a compiled function is a word of data type

- dtp-compiled-function, whose address field points to a word inside a compiled-
function structure. The compiled-function structure consists of three parts: the
prefix, the body, and the suffix. The prefix is two words long and has g fixed
format. The body is & sequence of ene or more instructions. The suffix is at
least one word long and contains debugging information and constant data. The
ohject reference to a compiled function contains the address of the first [word in
the body, which is usually the first instruction executed when the functipn is
called. The prefix extends to lower addresses. The suffix is at higher addresses
than the body. The hardware, however, knows nothmg about the format of the
prefix or suffix.

I-Machine compiled functions differ from those of the 3600 by not having a _
~ constants/external references table, since references to constants and to external
value and function cells are stored in-line in the body. In addition, the ['args-info”
of an I-Machine compiled function is not stored explicitly, since it can easily be
reconstructed from the entry instruction by software.

The first word in the prefix is a header word that identifies this ob_]ect as a
compiled function and spec:lﬁes its size and the sizes of its parts. The bltS in this
word are:

<39:38> : ZHEADER-TYPE-COMPILED-FUNCTION
<37:32> DTP-HEADER-I

<31:18> . Size of the suffix (14 bits)
<17:8> Total size of the object (18 bits)

The second word in the prefix is available for use as the function cell that
contains the current definition of the function. Typically the function cell of the
symbol that names a function contains a dtp-ene-q-forward invisible pointer with

40

Symboiics, Inc.

: "the-ac-idi-e'ss of .'the function cell of the'compﬂed function, which contains a an

- dtp-compiled-function reference to the beginning of its own body. “This is the - =
- 'same as on the 3600. If the function is redefined, then the function cell will point

someplace else and execution will be slower. If dtp-call-compiled-even/odd is -

- - used, inter-function references bypass.the function cell. This 'is discussed in: detail

‘in the chapter on function calling. See the section "Function Entry.".

The éven half of .the first word in the body.is the first instruction ¢f the function,
known as the entry instruction. This is the point at which execution usually
begins. The entry instruction occupies both halves of the first word.: The entry
instruction checks the number of arguments. This is discussed in detall 111 the

- chapter on function calling. See the section "Function Entry

The first word in the suffix contains an object reference to a list containing
-information not needed while executing the function. This information is used _
. mainly by the debugger (also by the compiler and the interpreter). The car of this
~ list is the name of the function and the edr of the list is an a-list containing -

~ information such as names and stack locations of local variables. The cdr code of
the first word in the suffix is edr-nil (encoded as 1), which is the illegal
instruction sequencing code. This word, with this edr code, serves as a "fence"

that prevents instruction fetchahead from runnmg past the-end of the body of a

- function.

If the body contains any full-word function-calling 1nstruct10ns, the suff"lx contains
linkage information beginning at its second word. The linkage information is a
sequence -of fixnums joined together by cdr-next codes and terminated by a cdr-nil
code. There is a 4-bit byte for each full-word function-calling instruction in the’

- body, which contains the number of arguments. to that call (0 to 13), or 14 if the
number of arguments is larger than 13, in which case the next two 4-bit bytes
contain the number of arguments, or 15 if the compiler does not know the number
of arguments or does not want the linker to bypass the entry instruction of the
called function. If the linkage information terminates with edr-nil before all of
-the full-word function-calling instructions have been accounted for, the missing 4-
bit bytes are assumed to contain 15.

Succeeding words of the suffix contain the stored representations of list-type
constants used by the function (including double-floats, ratios, and complex
numbers). Putting these constants in the suffix of the function that uses them
minimizes paging. Structure-type constants are typically stored immediately after
- the function that uses them, again to minimize paging.

- See Flgure 17

Another section in thlS chapter discusses’ the data types of the instructions. (See
the section "Instruction Representation.") Refer to the chapter on the instruction
set for a discussion of instruction sequencing. See the section "Instruction
Sequencmg

41

Symbolics, Inc.

Compiled Function

- — — .. Listof function name
Sufix St st] - 325 address > _ ~—} 2 and debug info a-tst
o 3 © instruction 8 Insteuciion 5 -]
:] 2 lFXNM . Constant l
Body: .
Instructions J - - . ’ .
and constants 3 3) Instructior: 4 Instruction 3
[3 FPNM " Constant ' —l
L "‘9L c |3 |- instruction 2 ~* instruction 1 (Erry)
CDR | CMP ') -~ ')
E— _CODE! N A2-bit address > _ I
Prafix) g - -
EN HDR- SUFFIX SIZE TOTAL SIZE
Increasing
addresses
COR |, '
Sonzl ARRY | —32-bitaddress
+ -

LIST | . 32-bit address

32-bit adidress P

immediate data _—'—

32-bit address

[SYM [HDR-P

cor |)
SonE | SYMBL[2651 acdress >———I—

Figure 17. The structure of a compiled functjon,

-

42

“Symbolics, Inc:

1 2 8. 2 Generic Functtons

An object reference to a‘generic functmn has data type dtp generlc-functmn The : ‘

‘address field points to a list-like structure whose content is not arch1tectura11y _
defined; it-is used internally by the flavor system See the section "Generic =
_Functlons and Message Passmg B '

| 1.2.83 Representation of Lexical Ciosures

The. object reference to a 1ex1ca.1 closure is a word of data type dip- lemcal-closure,
which points to a cons pair, ' The car of the cons is the lexical enwrenment and
~ the cdr is the function. ' L '

The Iex1ca1 environment, in a typlcal software 1mp1ementat10n is a cdr-coded hst
of value cells associated with the closure. In such an. 1mp1ementat10n this list

- must be compact, that is, cdr-coded using edr-next, since instructions that access
~ the lexical variables compute addresses of the variables simply as an offset past
the address of the en\nronment See F1gure 18.

When a lexical closure is called as a function, the environment will be made an-
_argument to the function. For more information, refer to. the chapter on functmn
calhng See the section "Starting-a Function Call."

1.2.8.4 -Representation of Dynamic Closures

The object reference to a dynamic closure is a word of data type
dtp-dynamic-closure, which points to a list structure. The format of a dynamic
closure is not architecturally defined, but is determined by software. (’I‘he

- hardware traps to Lisp to funcall dynamic closures.)

The list representation allows closures to be stored in ﬁhe stack (a la
with-stack-list); certain special forms such as error-restart exploit this.

The list is always cdr-coded, but nothing actually depends on this. The first
element of the list is the function. Succeeding elements are taken in pairs. The
first element of each pair is a locative pointer to the value cell to be bound when
the closure is called. The second element of each pair is a locative pointer to the
closure va.lue cell to thch that cell is to be linked. See Figure 19.

1.2.9 Instruction Representatlon :

The instructions in a compiled function are a sequence of words Whose data-type
field selects among three types of words:

' _. ¢ Packed instructians - data types with type codes 60-77 .are used for words
that contain two 18-bit instructions. These are the usual stack-machine type
instructions, similar to those of the 3600. ' :

o Full-word instructions — data types coded 50 through 57 are used for words

43

s ymboﬁcs, inc.

Lexiecal Closure

I 1|

|

o [i L '!rs1rur.:tior12 J Instruction 1
L[

CMP

[[S
| goe, [o | Vais
s | vae
GDR- | DATA '
I [NEXT TYPE . Value
/ DTP-COMPILED-FUNGTION :
Increasing ¢
addresses
CDR- | DATA N ~— |
[ﬂ'— 1T)'_PE . 32-bit address =T
LCDR- | DATA -bi o |
CODE,I DATA 32-hit addrass 1
DTP-LIST
CDR | DATA o -~ }
CODE | TYPE L . Sebhtaddress]
DTP-LEXICAL-CLOSURE *Narmal, by convention.

Figure 18, The structure of a lexical closure.

44

Dynamic Closure

- Symbolics, Inc.

Instruction 1

- I , | Instruction 2
L2 | von |
I ﬁﬁ’ﬁ" LOC | 32-bit address > > Closure value call
feoR- [toc | - " ~ === Value cell
CDF"N:’('r | L l 32-bit address 2> ~ to-be bound
w7 [LOC] -32-bit address > 2 Closure value coll
CDR- - -~ —_—
) 32-hit addrass Vaiue call
[;:x‘r _'-°° I — 7 " to be bound
: CDR- | D ; -
o L\IEXTJ TYPE I A2-bit address > : |
‘BTP-COMPILED-FUNCTION
GDR_| DATA i -]
CODE] TyPE) 3z-bitaddress 1

DTP-DYNAMIC-CLOSURE

Figure 18. The structure of a dynamic closure.

45

Symi:olics, Inc.

that contain a single instruction, with an address field. These are used for
starting function calls. In addition, data type dtp-external-value-cell-pointer
(type code 4) is used to fetch the contents of the value cell of a special '
variable or the function cell of a function and push it on the stack This is
actually an optimization to save space and time (one-half word and one
cycle); the value cell address eould be pushed as a constant locative and then
a car instruction could be executed. Besides these, there is one other full-
word instruction type, the entry instructions, which do not contain addresses,

. but instead look like pairs of half-word instructions. These are decoded by

~ their opcode field, not by the data-type field.

» Constants - all other data types encountered among the instructions in a
compiled function are constants. The word from the ingtruction stream is
pushed on the stack with the cdr code set to edr-next. The hardware will
signal an error if the word is a header or an invisible pointer.

The fields within the various types of instructions are described in the chapter on
the instruction set. See the section "Macroinstruction Set.”

1.2.10 Program-Counter Representations

The program counter (pc) is a register in the I machine that contains the virtual
address of the currently executing instruction. Since most instructions are packed
two-to-a-word, that address has fo include information about which half-word
instruction is executing. This information is included in the data-type code of the
pe contents; thus there are two pc data types, dtp-even-pe and dtp-odd-pe.
Words of these data types are not usually found in the stored representations of
- Lisp objécts, but occur within stack frames or inside compiled functions for long
branches. See the secfion "Function Calling, Message Passing, Stack Group
Switching.” : .

1.2.11 Representation of Locatives

A locative is a pointer to virtual memory implemented as an object with data type
dtp-locative and an address field that is the address of the virtual memory word
to which it points. It is classified as a pointer object reference (See the section -
"Object References.”). Locatives may point to locations within objects, such as the
value cell of a symbol. Other uses include the pointer to the start of data in long
format arrays and the base address of array registers.

1.2.12 Representation of Physical Addresses

The data type dtp-physical-address allows unmapped access to the full (up to 32
bits wide) physical address space. Since it is a separate data type it has restricted

.46

Symbolics, Inc.

usage. It cannot, for example, be used as’'a program counter, nor can it be'used')
_as the argument to- car (as dtp-locative can) to aet a datum from an arbltrary
: .3memory location. - :

dtp-physwal—address is used

.» By instructions that do not check the type of their argument There are two
_categories of these: :

° Instructions that' reference memery, including %p?ldb, %ememory-read,
%p-store-whole-contents, and their related instructions.

° Instructions that do not reference memory, lncludmg %pomter-plus
%pointer-increment, and %pointer-difference.” Note that
_%%pointer-difference between a dtp-physical-address and a
non-dtp-physical-address is not meaningful.

e Ag the indirect pointer to an array or as the base address of an array
register. The hardware will never directly see an indirect pointer to an
array because indirect pointers‘ imply long prefix arrays, which the hardware
does not directly support. Such arrays can be encached in array registers
and it is here that a fast-aref/aset-1 instruction will encounter a
dtp-physical-address. :

. In block address registers (BARs). This allows optimized retrieval; copy
.and/or storing of data into I/O devices. BARs may be used in the
implementation of-copying fisnum arrays. Therefore, the usage of
dtp-physical-address, as opposed to non-dip-physical-address types, in

. BARs may be invigible to the high level application, sopy-array-portion or

- bitblt. Reading a BAR that was loaded with a dtp- physmal—address will
return a dip-physical-address.

A dtp-physical-address typically points to "memory” that does not store all forty
bits of a word and therefore cannot be used for paging. 1/0 devices (disk and

- network controllers), displays (B&W and color), array processors, floating point
processors, and the like often implement buffer memory and device registers that
have this characteristic.. They typically ignore the tag field when written and
return data with a tag of dtp-fixnum or dtp-single-float. A single I/O register
may be referenced with %p-ldb of a dtp-physical-address. A group of I/O
registers may be implemented as a art-fixnum array that is indirected, with

- dtp-physical-address to the first I/O register. In this case a reference to one
register would be with aref. Similarly, buffer memory would be implemented as
an array, though not necessarily of type art-fixnum, depending on the semantics
.of the buffer memory.

.dtp physical-address always points to physical memory, not virtual memory, and
27

Symbolics, Inc.

is therefore an immediate data type. It does not replace the need for the high
part of virtual space mapping to a fixed portion of the physical space, known as
vma=pma virtual pointers. vma=pma is still needed for certain structures such as
the paging system, which requires the PC to have a vma=pma pointer field.

1.3 Data-Type Code Assignments

This section summarizes all of the different data types defined by the architecture.
The data type of a word is stored in its tag field.

It is important to note that not all data types are necessarily understood
completely by a particular implementation. For example, the hardware
understands that dip-complex is a number, but it may not be capable of
performing arithmetic operations on complex numbers. '

The following tables enumerate all Sixty-four data types, along with a brief
description of each. Note that the sxxt:y four types are grouped into several
commeon classes

1 .3.1 Headers, Special Markers, and Forwarding Po‘inters

E:Lght data types, as shown in Table 3:
Table 3. Headers, Special Markers, and Forwarding Pomters

Type Symbolic Name o Description
Code '
6 DTP=-NULL Unbound variable/function,’

. uninitialized storage
OTP-MONITOR-FORWARD This cell being monitored

5
2 DTP-HEADER-P i Strugture header, with pointer field
3 " DTP-HEADER-I Structure header, with immediate bits
4 DTP-EXTERNAL-VALUE-CELL-POINTER Invisible except for binding
5 DTP-DNE-Q-FORWARD Invisible pointer (forwards 1 cell)

6 OTP-HEADER-FORWARD ~ Invisible pointer

' : ' (ferwards whole structure)

7 DTP-ELEMENT~FORWARD Invisibie pointer in

element of structure

1.3.2 Number Data Types

" Eight types as shown in Table 4:

. Symbolics, Inc.

. Table 4. Nlmﬁbér_ Datﬁ Types

Type - * Symbolic Name - -. Description
- Code - _ o R

19 DTP-FIXNUM . Small integer
11 DTP-SMALL-RATIO .~ = Ratio with small numerator and

. ' o - denominator - '
12 DTP-SINGLE-FLDAT Single-precision floating point
13 DTP-DOUBLE~FLOAT Doubkle-precision floating point '
14 - DTP-BIGNUM * ... Big integer '
15 DTP-BIG-RATID = = Ratio with big numerator or denominator
16 - DTP-COMPLEX . Complex number '
17 DTP-SPARE-NUMBER A number to the hardware trap-

- mechanism :

" 1.3.3 Instance Data Types

Four types as shown in Table 5:
..Table 5. Instance Data Types

- Type Symbolic Name Description

. Code _ :
28 DTP-INSTANCE Ordinary instance :
21 - DTP-LIST-INSTANCE . Instance that masguerades as a cons
22 - DTP-ARRAY~INSTANCE Instance that masquerades as an array
- 23 . DTP-STRING-~INSTANCE Instance that masquerades as a string

. 1.3.4 Primitive Data Types

Eleven types as shown in Table 6:

49

Symbolics, Inc.

Table 6. Primitive Data Types

- Type Symbolic Name Description - -

Code. ' _ -
24 . DTP-NIL " The symbol NIL
25 DTP-LIST " Acons o
26 DTP-ARRAY An array. that is not a string
27 DTP-STRING A string
30 DTP-SYMBOL A symbal other than NIL

- 31 DTP-LOCATIVE lL.ocative pointer

132 DTP~LEXICAL-CLOSURE Lexical closure of a Function
33 DTP-DYNAMIC-CLOSURE Dynamic closure of a function
34 DTP-COMPILED-FUNCTION = Compiled code

35 DTP-GENERIC-FUNCTION Generic function (see later section)
36 DTP-SPARE-POINTER-1 Spare pointer
37 DTP-SPARE-POINTER-2 Spare pointer
49 DTP~PHYSICAL-ADDRESS Physical address
41 DTP-SPARE-IMMEDIATE-T Spare immediate

42 DTP-SPARE-POINTER-3 Spare pointer
43 DTP-CHARACTER Common Lisp character object
44 Spare pointer

DTP-SPARE-POINTER-4

Note that codes 36, 87, 42, and 44 are sparé pointer data types and code 41 is a
spare immediate data type. Object references with these data types can be used

perfectiy normally; but there are no built-in hardware operations that do anything
Wlth them., .

1.3.5 Special Marker for Garbage Collector -

One type as shown in Table 7:

Table 7. - Special Marker for Garbage Collector
Type Symbolic Name Description
Code '
45 DTP-GC-FORNARD Dbject-moved flag for

garbage collector

1.3.6 Data Types for Program Counter Values

Two types as shown in Table &:

50

Symbo)ff;cs, Ine.

Table 8. Data Types for Program Counter Values

Type Symbolic Name - Description
Code S . A : -
46 DTP-EVEN-PC ~ PC at first packed instruction in word,
R - _ or of fuli-word instruction
47 - DTP-0DD-PC ' PC at second instruction in word

1.3.7 Full-Word Instruction Data Types

Eight types as shown in Tﬁhlé 9:
“Table 9. Full-Word Instruction Data Types

Type Symbolic Name Description
Code :
- b8 DTP-CALL-COMPILED-EVEN Start call, address is
’ : . compiled-function

51 DTP-CALL-COMPILED-DDD ~ Start call, -address s

_ compiled-function
52 . DTP=CALL-INDIRECT Start call, address is

: _ function cell

53 . DTP-CALL-GENERIC . Start ctall, address is

generic-function
54 DTP-CALL-COMPILED-EVEN-PREFETCH - - -
' ' Same as DTP-CALL-COMPILED-EVEN

: _ put prefetch is desirable

55 DTP-CALL-COMPILED-ODD-PREFETCH o '
o Same as DTP-CALL-COMPILED-0DD

but prefetch is desirable

58 DTP-CALL-INDIRECT-PREFETCH Same as DTP-CALL-INDIRECT but
' prefetch is desirable

57 . DTP-CALLésENERIC-PREFETEH Same as DTP—CALL{GENERIE
' : : but prefetch 1S'desir§b1e

1.3.8 Half-Word Instruction Data Types

Sixteen types as shown in Table 10:

&1

Symbolics, Ino.

Tablé 10. Half-Werd Instruction Data Types

Type: Symbolic Name - ~* Description

Code _ . ' ' :

6§6-77 DTP~PACKED-INSTRUCTION Used for instructions in compiled
code. : :

Each word of this type containsg two 18-bit instructions, which is why sixteen data
types are used up. Bits <37-36> contain 3 to select the instruction data type. Bits
<39-38>, the cdr code, contain sequencing information described in the chapter on
the instruction set. The instruction in bits <17-0> is executed before the
instruction in bits <35-18>. See the section "Instruction Sequencing.”

1.4 Appendix: Comparison of 3600-Family and I-Machine Data
Representations

The I machine and 8600-family machine data representations are similar in the
following ways:

1. They both use a two-bit cdr-code field.

2. They both have sixty-four data types and use a six-bit data-type field, except
as noted below.)

3. They have twenty-two data types in common (that is, data types with the

same name), seventeen of which are alike in all respects except for the word
size difference. These similar data types are:

DTP-NIL DTP-NULL ' DTP-INSTANCE

DTP-LIST _ DTP~-MONITOR-FORWARD OTP-GC-FORWARD -
DTP-SYMBOL DTP-EXTERNAL-VALUE-CELL-PDINTER DTP-EVEN-PC
DTP-~-LOCATIVE DTP-ONE-Q-FORWARD DTP-0DD-PE

OTP-LEXICAL-CLOSURE BTP-HEADER~FORWARD
DTP-GENERIC-FUNCTION ~DTP-ELEMENT-FORWARD
DTP-CHARACTER

4, Two data types are similar, except that 3600-family machines obtain an extra

four bits in the immediate data fields at the expense of the data-type field.
These types are:

52

Symbolics, Inc.

dtp—fmmm - uses SLXteen data types on 3600 famlly machmes one .
~onl machme :

dtp-float (3600-famﬂy).-<_-§ dtp-single-float (I) - uses sixteen
data types on 3600-family imachines, one on I machine. Both the -
3600-family and the I machine use IEEE ﬂoating—point formats.

5. The two header data types are similar, but they have slightly different
values and possible fields. These are

DTP-HEADER-1
OTP-HEADER-P

8. The structure of bignums on the two machines is essentially the same, -
though the I machine has an explicit data type for them, while 3600-fam11y
machines use dtp-extended-number with the bignum subtype.

The differences between the data reprasentatmns and types of 3600 famlly
computers and T machmes are:

1. The I machine uses a wider memory word (40 bi'ts.)- than 3600-faﬁiily :
machines (36 bits).:

2. The I machine always uses the full six bits of the data type field; 3600-
family machines use four bits of this field to ma.ke thirty-two-bit immediates

-8. The encodings of the data types are completely dxfferent the only type that
has the same encoding is dtp-null '

4. 'The I machine has the following data types which 3600-family machines do
not have (not including dtp-single-float and dtp-dynamic-closure, whmh are
simply named differently): .

DTP-SMALL-RATID DTP-PHYSICAL-ADDRESS

OTP-DOUBLE-FLOAT . DTP-CALL-COMPILED-EVEN
DTP-BIGNUM DTP-CALL-COMPILED-0DD
DTP-BIG-RATIO . DTP-CALL-INDIRECT

DTP-CEMPLEX . DTP-CALL-GENERIC
DTP-SPARE-NUMBER DTP-CALL-COMPILED-EVEN-PREFETCH
DTP-LIST-INSTANCE DTP-CALL-COMPILED-ODD-PREFETCH
DTP-ARRAY-INSTANCE DTP-CALL~-INDIRECT-PREFETCH
DTP-STRING-INSTANCE DTP-CALL-GENERIC-PREFETCH

DTP-SPARE-POINTER-<i-4> DTP-PACKED-INSTRUCTION
DTP-SPARE-IMMEDIATE . -

53

Symbolics, Inc.

5. 3600-family machines have the following data types Wh1ch I machines do not
have (not mcludmg dtp-float and dtp-ciosure)

DTP-BODY-FORWARD (obsolete)
" DTP-EXTENDED-NUMBER

DTP-LOGIC~-VARIABLE

 DTP-<16-17,73-77> (spares)

6. The following kind of objects are structure objects on the 3600-family and
- list objects on the I machine:

¢ Rational numbers ("big-ratios” on the I machine, "small-ratios" are
immediate on the I machine.)

¢ Double-precision floating-point numbers
» Complex numbers

7. Array structures are quite different on the two families of computers. This
" is elaborated on in a later section. '

8. The data words in a fat string have dtp-fixnum on the I machine-, they are
dtp-charaeter on 3600-family machines.

8. Compiled functions are quite different on the two families of computers.
This is elaborated on in a later section.

1.4.1 Array Differences

These are the main differences between 3600-family arrays and I-machine arrays:

s The format of the I-machine prefix header is simpler and contains more
explicit information about the array.

¢ The optional array leader is stored before (at lower memory Iocations) the |
array’s header on the I machine and after it on 83600-family machines. An I
machine leader has its own header; a 3600-family leader does not.

¢ The I machine has two kinds of array prefix, 3600-family machines six,
Figure 20 is a detailed comparison of the corresponding array prefix
structures, their fields, and the maximum values of the fields.

54

. Comparison of Array Prefix Structures

Symbolics, Inc.

) o _ I-Machine
Short-prefix (LNG-PREF=0, LD-LEN=0) -)
i eems | eyTe fiE] & » .
| ES e A e e

Short-prefix (LNG-PREF=0, LD-LEN not 0)

ELEM ARRAY-L ENGTH -

TYPE

(MAX =32767) °

[Ar:l‘HYrHDR-|J IFKNG—L[J [; (D-LEN

{MAX = 255)
Long-brefix_(LNG.PREFg,.LD-LEN =0)

[20R Tesum | SUBSGRIPEMULTIPLIER -

{MAX, = 2427 - 1)

(MAX = 2727 - 1)

[tqnng i EXNM DIMENSION-LENGTH
EE@;J oC Pointer 1o daia)
l m;rFXNM - INDEX-OFFSET - (MAX=~2427-1)
COR [FXNN[© ARRAY-LENGTH - {MAX =2%27-1)
: iELEM BvtE |} |7]. (5] LD-LEN
{Aﬁnvl HOR {rvee | eing [ilﬂrl:‘ iax-2ggy | SPARE DIMS - 1

DIMENSICN-LENGTH = ARRAY-LENGTH . SUBSCRIPT-MULTIPLIER =1

Long-prefix (LNG-PREF=1, LD-LEN 0 fo 255)

_ COR |iuwm | . SUBSCRIPT-MULTIPLIER (MAX = 2727 . 1)
ORI o] 0 DIMENSION-LLENGTH (MAX =2°27- 1)
.]_CTEEEFDC Pointerfodata___)
< -~ jcoR EXNM INDEX-OFFSET - (MAX =227 -1)
COR | Cynaa] ARRAY-LENGTH = (MAX=227-1)
IAHRY] HOR-I"| FLEN BKWNZJ H L[LD- "Eg's il SPARE | DIMS a1

. DIMENSION-LENGTH = ARRAY-LENGTH - . SUBSCRIPT-MULTIPLIER w1

Long-prefix (LNG-PREF=1, LD-LEN = 0)

COR LFXNMT

SUBSCRIPT-MULTIPLIER

(MAX = 2727 - 1)

?ggFJ FXNMT BIMENSION-LENGTH

[MAX = 2597 - 1}

LD-LEN

il | oms-
P | & (MAX n255) | - SPARE |OMS-2

ARRY| HDR-i |EsS¥

" Long-prefix {ENG-PREF=1, LD-LEN = 0 to 255)

SUBSCRIPT-MULTIPLIER ° (MAX= 2427 - 1)
DIMENSION-LENGTH . (MAX = 227 - 1)
" Pointarto data o
INDEX-OFFSET - {MAX = 2427 - 1)
ARRAY-LENGTH (MAX = 2427 - 1}

| 828 [exm |

SURSCRIPT-MULTIPLIER

{MAX w 2027 - 1)

DIMENSION-LENGTH

(MAX = 2427 - 1)

‘ FXNM

DIMENSIDN-LENGTH

{MAX = 227 - 1}

SUBSCRIPT-MULTIPLIER

(MAX = 2%27 - 1)

DIMENSION LENGTH (MAX = 2227 . 1}

OE Fonmer to data
CDF‘ x| ____ INDEX.OFFSET (MAX = 2027 1)
SR] Fxm ARRAY-LENGTH (MAX = 2227 - 1)
i . Ly s
ELEM | BYEE LO-LE!
lARRq HDR-! | Tvpe | prive | 2 %’.H][MAx-gsl SPARE TLX 7

_55

Symbolics, Inc,

Comparison of Array Prefix Structures (continued)
3600-Family .
" Simple A.rray.(l-dirn, no ldr, no ind/disp)

E) _ ARRAY-NORMALLENGTH
RFW‘ HOR- F’ l 0‘ DIse ‘ TYPE l (MAX, = 282.123) i
DiSP one of {1-BIT, 2-BIT, 4-BIT, 8-BIT, 16-BIT, WORD, FIXNUM, BOOLEAN, CHARACTER, FAT-CHARACTER)

1-Dimenslon Array with Leader (1-dim, idr, no Ind/disp}

FRRAYI HDRT[S l nl DISP'ITYPE l'(nh‘EiLfgs) SHORTARRAYLENATH- |

DISP = LEADER

Simple Indlrect Array (1-dim, no Idr, Ind/disp)

[coa. | DaTA | ' Pointer to data
Fam\rl Hoa- o | o D,spl WPEI IND-OFFSET IND-LENGTH

(MAX =511 (MAX = 511)

DISP = SHORT-INDIRECT

DATA | INDEX-OFFSET (MAX = 2427 - 1)
1 ARRAY-LENGTH (MAX = 2427 - 1}

EER %IQ Pointer to data)
v ’ , l l DIMS LD-LEN PFX-LNTH
PHRAJ;HDR'I S|ojoise| TYPE] &y (MAX = 1023} | {MAX = 31

DISP = LONG

Simple 2-Dimension Array {2-dim, no ldr, no Ind/disp)

i = | LDLEN | cOLUMNS ROWS
lnnmvl HOR-|]s J ol pisP LTYFE hmx we2)| (MAX - 127) (MAX w 127
DISP = SHORT-2D

Goeneral Multidimension Array

FXNM | SUBSCRIPT-MULTIFLIER {MAX = 2427 - 1)

e SUBSCRIPT-MULTIPLIER {MAX = 2°27 - 1)

Exm | DIMENSION-LENGTH (MAX = 2027 - 1)

COR | Fyv | DIMENSION-LENGTH * (MAX w 2%27 - 1)
COR | pxnm | DIMENSION-LENGTH (WMAX w2%27- 1)

Pt] FXNM l ARRBAY-INDEX.DEFSET-FIELD

ooa IFXNM] ARRAY-LONG-LENGTH
ﬁ%ﬁ;—. ARF{AYI Fointer to data

X DIMS LD-LEN PEX-LNTH
PRHAYI HDR [s § 0] DISP | TYPE I {MX 7)I {MAX = 1023} . {MAX = 31T

- DISP = LONG-MULTIDIMENSIONAL 56

Symbolics, Inc.

.1 4.2 Complled Functlon leferences

The major d1fference betWeen the data representatmns of 3600- farnlly maehines
and I machmes is in the structure of. complled functlons

¢ 3600-family machines have an external reference table, which is stored
" - between the compiled function prefix and the body of instructions. I :
machines, which omit this tablé, -gtore’ the contents of this table -- constants
and locatives -- in line with the instructions, usmg the cdr-code. fleld of the
packed instruction to indicate sequencmg

: -_3600-fam11y-mach1nes exphcltly_ store: 1nformation about the number and type
of arguments supplied or required in a field of the compiled function prefix.
I machines do not store this information in the prefix: it is supplied in the
entry instruction. ' '

« 3600-family machines store in the compiled function’s prefix a pointer to
debugging information and other information required by the compiler or ,
interpreter. I machines store this pointer in a suffix that follows the body of

-ingtructions. They also store linkage information and additional data for the
function in this suffix. 3600-family machines have no such suffix.

¢ \Format differences: 3600-family machines have a four-word compiled function
prefix; I machines have a two-word prefix and an at-least-one-word suffix.

. |3600-family machines have seventeen-bit instructions and use the cdr-code
field for the high-order bit of each of the two instructions packed in a
ditp-fixnum word. I machines have eighteen-bit instructions and use the
low-order four bits of the data-type field for the high-order bits of the odd
instruction. :

56 a

Symbolics, Inc.

56 b

Symbotics, Inc.

" 2. Memory Layout and Addressing

This file is confidential. Don’t show it to anybody, don‘t‘hand it out

to:people, dbn’t-give_it to customers, don’t -hardcopy and leave it lying
around, don’t talk about it on ajrplanes, don’t use it as sales

material, don’t give it as background to TSSEs, don’t show it off as an-
example of our (erodable) technical lead, and don‘t let our competition,
potsntia]_compet1t1on or even friends Jearn all about it: “Yes, this

. means you. This notice is to be rep]aced by the real “notice when

someone defines what the real notice is.
*x****xx*x*x******xx****x****x******x*x***x*xxx***xx*xx************kk*

- 2.1 Address Space

The arch:ttecture prowdes a single address space whlch is shared by all processes.
An address is thlrty-two bits w1de, -and specifies the location of a word.

The address space is divided into- thirty-two zones, each containing 128 megawords.
The thirty-two zones are variously assigned to several sections as shown in the
- table below.. Note that ephemeral space is a subset of the wrtual address space.
#000000000000 00777777777

Ephemeral Address Space (zone 0, the low 128 megawords)

#000000000000 B6TTTITTIT
o Virtual Address Space (zones 0 - 30, the low. 3968 megawords)

: #037000000000 BTTTTTTTITTT
Unmapped Address Space (zone 31, the hlgh 128 megawords)

#000000000000 BTN
- Total Address Space 4 gzgawords)

2.1.1 Virtual Addresses

The lower 31/32 of the address space is used for virtual addresses. These
-addresses are subject fo page ‘mapping and are used for all allocation of normal
" objeets.

A virtual address is divided into two fields for mapping' purposes. These are the
virtual page number and. the offset within page fields. '

Virtual space occupxes thlrty ohe zones. An internal processor reg1ster allows each
zone to be speclfied as either old or new space.

57

Symbolics, Inc.

Address Fields for Virtual Addresses

Position - Meamng
<81:27> - Zone number (zones 0 through 30)

| <31:8> Virtual Page Number (VPN -- 512K virtual pages per zone)
<7:.0> : Offset within Page (256 words per page)

The virtual address space is partitioned by software into regions, areas, and
guanta. These have no direct hardware impact. Note, however, that the hardware
hash function for the Page Hash Table (See the section "Page Hash Table.") is
optimized for a quantum size of 65536 words.

2.1.2 Ephemeral Addresses

The lowest zone of the virtual address space is reserved for the storage of
ephemeral objects. This space is provided to support a garbage collection strategy
that takes advantage of recently created objects usually having a short lifetime,

Ephemeral space is divided into thirty-two levels. Data within an ephemeral level
is the same age. The relative ages of different levels is up to software to decide,
and would normally change dynamically. Each level is further divided into two -
halves, old and new space. An internal processor register specifies which half is
old and which is new.

The thirty-two ephemeral levels are grouped into four groups of éight levels each.
The ephemeral level groups referenced by a page are maintained in the PHT.

Address Fields for Ephemeral Addresses

Position Meaning .
- «31:27> - 98888 => ephemeral, otherwise non-ephemeral
<26> which half of the ephemeral level
<25:21> ephemeral level number
<25:24> ephemeral level group humber
<20:8> word address within an ephemeral 'Ieve]

Static and dynamic data are stored at virtual address 1_27 (2°27) “ and above. See
the section "Revision 0 Implementation Memory Features.”

2.1.3 Unmapped Addresses

The upper one-thirty-second of the virtual address space is used to directly address
the low portion of the physical address space. The upper five bits of these

58

Symbelics, Inc.

addresses are translated from all ones to all zeros. They are used primarily to
access page tables and paging software, to avoid recursive translation faults. These
- addresses are sometimes called the virtual=physical or vma=pma region.

Note that there is an aliasing situation for some mapped pages. They have two
addresses, one virtual and one vma=pma. A virtual data cache would have to be
careful to maintain coherence when writing via one of these addresses and reading
‘via another. A VMA need not translate to a page also accessible by VMA=PMA.
(VMA=PMA cannot reference the entire phys1ca1 address space.)

214 Wired Addresses

A portion of the system needs to be wired down, that is, not subjeét to evictibn of
its pages from main memory. Most obviously, the software that handles page
faults needs to be wired.

There are a number of architecturally defined data structures that reside at ﬁxed
physical locations. A system implementation must provide memory that responds
to these addresses. These locations are as follows (all addresses relatlve to the
beginning of vma=pma space): :

ecegeeses..eaa777777 FEP code, data, and stacks (256K)

391068080 881887777 Trap vectors (refer to chapter 5)
801010068..801018377 FEP communication area
gat1e16466. .981818777 System communication area
P81611000..861811884 NIL
901811816..8681811814 T
777480008, 777577777 Boot prom (64K)

| 777680000..777777777 Reserved for Ibus configuration space (64K)

Init sets the contents of the Progfam Counter (PC) to VMA=PMA 777400100 (that
is, 837777400100 or -377700) with data type dtp-even-pe. See the section "Revision
0 Implementatmn Memory Features.”

-+ 2.1.5 Pages

The virtual address space is demand-paged w1th 256-word pages, Just as on the
3600

2.2 GC Support

Two internal pfocessor registers designate sections of the address space as
oldspace. These registers can be written via the %write-internal-register
ingtruction, allowing the designations to ggange during execution.

Symbolies, Inc.

I

1

: _'addresses are translated from ali ones to all zeros. They are used pr1mar11y to - _
access, page tables .and -paging software, to- avoid. recursive }:ranslatlon faults These
.addresses are someﬁnnes called the \nrtual—physmal or vma:pma reglon

Note that there is an ahasmg s1tuat10n for some mapped pages They. have two
- addresses, one. virtual and one vma=pma. A virtual datd cache would have to be -
. careful to maintain. coherence when writing via one of these addresses and reading

" 'via another. A VMA need" not translate to a page also accessible by VM_A-—PMA

(VMA=PMA cannot reference the entire physical address space)

214 W:red Addresses . ’

A portion of the system needs tp be wired: down that 1is, not sub,]ect to. ev1ct10n of
its pages from main memory. Most ob\nously, the software that handles page -

faults needs to be wired. a@\

" There are a number of arch1tectura11y deﬁned data structures that reside at ﬁxed
physical locations, -A system rmplementatmn must provide memory that responds
“to these addresses. These locations are as folIOWs (alI addresses reIatlve to:-the
beginning of vma=pma space): ' :

 pPEBEEPEE. .BRBTTTTTT FEP code, data, and stacks (256K)

'BO1000B00. .BR1807777 Trap ve't:toci:j_s‘ (refer -to chapter 5)
e01810000. .801618377 ~ FEP communication area ' '
881810480, ,8018168777 System communication area
881611608. .8010811804 NIL
801811805, .801211011 T
777400888, . 771577777 Boot prom (64K)
vrieeesas, 777777777 Reserved for Ibus conf'lguratmn space (64K)

Init sets the contents of the Program Counter (PO to 777400100 See the section
"Revigion 0 Implementatzon Memory Features."

2 1.5 Pages

The virtual address space is demand paged w1th 256 word pages, Just as on the
3600.

2.2 GC Support

Two internal processor registers designate sections of tﬁe address space as
oldspace. These registers can be written via the %write-internal-register
“instruction, allowing the designations to change during execution.

59

Symbolics, Inc.

The zone-oldspace register contains a bit map that specifies for each zone of
dynamic space (virtual space minus ephemeral space) whether the zone is _
newspace or cldspace. A set bit indicates its corresponding zone is oldspace. Bit
0, specifying zone .0, is ignored since that zone is ephemeral space. Bif 31

~ specifies zone 81, which is vma=pma space. Since vma=pma space ¢annot be
condemned, bit 31 must always be 0 (the hardware may or may not ignore it).

The ephemeral-oldspace register contains a bit map that specifies for each
‘ephemeral level which half of the level is newspace and which half is oldspace. A
set bit indicates the upper half is oldspace.’

- This scheme never incurs false traps during ephemeral garbage collection, and
incurs no false traps during dynamiic garbage collection in the usual case where
the software allocates addresses according to a certain convention. A false trap is
a transport trap for reading a pointer to a zone marked as oldspace in the zone-
oldspace register in which the pointer is not actually pointing at a region in
-oldspace, so the trap handler must recover using the pht.trangport-trap bit. This
only happens if the software uses a zone in a mixed way, where part of it is
oldspace and part is newspace. The first zone of the virtual address space is
always used for ephemeral space, while each of the remaining zones can be
~dedicated to static space, dynamic new/copyspace, or dynamic oldgpace. After a
garbage collection completes, zones dedicated to dynamic oldspace become free and
~ can be reallocated either to static or to dynamic space, as desired.

2.3 Address Translation .

Virtual addresses are mapped before being used to address physical memory.
Mapping translates the virtual page number field of the virtual address into a
physical page number. Mapping also checks for various exceptions that may result
from attempting a memory reference and recerds information about the reference

. useful to software,

2.3.1 Page Hash Table

The VPN of a virtual address is translated using the Page Hash Table, or PHT,
The PHT is the "backing store” for the hardware map cache: in the event of a
mayp cache miss, the VPN of 2 virtual address is translated by looking up its entry
in the PHT, checking the access attributes, and loading the map cache with the
result, Unlike the 3600, the I-machine uses a translation algorithm that is
implemented entirely in micrecode, so map misses are guaranfeed not to cause
faults (pelsring) for resident pages. '

There are a number of attributes associated with each page. These control access
to data in the page, and also record various side effects on the page. These
attributes are stored in the PHT along with the translation information. Some of
them are also stored in the map cache, '

Symbolics, Inc.

Each entry in the PHT con51sts of two words, a “key and a. value S
" (approximately).. - Both WOI'dS data types are dtp-fixnum The format of an entry
. is as follows:- :

Word . Position - erld Name b o Comments
PHIB - <39> spare ' :
- <38> _end c0111s10n cha1n -8 keep search1ng, 1 stop
<37:32> data-type - dtpfixnum
<31:8> vpn : -1 for deleted entries
<> fault-request If 1, this page canngt be”_
_ : o : - accessed in any way
<6> - pending o For software use only (see
' _ ' the notes: section) -

<5:4> - spare : For software use only _
<3:8> age S Set to B when this entry is

. : loaded into the map
© PHT1 <39:38> - spare - '

<37:32> data~type - dip-fixnum :
<31:8> ppn (allows .32-bit physical
o . ' _ addresses) _ ‘
<?> . modified hE . If 1, this page has been

written and probably
differs from its ‘_
on-disk repressntation

- writé—protect ' : If 1, this page cannot be
- written -
<5> cache-inhibit . - If 1, locations in this page
_ ' : : are not cached - : o
<4> transpcrt-trép : If 1, transport-traps on this
: '~ page are enabled
<3:8> _ ephemeral-reference ‘Ephemeral groups referenced hy
g this page’

An invalid PHT -entry has -1 in its VPN field; since that indicates a VPN=PPN
address, it does not usurp any possibly useful page.

The fo-llowmg attnbutes control access to data in the page. If an instm:ction
attempts an access not.allowed by one of these attributes, a fault will be

- generated. See the section "Translation Algorithm," Note that an implementation
should be careful not to cause spurious faults when accessxng ahead of instruction
execution.

fault-request fault-request when 1, md1cates that any access to this page
' should cause a fault. When 0, accesses are allowed according to
the erte -protect bit.

- 61

1

Symbolics, inc.

write-protect

transport-trap

- write-protect, when 1, indicates that any attempt to write data

into the page should cause a fault. When 0, data can be written
into the page. Note: just because a page is write-protected does.
not mean it is not modified; there are several mechanisms that
circumvent this bit. See the modified bit, below.

. transport-trap, when 1, enables traps when reading a word from

this page that is a potentially a pointer to oldspace. This is
used by the garbage collector.

Words are potentially pointers to oldspace if their data-type field
contains a pointer type and their address field satisfies a
condition based on the address space referenced. See the
section "Lisp-Machine Data Types." The condition for a
reference to ephemeral space is that the ephemeral-oldspace
register indicates the half of the ephemeral level referenced is
oldspace. The condition for a reference to dynamic space is ‘that

~ the zone-oldspace register indicates the zone referenced is

oldspace. References to physical space never generate transport
traps. : :

If the pointer satisfies the above conditions and the transport-
trap bit is set for the page, then a transport trap is taken. The
garbage collector is responsible for deciding whether or not the
pointer truly points to oldspace.

See the section "Revision 0 Implementation Memory Features.”

The following attributes record various side effects that have occurred to data in
the page, The hardware maintains these attributes for use by the software,

age<3:0>

The age field is set to 0 when an instruction accesses data in
this page, or an instruction is executed from this page.

The paging software interprets this field as either a set of bits,
all of which are cleared upon reference, or as a counter which is
reset to zero upon reference. Either way, the intent is to assist
a pseudo-LRU page replacement algorithm and perhaps allow
experimentation with more sophisticated schemes.

Because the age is in the PHT, instead of in the MMPT, as in

- the 3600, the page replacement algorithm will scan through

main memory pages in the order they appear in the PHT rather
than in order of increasing physical addresses. Because of this,
PHT insertion and deletion may not generally be allowed to
relocate PHT entries.

62

. Symbolics, inc.

~The age is stored only in. the PHT By defimtlon, When an :
entry is in the- map cache the age 1s 0. : SR

mo_di_ﬁed | - modified is set to 1 whenever data is written into- thls -page.
: '_Paglng software clears this b1t when 1t has saved the page,

ephemeral-reference<3 0>
. - The ephemeral—reference ﬁeld records whlch ephemeral level
groups are referenced by polnters in this page. Each bit in this
field, when set, indicates that a reference to the corresponding -
ephemeral level group has been stored in thig page. A _
~ discussion of ephemeral levels and groups occurs in an earlier
section. See the seetion "Address Space.” o

This information is used by the ephemeral garbage collector to-
know whether or not it has to scan this page and rescue objects

- it references, when a portlon of ephemeral space is bemg o
garbage-collected.

The PHT is a hash table With buckets of four entries of two words each. The
number of buckets must be a power of two, and is chosen to yield between 38% -
and 70% density (PHT density is pages-of-physical-memory/entries-in-pht),” Within
each bucket, the four entries are simply laid out in order, alternating PHTO and
PHT1 words. The inner loop of the lookup algorithm searches all the PHTO words
in a bucket for a given VPN using block-mode memory cycles but skipping over
the PHT1 words

The PHT is allocated in vma=pma space at boot ‘time (any time before the first

. map cache miss). There are two processor registers describing the PHT: PHT-

BASE and PHT-MASK. PHT-BASE is set to the physical address of the first word
in the PHT, and PHT-MASK is set to (Ish (1- pht-number-of- buckets) 3). See the
gection "Rev1s1on 0 Implementatlon Memory Features.”

. 2.3.2 PHT Lookup Algorithm

The PHT lookup algorithm is a rehash-on-collision hash lookup. The hash/rehash
algorithm generates a sequence of buckets to be probed; each bucket is linearly
scanned, at maximum memory bandwidth, for the desired VPN. The lookup
terminates successfully when the desired entry is found, or unsuccessfully after
scanning a bucket at the end of a collision chain. The lookup is guaranteed to
terminate because the rehash algorithm guarantees that every bucket will be
probed, and Lisp guarantees that at least one bucket in the PHT will have end-
collision-chain=1.. [when there are too many collisions in the PHT to satisfy this
consgtraint, the PHT gets rebuilt -- a tlme-consummg operation that will probably
never happen]. :

The collision-count mechanism is similar to that in the 3600; the PHT insertion

63

Symboalics, Inc.

and deletion routines maintain a per-bucket count of the number of entries that

_ hashed to a particular bucket, but could not be stored there because of collisions.
However, the actual representation of the collision counts {(either in a separate
table or in some of the spare bits in PHTO) is not used by the hardware. Instead,
the software distills the collision count for each bucket into a single bit, pht.end-
collision-chain, which is 0 if the collision count is non-zero, otherwise 1. (In
SYSDEF, this is called %%pht0-end-collision-chain.) pht.end-collision-chain is only
significant for the last entry of a bucket.

The hash function used for the initial probe of the PHT is computed by a bit-
shuffle-and-xor hashbox, the exact description of which is given below. This
hashbox maps 24-bit virtual page numbers inte PHT bucket numbers, which span
eleven bits in a minimal (1M main memory) configuration, thirteen bits in a
typical (4M main memory) configuration, and twenty-three bits in the maximum -
configuration (4096M main memory). However, its output is actually left-shifted
by three bits to convert it directly into a PHT offset, saving a cycle in the
microcode. The field pht-mask is similarly left-shifted.

This hash function was chosen presuming a page size of 2°8 words, a quantum
size of 2°16 words, a half-ephemeral-level size of 2°21 words, and a zone size of
2°27 words. All bit numbers are in decimal.

PHT-OFFSET<0..25>
HASH< B> = B
HASH< 1> = B

HASHe 2> =

HASHe 3> = UMA<I2> D VMA<27>
HASH< 4> = VMA<T1> D UMA<28>
HASH< 5> = VMA<18> D UMA<29>
HASH< 6> = UMA< O> D VMA<30>
HASH< 7> = VMA< 8> D YMA<31>
HASH< B> = VMA<13> D VMA<2D>
HASH< 9> = UMA<T4> D YMA<22>
HASH<18> = VMA<1S> D VMA<21>
HASH<11> = VMAC16> D VUMA<26>
HASH<12> = VMA<T7> D VMA<25>
HASH<13> = VMA<IB> D VMA<24>
HASH< 14> = VMA<19> D VMA<23>
HASH<15> = VMA<i2> D VHA<16>
HASH<16> = WMA<I1> D VMA<1IT>
‘HASH<17> = UMA<iB> D VMA<18>
HASH< 18> = VMAC B> D VMA<1S>
HASH<19> = VMA< 8> D VMA<28>
HASH<2B> = VMA<13> D UMA<25>

64

Symbolics, Inc.

VMA<H4> & VMA<26>

HASH<21> =

HASH<22> = UMA<15> @ VMA<27>
HASH<23> = YMA<21> ® VMA<31>
HASH<24> = VMA<22> @ VMA<38>
HASH<25> = VMA<23> @ VMA<29>

~ This hashbox is accessible by Lisp via an internal register.

The first bucket probed is computed by the hashbox described above, modulo the
table gize. If that probe fails, a linear pseudo-random number generator,
initialized to 17*vpn+l and advanced by 17x+1, defines the rehash sequence A
Lisp expression of the lookup algorithm is glven below:
;5 This is just 17x + 1, mod 2732,
-(defmacro pht-next (state)
*(sys:%232-bit-plus
(sys:732-bit-plus
(sys:%1ogdpb state (byte 28B. 4.) 83
,state)
1))

(defun pht-Tookup (vpn)
(fiet ({search-bucket (pht-offsei)

- {Toop repeat 4 . . _
initially (setf (Zblock-address). (+ pht-base pht-offset))
for entry = (Zblock-read) ;fetch next pht® word
do (if (= (ldb ZZphtB-vpn entry) vpn)

(if (= (1db ZZphte-fault-request entry) B8)
-3 This is the correct entry, return pht8 and pht1 words.
(return-from pht-lookup entry (Zblock-read))
3 Th1s is the correct entry, but fault-regquest is set.
(take-page-fault-reguest-trap))
;; VPN doesn’t match, skip over the pht1 word for this entry,
‘(Zblock-read)) '
finally
s If at end of collision chain, fail.
(when (= (1db %ZZpht8-collision-chain entry) 1)
(take-page-not-resident- trap)))))
(search-bucket (lpgand (pht-hash vpn) pht-mask))
(Toop for state first (pht-next vpn) then (pht-next state)
do (search-bucket (logand (1sh state 3) pht-mask})))})

See the section "Revision 0 Implementat_ion Memory Features." A new entry is
inserted into the PHT by hashing/rehashing the VPN into successive bucket -
numbers ahd searching each bucket for an invalid entry to reuse. The collision

65

Symbolics, Inc.

bucket for an invalid entry to reuse. The collision count of each full bucket in the '
‘hash sequence is incremented. When incrementing a bucket’s collision count from
0 to 1, pht.end-collision-chain for that bucket must be set to 0.

An entry is deleted from the PHT by hashing/rehashing the VPN into successive
bucket numbers and searching each bucket for the entry. The collision-count of
each bucket in the hash sequence (excepting the one that actually contains the
entry) is decremented. If a collision count is decremented below 0, you have tried
‘to delete a nonexistent entry and have corrupted the table by inappropriately '
decrementing collision counts (the 3600 just crashes in this case). When
decrementing a bucket’s collision count from 1 to 0, pht.end-collision-chain for that
bucket should be set to 1. Deleted entries are marked by setting their VPN field
to -1.

2.3.3 Translation Algorithm

When the attributes of a resident virtual page are changed, either by Lisp doing
“something like agiug or replacing the page or by a memory reference causing the
age, modified, and/or ephemeral-reference attributes to change, the PHT and the
map cache must be synchronized so they both contain the same information. This
is a cachefbacking-store sort of problem, and the same sort of solutions apply. We

 use a "write-through” strategy, so the map cache and the PHT are always

- consistent,

When the storage system wants to cha.nge the attributes of a resident page, it
updates the PHT entry for the page, and simply invalidates the map cache entry
for that page (if one exists). See the section “Internal Reglsters The next
reference to the page will reload the map.

When a memory reference needs to change the attribute. of a page that has an
entry in the map cache (modified and ephemeral-reference are the only fields it
" can change), a microcode trap handler is invoked to update the corresponding
fields in the PHT. Whether or not the PHT update occurs before or after the
reference is implementation dependent. '

The translation/access-checking process for a memory read cycle is:

66

Symbolics, Inc.

if UMA is of type dtp-physical-address
" access-bits := write-protect=e, :
: ' . -transport-trap= 8, mnd1fted 1,
. . . " ephemeral- reference=17
" MD := contents of ‘physical address VMA<31:8>
‘else if VMA is in VMA=PMA space ' -
' access-bits :=. write-protect=8,
o transport-trap=0, modified=1,
ephemeral-reference=17
if VMA s shadowed by the stack-cache
MD := contents of stack-cache. address UMA<T7:8> -
else :
MD := contents of physical address VMA<26:8>
else if VMA has an entry in the map’ cache
- PPN, access-bits come from map cache entry
1f VMA is shadowed by the stack-cache
MD := contents of stack-cache address VMA<T: 2>
else
MD := contents of phys1caT address PPN|VMA<T: 8>
e1se if PHT contains an.entry for VPN -with fault- request= =8
if age9s, rewrite PHT® word CTearTng age
load map cache with PPN, access-bits from PHT entry
retry memory cycle - '
eise _ _
take page-not-resident pre-trap

The translation/act:ess-Checking procéss for a memory write cycle is:

67

Symbolics, Inc.

Af UMA is of type dtp-physical-address
access~-hbits := write-protect=0,
' transport-trap=68, modified=1,
ephemeral-~reference=17
~ write MD to physical address YMA<31:8>
else if YMA is in UMA=PMA space
access-bits := write-protect=8,
transport-trap=8, modified=1,
: ephemeral -reference=17
if VMA is shadowed by the stack-cache
-write MD to stack cache address VMA<T:B> .
write MD to physical address VMA<26:@>
else if UMA has an entry in the map cache
' PPN, access-bits come from map cache entry
if write-protect=1, take page-write-fault pre-trap
if (or (= modified B) '
(and (pointer-type? MD)
(ephemeral-address? MD)
(=.(logand {ish 1 vma-ephemeral-level-group(MB))
ephemeral-reference) 8)))
trap to microcode to update the pht -
if VMA is shadowed by the stack-cache
write MD to stack cache address VMA<7:8>
write MO to physical address PPN{VMA<7:B>
else if PHT contains an entry for VPN with fault-request=0
if write-pfotect=1, take page-write-fault pre-trap
unless age=8, modified=1, '
and the appropriate ephemeral-reference
‘bit is set, rewrite PHT entry with the updated values
- load map cache with PPN, updated access-bits
retry memory cycle
else .
take pégewnot—resident pre-trap

The fake access-bits for VMA=PMA and dtp-physical-address addresses. are chosen
to prevent PHT update traps (those addresses are not in the PHT, so you could
‘not update them if you tried). There are two very important consequences of this:
vma=pma or dtp-physical-address write cycles do not update the ephemeral-
reference bits, and vmma=pma or dtp-physical-address read cycles do not take
transport traps. Code that uses such addresses when using ephermeral references
or references to oldspace must be very careful not to vielate the conventions
imposed by the garbage collector.

" Whether or not a-given address iz shadowed by the stack cache is determined by

68

.Symbolics, Inc.

'examlmng the virtual address only Memory operatlons using: dtp-physu:al—
'addresses will always ‘bypass .the stack cache .

~ To work properly ina shared-memory multlprocessor, updatlng a PHT entry ,
- should be 1mplemented by reading the entry, ORing in the changed attributes, and
" writing the entry, using ‘interlocked bus cycles. -See the section "Revision 0 _

. Implementation Memory Features.” A processor should not presume that its map -
ccache entry is up to date, since other processors may have modified the PHT entry
since it was encached. (When software modifies a mapping and adjusts the PHT,
software must coordinate the change with all processors, which probably involves
‘the’ invalidation of prevmus map-cache entr1es)

2. 4 Appendnx Companson of 3600- famlly and I-machine Memory
Layout and Addressing

» 3600-family and I-machine memory layout and addressing are similar in the
following ways- :

* Both archltectures employ a single address space that 18 shared by all’
processes

. 'I‘he uppe'r .portion of either memory space is used for physical address space,
that is, for unmapped addressing. On the I machine, the upper one-thirty- '
second is used; on 3600-family machines, the upper one-sixteenth. - On 3600-
family machlnes, physmal address space size is 16 Mwords; on I machines, it
is 4 Gwords :

. Both architectures employ the same page size: 256 words.

» Both architectures call for a fixed portion of memory that is "wired," that is,
not subject to being swapped from main memory out to secondary memory.
The architectures have differing requirements for portions of memory that
are not subject to address-translation faults.

» Each architecture can designate portions of storage as containing temporary
objects, and has hardware support for keeplng track of references: to those
objects. :

- » Both architectures perforin address translation (mapping of virtual addresses
to physical addresses) by means of tables that describe pages resident in -
main memory.. :

The differences between the memory layouts and addressing schemes of 3600-
family and 1 machines are:

69

Symbolics, Inc.

e The I-machine virtual address space is sixteen times bigger.

+ On the L machine, the hardware can dynamically designate attributes of
portions of storage at the granularity of hardware quanta (16 Kwerds). -On
the I machine, the attributes of portions of storage are designated by a much
more rigid scheme. The primary division of storage in the I-machine, for
GC purposes, is a zone (128 Mwords), of which there are 32.

¢ Wired address spaces are different in the two families. On 3600-family

. machines, wired memory occupies virtual address space from virtual address
0 to %wired-virtual-address-high (contained in a control register), which is
mapped to a contiguous set of physical memory addresses starting at %wired-
physical-address-low (in another control register). On I machines, wired
pages are stored at a predetermined set of physical addresses, starting at
address 0.

o Ephemeral spaces are different in the two families. On the I machine,
- ephemeral space is architecturally defined to be a particular address space
-- zone 0 (addresses 0 to 2°27). On 3600-family machines, the gc tag ram
allows the ephemerality of each quantum to be specified.

¢ GC support in general is different in the two families. On a 3600-family
machine, ephemeral-reference attributes of a page are stored in a dedicated
hardware memory. On the I-machine, these attributes are stored in the
PHT,

» The_I mac_:hine never has to abort (pclsr) an instruction due to a translation
for a resident page, while the L machine sometimes has to do so.

s On z 3600-family, the hardware map cache is backed up by a PHTC (page
hash table cache), which is referenced by microcode with some hardware
assist. If both the map and the PHTC miss for a given address translation,
Lisp is called to attempt the translation via the PHT., The I machine has no
PHTC, the hardware map cache is backed up direetly by the PHT, which is
referenced by Imcrocode

-« The 3600~fami1y PHT is optimized for density (about 66%): each entry is one

"~ word, and table size is a prime number. The I-machine PHT (about 50%
dense) is optimized for simplicity and performance: each entry is two words,
and table size is a power of two. As a result of these differing designs,
some attributes of resident pages are in the PHT on the I-machine, but in
the MMPT on the 3600-family.

¢ The stack on the L machine is mapped to virtual memory on a per-page
basis. In the I machine, the stack cache size (128 words in the first

70

. 8ymbalics, Inc.

.implementation) is léss than the size of a page (256 words), so there are
registers that indicate the upper and lower bounds of the stack cache. -

. (Actually, any cache size less than twice the page size requires-such
registers) - N ST

71

Symboiics, Inc.

72

Symbolics, Inc. .

3. Ma-crOihsiruc__tion Set

. $*_**$*********.**’E**********************-**_*****-**** e sfeot ik o 4 ol o O e sfe ot o e e ofe ol 2k e e sl e e el

This file is confidential. - Don’t'show it to anybody, don’t hand it out to people,
don’t give it to customers, don’t hardcopy and leave it lying around, don’t talk
‘about it on airplanes, don’t use it as sales material, don’t give it as background to
" TSSEs; don’t show it off as an example of our (erodable) technical lead, and don’t
~ let our competitmn potential competition, or even friends learn all about it. Yes,
this means you. This notice is to be replaced by the real notice when sc)meone

defines what the real notice is. :
$*m******************

| 3.1 Introduction

This chapter defines all the instructions executed by the I machine. The
instructions are grouped according to their function. The index in the end matter
“of this manual lists the instructions alphabetically, and an appendix lists them by
opcode and by instruction format. Another appendix contains a’list of 3600
instructions not implemented by the I-machine and, in some cases, descnptmns of
how to obtain thelr results with I-machine mstructmns

Before presentmg the individual instructions, the chapter includes introductory
sections applicable to all instructions: instruction sequencing, internal registers,
and explanations of the various fields in the instruction definitions, including
instruction formats and control stack addressing modes, argument descriptions,
types of instruction exceptions, types of memory references, top-of-stack register
effects, and ‘the cdr codes of values returned.

-3-1.1 Instruction Sequencing

Instructions are normally executed in the order in which they are stored in
memory. Since full-word instructions cannot cross word boundaries, it would _
occasionally be necessary to insert a no-op instruction in places where a full-word
instruction or constant followed a half~word instruction that did not fall on an odd
halfword address. This costs address space, I Cache space, and possibly execution
time to execute the no-op. '

The cdr code field of each word executed contains sequencing information to -
minimize this waste. The cdr code takes on one of four values, which specify how
much the PC is incremented after executing an instruction from this word. Note
that the PC contains a half-word address.

73

Symbolics, Inc.

Cdr Code 'PC Increment. Comment
' -+t ..+ - Normal instruction sequencing.
1 illegal Fence; marks end of compiled function
2 C e On some constants
3 +2 PC even Before some constants, on some constants -
+3 PC odd :

- When a constant follows an odd half-word instruction, the half-word instruction.
pair has edr code 0 and the constant has cdr code 3. When a constant follows an
-even half-word instruction, the constant follows the odd half-word paired with the
constant’s predecessor. The half-word instruction pair has cdr code 3 and the -
constant has cdr code 2.

For example, straightline execution of the following sequence of instructions:

Word Address Cdr Code Instruction(s) Comment

1498 - e B A o Packed instructions

181 3 C - Constant

182 3 F D : ' Packed instructions
- 183 2 E : Constant '

184 %}

H . G Packed instructions

proceeds as follows:

Current PC - Instruction Executed - Cdr Code PC Increment
188 even A 5] +1
180 -odd B 8 +1
181 even C 3 +2
182 even D 3 +2
183 even E 2 -1
182 odd F 3 +3
184 even G 0] +1
184 odd H 8 +1

A cdr-code value of 1 (edr-nil) is used to mark the end of compiled functions.

This value is placed in the word after the final instruction of the function. See the
section "Representation of Compiled Functions." It is an error if the processor -
attempts to execute this word. The chapter on traps and handlers contains more

' mformatmn See the section "Exneptmn Handling."

The cdr code sequencing described above only indicates the default next

74

 Symbolics, Inc.

instruction. When an instruction specifically alters the flow of control (for
- example, branch) the (_:dr code has no effect.

3.1.2 Internal Registers

Table 11 lists [-machine internal registers., Within this table, an asterisk by an
address entry means that the register may be defined by an implementation, and
reserved means the'register may be architecturally defined in the future. The
~information in this table is specific to Revision 0 of the Ivory chip. As the:
architecturally defined information in the table becomes determinate,

- implementation-specific details will be removed to an appendix.

The %read-internal-register instruction always returns the object from the
specified register with its cdr code set to edr-next. If an internal register has cdr-
code bits, they can not be read by this mstructmn '

- The rotate-latch register does not have an 1nterna1 address and can not be read or
written with %read-internal-register or %write-internal- reglster

3.1 .3 Memory Slde Effects

Reading memory rnay not cause side effects The architecture permits an
implementation to start a memory read that it will not use, perhaps because of
instruction prefetching, perhaps while starting an array reference before an out of
bounds check is performed, perhaps because of instruction pipelining (an
instruction preceding a memory read takes a trap after the memory read
instruction has started its read), or perhaps for something else. Writing memory
using a dtp-physical-address is allowed to cause side effects; _
dtp-physical-address is guaranteed not to be cached, and the write is guaranteed
to happen exactly once. Also, both the %coprocessor-read and
%coprocessor-write instructions may cause s1de effects; they are guaranteed to be
performed exactly ence.

3.1.4 Explanation of Instruction Definitions

3.1.4.1 Instruction Formats

In the chapter on data representation, words in Lisp-machine memory were
interpreted either as Lisp object references or as parts of the stored representation
- of these objects. This chapter reinterprets all memory words as instructions. The
processor treats a memory word as an instruction whenever it is encountered in
the body of a compiled function -- or, more specifically, when the program counter
points to the memory word and the word is fetched as an instruction.

With the exception of the data types spec1ficaﬂy demgnated as instructions, there
is no one-to-one correspondence between data types and instruction formats.
Instead, the data types are subdivided into classes, and each class forms the basis

75

" Symbolics, inc.

"1nstruct10n When an instruction Spec1ﬁca11y alters the flow of control (for

'_ example, branch) the cdr code has no effect

312 I.ntemal Registers _

. :Table 11 lists I-machine internal registers. Within this teble, an asterisk by an

address entry means that the register may be defined by an implementation, and
reserved means the 'register may be architecturally defined in the future. The
information in this table is specific to Revision 0 of the Ivory chip. As the
architecturally defined information in the table becomes determmate,

~implementation-specific details will be removed to an appendix.

The %read-mternal-reglster instruction always returns the object from the

_specified register with its cdr code set to edr-next. If an internal reglster has cdr-

code bits, they can not be read by this instruction.

" The rotate-latch reg13ter does not have an internal address and can not be read or

- writtén with %read-mternal-reg‘lster or %write-internal-register.

313 Explanation of Instruction. Definltions

' 3.1.3.1 Instruction Formats

In the chapter on data representation, words in Lisp-machine memory were
interpreted either as Lisp object references or as parts of the stored representation
of these objects. This chapter reinterprets all memory words as instructions. The
processor treats a memory word as an instruction whenever it is encountered in
the body of a compiled function - or, more specifically, when the program counter
points to the memory word and the word is fetched as an instruction.

With the exception of the data types specifically designated as instructions, there
is no one-to-one correspondence hetween data types and instruction formats.
Instead, the data types are subdivided into classes, and each class forms the basis
of an instruction type. The packed half-word instruction data type uses two
instruction formats See the section "Half-Word Instruction Data Types.”

Table 12 summarizes I-machine instruction formats and lists the data types in

each class.

The fqll‘owmg paragraphs describe these formats and their interpretations.
Full-Word Instruction Formats

Function-Calling Instruct:on Formats

A word of data type dtp-call—xxx contains a single instruction. The instruction

contains a data-type field, which is used as the opcode, and an address field as
shown in Figure 21. This kind of instruction starts a function call.

75

Symbaiics, Inc.

Ta.ble 11,
Address

A%

1

2
3
4x
5

5
286
486
686 -

287
487

© 687
16x%
T1x
12
13
14
15x%
16
17
28
21x
22x%
23
24%
25x%
26x%
27x
38x%
31x
32x
232%
432%
632x

Read

[Write

Rl

"RW

RW

Ryt

/W
Ru
RW

RW
Ru

RW

Data

Type

Toc
loc
Toc

loc |
ioc/pa
loc/pa
toc/pa

-loc/pa

fix -
fix

fix
CFix

pe
fix
fix

fix
fix -
fix
fix

*Implementation Specific

-I-Machine Internal Registers

Register Name

For use by microcode only
Frame Pointer - (FP)

Local Pointer (LP)

Stack Pointer (SP)

For use by microcode only
Stack Cache Lower Bound

. BAR® Contents

BAR1 Contents

BAR2 Contents

BAR3. Contents

BAR8 Hashed

BAR1 Hashed

BAR2 Hashed

BAR3 Hashed

For use. by micrecode only
For use.by microcode only
Ceontinuation

DP Op

~ Control Register

For use by microcode only

Ephemeral UTdépaCe Register

Zone Dldspace Register

Implementation Revision

FP coprocesser present

For use by microcode only

Preempt Register

Icache Control

Prefetcher Control

Map Cache Control

Memory Control

ECC Log

ECC Log Address

Invalidate Matching Map Entry for VMA in BARB
Invalidate Matching Map Entry for YMA in BAR1
Invalidate Matching Map Entry for VYMA in BAR2
Invalidate Matching Map Entry for ¥MA in BAR3

76

Address Read | Data
/Write Type

"33*
34 .

- 30x%
36x%
37
4B-47x%

. 5B8x
51x

CB2%
252x%
452x%
B52%
53-777
1888
1081
1882
1803
1884
1885

- - 1886
1807
1818
1811
1812
1813
1814
1815
1816

- 1817
1838
1831

*Implementation Specific

RUW

reserved

W
W
W
W

reserved

- RW

RW
RW
RW
RW

- RW
- RW

RW
RW
RW
RW
RW
R
RW
RW
RW
RW
RW

Fix

Symbolics, Inc.

 ‘Table 11, continued

' Re’gistér Name

For use by microcode only
Stack. cache overflow 1imit
For use by microcode only

- .For use by microcode only

_Fof use by microcode only
For use by microcode nnIy

For use by microcode only

Load Matching Map Word 1 for UMA in BAR®
Load Matching Map Word 1 for ¥MA in BAR?

"Load Matching Map Word 1 for VMA in BAR2
- Load Matching Map Word 1 for VMA in BAR3

Top of Stack (TUS)

‘Array Event Count

Binding Stack Pointer -
Catch Bleck Pointer
Control Stack Limit
Control Stack Extra Limit
Binding Stack Limit

PHT Base

PHT Mask

Count Map Reloads

List Cache Area

List Cache Address

List Cache Length
Structure Cache Area _
Structure Cache Address

‘Structure Cache Length

Maximum Frame Size
Stack Cache Dump Quantum

77

Symbolics, Inc.

Table 12. I-Machine Instruction Formats

Class of Packed Half-Word Instructions

- Instruction Type

Operand from stack format
18-bit immed. operand format

‘Data -Typeé Included

DTP-PACKED-INSTRUCTION
DTP-PACKED-INSTRUCTION

Class of ‘Fuli-Word. Instructions (all full-word furmat)

Instruction Type
Entry instruction

Function-calling instructions

Constants

Data Types Included

DTP-PACKED-INSTRUCTION

DTP-CALL-COMPILED-EVEN
DTP-CALL-COMPILED-0DD

DTP-CALL-INDERECT
DTP-CALL-GENERIC

Data-Type Code

88-77
68-77

- Data-Type Code

68-77

58
51
52
53

DTP-CALL-COMPILED-EVEN-PREFETCH 54
DTP-CALL-COMPILED-QDD-PREFETCH 55
DTP-CALL~INDIRECT-PREFETCH 56

DTP-CALL-GENERIC-PREFETCH

DTP-FIXNUM
DTP-$MALL-RATIO
DTP-SINGLE-FLOAT
DTP-DOUBLE-FLDAT
DTP-BIGNUM
DTP-BIG-RATID
DTP-COMPLEX
DTP-SPARE--NUMBER

~DTP-INSTANCE

DTP-LIST-INSTANCE

. DTP-ARRAY-INSTANCE

DYP-STRING~INSTANCE
DTP-NIL

DTP-LI5T

DTP-ARRAY
DTP-STRING
BTP-SYMBOL

DTP-LOCATIVE

78

57

18
11
12
13
<14
15
16
17
26
21
22
23
24
25
28
27
36
31

. Bymbolics, Inc.

: Tabl__é 12; continued

Instruction Type - . Data Types Included Data-Type Code
Constants ‘ : :
o DTP-LEXICAL-CLOSURE = . 32
DTP~DYNAMIC-CLOSURE 33
DTP-COMPILED-FUNCTION 34
BTP-GENERIC-FUNCTION .35
DTP~SPARE-POINTER-1 36
DTP-SPARE-POINTER-2 - : 37
DTP-PHYSICAL-ADDRESS 4g
DTP-SPARE-IMMEDBIATE-1 41
DTP-SPARE-POINTER-3 42
- DTP-CHARACTER 43
DTP~SPARE-POINTER-4 44
DTP-EVEN-PC 46

: DTP-QDD-PC 47
Valtue Cell Contents - : :
DTP-EXTERNAL~VALUE-CELL-POINTER 4

- Itlegal Instructieons :
' ' DTP-NULL

8

.DTP-MONITOR-FORWARD 1
DTP-HEADER-P 2
DTP-HEADER-1 3

- DTP-ONE-Q-FORWARD 5
DTP-HEADER-FORWARD ‘B
DTP-ELEMENT-FORWARD _ 7
DTP-GC~FORWARD 45

79

Symbalics; inc.

Figure 21.

|I-Machine Instruction Formats

Full-Wond instructions

Data Types 50-87 {Call instructions)

[_ Sﬂi 8 I N.] 32-bt-address]
3093837 34 81 0
N = ipast-significant digi of data typs.
Eniry Instruetion :

p)| OPCODEFTR | No. req'd + optl ENTRY INSTN } pre No- redd args ,

. Maybe unused | args biased by +2 |OPCODE biased by +2

29.3637 35 ’ o7 0

25 17

Pagked: Hali-Word Instructions

{Eaeh word below contains Ma instructions.)

sc.{ PI_’ DPGODE'PTRI 5 i unsigned IOPCODET BRANCH OFFSET l

N 393897 35 28 25 17 10 98 7
Bs within By 37 098 7 n
instruction ~ . I ,
A N
Operands from stack 10-bit immediate branch instruction
FIELD-SiIZE | BOTTOM- | ™ IMMEDIATE
SQI11] OPCODE| sy | BrLoc | OFCODE ARGUMENT
493 B . 3 -
Bits within kY ?3 ?g g 5 4 o i h °
instruction - ~ N)
2\ %4 " N
Fiald extraction instiuction Ondinary inmodiate-argument instruction
\ /
'
Examples of subfiekds of 16-bit immediate instructions
I-machine instruction formats. -

‘80

- Symbolics, Inc.

Entry-!nstructlon Format

An entry instruction is a word of type dtp packed-mstructmn that actually '
contains one full-word instruction. Its format, shown in Flgure 21,18

Bits - - _-Meanmg

<39:38> “Seguencing code = “add 2 to PC™
<37:36> " dtp-packed-instruction ,
<35:28> Opcede of - second half word, unused _
<27:26> . " Addressing mode of second half word, unused .
<25:18> ' Number of reguired+optional args, biased by +2
<1718 enfry instruction opcode. 1 bit says
' . whether &rest is accepted. ‘
<9:8> ‘ Immediate addressing mode
-<7:B>' ' Number of r'equ-ired args, biased by +2

| The hardware will d:spatch to one of two microcode starting addresses accordmg
to the value of the &rest- accepted hit,

Constant Formats

‘The processor treats any word whose data type is that of an object reference as a
constant. The processor pushes the object reference itself onto the control stack
and sets its cdr code to cdr-next for any object that is pushed onto. the control
stack, unless otherwise specified. o

Value Cell Contents

- A word of data type dtp-external-value-cell-pointer contains the address of a -
memory cell. Using a data-read operation, the processor pushes the word
contained in the addressed cell onto the control stack, following invisible pointers
if necessary. Typically this pointer addresses a symbol’s value or function cell.

fllegal Instruction Formats

A word of any data type other than those listed above cannot be executed as an
instruction. The processor will trap out if it encounters such a word. A later
chapter contains. further information on trapping. See the sectlon "Exception
Handling."

Packed Half-Word Instruction Formats
This is the most common instruction format. The word with data type

dtp-packed-instruction contains two 18-bit instructions, which are packed into -the
word as shown: :

81

Symbolics, Inc.

o e e 2, B e e e e e B £] -

ISQ|11SECKD INSTRUCTION|FIRST INSTRUCTION|.

35 17 , B

The first instruction executed is called the "even halfword" instruction, and is

found in bits 0 through 17. The "odd halfword" instruction is executed later, and

is found in bits 18 through 35. Since the data portion of the word is normally only

32 bits, 4 bits are "borrowed" from the data type field. (The ones in bit positions

. <36-37> are the upper two binary digits of any dtp-packed-instruction opcode, a
-numher between 60 and 77 octal.) .

Each of the two instrucfions in this format can be further decompesed. See
Figure 21. As the figure shows, there are two basic 18-bit formats.

Format for 10-Bit immediate Operand

The 10-bit-immediate-operand format is for those instructions that include an
immediate operand in their low-order ten bits. The immediate operand can be
interpreted as a constant or as an offset -- signed or unsigned, depending on the
instruction. There are two special subcases of this instruction format: field
extraction instructions and branch and loop instructions. '

Format for Field Extraction

The field-extraction format is for instructions used to extract and deposit fields
from words of different data types. The field is specified in the instruction by the
bottom 10 bits. Bits 0 through 4 specify the location of the bottom bit of the field,
-~ that is, the rotate count -- and rits 5 through 9 specify (field size - 1). For load-
byte instructions, ldb, char-ldb, and the like, the rotate-count that the instruction
should specify is {mod (- 32 bottom-bit-location) 32), and for deposit-byte
instructions, dpb and the like, the rotate-count should specify the bottom-bit
location.

The extraction instructions take a single argument. The deposit instructions take
two arguments. The first is the new value of the field to deposit into the second

argument. 1t is illegal, though not checked, to spec:1fy a field with bits outside the
bottom 32 bits.

Format for Branch Instructions

Branch instructions are a subclass of 10-bit-immediate-format instructions. They
usge the immediate argument as a signed half-word offset.

82

Symbolics, Inc,

| Format for Operand From Stack

' Packed half-word instructions that address the control stack’ use- the operand—from-
stack format. .They have a 10-bit field that specifies an address into the stack. . If
one of these instructions takes more than one operand, the addressed operand is
‘the last operand of the instruction and the other operands are popped off the top
.of the stack. If the mstrucmon produces a value then the value is pushed on top
of the stack. :

* Control Stack_Addressi-hg Modes

Operand-from-stack instructions reference operands on the control stack relative to
one of three pointers to various regions of the current stack frame. The lower
-ten-bit field of one of these constitutes the operand specifier, whose bits are
interpreted as follows. Bits 8 and 9 of the instruction are used to select the
pointer, while bits 0 through 7 are used as an unsigned offset. The processor
interprets bits 8 and 9 as:

00 Frame Pointer - 'I‘he address of the operand is the ‘Frame Pomter plus

the offset.

01 Local Pointer - The address of the operand is the Local Pomter plus the
offset.

10 Stack Pointer - The address of the operand is the Stack Pointer (prior to
popping any other operands) plus the offset minus 255, unless the offset is 0.

For example, if the offset is 255, then the operand is the top of stack. Note
that this operand will not be popped. If the offset is 1, then the operand is
the contents of the word pointed to by (Stack Pointer minus 254). This -
mode is used for the management of arguments for pop instructions, as
descnbed in the next paragraphs. - ‘

In the special case when the offset is 0, the operand is popped off the top of
stack, before any other operands have been popped off (this operand is still
the last argument of the function, though). This special case is.called the
"sp-pop addressing mode." For example, the following sequence could be
used to add two numbers, neither of which is to be saved on the stack for
later use, and to leave the result of the addztlon on the stack.

push LP|8 ;push .argl on the stack

push LP]1 ;push arg2 on the stack

add sp-pop ;pops arg?2 then argl off stack,
;adds, then pushes the result

11 Imx_nedi:;.te - The Iast-operand is not on the stack at all, but is a fixnum
whose value is. the offset possibly sign-extended to 32 bits, dependir_:g-on the

a3

_ Symbofics, Inc. -

instruction. This case is called the "immediate addressing mode," not to be
confused with 10-bit immediate format instructions, Whlch have no operand
specifier since they are always.immediate.
In some cases, the stack location address specified is the operand used as an
object of the instruction in some way. This case is called "address-operand
addressing mode,” For instructions that employ the address-operand mode, the
immediate and sp-pop modes are illegal.

Note that it is alWays the last argument of an instruction that is specified by the
operand specifier of the operand-from-stack format: the others, if there are any,
are not explicitly specified by the instruction and are always popped off the stack
in order.

Refer to the chapter on function calling for a description of the control stack and
the ‘processor’s stack pointers. See the sectmn "Control Stack.”

3.1.3.2 Arguments: the Data Types Accepted

In the instruction definitions in this document, the Arguments field lists the
arguments that the instruction requires and the valid data types for these
arguments. The data types listed are those that the instruction accepts without
taking an error pre-trap. See the section "Operand-Reference Classification."

All numeric instructions, including those listed in the section "Numeric
Instructions” as well as equal-number, greaterp, lessp, plusp, minusp, zerop,
and logtest, accept all numeric data types. The only spare data type that numeric
Instructions accept is dtp-spare-number, Whlch will cause an instruction
exception.

The Exception field of an instruction definition lists those data types that the |
instruction accepts as valid (that is, that do not cause an error pre-trap) but that
are not supported in hardware.

3.1.3.3 Types of Instruction Exceptions

" An instruction exception occurs when an instruction needs to perform some
operation that is not an error, but is not directly supported by the hardware.
Instruction exceptions are post-traps, called (usually) with whatever arguments the
instruction takes. The contract of the trap handler is to emulate the behavior of
the particular instruction. See the section "Exception Handling."

The instruction definitions document any instruction exceptions that may occur
during execution of the instruction. The description includes the conditions under
which an exception will occur, the arguments passed to the exception handler
(excluding the trap-vector-index and fault-pc supplied with all traps), and the
number of values returned by the exception handler. Exception handiers always
return values with return-kludge, and TOS is always valxd afterwards.

84

: Symbolics, Inc.

RS % B 3 4 Types of Memory References

: There is a class of mstructlons that address main memory (as opposed to stack

:memory) The operands for these instructions are memory addresses. Different.
instructions make conceptually different kinds of read and write requests to the

. memory system. The different types of memory cycles: for these different types of-
‘memory requests are summarized here and described later in this section. The

-classification of Lisp data types according to type of operand reference -- data,

header, header-forward, and so on - is made in the chapter on data: representatlon
~ See the section "Operand- Reference Classification.”

Table 13 shows the action taken for each category of data when read from memory -
- .in a given type of memory cycle. This table refers only to memory reads and to
~ themory cycles that consist of a read followed by - write. . (An instruction that
- writes memory without reading first is called a "raw write." The table omits

. these.) - Note that the categories overlap. ' '

' ‘Table 13. . Memory Cycles

 Cycle. Code Data Null Header HFWD EFWD 1IFWD EVCP GC Mon- Point-

Type . _ : ' © itor er
data-read -8 - trap trap ind ind - ind ind trap mtrp. trospt
data-write L = ‘trap ind - ind" .ind ind " trap mtrp -
‘cdr-read.. 9 - - trap ind ind - - trap - -
bind-read 4 - - trap dind. ind ind - trap mtrp trnspt
bind-r-mon 2 - - trap ind ind ind - trap ind trnspt
bind-uwrite 5 - - trap ind ind ind - trap mtrp < -
bind-w-mon 3 - - trap -ind ind ind - trap ind -
header-rd B trap trap - ind trap trap trap trap trap trnspt
struc-offset 7 - - - ind - - - trap - -
scavenge 8 - - - - - = - trap - trnspt
gc-copy 19 - - - - - - - trap - -
raw-read 11 - - - - - - - - - -
Legend:

Normal action ‘ ,
ind : Indirect through forwarding pointer. This also enables transport
: trap if word addresses oldspace, and transport trap takes

precedence if it occurs. '
trap Error trap. Takes precedence over transport. .
mtrp - Monitor trap (different trap vector entry than error trap). This

also enables transport trap if word addresses oldspace and
. transport trap takes precedence if it occurs.

85

Symbolics, Inc.

traspt ' Enable transport trap if word addresses oldspace'

Note that the operatlons described apply only to objects addressed as though they
were: located in main memory, not those already on the control stack.

If an error occurs during a memory operatmn, the processor aborts the instruction
and invokes a Lisp error handler. The arguments to the error handler are the
microstate, and the virtual memory address (VMA). From the microstate, the Lisp
‘handler will look up the type of error in an error table See the section "Exceptmn
Handling.”

Data-Read Operations

Cycle : Code Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Point- .
. Type _ itor er

-data-read - tr‘ap trap ind ind ind ind trap mtrp trnspt

Most operands are fetched with a data-read operation. This reads the word
located at the requested memory address. If the word obtained is a forwarding,

" that is, invisible, pointer (ditp-header-forward, dip-element-forward,
dtp-one-g-forward, or dtp-external-value-cell-pointer), then the pointer’s address
field is used as the new address of the cell. The content of this new address is
then read and checked to see if it is an invisible pointer. The process is repeated
until a non-invisible-pointer data type is encountered. The word finally obtained is
returned as the result of the data-read operation. During this pointer following,
sequence breaks are allowed so that loops can be aborted. If at any point-
dtp-nuil, a header (dtp-header-p, dtp-header-i), or a special marker (non-invisible
pointer -- dtp-ge-forward) is encountered, the error ecauses the instruction
‘performing the data read to take an error trap. If a dtp-mon lor-forward is
encountered, the instruction takes a monitor trap. If a data location that is read
contains an address in oldspace and transport traps are enabled for the page
containing the word read , a transport trap handler is invoked to evacuate the
object and then the data-read is resumed. See the section "I-machine Garbage
Collection."”

Data-Write Operations

\ Cyele Code Data Null Header HFWD EFWD IFWD EVCP GC Mon- Point-
Type ' itor er
data-write 1 - - trap ind ind ind dind trap mtrp -

When most operands are written to memory, a data-write memory read operation
is first performed. This checks the requested location to determine whether an
invisible pointer is present. If so, the address of the pointer is used as the new
address of the cell. The contents of the new address is read and checked to see if

86

Symbolics, Inc:

it is an invisible pointer. If a header or special marker (dip-ge-forward but not
-dtp-null) is encountered in any location, the error causes the instruction doing the
- data write to take an error trap. If a dtp-monitor-forward is encountered, the
instruction takes a m'onitof,trap. If the contents of a location is a forwarding -
pointer, a check for oldspace is' made before indirection. When the process
terminates, the contents of the final location, which are being replaced, are not
_ transported The process is repeated until a non-invisible-pointer data type is
- found, at which point a write normally follows and the data is stored in the last
location, preserving the cdr code of the location inte which it stores. -

_ CDR-Flead Operatlons |
Cycle ~ Code Data Null Header HFWD EFWD IFWD EVCP GC. Mon. Point-
- Type o - - dtor. er
~ cdr-read .9 - - trap ind * ind - - . trap - -

Memory references made only to determine the cdr-code of a location use a edr-
read operation. This kind of reference follows pointers of the type _
dtp-header-forward or dtp-element-forward, which forward the entire memory
word, including the cdr code. (Recall that a dtp-header-forward pointer is used by
the system to replace an element when it is necessary to change the cdr.code of a
cell in the middle of a cdr-coded list. See the section "Forwarding (Invisible)
Pointers."} The. cdr-read operation returns the contents of the cdr-code field of the
finally found 'word.

Forwardmg pointers (dtp- one-q-forward and dtp-extemal-value-cell-po‘inter) that -
forward only the contents (that is, the data-type and pointer fields) of the cell are

. not followed. Instead the cdr cede of the word containing such a pointer is
returned. :

Having extracted_the relevant cdr code, the instruction doing the cdr read takes
action according to the value returned, as explained in the section on lists. See the
section "Representations of Lists,” :

If a header or dtp-ge-forward data type is encountered, the error causes the
instruction making the reference to take an error trap.

Bind-l-'{ead Operations

Cycle '~ Code Data Null Header HFWD EFWD 1IFWD EVCP GC Mon- Point-

Type ' _ itor er

bind-read 4 - - .trap ind ind ind -~ trap mtrp trnspt
' b‘ind-r—mon 2 - - trap ind ind ind - trap ind trnspt

The binding instructions, unbmd-n %restore-bmmng-stack and
bmd—locatlve to-value, change the value cell, not the contents of the value cell, of

87

" Symbolics, Inc.

a variable. dip-external-value-cell-pointer is an invisible peinter -that points to
the value cell in memory. Since binding should create a new value cell, the system
does not follow dtp-external-value-cell-pointer when doing bindings, In all other
respects this operation is the same as a data-read memory operatmn, except that
encountering dtp-null does not cause a trap.

A subcategory of this type of operation is the bind-read-no-monitor operatlon Thls
operation, as opposed to the normal binding read, does not trap out if a
dtp-monitor-forward pointer is encountered. Instead, it just follows the pointer.
Bind-Write Operations

Cycle - Code Data Null Header HFWD EFWD 1IFWD EVCP GC Mon- Point-

Type ' itor er
bind-write 5 - - trap ind dnd ind - trap mtrp -
bind-w-mon 3 - - trap . ind ind ind = trap ind -

A bind-write operation is like a data-write memory operation except that it does
not follow external-value-cell pointers. See the section "Bind-Read Operations” in .
N8 Users Manual. A subcategory of this type of operation is the bind-write-no-
‘monitor operation. - This operation, as opposed to the normal binding write, does

" not trap out if a dtp-monitor-forward pointer is encountered. Instead, it just
follows the pointer.

Header-Read Operations

Cycle Code Data Null Header HFWD EFWD IFWD EVCP GC Mon- Point-
Type itor er
header-rd g trap trap - ind trap trap trap trap trap trnspt

Instructions that reference objects represented in memory as structure chjects use
a header-read operation to access the header. This reads the word at the
requested address. If the word is a header, the header is returned. If the word is
a header-forward pointer, the address field of this invisible pointer is used as the
new address of the header. The word at this new address is checked, and the
process repeated umntil a header is found. If at any point something other than a
header or header-forward pointer is found, the error causes, the instruction
performing the header-read operation to take an error trap. If the data location
that is read (without a trap) contains an address in cldspace, a transport trap
handler is invoked to evacuate the object and then the header-read is resumed.

88

' Symbolics, Inc.

-Structure-Offset Operations

- Cycle - Code Data Null Header HFWD Em IFWD EVCP GC Mon— Pomt_
- Type - : _ : I Ltor er
struc offset- 75 - - - "ind- - S trap i _

The- LlSp operatlon %p-structure-offset uses the struc- offset type: of reference to
return the structure header. This type of reference follows header-forwarding
pointers as necessary and traps out if.a dtp-gc-forward is encountered. A '
_structure-offset reference is enabled only by blts ina %memory-read or block-read
type of mstructlon

- Garbage-Cquectlon Operatlons

Cycle ~ Code Data Null Header HFWD EFWD 1FWD EVCP GC Mon- Poini-

-Type - ' o : itor er.
scavenge 8 - - - - .- - - - trap - trnspt
gc- copy .18 - - - - - - - trap - -

Memory references of the types scavenge and gc-copy are used mternally by the
- garbage collector. - References of these types trap out when a dtp-ge-forward is
~encountered. Scavenge references perform transports; ge-copy references do not.

- Either type of reference is enabled only by b1ts in a %memory-read or block-read"
type of mstructlon

Unchecked Operands

Cycle " Code Data Null Header HFWD EFWD 1IFWD EVCPGC Mon- Point-
Type - : _ . itor er
raw-read = 11 - - '_- : - - - - - - -

A raw memory reference has all the indirection (pointer following), trapping,-and
transporting possibilities disabled. During stack encaching and decaching, transfers
of data between main memory and the stack cache use raw-read and raw-write
operations. %p-ldb and %p-dpb are among the users of raw references. Note that
raw-write operations maintain the modified and ephemeral-reference bits in. the

~ PHT JU.St as other write operations do. :

3.1.35 Top—of-Stack Register Effects

The top-of-stack (TOS) register is.a scratchpad location that contains a copy of the
contents of the top of the control stack. The possible effects of an instruction on
this register affect the code the compiler is allowed to generate. Sometimes the
compiler must insert extra movem SP|0 instructions to restore the correct value to
the TOS register. The TOS register is valid if its contents are known to be
identical to the contents of the location 1nd1cated by the stack pomter (SP|0);
otherwise, the TOS is invalid.

89

Symbolics, ne.

In the instruction descriptions that follow, the possible effects that an 1nstructmn
can have on the TOS register are indicated by the follomng phrases:

Valid before = The register must be valid before the instruction,

~ Valid after -~ The register will be made valid by the instruction.
Invalid after The register can be made invalid by the instmcfion.
Unchanged | Statué after the instruction same as étatus before, except if an

sp-pop operand is used or if the instruction modifies its operand
and the operand happens to be the top word in the stack, in
which case TOS is invalid after.

3.1.3.6 Cdr Codes of Values Returned

Every operation that returns a value -- this includes all true Lisp operations

-- pushes that value on the stack. Thus, after an instruction has executed, the
stack no longer contains the instruction’s arguments but instead contains the
result of the operation. Instructions that do not return a value -- for example,
rplacd, aset, pop - pop off all of their arguments. Every instruction that
produces a value and pushes it on the stack sets the cdr code of the pushed word
to 0 (edr-next). The only exceptions are as follows:

* The. start-call instructions produce 3 (illegal in lists) in the cdr-code fields of
the frame header on the stack. o

» A memory read or block read instruction -- one of %memory-read,
%memeory-read-addresse, %block-n-read, or %block-n-read-shift -- can copy
the edr code of the word from memory into the word on the stack

e The push-apply-args operation can produce 1 (cdr-nil) or 2 (¢dr-normal) in
. the cdr-code field of words on the stack.

¢ The catch-open instruction can produce any value in the cdr-code field of
certain words in the catch block,

¢ The catch-close instruction produces 2 or 3 in the cdr code of the PC it
saves before jumping to an unwind-protect cleanup handler.

* %p-tag-dpb can be used to store into the stack.

¢ %set-tag can be used to produce any cdr code but is usual].y programmed to
produce cdr-next.

¢ The instructions increment, decrement, set-to-car, set-to-cdr,
set-to-cdr-push-ear (car pushed with edr-next), %block-n-read-alu, and

90

Symbolics, inc.

= %pomter-lncrement gtore mto their stack operands preservmg the cdr code :
that Wwas in the stack locatmn :

-« movem, pop, set-sp-to-address save-tos stack-blt stack-blt-address
~ return-kludge, %merge-cdr-n no-pop, and %set-cdr-code-n store into their
stack operands and set the cdr code to some value other than that of the
stack location (that is, these instructions do not preserve the original cdr
code). "See the section "Revision 0 Stack-blt." See the section "Revision 0
- Stack-blt-address." See the section "Revision 0 Return-kludge."

3.2 The Instructions

: Th_e I-machine implements 210 instructions in 14 categories. There are:

10 list-function
- 24 predicate
29 numeric
10- data-movement
‘8 field-extraction
.10 array-operation
19 branch-and-loop
- 20 hlock '
12 function-calling
4 binding
2 catch :
24 lexical-variable- accessmg
11 instance-variable- accessmg, and
27 subprimitive

- instructions.

81

. Symbolics, Ine.

3.2.1 List-Function Operations .

-car, cdr, set-to-car, set-to-edr, set-to-cdr-push-cai‘, fblaca, rplacd, rgetf,
member, assoc : ' :

The Lisp predicate instructions eq, eql, and endp are documented elsewhere. The
Lisp functions cons and ncons are implemented in macrocode. ' Refer also to the
following topics: :

%allocate-list-block
%allocate-siructure-block

car ' : Instruction

Format Operand from stack Value(s) Returned 1 -
Argument(s) 1: . Opcode 0

arg dtp-list, dtp-locative, dtp-list-instance, or
dtp-nil

Immediate Argument Type Signed

Description
If the type of arg is dtp-list, pushes the car of arg on the stack.

If the type of arg is dip-locative, pushes the contents of the location arg
references on the stack :

If the type of arg is dtp-nil, pushes nil on the stack:

Exception
Conditions: Type of arg is dip:list-instance.
Arguments: arg
Values: 1

Memory Reference Data-read

Register Effects TOS: Valid after

92

cdr

Symbolics, Inc.

Instruction

' Formczt.O'p'erand from stack - Value(s) Returned 1

. .Argument(s) P ' . Opcode 1
arg dtp-list, dtp-locatlve,_ .

dtp-list-instance, or
-dtp-nil

- .'Immeclr.ate Argument Type Slgned

Descrtptzon

_ If the type of arg is dtp-list, pushes the edr of arg on the stack

If the type of arg is dtp locative, pushes the contents of the location arg
references on the stack.

' If .the type of arg is dtp—nil, pushes nil on the stack.

Exceptr.on
Conditions: Type of arg is dtp—llst-mstance
Arguments: arg
Values: 1

Menior:y Reference Cdr-read, then data-read if edr-normal

Regfster Effects TOS: Valid after

93

Symbolics, Inc.

set-to-car _ u _ _ Instruction

 Format Operand from stack, - , Value(s) Returned 0
" address-operand mode (immediate and
sp-pop operand modes undefined)

Argument(s) L: ‘ Opcode 140
arg, the address operand, dtp-hst

dtp-locative, dtp—hst-mstance

or dtp-nil -

Immediate Argument Type Not applicable
- Description
" Replaces arg with the car of arg. Does not change the cdr code of the

operand. See the instruction car, page 92,

Exception
Conditions: Type of arg is dtp-list-instance.
Arguments: arg (address of operand as locative)
Values: 0

Memory Reference Data-read

Register Effects TOS: Unchanged

94

Symbolics, Inc.

' set-to-cdr N o L) : : - Instruction

- Format Opérénd from stack, . - Value(s).Retufned‘ 0
address-operand mode (immediate and o
sp~pop operand modes undefined)

Argumenl(s) 1 : ' " Opcode 141
arg, the address operand, dtp-llst

dtp-locative, dtp-hst-lnstance

or dtp-nil - '

Immediate Argumenr Type Not applicable

Description

Replaces arg with the edr of arg. Does not change the cdr code of the
operand. See the instruction cdr, page 83.

Exception
Conditions: Type of arg is dtp-hst-mstance
Arguments: arg (address of operand as locative)
Values: 0

Memory Reference Cdr-read, data-read

Register Effects TOS: Unchanged

95

s ynﬁboﬁcé, Inc.

‘set-to-cdr-push-ear ' _ _ - Instruction

Format Operand from stack, -~ Vaolue(s) Returned 1
address-operand mode (immediate and
* sp-pop operand modes undefined)

Argument(s) 1. - Opcode 142
arg, the address operand, dip-list, '
dtp-locative, dip-list-instance,

or dip-nil :

Immediate Argument Type Not applicable
Description
Computes the eéar and the edr of arg. Pushes the car onto the stack with a
cdr code. of cdr-next and stores the cdr back into arg leaving the cdr code
of the operand unchanged.
Exception

Conditions: Type of arg is dtp-list-instance.

Arguments: arg (address operand as locative)
Values: 1

Memory Reference Data-read, cdr-read, data-read

Register Effects TOS: Valid after

96

'rplaca_ :

Syrnbolics, Inc.

' Instruction

.' Format Operand from stack - Value(s) Returried 0

Argument(: s) 2: } . - Opcode 200

~argl. dip-list, dtp-locatwe or
dtp-list-instance; '
- arg2 any data type

Immediate Argument Type Signed

Description

Replaces the car of argl with arg2. < Ry

Exceptzon
Conditions: Type of argl is dtp-list-instance.
Arguments argl, arg2
Values: 0
- Memory Referénce Data-write

Register Effects TOS: Valid before, invalid after

97

- Symbolics, Inc.

rplacd ' , Instruction

Format Operand from stack Value(s) Returned 0

Argument(s) 2: , Opcode 201
argl dtp-list, dtp-locative ' '
or dtp-list-instance;

arg2 any data type

Immediate Argument Type Signed

Description o X 4
Replaces the edr of argI with arg2 Sy e - Q/’\JQ““/EE’)-?__.
- Exception SO T S
Conditions: Type of argl is dtp-list-instanece. |
Type of argl is dtp-list and the cdr code
of the referenced cell is not edr-normal.
See the section "Revision ¢ Rplacd.”

Arguments: argl, arg2
Values: 0

Memory Reference Cdr-read, then data-write

Register Effects TOS: Valid before, invalid after

3.2.1.1 Interruptible Instructions

. The next three instructions are interruptible. If a sequence break request arrives
while one of these instructions is executing, the instruction is aborted.and control
passes to the sequence break handler. When the handler returns, the instruction
is restarted from the beginning. Similarly, if a page fault or transport trap
occurs, the instruction is aborted and restarted from the beginning. None of these
instructions store into their arguments. It is possible when processing an
extremely long list for the instruction never to complete because seguence breaks
occur more often than the- time it takes the instruction to complete, or because not
all of the pages referenced by the instruction will fit in main memory
simultaneously. This condifion is detected by software, by comparing the PC on
two successive sequence breaks, and causes control to be diverted to a macrocode
subroutine that performs the equivalent function of the mstructlon This will not
happen often. :

98

rgetf

‘Symbolics, Inc.

Instruction =

Format Operand from stack - - Value(s) Returne& 2

 Argument(s) 2: _ | ' ‘Opcode 225 -

argl any data type;

“arg?2 dtp-list, dtp-nil, or dtp- hst-mstance

Immediate Argument Type Signed

Description : :

Searches the list arg2 two elements at a time, succeedmg if the first
element of a pair is eql to argl, failing if the end of the list is reached
without finding a match. Upon failure, both values returned are nil. Upon

‘success, the first value returned is the second element of the matchlng

pair, and. the second value returned is the tail of arg2 whose car is that
second element. The second value serves as a suecess/failure indicator and

- also can be used with rplaca to change the property value. The length of

the list is supposed te be a multiple of two; if the list is of odd length and
a match occurs at the end of the list, an instruction exception occurs so
software can decide whether this is an error. If no match oceurs, no
exception is taken, whether or not the list length is odd. Note that each
sublist is subject to the type-checking errors and exceptions that the initial
list is subject to. See the section "Interruptible Instructions;" page 98.

Exception _

Conditions: Type of argl is dtp-double-float, dip-bignum,
dip-big-ratio, dtp-complex, or dtp-spare-number
(eq test not sufficient).
A match occurs at the end of an odd-length list.
Any sublist of erg2 is of type dtp -list-instance.

-Arguments: argl, arg2

Values: 2

Memory reference data-read, cdr-read

]

Register Effects TOS: Valid before, valid after

99

Symbolics, Inc.

member S _ - ‘ : Instruction
Format Operand from stack - Value(s) Returned 1
Argument{s) 2: ' ' ' o Opcode 296

argl any data type;
arg2 dtp-list, dtp-nil, or dtp-list-instance

Immediate Argument Type Signed

Description

Returns nil or a tail of arg2 whose ear is eql to argl. This implements
the el:member function and approximates the zl:memgqg function. Note that
each sublist is subject to the type-checking errors and exceptions that the-

initial list is subject to. See the section "Interruptxble Instructions,” page
08, :

Excepuon
Conditions: Type of argl is dtp-double-float, dtp-blgnum,
 dtp-big-ratio, dtp-complex, or dtp-spare-number

(eq test not sufficient).
Any sublist of arg2 is of type
dtp-list-instance.

Arguments: argl, arg?

Values: 1

Memory Reference Cdr-read, data-read

Register Effects TOS: Valid before, valid after

00

assoc

Symbolics, Ine.

Instruction

. Format Oj)erand from stack - Value(s) Returned 1.

-Argument(s} 2: - , . Opcode 227

argl any data type; :
arg2 dtp-list, dtp-nil, or dtp—llst-mstance

Imﬁzediate-Argument Type Signed

Description '
Returns nil or an element of arg2 whose car ig eql to argl. This

. implements the chassoe function and approximates the zliassq function.

Note that each sublist is subject to the type-checking errors and exceptions
that the initial list is subject to. See the section "Interruptible
Instructions," page 98. '

Exception '

Conditions: Type .of argl is dtp-double-float, dtp-bignum,
dip-big-ratio, dtp-complex, or dip-spare-number
(eq test not sufficient).
Any sublist or element of argz is of type
- dtp-list-instance.

Arguments: argl, arg2

Values: 1

Memory Reference Cdr-read, data-read

Register Effects TOS: Valid before, valid after
BAR-1 modified

101

Symbolics, Inc.

3.2.2 Predicate Instructions

Binary predicates: eq, eq-ne-pop, eql, eql-no-pop, equal-number,
equal-number-no-pop, greaterp, greaterp-no-pop, lessp, lessp-no-pop, logtest,
-logtest-no-pop, type-member-n (four instructions), type-member-n-no-pop (four
instruetions). Unary predicates: endp, plusp, minusp, zerop.

Refer also to the subprimitive instructions %unsigned-lessp and %ephemeralp.

eq o : _ Instruction
eq-no-pop
Format Operand from stack - Value(s) Returned 1 (2 for no-pop)
Argument(s) 2: . Opcode 270 (274 for no-pop)

argl any data type
arg2 any data type

Immediate Argumeﬁt Type Signed

" Description
Pushes t on the stack if the operands reference the same Lisp obJect
otherwise, ptishes nil on the stack. The no-pop version of this instruetion
leaves the first argument argl on the stack. (Note that, in the presenee of
forwarding pointers, two references may refer to the same object but not be
eq or eqgl)
Exception None

Memory Reference None

: Registei- Effects TOS:; Valid before, valid after

102

eql -

Symbolics, Inc.

Instruction
~ egl-no-pop o - _ . S ; o
‘Format. Operand from.stack i Value(s) Returned 1 (2 for no-pop)
' Argument(s) 2: o _ | Opcode 263 (267 for no-pop)

argl any data type
arg2 any data type

Immediate Argument Type Signed

Descrzptwn

Returng t if the two arguments are eq or if they are numbers of the same
type with the same value; otherwise returns nil. Note that for
dtp-single-float, +0 and -0 are not eql. Also, (eql 0 0.0) is false. The no-
pop version of this instruction leaves the first argument on the stack. eql
returns nil without trapping any time the data types of the arguments are =
different. (Note that, in the presence of forwarding pointers, two references
may refer to the same object but not be eq or eql.)

Exception
Type: Arithmetic digpatch
Conditions: Types of argl and arg2 are equal and one of
dtp-double-float, dtp-bignum, dtp-big-ratio,
dtp-complex, or dtp-spare-number (but argl and
arg2 are not eq).
Arguments: argl, arg2
Values: 1 for normal version
‘2 for no-pop version (returns argl to become the
non-popped argument).

Memory Reference None

Register Effects TOS: Valid before, valid after

103

Symbolics, Inc.

equal-number ' - g . Instruction
equal-number-no—jgop
Format Operand from stack Value(s) Returned 1 (2 for no-pop)
Argumeni(s) 2v | _ Opcode 260 (264 for no-pop)

argl any numeric data type
arg2 any numeric data type

Immediate Argument Type Signed

Description ,

Tests the two arguments for numerical equality and pushes t or nil on the
stack according to the result. Note that (equal-number 0 0.0), which is
also written (= 0 0.0), is true, in contrast to {eql 0 0.0), which is false. The
no-pop version of this instruction leaves the first argument on the stack.

Exception
Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numeric, but not both
dip-fixnum or dtp-single-float.
Floating point exceptions.
Arguments: argl, arg2
Values: 1 for normal version =
‘2 for no-pop version (returns argl to become the
non-popped argument). ‘

Note that equal-number or equal-number-no-pop will take an
- exception even if the arguments are eq but are not dip-fixnum or
dip-single-float. :

Memory Reference'None

Register Effects TOS: Valid before, valid after

104

Symbolics, Ine.

. greaterp ' _ -) I - Instruction

greate‘rp-ndpop '

Format Operand from stack . Value(s) _Retuméd 1 (2 for no-pop)

Argument(s) 2. : Opcode 262 (266 for no-pop)
argl any numeric data type o
arg2 any numeric data type

Immediate Argdme_nt Type Signed

Description

Tests if arg? > arg2, and pushes t or nil on the stack according to the
result. The no-pop version of this instruction leaves the first argument on
the stack

Exception
- Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numeric, but not both
dip-fixnum or dtp-single-floaf.
Floating point exceptions.
Arguments: argl, arg2)
Values: 1 for normal version '
2 for no-pop version (returns argl to become the
non-popped argument).

Memory Reference None -

Register Effects TOS: Valid before, valid after

105

Symbalics, Inc.

Iéssp : _ ' ' : Instruction

lessp-no-pop o - C e
Fofmat Operand from stack Value(s) Returned 1 (2 for no-pop)
Argument(s) 2 Opcode 261 (265 for no-pop)

argl any numeric data type
arg2 any mumeric data type

Immediate Argument Type Signed

Description _ .
Tests if argl < arg2, and pushes t or nil on the stack according to the

result. The no-pop version of this instruction leaves the first argument on
the stack.

Exception
Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numeric, but not both
dip-fisnum or dip-single-float.
Floating point exceptions.
. Arguments: argl, arg2
Values: 1 for normal version
2 for no-pop version (returns argl to become the
non-popped argument).

Memory Reference None

ERegister Effects TOS: Valid before, valid after

106

Symbolics, Inc,

logtest . : o _ . : : : o o Iﬁs;ruction
: _log‘te‘st-nﬁ-_ﬁdp _ o e R B - s
Format Operand from stack . Value(s) Returned 1 (2 for no-pop)
Argument(s) 2: ' 7 _ Opcode 273 (277 for no-pop)

argl any numeric data type
arg2 any numeric data type

. Immediate Argument Type Signed

Description

Pushes t on the stack if any of the bifs designated hy 1s in the first
argument are 1s in the second argument; otherwise, pushes nil. The no-pop
version of this instruction leaves the first argument on the stack. The
effect. of this instruction is

(not (zerop .(1ogand argl arg2))).

Exception
‘Type: Anthmeuc dispatch
Conditions: Types of argf and arg2 are numeric,
‘but not both dtp-fixnum.
: Arguments argl, arg?
Values: 1 for normal version
2 for no-pop version (returns argl to become
the non-popped argument).

Memory Reference None

Register Effects TOS: Valid before, valid after

107

Symbolics, Inc.

type-member-n I ' Instruction:

type-member-n-no-pop I - _ o o st
-Format 10-bit immediate | - Value(s} Returned 1 (2 for no-pop) '
- Argument(s} 2: ' : Opcode 40-43 {44-47 for no-pop)

argl any data type
I dtp-fixnum (the immediate)

Immediate Argument Type 10-bit mask

Description

n is a number between 0 and 15 inclusive. Two bits of n are part of the
opeode and two bits are taken from the immediate argument. » specifies
which 8-bit field, aligned on a 4-bit boundary, of a 64-bit vector the
immediate is specifying. The 8 least-significant bits of the immediate field I
are then ingerted inte a background of 64 zero bits, The data type of argl,
the argument on top of the stack, is then used o create a bit vector of
zeros, except with a one in the glot for the data type. The two vectors are -
then ANDed together. If the result is nonzero, then t is returned, otherwise

- nil is returned. The no-pop version of thls instruction leaves the argument
on the stack

The fields specified by type-member-n are shown below.
n_=15 n=13 n=11 n=9 n=7 n=h n=3 =1 n=15
_=m\/_f-===\/_, LV SN N/ Y ——— \/—mm

e o 0 e e e e O 8 w2 e s e

o . [

63 55 47 39 31 23 15 7 B
\- FAN TAY TATS i N YA N\ FATRS /
: n=14 n=12 n=1@ n=8 n=6 n=4 n=2 n=p

Exception None -
Memory Reference None

Register Effects TOS: Valid after

108

" endp

Symbolics, Inc.

Instruction

- Format Operand from stack . . Valite(s) Returned 1

Argumenit(s} 1 - - Opeode 2
. arg dip-list, dtp-list-instance, or ' ;

dtp-nil

- Immediate Argument Type Signed

- Description -

Pushes t on the stack if arg is nil; otherwise pushes nil.
Exception None
Memory Reference None

Register Effects TOS: Valid after

108

Symbolics, Inc,

plusp

-Instruction

' Format Operand from stack Velue(s) Returned 1

Argument(s) 1. ' _ Opcode 36
arg any numeric data type '

Immediate Arguﬁzent Type Signed

Description .

Pushes t on the stack if the argument is a positive number strictly greater
than zero; otherwise pushes nil on the stack. This is an optimization of >
arg 0). ' :

Esxception
Type: Arithmetic dispatch
. Conditions: Type of arg is numeric, but not dtp-fixnum
or dtp-single-float.
Floating-point. exceptions.
Arguments: arg
Values: 1

Memory Reference None

Register Effects TOS: Valid after .

110

Symbolics, Inc.

minusp - S ' - - Instruction
Format Operand'from stack ~ . . Value(s) Returned 1
Argument(s) 1: . Opcode 35 -

arg any numeric data type
Immediate Argument Type Signed

Description

Pushes t on the stack if the argument is a negatlve number strictly less
than. Zero; otherwise pushes nil on the stack ‘This is an optimization of (<
arg 0).

FException
Type: Arithmetic dispatch
Conditions: Type of arg is numeric, but not dtp-fixnum
. or dip-single-float. '
Floating-point exceptions.
Arguments arg
Values: 1

Memory Reference None

Register Effects TOS: Valid after

112

Symboalics, Inc.

zerop ' . - Instruction .

Format Operand from stack - Value(s) Returned 1

Argument(s) 1. Opcode-34
arg any numeric data fype

Immediate Argument Type Signed

Descfiption _
. Pushes t on the stack if the argument is zero; otherwise pughes nil on the
stack. - This is an optimization of (= arg 0).

Exception
Type: Arithmetic dispatch
Conditions: Type of arg is numeric, but not dtp-fixnum
or dtp-single-float.
Floating-point exceptions.
Arguments: arg
Values: 1

Memory Reference None

Register Effects TOS: Valid after

112

Symbolics, Inc,

3.2.3 Numeric Operations

- add, sub, unary-minus, increment, decrement, multiply, quotient, ceiling, floor,

truneate, round, remainder, rational-quotient, max, min, logand, logior, logxor,

~ash, rot, Ish, %32-bit-plus, %32-bit-difference, %multiply-double,

. %add-bignum-step, %sub-bignum-step, %divide-bignum-step, %Ishe-bignum-step,
‘pmultiply-bignum-step ' '

Refer also to the following:

equal-number
greaterp
lessp :
" punsigned-lessp
. plusp
minusp
Zerop

If either argument to a numeric instruction is a non-number, then the instruction
will take an error pre-trap. Otherwise, if both arguments are hardware supported
for the instruction, and no exceptions occur, then the instruction will perform the
gpecified operation. If the arguments are numeric, but the data types of the
arguments are not hardware supported or an exception occurs, then the. instruction
will take an instruction exception and let Lisp code decide whether the arguments,
-although numerie, are illegal for this instruction. '

Note that, if there is no floating-point coprocessor, all the numeric operations will
take an instruction exception on encountering operands of type dtp-single-float.
This instruction exception is in addition to any mentioned in the instruction
definitions. See the section "Revision 0 Numerie Operations,” page 299,

113 .

Symbolics, Inc.

add : _ _ ‘ . Instruction

,Format-Operand from stack Value(s) Returned 1

Argument(s) 2: _ Opcode 300
argl any numeric data type
arg2 any numeric data type

Immediate Argument Type Unsigned '

- Description
Pushes the sum of the two arguments on the stack.

See the section "Revision 0 Numeric Operations,” page 299.

 Exceptions

Type: Arithmetic dzspatch

Conditions: Types of argl and arg2 are numeric, but not both
ditp-fixnum or dtp-single-float.
argl and arg2 are both dip-fixnum, but result overflows.
_ Floating point exceptions.

Arguments: argl, arg2

Values: 1

Memory Reference None

~ Register Effects TOS: Valid before, valid after

1i4

. sub

Symbolics, Inc.

Instruction

Format Operand from stack - - Value(s) Returned 1

Argument(s) 2: : ' Opcode 301
argl any numeric data type :
arg2 any numeric data type

Immediate Argument Type Unsigned

Description ' _ '
Subtracts arg2 from argl, and pushes the result on the stack. See the
section "Revigion 0 Numeric Operations;” page 299.

Exceptions

Type: Arithmetic dispatch

Conditions: Types of argl and arg? are numeric, but not both
dip-fixnum or dip-single-float.
argl and arg2 are both dtp-fixnum, but result overﬂows
Floating point exceptmns :

Arguments argl, arg2

Values: 1

Memory Reference None

Register Effects TOS: Valid before, valid after

115

Symbaolics, Inc.

unary-minus e | _ , - Instruction
Format Operand from stack Value(s) Returned 1
Argument(s) 1: Opcode 114

arg any numeric data type

Immediate Argument Type Unsigned

Description :
Pushes the negation of arg on the stack: if the data type of arg is
- dtp-fixnum, subtracts arg from zero, and pushes the result, the two’s
- complement of arg, on the stack If arg is of dtp-single-float, complements
the sign bit and pushes the result on the stack. See the section "Revision
"0 Numeric Operations,” page 299.

Exceptions

Type: Arithmetic dispatch

Conditions: Type of arg is numeric, but not dtp-fixnum
or dtp-single-float. ‘
Type of arg is dtp-fixnum, but result overflows.
Floating point exceptions.

Arguments: arg

Values: 1 '

“Memory Reference None

Register Effects TOS: Valid after

116

"Symbolics, Inc.

increment ' . s ' ' R . Instruction

Format Operand from stack, - o - Value(s) Retumed 0
 address-operand mode (immediate and _
- sp-pop addressing modes illegal)

Argument(s) 1: ' B ' Opcode 143
arg, the address operand, any numeric data type

Immediate Argument Type Not applicable
_ Description' _ '

Adds 1 to arg and stores the result back into the operand.

See the section "Revision 0 Numeric Operations,” page 299.

Exception

- Conditions: Type of arg is numeric, but not dtp-fixnum
-or dip-single-float, .
Type of arg is dip-fixnum, but result overflows.
Floating point execeptions.

Arguments: arg (address operand as locative)
Values: 0 :

Memory Reference None

Register Effects TOS: Unchanged

117

Symbolics, Inc.

decrement - ' 5 - ‘ . - Instruction

Format Operand from stack, = Value(s) Returned 0
address-operand mode (immediate and
sp-pop addressing modes illegal)

Argumeni(s) 1: . ‘ Opcode 144
arg can be any numeric data type

Description _ : _ _
Subtracts 1 from arg and stores the result back info the operand. See the
section "Revision 0 Numeric Operations," page 299.

Exception
Conditions: Type of arg is numeric, but not dtp-fixnum
or dtp-single-float. '
Type of arg is ditp-fixnum, but result overflows.
Floating point exceptions.
Arguments: arg (address operand as locative)
Values: 0

Memory Réference None

| Register Effects TOS: Unchanged

118

Symbolics; Inc.

‘multiply : Inétructi_on

Format O}Serand from stack © . Value(s) Returned 1

Argdment(é) 2: _
.argl any _nurneric data type
arg2 any numeric data type

Opcode 202

Immedzate Argument Type Signed

: Descrzptzon

Computes argl*arg2 and pushes the result on the stack See the section
"Revigion 0 Numeric Operationg,” page 299,

Exceptions
Type: Arithmetic dlspatch
Conditions: Types of argl and arg2 are numeric, but not
bhoth dtp-fixnum or dip-single-float.

argl and arg2 are both dtp-fixnum,. but result overflows,
Floating point exceptions,

Arguments: argl, arg2

Values: 1

Memory Reference None

Register Effects TOS: Valid before, valid after

119 .

Symbolics, Inc.

quotient. B - 7 ' ' : _Instrziction _
Format Operand from stack Value(s) Returied 1
Argument(s) 2: ' ' Opcode 203

argl any numeric data type
arg2 any numeric data type;
if dip-fixnum, must not be zero

‘Immediate Argument Type Signed

Description

Divides argl by arg2, and pushes the quotient on the stack. If both
operands are integers, the result is the integer obtained by truncating the
quotient toward 0; otherwise, the result is a single-precision floating-point
number. guotient implements the function zl:/.of two arguments. See the
section "Revision 0 Numeric QOperations," page 299,

Exceptions
Type: Arithmetic dispafch
Conditions: Types of argl and arg2 are numeric, but not
both dip-fixnum or dtp-single-float.
argl and arg2 are both dtp-fixsmam, but result overflows,
Floating point exceptions.
Arguments: argl, arg2
Values: 1
Note: the only possﬂale fxmum-fixnum overﬂow is -1 3L /-1 =131

_ Mempry Reference None

- Register Effects TOS: Valid before, valid after

3.2.3.1 Division Oberations That Return Two Values

Note that, if only one of the two results is desired, the division instruction can be
followed by an instruction to discard the unwanted result: to diseard the first
result (guotient), use set-sp-to-address-save-tos SP|-1; to discard the second result
(remainder), use set-sp-to-address SPj-l. Trap handlers for division operations, on
' encountenng these particular 1nstruct10ns can avoid computing results that are
going to be discarded.

120

Symbolics, inc.

ceiling - ' - - L o - Instruction

' -.Format Operahd from stack . Value(s) Returned 2

Argument(s) 2. - o Opcode 204
-argl any numeric data type (an integer) :
arg2 any numeric data type;

if dtp-fixnum, must not be zero

Immediate Argument Type Signed |

- Description ' -
Divides argl by arg2, pushes the quofient on the stack, then pushes the
remainder on the stack. If the remainder is not zero, the resulting -
guotient (NOS) is truncated toward positive infinity, and the remainder
(TOS) is such that argl = arg2 * NOS + T(OS. See the section "Division
Operations That Return Two Values,” page 120. See the sectlon "Revision
(¢ Numeric Operations,™ page 299,

Exceptidns
Type: Arithmetic dispatch :
Conditions: Types of arg? and arg2 are numeric, but not
both dip-fixnum.
argl and arg2 are both dtp-fixnum, but result overflows,
Arguments: argl, arg2
Values: 2 '
Note: the only possible fixnum-fixnum overflow is -1_31. /-1 = 1_31.

- Memory Reference None

- Register Effects TOS: Valid before, valid after

121

Symbolics, Inc.

floor

Instruction

Format Operand from stack : Value(s) Returned 2
Argument(s) 2: . : Opeode 205
argl any numeric data type (an integer)

arg2 any numeric data type;
* if dtp-fixnum, must not be zero

Immediate Argument Type Signed

Description

‘Divides arg? by arg2, pushes the quotient on the stack, then pushes the

remainder on the stack. If the remainder is not zero, the resulting

-quotient (NOS) is truncated toward negative infinity, and the remainder

(I'OS) is such that argl = arg2 * NOS + TOS. See the section "Division
Operations That Return Two Values,” page 120. See the section "Revision

0 Numeric Operatlons, page 209,

Exceptions
Type: Arithmetic dlspa.tch
Conditions: Types of argf and arg2 are numeric, hut not
both dtp-fixnum,
argl and arg2 are both dtp—fixnum, but result overflows.

Arguments: argl, arg2

Values: 2 _ '
Note: the only possible fisnum-fixnum overflow is -1_31. /-1 =1_3L
Memory Reference None

Register Effects TOS: Valid before, valid after

122

Symbolics, inc.

‘truncate - o — _ | | i " Instruction
Format Operand from stack - Value(s) Returned 2
Argdment(s) 2 - Opcode 206

argl any numeric data type (an integer) .
“arg2 any numeric data type;
if dtp-fixnum, must not be zero

Immediate Argument' Type Signed

Descrzptzon

Divides arg! by arg2 pushes the quotlent on the stack, then pushes the
remainder on the stack. If the remainder is not zero, the resulting
quotient (NOS). is truncated toward zero, and the remainder (TOS) is such
that argl = arg2 * NOS + TOS. See the section "Division Operations That
Return Two Values," page 120. See the section "Revision 0 Numeric
- Operations,” page 298.

Exceptions
 Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numerzc, but not
‘ both dtp-fixnum.
argl and arg2 are both dip-fismum, but result overﬂows

Arguments: argl, arg2
Values: 2

Note: the only possﬂale f'umum—ﬁxnum overflow is -1_31./ -1 =1_31L

Memory Reference None

Register Effects TOS: Valid before, valid after

123

Symbolics, inc.

round : _ 7 | .- Instruction
- Format Operand from stack Value(s) Returned 2

- Argument(s) 2: ~ 'Opcode 207
argl any numeric data type (an integer) '
arg? any numeric data type;
if dtp-fixmum, must not be zere

Imimediate Argument Type Signed

Descr;ptzon

Divides argl by arg2 pushes the quotient on the stack then pushes the
remainder on the stack. If the remainder is not zere, the resulting .
quotient (NOS) is rounded toward the nearest integer, and the remainder
(T'OS) is such that argl = arg2 * NOS + TOS. If the resulting quotient
(NOS) is exactly halfway between two integers, it is rounded to the one
that is even. See the section "Division Operations That Return Two
Values,” page 120. See the section "Revision 0 Numeric Operations,” page
299.

Exceptions
Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numeric, but not
both dtp-fixnum.
argl and arg? are both dtp-fixnum, but- result overﬂows
Arguments argl, arg2
Values:
Note: the only possible ﬁxnum—fnmum overflow is -1_31, / 1 =1_3L

Memory Reference None

- Register Effects TOS: Valid before, valid after

124

Symbolfcs, Inc.

're.mainder o SR o . . R - Instruction
- Fdrmat_ Opei'and from stack - ' Value(s) ‘Returned 1 o
| -Argument(s) 2: | Opcode 210

argl any numeric data type
arg?2 any numeric data type;
if dtp-fixnum, must not be zero

Immediate Argument Type Signed

' 'Descrzptwn
Divides arg? by arg2, adjusts the rernamder to have the same sign as the
dividend, and pushes the remainder on the stack. See the section "Rewsmn
0 Numeric Operations,” page 299.

Exceptions
Type: Arithmetic dispatch
Conditions: Types of arg! and arg? are numeric, but not
both- dip-fixmum.
argl and arg2 are both dip-fixnum,
but result overflows.
Arguments: argl, arg2
“Values: 1
Note: the only possible fixnum-fixnum overflow is -1_31. / -1 =1_31,
This overfliow is only in an intermediate result, some
implementations may in fact return 0 without trapping.

Memory Refefénce ‘None

Register Effects TOS: Valid before, valid after

125

Symbolics, Vlnc._ '

rational-quotient s . _ - Instruction
Format Operand from stack _ Value(s) Returned 1
Argument(s) 2: - Opcode 211

argl any numeric data type
arg2 any nume_ric data type;
if dtp-fixnum, must not be zero

- Immediate Argument Type Signed

Description

Divides argl by arg2, and pushes the quotient on the stack. If both
operands are integers and the remainder is not zero, the instruction traps
to a routine that returns the ratio (dtp-small-ratio or dip-big-ratio) of
argliarg2 reduced to lowest terms. If the remainder is zero, the result is an
integer if both arguments are infegers, or the result type is _
dtp-single-float if either or both arguments are dip-single-float types. See
the section "Revision 0 Numeric Operations,” page 299.

Exceptions
Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numeric, but not
both dtp-fisnum or dtp-single-float.
argl and arg? are both dip-fixnmum, but result overflows.

argl and arg2 are both dtp-fixnum, but remainder is
non-zero. ' ' : '
Floating point exceptions.
Arguments: argl, arg2
Values: 1 :
Note: the only possible fixnum-fixnum overflow is -1.31. /-1 =1 3L

Memory Reference None

Register Effects TOS: Valid before, valid after

126

. Symbolics, Inc.

Instruction .

Format Operand from stack _ : Value(s) Returned 1

Argument(s) 2: : . Opcode 213
-argl any numeric data type '

arg2 any numeric data type

Immediate Argument Type Signed

. Descrzptwn
‘Pushes the greater of the two arguments on the stack.

- If the arguments are a mixture of rationals and floating-point nuinbers, and

the largest argument is a rational, then the implementation is free to
produce either that rational or its floating-point approximation; if the
largest argument is a floating-point number of a smaller format than the
largest format of any floating-point argument, then the implementation is
free to return the argument in its given format or expanded to the larger
format, (Note that all of these cases are implemented by trap-handlers,
gince they all involve data types that cause instruction exceptions.)

The implementation has a chcnce of returning the largest argument as is or
applying the rules of floating-point contagion. If the arguments are equal
then either one of them may be returned.

Exceptwn
Type: Arithmetic dlspatch
- Conditions: Types of argl and arg2 are numeric, but not
both dtp-fixnum or dtp-single-float.
Floating point exceptions.
Arguments; argl, arg2
Values: 1.

Memory Reference None

Register Effects TOS: Valid before, valid after

127

Symbolics, Ine.

Instruction

Format Opérand from stack Value(s) Returned 1

Argument(s) 2: | Opeode 212
argl any numeric data type '
arg2 any numeric data type

Immediate Argumen,t Type Signed

Description

- Pushes the lesser of the two arguments on the stack.

If the arguments are a mixture of rationals and floating-point numbers, and
the smallest argument is a rational, then the implementation is free to
produce either that rational or its floating-point approximation; if the

. smallest argument is a floating-point number of a smaller format than the

largest format of any floating-point argument, then the implementation ig
free to return the argument in its given format or expanded to the larger
format. (Note that all of these cases are implemented by trap-handlers,
since they all involve data types that cause instruction exceptions.)

The implementation has a choice of returning the smallest argument as is

or applying the rules of floating-point contagion. If the arguments are
equal, then either one of them may be returned.

Exception
Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numerie, but not
both dtp-fixmum or dtp-single-float.
Floating point exceptions.
Arguments: argl, arg2
Values: 1

Memory Reference None

Register Effects TOS: Valid before, valid after

128

Symbolfcs,' Ine.

logand- . o I ' : - Instruction

Format Operand from sté._ck’ Value(s) Returned 1

" Argument(s) 2: " Opcode 215
argl any humeric data type o
. arg2 any numeric data type

Immediate Argument Type Signed

Description
Forms the bit-by-bit logical AND of argl and arg2, and pushes the result on
the stack.

~ Exception
Type: Arithmetic dispatch
Conditions: Types of argl and arg2 are numerlc
bt not hoth dip-fixnum,
. Arguments: argl, arg2
 Values: 1 -~

Memory Reference None

‘Register Effects TOS: Valid before, valid after

129

Symbolics, Inc.

logior

Instruction

Format Opérand' from stack Value(s) Returned 1

Argument(s) 2. = o Opcode 217
argl any numeric data type

 arg2 any numeric data type

Immediate Argument Type Signed

Description
Forms the bit-by-bit inclusive OR of argl and arg2 and pushes the result
on the stack.

Exception
Type: Arithmetic dlspatch)
~ Conditions: Types of argl and arg2 are numenc,
but not both dip-fixnum.
Arguments argi arg2

- Values; 1

Memory Reference None

Register Effects TOS: Valid before, valid after : .

130

Symboilics, Inc.

log’xor L 7 - -~ .. Instruction

. Format O_p'erénd from 'stack_. -+ Value(s) Returned 1 o

- Argument(s) 2: e _ Opcode 216
argl any numeric data type
arg2 any numeric data type

Immediate Argument Type- Signed

'Descrzptwn .
Forms the bit-by-bit excluswe OR of argl and aerg2, and pushes the result
on the stack. :

Exception
Type: Arithmetic dispatch
Conditions: Types of argl and grg2 are numeric,
but not both dtp-fixnum.
Arguments: argl, arg?
© Values: 1 '

Memory Reference None

Register Effects TOS: Valid before, valid after

131

Syrnbolics, Inc.

" ash

" Instricction

. Format Operand from stack ' Value(s) Returned 1

Argument(s) 2: ' — S Opcode 232

- . argl any numeric datz type
- arg2 any numeric data type

Immediate Argument Type Signed

Description :
Shifts argl left arg2 places when arg2 is p051t1ve or right |erg2| places
when arg2 is negative, and pushes the result on the stack. Unused positions
are filled by zeroes from the right or by copies of the sign bit from the
left. This is Common Lisp ash.

- Exception

Type: Arithmetic dispatch -

- Conditions: Types of argl and arg2 are numerlc, but not
both dip-fixnum,
argl and arg2 are both dip-fixnum,
but result overflows.

Arguments: argl, arg2

Values: 1

Memory Reference None

" Register Effects TOS: Valid before, valid after -

DP Op register modified

132

rot

Ish

Symbolics, Inc,

_ Instruction

Format-O'perand' from stack - " Value(s) Returned 1 -

Argument(s) 2: | - ... Opcode 220
argl dtp-fixnum : o
arg2 dtp-fixnmum

Immediate Argument Type Signed

"Description

Rotates arg! left arg2 bit positions when arg2 is positive, or rotates arg!

. right |arg2| bit positions when arg2 is negative, then pushes the result on -

the stack. Bits that are shifted out one side are shifted in the other side.
Exception None
Memory Reference None

Register Effects TOS: Valid before, valid after
DP Op register modified

“Instruction

Format Operand from stack Value(s) Returned 1

Argument(s) 2: - Opcode 221

argl dtp-fixnum :

arg2 dtp-fixnum

Immediate Argument Type Signed

Description o :
Shifts argl left arg2 places when arg2 is positive, or shifts arg? right |arg2|

places when arg2 is negative. Unused positions are filled by zeroes.

Exception None

- Memory Reference None

Register Effects TOS: Valid before, valid after
DP Op register modified

- 133

Symbolics, Inc.

- %32-bit-plus : . Instruction

- Format Operand from stack _ Value(s) Returned 1
Argument(s) 2: _ Opcode 302

argl dip-fixnum
arg2 dtp-fixnum

Immediate Argument Type Unsigned

Desecription _ . : :

Pushes argl + arg? on the stack, ignoring overflow (addition uses signed
32-bit arithmetic). '

Exception None

- Memory Reference None

Register Effects TOS: Valid before, valid after

%32-bit-difference Instruction
Format Operand from stack - | - Value(s) Returned 1

Argumenit(s) 2: Opcode 303
argl dtp-fixnum ' :

arg2 dtp-fixnuin

Immediate Argument Type Unsigned

Description
Pushes argl - arg2 on the stack, ignoring overfiow.

Exception None
Memory BReference None

Register Effects TOS: Valid before, valid after

=134

Syrnbolics, Inc.

-

Y%multiply-double - A - - Instruction
Format Operand from stack - Value(s) Returned 2
| Argument(s) 2: : - Opcode 222

argl dtp-fixnum
arg2 dip-fisnum

Immediate Argument Type Signed

Description . : '
Multiplies argl * arg2, and pushes the two-word result on the stack, low-
order word first. - Note that, unlike %multiply-bignum-step, this is.a
signed multiplication. '

Exception None

Memory Reference None

Register Effects TOS: Valid before, valid after

135

. Symbolics, Inc.

%add-bignum-step | - ' C Instruction
Format Operand from stack : Valuefs) Returned 2
Argument(s) 3: ' _ ' Opcode 304

argl dtp-fixnum
~arg?2 ditp-fismum
arg3 dip-fixnum .
Immediate Argument Type Unsigned
'Descrip-tion :
Adds all three arguments, pushes the result on the stack, then pushes the
carry (2, 1, or 0) on the stack. '
- Exception None

Memory Reference_ None

Register Effects TOS: Valid before, valid after

136

Symbolics, Inc.

%sub-bignum-step S B _ o _ Instruction
'Format: Operand from stack -~ Value(s) Returned 2
. Argument(s) 8: L B Opcode 305.

argl dtp-fixnum
. arg2 dtp-fixnum
argd dtp-fixnum
Immediate Argument Type Unsigned
'De'scription. _ : . '
-Computes ({(argl - arg2) - arg3), pushes this value on the stack, then pushes
the value 1 on the stack if a "borrow” was necessary or 2 if a double
borrow was necessary; otherwises pushes a 0. :
Exception None

‘Memory. Reference None

Register Effects TOS: Valid before, valid after

137

Symbolics, Inc.

%multiply-bignum-step _ . Instruction
Format Operand from stack ' " Value(s) Returned 2.
Argument(s) 2: . . Opcode 306

argl dip-fixnum
arg? dip-fixnum

Immediate Argument Type Unmgned
Descnpnon
Pusghes the 2-word result of multlplymg 32-bit un51gned argl by 32-bit
- unsigned arg2 on the stack: first the least- 51gn1ﬁcant Word then the most-
significant word.
Exception None

Memory. Reference None

Register Effects TOS: Valid before, valid after

138

Symbolics, Inc.

-_%dividenb_i'gnum-step, : : ' - | | Iristru_,cz._‘ion
Format Operand from stack Value(s) Returned 2
Argument(s) 3: . ' Opcode 307

argl dtp-fixnum
arg2 dtp-fixnum _
- argd dip-fismum, must not be 0

Immediate Argument Type Unsigned'

- Description) ' : :

. Performs. an unsigned divide of the 64-bit number ¢+ argl (ash arg2 32.))
by arg3, pushes the quotient on the stack, then pushes the remainder on
the stack. Only the low 32 bits of the gquotient and remainder are pushed
(implying that arg? is expected to be greater than or equal fo.arg2 using.
an unsigned compare). If arg3 is 0, the instruction takes a divide-by-zero
error pre-trap. '
Exeception None
Me'mory EReference None -

Register Effects TOS: Valid before, valid after

139

Symbolics, Inc.

%lshc-bignum;step - : . Instruction
Format Opera_nd from stack : Values) Returned 1
Argument(s) 8: 7) _ Opcode 223

argl dtp-fixnum
- arg?2 dtp-fixnum
argd dip-fixnum (Values not between
0 and 32. inclusive will cause
undefined results.)

Immediate Argument Type Signed

Description _ .
argl and arg2 are unsigned digits. Has the effect of pushing (idb (byte 32.
32.) (ash (+ argl (ash arg2 32.)) arg3)) on the stack as a fixnum.

Exception None
Memory Reference None
Register Effects TOS: Valid before, valid after

DP Op register modified
Rotate-latch modified -

140

Symbolics, Inc.

3.2. 4 Data-Movement lnstructnons

push, pop, movem, push-n-mls push-address, set-sp -to-address, o
set-s p-to—address-save-tos, push-address-Sp-relatlve -stack-blt, staek—blt-address

PUSh |) o : ' " Instruction

- Format Operand from stack - Value(s) Returned 1

Argument(s) 1; S Opcode 100
arg any data type o B

Immedmte Argument Type Uns1gned

Description
Pushes arg on stack.

Exception None
.. Memory Reference None

Register Effects TOS: Valid after

141

Symbolies, Inc.

Pop

Instruction

For}nat'Operand from stack, - Value(s) Returned 0 _
address-operand mode (immediate and '
sp-pop addressing modes illegal)

Argument(s) 2: - Opcode 340
argl any data type
arg?2 address-operand

Immediate Argiament Type Not applicable

Description

Pops argi off the top of stack and stores it in the stack location addressed
by arg2. Note that all 40 bits of the top of stack are stored into the
operand.

Exception None

Memory Reference None

Register Effects TOS; Valid before, valid after

(142

_ Symboilics, Inc.

movem' _ N :) L. Instruction .

Format Oberand_ from stack;. - . Valuels) R_eturn__edf 1
address-operand mode (immediate and o

- -sp-pop addressing modes illegal)

Argume}zt(s) 2 - o Opcode 341
argl any data type
arg2 address operand

Imme.diate Argument Type Not applicable

- Description ' : o .
“Writes the contents of argl, the top of stack, without popping, into the

stack location addressed by arg2. Note that all 40 bits of the top of stack
are stored into the operand. This instruction restores the top of stack. The
way to fix up the top of stack that is equivalent to executing the 3600
fixup-tos instruction is to execute movem SP|0.

Exception None

- Memory Reference None

Register Effects TOS: Valid after

143

Syrnbolics, Inc.

push-n-nil‘s I . _ o ' : fnstruction
'Fbrmat Operand frofn stack, - . Value(s) Returned 1
immediate (sp-pop addressing mode illegal) '

Argument(s) 1: Opcode 101
I dtp-fixnum h o

Immediate Argument Type Unsigned

Description _ | , .

Pushes I nils on the stack. . I is the immediate argument, which must be
greater than 1. (Pushing one nil can be done with plusp 0.)

Exception None

Memory Reference None

Register Effects TOS: Valid after

- push-address ' . Instruction
Format Operand from stack, : Value(s) Returned 1
address-operand mode (immediate and '

sp-pap addressing modes illegal)

Argument(s) 1: ' " Opeode 150
arg address operand

Immediate Argument Type Not applicable

Description
"Pushes a locative that points to arg onto the top of the stack.

Exception None
Memory Reference None

Register Effects TOS: Valid after

- 144

Symboﬁds, inc.

set-sp-to-address =~ . . ' - Instruction)

Format Operand :_fi"om_'stack, . Value(s) Returned 0
address-operand miode (immediate and : '
-sp-pop addressing modes illegal)

' Argume}zt(s) 1. ' o Opéo&e 151
arg is address operand '

Immediate Argument Type Not applicable -

Description S :

. -Sets the stack pointer to the address of arg. This can be used to pop a

. constant number of values with set-sp-to-address SP|-n,
Exception None.
Memory Reference None
Register Effects TOS: Valid after

set—sp»to-addre'sstaire-tos - _ : : Instruction

Format Operand from sta.ck,. ' Value(s) Returned 0
address-operand mode (immediate and

sp-pop addressing modes illegal)

Argument(s) 1: | " Opcode 152
. arg is address operand '

Immediate Argument Type Not applicable

Description

Sets the stack pointer to the address of arg. All forty bits of the new top of
stack are set to the value that was previously on the top of stack.

Exception None
Memory Reference None

Register Effects TOS: Valid after

145

Symbolics, Inc.

- push-address-sp-relative . . ' _ Instruction
Format Operand from stack - Value(s) Returned 1
Argument(s) 1: o . Opcode 102

. arg dip-fixnum
Immediate Argument Type Unsigned
Description . _

~ Computes (stack-pointer minus arg minus 1) and pushes it on the stack

with data type dtp-locative, If sp-pop addressing mode is used, the value
of the stack-pointer used in calculating the regult is the original value of
the stack-pointer before the pop.
Exception None

Memory Refe}'ence None

Register Effec_ts TOS: Valid after

146

Symbolics, Inc. _'

- stack-blt -~ . o : " R o o Instruction
| Format Operand from stack _ L Value(s) Retuir_néd. 0 :
Argﬁment{s) 2; | . Opeode 224

argl dtp-locative pointing to a

location in the current stack frame;
arg2 dip-locative pointing to a ,
location in the current stack frame

 Immediate Argument Type Signed -

Description

With the value -of argl being TO and the value of arg2 being FROM, moves
all forty bits of the contents of successive locations starting at FROM into
successive locations starting at TO until the top of the stack is moved, and
then changes the stack-pointer to point to the last location written, The
last word moved is the stack location just below argl. This instruction is
not interruptible. Note that this instruction only works if it moves at least
one word. Results are undefined if ergil is greater than arg2 (unsigned).
See the section "Revision 0 Stack-blt," page 300.

Exception None
Memory Reference None

Register Effects TOS: Valid before,'vélid after

147

Symbolics, Ine.

.

stack-blt-address ' . , ' ' Instruction =

Format Operand ffom stack, | , Value(s) Returned 0
address-operand mode (immediate and o
sp-pop addressing modes illegal)

Argument(s) 2: - Opcode 352
argl dtp-locative, pointing to a

location ia the current stack frame

arg? is an address operand

- Immediate Argument Type Not applicable

Description
With the value of argl being 70 and arg? being FROM-ADDR, moves all
forty bits of the contents of successive locations starting at the address in
the location pointed to by FROM-ADDR into successive locations starting at
TO until the top of the stack is moved, and then changes the stack-pointer
. to point at the last location written. Note that stack-blt-address is the
same as stack-blt except that arg2 of stack-bli-address is the address of
the operand, whereas arg2 for stack-blt is the contents of the operand.
This instruction is not interruptible. Note that this instruction only works
~ if it moves at least one word. Results are undefined if argl is less than or
. equal to the address of arg2. FROM-ADDR is less than or equal to SP after
the arguments have been removed. See the section "Revision 0 Stack-bit-
address,” page 300.

The instruction sequence

push argl
stack-b1t-address arg2

is equivalent to the instruction sequence

push argi
push-address arg2
stack-blt sp-pop

Where arg2 is a stack-frame address such as, for example, FP|2.
Eyxception None
- Memory Reference None

Register Effects TOS: Valid before, valid after

148 -

Symbolics, inc.

3.25 Fleld Extractlon Instructions :

'ldb dpb, char-1db, char-dpb %p-ldb %p—dpb %op- tag-ldb %p tag—dpb

The following instructions are used to extract and deposxt fields from dlfferent
data_types The extraction instructions take one argument from the stack. The
deposit instructions take two arguments from the stack; the first is the new value

" of the field to deposit into the second argument. Both kinds of instructions take an

immediate argument as well, ' It is illegal, though not checked, to specify a field
with bits outside the bottom 32 bits. See the section ' Format for Field
Extractlon, page 82. '

1db BB FS S o S Instruction

Format Field-Extraction . Value(s) Returned 1
Argument(s) 2: : ‘Opcode 170

argl any numeric data type
BB and FS 10-bit immediate

- Description
Extracts the field specified by BB and FS from argl, then pushes the result
on the stack: See the section "Format for Field Extraction,” page 82..

Exception : _
Conditions: Type of argl is numeric, but not dtp-fixoum
Arguments; argl
Values: 1

Note: The trap handler is responsible for manually _

extracting the byte specifier from the trapped instruction.

Memory Reference None

Register Effects TOS: Valid after

149

" Symbolics, inc.

dpb BB FS | o E Instruction
" Format Field-Extraction _ Value(s) Returned 1
Argument(s) 3: _ T _ Opcode 370

argl any numeric data type
~arg2 any numeric data type
BB and FS 10-bit immediate

- Description
Deposits the value grg? into the field in a:rg2 spec:lﬁed by BB and FS, then
pushes the result on the stack.

See the section "Format for Field Extraction," page 82.

- Exception .
Conditions: Types of argl and arg2 are nurmeric, but not
both dtp-fixnum. :
Arguments: argl, arg2
Values: 1
Note: The trap handler is reSpon31ble for manually
extracting the byte specifier from the trapped instruction.

Memory Reference None

Register Effects TOS: Valid before, valid after

150

Symbalics, Inc.

chér-ldb BB FS _ g' o - R Instruction -

Format Fiéld-ExtractiQﬁ I . Value(s) Returned 1 R
Argument(s) 2: - . Opeode 171

- argl dtp-character
BB and FS'10-bit immediate

. .Descnptzon
Extracts the field specified by BB and FS from argl, then pushes the
result, a dtp-fixnum object, on the stack. See the section "Format for
Field Extraction,” page 82.
_ Exceptioﬁs.None

Memory Reference None -

Register Effects TOS: Valid after

char-dpb BB FS _ T _ | Instruction
Format Field-Extraction Value(s) Returned 1

Argument(s) 3: - : Opcode 371
argl dtp-fixnum :

- arg2 dtp-character :

- BB and FS 10-bit immediate - -
Description
Deposits the value arg.l into field in arg2 specified by BB and FS, then
pushes the result, a dtp-charaeter object, on the stack. See the section
“Format for Field Extraction,” page 82.

- Exceptions None
Memory Reference None

Register Effects TOS: Valid before, valid after

- I587

Symbolics, Ine.

%p -ldb BB FS - __ ' Instruction
Format erld Extractlon : ' ' Value(s) Returned 1 7
Argument(s) 2: C : Opcode 172

- argl any data type
BB and FS3 10~b1t nmnedlate

Description

Extracts the field spec1ﬁed by. BB and FS from the bottom 32 bits of the
word at the address contained in argl, then pushes the extracted field on
the stack. The data type of the result is dtp-fixmum. See the section
"Format for Field Extraction,” page 82.

Exceptions None

Memory Reference Raw-read

Register Effects TOS: Valid after

%p-dpb BB FS - - _ Instruction
Format Field-Extraetion Value(s) Returned 0

Argument(s) 8: o ‘Opcode 372
argl dtp-fixnum :

- arg2 any Lisp data type
BB and FS 10-bit immediate

Description

Deposits the value argl into the field in the contents of the location
addressed by arg2 specified by BB and FS. See the section "Format for
Field Extraction," page 82.

Exceptions None

Memory Reference Raw-read followed by raw-write

Register Effects TOS: Valid hefore, invalid after

152 : [

Symboiics, Inc.

%p- tagldb BEFS - . . Instruction

Format Fleld-Extracnon B SR - Valuels) Returned 1
Argument(s) '2: ' IRV ~ Opcode 173

 argl any Lisp data type .
BB and FS 10-bit immediate

Descraptzon

Extracts the field specified by BB and FS from the top 8 bits of the word
_at the address contained in argl! and pushes it on the stack. The data. type
of the result is dtp-flxnum. See the section "Format for Field Extraction,”
- page 82. . ' '
-Exceptions None

Memory Re‘ference Raw-read

Register Effects TOS: Valid after-

%p-tag-dpb BB FS ' } - Instruction

Format Field-Extraction ' Value(s) Returned 0
Argument(s) 3: : Opcade 873

argl dtp-fixnum
arg2 any Lisp data type
BB and FS 10-bit immediate

Description

Deposits the value argl into the field specified by BB and FS in the top 8
bits of the word at the address contained in arg2. It is illegal, though not
checked, to specify a field with bits outside the top 8 bxts See the section
"Format for Field Extraction," page 82.

Exceptions None

Memory Reference Raw-read followed by raw-write

- Register Effects TOS: Valid before, invalid after

158

Symbolics, In.c. '

3.2.6 Array Operations -

aref-1, aset-1, aioc-l setup-1d-array, setup-force- ld array, fast-aref-1, fast-aset-l
array-leader, store-array—leader aloe-leader

See the section "I-Machine Array Registers,” page 36.

3.2.6.1 Instructions for Accessmg One-DlmensionaI Arrays

Each of the next three instructions accesses a one~d_1mer_151ona1 array.

aref-1 , | Instruction

Format Operand from stack o - Value(s) Returned 1

Argument(s) 2. . : Opcode 312
argl dtp-array, dip-array-instance,

dtp-string, or dtp-string-instance

arg?2 dtp-fixnum

Immediate Argument Type Unsigned

Description _
Pushes the element of argl specified by arg2 on the stack
Checks the array argl to insure it is a one-dimensional array, and also

~ checks to insure that the index arg2 is a fixnum and falls within the
bounds of the array.

Exception :
~ Conditions: Type of argl is dip-array-instance or
dip-string-instance. '
argl is an array with array-long-prefix = 1.
- Arguments: argl, arg2
Values: 1

Memory Reference Header-read, data-read

Register Effects TOS: Valid before, valid after
' DP Op register modified

i54

asei-1

.- Symbolics, Inc.

Instruction

Format Operand from stack - | -le_de(s) -Retumed 0.

| Argument(s) 3: o Opcode 310

argl any Lisp data type (See description).
arg2 dtp-array, dtp-array-instance,

dip-string, or dtp-strmg—mstance

arg3 dtp-fixnum '

Immediate Argument Type Unsigned

Descr;ptmn '
Stores argl into the element of array arg2 spemﬁed by index arg3/

Checks the array to insure it is a one-dimensional array, and also checks to
insure that the index is a fixnum and falls within the bounds of the array.

‘When the array-élement-type is dtp-fixnum or dtp- character' takes an

error trap unless the data type of argl matches the array element type.

' When the array element-type is dtp-character and the array byte-packing

is 8-bit bytes, the instruction takes an error trap if bits <31:8> of argl are
nonzero. Similarly, the instruction takes an error trap if bits <31:16> are '
nonzero in the case of 16-bit characters. It does not check that fixnums are
within range when storing into a fixnum array See the section "Revision

: O Aset-1," page 298

Exception
Conditions: Type of arg? is dtp-array-mstance or
dip-string-instance.
arg2 is an array with array-long-prefix = 1.
Arguments: argl, arg2, arg3
Values: 0 '

Memory Reference Header-read, data-write

Register Effects TOS: Valid before,- invalid after
DP Op register modified

155

Syrnbolics, Inc.

aloc-1 - ' - ' © . Instruction

Format Operand from stack " . Value(s) Returned 1

Argument(s) 2: ' Opcode 313
- argl dtp-array, dip-array-instance,

dtp-string, or dip-string-instance

(array must contain full-word Lisp references);

arg2 dtp-fixnum

Immediate Argument Type Unsigned

Description
Pushes a locative to the element of argl addressed by arg2 on the stack.

Checks the array argl to insure it is-a one-dimensional array containing
object references (that is, checks that the array-element-type-field of the -
array header is object reference), and also checks to insure that the index
arg2 is a fixnum and falls within the bounds of the array.

Exception
Conditions: Type of argl is dtp-array-instance or
dip-string-instance.
argl is an array with array-long-prefix = 1.
Arguments: argl, arg? ' '
Values: 1 '

Memory Reference Header-reas

Register Effects TOS: Valid before, valid after

3.2.6.2 Instructions for Creating Array Registers

Each of the next two instructions creates an array register describing a one-
dimensional array.

156

' Symbolics, Inc.

- setup-ld-array : _' S o _ o - R Instf_'ucti_on_
Format Operand from stac_:k - ‘ Value(s) Returned 4
Argument(s) 1. 7 Opcode 3

arg dtp-array, d_tp-array-insi:ancé,
-dtp-string, or dtp-string-instance

Immediate Argument Type Signed

Description :

Creates an array register describing array arg. The array register will be
four words pushed on top of the stack. arg must be a one-dimensional
array. See the section "I-Machine Array Registers," page 36.

" Exception
Conditions: Type of arg is dtp-array-mstance or
dtp-string-instance, '
arg is an array with array-long-preﬁx =1

Arguments: arg
Values: 4 (array register)

Memory Reference Header-read

Register Effects TOS: Valid after

157

Symbolics, Inc.

sgtup-forée-ld-array] o - ' o Instructibn
Format Operand from stack : ' Value(s) Returned 4
Argument(s) 1: ' o Opcode 4

arg dip-array, dtp-array-instance,
dip-string, or dip-string-instance

Immediate Argument Type Signed

Description

Creates an array register describing a umdlmensmnal array. arg can be any
array. The array register will be four words pushed on top of the stack See
the section "I-Machine Array Registers,” page 36.

Causes multidimensional arrays to be accessed as if they were
unidimensional arrays, with the order of elements depending on row-major
or column-major ordering.

Exception
Conditions: Type of arg is dtp-array-instance or
dip-string-instance.
arg is an array with array-long«preﬁx = 1
Arguments arg
Values: 4 (array register)

- Memory Reference Header-read

Register Effects TOS: Valid after

3.2.6.3 Instructions for Fast Access of Arrays

The next two instructions access single dlmensmnal arrays stored in array reglster
variables.

158

Symbolics, Inc.

fast-aref-1 o . ' ‘ Instruction

_ Format Operand from stack, - Value(s) Returned 1
. address-operand mode (immediate and
- sp-pop addressing modes illegal)

Argunient(s) 2: o Opcode 350
argl dip-fixnum '
arg2 the address operand (address of control word of array reglster)

Immedzate Argument Type Not. apphcable

‘Deseription .
Pushes on the stack the element of arg? spec1ﬁed by mdex argl

Checks to insure that the index is a fixnum and falls within the beounds of
the array; if the check fails, the instruction takes an error trap. :

This instruction takes an instruction exception if the current event count
does not equal the array-register event count. See the section "I- Machme
Array Reglsters " page 36. : :

Exception
Conditions: Array register is obsolete (current

array-register-event-count does not equa! that
encached in the array register).

Arguments: argl, arg? (address operand as. locatwe)
Values: 1

Memory Reference Data-read

Register Effects TOS: Valid before, valid after
DP Op register modified

159

Symbolics, Inc.

fast-aset-1 : : ' - | _ - Instruction

Format Opérénd from stack, ' Value(s) Returned 0
address-operand mode (immediate and -
sp-pep addressing modes iliegal)

Argumeni(s) 3: _ Opcode 351
. argl any Lisp data type (See description.)
arg2 dtp-fixnum
argd the address operand (address of control word of array reg1ster)

Immediate Argument Type Not appIicabIe' : : A Cgpgg o
' 3 ~S
Description L o S
_Stores argl into the element of arg3 indexed by arg2. & B

r.'“\,«
Checks to insure that the index is a fixnum and falls within the bounds of
the array. When the array-element-type is dip-fixnum or dip-character,

" checks the data type of the argument. Does not check that a fixnum is in
range when the array-element-type is dtp-fixnum and the array-byte-
packing field is nonzero. When the array element-type is dtp-character and
the array byte-packing is 8-bit bytes, the instruction takes an error trap if
bits «31:8> of the character are nonzero. Similarly, the instruction takes
an error trap if bits «<31:16> are nonzero in the case of 16-bit characters
‘See the section "Revision 0 Fast-aset-1," page 299.

This instruction takes an instruction exception if the éurren’é event count
does not equal the array-register event count. See the section "I-Machine
Array Registers,” page 36.

- Exception
Conditions: Array register is obsolete (current
array-register-event-count does not equal that
encached in the array register).
Arguments: argl, arg2, arg3 (address operand as locative)
Valuves: 0

Memory Reference Data-write

Register Effects TOS: Valid before, invalid after
- DP Op register modified

160

Symbolics, Inc.-

3.2.6.4 Instructions for Accessing Array Leaders

~ Each of the next three instructions accesses the array leader of 'any'type of .array.

_array-leader ' _ : .- Instruction -
Format Operand from stack) _ Value(s) Returned 1
Argument(s) 2: ‘ | Opcode 316

argl dtp-array, dip-array-instance,
dtp-string, or dtp-string-instance
arg2 dtp-fixnum (See description.)

Immediate Argument Type Unsigned

Description .
Pushes on the stack the leader element of argl that is specified by arg2.

Checks the array argl to insure it has a leader, and checks the index arg2
- to insure it is'a fixnum and falls within the .bounds of the array leader; if
the checks fail, the instrucétion takes an error trap.

Exception
Post Trep .
Conditions: Type of argl is dtp-array-instance or
dtp-string-instance.
Arguments: argl, arg2
© Values: 1

Memory Reference Header-read, data-read

Register Effects TOS: Valid before, valid after

161 .

Symbolics, Inc.

. store-array-leader : ' . Instruction
Format Operand from stack - Value(s) Returned 0
Argument(s) 3: ' Opcode 314

argl any Lisp data-type

arg2 dip-array, dtp-array-instance,
dip-string, or dtp-string-instance
arg3 dtp-fixnum (See description.)

Immediate Argument Type Unsigned

Description
Stores argl into the element specified by arg3 of the leader of arg2. o
Retarns no values. e, ~50 Climves i 3 Ee o gay et

Checks the array arg2 to insure it has a leader, and checks the index arg3
to insure it is a fixnum and falls within the bounds of the array leader; if
the tests fail, the instruction takes an error trap.

Exception
Conditions: Type of arg2 is dtp-array-instance or
dtp-string-instance.
- Arguments: argl, arg2, arg3
Values: 0 . -

Memory Reference Header—read, data-w‘ritei

Register Effects TOS: Valid before, invalid after

162

Symbolics, Inc.

aloc-leader . : _ : _— S : " Instruction
Format Operand from étack_ : . Vaolue(® Rétu_rned 1
Argumént(.;s).. 2: : ‘Opcode 317

argl dip-array,-dtp-array-instance,
dtp-string, or dip-string-instance
arg?2 dtp-fixnum (See description.).

- Inmediate Argument Type Unsigned

' Descrzptzon :
Pushes on the stack a locatlve to the leader element of arg]. indexed by
arg2, Checks the array argl to insure it has a leader, and checks the index
arg2 to insure it is a fixnum and falls within the bounds of the:array
leader; if the checks fail, the instruction takes an error trap.

Exception :
Conditions: Type of argl? is dtp array-mstance or
dtp-string-instance.
Arguments: argl, arg2
Values: 1
Memory Reference Header-read

Register Effects TOS: Valid before, valid after

163

Symbolics, Inc.

3265 Branch and Loop Instructions

branch; branch-true{-else}{-and }{~no-pop}{-extra-pop},
- Branch-false{-else}{-and }{-no-pop }{-extra-pop}, loop- decrement-tos, _
foop- mcrement—tas~less—than

The branch and loop instructions contain a 10-bit signed offset, This offset is in
halfwords from the address of the branch or loop instruction. When a conditional
branch instruction with an offset of zero is executed and the branch would be

~ taken, the instruction takes an error trap instead. See the section "Revision 0
Branch and Loop Instructions,” page 299. This does not apply to the unconditional
branch or loop instructions with an offset of zero. If the branch distance is too
large to be expressed as a 10-bit signed number, then the compiler must generate
the code to compute the target pc and follow this with a %jump instruction.

branch I _ ' Instruction
- Format 10-bit immediate Value(s) Returned 0
Argument(s) 1 7 Opcode 174

I is dtp-fixnum
Immediate Argument Type Not applicable

Description

Continues execution at the location offset I halfwords from the current
program counter (PC). Note that insfruction tracmg may ignore this
instruction.

Exception Noné

Meméry Reference None

Register Effects TOS: Unchanged
branch-true{-else}{-and}{-no-pop }{-extra-pop} I Instruction -

branch-false{-else}{-Qnd}{-no-pop}{-extra—pop} I

Format 10-bit immediate Value(s) Returned 0
Argument(s) 2: ' - Opeodes 60-77 (see below)
argl any data type

I is dtp-fixnum

164

Symbolics, Inc.

Imm_édia_te Argument Type Not appl.ica'blé

Description - o
‘branch-false branches if the top of stack is nil. branch-true branches if
the top of stack is not nil. A branch instruction always pops the argument
off the top of stack whether or not the branch is taken unless otherwise
gpecified by one of the no-pop ¢onditions. -

If the branch is taken, and -and-no-pop is specified, the stack is not
popped. If -else-no-pop is speczﬂed and the branch is not taken, the stack
is not popped : .

If extra-pop is speciﬁed then the stack is popped one time in addition fo -
- any pop performed as specified by the rest of the 1nstruct1on For
clarification, see the list below.

If the branch is taken, execution continues at the location offset I
-halfwords from the current program counter (PC). The instruction takes
an error trap if the branch condition i is met but the offset is zero.

The sixteen combinations of options for the conditional branch 1nstruct10ns
are listed here. Note that there are some combinations that the comp1ler
never generates.

Instruction Opcdde - Description

branch-irue | 60 Always pop once, whether or not braxich)
taken. ' .

branch-false . - 70 Always pop once, whether or not branch
taken.

branch-true-no-pop 64 Do not pop, whether or not branch taken.

branch-false-no-pop =~ 74 Do not pop, whether or not branch taken.

branch-true-else-no-pop ,
' ' . 66 No pop if no branch, pop once if branch.

branch-false“else-no-pop ,
' 76 No pop if no branch, pop once if branch.

branch-true-and-no-pop -
' 65 No pop if branch taken, pop if no branch.

165

Symibwlics, Inc.

‘branch-false-and-no-pop . _
: ' 75 No pop if branch taken, pop if no branch.

' -.brahch—tme-and—extra—pop : : o _
62 Pop twice if branch, pop once if no branch.

- branch-false-and-extra-pop : :
72 Pop twice if branch, pop once if no branch.

branch-true—else-extra-pop' _ :
' 61 Pop once if branch, pop twice if no branch.

branch-false-else-extra-pop : .
71 Pop once if branch, pop twice if no branch.

branch-true-extra-pop :
63 Always pop twice, whether or not branch
taken.

branch—faise—extra-pop _
‘73 Always pop twice, whether or not branch
taken. ‘

Not generated:
branch-true-and-no-pop-else-no-pop-extra-pop

67 Same as branch-irue
branch-false-and-no-pop-eise-no-pop-extra-pop

77 Same as branch-false
Exception Noné

Memory Reference None

Register Effects TOS: Valid before, valid after

166

Symbolics, Inc.

loop-decrement-tos. 1 Instruction

Format .10;bit immediate R Value(s) Retur}ze_d 1
Argument(s) 2: : ' Opcode 175

argl any numeric data type '

I dtp-fixnum

Immediate Argument Type Not applicable ' _) ')

Description -

. Decrements argl, the top of stack If the result ig greater than Zero, then
branches to the location offset from the current program counter (PC) by I
-halfwords. Changes the cdr code of TOS to cdr-next. Does not pop the
_stack, whether or not the branch is taken.

-Exception '
Conditions: Type of arg? is not dip-fisnum.
: Decrementmg argl overflows (should turn into an
error). :
See the section "Revision 0 Loop—decrement—tos," page 299,
Arguments: argl _ ’
Values: 1 (decremented value; may return to a different PC)
Note: when an 1nstmct10n exception is taken, the continuation is the
PC of the top of the loop, not the successor to the loop instruction.
The exception handler may have to alter the contents of the
Continuation register. The net effect of taking and returning from
an exception is such that the stack is not popped.

Memory Reference None

Register Effects TOS: Valid after

167

Symbolics, Inc.

loop~ir_xcrement-tos-less-than. I - ' Instruction
Format 10-bit immediate T Value(s) Returned. 2
Argument(s) 3: - o Opcode 375

. argl any numeric data type
arg? any numeric data type
I dtp-fixnum

Immediate Argument Type Not épplicable'

Description

If arg2, the top of stack, is less than argi, the next on stack, then branches
by the number of halfwords from the current program counter (PC).
_specified by I. In any case, increments the top of stack. Changes the cdr
code of TOS to cdr-next. Does not pop the stack, whether or not the
branch is taken.

'Exceptzon '
Conditions: Type of argl or argz is other than dtp-fixnum
or dtp-single-float.
argl and arg2 are both dtp-fixmum, but result
overflows.
See the section "Revision 0 Loop«mcrement-tos-less than,"
page 299,
Floating point exceptions.
Arguments: argl, arg2
_ Values: 2 (bound, incremented value) and may return to different pe.

Note: when an instruction exception is taken, the continuation is the
PC of the top of the loop, not the successor to the loop instruction.
The exception handier may have to alter the contents of the
Continuation register. The net effect of taking and returning from
an exception is such that the stack is not popped.

Memory Reference None

Register Effects TOS: Valid before, valid after

168

Symbolics, Inc.

3.2.7 Block,lnstruétions _ ':

%hlock-n-read (four ihstructlons) %block-n-read-shift (four instructions),
%block-n-read-alu (four instructions), %bloek-n-read test (four 1nstruct10ns),

" . %block-n-write (four instructions).

A block instruction uses part of its opcode to select the desired Block Address
Register (BAR). A BAR is an internal register that must be loaded by means of a
%write-internal-register instruction before any of the block instructions are
executed. For the instructions that use the 10-bit immediate format, the argument
is the following mask of bits:)

cycle-typé <9:6> (4 bits) Select one of the twelve memory—cycle types. See the
section "Types of Memory References.”

f“lxnum-Only (1 bit) If set, the instruction will take an error trap if “the
: © memory data type is not dip-fixnum.

set-cdr-next <4> (1 bit) For %block-n-read :and %block-n-read-shift: ‘if set, the
: " cdr code of the result is 0; otherwise, the cdr code of the result
is the edr code of memory.

last-word <3> (1 bit) If set, do not prefetch words after this one.

'no-increment <2> (1 bit) If set, do not increment the Block Address .Regi-éter
(BAR) dfter executing this instruction.

If an invisible pointer is fetched from memory, and the memory-cycle type specifies
that the invisible pointer should be followed, the BAR is always changed to point
to the new location. If the BAR is incremented, that happens afterwards.

The %block-n-read-shift instruction uses the rotate-latch register and the byte-r
- and byte-s fields of the DP Op register. DP Op is an internal register that must
be loaded by means of a %write-internal-register instruction before the
%block-n-read-shift, %block-n-read-alu, or %block-n-read-test instruection is
executed.

169

Symbolics, Inc.

%Block-n-read I , | ' Insfruction_
. Format 10-bit immediate : Value(s) Returned 1

- Argumeni(s) 1. . . _ Opcodes 120-123
I 10-bit immediate T

Immediate Argument Type Not applicable

Deséribtion : : _

In accordance with the setting of the bits in the immediate control mask,
reads the word addressed by the contents of the Black Address Register
(BAR) specified by n, and pushes it on the stack. n is a number between 0
and 3 inclusive that is part of the opcode. The specified BAR is - '
incremented according to the bit in the mask as a side effect.

Exception None

Memory Reference Cycle-type specified by instruction

Register Effects TOS: Valid after

170

Symbolics, Ine.

. %block-n-read-shift 7 | - | - © Instruction
Format 10-bit. immediate - - - Vaoluefs) Returned 1 -
Argument(s) 1: ' g Opcodes 124-127 -

I 10-bit immediate

Immediate Argument Type Not applicable

Description ' S '
Reads the word addressed by the contents of the Block Address Register
(BAR) specified by n and rotates it left by the amount specified in the byte-
r field of the DP Op register. The top (byte-s + 1) bits come from this
rotated word, and the bottom bits come from the rotate-latch register, and
this value is pushed onto the stack. The rotate-latch register is then loaded
from rotated memory word. The effect of this operation is to perform a dpb
(deposit-byte) of the word from memory into the rotate-latch register. = is’
a number between 0 and 3 inclusive that is part of the opcode. The _
specified BAR is incrementied according to the bit in the immediate-operand
mask as a side effect. See the section "Revision 0 %Block-n-read-shift,"

page 298. : -

Exception None
Memory Reference Cycle-type specihed

Register Effects TOS: Valid after

171

Symbolics, Inc.

%block-n-read-aluy - | : _ Instruction

- Format Operand from stack, . Value(s) Returned 0 -
address-operand mode (immediate and :
sp-pop addressing modes illegal)

Argumenti(s) 1: : ' Opcodes 160-163
arg is any numeric data type

Immediate Argument Type Not applicable .

Description

. Performs the ALU operation specified in the alu-op field of the DP Op
register using arg and the word addressed by the contents of the Block
Address Register (BAR) specified by n as operands. n is a number between
0 and 3 inclusive that is part of the opcode. Writes the result of the ALU
operation back into the addressed operand, arg. The cdr code of the
operand is set to the edr code from IMemory. The speclfied BAR is
incremented as a side effeet.

The values used for the block instruction mask bits are

CYCLE TYPE -- data read :
FIXNUM-ONLY -- the usual generig-arithmetic post traps apply
SET-CDR-NEXT -~ not applicable

LAST-WORD -~ false

NO-INCREMENT -~ false

Exception _

Conditions: Traps according to the generic-arithmetic traps associated
with the specified ALU operation.

. Arguments: arg (address operand as locative)

Values: 0 (increments the BAR)

Note: The operation to be performed is 1nd1cated by the DP Op reglster
The trap handler must save this away before it can get clobbered
by other processes, interrupt handlers, or complex instructions.
See the section "Revision 0 %Block-n-read-alu,” page 298.

Memory Reference Data-read

Register Effects TOS: Unchanged

172

Symbolics, Inc. -

%-b_loek-n-read-test I . o . Instruction
. Format 10-bit immediate = Value(s) Returned 1
- Argument(s) 2: ' Opcodes 130-133

arg(s) can be any Lisp data type,
except for when a test that
requires dtp—fixnum is selected

- Immediate Argument Type Not apphcable

.Descnptzon

Performs the test selected by the contents of the condition ﬁeld and alu-Op
fields of the DP Op register. See the section "Revision 0 %Block-n-read-
test,” page 299. Some of the tests that could be performed are:

ephemeralp(memory (BAR))
oldspacep(memory (BAR))
eq{memory(BAR),top-of-stack)
logtest(memory(BAR),top-of-stack)

- where memory(BAR) specifies the object reference addressed by the nth
- BAR. (n is a number between 0 and 8 inclusive that is part of the opcode.}
Does not pop arguments off the stack.

If the test succeeds, transfers control to the program counter next on the
stack If the test fails, increments the BAR contents, Execution then
proceeds with the next instruction.

This instruction is typically used for searching tables and bitmaps, and by
the garbage collector. Note that the logtest option produces meaningful
results only for dtp-fixnum operands; in particular, it does not work for
dip-bignum operands. (Actually, the logtest test ignores the data type of
its operand.) Typically, the programmer would set the fixnum-only bit in
the 10-bit immediate field when using this test. See the section "Block
Instructions,” page 169. The oldspacep test is true exactly when a- transport
trap would occur if the cycle type allowed it. For this to be useful, the
cycle type selected for %block-n-read-test oldspacep test must disallow
transport traps. See the section "Revision 0 %Block-n-read-test,” page 299.

Exception None
Memory Reference Cycle-type specified.
Register Effects TOS: Valid before for 2-operand tests, valid after

173

Symbolics, Inc.

| %block-n-write ; : _ . ' Instruction
Format .Opc_erand from stack o Value(s) Returned O
Argument{s) 1. : | Opcodes 30-33

arg can be any Lisp data type
Immediate Argument Type Signed

Description. '
Writes arg into the word addressed by the contents of the Block Address
Register (BAR) specified by n. n is a number between 0 and 8 inclusive
that is part of the opcode. All 40 bits, including cdr code, of this word are
written into memory. The specified BAR is incremented as a side effect. If -
arg is immediate, the tag bits will specify dtp-fixsmum and cdr-next.

| Exception None
Memory Reference Raw-write

Register Effects TOS: Unchanged

174

Symbolics, Inc.

. 3 28 Function-Cthng Instructions

dtp call—complled-even dtp-call-complled-odd dtp-call-mdlrect dtp-call-genemc,'
-and the -prefetch versions of these last four, start-call, finish-call-n,
finish-call-apply-n, finish-cali-tos, finish-call-apply-tos,. entry-rest-accepted,
entry-rest-not-accepted, locate-locals, return—smgle, retum-multlple

return kludge take-values . .

3.2.8.1 Function-CaIling Data Types

~ Each of the following data types when executed as an instruction starts a function
call. Only very brief descriptions of these instructions are presented in this -
chapter. Complete information is contained in a separate chapter. See the section
"Function Calling, Message Passing, Stack-Group Switching,” page 241.

, dtp—call-compiled-even. : : - | _ Instruction
dtp-call-compiled-even-prefetch .. ' _ Instruction
Format Full-word instruction - - Value(s) Returned Not applicable

Argument(s) 1. :
- Included in the instruction is addr,
 -the address of the first

instruction to be executed

in the target function.

Immediate Argument Type Not applicable

_Descrzptzon
Starts a function call that will commence executlon at the even instruction
of the word addressed by addr. The prefetch version of this instruction
indicates that the hardware should initiate an instruction-prefetch
operation. See the section "Starting a Function Call," page 249.

- Exception None
Memory Reference None

Register Effects TOS:; Valid after

175

Symbolics, Inc.

dtp-cal'l-compiled-odd‘ : . ' Instruction
dtp—éall-compiled-o_dd-prefetch B ' Instruction
Format Full-word instruction : Value(s) Returned Not applicable

Argument(s) 1.

Included in the instruction is addr,
the address of the first

ingtruction to be executed

in the target function

Immediate Argument Type Not applicable

Description _

Starts a funetion call that will commence execution at the odd instruction
of the word addressed by addr. The prefetch version of this instruction
indicates that the hardware should initiate an instruction-prefetch
operation. See the section "Starting a Function Call," page 249.

Exception None
.Memory Reference None

Register Effects TOS; Valid after

176

© Symbolics, Inc. .

dtp-callQindirect':' B o _ ' o o 'Instfuctiori
dtp-call-iﬁdirect-prefei_:_ch ' S Instruction -
" Format Full-word instruction _ : Value(s). Returned Not appﬁcable._

Argument(s) 1

Included in the instruction is addr, the address of a word, whose
- contents can be of any data type. The contents of the word is the
function to call. - :

Immediate Argument Type Not. applicable
Description ' :
Starts a call of the function addressed by addr or by a forwarding pointer
addressed by addr. Use of the prefetch version suggests to the hardware
that an instruction-prefetch operation is desirable. See the section
"Starting a Function Call," page 249,
'..Ex'ceptioﬁ None |
Memory Reference Data-read.

. Register Effects TOS: Valid after

177

Symbolics, Inc.

dtp-call-generic . : A _ b Instruction
dtp-éall-generic-prefetch o _ . Instruction
Format Full-word instruction Value(s) Returne& Not applicable

" Argument(s) 1:
Included in the function is addr, the address of a generic function

- Immediate Argument Type Not applicable

Description -

Starts a call of the generic function addressed by addr. Use of the
prefetch version suggests to the hardware that an instruction-prefetch
operation is desirable. See the section "Calling & Generic Function," page
277, '

Exception None
Memory Reference None

Register Effects TOS: Valid after

3.2.8.2 instructions for Starting and Finishing Calls

The following instructions are used to implement function calling, Only brief
descriptions of these are presented here. See the section "Fumction Calling,
Message Passing, Stack-Group Switching,” page 241

start-call Instryction

Format Operand from stack Value(s) Returned Not applicable
Argument(s) 1: . Opcode 10

arg is any data type

Immediate Argument Type Signed

Description

Starts a function call of the function specified by arg. See the section
"Starting a Function Call,” page 249. '

Exception None

178

Symbolics, Irc.

~ Memory Reference Data-read (sometimes)

- Register Effects TOS: Valid after

179

Symbolics, Inc.

finish-call-n 7 o ' o Instruction

fiﬁish-call-n—apply I

.Format 10-bit immediate : Value(s) Returned Not applicable

Argument(s) 1: Opcode 134 (135 for apply)

I dtp-fixnum
Immediate Argument Type Unsigned

Descrzpnon

Finishes a function-calling sequence builds the new stack frame, checks for
control stack overflow, and enters the called function at the appropriate .
starting instruction. The low-order eight bits of the immediate argument I
specify a number that is equal to one more than the number of arguments
explicitly supplied with the eall, including the apply argument but not
including the extra argument if any. For example, if one argument IS
supplied with finish- call»n, then I<7:0> = 2.

The two high-order hits of T are the value-disposition, which specifies what
should be done with the result of the called functlon. The possible values
of value-disposition are: _
s Effect
e Value
s Return
* Muitiple

The function-calling chapter explains the meaning of thig field. See the
section "Finishing ‘the Call,” page 253.

finish-call-n-apply is the same as finish-call-n, except that its use
indicates that the top word of the stack is a list of arguments.

Exception None
Memory Reference None

Register Effects TOS: Unchanged

180

Symbolics, inc.

. finish-call-tos 1 - T : X - Instruction '

' fhﬁsh—call;toé-apply I

Format 10-bit immediate B ~ Value(s) Returned Not applicable
Argument(s) 2: ' Opcode 136 (137 for apply)
I dip-fixnum ' o

- arg dtp-fixnum
Immediate Argument Type Unsigned

Description : _ o
'Finishes a function-calling sequence: builds the new stack frame, checks for
control stack overflow, and enters the called function at the appropriate
starting instruction. arg, which is popped off the top of stack, specifies the
number of arguments explicitly supplied with the call,including the apply
argument in the case of finish-call-tes-apply. Note that arg differs from
the immediate argument count in finish-cali-n by not including the bias of
+1.

The two high-order bits of the immediate argument I are the
value-disposition, which specifies what should be done with the result of the
called function. The possible values of value-disposition are:

o Effect

‘s Value

* Return.

-+ Multiple _
The function-calling chapter explains the meaning of this field. The low-

order eight bits of I are ignored by this instruction. See the section
"Finishing the Call," page 253.

finish-call-tos-apply is the same as finish-cail-tos, except that its use
indicates that the top word of the stack is a List of arguments.

Exception None
Memory Reference None
Register Effects TOS: Unchanged

181

Symbolics, Inc.

entry-rest-accepted :_ _ L Instruction

entry—rést-not—accepted

Format Entry instruction Vaiue(s) Returned Not applicable

Argument(s) 2: ' : Opcode 176 Q77 for not-accepfed)
argl 8-bit immediate : '
arg? 8-bit immediate

Immediate Argument Type Unsigned

Description _ _ o .

Performs an argument match-up process that either takes an error trap, if

the ‘wreng number of arguments has been supplied, or adjusts the control

stack and branches to the appropriate instruction of the entry vector or to
- the instruction after the entry vector. : :

argl is twoe greater than the number of arguments that the function
requires, and arg?2 is two greater than the number of required arguments

- plus the number of optional arguments that the function will accept. See
the section "Entry-Instruction Format," page 81

The difference between entry-rest-accepted and entry-rest-not-accepted is
in how the argument matchup and stack-adjustment process are controlled
as explained in the chapter on funetien calling. See the section "Function
Entry,"” page 257. See the section "Revision 0 Entry-rest-accepted,” page
299. -

Exception See the section "Trapping Out of Entry and Restarting,” page
266, '

- Memory Reference See the section "Pull-apply-args,” page 261.

Register Effects TOS: Invalid after

182

Symbolics, Inc.

locate-locals - . c R ' : Instruction L
- Format Operand from stack ' " Value(s) Returned Not applicable
 Argument(s) 0 _ _ Opcode 50

Immediate Argument Type Not applicable

Description _
Pushes (confrol-register.arg_size - 2) onto the stack, as a fixnum: This is
the number of spread -arguments that were supplied (this is less than the
number of spread arguments now in the stack if some &optional _
arguments were defaulted); sets LP to (new-SP - 1) so that LP|0 is now the
&rest argument and LP[1 is the argument count; and sets control-

. register.arg_size to (LP - FP). Note that (new-SP - 1) here refers to the SP
after the incrementation caused by this instruction pushing its result.

Thus the value of LP after the instruction is equal to the value in the SP

- before the instruction. See the section "Pull-apply-args,” page 261.

Exception None
Memory Reference None

. Register Effects TOS: Valid afier

183

Symbolics, Inc.

return-single I _ - _ o Instruétidn-
Format 10-bit immediate - S Valué(;) Returned Not applicable
Argument(s) 1: . Opcode 115

I (should be 1000(octal),
1040(octal); or 1041(pectal),
but not checked) .

Immediate Argument Type Unsigned

" Description : , :

Specifies the value to be returned on the top of stack accerding to the
immediate operand: 1000(octal), the current top of stack; 1040¢octal), nil;
1041(octal), t. When the value disposition is "for value” or "for multiple,"
-the cdr code of the top of stack is set to edr-next. See the section .
"Revision 0 Return-single,” page 299. Removes the returning function’s
frames from the control and binding stacks; unthreads catch blocks and

- executes unwind-protects; restores the state of the caller; and resumes

execution of the caller with the returned values on the stack in the form

- specified by the caller. May do a check-preempt-reguest operation. Sese the
section "Function Returning,” page 266.

Exception Nonhe
| _ Memdr:}" Reference None
Register Effects TOS: Valid before if TOS is the source of the
operand. Status afterwards is determined by value disposition and seen

as status after finish-call in the caller. If the value disposition
is for-effect, then the TOS register is invalid; otherwise, it is valid.

184

Symbolics, Inc.

return-multiple - _ R ' : - Instruction

Format Operand from stack, " Value(s) Returned Not applicable
.immediate or sp-pop addressing modes only ' '

~Argument(s) 1: . Opcode 104
arg is dip-fixnum, non-negative

Immediate Argumeﬁt Type Unsigned

.Descrzptwn

Returns, in accordance w1th the value disposition spec1ﬁed by the contents
of the Control register, the number of values specified by arg in a multiple
group, which includes as the top entry the number of values refurned, on
top of the stack. Removes the returning function’s frames from the control
and binding stacks, unthreads catch blocks, restores the state of the caller,
and resumes execution of the caller with the returned values on the stack
_in the form specified by the caller. May perform a check-preempt-request
operation. See the section "Function Returning,” page 266.

Exééption None
Memory Reference None

Register Effects TOS: Status afterwards is determined by value
disposition and seen as status after finish-call in caller

185 -

Symbolics, Inc.

return-kludge _ | . _ Instruction
Formaf Operand from staék, . Value(s) Returned Not applicable
immediate or sp-pop addressing modes only

: Argumént(s) 1 ' _ Opcode 105
arg dip-fixnum, non-negative

Immediate Argument Type Unsigned

Description

Returns the number of values specified by arg on top of the stack, ignoring
the value-disposition. Removes the returning function’s frames from the
control and binding stacks, unthreads catch blocks, restores the state of the
caller, and resumes execution of the caller. May perform a check-preempt-
request operation. Used for certain internal stack-manipulating subroutines
and for all trap handlers. See the section "Function Returning,” page 266.

Exception None
Memory Reference None

Register Effects TOS: Valid after

. 188

- 8ymbolics, Inc.

take-values I = . : I, - Instruction -
.- Format Operand from: stack, _ - Value(s) Returned arg -
immediate addressing mode only _
Argument(s) 1: ' © Opecode 106
I .

Immediate Argument Type Unsigned

- Description . A : -
Pops a'multiple group of values off the top of stack, using the first value- '
as the number of additional words to pop. Pushes the number of words

" gpecified by arg back on the stack, discarding exfras if too many values are
"in the multiple group, or pushing enough nils to equal the number desired
if too few values are in the multiple group.
Exception None

Memorjz Reference None

Register Effects TOS: Valid after

187

Symbolics, Inc.

329 Binding Instructions

bind-lbcative_—to.—value,- bind-locative, unbind-n, %res_tore-binding—!stack

Instructions that perform binding operations check for stack overflow using the
contents of the Binding-Stack-Limit register as the limit. See the section "Binding
Stack," page 244. Those that perform unbinding operations check for stack
underflow. See the section "Revision 0 Binding Instructions,” page 298. The
take an error trap if an unbinding instruction tries to undo a binding and con rol-
register.cleanup-hinding = 0, There is no fence-post error in the case of a - - i
%restore-binding-stack that is a no-op because the two pointers are equal the
“instruction never traps in this case,

bind-locative-to-value _ Instruction
Format Operand from stack . Value(s) Returned 0
Argument(s) 2: . Opeode 236

argl dtp-locative
arg2 any data type

Immediate Argument Type Signed

Description -
Pushes arg! onto the binding stack, along with the contents of the cell it - 7

* points to, then stores argZ into the location pointed to by argl./ Copies the
Control register binding-cleanup bit into bit 38 of argl on the binding stack
and sets this Control register bit to 1. Does not follow external-value-ceil
pointers as invisible pointers when reading and writing the cell. Takes an
error trap if the binding-stack pointer would be greater than the contents
of the Binding-Stack-Limit register. See the section "Binding Stack,” page
244, L

Exception None

Memory Reference Bind-read, followed by two raw-writes, followed
by bind-write

Register Effects TOS: Valid before, invalid after
BAR-1 is modified

I88

Symbdlics, Inc.

‘bind-locative . Instruction
o FOfmat Opei'and from .stac':l_{' o Value(s) Ret;.zrned 0
| -Argument(s) 1: ' ' - Opcode 5

arg dtp-locative
Immediate Argument Type Signed -

" Description '
Pushes arg onte the binding stack, along with the contents of the cell it

- points to. Copies the Control register binding-cleanup bit inte bit 38 of arg.
on the binding stack and sets this Control register bit to 1. Does not follow
external-value-cell pointers as invisible pointers when reading the cell.
Takes an error trap if the binding-stack pointer would be greater than the
contents of the Binding-Stack-Limit register. See the section "Binding
Stack," page 244. :

Exception None
Memory Reference Bind-read, followed by two raw-writes

Register Effects TOS: Invalid after
BAR-1 is modified

189

Symbwlics, Inc.

unbind-n - o o ' ' Instruction

Formatr Operand from stack _ Value(s) Returned 0
{only sp-pop operands and the '
immediate constant 1 are legal)

Argumeni(s) 1. | : : Opcode 107
arg dtp-fixnum '

IMedidte Argument Type Unsigned

Description

Unbinds the top arg variables on the binding stack. It unhmd,s a variable

by popping the variable’s old value and the locative fo that variable off the

binding stack and storing the old value back into the location pointed to by

the Ioggtgiyg) Copies bit 38 of each locative word on the binding stack into

~“the Control register binding-cleanup bit as it pops the locative. After all

the unbindings have been accomplished, does a check-preempt-request
operation. See the section "Binding Stack,” page 244. See the sectmn

~ "Revision 0 Unbind-n," page 300.

E Esxception None
Memory Reference Two bind-reads, followed by bind-write

Register Effects TOS: Unchanged

180

Symbolics, Inc.

%restor_e-bi_ndiﬁg-stack' R _ o R Instruction.
Format Operand f1_~oin stack Value(s) Returned 0
- Argumeni(s) L. _ ; S ‘Opcode 6

~ arg dtp-locative
Immediate Argument Type Signed

Description

Unbinds special variables until the binding-stack pointer equals arg, ‘that 1s,'

“until all variables up to the one pointed to by arg have been unbound. It
unbinds a variable by popping the varijable’ 5 old value and the Iocative to

location pomted to by the locative: Copies bit 38 of each locative word o'ffﬁ_l

the binding stack into the Control register binding-cleanup bit as it pops
- the locative. After all the unbindings have been accomplished, does a
.check-preempi-request operation. It is legal for arg to equal the binding-
stack pointer at the beginning of the instruction; in this case, the
instruction does nothing. See the section "Binding Stack,” page 244,
- Exception None
Memory Reference Two bind-reads, followed by bind-write

Register Effects TOS: Valid after

191

tU‘\

PRV

Ui

1

YRYAa

Pe s

Symboiics, Inc.

3.2.10 Catch Instructions
catch-open, catch-close
Catch Blocks

A catch block is a sequence of words in the control stack that describes an active
catch or unwind-protect operation. All catch blocks in any given stack are linked
together, each block containing the address of the next outer block. They are
linked in decreasing order of addresses. An internal register (scratchpad location)
named catch-block-pointer contains the address of the innermost catch block, as a
dtp-locative word, or contains nil if there are no active catch blocks. The address
of a catch block is the address of its catch-block-pe word. : :

The format of a-catch block for the catch ¢peration is:

Word Name " Bit39 Bit 38 _ Contents
ecatch-block-tag] invalid flag any chject reference
catch-block-pc : B] ' -catch exit address
catch-block-binding-stack-pointer

' 8 8 . binding stack level
catech-block-previous extra-arg cleanup-catch previous catch blogk
catch-block-continuation value=disposition cortinuation

The format of a catch block for the unwind-protect operation is:

Word Naime _ Bit 39 Bit 38 Contents

catch-block-pe N 7 - cleanup handler
catch-block-binding-stack-pointer _ '

_ B . 1 binding stack level
catch-block-previous extra-arg cleanup-catch previous catch Block

The catch-block-tag word refers to an object that identifies the particular catch

- operation, that is, the first argument of catch-open or catch-close. The catch-
block-invalid-flag bit in this word is initialized to 0, and is set to 1 by the throw
function when it is no longer valid to throw fo this catch block; this addresses a
problem with aborting out of the middle of a throw and throwing again. This
word is not used by the unwind-protect operation and is only known about by the
throw function, not by hardware.

The catch-block-pc word has data type dtp-even-pc or dtp-odd-pe. For a cafch
.operation, it contains the address to which throw function should transfer control
For an unwind-protect operation, it contains the address of the first instruction of

192

Symbolics, inc.

- the cleanup handlier. The edr code of this word is 'Set to zero (Cdr-hextj' and not -
‘used. For a catch operatmn with a value disposition of Return, the catch-block- pc
word contains mil. . _

The catch-block- bmdmg—stack-pomter word contams the value of the bmdmg—stack
pointer hardware register at the time the catch or unwind-protect operation
started. -An operation that undoes the catch or unwind-protect will undo special-
variable bindings until the binding-stack-pointer again has this value. The edr-
code field of this word uses bit 38 to distinguish between catch and unwind-
protect; bit 39 is set to zero and not used.

-The catch-block-previous word contains a dtp-locative pointer to the cat_ch-block—pc
-word of the previous catch block, or else contains nil. The c¢dr-code field of this
word saves two bits of the Control register that need to be restored.

‘The catch-block-continuation word saves the Continuation hardware register so that
a throw function can restore it. The cdr-code field of this word saves the value
disposition of a-catch; this tells the throw function where to put the values -
thrown. This word is not used by the unwind-protect operation.

" The compilation of the catch spec1a1 form is apprommately ag
follows:

Code to push the catch tag on the stack.
Push a constant PC, the address of the first instruction
after the catch.
A catch-open instruction.
The body of the catch.
A catch-close instruction.
- Code to move the values of the body to where they are wanted;
this usually includes removing the 5 words of the catch block
from the stack. '

The compilation of the unwind-protect special form is approximately as follows:

Push a constant PC the address of the cleanup handler,

. A catch-open instruction.
The body of the unwind-protect.
A catch-close instruction.
‘Code to move the values of the body to where they are wanted;
this usually includes removing the 3 words of the catch block
from the stack.

193

Symbolics, Inc.

Somewhere later in the compiled function:

The body of the cleanup handler.
A %jump instruction,

Catch blocks are created in the stack by executing the eatch-open/unwind-protect
instruction, and they are removed from the stack by executing the catch-close
instruction.

An unwind-protect cleanup handler terminates with a %jurnp instruction. This
instruction checks that the data type of the top word on the stack is dip-even-pe
or dip-odd-pe, jumps to that address, and pops the stack. In addition, if bit 39 of
the top word on the stack is 1, it stores bit 38 of that word into control-
register.cleanup-in-progress. If bit 39 is 0, it leaves the control register alone.

154

Symbwilics, Inc.

| catch-open- N B 7 o .- Instruction
- Format 10-bit immediate - k Valué(s)'Retumed._z or 3
- Argument(s) 1. _ .' ~ Opcode 376 |
- N dtp-fixnum L ' T
Description

This instruction has two versions, catch and unwind-protect, which are
specified by bit 0 of the immediate argument, n. Bit 0 is for catch, bit 1 for -
-unwind-protect. Bits 6 and 7 of n contain the value disposition. Bits 1-5
and B-9 must be 0. This instruction, -when bit 0 is 1 (unwind-protect), must
be preceded by instructions that push the catch-block-pc on the stack. When
bit 0 is 0 €catch), preceding instructions must push the catch-block-tag and
. the catch-block—pc as well. See the section "Catch Blocks," page 182, The
catch version operates. as follows: '

1. Push the -binding—stack—pointer, with 0 in the cdr code. -

- 2. Push the catch-block—pomter, with control-register. extra-arg and
control-reglster cleanup- cafch bits in the cdr code. :

3. Push the Contmuatmn-reglster, with bits 6 and 7 of the catch-open
instruction in the cdr code. :

4. Set catch-block-pointer to the value stack-pointer had at the beglnmng
-of the instruction, and set control-register. cleanup-catch to 1.

The unwind-proteet version operates as follows:
1. Push the binding-stack-pointer, with 1 in the cdr code.

2. Push the catch-block-pointer, with control-register.extra-a_rg and
- control-register.cleanup-catch bits in the cdr code.

3. Set catch-block-pointer to the value stack-pointer had at the beginning
of the instruetion, and set control-register.cleanup-catch to 1.

Exception None
Memory Reference None

Register Effects TOS: Valid after

195

Symbolics, Inc.

catch-close

Instruction

Format Operand from stack - _ Value(s) Retz_irned 0
Argument(s} 0 . Opcode 51
Description -

The compiler emits this instruction at the end of a catch or unwind-protect
operation. It is used internally to the throw function and is called as a
subroutine by the return instructions when they find the

control-register.cleanup-cateh bit set. Instruction operation is:

L

Set the virtual memory address to the contents of the catch-block-
pointer register and fetch three words: catch-block-pe, catch-block-
binding-stack-pointer, and catch-block-previous. These words will

‘always come from the stack cache, but the instruction may not need

to rely on that.

If eatch-block-binding-stack-pointer does not equal binding-stack-
pointer, undo some bindings. This can be done by calling the
%restore-binding-stack-level instruction as a subroutine. The
ingtruction can be aborted (for example, by a page fault) and retried.

. Restore the catch-block-pointer register, control-register. éleanup catch

bit, and control-register. extranargument bit that were saved in the
catch-block-previous word. :

. Check the unwind-protect flag which is bit 38 of the catch-block-

binding-stack-pointer word. If this bit is 0, the instruction is done.
Note that stack-pointer is not changed. If this bit is 1, push the next
PC (or the current PC if catch-close was called as a subroutine by
return) onto the stack, with the current value of control-
register.cleanup-in-progress in bit 38 and 1 in bit 39; then jump fo
the address that was saved in the catch-block-pc word and turn on
the control-register.cleanup-in-progress hit.

186

Symboiics, Inc.

. When the next instructidn after _catch-élose is-r_eached, the value of SP is _
- the same as it was before catch-close. The catch block is still in the

stack, but is no longer linked into the catch- block pointer. hst See the
section "Catch Blocks " page 192 ' :
Exceptzon None :

Memqrjz Reference None -

Register Effects TOS: Unchanged

197

Symbolics, Inc.

3.2.11 Lexical Variable Accessors .
push-lexical-var-n. (eight instructions), 'pop-lexical-var--n (eight instructions),
movem-lexical-var-n (e1ght ingtructions).

The three instructions described in this section allow the first eight lexmal
Vanables in a lexical environment to be accessed.

_push-lexical-var-n - : " Instruction
Format Operand from stack . Valuefs) Returned 1
Afgument(s) 1; - Opcodes 20-27

-arg dtp-list
or dtp-locative

Immediate Argument Type Signed
Description
Pushes on the stack the lexical variable of environment arg indexed by n.
arg must be a cdr-coded lexical environment, but this is not checked. n is a
number between 0 and 7 that is stored in the bottom three bits of the
opcode.

 Exception None’
Memory Reference Data-read

Register -Effects TOS: Valid after

198

8ymbolics, Inc.

pop-lexical-var-n o L - | - Instruction
Format Operand from stack - -+ Value(s) Returned 0
e Argument(s) 2) ' | : . Opcodes 240-247

. .argl any data type
arg2 dip-list '
or dtp-locative

Immediate Argument Type Signed

Description - ' : :
Pops argl off the stack and stores the result into the lexical variable of
environment arg2 indexed by n. arg2 must be a cdr-coded lexical
environment, but this is not checked. n is a number between 0 and 7 that

is stored in the bottom three bits of the opcode. Note that only: 38 bits are -

stored: the edr-code bits of memory are unchanged.
Exception None
. Memory Reference Data-write

Register Effects TOS: Valid before, invalid after

199

~ Symbolics, inc.

movem-lexical-var-n .- : : - Instruction
" Format Operand from stack . Value(s) Returned 1
Argument(s) 2: : " Opcodes 250-257

argl any data type

arg?2 dtp-list

or dtp-locative

Immediate Argument Type Signed

Description : _

Stores argl, without popping, into the lexical variable of environment arg?2
indexed by n. arg2 must be a cdr-coded lexical environment, but this is not
checked.n is a number between 0 and 7 that is stored in the bottom three
bits of the opcode. Note that only 38 bits are stored: the cdr-code bits of
memory are unchanged.

Exception None
Memory Reference Data-write

Register Effects TOS: Valid before, valid after

- 200

Symbolics, Inc.

3.2.12 Instance Variable Accessors

push-instance-variable, pop- mstance—vanable movem-lnstance-vanable
push-address-instance-variable, push-instance-variable-ordered,
pop-instance-variable-ordered, movem-instance-variable-ordered, -
push-address-instance-variable-ordered, %mstance-ref Z%instance-set,
%mstance-loc

32121 Mapped Accesses to Self

...‘.

f— . ' ..

The next four instructions are called within methods or defun-m-ﬂavors Each of

~ these 1nstruct10ns is an access to self mapped.

With the instance in FP|3 and the mapplng table in FP|2, the instruction uses the
immediate argument, I, as the index into the mapping table to get the offset to an
instance variable. The type of the value in the mapping table must be
dtp-fixnum; reference to a deleted variable results in nil being found in the
mapping table, which causes an error trap. '

These instructions check that the argument I is within the bounds of the mapping
table. If it is not, an error trap occurs. The bounds check is performed by
fetching the array header of the mapping table, assuming it is a short-prefix
array, and comparing I against the array-short-length field. These instructions do
check that the data type of the mapping table (FP[2) is dtp-array, but do not
check to make sure that the mapping table is a short-preﬂx array, though tlus is
required for correct operation.

Each of these instructions checks the offset to insure that it is a fixnum, but does
not check whether it is within bounds. Note that this check is of the element of
the mapping table, not of the index into the mapping table. This type of
instruction does not check to make sure that the mapping table is a short-prefix

- array, though thig is required for correct .operation. That is, the instruction checks

that the data type of the mapping table (FPJ2) is dtp-array and then proceeds
w1th the assumption that the array is a non-forwarded, short-prefix array.

Each of these instructions checks the offset obtained from the mapplng table to
insure that it is a fixnum. They do not check whether the offset is within bounds
of the instance; the flavor system software guarantees that all offsets are within
bounds. - :

" These instructions use the following forwarding procedures:

" If the cdr code of self (FP3) is 1, accesses the location in the instance that is

selected by the mapping table.

If the cdr code of self (FPJ3) is 0, does a structure-offset memory reference to the
header of the instance to check forwarding. If there is no forwarding pointer, sets

" the cdr code of FP|3 to 1 and proceeds. Otherwise, uses the forwarded address in

place of FP|3 (does not change FP|3).

201

TNy oy

Symbolics, Inc.

3.2.12 Instance Variable Accessors

push-instance-variable, pop-instance-variable, movem-instance-variable,
push-address-instance-variable, push-instance-variable-ordered,

. pop-instance-variable-ordered, movem.instance-variable-ordered,

push-address- mstance—varlable-ordered %Instance ref, %mstance set,

Y%instance-loc

3.2.12.1 Mapped Accesses to Self

The next four instructions are called within methods or defun- m—flavors Bach of
these instructions is an access to-self, mapped.

With the instance in FP|3 and the mapping table in FP{2, the instruction uses the
immediate argument, I, as the index into the mappmg table to_get the offset to an

_instance vamable;"ﬂfi‘_éference to~& ‘deleted variable results in nil bemgﬁnai =the———:
E mappmg table, which causes an error trap, the type of the value 1nf4the mapping

table must be dtp-fixnum. _/‘ /

Each of these mstmctlons checks the offset to insure that itis a ﬂxnu.m, but does
not check whether it is Wlthm bounds Note that “this check is of the element of
the mapplng table, not of the index mto the mapping table. This type of

_ mstructlon does not check to ‘make sure that the mapping table is a short-prefix

array, though this is reqmred for correct operatmn That is, the instruction checks
that the data type of the mappmg ‘table" (FP}2) is dtp-array; and then proceeds
w1th1 the assumptmn that the array isa non-forwarded short-preﬁx array.

’ These mstructmns ¢heck that tHe. argument [is mthm the bounds of the mapping

table If it is_ nidt, a trap occu;‘!s;. The bounds check is performed by fetching the

- array header’ ‘of the mapping table, assuming it is a shorbpreﬂx array, and

compéx/';/ng I against the array-short-length field. Implementation note it is useful
to caché the array header to avoid making a memory reference to get it-évery
timé. For an example of how te do this using two scratchpad locations and one
cycle of overhead, see the 3600 microcode. e e e

e

These instructions use the following forwardmg procedures:
If the cdr code of self (FP|3) is 1, accesses the location in the instance that is
selected by the mapping table. : :

If the cdr .code of self (FPJ3) is 0, does a structure-offset memory reference to the
header of the instance to check forwarding. If there is no forwarding pointer, sets
the cdr code of FPj3 to 1 and proceeds. Otherwise, uses the forwarded address in
place of FP|3 (does not change FPJ3).

201

Symbolics, Inc.

push-instance-variable I - Instruction

Format Op'erand from stack, immediate Value(s) Returned 1

Argument(s) 1: ' ' Opcode 110
o 1 dip-fismum (Note that the '

implicit argument self must be an
" ingtance data type and the mapping

table must be a one.dimensional array.)

Immediate Argument Type Unsigned
Description

Pushes the instance variable indexed by I on the stack. See the section
"Mapped Accesses to Self," page 201 '

Exception None

Memory Reference Header-read (to header of mapping table), data-read
(to mapping table), data-read

Register Effects TOS: Valid after

202

. _ ' . Symbolics, Inc.

pop-instance-variable I- ' . 7 Instruction

- Format Oﬁerand'from stack, immediate = Value(s) Returried 0

. Argument(s) 2: ; Opcode 820
- argl any Lisp data type ' :
I dtp-fixnum
(Note that the implicit argument
‘self must be an instance data type
.and the mapping table must be a
one-dimensional array.)

- Immediate Argument Type Unsigned

Description : : _ _

Pops argl off of the top of stack and stores it into the instance variable.
See the section "Mapped Accesses to Self," page 201. Note that only 38
bits are.stored: the edr-code bits of memory are unchanged.

Exception None

- Memory Reference Header-read (to header of mapping table), data-read |
(to mapping table), data-write .

Register Effects TOS: Invalid after

. 203

- .Symbolics, Inc.

movem-instance-variable I ' ' - Instruction

Format Operand from stack, immediate Value(s) Returned 1

Argument(s) 2: . Opecode 321
. argl any Lisp data type ' :

I dtp-fixnum

(Note that the implicit argument

self must be an instance data type

and the mapping table must be 2

one-dimensional array.)

'Immediate Argument Type Unsigned

Descrzpnon '

Stores argl, the conients of the top of stack, into the instance varlable
indexed by the immediate argument I. Does not pop the stack See the
section "Mapped Accesses to Self,” page 201. Note that only 38 bits are

stored: the cdr-code bits of memory are unchanged.

Exception None

Memory Reference Header-read (to header of mapping table), data-read
(to mapping table), data-write

- Register Effects TOS: Valid after

204

Symbolics, Inc,

push-address-instance-variable 7 . * Instruction

" Format Opefand from stack, immediate Value(s) Returned 1

Argument(s) 1. o " QOpcode 111
I dtp-fixnum : - :
"~ {Note that the implicit argumen
self must be an instance data type
and the mapping table must be a
- one-dimensional array.)

Immediate Argument Type Unsigned

Description .
Pushes the address of the instance variable indexed by 7 on the stack. See
the section "Mapped Accesses to Self," page 201.

Exception None

Memory Reference Header-read (to header
of mapping table), data-read (to mapping table)

Register Effects TOS: Valid after

3.212.2 Unmapped-Accesses to Self .

The next four instructions are called within methods or defun-in-flavor. Each of
these instructions is an access to self;, unmapped.

With the instance in FP|3, such an instruction uses the operand-from-stack
immediate-mode argument I as the offset to an instance variable. These
instructions do not check whether the offset is within bounds.

205

Symbolics, Inc.

push-instance-variable-ordered - I - 7 : Instruction

Format Operand from stack, immediate Value(s) Returned 1
Argument(s) 1. Opcode 322
I dtp-fixnum Must not be 0. S
(Note that the implicit argument
self must be an instance data type.)
Immediate Argument Type Unsigned
- Description
Pushes the variable indexed by I on the stack. See the section "Unmapped
Accesses to Self," page 205. . '
E.a.fception None -

Memory Reference Data-read

Register Effects TOS: Valid after

206

Symbolics, Inc. .

"_pop-instance-variabie-_ofdered I o . - . Instruction

~ Format Operand from stack, immediate - Value(s) Returned 0
Argument(s) 2: - _ Opcode 322
argl any Lisp data type
I grg2 dip-fixnum, must not be 0

(Note that the implicit argument
self must be an instance data type.)

Immediate Arguﬁient Type 'Unsigned_

Description : : -
‘Pops argl off the top of stack and stores it into the instance. variable

" indexed by 1. Note that only 38 bits are stored: the cdr-code bits of memory
are unchanged. See the section "Unmapped Accesses to Self,” page 205.
Exception None
Memory Reference Data-write _ '

" . Register Effects TOS: Invalid after

207

Symbolics, Inc.

movem-instance-variable-ordered I - Instruction

Forniat Operand from stack,' immediate Value(s) Returned 1
Argument(s) 2: | Opcode 323
argl any Lisp data type

arg2 dtp-fixnum Must not be 0.
(Note that the implicit argument self must be an instance data type.)

Immediate Argument Type Unsigned

. Description ' : .
Stores argl, the contents of the top of stack, into the instance variable
indexed by I. Does not pop the stack. Note that only 38 bits are stored: the
cdr-code bits of memory are unchanged. See the section "Unmapped
Accesses to Self," page 205,
Exception None

Memory Reference Data-write

Register Effects TOS: Valid after

208

Symbolics, Inc.

-push-address-instance-variable-ordered I S Instruction

-Format Operand from stack, immediate Value(s) Returned 1
Argument(s) 1. : Opcode 113
I dtp-fixnum, must not be 0 : -

. {Note that the implicit argument 7
. self must be an instance data type.)

Iinmedia_te Argument Type Unsigned

Descnptzon
Pushes the address of the mstance variable indexed by I on the stack See
the section "Unmapped Accesses to Self " page 205.

Exceptwn None
Memory Reference None
Register Effects TOS: Valid after

-3.2.12.3 Accesses to Arbitrary Instances

As a side effect of the bounds checking, each of these. instructioné makes a
structure-offset reference to the header of the instance and, if the instance has
been forwarded, uses the forwarded address. as the base to which arg2 is added.

209

Symbualics, Inc.

. %instance-ref a S . Instruction
Format Operand from stack ~ Value(s) Returned 1
Argument(s) 2 - Opcode 324

argl dip-instance, dtp-list-instance,
dtp-array-instance, or dip-string-instance
arg? dtp-fixnum o

Immediate Argument Type Unsigned

Description _

Pushes on the stack the instance variable of instance argl at the offset
specified by arg2. Takes an error pre-trap if arg2 is greater than or equal
to the size field of the flavor, using unsigned comparison. See the section
-"Accesses to Arbitrary Instances," page 209. :
Exception None '

Membry Réference Header-read, data-read (to flavor descriptor),
data-read (to instance-variable slot)

Register Effects TOS: Valid before, valid after

210

%instance-set -

. . Format Operand from stack Value(s) Returned 0
Argument(s) 3: . : Opéode 325

argl any Lisp data type;

.arg2 dip-instance, dtp-list-instance,
dtp-array-instance, or dtp-string-instance;
arg3 dip-fixnum

Immediate Argument Type Unsigned

Description

.)) / R
Pops argl off of the stack and stores it into the instance variable-of—" .ias-

Symbolics, Inc.

Instruction .

instance arg2 at the offset specified by arg3, Takes an error pre-trap if

comparison, See the section "Accesses to Arbitrary Instances,” page 209.

Exception. None
Memory Reference' Header-read, data-read, data-write

Register Effects TOS: Valid before, invalid after

211

Symbolics, Inc.

%instance-loc ' o) - . Instruction
Format O.perahd from stack ' o 'V_a'lue(s) Réturned 1
- Argument(s) 2: - Opcode‘326

argl dtp-instance, dip-list-instance,

dip-array-instance, or dtp-string-instance;
~ arg? dtp-fixnum

Immediate Argument Type Unsigned

Description ' :
Pushes on the stack the address of the instance variable of mstance argl at
the offset spemﬁed by arg2. Takes an error pre-trap if arg2 is greater than
or equal to the size field of the flavor, using unsigned comparison. See the
section "Accesses to Arbitrary Instances,” page 209.

Exception None
| Memory Reference Header-read, data-read

Register Effects TOS: Valid before, valid after

212

Symbolics, Inc.

3.2.13 Subp’ri'mitive lnstructions-'

' %ephemeralp, “runsigned-lessp, %unmgned-lessp -no-pop, %allocate-hst block
%allocate-structure-block, %pointer-plus, %pointer-difference, : .
%pomter-mcrement %read-internal-register, %write-internal-register, no-op,

- %coprocessor-read, %coprocessor-write, %memory-read,

. %memory-read-address, %memory-write, %tag, %set-tag, store—condltlonal
%p-store-contents, %set-cdr-code-n (two instructions), %merge-cdr-no-pop,
Y%egeneric-dispatch, %message-dispatch, %jump, %check—preempt-request %halt

‘9oephemeralp . ' , o Instruction
Format Operand from stack -« Value(s) Retuméd 1
Argument(s) 1: Opcode 7

arg any data type

Immediate Argument Type Signed

Description.

Pushes t on the stack if the data type of the argument is a pointer data .
.type and the address lies in ephemeral space (bits <31:27> are 0); otherwise
. pushes nil on the stack. - :
" Exception None

Memory Reference None

Régister Effects TOS: Valid after

213

Symboiics, Inc.

%unsigned-lessp : o Instruction

Z%unsigned-lessp-no-pop

- Format Operand from stack ‘ Value(s) Returned 1 {2 for no-pop)
Argument(s) 2: : . Opcode 331 (335 for no-pop)
argl dtp-fixnum - :
arg2 dtp-fismum
Immediate Argument Type Unsigned
Description
Tests if, as 32-bit unsigned numbers, arg! < arg2, and pushes t or nil on
the stack according to the result. The no-pop version of this instruction
leaves the first argument on the stack,

Exception None
Memory Reference None

Register Effects TOS: Valid before, valid after

214

Syh?bofics, Inc.

%allbcate-lisf-block : ' - B : : ' Instructi_on_ '
~ Format Operand from stack "~ Value(s) Rez_:ufned 1
. Argument(s) 2: . Opeode 311
- argl any type :

arg2 dip-fixnum
Immediate Argument Type Unsigned

Descrr.ptzon _
Using three internal registers, named list-cache-area, list-cache-length, and
list-cache-address, this instruction:

1 Ta.kes an 1nstructmn exception (post trap) unless (eq argl hst-cache-
“area).

2, Computes list-cache-length minus arg2. Takes an instruction
exception if the result is negative. Stores the result into list-cache-
length unless an exception is taken.

3. Pops the arguments and pushes the Hst-cache-address. Writes the
list-cache-address into BAR-1 (Block-Address-Register-1). Sets the
control-register trap-mode field to (max 1 current-trap-mode) so that
there can be no interrupts until storage is initialized. '

4. Stores (list-cache-address + arg2) into hst-cache—address (arg2 must be
latched since the third step may overwrite its original location in the
stack).

215 .

Symbolics, Inc.

Example:

-(défun cons (car cdr)
(Zset-cdr-code-normal car)
(Zset-cdr-code-nil edr)
{Zmake-pointer dtp-list
(progt (Zallocate-1ist-block defau?t—cons-area 2)
(Zblock-1-write car)
(Zblock-1-write cdr)}))

Exceptions
Conditions: argl is not eq to list-cache-area.
arg2 is greater than list-cache-length.
See the section "Revision 0 %A]locate-hst—hlock " page 298.

Arguments: argl, arg2

Values: 1

Note: Trap handler must insure that control—reglster trap-mode
will be at least 1 after it returns.

Memory Reference None

Regtster Effects TOS: Valid before, valid after
BAR-1 is modified

216

Symbolics, Inc.

%allocate-structure-block . = E _- o - Instruction

' Format Operand= from stack . Value(s) Returned 1
Immediate Argument Type Unsigned

Argument(s) 2: - - Opeode 315
argl any type ‘
arg2 dtp-fixnum

Description
Using three internal registers, named structure-cache-area,
-structure-cache-length, and structure-cache-address, this instruction:

': 1. Takes an instruction exception unless (eq argl structure-cache-area).

2. Computes structure-cache-length minus arg2. Takes an instruction
exception if the result is negative. Stores the result into structure-
cache-length unless an exception is taken.

3. Pops the arguments and pushes the structure-caché-address. Writes
_ the structure-cache-address into BAR-1 (Block-Address-Register-1). Sets
the control-register trap-mode field to (max 1 current-trap-mode) so
that there can be no interrupts until storage is initialized.

4. Stores (structure-cache-address + arg2) into structure-cache-address
(arg2 must be latched since the third step may overwrite its original
location in the stack).

Exception
Conditions: argl is not eq to structure-cache-area.
arg2 is greater than structure-cache-length.
See section "Revision 0 %Allocate-structure-block," page 298.

Arguments: argl, arg2

Values: 1 :

Note: Trap handler must insure that control- -register: trap—mode
" will be at least 1 after it returns.

Memory Reference None

Register Effects TOS: Valid before; valid after

217

Symboiics, Inc. .

. %pointer-plus | _ : | Instruction
Format Operand from stack = : Value(s) Returned 1
Argument(s)' 2: _ - Opcode 230

argl can be any data type,
but dtp-locative is expected;
arg2 any data type, but
dip-fixnum expected

Immediate Argument Type Signed

Description |

Pushes the result of adding arg2 to the pointer field of argl The data type
of the result is the type of argl.

Exception None

Memory Reference None

Register Effects TOS: Valid before, valid after

218

Symbolics, Inc.

- - %pointer-difference ' - S _ : Instruction *
- Format Operand from stack * Value(s) Returned 1
Argument(s) 2: o - - Opcode 231

argl any data type, but a .

pointer type is expected;

arg? any data type, but a

pointer type is expected

Immediate Argument Type Signed

Description . . -
Pushes the result of subtracting the pointer field of arg2 from the pointer
field of argl. The data type of the resuilt is dip-fixnum.

Exception None

Memory Reference None

Register Effects TOS: Valid before, valid after

219

8Symbolics, Inc.

%pointer-increment = o _ Instruction

. Format Operand from stack, Value(s) Returned 0 -
. address-operand mode (immediate and | - :
" sp-pop addressing modes illegal)

Argument(s}) 1: Opcodé 145
arg any data type

Immediate Argument Type Not applicable

- Description

Adds 1 to the pointer field of arg and stores the result back into the
operand. The data-type and cdr-code fields of the operand are not changed.

Exception None
. Memory Reference None

Register Effects TOS: Unchanged

%read-internal-register I | - Instruction
Format 10-bit immediate Value(s) Returned 1
Argumeni(s) 1. : Opcode 154

1 10-bit immediate

Immediate Argument Type Unsigned

Description

Pushes the contents of the internal register spet:lﬁed by arg on top of the
stack, with the cdr code set fo edr-next. See the section "Internal
Registers,” page 75.

Exception None

Memory Reference None

Register Effects TOS: Valid after

. 220

Symbolics, Inc.

%write-internal-register I - o _) - Instruction
Format 10-bit immediate . Vadlue(s) Returned 0
Argumeﬁt(s)'2: | . . Opcode 155

argl any data type
I 10-bit immediate

Immediate Argument Type Unsigned

- Description

. Pops argl off the top of the stack and writes it into the internal register

. No-op

specified by 1. See the section "Internal Registers,” page 75.

Exception None

Memory Reference None

Register Effects TOS: Invalid after

. Instruction

Format Operand from stack | _ Value(s) Returned 0
Argument(s) 0 | Opcode 56

Immediate Argument Type Not applicable

Description
Does nothing. Used when the implementation requires a delay.

Exception None
Memory Reference None

Register Effects TOS: Unchanged

227

Symbolics, inc.

%coprocessor—-réad I : _ Instruction
Format 10-bit immediate ' Value(s) Returned 1
Argument(s) 1: : Opcode 156
I dtpfixnum :
Deécription

Reads the coprocessor register specified by the immediaté field I and
pushes the result on the stack, with the cdr code set to edr-next,

Exception None
Memory Reference None

~ Register Effects TOS: Valid after

%coproqeésor-write I . L ' ' Instruction
Format 10-bit immediate Value(s) Returned 0°
Argumeni(s) 2: Opcode 157

argl any data type
I 10-bit immediate

Description
Writes argl into the coprocessor register specirfied by the immediate field %

Exception None
Memory Reference None

Register Effects TOS: Invalid after

‘222

Symboﬁcs, Ire.

_ %memory-read I co | : - L Instruction
" Format 10-bit immediate . Value(s) Returned 1
Argunient(s) 2: | - Opcode 116

argl any Lisp data type
I 10-bit immediate (mask)

Immediate Argument Type Not .app_h'cable

Description o :
" Reads the memory location addressed by argl and pushes its contents on
the stack in'accordance with the operation specifiers in the immediate, I:

cycle-type <9:6> (4 bits) Select one of the 12 memory-cycle types

fixnum-pnly <5> (1 bit) If set, the-instruction will trap if thé memory data
type is not dtp-fixnum.

set-cdr-next <4> (1 bit) If set, the cdr code of the result is 0; otherwise, the
cdr code of the result is the cdr code of memory.

* See the section "Types of Memory References,” page 85.
Exception None
Memory Reference Controlled by the immediate field.

Register Effects TOS: Valid after

223

Symbolics, Inc.

%memory-read-addfess Ir . - _ - Instruction
Format 10-bit immediate - L _ Value(s) Returned 1
Argument(s) 2: : ' Opcode 117

argl any Lisp data type
I 10-bit immediate (mask)

Immediate Argument Type Not applicable

. Description
Reads the memory location addressed by ergl, according to the specified
cycle type, and returns the updated argument (the address field is changed
to be the final address the access arrives at, while the data-type field
remains the same) in accordance with the operation specifiers in the
immediate, I

cycle-type <9:6> (4 bits)Select one of the 12 memory-cycle types See the
section "Memory References.”

fixnum-only <5> (1 bit) If set, the instruction will trap if the memory data
type is not dtp-fixnum.

~ set-cdr-next <4> (1 bit) If set, the edr code of the result is 0; otherwise, the
cdr code of the result is the cdr code of memory.

Exception None
- Memory Reference Controlled by the imme‘diate field.

Register Effects TOS: Valid after

224

%tag
qum&t O'perand. from sﬁack
Argument(s) 1:
arg any data type
Iﬁmedia;e Argument Type Signed
- Deseription .
Returns the tag of erg as a fixnumi.
Exception None
. Memory Referencg None
Register Effects TOS: Valid after
%set-tag'

Format Operand from stack

Argument(s) 2:
argl any data type
arg2 dip-fixnum

Immediate Argument Type Unsigned

Dlescription

- 8Bymbolics, Inc.

Instruction

" Value(s) Returned 1

Opcode 12

Instruction

Value(s) Returned 1

Opcode 327

Sets the 8 tag bits of argl to be the bottom eight bits of arg2. This is
%make-pointer, with the arguments reversed so that immediates can be

used.
Exception None

Memory Reference None

Register Effects TOS: Valid before, valid after

225

Symbolics, Inc.

store-conditional ' - o ' . Instruction

Format Operand from stack Value(s) Returned 1
Immediate Argument Type Sighed

Argument(s) 3: Opcode 233
argl dtp-locative :

arg2 any type

argd any type

Description

If the content of the locatmn spec1ﬁed by argl is eq to arg2, then stores
arg3 into that location and returns t; otherwise, leaves the location
unchanged and returns nil. Note that store-conditional does not write to
memory when it returns nil. The cdr code of the specified location is not
changed. Other processes (and other hardware processors, to the extent
made possible by the system architecture) are prevented from modifying the
location between the read and the write.

Exception None

Memory Reference Data-read, followed by raw-wrlte (using the
possibly followed pointer) with interlock

Register Effects TOS: Valid before, invalid after

226

-Symbolics, Inc.

%p-store—contents ' S 7 - - o Instruction
.Fofmat'Operand from stack - Value(s) Returned 0
. Argument(s) 2: Opcode 235 |

argl any data type
arg2 any data type

Immediate Argument Type Signed

Description _ :

Stores arg2 into memory location addressed by argl preservmg the cdr
code but not following invisible pomters

Exception None

Memor:y Reference Raw-read folloWB_d by raw-write

Register Effects TOS: Valid before, invalid after

227

Symbolies, Inc.

- %memory-write . | ' . Instruction
_ _Forniat QOperand-from-stack . Value(s) Returried 0
Argument(s) 2: _ Opcode 234

argl any data type
arg2 any data type

Immediate Argument Type Signed

Description : :

Stores arg? into the memory location addressed by argl, storing all 40 bits
including the edr code, and not following invisible pointers. This replaces
the 3600°s %p-store-cdr-and-contents and %p-store-tag-and-pointer
instructions. The second argument is typically constructed with the
%set-tag instruction; in the I-Machine it is legal to have invisible pointers
and special markers in the stack temporarily for this purpose.

Exception None
Memory Reference Raw-write

Register Effects TOS: Valid before, invalid after

228

Symbolics, Ine.

. %set-cdr-code-n : ‘ : : Instruction

_'Forinat Ope:i'and from stack, - Value(s)-Retarned 0
address-operand mode (immediate and
- sp-pop addressing modes illegal)

Argument(s) 1: ' Opcodes 146 (n=1), 147 (h=2)

arg any data type ' ' :
Descriptioﬁ

N, which is part of the opcode, is either 1 or 2. Sets the cdr code field of
arg to N. : o '

Exception None
Memory Reference None

Register Effects TOS: Unchanged
%merge-cdr-no-pop ' Instruction

Format Operand from stack, : Value(s) Returned 1
address-operand mode (immediate and
sp-pop addressing modes illegal)

Argument(s) 2: Opeode 342
argl any data type : a

arg?2 (address operand) any data type

Description : .

Sets the cdr-code field of arg2 to the cdr-code field of argl. arg! is not
popped off the stack. .

Exception None

Memory Reference None

Register Effects '\I‘OS: Valid before, valid after

229

Symbolics, Inc.

%genei'ic-dispatch | 7 : - Instruction
Format Operand from stack - Value(s) Returned 0
Argument(s) 0 _ - Opcode 52

Immediate Argument Type Not applicable

Description.

This is used in calling a generic function. The details of its operation are
completely described in the functlonacalllng chapter. In brief, it performs
the following operations:

Makes sure that the number of spread arguments is at least 2, doing a
pull-lexpr-args operation if necessary.

Gets the address of the interesting part of the flavor, which specifies the
size and address of the handler hash table. Checks whether the data type
of FPI3 is one of the instance data types and performs the appropriate
operations in any case. See the section "Calling a Generic Function,” page
277. Fetches two words from the flavor and performs a handler hash table
search using the (usually) generic function in FP|2 as the key. Takes an

~error trap if the method found is not dtp-even-pc or ditp-odd-pec.

- Continues execution at the PC.

Exception None
Memory Reference Several data-reads

Register Effects TOS: Invalid after

230

Symbolics, Inc.

%meséage-dispatch — T R _ i Instruc_tion -
_Foﬁmat. Operand from stack : ' Vald_e(s) Returned 0
- Argument(s) 0 P . Opcode 53

Immediate _Afgument Type Not applicablé

Description

This is used in sending a message. The details of its operation are
completely described in the function-calling chapter. .See the section
"Sending a Message," page 278. In brief, it performs the following
operations: -

Makes sure that the number of spread arguments is at least 2. Performs a
pull-lexpr-args operation if necessary.

Gets the address of the interesting part of the flavor, which specifies the
size and address of the handler hash table. Checks whether the data type
of FP|2 is one of the instance data types and performs the appropriate
operations in any case. ' ‘

Fetches two words from the flavor and performs a handler hash table
gearch using the message in FP|3 as the key, Takes an error trap if the
method found is not dtp-even-pe or dip-odd-pe. Puts the instance (from
FPi2) in FP|3 and the parameter in FP|2, then continues execution at the
fetched PC. '

Exception None

Memory Reference Several data-reads

Register Effects TOS: Invalid after

231

Symbolics, Inc.

%jump , o _ ' Instruction

_ Format Operand from stack Value(s) Returned 0

Argument(s) L. ~ Opcode 11
arg dtp-even-pc or dtp-odd-pe

Immediate Argument Type Signed
Description
Causes the processor to start executing maecroinstructions at the specified
PC. This ingtruction checks that the data type of arg is dip-even-pe or
dtp-odd-pe and jumps to the address. In addition, if bit 39 of arg is 1, this
instruction stores bit 38 of that word into control-register.cleanup-in-
progress. If bit 39 is 0, it leaves the Control register alone. An unwind-
protect cleanup handler terminates with a %jump instruction.
Exception None

' Memory Reference None

Register Effects TOS: Valid after

232

- Symbolics, Inc.

.%check-preem'pt-réquest ' _ , _ : Instruction
Format Operand. from stack Value(s) Returned 0 -
Argument(s) 0_ Opcode 54

Immediate Argument Type Not applicable

Description

Performs a check-preempt-request operation, that is, sets the preempt-

- pending flag if the preempt-request flag is set. This causes a trap at the

end of the current instruction if the processor is in emulator mode, or
when control returns to emulator mode if the processor is in extra-stack

mode, See the sectmn 'Preemption,” page 291.

. Exception None

%halt

Memory Reference None

Register Effects TOS: Unchanged

Instruction

Format Operand from stack . Valuefs) Returned 0

‘Argument(s) 0 Opcode 377

Immediate Argument Type Not applicable

Description
Always takes an exception.

Exception Always
Memory Reference None

Register Effects TOS: Unchanged

L Machine: 438 instructions 1 Machine: 218 instructions
15 list-function 18 Tist-function
‘8 symbal :

233

Symbolics, Inc.

25
57
(24
T
33
15

6.

75
18
7
27
11
34
36
8
26

predicate

24
numeric 28
data-movement 18
field-extraction . " 8
array-operation 18

branch-and-100p 19

miscellaneous special-purpose
function-calling 12
binding and function-entry . 4

catch 2
Texical-variable-accessing
instance-variable-accessing
subprimitive

hardware subprimitive
graphics

Proiog

11
27

predicate
numeric
data-movement
field~extraction
array-operation
branch-and-1oop

functionéca11ﬁng (+8 dtps)
binding -
catch _
lexical-variable-accessing
instance-variable-accessing
subprimitive ~ '

Note: instructions that are listed as being the same in both

architectures are those that have identical names.

This does not

necessarily imply that those instructions perform exactly the same
operations,

List-Function Operations

Instructions common to I and LiG:

car, cdr, rplaca, rplacd, member, assoc
Similar instructions:

L/G: getf-internal 1I:
set-cdr-locatl

roetf
set-to-cdr

Only on L: cons, ncons, get, memg, assg,
- Tast, Tength-internal :
Only on I set-to-car, set-to-cdr-push-car

Symbol Operations

Only on L: a11 8 symbol instructions -=-
set, symeval, fsymeval, get-pname, value-cell-location,
function-cell-location, property-cell-location,
package-cell-location

Predicate Instructions _
Instructions common to I and L/G: eq, eql, equal-number, greaterp, lessp,
endp, plusp, minusp, zerop, Zephemeralp

Similar instructions:

234

"Symbolics, Inc.

L/G: not, atom, fixp, numberp, | I:
symbolp, single-float-p, array-p,> . type-member-n
cl-11stp, double-float-p, fioatp |

Onily on Id'éhar-Equai, char=, boundp, fboundp, 1ocation-boundp '
Only on I: Togtest, Zunsigned-lessp

Numerie Operations
- Instructions common to I and L/G:

unary-minus, %32-bit-plus, 7Z32-bit-difference, Zadd-bignum-step,
‘Zsub-bignum-step, Zmuttiply-bignum-step, Zdivide-bignum-step,
-%1shc-bignum-step, Zmultiply-double '
Similar instructions: _ .
L/G: add-stack, add-local, add-immed I: add

- stib-stack, sub-local, sub-immed sub
increment-local increment
decrement-local : decrement
multiply-stack, multiply-immed - C o multipty
quotient-stack _ quotient
ceiling-stack : - ceiling
floor-stack =) ' " floor
truncate-stack truncate
round-stack . round
remainder-stack remainder
rationail-quotient-stack rational-quotient
1ogand-stack _ : 1ogand
Togior-stack Tegior
1ogxor-stack logxor
ash-stack . ash
rot-stack rot
Tsh-stack 1sh

Only on L: mod-stack, Znumeric-dispatch-index,
Zconvert-singte-to-double, Zconvert-double-to-single,
Zconvert~double-to~fixnum, Zconvert-fixnum-to-double,
Zconvert-singlie-to-fixnum, float, Zdouble-floating-compare,
'Zdbub1e-f1oating-add,-ZdoubTe-fToating-subtract,
Zdouble-fioating-multiply, Zdouble-floating-divide,
Zdouble-floating-abs, Zdouble-floating-minus, Zdouble-floating-scale,
.set-f]aét—operating—mode, float-operation-status,
set-float-operation-status

Only on I: max, min

235

* Symbolics, Inc.

- Data-Movement Instructions
Instructions.common to I and L/G:
push-n-nils :

- Similar instructions:

L/G: push-local, push-immed 1: push
pop-tocal . pop

- movem-1ocal : movem

. push-address-local push-address

Only on L: push-indirect, push-constant, push-nil, push-2-nils,
push-t, push-character, push-from-beyond-muttipie, push-car-locatl,
push-cdr-local, pop-indirect, pep-n, pop-n-save-1, pop-n-save-m,
pop;n—saveumu1t1p1e, pop-multiple-save-n, pop-muitiple-save-multiple,
movem-indirect, fixup-tos

Only on I: set-sp-to-address, set-sp-to-address-save-tos,
push-address-sp-relative, stack-blt, stack-blt-address

Field-Extraction Instructions
Instructions common to I and L/G:
Similar instructions:

L/G: Tdb-immed 1: 1db
dpb-immed dpb
char-1db~-immed - char-idb
Zp~1ctb-immed Zp-Tdb
Zp-dpb-immed Zp-ldb
Zp-tag-1db-immed Zp-tag-1db
%Zp-tag-dpb-immed Zp=-tag-tpb
Only on L:

Only on I: char-dpb

Array Operations ' : :
[Instructions common to [and L/G: setup-id-array, setup-force-1d-array,
array-leader, store-array-leader

Similar instructions:
L/G: ar-=1, ar-{-immed, ar-1-Tocal I: aref-1

as-1, as-1-immed, as-1-local aset-1.
ap-1 : aloc-1
fast-aref] _ fast-aref-1

fast-aset fast-aset-1’

236

ap-leader - - . aloc-lteader

Only on L: ar-2, as-2, ap-2, setup-1d-array-sequential,
- sgtup-foree-td-array-sequential, arraeregister—eVEnt, _
array-leatder-immed, store-array-leader-immed, Zid-aref, Zid-aset,
%1d-aloc, array-length, array-active-length, ftn-ar-1, ftn-as-1,
ftn-ap~-1, ftn-load-array-register, ftn~-double-ar-1, ftn-double-ar-1

Branch Insiructions
- Instructions common to I and L/G: branch

Similar instructions: . .
L/G: branch-true " I: branch-true-no-pop

branch-false -branch-false-no-pop

- branch-true-else-pop branch-true-and-no-pop
branch-false-else-pop branch-false-and-no-pop
branch-true-and-pop branch-true-else-no-pop

branch-false-and-pop = branch-false-else-no-pop .

Only_on“ L: branch-eq, branch-not-eq, branch—atorﬁ, branch-not-atom,
branch-endp, branch-not-endp, long-branch, Yong-branch-immed .

Only on I: branch-true, branch-false,
branch-true-and-extra-pop, branch-false-and-extra-pop,
hranch-true-else-extra-pop, branch-false-else-extra-pop,
branch-~true-gxtra-pop, branch-false-extra-pop, _
(brancthrue—no-pop—extra—pop, branch-false-no-pop-extra-pop),
1oop-decremenit-tos, loop-increment-tos-less-than

Miscellaneous Special-Purpose Instructions
Similar instructions:
L/G: error-if-true I: branch-true (B offset)
error-if-false “branch-false (8 offset)
Only on L: all 6 special-purpose instructions —-
push-microcode-escape-constant,
funcall-microcode-escape-constant, instruction,
Z2funcali~in-auxiliary-stack-buffer

Funetion-Calling Instructions
Instructions common to I and L/G: return-multiple, take-values

Similar instructions: _
L/G: return-stack/return-nil I: return-single

237

© Symbolics, inc.

Symbalies, Inc.

Only on L: call-{B8/1/2/3}-{ignore/stack/return/multipie},
call-n-{ignare/stack/return/muitiple},

. funcall-n-{ignore/stack/return/multiple},
funcall-ni-{ignore/stack/return/multipie},
Texpr-funeal1-{ignore/stack/return/multiplie}, _
texpr-funcall-n-{ignore/stack/return/muttiple}, return-n, popj, popji-n,
popj-multiple, restart-trapped-call, un-lexpr-funcall, stack-dump,
stack-1oad, Zassure-pdl-room

Only on I: dtp~-call-compiied-even, dtp-call-compiled-odd,
dtp-call-indirect, dtp-call-generic, dtp-call-compiled-even-prefetch,
dip-call-compiled-odd-prefetch, dtp-call-indirect-prefetch,
dtp—ba11—generic-prefetch, start-call, finmish-call-n,
finish-call-apply-n, finish-call-tos, locate-locals,

return-kludge '

Binding and Function-Entry Instructions _
Instructions common to I and L/G: unbind-n, Zrestore-binding-stack,
take-values

Similar instructions:
L/6: Zrestore-binding-stack-level It Zrestore-binding-stack
bind-Tocative bind-1ocative-to~vatue

Only on L: bind-specvar, Zsave-binding-stack-level,
optional~arg-supplied-p, append-multiple-groups, take-arg, reguire-args,
take-keyword-argument, take-n-args, take-n-args-rest, take-rest-arg,
tske~n-pptional-args, take-n-optional-args-rest,
take-m~-required-n-optional ~args, take-m-reguired-n-optional-args-rest

Only on I: bind-1ocative, entry-rest-accepted,
entry-rest-not-accepted

Catch Instruections
Instructions common to I and L/G: none

Similar instructions:

L/G: eatch-ppen-{ignore/stack/return/multiple}/

' unwind-protect-open 1: catch-open
catch-close, catch-close-muttiple catch-close

Lexical Varié.ble Accessors

238

Symbolics, Inc.

Instructions common to I and L/G: none
Similar instructions:

L/G: - : ' - I:
fetch-freevar-n, fetch-freevar-{0/1/2/3/4/5/6/7} " push-Texical-var-n
Zpop-freevar-n, Ipop-freevar-{8/1/2/3/4/5/6/7} pop-lexical-var-n

Imovem-fresvar-n, Zmoven-freesvar-{B8/1/2/3/4/5/6/7} movem-lexical-var-n

Instance Variable Accessors

Instructions common to I and L/G: al1 11 instructions —-
push-instance-variable, pop-instance-variable, movem-instance-variable,
push-address-instance-variable, push-instance-variable-ordered,
pop-instance-variable-ordered, mouem-instancé-variab1e-ordered,
push-address-instance—vériab1e—ordered, Zinstance-ref, Zinstance-set,
‘Zinstance-loc ' :

Subprimitive Instructions A

Instructions common to I and L/G: Zallocate-list-block,
Zallocate~structure-block, Zpo1nter—d1fference store-conditional,
Zp-store-contents Zhalt

Similar instructions: .

L/G: Zset-cdr-code-1, Zset-cdr-code-2 1: Zset-cdr-code-n

pop] Zjump
Zcheck-preempt-pending ' Zcheck-preempt-reqguest

Only on L: Zframe-consing-done, %Zallocate-list-transport-block,
%Zallocate-structure-transport~-block, Zpointer, Zmake-pointer,
Zmake-pointer-immed, Zmake-pointer-immed-offset,
Zp-stnre—cmnténts-increment-pointer,
Zp-store-contents-pointer-decrement, Zp-store-tag-and-pointer,
ip-store-cdr-and-contents, Zp-contents-as-locative,
Zp-contents-increment-pointer, Zp-contents-pointer-decrement,
Zp-structure-offset, Zset-preempt-pending, Zdata-type, Zfixnum, Zflonum,
Zstack-group-switch, fo11ow-structure-forwardihg,
follow-cell-forwarding, Zblock-store-cdr-and-contents,
“%Zblock-store-tag-and-pointer, zb1ock search-eg-internal,
Ztrap-on-instance .

Only on I: Zunsigned-lessp, Zpointer-plus, Zpointer-increment,
Zread-internal-register, Zwrite-internal-register, Zcoprocessor-read,
%Zcoprocessor-write, Zmemory-read, Zmemory-read-address, Zmemory-write,
Ztag, Zset-tag, Zmerge-cdr-no-pop, Zgeneric-dispatch, Zmessage-dispatch,
no-op-

1239

Symbalics, Inc.

Hardware Subprimitives
- Instructions common to I and L/G: Zephemeralp

Only on L: 35 remaining hardware subprimitives -- Zmap-cache-write,
Zphtc-read, Zphtc-write, Zphtc-setup, Zreference-tag-read,
Zreference~tag-write, Zscan-reference-tags, ch—tag—read, Zgc-tag-write,
Zscan-gc-tags, Zge-map-write, Zmeter-on, Zmeter-off, Zblock-gc-copy,
Zblock-transport, Zscan-for-nldspace, %Zclear-caches, '
Zphysical -address-cache, Zscan-for-ephemeral-space,
Zclear-instruction-cache, Zscan~for-ecc-error, Zio-read-until-bit-test, -
Zio~read-while-bit-test, Zio-read, Zio-write, ' :
Zunsynchronized-device-read, Zmicrosecond-clock, Zblock-checksum-copy,
%btock-32-36-checksum-copy, ZbTock—36—32—chécksum~cbpy, Zaudio-start,
Zfep-doorbell, Zdisk-start, Znet-wakeup, Ztspe-wakeup

.Graphics Instructions _
Instructions ecommon to I and L/G: none

Only on L: all the graphics instructions -- Zbitblt-short-row,
Zbitblt~long-row, Zbithtt-long-row-backwards, Zbitht—decode-arrays,
Zdraw-1ine-loop, Zdraw—stringéstep,,Zdraw—triangle-segment,
Zhitblt-short, Zbitblt-long, Zdraw-string-Tloop, '
soft-matte-decode-arrays, soft-matte-internal

Prolog Instructions
Instructions eommon to I and L/G: none

Omnly on L: a1l 2§ Prolog instructions —- proceed,
assure-proiog—frawe-ronm, push-choice-pointer, cut, neck-cut, fail,
fajl-if-false, faji-if-true, push-goal, execute-goal, execute-stack,
dereference-~tocal|, dereference-stack, globalize-var,
globalize-var-forrneck-cut, push-var, push-void, push-Tist, push-1istx,
unify-nii, unify-gonstant, unify-immediate, unify-local, unify-list,
unify-Tlistx, unify-1ist*x-1

240

Symbolics, Inc.

4. Functlon Callmg, Message Passing, Stack-Group
Swrtchlng | -

st s e s o sk ok o s okl oo o e ke o o o ot o o e s ol o o o s o sk sk s e ke e o e ot o e ke o o ok ook R o ot Sk e sk ol ok sk skt o e ok e e ke s KoK e sk ek

This file is confidential. Don’t show it to anybody, don’t hand it out to people,
don’t give it to customers, don’t hardeopy and leave it lying around, don’t talk
about it on airplanes, don’t use it as sales material, don’t give it as background to
TSSEs, don’t show it off as an example of our (erodable) technical lead, and don’t
let our competition, potential competitioh or even friends learn all about it. Yes,
this means you. This notice is to be replaced by the real notice when someone

. defines what the real notice is.
R ************************************ar.**************************************m}:***]

441 Stacks

The architect_:ure defines three stacks:
.« control stack,
» binding stack, and
¢ data stack.

Each type of stack is described in the sections that follow. All the stacks grow in
the direction of increasing memory addresses.” A stack pointer addresses the top
word on a stack. A stack Himit is the address of the highest location that can be
used. A stack base register addresses the lowest entry in the stack

4.1.1 -Control Stack

The control stack holds control information necessary on a per function invocation
basis. It also holds the arguments and local and temporary variables of a
function.

4.1 1.1 Control Stack Frames

The environment of an executing function is stored in a frame on the control
stack. A control stack frame consists of a two-word header, the arguments, and
then the local variables and temporaries. Note that there are no separate copies
of the arguments for caller and callee; in this respect the I Machine architecture
is like the LM-2 and unlike the 3600.

241

Symbolics, Inc.

See Figure 22.

The first word in a control stack frame header contains a saved copy of the
caller's Continuation register. This is either the caller’s caller’s PC or the
address of a function the caller is going to call later. The second word in a frame
header contains a saved copy of the ealler’s Control register,

When a function returns, the saved values are resfored into the Continuation and
Control registers, At the same time, the caller’s PC is restored from the previous
contents of the Continuation register. . When a function is first entered, the
contents of the Continuation register normally points at the next instruction after
a finish-call instruction, except in a trap handler, where it points either at the
instruction that trapped or at the following instruction, depending on the type of
trap. : ' :

Note that the Continuation and Control registers stored in a frame header belong
to the caller’s frame, not to the frame where they are stored. The values for the
current frame are kept in live (hardware) registers instead of the stack because
special hardware uses them.

The maximum size of a control stack frame is

{- stack-cache-size
' 2 :For trap-out stack frame
2 ;For pushing the vector and PC
3 ;Increment in PHT-SEARCH code
2 ;Used in PHT-SEARCH code
)

4.1,1.2 Base Registers

There are three base registers that point to the current control stack frame.
These can be used to calculate instruction operand addresses. -See the section
"Macroinstruction Set.”

The frame pointer (FP) points to the first word of the frame header. This
register is used to locate the function’s arguments, which start at a fixed offset
past FP. The local pointer (LP) points after the spread arguments. (Spread
arguments are arguments that are not part of 2 &rest parameter.) It is used to
locate local variables to the function. The stack pointer (SP) points to the highest
word in the frame. SP is incremented or decremented as execution proceeds and
pushes or pops the stack. These registers are discussed further in another
section, See the section “Registers Important to Function Calling and Returning.”

See the section "Revision 0 Implementation Function-Calling Features.”

242 -

Control Stack Frame for Function with No &rest Arguments

}

Increasing addresses

[

Stack Pointer

] =

Tiop of siacl

I Temporarias ’

‘L ocatvariable n

“L.gcal variabie 0

Local Pointer

i

]

Eil

Nate that the logal pointer

daas not point to anything meaningiul

i there-am no &rest arguments.

Last supplied argument

| —. Suppfiedacgurwent

L . Frama painter

J

Caller's Continuation egister |

Figure 22. An [-machine control stack frame.

243

. Current
working
arez

Passed from
provious
function

Frame header

Caller's

~ frame

Symbolics, Inc.

Contrel
F stack
frame

Symbolics, ine.

4.1.2 Binding Stack

Binding is the temporary replacement of a memory cell’s contents. The Binding
Stack saves the address and contents of memory cells that have been bound so the
original contents can later be restored. Note that bmdmg affects only the
contents of a cell, not its cdr code.

Entries on the binding stack are two words long. The fields of an entry are as
follows;

Word Position Field ' Comments

B <38 - : Must be zero.

B <«38> . Binding-stack-chain-hit =1 if the previous entry is
7] _ for the same frame.

B <37:8>. Binding-stack—éeT! Locative to the memory cell

8) that is bound.

1 «39:38> -- Don’t care. (Stack-group

B switch may aiter them.)

1 <37:8> Binding-stack-contents Saved contents of bound cell.

The binding-stack-cell field contains a dtp-locstive pointer to the memory cell that
is bound. This indicates which location has had its contents temporarily replaced.
In the case of a dynamic closure, however, a new memory cell is created, and the
old value cell is loaded with a dtp-external-value-cell-pointer to this new cell

The new cell is referenced by the closure.

The binding-stack-contents field contains the contents of the bound cell. Bindings
do not persist across stack groups, and must be undone when control is
transferred to another group. Binding-stack-contents contains the "former"
contents of the cell when the binding stack belongs te the currently executing
stack group; otherwise it contains the "current” contents of the cell. See the
section "Stack-Group Switching.”

- The binding-stack-chain-bit is 1 if the previous entry on the binding stack is
associated with the same function invocation -as this entry. This bit is set by the
bind instruction, and groups entries on the binding stack into frames associated
with a function. Binding stack frames are removed at funection return time.

The Binding Stack Pointer points to the top of the binding stack (word 1 of the
topmost entryl) There is also a Binding Stack Limit register.

Bindings are performed by the bind-locative or bind-locative-to-value instruction.
A bind instruction checks-the Control register binding cleanup bit. If this bit is 0,
then this binding is the first associated with the current frame. The instruction
will set the binding cleanup bit in the Control register, and set the chain bit for
the entry on the binding stack to 0. If the cleanup bit is 1, then there are already
bindings associated with the current frame. The instruction will set the chain bit
for the entry to 1.
244

Symbolics, Inc.

Note that en unbind instruction (unbmd-h or %i:estore-bmdmg-stack) will clear
the Control regxster cleanup bit if it removes an entry from the blndmg stack with
“the ehain bit 0.

- -4.1.3- Data Stack

The purpose of the data stack is to provide an allocation area for temporary data
whose lifetime is-associated with a function’s lifetime., This allows less expensive
allocation/deallocation than the general méchanism.

This is implemented in software in the same manner as on the 3600.

,4.2 Registers Important to Function Calling_ and Returning

' The following processor registers are relevant to function calling and returnmg

Program Counter (PC)
Address of the current instruction,
dtp-even-pe or dtp-odd-pe

Frame Pointer (FP)
Address of the current stack frame.
dtp-locative

Local Pointer (LP)
'Address of the local-variable part of the current stack frame.
dtp-locative

Stack Pointer (SP)
- Address of the hlghest in-nse Word in the stack
dtp-locative

Continuation register (CONT)
-Address of the first instruction to be executed after the next
funetion call or return.
dtp-even—pc or dtp-odd-pc

Control register (CR)
A bunch of bits and fields to be described below
dtp-fixnum

The program counter contains the address of the current instruetion.

The frame pointer points to the first word of the control stack frame header. This
register is used to locate the function’s arguments, which start at a fixed offset
"~ (2) past FP. It can also be used to locate the function’s locals if the function does

245

Symbolfics, Inc.

not accept-a &rest argument. When a function returns, the SP is set to FP-1 to
remove the function's frame.

-After a finish-call instruction, the local pointer points to the Word after the spread

arguments. Thus it points to the rest argument if there is one; otherwise it '
~ points to the first local variable. When there are optional arguments and no rest
argument, LP points at the first optional argument not supphed by the caller if
there is one.

LP is used to locate local variables of the functions. FP cannot always be used
for this since in general the number of arguments the function accepts is variable. -
. LP may be adjusted by the entry and locate-locals instructions. .

The stack pointer points to the highest word in the contrel stack. SP is _
incremented or decremented as execution proceeds and pushes or pops the stack.

The Continuation register contains the address of the instruction to be executed
after the next finish-call or return instruction. Whether this is the return address
in the caller, or the first instruction in a function about to be ealled, depends on -
context. It is the address of the function to call between the start-call and finish-
call instructions, and the return address m the caller befween the finish-call and
return instructions.

'The Control register contains a fixnum with several packed fields:

Position Size Name

<31:38> 2 bits - Trap-mode
<20 1 bit Instruction-trace
<28> 1 bit © Call-trace
<27> 1 bit Trace-pending
<26:24> 3 bits Cleanup-hits
<26> cleanup-catech
<25> cleanup-bindings
<24> trap-on-exit
<23> 1 bit Cleanup-in-progress
<2e» 1 bit Call-started
<21:28> 2 bits Resserved
<19:18> 2 bits © Value-disposition’
<i7> 4 kit Apply
C<16: 9 8 bits Frame-size-of-calier
<8> 1 bit Extra-argument
<7:8> 8 bits Arg-size

Trap-mode controls the handling of exception traps. The four modes, explained
elsewhere (See the section "Trap Modes."), are: -

246

Symbolics, Inc.

i 0 . Emﬁi_ator
1 Extra Stack
2 High-Speed I/O

3 FEP

, The trap-mode field is adjusted when a trap is taken. It is set to (max 1 current-
trap-mode) by the %allocate-list-block or %allocate-structure-block instruction.

Instruction-trace when 1 at the beginning of-an instruction, causes completion of
‘the instruction to set trace-pending and causes-a trap before the next instruction

" executes. If a post-trap occurs when instruction-trace is 1, trace-pending is set in
the control register saved as part of taking the trap. This is not true of a pre-
“trap. If a return instruction restores a control register value with the instruction-
- trace bit set, the instruction returned to is executed before the trap occurs. '

Call-trace when 1, causes the finish-call instructions to set trace-pending, which
causes a trap before the first instruction of the called function executes. If stack
overflow occurs simultaneously, trace-pending is set in the saved control register
in the frame header of the stack overflow trap handler’s frame. When the stack
-overflow handler returns, the trace trap occurs. Call-trace does not affect the
implicit finish-call performed when a trap occurs, because call-trace gets cleared -
first. See the section "Revision 0 Implementation Furnction-Calling Features."

Trace-pending when 1, causes a trap to occur before the next instruction executes.
Note that a sequence break can intervene before the trap actually goes off. There
is only one trap vector location for trace-pending, regardless of the semantic
significance of the trap to the software. See the section "Revision 0 -
Implementation Function-Calling Features.” The interaction of trace-pending with
the repeated returns caused by Value-disposition Return is not architecturally
defined. See the section "Trace Traps."

Cleanup-bits specifies what actions need to be performed prior to removing the
function’s frame from the control stack. The actions are normally performed by a
return instruction. In the case of abnormal termination, these actions are
performed by the throw function (which uses a return instruction internally). All
three bits are cleared by a finish-call instruction. The bits are:

Cleanup-catch This bit indicates there are catch/unwind-protect blocks in the
frame, The catch cleanup bit is set whenever a catch or
. unwind-proteet block is created. The bit is cleared when the
outermost catch/unwind-protect block in a frame is destroyed.
See the section "Catch Instructions.”

Cleanup-bindings This bit indicates there is a non—empty binding-stack frame

247

Symbolics, Inc.

associated with this control-stack frame, in other words that this
function has bound some special variables. This b1t is set by
‘the binding instructions (bind-locative and ,
bind-locative-to-value) and can be cleared by the 'u-nbinding
- instructions (unbind-n and %restore-binding-stack). See the
section "Binding Instructions.”

Trap-on-exit This bit causes a trap to software when the frame is exited. .

' Used for hottom frame in stack, debugger ¢-X E command,
phantom ‘stacks, metering, and so forth. The software can use
the edr-code bits of the two header words in the frame, which
are initially set to 11 by the hardware, to distinguish these
cases. The trap-on-exit bit is set and cleared only by software,
and only in eopies of the Control register saved in memory, het
in the live register.

For details: See the section "Frame Cleanup.”

Cleanup-in-progress is set by an unwind-protect cleanup handler in accordance with
the econtents of the catch-block-previous word in the catch block to indicate that
execution is occurring inside of an unwind-protect handler, . '

Call-started is set by start-call instractions and cleared by the finish-call
instructions,

Reserved bits not allocated yet.

Value-disposition specifies what the caller wants done with the result(s) produced
by the function. It is set by the finish-call instructions. The 1nterpretat10n of
" value-disposition is:

0 Effect - The function has been called for effect. Discard any values the
: function may produce.
1 Value Only a single value is desired by the caller. ‘Push thls on the
: control stack, discarding any extra values.
2 Return The value(s) returned by the function are also the value(s)
' ‘returned by the caller. Pass the value(s) along to this frame s
caller.
-8 . Multiple " The caller wants multiple values returnede Push any number

of values on the stack, followed by a fixnum specifying the
mumber of values.

The requested disposition is performed by a return instruction. Returned results
are pushed onto the stack after the function’s frame has been removed from the

stack. If a function termmates abnormally, it does not return a value so Value-

. disposition is ignored.

248

-Symbuoiics, Inc.

Far i See L‘ﬁ;,‘; U-,;,;‘E S ..
Apply, 1f 1, indicates that a=rest argument “1i8t has been supphed follomng the
.spread arguments and is stored in LPJ0. This bit is set by the finish-call -
instructions, and is used to implement the Common Lisp apply funetion. _ThlS can

be reset by the entry. instruction domg a pull-apply-args operation.

Frame-szze—of caller contains the -size of the caller’s stack frame (callee’s FP mlnus
caller’s FP). Tt is used by return instructions to locate the start of the caller’s’
frame ‘when the function returns. This field is set by the finish-call instructions.

Extra-argument is set to 1 to indicate an extra argument has been supplied to the
function by a start-call instruction. This happens when calling a lexical closure, a
generic function, an instance, or any interpreted function or illegal data type. See
the section "Starting a Function Call." This bit is just used to transmit
information from a start-call instruction to the corresponding finish-call instruction
and then is no longer needed. It is cleared by a finish-call instruction.

_Arg-size is the offset of LP from FP in the frame. It is used to restore the LP
~when the function resumes execution after calling another function. It is also
used by the entry instruction to determine how many explicit arguments were ‘
. supplied with the call. This field is set by the finish-call instructions {for the new
- frame). It is also adjusted by the locate-locals instruction.

4.3 Function Calling

A function call requires three different actions: specifying the function to call,
pushing the arguments to the function, and finishing the call by building the new
stack frame and entering the target function. The instructions.that accomphsh
these actmns are described below.

-4.3.1 Starting a Function Call

A function call is begun by executing one of the start-call types of instructions,
whose single argument is the function to be called. These instructions create the
header of the callee’s stack frame, possibly push an extra argument onto the stack,
and set the continuation according to the type of function being called.

The most general start-call instrﬁction, start-call itself, takes its argument from
the top of stack or from a local variable. Several full-word instructions are also
supplied; these contain an address that specifies the funetion and possibly its data

type. In summary:

stért-call Takes a generai stack operand.

dtp-call-compiled-even and dtp-call-compiled-odd
' Address a compiled-function directly, specifying whether to start

249

Symbolics, inc.

w1th the even or odd halfword instruction in the addressed
location,

dtp- caﬂ-mdn'ect Addresses a functlon cell and fetches its con‘::ents

dtp- call-generlc Addresses a. generlc functlon dlrectly

Each full-word start-call type of instruction comes in prefetching and
nonprefetching versions. Semantically these are identical, but the prefetching
version is a hint to the hardware that a finish-call instruction appears soon
enough after the start-call instruction that it would be werthwhile to prefetch the
first few instructions of the called function rather than continuing to fetch ahead
instructions from the calling function. The decision of when to use the
prefetching version is up to the compiler; it is probably appropriate when there
are no nested function calls in the arguments and the number of instructions in
the arguments is less than a certain constant (around half a dozen). Prefetching
makes the ensuing finish-call operation run faster. The hardware does not
necessarily actually prefetch when the prefetching version is executed; it depends
on the particular instruction, on the data type of the function, and on how complex
the hardware turns out to be. The prefefching versions of the indirect and
generic calls are almest certainly not treated any differently from the normal
versions by the hardware: they exist entirely for soffware reasons.

The start-call instructions push the Continuation and Control registers (in that
order) onto the control stack with their cdr codes both set to 3; they will become
the header of the callee’s control stack frame. After the Control register is
pushed, the control-register.call-started bit is set to 1.

Depending on the data type of the function being called, a start-call instruction
may push a third word which is called the "extra argument." Its cdr code is set
to 0. All data types other than dtp-compiled-function receive an extra argument.
In the case of instance or generic function, the word pushed on the stack is just a
placeholder for the real extra argument the function will be called with, since this
cannot be computed until the first argument is known.! If the.start-call
instructions push an extra argument, they set the extra-argument bit in the
Control register to 1; otherwise they clear the bit to 0. This information is saved
for the finish-call instruction. The setting or clearing of this bit takes place after
the Control register is saved on the stack.

After Continuation and Control registers are saved, the Contﬁluqtionlregister is

Trhis extra argumnent mechanism Is necessary because in general the data type of the function being called
Is not known undil run time. Note that if a method is called directly, as from a combined method, or if a lexically
internat funciion is called directly, as from its parent, the exira argument is passed instead as a normal
argument. Any given function always receives its arguments in the same format, and does not need to know
whether the first argument was suppled normally by the caller or was an "extra” argument.

250

Symbolics, inc.

set to-a PC value pointing at the beginning of the function to be called (the

~ argument of the start-call). Depending on the data type of the functlon, this
continuation can be computed from the function itself or can be fetched from one
of 64 trap-vector locations, indexed-by the data-type of the’ functmn The effect ‘of
the functlon 8 data type on a start-call is as. follows:

complled-functmn There is no extra argument The contmuatmn is set to

gymbol
instance

_generic

lexical closure -

, anythiﬁg- else

- dtp-even-pc with the address of the function.

.Fetch the contents of the symbol’s function cell and try again.
ﬁ.Take an error ‘trap if the function cell contains dtp-nu]l

Push the instance as the extra argument The contmuatlon -
comes from the trap vector.

Push the generic function as the extra argument The

continuation comes from the trap vector.

Fetch the enclosed function and the environment from mermory.
If the enclosed function is comipiled, push the environment as
the extra argument and set the continuation to dtp-even-pc and

- the function’s address, producing a call to the enclosed function

with the environment as its extra argument. If the enclosed
function is not compiled, then push the lexical closure as the
extra argument and take the continuation from the trap vector
location for dtp-lexiecal-closure.

Push the original function as the extra argument. Use the data
type of the function as an index inte the trap vector to feteh the
appropriate interpreter function and set the continuation to that.

After a start-call instruction the continuation is guaranteed to be a PC pointing
into a compiled function, assuming the trap-vector has been initialized correctly.

- For the instance and generic function cases, the real function (the method) and

- the real extra argument (the mapping table) cannot be computed until the value of
the first argument is known, so these have to be deferred until a finish-call
instruction is executed and execution proceeds at the PC now in the Contmuatmn

Register.

Note that after domg a start-call, a program does not know the exact depth of the
stack, because it does not know whether an extra argument was pushed. The
compiler avoids using SP-relative addressing to access variables deeper in the
stack than the incipient frame header.

' Figure 23 shows how the stack_- looks at this point,

251

Symbolics, Ihc.

Control Stack and Reglsters at the End of Start-Call

Case |, data type of function being
called is dip-compiled-function

I Or O
Loy [0

| Stack Pointsr S Callers Control ragister .
Control Reqister Caller's Continuation register A
f E;S E-g I ' _ New Frame header
ntiruation Register i MR . . Callet’s frame
. PG atiunction to be calied . ‘)

r ' Frame pointar l —

?

Increasing addresses
Case i!: data type of funclion being
called is not dip-compiled-function
{ _ Stack Pointer S et Extra Argument T
Conlrol Registar Cg Callsr's Control register
[— [+2-3 E-A [X . i
= =3 . -8 Calier's Continuation register -

" New F hi
Continuation Register aw Frame eade_r

|__PC of tungtion to be callod |

&> Callérs frame

! E.ran-;a pointer = i . . -

Figure 23. The stack at the end of a start-eall instruction '

252

- Symbolics, Ine.

.- 4,3.2 Pushing the Arguments -

After starting. a function call, the callet computes the arguments and pushes them
onto the stack, in order. Results of instructions normally are edr-next, to

facilitate the linking of the arguments into a list to b& passed: ‘to an &rest
argument. The resettmg of the final edr code is performed by the entry
instruction.

4.3.3 Finishing the Call

After starting a function call and pushing the argumeénts, the caller executes a
finigh-call ingtruction. This instruction builds the new stack frame, checks for
control stack overflow, and enters the callee at the appropnate starting
instruction. : :

Instructions at the beginning of the callee are in charge of checking the number
of arguments and rearranging them to suit its needs, or signalling an error if the
wrong number of arguments were supplied. Every compiled function should
contain-code to do this, but the linker (which places dtp-eall-compiled-even or
dtp-call-compiled-odd instructions into compiled ¢allers) can optimize calls by
bypassing those instructions and arranging for the called function to be entered
directly at the right place.

" There are two finish-call instructions, finish-call-n, and ﬁnish—_call—tds which differ
only in how they obtain their argument. finish-call-n takes'its argument as an 8-

. bit field. of a 10- bl.t immediate, and finish-call-tos pops. s argument from the top

of stack.

The operand, caIled N-Args, indicates the number of arguments eXpIicitly supplied
with the eall, including the apply argument, if present. It does not include the
extra-argument, if any. The finish-call-n instructions include an extra biag of +1
in the immediate argument count, to simplify the hardware. This blas s not in the
operand to the finish-call-tos instructions.

There are -2 number of applications for calling a function with the number of
arguments not known at compile time, where the arguments do not come from a
list, including the %finish-function-call and multiple-value-call special forms and
things built on them. These are handled by using the finish-call-tes instruction.

Three additional bits supplied with the instruetion, 1<9:8> of the 10-bit immediate
‘field and one bit of the opcode, are used as follows. :

Value-disposition A 2-bit field taken from the opérand field that specifies what to
do with the result(s) produced by the function being called:

0 Effect The function is being called for effect.
Discard any values it may produce.

253

Symbolics, Inc.

3

Value Only a single return value is desired.
’ Discard any additional values the- functmn
may produce.

Return - The value(s) returned by the function being
called are also the value(s) returned by this
function. Pass the value(s) along to this:
frame’s caller. - This is illegal in nested calls.

Multiple -Multiple values are desired. These should be
returned along with a fixnum specifying the
number of values returned.

Apply ' A 1-bit field taken from the opcode, whick is a 1 if the top word
o in the stack is a list of arguments. The Hst may be spread or
- packed by the entry instruction. This implements the Common
Ligp apply function.

The operatlons of finish-call are described sequentlally helow, although in the -
-actual hardware many of them happen in parallel

The finish-call instruction next builds the new stack frame with the following

procedure:
FP
. <
FP
o=
P : <=

Continuation «=

For finish-call-n, finish-call—h-apply:
SP - N-Args - control-register.extra-argument

For finish-call-tos, finish-call-tos-apply:
SP - N-Args - control-register.extra-argument - 1

SP + 1 = Apply : ;th'ié. could be past sP

the address of the next instruction after the
finigh-call. .

SP, Binding-stack-pointer, and Data-stack-pointer are unchanged.

 Save the old contents of Continuation temporarily (see below).

The control register is adjusted as follows:

254

e
!

~ Symbolics, Inc.

Arg<Size ° <= (new LP minus new FP)

For finish-call-n, finish-call-n-apply: _
<= N-Args + contro1+register.extra~argument
- apply + 1 | '

For finiéh-cali-tos, finjsh-cali-tos-app'ly:
<= N-Args + control-register.extra-argument

- apply -+ 2
Apply _ <= Appﬂy bit in the instruction
- Yalue-Disposition - <= value Disposition bits in the instruction

Cleanup—Bits o <z - B

/r,uct’w FESE ﬁ
Trap-Mode <= unchanged
" Extra-Argument <= ‘B ;actually this doesn’t matter

Frame-size-of-caller <= new FP minus old FP

Call-started - §= | 8
After building the new frame, finish-call checks for control stack overflow by
calculating whether SP is greater than the stack limit. If the stack overflows in
normal mode, a stack-overflow trap will be taken after the end of the finish-call =

instruction before executing the first instruction of the target function. If the
stack overflows in extra stack mode, the machine halts with a fatal error. See the

. gection "Processor Faults."

The finish-call instruction ORs control-register.call-trace into control-register.trace-
pending, forcmg a trace pre-trap upon execution of the next instruction if call-
trace was 1.

Finally execution proceeds with the instruction at the halfword address specified in
the Continuation register before it was set to the return address.

Figure 24 shows how the stack looks after completion of the finish-call instruction. -

255

Symbolics, Inc.

- - Control Stack and Reglsters after Finlshing Call

Case A: Instruction was finish-call

r Local Boirter J —>

[Stack Pointer . J —

ogramn Countet
Old contents of Continuation Reg._l

Continuation Register
[_ -. P of instruction to return to* J

oniral Register)
Ara-5i Apply E-A
i-f?.,e'?ga o A A |

.“*'l Last supplied argument = TOp of stack|

[

s Supplied argumert

ool First supplied argumeant

[Frame pointer —

A

increasing addrestes

¢ 53 Caller's Cantroi register

4 O

Calier's Confinuation register

Case B. instruction was finish-call-apply

Local Pointer . ol
Stack Pointer —

Ir untar
D eontents of Continuation Reg.

A 14
P& of ingtruction to:raturn.to

Control Register .)
RS, 05 R

Frama pointer —

;:;;J Supplied &rest argument=Top of stack

ﬁ;’t Supplied argument

.;:_:‘ First supplisd argumsti

C-C| Caler's Contpl ragister

* This iz 1he address of the next instiuction

E-£] catier's Continyation register

after finish-gall.

Note: e-a is the vriginal value of control-register.extra-argument.

Nurnbser of
arguments.
suppiied = n

w N-Args for "ios"
= N-Args -1 for “n"

Frame haader

Caller's itame

Frame header

Catier's frame

Figure 24. The stack after completion of the finish-call instruction

2566

. Symbwolics, Inc.

'4.33.1 Trapping Out of Finish-call and Restarting - o

. Traps in the finish-call instructions always occur after building the new frame and
setting the Control register, the Continuation register, and the Program Counter -
to their new values. Thus any trap occurring in a finish-call instruction looks like
‘a pre-trap in the first instriction of the called functmn No speclal action is
required to restart after such a trap.

433.2 Aborting Calls

It is sometimes necessary to abort a call that has been started, instead of ﬁmshmg
it with a finish-call instruction. Aborting a call consists of popping the stack back
to the level before the call was started and restoring some of the Continuation and
Control reglster values saved by the start-call instruetion, This 15 performed by
Lisp code.

4.4 Function Entry

A compiled function starts with a sequence of instructions that are involved in -
receiving the arguments. The first instruction is known as the entry instruction.
It is followed by a possibly-empty sequence of instructions known as the entry
vector. The function can be entered at the entry instruction, which will check the
number of arguments and select the first instruction to be executed, either an
element of the entry vector or the first instruction after the entry vector.
Alternatively, this selection can be made by the linker when the number of
arguments is known statically, and the function can be entered directly at an
element of the entry vector or at the first instruction after the entry vector. In
either case, execution proceeds from the selected instruction according to normal
instruction sequencing, possibly executing additional instructions from the entry
vector. After completing the entry vector, some additional argument-taking
instructions may be executed, depending on the particular function. Thus a
compiled funetion consists of:

Object header (2 words)

Entry instruction

Entry-vector instructions

Other argument-taking instructions
Body instructions

See the section " Representation of Compiled Functions."'

Each entry-vector element is two half-word instructions long. For each &optional,
there is an element of the entry vector and there is one for the &rest argument,
if supplied. (This includes an automatically-generated &rest argument in a ~
function with &key arguments.) The element of the entry vector corresponding to
an argument contains instructions that are executed if that argument is not

257

Symboolics, Inc,

supplied by the caller. These instructions compute the default value (nil for a-
&rest argument) and push it on the stack, If this computation will not fit in an
entry-vector element, the compiler ingerts a branch to the rest of the code, which
ends-in a branch back If the computation is smaller than the size of an entry-
vector element, it ends with cdr-code sequencing that skips an instruction.

The entry instruction contains the following information:

Numbher of required arguments
Number of optional arguments
. Number of rest arguments (zero or one)

An entry instruction performs an argument match-up process that either traps (for
- wrong number of arguments) or adjusts the stack and then branches to the
appropriate instruction of the entry vector, or to the instruction after the entry
‘vector. See the section "Entry-rest-accepted.” The first entry-vector element
follows immediately after the entry instruction. Adjusting the stack is done by
performing one. of two operations described later: pull-apply-orgs or

push-apply-args. -
The following conditions are computed by an entry instruction:

* Too few spread argumehts (N-Args+2 < min-args+2)
» Too many spread :az_'guments (N-Args+2 > ma.x-args-z-.?)'
¢ Maximum spread arguments (N-Args+2 = max-args+2)

¢ Rest argument wanted (vest-arg = 1)

e e i T

e —— I ——

_» Rest argument supplied (contrsl-register.apply = 1) R

Note that,. the argument comparisons are all biased by plus 2. The value of control-
register. arg-sme is two greater than the actual number offarguments in the frame
heeause it mcludes the two frame header words (thls rmiakes return faster). To
simplify these entry- comparisons, the arguments mzn—args and max-args in the
entry instructions are correspondmgly blased 'by two.

If "rest argument wanted” and "rest argument supplied” are both false, this is the

simple case. If there are too few or/too many arguments, take a Wrong-Number-

of-Arguments (WNA) trap. Othervmse enter the function at entry-vector element

(N-Args - min-args); this skJ.ps over the default-initialization instructions for those
- optional arguments that had values supphed

If "rest argument wani;ed" is false and " 'rest argument supplied” is true, then if
there are less than the miaximum number of arguments, do a pull-apply-args
operation. Oj:hervmse take a wrong number of arguments trap because there are
too many arguments. .

/ . . e

258

e

e

Symbolics, Inc.

The entry instruction contains the following information:

Number of required arguments
Number of optional arguments
Number of rest arguments (zero or one)

An entry instruction performs an argument match-up process that either traps (for
- wrong number of arguments) or adjusts the stack and then branches to the
appropriate instruction of the entry vector, or to the instruction after the entry
vector. See the section "Entry-rest-accepted.” The first entry-vector element
follows immediately after the entry instruction. Adjusting the stack is done by
performing one of two operations described later: pull—apply—args or
push-apply-args. : :

The followmg condltlons are computed by an entry instruction:
e Too few spread arguments (N-Args+2 < min-args+2)
s Too mﬁny spread argumeﬁts (N-Args+2 > max-args+2)
¢ Maximum si)read arguments (N-Args+2 = max—drgs+2) '
e Rest argu'rnént wanted (rest-arg = 1) |
¢ Apply ai'gmﬂent supplied (control-register.a;ipl& = 1)

Note that the argument comparisons are all biased by plus 2. The value of control-
register.arg-size is two greater than the actual number of arguments in the frame
‘because it includes the two frame header words (this makes return faster). To
- simplify these entry comparisons, the arguments min-args and max- args m the
entry instructions are correspondmgly biased by two .

o If “rest argument wanted" _and "apply argument supphed“ are both false
this is the common and simple case.

° If the number of arguments is in range (min-args <= N-Args <=
max-args) then enter the function at entry-vector element (N-Args
- min-args); this skips over the default initialization instructions for
* those optional arguments that had values supplied.

'° Otherwise there are too few or too many arguments take a Wrong
Number of Argm-nent trap.

o If "rest argument wanted” is false and ' apply argﬁment supplied” is frue,
then the apply argument must be converted into sp;-ead arguments. -

° If there are less than the maximum number of arguments supplied N

258

Symbolics, inc.

(N-Args < max-args) then do a pull-appiy—args operation to pull
(max-args - N-Args) arguments, which will normally turn off "apply
argument supplied,” and retry the'argument matehup process.

° If the maximum number of arguments is supplied (N-Args = max-args)
and the apply argument is nil, pop the apply argument, clear control-
register.apply, and enter at vector (N-Args - min-args). Note: this is an
optimization of the pull-apply-args operation pulling 0 arguments out of
nil and retrymg the argument matchup process.

° Otherwise there are too many arguments; take a Wrong ‘Number of
Arguments trap. ' '

¢ If "rest argument wanted" is true and 'apply argument supplied” is false,
-then a rest argument may need to be made from some of the spread
arguments. S

° If there are too few arguments (N-Args < mih-args) then take a Wrong
Number of Arguments trap.

© If the number of spread args is in range (min-args <= N-Args <=
mox-args) then enter at entry-vector element (N-Args - min-args); this
skips over-the default initialization for those optional arguments that
had values supplied and the last element of the entry vector W111 push
nil to default rest argument.

° Otherwise (N-Args > max-args) some spread args must be made into
the rest argument; do a push-apply-args operation of (N-Args _
- max-ergs) arguments and enter at entry vector (max-args - min-args +

1.

o If "rest argument wanted" and " apply argument supplied” are both true,
then the apply argument may be pushed, pulled or used as is.

° If less than the maximum spread arguments were supplied (N-Args <
 max-args), then convert some of the apply argument to spread
arguments by doing a pull-apply-args operation to pull (maex-args
- N-Args) arguments, which may turn off "apply argument supplied,”
“and retry the argument matchup process.

If exactly the maximum numnber of spread arguments was supplied -
(N-Args = max-args) then use the apply argument as the rest argument.
Set the cdr-code of the top word of stack to edr-nil and enter the
function at entry-vector element (max-args - min-args + 1). This skips
over the default initialization for the optional arguments and for the
rest argument. 259

Symbolics, Inc.

function at entry-vector element (meax-args - min- -args + 1). This skips
over the default initialization for the optmna_l arguments and for the
rest argument. '

. _ , o

. © Otherwise more than- the maximum number of spread arguments were

. supplied (N-Args > max-args). Push some of the spread arguments into
the apply argument by deing push-apply-args operation of (N-Args

‘ - max-args) arguments and enter at entry vector (max-args - min-args +
. ' :

Figure 25 summarizes how the argument matchup operation' is performed.

4.4.1 Push-apply-ergs

* The push-apply-args operatmn is invoked when there are too many spread
arguments and a rest argument is wanted. It pushes some. spread arguments back -
into the apply argument, after ‘which the function is started at its all-arguments-
supplied entry point. This operation does not involve any memory references nor
‘any possibility of trapping.

In detaﬂ push-apply-arge does ‘the following:
e Set, the cdr code of the last word in the stack to cdrml.

o If an apply argument Was supplied, set the cdr code of the second to last
word m the stack (the last spread argument) to cdr- normal

© Since argume_nts are pushed with cdr-next, the stack now contains a liet of
all of the arguments. _

» Make a rest argument m;t of the arguments aften the max number of spread
arguments wanted by the function by creatmg a dtp-list pointer to (frame-
pointer + max-args + 2) Push this rest argument onto the stack.

o If app1y=0, leave control-reglster arg-swe and controlreglster apply alone.
They describe the arguments preceding the rest argument that was just
pushed, which is regarded as a local vanabxle of the callee rather than a.n :
“argument supphed by the caller.

e If apply=1, increment LP: and control- regust‘er arg- Flze and leave control-
register.apply alone. LPnow points at thé revised rest argument that was
just pushed, instead of t]ge original rest argument Whlch has been turned

mto the cdr word of a two-word cons.
3.?

The functlon is entered at entry vector element (m:ix-args Imn-args + 1) [past

259A

~ Argument Match-Up Done by Entry instruction

Symbolics, Inc.

&rest argument
wanied
apply argument False : _ Te
supplied If: MIN <= NARGS <= MAX If: NARGS < MIN take WNA trap
enter at vector (NARGS - MiN) If: MIN <= NARGS <= MAX
False Else; take WNA trap enter at vector (NARGS - MIN}
' If: NARGS > MAX
do a push-apply-args
anter at vector (MAX - MIN + 1)
If: NARGS < MAX if: NARGS < MAX
True '
do a pull-apply-args do a pull-apply-args
1f NARGS = MAX and apply-arg = NIL I NARGS = MAX ~
pop stack ' set TOS cdr code to cdr-nil
clear controi-register.apply enter at vector (MAX - MIN + 1)
enter at vector (MAX - MiN}) ’
I: NARGS > MAX
It NARGS = MAX and apply-arg not nil.
or NARGS > MAX do a push-apply-args
: : entar at vactor {MAX - MIN + 1)
— lake 3 WNArap :
In this figure, the variables used are

NARGS = cr.argument-size = N-Args + 2 + (cr.exira-argument - cr.apply)
-~ that is the actual number of arguments supplied biased by 2,

but not incliuding the apply argument.

MIN = min-args + 2 -- that is, the number in the required-arguments field
of the entry instruction, which is the actual number of required
arguments biased by 2. :

MAX = max -args + 2 -- that is, the number in the required-plus- optlonal arguments
field of the entry instruction, which is the actual maximum number of
arguments biased by 2.

Figure 25. The argument matchup algorithm

260

Symbolics, Inc.

the &rest argument default] Flgure 26 ﬂlustrates the effect of the push- apply-
args operation.

- 4.4.2 Pull-apply-args

" The pull-apply-args operation is invoked when there are fewer than the maximum
number of spread arguments and an apply argument was supphed It pulls some
additional spread arguments out of the apply argument.

In detail, ptﬂl—apply-args
« pops the list of arguments off the stack
| * extracts an argument from the list,
. pﬁshes it onto the stack, ,
s pushes the tail of the list\onto the stack,
. adjusts. control-register.arg-size and the LP, and
. retries the argument match-up process.

Flgure 27 111ustrates the pull-apply-args operation.

If the apply argument is too short, the control-register. apply bit is turned off the
retry may then signal too few arguments or may simply default some optional
arguments. The pull-apply-args operation occurs even if the callee did not want a
&rest argument; if the desired number of arguments are pulled out of the apply -
argument and more arguments remain, a wrong number of arguments trap will
occur when the argument match-up process is retried.

Following the entry vector, other instructions may appear that perform the
operations described next. .

In a function with both &optional and &rest arguments, it is necessary to adjust
the LP register to make sure that the &rest argument is in LP{0. (If there is a
&rest argument but not &optional arguments, LP will already contain the correct
value.) Any function that takes a &rest argument may be called with an arbitrary
‘number of spread arguments; push-apply-args will generate the correct &rest
argument, but there remains an arbitrary distance between FP and SP at the time
the function is entered and starts creating its local variables. This is the reason
.why the local pointer exists; it permits such functions to address their local
variables. Funections without &rest arguments do not normally use the local
pointer. The first instruction after the entry vector, when there are both
&optional and &rest arguments, is a locate-locals instruction, which does the
folIowmg :

261

" Symbolics, ina. -

.,

\neg1ster apply alone LP now. points at.the.revised rest argumment that'*/\yas '
. 1—"?;" just pusﬁed\mstead of the original rest argument, Whlch has been turned
mto the cdr word of a fwo-ward:eenf T o :

, I R ——
The functlon is entered at entﬁry#ye_c_tﬂo_ﬂelement (max=args - rmn args + 1) [past_

‘the &rest “argument default]. Figure 26 illustrates the effect of the’ push-applyl
args operatlon

4.4.2 Pull-apply-args

The pull-apply-args operation is invoked when there are fewer than the maximuﬁl
number of spread arguments and a &rest argument was supplied. " It pulls some
additional spread arguments out of the &rest argument. _

In detail, pull-apply-args
- « pops the list of arguments off the stack,

« extracts an argument ﬁfdm the .list,

-+ pushes it ont6 the stack,

s pushes the tail of the list onto the stack,

+ adjusts control-regiéter.afg-size and the LP, and
».rotries the argument match-up process,

Figure 27 ﬂlustrates the pull-apply-args operation.

If the &rest argument is too short, the control-reglster apply bit is turned off; the
retry may then signal too few arguments or may simply default some optional
arguments. The pull-apply-args operation occurs even if the callee did net want a
&rest argument; if the desired number of arguments are pulled out of the &rest
argument and more arguments remain, a wrong number of arguments trap will
occur when the argument match-up proceéss is retried. '

Following the entry vector, other instructions may appear that perform the
operations described next.

In a function with both &optional and &rest arguments, it is necessary to adjust
the LP register to make sure that the &rest argument is in LP|0. (If there is a
&rest argument but not &opiional arguments, LP will already contain the correct
value.) Any function that takes a &rest argument may be called with an arbitrary
number of spread arguments push-apply-args will generate the correct &rest
argument, but there remains an arbitrary distance between FP and SP at the time
the function is entered and starts creating its local variables. This is the reason

261

e8e

Before push-apply-args

Case A: Apply =0

Exarmple; (defun foo (X v z &rest 2} ..}

Effect of push-appiy-args Operation

(looabedef)
I 1 ocal Painter | —> .
| Stack Pointer I ——Z ;;;! Last supplied argument = Top of stack
: o] P : .
oo argd
car- ~arg?
cdr- arg?
Cﬁg!rc:gleqister Ko .:::l arg0 il
=8 =0 G- Cafller's Control register
i Frame pointer J == [C%] caller's Continuation register
Case B: Apply = 1 _
Example: {defun foc (x y z &rest z) ...}
(apply #fooabedef)
} ;::,i :i:t: :3 _Ec%%_ Apply. argument=Top of stack
ned - agd
et arg3
::; arg?
cdr- argt
Control Register ' _ .;;l ~ arg0
Arg Slze ApRY C{SC| Caller's Control register
Frame painter —_ Qg Caller's Continuation register

Number of
arguments

supplied = 6

Increasing addresses

. o
=
After push-apply-args %
o
2
5
o o
‘ Local Pointer I —aul d‘ >
Stack Pointer | —Z proa — P .
. nil] Last supplied argument = Top of stac
LE:; argd
FP + max-args + 2 —>> {59 arg3 <
. cdr- .
noxt arg2
cdngr;g' arg1
Controi Register cdr-) argd
Arg-Size Apply I . pext —
=8 =0 95: - Caller's Control register
Frame pointer f—> C-G | Caller's Continuation register
Local Pointer — ; i
. - dip-list ==
Slack Pointer —7 Tar p-l
‘ e Apply argument
R wot
FP + maxargs +2 —>> [odr arg3
| o
. : o - _;L:l argl
Conlrol Register - _;:;1 argo
ATQQ%IZE A=pglly) (_3_'% Caller's Contraol {egisier
Frame pointer = (E‘g Caller's Continuation register

Figure 26. 'The push-apply-args opefation

- Symbolics, Inc.

Effect of pull-apply-arguments Operation
Example: {deiunfoo (xy) ..)

{apply #ico ab)

Betore pullépply—args

Contrel ister .
I Avg-&gaze Apﬁly |

| Point
l , L_ocal Pointer —lﬁ — — o~
[stack Pointer | =7 Loam, dip:
. naxt argument0 {reguired)
C- Caller's Control reglster
[Frame pointer } == || caller's Continuation ragister
1\ : : : cor| argument1 R
Inereasing addresses
After pull-apply-args
ontrel Registet
Arg-Si Appl
Arg Size _ f% i
Local Pointer_~_~ | =—3»
[Stack Pointet]— e | . argumert
’ '] :::', argument® (required)
E'E Callet's Control rogistar
| - Frame pointer —}~—> [C-F| Callsr's Continuation register

edr- { argument

Figure 27. The pull-apply-args operation

263

Symbolics, Inc.

why the local pointer exists; it permits such functions to address their local.
variables. Functions without &rest arguments do not normally use the local
pointer. The first instruction after the entry vector, when there are both =
&optional and &rest arguments, is a locate-locals instruction, which does the
following: : ' '

. o Push (control-register.arg-size - 2} onto the stack, as a fixnum. This is the
number of spread arguments that were supplied, which is less than the
number of spread arguments now in the stack if some &optional arguments
were defaulted. If the rest arg is not nil, this fixnum can be larger than the
maximum number of spread arguments aecepted.

s Set LP to (new-SP.- 1), Thus LP|0 is the &rest argument arid LPH is the
- argument. count. new-SP here refers to the SP after the incrementation
caused by the locate-locals instruction.

o Set contrel—register.arg-size rto (LP - FP) as always.

Figure 28 shows how locate-locals works.

- The next step is to create the auxiliary supplied-p variables for optional
arguments. Each of these variables is stored as a local variable (after all the
argiiments) whose initial value is created by arithmetic comparison between the
number of arguments supplied and an appropriate constant. The number of
arguments supplied is control-register.arg-size - 2 except in functions with both
&optional and &rest arguments, where it is LPjl. The computation can be
performed with a sequence of existing instructions. The initialization of

- supplied-p variables recomputes information that was available while exectuting
the entry vector, but there was no space in the stack to store that informatirn
then. :

The next step takes care of any arguments that were declared special by binding
the special variables to the values using the normal instructions for that purpose.
If there are any non-special arguments after the special arguments, orphan words
will be left in the stack since the values of the special arguments cannot be
popped off,

If there are problematic dependencies among optional-argument default-value
computations, special care is required. A problematic dependency occurs if the
default value for an optional argument depends on a supplied-p variable of a

. previous optional argument or can be affected by a previous argument that is
declared SPECIAL. The 3600 handles this with an alternate function entry
sequence that the compiler generates if necessary. The I Machine will handle it
by using nil as the default value in the entry vector and then generating code
after the entry vector that tests whether the argument was supplied (just as if
initializing a supplied-p variable) and if not computes the default value and pops

264

Before locate-locals

Case 1: the apply (&rest} argument is nil .

Example: {defun foo (w &optional X ¥ &rest 2) ...}

(fooa b}

Confrol Regisler
Arg-Size " Appi
[Feg Y

Effect of locate-locals Instruction

After locate-locals

Control Register -
I_Arg_—%ize :) Ap%!y |

‘ | Stack Pointer’ ' | — 9
Stack Pointer —> frest = il (defaulted) [tocal Pointer =1 - rest = ni {defaulted)
Local Pointer —> ,;;;t argument? {defaulied) ' 1;':;, grgumehtz (defaulted). -
edi-l - argument? (optional) _;:;t argument1 (optional)
nem| __drgumento {required) car] arqumento (required)
C-£| Callor's Conirol ragister _ J&£] - Caller's Control register
I Frame pointer | = [C-§] caller's Continuation register i Frame pointer |— C-&| Callers Continuation register
ko\.}; "Increasing addresses
2 .

1

Case 2: &rest argument not nil, push-apply-args has been performed

Example: (defun foo (w &optional x y &rest 2} ...}

(apply #fooabcecde)
Control Register

Contrel Register

N

=

4 {locals)

dip-list =

1>

*1 Apply (&rest) argument
:fr:r i anUmentS (6ptjon&!)

rcrg;_! argument? {optional)
ol - e

next argument1 (optional)
_ﬁi,';. argumentt {required) -
Qg Caller's Control register
2 Caller's Continuation regfster

Figure 2.

The effect of the locate-locals instrur_:tion'

S . " [Arg-Size Apply .
I Arg-Size Af;_n‘lv. l , 3 2 I
' . _Stack Pointer
[Lacal Pointer] -3 — : e
[Stack Pointer] -7 = : dtp-tist 7
n“r' Apply (&rest) argument
cdr- .
nim argument3 {optional)
‘cdr- i
next argument2 {optional)
edr- "
 next argument? {optional)
ﬁz; argumentd {required)
C- Caller's Control register
[Frame pointer | —= {5 caflers Continuation register ! Frame pointer

"ouf "SofOqUIAS _

Symbolics, Inc. .

it into the argument’s slot in the staék. This code is interleaved with the binding |
of special variables so that everything happens in the right order.

Note that if a supplied-p Vanable is used in a read-only way, the value can sxmply
be computed where it is needed, rather than waiting until a stack slot is allocated
for the variable, and the problematic case need not occur.

The next step is to compute the values of &key arguments and push them on the
stack as local variables. This is done with code that looks at the rest argument,
just as on the 3600. '

.. This completes the function entry sequence. If the body of the function creates
~local variables (or &aux variables) pushing the initial value of the variable on the
- gtack allocates a stack slot, just as on the 3600. These stack slots can be
addressed from the top of the stack frame (relative to SP) or can be addressed

from the bottom of the stack frame (relative to FP if the function does not take a
&rest argument or relative to LP if it does).

4.4.3 Trapping Qut of Entry and Restarting

Traps can ocecur in an entry instruction. Error traps such as wrong number of
arguments are handled in the ordinary way.

The pull-apply-args operation references memory, so it is possibie for it to trap.
Usually, however, the &rest, %fgmnent will be a cdr-coded list in the stack and mno
trap will oceur; these cases are handled quickly by microcode. It is
implementation-dependent whether the pull-apply-args microcode handles the full
generality of ear and edr, including non-cdr-coded lists and invisible pointers.
Cases it does not handle make the stack frame self-consistent and then call a
special trap handler that performs the rest of the pull-apply-args operation and
then returns to the entry instruction, which will not need a pull-appiyv-args this
time. See the section "Pull-apply-args Exception.” If the pull-apply-args microcode
handles apply arguments in memory, the usual memory traps such as page fauits
can occur, and are handled by making the state of the stack frame consistent and
then calling the usual trap handler. After the reason for the trap has been
rectified, the trap handler returns to the entry instruction, which will go back
into pull-apply-args and should make further progress this time. '

4.5 Function Returning

4.5.1 Function Return Instructions

A function returns to its caller by executing one of the return instructions. These
instructions specify the value(s) to be returned, remove the returning function’s
frames from the various stacks, restore the state of the caller, and resume

266

Symbolics, Inc,

© . execution of the caller w1th the returned values on the stack 1n ‘the form de51red
by the caller.

The value(s) to be returned can be constant or can be some numher of words at
~ the top of the stack; the number of words can be either fixed or variable.

‘The form of values desired by the caller can be to throw all the values away, to
push the first value on the stack, or to push on the stack all the values and a
fixnum which is the number of values excluding itself. . The caller uses the value-
disposition field of the Control register to specify the desired form of values. Note
that any form of values supplied to the return instruction can be converted to any
form of values desired by the caller. In addition to this format conversion, the
return instruction must move the values from one place 1n the stack to another,
“from the callee’s frame to the caller’s frame.

'The return ingtructions are:
return-single - Return a single value.
return-multlple Return milltiple values (zero or more).

return-kludge Return multiple values in a non-standard form.

return-single has an immediate operand that addresses an internal register that

supplies the value to be returned. The values that can be returned include nil, t,
and the top-of-stack. = return-single does not do anything that cannot be done with
return-multiple (accompanied by a push in some cases), but it is likely that
return-single can be implemented to be much faster than the corresponding
return-multiple, which will speed up important common cases.

return-multipl_e has a standard. operand that specifies the nurmber of values to be
returned. The values themselves are on the top of the stack. The operand must
be a non-negative fixnum. If there is an implementation dependent upper limit on
the number of values, it must be at least 16. Although return-multiple takes a
standard operand, only immediate and gp-pop operands are legal (The reason for
this is. d1scussed below.) '

return—kludge takes the same argument as return-multiple, but it returns the
values in a different way. return-kludge ignores the value disposition and simply -
places the values at the top of the caller’s stack, without pushing the number of
values. return-kludge is used for certain internal stack-meanipulating subroutines
and all trap handlers. Noie that because return-kludge does not return values
according to the standard calling sequence, it can only be used in subroutines that
are specially known by the compiler, and in certain trap handlers.

' Note that the description of return values in the instructions above is from the
callee’s perspective. In other words, this represents what the function would
normally return upon completion. The value-disposition field in the Control
register, set by the caller, specifies what should actually be done with the return
value(s) (that is, they could be discardeclg)é7

Symbolics, Inc,

Before return can remove the frame from the stack, it may have to perform other
cleanup actions. These are specified by the Cleanup Bits in the Control register
being nonzero. The actions include popping the binding stack, popping the catch
stack (a list threaded through the control stack), executing unwind-protect
instructions (which may pop the data stack), and escaping to arbitrary software,
See the section "Frame Cleanup.”

. Once these eleanups have been taken care of, the return instruction restores the
state of the caller using the information saved in the frame header of the frame
being abandoned, according to this procedure: -

FC : <= Continhuation register (untess vd is refurn)
Continuation register <= FP|D ' '
temp <= FPI|1

SP _ <= FP - 1

FP <= FP - control-register.frame-size-of-calier
Control Register <= -temp '

LP <= FP + control-register.arg-size

At this point the function’s frame has been removed from the control stack. The. -
stack cache now iy either empty or contains part or all of the caller’s frame.

Since the frame that was just removed from the stack was entirely in the stack
cache, the lowest word in the stack cache is less than or equal to SP+l; if equal,
the stack cache is empty. The return imstruction does not worry about refilling

the stack cache at this stage.

The return instruction now places the values being returned at the top of the
control stack, aceording to the value disposition field in the old Control Register
and the particular type of return instruction being eéxecuted. The return-single
instruction can simply push its argument, but the return-muitiple and .
return-kludge instructions may have to transfer a block of values. The source
and destination locations of this block can overlap, both in virtual memory and in
stack-cache memory, so care must be taken when copying the block of values to its
new location. ' :

The specific handling of the value disposition is as follows:

Effect Leave the stack alone. This leaves the TOS register invalid.

‘Value Push the first value being returned onto the stack. If no values
were being returned, use nil as the first value.

Multiple " Copy the values down from the old top of the stack to the new
top of the stack, and form them into a multiple group by
appending a count.

Return Copy the arguments to the Return instruction down to the new

268

Symbolics, inc.

top of the stack and then re- execute the 1nstructmn If the
instruction was return-multiple and its operand was sp- pop, the
count of values must be pushed back on the stack

.The final thing the return instruction does is to make sure that the frame bemg
returned to is contained in the stack cache. If necessary, words in the frame are
fetched from main memory. If a trap or interrupt occurs during this process, PC
points at the instruction in the caller being returned to, not at the return
instruction, so.that the return instruction is not retried (which would return from
an extra level of call). When the trap/interrupt handler returns, its return
instruction will continue loading the frame into the stack cache. Note that the -
stack cache must be refilled in decreasing order of addresses, so that if a trap
occurs the range of addresses validly contained in the stack cache will be
- contiguous. See the section "Revision 0 Implementation Function-Calling

~ Features.”

When the value disposition is Return, the stack cache is refilled if necessary and
“then the return instruetion is re-executed, causing the value(s) to be returned
from the caller. This process can be repeated any number of times.

If the callee returns more values than will fit in the caller’s frame, the hardware

takes an error trap out of the callee s return instruction, before the stack becomes
illegal.

In order to allow smooth trapping out of the middle of a return, it is required
that all return instructions keep their state, if any, at the top of the stack. This
means that we cannot have a return-local instruction that returns the value of a
local variable; you have to first push the value on the stack and then return it
from there with return-single. Similarly, the number-of-values operand of a
return-multiple instruction cannot be addressed with FP-relative addressing; only
immediate and sp-pop operands are allowed. This restriction eliminates any need
to play around with special macro-PCs; any trap out of a return leaves the PC
pointing at the original return mstructlon and the stack set up so that the
instruction can be retried.

Returning from a call that had Value-disposition equal to Effect does not restore
the TOS register from the top of the stack. This is because there is no time to do
it: three reads from the stack cache would be required in this ¢ase, whereas when .
. the Value-disposition equals Value, two reads from the stack cache plus one write
are required and the return-single instruction executes in only two cycles. This
is normally not a problem, since the compiler can compensate, just as it does on
the 3600 for other instructions that leave TOS invalid. The compiler simply
knows that a finish-call instruction with a value disposition of Effect has the
smashes-stack attribute. '

269

Symbalics, Inc.

4.5.2° Frame Cleanup

The Cleanup Bits in the Control register specify actions necessary before the
frame can be exited. Traps, such as page faults, can occur while cleaning up.
After handling the trap, the return instruction is retried. The state of the stack
while cleaning up is always self-consistent,

The bits and the cleanup actions they cause are as follows, listed in the order that
they are processed:

Catch This bit indicates there are catch/unwind-protect blocks to be
, unthreaded. Unthreading a block examines the words in the
stack addressed by the catch-block-pointer register. If the catch -
~ bloek is for an unwind-protect (that is, if bit 38 = 1 in the
binding-stack-pointer word of the catch block), the following
actions are perfonned : :

e Restore stack-pointer to its origmal value, if it was popped -
by an sp-pop operand.

s If the catch-block-binding-stack-pointer is less than the
binding-stack-pointer, unbind special variables until the
two pointers are equal. Note that this can clear the
Bindings cleanup bit.

-+ Push the current PC with the current value of control-

register. cleanup-m—progress in bit 38 and 1 in bit 39 onto
the stack

» Set the PC to the catch-block-PC, which is the address of
the cleanup handier.

. Set the cleanup-in-progress bit in the Control register.

+ Set control-register.cleanup-catch in accordance with the
cdr code of catch-block-previous and at the same time
restore the control-register.extra-argument bit.

s Set the catch-block-pointer register to the catch-block-
previous, which is the address of the previous catch biock
or nil if there is none.

. & Transfer control to the first instruction of the cleanup
handler. When the cleanup handler exits the return .
instruction will be retried.

. 270

Symbolics, Inc.

If the catch block is for a catéh-(that is, bit 38 = 0 in the
- binding-stack-pointer word of the catch block), only the catch
. block need be removed (bindings:will be undone by cléanup .
' because the bindings cleanup bit. will be set for the frame). The
following actions are taken: '

* Set control—reglster cleanup-catch in accordance with the)
edr code of catch-block—prewous The hardware is
. permitied, but not required, to restore control-

: reg1ster extra-argument. '

" -» Set the catch-block-pointer reg1ster to the catch-block-
~ previous, which is the address of the prevmus catch block
or nil if there is none.

s Check the cleanup bits again. |

Bindings . This bit indicates there is a non-empty binding-stack frame
. ‘associated with this control-stack frame, in other words that this
function has bound some special variables. Pop the binding
stack and undo bindings until a binding stack entry whose
binding-stack-chain-bit is zero is encountered. Then clear
control-register.cleanup-bindings and check the cleanup bits
again,

Trap-on-Exit Take a trap. If the trap handler clears the Trap-on-Exit bit and
returns, the return instruction can proceed. :

4.5.3 Value Matchup

When Value-disposition is Multiple, the instruction after a finish-call instruction
will usually be a take-values ingtruction. -Ag on the 3600, this converts the
multiple group left on the stack by return into the desired number of values,
popping extra values or pushing nil as a default for missing values.

4,6 Catch, Throw and Unwind-Protect -

A catch block is a sequence of words in the control stack that describes an active
catch or unwind-protect operation. All catch blocks in any given stack are linked
together, each block containing the address of the next outer block. - They are
linked in decreasing order of addresses. An internal register named catch-block-
pointer contains the address of the innermost catch block, as a dtp-locative, or
contains nil if there are no active catch blocks. The address of a catch block is
the address of its catch-block-pe word.
: 271

Symbolics, inc.

The format of a catch block for a catch operation is as follows:

Word Name ‘ . Bit39 Bit 38 . Contents

- catch-block-tag . 2 - invalid flag any object reference
catch-block-pc 6 . 8 catch exit'address
catch-block-binding-stack-pointer ' - '

o B 8 binding stack level
catch-block-previous E -extra-arg cleanup-catch previous cateh block
catch+~block~continuation. value-disposition continuation '

The format of a catch bldck for the unwind-protect operation is:

Word Name + Bit 39 Bit 38 Contents
catch-block-pc B ’ B cleanup handler
catch-block-binding-stack-pointer :

_ B 1 - binding stack level
catch-block-previous extra-arg cleanup-gcatch previous catch block

The catch-block-tag word refers to an object that identifies the particular catch
operation, that is, the first argument of catch-open or catch-close. The catch-
block-invalid-flag bit in this word is initialized to 0, and is set to 1 by the throw
function when it is no longer valid to throw to this catch block; this addresses a
problem with aborting out of the middle of a throw and throwing again. This
word is not used by an unwind-protect operation and is only known about by the
throw function, not by hardware,

The catch-block-pe word has data type dtp-even-pe ur dip-edd-pe. For a catch

operation, it contains the address to which throw should transfer control. For an

unwind-protect operation, it contains the address of the first instruction of the

cleanup handler. The cdr code of this word is set to zero (edr-next) and not used.

For a catch operation with a value disposition of Return, the catch-block-pe word
contains nil.

The catch-block-binding-stack-pointer word contains the value of the binding-stack-
pointer hardware register at the time the catch or unwind-protect was established.
When undoing the catch or unwind-protect, special-variable bindings are undone
until the binding-stack-pointer again has this value, The cdr-code field of this
word uses bit 38 to distinguish between catch and unwind-protect; bit 39 is set to
. zerg and not used.

The catch-block-previous word containg a dtp-locative pointer to the catch-block-pe
word of the previous catch block, or else contains nil. The cdr-code field of this
word saves two bits of the control register that need to be restored.

272

Symboliss, Inc.

. The catch-block-continuation word saves the Continuation hardware register so that
throw can restore it. The cdr-code field of this word saves the value disposition
of a catch; this tells the throw function where to put the values thrown This
word is not used by unwind-protect. : '

An unwind-protect cleanup handler terminates with a %jump instruction. This
instruction checks that the data type of the top word on the stack is-dip-even-pc
or dtp-odd-pe, jumps to that address, and pops the stack. -In addition, if the bit
89 of the top word on the stack is 1, it stores bit 38 of that word into: control-
register.cleanup-in-progress. If bit 39 is 0, it leaves the control register alone.

The compilation of the catch special fofm is approximately as follows:

Code to push the catch tag on the stack.
Push a constant PC, the address of the first instruction after the catch.
A catch-open instruction.
The body of the catch.
A catch-close instruction.
Code to move the values of the body to where they are wanted;
this usually includes removing the 5 words of the catch block
from the stack.

"The 'compilation of i:he un“ﬁnd_-protect special form is 'approximately as follows:

Push a constant PC, the address of the cleanup handler.

A catch-open instruction.

The Lody of the unwind-protect.

A catch-close instruction.

Code to move the values of the body to where they are wanted; this
usually includes removing the 3 words of the catch block from
the stack.

Somewhere later 7in the compiled funection:

The body of the cleanup handler.
A %jump instruction..

Each active catch or unwind-protect operation has an associated catch-block stored
in the control stack and linked onto a list whose root is a processor register,
named %catch-block-list, that is saved in the stack group by context switch.

All the frames between the current frame and the destination of the throw are

- "unwound" individually, and the data stack is taken care of by this, Each frame
that uses the data-stack has an unwind-protect to clean it up. The binding stack
is also taken care of by this; the only reason for the binding SP in the catech block
is because bindings can happen at any point in the function, and only those that

273

Symbolics, Inc.

- happened after the catch should be undone (the binding stack itself only says W’J.th
which frame the bindings are assoc1ated ‘not where in the frame)

The implementation of throw is _somewhat similar to the way it is done on the
3600, but simpler and with less special kludgery. - A throw special form

(throw <tag> <values>)
is compﬂed as _
(multiple-value~call #'ZTHROW (VALUES <tag>) <values>)

which calls %throw with the value of <tag> as its first argument and the values
of <values> as its remaining arguments. %throw starts by searching the list of
catch blocks for one with the correct tag. If it doesn’t find one, or if the catch-
block-invalid bit is set in the block it finds, it signals an error. Having located
‘the destination catch block, %throw prepares to discard all intervening stack
frames and catch blocks; this requires invoking any unwind-protect cleanup
handlers that are present, each in its proper stack frame and special-variable
binding environment. %throw changes the value disposition of each intervening
stack frame to Return, and sets the catch-block-invalid bit in each intervening
catch block. Next, %throw examines the restart PC and value disposition of the
destination catch block, and modifies the return PC and value dispesition of the
next frame ‘m the stack, the one that was called by the fra.me containing the catch
bloek. There are two cases:

If the catch value disposition is Return, %throw sets the frame value disposition
to Return and returns the values to be thrown. These values are passed back
through all the intervening frames, since their value dlsp051t10ns are Return, and
eventually arrive at the desired destination.

Otherwise, %throw r:2ts the frame value disposition to Multiple, sets the frame
return PC to the address of a hand-crafted helping routine, pushes the following
values on the stack, and executes a refurn-multiple instruction that returns these
values through all of the intervening frames. The values pushed are:

o the words to be left in the stack when control reaches the catch’s restart
PC. This depends on the catch’s value disposition and could be nothing, one
word, or a multiple group. These are derived from the values to be thrown
passed to %THROW as its arguments. '

» The catch’s restart PC.

e The number of catch blocks to be closed in the destination frame.. This is at
least 1, and will be more if there are other catches inside the destination
“catch in the same frame,

s The number of special variable bindings to be undone. This is always zero
in this context, but the same helping routine is used for other purpoges.

274

Symbolies, Inc.

e A count of the total number of values, to make this a Va_hd mu1t1ple group.
‘The hand crafted helpmg routine proceeds as follows:

» Loop executmg catch-close 1nstruct10ns the speclfied number ;nf tlmes

. Loop executlng unbind 1nstruct10ns the specified number of t1m¢s._

. Pop the top three words off the stack

*+ Do a %Jump 1nstructmn whlch jumps to the catch’s restart PC and leaves
the values thrown in the stack.

Note that'the return PC and value disposition that need. to be modified are
actually stored in the frame header of the frame two frames up in the stack from
“the frame containing the destination catch block.. The frame containing the
destination catch block could be the same one that called %throw. In order to
avoid having to modify the internal processor registers (Return PC and Control
register), %throw calls itself recursively in this case.

The purpose of the catch-block-invalid bit is to detect the case where. a throw

. ‘begins, is interrupted part way through, and the interrupt handler does another
‘throw to a catch that is inside the original catch. This can also happen if an
unwind-profect cleanup handler gets an error and a throw occurs from the
Debugger. Since the stack has already been clobbered by changing the value
disposition of the frame containing this new catch, the program would operate
incorrectly if the second throw was permitted to occur. The 3600 deals with this
differently; it. doesn’t modify the value disposition of each frame until it is just
about to return from it. This still has a possibility of the same bug, since there
could be a catch in the frame being returned from, but the timing window is open
for a much smaller time. The 3600’s method is more dlfﬁcult to do on the IMach
because of the Control register,

catch-block-invalid catches nonlocal, but lexical, gos and returns too, since they
are compiled as throw to a special tag. It does not catch local gos and returns
out of unwind-protect cleanup handlers, but those are thoroughly illegal!

4.7 Generic Functions and Message Passing

The flavor system deals with flavors, instances, instance variables, generic
functions, and message passing. A flavor describes the behavior of a family of
similar instances. An instance is an object whose behavior is described by a

flavor. An instance variable is a variable that has a separate value associated

with each instance. A generic function is a function whose implementation
dispatches on the flavor of its first argument and selects a2 method that gets called -

275"

Symbolics, Inc.

as the body of the generic function. In message passing, an 1nstance is, called as
a function; its first argument, known as the message name, is a symbol that is
dispatched upon to select a method that gets called. Message passing is the pre-
. Release-7 reason for generic functions; we plan to phase it out eventually (over
several years). : :

4.7.1 Flavor

A flavor is a structure that containg information shared by all its instances. The
header of each instance points into the middle of the structure, at three words
known by hardware. Other portions of the flavor are architecturally defined, but
" not known by hardware. Still other portions of the flavor are known only by the
internals of the flavor system.

The data-representation chapter lists the architecturally defined fields of a flavor.
See the section "Flavor Instances.”

4.7.2 Handler Table

A handler table is a hash table that maps from a generic function or a message to
the method to be invoked and a parameter used by that method to access instance
variables. The details concerning the contents of a handler table are presented
elsewhere. See the section "Flavor Instances.”

The hashing funection used to search the handler table is designed to maximize :
speed and simplify hardware implementation, not to maximize density. It is
optimized assuming that the search succeeds on the first or second probe of the
hash table. It operates as follows:

¢ logand the generic function or message name with the hagsh mask from the
flavor. :

+ Multiply the result by 3 (this is just a shift and an add).

~ » Add the product to the handler hash table address from the flavor and -
initiate a block read of sequential locations starting at that address.

¢ For each block of three words, if the first word does not match the generic
function or message name, and is not nil, skip the next two words and go on
to the next block.

» When a block is found whose key matches or is nil, accept the method and
the parameter and terminate the search.

Note that when a mismatch occurs, the hash search proceeds through consecutive
addresses; it does not rehash. It also does not wrap around when it gets to the

276

Symboiics, Inc.

end of the table. Consequently the software must allocate sufficient room at the - -
end of the table, after the highest address defined by the hash mask, to
accomodate overflow from the end of the table and a ﬁnal entry w1th a key of nil

- that is guaranteed to terminate the search.

~ “The hash mask is normally a4 power of 2 mmus 1

Methods are dtp-even-pe or dtp-odd-pe. An interpreted method invokes a special
entry point to the Lisp interpreter; this is implemented by storing the interpreter
(the PC that points to its first instruction) as the method and storlng the actual
method as the parameter. .

4.7.3 Calling a Generic Function

A call to a generic function can be started by’ dtp-call—generlc,
dtp-call-generic-prefetch, dtp-call-indirect, dtp-call-indirect-prefetch that finds a
" dtp-generic-function, or a start-call instruction whose operand is a _
dip-generic-function. In any case, the generic function is pushed as the extra-
argument to the call and the continuation is set to the trap-veetor element for
calling a dtp-generic-function. When the call ig finished, control transfers to the
continuation, which is always a function that consists of nothing but a
%generie-dispateh instruction (there is no entry vector).

The %generic-dispatch instruction sees the following on the stack:

FPI2,1 " the usual function-call save area
FPl2 the generic function

FP[3 the instance

FPl4,5,... .additional arguments, if any

%generic-dispatch operates as follows:

» Make sure that the number of "spread arguments” is at least 2. This
ensures that FP|2 and FP|3 are valid. If necessary, perform a pull-lexpr-args:
operation. If that fails to produce two arguments, signal a "too few
arguments” error.

e Get the address of the interesting part of the flavor, which specifies the size
and address of the handler hash table. This is done by checking whether
the data type of FP|3 is one of the instance data types. If it is, fetch its
header following forwarding pointers (header-read). If it is not, use the data
type to index a 64-element table in the trap vector that pomts to the hash-
mask fields of the flavor descriptions.

» Fetch two words from the flavor, the hash mask and hash-table address, and
perform the handler hash table search described above. If the parameter is

277

Symbolics, Inc.

not nil, store it into FP}2, otherwise leave the generic function in FP|2 (the
default handler needs it). If the methed ig dtp-even pe or dtp-odd-pe, jump
to its entry instruction. If the method is anything else, trap (this is an
error).. ' : .

4.7.4 Sending a Message

Sending a message occurs when dtp-call-indirect, dtp-call-indirect-prefetch or a
start-call instruction finds an instance data type as the function. It pushes the
instance as the extra-argument to the call and sets the continuation to the trap-
vector element for calling that data type. When the call is finished, control
transfers to the continuation, which is a function that dispatches to the
appropriate method.

At this point, the stack contains the following:

FPIB,1 - the usual function-call save area

FP|2 : the $nstance
FPI3 the message
FP14,5,... additional arguments, if any

This is almest like the generic function case except that FPj2 and FP|3 have been
exchanged. The distinction between a message and a generic function is '
unimportant at this level; they are both used only as keys for searching the
handlier hash table.

The %message-dispatch instruction, whose description is similar to that of
%generic-dispateh except that the arguments are interchanged, accomplishes the
dispatch by effecting results equivalent to the following sequence of instructions:

ENTRY MIN ARGS = 2, MAX ARGS = oo
PUSH FP|2 |

PUSH FP|3

POP FP|2

POP FPI3

ZGENERIC-DISPATCH

Note that an entry instfuction cannot actually be used in this manner, so the
%emessage-dispatch instruction must exist.

4.7.5 Accessing Iinstance Variables
Instructions exist to read, write, and locate instance variables.
e Read: fetch the value of the variable, trapping if it is dtp-null, and push the

value on the stack
: ' 278

Symf_ﬁo!r‘cs, Iric,

‘e Write: pop a value off the stack and store it into the instance variable,
- preserving the cdr code of the location and checking for invisible pointers
~and dtp-monitor-forward (the same as when writing a special variable).’

» Locate: compute the address of the instance variable’s value cell and push it
on the stack with dtp-locative. If the value cell contains an invisible pointer, -
_dtp-null, or dtp-monitor-forward, that has no effect on the result of thls
instruction. :

These instfuctiohs are parameterized by the instance in gquestion and the Offs_et
within that instance of the 1nstance-var1ab1e slot. There are three groups of
mstructmns : : .

¢ Access an arbitrary instance, typified by %instance-ref: The instruction
receives the instance and the offset as ordinary arguments.

» Access self unmapped, typified by push-instance-variable-ordered: The

- .instruection finds the instance in FPj3 (the first argument in the current
stack frame, after the extra-argument) and receives the offset as an
immediate operand.

-o Access self mapped, typified by push-instance-variable: The instruction
finds the instance in FP|3 (the first argument in the current stack frame,
after the extra-argument), receives an instance variable number as an
immediate operand, and finds a mapping table in FP|2 (the extra-argument
or "environment”). The mapping table is always a simple, short-prefix ART-
Q array. The instance variable number is used as a subscript into the
mapping table to get the offset. [Note to those who understand the format
of mapping tables used in Release 6 on the 3600: some slots in mapping
tables are used for instance variable offsets as described here; other slots are
used for other purposes such as subsidiary mapping tables for combined
methods. The slots are allocated dynamically by the flavor system as they
are required and in general the two types of slots will be interspersed, This
eliminates the complexity and slowness of using array-leaders and art—le
arrays.]

If an instance has been structure-forwarded to another instance, the value of self
(FPJ3) in a method is the original instance. This means that the instructions to
access instance variables must check the header of the instance for a
dtp-header-forward, just as the array referencing instructions do, before adding
the offset to the address of the header to get the address of the instance variable.

279

Symbolics, Inc.

4.8 Stack-Group Switching

The major steps of a stack-group switch are:

f

1. Inhibit preemption |
"~ 2. Check the state of the new -sta._ck group for _resumability ‘
3. Set argument, resumer of new stack group | |
4. Save internal processor and coprocessor registers
5, Swép out special-varigble bin&ings of the current stack}‘g_roup
6:, Make sure the new stack group is prepared for execution
'f', Dump the stack cache
8. Switch fo the new stack and load the stack eache
9, Restore internal Processor and coprocessor registers
10. Swap In special-variable bindings pf the new stack group
il Enable preemption and return |

Saving internal processor and coprocessor registers is done by using -
%read-iriternal-register instructions to read the registers into local variables in
the stack, When the swifch to the new stack group is done, the new current stack
frame will be one whose local variables contain the register values for the new
stack group.

To restore internal processor and coprocessor registers, use
%write-internal-register instructions to pop the local variables off the stack and
put them back in the registers.

Swapping special-variable bindings in and out is the same except that swapping in
traverses the binding stack in ascending address order and swapping out traverses
it in descending address order. All memory reads are done with block-read or
%memory-read instructions, since those contain magie bits to select special
memory operand reference types.

‘The basic procedure to swap one binding, assuming that P points to a pair of
words in the binding stack, is:

280

Symbolics, Inc,

ioc eQ_data;read(P)) : ;;Get'address of bound cell

old ¢« bind. read_no_monitor(P+1) ~ ;Get old contents of .
' . - ;that cell '
new ¢« bind_read_no_monitur(1oc) ;Get new contents of
o - E wthat cell. '

;1T an invisible pointer is
;followed, update loc

mem(loc) < merge_cdr(old,new) . ;Store back old contents
, . ;preserve cdr '
mem(P+1) < new . S .;5tore new contents into

;hinding stack

P and loc are block-address registers (BARs), old and new are locations in the
. stack, date_read and bind_read_no_monitor are memory read operations described
in section "Operand References."-

In assembly language, the procedure is as follows. Assume P is BAR-1, loc is
BAR-2, and these BARs can be used for both reading and writing. (The order of
these instructions might be rearranged to cut down on memory interference and to
put the two block-l-reads -adjacent, but that is a secondary consideration.)

block-1~read : data_read(P)

write-internal-register bar-2 loc «

block-1-read last_word, : old « bind_read_no_monitor (P+1)
bind_read_no_monitor,no_increment ' .

biock-2-read last_word, ' : new <« bind_read_no_monitor{loc)
bind_read_no_monitor,preserve_cdr,no_increment

merge-ctdr-nopop spl-t cdr(otd) <« cdr{new)

block-1-write sp-pop mem(P+1) ¢ new

block-2-write sp-pop mem({loc) < old

To make. sure the new stack group is prepared for execution, it is necessary to call
a subroutine in the paging system to wire down appropriate pages of the stack,
and to run the GC scavenger over those pages if necessary. This also determines
the appropriate values for the stack limit registers. The paging system maintains
enough state so that this operation is very fast if the stack group has been run
recently. Doing this before actually switching to that stack ensures that no fraps
(page faults or transport traps) can occur during the actual act of switching, when
things are inconsistent, and ensures that the new stack group has enough space
for the extra-stack. '

To dump the stack cache, use a loop that does block-read and block-write at
identical addresses. The archltecture requires that writes to mermory locations in
the stack cache write through to main memory -

281

Sy}nbofics. Ine.

To switch to the new stack and load the stack cache, initialize the i‘egistefs that
control the stack cache to sultable values and then do block-reads to fill it. In

detail:
1.

-2,

9.

Save the SP into the curre'nt'stack group.

Get the SP value of the new stack group. The FP value is at a known offset
from this. These bracket a stack frame which is in the same format as-the
current- stack frame, buf contains the register values of the other stack
group. '

. Go into extra-stack mode so no traps/interrupts can occur.

Store the FP value into the hardware FP and into a BAR

.-Set the stack cache lower bound register to the SP value +1, 80 that the

following block-reads will neither read from the stack cache nor cause it to
overﬂow

. Store the FP value minus 1 into the hardware SP. Do th1s last, since it

renders the old stack frame inaccessible.

. Execute a sequence of block reads that fetch the new stack frame into the

stack cache and increment the SP to its appropriate value.

Set the stack cache lower bound register to FP. ‘The stack cache is now -
consistent,.

Set the stack limit registers to the values for the new stack group.

Restoring the internal processor registers will turn off extra-stack mode by
restoring the control register. return will restore extra-stack-mode,

4.9 Appendix: Comparison of 3600-Family and I-Machine Function-

Calling

To be supplied in the next revision of this specification.

282

. Symbolics, Inc,

5.- Exception Handling

x**xk****x****x*****x***#*xxix*x*xxxx*xxxxx*x**xxxxxxxx*xxxxx#x**xxmxx**
This file is confidential. Don’t show it to anybody, don’t hand it out
to people, don’t give it to customers, don’t hardcopy and leave it lying
around; don’t talk about it on airplanes, don’t use it as sales

~ material, don’t give it as background to TSSEs, don't show it off as an
example of our (erodable) technical lead, and don’t let our competition,
potential competition, or even friends Tearn all about it. Yes,'this
‘means you. This notice is to be replaced by the real notice when

" someone defines what the real notice 1is. '

- .**Jk)k*****x********************************X*********X*************X*****

5.1 Traps in General

It is occasionally necessary to escape from a situation that the hardware/microcode
cannot handle and give control to some Lisp code. This escape action is known as
a trap, and the Lisp code invoked is known as the .trap handler. The trap handler
rectifies the situation and returns to the interrupted program, which never knows
that the trap occurred. Applications for traps include page faults, stack overflows,
arithmetic- overflows, arithmetic instructions applied to types of numbers that are
not built into the hardware, I/O interrupts, execution of instructions that are not
implemented by the hardware, and several others. :

All trap handlers are functions called in the ordinary way; when an exception
occurs the hardware forces a function call to a function found in a "trap vector,"
with arguments describing the exception and a return PC pointing to the '
appropriate instruction. Trap handlers written directly as instructions that
execute in the stack frame of the function that trapped, as on the 3600, are never
used. All trap handlers are Lisp functions.

There are two major categories of traps: pre-traps and post-traps. A pre-trap is
used when the trap handler will rectify some condition, such as a non-resident
page, and then the trapped instruction is to be retried. A post-trap is used when
the trap handler will emulate the desired effect of the trapped instruction and
then return to the next instruction in sequence. Most out-and-out errors are pre-
traps, simply for the convenience of the hardware and the debugger; in this case
the trap handler will never return.

The value disposition for the values produced by a trap handler is undefined. All
traps must return their values via return-kludge.

Trap handlers are stored in the trap vector. See the séction "Trap Vector", page
283 '

Symbolics, Inc. -

286.

The trap vector is wired to avoid recursive page faults. All frap handlers

receive the trap vector index and the PC of the trapped instruction as the first
two arguments ' :

The sequence of events for a pre-trap is as follows:

1

2.

Restore the stack to its condition at the start of the instruection.

Push the continuation and control registers onto the stack with cdr code set
to 3, set contihuation to the contents of the trap vector entry, clear the
control-register.extra-argument bit, set the control-register.trace-bits to 0,
and set the control-register.trap-mode field f¢ the maximum of the cdr code
of the trap vector entry and the current trap mede.

. Push the trap vector index.
. Push the PC of the trapped instruction.
. Push the trap arguments.

. Do a finish-call operation to invoke the trap handler, using the current PC

ag the return address. The value disposition is undefined.

The sequence of events for a post-trap is as follows: -

1

2,

Save the arguments to the trapped instruction and pop them off the stack.

Push the continuation and control registers onto the stack setting the cdr
code to 3, set continuation to the contents of the trap vector entry, clear the
control-register.extra-argument bit and control-register.trace-bits, and set the
control-register.trap-mode field to the maximum of the cdr code of the trap
vector entry and the current trap-mode.

. Push the trap vector index.

Push the PC of the trapped instruction.
Push the arguments to the trapped instruction.

Do a finish-call operation to invoke the t{rap handler, using the incremented

- PC as the return address. The value disposition is undefined.

284

" Symboiics, Ine.

‘5.2 The Extra Stack

Certain_ traps, such as pagé faults and disk-wakeup sequence breaks, have to be :
handled on a stack that is guaranteed to be in main memory and guaranteed to be
large enough. These traps cannot tolerate another trap, such as a page fault on -
the stack, occurring during their handling. Such traps are handled on the user

" stack and the architecture and storage system are designed to treat stack pages

specially so that no fault can occur while a trap is being handled. ' This has the
advantage that there is no need for special hardware to deal with multlple stacks
- and context switching. .

Two stack-limit registers are provided, one for normal execution and the other for
trap handlers. When the second stack-limit register is being used, the machine is
said to be "executing on the extra stack.” This is not a different stack from the
normal control stack, but just extra space reserved at the end of the normal stack
for use only by trap handlers. Only the control stack needs extra space; the
binding and data stacks are not used by page-fault processing. '

The extra space is not actually used by a trap handler unless the stack happened
to be close to overflowing at the time of the trap. The trap handler just uses the
space starting at the current top of the stack in the user program. If a normal
program attempts to use the extra space, it takes a stack overflow trap and
software grows: the stack before allowing the program to proceed. (The initial
handling of the stack overflow trap occurs on the extra stack) If a trap handler
overflows the extra stack, the machine halts. This fatal error indicates either a
bug in the trap handler or failure to allocate enough extra space when building
the stack-group. '

The stack-limit register in use is spec_ified by the processor trap mode.

5.3 Trap Modes

There are four interrupt levels or modes the processor can be in. The mode the
processor is in specifies what can interrupt it, what control stack limit to use, and
in one case, how traps work. The current mode is specified by the trap-mode field
in the control register. :

Level 0, Emulator This is where most code gets run, Low-priority sequence break
: ‘requests, high-priority sequence break requests, and preempt.
pending will interrupt the processor.

Level 1, Extra-Stack
: This is where the paging system runs, clock sequence breaks,
other low-speed I/O, and certain critical routines (such as just

285

Symbolies, Ine,

“after a %allocate-xyz-block); Only high-pri.ority-sequencé break
requests can interrupt this. -

Level 2, H1gh-Speed 1/0 -
: This is where time-critical dewce service is done. Nothing can
mte_rrupt it. -

Level 3, FEP mode

: FEP code runs in here. . Nothing can mterrupt it. Addltlonally,
when a trap occurs, it goes through a single trap vector. See the
‘section "FEP-mode Traps", page 293.

Unless the processor is in the émulatoi' ﬁlode. (the trap mode is nonzero), the
machine is allowed to use the extra stack. (Level 1 is called "extra-stack,” but
levels 2 and 3 also imply the use of the extra stack.)

The trap mode is set to the maximum of the current trap mode and the cdr-code
field of the trap-vector entry when a trap is taken. This allows the processor to
change mode atomically when entering trap handlers. Restoration of the control
register on completion of the trap handler will restore the trap mode fo its pre-

exception state.

The trap mode is set to 3 by INIT. The trap vector entry for RESET should
specify level 3. Note that RESET is not inhibited by the trap‘ mode, in that
respect it could be ealled Non-Maskable-Interrupt.

5.4 Trap Vector

The trap vector is a table whose elements specify the functions to be called when
various exceptional conditions occur. Each enfry is a PC (dtp-even-pe/dip-odd-pe)
that points to the first instruetion of the trap bandling function. Byte <38:38>
(the cdr-code) of the entry is the minimum inifial trap mode for the handler. This
table is stored at physical addresses 1000000 through 1007777; the trap vector
index always supplied as the first argument to a trap handler is relative to the
base of this table.

See the section "Trap Vector Layout”, page 294.

5.5 E'xceptions

5.5.1 Error Traps

When an instruction receives illegal operands, references memory and receives a
bad data type, or encounters an instruction-specific error condition, it takes an

286

Symbolics, Inc.

" error pre-trap. The error trap handler takes two arguments (in addition to the
trap index and PC): a micro-state, and a VMA. The micro-state is a unique -
identifier that is looked up in a table to determine the cause of the error. If
appropriate, the second argument is the contents of the BAR that caused the
error, otherwige it is ignored.

5.5.2 Instruction Exceptions

An instruction exception occurs when an instruction needs to perform some
operation that is not an error, but is not directly supported by the hardware
(taking the car of a list instance, for example), Instruction exceptions are post-
traps, called with whatever arguments the instruction takes. The contract of the
trap handler is to emulate the behavior of the partlcular instruction. Occasionally
exceptional conditions will arise during emulation, such as the need to.redecode an
array register or refill a cons cache.

The instruction exception trap handlers are contained in the instruction exception
vector, which is indexed by the opcode of the faulting instruction. Note, though,
that some instructions are emulated by dispatching through the arithmetic
dispatch vector.. See the section "Arithmetic Traps", page 287.

A special case of instruction exception occurs when the processor attempts to
execute an undefined instruction. In this case, a post-trap is taken, using the trap
handler obtained by indexing into the instruction exception vector with the opcode.
However, since the number of arguments is not known, the trap microcode
presumes that the instruction takes zero argurnents, and the trap handler must
compensate.

%halt (opcode 377) is guaranteed to be an undefined 1nstruct10n and- will always -
take an exception.

5.5.3 Arlthmetic Traps

To improve the efficiency of simple arithmetic on non-fixnum numbers, instruction
exceptions for a number of instructions fetch the trap handler from the arithmetic
dispatch. vector instead of from the instruction-exception vector. The particular
handler fetched depends on the types of the arguments. This reduces the

overhead of dispatching on f:he types of the arguments by moving it into
microcode.

All of the instructions that use the arithmetic dispatch vector accept numeric
arguments only; if any argument is non-numeric, an error trap will occur. (eql is
a slight exception to this rule -- it accepts nonnumeric arguments, but will only
trap out for numeric arg'uments) The normal instruction exceptmn vector for
these instructions is not used in any circumstances, '

There are two different categories of arithmetic traps. Traps in the first category

287

Symbolics, Inc.

occur when an arithmetic instruction is applied to operands that are numeric types
which the hardware does not support for the particular instruction. (Hardware
suppert for certain types may depend on the presence of a coprocessor.) Traps in
the second category occur when an exceptional condition (such as arithmetic
overflow) results from attempting to perform the arithmetic operation. -

In general, information about why a particular arithmetic trap was taken is not
available -- the trap handler is expected to check the operands, emulate the -
operation, check the results for exceptional conditions, and return. In certain
circumstances more specific processing is allowed. For example, the only possible
exception that can occur while adding two fixnums is an integer overflow, and the
trap handler for add of fixnum arguments may teke advantage of this. .

The arithmetic dispatch vector contains sixty-four trap handlers (eight numeric
types for up to two arguments) for each instruction that uses it. These trap
-handlers are invoked via post-traps, in the same manner as normal instruction
exceptions. The dispatching trap computes a trap-vector index from bits out of
the opcode field of the instruction and bifs out of the data types of the argumént§. ‘
Specifically, for a binary arithmetic trap, the index into the arithmetic dispatch
vector is

DPCODE<4:B> | ARG1<34:32> | ARG2<34:32>

For a unary instruction, the dispatch acts as though arg2 were a fixnum, that is,
the low three bits of the index will always be zero.

When the two operands are not of the same type, the trap handler may be a
shared "coercion function” that simply coerces one of the operards to be

- compatible with the other, then jumps into the correct trap handler to perform the
desired operation for the given type of (coerced) operands. The coercion function
does not have to know what the operation is; the appropriate trap handler is
fetched from the trap vector indexed by the original trap vector index plus a
constant that accounts for the coercion that was performed. It is also possible to
have a special-cage function for a mixed-type operation (fixnum times bignum is
always popular) just by filling in the trap vector asymmetrically.

The following instructions post trap through the arithmetic dispatch vector:

eql (263), eql-no-pop (267)

equal-number (260), equal-number-no-pop (264)"

greaterp (262), greaterp-no-pop (266)

lessp (261), lessp-no-pep (265)

plusp (36), minusp (35), zerop (34)

add (300), sub (301), unary-minus (114)

multiply (202), quotient (203), remainder (210), rational-quotient (211)
ceiling (204), floor (205), truncate (208), round (207)

max (213), min (212)

288

Symboiics, Inc.

logand (215), log.lor (217), logxor (216),
logtest (273), logtest-no-pop (277)
~ash (232)

554 Memory-Exceptions :

Memory exceptmns occur when referencing the contents of a given location 1n _
memory.. There are three classes of memory exceptions:

The memory operation eould not be performed due to some property of the
location. For example, the page might not be resident in main memory..

'« The memory 'operatiori was performed, but further processing is fegulred due
‘to some property of the contents of the location. For example, the contents
mlght be a pointer to a condemned object.

o A hardware error occurred during the memory operation. .

Correctable memory errors are not fatal. They are corrected by the memory
interface. The occurrence of a correctable error will be recorded by a flag, and
the address and .syndrome of the cell in error will be stored in a register.
Software should periodically poll this register and log any errors.

An uncorrectable memory:error is more serious. It causes an uncorrectable
memory error page fault. The trap handler can do whatever is appropriate after

the error. It is possible to recover from some uncorrectable errors, and others are
fatal. - - :

Memory exceptions are pre-traps that take one argument, the address of the
referenced location, in-addition to the usual trap-vector-index and fault-pe
arguments. The argument type can be either locative (a virtual address) or

- dtp-physical-address (a physical address, not always meaningful). The memory
exceptions are:

» Page not resident -- PHT search failed.

¢ Page fault request -- PHT search aucceeded but pht.fault-request is set. See
the section "Revision 0 Implementation Memory Features", page 297.

-« Write protect violation -- attempted to write into a page with pht.write-
‘protect set.

» Transport trap -- read pomter to oldspace from a page with pht.transport-
trap set. :

J Un‘correctable ECC error -- location contains an uncorrectable error. See the
section "Revision 0 Memory Exceptions”, page 300.
289

Symbolics, inc.

¢ Bus error -- processor recewed a negative acknowledgement of a read See
the sectxon’ "Revision 0 Memory Exceptmns , page 300.

 Monitor trap - read a reference of type dtp-m_omtor-forward. .

5.5.5 Stack Overflow

-Control stack overflow occurs when the finish-call instruction (or the equivalent -
* operation when a trap is taken) detects the frame pointer is greater than stack
limif. The limit register used depends on the trap meode of the processor. The
- stack limit is set lower than the real limit by the maximum size of a stack frame
plus the amount of extra space needed to process the stack-overflow trap.

Control stack overflow invokes a special trap handler found. in a dedicated trap
vector. The trap handler takes no arguments other than the trap-vector index and
the fault PC.

Binding stack overflow occurs when a bind-locative inStruction tries to advance
the binding-stack-pointer beyond the binding-stack-limit. Binding stack overflow
signals an error trap. The error trap handler must be careful not to bind
anything until it has considered the possibility that the error is 2 binding stack
overflow.

The return instructions that return multiple values check for stack frame
- overflow. If (+ cr.frame-size-of-caller values-being-returned) i greater than stack-
frame-maximume-size (an internal register), an error trap is taken.

5.5.6 Seguence Breaks

. A sequence break is an asynchronous inferruption of the currently executing
program. A sequence break causes control to be transferred to one of two PCs
found in the trap vector. (Most other computers call this an interrupt, but we
cannot use that word without confusion because of the witheut-interrupts special -
form in Zetalisp, which only prevents preemption, not sequence breaks.) Sequence
breaks are requested by the }ugh-pnonty and low-priority sequence break request
pins on the processor.

A high-priority sequence break trap will be taken at the completion of any
macroinstruction where the high-priority sequence break request pin is asserted
and the trap mode is either 0 or 1. A low-priority sequence breazk trap will be
taken at the completion of any macroinstruction where the low-priority sequence
break request pin is asserted and the trap mode is 0. See the section "Revision 0
Sequence Breaks”, page 30L :

Like other traps, the sequence-break handling functions execute in the context of
the interrupted process. They are essentially pre-traps, called with no arguments
(other than the standard ones). These interruptions are intended to be

290

Symbolics, Inc.

transparent to normal Lisp programs, and therefore the handhng functlons must
he carefui what they do.

._There are two sources of external sequence breaks: low-gpeed /O (for example, .-

" disk completion) and high-speed 1/O (for example, 56Kb serial line). Low-gpeed I/O
- routines may spend a moderately long time executing, if needed. High-speed 1/0
must by programmer design spend a véry small amount of time executing,
especially if there is more than one device that needs service.

Programs may synchronize with sequence-break handling functions either by
" raiging the trap mode, or using the store-conditional instruction.

“All indefinite-duration microcode loops are interruptible by sequence breaks,
-causing the instruction to be aborted. This includes invisible pointer following,
method table searching, indirection through symhols in start-call, and
rgetf/member/assoc. An indefinite-duration microcode loop will of course only be
interrupted by a sequence break if the current trap mode permits sequence breaks.

5.5.7 Preemption

Preemption is switching from the current process to the scheduler. This is a
software operation, which has hardware support for its initiation.

Preempt-request and preempt-pending are bits in a global register, not in the
Control register. These bits are set at the same time by software, such as a clock
sequence break handler, that wants to preempt the current process. If preempt-
pending is set, and the processor is in emulator mode, then -a preempt-request trap
occurs after the current instruction completes. The trap handler clears the
preempt-pending bit and. then checks whether the process can be preempted. If so,
it clears preempt-request and passes control to the scheduler. If not, it leaves

- preempt-request set and returns.

The priority of preempt-pending relative to other traps is:

High -reset
stack-overflow (in finish-call)
high-priority-sequence-break
low-prierity-sequence-break and emulator-mode
preempt-pending and emulator-mode

Low frace-pending -

The check-preempt-request operation sets the preempt-pendmg flag if the preempt-
request flag is set. This causes a trap at the end of the current instruction if the
processor is in emulator mode, otherwise the trap is taken as soon as the
processor returns to emulator mode.

Anything that unbinds a special variable (whether the unbind instruction or an
implicit unbind caused by the return instruction encountering a cleanup bif) does
a check-preempt-request operation. This is the reason why preempt-:reque_st is a

. 291

Symbglics, Inc,

hardware flag instead of just being a _soffware variable. See the section "Revision
0 Unbinding", page 301.

The %check-preempt-request instruction (called %check-preempt-pendjng on the
3600) does a check-preempt-request operation. Those extra-stack trap handlers.
that wish fo check for a pending preempt when they return to the user must do a.
%check-preempt-request instruction; if this sets preempt-pending the trap will go
off when the trap handler returns.. The %check-preempt-request instruction is
also used in a couple of places in the garbage collector. This could be open-coded
using %read-internal-register and %write-internal-register, rather than being a
real instruction, but is probably easy to implement as an instruction since the
"logic has to be present already for unhind.

Note that function return does not do a check-preempt-request operation unless it
unbinds special variables, and instructions that change the processor trap mode do
not do a check-preempt-request operation, but may provoke a-trap if preempt—
pending is already set.

Details on stack-group switching can be found in the function calling chapter See
the sectlon "Stack-Group Switching”, page 280.

5.5.8 Trace ‘Traps

Instruction-trace, call-trace, and trace-pending are three bits in the Control
register, set and cieared by software in saved copies of the Control register in
memory. Trace-pending can also be set by hardware. Reset and Init clear all
three of these bits. The hardware clears all three of these bits whenever a trap
occurs, after saving the Control register on the stack,

If trace-pending is 1, a trap occurs before executing the next instruction. Note
that a sequence break can intervene before the trap actually goes off. There is
only one trap vector location for trace-pending, regardless of the semantic
significance of the trap to the software. If a return instruction restores a Control-
register value with the trace-pending bit set, the trap occurs after completion of
the return instruction and before execution of the instruction returned to.

When a return instruction is executed repeatedly because of Value-disposition
Return, and trace-pending is set by restoring a Control-register value, the trap
either occurs immediately or after the repeated Return operations finish; the
architecture doesn’t specify which. The trace-pending values in the seversal
Control register values that are restored are effectively ORed together so the trap
is not lost. .

If instruction-trace is 1 at the beginning of an instruction, completion of the
instruction sets trace-pending and causes a trap before the next instruction
executes. If a post-trap occurs when instruction-trace is 1, trace-pending is set in
the Control register saved as part of taking the trap. This is not true of a pre-
trap. If a return instruction restores a Control register value with the instruction-
trace bit setf, the instruction returned toz‘%% executed before the trap occurs.

. Symbolics, Inc.

If call-trace is 1, the finish-call instruction sets trace-pending and causes a trap

before the first instruction of the called function executes. If stack overflow

" occurs simultaneously, trace-pending is set but the stack overflow trap occurs first.

- When the stack overflow handler returns, the trace trap occurs. - Call-trace does
not effect the implicit. finish-call performed when a trap occurs; because call-trace

gets cleared first. : a

5.5.9 PULL-APPLY-ARGS Exception

See the secti¢n "Pull-apply-args”, page 261.

A pull-apply-args pre-trap is taken from a function entry instruction to extract
additional arguments from an apply argument that the microcode is not capable of
doing. The trap handler takes two arguments, the number of arguments to pull,
and the apply argument, which is popped off the stack before the trap is taken.
_The trap handler extracts the arguments, updates the saved Control register to
reflect the new state of the previous frame, and return-kludges the extracted
arguments and the remaining apply argument, if any, directly into the correct
place in the previous frame. :

5.5.10 FEP-mode Traps - _

‘With few exceptions, traps are not supposed to happen while the FEP code is
running. To give the FEP a chance to examine each trap and decide whether or
not it is meaningful, all traps while in FEP mode go through a single trap vector.
Any given trap will be taken in exactly the same manner, with the same

- arguments and the same continuation, whether or not the processor is in FEP
‘mode; the only difference is where the trap handler PC comes from.

5.5.11 Processor Faults

A procéssor fault occurs when the processor encounters a situation from which it
cannot proceed. The occurrence of a processor fault halts the processor and
indicates the error on an external pin. The causes of & processor fault are:

» Stack overflow while using extra stack.

+ Other i;han dtp-even-pe/dtp-odd-pe in the trap vector.
e Uncorrectable ECC error when reading trap vector.

*» Recursive uncorrectable ECC error.

» Page fault while dumping stack cache. |

The processor will not respond to anything other than reset and init when halted.
. See the section "Revision 0 Traps for P%essor Faults", page 301

- 8ymbolics, Inc,

5.6 Trap Vectof Layout

The trap vector is stored at physwal addresses 1000000 through 1007777 and is
basically partltloned as follows

0000..3777 Arithmetic dispatch vector
4000..4377 Ingtruction exception vector
4400..4477 Interpreter function table
4500..4777 Reserved _

5000..5077 Generic dispatch table
5100..5177 - Miscellaneous exceptions
5200..7777 = (Reserved for future expansion)

The arithmetic dispatch vector contains the exception handlers for those '
- instructions defined to use the arithmetic dispatch. See the section Anthmemc
Traps", page 287.

The instruction exception vector contains the exception handlers for instructions
that do not use the arithmetic dispatch vector See the section "Instruction
Exceptions”, page 287.

The interpreter function table contains one entry per data type. When a start-eall
is given a data type not directly understood by the hardware, the contents of this
table, indexed by the data type, are placed in the continuation register. See the
section Startmg a Function Call", page 249,

The generic dispatch table contains one entry per data type. When the “instance"
argument to %message-dispatch or %generic-dispatch is not an instance, the
address of the flaver -hash mask needed to do the method search is found by
indexing into this tabl:. See the section "Calling a Generic Function", page 277.

The miscellaneous exce’ptidns are assigned as follows:

5100 Error trap

5101, Reset

5102 pull-apply-args
5103 Stack overflow
5104 Trace trap

5105 Preempt request
5106 Transport trap
5107 FEP-mode trap

5110 Low priority sequence break
5111 High priority sequence break
5112 Monitor trap

5113 Reserved for future use

294

Symbolics, Inc,

5114 Generic-dispatch instruction
. 51156° Reserved for a. fence word
5116 Message-dispatch instruction
5117 Reserved for a fence word

5120 Page not resident
5121 Page fault request
- 5122 Page write fault .
5123 Uncorrectable memory error
5124 Bus error ‘
5125-5177 - Reserved for future use

8.7 Reset and Init

. .Reset and Init are exceptions invoked by pins of the same names on the processor
chip. Reset is similar to a sequence break, and is used to return the processor to
the FEP. Init is a no-holds-barred- uutlalxzatlon of the machine, usually performed
after power on.

Reset forces the processor to take an exception to fetch 2 new PC from the trap
vector. It is up to soffware to save the machine state if it is desired to resume
execution at the point the reset occurred.

Init initializes the processor hardware, and may abort outstanding memory
accesses without completion, and so on. The PC is set to a fixed vina=pma

- address, 77400100, from which execution proceeds. See the section "Revision 0
Init PC", page 301

5.8 Appendix: Comparison of 3600-Family and I-Machine Exception
Handl:ng

T'o be supplied with the next revision of this document.

295

Symbaolics, Inc.

- 206

Symbolics, Inc.

Appendlx A |
- Revision 0 Implementation Features

A.0.1 Revision 0 lmplementatlon Memory Features

Remsmn 0 of the Ivory chip implements the follomng ﬁelds for ephemeral address:

Position Meaning: - :
<31:27> peREe => ephemeral, otherwise non-ephemeral
<26:22> ~ephemeral level number

<26:25> . ephemeral level group number

<21> which half of the ephemeral level

<28:8> © word address within an ephemeral lsvel

The comparison used Revision 0 in the inner loop of the PHT search is

(and (= (1db Zzphta—vpn entry) vpn}
. {= (1db #ZZphtB-fault-reguest entry) 8))

A page-fault-request trap will not be taken if the %%pht0-fault-request bit is 1;
this simply causes the entry not to match, eventually resulting in a page-not-
regident trap instead. .

The Revision 0 implementation always traps when execufing an instruction from a
page with transport-trap=1. Later implementations may be able to de an actual
oldspace check in this case.

The Revision 0 implementation of Ivory does update a PHT entry by Ong the
new bits in, but it does not use an interlocked bus read/write cycle.

Revision 0 of the Ivory chip sets the PC to VMA=PMA address 0 on receiving
INIT.

The actual pht lookup algorithm for Revision 0 of the Ivory chip is:

{defun pht-1ookup (vpn)
(flet ((search-bucket (pht-offset)
(loop repeat 4

initially (setf (Zblock-address) (+ phi-base pht-offset))
for entry = (Zblock-read)

do {if (and (= (1db ZZphtB-vpn entry) vpn}

(= (1db ZZphtB-fault-request entry) 8))
(return-from pht-Tookup .
(values entry (Zb1ock read)))

297

Symbolics, Inc.

(Zblock-read))
finally : _
;s If at -end of collision chain, fail.
{when (= (1db ZZphtB-collision-chain entry) 1)
(return-from pht-leokup ()}))))
(search-bucket (Tegand (pht-hash vpn) pht-mask)}
(loop for state = (pht-next vpn) then (pht-next state)
do (search-bucket (logand (ish state 3) pht-mask))))).

A.0.2 Revision 0 Implementation Instruction Features

The following text describes characteristics of the Revision 0 implementation of
the I-machine architecture.

Revision 0 %Aliocate-list-block

Takes an instruction exception if argl is nil.
Revision 0 %Allocate-structure-block

Takes an instruction exception if argl is nil
Revision 0 Aset-1

-- does not check for the high-order 24 (16) bits of dtp-character arguments being
0 when storing such arguments into 8(16)-bit arrays.

Revigion 0 Binding Instructions
%restore-binding-stack, unbiﬁd-n, and the return instructions performing
unbindings when the cleanup bit is set do not check for binding-stack underflow in
Revision 0,
Revision 0 %Block-n-read-alu
- performs overflow detection for exceptions but does not allow the memory
operand to be in the stack cache. User programs must be sure that that the

" operands are not in the stack cache to insure proper operatmn Does not take the
shift mask specification from the DP OP register.
Revision 0 %Block-n-reac-shift

- will not work with ECC errors.

298

Symbolics, Inc.

Revision 0 %Block-n-read-test

-- only impleﬁlent's- the eq condition. and the true sense. The alu-op field of the
DP Op register must be loaded with "subtract" in order to .use the instruction.
Needs to have the oldspace condition added.

- Revision 0 Branch and Loop Instructions

Revigion 0 conditional branch instructions take an exéeption if the bottom eight
* bits of the offset are all 0 (as opposed to all 10 bits being 0). This effectively
limits the branch distance to plus or minus 128, but the compiler could be smart
about this. branch to the next instruction is the fastest no-op, except for skxppmg
an instruction entirely via cdr-code sequencing.
| Revisio_n.o Entry-rest-accepted
-- and entry-rest-not-accepted do not perform correctly when doing a
- pull-apply-args operation when the rest argument (or tail) is an item of type
dip- hst-mstance in the stack cache,

Revision 0 Fast-aset-1

-- does not check for the high-order 24 (18) bits of dip-character afguments being
0 when storing such arguments into 8(16)-bit arrays.

- Revision 0 Loop-decremeni-tos

- does not: check overflow conditions. Uses zerop for the check rather than plusp.
Revision D Lo‘op-increment-tos-less-than

- does not check overﬂow conditions.

Revisibn 0 Opcode 57 |

-« jumps to a totally random address after pushing. D.PC .o-n the stack.

Revision 0 Numeric Operations

There will be no ﬂoating—point. support in the Revision 0 chip.

_ Revision 0 Return-single |

When the value disposition is "for value,” the cdr code is the cdr code of the top
of stack or it is cdr-next for t or nil. :

299

1

Symbolics, Ine.

Revision 0 Return-kiudge

Sets the cdr codes of all values to edr-next.
Revision.o Stack-blt

- -- sets the _édr code of the operand to cdr-next.
Revision 0 Stack-blt-address

-- gets the cdr code of the operand to. cdr-next,
Revision 0 Unbind-n |

Revision 0 of the Ivory chip, when unbinding, only checks the preempt-request hit
when the trap mode is zero.

A.0.3 Revision 0 implementation Function-Calling Features

The Ivory chip uses a scratchpad register to hold the value of %stack-frame-
maximum size, which, with stack-cache-size being 128, is currently 118. .

In Revision 0, if control-register.trace-pending would be set upon normal
completion of an instruction, but the instruction pre-traps instead, control-
register.trace-pending will incorrectly be set in the saved control-register image of
the pre-trap handler.

In Revision 0, if c-ontrol-register.instruction-trace is 1 at the beginning of a return -
instruction, and the return instruction restores a control-register with the trace-
pending bit 0, control-register.trace-pending (and the correspend'ng trace-trap) may
or may not be set at the completion of the return instruction.

In Revision 0, when a return instruction with value disposition return restores a
control-register with trace-pending set, the trace-trap will be lost. Only the trace-
pending bit of the last control-register restored is significant,

Revision 0 of the Ivory chip cannot ha;xdle faults during stack cache refill.
A.0.4 Revision 0 Implementation Exception Handling Features

The following text describes characteristics of the Revision 0 implementation of
the I-machine architecture. :

Revision 0 Memory Exceptions

The revision 0 implementation of the Ivory chip takes an uncorrectable-memory-
error trap when it sheuld take a bus-error trap. .

300

Symbolics, Inc.

Revision 0 Sequence Breaks

Sequence breaks vector through only one place in microcode. That microcode then -
examines a register to decide whether the sequence break is high-priority or low-

. priority. This is only visible to the user if a high-priority sequence break is
requested and, before the microcode can execute the start of the sequence break
microcode, the high-pricrity sequence break goes away. In this case, because of the
order of polling in the microcode, the chip will take a low-priority sequence break
(although the low-priority bit might not be set in the preempt register).

Revision 0 Tfaps for Processor Faulis

The Revision 0 chip only halts for a stack overflow while using extra-stack mode.
It does not halt for any of the other reasons listed in the Processor Faults section
in the Exceptions chapter. The arcl’utectural issues of processor-fault handling
“have not yet been resolved.

The Revision 0 chip does not respond to reset when halted

Page faults currently do not work, since it is not possible for an instruction to
look like it has finished without actually transferring control to the next
instruction’s microcode. This means that either the entire control stack must be
‘wired down and scavenged, or that the trap-on-exit bit must be used to cause a
trap when more stack must be wired down. At the same time that the stack is
wired down, it must be transported for proper operation.

Revision 0 Unbinding

See the section "Revision 0 Unbind-n".

Revision 0 Init PC

Revigion 0 Init sets the PC {o vma=pma 0.

301

Symbolics, Inc,

302

Symbuolics, Inc.

Appendlx B
Summary of 0m|tted 3600 Instruct:ons

;35 These are supported only if the floating point chip supports them
ZCONVERT-SINGLE-TO-FIXNUM _ i
ZDOUBLE~ FLUATING ABS, ZDOUBLE- FLUATING ADB ZDOUBLE-FLOATING-COMPARE,
ZD0OUBLE~- FLUATING DIVIDE, ZDOUBLE-FLOATING- MINUS,

. ZDOUBLE-FLOATING-MULTIPLY, ZDOUBLE-FLOATING-SCALE, ?DUUBLE FLUATING SuUB
FLOAT- OPERATING -MODE, FLOAT-DPERATION-STATUS,

SET;FLUATiﬂpERATING—MUDE, SET—FLUAT—UPERATIQN-STATUS5

' Will not be implemented

FOLLOW-CELL-FORWARDING %memory-read-address data-read or bind-read
FOLLOW-STRUCTURE-FORWARDING %memory-read-address struct-offset _
LOCATION-BOUNDP (/= (%data-type (% memory-read bind-read} dtp-null)
ZP-STRUCTURE-OFFSET. %memory-read-address followaed by %pointer-plus
ZP-CONTENTS-AS~LOCATIVE -%memory-read-address followed by %set-tag
ZP-CONTENTS-OFFSET (cdr (%p-structure-offset ...)

Unclassified:

NOT - Implemented by type-member

LONG-BRANCH-IMMED

PUSH-MICROCOOE~ESCAPE-CONSTANT

ZDRAW-STRING-STEP, ZBITBLT-DECODE-ARRAYS, ZBITBLT-LONG,
ZBITBLT-LONG-ROW, ZBITBLT-LONG-ROW-BACKWARDS, ZBITBLT-SHORT,
ZBITBLT-SHORT-ROW, ZDRAW-LINE-LOOP, ZDRAW-STRING-LDOP,
ZDRAW-TRIANGLE-SEGMENT, SOFT-MATTE-DECODE-ARRAYS, SOFT-MATTE-INTERNAL

Lisp Instructions:
ZSAVE-BINOING-STACK-LEVEL

- Implemented as an internal register
CONS
NCONS

Function-Calling instructions:

TAKE-ARG, TAKE-M-REQUIRED-N-OPTIONAL-ARGS,
TAKE~M~REQUIRED-N-OPTIONAL-ARGS-REST, TAKE-N-ARGS, TAKE-N-ARGS-REST,
TAKE~-N~DFTIONAL-ARGS, TAKE-N-OPTIDNAL-ARGS-REST, TAKE-REST-ARG,

303

Symbolics, Inc.

Fortran Array Instructions: (Th1s m1ght make it in, but I th1nk We w111
- be too tight on "B" memory locations and m1crocode)

FTN~ALDC-1, FTN-AREF-1, FTN-ASET-1

FTN-DOUBLE-ALOC-1, FTN-DOUBLE-AREF-1, FTN-DDUBLE—ASET—1
FTN-LOAD-ARRAY-REGISTER

Low-Level Hardware

ZAUDIO-START, ZCHECK-PREEMPT-PENDING, %CLEAR-CACHES,
7CLEAR-INSTRUCTION-CACHE , -ZDISK-START,
ZRESUME-MAIN-STACK-BUFFER, ZFUNCALL~IN-AUXILIARY-STACK-BUFFER,
%FEP-0CORBELL , '

ZFIXNUM, ZFLONUM _

2GC-MAP-WRITE, %G6C-TAG-READ, ZG6C-TAG-WRITE,

ZMAP~CACHE-WRITE

ZMETER-OFF, ZMETER-ON

ZMICROSECOND-CLOCK

ZNET-WAKEUP

ZNUMERIC~BISPATCH-INDEX

ZPHTC-READ, ZPHTC-SETUP, ZPHTC-WRITE

ZPHYS1CAL~ADDRESS-CACHE,

- %REFERENCE-TAG-READ, ZREFERENCE-TAG-WRITE
%SCAN-FOR-ECC-ERROR, ZSCAN-FOR-EPHEMERAL-SPACE, ZSCAN-FOR-OLDSPACE
ZSCAN-GC-TAGS, ZSCAN-REFERENCE-TAGS, ZSET-PREEMPT-PENDING,
ZTAPE-WAKEUP, ZUNSYNCHRON!ZED-DEVICE-READ

7;; Replaced by Bars
%BLOCK-GC-COPY, ZBLOCK-TRANSPORT
7ZBLOCK-STORE-CDR-AND-CONTENTS, %BLDCK-STORE-TAG-AND-POINTER

;3; Open coded .

POP-MULTIPLE, POP-MULTIPLE-SAVE-1, POP-MULTIPLE~SAVE=N,"
POP-MULTIPLE-SAVE~-MULTIPLE

POP-N-SAVE-MULTIPLE, APPEND-MULTIPLE-GROUPS, PUSH-FROM-BEYOND-MULTIPLE
FIXUP-TOS (MOVEM SP|B)

' ZMAKE-PDINTER-IMMED-OFFSET

304

Symbolics, Inc.

Appendlx c
Notes on I-Machine Arch:tecture Hlstory

Data-Types Chapter -- Representations of Arrays

* - A prototype of the precise algorithm to be used when accessing an indirect array, -
using the 3600 array format instead of this array format, can be found in the file
V:>Moon>IMach>3600>array.lisp. This was translated from the exzstmg, workmg
3600 microcode,. . -

Some sta_txc analysis of arrays, in a system 311 world that been used for a week:

 99.65% of all arrays are one-dimensional.
- 2-dimensional and 3-dimensional arrays exist; no higher-dimensional or
0-dim arrays.

The average size of an array is 38 words.

. There is no category of arrays whose average size is larger than will
- fitin 15 bits; unfortunately I didn’t measure the size distribution

of arrays directly, so I don’t know the percentage of arrays whose

size will not fit in 15 bits, but it must be very small.

All array types are used at least once.

The maximum leader length seen is 38 elements.

Unfortunately I didn’t measure what fraction of arrays are displaced.
~Moon

The longest array-leader observed was 38 elements, so a maxitnum hmit of 255
elements should not be restrictive. The maximum on the 3600 is 1023.

The leader header uses dtp-header-p rather than dtp-header-i because there were _
more spare header-type codes available for that type of header.

More information from Rel 6.1

99.54% of the arrays are one-dimensional, of which 89.54 are direct (not .
displaced). Totals: 453049 arrays, 450961 one-dim, 448900 direct one-dim, 2061
indirect one-dim. The distribution of the LOG2(LENGTH) is as follows: '

12493;
16181;
35701;
130120;
93601 ;
- 85788;
44853 ;

Do W S ®

305

Symbolics, Inc.

7: . 26594,
8: 2447 ;
5] 873; -
i8: 615;
41: 324;
t2: o 48;
13: 25;
14 28;
15: 12;
16: 6;
17: 3;
19: 1;
3

20:

28.337 of those arrays have a leader

The distribution of the LDG2(LEADER LENGTH) is as follows:
8: 2;
7862,
5878;
3428;
73835
- 181;
1.

=) IS) R R 7S B AN PR

Data-Types Chapter -- Representations of Compiled Functions

Not only does this (using the cdr code 1 as a fence) avoid loading the instruction
cache with extraneous words from functions other than the one being executed,
but more importantly it avoids a subtle bug involving fetchahead past the free-
pointer for allocation of compiled code, after a sequence of timing coincidences has
left words there containing valid data types for instructions, The bug is that
obsolete data could get into the instruction eache and not get cleared out when a
new function was created at the same address. '

Note that the design is intended to put the function cell and the entry instruction
‘both on the same page and in the same cache line, minimizing the cost of
indirecting through & funection cell. The loader may want to insert extra words to
keep compiled functions aligned on appropriate boundaries so that the function cell
and entry instruction always fall into the same cache line, if we have a cache.

Data-Types Chapter -- Instruction Representation

This scheme, different from the 3600, is designed to eliminate the
constants/external-reference table in a compiled function and thereby to enable
prefeteching of such data through the normal instruction pipeline. This saves time
and simplifies the hardware by eliminating an addressing mode. H says the

306

Symbolics, Inc.

" average number of references per constant is small enough that this actvally saves
space, compared to the 3600. In cases where there are many calls to the same '
function or references to the same constant the compiler can attempt to encache
it in a local variable.

Data-Types Chapter - Representatlon nf Physical Addresses:

BARs need to store 33 bits, the 33rd b1t being the dtp- physu:al address’ness of the
pointer field.

The BAR incrementer only increments the pomter field; it leaves the dtp-physxcal—
address’ness alone.

The FAST-AREF/ASET-1 ucode/hardware adds the offset to the pointer field of the
array register base address slot and preserves the dtp-physical-address'ness on the
way to the BAR.

. The input to the map cache now has three possibilities instead of two:

mapped virtual address
vma=pma virtual address
.dtp-physical-address physical address

The possibilities for cache-control output lines/signals/meanings for each of the
~ above should be discussed separately. The thing I think we all agree on is that
data referenced with dtp-physical-addresses are never cached.

- Memory Chapter -- Wired Addresses:

The 3600-family feature where some portion of virtual address space defined by a
control register (%wired-virtual-address-high) is mapped to a contiguous portion of
unmapped address space defined by another control register(%wired-physical-

- address-low) is eliminated, to simplify the hardware. This reduces configuration
flexibility by requiring that some portion of unmapped address space starting at a
fixed physical address, presumably 0, must always contain working memory; this is
not a problem if that memory is packaged right on the CPU board. The
permanently-wired programs and data that on the 3600 are stored in virtual
address space below %wired-virtual-address-high will instead be stored at physical
addresses.

Memory Chapter - Pages:
There has been a lot of discussion about increasing the page size. There are a lot
of variables involved, including:

¢ Page tables (PHT and MMPT, not SMPT or ESRT) can be smaller for larger
page sizes. This isn’t that large an effect -- 256 word pages yield about
1.9% overhead, 512 yields 1.0%, and 1024 yields 0.4%. All of these figures
_are tolerable, and well below a number of comparable (sic) systems.

307

Symbolics, Inc.

+ Overhead of managing page tables is lower with larger page sizes. The only
place where this is significant is in creating new pages.- However, . =~
reorganization of the code and algorithms can compensate. In fact, there is
very significant progress to be made here before the effect of page size gets

- out of the noise. : '

. Laréer. page sizes mean there are more untranslated bits available
(presumably the processor can spit these out 1/2 cycle earlier) for data
caches and clever dynamic ram organizations to take advantage of.

» A given size map cache describes more storage if the page size is larger.
However, according to the literature, the primary contributors to map cache
performance are number of entries, associativity, and replacement algorithm

. (in roughly that order), with page size a distant fourth.

e The instruction prefetcher faults crossing page boundaries.
That's about it for the pros. On the con side are:
o Larger page sizes reduce primary memory utilization.

» Larger page sizes reduce the ability of the EGC to isolate ephemeral

. references. The EGC keeps track of ephemeral references on a per-page
basis -- any page thought to contain such references needs to be scanned. If
there is poor locality of such references, the amount of scanning required
per garbage collection will increase proportional to the page size. This is an
important effect, since as main memory sizes increase the amount of EGC
scanning increases, but the memory bandwidth and processor speed will stay
relatively const snt.

Some perfunctory analysis indicated that the reduced primary memory utilization
of larger page sizes was a very significant effect, and on that evidence (and
conservatism in general) the page size was left at 256 words.

In Release 6.0, the function with the largest number of required+optional
arguments is TV:DRAW-TRIANGLE-SETUP, which takes 15 arguments.

308

Symbolics, Inc.

~ Appendix D
“Hints for Software Developers

Data-Types Chapter

Double-premsmn Floating-point Representatmn ~Similar to the 3600, except that a
- cons is used instead of a structure to eliminate the overhead of a header word.

Note that the two halves_ of the number are being stored in arguably the wrong .
order, since the least-significant bits of the fraction should be first. This is _
consistent with the 3600. The real basis for deciding should be the order that
data are fed into the double-precision floating-point processor chip, if there is one.
Memory Chapter

The system must ensure, or arrange, that there are never any safeguarded objects
in about-to-be oldspace. The 8600 solves this by simply not flipping that reglon
but that might not be easy on this machine, espec1a11y ephemeral space

Memory Chapter
‘The fields in an MMPT entry are: (these fields aren’t known to hardware)

i

bits 31:8 —- VPN ~- the virtua] page number now in this physica1
page, -1 if invalid. '

- bit 7 —- FLUSHING ---1 => VPN will change when disk write completes.

- bit 6 -- WRITE LOCK -~ 1 => don’t reassign the page (being written
to disk?). ' : .

- bit 5 —- STACK -- 1 => this page is held in main memory because

' | it’s a stack. '

bit 4 -- spare

bi#s.3:9 -- status code, def1ned by software (3688 uses 180 codes)

Explanatlon of PHT. PENDING Hardware does not lock at the PHT.PENDING
bit. If it is set, PHT.FAULT-REQUEST is also set, by software convention.
PENDING is set when a page is being read in from disk, but first another page
has to be written out from the memory page frame the new page is going to
occupy. In this situation, there are two PHT entries pointing to the same physical
page. Each of them has FAULT REQUEST set, and one of them alsc has
PENDING set. The MMPT entry for that physical page contains the information
needed by the page-fault trap-handling software to figure out what is going on.

Compromises: AGE bits would really rather be in the MMPT. Setting of
EPHEMERAIL REFERENCE bits would really rather be in parallel with memory
access. I don’t think either of these will have a significant effect on performance,
in practice.

509

Symbolics, Inc.

: Instruction Chapter -- rgetf

Additional instructions can be used ftogether with rgetf to 1mp1ement the zl:get,
zl:putprop, cl:get, and cl:getf functions and to implement &key arguments. rgetf
ig often followed by either an instruction to pop the second value or a branch :
instruction that tests the second value and if it is nil pops both values and goes to
code to substitute a default value.

(get loc arg2)
should be
(getf (1ocat1on—contents
..} argl)
ch:get is
push . arg2
push symbol
type-nember-n-no-pop ;symbolp -
branch-false .
Zpointér-plus 4
Zmemory-read data-read
rgetf sp-pop
set-sp-to-address SP|-1

rgetf stands for "reverse getf” because the argument order is reversed from
clgetf.

Instruction Chapter -- logtest

logtest iz commutative, so that if there is a small integer, logtest should commute
it to the second argument. -- DCP The hardware has no idea about commutativity.
Software probably has to do this. -- BEE

Instruction Chai:)ter == POP

The file V:>moon>imach>pop.text has more information about stack-popping
instructions, including stack-blt.

D.0.1 Stack Groups on the | Machine

A stack group is the object of computation. It contains the memory image of a
process., This includes many things, all of which eventually need to be
enumerated. For now, the list includes the following:

» Control Stack

310

_Symbolics, inc. .

Instruction Chapter -- Mapped Access to Self

The instructions for mapped accesses to self check that the argument I is within
the bounds of the mapping table. If it is not, a trap occurs. The bounds check is
performed by fetching the array header of the mapping table, assuming it is a
short-prefix array, and comparing I against the array-short-length field.

Implementation note: it is useful to cache the array header to avoid making a
memory reference to get it every time. For an example of how to do this using
- two scratchpad locations and one eyele of overhead, see the 3600 microcode.

Instruction Chapter - rgetf

Additional instructions can be used together with rgetf to implement the zl:get,
zl:putprop, cl:get, and cl:getf functions and to implement &key arguments. rgetf
is often followed by either an instruction to pop the second value or a branch ‘
instruction that tests the second value and if it is nil pops both values and goes to
code to substitute a default value.

{get loc arg2)
should be

(getf (1ocat1on contents
..) arg)
cl:get is

push arg2 - : ' o : ¢
push symbol _ ' : .

type-member-n-no-pop ;symbolp

branch-false . _ ‘

Zpointer-plus 4

Zmemory-read data-read

rgetf sp-pop

set-sp-to-address SP|-1

rgetf stands for "reverse getf‘ because the argument order is reversed from
cl:getf.

Instruction Chapter -- logtest

logtest is commutatlve so that if there is a small integer, logtest should commute
it to the second argument. -- DCP The hardware has no idea about commutatnqty
Software probably has to do this. -- BEE

Tnstruction Chapter -- pop |

The file V:>moon>imach>pop.text has more information about stack-popping -
 instructions, including s_tack—blt. ,

310

Symbaolics, Inc.

°.Control Stack Base -
> Control Stack Pointer
¢ Control Stack Limit
o Control Stack Extra Lirﬁit
_.° Control Stack Wired Low
» Frame Pointer
X Lo.cal‘ Pointer
¢ Binding Stack 7
° Binding Stack Base
° Binding Stack Pointer
° Binding Stack Limit
» Data Stack
® Data Stack Base
° Data Stack Pointer
© Data Stack Limit
«* Catch Block Pointer
ePC
+ Control Register
¢ Continuation Register
« Floating Point State
° Mode - rounding, underflow-to-0, ...
° Statué - sticky-over/underflow, ...

Several of the stack group registers are not hardware registers, just software slots
in the stack group. '
" Function-Calling Chapter

- 311

Symbolics, Inc.

Because the handling of Multiple and Return value dispositions is .-'similar, the
return-single and return-multiple instructions can he implemented by starting
with a four-way dispatch to these cases: ' '

1. Cleanup Bits non-zero — Perform the cleénup and then retry thé inétrucﬁion.
- 2. Value Disposition = Effect — Just return without v&orrying about the values.

3. Value Disposition = Value — Just return the -ﬁrst value. |

4. Value Disposition = Multiple.ror Return — Take complex actions.

(But KHS doesn’t believe it is actually implemented that way.)
Function-Calling Chapter -- Stack-Group Switching

Existing instructions have the following capabilities:r
» ahility to do appropriaté special ﬁlemary references, ﬁSing block-read/write
» ability to do necessary cdr-code hacking
s ahility. to dump the éntire stack cache into memory-
« ability to load a new stack into an empty stack cache
» gbility to read and write a11 internal processor and coprocéssor registers
» that are pért of the stack group context

¢ gbility to inhibit all traps and interrupts while the stack cache éontrol
registers are in an inconsistent state

» ability to inhibit process preemption during the whole operation this is done
by setting a software flag respected by the preempt

Other instruction assumptions:
s bhind_read_no_moniter bit in block-read instruction
. no_increment bit in block-read instruction prevents incrementing BAR

» preserve_cdr bit in block-read instruction inhibits setting edr of result to 0
(this is already in the rev -2 spec)

s when block-read follows an invisible pointer, it updates the BAR

» merge-cdr-nopop instruction: cdr(operand) < cdr(top-of-stack), no change to

312

Symbolics, Inc. .

SP this could be done with %p—tag-ldb and %p-tag-dpb but it Would be
much slower. ,

_Note that it is possible'for the cdr code of the bound location to change while it is
- bound, which is why.the merge-cdr-nopop instruction is required. instead of s1mp1y .
rewriting all 40 bits with the value saved in t;he binding stack,

Alternatively, to the assumption that memory locations in the stack erte through
to main memory, a specific instruction could be provided to dump the entire stack
cache, since the processor already knows how to dump parts of the stack cache -

~ when it fills up.

 Exceptions Chapter

Floating exceptions need to be covered as well. Floating overflow and underflow
always trap. - Floating inexact needs a software writable enable to stop it from
_trapping, since it occurs so frequently. Floating divide by 0 always traps.
Floating invalid operation always traps. The trap handlers can maintain sticky
bits for all these exceptions. ' . ' '

Be especlally careful about non-commutative mstructmns with pop-stack address
~ mode [for traps]. :

Exceptions Chapter
There are four kinds of recursive traps to fear:

‘Page fault on a stack page. This is avoided by requiring that all pages of the
control stack of a stack group, up to the extra-stack limit, be resident in main
memory before control can enter the stack group. The Revision 0 chip does not do
this, so stack get completely wired. Other implementations do this, so page fanlts
on running stacks cause the pages to get wired, but are otherwise pretty normal.
(Just the structure defining the stack group would be stored, not the actual
-gtacks). The paging system has to be careful about evicting stack pages or
clearing their write-permission bits. It may not do this to the current stack
group, and if it does it to another stack group it must set a bit in the SG that
will cause a trap if control attempts to enter it. Note that the stack-limit register
values in a stack group can be set fo less than their maximum values, to save on
main memory. Then if the limited stack available overflows the stack overflow
handler can wire down additional pages and increase the stack limits.

Virtual address translation failure on a resident stack page. On the 3600 if a
virtual reference is satisfied by neither the map cache nor the PHTC, it traps to
macrocode. Occasionally a trap to macrocode will occur for a resident page,
merely to translate its virtual address. This cannot be tolerated on the IMach, so
. the page translation tables must be designed so that the hardware and microcode
can always find the physical address of a resident page. This has the additional
advantage that spilling of a cache into main memory can never cause a page fault
(assuming of course that when a page is evicted its contents are first removed
from any caches that may still contam tgeén)

Symbolics, inc,

Page fault while dumping the contents of a cache to make room for new
data. This cannot happen as explained just above.

" If uncorrectable ECC error is a trap, then this can also be recursive.

It is not actually necessary to wire down an entire stack, just the top part of the
stack that is being used. When control unwinds to earlier frames in the stack, a
page fault will occur while trying to reload the stack cache from virtual memory.
It should be easy to arrange for this page fault to be handled in the part of the
stack that is still resident. The control-register.trap-on-exit bit could also be set
in the bottommost frame in the resident portion of the stack, so that the trap
would occur before the page fault. In this way main memory would be used in the
same way that A-memory is used for a stack buffer in the 3600.

314

. Symbolics, Inc,

Appendlx E
Notes on Future Implementatlons of the Ivory Chlp

Data-Types Chapter - Array Representations

Non- Word-allgned array registers can be optimized by an addltmnal 5-b1t adder and
-a special carry input to the main adder.

Instruction Chapter -- minusp

Small ratios might alse be handled by microcode since they can be compared on™
the same basis as fixnums -- if ratios are canonicalized to have the sign bit in the
numerator. Same test for all of them, bitwise? except for floating point, not-a- -
numbers. -0.0 is not minusp, so bit test fails.

Instruction Chapter -- Instance Variable Accessors

All of the instance-variable accessing instructions could take an sp-pop argument
as an alternative to an immediate. This issue needs to be reviewed when the
microcode is written. %instance-loe, %instance-ref, %instance-set could be -
flushed. Removing them would slow the specific kinds of instance-variable
accesses that use these instructions by a factor of 2 or 3. Most instance-variable
accesses use the mapped or ordered instruction described earlier.

Function-Calling Chapter _
. This is not done .in Revision 0 of the _chip, but might ought to be:

"The first thing finish-call does is to check for Apply = 1 but the top word on the
stack is nil (an empty list). In this case it pops the stack and clears its copy of
the Apply bit, turning into a normal call, This canonicalization simplifies the
argument match-up procedure described later."

Function-Calling Chapter -- Calling a Generic Function

A reasonable optimization would be to avoid the memory references to fetch the
trap-vector element and to fetch the %generic-dispatch instruction, since calling
of generic functions is so common. (It would save 2 memory references out of 5,
and avoid perturbing the I cache.) The %generic-dispatch instruction could be
fed magically into the instruction pipeline, and the PC could be set to a constant
value that is architecturally required to be the address of a memory location
containing a %generic-dispatch instruction; this location will be referenced if the
%generic-dispatch traps (for example, for a page fault) and has to be retried.

Future hardware might contain a special-purpose cache used by the generic-
dispatch instruction to speed repeated lookups with the same generic function and
instance. '

315

Symbglics, Ine,

-

316

Symbolics, Inc.

Appendix F
lnstructlon Class:flcatmns for Packed lnstructlons

F.1 Formats

The two major classifications of packed instructions are operand-from-stack format
 and 10-bit-immediate format. These are further broken down into various
subclasses. Additional information in the opcode field is indicated with a "*",
Instructions in the operand-from-stack format always have an operand-specifier in
" their lower 10 bits. Instructions in the 10-bit-immediate format have different

nses for their lower 10 bits. Fields in the 10-bit immediate are indicated by a "-".

F.2 Operand-from-stack Instructions

* Unary Instruction (otherwise 22 args)
* Bigned Immediate (otherwise unsigned)

unary/signed (14 opcodes) -
~ car, cdr, endp, plusp m.musp zerop s setup -1d-array, setup-
force-1d-array, start-call; bind-locative, %restore-binding-stack,
%ephemeralp, %tag, %jump

unary/unsxgned (12 opcodes)
unary-mlnus1, push, push-n-nils, push-address -sp-relative, return-
multiple, return-kludge, ta.ke-value53 unbind-n?,
push-instance—variablez, push-address—'mstance-variablez,
push-.instance-variable-orderedz,
push—address-instance-variable-ordered2

unary/address (11 opcodes)
set-to-car, set-to-cdr, set-to-cdr-push-car, increment, decrement
pu‘sh—address“', set-sp-to- address®, set-sp-to- address-save-tos®,
%pointer-increment, %set-cdr-code-1, %set-cdr-code-2

2 Arithmetic dispatching.

instructmns whlch are only defined for an |mmedtate argument could be in either operand-frorm-stack or
10-bit-immediate format.

4Not all address-operand instructions modify their argument.
317

Symbolics, Inc.

not-unary/51gned (31 opcodes)
rplaca, rplacd rgetf, member assoc, multlply \ quotlent1
ceiling’, ﬂoor truncate’, round rer1:m1111der1 rat10nal-quot1ent1,
max1 min’, lugand1 logmr logxor ash rot, 1sh, %multiply-
double, %lshc-blgnum -step, stack-blt, bmd-locatwe—to-value
%pointer-plus, %pointer-difference, store-conditional, %memory-
write, %p-store-contents C

not-unary/unsigned (24 opcodes)

add’, sub1 %832-bit-plus, %32-bit-difference, %add bignum-step,
%sub-bignum-step, %multiply-bignum-step, %divide-bignum-step,
aref-1, aset-1, aloc-1, array-leader, store-array-leader aloc- Ieader
pop-mstance—vanablez, movem-instance-variable?,
‘pop-instance-variable- -ordered?, movem-instance-variable-ordered?,

. %instance-ref, %instance-set, %instance-loe, %allocate-list-block,
%allocate-structure-block, %set-tag

not-unary/address 6 opcodes)
‘pop, movemn, stack- bit-address®, fast-aref-1° fast—aset-l %merge-
edr-no-pop

Binary-Predicate Subformat
* no-pop argl

not-unary/signed a2z opcodes)
eq, eg-no-pop, eql eql- no-pop , equal-number
equal—number-no~pop1 greaterp’, greaberpuno pop 1essp)
lessp-no- pop logt:est1 logtest-no- pop

not-unary/unsigned {2 opcodes)
%unsigned-lessp, %unsigned-lessp-no-pop

BAR Subformat
* BAR number

unary/signed (4 opcodes)
block-n-write

ﬁnary/address (4 opcodes)
block-n-read-alu

Lexical Subformat
* variable number

unary/signed ~ (8 opcodes)
' push-lexical-var-n

‘318

Symbolics, Inc.

. not-unary/signed . (16 opcodes)
- pop-lexical-var-n, movem-lexical-var-n

F.3 10-bit-immediate Instructions

Type-member Subformat
* pop arg
* field number (2 bits)
- field number (2 bits) <9:8>
- ‘type set <7:0>

unary (8 opecodes) _
" type-member-n, type-member-n-no-pop

Branch Subformat
* condition false
. * no-pop candition
* and extra pop
* else extra pop
- branch offset <9:0>

(16 opcodes) branch-true, branch-false, branch-true-no-pop, branch-false-no-
pop, branch-true-else-no-pop, branch-false-else-no-pop, branch-
true-and-no-pop, branch-false-and-no-pop, branch-true-and-extra-
pop, branch-false-and-extra-pop, branch-frue-else-extra-pop,
branch-false-else-extra-pop, branch-true-and-no-pop-else-nopop,
branch-false-and-no-pop-else-nopop, branch-true-extra-pop, branch-
false-extra-pop

Loop Subformat
- branch offset <9:0>

(3 opcodes) branch, loop-decrement-tos, loop-increme'nt-tos-less-than
" Byte-field Subformat

- field width <9:5>

- field starting position <4:0>

. unary - (4 opcodes)

1db, char-1db, %p-1db, %p-tag-idb
not-unary (4 opcodes) ’

dpb, char-dpb, %p-dpb, %p-tag-dpb

319

Symbolics, Inc. .

BAR Subformat

- * BAR number
- memory cycle type <9:6>
- fixnum only <5>
- set cdr-next or invert test <4>
- lagt word <3>
- no inecrement <2>
- test select <1:0>

(12 opcodes) %block-n-read, %block-n-read-shift, %block-n-read-test

Finish-call Subformat

* apply -
- value disposition <9:8>
- number of arguments <7:0>

" (4 opcodes) finish-call-n, finish-call-n-apply, finish-call-tos, finish-call-tos-
apply

Entry Subformat
* rest accepted
- min args <7:0>
= max args <25:18>

(2 opcodes) entry-rest-not-accepted, entry-rest-accepted

Return Subformat
- return value select <1:0>

(1 opcode) return-single
Catch-open Subformat
- value disposition <7:6>
~ cateh/unwind-protect <0>
(1 opcode) catch-open
Memory-read Subformat
- memory cyele type <9:6>
- fixnum only <5>
- set cdr-next <4>

(2 opcodes) %memory-read, %memory-read-address

Internal-Register Subformat
' 320

- internal register address <9:0>

. Symboilics, Inc.

2 'opcodés) %:read-'inte!_fnal-reg.is'ter, .%write-internal-reg-ister__

‘Coprocessor Subformat (2 opcodes)
- coprocessor address <9:0>

(2 opcodes) %coprocessor-read, %coprocessor-write

Unused-Immediate Subformat

(6 opcodes)

-locate-locals, catch-close, %generic-dispétch, %message-dispatch,
%check-preempt-request, no-op, %halt '

- F.4 Encodings
unary 80 8__ 98
signed a1
a2
83
B4
a5
a6
87

28
21
22
23
24
25
26
27
eg 1 a0
81
a2
83
84
a5
86
a7

- 28

car
cdr

endp

setup-1d-array
setup~force-td-array
bind-locative
Zrestore-binding—stank
Zephemerali-p

push-lexical-var-8
push-lexical-var-1
push-lexical-var-2
push-lexical-var-3
push-lexical-var-4
push-lexical-var-5
push-lexical-var-6
push-lexical-var7

type-nember-g
type-member-1
type-member-2
type-member-3
type-member-B-no-pop
type-member-1-no-pop
type=member-2-no-pop
type-member-3-no-pop

branch-true

321

19
11
12
13
14
15
16

17

38
31
32
33
34
35
36
37

18
11
12
13
14
15
16

47

38

start-call -
Zjump

1tag
Zhiock-9-write

Zhlock=T-write
Zblock~2-urite
Zblock~3-write
Zeropx

minuspx

pluspx

Tocate-locals
catch-close
Zgeneric-dispateh
Zmessage-dispatch
Zcheck-preempt-request

no-op
Zhalt

branch-false

Symbolics, Inc.

21 branch-true-else-extra-pop 31 branch~faise—e15e—extra—pop

.22 branch-true-and-extra-pop 32 branch-faise-and-extra-pop
23 branch-frue—extra—pdp 33 branch-false-extra-pop

. 24 branch-true-no-pop . 34 branch-false-no-pop
25 branch-true-and-no-pop 35 branch-false-and-no-pop
26 branch-true-else-no-pop 36 branch-false-else-no-pop

27 branch-true-no-pop-extra-pop 37 branch-false-no-pop-extra-pop

unary @1 @ 88 push 18 push-instance-variable -

unsigned 81 push-n-nils * 11 push-address-instance-var
' B2 push-address-sp-relative 12 push-instance-var-ordered
- _ 13 push-address-instance-var-or
84 return-muitiple 14 unary-minus
@5 return-kludge 15 return-singie
86 take-values - 16 Zmemory-read
87 unbind-n 17 Zmemory-read-address
20 %block-B-read ' 308 Zblock-B-read-test
21 Zhlock-1-read) ; 31 Zblock-i-read-test
22 Zblock-2-read ' 32 Zblock-2-read-test
23 Zblock-3-read 33 Zblock-3-read-test
24 Zblock~B-read-shift 34 finish-call-n
25 Zblock-1i-read-shift 35 finish-call-n-apply
26 Zblock=-2-read-shift 36 finish-call-tos
27 Zblock-3-read-shift 37 finish~-call-tos-apply
unary B1 1_ B8 set-to-car - 1@ push-address
address . B1 set-to-ecdr 11 set-sp-to-address
82 set-to-cdr-push-car 12 set-sp-to-address-save-tos
83 increment 13
B4 decrement - 14 Zread-internal-register
85 Zpointer-increment 15 Zwrite-internal-register
86 %set-cdr-code-1 16 %Zcoprocessor-read
87 Zset-cdr-code-2 17 ZCOProcessor-write
28 Zblock-B-read-alu 38 1db
21 Zblock-1-read-alu 31 char-1db
22 Zblock-2-read-alu) 32 Zp—ﬁdb
23 Zblock-3-read-alu 33 Ip-tag-ldb
24 34 branch
28 35 Toop-decrement-tos
26 - 36 entry-rest-accepted

C27 _ 37 entry-rest-not-accepted

322

not-. 18 B__
unary signed

18 1

not- M B__
unary unsigned

88
81
B2

. 83

a4
a5
b6
87

28
21
22
23
24
25
26
27

20
o1
B2
83
@4
B5
06
87

28
21
22
23
24
25

- 26

27

81
a2
83
84
85

rplaca

rplacd
muTtip]yx'

‘quotientx .

ceiling*
floorx
truncatex
roundx

rot’

Tsh
Zmultipty-double
Z1shc-bignum-step
stack-blt

rgetf

member

assoc

pop-lexical-var-B
pop-lexical-var-1

pop-lexical-var-2

pop-lexical-var-3
pop-lexical-var-4
pop-lexical-var-5
pop-lexical -var-6
pop-lexical-var-7

equal-numberx
Tesspx

greaterpx

2qlx
equal-number-no-popx
lessp-no-popx
greaterp-no-popx

eql -no-popx

addx -

subx

%Z32-bit-plus
%Z32-bit-difference
Zadd-bignum-step
Zsub-bignum-step

323

18

11
12
13
14
15
16
17

30
31
32
33
34
35

36

37

18
11
12

13

14
15
16
17

30
31

32

33
34
35

36

37

18

11
12

13
14

15

Symbolics, inc.

remainderx _ _
rational-guotientx
min

maxk

Jogandx
Togxors
logiorx

Zpointer-plus
Zpointer~difference
ashx

store-conditional
Zmemory-write
Zp-store-contents
bind-Tocative-to-value

moven-lexical-var-@

movem-lexical-var-1

moven-lexical«var-2
movem-lexical-var-3
movemn-lexical-var-4
movem-1exical-var-5
moven-1exical-var-6
movem-}exical-var-7

eq

Togtestx
eg-no-pop

1ogtest—ho—pop*

aset-1
Zallocate-1ist-block
aref-1

atoc-1
store-array-teader
Zallocate-structure-block

Symbolics, inc.

not- 11 1_
unary address

@86
67

20
21
22
23
24
25
26

- 27

Bg

g2
B3
B4
85
a6
B7

28
21
22
23

24

Zmuttiply-bignum-step

Zdivide-bignum-step

pop-instance-variable

movem-instance-variable
pop-instance-var-ordered
‘movem-instance-var-ordered

Zinstance-ref
Zinstance-set
Zinstance-loc
Zset-tag

pop
movem -
Zmerge-cdr-no-pop

25 -

26
27

324

16
17

38

31
32
33
34
35
36
37

1B
11
12
13

© 14

16
16
17

38
31
32
33
34
35
36
37

array-leader
aloc-leader

Zunsigned-lessp
Zunsigned-lessp-no-pop

fast-aref-1
fast-aset-1
stack-blt-address

dpb
char-dph
Zp-dpb
Zp-tag-dpb

1oop-increnent-tos-<
catch-open '

index

%%bignum-length 19
%Ybignum-sign 19
%%BYTE-OFFSET field 236
%%BYTE-PACKING field .36
~%%CHAR-BITS 17 S
%%CHAR-CHAR-SET 17
%%CHAR-STYLE 17

- %%CHAR-SUBINDEX. 17
%%DOUBLE-EXPONENT 22
%%DOUBLE-FRACTION-HIGH 22
© %%DOUBLE-SIGN - 22
%%ELEMENT-TYPE figld 36
“%YEVENT-COUNT ifleld 36
%PSINGLE-EXPONENT 22
%%SINGLE-FRACTION 22
%%SINGLE-SIGN . 22
Yearray-prefix-iong 30
%array-prefix-short 30
“%headertype-array 30
Y%header-type-bighum 18
“Y%header-type-leader 30
Yswired-physical-address-low 59
%wired-virual-address-high 59

10-bif-immediate Instnzeiions 319

%32-blt-difference instruction 134
%32-blt-plus instruction 133
%add-bignum-step instruction 135
Y%allocate-list-block instruction 214
%allocate-structure-block instruction 216
%block-n-read instruction 169
%block-n-reag-alu instruction 171
%block-n-read-shift. instruction 170
%block-n-read-test instruction 172
%block-n-write instruction 174 :
%check-preempt-request instruction 232
%coprocessor-read instruction 221
%coprocessor-write instruction 222
%divide-bignum-step instruction 138
Seephemeralp instruction 218
%generic-dispatch instruction 229
%halt instruction 233
%%header-type-instance 14
scinstance-loc instruction 211
%instance-ref instruction 209
vinstance-set instruction 210
%jump instruction 231
%lishc-bignum-siep instruction 138
%memory-read instrugtion 222
%memory-read-address instruction 223
S%memory-wrlte instruction 227
%%merge-cdr-no-pop: instruction 229
semessage-dispatch instruction 230
%multiply-bignum-step instruction 137
%multiply-double instruction 134
%p-dpb instruction 152

%p-idb instruction 151

Symbaiics, inc.

%p-store-contents instruction . 226
Y%p-tag-dpb instruction 153
%p-tag-ldb instruction -152

“%pointer-difference instruction 218
%pointer-increment instruction ~ 219

%pointer-plus instruction 217

‘%read-internal-register. instruction - 220

%restore-binding-stack instruction 190
%sef-cdr-code-n instruction - 228
%set-tag Instruction 225

-%sub-bignum-step instruction 136
-%tag inskruction 224 - :

%unsigned-lessp instruction 213
%write-internal-register - instruction . 220
add instruction 113 '

- aloe-1. instruction 155
. aloe-Jeader instruction 162

araf-1 instruction 154

_array-Jeader instruction- 161
.aget-1 instruction 154

ash instruction 131

assoc instruction 100

bind-locative insiruction - 188
bind-locative-to-value instruciion 188
branch instruction 164

-branch-false { -else} { -and} { -no.pop} { -extra-pop}

branch-true (-eise) { -and} { ~-no-pop} { -extra-pop)
instruction 164

car instruction 92

catch-close instuction 196

catch-open insfruction 185

cdr instruction 92

celling instruction 120

char-dpb instruction 151

" char-ldb instruction 150

decrement instruction 117
dpb instruction 149
dtp-array 30
dtp-array-instance 17
dip-big-ratio 22

-dip-bignum 19
‘dip-call-compiled-even instruction 175
‘dip-call-compiled-even-prefetch 175

dip-cafi-compliad-odd instruction 175
dip-cali-compiled-odd-prefetch 175
dtp-call-generic instructon 177
dip-call-indirect instruction 176
dip-call-Indirect-prefetch 176
dip-character 17
dip-complied-function 40
dip-complex 24

dtp-double-float 22
dip-dynamic-closure 43
dip-element-forward 6, 8
dip-even-pc 45
dip-external-value-cell-pointer - 8 -
dtpfixnum 19
dtp-generic-function 43
dtp-header-forward 6, 8

325

164

dip-headerd 6
dip-header-p &
dtp-instance 14
dtp-lexical-closure
dip-list 24
dip-list-instance
dip-locative 46
dip-monitor-forward
dip-null - 10
dip-odd-pt 46
dip-one-q-forward 8
dtp-physical-address 47
dtp-single-ficat - 22
dtp-small-ratio 20

- dip-spare-number 24
ditp-string 30
dip-string-instance -
-endp instruction 108
entry-resi-accepted instruction
entry-resi-not-accepted 181
eq instructon 102
eg-no-pop 102

.. eqf instruction 102
egh-no-pop 102
equal-number instruction
equal-number-no-pop
fast-aral-1 instruction
fast-aget-1 instruction
fintsh-gall-n instruction
finish-call-tos instruction
fioor instruction 121
areaterp instruction = 104
greaterp-ne-pop 104
increment instruction
idb instruction 149
lessp instruction 105
lessp-no-pop 105
locate-locals. instruction
logand instniction . 128
logior instruction 128
logtoat instruction = 106
jogtest-no-pop 106
jogxor instniction 130
ioop-dectement-tos instruction 166
ioop-increment.ios-less-than - instruction
ish instruction 133

max instruction 126

member instruction 99

min ingiruction 127

minusp instruction 110

movem instruction 142
movem-instance-variable insfruction 203
movem-instance-variable-orderad instruction
movem-lexical-var-n instruction 198
multiply instruction 118 :
no-op instruction 221
plusp instruction 108
pop instruction 141
pop-iinstance-variabie instruciion 202
pop-instance-variable-ordered instruction
pop-lexical-var-n instruction 198

push instruction 141

43
17

10

17

181

103
103
158
159
179

180

116

18z

167

207

208

326

- return-kludge instruction

_ rot instruction

" -stack-bit instruction

- push-lexical-var-n instruction
- push-n-nils_instruction

push-address instruction 144
push-address-instance-variable instruction 204
push-address-instance-variable-ordered instruction
push-address-sp-relative instruction 145
push-Instance-variable instruction 201
push-instance-vatiable-ordered instruction
198

208

205

143
quotient instruction 119

rational-quotient instruction -
remainder instruction 124

125

185
184
183

raturn-multipie instruction
raturn-single instruction
rgetf instruction 98
132
round instruction 123
rplaca instruction 96
mplacd instruction 97
ssei-sp-to-address instruction 144

setl-sp-to-address.save-tos instruction 145

-set-to-car instruction 93
-set-to-cdr instruction 94

set-to-cdr-push-car instruction 95
setup-td-array instruction 156
setup-force<1d-array instruction
148
stack-blt-address instruction
start-call instruction 178
store-array-leader instruction
store-conditional instruction
sub instruction 114
take-values instruction 186
truncate instruction 122
type-member-n instruction

157
147

161
225

107

type-member-n-no-pop 107
unary-minus instruction 115
unbind-n instruction 188

unsigned-iessp-no-pop 213

zerop instruction 111

Aborting Calls 257

Accesses to Arbitrary Instances 209

Accessing Instance Varables 278

Address or immediate data 2

‘Address Spage 57

Address Translation 60

Address width §7

Appendix: Comparison of 3600-Family and I-Machine Data

‘ Representations 52 .

Appendix: Comparison of 3600-Family and I-Machine
Exception Handling. 295

Appendix: Comparison of 3600-Family and 1-Machine
Function-Calling 282

Appendix: Comparison of 3600-Faraily and [-Machine
Instruction Sets 233

Appendix; Comparison of 3600-family and |-machine

. Memory Layout and Addressing 69

Architecturally defined fields of a flavor 14

Arsas 57 .

Arguments: the Data Types Accepted 84

Arithmetic Traps 287 -

Array Differences 54

Array Instances 17

Amay Operations 154

Array register 30

Array register; array length 36
Array register; base address 36 -
-Array register: control word - 36

Base Registers 242
Big-Ratio Reprasentation 22
Bignum Representation 19
Bind-Read Operations 87 .
Bind-Write Operations 88

- Binding Instructions. 188
- Binding Stack 244
Biock ‘Instructions 169

Branch and Loop Instructions 164

Calling a Generic Function 277
Catch Blocks 192

Catch Instructions 192 :
Catch, Throw.and Unwind-Protect 271
Catch-block-binding-stack-pointer 192
Catch-block-continuation ' 192
Catch-block-pc 192
Catch-block-pointer
Catch-block-previous
Catch-block-tag 182
Cdr code 24

Cdr code tag. 2

Cdr Codes of Values. Retumed 90
CDR-Read Operations 87 :
Classes of Stored Object Representations 3
Collision-count mechanism 63

Compiled Function Differences 56
Complex-Number Representation 24
Components of Stored Representations 6

. Constant Formats 80
Constants 43
Continuation register
Control registar 245
Control register Apply field 245

Conirol register Arg-size field 245

Controf register Call-started field 245

Control register Cleanup-bits field 245
Contro! register Extra-argument field 245
Control tegister Frame-size«of-caller fisld 245
Controi register Instruction-state field 245
Control register Trap-mode field . 245
Control register Value-disposition fisld 245
Control Stack 241 o
Control Stack Addressing Modes 83

Control Stack Frames 241

192
192

245

Data Stack 245

Data type tag 2

Data Types for Program Counter Values 50
Data-Movement Instructions 141
Data-Read Operations 86 _

Data-Type Code Assignments 48
Data-Type Descriptions 13

Data-Writs Operations 86

327

Division Operations That Return Two Vaiues 120

Double-Precision Floating-Point Represeniafion
Dtp-nil 13 :
Dip-symbol 13 '
Emulator trap mode 285
Encodings 321
End-coliision-chain bit - 63
Entry instruction 40

" Entry-instruction Format - 80

Entry-rest-not-accepted 181
Ephemeral Addresses - 58
Ephemeral level number 58 -
Ephemeral-oldspace register ~ 59, 60
Error Traps 286 '

Event count- 36

Excepiion Handling 283
Exceplions 286

- Explanation of Instriuction Definitions 75

- Function-Calling Data Types

Extra-stack trap mode 285

Fep trap mode 285
FEP-made Traps - 283
Field-Extraction instructions
Fields 2
Finish-call--tos-apply
Finish-call-n-apply 179

Finighing the Call 253

Fixnum Representation 19

Flavor 276

Flavor instances 14

Flavor-description structure 14

Flavors 14

Format for 10-Bit immediate Operand 82

149

180

" Format for Branch instructions 82

Format for Field Extraction 82
Format for Operand From Stack 83

‘Formats 317

Forwarding (Invisible) Pointers 8
Frame Gleanup 270

Frame pointer 245

Full-Word Instruction Data Types 51
Full-Werd instruction Formats 75
Full-word instructions - 43

Function Calling 249

Function Calling, Message Passing, Stack-Group Switching

241
Function cell 40 -
Function Entry 257
Function' Return Instructions 268
Function Returning 266
175
Function-Calling Instruction Formats 75
Function-Calling Instructions 175

Garbage-Collection Operations 89

- GC Support 59

Genernc function 14
Generic Functions 43
Generic Functions and Message Passing 275

Half-Word Instruction Data Types &1

22

328

‘Handler table 14, 276
Handler table key 14
Handler table parameter 14
Header-Read Opsrations 88
Headers 6

Headers, Special Markers, and Forwarding Pointers - 48

High-speed /O trap mode 285
Hints for Software Developers 309

I-Machine Array Registers 36
lllegal instruction Formats 80
Immediate object 3
immediate object reforences 6
Instance Data Types 49
- Instance descriptor™ 14
Instance Variable Accessors 201
Instance variables 14
instancas 14
- Instruction Classifications for Packed Instructions 317
instruction Exceptions 287
instruction Formats 75
Instruction Representation 43
" Instruction Sequencing 73
instructions for Accessing Array Leaders 161
instructions for Accessing One-Dimensional Arrays
instructions for Creating Aray Registers 156 -
instructions for Fast Access of Amays 158
instructions for Starting and Finishing Calls - 178
internal Registers 75
Interrupt levels 285
Interruptible Instructions 98
Introduction 73
Introduction to Lisp-Machine Objects 2

Length and Format 2
Lexical Variable Accessors
Lisp-Machine Data Types 1
List instances 17

List object 3

List-Function Qperations 92
Local pointer 245

198

Macroinstructiori Set 73
Mapped Accesses to Self
Memory cycle types 85
"Memory Excaptions 289
Memory Layout and Addressing 57
Memory Words 2

Message name 14

Message passing 14

Method 14

20

Notes on Future Implementations of the Ivory Chip 315

Notes on I-Machine Architecture History 305
Number Data Types 49
‘Numeric Operations 113

Object References &

Object references by address 6
Operand specifier 83
Operand-from-stack instructions 317
Operand-Reference Classification 12

154

- Packed data 30

Packed Half-Word instruction Formats 80
Packed instructions 43

Page access attributes 60

Page Hash Table &0

Page size 59

Pages &9

PHT age field 60

PHT ephemeral-reference field 60

- PHT faultrequest bit - 60

PHT hash function 83

- PHT Lookup Algorithm 63

PHT modifled fieid 60
PHT transport-trap bit 60
PHT write-protect bit- 60
PHT-BASE register 60

PHT-MASK register 60
Pname 13

Peinters 6

Predicate instructions 102
Preempt-pending bit 291

- Preempt-request bit 291

Preempfion 291

Primitive Data Types 48

Processor Faults 293
Program-Counier Representations 46
Pull-apply-args 261
PULL-APPLY-ARGS Excepfion
Push-apply-args 259
Pushing the Arguments 253

263

Quanta 57

F!egio'ns 57 : .

Registers Important to Function Calling and Returning
245 :

Represantation of Characters 17

Representation of Compiled Functions 40

"Representation of Dynamic Closures 43

Representation of Lexical Closures 43
Representation of Locatives 46 .

Representation of Physical Addresses 47
Representations of Arrays and Shkings 30
Representations of Functions and Closures 40
Repressntations of instances and Related Data Types
Representations of Lists 24
Representations of Numbers 19
Representations of Symbols 13
Reset and Init 285

Restoring stack 141

Revigsion 0 SAllocate-list-block 208
Revision 0 %sAllogate-structure-block
Revision 0 %Block-n-read-alu 208
Revision 0 %Block-n-read-shift 298

298

Revision 0 %Block-n-read-test 209
Revision 0 Aset-1 298
Revision 0 Binding instructions 298

Revision 0 Branch and Loop Insiructions 289 .
Revision ¢ Entry-rest-accepted 299
Revision 0 Fast-aset-1 209

Revision 0 Implemeritation Exception Handling Features

14

329

300 ‘Valid array types 36

‘Revision 0 Implemaentation Features 297 Value Call Conients 80
Revision 0 Implementation Function-Calling Features 300 Value Matchup 271

Revision 0 implementation Instruction Features 298 Virwal Addresses = 57
Revision O Implementation Memory Features 297 ‘Virtualz physical region - 58
Revision ¢ Init PC 301 ‘
Revision 0 Loop-dacrement-tos 299 Wired Addresses 59
Revision 0 Loop-increment-tos-less-than 289 :

Revision 0 Memory. Exceptions 300 : : . Zone-oldspace register 59, 60
- Revision 0 Numeric Operations 299 - T . Zones 57 :

Revision ¢ Ogcode 57 299

Revision 0 Return-kiudge . 300 .

Revision 0 Return-single 289 -

Revision 0 Sequence Breaks 301

- Revision 0 Stack-bit = 300

- Revision 0 Stack-blt-address 300
Revision 0 Traps for Processor Faults 301
Revision 0 Unbind-n 300

- Ravislon 0 Unbinding 30t

" Serding a Message =278

Sequence Breaks 200
. Single-Precision Floafing-Point Representation 22
. Smali-Ratio Representation - 20

‘Special Marker for Garbage Collector 50
Special Markers 10
Spread arguments 242 -
Stack Groups on the | Machine = 310
Stack Overflow 290
Stack pointer 245
- Stack-Group Switching 280

Stacks 241

Starting a Function Call 249
Sting Instances 17 ’
Structure object 3
Structure-Ofiset Operations &8
Subprimitive instructions 213
Summary of Omitted 3600 Instructions 309
SYMBOL-FUNCTION-CELL 13
SYMBOL-PACKAGE-CELL 13
SYMBOL-PROPERTY-CELL 13
SYMBOL-VALUE-CELL 13

The Extra Stack 285

The Instructions 91

The Spare-Number Type 24

Top-oi-Stack Register Effects 89

Trace Teaps 292

Translation Algorithm 66

Trap Modes 285

Trap Vector 286 .

Trap Vector-Layout 294

Trapping Cut of Entry and Restarting 266
Trapplng Cut of Finish-call and Restartmg - 257
Traps in General 283

Types of Inslruction Exceptions 84
Types of Memory Roferences 85

Unchecked Operands B89
Unmapped Accesses to Self 205
Unmapped Addresses 58

