PROGRAMMER’S
REFERENCE
: | MANUAL

T'he
Sylvania

9400

Data
Processing
System

SYLVANIA ELECTRONIC SYSTEMS / EAST

SYLVANIA 9400
DATA PROCESSING SYSTEM

PROGRAMMER'’S REFERENCE MANUAL

NOVEMBER 1962
(Supersedes all other issues)

SYLVANIA ELECTRONIC SYSTEMS

Division of Sylvania Electric Products Inc.

SYLVANIA ELECTRONIC SYSTEMS EAST
100 First Avenue, Waltham 54, Massachusetts

TABLE OF CONTENTS

Section
| INTRODUCTION
il MAGNETIC CORE STORAGE UNIT .
I CENTRAL PROCESSING UNIT.

General Description . .
Interpretation of Words from I\/Iemory
Central Processor Instruction Work Format .
Control Section and Control Registers .,
Index Registers and Address Modification
Data Word Formats .
Arithmetic Section
Switches and Indicators. .
Information Flow in the Central Processor
Main Transfer Bus
Retrieval and Interpretatlon of an Instructlon Word
Execution of an Instruction
Console .
Input-Output .
Instruction Timing and the Bas1c Machme Cycle
Central Processor Instruction
Symbolic Notation
Pictorial Representation
Abbreviations and Conventions in Symbols
Addressable Registers .
Overflow Control . .
Fixed Point Arithmetic Instructlons
Clear and Load Accumulator Instructlons
Add and Subtract Instructions
Add and Subtract Instructions Summary
Multiply and Divide Instructions
Shift and Normalize Instructions
Floating Point Arithmetic Operations
Word Format
Number
Characteristic . .
Decimal to Floating—Pomt Convers1on .
Overflow and Underflow
Floating-Point Conventions and Abbrev1at10ns
Floating Point Instructions
Data Transfer Instructions
Program Control Instructions
Sense Instructions .
Index Control Instructions .
Index Register Numbering .
Address Modification Instructions
Word Modification Instructions

' 1] 1 '

1

A
WWWwWwwwwwwwwowowwaow
1 '

<2
1
= s !
N = © OO ©COoODNINO N WKN NP -

e
]

1
[
[\V]

[I |
Pt s b
NN N

1

t
fb b ek ek ek ek
G T o WL

O W W W L) L W LW LY L)W
1

TABLE OF CONTENTS (Cont.)
Section Page

Il CENTRAL PROCESSING UNIT (Cont.)

The Repeat Function. « =« .+ « « =« = 3-21
Repeat --Move« .+ « « « « & . . e . 3-28

Repeat -- Compare « « =+ + o« s o« . 3-29

Trapping Mode o . . e e e e e e e e 3-31
General Description.« . .« .« . o 3-31
Trapping Mode Operation+ « .+ .+ . . 3-32
Trapping Mode Control Switches. 3-32

Stop Program Interrupt.« 3-32

IV INPUT-OUTPUT SYSTEM . 4-1
Gerneral Description . . . 4-1
Interpretation of a Word from Memory 4-1
InterpretSign 4-1
In-Out Processors 4-1
Information Flow in the Input-Output System . 4-3
Processor and Input-Output Device Selection 4-3
Write Operation . . e . 4-5

Read Operation « .« « + + « .« . 4-5
Single Instruction Mode. 4-5
General Description . 4-5
Instruction Word Format e e e e e e e e e 4-5
Input-Output Alarms. « « « « + « « .« o . . 4-6
Output Instructions e e e e e e e e e e e 4-6
Non-InterpretSign+ . . « . . 4-6
Interpret Sign . . 4-6
Write Variable Length Block.: 4-6
Write Files. 4-6

Input Instructions. . . e e e . 4-1
Magnetic Tape Unit or Mass Memory eoe e 4-7
Paper TapeReader+ .+ . . 4-7
CardReader+« .+ « « « «+ « « 4-17
Non-InterpretSign 4-17
InterpretSign 4-17

Read Files . . . e e e e e e e e 4-7
Extended RAN Instructmn e e e e e e e e e 4-7
Magnetic Tape.« « « + « « « « « 4-8
Device Control Instructions e s e e e e e e e 4-8
Extended SKP Instructions. 4-8
Order Sequence Mode 4-8
General Description. e e . 4-8

SS and Order Sequence Order Word Formats e e e e e 4-9
Processor Operation in the Order Sequence Mode 4-9
Input-Output Order Sequence Orders 4-10
Interpreting Signs . . 4-10

Input-Output Alarms. e e e e e e e e . 4-10
PreparatoryOrders « « +« « « + « « « . . 4-10
Extended SS Instruction., 4-10

Output Orders . . . 2 LY
Non-Interpret Slgn o Y
Interpret Sign . . . S
Variable Block Lengths . 4-11

TABLE OF CONTENTS (Cont.)
Section Page

IV INPUT-OUTPUT SYSTEM (Cont.)

Write Files.« .+ + « + o+ 4 411
Gather Write+ 4-11
Extended GW Order« « .« .« .+ .« . . . 4-11
Extended WW Order+ .« . .+ « . . 41
Input Orders . . N N T
Non-Interpret Slgn - R P
InterpretSign 4-12
Read Files« .« .+ .« + .+ < .« 4-12
Extended SC Orders+ .« .+ .+ .+ « « « « .« . 4-12
Device Control Orders+ .+ .« .+ .+ .+ .+ . 4-13
Extended SK Order« +« « + +« « .+ . . 4-14
Program Control Orders 4-14
Extended PSOrder+ .« .« .« .+ .+ . . . 4-14
Extended ST Order+ .+ .« « .+ .+ .« . . 4-15
Program Interrupt+ .« .+ .+ .+ . < . . 4-15
General Description. . . S S)
Program Interrupt Control Sw1tches T e
Interrupt Programs . . . « e e 4-16
Simultaneous Program Interrupts or Interrupts Occurmg
WhenSPIisSet.+ .« . . .+ 4-186
Stop Program Interrupt. . B e
Activity and Resultant Switch Control B A
Types of Program Interrupt 4-16
Resetting Activity Switches 4-17
Functional Control Characters 4-18

v INPUT-OUTPUT DEVICES+ 95-1

Introduction 5
Magnetic Tape Unit e e e e e e e e e e e e e e e 5
Paper Tape Equipment+ < .+ < .« . . 5-
Electric Typewriter . 5
High-Speed Line Printer 5
Punch Card Equipment . 5

VI CONSOLE« .« « « « « « « v < 61

General 0w e e e e e e e e e e e e,
Features
Description.
Console Switches .
Mode Switches .
Initiating Switches
Sense Switches
Special Switches on Console
Register Switches
Miscellaneous Switches .
Console Indicators
Register Indicators
Alarm Indicators
Status Indicators

]] 1]

[I S S R B |
QYUY U U W W W e e e e

(=20 Rer o2 BN o> B o o> BN o MR o MR i o) i o » B o A R @ 2
1

]

TABLE OF CONTENTS (Cont.)
Section Page

IV CONSOLE (Cont.)

Operation L. L. ... e e e 6-7
Procedures . 6-7
Vil SYMBOLIC PROGRAMMING ., 7-1

Introduction
Concept of an Assembly Program
9400 Assembly Program (94AP) .
Definitions . . .
Symbolic Coding Forms .
Symbolic Instructions, Orders and Pseudo Operatlons
Punch Card Format .
Special Significance of Aster1sk (*) and Slash (/)
I1lustrative Symbollic Programs .

1 1 [}

3 -1 ~1 =3 ~3 -3 =3 =3 -3
1
Gl Ot DO DD DO kb bt et

1
fo2]

%

LIST OF ILLUSTRATIONS

Figure Page
I-1 Sylvania 9400 Data Processing System, Block Diagram vi
-1 Magnetic Core Storage Unit, Block Diagram . 2-2
-1 Central Processing Unit, Block Diagram . 3-1
II1-2 Central Processor Instruction Word . 3-2
IT1-3 Central Processing Unit, Control Section, Block D1agram 3-3
1I1-4 Address Modification 3-4
III-5 Data Word Formats . . 3-5
I11-6 Central Processing Unit, Ar1thmet10 Sect1on, Block Dlagram 3-1
-7 Central Processing Unit and Related Equipment, Block Diagram 3-8
I11-8 Basic Cycle (Extended) Timing Chart 3-11
I11-9 TRX Instruction, Flow Diagram . e e e e e e e e e ... 3-25
I11-10 RPT Instruction, Flow Diagram 3-=21
I11-11 RPT-MOV Instruction, Flow Diagram . 3-29
II1-12 RPT-TRC-Function, Block Diagram 3-30
V-1 Input-Output System, Block Diagram 4-2
Iv-2 In-Out Processor, Block Diagram 4-4
Iv-3 Standard Input-Output Instruction Word Forrnat 4-6
V-1 Magnetic Tape Format . 5-2
V-2 Paper Tape Formats . 5-4
V-3 Punch Card (Hollerith Code) 5-6
V-4 Format of Data on ISN Card 5-17
V-5 Format of Data on NISN Card. 5-8
VI-1 9400 System, General View 6-2
VI-2 9400 Console Switches and Ind1cators 6-4
VII-1 Standard 94AP Coding Form 7-3
VII-2 A Symbolic Program 7-4
VII-3 SIM Read Program -7
Vii-4 OSM Read and Write Program 7-9

iv

Table

III-1
II1-2
-3
III-5
IV-1
V-2
IvV-3
IV-4
IV-5
IV-6
V-7
IV-8

Appendix
A
B
C

D

LIST OF TABLES

Basic Cycle/Add -- Description .
Addressable Registers . .
Overflow and Underflow Control
Trapping Mode Control .
Operational Table for Magnetlc poe
Operational Table for Paper Tape
Operational Table for Card Reader -- Punch
Operational Table for Line Printer .
Operational Table for Flexowriter
Program Interrupt Control Switches
Program Interrupt Conditions
List of Program Interrupt Locations

LIST OF APPENDICES

NUMBERING SYSTEMS . .

LIST OF POWERS OF 2 .,

LIST OF OCTAL-DECIMAL, DECIMAL-OCTAL CONVERSION

LIST OF ADDRESSABLE REGISTERS

LIST OF PROGRAM INTERRUPT ACTIVITY SWITCHES AND LOCATIONS .

9400 WORD FORMATS

LIST OF 9400 ALPHANUMERIC CODES .
LIST OF 9400 INSTRUCTIONS AND ORDERS
SUMMARY OF OPERATION CODES .

LIST OF PSEUDO-OPERATIONS ACCEPTABLE TO THE 9400 ASSEMBLY
PROGRAM (94AP)

LIST OF OPERATION CODES CURRENTLY PROCESSED BY 94AP .

Page

3-10
3-13
3-14
3-31
4-19
4-20
4-21
4-22
4-23
4-24
4-26
4-27

Page

A-1

SNd YHASNVYL,

wniboiqg yd0|g ‘wasAg Buissaroid 0joqg Q0P 6 PIUDAJAS

*1-] 21nB14

NIVIX

H

H

H

un _-lllb'lulu_
v H &0 | touweyy |
J0Ss JOS -Wa N un arosuoc) I T ud |
Mmo-ur MmO-ug Teqjuen —————
sng
A “ L HHASNVHEL LNdLNO-LAdNI
|
. : v# snd

mding
-1ndug

TOff OOthAc ﬂ
_
-

HHASNVH.L LNdLNO-LNdNI

vi

SECTION |
INTRODUCTION

The Sylvania 9400 System is a large-scale, general-
purpose fully-transistorized digital computer system.
It is characterized by high internal speed, simultane-
ous operations, and a real-time capability. Computer
words are stored or retrieved from random locations
in high-speed memory in four millionths of a second.
This memory speed in conjunction with the two mega-
cycle computer timing clock enables a basic opera-
tion rate of 125,000 instructions per second.

A representative system includes a Central Proces-
sor, a High-Speed Memory, from one to four Input-
Output Processors and a wide variety of input-output
devices —— 64 mutually shared by all Input-Output
Processors or a maximum of 256 devices. Each of
the Input-Output Processors may operate simultane-
ously with each other and the Central Processor.
Thus, the Central Processor delegates time consuming
input-output operations to the Input-Output Proces-
sors, operating in parallel, while it performs the
higher speed computations and logical functions,

The multiple processor approach forms the basis
for an unusual degree of system expandability. For
example, by expanding memory, increasing the num-
ber of Input-Output processors and peripheral devices
— processing capacity can be increased several fold.
This modular expansion concept eliminates the need
for acquiring additional computers or the expensive
exchange of an existing machine for a larger one as
the applieation load expands.

An important feature of the 9400 system is the op-
tional Real-Time System which provides the Central
Processor with the ability to receive and read-out data
from remote locations at high speed, and without
costly and time consuming conversion operations such
as required for punched paper tape and cards. Real-
time operations also are performed simultaneously
with other Input-Output and Central Processor oper-
ations. The Real-Time System commands top priority
access to memory. This facility is an important con-
sideration in large-scale integrated data processing
systems.

Information to be processed is handled internally
as groups of binary digits. A single binary bit may
assume one of two states, ZERO or ONE. (Refer to
Appendix A, NUMBERING SYSTEMS.)

The two-state characteristic inherent in most elec-
tronic and magnetic devices renders the binary num-
bering system the most feasible means of representing
information within a digital computer. A group of bits

of specific size inside the 9400 computer is designated
as a computer word. Each word consists of 37 bits,
which may be interpreted by the computer as a binary
number, a set of alphabetic or numeric characters, or
as a series of special symbols. In magnetic core stor-
age, the 9400 word has attached to it an additional
bit for parity checking purposes.

A block diagram of the Sylvania 9400 Data Proec-
essing System is shown in Figure I-1. Information
transfer within the system takes place along transfer
busses, as shown. The Main Transfer Bus connects
the Central Processing Unit (CPU), the Magnetic
Core Memory Unit, the Console, and the In-Out
Processors. The Input-Output Transfer Busses con-
nect the In-Out Processors to the Input-Output De-
vices.

The Central Processing Unit performs all the arith-
metic and logical operations of the computer. The
CPU also initiates input-output operations, which
then proceed independently from the Central Proc-
€ssor.

The Magnetic Core Memory Unit provides rapid-
access data and instruction storage for both the
Central Processor and the In-Out Processors. Core
Memory Units are made up of 37-bit word cells, each
one with a unique address. Each word in Memory
is available for processing in four microseconds. Ap-
pended to each memory cell is a 38th bit, used in
checking accuracy during transfer of information
into or out of core memory. Core Memory Units have
a capacity of 32,736 words.

The 9400 System can utilize up to four In-Out
Processors. Each In-Out Processor communicates
with the Central Processor and the rest of the ‘‘cen-
tral’’ system through the Main Transfer Bus. Each
input-output device (card reader, magnetic tape
drive) is connected to the In-Out Processors by an
Input-Output Transfer Bus. As many input-output
devices may be in operation simultaneously as there
are In-Out Processors in the System.

The overall 9400 System is operated and monitored
automatically at the Control Console. The System
may be operated manually from the Console or
monitored during automatic operation. In addition,
it is possible for the operator to examine the contents
of any addressable storage location.

In its automatic mode of operation, the 9400 System
is controlled by a program stored in Core Memory.
The program is made up of a set of instrucfion words

and daete words. The Central Processor retrieves an
instruction word from Memory, interrogates it
through a decoding process, and causes the 9400
System to perform the operations indicated by it. As
the current instruction is being executed, the Central
Processor retrieves the next instruction word from
Memory and prepares to execute it in sequence. A
counter keeps track of the locations of the instruction
words which are to be executed. The computer is
said to be automatically sequenced. If an instruction
calls for operation upon data, the Central Processor,
in a process similar to the retrieval of an instruction
word, but at a different time, retrieves the required
data word from Core Memory and operates upon it.
The data is selected according to the address accom-
panying the instruction.

The instruction repertoire of the 9400 System may
be divided into two major categories; Central Proc-
essor operations, and Input-Output operations. Cen-
tral Processor operations pertain in general to the
processing and interrogation of data contained within
the Central Processor (and core memory) itself. In-

put-Output operations, on the other hand, bring about
the exchange of data and control information between
the Magnetic Core Memory Unit (and Central Proc-
essor) and the input-output devices, through the
In-Out Processors. The design of the 9400 System is
such that Central Processor operations are carried
out simultaneously with the execution of input-output
operations, a factor greatly enhancing the speed of
the overall system. .

Although the 9400 System operates upon data and
instructions in binary form only, the programmer will
normally communicate with the computer through a
symbolic language which greatly simplifies the prepa-
ration of computer programs. A packaged routine,
the 9400 Assembly Program (94AP), automatically
translates the programmer’s symbolic notation into
machine language. At the same time, the 94AP checks
the symbolic program for certain format and instrue-
tion errors. See Section VII, SYMBOLIC PRO-
GRAMMING.

SECTION 1l
MAGNETIC CORE STORAGE UNIT

The basic storage element of the Magnetic Core
Storage Unit is a small (approximately 2 millimeters
in diameter) magnetizable toroid, or core. Each core
is capable of storing one binary digit. When the core
is magnetized in one direction, it is considered to be
storing a binary ZERO ; when it is magnetized in the
opposing direction, it is considered to. contain a
binary ONE. Thus, an array of thirty-seven cores is
capable of storing a complete 9400 word. The Mag-
netic Core Storage Units (also referred to as Core
Memories) are made up of 37-bit cells, each holding
a single computer word. Appended to each cell is a
38th bit, which is used for checking the accuracy of
transfer into and out of the memory unit.

The 9400 System operates with a Magnetic Core
Storage Unit with a capacity of 32,736 words. In
both units, each word has a unique address, providing
the programmer with direct access to a specific word.

A block diagram of a Magnetic Core Storage Unit
is shown in Figure II-1. The Unit communicates di-
rectly with the Central Processing Unit, the Console,
each In-Out Processor, and the optional Real-Time
Channel through the Main Transfer Bus (see Figure
1-1). Information is stored in the Memory Array in
the form of word cells. Data and instruction words
are read from and written into individual Memory
Cells through a buffering register referred to as the
Memory In-Out Register (MO).

Inherent to the transfer of words to and from
Core Memory is the verification of the accuracy of
transfer by means of parity checking. A parity bit
is added to each word stored in Memory such that the
total number of ONE bits in the word, including
the parity bit, is odd. For example, if the 37-bit word
to be stored in Memory contains an even number of
ONZEs, the parity bit is automatically made a ONE
and stored with the word. When the word is at some
later time read from Memory, the computed parity
bit is read out with it. At the same time, a new
parity bit is caleulated on the basis of the contents
of the 37-bit word. The two parity bits are then com-
pared ; if they do not agree, the Memory Parity Error
(MPE) alarm.is turned on, indicating a malfunction
within the Magnetic Core Storage Unit.

All thirty-seven bits and the accompanying parity
check bit are transferred in parallel between the code
array, and the Memory In-Out Register. The MO
register is connected to the Main Transfer Bus and

hence to the rest of the 9400 System. The transfer
of words between the MO register and the rest of
the 9400 System is in the form of 37-bit words.

Words in Memory are selected aceording to an
address stored in the Memory Address Register (MA).
The capacity of the Memory Address Register is fif-
teen bits, which enables it to contain the binary
equivalent of a number which is 32 greater than the
highest-numbered memory address. The last thirty-
two addresses are reserved for addressable registers
which are deseribed in Section ITI. The Memory Ad-
dress Register receives the Memory Cell Address
through the Main Transfer Bus. The Memory Cell
Address provides the coordinates for locating a word
in Memory.

‘Words are read from and written into a Magnetic
Core Memory Unit by a fixed sequence of events called
a memory cycle. The memory cycle consists of a read
half-cycle and a write half-cycle, each of which is ac-
complished in four microseconds.

The read half-cycle copies the contents of the Mem-
ory Cell specified by the contents of MA into the
Memory In-Out Register. The parity check bit is
copied into MO at the same time. The copying process
destroys the contents of the addressed cell by resetting
all bit locations to ZERO. During the read half-cycle,
the word read from Memory is checked by the parity
cireuitry for accurate transfer.

The write half-cycle copies the contents of the
Memory In-Out Register into the addressed Memory
Cell. A parity bit is computed automatically and
transferred, with the word, into the appropriate mem-
ory location. The contents of MO, however, are not
destroyed by the transfer. A write half-cycle always
occurs in conjunection with and following a read half-
cycle.

Retrieval of a word from Core Memory takes place
in the following manner : The Memory Address Regis-
ter receives an address from the System; a read half-
cyele is initiated. The contents of the addressed mem-
ory location are transferred into the Memory In-Out
Register, leaving the cell in Memory blank (all
ZEROes). Parity is checked. During the following
write half-cycle, the contents of MO are replaced in
Memory, together with the corresponding parity bit.
Simultaneously with the write half-cycle, the contents
of the Memory In-Out Register are also duplicated
elsewhere in the 9400 System, as required by the in-

2.1

struction being executed. At the completion of an
ordinary retrieval operation, where information is
being read from Memory, the contents of the ad-
dressed cell in Core Storage are the same as prior to
the start of the read-write cycle.

Storing of a word into Core Memory is similar to
retrieval of a word from Core Memory. The only
difference is that as soon as the original word has
been read from the addressed Memory Cell into MO,
the new word which is to be written into Memory

CORE
MEMORY
ARRAY

.I-SS-bit parallel transfer---

MEMORY
IN-OUT REGISTER

jE&—

St 36

--=37-bit parallel transfer---

MAIN TRANSFER BUS

Figure ll-1.

2-2

is transferred into MO, destroying the newly-acquired
word from Memory. Thus, the write half-cycle, which
inevitably follows the read half-cycle, copies the new
word into Memory rather than the one originally re-
trieved. A new parity bit is computed automatically
and stored with the new word.

9400 Magnetic Core Storage Units provide random
access storage, in that any word in Memory may be
read out in four microseconds, regardless of its cell
address.

CELL ADDRESS
‘ SELECTION

MEMORY ADDRESS
REGISTER

Magnetic Core Storage Unit, Block Diagram

SECTION 11l
CENTRAL PROCESSING UNIT

GENERAL DESCRIPTION

A generalized block diagram of the Central Proe-
essing Unit (CPU) is shown in Figure III-1. The
CPU is made up of two major functional parts:
the Arithmetic Section and the Control Section.
Each section communicates with the rest of the
9400 through the Main Transfer Bus (see also
Figure I-1). In addition, certain control.signals are
exchanged directly between the Arithmetic Section
and the Control Section.

The Control Section of the Central Processing Unit
decodes and implements all computer instructions.
Central Processor instructions are retrieved from the
Magnetic Core Storage Unit and implemented within
the Control Section of the CPU. The Control Section
initiates and controls the various operations which
are carried out in the Arithmetic Section.

The Control Section. also retrieves and decodes in-
put-output instructions, It initiates input-output op-
erations, which then proceed independently from, and
asynchronously with respect to, the Central Processing
Unit.

The Arithmetic Section of the Central Processing
Unit performs all arithmetic and related operations
upon data words. The Arithmetic Section is essen-
tially under the control of the Control Section. For
certain machine instructions, however, the data
words being processed within the Arithmetic Section
dictate to some extent the operation of the Central
Processor during the execution of these instructions.
Explanations of the operation of the individual ‘‘data-
dependent’’ instructions are given under Central
PROCESSOR INSTRUCTIONS.

INTERPRETATION OF WORDS
FROM MEMORY

Words stored in the Magnetic Core Storage Unit
are merely strings of thirty-seven bits; an instrue-
tion is indistinguishable from a data word. The
Central Processing Unit, which decodes and imple-
ments instruction words, is only able to differentiate
between data words and instructions by virtue of the
point in time at which they are retrieved from Core
Storage.

CENTRAL PROCESSING UNIT

ARITHMETIC
SECTION

I

.

T T T T T T T T T T T T T T T T T T T T

CONTROL
SECTION

|
|
|
L

MAIN TRANSFER BUS

Figure lli-1.

Central Processing Unit, Block Diagram

The Central Processing Unit operates under the
supervision of a basic machine cycle (see also IN-
STRUCTION TIMING AND THE BASIC MA-
CHINE CYCLE). Instruction words are always
retrievéd during one specific portion of the cycle, as
are data words during a different portion. Thus,
words retrieved during the instruction ‘‘time’’ are
sent to and interpreted by the Control Section of the
Central Processor, and words retrieved during the
data ‘‘time’’ are, in general, sent to the Arithmetic
Section for processing.

Through proper use of programming techniques, it
is possible, and often desirable, to treat instruction
words as data and to operate upon them accordingly.
Also, erroneous programming can cause data words
to be processed as instructions and result in incorrect
program operation.

CENTRAL PROCESSOR INSTRUCTION
WORD FORMAT

Figure I11-2 shows the Central Processor instrue-
tion word format. A 9400 word has the significance
of an instruction only when it has been retrieved
from Memory and transferred into the Control Sec-
tion of the Central Processing Unit.

F~-1 SIGNBITIS
i

\y” IGNORED
L.

OPERATION MODIFIER ADDRESS
CODE

(OP) [t8) () (o)

Figure ll1-2. Central Processor Instruction Word Format

The sign bit (8), has no significanee in an instruc-
tion word and is ignored by the computer. The pro-
grammer may, if desired, use the sign bit of an
instruetion word for ‘‘tagging’’ purposes. Since the
instruction repertoire of the 9400 System is likely
to be increased in the future by including the sign
bit in the operation code, extensive use of sign-bit
tagging is not recommended.

The operation code (OP) occupies bits 1 through
6 of the word. The operation code for ADD, for ex-
ample, is 001010, or 12 in octal notation.

The first operand address (a) is contained in bits
22 through 36. The number contained in the a portion
of an instruction word is the address of a word located
in Core Storage or an addressable register. In shift-
ing and eycling operations, the number in a is used
as a count rather than as an address.

The modifier (m) portion of the instruction word
ranges from bit 10 through bit 21. In certain 9400

3.2

operations, it is possible to alter the address portions
of instructions or the contents of specified registers.
The modifier is involved in such operations. It is also
used in controlling overflow and trapping operations
(see under the appropriate headings).

The index (¢) portion of the instruction word oe-
cupies bits 7 through 9. The number contained in 1
specifies a particular index register associated with
the operation to be performed. Index registers enable
modification of instruction addresses.

In some Central Processor instructions, the ¢ and
m portions of the instruction word are combined to
form a second operand address.

The details of indexing, address modification, and
the significance of first and second operand addresses
are discussed in the following paragraphs and in the
individual descriptions of the instructions themselves.

CONTROL SECTION AND
CONTROL REGISTERS

The Control Section monitors and controls the
operations of the Central Processing Unit. It also
governs the Core Memory read-write cyele and causes
the computer to sequence automatically through a
program stored in the ‘Core Memory. Figure III-3 is
a block diagram of the Control Section of the Central
Processing Unit. The Control Section consists basi-
cally of a group of registers of various lengths, to-
gether with appropriate decoding and control logic
circuitry. All Control Section registers are connected
to the rest of the 9400 System through the Main
Transfer Bus. The Control Section mechanizes the
basiec machine eycle and implements all Central Proc-
essor instructions. In addition, the Control Seection
initiates all input-output operations. When an input-
output device requires access to the Magnetic Core
Storage Unit, the Control Section synchronizes the
in-out memory cycle with the basic machine cyecle.

The Instruction Register (IR) contains the 6-bit
operation code for the instruction to be executed.
The Decoder Register (D) receives and decodes the
operation code which activates the Central Processing
Unit.

The G-Register is a 3-bit register, and holds the
number of the Index Register, if any, involved with
the instruction to be executed (see INDEX RE®G-
ISTERS). The X-Register, which has a capacity of
12 bits, normally contains the modifier portion of the
instruetion word. For instructions requiring a second
operand address, the X and G-Registers function as a
single 15-bit address register.

The Address Register (AR) is a 15-bit register, and
contains the first operand address of the instruction
to be executed. The T-register is a 9-bit counting regis-
ter which keeps a count of shifting operations. It
also controls the timing of instructions which are

IndexRegs. 4%

b - - . e .- - -

AR (15)

IndexRegs. 1
(15 each) PCT (15) PCS (15)

e ———————————————

7 MAIN TRANSFER BUS

INSTRUCTION WORD

*System can be expanded to include
a total of 7 index registers.

Figure ll1-3. Central Processing Unit, Control Section, Block Diagram

extended heyond the normal, basic machine cycle
length, The T-register is also used to temporarily
store the characteristic of floating point instruetions.

The Program Counter (PCT) is a 15-bit register
which contains the address of the next instruction
to be retrieved from' Memory. Except for transfer-
type instructions, the Program Counter is advanced
by a count of ONE during the execution of each
instruetion. The Program Counter Store Register
(PCS) is a 15-bit register used in conjunction with
two special transfer instructions, TRL and TRS, and
its function is deseribed with the deseription of the
instructions themselves.

INDEX REGISTERS AND
ADDRESS MODIFICATION

It is often desirable in programming to be able to
modify the address portion of an instruction so that
the same instruction may be used repeatedly to oper-
ate upon a series of data words. For this purpose, the
Central Processing Unit is equipped with up to seven
Index Registers. Functionally, Index Registers are
part of the Control Section of the Central Processing
Unit. However, because of their special characteristics

and use, they are treated separately here.

An Index Register consists of a 15-bit, unsigned
storage cell. It is addressable in the same manner
that Core Storage Cells are addressable. In addition,
for address modification purposes, Index Registers
are ‘‘addressable’’ by the index (i) portion of an
instruction word.

The instruction word shown in Figure III-4, con-
tains an ADD operation code with an a portion of
5. This operation normally adds the contents of Core
Storage Cell number 5 to the contents of an arithmetic
register in the Arithmetic Section of the Central
Processor. However, in the case illustrated, the ¢
portion of the ADD instruction word contains a 2.
A number in the index portion, or tag, of an instrue-
tion word indicates that address modifieation is to
be performed. As the ADD instruction is decoded by
the computer, the contents of Index Register 2 (in this
case it contains a 3) are added to the address obtained
from the a portion of the instruetion word itself. As
a result, an effective address of (8)1, is formed in the
Address Register of the Control Section. It is the
contents of Core Storage Cell (8);, which are actually
added to the number in the Arithmetic Section.

001 010 010 000 000 000

ADD

000 000 000 000 000 101

ORIGINAL ADDRESS
(Decimal 5)

A

ORIGINAL ADDRESS —

+ CONTENTS (IR2)

N

EFFECTIVE ADDRESS
GENERATED IN
ADDRESS REGISTER

000 000 000 o000 O11

INDEX REGISTER NO, 2
(Decimal 3)

000 000 000 001 000

EFFECTIVE ADDRESS
(Decimal 8)

Figure lli-4. Address Modification

Although tagging produces an effective address as
far as execution of the tagged instruction is con-
cerned, the original a portion of the instruction word
is not changed. A program containing indexed in-
struction words is not modified except temporarily
during its execution. In other words, even though
the above ADD instruction word actually produced
the addition of the contents of Core Storage Cell
number 8, the instruction word in Memory still con-
tains an @ portion of 5.

For certain instructions, the contents of an Index
Register may modify the second operand address in
a manner similar to that for the first operand ad-
dress. Specific applications for Index Registers are
described under the individual instructions involved.

DATA WORD FORMATS

Although a 9400 word always consists of 37 bits,
the computer -— during the ‘‘data’’ portion of its
basic machine cycle — interprets the 37-bit words
in four different manners, depending upon the mode
in which it is operating. Figure ITI-5 shows the four
data word formats.

Data words are words which contain information
to be processed. A data word contains either purely

3-4

numeric information or alphanumeric information
composed of both numerie digits and alphanumeric
characters. Purely numeric information may be
stored in memory as a conventional numerical data
word or a floating point data word.

Part A of Figure II1-5 illustrates a ‘‘conventional’’
data word. The 37-bit configuration is interpreted as
a 36-bit signed number. The magnitude bits are num-
bered from 1 through 36, counting to the right. The
magnitude bits of the word are thought of as a frae-
tion, with the binary point appearing at the left-.
hand end of the word, between bit 1 and the sign. The
sign bit (8) determines the polarity of the magnitude
portion of the word. The sign bit of ONE indicates
a negative word. A sign bit of ZERO indicates a
positive word. Thus, a cleared (i.e., containing all
binary ZEROes) computer word is interpreted, dur-
ing a data retrieval, as containing positive ZERO.

Part B of Figure I1I-5 shows an octal data word.
The octal notation system is a shorthand means of
writing binary numbers. See Appendix A, BINARY
AND OCTAL NOTATION.

In the octal mode of operation, the computer in-
terprets data words as consisting of twelve groups
of three bits each, plus a sign. As in the conventional

MAGNITUDE PORTION

36

(A) "CONVENTIONAL'" DATA WORD

34 36

(B) OCTAL DATA WORD

12§13

18]19 24 125 30 31

36

(C) ALPHANUMERIC WORD

CHARACTERISTIC

1 9

10

MAGNITUDE PORTION

36

(D) FLOATING-POINT DATA WORD

Figure llI-5.

Data Word Formats

3-5

word above, a ZERO sign bit indicates a positive
number and a ONE sign bit a negative number. In
the octal mode of operation, however, the data word
is thought of as consisting of twelve octal, characters
with sign.

Part C of Figure III-5 shows an alphanumeric
data word. The 9400 System is capable of processing
letters and special characters as well as numbers.
Representation of letters and special characters in a
binary computer, however, requires special considera-
tion, since the binary system is a method of numeric
notation rather than alphanumeric. Therefore, an
alphanumeric binary code is required. See Appendix
G, 9400 ALPHANUMERIC CHARACTER CODES.

Six binary bits are used to represent a single alpha-
numeric character. For example, the letter A is rep-
resented by the binary configuration 000110 and a
dollars sign ($) by 100111. Note also that numbers
as well as letters require six bits in the alphanumerie
mode of operation: A seven is given as 110111 and
a nine as 111001:

An alphanumeric data word consists of six groups
of six bits each, as shown. The computer interprets
each six-bit group as a single alphanumeric character.
In the alphanumeric data word, the sign may be in-
terpreted or not, at the programmer’s option.

Part D of Figure III-5 illustrates a floating-point
data word. Floating-point notation greatly extends
the range of mumbers which can be represented by
the 9400 word.

In a floating-point word, the magnitude portion is
contained in bits 10 through 86. The sign of the mag-
nitude portion is represented, as in a conventional
data word, by bit S. Bits 1 through 9 of the floating-
point word form the characteristic of the word.

The magnitude portion of a floating-point data
word is considered to be a fraction with the binary
point appearing between bits 9 and 10. The character-
istic portion of the word is a scaled exponent for the
magnitude portion.

A detailed description of floating-point operation
and techniques is provided under FLOATING-
POINT ARITHMETIC INSTRUCTIONS.

ARITHMETIC SECTION

Arithmetie, logic, and other operations carried
out by the Central Processing Unit occur within the
Arithmetic Section. The Arithmetic Section, as shown
in Figure ITI-6, consists essentially of three registers.
Its operation is governed by the Control Section of the
Central Processing Unit. The Arithmetic Section
communicates with the rest of the 9400 System
through the Main Transfer Bus.

All three Arithmetic Section registers are address-
able. Each has a capacity of 37 bits. For arithmetic

and arithmetic-related operations, the high-order bit
in each register is treated as a sign. For most other
operations, the high-order bit serves simply as an ex-
tension of the register. In some cases, it is ignored.

Most arithmetic and logical operations are per-
formed in the Accumulator (ACC). Certain Central
Processor operations, such as Divide, Multiply, Shift
Long, Cycle Long, and the like, combine the Accumu-
lator and the Q-Register (QRG) into one double-
length register. The Q-Register may be used inde-
pendently for temporary storage. It is also involved
in several Central Processor operations.

The B-Register (BRG) is essentially a temporary
storage register which is used (automatically) by the
computer in the execution of many of the Central
Processor Instructions. Like the Q-Register, the
B-Register may — with certain limitations — be em-
ployed by the programmer for temporary storage of
data.

The Arithmetic Section is provided with an Over-
flow Alarm (OA) and an Underflow Alarm (UA).

Any computer operation which results in a number
larger than the capacity of the Accumulator may, at
the discretion of the programmer, set the Overflow
Alarm. Left-shifting operations may also set OA if a
ONE bit is shifted out the left-hand end of the Ae-
cumulator.

The Underflow Alarm operates in conjunction with
floating-point operations and is treated separately
under FLOATING-POINT ARITHMETIC IN-
STRUCTIONS.

SWITCHES AND INDICATORS

The 9400 System is provided with a Control Con-
sole eontaining various switches and indicators. By
means of the Console, the computer operator may
observe the status of the System at any time. He
may examine the contents of any core storage cell or
any addressable register. In addition, the operator
may enter instruction words or data words directly
from the Console to the System. Further, he may
execute programs manually, as well as start or stop
the computer.

Specific functions of the various switches and indi-
cators are discussed in detail in the following para-
graphs and in Section VI, CONTROL CONSOLE.

INFORMATION FLOW IN
THE CENTRAL PROCESSOR

Figure ITI-7 is a block diagram of the Sylvania
9400 Central Processing Unit. It shows all the major
pathways over which information is transmitted.

MAIN TRANSFER BUS

The ‘‘main artery’’ of the Central Processing
Unit is the Main Transfer Bus. The transfer of all

woiBp1q y>0)g ‘Uolag dpwWY Y ‘jun Buissadold [pyud) 9-|j| 34nbiy

SNg YHASNVEL NIVIN

D — _, y Y

,_\ v

: Yy o

9¢ T(S) 9¢ T(S) 9¢ 1 () -ND
(byd) YIALSOITY-4 (Oud) WILSHOTE-® [(0OV) ¥OILVIAWADIY

A (VO

ﬁ t Mo7d

[23A0

NOILODJS DILINHLIIV

0)i. 0.8}
NOILDJS TOY,LNOD

A

3-7

*SJ93s189a X9pur 4 JO TR}O} ®
apnour 0} papuedxs aq UBD WI}SASx

woibpiqg ¥oojg ‘suswdinbz paojay pup jupn Buissadosg jpyuay z-1 ainb1y

INALSXS
LOGino TTOSNOD
-LNJdNI
SNg YTASNVIL NIVIN
sod Ldd XEANI qv Dl uI Ol
|]
i
i
t JOLVT y
! -QWNDOV
AVHYVY
%V XHANI
HALSIOTY -0 VINL 5, THOD
NOLLDES
"TOUINOD HALSIOTE -9
NOLLOES XHOWAN
OLLINHIINY THOD

3-8

data words and instruction words within the Central
Processor takes place along it. The Main Transfer
Bus handles information in parallel, normally effect-
ing simultaneous transfer of complete 9400 words.

RETRIEVAL AND INTERPRETATION
OF AN INSTRUCTION WORD

Instruction words, like data words, are stored in
the Magnetic Core Storage Unit. In order for the
computer to process an instruction word, the word
must first be retrieved from memory and interrogated.
Instruction words are retrieved during the ‘‘instrue-
tion’’ portion of the basic machine eycle. The com-
puter must be provided with the address of the in-
struetion to be processed, in order to locate it in
Memory. It is the Program Counter which holds the
address of the instruction.

The contents of the Program Counter are placed
on the Main Transfer Bus. The Memory Address
Register (MA) receives a copy of the contents of PCT.
A memory read cycle, directed by the address con-
tained in MA, causes the word specified to be sent to
the Memory In-Out Register (MO).

Once the word has appeared in MO, it is placed
on the Main Transfer Bus (which has been cleared
since the previous transfer along it). The word,
which is to be interpreted as an instruction, is then
broken down into several pieces and distributed, as
follows:

1. The operation code (OP) portion goes to the
Instruction Register (IR). There, it is decoded in
the Decoder Register (D) and turned into the control
signals which activate the Central Processing Unit.

2. The first operand address (@) portion normally
goes to the Address Register (‘AR), where it remains
while the instruction is executed. In the case of
shifting and cyeling operations, however, where the
¢ portion has a count rather than address significance,
it is transferred into the T-Counter, which in turn
controls the counting operation.

3. The modifier (m) portion is transferred into the
X-Register, where it is used during the execution of
the instruction. Its significance varies with the
instruction of which it is a part.

4. The index (4) portion, or. tag, is transferred
into the G-Register. It is used either for indexing
operations, or, in the instructions involving a second
operand address, as part of the second address.

EXECUTION OF AN INSTRUCTION

Once an instruction has been broken down and
decoded, the computer enters the execution stage of
its instruetion ecycle. If the operation involves a
memory look-up, the contents of the Address Register
(AR) are duplicated in the Memory Address Register

(MA), causing the required word (operand) to ap-
pear in the Memory Output Register (MO). Then,
according to the type of instruction being executed,
the operand is transferred to the appropriate location,
either to another memory cell or to an addressable
register. In the case of the ADD instruction, for
example, the contents of MO are added to the already
existing contents of the Accumulator (ace), leaving
the sum in the Accumulator.

If the operation is one of shifting or cycling, the
contents of the Arithmetie Unit registers are shifted
appropriately by the number of places contained in
the T-Counter.

‘When address modification through indexing is in-
dicated, the contents of the index register specified by
G are added to the contents of AR to form the effec-
tive address. It is the effective address which then
appears in MA during retrieval of the data word.

CONSOLE

The Console, like the Memory and addressable
registers, communicates with the Central Processing
Unit through the Main Transfer Bus. Data or in-
structions inserted manually through the Console
are transferred along the Main Transfer Bus in the
same manner as data or instructions transferred
from one internal unit to another.

INPUT-OUTPUT

Information received from or transferred to the
various 9400 input-output devices is also transmitted
by the Main Transfer Bus. The Input-Output System
is discussed separately in Section IV.

INSTRUCTION TIMING AND THE
BASIC MACHINE CYCLE

. The Sylvania 9400 Central Processing Unit operates
in a synchromous fashion. The Arithmetic Section and
Control Section execute Central Processor Instrue-
tions at an established rate of speed, independent for
the most part of the magnitude or type of data word
being processed. All Central Processor instructions,
however, do not require the same amount of time
for completion. A relatively simple operation like
add (ADD), for example, is executed in 8 micro-
seconds, whereas a complex operation like divide
(DVD) requires 44 microseconds.

The Central Processing Unit operates under the con-
trol of a repetitive Basic Machine Cycle. The Basic
Cycle enables the Central Processor to carry out funda-
mental processes which are common to all or several
Central Processor instructions. During the running
of a program, the Basic Cycle is supplemented and
guided logically by the Central Processor instruction
currently being executed.

Table III-1 is a verbal description of the Basic
Cycle. A Basic Cycle consists of eight Timing Funec-

3-9

uoydisaq— ppy/oPA) dispg *[-{if 91901

soury
19p029p azIdIoUy “I19P0dd(01 YI FO SHUNIUOD IdFSUBLY, °C

Liowd 03 osind peei B pusg g

1935130y SSOIPPY LI0WPY 0} YV JO SIWAIUOD JIIFSueLy, T 8- L
AV 03 195130y Xopul poyloads Jo sjuajuod ppy °g
Isjunoy) weidoig 03 GNO PPV T L-dL
£10Waly 0jUT PIOA\ TOIIONIISUT LMY °Z
g1 pue ‘D ‘X ‘v
0} I9)stdoy IndnQ L1owdl Jo s31q djvridoxdde isysuel], T 9-I.L
V 03 9e3 X 1
PPE® ‘MOPI0A0 Ou FEM 310y} DUB PojUSWR[dWOd SBM g T °g
VO 398 '
‘MOPIdA0 We SeM 19y} puB pajusura[dwiod jou SEM g I T 1215139y ndinQ ALIOWAY 18 SOALLIE UOIJONIISUT IXIN oIy
£Liowaw 03 Isnd pear ® pweg g
uSs §31 981941 PUB Y JO judwd[durod sauo 1938130y
9} WIOF ‘MO[IdA0 OU SBM 319y} PuE pajudwd[dwod sem g jI 8S2IPPY AJOWdIY 03 I3juno) weidoid JO SJUGIUOD IdFsuei], [F-dL
V 03 903 X T snid g ppe pue ‘g Jo juowo[durod souo wioy
‘exT[un oxe sulis JT ‘Y 03 g PPV ‘ONI[e ou g B V 3O suSs JI £[uo suorjonajsuy INQ-ul I0F pas() e-dL
19981301-g 03 1938180y jndnQ LIoWRW woiy puelodo laysuei], Liowe ojur woyLImar st puesddQ 4L
1998139y jndinQ Liowop 9B seaure pueiddQ I-dIL

wouonUsUy AV ,, 0

suoyviad(219R) nsog
uoyv32Ldiogur snowaLd fiq pasno) suonviod(

UOYOURT
bupn

3-10

tions (TF), each of which is normally one miero-
second in length. During each Timing Function,
specific operations, related both to the Basie Cycle and
to the instruction being executed, may occur.

The left-hand column of Table III-1 describes the
Basic Cycle operations occurring during each Tim-
ing Function. The right-hand column describes the
instruction operations occurring during the corre-
sponding Timing Functions. The instruction illus-
trated is ADD.

As described under INFORMATION FLOW IN
THE CENTRAL PROCESSOR, before an instruc-
tion can be executed, it must be retrieved from Core
Memory. Instruction retrieval, or look-up, occurs dur-
ing Timing Functions 4 through 8, as follows:

1. TF-4 time is spent in initiating read-out of the
instruction word from Memory. The address of the
instruction word is determined by the contents of
the Program Counter (PCT).

2. At TF-5 time, the instruction word is in the
Memory Output Register.

3. During TF-6 time, the instruction is broken
down into its component parts. Because of the destruec-
tive nature of the read-out process, the instruction
word is rewritten into memory at this time.

4. At TF-7 time, the Program Counter is advanced
(for retrieving the next instruction), and address
modification, if required, is performed.

5. At TF-8 time, the operation code portion of the
instruction word is decoded. Preparation is also made
to read the operand from memory by sending the con-
tents of the Address Register (AR) to the Memory
Address Register (MA). ’

The five preceeding operations all pertain to the
retrieval and interrogation of the instruction which
is to be executed, and are all under the control of the
Basic Cycle, regardless of what the instruction itself
consists of. ‘

Beginning with the following TF-1 time, the com-
puter is under the joint control of the instruction just
retrieved and the Basic Cycle, as follows:

1. At TF-1 time, the operand has been read from
Memory. Note that as far as the ADD instruction is
concerned, nothing happens.

2. At TF-2 time, ADD logic comes into play. The
operand is transferred to the B-register. Also at this
time, the operand is rewritten into memory.

3. At TF-3 time, the ADD logic begins the addition
process by checking signs (a complete description of
the mechanization of ADD is given in the section
CENTRAL PROCESSOR INSTRUCTIONS under
the ADD instruction itself).

4. At TF-4 time, the addition process continues,
and .automatic look-up — under the control of the
Basic Cyecle — of the next instruction begins.

5. At the end of TF-5 time, the ADD instruction
is complete. The retrieval of the next instruction eon-
tinues. Thus, execution and look-up are overlapping
operations,

Instructions more complicated than ADD extend
into TF-6 and TF-7 times as well. Central Processor
instructions are always completed before TF-8 time.
The major operation during TF-8 is the exchange of
information between the Magnetic Core Memory and
the various in, out deviees, as discussed under INPUT-
OUTPUT SYSTEM.

Some Central Processor instructions are sufficiently
complex as to require a Basic Cycle of more than 8
microseconds. For such instructions, the Basie Cyele
is extended. Extension of the Basie Cycle is accom-
plished by extending, by increments of one micro-
second, one of the Timing Functions.

Figure I1I-8 shows a Basic Cycle in the form of
electrical ‘‘levels’’. Shown is an extended Basic
Cyecle, wherein Timing Function 5 — under control of
an instruction — has been increased by two microsec-
onds, lengthening the overall cycle to 11 microseconds.

Extension of the Basie Cyecle is caused by the in-
struction currently being executed. The MLY (mul-
tiply) instruction, for example, takes 43 microseconds
by extending Timing Function 5 by 35 microseconds.

START OF NEXT -

TF-1 I BASIC CYCLE ~ N[
TF-2 1
TF-3 1
TF-4 1

- EXTENDED TO —
TE-3 3 MICROSECS.
TF-8 J
TF-1 il 1

END OF PRECEDING
TF-8 14 BAsiC CYCLE

A U

Figure 1ll-8. Basic Cycle (Extended) Timing Chart

CENTRAL PROCESSOR INSTRUCTIONS

The following pages contain a detailed deseription
of all Central Processor Instructions. Each instrue-
tion is shown in its symbolic form, together with a
pictorial representation of its bit structure. In addi-
tion, a verbal description is provided, along with the
execution time (in microseconds) of the instruction.
Where an instruction is sufficiently complex and for
at least one instruction in each category, a detailed
explanation, together with an example, is provided.

3-11

SYMBOLIC NOTATION

The symbolic representation of each instruction is
given below. The 9400 Symbolic Assembly Program
(see under SYMBOLIC PROGRAMMING) accepts
instructions written in symbolic form. Central Proces-
sor Operation codes consist of three-letter mnemonics,
such as ADD, SUB, and MLY. The a, i, and m portions
of the instruction word are designated as the variable
field. In symbolic notation the ADD instruction is
written as ADD a, 1, m, where the three parts of the
variable field are separated by commas. When one or
more portions of the variable field have no significance
for a particular instruction, they are omitted from the
symbolic code.

PICTORIAL REPRESENTATION

The bit configuration of each Central Processor
instruction word is illustrated pictorially. In addition,
the operation code is given in octal as well as in binary.
Portions of the instruetion word which are not used
are shown as shaded areas.

ABBREVIATIONS AND CONVENTIONS
IN SYMBOLS

Together with the pictorial representation of each
instruction, a verbal description is given, in which
the following symbolic conventions are used :

cO

This symbol signifies the contents of that specified
in the parentheses. C(ace), for example, indicates the
contents of the Accumulator, including sign. C(a)
specifies the contents of the memory location or ad-
dressable register, including sign, indicated by the
contents of the a portion of the instruction word.

COmen

When less than a complete word or register is in-
tended, the parentheses are provided with subscripts in
the form of bit numbers, for example: C(acc)sz-36
means the contents of bits 22 through 36 of the Ac-
cumulator; C(ace), indicates the contents of the Ae-
eumulator sign bit alone.

1414

To distinguish decimal numbers from octal, the
subscript 8 is used whenever the quantity involved is
written in octal notation. The absence of a subseript,
unless otherwise specified, indicates that the number
is decimal. Because of the normally obvious char-
acteristics of a binary number, the subsecript 2 is not
used except for short binary numbers where ambiguity
might ocecur.

ADDRESSABLE REGISTERS

Table ITI-2 contains a list of all addressable registers
and Core Memory locations. For each register, both

3-12

its octal and symbolic address are given. With certain
exceptions, as deseribed in the individual instruction
concerned, the addresses given in Table III-2 may be
used in the @, m, and im portions of the Central Proces-
sor instruection words.

OVERFLOW CONTROL

The execution of many Central Processor instruc-
tions may result in overflow. Overflow occurs when a
Central Processor operation produces a number too
large for the Accumulator. Most arithmetic opera-
tions are capable of causing overflow, and all left-shift
operations may cause it. The programmer is provided
with a number of options which he may use in case of
overflow.

Overflow control is implemented through the modi-
fier portion (m) of the instruction word which may
produce the overflow. Table ITI-3 contains a list of
overflow and underflow options. (See FLOATING
POINT ARITHMETIC OPERATIONS.) The con-
figuration made up of the three low-order bits (19, 20,
21) of the m portion of the word determines the action
taken by the Central Processor in case overflow occurs.

If overflow occurs and the 21st bit of m is ZERO,
the OVERFLOW ALARM (OA) is SET and the Cen-
tral Processor halts. Thus, any of the following ADD
instructions causing overflow would also cause the
Central Processor to stop:

ADD q,4,0
ADDa,1,2
ADDa,1,4
ADDa, 1,6

The following ADD instructions, if overflow occurs,
would SET OA, but the Central Processor would not
stop:

ADDag,1,1
ADDa,1,5

If no action is desired when overflow occurs, the
following modifiers are used:
ADDag,1, 3
ADDa,. 7

The programmer also has the option of RESET-
TING the Overflow Alarm before the instruction is
executed. Modifiers of 0, 1, 2, or 3 will cause OA
to be RESET. Modifiers of 4, 5, 6, or 7 result in no
action with regards to OA before execution of the
instruction.

By proper choice of a modifier, the programmer
may make effective use of an overflow condition to
determine the course his program is to follow.

FIXED-POINT ARITHMETIC INSTRUCTIONS

The Sylvania 9400 Central Processing Unit per-
forms fixed-point arithmetic operations on binary

Code Address* Name
00000-77737 Memory Storage Liocations
irl 71741 Index register one
ir2 17742 Index register two
irs 77743 Index register three
ird 71744 Index register four
ace 77750 Accumulator
qrg 77751 Q-register
brg 77752 B-register
pet 77753 Program Counter
pes 77754 Program Counter Store
pio TTT55%* Instruction register of In-Out Processor
receiving the input order
aer 77756 Alarm Error Register
Wsr 77760 ‘Word Switch Register
pirl 77770 Instruction register of first
In-Out Processor
pir2 77771 Instruction register of second
In-Out Processor
pir3 77772 Instruction register of third
In-Out Processor
pird 77773 Instruction register of fourth
In-Out Processor
* kR

Non-existent register

*In octal.

**When used as the address of an input instruction, it tells the In-Out Processor to store
the contents of its buffer register into its instruction word register.

***Tf a non-existent register is addressed it will be interpreted as a location which contains

all <0’’’

Table IlI-2. Addressable Registers

[O4UO) MO[JBPUN PUD MO[HIAO “E-Il] °|qPL

1A S1d
aig KSd Rvd
V1d
TYIIM JN990 UBD V)
Nvd aqAd
aTda Vd Wdas
W14 TIS ans
nsd THS Kav
814 TAQ aav
:3d8 V() UR ISTEO UBD JBY) SUOTJONIISUL 97,
uot3oy ON a0y ON L
LIVH Pu® V(] 10 VO 198 uonpy oN 9
V(1 I0 V0 198 oy ON ¢
IVH PUB V(] 10 VO 19§ oty ON 4
U0ty ON V1 PuB VO I83[) 9
L/ IVH PU® V(] 10 YV 19§ VIl Pue yQ 183[) (4
V10 V0 188 Vi1 pue V(O I8[) I
JL7IVH PU® V(] 10 V(O 198 V(1 Pu® YO IB[) 0
moyiapus 40 moy.LaaQ UOUONLISUT 10100 W

£38ND)) woKINLISUT [T

Jo uounoaxg s40fog

3-14

fractions. Calculations are carried out on fixed-point
data words as if the binary point were placed at the
left-hand end of the magnitude portion of the word,
between the sign bit (8) and bit 1.

In his calculations, the programmer may employ
not only fractions, but both mixed numbers and in-
tegers as well, so long as he understands the internal
method of computation employed by the Central Proe-
essing Unit. For details, refer to Appendix A, NUM-
BERING SYSTEMS and to the individual instrue-
tion descriptions below.

Clear and Ioad Accumulator Instructions

The following instructions cause data from either
the Core Memory or from an addressable register to
be duplicated in the Accumulator. Although they
perform no arithmetic function in themselves, they
often immediately precede arithmetic operations.

CLA g,i CLEAR AND ADD

8 1 sec

CO® 000|000 ARTO00 000 000 000 OO0
1.0 a

1 8,7 9, 22 k1)

CLA replaces the contents of the Aceumulator,
C(ace), with the contents of a location specified by a.

The @ is indexable; C(a) remains unchanged.

Example: In order to place the contents of memory
location 449 (decimal) into the Accumulator the pro-
grammer may simply write CLA 449.

The assembly program translates CLA 449 into
computer language. A binary image and an octal
interpretation is shown below:

Binary Image

oP i m 2

0

001000 000 000000000000 000000111000001

*s\

10 [(0}0000|00701

oprP i m a

Octal Interpretation

*(The sign is not interpreted for instruction words)

Reconciliation :
103 =OP This is the octal code for CLA.
0g =1 No index register is specified, there-
fore this example is not indexed.
0000 = m This portion of the instruction word
is never used with CLA.
007013 =a This is the octal equivalent to the 449

decimal location of the word to be
placed in the Accumulator.

CAM gq,i CLEAR AND ADD MAGNITUDE

) 8 p sec
000 D00 00O 000 00Q

T ™

CAM replaces C(aeec) with the absolute value of
the contents of @, |C(a)|. The Accumulator is made
positive.

The @ is indexable; C(a) remains unchangea.

CLS a,i CLEAR AND SUBTRACT

8 psec
000 000 000 000 000

P 1 Y

CLS replaces C(acc) with the negative of C(a).

CO® 800]000
1 4|

The @ is indexable; C(a) remains unchanged.

CSM g,i CLEAR AND SUBTRACT MAGNITUDE

.8 psec
000 000 000 000 000
L

1 8,7 9 22 36

CSM replaces C(ace) with |C(a)|. The Accumu-
lator is made negative.

CO® 808|000
1 51

The @ is indexable; C(a) remains unchanged.

Add and Subtract Instructions

These instructions add to or subtract from the
contents of the Accumulator. The contents of @ is
not changed by these instructions. While primarily
intended for arithmetic operations with data, they
also can be used for instruction address modification
or even for modification of the instruction itself.

The C(brg) may be changed depending upon the
relative signs and magnitudes of both C(a) and
C(acc). The SUMMARY OF OPERATION CODES
(Appendix I) includes a description of the varia-
tions of C(brg).

If overflow occurs during addition or subtraction,
the most significant bit is lost. See OVERFLOW
CONTROL.

8 u sec
fiioo0o50 2597595 555 550

ll

il

Wm

19, 21,22 36

AI)D algebraically adds C(e) to C(ace). The sum
is developed in the Accumulator.

The a is indexable; C(a) remains unchanged.
Overflow is possible; control options are specified by
Mig9-21.

ADM g,i,m ADD MAGNITUDE

8 p. sec
o T~

ADM is identical to ADD except that ADM adds
tHe magnitude of C(a). In ADM, C(a) is always
interpreted as a positive number.

The a is indexable ; C(a) remains unchanged. Over-
flow is possible; control options are specified by
Mmi9-21.

SUB a,im SUBTRACT
8 1 see
C0® 000 OQO | OO0 000 000 OO0 OO0 000
e e :
1 6,7 9, 19 2,22 36

SUB algebraically subtracts C(a) from C (ace).
The execution of SUB is functionally identical to
ADD except for sign interpretation.

The @ is indexable; C(a) remains unchanged.
Overflow is possible; control options are specified by
Mig-21.

5BM g,i,m SUBTRACT MAGNITUDE

il Q00000 000 000 ch)gop(ljcs)gc
A :

Ooce eee
1 7

Add and Subtract Instructions Summary

The arithmetic rules for sign intepretation in the
add and subtract orders are illustrated in the follow-
ing table — assume a 1 decimal digit Accumulator.

C(aee) = .7 +.7 -7 +.7

C(a) =4.2 —.2 +.7 —.7
ADDa: C(a) + C(ace) =+.9 +.5 —.0 +.0
ADM a: C(a) 4 C(ace) = +.9 +4.9 —0 14
SUB a: C(ace) —C(a) = +9 —14 14
SBM a: C(ace) — C(a) = +5 —14 +.0

The ‘“1’s’’ to the left of the decimal point indicate
overflow. Note that when the result is equal to zero
the sign of the Accumulator is unchanged.

Multiply and Divide Instructions

These instructions each have two modes of opera-
tion. The Multiply and Round, MLR, and Divide,
DVD, are the regular mode. Multiply, MLY, and
Divide Long, DVL, enables the use of double-length
products and dividends.

Control options with overflow arising from the
divide operation is the same as for the add and sub-
tract instructions.

MLY g,i MULTIPLY

43 i sec
?ﬁﬁWMWW?mmmﬁ

MLY algebraically multiples C(a) by C(ace) and
forms a 72-bit product. After multiplication the
Accumulator contains the 36 high-order bits and the
Q-register contains the 36 low-order bits of the prod-
uct. Both acc, and qrg, hold the correct sign of
the product. C(brg) is replaced by C(a).

The a is indexable; C(a) remains unchanged.

MLR g,i MULTIPLY AND ROUND

43 p sec

1 67 9, 19, 2,22 3

SBM algebraically subtracts |C(a)| from C(ace).
SBM is identical to SUB except that in SBM, C(a)
is always interpreted as a positive number.

The a is indexable; C(a) remains unchanged. Over-
flow is possible; control options are specified by
Mi19-21.

3-16

" TR = >

1 8,7 14 22 36

MLR performs a MLY instruction and rounds
the product to 36 binary bits in the Accumulator.
C(qrg), is added to C(acc)3g in rounding the prod-
uct. C(brg) is replaced by C(a) if C(qrg), is ‘“1”’
and by zeros if C(qrg), is ‘0.

The @ in indexable; C(a) remains unchanged.

DVD ga,i,m DIVIDE
44 p. sec
000 OO0 | COO (iR Q00000 OO0 OO0 OO0 000
el :
1 8,7 9, 19, 21,22 36

DVD algebraically divides the 36-bit dividend,
C(ace), by the divisor, C(a). The Q-register is used
in the DVD to collect the quotient. After the opera-
tion, qrg contains the quotient with sign, and ace
contains the remainder and the sign of the dividend.

If the sign of C(@¢) is different from the sign of
C(ace), the quotient is negative. C(brg) is replaced
by C(a).

The a is indexable; C(a) remains unchanged. Over-
flow is possible; control options are specified by

Mmyg9-21.

In DVD, |C(ace)| must be less than [C(a)]| or
overflow will occur. If |C(acc)| = |C(a)| then the
resulting quotient would be a whole number. If this
conditions exists, division will not take place. C(ace)
and C(qrg) will not change except that C(qrg), will
be set equal to C(ace)s.

DVL g,i,m DIVIDE LONG

44 p. sec
°Y 8 il 1S
1 i

DVL is identical to DVD except that the dividend
is a 72-bit number. The 36 high-order bits of the
dividend are placed in acc and the 36 low-order bits
in qrg.

The @ is indexable; C(a) remains unchanged. Over-
flow is possible; control options are specified by

Mi9-21-

The quotient, including sign, is formed in the
Q-register. The Acecumulator contains the remainder
and the sign of the dividend.

For a detailed description of binary multiplica-
tion and division, see Appendix A, NUMBERING
SYSTEMS.

Shift and Normalize Instructions

The Shift and Normalize instructions complete the
Fixed-Point Arithmetic instruction group. They are
useful in scaling fixed-point numbers and in editing
output data.

It also should be noted that shifting left or right is
equivalent to multiplying or dividing by powers of
two. Thus, shifting left 5 places is equivalent to
multiplying by 32, (25). Similarly, shifting to the
right 3 places is equivalent to dividing by 8, (273).

SHR a,i SHIFT RIGHT
i bt i

g

' &7 9 k] 36

8-19 . sec*

Cee O80[000
3 2

SHR shifts C(ace) to the right the number of places
specified by ag9-g¢. The sign positiown. bit is not
shifted. Accumulator bit positions vacated to the left
are replaced by ‘‘0’s”’, and bits shifted out at the
right are discatrded.

The @ is indexable.

SRL a,i SHIFT RIGHT LONG
8-37 p sec*
il

Ay

1 8,7 9 30 36

00® 000|000
3 31| i

SRL shifts the 72 bits stored in aecc and qrg to
the right the number of places specified by a@go-z6-
The sign position bits are not shifted. Acegg is shifted
into qrgy. Accumulator bit positions vacated at the
left are replaced with 0’s and Q-register bit positions
shifted out at the right are discarded.

The @ is indexable.

SHL a,i,m SHIFT LEFT
= =
5o NS S ™ ™

SHL shifts C(ace) to the left the number of places
specified by only bits 30-36 of a. The sign position
bit is not shifted. If a significant bit is shifted left
out of acey, the bit is disecarded and overflow occurs.
Accumulator bit positions vacated at the right are
replaced by ‘‘0’s’’.

The @ is indexable. Overflow is possible; optional
control is specified by m;ig-21.

*TIMING FOR SHIFT OPERATIONS -

Shift left: 8 usec if a <9; if a > 9, 4+-g— usec, where a, if
odd, is made even downward to next lowest value.

Shift right: 8 psec if a <14; if a > 14, 14+ g usec, where g, if
odd, is made even upward to the next highest value.

Normalize: 9 -+ %psec‘, where n is the number of shifts re-
quired to normalize the word in the ace; if odd, n is made
even downward to next lowest value.

Shift left long: same as shift left.

Shift right long: same as shift right,

3-17

SLL g,i,m SHIFT LEFT LONG

il

1% 2 K] ¥

8-40 . sec*

SLL shifts the 72 bits stored in ace and qrg to the
left the number of places specified by agg-g¢. The
sign position bits are not shifted. Qrg, is shifted into
acegg. If a ‘1’ bit is shifted left out of ace, the bit
is discarded and overflow occurs. Q-register bit posi-
tions vacated at the right are replaced by ‘‘0’s’’.

The a is indexable. Overflow is possible; control
options are specified by myg9-21.

NRM g,i NORMALIZE

TR T 000 000 003 fgo”osgg
&7 ™ ™ "> >

NRM shifts C(ace);-z3¢ left until the most signifi-
cant bit is in aec;. The sign position bit is not shifted.
The number of places shifted is ‘“n’’. C(a), is re-
placed by n X 2736, causing the number of shifts per-
formed to be stored in the least significant bit position
of C(e). If C(acc) is zero, n = 36.

The a is indexable.

The Normalize instruction is useful for computing
fixed-point scaling factors and editing output data,
but does not perform the floating-point normalize
operation. Floating-point normalized data must have
the characteristic and number assembled in one word
and also have a scaling constant added to the charaec-
teristie.

FLOATING POINT ARITHMETIC OPERATIONS

The 9400 Computer performs floating-point arith-
metic operations on either positive or negative whole
numbers or fractionse

The floating-point technique extends the effective
single-word computational range of arithmetic opera-
tions. The fixed-point range of approximately —1011
to +1011 is extended to the floating-point range of
approximately —1077 to +1077. A number precision
of better than 1 in 108 is still retained ; certain opera-
tions give a number precision of better than 1 in 1016,

All floating-point computations are performed on
floating-point-normalized numbers. The floating-point-
normalize technique is essentially that of representing

*See TIMING FOR SHIFT OPERATIONS, Page 3-17.

3-18

data in a scaled form, with a scaling factor and frac-
tion, and assembling it in the 9400 floating-point
format.

WORD FORMAT

A floating-point data word consists of the sign of
the number, an exponent as part of the characteristie,
and a fractional representation of the number itself.
Floating-point operations start and end with the data
in this form. Data is usually converted to and from
this format by means of subroutines -during input
and output operations. Floating-point operations
performed upon data in other formats will usually
give incorrect answers.

FLOATING POINT DATA WORD

Sign of Word
s rC (N)10 = 1 when N is normalized
11 5]
Lo ou - 36
Characteristic Number
NUMBER

The number N, a numerical fraction, is 27 bits
long and is located in bit positions 10 through 36
of the data word. The binary point of the number
is located to the left of bit position 10. Thus, the
number is a fraction. An automatic floating-point
normalize operation incorporated in each floating-
point instruction shifts the first significant bit into
bit position 10 immediately to the right of the binary
point. Therefore, as a normalized fraction, the num-
ber must be at least 14 and less than 1. The sign
of the number is represented by the sign bit of the
data word.

Data is represented by the expression N-2* where
N is the numerical fraction, 2 is the base, and b is the
exponent.

CHARACTERISTIC

The nine bits in positions 1 through 9 of the data
word are used for the characteristic of the number.
In order to represent both whole and fractional num-
bers simply, an artificial scaling constant is incor-
porated in the characteristic K. The binary num-
ber 28 (which is 100 000 000, or 400g or 2564,) is
added to the binary exponent b so that the charae-
teristic K = b + 28, Therefore, the actual range
of the binary exponent b is from —28 to +28 even
though the characteristic K is interpreted as a posi-
tive number ranging from 000 000 000 to 111 111 111.

For example, the exponents +5 and —7 are converted
to floating-point characteristics in the following way :

Decimal Binary Octal
Exponent b +005 4000000101 4005
Secaling constant +100 000 000 +400
Characteristic +100000 101 4405
Exponent b —007 —000000111 —007
Scaling constant -+100 000 000 +400
Characteristic +011111001 4371

The range of K, in octal, is from 000g to 7775 (with
a range of b from —400g to +377g). K less than 000
causes underflow; K greater than 7775 causes over-
flow.

The artificial scaling constant 4005 is always pres-
ent in floating-point numbers but is not manipulated
during arithmetic computations. For example, when
multiplying, the numerical fractions are multiplied
and their exponents are added, but the artificial base
remains the same. If the multiplier and multiplicand
characteristics K, (422g5) and Kg(403g) are added,
the final characteristic of the product is 4255, not
10254.

During floating-point addition, the characteristics
of augend and addend are made equal before the
numerical fractions are added.

A special case is when N = 0. By definition K =
b + 400g. When N = 0, b = 0 and K would normally
become 400g, the number of the artificial scaling
constant. However, in this special case, K is made
equal to ‘‘0’’. This arrangement makes ‘0’ the
smallest floating-point number in the machine and
allows the Compare and Transfer On Zero instrue-
tions to be used with floating-point numbers.

DECIMAL TO FLOATING-POINT CONVERSION

Floating-point instructions operate on numbers in
the floating-point normalized format only. Conver-
sion between decimal and floating-point normalized
format is usually performed by means of subroutines
during input or output operations.

The conversion from decimal to floating-point nor-
malized can be described as occurring in four steps:

Convert the decimal data to binary.

Determine the exponent.

Add the scaling constant to the exponent.

Assemble in the floating-point normalized format.

The following example illustrates the simplicity of
the conversion operation.

Given the decimal number 497.6875,¢ convert the
number to binary (also written as octal for sim-

plicity).
497.0000,, = 761.00g = 111 110 001.000 000,
687519 = 54y .101 100,
497.6875,o = 761.544 = 111 110 001.101 100,

Il

Determined the exponent by shifting the eonverted
number so that it is a fraction and count the number
of places shifted — 3 for the octal number or 9 for
the binary number. Remember that 83 = 29, The 9
place shift results in an exponent of 9,4 or 1lg.

Add the scaling factor, 400g, to the exponent.

Exponent 11
Scaling factor 400
Characteristic 4114

Assemble in floating-point normalized format.

Characteristic 411.00000¢
Converted number 761544
Normalized number 411.761545

OVERFLOW AND UNDERFLOW

An overflow alarm, OA, is set whenever the charac-
teristic of the resulting operand is more than 777g.
That is, the OA is set if a characteristic tries to go
more positive than 111 111 111, after compensation
for the artificial base in both characteristics.

An underflow alarm, UA, which is similar to the
overflow alarm, OA, is set whenever the characteristic
of the resulting operand is less than 000g. For ex-
ample, in division, the characteristic of the divisor
is subtracted from the characteristic of the dividend
and the UA is set if the difference is smaller than
000 000 000, after compensation for the artificial base
in both characteristics.

The explanation of optional program control after
overflow or underflow, and a table of control numbers
and functions, is given under OVERFLOW CON-
TROL.

FLOATING-POINT CONVENTIONS
AND ABBREVIATIONS

The conventions and abbreviations explained ear-
lier for fixed-point operations are expanded here to
encompass floating-point operations. The abbrevia-
tions, N, for number, and K, for characteristic, were
deseribed above.

An additional abbreviation ‘‘F’’ preceding an ex-
pression is used to designate floating-point normalized
data. When used to convey the meaning, ‘‘the float-
ing-point-normalized content of’’, it replaces the
letter ‘‘C’’ which simply designates ‘‘the contents
of’’ without qualification and is ordinarily applied
to non-normalized numbers. Therefore, F(a) is iden-
tical to C(a) only if C(e) is a floating-point normal-
ized number. Similarly, FK and FN refer to a
characteristic and number of normalized floating-
point data.

The letters K and N may be prefixed to a location
designation to indicate reference to only the charac-
teristic or number portion of the location. The bit
position suffixes refer to the entire location.

For example, F(Nace),g refers to the floating-
point contents of the number portion of the Accumu-
lator, specifically, bit position 18 of the Aceumulator.

All floating-point instructions except the divide
form 72-bit normalized floating-point results using
both the Accumulator and the Q-register. Each
register contains a sign, a number and the associated
characteristic. The Accumulator contains the nor-
malized 27 high-order bits of the number with ap-
propriate characteristic, previously defined as the
exponent of the normalized number plus 400g.

The low-order word or portion of a 72-bit normal-
ized floating-point result in the Q-register is normal-
ized with respect to the high-order word, but not
necessarily as an entity. That is C(Nqrg);, and
following bits may be 0. The low-order characteristic
is 33g (or 2Vy9) less than the high-order character-
istie, C(Kqrg) = C(Kace) —383g.

Example: Assume an answer in ace and qrg:

Kacc Nacc Kqrg Nqrg
[o] 416222 333 444] | o] 363] 000 777 666]
] S *

number g} 416 [222 333 444 000 777 666
s K N

*Same as for ace.

Note that Kqrg = Kace —33g, 416g —335 =3634

Thus, in the example, the number Nqrg is not nor-
malized as an entity, but is eorrectly normalized with
respect to the Accumulator; Nqrg being 27 places
(33g) to the right of Nacec.

FLOATING-POINT INSTRUCTIONS

There are six floating-point arithmetic instruetions,
each including an automatic normalize operation after
the arithmetic operation. The following descriptions

3-20

include notes on results of operations, especially after
alarms. These notes form the basis of error detection
and correction.

FLA g,i,m FLOATING POINT ADD 12.46 1 sec
€0® 685|000
S5 6| i

i 000|000 000 00O 00O 00O
a |

it
FLA algebraiecally ﬂoatinlg-t;dds F(a) to F(acca;
and forms the 72-bit floating-point sum.

1 8,7 9,

After the operation acc econtains the normalized
high-order bits of the sum; qrg contains the low-order
bits of the sum. The acc and qrg also contain the
respective high-order and low-order characteristics.

The @ is indexable; C(a)remains unchanged. Over-
flow or underflow is possible; optional control is
specified by mjg-g;. Original C(qrg) and C(brg)
are discarded.

Some conditions which may result from FLA,
FAM, FLS, and FSM to alter the normal contents of
ace, qrg, or brg are as follows:

No alarm, but C(Nqrg) = 0
C(arg) = 0

Overflow, when C(Kace) >T774
C(Kace) = 777y instead of 10004

C(Kqrg) = 7455, (10005 — 33g) which assumes
Kace = 10004

Underflow, when C(Naee)yo = 0

C(Kace) = C(Kqrg) =0

C(Nace), C(Nqrg) = the un-normalized number,
consistent with C(Kaee) = 0. This oceurs when
normalization fails.

Underflow, when C(Nace);o = 1 and C(Kace)
<333.
C(Kqrg) = 0, but should be <0.

In all cases C(brg) = 0.

FAM g,i,m FLOATING POINT

ADD MAGNITUDE 12-46 p. sec

®Ge 088[000 !'ii"ii”ii'“l'ii"ii"ii””ii!'ii!iii“ 000 000 000 000 000
5 7 | i (I eeei a

1 6,7 9 19 21,22 k[

FAM algebraically floating-adds F(a) to F(ace).
It is identical to FLA except that FAM adds the
magnitude of F(a). In FAM, F(a) is always in-
terpreted as a positive number.

The @ is indexable; C(a) remaining unchanged.
Overflow or underflow is possible; optional control
is specified by myg9-21. Original C(qrg) and C(brg)
are discarded.

FLS g,i,m FLOATING POINT SUBTRACT

12-46 p. sec

OOO 000 000 000 000 000
a

€85 000000 T
6 0

i -

FLS algebraically floating-subtracts F(¢) from
F(acc). The execution of FLS is functionally identi-
cal to FLA except for sign interpretation.

1 67 9,

The @ is indexable; C(a) remains unchanged. Over-
flow or underflow is possible; optional control is
spécified by mqg-21. Original C(qrg) and C(brg)
are discarded.

FSM g,i,m FLOATING POINT
SUBTRACT MAGNITUDE
000 000

12-46 y sec
k|

OOO Q00 OO0 000 OO0 000
1 8,7 9,

a

19, 21,22 36

FSM algebraically floating-subtracts F(a) from
‘F(ace). It is identical to FLS except that FSM sub-
tracts the magnitude F(a).

The @ is indexable; C(a) remains unchanged.
Overflow or underflow is possible; option control is
specified by m9-27. Original C(qrg) and C(brg) are
discarded.

FLM g,i,m FLOATING POINT MULTIPLY

37 . sec
i -

’ 000000 00O OO0 000 OO0
FLM floating-multiplies F(a) by F(ace).

080 @80[000
2 6|

1 67 9,

ll

-]

After the operation, acc contains the normalized
high-order bits of the product and qrg cpntains the
low-order bits.

The ¢ is indexable; C(a) remains unchanged. Over-
flow or underflow is possible; optional control is
specified by myg-21. Original C(qrg) and C(brg)
are discarded.

Certain conditions resulting from FLM may alter
the normal contents of ace and qrg as follows:

No alarm but C(Nqrg) =0

C(qrg) =0

No alarm when C(ace) or C(a) =0

C(ace) =0; C(qrg) =0

Overflow when C(Xace) + C(Ka) >T777g

C(aee) = 0; C(qrg) = original C(ace)

Underflow when C(Nace)y9 =0

C(Kace) = 0; C(Nace) is correct but unnormalized

C(qrg) = 0 or C(Kqrg) = 0 but should be <0,
C(Nqrg) is correct but unnormalized

Underflow when C(Nace);o = 1, and C(Kace)
<33g
C(Kqrg) = 0 incorrect because when C(Kacc)
<33g, then C(Kace) —33g <0
Underflow when C(Kaee) + C(Ke) <28
C(ace) = 0, C(qrg) = original C(aee)
In all cases C(brg) = C(a).

Note: FLM causes underflow if either overand is zero.

FLD a,im FLOATING POINT DIVIDE

OQ0 000|000
2 71

m 40 p. sec
e ;

ooo 000 000 000 00O 000
a
FLD floating-divides F(ace) by F(a).
After the operation qrg contains the normalized
quotient and characteristic and ace the remainder.

1 67 9

The @ is indexable; C(a) remains unchanged.
Overflow or underflow is possible; optional control
is specified by myg-21. Original C(qrg) and C(brg)
are discarded.

The conditions resulting from FLD which alter
the normal contents of ace, qrg, and brg are as fol-
lows:

Overflow, when C(a)1o = 0

C(Kaece) = C(Kace) —C(Ke), C(Nace) is un-
changed

F(qrg) = original F(ace)

C(brg)s =C(a)s ; C(brg),-z¢ equals the comple-
ment of C(a)q-3e

Overflow when C(Kace) — C(Ka) > T77g

The same as above except C(Nbrg);o = 0, after
complementing

Overflow when C(C(Kacc) — C(Ka) = 777, and
C(Naee) = C(Na)

C(ace) = remainder

C(qrg)s = sign of quotient

C(Kqrg) = T777g instead of 10004
number of quotient

F(brg) = F(a)

Underflow when C(Kaee) — C(Ka) <0

The same as overflow when C(a) o = 0 except
C(Nbrg)io = 0, after complementing

Underflow when C(Kace) =33g, or wnen C(Kacc)
= 0, and C(Naee) = C(Na)

C(Kace) = 0, it should be < 0

C(Nace) = Remainder

F(brg) =F(a)

In all cases C(brg) = C(a).

C(Nqrg) =

Note: FLD causes underflow if the dividend is zero
and the divisor nonzero.

3-21

DATA TRANSFER INSTRUCTIONS

The following data transfer instruetions transfer
single data words between registers or memory loca-
tions. They are logically similar to the Clear-Aceum-
ulator instruections,

STR @, i STORE

8 p sec
el i

STR replaces C(a) with C(acc). C(aec) remains
unchanged. The contents of the Accumulator are
transmitted to an addressable register or to a memory
location,

The @ is indexable.

LOD g,i,m LOAD

9 u see

@0® O08[O00[000 000 00O COO[000 000 OO0 OO0 000
5 1 i m a

1 6,7 9,10 2,22 k13

LOD replaces C(m) with C(a), where m refers
exclusively to an addressable register. However, a
may refer to an addressable register or a memory loca-
tion. C(brg) is replaced by C(a).

The a is indexable.

Example:
Replace C(qrg) with C(400).

INSTRUCTION
LOD a,i,m

WRITE

LOD 400, 0, gqrg
The Assembly Program in-
terprets qrg and inserts the
numerical address 7751g.

Actually, the address of qrg
is 77751, but the high-order
7 is inserted automatically
during execution when an
addressable register is spee-

MOV g,i,m MOVE

ified by m.
13 p. sec
€08 080000 000 000 OO0 000|000 OO0 GO0 00O OO0
5 2 I-m a
1 8,7 21,22 36

The MOV instruction moves C(a) to the location
specified by #m. This is a two-address instruction
in which @ specifies one 15-bit address, and ¢ and m
together specify the second 15-bit address. Either a
or i-m may be an addressable register. The MOV in-
struetion eannot be indexed. C(brg) is replaced by
C(a).

3-22

If a REPEAT instruction precedes the MOVE in-
struction, a special sequence is followed, as explained
under the REPEAT instruction.

PROGRAM CONTROL INSTRUCTIONS

The Program Control instructions enable the pro-
grammer to alter the sequence of events within his
program. Loops and subroutines, for example, are
usually initiated and terminated by Program Control
instructions.

The SENSE instructions, which are included in this
group, are frequently used in controlling and moni-
toring simultaneous In-Out Processor and Central
Processor operations. Table IV-6 contains a list of
Sensable Controls, all of which may be ‘‘addressed’’
by the SENSE instructions.

All Program Control instructions except COM-
PARE are useable in the Trapping Mode (see under
TRAPPING MODE).

TRU g,i,m UNCONDITIONAL TRANSFER

8 p see

000 000 00O OO0 000
a

@00 000|000
0 i

1 6,7 9

i

" TRU unconditionally transfers the program control
to the instruction in memory location a. Bits mgg-21
of this instruction are used to control the trapping
mode.

20,21,22 36

The @ is indexable.
TRZ g,i TRANSFER ON ZERO

ACCUMULATOR
8 u sec
@00 608|000 [T 000 000 000 000 GO0
4 5 i i ﬂ a
1 6,7 9 22 . 36

TRZ transfers the program control to the instruec-
tion in memory location a if C(ace);-36 =0. If
C(ace) -3¢ =0, the program continues in sequence.

The g is indexable.
TRP g,i TRANSFER ON POSITIVE

ACCUMULATOR

8 . sec

1 6,7 9 22 36

TRP transfers the program control to the instruec-
tion memory location g if the sign of the Accumulator
is positive, C(ace), = 0. Otherwise, the program con-
tinues in sequence. Only the sign bit of the Accumu-
lator is interpreted.

The a is indexable.

TRN g,i TRANSFER ON NEGATIVE

fMTO00 000 000 OO%P'OZ?
8 ™~ ™

TRN transfers the program control to the instrue-
tion in memory location a if the sign of the Aceumula-
tor is negative, C(ace), = 1. Otherwise, the program
continues in sequence. Only the sign bit of the
Accumulator is interpreted.

It should be noted that TRZ, TRP, and TRN are
not mutually exclusive. Combinations of TRZ and
TRP or TRZ and TRN may be used to test the sign
of zero.

TRL g,i,m LOAD PCS AND TRANSFER
8 1 sec
020 o?o 000000 000 000 BOG[GO0 OO0 GO0 OO0 000
] m a
6,7 9,10 2,22 kL)

TRL loads the Program Counter Store (PCS) with
the location of this instruction incremented by one.
Program control is transferred to the instruction in
memory location @, not indexable.

The TRL instruction stores the location of the next
instruction in sequence, thereby enabling the program
to return to the original sequence after completing the
loop or subroutine that starts at a.

TRL also loads m into the Index Register specified
by 4, irt. The ¢ and m portions are usually used to
implement the indexing to be performed by the loop
or subroutine,

TRS TRANSFER TO PCS
8 u sec

s

@00 O8O0}
4

3

l

mu

TRS transfers the program control to the memory
location stored in the Program Counter Store (PCS).

This instruction is usually used in conjunection with
TRL, which stores an address in PCS.

SENSE INSTRUCTIONS

Sense Instructions provide a program with the
ability to reference the state of various accessible in-

ternal switches (Sense Switches) which indicate spe-
cific conditions pertinent to the processing function
of the program. In addition to the sensing function,
Sense Instructions can be used to set or reset specific
Sense Switches. The m portion of a Sense Instruction
will contain a code which indicates the specific Sense
Switch to be sensed (see Table IV-6).

SEN g,i,m SENSE
8 u sec
000 @08]000[000 000 000 000|000 000 OO0 OO0 OO0
0 51 m a
1 6,7 9,10 2,22 36

SEN transfers the program control to the instrue-
tion in memory location a if the switch specified by m
is SET. Otherwise, the program continues in se-
quence,

That is, if the switch specified by m is SET, trans-
fer to memory location a. If the switch is RESET,
the program continues in sequence. The Sense Switch
remains unchanged.

The a is indexable.

SNS a,i,m SENSE AND SET
8 1 sec
080 ogo o?o 000 ooomooo 000[000 000 ooao 000 000
8,7 9,10 2,22 3

If the switch specified by m, is RESET, it is SET
by SNS, and the program control is transferred to the
instruction in location a. If the switch is SET, the
program continues in sequence.

The ¢ is indexable.

SNR g,i,m SENSE AND RESET
8 p see
Q00 9980000000 000 000 000|000 000 00O 000 000
0 7 i m a
1 8,7 9,10 2,22 3%

If the switch specified by m, is SET, it is RESET
by SNR, and the program control is transferred to
memory location a. If the switch is originally RESET,
the sequence is continued in order.

The a is indexable.

3-23

TRC a,i COMPARE

LXS a,im LOAD INDICES

e

il

i
1t

lii

|

il

&
N
©

TRC algebraically compares C(ace) with C(a). One
of three possible program control funections occur.

If C(acc) < C(a) the program executes the first
instruetion after TRC.

If C(ace) > C(a) the program skips the first in-
struction and executes the second instruction after the
TRC.

If C(ace) = C(a) the program skips the first two
instructions and executes the third instruction after
the TRC.

C(qrg) is replaced by C(ace), and C(brg) is re-
placed by a. C(ace) and C(a) remain unchanged.

In the execution of this instruction, minus zero is
considered equal to plus zero, —0 = +0.

The a i_s indexable.

HLT HALT
8 . see

il

i

il
il
o

HLT suspends the Central Processor program im-
mediately and stops the entire system upon completion
of any input-output operations in progress when HLT
is decoded. If the operator desires to restart opera-
tions with the next instruction in sequence, he need
only actuate the START AT PC switch.

If HLT iz decoded while an In-Out Processor is in
the Order-Sequence mode, the entire order sequence
is completed before the computer stops. All input-
output operations resulting from a previous single in-
struction are also continued to termination although
the Central Processor halts.

INDEX CONTROL INSTRUCTIONS

The two Index Control instruetions, Load Indices and
Transfer on Index, are multifunction instructions for
implementing indexing techniques. These instructions
each deal simultaneously with two Index Registers.

In controlling program loops, one Index Register
controls the number of times the program sequences
through the loop while the second Index Register in-
crements the addresses of data being processed.

3-24

11 p see 8 1. see

000 000 000 GO0 GO0 €08 Cee|000]000 000 000 OOOJO00 00O OO0 00O 000
a 5 3 i m a

22 3 [67 9,10 2,22 3%

LXS always loads two Index Registers. The contents
of the Index Register specified by ¢, C(ir7), are re-
placed by a. The contents of the next Index Register in
sequence, C(ir(i+ 1)), are replaced by m. LXS is not
indexable.

INDEX REGISTER NUMBERING

The LXS instruction is effective for any value of 4,
so long as ¢ < n, where n is the number of Index Reg-
isters in the 9400 System. If 4 =n, theni+ 1 =1, by
design. However, if ¢ = 0 or i > n, the ¢ will refer to
a non-existent Index Register, the instruection will not
be executed, and the program will proceed to the next
instruction in sequence.

If only one Index Register is to be loaded, the regu-
lar LOD instruetion should be used.

TRX g@,i,m TRANSFER ON INDEX

11 pse

€00 088]000[000 000 GO0 COO[O00 OO0 OO0 OO0 OO0
4 3| m a

1 6,7 9,10 2,22 36

TRX uses two Index Registers and transfers pro-
gram control conditionally. The program control con-
tinues in sequence if either of two tests are satisfied.

If C(ir(+ 1)) = 0 continues in sequence
If C(ir(¢+ + 1)) == 0 subtract one, then if
C(ir(s + 1)) = 0 continue in sequence or if

C(ir(s + 1)) & 0 add m to C(ir(¢) and the next
instruction is taken from a.

These tests are made automatically (both before
and after subtracting 1 from C(ir(¢ 4+ 1)) in order to
simplify counting and insure that the Index Register
will not inadvertently pass zero and fail to terminate
the loop after it is executed the proper number of
times. A flow diagram of the TRX instruection is
shown in Figure III-9.

The TRX instruction is effective for the same
values of ¢ specified in the instruction in the same
manner as those defined under LXS ‘‘Index Register
Numbering’’.

The execution of TRX causes C(brg) to be replaced
by a. If a nonexistent index register is addressed by
the ¢ field, the TRX instruction behaves like a TRU
to a.

Geenerally, one register, ir(¢), modifies the addresses
of data being processed during each loop of a series
of loops. A second register, ir(¢ + 1), counts the num-
ber of times a program loop is performed and tests
for completion of the desired number of loops.

The 4 bits of the TRX instruction designate the
address-modifying register. The second Index Regis-
ter is, by design, the next higher numbered index,
ir(¢ + 1). Execution of conditional functions of TRX
depend on C(ir(s + 1)).

At the start of the series of loops, LXS can be used
to load the number of loops into ir(¢ + 1) and the
address modifier for the first loop in ir (7).

Is

IRi+ 1. 0 Yes

DECREASE
mitl pyq
s 4
. Yes
+1_

IR! =0 ? PC+1
INCREASE
R’ by M

Figure 111-9. TRX Instruction, Flow Diagram

ADDRESS MODIFICATION INSTRUCTIONS

The Address Modification instructions provide the
programmer with single instruetions to modify the
address portion of words. The Accumulator is used
to perform the arithmetic operation, and the results
may be equally applicable to memory locations, Index
Registers, or other addressable registers.

The Add Modifier, ADB, and Subtract Modifier,
SBB, instructions automatically modify both the
specified address and the specified Index Register.

RPA g,i REPLACE ADDRESS

Al

1 6,7 9 22

11 p see

000 OO0 OO0 OO0 00O
a

000 600|000

RPA replaces the address portion of location a
with the address portion of the Accumulator:
C(a)22-36 is replaced by C(ace)zs-zq. The re-
mainder of location @, C(a) s1-21 is unchanged. The
Accumulator is unchanged, but C(brg) is replaced by
C(ace) in the process.

The a is indexable.

ADB g,im ADD MODIFIER

13 p sec

080 @00[000[300 000 00O COT[000 000 OO0 OO0 OO0
24| ; m a

1 6,7 9,10 21 22 36

ADB forms in the Accumulator the algebraic sum
of C(a) plus m. The sum in ace is then used to replace
both the original C(e¢) and C(iri). The low order
bits of C(ace) replace C(iri).

The original C(acc) replaces C(qrg). C(brg) is
dependent upon the relative signs and magnitude of
C(e) and C(ace) as indicated in Appendix I, SUM-
MARY OF OPERATIONS.

ADB is not indexable. Overflow is ignored.
SBB g,i,m SUBTRACT MODIFIER

13 p sec

080 @08[000[000 000 OO0 COOJO00 0OC OO0 COO OO0
2 5 i m a

1 8,7 9,10 21 22 36

SBB forms in acc the algebraic difference of C(a)
minus m. The difference in acc replaces both the
original C(a) and C(ir{). The low order bits of
C(ace) replace C(irz).

The original C(ace) replaces C(qrg); C(brg)
depends on the realtive signs and magnitudes of
C(a) and C(ace) as indicated in Appendix I, SUM-
MARY OF OPERATIONS.

SBB is not indexable. Overflow is ignored.

WORD MODIFICATION INSTRUCTIONS

The word modification instructions complete the set
of operations by which the programmer may modify
word structures. Their main use is in data handling
and editing, though they have important specialized
applications in many areas.

3-25

The cycle operations permit the sequential rear-
rangement of data without the potential bit loss
inherent in the shift operations. The mask and logical
operations modify word structures bit-by-bit without
the bit-carry of arithmetic operations. In addition,
the logical operations provide for Boolean manipula-
tion of data.

g,i CYCLE SHORT

L

1 6,7 9 kY 36

8-19 u sec*

The Cycle Short instruction forms a closed ring,
consisting of the 36 bits of the Accumulator, and
cycles the bits left the number of places specified by
a. Bits are cycled to the left out of ace; and enter
acegg, So that no information is lost as in an ordinary
shift operation. C(ace); remains unaltered.

The @ is indexable.

CYL g,i CYCLE LONG 8.38 . sec®
??ﬁmwmwmmWMﬁ

The Cycle Long instruction is similar to CYS ex-
cept that a 74-bit ring is formed by the complete
Accumulator and Q-Register. The 36 bits plus sign
in each register, are cycled left the number of places
specified by a.

The a is indexable.

[J—"{F—ae 1

s ,1 35, 36

l—L f——acc

J1 35, 36

As illustrated above, bits pass from:

qrg; to qrgs; qrgs to acege ; acey to acey; accs to qrgse.

MSK g,i REPLACE THROUGH MASK

11 p see
TG50 000 000 000 000

™ ™

1 &7 9

22

34

Only those bits of C(a) corresponding to the “1”
bits in qrg, the mask, are replaced by C(ace). The
C(ace), C(qrg), and the remainder of C(a) remain
unchanged. C(brg) is replaced by C(aecc).

The a is indexable.
Example:

Replace ¢ and m, bits 7-21, of location ¢ with bits
7-21 of the Accumulator. The mask is in memory
location 50.

C(50) =0000000 111---

8,1 6,7

111 000----- 000

21, 22 36
Then

LOD 50, 0, 7751 This places C(50), into C(arg).
The ‘“1’’’ in C(qrg)q-21 comprise
the effective mask. The correspond-
ing bits of C(a)7-21 are replaced
by C(ace)q-z; when the MSK in-
struction is executed.

This replaces C(a)7-2; With
C(ace)7-21. In the event that C(a)
contained a MOV instruction, this
sequence would modify the second
address. MSK could also be used
to modify the first address, but the
RPA is a more efficient and special-
ized instruction.

LGA g,i LOGICAL ADD

MSK a

8 u sec

000 Cee OOO il

o I llIEnn

1 6,7 9 22 36

000 000 OO0 000 OO0
a

This operation forms in acc the logical sum of
C(a) and C(ace), including the sign. The logical
sum is formed on a bit-by-bit basis using correspond-
ing bits of the C(ace) and C(a).

This logical sum is called an inclusive ‘‘OR’’ func-
tion because the result is a ‘‘1”’ in C(ace) if the
corresponding bit positions of either the original
C(ace) OR C(a) contains a ‘‘1”’.

The @ is indexable. C(e) remains unchanged.

Example:

Form the logical sum of the Accumulator and loca-
tion a.

The MSK operation can be thought of as a selective
store operation. It replaces portions of C(e) with
the corresponding portions of C(acc), as specified
by the mask in qrg. The replacement is controlled by
the ‘‘1’s”’ in qrg.

*Timing for Cycle Operations: 8 psee for a < 14. For a > 14:

1+ -3- usec, where a if odd, is made even to next highest value.

3-26

Sign Number
C(ace) =0 001 001 100 111 ... 000
C(a) =1 000 101 001 110 ... 000
Final
C(ace) =1 001101 101 111 ... 000

LGM g,i LOGICAL MULTIPLY
8 p sec

000 080|000 i i 000 000 OO0 OO0 OO0

-]

o s eI

1 8,7 ? 22 36

This operation forms the logical product, in acc,
of C(a) and C(ace), including the sign. The logical
product is formed on a bit-by-bit basis using corre-
sponding bits of the acc and a.

The logical product is often called an AND fune-
tion because the result is a ‘“1’’ if the corresponding
bit positions of C(ace) AND C(a) both contain
‘(1?87’

The @ is indexable; C(a) remains unchanged.
Example:

Form the logical product of the Accumulator and
location a.

Sign Nwmber
C(ace) =0 000 101 001 110 000
C(a) =1 000 001 100111..... 000
Final
C(ace) =0 000 001 000 110 000

LGN g,i LOGICAL NEGATION

i

1 87 9 22 36

8 wu see

000 000 000 OO0 000
a

000 @00[ooOH el
0 4

This instruction forms the complement in ace of
C(a), including the sign. In binary notation the
complement of ‘1’7 is a “‘0’’ and likewise the com-
plement of a ‘0’ is ‘1", Therefore, LGN forms
the one’s complement of C(a).

The ¢ is indexable; C(a) remains unchanged.

Example:

Form the logical negation of C(a), ie., LGN a.

Sign Number
C(a) =1 001 001 100 111 000
Final
C(ace) =0 110 110 011 000 111

THE REPEAT FUNCTION

The repeat instruction enables the programmer
to handle a frequently encountered type of pro-
gram loop. The loop consists of repetitive appli-
cation of an instruction to a block of data. The
repeat instruction defines the size and location of
the block by using two index registers, as a repetition
counter and as an effective address increment. It
is immediately followed by the affected instruction.
Together, the two instruections perform the repeat
function.

RPT a,i,m REPEAT

8 p. see
000 CO®[000]000 O00 00O 000|000 000 OO0 00O 00O
0 1 i m a

1 6,7 9,10 2,22 36

RPT causes the next instruction in sequence to be
executed @ + C(iri) + 1 times. The effective address
of the repeated instruction is modified in the manner
described below.

A flow diagram of the RPT instruction is shown
in Figure III-10.

ENTER | EXECUTE REPEAT INSTRUCTION
a + ¢ (i) ——»IR3

M —»IR4

r EXECUTE REPEATED INSTRUCTION l

ONTINUE
TO NEXT
INSTRUCTION

ADD IR4 to « PORTION
OF CPU CONTROL REGISTERS
OF REPEATED INSTRUCTION

]

Figure lI-10. RPT Instruction, Flow Diagram

RPT places a plus the contents of Index Register
i in Index Register number three, ir3; and m in Index
Register number four, ir4.

3-27

The instruction following the RPT is executed in
its normal mode, then C(ir3) is tested for equality
to zero.

If C(ir3) = 0, a ““1’’ is subtracted from C(ir3),
and C(ir4) is cumulatively added to C(Address Reg-
ister) to form the new effective address of the
instruction being repeated. The loop proceeds with
the execution of the instruction upon its new effective
address, testing for C(ir3) = 0, and cumulatively
indexing until the repeated instruction has been exe-
cuted a + C (ir¢) + 1 times.

When C(ir3) = 0, either initially or after execution
@ + C(iri) -+ 1 times; the Program Counter is inere-
mented by one, and the program returns to its original
sequence.

The effective address of the repeated instruction is
a? + C(iri?) + nml, when ““n’’ is the number of
repetitions. Superseript ‘‘1’’ refers to the RPT in-
struction, and superseript ‘“2’’ refers to the re-
peated instruction. The subsecript refers to the index
register number,

Example: Add the numbers in memory locations 105
through 114 to the contents of the Accumulator. As-
sume that the C(ir2) = 2 and will be used to form the
effective address of the REPEAT instruction. Assume
the C(irl) =5 and will be used to form the effective
address of the ADD instruetion which will be re-
peated. Prior to the Repeat these index registers
must be loaded independently. Before the REPEAT
instruction the contents of the various index Registers
are:

irl ir2 irs3 ir4

The REPEAT and ADD instructions are now per-
formed.

RPTS5, 2, 1
ADD 100, 1, 0

e R el i U P,

irl|1r2|1r3|1r4

D &% + e, ®)

2) +c(lr4)

ADD 105 52171
ADD 108 s |2 |

ADD 107 2

App 2% + eli,

ADD a2 + e, H v 2cr e

2

apD a% + e(1,%) + 3.o(r 4) | ADD 108 2

6
5 : :
5 ' 4
ApD &% + c(1,%) + 4-c(t r 4) | ADD 109 5 | 3
ADD 110 5 | 2
'
> 1

2
DD a® + c(1, %) + 5-cfi r 4)
z ADD 111
2 ADD 112

DD a% + c(1, %) + 6l r 4) 1

[
|
[
[
I
z| l
2 | 2 |
4
21°

ADD 2 + c(t) %) + T-e(i r 4) 0

3-28

It is seen from the above that the effective address
of the ADD instruction is a2 + C(iri2) + 7. Where
7="n"’ is the number of repetitions of the repeated
instruction. The first ADD is not under REPEAT
control. That is why the number of executions is
equal to al + c¢(iril) + 1.

Any instruction which can normally be indexed can
also be indexed when used in conjunction with RPT.
This is due to the fact that when the instruction is
read out of memory the address portion is placed in
the Address Reégister and immediately incremented
by the contents of the Index Register specified in that
instruction.

Since the Address Register is never cleared until
the repeat operation loop is completed the normal
operation is performed only during the first execu-
tion. Upon subsequent executions of the instruection
the Address Register is incremented by C(ir4). There-
for, after ‘““n’’ repetitions of the instruction the Ad-
dress Register contains the effective address a2 +
(C(iri2) + nm! where m1 = C(ir4).

In the preceding example both ¢2 and 2 were used
together to specify the initial effective address of 105,
in other words, ADD was indexed.

Assume 14 was previously loaded with irl, then
make a2 = 87 and 12 = 1. The effective address of any
indexable instruction is @ + C(iri); in this example,
a? + C(irl) = 87 + 14 = 101. The remainder of the
RPT-ADD example would be unaffected by this initial
indexing of a2.

Any order in the instruction repertoire can be used
in conjunction with the RPT instruction without
causing machine error. However, several of these are
ineffective. Any input or output instruction when
used with RPT will ignore the RPT instruction and
will proceed in its normal mode. The only effect of the
RPT will be to set C(ir3) = a + C(iri) and C(ir4)
=m.

When a sense or transfer instruction is used with
RPT, the machine performs the number of loops speci-
fied by RPT prior to the normal execution of the
order. When the order is executed C(ir3) = 0,
C(ird) =m.

REPEAT-MOVE

The Move (MOV) and Compare (TRC) instructions
are particularly powerful when used with RPT. The
RPT-MOV combination facilitates the transfer of an
arbitrary number of words from one part of memory
to another.

The MOV instruction is a two address instruction.
Therefore, the repetition count and the two effective
address modifiers (one for each address) must be
specified. The first effective address is initially speci-

fied by @ of the MOV instruction and is subsequently
modified by C(ir4). The second effective address is
initially specified by i-m of the MOV instruction and
is subsequently modified by C(ir2). The MOV instruc-
tion itself is unaltered by the RPT-MOV function.
A diagram of the RPT-MOV instructions are shown
in Figure TII-11. The ir3 is still used as the counter.

Example: Move every other number in position
100, 0-200,, inclusive to every 4th location starting
at 30010.

The RPT instruction will load ir3 which determines
how many times the MOV instruction will be RE-
PEATED and ir4 which determines the effective ad-
dress a of the MOV instruction, but prior to the RPT
ir2 must be loaded independently. For this problem
ir2 is loaded with 4. Before the REPEAT instruction
the contents of the various index registers are:

irl ir2 ir3 ir4

0 4 0 0

The REPEAT and MOV instructions are now per-
formed.

RPT - MOV I

CUTE REPEAT INSTRUCTION
C (iRl) ——>1R3
ml—->1m

l EXECUTE MOVE INSTRUCTION]

CONTINUE
TO NEXT
INSTRUCTION,

C (1R3) - 1—»1R3

ADD C(iR4) TO PORTION OF MOVE INSTRUC TION

ADD C(iR2) TO im PORTION OF MOVE INSTRUCTION

y

Figure lli-11. RPT-MOY Instruction, Flow Diagram

+ c(ir 4), 12m2 +c(ir2)

2 + 2.c(i r 4), 12m2

)
2 + 3-c(ir 4), 12m2

+ 2-c(ir 2)

+ 3.c(ir 2)

MOV a% + (50)peld T 4), i%m?2 + (50) peld T 2)

RPT 50, 0, 2
MOV 100, 300
T T T T T Grilirzlirs lir4
0 : s | (50)10: 2
MOV 100, 300 0 | 4 [0y 2
MOV 102, 304 o | 4 l (49),,] 2
MOV 104, 308 o Iy (48)10| 2
MOV 106, 312 0 I 4 l (47)101 2
) . I I
MOV 200, 500 0 : 4 I : 2

From the above it is seen that the instruction is
executed al + C(iri) 4 1 times or 51 times. The a2
part of the MOV instruction is increased by m! of the
repeat instruction, after each execution of that in-
struction., The i2m2 of the MOV instruction is
indexed by ir2 on each execution after the first.
Before each MOV instruction is executed its effective
a is placed in Q.

REPEAT-COMPARE

The TRC instruction ecan be used in conjunction
with RPT to compare the contents of the Accumulator
and a specified sequence of ineremented Memory Lo-
cations.

The RPT-TRC function is primarily designed for
table look-up where the data is placed in ascending
numeric order. However, its use is not restricted and
is applicable to a wide range of situations including
the rearrangement of input or output data.

In the following sequence of instructions assume
that the data to be compared is in the Accumulator.
The location of the TRC order in Memory is desig-
nated symbolically by “‘y”’

Since the TRC order can be indexed .it will be exe-
cuted using the effective addresses a2 + C(iri2) + nm!
where n = 0, 1, 2, and so forth, it will be executed
a! + C(irsl) + 1 times.

3-29

wpiBpIq y20[g ‘uoyduNny DY 1-1dY

\

SSHYAAV HAILDHAAA NV WHOA
OL NOLLDAYLSNI H4VdINOD

DY &—

ddYvdNOD
DNIHI HNTVA
dO NOILLVDOT

A0 NOILLYO0d ® Ol ($HI)D adv

4

CUI<€— 1 - (€HI)D

NOLLONYLSNI
LXHN OL
HANILNOD

AFYVdINOD HNIAL
HNTVA < (DOV)D

dHIEIVdINOD DNIHG
HNTVA 40 NOLLVDOO1

DY €—

HIVdINOD DNIFEG

HNTVA > (DOV)D

uoTIONIISUl

HYVJIIWOD
21ndax

ONIZI HNIVA = (DOV)D

“ZL-11l 31nb14

NILNOD a
NOILLODNY.LSNI
dINO dI¥S

DY -—

dadvdInoD
ONIHET INTVA
JO NOLLVDOT

NILNOD ANV
SNOILDNYISNI
OML JTHS

nNYd «€-—

>
dIYVdINOD DNIFI
dOTVA 40 NOILVDOT

dIYVvVdINOD

T

£l €— (41 O +

e
! [
YAQUO LVAdEY ELADEXH |© ;mm,nz\ml

o4l - LdY

3-30

Location - Instruction
y—1 RPT al, 41, m1
y TRC a2, 2
y+1 Sub-routine initiating instruction
y+2 Sub-routine initiating instruction
y+3 Sub-routine initiatirg instruction

The RPT order loads a! + C(iril) into ir3 and m?
into ir4. The contents of the Accumulator are com-
pared to the contents of location a2 + C(irt2) initi-
ating one of the following three lines of action. A
block diagram of the RPT-TRC funection is shown in
figure I1I-12,

Let x equal the effective address portion of the
TRC instruction. It is the location at the word cur-
rently being compared. Initially x = a2 + C(iri2);
as the RPT-TRC operation proceeds, x is ineremented
successively by C(ir4).

Then, if C(ace)= C(x), x is stored in the B-register
and the loop ends with a transfer to location y + 3;
that is, the program counter is incremented by three,
to y + 8. The termination is the result of finding the
desired equality.

If C(ace) < C(x), x is stored in brg and the loop
ends with a transfer to location y + 1. In a table
iook up operation, this case corresponds to one where
the value compared against the table is smaller than
any of the functional values stored in memory in in-
creasing order to magnitude.

If C(ace) > C(X), repeat comparison. The C(ir3)
is tested and if greater than zero the Address Register
is incremented by C(ir4) and the TRC loop repeated.
The looping ceases when C(ir3)= 0 or one of the other

branch conditions is reached. At the time of the first
execution of TRC the C(ace) is also placed in the
Q-register where it remains until disturbed by later
instructions.

If a program interrupt ocecurs during a Repeat-
Compare sequence, the effective address in the B-reg-
ister will be destroyed. To prevent the destruction of
required B-register contents, program interrupt should
be delayed until the contents of the B-register are
stored in some memory location. The following set of
instructions should be included in the program when
using RPT-TRC, if the contents of the B-register are
important:

SET SPI
RPT Al CLA BRG
TRC STR (Memory Location)
TRU Al RESET SPI
TRU A2 TRU A3
CLA BRG A2 CLA BRG
STR (Memory Location) STR (Memory Location)
RESET SPI RESET SPI
A3 Next Instruction TRU A3

TRAPPING MODE

GENERAL DESCRIPTION

The Trapping Mode is a special mode of Program
Interrupt (see Section IV, INPUT-OUTPUT SYS-
TEM). Sinee it is concerned exclusively with Central
Processor operations, however, it is discussed in this
section.

The Trapping Mode is a tool for checking the prog-
ress and accuracy of a program without the necessity
of stopping the automatic operation of the computer.
‘When a program is running in the Trapping Mode, it

Symbolic m Bit mgg Bit mg TRA Sw. Trapping Effeot on TRA Switch
Portion of TRU of TRU Before Action? Program Counter* After Comments or Summary
Oor2 Oorl 0 0 No a + C(iri) 0 No special action
- pet
0 or 2 Oorl 0 1 Yes C(pet) = brg 1 Order is trapped*
0 - pet
1 0 1 Oorl No a + C(iri) 1 Leaves TRA SET
- pet
3 1 1 Oorl No a + C(iri) 0 Leaves TRA RESET
-> pet

NOTE: When a transfer order is trapped, TRA is left SET, and both TOT and SPI are SET.

* Only if SPI is RESET.

Table HlI-5.

Trapping Mode Control

3-31

is interrupted at certain points, and control is trans-
ferred to a speeific memory location. Beginning at the
location to which control is transferred, the program-
mer can have stored a program, or subroutine for
evaluating the status of his main program. Once the
program or subroutine has been completed, control is
normally returned to the main program until another
‘‘trap’’-occurs. By proper use of trapping, the pro-
grammer can obtain data pertaining to the dynamic
operation of his program for debugging purposes.

TRAPPING MODE OPERATION

When the Central Processor is executing a program
in the Trapping Mode, the program is interrupted
whenever a transfer instruction is encounterd. For
example, if the Central Processor is to execute a series
of instructions, one of which is a transfer instruction,
the computer will ““trap’’ as soon as it has decoded
the transfer instruction. Before the transfer instrue-
tion is executed, the program sequence is interrupted
and control is transferred to Core Memory Location
00000. At the same time, the address (i.e., location)
of the transfer instruction which caused the trap is
stored in the B-register.

When a program is trapped, the programmer pro-
cides a SNR instruction to see whether TOT is set.
[f it is he transfers control to another memory loca-
tion which carries out a series of special operations.
If it is he transfers control to another memory loca-
tion which carries out a series of special operations. If
TOT is not set some other type of program interrupt
caused the trapping action (see Program Interrupt).
Hor example, the trap program may cause the contents
of all registers to be output. The final action of the
trap program is normally to return control to the
main program (making use of the address saved in the
B-register to do so), so that it may continue in se-
quence.

TRAPPING MODE CONTROL SWITCHES

Trapping operations are controlled by two switches,
one of which (TOT) is completely under electronic
control, and another (TRA) which may be operated
either manually from the Console or automatically by
the program. The Trapping Mode Decision Switch
(TRA) determines whether or not the computer is to

3-32

operate in the Trapping Mode. When TRA is SET,
Trapping Mode is specified. Trapping can only oceur
when TRA has been SET prior to the decoding of a
transfer instruction. When TRA is SET and the
Central Processor encounters a transfer instruetion,
an internal switch, Transfer Order Trapped (TOT),
is SET automatically. If TRA and TOT are both
SET, the Central Processor program becomes trapped
and control is transferred to memory location 00000.

The one transfer-type instruction which does not
always cause trapping during the Trapping Mode is
Unconditional Transfer (TRU). This is because the
TRU instruction is used to SET or RESET TRA,
depending upon the contents of the m portion of the
TRU instruction itself. Table III-5 lists the various
configurations of the m portion of the TRU instruction
and the effect these configurations have on the status
of the TRA switch, together with the operation of the
TRU instruction during trapping operations.

The TRA switch may also be SET and RESET from
the Console (see Section VI, CONSOLE). Even
though the TRA switch may have been operated upon
by the Console control, it may still be altered by the
program,

STOP PROGRAM INTERRUPT

In order to prevent trapping while the computer is
executing a trap program (in other words, a trap
within a trap), a Stop Program Interrupt Switch
(SPI) is provided. SPI is always SET automatically
when a program is trapped. It is the programmer’s
obligation to RESET it at the end of the trap pro-
gram, otherwise all further trapping operations will
be inhibited. SPI may be SET, RESET and SENSED
by the Sense Instructions (see Section III, CENTRAL
PROCESSOR INSTRUCTIONS).

In addition to RESETTING the SPI at the end of
a trap program, the programmer must also RESET
the Transfer Order Trapped Switch (TOT) before
returning control to the main program. If he neglects
to do so, the program will be caught in a “‘loop’’.

Additional types of program interrupt, as related to
input-output operations and alarm conditions are dis-
cussed in Section IV, INPUT-OUTPUT SYSTEM,
under PROGRAM INTERRUPT.

SECTION IV
INPUT-OUTPUT SYSTEM

GENERAL DESCRIPTION

The Sylvania 9400 Data Processing System em-
ploys a variety of peripheral input-output devices.
The input-output devices operate at varying speeds,
both with respect to each other and to the Central
Processing Unit. Further, the format of the informa-
tion processed by each type of input-output device
is unique and different from the internal binary
formats employed by the computer.

The differences in operating speeds require that the
Central Processing Unit be, during memory acecess
times, synchronized with the particular peripheral
device involved. The differences in data format re-
quire that the information exchanged between the
Magnetic Core Memory Unit and the external deviees
be converted to the appropriate format and code.
The 9400 Input-Output System performs the above
conversions and synchronization. In addition, the
Input-Output System allows input-output operations
to occur simultaneously with Central Processor opera-
tions and with each other.

The 9400 Input-Output System consists basically of
In-Out Processors, each with its own In-Out Transfer
Bus; Device Switching Units, Buffers, and the peri-
pheral devices themselves. Each In-Out Processor
may communicate with each input-output device. The
9400 System may have up to 64 input-output devices
attached to it.

The relationship of 9400 Input-Output System to

the Magnetic Core Memory Unit is shown in Figure
IV-1. Data words and instruction words are trans-

ferred between the Core Memory Unit (or the ad-
dressable registers in the Central Processor) and the
Input-Ouput System via the Main Transfer Bus.
Instruction words are sent from Core Memory and
various switches, respectively, to the Control Section
of an In-Out Processor. Data is exchanged between
the Data-Handling Section of a Processor and the Core
Memory Unit (or addressable registers).

Information exchanged between a device and an
In-Out Processor travels along the In-Out Transfer
Bus attached to the Proeessor. The Device Switching
Units determine whieh Processor is attached to the
particular device addressed.

INTERPRETATION OF A WORD
FROM MEMORY

Instruction words and data words transferred from
Core Memory (or an addressable register), to the
Input-Output System are merely groups-of 37 bits. An
instruction is indistinguishable from a data word
until it leaves the Memory Unit. Like the Central
Processing Unit, an In-Out Processor of the Input-
Output System interprets a word according to the
time it receives it. Thus, the Input-Output System
employs a control cycle and a data cycle.

During the control cycle, a word is sent from Core
Memory through the Central Processor Control Unit
and placed in the Control Section of the selected
Processor. During a data cycle, the word reeeived
from memory is treated as data and transmitted to the
appropriate input-ouput device.

INTERPRET SIGN

During input-output operations, the status of the
Interpret Sign switeh (ISN) determines the manner
in which data words are to be interpreted. The ISN
switch may be SET, RESET and interrogated by the
various SENSE instructions (see Section ITI, CEN-
TRAL PROCESSOR INSTRUCTIONS). If the ISN
switch is RESET, words exchanged between the Mag-
netic Core Memory Unit (and addressable registers
in the Central Processor) are considered signless. If
ISN is SET, the signs of words exchanged with the
Input-Output System are transmitted along with their
magnitude portions.

An exception to ISN control is in the octal mode
of operation. Exchange of octal information between
the Input-Output System and the ‘‘central’’ com-
puter is always in interpret sign mode (refer to
INPUT-OUTPUT INSTRUCTIONS, specifically
READ OCTAL (ROK) and WRITE OCTAL
(WOK)).

IN-OUT PROCESSORS

The prime controlling element of the Input-Output
System is the In-Out Processor. A 9400 System may
have from one to four Processors. Each Processor
is capable of connecting, through its own In-Out
Transfer Bus, any input-output device with the

4-1

woibp1q N}d0]g ‘w3yshg yndinp-induj *[-A| 910614
SNd HHASNVYL NIVIN
A A 4 A N
v v 4 v v
NOILDH NOILDH
ONIT |NOILLDHS ONIT | NOLLDHY LINA
-UNVH | "TO4YL =UNVH] "TOYL AHOINTEIN
-vivda| -NOD [———————— -V1IVd| =-NOD
V|# T\|# H4JOD
dOSsHDOUd dossadOUud OLLINDVIN
HDO.:ZH EDO.nZH
) N
Y
A “ T# Snd YHASNVYL LNO-NI /
I
I
v " P# SN YHASNVYHL LNO-NI

by

yo#

SNsa »
ao1A3(

o= T A — D GE — —— N — S W — e T — G G ——. w———_gpass s

{

T#
sNsda ®
ad1A9(q

4-2

Magnetic Core Unit or with an addressable register in
the Central Processing Unit. As many input-output
devices as the System has In-Out Processors may
operate simultaneously. BEach In-Out Processor con-
sists of a Control Section and a Data-Handling See-
tion (see Figure IV-2).

The Control Section is made up of two groups of
registers: the Processor Instruction Register (PIR)
and the Order Sequence Registers (DAS and OSR).

The PIR register, which is addressable as a wnit, is
broken down into four sub.registers, as follows:

1. The Instruction Register (ISR) holds the cur-
rent input-output operation code, where it is inter-
preted and implemented by the In-Out Processor.

9. The Word-Block Counter (WBC) contains the
count of the number of pieces of data to be trans-
ferred between the Input-Output System and the
central computer. During the execution of an input-
output operation, the contents of WBC are decre-
mented by ONE each time one complete 9400 charac-
ter, word, or block of words (depending upon the
mode of operation) is transferred between the per-
ipheral device and the central computer. Normally,
when the contents of the Word-Block Counter reach
ZERO, the current input-output operation is ter-
minated.

3. The Device Address Register (DAR) contains
the address of the selected input-output device.

4. The Address Counter (ADC) holds the first
address to or from which data is to be transferred.
When the address contained in ADC specifies a core
memory location, the contents of ADC are incre-
mented by ONE following the transfer of each 9400
character or word between the input-output device
and the central computer (An exception is READ
REVERSE (RRV), where the contents of ADC are
decremented by ONE each time). If an addressable
register is specified, the contents of ADC are not
changed during the input-output operation.

The Order Sequence Register (DAS) stores the vari-
ous options pertaining to the input-output operation
being carried out. The Order Sequence Register
(OSR), like the Program Counter (PCT) for the
Central Processing Unit, stores the address of the next
Order Sequence Order to be executed (see ORDER
SEQUENCE MODE).

The Data-Handling Section of the In-Out Proces-
sors consists of six registers (see Figure IV-2). The
Buffer Register (BFR) is capable of storing a com-
plete 37-bit word. The function of this register is
to provide a link and word-assembly point between
the Central Processing Unit and the input-output
devices.

Data is exchanged between the In-Out Processors
and all input-output devices in the form of eight-bit

characters. Six of the bits in each eight-bit character
are data bits, the seventh is a control bit, and the
eighth is a parity bit. Information being sent from
the Central Processing Unit to an output device must
be divided into six-bit characters with the appropriate
control and parity bits added to form eight-bit char-
acters. Conversely, information being read from an
input device must be assembled into standard 37-bit
words. The control and parity bits of incoming char-
acters are interrogated and removed as they arrive
at the In-Out Processor.

The above operations are carried out in the Data-
Handling Section of the In-Out Processors. The five
Character Buffer Registers (CIR, BSR, BCR, BXR,
and TAR) are involved in the character-to-word and
word-to-character conversion. They transfer data to
and from the Buffer Register one character at a
time. In addition, they check and generate parity
bits and special control characters, such as block-
start and block-end markers.

A Device Switching Unit (DSU) is essentially a
gate between each input-output deviece and each In-
Out Processor. For example, in a 9400 System with
three In-Out Processors, each peripheral device is
““gated’’ to each of the three Processors through a
separate Device Switching Unit.

INFORMATION FLOW IN THE
INPUT-OUTPUT SYSTEM

PROCESSOR AND INPUT-OUTPUT DEVICE
SELECTION

When the Central Processing Unit encounters an
input-output instruction during the execution of a
program, an attempt is made to select an In-Out
Processor. If a Processor is available, and if the
device selected is also available, the Processor is
selected and the input-output instruection is trans-
ferred, via the Main Transfer Bus, to the appropriate
PIR register. If the selected device is busy, or if no
Processors are available, the central processing pro-
gram is interrupted if the device busy or processor
busy decision switch is SET and SPI switch is
RESET, otherwise it hangs up during Timing Fune-
tion 8, see under PROGRAM INTERRUPT. The
input-output operation which caused the interrupt
may be executed as soon as both the device and a
Processor become available. Other input-output opera-
tions are not held up, however.

Once the input-output instruction has reached the
In-Out Processor, all transfers and control signals
are made along the In-Out Transfer Bus associated
with the selected Processor.

woibo1q yd0]g ‘108583014 INQ-u| Z-Al 210614

SNg YHASNVYHL NIVIN

(Ya9) 9IFILSIOTY yaddnd

oav

\ 2
qId
(SLI9 8) SHALSIDTY i
YAIANT SALOVIVHD 3
usd
y
vodg
NOLLDHS ﬂ
ONI'TANVH-VIVA XS
4
VL

qva

odMm

dsI

A

dHLSIOHEY

dld

gso

sSva

SNnd YHASNVYL 1NO-NI

SHHELSIDTY HONUNDIAS YIAHO

NOLLDHS TOH.LNOD

L

J9p0o23g

WRITE OPERATION

A write operation consists of the transfer of in-
formation from the Magnetic Core Memory or from
an addressable register, to an output device. An
inherent part of the write operation is the format and
code translation of the output information.

Following Processor. and device selection, a write
operation begins with the starting of the selected
device, and with the parallel transfer along the
Main Transfer Bus of a 9400 word from the Memory
Unit or the Central Processing Unit to the Buffer
Register (BFR). The address of the selected word is
contained in the ADC portion of the PIR register.

Once the word reaches BFR, and in synchroniza-
tion with the output device, it is broken down into
six-bit groups, starting at the high-order end of
BFR. If the sign is to be included, it is also converted
into a standard six-bit code (see INTERPRET
SIGN). As each six-bit group leaves the Buffer
Register, it passes sequentially through the five Char-
acter Buffer Registers. During its passage, appropri-
ate control and parity bits are added to it. Finally,
the newly-formed eight-bit characters are transferred,
one at a time, out from the TAR register onto the
In-Out Transfer Bus. The Device Switching Unit
allows the characters to pass through to the ap-
propriate output device.

READ OPERATION

A read operation involves the transfer of informa-
tion from an input device to the Magnetic Core
Memory Unit or to an addressable register. As in an
output operation, format and mode translation of
the transferred information takes place.

Once the Processor and device have been selected,
the read operation begins by starting the appropri-
ate input device. As eight-bit characters arrive at
TAR on the In-Out Transfer Bus, they are trans-
mitted sequentially through the five Character Buffer
Registers toward BFR. Each character is interrogated
and checked for parity in the CIR register before
being transferred into the BFR.

Once an incoming character leaves CIR, it is
stripped of the control and parity bits, allowing a
six-bit character (three bits for octal characters, see
specific octal input and output instructions) to enter
BFR at the low-order end. As each new character
reaches BFR, the preceeding character is shifted left
to make room for it. When BFR is filled, the entire
newly-formed word is transferred, in parallel, along
the Main Transfer Bus, to the location specified by
the contents of ADC.

SINGLE INSTRUCTION MODE

GENERAL DESCRIPTION

The 9400 Input-Output System operates in two
modes, the Single Instruction Mode (SIM), and the

Order Sequence Mode (OSM). In SIM, a single in-
put-output instruction is initiated as part of the main
program sequence. In OSM, which is deseribed under,
ORDER SEQUENCE MODE, a series of input-out-
put orders are executed in parallel with the main
program.

The Single Instruction Mode operates under the
control of nine input-output instructions. Each in-
struetion, acecording to its requirements, contains an
operation code, the ‘‘address’’ of the selected input-
output device, the address of the data to be trans-
ferred, and a count of the amount of informatiod to
be transferred. When the Central Processor en-
counters an input-output instruction in the main
program sequence, the required input-output device
is connected to the ‘‘central’’ computer through an
In-Out Processor. Once the Processor has been con-
nected, the main program sequence resumes its opera-
tion. Normally, Processor selection does not delay
the main program.

The input-output operation causes the In-Out Proc-
essor to transfer information between the Core Mem-
ory Unit (or addressable registers) during the execu-
tion of the main program. The Input-Output System
is synchronized with the Central Processor only when
the Input-Output System requires access to Core
Memory or to an addressable register.

An input-output instruction causes a single input-
output operation, in that as soon as the required
amount of data has been transferred between the
Input-Output System and the ‘‘central’’ computer,
the In-Out Processor, and hence the input-output de-
viee, are logically disconnected. Another input-output
instruction following in the main program sequencge
will initiate a new Processor and cause a device to be
connected again.

INSTRUCTION WORD FORMAT

The format for a standard 9400 input-output in-
struction is shown in Figure IV-3. As with the Central
Processor instruetion word, the sign bit, S, of the
input-output instruction word is ignored. The mag-
nitude portion of the input-output instruction is
broken up into four sections, as follows:

1. The Operation Code (OP) is eontained in bits 1
through 6 of the instruction word.

2. The Word-Block Count (c¢) occupies bits 7
through 15. The word-block count determines how
many 9400 characters, words, or blocks of words are
to be transferred between the selected input-output
device and the Central Processing Unit.

3. The Selected Device Code (s) occupies bits 16
through 21. Each input-output device is identified
by its own unique six-bit code. The s portion of an
input-output instruction word identifies the input-
output device which has been selected.

4-5

4. The Address Portion (@) is contained in bits 22
through 36. Initially, the @ portion of an input-output
instruetion word specifies the address in core memory
(or adressable register) of the first word to be proe-
essed by the input-output operation.

r= 1 SIGN BIT
|

| _¥TNOT USED
OPERA» | WORD-BLOCK |SELECTED
TION COUNT DEVICE
CODE CODE ADDRESS PORTION

(oP) te))
1 6}7 1516 21]22 38

Figure IV-3. Standard Input-Qutput Instruction

Word Format

INPUT-OUTPUT ALARMS

The No Halt on Processor Error Switch (NHP)
is used to prevent the halting of the computer if an
In-Out Processor error is detected. NHP has to be
SET before each input-output instruction for which
In-Out Processor errors are to be ignored. NHP is
addressable and may be SET by an SNS instruction.

When an input-output error is detected the appro-
priate Input-Output Alarm (IOA), is immediately
SET. Subsequent action depends, in general, on the
status of NHP. If NHP is SET, execution of the
input-output instruction involved will be continued.
However, if NHP is RESET, any data transmission
implied by this input-output instruction will cease, the
instruetion will continue until its normal termination,
and the computer will halt.

Some of the possible input-output alarms, and their
results are listed below :

1. Input Parity Error (IPE)* If there is an input
parity error, the IOA is SET immediately.

2. Interpret-Sign Error (ISE) If characters have
been written in the non-ISN mode, and a read
operation in the ISN mode is attempted, the
I0A is SET immediately upon discovery of an
illegitimate character in the sign position.

3. Improper Order (IMO) If the instruction in
the Processor is meaningless, the IOA is SET.

4. Device Alarm (DVA) A device failure (e.g.
power loss) will SET the IOA and the computer
will stop, regardless of the condition of NHP.
The Processor will disconneet immediately.

5. Timing Read Error (TRE) If there is a black
mark out of place on the tape, or an illegitimate
character is detected in the middle of a word
(e.g. a non-octal character in the middle of an
octal word when using the ROK order), IOA is
SET.

OUTPUT INSTRUCTIONS (see table IV-1, IV-3, IV-4, IV-5)
Output instructions WRITE data on output devices

such as magnetic tape, high speed printers, paper tape,
punched cards, or typewriters. Each output instrue-
tion specifies how much data is to be written on what
output device and where the data is found — usually
where the first of a series of data words is located in
memory.

WAN a,s, ¢ WRITE ALPHANUMERIC

INSTRUCTION
090® 600|000 OOO OOOJO00 000 OO0 OO0 OO0 OO0 000
7 4 c s a
1 8,7 15,16 2,22 36

WAN writes ¢ (up to 511) words on output device
s from sequential memory locations beginning at a.

NON-INTERPRET SIGN

In this mode, the sign of C(a)is ignored. The In-Out
Processor divides each memory word into six 6-bit
units. The six high-order bits of the memory word
make up the first 6-bit unit.

INTERPRET SIGN

If the Interpret-Sign mode is selected, the Interpret-
Sign switch must be set by an SNS instruction prior
to WAN. In the Interpret-Sign mode, the In-Out
Processor divides each memory word into seven 6-bit
units. The sign is interpreted and translated as the
first of the seven 6-bit units. The six high-order bits
of the memory word make up the second 6-bit unit.

WRITE VARIABLE LENGTH BLOCKS

The WAN instruction will write any length block
up to 511 words. If the device specified by s is a
magnetic tape unit, special Block-Start (BLS) and
Block-End (BLE) marks are written automatically
before the first word and after ¢ words, respectively,
for each WAN instruction. It is possible to re-write
blocks written on magnetic tape as described under
the RE-WRITE (WWA) instruction.

WRITE FILES

It is frequently desirable to combine a variable
number of blocks into larger record groups called
files. The programmer need only specify that an End-
of-File (EOF) mark be written by the last WAN in-
struetion used in writing the file; the Write End-of-
File switch (WEF) must have been SET prior to
executing the last WAN instruction used in writing
the file. WEF is sensable. It is RESET automatically
upon transfer of the WAN instruction to the In-Out
Processor. EOF marks are automatically written after
each WAN, instead of BLE if WEF was SET prior
to the instruction.

WWA gq,s, ¢ REWRITE ALPHANUMERIC

INSTRUCTION
000 00® OO0 000 OQO 000 000[00C 00O OO0 OO0 OO0
7 5 c s a
! 6,7 15,16 2,22 36

The WWA instruction writes ¢ (up to 511) words
on the magnetic tape specified by s. WWA enables
information to be rewritten in existing blocks,. WWA
must write the same number of words, as were con-
tained in the original block.

‘WWA starts in the read mode and searches forward
on magnetic tape until the first Block Start mark is
detected. Thereafter, it performs the same as the
WAN instruction. If a BLS is not detected, the whole
tape will be searched.

WOK ga,s,¢ WRITE OCTAL INSTRUCTION
980 800|000 000 000|000 COO]000 OO0 OO0 OO0 000
7 6 c s a

1 6,7 15,16 21,22 36

WOK writes ¢ (up to 511) words on output device
s from sequential memory locations beginning at a.
It is similar to WAN except that it always writes in
the Interpret-Sign mode, regardless of the state of the
ISN switch.

Each memory word is written as thirteen 3-bit octal
numbers. The sign bit of the memory is expanded to
a 3-bit octal number. The next 12 octal characters
comprise the 36 data bits of the word.

WOK may not be used with magnetic tape or the
card punch or Mass Memory.

INPUT INSTRUCTIONS (see table IV-1, IV-2, IV-3)
Input instructions READ data from input devices.
Each input instruction specifies how much data is to
be read from what input device and where the data
is to be placed, usually the address of the first word
of a series of data words is to be placed in memory.

RAN (¢) g@,s,¢ READ ALPHANUMERIC

-

INSTRUCTION
000 000 ObO 000 000|000 000|000 OO0 OO0 OO0 OO0
7 01} c s a
1 6,7.8 15,16 2,22 3

MAGNETIC TAPE UNIT OR MASS MEMORY

If s specifies a magnetic tape unit or a Mass Memory
Unit, the RAN reads to an EOF mark or ¢ (up to
255) blocks or words into consecutive memory loca-
tions starting at address . If bit 7 is a one, then the
remaining eight bits in ¢ determine the number of
blocks to be read; if this bit is a zero, then the other
eight bits determine the number of words to be read.
‘When an EOF mark is detected during a RAN instruc-
tion the EOF switch in.the Central Processor is SET
and the instruction is terminated.

PAPER TAPE READER

If s specifies a paper tape reader the RAN reads up
to 511 words inclusive or until STOP CODE is en-
countered if the Interpret Sign Mode is specified.
The RAN reads until the STOP CODE if bit 7 is a
¢1” and Non Interpret Sign is specified. The RAN
reads up to 255 characters if bit 7 is a ‘“0’" and
Non Interpret Sign is specified.

CARD READER

RAN reads up to 255 cards from the Card Reader
specified by s into sequential memory locations start-
ing at a.

NON-INTERPRET SIGN

In the Non-Interpret-Sign mode six 6-bit units are
assembled and read into memory as a 37-bit word.
The sign bit position is made ZERO. The first 6-bit
unit occupies the six high-order bits of a full memory
word.

INTERPRET SIGN

In the Interpret-Sign mode the first of every 7
units comprising a word is interpreted as the sign of
the word when read into memory. The next six 6-bit
units comprise the data. The second 6-bit unit makes
up the six high-order bits of a full memory word.

Information is usually read in the same mode in
which it was written. If an attempt is made to read
data in the Interpert-Sign mode when the data was
written in the Non-Interpret-Sign mode, every seventh
unit is interpreted as a sign. If a unit which is not
a sign character is interpreted as a sign, the Interpret-
Sign-Error switch (ISE) will be SET, and the 6-bit
unit will be lost.

READ FILES
When an EOF mark is detected during a RAN in-

struction, the EOF switch in the Central Processor
is SET and the instruction is terminated.

EXTENDED RAN INSTRUCTION

RAN may be written as an extended instruction by
adding one of the termination control suffixes shown
below to the basic mnemonie operation code.

Control Control
Symbols Control Bits
0
e,
RAN- Bit 7
W Read ¢ words 0
B Read ¢ blocks 1

Examples: RANW, RANB

RRV(c) g,sc READ REVERSE INSTRUCTION

000 008|000 000 000000 COOJ000 OO0 000 00O 000

7] < s a

1 6,7,8 15,16 2,2 36

MAGNETIC TAPE

RRYV reads ¢ (up to 255) words or blocks in reverse
direction from magnetic tape unit s and stores them
in decreasing memory locations starting at a. Words
are arranged in memory in the reverse direction as
read. Therefore, the data is stored in memory in the
same order as if it had been read forward by a RAN
instruction. Data cannot be read reverse into memory
location 0-37g. If the tape is still traveling in the re-
verse direction at the beginning of tape DVA will
oceur.

ROK g,s,¢ READ OCTAL INSTRUCTION

Control Control
Symbols Conirol Bits
0

(33
SKP- Bit 7
B Skip ¢ blocks 0
F Skip ¢ files 1

Examples: SKPB, SKPF

BSP(c) 5,¢ BACKSPACE INSTRUCTION

il e

090 080|000 000 000|000 OO0 |000 OO0 OO0 OO0 OO0

7 2 c s a

1 6,7 15,16 2,22 3%

- ROK reads ¢ (up to 511) octal words in the In-
terpret-Sign mode from Paper Tape Reader s into
sequential memory locations starting at a.

ROK is primarily used to convert characters on
paper tape directly into machine code, and is not
applicable to magnetic tape. During the reading
operation each character is converted into its octal
equivalent. A computer word is assembled from 13
octal numbers, with the low-order bit of the first
octal number interpreted as the sign of the word.
The remaining 12 octal numbers comprise the 36-bit
word. If a STOP code is encountered before ¢ words
are read, the operation terminates.

D‘EVICE CONTROL INSTRUCTIONS

The device control instructions are magnetic tape
instructions which initiate or control tape motion.

SKP (¢) s,c SKIP INSTRUCTION

e e

[6,7,8 15,16 2

SKP causes magnetic tape s to skip forward ¢ (up
to 255) blocks or files. If bit 7is a ‘“1”’, ¢ determines
the number of files to be skipped. If bit 7 is a “‘0”’,
¢ determines the number of blocks to be skipped. If
the tape has reached the physical end and no files
appear a DVA will oceur.

EXTEND SKP INSTRUCTION

SKP may be written as an extended instruction by
adding one of the following termination control suf-
fixes shown below to the basic mnemonic operation
code.

4-8

6 7 |1 €
1 6,7,8 15, j 2

BSP backspaces ¢ (up to 255) blocks or files on
magnetie tape s. BSP is identical to SKP except back-
space skips in the reverse direction.

When backspacing files, the tape stops at the be-
ginning of the block containing the EOF mark. There-
fore, in order to backspace ‘‘n’’ files, the programmer
must backspace n + 1 files and skip one block.

BSP may be written as an extended order in the
same manner as SKP. See SKP instruction for con-
trol symbols.

RWD s REWIND INSTRUCTION

[oee oo [IHHHRRIRIRIINT GO0 000 ETRTRHARHTRRB R TR
7 %7 R - R

1 6 16 2!

RWD rewinds Magnetic Tape device s. Once re-
wind has begun the In-Out Processor disconnects and
the magnetic tape transport completes the rewind
independent of external eontrol. The device perform-
ing the rewind cannot be re-selected until rewinding
is completed. If the tape is already rewound when

giving this instruction rewind behaves as if it is just
completed.

ORDER SEQUENCE MODE

GENERAL DESCRIPTION

In the Order Sequence Mode (OSM), as opposed to
the Single Instruction Mode (SIM), the 9400 Input-
Output System executes input-output prograems in
parallel with the Central Processor program. As in
Single Instruction Mode, an In-Out Processor is se-
lected and connected to the addressed input-output
device. Once a Processor has been selected, the Order
Sequence Mode of operation allows the Processor to
execute a series of input-output orders (an Order-
Sequence program) while the main program in the
Central Processor proceeds simultaneously. As many
input-output programs may be in operation simul-

taneously as there are In-Out Processors, all of them
in parallel with the main program.

The Order Sequence Mode operates under the con-
trol of Order Sequence Orders. The Order Sequence
Orders make up an input-output program. A special
instruction, Start Order Sequence (S8), is used to
initiate the execution of the input-output program.
To begin an Order Sequence program, the programmer
includes an SS instruction in the main program
sequence. When the Central Processor encounters the
SS instruction, it selects and connects an In-Out
Processor to the device addressed by the SS instrue-
tion. The address portion of the SS instruction
contains the address of the first Order Sequence order
which is to be executed by the In-Out Processor.
Order Sequence programs are stored in Core Memory,
as are main sequence programs. Thus, the SS in-
struetion directs the In-Out Processor to the beginning
of its Order Sequence program.

During the main program sequence, the In-Out
Processor is granted memory access to retrieve the
first Order Sequence order. Once the order has been
transferred to the Processor, the Input-Output System
proceeds independently from the Central Processor
except for required data transfer between the Core
Memory Unit. As soon as the first Order Sequence
order has been completely processed, the In-Out Proc-
essor retrieves the next order from memory and
processes it. The input-output operation continues
until the Order Sequence is complete, at which time
the In-Out Processor, and hence the device, are logi-
cally disconnected from the ‘‘central’’ computer.

The Order Sequence Mode cannot be used with the
paper tape reader, or with addressable registers.

SS AND ORDER SEQENCE ORDER
WORD FORMATS

$S a,5,c START ORDER SEQUENCE

@ O.C)OOO_ "000[000 000 [000 OO0 OO0 OO0 000
6 s a

The formats for the Start Order Sequence instrue-
tion and the Order Sequence orders are effectively the
same as the format for the Single Instruction Mode
instruction words (see figure IV-3). SS and OSM
orders are divided into the OP, a, s, and ¢ portions like
SIM instructions. The significance and usable magni-
tude of the various portions of the Order Sequence
control words varies with the instruction or order, and
is deseribed under the individual operations them-
selves.

PROCESSOR OPERATION IN THE
ORDER SEQUENCE MODE

When the Central Processing Unit encounters a
Start Order Sequence (SS) instruction in a main

program sequence, it attempts to seleet an In-Out
Processor, as in the Single Instruction Mode of opera-
tion. A Start Order Sequence instruction specifies
which device is to be selected, which Processor is to be
used, and where the first order is located in the Order
Sequence program. It also may exercise several options
pertaining to the input-output operations to follow.

Once a Processor is selected and the appropriate
input-output device is established as being available,
the SS instruction is transferred, via the Main Trans-
fer Bus, to the appropriate portions of the PIR
register and the Order Sequence Registers (see
Figure IV-2). The selected input-output device is
then activated.

As soon as the SS instruction has been processed
by the In-Out Processor, the first Order Sequence
Order is retrieved from Core Memory. The address of
the order is contained in the Order Sequence Register,
which, like the Program Counter in the Central
Processor, is advanced by ONE as each order is re-
trieved from memory unless a conditional transfer
is indicated. Retrieval of the order takes place during
the data retrieval portion of the basic machine cycle.
However, since the Input-Output System is operating
in the Order Sequence Mode, the retrieved order is
transferred to the Control Section of the selected
Processor.

Order Sequence Orders of the data-handling type
specify the amount of information to be transferred
and the locations to or from which it is to be trans-
ferred, much the same as with Single Instruction
Mode instruetions. When an Order Sequence order
has been retrieved by an In-Out Processor, it is trans-
ferred into the appropriate portions of the Control
Section of the Processor. It is then executed as an
individual input-output operation.

Once an Order Sequence order has been completed
(with the exception of certain terminal-type orders),
the Order Sequence Register in the In-Out Processor
specifies the address of the next Order Sequence order
which is to be retrieved from Memory. Between the
execution of the sequential orders, the Processor and
the input-output device remain logically connected to
the ““central’’ computer. Thus, it is possible to execute
a series of orders, which need not all be of the same
type, and remain connected to the input-output device
during the entire operation.

In addition to data-handling orders, the Order Se-
quence Mode includes provision for transfers within
the Order Sequence Mode program and communication
(including synchronization, if desired) with the main
program in the Central Processing Unit.

Other Order Sequence Orders make it possible to
write key words on magnetic tape, so that the tape may
be searched for specific records. Order Sequence
orders also enable the programmer to interrogate the

4-9

status of the Input-Output System at any time and,
if desired, to interrupt the main program in order to
carry out special operations.

INPUT-OUTPUT ORDER SEQUENCE ORDERS

The 9400 Order Sequence orders enable an In-Out
Processor to transfer, re-arrange, and edit input-
output data using its own order sequence.

An order sequence may contain any number of
orders to be performed on one input-output device.
If a new device is to be selected, a new order sequence
must be initiated.

INTERPRETING SIGNS

In the Order Sequence Mode, the Interpret-Sign
Mode is initiated by specifying Interpret-Sign as one
of the options of the Start Order Sequence instruc-
tion. If Interpret Sign is specified the entire sequence
will be in the Interpret Sign Mode and the signs of
all data words will be interpreted during the sequence
of orders.

INPUT-OUTPUT ALARMS

In the Order Sequence mode, the No Halt on Proces-
sor Error switch (NHP) is SET by specifying this
as one of the options of the Start Order Sequence
instruction.

If No Halt on Processor Error is specified, the
entire sequence of orders will be performed by the
In-Out Processor even though error controls IMO,
ISE, TRE, and IPE may be SET during the sequence
by their respective error conditions as deseribed under
SINGLE INSTRUCTION MODE.

The programmer may determine the specific error
condition (if any) which exists, by including one of
the special In-Out Processor sense orders in the se-
quence, immediately preceding the order terminating
the sequence.

The End-of-Tape Alarm (ETA) operates in the
Same manner as in Single Instruction Mode.

PREPARATORY ORDERS

The preparatory orders initiate the Order-Sequenee
mode by designating which device is to be used and
where the first instruction of the Order Sequence is
located in memory. They also enable the program to
specify an In-Qut Processor.

S8 is an instruction which is interpreted by the
Central Processor to initiate a sequence of input-out-
put orders in the Order-Sequence Mode. The sequence
of orders to be executed starts with the Order Se-
quence order in memory location a.

The input-output device specified by s will be used
with all orders in the sequence initiated by this SS
instruction. The s bits of subsequent orders in this
sequence serve as control functions.

Note that SS is an instruction, which is initiated
by the Central Processor. Subsequent operations in
the Order Sequence Mode are called orders because
they are initiated and executed by the In-Out
Processor. '

Once initiated, the sequence is executed automati-
cally by the selected In-Out Processor. No further
attention by either the Central Processor or the opera-
tor is required until the sequence is specifically termi-
nated and the In-Out Processor is disconnected. A
sequence may be specifically terminated by one of the

Order-Sequence orders or by a special End-Order-
Sequence Order.

The various computer interrupts are usually enabled
by setting the appropriate controls prior to the execu-
tion of an SS. However, the condition of these con-
trols may change during the execution of a sequence.

SS also specifies several input-output control funec-
tions which will be performed concurrently with the
sequence of instructions to be executed.

Extended SS Instruction

SS may be written as an extended instruction by
adding any of the following control suffixes. These
suffixes are optional but must be used in the sequence
shown. If SS is used without either a control suffix
or a nonzero number in the ¢ field, an Improper Order
Alarm will occur upon its execution. If a nonexistent
In-Out Processor (e.g. S84 for a 9400 with less than
four processors) is specified, the computer will ‘‘hang
up’’.

Control Control
Symbols Control Bits
SSmeum- 000 000 000
c
Bit 7 9 13 15
S-um Interpret Sign 1-- 000 wa-
~N-- No Halt on In-Out -1l- 000 —=-
Processor error
~=F- Erase magnetic -=1 000 «-=
tape with all
write orders
-—-1 Use In-Out Pro- === 000 --1
through cessor No. 1
-k through No. 4 -== 000 1--
-7 Use first avail- --- 000 111

able Erqcessor
Exsmples: SS1, SSNz, 8883, SSNE4, SSN, $87

OUTPUT ORDERS

Output orders WRITE data on output devices such
as magnetic tape, high speed printers, paper tape,
punched cards, or typewriters. Each output order
specifies how much data is to be written on the device

specified by the preceding SS instruction, and where
the data is to be found or, usually, where the first
word of a series of data words is located in memory.

GW (s) a,c GATHER WRITE ORDER

00 |[000 000 OO0 OO0 00O
i a

900 000|000 000 OO [l
7 4 c

1 6,7

15 17,18 20,21,22 3

GW causes the input-output device designated by
the previous SS to write ¢ words (up to 511) from
sequential memory locations beginning at a.

NON-INTERPRET SIGN .

In this mode, the sign of C(a) is ignored. The in-out
processor divides each memory word into six 6-bit
units.

INTERPRET SIGN

If SS specifies the Interpret-Sign mode, the In-Out
Processor divides each memory word into seven 6-bit
units. The sign is interpreted and translated as the
first of the seven 6-bit units.

VARIABLE BLOCK LENGTHS

Blocks of different lengths may be generated by
varying the number of words specified when writing
a block. Thus, a 2000-word block may be written by a
sequence of three GW’s of 511 words each, and a
fourth GW of 467 words. The fourth GW sepcifies
that a Block-end (BLE) is written. If the next order
is another GW, and the previous order had written a
BLE, then BLS is written automatically as the first
character in the next block. No other order may follow
a Gather Write except another Gather Write or a
Write Key Order Unless a BLE has been laid down.

WRITE FILES

It is frequently desirable to combine a variable
number of blocks into larger record groups called files.
The programmer need only specify that an End-of-
File (EOF') character be written, in place of the BLE,
by specifying a ¢‘1’’ in bit 21. The Write Key Order
(WK) enables the programmer to make still another
record grouping which is identified by a special key
word.

GATHER WRITE
The Gather Write function enables information

from multiple memory locations to be converged into
blocks. Any number of GW orders may be used to
write a block, and each G'W specifies its own starting
location in memory and how many words are to be
. written. The first GW in a series drops a Block Start
(BLS) mark automatically. A GW of zero words
causes an IMO alarm.
EXTENDED GW ORDER

GW may be mnemonically represented as an ex-
tended order by adding one suffix for each of the fol-
lowing controls in the sequence shown:

as

Control Control
Symbols Control Bits
000 000
8
Bit 16 21
Termination
GWem—
W=~ Write c words without OO0 000
termination magks. c#o
B-=~ Write c words then O=-=- 010
write Block End (BLE)
or Control Block End
(EOC) mark* c+# o
F-- Write c words, then 0-- 001
write End-of-File
(EOF) mark c#o
Termingtion Action
-P- Proceed in sequence 000 O--
unless program
interrupt occurs
then disconnect
-I- Interrupt the Central 011 O--
Processor and proceed
=D- Interrupt the Central 010 O--
Processor and discon=-
nect
-=C Write a Control Block 000 100

Start (BLS) ¢ words,
without termination
marks ¥ c#£ o

*A Control Block End will be written
if the first gather write of the
sequence indicates a Control Block
Start.

Examples: GWWP, GWBD, GWFD, GWWPC, GWBDC

WW(s) ac REWRITE ALPHANUMERIC
ORDER
000 008|000 000 OO0 o} 0000 OO0 OO0 OO0 00O
7 5 < o

1 6,7 15, 17,18 20,21,22 %

The WW order writes ¢ (up to 511) words on the
input-output device specified by s of the previous SO8
instruction. WW must write the same number of
words as were contained in the original block.

WW enables information to be rewritten in existing
blocks. WW starts in the read mode and searches

4-11

forward on magnetic tape until the first Block Start
mark is detected. Thereafter, it performs the same
as the GW order, including all eontrol funections. If
a BLS is not detected, the whole tape will be searched.

WO g,¢ WRITE OCTAL ORDER

900 090|000 000]‘iif'ii"ii'ﬂl'ii"ii'”i'l 000 000 OO0 00O OO0
7_6 ¢ IR o

1 8,7 15 22 36

The WO order is identical to the WOX instruction
except that the input-output device is specified by s
of the previous SOS instruction. See WOK instruc-
tion for details.

WK a WRITE KEY ORDER

el

000 OO0 OO0 000
a

G

¢ “s IS

1 é 25 ¥

WK causes the In-Out Processor to write the 12-bit

key contained in as5-36 On magnetic tape and trans-

fers program control to the next order which must
always be the order GW.

uo oco TIITIIINIINEAL v2-=:e ey

s Kcce 5 d

A Key Control Character (KCC) is automatically
added to the key written on tape, as shown.

KCC on tape: 10110000. The two high order ‘1,0’
bits are parity and control; respectively.

The sign is written as the first of seven characters
if the Interpret-Sign mode is specified by the previous.
SOS.

INPUT ORDERS

Input orders READ data from input devices. Each
input order specifies how much data is to be read from
the device selected by the preceding SOS instruetion,
and where the data is to be placed — usually, where
the first of a series of data words is to be placed in
memory.

SC (s,) a,c SCATTER READ ORDER

008 000 C):QO OO0 OOQ|O00 OO0 000 000 000 00O OO0
7 0]: c s a

1 67,8 15,16 a2 %

The SC order reads from the deviece designated by
the previous 8S instruction. SC reads ¢ (up to 255)
words or blocks or to an End-of-File (EOF) mark.
‘When reading words, if there are less than ¢ words in
a block, SC will cause subsequent blocks to be read
until ¢ words are read. When reading blocks, the
occurrence of an EOF or ETA will terminate the read
order at the end of the block containing the EOF
or ETA.

A number of SC orders may be used to disperse
variable numbers of words or blocks into many sets
of sequential memory locations, each starting at loca-

tion @ of the respective SC order. Data cannot be
read into addressable registers.

In this manner, Scatter Read enables the program-
mer to disperse input data, selectively, to a number
of assigned memory locations. Similarly, words can be
skipped, selectively, by reading in the Store-No-Words
option (see Extended SC Order).

If the programmer wishes to read words of a block
into various memory locations the termination action
should be -- X. Whenever reading blocks or reading
the last part of a block after giving SC--X the option
SC-I, SC-D or SC-P must be used. Another Read
order must always follow SC--X or a Search Key
order. Scatter Read cannot be used with the paper
tape reader.

NON-INTERPRET SIGN

In the Non-Interpret-Sign mode six 6-bit units are
assembled and read into memory as a word. The sign
bit of each word is left positive. The first 6-bit unit
occupies the six high-order bits of a full memory
word.

INTERPRET SIGN

In the Interpret-Sign mode the first of every 7 units
is interpreted as the sign of the word when read into
memory. The next six 6-bit units comprise the data.
The second 6-bit unit makes up the six high-order bits
of a full memory word.

Information is usually read in the same mode in
which it was written. If an attempt is made to read
data in the Interpret-Sign mode when the data was
written in the Non-Interpret Sign mode, every seventh
unit is interpreted as a sign. If a unit which is not a
sign character is interpreted as a sign, the Interpret-
Sign-Error alarm (ISE) will be SET and the 6-bit
unit will be lost.

READ FILES

When an EOF mark is detected during an SC order,
the EOF switch in the Central Processor is SET and
the order is terminated.

If a ““1”7 is placed in control bit 21, an EOF mark
will interrupt the Central Processor. The Central
Processor program control will be transferred to loca-
tions 1, 2, 3, or 4, corresponding to the In-Out Proc-
essor which initiated the SC order.

EXTENDED SC ORDER

SC may be written as an extended order by adding
the following extended suffixes. One suffix from each
of the first three categories must be specified in the
sequence shown, the fourth category is optional:

Control

Symbols

Control

Control
Bits

SCm=mm

Wemm

B

Semm

Kemm

Y -
K

D=
Nem

I

weD=

Y ~

[¢]

Bit 7

Termination

Read Forward and 0
terminate after
E,words

Read forward and 1
terminate after
g_blocks

Read forward and 1
terminate after

¢ words or BLE,
wWhichever is

first

Read forward and 0]
terminate after
next KEY

Word Disposition

Store all words -

Store key words -

jm

Omm a=e

c—— 11~
ee= 10-

(ADC is incremented only for keys)

Store data words -

Store no words -

(ADC 1s not incremented)

Termination Action

Interrupt the -
Central Processor
when the SC order

has terminated,

and proceed to

next order in

Order Sequence.

Tape will travel

to BLE like nor-

mal RAN

Interrupt the -
CPU and dis-

connect the In-

Out Processor

Go to BLE then -
proceed to next

order in Order
Sequence, unless

ce= Ol-
em= 00=-

-1] -

-]lQ ===

00 ===

program interrupt
occurs then dis-
connect

Proceed immediately -
to next order in
Order Sequence.

Used when Reading
Words of a block

into various mem-

ory locations

--X= -0l ~==

Optional Interrupt

Enable EOF -
interrupt

-==F

Examples: SCWAP, SCWAFF

RR () a,¢ READ REVERSE ORDER
000 000 dIOO 000 000 '\”‘“

o

a
1 17,8, 15 2 3

The RR order is identical to the RRV instruction
except that the input-output device is specified by s
of the previous S8 instruection, and e must not specify
.an addressable register. See the RRV instruction for
details.

DEVICE CONTROL ORDERS

The device control orders are magnetic tape in-
structions which initiate or control tape motion.

SK(s)
[eCe @00

6 4

—
1 6

a SEARCH KEY ORDER

Al

000 000 000 ooﬂ
a

il

25] 36

An SK order initiates a search of a magnetic tape
in the forward direction until a key corresponding to
the @ portion of the instruction word is detected, at
which time control is transferred to the next order
in the sequence — always an SC order. If a key is
not detected, the tape is searched until the EOF or
BLE specified by the order is detected. A No Key
program interrupt will occur. If SPI is reset, pro-
gram control will be transferred to location 1, 2, 3
or 4 corresponding to the In-Out Processor which
executed SK.

SK is an optional preparatory order for an SC
order. Data to be read into memory is first located
on the tape.

EXTENDED SK ORDER

SK must be written as an extended order by adding
one of the following interrupt control suffixes to
the basic mnemonic operation code:

Control Conirol
Symbols Control Bits
000
8

SK - Bit 18
B Enable NKY interrupt if 0

BLE is detected

F Enable NKY interrupt if 1

EOF 1s detected

Examples: SKB, SKF

SP(c) ¢SPACE ORDER

[TION T)6 SeNeT o ReTeT)
6 6 |! c

1 6,7,8 15

|

e o

The SP order is identical to the SKP instruetion
except that the input-output device is specified by the
previous S§ instruction. See the SKP instruction for
details.

BS(c) ¢ BACKSPACE ORDER

el

)
1 6,7,8, 15

The BS order is identical to the BSP instruction
except that the input-output device is specified by the
previous SS instruction. See the BSP instruction for
details.

RW REWIND ORDER

000 000 [KiHHT

AL AR

il

1 6 36

The RW order is identical to the RWD instruction
except that the input-output device is specified by
the previous 89 instruction. It also ends a sequence of
input-output orders and disconnects the In-Out Proc-
essor.

PROGRAM CONTROL ORDERS

The program control orders perform a variety of
termination functions.

Program control orders are usually used to termi-
nate a sequence of orders initiated by an SS instruec-
tion.

Program control orders all have the same octal oper-
ation code (63). They are distinguished from each
other by code bits in the ¢ and s portions, as shown
under the deseriptions of the individual orders.

PT(s, 00 a 1/0 PROCESSOR UNCONDITIONAL
TRANSFER ORDER
[1 ool I Y O Q0O OO0 OO0 00O 000
6 3 a
1 6,7 17 0,22 36

PT (or PTU) causes an unconditional transfer of
In-Out Processor control to location @ within the
Order Sequence.

After the transfer the In-Out Processor continues
to execute orders in sequence starting at memory
location a.

PS(%) a 1/0 PROCESSOR ERROR
SENSE ORDER

Q00 000 000 OO0 000
a
q 6.7 17 2,22 %

PS conditionally transfers In-Out Processor control
to the order sequence specified by a.

PS senses the In-Out Processor error controls speci-
fied by the control bits of this order. If the specified
controls are SET, transfer oceurs. If the specified
error conditions do not exist the program continues
in sequence. PS does not RESET the controls.

EXTENDED PS ORDER

PS may be written as an extended order by adding
at least one of the following sense and transfer suffixes
in the sequence shown.

Control Control

Symbols Control Bits
000 000

8
Bit 6 21

PSemw-
0 Transfer to location 101 ---
a if IMO is SET

T Transfer to location 10- 1--

a if TRE is SET

S Trensfer to location 10- =l=
a if ISE is SET

P Transfer to location 10- ==1
a if IPE is SET

Aew~ Transfer to a on any 101 111

eryror

Examples: PSO, PSOP, PSTS, PSA

PR(S) a 1/0 PROCESSOR SENSE AND RESET
i RDER
s> I

]

s a
1 [} 16 21,22 36

PR conditionally transfers In-Out Processor Con-
trol to the Order-Sequence order specified by a.

PR senses and RESETS the In-Out Processor
error controls specified by the control bits of the
order. If the specified controls are SET,.transfer
oceurs. If the specified error conditions do not exist,
the program continues in sequence.

PR is identical to PS including all control func-
tions except that bit position 16 always contains a
zero, whereas in PS8, bit 16 always contains a one.
For extended order options see the PS order.

ST (s) SEQUENCE TERMINATE ORDER
il

el

. 21,22 k'3
ST ends a sequence of input-output orders and dis-
connects the In-Out Processor.

EXTENDED ST ORDER

ST may be written as an extended order by adding
one of the following control suffixes:

Control Control
Symbols Control Bits
000 000
5
Bit 16 21
ST -
D End sequence of Orders 000 000

and disconnect

I End sequence of Orders, 010 000
cause an End-of-Order

interrupt in the Central
Procegsor and Diseon-

nect

Examples: STD, STI

PROGRAM INTERRUPT

GENERAL DESCRIPTION

The Sylvania 9400 System has provision for inter-
rupting the Central Processor Program Sequence
when certain circumstances exist. All program inter-
rupts are under programmer control except those
which indicate an error condition such as ‘‘no key’’
being found within a block or file whichever is speei-
fied by the Read Key Instruction. Either type of
interrupt is automatic and may occur at any time
during the execution of the main program. A special
form of program interrupt, the Trapping Mode, is
discussed under the CENTRAL PROCESSING
UNIT.

A program interrupt can only occur when the Stop
Program Interrupt Switch (SPI) is reset. As soon as
the Central Processor program is interrupted, SI’I
is automatically set. The contents of the Program
Counter (i.e., the address of the instruction which
would normally be executed are placed in the B-
register. An unconditional transfer instruction (TRU)
is formed in the Instruction Register, and, according
to where the program interrupt originates from (cen-
tral processor or In-Out Processor 1, 2, 3, 4), an ad-
dress is placed in the Program Counter. In this man-
ner, control of the Central Processor is transferred
to a specific memory location and the main program is
interrupted. By immediately having SPI set, further
interrupts are therefore prevented until SPI is reset
at the end of the interrupt program. This is nor-
mally done by using a SNR instruction to transfer
control back to the main program sequence.

PROGRAM INTERRUPT CONTROL SWITCHES

The switches, locations and characteristics associ-
ated with the various types of interrupts are shown
in Tables IV-6 and IV-7. Each type of program
interrupt is initiated by an activity switch. Activity
Switches are automatically SET by the circumstances
which cause the interrupt. Program interrupts are
governed by either a decision switch which must be
SET or by a bit being set in an instruction during the
order sequence mode. This decision along with the
appropriate activity switech will cause a particular
type of program interupt. Thus, if the programmer
wishes to permit a particular type of interrupt to

4-15

occur, he SETS the appropriate decision switch (by
a SNS instruction) at the beginning of his program.
If during the execution of the program, the corres-
ponding Activity Switch becomes SET, program in-
terrupt will oceur.

INTERRUPT PROGRAMS

A program interrupt transfers control to either
location 0, 1, 2, 3 or 4 depending upon whether the
interrupt originated from the central processor or
Input Qutput Processor 1, 2, 3, 4. See Table IV-8.
The programmer provides an unconditional transfer
(TRU) instruction in locations 0, 1, 2, 3, and 4. This
TRU will again transfer the program to another por-
tion of memory where the various decision and activity
switches or resultant switches are sensed. " He will
thus be able to set up his own priority within each
group and quickly determine what conditions caused
this interrupt. This condition being found will then
transfer the program where a special interrupt pro-
gram is stored. The interrupt program will normally
resolve the circumstance which initiated the program
interrupt. Wor example, if overflow or underflow caused
interrupt, the interrupt program may perform special
arithmetic operations to overcome the difficulty. Once
the special interrupt program has been completed,
control is normally returned to the main program
sequence.

SIMULTANEOUS PROGRAM INTERRUPTS OR
INTERRUPTS OCCURING WHEN SPI IS SET

A priority grouping scheme is established when
there is more than one program interrupt occurring at
the same instant or if there is more than one interrupt
waiting to be processed. This priority grouping scheme
has been established according to the origin of the
interrupt. Any central processor interrupt has the
highest priority and the program transfers control to
location whenever this type of interrupt exists. Inter-
rupts occuring in the various In-OQut Processors will
be sampled in the order of the lowest number In-Out
Processor first.

STOP PROGRAM INTERRUPT

In order to prevent a second program interrupt
from occurring during the execution of an interrupt
program, a Stop Program Interrupt Switch (SPI)
is provided. Whenever program interrupt occurs, SPI
is automatically SET. As long as SPI is SET, no
further interrupts can occur. Thus, if the program-
mer wishes to allow additional interruption of the
main program to occur, he must RESET SPI at
the end of the interrupt program. This is normally
done by using a SNR instruction to transfer control
back to the main program sequence.

ACTIVITY AND RESULTANT
SWITCH CONTROL

In addition to RESETTING SPI before returning
to the main program, the programmer must RESET
the activity or resultant switch which originally
caused the interrupt. If the activity or the resultant
switch is not RESET when control is transferred to
switch is not RESET when control is transferred to
the main program, program interrupt will immedi-
ately occur again and the Central Processor will
‘‘trap’’ to the interrupt program it just finished
executing.

TYPES OF PROGRAM INTERRUPT

Following is a description of the various types of
program interrupt (see Table IV-T7).

1. Transfer Order Trapped — If the Trappwng
Mode decision switch (TRA) is SET and the Central
Processor decodes a transfer instruction [TS + (TU)
(mg4)’], the Transfer Order Trapped (TOT) switch
is automatically SET. When TOT is set, Central
Processor control is transferred to location 000. TOT
must be RESET by a SNR instruction.

2. Overflow or Underflow — If the Alarm Program
Interrupt decision switch (API) is SET and either the
Overflow Alarm (OA) or the Underflow Alarm (UA)
is SET, the program is interrupted and Central Proc-
essor control is transferred to memory location 000.
OA and UA are activity switches, and must be RESET
by an SNR instruction. For overflow and underflow
control, see Section III, CENTRAL PROCESSING
UNIT.

3. Processor Busy — If all Input Output processors
become busy or if the selected processor is busy the
Processor Busy Activity switch (PRBA) is set auto-
matically. If the Processor Busy decision switch
(PRBI) is also set, and SPI is RESET the Central
Processor program is interrupted and control is trans-
ferred to memory location ‘“0’’. PRBA must be
RESET by a SNR instruction if a Processor Busy
Program Interrupt does occur. If SPI is set or if
the decision switeh is not set and the activity switch
becomes SET, computer operation will ‘‘hang up”’
in Timing Function 8 until one of the processors is
free in the regular order mode or until the selected
processor is free in order sequence. No program inter-
rupt will occur under these conditions. PRBA is au-
tomatically RESET when the processor or the selected
processor becomes free.

4. Device Busy — If the device addressed is busy
the Device Busy Aectivity Switch (DVBA) is set auto-
matically. If the Device Busy decision switch (DVBI)
is also set, the Central Processor program is inter-
rupted and control is transferred to memory location
““0”. DVBA must be RESET by a SNR instruction

if a Device Busy Program Interrupt oceurs. If SPI
is already set or if the decision switch is not set and
the activity switch becomes set the actions described
for Processor Busy occur.

5. End-of-Tape — If an End-of-Tape marker is en-
countered, the End-of-Tape .activity switch (ETK)
in the Processor to which the magnetic tape unit is con-
nected is set., At the end of the Write instruetion the
corresponding activity switch (ETA,) in the Central
Processor is set. If the End-of-Tape decision switch
(ETI) is also SET, the program interrupt transfers
Central Processor control to memory locations 001
through 004 depending upon which Processor re-
ceived the End-of-Tape signal. A maximum of 4500
words may be written on the Magnetic Tape from
the time the ETK switch is SET.

During a Read instruction a program interrupt will
oceur where ETI is set and the BLE after the End-of-
Tape Warning is read.

6. Functional Control Character Interrupt—When
a special control character (see FUNCTIONAL CON-
TROL CHARACTERS) is read in during an input
operation, Functional Control Character activity
switches (CFK) (WCK) is set in the Processor
through which the control character is detected. This
in turn sets the corresponding activity switch in the
Central Processor (FCC,). Coincidence of the Fune-
tional Control Character decision switch (FCI) and
an FCC switeh in the set condition causes the Central
Processor program to be interrupted and control to
be transferreéd to memory location 001 through 004
depending upon which Processor is connected to the
Input device. The FCC switches must be reset by a
SNR instruction.

7. End-of-File — If an End-of-File mark is en-
countered on magnetic tape during a read operation,
the End-of-File activity switch (EFK,) in the Proces-
sor to which the magnetic tape unit is attached is
SET. This in turn sets the corresponding Aectivity
Switeh in the Central Processor (EOF,). Coin-
cidence of an EOT switch and the End-of-File de-
cision switech (EFI) in the SET position causes
program interrupt and Central Processor control is
transferred to memory location 001 thru 004, de-
pending upon which Processor received the End-of-
File signal. The EOF switches must be RESET by
a SNR instruction.

When an EOF is detected during a Scatter Read
order the EFK switch in the Processor is SET and
the order is terminated. This in ‘‘turn’’ sets the EOF
switch in the Central Processor as deseribed above.
Coincidence of the EFK switch in the processor and
the End-of-File decision control bit 21 being set will
set the resultant processor switch EPI. The corres-
ponding resultant switch in the Central Processor

(EPR,) is set when EPI is SET. This switch being
set will interrupt the Central Processor. The Central
Processor program control will be transferred to loca-
tion 001 — 004 depending upon which Processor re-
ceived the End-of-File signal. The EPI switches in
the processor are automatically RESET following in-
terrupt but the EPR and EOF switches must be
RESET by a SNR instruetion.

8. If an Order Sequence Program specified End-
of-Order Interrupt the End-of-Order Resultant Switch
(EOI) in the Processor which is executing the Order
Sequence will automatically be SET when the order
is completed. An End-of-Order Interrupt is initiated
by placing a one in bit position 17 of a Scatter Read,
Scatter Write or End Sequence Order. The corres-
ponding resultant switch (EOR) in the Central Proe-
essor program is set when EOI is SET. The Central
Processor program is interrupted and control is trans-
ferred to memory locations 001 through 004 depending
upon which Processor initiated the interrupt. The
EOI switches in the Proeessor are automatically RE-
SET following interrupt but the EOR switches must
be reset by a SNR instruction.

9. No-Key Interrupt — If, during the execution of
the Order Sequence order Search Key (SK--), the
key word being sought is not found either within a
block or within a file depending upon whether bit 18
is not set to 1 or set to 1, the No-Key resultant switch
(NKY,) in the appropriate processor is SET. This in
turn sets the No-Key Resultant in the Central Proc-
essor (NKR,). The Central Processor program is
always interrupted and control is transferred to mem-
ory locations 001 through 004 depending upon which
Processor is involved. The NKY Switches in the
Processor are automatically RESET following inter-
rupt but the NKR switches must be RESET by a SNR.

RESETTING ACTIVITY SWITCHES

With the exception of the ¢Transfer Order
Trapped’’ Activity Switch (TOT), all program inter-
rupt activity switches may be SET automatically
regardless of the status of their decision switches. For
example, in a program which is not concerned with
program interrupt, a read operation may encounter
an BEnd-of-File mark on magnetic tape and cause an
EOP switeh to be SET. Although the switch will
not cause interrupt at that time, the programmer
may, later in the program, SET the EFI switch in
preparation for future End-of-File conditions. If he
does, without RESETTING EOF first, the main pro-
gram will be interrupted immediately and the inter-
rupt program will be executed at the wrong time.
Thus, it is important that.the programmer provide
for the RESETTING of activity switches whenever

any portion of his program or system of programs
is to make use of the program interrupt feature.

FUNCTIONAL CONTROL CHARACTERS

The 9400 System is capable of generating special
Functional Control Characters for output. It is also
capable of accepting such characters as input. The
primary use of the control characters is to ‘‘flag’’ in-
coming data. If the programmer wishes to carry out
certain operations upon the receipt of specific pieces
of incoming data, he may cause the data to be read
to contain a control character or combination of con-
trol characters. Thus, when the control character is
detected by the Input-Output System, program inter-
rupt may be permitted (see PROGRAM INTER-
RUPT), causing automatic transfer of control to a
special interrapt program.

A control character in the Central Processor is in-
distinguishable from a normal 9400 alphanumeric
character. A control character gains its identity in
the In-Out Processor during output. As the six-bit
character leaves the Processor Buffer Register (BFR),
it has attached to it a parity bit and a control bit.

4-18

Normally, when the control bit is a ONE, the charac-
ter is normal ; when it is a ZERO, the 8-bit configura-
tion becomes a control character. The status of the
control character bit depends upon the mode in which
the computer is operating.

To cause control characters to be written, the pro-
grammer must SET the Write Control Character
switch (WCC) prior to initiating an output opera-
tion. WCC is sensable and may be RESET by Sense
Instructions. Once WCC has been SET, the computer
operates in the Control Character Mode and all char-
acters output by following output instructions will be
written as control characters.

During input operations, incoming data containing
control characters may cause program interrupt. If
the decision switch FCC is SET, detection of an in-
coming control character in any Processor will cause
program interrupt and transfer of control to the
appropriate memory location. In this manner, the
programmer may use control characters to call the
attention of his program to the arrival of important
data.

adoj >yaubo 104 ajqp] [puoypIddQ

"L-Al 31981

[jtun ade) spummay

109)39 OoN

) Jumrwisuedy-uoN | Surprwisues}-uoN | 199§ oN amy
Sy JIewW 21 JO pud ay} Sururejuod JI0[q .uims%odmsmumoﬁ
ay3} jo Suruuidaq oy} je 3saJ 0} sawod ade; ayy §se 03 Pis 0
‘syJdew JIJ JO pua JO }3s yoea J0j padedsydeq ‘9AIS
Pajunod sI 21 BuQ °SYJIBW YO0[q }IB}S JO -nout $3TF SS2
138 ydea J0j padedsydeq pajunod S YO01q UQ o3 dn sacedsyoeg 1 Bumjrwisueay-uoy | Sunyiwsueaj-uoN | 109552 oN dsg
asEDS 191 . .,Avw.no:mw 3.1e *3ATSTIOUT SYO0Tq
O J333e] Y} UT SYJIeUW JOO[q pus3) syaew & o1 dn odis
3 JO pu? jo }9s yoea xoj paddiys pajunod s1 §se o1 sdpis 0
91} 3uQ ‘S)JeW S pPud JO SYIBW HDO[q pua *9ATSNOUT SaIJ
Jo 13s yoes Joj paddpis pajunod ST Yd0[q 3UO GGz 01 dn sdiyg 1 Butnrwsueaj-uoyN | Surprwsueai-uoy | 309332 oN as
"y18uag
pJIOom U0 UTYITA
}o01q Teurdio
3y} Ul sIajoeseyd 9 Y
Jo Jaqumu 3y3} 0}
Tenba saajoeaeyo
*JI9pJIO NVM Y} UT SB SjIew Jo Jaqumu [e}0}
}o01q 9y} doap ueyj Jayjed syIewW }o01q Sutu ® 9q }SnW I9A3 Aruo
-utdaq J0] saYOIeIS 31 ‘panoaxa usaypy -odey -MOy faAISnNIoul 2 jo anyea
® UO UOIJBWLIONUT JO Y0O[q & aoe[dal o3} pasn spaosm 1]1¢ o1 dn S109]1y NVAM se aweg L 1 vMAM
NVY se aureg 0
NVYY se sweg I 9 0
‘premio} Suipeaa Jr se LIowawr
OjuT PEII AIe SIJOBIEYD YL
*UOTIOSIIP ISJIIA3L UT NVvY se sureg 0 ‘UOT}OSIIP PIEBMNOEQ B Ul SSAOUWI
saaow ade} putw ut deay 1deoxa NyYy Se aweg NYY se aweg 1 peay ode} 1dooxs NyY se sweg L 1 AY¥Y
“aAISNTOUT
-peax spaom ¢gg o3 dn 0
ud9q 9ARY SYO0[q JO SPIOM I JOU JO JIYIdYM *9AISNIOUL
£1ajerpaww 25e20 (14 Surpeax ‘persadaajur s}o01q g6z o1 dn 1 NVM se aureg 9 0
aJe syJew OIJ Jo pua Aue JJ ‘paoulr aae . S
s)yJew }OO[q JO Pud ‘}OO[q UT SPIOM JO J3qUInNU zom oATST dn
< SpIom Y J] "}OO0[q 9y} ul SpIoM JOo J3qunu sp §6g 91dn 0
>SpIom Y JI ¥O0[q Jo pua 03 s3se0) -Sulpeaa *9ATSTI[OUL
aJ10jeq JJBW YO0[q jo SutuurSaq JOj SIYOIBIS s¥}o01q ggz 03 dny 1 ‘NVM Se aueg L 1 NVY
‘parj1oads aae SpIom OJ9z JI JUIISIS ‘udts 8utaoult ynq saoqe
-uodul S "SYJIBW YO0[q JO pud fensn adeidax Se papJodal SI3J0eJIRYD }Iq-9 XIS 9 0
syIewW 371y jo pus ‘19s s1 doyy dI1y JAM JI £quo "ISJI13 PapI0ddT 9g-1¢ S$31q Yim
*PRYSIUY UdYM SJIeW ¥O0[q SUIjeururiaj os(y *2AISNIOUL 9 jo anyea pJIoM JO sIajoeaeYD 3Iq-9 XIS Aq
"8utuurdaq 210j9q SYIBRUW JOO[q [ETIUT SIITIM spaom [1g o3 dn S10953y | pamoroy uldrs I910eIRYD JIq XIS ¥ L I NVm
SIUDWWOYD) JI3YIQ mndino NVY 2an1onJ1g pIom pIom Iad dorg ditg J2pIQ
Jo nduj o L3ig 538308J8YD O § NSI

Jo unowy

4-19

adpj Jadng 104 8jqp] [PUOyDIAdQ ‘Z-Al 9|9P]

‘pagouft aJge

pue SJ9}0BJIEYD JUSWWOD,, Pa[ed
aae Loy} spaom uaami}aq Jeadde
SJI930BJIEYD 9jeWIFS[-UoOU Yons
USYM “pPJIOM B JO S[PPTW Ayj ur
sxeadde ,), ydnoays ,,0,, UeY} I3Y30
Jd930BJEYD ® IT [IE] [[IM OSTY 319y
L1dde osTe JJOM JOJ SJUBWIUIOY)

‘pagajunod |

-ua ST 40D dO.LS
® TIjUN IO ‘IATSHTD
-ut spaos [1g 03 d)

£1uo o jo
anyeA S109JFY

‘paom e [}

03 s3131p Te300 g1 £q
pamorro; y131p uldls ayy
0} P3}IaAUOD ST UOT}
-eandtjuod 3iq-g yoeq

1JI00

30d

‘pajaad

-Jajur A[redrjewoine s1 uSts ayl,
- JINSI JI0j pa3u ON ‘parjIoads
3J® SpJOM OJ3Z JT JUIISTSUOOUT ST

*AATSNTD
-ut spaom 11g 03 dn

£quo o jo
anfesa s309j1y

‘ade} uo uotjyeangiyuod
319-9 juareaInba o3
pa23I2au0d ST 331p (100
yoed sydip 1€390 21
Aq pamorro} N8P udis

1100

p(0;}

*J9j0.IBYD

J9yjo Aue st se LJowaw ojul pead
ST HA0D dOLS UL "pajeururiaj
3q T[% J9p.JO0 3} USY} pue SOJIdZ
YItm PaTIl 99 T[4 pJIom 3Isel ay}
JO s}1q J2pJo mol a3y} ‘Aressasau
JI saejoeaeyo Jo Jaqunu Lue
J933e anodd0 Lewt FAOD dOLS 24l

*Lrowrawx

OjuT peaJ JOU ST J1 pue ‘pIOMm T[N}
® J9jJ INDD0 }SNW 3} “WLIB[E

O-] ue ST 3JI9Y} ‘pIOM e JO 3P
-pPTW 3y} ur sandd30 HJOD dOLS I

*sJsjoeIRYD CgGZ 01 dN)

‘paJIajunodua
ST OO dOLS 11Ul

*paJgajunodua st HAOD

dOLS Tr1un I0 JATSA[D
-ut spaom [1g 03 dn

Ktuo 2 jo
anfea S109J1y

‘0 ST pJom JO 1S9y
‘uotrjrsod J3pJO MOT Ul
JajoeJaBYD }Iq-9 JUQ

ddV.L DILANDVIN
uo NVM SE aureg

AdVL DILANDVIA
uo NYM Se auleg

NVH

‘parjroads
9J® SpJIOM OJ9Z JT JUIISTSUOOUT ST

*AAISNTO
-ut spaom [1g 03 dn

Lfuo o jo
onyeA s109j5y

ddV.L DILINDVIN
uo NYM Se aureg

Nvm

sjuawIwo) I3YyiQ

mdinp Jo
nduy jo junowry

NVY
101 1ug

2IN30NI}S PIOM

SJI310BJIBUD IO "ON

dorg-drg
N QT

NS

I3pIQ

4-20

ysung — 13ppay piD) 10} 3jqp} jouoypiadg °g£-Al 2JqP)

L g o} MO Yoed jo
-£IowIaW O}UT SOJIZ SE pPeat dJe -ur paoIoj (z ‘1 suoryisod) I1910BIBYD }ISJITJ Y3} 0}
smol Yuelq [V ‘A1eA1I09j)2 apowr sTy} aATSNIOUl skemre paoppe aae o011 s1181p ayl °paed ay}
asn 03 Jopao ul Lressaoau st , Sulpped,, spaed ¢gz o3 dn ST 9UO Y uo auty 1 a1ad Lrowour jo spiom ¢/1 g 9 0
L g o3
‘urIe[e JoJJa ue aq T[Im -ut pasJaoj
Iy} ‘aSIMJIAYI0 (QOQTT = }SnW £H-6€ aA1SNOUT sfemre
suwn{od ‘g = }SNW pIed U0 [UWniod spaed ggg 03 dn ST 9UO Y 2A0Qqe NVM Se awes L 1 NVY
g ‘1 suon}
‘SpIoMm £Luo -1sod ut paoerd pue paddials ST mol
8Z °.° ‘yoea SpIOM £/] g ‘smod ZT ure} SATSMIOUT | O JO anfea | Yo®BA JO JLSIDBJIEYD }SJTY YL PIEO AU}
-uod ued paed yoea 3dadxe saoqe se aweg spaom 116 o3 dn S10913Y¢ uo aurf 1 aad Lrowrawt Jo spaom ¢/T1 2 9 0
*paed jo 08-g¥ suorisod
*11 J0J @[qe[leAe SI ejep Ul pIOMm puodas Jo apnjtudewt ‘pIed
JaAareym Uitm payound aq [[Im paed isel JO pp-6¢ suoryrsod ur paIom puodIs Jo
9y} ‘spaed jo Jaquinu [eldajul ue amg udig ‘paed jo gg-¢ suonisod ul piom
~-13SU0D j0u s20p paydund aq 0} spIom Auo 1581} jo apnjrufew ‘paed Jo g pue [
JOo Iequinu Ay} JI ‘SpIoM §Z 7 ‘Yyoed aATSMOUI | O JO @njea suotytsod UT paom }sJi jo udig pIed
SpJOM g ‘SMOI Z] UTBJUOD UBD pJIEDd Yorlg spaom T1g 03 dny S1093Y7 ay3 uo aury 7 Jod Lrowraut JO SpJIom g) 1 NVM
sjudwwo) I3y indinQ o ndug ng 21njonJalg pIom pIom I9d4 dotg-dita JI2pa0
saajoeIeyD ‘ON NSI

JO unowry

4-21

1ajurd aui] Joj ajqoy jpuoypsadQ ‘p-Al 3jqD]

“lunwIxXew aull 13d sI9joeIBYD (ZT SY3 ITWII[JOUUERD
1T ‘Te300-uoU ST J9}0BIBYD UINISI TeraIEd ® aouIg

‘aury aod

SATSNOUT SJID}OBIBYD Luo
ATuo apow 021 03 dn ‘aarsniour O jo anfea JI931TIMOXIT g
12993 SUIT dTjBWOINE,, 3y} Ul AJ9A1}09]J9 pasn aq ue) spaom 11¢ o3 dn $109J1y 9yl UO JJOM S® dweg €1 0 J0 SIOM
*aoerd
3)®E} jou S20p 109332 J1ay3 pue s[ocws anbrun se
pajutad sae Surjurad dYy) JO }BWIO] 9Y) [OIIUOD yotym
SJa310eJIRYD 9504} ° apows jnojutad WIIBQJILA,, Y3 UJ “our] aad
-out] ot} 9ATISNOUT SJa3}deIeyd Lyuo
: dn ‘sarsnyour 9 Jo anyea J931IMOXI [
Bunjutad aao0jaq paj oq 03 saur] Auewr moy satjroads 0g1 % R : :
nq pajutad jou st aur] uaalf Aue uo JaldeIEYD sp2om 115 03 dp Siospv °U3 WO NVM se swes L 0
31q-g 3SJI1y 3y} ‘spowr | pasy aul] pawweaSoad,, uy
sout] aad
‘pajutad SATSN[OUT SJI3}0BJIRYD L1uo
9UIT Yoea I3)je (pueyalojaq payyroads) spaay aury 021 01 dn ‘aarsnpout D Jo onyEA I3]TIMOX3T
OMm} IO JUO 3J® 28I} ‘Bpowr , paaj aury dnewone,, ur spaom 171¢ o3 dpy S10/3Y 93U} U0 NVYM SE 2ureg L 1 NvVm
SIUBW WO IYIO mndinQ JOM 10 NVM 2an3oNJa1S PIOM pIom J13d dorg-dirg J9pJIQ
Jo junowry Jo L vd SJ9j1deJIRYD °‘ON NSI

4-22

19jIMOX3[4 10§ 3|qD] [pUOHDIADQ “S-Al 99D L

*SUOT}ONJI}SUT
SIOM pue NVM jo asn Sururquiod £q
2WI0DJI3A0 aq ABW UOTIOTI}Sa STY,L
-zaded ay3 uo uorjrsod jutad jser aul
uo pasodwriadns aq [[IM SPIOM ¥
Sururewrad YL “LIT = £1 X 6 ‘6 <
2J9M Y JT 2J0J3JI9YJ, °J3}0BJIBRYD

*ATSTITOUT SpJIOM
6 03 dn ‘A[resrnIoeag

*(S1930BJIBYD [B}OO0 SE
pajutxd) pJIom Jo SI9}0®
-1eyo 31q-¢ g1 Aq pamog

uanjat aferaaed 31q g e £jroads 03 *3ATSNTOUT SpPJIOM TTG £uo 2 jo -10} (2UO IO 0J9Z ® SB
Lem ou ST 213y} ‘JOM Sursn uaym o3 dn ‘L[Teo139409Y,], enyea spopy | pajutad) xajoereyo udis y el 0J0 1 SIOM
‘pargroads *3ATSNTO Aquo o jo ‘udts
3JE SPIOM OJIZ JT JUIISISUOIUT ST -ut spxom 1ig o3 dn anyea $19953y Suraoudt aaoqe se awreg 9 0
‘uotytsod jurad jsey ayj ut
J9y3j0 yoea uodn papasaadns aq jou
1IIM SJI930BIBYD JBY} OS I3}0BIBYD
uaniax ageraaed B aq }SnW 2I3Y} *}1SJ1J papIodad
(SSa1 J0) sa930eqeysd pz1 AI1aAd 9g-1g S1Iq YIm (SI93
‘suorjrsod paJIsap JIay} ur (039 -oeJEYD OtIswnueydre se
‘9seO Jamo] ‘ased Jaddn ‘soeds) Bur pajutad) pIom JO SI3}0®
-jurad jo jewrIoj ayj [OJIUOD YITYMm -JeyD }1q-9 XIS £q pamor
SJI910BJIBYD 3soyj] 2q i}snwt pajurad *9AISNTO LTuo 3 jo -10} (dUO IO OJ3Z B SE
2q 03 BlEp 2Y] yim pardurwaajuy -utr spaom 11g o3 dn anTeA 10953y | pajutad) aajoeaeyo udis y L I NVM
SLWWOD) JI9YI0 ndmQ jo junowry JIOM J0 NVM 2an3oNa31s pIOM pIOoMm I9d dorg-dir g 19pIQ
jo Lnd saajdeIRYD JO "ON NSI

4-23

saydImg Josjuo) jdnusju] wniboid ‘9-Al 9|qD]

_ % x x 1dnaasju] weadoag dois 1ds 0910

% _ X X paddea], d9paQ Jajsued, LOL LST0
$-1dOI I910BIEYD

- - x x 1023U0D TEUOnOUNG PERY | . DD | $ST0-18T0
ydnaaajut

X - X x JI910eIRy)D TOJIIUOD [BUOIIOUNT DA 0ST10

- - x x jueinsay £93] oN TH% LY10-%%10

_ _ % X jueynsay weidold srqeusy w-ﬁam €F10-0%10

x - x X 1dnaaaju] werdord wIery Idv 9€710

x - X x oseqd ade], dad.L GEI0

_ _ % x WIe[Y MOTjIapuf vn ¥e10
$-1 I085900ad O/f1

; . x - ur g4 Wlery yno-ul -1 VOI | £€T0-0£10

x - X x 91-6 yormg asuag | 216141 1210-0210

x - x x 8- T UYOIIM§ asuag 8-T3as| L110-0110
J0JIH JOSS3aD0IJ

X - X X nQ-uj uo 1oJIjuo) }TeH ON dHN €010

x - X X usgtg j1eadaaiug NSI ¢oto

- - X X WJIBTY MOJI2A0 VO 0010

) . x x waery £sng Jossadoid “vaad 1200

- _ x x 1dnaaaju] Asng Jossed0dd Tgad 900

- - x x juB}[NSaY I9pIQO PUH w-~m|0m. 2L00-5L00

- - X X waely £sng aomaQ v€Ad 1.00

- - x X ydnaasiu] Asng 8014sd 1dAd 0400

- - - - 20143 INQ-Ul L900-T1000

300 | Arejudwon weadoag £q | wreadoag £q uonidraosaq apoD | (1e100) w

31qEYIIIMS | 9IqeydIIMS | 39s9Y 2q ued | 39S 2q urd
a1osuo) atosuo)

4-24

saydpimg Josjuo) jdnusjuj woiboid ("p4uo)) 9-Al ®|q9Pl

- - X X ﬂTH.HHOH waely 31td 3o pud w-dmom LLTO-%LT0

- - X X 5~ 7dOI WIEIV adeJ, jo puld - VLE | ELT0-0LT0

- - x x 1930'JRYD [0IIUOD ILIM o0oM L910

- - X X 9114 JO PUH ATIM JHIM 9910
(3dnaaaug o1
Teustg o114 JOo PUH MOTIV)

- - X X jdnaaaiu] o1d 3o PUd 143 2910
(3dnaaaiug o}
reusdts adel Jo Pud MOTIY)

- - X X ydnaaeiu] adel, Jo pud L™ 1910

yoory § LAxejuswWonN weadoag £q | weadoad £q uorydiaosag apo)d | (18300Q) W

91qeyUIIIMS a1qeydlmg | 1959y 2q uep 19§ 2q ued
a10sU0D arosuo)

4-25

suoljipuo) jdnirsjuj wpiboid “/-Al 3jgDJ

X3IN 4q 398
3N 81 11q uodn
Surpuadap yo01q
J0 971} ® UIY}IM
Po10219p 10U L93] I3paQ A93] yoaeag - -
I0d 4q 198 (SH 10 231aM I0 pead)
q04 104 aNdg ("'9) --- ---
Idd £q 3188 2 SMAHd £q 198
ddd + (10d) (Id4d) Idd MAH (28) Aﬁ S) J03H JICH
SOM ® MAD
£q 198
(DD4) (1D4) --- (3IOM) (314D) --- 004 ID4d
LY
£q 198
(Vd) (I1d) --- LA --- vVid JARCH
(VvAdQa) (19AQ) vaad 19AQ
Asnq
S1 J0SS920dd
pajoates JI
£snq s1 J0 Asnq age
Jossaooad pajos SJI0SS9201d
-19S J1 J0 £sng 1€ JT 388
(vdayd) (19484d) S.10s89004d 11V vddd 1949d
(VA + VO) IdV --- --- --- V1 10V0 Idv
(Fes)
LO.L --- --- --- (NL) +SL vyl
(39s9Yy aq 3snu 145) juelnsay f1an0y uoIsIoa(g £11a130Y uoIs109(1

SUoI}TpuUO) jdnaaaiu] weadoad

Jd0889004d InQ-ug

JO0SSadoJdd 1eaIjua)

4-26

Central Processor Interrupts ----

Transfer Order Trapped -

Overflow or Underflow

Processor Busy

Device Busy

Location 0 (Group 0)

TOT
API (OA + UA)
PRBI (PRBA)

DVBI (DVBA)

Input Output Processor i Interrupt =-

Functional Control Characters
End of Tape

End of File

End of File in Order Sequence
No Key in Order Sequence

End Order Interrupt in Order Sequence

Locationi (i=1, 2, 3, 4)

FCl (FCC)
ETI (ETA)

EFI (EOF)i

EPR'
NKR'
EOR!

Table IV-8. List of Program Interrupt Locations

4-27

SECTION V
INPUT-OUTPUT DEVICES

INTRODUCTION

The 9400 System may have up to 64 input-output
devices attached to it. Bach input-output device may
be connected to any In-Out Processor, of which there
may be a maximum of four. As many input-output
devices may operate simultaneously as there are In-
Out Processors, and in parallel with the Central
Processor program.

Following is a generalized description of the major
input-output devices included in the 9400 System
repertoire. For details concerning a particular device,
refer to the appropriate INPUT-OUTPUT EQUIP-
MENT MANUAL.

MAGNETIC TAPE UNIT

A magnetic tape unit consists basically of a fape
handler which supports and moves a band of magmnetic
tape past a set of read and write heads. The magnetic
tape is contained on reels of up to 3600 feet in length
and is normally one inch in width. Information is
recorded on magnetic tape in the form of magnetized
“‘spots’’, each spot representing a single bit. See
figure V-1. A single character, consisting of six data
bits, a control bit and a parity bit, is written across
the tape, as shown. Thus, a computer word on mag-
netic tape is made up of six (non-interpret sign) or
seven (interpret sign) 8-bit characters written se-
quentially along the tape. Information is always re-
corded on magnetic tape in an integral number of
words; it is not possible to write (or read) part of a
word. Parity is computed when the tape is written
and checked when the tape is read. A parity error
during a read operation will SET the In-Out Parity
Error Switech (IPE) and cause the In-Out Alarm
(IOA) to be SET. Odd parity is used on magnetic tape.

On magnetic tape, words are grouped into blocks.
A block may consist of any number of words (when
written in the Order Sequence Mode). Each block is
preceded by a special Block-Start Marker (BLS) and
followed by a Block-End Marker (BLE). In turn,
any number of blocks of information may be grouped
into a file. An End-of-File Marker (EOF') is written
at the end of the last block in the file. End-of-File
detection may be used to cause program interrupt (see
under PROGRAM INTERRUPT, INPUT-OUTPUT
SYSTEM).

In Single Instruction Mode write operations, BLS
and BLE markers are written automatically, since
only one block may be written for each instruction. In

the Order Sequence Mode, the programmer has the
option of writing BLE markers, so that he may write
a block of any length. An EOF marker is written by
SETTING the Write End-of-File switch (WEF
prior to the write operation. In Single Instruction
mode, WEF is SET by a SNS instruction; in Order
Sequence Mode, it is SET by employing the appro-
priate suffix with the Order Sequence Order. In either
case, it is RESET automatically following the opera-
tion. Detection of an EOF marker during a read
operation automatically terminates the operation.

Each reel of magnetic tape has a special End-of-
Tape marker (EOT) approximately three feet from
the physical end of the tape. When an EOT marker
is detected, the End-of-Tape Area activity switch
(ETA,) in the Processor to which the tape unit is
connected, is SET. All Processor operations halt upon
completion of the block currently being processed. If
ETI is SET, program interrupt will occur. The only
exception is during a skip operation, which will termi-
nate upon detection of an EOF marker.

Following is a list of instructions and orders which
may be used with magnetic tape; for specific details,
see under the appropriate instruction or order:

Single Instruction Mode: WAN, WWA, RAN,
RRV, SKP, BSP and RWD; Order Sequence Mode:
GW, WW, WK, SC, RR, SK, SP, BS, RW and ES
orders,

PAPER TAPE EQUIPMENT

The 9400 paper tape equipment includes a photo-
electric tape reader and a Teletype punch. Paper
tape consists of a narrow strip of paper containing
rows of up to eight holes punched laterally across it
(see figure V-2). The format is roughly equivalent to
that for magnetic tape, in that each lateral row repre-
sents one 6-bit character. The two extra positions
contain the control bit and parity bit, respectively.
Parity is computed and punched automatically upon
output and checked during input. Even parity is
used on paper tape. In the event of a parity error
the TPE activity switch is SET, and an In-Out Alarm
(IOA) will result. A hole in the tape represents a
binary ONE ; the absence of a hole indicates a binary
ZERO. The 9400 is also equipped to accept 5-hole
paper tape, but in the non-interpret sign mode only.

Tt is possible to write out and read in an integral
number of words on paper tape, as it is with magnetic
tape. By using an alphanumeric read operation in

5-1

{pwiog ado | ayauboyw

“1-A 306y

SHUVW %0078 40 LyviS

=

ONJIVdS
Qv3H

O © O wH O HO

I© © HWo H oo

O O O - O « ©

|
|
|
|
|

.

HFO H A OO -

A O HAHOH O

SHYYW %2079 40 QN3

dv¥3 %0018

* 0 o * o ® o T T 0
L * & o o O O ﬁ
® o o ® & ¢ o Tt 0
* e ® e o s o 00 T
s s 0 s e o o 17T 0
« o 0 5 & e o TT 0
e o @ e« 2 o o 00 0
L s o o 11 .ﬂ
o o e o ¢

L] s e o

* o . * e o

LY e % e o

vivd NOILOW 3dvl

vivad

9T A3lded
ST
113
€7
Zt
113
ot ¥20|2d
6 %2019
8 4200
L 420|2
9 A3jded
S
f
€
4
T

SHIVYL

5-2

non-interpret sign mode, information may be read as
individual characters. Paper tape contains no provi-
sion for BLS and BLE markers. A stop code (STP)
may be used to terminate paper tape operations.
‘Whenever a STP code is encountered in a read opera-
tion, the operation is terminated and the End-of-File
activity switch (EOF,) in the Processor to which the
paper tape device is connected, is SET. If EFT is also
SET, program interrupt will also occur.

Octal input-output operations are permitted with
the paper tape equipment. Octal input and output is
always automatically carried out in the interpret sign
mode. Fach word in Memory can be outputted as
thirteen octal characters, including sign. Between
octal words on paper tape, the programmer may insert
non-octal (i.e. alphanumeric) comments, which are

ignored when the tape is read in octal mode.
‘When a control character is detected during an

alphanumeric read operation, the operation is imme-
diately terminated.

Following is a list of instructions and orders which
may be used with paper tape equipment; for specific
details, see under the appropriate instruction or
order:

Single Instruction Mode: WAN, RAN, WOK, ROK,

Order Sequence Mode: GWW-, WO, and PT.
ELECTRIC TYPEWRITER

An electric typewriter is used with the 9400 System
as an output device for producing hard copy on line.
It also includes a paper tape punch and paper tape
reader for generating and verifying paper tapes for
input to the 9400 System through the photoelectrie
paper tape reader.

The electric typewriter accepts both alphanumerie
and octal outputs. In addition to printing normal
alphanumeric characters, it responds to function char-
acters; such as carriage return, upper case, lower case,
and tab. See APPENDIX @, 9400 ALPHANU-
MERIC CODES. By proper use of the funetion
characters together with the printable characters, the
programmer may produce any desired output format.

Alphanumerie output to the electrie typewriter may
be in either interpret sign or non-interpret sign modes.
Octal output is automatically in interpret sign mode,
and thirteen characters are output for each computer
word. No function characters may be output in the
octal mode.

The following instructions and orders may be used
with the electric typewriter; for specific details, see
under the appropriate instruction or order:

Single Instruction Mode: WAN, WOK: Order
sequence Mode: GWW-, WO, and PT.

*Not to be confused with functional control characters of
magnetic tape unit. They are handled the same as any other

characters when reading but are used to control the electric
typewriter or line printer operation when writing.

HIGH-SPEED LINE PRINTER

The high-speed line printer is an output device
which prints information one line at a time, up to
120 characters per line, at a rate of 900 lines per
minute. The output produced is hard copy on multi-
ple-copy fan-fold paper. The format and mode of
operation is controlled by plugboard, switching, and
program control.

The 120 characters per line may be printed in any
configuration spread over 132 character positions.

The line printer operates in three modes, according
to a mode switch setting: Automatic Line Feed, Pro-
grammed Line Feed, and Verbatim Print-Out. In
Automatic Line Feed, the printer automatically single
or double-spaces following each line, according to the
setting of a single-double space switch. In Programmed
Line Feed, the number of lines to be spaced is de-
termined by the binary value of the first character
sent to the printer at the beginning of each line. In
Verbatim Print-Out, the printer accepts and prints
every character sent to it, regardless of whether or not
the character normally has a control function.

In modes other than Verbatim, the printer inter-
prets the characters sent to it as one of two types:
function characters, such as carriage return, tab, and
stop code; and printable characters, such as those
normally printed on the electric typewriter.

For alphanumeric output operations, the line
printer may be used in either interpret sign or non-
interpret sign mode. For octal output, interpret sign
mode is automatically selected. Since function char-
acters ecannot be output in octal mode, octal output
should normally be used for octal-type dumps in
Automatic Line Feed Mode.

The line printer contains a buffer memory capable
of storing 120 alphanumeric characters. Information
sent to the printer is accumulated in the buffer until
it is full, or until.a function character terminates a
line. As soon as a line is printed, and if the printer
is still eonnected, the buffer accepts new data and
prints the next line. It is possible to shorten a printed
line through programming except in Verbatim Mode,
as above, by including in the outgoing data the alpha-
numerie character for carriage return or stop code (see
APPENDIX G, 9400 ALPHANUMERIC CHARAC-
TER CODES). A carriage return automtically causes
a line to be printed, regardless of its length. A stop
code produces the same effect as a carriage return,
excepting that after printing the current line the
printer automatically feeds to the top of the next page
and stops. Following a stop code, the printer halts
and must be started by depressing the restart button
on the buffer. The stop code is useful for calling the

5-3

sjputo4 adoj Joadngd "Z-A 21nbBi4
100 HJALHTHL*

ddV.L HddVd HdVL 9ddvd
dIaoD =Loanvd dadOoD DIYEINANVHATVY
TTHNNVHD ¢ "THNNVHD 8
3000 4018
. t
o o °
° °
100nvg (@ @ © e ﬁ e e e ¢°o o J—(.—-mo
ONI J ¢ o0 o ® & o 53,
- - 74, v e ©
-AdINOIS| S L TR e o) dowvdiani
¢ SII8 S le o ¢ o o h e o o TOYINOD
v L e o o ALI3Vd

'SLINA HHIDYVT O,H_ZH SHHLOVIVHD UdIAIA
QOO dOLS "SdVD dHILVIDOSSV HO mmmw:,m ‘30019 ON SVH “A"INO
SV NCILVIWYOCJINI SNIAYYVD A9 HdVI SLLINDVIN WOHJ SYHAAIT

K &
A
B
wn
s}
w0
o
O

TANNVHD § ANV TINNVHD 8 ‘ddVI HAdVd

5-4

(9P0) YilI2||oH) PID) Young “g-A 910614

-

IR AR LA

Y BT 7 A
66666666666

P UIDD RS 6 15 % 56 06 15 7S 15 00 60 v [y 9 Sy v Th v te Ow 6C B (T 8 SC¥C (20 1T BZSI(ZASINLIILIOLG B N UM NS SIS Tt

333530900 o
666666666666666666666666666666666666 66Bc6666666M66666666M6666666686

easacssesssosseeasocseensssaassssssBRNENcRBscHssssssofesssessclossssaschessonsss
prtteterecerereeeereeceteeepeeecececceeerteestBuoeerneBeeeeceneereeriiilaeeinst
999393399999999999996555999999999999999999999393099999959099993999H999999390H999338
£CCCEi66666666666666666666656666666556555sssssscMsescsssMsssssssslssssssssfsssss
S N S LTI I I S 22 222222 8] RAAAA0AA1 AR/
mnmmMnmn”nnnnnmmmnnnnnnnn”"nmﬁmnn«nnm-m-mn-”nnnmnn-nnnnnnn-nnnnnnmn-"nn"nﬁﬂn-nnn
rzzziiiiererrzzizzezeeeeeeezzezeeeceezeezzeeeeeleeeazzleneezaneeeezzehel
SNSRI NNt RNt RN RNl [N NN NNUNRNANY IERURNERY IRRRRARR! §
Ber NN QLU :ea..ﬂn.!ﬂ&ﬁ&5333339322.n_mc-:qo-....:n:-SSSR:.hnnznﬁ_nﬂtnztﬂzzzzam.::-.a.-.n.n.:o.- L3S N
00000000000000000000000000000000000BoocoooofBRRENNRNoo00000000000000000000000008
] | 1

1T s
)«$(+-=/ZAXMANLSYOJONWINIIHO3IA)EV68LISHELLO

5-5

attention of the operator to the printer for special
instructions.

External format control is provided through a
Juxtaposition plugboard. The Jjuxtaposition plugboard
is the link between the output of the buffer memory
and the print hammers in the printer itself. The plug-
board contains 120 patch cords which enable the
operator to invert, space or reorder, in any fashion,
the order in which the characters are printed for each
line.

An additional plugboard, containing sixteen num-
bered plugs, allows the program to initiate tabulate
operations. By selecting numbered plugs and arrang-
ing them in ascending order from left to right in the
plugboard, the operator sets up a tab system that is
directly analogous to that of a typewriter. If the data
sent to the printer contains a tab function character,
the printer automatically tabulates to the position in
the printed line indicated by the numbered plug. A
later tab function character in the same line will auto-
matically cause the printer to tabulate to the next
numbered location as specified by the tab plug.

The sixteen plug in the tab board is an end-of-line
indicator. Normally, this space contains the plug
numbered 121, i.e., one greater than the longest pos-
sible line. If the operator wishes to shorten the line,
he may replace the last plug with a lower-numbered
one, for example, 73. When this is done, the effective
length of the printed line is shortened to 72 charac-
ters. Thus, if 72 characters are received by the
printer buffer, or if a sixteenth tab funection character
is received, the line is automatically terminated and
printed out.

The following instructions and orders may be used
with the line printer; for details concerniig them,
see under the appropriate instruction or order:
Single Instruction Mode: WAN, WOK.

Order Sequence Mode: GWW-, WO, and PT.

PUNCH CARD EQUIPMENT

Punch Card Equipment for the 9400 System in-
cludes an electromechanical card reader and punch.
It accepts standard, 80-column punch cards, as shown
in Figure V-3. The cards are read and punched 12-
edge (upper long edge) first. They are processed in a
card ‘‘cycle’’ consisting of twelve inerements, one
for each row on the card. In order to convert input
and output information between card format and
9400 character format, a card buffer is provided be-
tween the eard equipment and the 9400 System proper.

In the alphaneumeric read mode, each card is proc-
essed as a unit, e.g., the contents of an integral num-

ber of cards is read into memory. When the interpret
sign mode is used, twenty-four words are read per
card, two words per row, from the first 74 punch posi-
tions of each row. In this mode, punch positions 75-80
are not used. The card ‘‘image’’ produced in Memory
consists of twenty-four sequential words, containing
the information on the card as follows: Row 12 left
(first word), and 12 right (second word), Row 11
left (third word), Row 11 right (fourth word), and
so on. Where no information is punched in the card
in eolumns 1 through 74, words are read into memory
as positive ZEROS.

When the non-interpret sign mode is used, every
punch position on the card is interpreted. The card
is read as if four columns of information, containing
(1100) 5, preceded the existing information in each
row. The rows on the card, each row considered to
consist of 84 punch positions, are read into 28 se-
quential locations in memory. This mode was designed
specifically to read Hollerith characters from cards
into a card image in memory. A conversion-from-
Hollerith subroutine is then necessary to arrange the
data into the desired program imput.

In the alphaneumeric write mode, information is
processed by words. When the interpret sign mode
is used, the number of words specified by the output
operation are punched sequentially in cards in the
same sequence as they are read, i.e., the first word in
memory is punched in row 12 left, the secend row in
row 12 right, the third row in row 11 left, and so on.
If the word count is larger than 24, the remaining
words are punched in a second card. When the total
word count is not divisible by 24, the remaining word
spaces on the last card punched are left blank.

When the non-interpret sign mode is used in alpha-
numeric write operations, 214 words are punched in
each of the 12 rows on the card. The first four bits
of the first character to appear in any row are ig-
nored, and the remaining two bits of that character
are placed in columns.1 and 2. This mode was de-
signed specifically to write Hollerith characters on
cards from a card image in memory. A conversion-to-
Hollerith subroutine is first necessary to convert the
desired data into a card image of Hollerith characters.

Following is a list of instructions and operations
which may be used with punched card equipment ;
for specific details, see under the appropriate instruc-
tion or order. There is no provision for reading or
punching cards in the octal mode.

Single Instruction Mode: WAN, RAN; Order Se-
quence Mode: GWW-, SC, and the ES orders.

! -jappay pip) £S5 2Yi uo pasn si pipoqgbnjd o1
-ads b 1 ajgoijjddp s jpWIO} pIDI dAOGR 8Y] :3ION
‘Atowapy ojus pnay uaym
suoyp307 dAIssadIng ur upaddy M ‘bT-1 SPIOM
‘pgp@ SIyl ‘pPi0) NS§I UO BjOQ O jpwiiog “p-A 2anbij

T T Theawom m||t||1||mmlmmOnau ||||||||||||
JOAACH
ﬂlllllllllddm@%l|I|||||..||" |||||||||| gagaom~
FTTTTTTT T Tyawom T T T T T T T TYawom”
T TEmow TTTATT T wawow

5-7

‘Asoway ojur poay uaym
Suoypi0] aarssanng ur upaddy [IM ‘gZ-1 Spiom
‘DipQ S1Y4] "pa0) NSIN U0 PIDQ JO pWIoy *G-A dinbiy

00171

. |

|

_

!

_

|

i

!

|

|

v |

indﬂmmolkll."q lllllllll 6 qHOM n..llllum |||||||||| g agom | 00T T|

-l..ll..lll.mmmdalllllllll._,I T T TTe@uom T T T T T T Guod) s auOM |00 11 "
lllllllllllllllllllllll e e e e e e e S

-¢ q4OM ! ¥ QHOM lm (3uod) ¢ a¥OMm 00TT,

o mlmﬂmm\sllml T T T T quonm lllw |||||| I qgom 00T H“

llllll l_

89 LS 9¢G Sh B e z¢ 12 02 68 1 pezg1

11
A

5-8

SECTION VI
CONSOLE

GENERAL

The 9400 Console is designed to provide maximum
access to the Central Processor for the operator and
programmer. The lower half of the Console panel
contains a set of switches which are operated manu-
ally and/or under program control. The upper half
of the Console panel contains a set of indicator lights
which exhibit the state of the electronic switches
which store the binary digits within each word. The
register indicator lights are placed in groups of three
to facilitate binary-to-octal conversion.

Figure VI-1 is a general view of the System while
Figure VI-2 is a detailed drawing of the Console
switches and indicators.

FEATURES

The Console contains many features useful for a
programmer testing his program, an operator moni-
toring production runs, or maintenance checking and
analysis, as follows:

1. The contents of the Accumulator, Instruction
Word Register, Program Counter, each of four
Index Registers, and any one of seven other
selectable registers can be displayed econtinu-
ously.

2. The contents of each addressable register can
be changed by setting the desired word and its
address in switches and pressing a single switch.

3. The computer can be operated in special modes
to aid in debugging and troubleshooting.

4. Initiating controls are used to read in programs
from peripheral equipment or Console switches,
and start a program at the location specified by
the switches.

5. Programs can be checked out in segments by
manually setting the sensable switches and using
transfer and sense orders throughout the pro-
gram to activate a program and type out im-
portant memory locations. After debugging, the
sensable switches can be placed under program
control so that the program will run without
interruption.

6. Special switches are provided which allow the
operator or programmer to exercise optional
control over various computer operations.

7. A Halt switch on the Console enables the oper-
ator to stop the computer without destroying
the contents of the active regisers, and thereby
to restart under normal operation.

DESCRIPTION

The 9400 Console panel consists of two major parts,
namely, the Console Switches and the Console Indi-
cators.

CONSOLE SWITCHES

The Console Switches are deseribed under the fol-
lowing categories : Mode Switches, Initiating Switches,
Sense Switches, Special Switches, Register Switches,
and Miscellaneous Switches.

MODE SWITCHES
The 9400 Computer can operate in any one of three
modes, depending upon the following three switches.

Run (RUN) -— This switch provides the gating
levels necessary for operating the computer contin-
uously under program control. Once the computer
is started by depressing the Run switch, it can be
stopped only by the program, the operator, or an
error. The Run switch when operated releases
the other two mode switches, described below.
One Instruction (ONC) — This switch provides the
gating levels necessary to stop the computer after
it has executed one instruetion. This mode of
operation is useful in program checking and com-
puter maintenance.

Single Step (SIP) — This switch provides the gat-
ing levels necessary to inhibit the normal pulse
distribution system and to allow the computer to
stop after each timing function time during the
execution of an instruction. This operating mode
is useful for computer maintenance,

INITIATING SWITCHES

The initiating switches are used to start computer
operations, to read in programs into the computer
from punched paper tape, magnetic tape, and card
readers, and also to permit manual read-in and read-
out operations. These switches are described below.

Program Read-in (Load from CRD RDR (Card
Reader) Load from MTU (Magnetic Tape Unit)

6-1

SHesNYIDSSO ‘WoypaaN ‘1ajus) Buissadoid pipq Qb6 PIUPAJAS |-

Load from PTU (Paper Tape Unit) — Three
switches are provided on the Console to read pro-
grams into the computer from an input device (us-
ing punched cards, magnetic tape, or punched paper
tape) and to start the program. The switches are:
Load from CRD RDR, Load from MTU, and Load
from PTU. The input devices are, respectively, Card
Reader, Magnetic Tape Unit and Paper Tape Unit.
Either the RUN switch or the ONC switch must be
previously depressed.

The first word on the tape or card is a ‘‘read’’
instruction which specifies the address of the in-out
device containing the program to be read in, the
number of words to be read in, and the memory
location into which the program is to be read.
The second 'word contains the address to which
computer control is to be transferred upon com-
pletion of a program read-in operation.

Start at PC — This switch initiates an instruetion
sequence in which the location of the first instruc-
¢ion is specified by the contents of the Program
Counter. Depressing the Start at PC switch follow-
ing a central-processor halt (CP Halt) will cause
the Central Processor to resume normal operation.

Start at ASR — This switch initiates an instruetion
sequence in which the location of the first instrue-
tion is specifidd by the contents of the Address
Switch Register. There are 15 individual switches
for a 15-bit binary address.

Manual Instruct — This switch initiates a sequence
in which the instruction specified by the contents
of the Word Switch Register is executed.

Read-In — This switch- initiates a sequence which
reads the contents of the Word Switch Register
into the register or memory location specified by
the contents of the Address Switch Register.

Read-Out — This switch initiates a sequence which
causes the contents of the memory location specified
by the contents of the Address Switch Register to
be read into the Memory In-Qut Register (MO).
The contents of the Memory In-Out Register may
then be displayed on the Bus Indicator Register by
ptessing the Register Selector MO switch.

SENSE SWITCHES

Sixteen 3-position sense switches are provided on
the Console, and are used for general switching con-
trol. The three switch positions are: set, reset, and
neutral. The sense switches can be set or reset either
manually or under program control. In the neutral
position, these switches operate under program control
only, and can be interrogated by a SENSE order (i.e.,

SEN, SNS, or SNR). In the set or reset positions,
the switches are manually controlled and cannot be
altered by the program. The sense switches are not
interlocked with the halt eircuit and can, therefore, be
set or reset at any time, even while the computer is
operating. Two indicating lights are provided with
each switch to display its state (set or reset).

Special Switches on Console

Seven 3-position special switches are provided on
the Console. The three switch positions are: set, reset,
and neutral. The special switches are similar in many
ways to the sense switches, differing only in the special-
ized control functions performed. For example, these
switches can be set or reset either manually or in
neutral position. When in the neutral position the
flip flops associated with these switches can be set or
reset under program control. However, unlike the
sense switches, the special switches are interlocked
with the halt circuit and may be set or reset under
manual control only when the computer is halted. Also,
some of the special switches are spring-loaded (i.e., if
the switch is manually set or reset, when the computer
is halted, the switch will return to the neutral position
immediately after being manually set or reset, leaving
future control to the program).

Two indicating lights are provided with each switch
to display its state (set or reset).
The special switches are listed below:
Interpret Sign (ISN).
No Halt on Processor Error (NHP).
Trapping Mode (TRA).
Alarm Program Interrupt (API).
Functional Control Character Interrupt (FCI).
Stop Program Interrupt (SPI).

Tape Erase (TPE): loaded in the set spring
position.

NS ok W

REGISTER SWITCHES

Two sets of register switches are provided on the
Console, namely, the ASR switches and the WSR
switches. These switches and their associated indi-
cator lights are placed in groups of three to facilitate
binary-to-octal conversion. They are described below.

Address Switch Register (ASR) — The Address

Switch Register, consisting of 15 switches pro-

vided on the Console, can be set manually to store

at any address. A set of 15 indicators located im-

mediately above the address switches is used to dis-

play the contents of the Address Switch Register.

The ASR designates the address for Console opera-

tions during Read-In, Read-Out, and Start at ASR.

6-3

S10/DDIPU] PUD S3YIJIMS 3[OSU0) 00F6 "Z-IA 3inBig

T GER TR N BN AER B SN BOE S0 NN OEER AN |
: AT R $ ¢3¢ s 22 3¢ 2 22 O 2.8 F

“ % 8 B MR & AR KRR AN W US s e « @ e @ s b e “ .

\EER O\ VR SRR S S I | R !

.8 Ree e 00

e

*

v

6-4

Word Switch Register (WSR) — The Word Switch
Register, consisting of 37 switches and associated
display indicators, is provided on the Console. A
word can be set up manually in the switches and
can then be read into the register or memory loca-
tion specified by the ASR. Alternatively, the in-
struction specified in the WSR can be executed by
means of the manual initiating controls (Manual
Instruect).

MISCELLANEOUS SWITCHES

These switches are used for various functions neces-
sary for the proper operation of the computer, and

are described below.

Register Selector — Eight register-selector switches
are provided on the Console. .These push-button
switches are used to select and display the contents
of various registers on the Bus Indicator Register
which has 38 display lights. A special interlock
cireuit prevents the contents of the selected register
from being read onto the main transfer bus while
the computer is operating. The contents of any
one of the following registers may be displayed by
depressing the appropriate register-selector switch:

1. Memory In-Out Register 5. Processor1

. Program Counter Store . Processor 2

2 6
3. B-register 7. Processor 3
4. Q-register 8. Processor 4

A spare register-selector switch is also provided
on the Console panel.

CP Halt — Pressing the Halt switch causes the
Central Processor to suspend operation at the com-
pletion of the Central Processor instruetion cur-
rently being executed. All input-output operations,
however, are allowed to run to completion. As soon
as the last in-out operation has been completed, the
Central Processor goes into a halt (not computing)
condition. Depressing the Start at PC switeh, fol-
lowing a halt, will cause the Central Processor to
resume normal operation.

System Halt — Pressing the System Halt switch
causes the Central Processor to go into a Halt con-
dition. At the same time, all in-out operations are
terminated by clearing the In-Out Processor control
registers. Because of the destruction of the in-out
instructions, restarting the computer is not nor-
mally possible following a System Halt.

Clear Memory — The Clear Memory switch resets
to ZERO the contents of all core memory locations,
except the parity location which is set to ONE for

0dd parity. Normally, this is done before each new
program is read into the computer.

Clear CP — The Clear Central Processor switch
resets to ZERO all the CP switches (not the mem-
ory), except the Halt switch which is set, and the
applicable Timing Fumction Generator switches
which are also set (to insure that the computer
is restarted at the proper point of the basic cycle,
ie., TF-4),

Clear Error — This switch resets all error alarms
displayed on the indicator panel of the Console.

Halt on Transient — When this switch is dépressed
(in the ON condition), the Transient indicator on
the Console will light and the computer will halt if
an intolerable power transient is detected in the
main power supply lines. An intolerable power
transient would cause computer error. However,
when this switch is in the OFF condition, the
Transient indicator will light although the com-
puter will not halt if an intolerable power transient
is detected.

No Halt on Error — When this switch is depressed
(in the ON condition), it inhibits error halts in the
Central Processor. When it is in the OFF condi-
tion, any of the error alarms will cause the com-
puter to stop. These alarms are:

1. Memory Parity Error
Overflow Alarm
Underflow Alarm

In-Out Processor Alarm

A

Nonexistent Memory
6. Nonexistent Instruction

Refer to the Alarm Indicators part of this section
under Console Indicators.

AC Power On — This switch initiates the applica-
tion of a-c¢ power to the main computer.

AC Power Off — This switch electrically disecon-
nects the main computer from its a-c power supply.

CONSOLE INDICATORS

The Console Indicators are described under the
following categories: Register Indicators, Alarm In-
dicators, and Status Indicators.

REGISTER INDICATORS

The Register Indicators consist of various numbers
of rows of indicator lights to display the contents
of the associated registers. Also, one row of 15 indi-

6-5

cator lights are provided as spares. The register indi-
cators are described below:

Index Registers — Four rows of 15 indicator lights
are provided on the Console to display the contents
of the 15-bit Index Registers 1 through 4.

Program Counter — One row of 15 indicator lights
is provided on the Console to display the contents
of the 15-bit Program Counter Register. The con-
tents of the Program Counter indicate the memory
address of the next instruction to be performed by
the computer.

Bus Indicator — One row of 37 indicator lights
(plus a 38th indicator light which indicates parity)
is provided on the Console to display the contents
of various registers depending on which Register
Seleetor Switch is depressed. (See Console Switches,
register Selector.) The bus indicator register ecir-
cuits are connected directly to the main transfer
bus, and therefore, indications of computer opera-
tions are possible since the bus indicators monitor
every bus transfer.

Instruction Word — One row of 87 indicator lights
is provided on the Console to display the contents
of the Instruction Word Register. The Instruction
Word Register is composed of the Address, X, G,
and Instruction Registers (AR, X, G, and IR)
which contair the last instruction executed.

Accumulator -— One row of 37 indicator lights is
provided on the Console to display the present con-
tents of the Accumulator (A-register).

ALARM INDICATORS

Eight error alarm indicators are provided on the
Console to indicate the state of the various error
and alarm electronic switches in the computer. All
of the error and alarm electronic switches can be
reset by the Clear Error switch. Also, the No Halt on
Error switch inhibits error halts in the Central
Processor when an MPE, NXI, NXM, OA, UA, or
IOA alarm is set, (see Console Switches). The various
alarm indicators on the Console are deseribed below :

Memory Parity Error (MPE) — This indicator
lights when incorrect parity has been detected upon
testing parity in a memory read-out operation.

Nonexistent Instruction (NXI) — This indicator
lights when an improper order code has been desig-
nated in am instruction.

Nonexistent Memory (NXM)—This indicator lights
when a nonexistent memory location has been ad-
dressed.

6-6

Overflow (OA) — This indicator lights when an
overflow condition has occurred. (See Overflow
Chart, Section III, CENTRAL PROCESSOR
UNIT).

Underflow (UA) — This indicator lights when an
underflow conditions has occurred. (See Overflow
Chart, Section III, CENTRAL PROCESSOR
UNIT).

Transient — This indicator lights when an intoler-
able power transient is detected in the main power
supply lines. It warns the operator that computer
errors may have been caused by the transient. (See
Console Switches, Halt on Transient.)

In-Out Processor Alarm (IOA) — This indicator
lights when an In-Out Processor error has occurred
(ie., parity error, incorreet instruction, ete.).

DC Power Fail — This indicator lights when a d-e
power failure oceurs.

STATUS INDICATORS

The Status Indicators inform the operator of vari-
ous computer states such as d-c power, peripheral
equipment power, computation in progress, computer
is stopped although ready to operate, and marginal
checking operations.

DC Power On-— This indicator lights approxi-
mately 35 seconds after the AC Power ON switch
has been operated, indicating that d-c power has
been applied to all units of the computer except
the Core Memory.

Peripheral On — This indicator lights when power
is applied to the peripheral equipment.

Ready — This indicator lights 25 seconds after the
Clear Memory switch has been operated, indicating
that d-c power has been applied sequentially to
the Core Memory.

Computing — This indicator is lighted when the
Central Processor is computing. It is connected to
the primed output of the halt switch and inter-
locked with the memory Ready indicator circuit.

Not Computing — This indicator is lighted when
the computer is halted although the memory is
ready to operate. It is connected to the output of
the halt switch and interlocked with the memory
Ready indicator circuit.

MCYV in Progress — This indicator is lighted when
marginal check voltages are applied to the computer
for marginal testing.

OPERATION

As previously mentioned, the 9400 Computer can
operate in any one of three modes, namely, Run, One
Instruction, and Single Step. The mode switches,
when operated in conjunction with the initiating
switches, initiate various program sequences.

PROCEDURES

Any one of 17 different program sequences can be
initiated by these switches, as detailed below:

Run, Start at Address Switch Register (RUN STW)

The program sequence is started at the Address
Switch Register by depressing the Start at ASR
switch. Thereafter, the computer operation is under
program control.

One Instruction, Start at Address Switch Register
(ONC STW)

This operation is similar to RUN STW except that
only one instruction is performed for each operation
of the Start at ASR switch. Normally, this switch is
used only to start the program sequence. The Start at
PC switch is used thereafter.

Single Step, Start at Address Switch Register
(SIP STW)

This operation is similar to RUN STW except that
the computer executes the sequence one pulse at a

time (i.e., one pulse each time that the Start at ASR

switch is operated).

Run, Start at Program Counter (RUN COW)

The program sequence is started at the Program
Counter Register by depressing the Start at PC switch.
Thereafter, computer operation is under program
control.

One Instruction, Start at Program Counter
(ONC COW)

This operation is similar to RUN COW except that
only one instruction is performed for each operation
of the Start at PC switch.

Single Step, Start at PC (SIP COW)

This operation is similar to RUN COW except that
the computer executes the sequence one pulse at a
time.

Run, Program Read-In (RUN PRW)

This operational procedure is used to read programs
into the computer. One of three switches on the Con-
sole (i.e., Load from PTR, Load from MTU, or Load
from CRD RDR) initiates program read-in depend-
ing on whether the program is recorded on cards,

punched paper tape, or magnetic tape. Also, the RUN
switch must be previously depressed. The first word
on the tape or card is a ‘‘read’’ instruction which
specifies the address of the in-out device containing
the program to be read in, the number of words to be
read in, and the memory location into which the
program is to be read. The second word contains the
address to which computer control is to be transferred
upon completion of program read-in operation.

One Instruction, Program Read-In (ONC PRW)

This operation is similar to RUN PRW except that
the computer halts after the program has been read
in.

Run, Manual Instruction (RUN MIW)

To perform this operation, the instruction in the
Word Switch Register is transferred first to the In-
struetion Word Register and then is performed re-
peatedly. Repetition may be interrupted only by the
operator or by an error. .

One Instruction, Manual Instruction (ONC MIW)

This operation is similar to RUN MIW except that
the instruction is performed only once.

Single Step, Manual Instruction (SIP MIW)

This operation is similar to RUN MIW except that
the instruction is performed one pulse at a time. The
first pulse is initiated by depressing the Manual In-
struct switch. Succeeding pulses are initiated by de-
pressing the Start at PC switch.

Run, Read-In (RUN RIW)

To perform this operation, the contents of the Word
Switch Register are transferred to the addressable
register or memory location specified by the contents
of the Address Switch Register.

One Instruction, Read-In (ONC RIW)

This operation is similar to RUN RIW except that
the operation is halted after the read-in instruction
has been performed once.

Single Step, Read-In (SIP RIW)

This operation is similar to RUN RIW except that
the gating levels cause the read-in operation to halt
after one operation is completed.

Run, Read-Out (RUN ROW)

This operational procedure provides an indirect
means of gaining aceess to any memory location. First,
the contents of the Address Switch Register are trans-
ferred to the Memory Address Register and then a
memory cycle is initiated. As a result, the contents of
the addressed memory location are transferred to the
Memory Output Register. The contents of the Memory

67

Output Register can be displayed on the Bus Indi-
cator Register.
One Instruction, Read-Out (ONC ROW)

This operation is similar to RUN ROW except that
the gating levels cause the read-out operation to halt
after one operation has been completed.

6-8

Single Step, Read-Out (SIP ROW)

This operation is similar to RUN ROW except that
the gating levels are such that the Read-Out switch
is actuated to initiate the first pulse of the operation,
and-additional pulses of the operation are initiated by
depressing the Start at PC switch.

SECTION VI
SYMBOLIC PROGRAMMING

INTRODUCTION

Symbolic programming consists essentially of writ-
ing computer programs using symbols which are not
in the language of the computer. It is also normally
considered to be non-numeric in nature, in that wher-
ever practicable, alphabetic symbols are employed in
place of numbers.

The primary purpose of symbolic programming is
to relieve the programmer of the difficulties inherent
in dealing with a numerie machine language, both in
original program design and later program modifica-
tion. Perhaps the most obvious advantage of symbolie
programming is the use of alphabetic names for opera-
tion codes, such as ADD, SUB, MLY, and RANB, in
place of the corresponding binary or octal codes.
Further, by allowing the use of symbols instead of
numbers in the variable field of an instruction, sym-
bolic programming enables the design of a program
without restricting it to any particular part of the
computer memory and without the necessity of re-
membering and rechecking numerical addresses and
codes. In addition, symbolic programs may be re-
located in memory without requiring that the symbolie
addresses be changed.

Symbolic programming is made possible through the
use of an Assembly Program. The 9400 System makes
use of the 9400 Symbolic Assembly Program, called
94AP. A detailed description of 94AP is provided in
a separate manual. Following is a general picture of
the function and operation of 94AP.

CONCEPT OF AN ASSEMBLY PROGRAM

‘When an assembly program is available, a pro-
grammer is allowed to write his program in symbolie
notation instead of a numeric computer language. He
is provided with a list of symbols and types of symbol
which are acceptable to the assembly program, to-
gether with a list of the symbolic programming rules
to which he must adhere in preparing his program.
Equipped with the rules and the vocabulary for sym-
bolic programming, the programmer may write his
program.

Tt is the function of the assembly program to trans-
late the symbolic program into actual machine lan-
guage. Where the programmer makes use of alpha-

betic operation codes, the assembly program converts
these codes into the binary equivalent of the operation
to be executed. Where the programmer uses symbolie
addresses for registers, switches and memory loca-
tions, the assembly program converts these addresses
into their actual binary values. During the assembly
process, the assembly program checks the symbolic
program for consistency in notation and for conform-
ity to certain program format requirements.

In addition to legitimate machine operation codes
(such as ADD, WAN, S8, et cetera), the assembly
program is capable of interpreting and acting upon
a number of Pseudo-Operations. Pseudo-operations
are instructions to the assembly program itself. They
pertain primarily to data format and allocation of
memory space.

9400 ASSEMBLY PROGRAM (94AP)

The 9400 Assembly Program is a general assembly
program which converts symbolic programs into ma-
chine-coded binary instructions and data words. The
medium for input and output may be chosen by the
programmer, although punch cards are normally used.
The exact operation of each of the various pseudo-
operations which are acceptable to 94AP is defined in
Appendix J.

94AP processes a symbolic program as a list. The
assembly program is functionally divided into two
sections. The first section consists of a pass over the
input program, determining the actual machine ad-
dresses which are to be assigned to each symbolic
reference. Each symbolic reference and its machine
address equivalent are saved in a symbol table for later
reference. During the first pass, the assembly program
generates a copy of the input program in its symbolic
form. The second section consists of a pass over the
copy of the input program. Using the previously-gen-
erated symbol table, the assembly program forms the
actual binary computer words which are to make up
the machine-language program. At the same time, a
binary (machine-language) output is provided on
punch cards or magnetic tape. In addition, a listing
is prepared containing a copy of the original symbolic
program and its binary (printed in octal) equivalent.
If the assembly program discovers inconsistencies such

as inecorrect operation codes or symbolic references
which are undefined, these errors are reported on the
listing provided.

DEFINITIONS

Following are definitions of four terms used in ref-
erence to the 9400 Assembly Program :

1. Symbol: Any combination of not more than six
alphanumeric characters, at least one of which is
non-numeric.

2. Integer: With respect to instructions, any deci-
mal integer less than 1,000,000,

3. Expression: Arithmetic combinations of symbols
and/or integers, specifically in the variable field ;
the operations permitted are addition, subtrae-
tion, multiplication, and division.

4. Pseudo-Operation: Instructions to the assembly
program, as described above,

SYMBOLIC CODING FORMS

Figure VII-1 is a standard 94AP Coding Form.
Each operation or data location in a program may be
given a symbolic address, under SYMBOLIC LOCA-
TION. Symbolic instructions and orders are written
under OP CODE ; when a data word is specified, the
OP CODE portion contains a pseudo-operation code,
as required. The VARIABLE FIELD consists of
combinations of symbols and numbers, depending
upon the operation or the type of data. Under RE-
MARKS, the programmer may insert comments which
will have no effect on the program or its assembly
other than to be printed out with the final listing.
The IDENTIFICATION column is provided for
punching identifying marks in the symbolic program
card deck.

During the first pass of the assembly program, a
counter is used to specify the absolute location of each
word in the program. The location counter starts at
the binary equivalent of the decimal location given in
the variable field of the pseudo-operation ORG (ori-
gin) with which every symbolic program must begin.
For each word in the program, the counter is increased
by ONE. Simultaneously with the incrementing of the
location counter, the symbol table is constructed. Each
entry in the table defines a symbol used in the pro-
gram in terms of an integer. Entries to the Symbol
Table are made in two ways:

1. A symbol appears in the symbolic location field
of a word and is assigned the value of the loca-
tion counter, or

2. A symbol may be defined through the use of a
pseudo-operation.

SYMBOLIC INSTRUCTIONS, ORDERS AND
PSEUDO-OPERATIONS

The OP CODE portion for each symbolic instruc-
tion, order or pseudo-operation is represented by the
mnemonic symbol assigned to it. The mnemonic code
for each machine operation (as well as its octal equiva-
lent) is given in Appandix I; the mnemonic codes for
pseudo-operations are listed in Appendix K. The codes
for addressable registers and sensable switches are
contained in Appendices D.and E respectively.

Figure VII-2 is a simple program written in sym-
bolic notation acceptable to- 94AP. Those operations
which contain an asterisk (*) in the Remarks field are
pseudo-operations ; those which do not are legitimate
machine operations. The asterisk is used as a means
of identification for this program only and has no
connection with or effect upon the assembly program.

Under OP CODE, the symbols for instructions and
pseudo-operations are written, If it is desired to refer
to a particular location, an alphanumeric location
reference may be made under SYMBOLIC LOCA-
TION. In the VARIABLE FIELD, the address por-
tion (@), the index portion (i), and the modifier
portion (m) are written from left to right in that
order and separated by commas. If only the ¢ portion
is used, the ¢ and m portions may be left out com-
pletely. If either the a portion or the ¢ portion is not
required, but a portion to the right of them is, a
ZERO should be written in the unused portion of the
variable field. For example, the ADD instruction in
the program shown in figure VII-1 requires an m
portion for overflow control, but no ¢ portion. If the
middle portion were left out, the assembly program
would interpret the overflow control number 7 as re-
ferring to an index register.

The variable field is terminated by a space; what-
ever is written following the space is interpreted as
remarks and has no effect on the assembly.

The program shown in figure VII-2 will add the
contents of one memory location (ALPHA) to the
contents of another memory location (BETA) and
store the sum in a third memory location (ANSWER).
The first operation in a symbolic program is always
the pseudo-operation ORG (for origin). The variable
field for ORG is normally a decimal number. The
binary equivalent of the number is loaded into the
94AP location counter, and the program is assembled
to start in the memory location specified by that num-
ber. Thus, in the program illustrated, symbolic loea-
tion START is given the value 1000 in the symbol
table, and the operation CLA will be built in memory
location 1000. During the first pass, 94AP does not
process the contents of the variable fields, with the
exception of a few pseudo-operations. Operation
codes are checked and the symbol table is built, in
which ALPHA is assigned a value of 1004, BETA a

wio4 6uIpo) dVy6 PIOPURIS " L-IIA d1nB14

47314 378V VA NOI1v¥340 NOI1¥201 NI m 39vd

*1N3Q) SHIVIEY
WYH908d

NO 114187530 WYO0Hd

1 | *

1 1 — 1 - |

NOILYJ14I1NIAT WWES0Hd _ _ _ _ 39vd

3lva NOI1¥201 YINAVHOOUd ON 103roud

WY0d4 9N1Q0D dV v6

7-3

woiboid djoquihs v "Z-iiA @inbig

9191dwiod sT weadoxd jeys dvie 03 1eudiSx LYv.Ls anNd
YIMSNV "O0T 38 PIOM SUO IAIISIYx 1 ssd HIMSNVY
VLHE "00[Ut 011 [eWIdap Jo judfeambe Lieurq aoeldx (1198 oda vidd
VHJ'IV 901 ur Qg1 [ewoap jo juateamnba L1eurq soe[dx 0ST oda VHJAIV
1Ty Jossadoad [eajua)d LTH
YHAMSNYV 201 ur V1A ‘VHAIV I 81038 HIMSNV 4is
PaJ0UST ST MO[J13A0 (00€)D 03 Pappe y.LAH '00[JO SIUaU0D L ‘0 ‘viag aay
00® « VHAIV '901 JO sjuajuo)d VHdJTV VId LYVLS
0001 uotjeoo] ur weadoad 3re}S« 0001 DYIOo
Sy | a4 3WYINVA NOILvH3d0 NO1LY201 uz_..m V4
NOILdI¥ISIC WYH90Nd
i
iva NOILVD01 HINWHION] ON LJ3roud

NY0d4d 9NIQOD dv b6

7-4

value of 1005, and ANSWER a value of 1006. The
pseudo-operation END indicates to the assembly pro-
gram that the end of a functional unit, i.e. the pro-
gram to be assembled, has been reached. END is not
placed in the symbol table nor given an address, since
it is not an actual part of the program. Its variable
field portion (START) enables the assembly program
to generate an unconditional transfer to the beginning
of the program.

During the second pass, the assembly program builds
the complete binary image of each operation between
locations 1000 and 1006 ; the address portion of CLA
ALPHA is econverted to the binary equivalent of 1004,
the address portion of ADD BETA,0,7 is converted to
the binary equivalent of 1005,0,7 and so on. The num-
bers 0 and 7 are already pure numerie, in that they
do not contain alphabetic characters, and are con-
verted directly as such.

The DEC pseudo-operation causes the binary equiv-
alents of 150 and 110 to be placed in locations ALPHA
and BETA, respectively. The BSS (block start sym-
bol) causes the 94AP location counter to be advanced
by ONE, causing one memory location (as specified
by the variable field) to be reserved for ANSWER.

During assembly, 94AP checks to see that the mne-
monic codes for operations are correct and that the
program is written in acceptable format. It also checks
to see that the symbols used in the variable field are
defined. 1f, for example, in the program illustrated,
the programmer had referred to location BETA in the
variable field -of the ADD instruction, but had forgot-
ten to define it by providing a data location .called
BETA, the assembly program would flag his error in
the printed listing provided at the end of the assembly.
The assembly program also comments in the listing
upon incorrect operation codes (such as ADX instead
of ADD) and inadmissable symbols and sequences of
symbols.

PUNCH CARD FORMAT

Symbolic program decks consist of one card for
each operation. Each line on a 94AP coding form re-
quires one punch eard to represent it. The format in
which symbolic operations are punched is as follows:

1. SEQUENCE NUMBER: Columns 1 through 6
are optional; it provides the programmer with
a means of specifying the ordering of his pro-
gram deck.

2. SYMBOLIC LOCATION: Columns 7 through
12; if a symbol is to be assigned to a line of code,
it is entered here.

3. OP CODE: The operation code starts in ecolumn
14 and may extend through column 19, depend-
ing upon the number of suffixes.

The OP CODE field must be terminated before
column 21 by a blank.

4. VARIABLE FIELD: The variable field starts
at column 21 and may continue effectively to
the end of the card. No blanks may be left

between the portions of the variable field, since
information punched to the right of the first
blank is interpreted as remarks.

Arithmetic Operations in the Variable Field

The 9400 Assembly Program permits integer arith-
metic within the variable field. It is possible to perform
addition, subtraction, multiplication, and division of
numbers and alphanumeric symbols. Addition and
subtraction are indicated by conventional plus (+)
and minus (—) signs. A symbolie instruction may
be written as ADD A-B, for example. Multiplica-
tion is indicated by an asterisk (*), and division by a
slash (/). The following rules have been established
for the evaluation of arithmetic expressions in a vari-
able field.

1. Each segment of the expression, where a seg-
ment is that portion of the expression from a
plus or minus sign (or the beginning of the
expression) to the next plus or minus sign (or
the end of the expression), is separately evalu-
ated from left to right with the consecutive
multiplication and division being performed as
specified.

9. As consecutive segments of the expression are
evaluated, they are combined from left to right
as indicated by the connective plus and minus
gigns.

3. All operations are 36-bit integer arithmetic
calculations. In multiplication the low 36 bits

" of the product are retained; in division, the
36-bit quotient is retained. Remainders are
ignored.

By way of illustration, the expression
A+200/15/6*15-B/C*D
is taken to have the
meaning of

((A+(((200/15)/6)*15))-((B/C)*D))

where the
parentheses denote the integral portion of the quotient
deseribed above.

SPECIAL SIGNIFICANCE OF ASTERISK (*)
AND SLASH (/)

If an asterisk appears as the first character of the
variable field, or follows immediately after a comma,
plus sign, minus sign, slash, or two consecutive aster-
isks, the assembly program will substitute for the
asterisk the current value of the 94AP location
counter. For example, the operation TRU *-3, stored

7-5

in memory loeation 1006, is translated as meaning
unconditional transfer to memory location 1006 minus
3, or 1003.

If an asterisk appears in column seven of a card in a
symbolic deck, the assembly program treats the entire
card as a remark. It will be reproduced in the output
listing, but no other interpretation of the card will
be made.

If a slash appears as the first character in the
variable field or immediately after a connector, it will
signal the assembly program to treat the following
integer as an octel number. If the preceeding con-
nector is an asterisk, its use must be that of multipli-
cation; otherwise the slash will indicate division, as
in the normal case.

ILLUSTRATIVE SYMBOLIC PROGRAMS

Figure VII-3 is a symbolic program for processing
data read in from magnetic tape in Single Instruction
Mode. The program reads 50 signed words, none of
which contain all ZEROes, from magnetic tape unit
3. As the words are read into core memory, a count
is kept of those which are negative.

The ORG (origin) pseudo-operation specifies that
the program is to begin in memory starting at decimal
location 00500; the symbol START will be assigned
the value 00500, and the 94AP location counter will
begin there.

The operation CLA ZERO clears the Accumulator.
94AP interprets the code ZERO as a non-existent ad-
dressable register, with the result that the Accumu-
lator is loaded with all ZERQes. Once the Accumu-
lator is cleared, the STR COUNT instruction causes
memory location COUNT to be cleared also. The
RPT-STR sequence following clears 50 consecutive
memory locations starting at location DATA. For
details concerning the REPEAT function, see Central
Processor Instructions in Section III.

The SNS instruction SETS the Interpret Sign
(ISN) switch. The assembly program translates the
mnemonic ISN into the binary designation for the In-
terpret Sign switch. In Single Instruection Mode, the
ISN switch must be SET before each input-output
instruction where interpret sign mode operation is
desired.

The input-output instruction RAN (Read Alpha-
numeric) causes an In-Out Processor to be selected
and attached to magnetic tape unit 3. MTS3 is inter-
preted and translated by the assembly program. As
soon as the selected process has been initiated, the
Central Processor program proceeds to the next in-
struction, in this case LXS. When a Processor is im-
mediately available, the Central Processor program is
not held up at all.

7-6

While the magnetic tape unit is preparing to read,
LXS causes index register 1 to be cleared (e.g. loaded
with ZEROes) and index register 2 to be loaded with
the binary equivalent of decimal 50. Immediately
following initialization of the two index registers, a
check is made to see if a word has arrived in memory
from magnetic tape. On the first time through the
program, for example, Index Register 1 contains all
ZEROes. Thus the instruction CLA DATA, 1 causes
the contents of location DATA to- be loaded into the
Accumulator. If a word from magnetic tape has not
vet arrived in location DATA, that location will con-
tain all ZEROes, since the RPT-STR sequence earlier
in the program cleared it out. Consequently, the TRZ
(Transfer on Accumulator ZERO) instruction will
succeed and control will be transferred to *-1, or back
to the CLA DATA, 1 instruction. In this manner, the
program is held in a loop until data arrives from
magnetic tape. As soon as a word arrives, the TRZ
instruction fadls and eontrol is passed on to the next
instruetion in sequence, namely TRN (Transfer on
Accumulator Negative).

If all 50 of the words read from magnetic tape were
positive, the TRN instruction would consistently fail
and the program would always proceed directly to the
TRX (Transfer on Index) instruction. Each time
TRX is executed, the contents of Index Register 1 are
incremented by ONE and the contents of Index Reg-
ister 2 are decremented by ONE, except at the end of
the Loop, when the contents of Index Register 2 have
been counted down to ONE. Thus, the major loop in
the program is between the TRX instruction and loca-
tion LOOP. Each time CLA DATA, 1 is executed, a
new word in memory is loaded into the Aceumulator.
Once TRX has counted the contents of Index Register
2 completely down, the Central Processor halts
(HLT).

If the program encounters a negative word, the
TRN instruction succeeds and control is transferred
to location NEGA below. The ADB (Add Modifier)
instruction causes the contents of location COUNT
(originally ZERO) to be incremented by ONE each
time a negative word is found. The Unconditional
Transfer (TRU) instruction returns the program to
the TRX instruction, and the loop continues.

Two sets of data locations are reserved for the pro-
gram. DATA BSS 50 saves 50 locations for the in-
coming data. COUNT BSS 1 saves one location for
the negative-word counter. The END operation sig-
nals the assembly program that the end of the sym-
bolie program has been reached. ORG, BSS, and END
are pseudo-operations and do not appear in the ma-
chine-language program.

Figure VII-4 is an Order Sequence Mode program
involving both an input operation and error print-

woiboid poay WIS

"€-1IA 21nbY4

LYVLS

aNd

IN{1OD JIO0J UOT}EDO] JUO dABS

ssd ILNNOD

BJEep J0J SUOTIEDO] OS 2ABS

ssd vivd

Xopul 0} oeq J9JSUBLL

2-VOUIN

NYL

ANO 49 LNNOD JO S}UlUO0D JUSUISIIUL

1 ‘0 "ILNNOD

daav VOIEN

1[BY 10SS900Jd [BIIUDD

LTH

X9pUT U0 J3jSUeLL

11T ‘dOOT

X4dL

oAT}ESaU ST pIom U3 JI J9Fsuel]

VOEN

NY.L

T-%

Z4L

dool ‘ou JI 194 Lzowrawt

UT poALIJE Sey pJom ® JI 93s 0} Y29uD

1 ‘'vivd

vID dOOT1

OHAZ uitm THI ‘05 UITs ZHI Peol

0s ‘T

SX1

uorjexado peaa orrswnueydre d3eniTul

0S ‘6L ‘V1vd

NVYH

yoytms opoy udrg 3oaxdaaul LHES

NSI ‘0 “T+x

SNS

vivda LS

v1yd uotieoo] je Surire;s *
‘SUOT}ED0] AJOUISW SATHIOISUOD (G 1BITD 1°0 ‘6% 1d4
INNOD Uor3ed0] I1e31D INOOD kAR

I0jBeTAWINDDE Ay} Iea[d QY¥dzZ vVID LYv.iS
00G UOIed0] je wetdoad }aels 00S pyo

. Q314 376V RIVA NO1LV§3 40 NOILYO01 NN . ovd
10 “5pOJAl UOTIONIISU] S[SULS Ul ndut yjtm Aisnosuejmuris andwio) °SpIOM

saTyedou sy} Jo Junoo ® deay g LN WOJy SpIom 0J97Z [UOU PAUSIS 0G PBIY NoILdINISIA WVEOoHd

_ _ _ — 39vd

3aivd

NO11v201

YINWHO0Ud

‘ON_1J3roud

WY04 9NIQOD dV v6

7-7

out. The program searches the first file on magnetic
tape unit 1 for a key of decimal 5. When the key is
located, the following 200 signed words are read into
memory. Parity errors, if encountered during input,
are not allowed to stop the operation. If the first file
does not contain a key of 5, the message ‘‘no key on
mtl’’ is printed out on the electric typewriter.

The program begins in memory location 00750. The
first operation is a rewind instruction, which causes
magnetic tape unit 1 to be rewound to the load point
on the tape. The second operation is the Order Se-
quence Instruction S8, exercising several options.

The third S causes the ISN switch to be SET
for all operations in the following Order Sequence.
The suffix N causes the No Halt on Processor Error
switch (NHP) to be SET, so that possible parity
errors will not stop the operation. The integer 1
specifies that the Order Sequence program is to use
Processor 1. The variable field of SSSN1 indicates
that the Order Sequence program beginning in loca-
tion READ and that magnetie tape unit 1 is to be the
medium.

The instruefion following SSSN1 is sense (SEN).
The variable field causes the Central Processor to wait
at the SEN instruction until the Order Sequence
initiated by SSSN1 is completed, i.e. as long as MT1
is still connected. As soon as the sequence is com-
plete, the Central Processor proceeds to the next
instruection (HLT) and stops.

The first Order Sequence program begins at location
READ. All orders in the sequence refer to magnetic
tape unit 1. The first order, the Search Key, order
(SKF'), causes the Processor to search magnetic tape
unit 1 for a key word containing the binary equivalenit
of a decimal 5 in its @ portion. As soon as the key word
is located, control is transferred to the next order in
sequence, namely SCWDP. If the key word is not
located by the time an End-of-File (EOF) condition
is reached on magnetic tape unit 1, No-Key (NKY)
program interrupt occurs, the Order Sequence is dis-
rupted, and Central Processor control is transferred
to memory location 00001. Interrupt may be caused
either when a Block-End marker (BLE) is reached
or an End-Of-File marker (EOF') is reached by mak-
ing the SK ___ order suffix either B (block) or F (file),
respectively.

If the key word is located, the order SCWDP is
initiated. The SC portion of the order specifies
alphanumeric read-in. The option W indicates that
words (as opposed to blocks) are to be read. The D

restriets the type of words read in to data words (as
opposed to key words). Non-data words are merely
skipped over. The final sufix P causes the Order
Sequence to proceed to the next order as soon as the
read operation has been completed. In this manner,
200 data words are read into memory starting with
location DATA.

The order STD is a variation of the End Sequence
order (ES). STD causes the Order Sequence to be
terminated and the device and the Processor to be
logically disconnected from the central computer. In
the program illustrated, if the key is found, the
Central Processor program ultimately halts at memory
location 00752 (decimal). The second Order Sequence
program (starting at location PRINT) is not exe-
cuted.

If the key word is not found by the time an End-
Of-File is reached, program interrupt occurs. Proe-
essor 1 and magnetic tape unit 1 are logically
disconnected from the central computer. Central
Processor control is transferred to memory location
00001. The second ORG (origin) pseudo-operation in
the symbolic program ecauses the 94AP location
counter to begin counting at location 00001. The
Unconditional Transfer instruction (TRU) is placed
in location 00001, so that when program interrupt
occurs, the transfer instruction will transfer control
of the Central Processor to location READ minus 2,
which is the WAN instruction for initiating the Order
Sequence program for error printout.

The second Start Order Sequence instruction, S82,
specifies that Processor 2 be used with the electric
typewriter (FLX). It indicates that the Order Se-
quence program begins in location PRINT,

The first Order Sequence order at location PRINT
is WA (Write Alphanumeric). Four alphanumerie
words, beginning in location OUTPUT, are to be
written on the electric typewriter. The first word
contains the alphanumeric codes for two funections;
lower case (octal 02) and carriage return (octal 04),
to initialize the typewriter. The pseudo-operation
BCI (binary-coded information) converts the follow-
ing three words into the binary equivalents of the
alphanumeric text in the variable field. Thus, the
WA order causes the sentence ‘‘no key on mt1’’ to be
typed.

As,soon as WAN has been executed, the electric
typewriter is logically disconnected. The Central
Processor halts at memory location 00754.

wpiboid ajlIp PuUo poay WSO

‘p-IIA 240614

NIDHEL

aNd

souanbag IapIO HZH.m.m 03} J9JSURLL

¢-avdayd

NYL

uotjeoco] jdnaaajur XN 03 UISTI0 maN

02

DYOo

SpIom B}ep JOJ SUOTIEDO] 00Z dAI3Sd3Y’

002

ssd vivd

x93 Jnojurad

TLINYNOVATSVON ‘¢

1049

uinjad 28eiaIded pue 9SBO IIMOTT $020 LOO ILNdLNO
109UUOJSTP pue 2ouanbag 19pI0 PUd als
Jo31amadL) uo spiom oraswnueydie In0J FTIM 3 ‘LOdLNO VM INIdd

109UUOOSIP pue aouanbag J9p10 pud

aws

souanbas ur peadoad pue SpIom BIEP (00Z UT PEeY

002 ‘VLVd

damos

1 ode} o[jouUSeW UO g [BWIOAP JO A3) ® JOJ YdIeads

IS avayd

178y JI0SS2201d [eJ3uUa)

LTH

Z# 10ss2001d asn foousnbag I9pIO Ue d3BHTUL

X14 ILNIdd

2SS

1Ty 10889001 d [BIIUSD

LT1H

2ouanbas JO pud JOJ SITBM JOSSID0Id TeIua)d

ILIN ‘0 “x

NdS

1# J0ss900ad 3asn ‘aouonbag JapIQ ue 3jeTITUL

1L ‘avdyd

TINSSS

1 ode} omjouSewr purmay

LN

amy NIDHEL

0SL [31:(0)
WY ADOUd SMvIaH m aBI4 378V VA NO1LY43d0 NOLLYO0T | 3NI “ 39vd
0 ‘sxoxxa Kjraed jndur exou8y -a93tamadLy uo , T3ux UO £a3 ou,, jutad ‘punoj sT Aay ou JI -AJowoW OjUT SPIOMm BIEpP

C 1 1 |

pausis pQz SUIMOTIO] Sy} peaJ ‘punoy st K9y oy} uaym ‘g TRWTI3P

NOLLYOI4IIN3A] WHOOHd

a1
31V

NOI11YJ01

UINWHOOHd

30 £ay e 07 yLIN UQ 31} 1SIIJ UDTBSS No11d1u0s3a WEI0HS

“ON 123rodd

WY0d4 9NIAQ0D dV 6

7-9

APPENDIX A
NUMBERING SYSTEMS

Appendix A contains a general description of num-
bering systems together with a representation of
integers and fraction¥ in the decimal, octal, and
binary systems. The methods involved in converting
from one of these systems to another are also de-
seribed. Finally, the basic arithmetic operations of
binary, and various other numbering systems are
included.

GENERAL

To understand the arithmetic operations in the 9400
Computer, a basic knowledge of numbering systems
is essential. This section discusses the decimal, octal,
binary, and various other numbering systems.

DECIMAL SYSTEM

Numbering systems make use of the concept of
positional notation. These systems have a specified
number of permitted symbols which may be used
to indicate entries in the system. For example, the
decimal system contains the symbols 0, 1, 2, 3,4, 5, 6,
7, 8, and 9, totalling 10 digits. The number of symbols
permitted in a system is called the base or radix of
the system. Therefore the decimal system has a base
or radix of ten. The magnitude represented by a num-
ber depends not only on the number itself, but also
upon its position with respect to the point separating
the interger (whole number) and the fractional part
of the number. For example, the decimal number
3.14 can be rearranged as 4.13, 143, and 3.41, all
having different values due to the position of the
digits 1, 3, and 4 with respect to the decimal point.

OCTAL SYSTEM

The octal system differs from the decimal system
in that the radix of an octal number is eight instead
of ten. This system contains the symbols 0, 1, 2, 3,
4, 5, 6, and 7, making a total of eight digits. The point
used to determine the magnitude of the number is
now called the octal point. All other rules which
apply to the decimal system apply also to the octal
system.

BINARY SYSTEM

The binary system uses the radix of two. There-
fore, this system contains a total of two symbols, 0
and 1. The point used to determine the magnitude of
the number is now called the binary point. All other
rules which apply to decimal and octal systems also
apply to the binary system.

OTHER SYSTEMS

Athough the binary system is used predominantly
in ecomputers, any radix may be used to form a valid
numbering system, for example:

Ternary system —O0, 1,2 (3 digits)
Quinary system —O0, 1, 2, 3, 4 (5 digits)
Duodecimal system -—

0,1,23,4,5,6,7,8,9,t, ¢ (12 digits)

INTEGERS AND FRACTIONS

This section discusses the integers and fractions as-
sociated with the decimal, octal, and binary number-
ing systems.

DECIMAL INTEGERS

Decimal integers are represented by a sequence of
digits to the left of the decimal point. Decimal in-
tegers have the radix ten. This means that each digit
has ten times the value of the next less significant
digit to the right.

For example, the decimal number 532 can be inter-
preted as follows:

532 =500 + 30 + 2
532=5 X 102 + 3 X 10! + 2 X 10°
532 = (5) (100) + (3) (10) + (2) (1).

The least significant digit of a decimal integer rep-
resents units, the second significant digit represents
tens, the third significant digit represents hundreds,
ete.

DECIMAL FRACTIONS

Decimal fractions are represented by a sequence of
digits to the right of the decimal point. The first digit
to the right of the decimal point is the most significant
digit of a decimal fraction. This digit represents
inerements of 10-* (1/10). The second, third and nth
digits to the right of the decimal point represent
increments of 10-2 (1/100), 10~3 (1/1000), and 10™
(1/10™), respectively. Note that each digit is ten
times smaller than the preceding digit to the left.

For example, the decimal number 0.608 can be in-
terpreted as follows:

0.608 = + 0.600 + 0.000 + 0.008
0.608=6 X 1071 + 0 X 10°2 + 8 X 10-3
0.608 = (6) (1/10) + (0)(1/100) + (8)(1/1000).

The most significant digit of a decimal fraction repre-
sents tenths, the second significant digit represents
hundredths, the third significant digit represents
thousands, ete.

Combination of both decimal integers and decimal
fractions is illustrated below:

243.269 = 200 + 40 + 3 + 0.200 + 0.060 + 0.009

243.269 = 2X102 + 4X101 + 3X100 + 2X101 +

6x10-2 + 9x10-3
243.269 = (2) (100) + (4)(10) + (3)(1) + (2)
(1/10) + (6)(1/100) + (9)(1/1000).

OCTAL INTEGERS

Octal integers are represented by a sequence of
digits to the left of the octal point. Octal integers
have the radix eight. This means that each digit has
eight times the value of the next less significant digit
to the right. The least significant digit of an octal
integer represents units as in the decimal system.
The second significant digit represents eights, the
third significant digit represents sixty fours, ete.

For example, the octal integer 306 can be inter-
preted as follows:

3065 = 3Xx82 + 0X81 + 6X80 = 198.

OCTAL FRACTIONS

Octal fractions are represented by a sequence of
digits to the right of the octal point. The first digit
to the right of the octal point is the most significant
digit of an octal fraction. This digit represents incre-
ments of 871 (1/8). The second, third, and nth digits
to the right of the octal point represent increments
of 82 (1/64), 88 (1/512), and 8™ (1/82), respec-
tively. Note that each digit is eight times smaller than
the preceding digit to the left.

For example, the octal fraction 0.360 can be inter-
preted as follows:

0.360 = (8) (81) + (6) (82) + (0) (88) =

decimal 0.46875.

BINARY INTEGERS
A Dbinary integer has a radix of two and is a
whole number composed of a sequence of bits (binary
digits). Bach bit can be either a 1 or 0. The least
significant bit represents increments of 29 (units),
and is located immediately to the left of the binary
point. The second significant bit to the left of the
binary point represents increments of 21 (twos). The
third, fourth, and nth bits to the left of the binary
point represent increments of 22 (fours), 23 (eights),
and 27, respectively. Note that each bit is twice the
value of the preceding bit to the right. A typiecal
six-bit binary number is shown below.
101011 = (1X25) + 0X24) + 1X28) 4 (0X22) +
(1X21) + (1X20)
101011 = (1) (32) + (0)(16) + (1)(8) + (0)(4)
+ (1)(2) + (1)(1).

BINARY FRACTIONS

Binary fractions are represented by a sequence of
bits to the right of the binary point. The first bit to
the right of the binary point is the most significant
bit of a binary fraction. This bit represents incre-
ments of 271 (1/2). The second, third and nth bits
to the right of the binary point represent increments
of 272 (1/4,), 273 (1/8), and 2™ (1/2"), respectively.
Note that each bit is half the value of the preceding
bit to the left. A typieal 6-bit binary fraction is
shown below:

0101011 = (1X271) + (0X22) + (1X2°8) +
(0X2°%) + (1X275) + (1X2-6)

0.101011 =) (1)(1/2) + (0)(1/4) + (1)(1/8) +
(0)(1/16) + (1)(1/32) + (1)(1/64).

CONVERSION BETWEEN SYSTEMS

Included herein are methods of converting to or
from any one of the three numbering systems (i.e.,
decimal, octal, or binary).

DECIMAL TO OCTAL CONVERSION
OF INTEGERS

To convert a decimal integer to an octal integer,
divide the decimal integer by the radix of the octal
system (8) repeatedly and take the remainders in
reverse order to get the octal integer (i.e., the first
remainder is the least significant digit). Thus to
convert 347, to the octal system:

81347
8143 remainder is 3
8|5 remainder is 3 533g
0 remainder is 5

Therefore,
34:710 = 5338

OCTAL TO DECIMAL CONVERSION
OF INTEGERS

To convert an octal integer to a decimal integer it
is necessary to convert all the digits of the octal integer
to their decimal equivalent and add. Therefore, to
convert 5335 to the decimal system:

5 X 82=(5)(64) =320
3xX81=(3)(8) = 24
3xX80=(3)(1) = 3

347,40

Therefore,
5333 =347 10

DECIMAL TO OCTAL CONVERSION
OF FRACTIONS

To convert octal fractions to decimal fractions, con-
multiply repeatedly by the radix of the octal number
(8) and take out the resulting integral parts in for-
ward order. That is, the first integral number is the
most significant digit. Thus, to convert 0.4687504 9
to the octal system:

8 X 0.468750 = = 3.750000, integral part is 3
8 X 0.75 =+ = 6.00, integral part is 6 ,0.3605
8 X 0.00 =+ = (.00, integral part is 0

Therefore,
04687501 0= 03608.

OCTAL TO DECIMAL CONVERSION
OF FRACTIONS

To convert octal fractions to decimal fractions, con-
vert the octal digits to their equivalent decimal digits
and add. Therefore, to convert 0.360g to the decimal
system :

3% 81=(3)(1/8) =0375

6% 82=(6)(1/64) =0.09375

0 X 8-8 = (0) (1/512) = 0.00000
0.46875, ¢

Therefore,
0'3608 = 0.468751 o

DECIMAL TO BINARY CONVERSION
OF INTEGERS

To convert a decimal integer to a binary integer
divide the decimal integer by the radix of the binary
system (2) repeatedly and take the remainder in re-
verse order to get the equivalent binary integer. Again,
as in converting to octal, the first remainder is the
least significant bit. Thus, to convert 43, to the binary
system:

2 43
2 2 remainder is 1
2 10 remainder is 1
2 5 remainder is 0 \ 101011,
2 2 remainder is 1
2 1 remainder is 0
0 remainder is 1
Therefore,

4310 =101011,.

BINARY TO DECIMAL CONVERSION
QF INTEGERS

To convert a binary integer to a decimal integer it
is necessary to convert all the bits of the binary integer

to their decimal equivalents and add. Therefore, to
convert 101011, to the decimal system:

1% 28 = (1)(32) =32

0% 24=(0)(16) = 0
1%x28=(1)(8) = 8
0% 22=(0)(4) = 0
1X21=(1)(2) = 2
1X20=(1)(1) = 1

43

Therefore,
1010112 =4340.

DECIMAL TO BINARY CONVERSION
OF FRACTIONS
To convert a decimal fraction to a binary fraction,
multiply repeatedly by the radix of the binary num-
ber (2) and take out the resulting integral parts in
forward order. Thus, to convert 0.375,¢ to the binary
gystem:
9 % 0.375 = 0.75, integral part is 0
2% 0.75 = 1.50, integral partis1
2% 0.50 =1.00, integral partis1
9 % 0.00 = 0.00, integral part is 0

0.0110,

Therefore,
0.37510 = 0.0110,.

BINARY TO DECIMAL CONVERSION
OF FRACTIONS

To convert a binary fraction to a decimal fraction,
convert the binary bits to their equivalent decimal
digits and add. Therefore, to convert 0.0115 to the
decimal system:

0% 2°1=(0)(1/2) = 0.000
1x2-2=(1)(1/4) = 0.250
1X2-83=(1)(1/8)=0.125
0.3754¢
Therefore,

0.011, = 0.3755,.

BINARY TO OCTAL CONVERSION

In the octal system the radix is eight, and there are
eight possible values that each digit of an octal num-
ber can have, namely, 0 to 7. A three-bit binary in-
teger also has eight possible values. This permits the
simple conversion between three-bit binary numbers
and single octal digits, as shown in Table A-1.

A-3

Binary Octal Binary Octal Decimal

000 0 Radiz = 2 Radiz = 8 Radiz = 10

001 1 Dagz;: glsed D@%@t;) l;sed Di g;t:ol;sed
010 2 00000 0000 0
011 3 00001 0001 1
100 4 00010 0002 2
101 5 00011 0003 3
110 6 00100 0004 4
111 7 00101 0005 5
00110 0006 6
Table A-1. Binary to Octal Conversion 00111 0007 7
01000 0010 8
The radix of the binary number system is two. 01001 0011 9
Therefore, each three-bit binary group has eight times 01010 0012 10
the weight of the next three-bit group to the right 01011 0013 11
(23 =8). This means that direct conversion is possible 01100 0014 12
between any binary number and the equivalent octal 01101 0015 13
number. 01110 0016 14
The first step is to divide the binary number into 01111 0017 15
groups of three bits, working left from the binary 10000 0020 16
point. If a group of two bits is left over, the next bit 10001 0021 17
at the left is considered to be zero. A zero added to 10010 0022 18
the left of a number has no effect on the value of 10011 0023 19
the number. Similarly, if only one bit is left over, 10100 0024 20

the next two bits to the left are considered to be ,

zeros. Thus, the binary number ‘11101111’ can be 10101 0025 21
10110 0026 22

converted to an equivalent octal number in the fol-
lowing manner :

011 101 111
3 5 7

(binary)
(octal)

BINARY TO OCTAL TO
DECIMAL CONVERSION

Table A-2 gives the binary to octal to decimal con-
version for the decimal numbers 0 through 22.

BASIC ARITHMETIC OPERATIONS AS
APPLIED TO BINARY NUMBERS

The 9400 Computer storage devices store binary
information. Therefore, all arithmetic operations in
the computer are performed using binary numbers.
The octal numbering system is used only to represent
the binary system. This section describes the addi-
tion, subtraction, multiplication, and division of bin-
ary numbers.

BINARY ADDITION

Binary numbers, both intergers and fractions, are
added in much the same way as ordinary decimal
numbers. The computer never adds more than two
numbers during each single step. Therefore, more

A-4

Table A-2. Binary to Octal to Decimal
Conversion (Decimal 0 to 22)

than two binary numbers are added together by sue-
cessively adding each number to the preceding sub-
total.

When two binary numbers are added together, the
addition of each column produces a sum bit (ie.,
1 or 0) which appears in the result under the column
being added. The addition of each column can also
produce a ‘‘carry’’ bit which is applied to the next
more significant column to the left. However, a carry
does not occur always.

Every possible combination for adding two binary
numbers is shown below:

Addend 0 1 0 1
Augend 1 0 0 1
Sum 1 1 0 0
Carry 1

For example, the addition of two binary numbers is
shown below:

Addend 101011
Augend 110011
Sum (without carry) 011000
Carry in* 100011
Sum 1011110

*The carry-in is formed by the carry-out of the previous
column,

The addition of binary fractions is performed in
exactly the same way as for binary integers.

DIRECT SUBTRACTION

When two binary numbers are subtracted, the sub-
traction of each column results in a difference bit
(1 or 0) below the columns being subtracted. In some
cases, it is necessary to borrow a 1 to complete a sub-
traction. Since each digit in the minuend is twice
the value of the next less significant digit, it is pos-
sible to ‘‘borrow’’ to ecomplete a subtraction (ie., a
1 in the second least significant digit is equivalent
to two 1’s in the least significant digit). This pro-
cedure is shown below:

1
Minuend after borrow 01111
Miruend before borrow 10000
Subtrahend 1001
Difference m

For example, the subtraction of the two binary
integers is shown below:

Minuend 110011
Subtrahend 11101
Difference 10110

The subtraction of binary fractions is performed in
exactly the same way as for binary integers.

SUBTRACTION BY COMPLEMENTS
(END-AROUND CARRY)

Instead of using direct subtraction, it is possible
to subtract by adding the complement of the subtra-
hend to the minuend and then making certain ad-
justments. There are two complement methods,
namely, the no-end-around carry and the end-around
carry. Since the end-around-carry method is em-
ployed in the 9400 Computer, it is the method de-
seribed below. -

In the decimal system, the end-around-ca. y method
is also called the 9’s complement method, or one less

than the 10’s complement of a decimal number. The
10’s complement of a decimal number is the difference
between the number and the next larger power of 10
greater than that number. For example, the 10’s
complement of 24 is 76 or 100 minus 24, and the 10°s
complement of 333 is 677 or 1000 minus 333. The
9’s complement of 24 is 75 since its 10’s ecomplement
is 76. Also, the 9’s complement of 333 is 666 since
its 10’s complement is 667.

To subtract 28 from 236, the 9’s complement of 23
is added to 236 and then a 1 is added to the result.
The addition of a 1 to the result is termed end-around
carry. That is,

236
+ 976 (9’s complement of 23)

1212 (the 1 in the extra column indicates a
positive number)

1 end-around carry

+ 213

If the extra column 1 were not present, it would be
necessary to 9’s complement the result and prefix a
minus sign. For example, to subtract 723 from 236:

236
276 (9’s complement of 723)

512 (no extra-column 1 in this result)
—487 (9’s complement of result with minus sign
indicated)

The end-around-carry method when used in the
binary system is called the 1’s complement method,
or one less than the 2’s complement of a binary num-
ber. It is the difference between the binary number
and the next larger power of 2 greater than that
number. For example, the 2’s complement of 1100
is 1000 minus 1100 or 0100, and the 2’s complement
of 10111 is 100000 minus 10111 or 01001. The 1’s
complement of 1100 is 1111 (or 1 less than 10000)
minus 1100 or 0011. It may now be observed that
the 1’s complement of a binary number is obtained
immediately by changing the 1’s to 0’s and the 0’s to
1’. Therefore, the 1’s complement of 1100 is 0011.

To subtract the binary number 01111001 from
11101001, the 1’s complement of 01111001 is added
to 11101001 plus 1 (end-around carry). That is,

11101001
10000110 (1’s complement of 01111001)
51101111 (the 1 in the extra column indicates a
positive number)
1 end-around carry
401110000

If the extra column 1 were not present, and there-
fore no end-around carry, it would be necessary to 1’s
complement the result and prefix a minus sign. For
example, to subtract 01101110 from 0001111:

00001111
10010001 (1’s complement of 01101110)
10100000 (no extra-column 1 in this result)

—01011111 (1’s complement of result with minus
sign indicated)

DIRECT MULTIPLICATION

The rules for direct multiplication in the decimal
System are also applicable in the binary system.
Every possible combination for multiplying two
numbers is shown below :

Multiplicand 1 0 1 0
Multiplier 1 0 0 1
Product 1 0 0 0

For example, the direet multiplication of two binary
numbers is shown below :

101101 Multiplicand
100011 Multiplier

101101
10110
101101

11000100111

Product

MULTIPLICATION BY REPEATED ADDITION

Instead of using direct multiplication, eomputers
multiply by repeated binary additions. The 9400 Com-
puter performs a binary multiplication in the follow-
ing way. The multiplicand is added in the accumulator
to zero if the first digit of the multiplier is a 1. If the
first digit of the multiplier is a 0, no addition oceurs.
As each digit of the multiplier is considered, the accu-
mulator is shifted to the right and then added to the
multiplicand when the multiplier digit is 1. For ex-
ample, to multiply by repeated additions the binary
numbers 101101 (multiplicand) and 100011 (multi-
plier) :

Aocumulator Multiplier
000000 Accumulator 100011
101101 Multiplicand
101101 Addition of Multiplicand to Aceumulator
101101 Accumulator shifted ome place to the
right 100010
101101 Multiplicand
10000111 Addition of Multiplicand to Accumulator
10000111 Accumulator shifted four places to the
right 100000
101101 Multiplicand

11000100111 Addition of Multiplicand to Accumulator 000000

Thus, the product of 101101 and 100011 is equal to
11000100111, and is a positive number since both the
multiplier and multiplicand are both positive.

DIRECT DIVISION

The rules for direet division in the decimal system
are also applicable in the binary system. Direct binary
division is simplified by having only two variables.
Whenever the divisor is larger than the dividend, a
0 is placed in the quotient; otherwise, a 1 is placed
in the quotient.

For example, to divide 10000101 (dividend) by
1110 (divisor) :

1001.1
10000101.0
1110

10101
1110

1110
1110

0000

1110

DIVISION BY REPEATED SUBTRACTION

Instead of using direct division, computers divide
by repeated subtractions. The 9400 Computer per-
forms a binary subtraction in the following way. First,
the dividend is examined to determine whether or not
it is smaller than the divisor. If it is smaller, division
is permissible (i.e., the quotient will be fractional and,

in the 9400 Computer, is represented by a 36-bit
binary fraction). If division is permissible, the quo-
tient is formed on a bit-by-bit basis, as described below.

The binary point which precedes the first bit of the
dividend and the first bit of the divisor can be ignered.
As a result, the dividend and divisor can be thought
of as 36-bit binary integers rather than fractions. The
divisor, which was a larger binary fraction than the
dividend, is now a larger binary integer than the
dividend. This insures that the quotient will be a
fraction. Since the quotient is a fraction, the first bit
to be determined is the bit immediately to the right
of the binary point, since all bits to the left of the
binary point are 0’s. The bit is determined by multi-
plying the dividend by 010 (binary) or 2 (decimal).
This is equivalent to shifting the dividend one bit to
the left.

The multiplied (shifted) dividend is examined to
gee if it is now larger than the divisor. If it is larger,

a 1 is put in the first bit position of the quotient and
the divisor is subtracted from the ‘‘new’’ dividend.
If the new dividend is not larger than the divisor, a
0 is placed in the first bit position of the quotient and
the divisor is not subtracted. The difference (if a
subtraction was performed) or the shifted dividend
(if a subtraction was not performed) is then shifted
one place to the left, and the same procedure used to
determine the first bit of the quotient is followed again
to determine the second bit of the quotient.

This procedure is continued for 36 times. The quo-
tient will then contain 36 bits. The number that re-
mains after the 36th (last) subtraction or nonsub-
traction is the remainder of the division.

For example, to divide 0.011011 (dividend) by
0.101101 (divisor) using 6-bit numbers instead of
36-bit numbers for purposes of convenience, the fol-
lowing procedure is used. (Division is permissible
gince the dividend is smaller than the divisor).

0.011011
0.110110

Q=0.1—0.1011101
0.001001
0.010010

Q =0.10—0.101101
0.100100

Q==0.100 — 0.101101
1.001000

Q = 0.1001 — 0.101101
0.011011
0.110110

Q =0.10011 — 0.101101
0.001001
0.010010

Q = 0.100110 — 0.101101

Q = Quotient = 0.101101

Dividend No. 1.
Dividend shifted one place to the left (dividend No. 2).

Divisor smaller than dividend No. 2, therefore, subtraction is performed.
Difference (dividend No. 3).
Difference (dividend No. 8) shifted one place to the left (dividend No. 4).

Divisor larger than dividend No. 4, therefore, no subtraction is performed.
Difference (dividend No. 4) shifted one place to the left (dividend No. 5).

Divisor larger than dividend No. 5, therefore, no subtraction is performed.
Difference (dividend No. 5) shifted one place to the left (dividend No. 6).

Divisor smaller than dividend No. 6, therefore, subtraction is performed.
Difference (dividend No. 7).
Difference (dividend No. 7) shifted one place to the left (dividend No. 8).

Divisor smaller than dividend No. 8, therefore, subtraction is performed.

Difference (dividend No. 9).
Difference (dividend No. 9) shifted one place to the left (dividend No. 10).

Divisor larger than dividend No. 10, therefore, no subtraction is performed.

R = Remainder = dividend No. 10 = 0.010010

The quotient is a positive number since the sign of the dividend and the sign of the divisor are alike. If
they were not alike, the quotient would have been negative. The sign of the remainder is the sign of the
dividend and is positive in the above example.

A-7

CO B DD e

16
32
64
128

256
512
1 024
2 048

4 096
8 192
16 384
32 768

65 536
131 072
262 144
524 288

1048 576
2 097 152
4 194 304
8 388 608

1€ 777 216
33 554 432
67 108 864
134 217 728

268 435 456

536 870 912
1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

IO U

APPENDIX B

LIST OF POWERS OF 2

.003 906 25

01 953 125
00 976 562 5
00 488 281 25

OOOO

.000 244 140 625

.000 122 070 312 5

.000 061 035 156 25
00 030 517 578 125

.0
.000 015 258 789 062 5
.000 007 629 394 531 25
.000 003 814 697 265 625
.000 001 907 348 632 8i2 5

.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.600 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

~0.000 000 000 232 830 643 653 869 628 906 25

0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

0000 0000
to to

6777 osn

(Qctol) | (Decimal)

DECIMAL-OCTAL CONVERSION

APPENDIX C
LIST OF OCTAL-DECIMAL,

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000
to
1777
(Oc¢tal)

0812
fo
1023
{Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0000 {0000 0001 0002 0003 0004 0005 0006 0007 0400 (0256 0257 0258 0259 0260 0261 0262 0263
0010 |0008 0009 0010 0011 0012 0013 0014 0015 0410 {0264 0265 0266 0267 0268 0269 0270 0271
0020 {0016 0017 0018 0019 0020 0021 0022 0023 0420|0272 0273 0274 0275 0276 0277 0278 0279
0030 10024 0025 0026 0027 0028 0029 0030 003t 0430 {0280 0281 0282 0283 0284 0285 0286 0287
0040 |0032 0033 0034 0035 0036 0037 0038 0039 0440|0288 0289 0290 0291 0292 0293 0294 0295
0050 |0040 0041 0042 0043 0044 0045 0046 0047 045010296 0297 0298 0299 0300 0301 0302 0303
0060 [0048 0049 0050 0051 0052 0053 0054 0055 0460)0304 0305 0306 0307 0308 0309 0310 0311
0070 |0056 0057 0058 0059 0060 0061 0062 0063 04700312 0313 0314 0315 0316 0317 0318 0319
0100 |0064 0065 0066 0067 0068 0069 0070 0071 0500 {0320 0321 0322 0323 0324 0325 0326 0327
0110{0072 0073 0074 0075 0076 0077 0078 0079 0510 {0328 0329 0330 0331 0332 0333 0334 0335
0120|0080 0081 0082 0083 0084 0085 0086 0087 0520 |0336 0337 0328 0339 0340 0341 0342 0343
0130 {0088 0089 0090 0091 0092 0093 0094 0095 0530 {0344 0345 0346 0347 0348 0349 0350 0351
0140 (0096 0097 0098 0099 0100 0101 0102 0103 0540|0352 0353 0354 0355 0356 0357 0358 0359
0150 {0104 0105 0106 0107 0108 0109 0110 0111 0550 {0360 0361 0362 0363 0364 0365 0366 0367
01600112 0113 0114 0115 0116 0117 0118 0119 0560 {0368 0369 0370 0371 0372 0373 0374 0375
0170/0120 0121 0122 0123 0124 0125 0126 0127 0570 {0376 0377 0378 0379 0380 0381 0382 0383
02000128 0129 0130 0131 0132 0133 0134 0135 0600 |0384 0385 0386 0387 0388 0389 0390 0391
02100136 0137 0138 0139 0140 0141 0142 0143 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 0620 (0400 0401 0402 0403 0404 0405 0406 0407
0230|0152 0153 0154 0155 0156 0157 0158 0159 0630 [0408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0167 0640|0416 0417 0418 0419 0420 0421 0422 0423
02500168 0169 0170 0171 0172 0173 0174 0175 0650 | 0424 0425 0426 0427 0428 0429 0430 0431
0260-(0176 0177 0178 0179 0180 0181 0182 0183 0660 | 0432 0433 0434 0435 0436 0437 0438 0439
0270 {0184 0185 0186 C187 0188 0189 0190 0191 0670|0440 0441 0442 0443 0444 0445 0446 0447
0300|0192 0193 0194 0195 0196 0197 0198 0199 0700|0448 0449 0450 0451 0452 0453 0454 0455
0310{0200 0201 0202 0203 0204 0205 0206 0207 0710|0456 0457 0458 0459 0460 0461 0462 0463
0320|0208 0209 0210 0211 0212 0213 0214 0215 0720 | 0464 0465 0466 0467 0468 0469 0470 0471
0330{0216 0217 0218 0219 0220 0221 0222 0223 0730|0472 0473 0474 0475 0478 0477 0478 0479
0340 {0224 0225 0226 0227 0228 0229 0230 0231 0740|0480 0481 0482 0483 0484 0485 0486 0487
0350|0232 0233 0234 0235 0236 0237 0238 0239 0750|0488 0489 0490 0491 0492 0493 0494 0495
0360 | 0240 0241 0242 0243 0244 0245 0246 0247 0760 | 0496 0497 0498 0499 0500 0501 0502 0503
03700248 0249 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 0511
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 17
1000|0512 0513 0514 0515 0516 0517 0518 0519 1400|0768 0769 0770 0771 0772 0773 0774 0775
1010|0520 0521 0522 0523 0524 0525 0526 0527 1410|0776 0777 0778 0779 0780 0781 0782 0783
1020] 0528 0529 0530 0531 0532 0533 0534 0535 14200784 0785 0786 0787 0788 0789 0790 0791
1030|0536 0537 0538 0539 0540 0541 0542 0543 1430|0792 0793 0794 0795 0796 0797 0798 0799
1040 0544 0545 0546 0547 0548- 0549 0550 0551 1440|0800 0801 0802 0803 0804 0805 0806 0807
10500552 0553 0554 0555 0556 0557 0558 0559 1450 | 0808 080y 0810 0811 0812 0813 0814 0815
1060|0560 0561 0562 0563 0564 0565 0566 0567 1460|0816 0817 0818 0819 0820 0821 0822 0823
1070|0568 0569 0570 0571 0572 0573 0574 0575 1470 | 0824 0825 0826 0827 0828 0829 0830 0831
1100|0576 0577 0578 0579 0580 0581 0582 0583 1500|0832 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0587 0588 0889 0590 0591 1510|0840 0841 0842 0843 0844 0845 0846 0847
11200592 0593 0594 0595 0596 0597 0598 0599 1520|0848 0849 0850 0851 0852 0853 0854 0855|
11300600 0601 0602 0603 0604 0605 0606 0607 1530|0856 0857 0858 0859 0860 0861 0862 0863
1140|0608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
11500616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 0874 0875 0876 0877 0878 0879
1160|0624 0625 0626 0627 0628 0629 0630 0631 1560|0880 0881 0882 0883 0884 0885 0886 0887
1170|0632 0633 0634 0635 N636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0895 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 {0896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610 |0904 0905 0908 0907 0908 0909 0910 0911
1220} 0656 0657 0658 0659 0660 0661 0662 0663 1620 (0912 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671 1630 {0920 0921 0922 0923 0924 0925 0928 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 1640 (0928 0929 0930 0931 0932 0933 0934 0935
12500680 0681 0682 0683 0684 0685 0686 0687 1650 |0936 0937 0938 0939 0940 0941 0942 0943
1260|0688 0689 0690 0691 0692 0693 0694 0695 1660 |0944 0945 0946 0947 0948 0949 0950 0951
1270|0696 0697 0698 0699 0700 0701 0702 0703 1670 [0952 0953 0954 0955 0956 0957 0958 0959
1300|0704 0705 0706 0707 0708 0709 0710 0711 1700 (0960 0961 0962 0963 0964 0965 0966 0967
1310/0712 0713 0714 0715 0716 0717 0718 0719 1710 |0968 0969 0970 0971 0972 0973 0974 0975
1320(0720 0721 0722 0723 0724 0725 0726 0721 1720 {0976 0977 0978 0979 0980 0981 0982 0983
1330|0728 0729 0730 0731 0732 0733 0734 0735 1730 [0984 0985 0986 0987 0988 0989 0990 0991
1340{0736 0737 0738 0739 0740 0741 0742 0743 1740]0992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751 1750|1000 1001 1002 1003 1004 1005 1006 1007
1360|0752 0753 0754 0755 0756 0757 0758 0759 1760 (1008 1009 1010 1011 1012 1013 1014 1015
1370|0760 0761 0762 0763 0764 0765 0766 0767 17701016 1017 1018 1019 1020 1021 1022 1023

2000 1024
to to
2777 1535
(Octal) (Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 1
2000)1024 1025 1026 1027 1028 1029 1030 1031 2400(1280 1281 1282 1283 1284 1285 1286 1287
201011032 1033 1034 1035 1036 1037 1038 1039 241011288 1289 1290 1291 1292 1293 1294 1295
2020{1040 1041 1042 1043 1044 1045 1046 1047 242011296 1297 1298 1299 1300 1301 1302 1303
20301048 1049 1050 1051 1052 1053 1054 1055 243011304 1305 1306 1307 1308 1309 1310 1311
20401056 1057 1058 1059 1060 1061 1062 1063 244011312 1313 1314 1315 1316 1317 1318 1319
2050 (1064 1065 1066 1067 1068 1069 1070 1071 2450(1320 1321 1322 1323 1324 1325 1326 1327
20601072 1073 1074 1075 1076 1077 1078 1079 24601328 1329 1330 1331 1332 1333 1334 1335
20701080 1081 1082 1083 1084 1085 1086 1087 247011336 1337 1338 1339 1340 1341 1342 1343
210011088 1089 1090 1091 1092 1093 1094 1095 25001344 1345 1346 1347 1348 1349 1350 1351
21101096 1097 1098 1099 1100 1101 1102 1103 251001352 1353 1354 1355 1356 1357 1358 1359
2120{1104 1105 1106 1107 1108 1109 1110 111 2520(1360 1361 1362 1363 1364 1365 1366 1367
2130|1112 1153 1114 1115 1116 1117 1118 1119 2530(1368 1369 1370 1371 1372 1373 1374 1375
21401120 1121 1122 1123 1124 1125 1126 1127 2540(1376 1377 1378 1379 1380 1381 1382 1383
215011128 1129 1130 1131 1132 1133 1134 1135 255011384 1385 1386 1387 1388 1389 1390 1391
216011136 1137 1138 1139 1140 1141 1142 1143 2560{ 1392 1393 1394 1395 1396 1397 1398 1399
21701144 1145 1146 1147 1148 1149 1150 1151 2570|1400 1401 1402 1403 1404 1405 1406 1407
22001152 1153 1154 1155 1156 1157 1158 1159 260011408 1409 1410 1411 1412 1413 1414 1415
2210{1160 1161 1162 1163 1164 1165 1166 1167 261011416 1417 1418 1419 1420 1421 1422 1423
222011168 1169 1170 1171 1172 1173 1174 1175 26201424 1425 1426 1427 1428 1429 1430 1431
223041176 1177 1178 1179 1180 1181 1182 1183 2630|1432 1433 1434 1435 1436 1437 1438 1439
224071184 1185 1186 1187 1188 1189 1190 1191 2640, 1440 1441 1442 1443 1444 1445 1446 1447
22501192 1193 1194 1195 1196 1197 1198 1199 2650|1448 1449 1450 1451 1452 1453 1454 1455
226011200 1201 1202 1203 1204 1205 1206 1207 2660|1456 1457 1458 1459 1460 1461 1462 1463
227011208 1209 1210 1211 1212 1213 1214 1215 2670/ 1464 1465 1466 1467 1468 1469 1470 1471
230011216 1217 1218 1219 1220 1221 1222 1223 27001472 1473 1474 1475 1476 1477 1478 1479
2310|1224 1225 1226 1227 1228 1229 1230 1231 2710/ 1480 1481 1482 1483 1484 1485 1486 1487
232011232 1233 1234 1235 1236 1237 1238 1239 272011488 1489 1490 1491 1492 1493 1494 1495
233011240 1241 1242 1243 1244 1245 1246 1247 2730(1496 1497 1498 1499 1500 1501 1502 1503
23401248 1249 1250 1251 1252 1253 1254 1255 2740]1504 1505 1506 1507 1508 1509 1510 1511
235011256 1257 1258 1259 1260 1261 1262 1263 27501512 1513 1514 1515 1516 1517 1518 1519
23601264 1265 1266 1267 1268 1269 1270 1271 27601520 1521 1522 1523 1524 1525 1526 1527
237011272 1273 1274 1275 1276 1277 1278 1279 2770[1528 1529 1530 1531 1532 1533 1534 1535
n 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
3000 [1536 1537 1538 1539 1540 1541 1542 1543 3400|1792 1793 1794 1795 1796 1797 1798 1799
3010|1544 1545 1546 1547 1548 1549 1550 1551 3410|1800 1801 1802 1803 1804 1805 1806 1807
3020 (1552 1553 1554 1555 1556 1557 1558 1559 342011808 1809 1810 1811 1812 1813 1814 1815
3030 (1560 1561 1562 1563 1564 1565 1566 1567 3430)1816 1817 1818 1819 1820 1821 1822 1823
30401568 1569 1570 1571 1572 1573 1574 1575 34401824 1825 1826 1827 1828 1829 1830 1831
3050 | 1576 1577 1578 1579 1580 1581 1582 1583 345011832 1833 1834 1835 1836 1837 1838 1839
3060|1584 1585 1586 1587 1588 1589 1590 1591 34601840 1841 1842 1843 1844 1845 1846 1847
30701592 1593 1594 1595 1596 1597 1598 1599 3470|1848 1849 1850 1851 1852 1853 1854 1855
3100}1600 160! 1602 1603 1604 1605 1606 1607 35001856 1857 1858 1859 1860 1861 1862 1863
3110|1608 1609 1610 1611 1612 1613 1614 1615 351011864 1865 1866 1867 1868 1869 1870 1871
312011616 1617 1618 1619 1620 1621 1622 1623 3520|1872 1873 1874 1875 1876 1877 1878 1879
3130{1624 1625 1626 1627 1628 1629 1630 1631 3530(1880 1881 1882 1883 1884 1885 1886 1887
314011632 1633 1634 1635 1636 1637 1638 1639 35401888 1889 1890 1891 1892 1893 1894 1895
31501640 1641 1642 1643 1644 1645 1646 1647 35501896 1897 1898 1899 1900 1901 1902 1903
31601648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1910 1911
3170(1656 1657 1658 1659 1660 1661 1662 1663 357011912 1913 1914 1915 1916 1917 1918 1919
3200 /1664 1665 1666 1667 1668 1669 1670 1671 3600 (1920 1921 1922 1923 1924 1925 1926 1927
32101672 1673 1674 1675 1676 1677 1678 1679 36101928 1929 1930 1931 1932 1933 1934 1935
3220|1680 1681 1682 1683 1684 1685 1686 1687 36201936 1937 1938 1939 1940 1941 1942 1943
323011688 1689 1690 1691 1692 1693 1694 1695 36301944 1945 1946 1947 1948 1949 1950 1951
3240|1696 1697 1698 1699 1700 1701 1702 1703 3640|1952 1953 1954 1955 1956 1957 1958 1959
3250 {1704 1705 1706 1707 1708 1709 1710 1711 3650 | 1960 1961 1962 1963 1964 1965 1966 1967
3260 {1712 1713 1714 1715 1716 1717 1718 1719 3660|1968 1969 1970 1971 1972 1973 1974 1975
3270 {1720 172F 1722 1723 1724 1725 1726 1727 3670(1976 1977 1978 1979 1980 1981 1982 1983
33001728 172% 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1989 1990 1991
3310|1736 1737 1738 1739 1740 1741 1742 1743 371011992 1993 1994 1995 1996 1997 1998 1999
3320 (1744 1745 1746 1747 1748 1749 1750 1751 37202000 2001 2002 2003 2004 2005 2006 2007
33301752 1753 1754 1755 1756 1757 1758 1759 3730(2008 2009 2010 2011 2012 2013 2014 2015
33401760 1761 1762 1763 1764 1765 1766 1767 3740(2016 2017 2018 2019 2020 2021 2022 2023
33501768 1769 1770 1771 1772 1773 1774 1775 375012024 2025 2026 2027 2028 2029 2030 2031
3360 (1776 1777 1778 1779 1780 1781 1782 11783 376012032 2033 2034 2035 2036 2037 2038 2039
3370/1784 1785 1786 1787 1788 1789 1790 1791 37702040 2041 2042 2043 2044 2045 2046 2047

C-2

3000
to
3777
{Octal)

1536
to
2047
(Decimal)

4000 -

to
a777
(Octal)

2048
o
2359

\Decimol)

Octal Decimal

10000.- 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 -'24576
70000 - 284672

5000
to
5777
(Octal)

2560
to
3071
(Decimol)

0 1 2 3 L] 5 6 1 0 1 2 3 4 3 6 7
4000} 2048 2049 2050 2051 2052 2053 2054 2055 4400{ 2304 2305 2306 2307 2308 2309 2310 2311
4010} 2056 2057 2058 2059 2060 2061 2062 2063 4410{ 2312 2313 2314 2315 2316 2317 2318 2319
4020{ 2064 2065 2066 2067 2068 2069° 2070 2071 4420] 2320 2321 2322 2323 2324 2325 2326 2327
4030} 2072 2073 2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
40401 2080 2081 2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343
4050| 2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
14060| 2096 2097 2098 2099 2100 2101 2102 2103 4460(2352 2353 2354 2355 2356 2357 2358 2359
4070 2104 2105, 2106 2107 2108 2009 2110 2t11 4470 2360 2361 2362 2363 2364 2365 2366 2367
4100 2112 2113 2114 2115 2116 2117 2118 2119 4500|2368 2369 2370 2371 2372 2373 2374 2375
4110| 2120 2121 2122 2123 2124 2125 2126 2127 45102376 2377 -2378 2379 2380 2381 2382 2383
4120] 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2388 2389 2390 2391
4130{ 2136 2137 2138 2139 2140 2141 2142 2143 4530(2302 2393 2394 2395 2306 2397 2398 2399
4140] 2144 2145 2146 2147 2148 2149 2150 2151 4540} 2400 2401 2402 2403 2404 2405 2406 2407
4150] 2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
4160 2160 2161 2162 2163 2164 2165 2166 2167 4560|2416 2417 2418 2419 2420 2421 2422 242)
4170] 2168 2169 2170 2171 2172 2173 2174 2175 4570|2424 2425 2426 2427 2428 2429 2430 2431
4200{ 2176 2177 2178 2179 2180 2181 2182 2183 4600 (2432 2433 2434 2485 2436 2437 2438 2439
4210 2184 2185 2186 2187 2188 2189 2190 2191 46102440 2441 2442 2443 2444 2445 2446 2447
4220; 2192 2193 2194 2195 2196 2197 2198 2199 462012448 2449 2450 2451 2452 2453 2454 2455
4230: 2200 2201 2202 2203 2204 2205 2206 2207 4630 (2456 2457 2458 2459 2460 2461 2462 2443
4240{ 2208 2209 2210 2211 2212 2213 2214 2215 464012464 2465 2466 2467 2468 2469 2470 2471
4250{ 2216 2217 2218 2219 2220 2221 2222 2223 4650 (2472 2473 2474 2475 2476 2477 2478 2479
4260] 2224 2225 2226 2227 2228 2229 2230 2231 4660|2480 2481 2482 2483 2484 2485 2486 2487
4270] 2232 2233 2234 2235 2236 2237 2238 2239 4670|2488 2489 2490 2491 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247 4700|2496 2497 2498 2499 2500 2501 2502 2503
4310(2248 2249 2250 2251 2252 2253 2254 2255 471012504 2505 2506 2507 2508 2509 2510 2511
43202256 2257 2258 2259 2260 2261 2262 2263 47202512 2513 2514 2515 2516 2517 2518 2519
4330] 2264 2265 2266 2267 2268 2269 2270 2271 473012520 2521 2522 2523 2524 2525 2526 2527
434012272 2273 2274 2275 2276 2277 2278 2279 474012528 2529 2530 2531 2532 2533 2534 2535
4350|2280 2281 2282 2283 2284 2285, 2286 2287 475012536 2537 2538 2539 2540 2541 2542 2543
4360|2288 2289 2290 2291 2292 2293 2294 2295 4760|2544 2545 2546 2547 2548 2549 2550 2551
4370] 2296 2297 2298 2299 2300 2301 2302 2303 4770!2552 2553 2554 2555 2556 2557 2558 2559
0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7
500012560 2561 2562 2563 2564 2565 2566 2567 5400 (2816 2817 2818 2819 2820 2821 2822 282)
5010|2568 2569 2570 2571 2572 2573 2574 2575 541012824 2825 2826 2827 2828 2829 2830 2831
50202576 2577 2578 2579 2580 2581 2582 2583 5420|2832 2833 2834 2835 2836 2837 2838 2839
5030|2584 2585 2586 2587 2588 258Y 2590 2591 5430|2840 2841 2842 2843 2844 2845 2846 2847
5040 | 2592 2593 2594 2595 2596 2597 2598 2599 5440 | 2848 2849 2850 2851 2852 2853 2854 285§
5050|2600 2601 2602 2603 2604 2605 2606 2607 5450|2856 2857 2858 2859 2860 2861 2862 2863
5060|2608 2609 2610 2611 2612 2613 2614 2615 5460|2864 2865 2866 2867 2868 2869 2870 2871
5070126145 2617 2618 2619 2620 2621 2622 2623 5470|2872 2873 2874 2875 2876 2877 2878 2879
5100|2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 2882 2883 2884 2885 2886 2887
51102632 2633 2634 2635 2636 2637 2638 2639 5510|2888 2889 2890 2891 2892 2893 2894 2895
5120 {2640 2641 2642 2643 2644 2645 2646 2647 5520 | 2896 2897 2898 2899 2900 2901 2902 2902
513012648 2649 2650 2651 2652 2653 2654 2655 5530 | 2004 2905 2906 2907 2908 2909 2910 2911
51402656 2657 2658 2659 2660 2661 2662 2663 5540 (2912 2913 2914 2915 2916 2917 2918 2919
5150 2664 2665 2666 2667 2668 2669 2670 2671 5550|2920 2921 2922 2923 2924 2925 2926 2927
5160|2672 2673 2674 2615 2676 2677 2678 2679 5560 | 2928 2929 2930 2931 2932 2933 2934 2935
5170 {2680 2681 2682 2683 2684 2685 2686 2687 5570|2936 2937 2938 2939 2940 2941 2942 2943
5200 2668 2689 2690 2691 2692 2693 2694 2695 5600 {2944 2945 2946 2947 2948 2949 2950 2951
5210|2696 2697 2698 2699 2700 2701 2702 2703 5610.12952 2953 2954 2955 2956 2957 2958 2959
5220 {2704 2705 2706 2797 2708 2709 2710 2711 5620 {2960 2961 2062 2963 2964 2965 2966 2967
5220 {2712 2713 2714 2715 2716 2717 2718 2719 5630|2968 23969 2970 2971 2972 2973 2974 2975
5240 {2720 2721 2722 2723 2724 2725 2726 2727 5640 {2976 2077 2978 2979 2980 2981 2982 2983
5250 12728 2725 2730 2731 2732 2733 2734 2735 5650 | 2984 2985 2086 2987 2988 2989 2990 2991
5260]2736 2737 2738 2739 2740 2741 2742 2743 5660 12992 2993 2394 2995 2996 2097 2998 2999
€270 12744 2743 2746 2747 2748 2749 2750 2751 567G {3000 3001 3002 3003 3004 3005 3006 3007
5300|2752 2753 2754 2755 2756 2757 2758 2759 5700 {3008 3009 3010 3011 3012 3013 3014 3015
5310|2760 2761 2762 2763 2764 2765 2766 2767 5710(3016 3017 3018 3019 3020 3021 3022 3023
5320 |2768 2769 2770 2771 2772 2773 2774 2775 5720 (3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2778 2779 2780 2781 2782 2783 5730|3032 3033 3034 3035 3036 3037 3038 3039
5340 | 2784 2785 2786 2787 2788 2789 2790 2791 5740|3040 3041 3042 3043 3044 3045 3046 3047
53502792 2793 2794 2795 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760|3056 3057 3058 3059 3060 3061 3062 3063
{5370 | 2808 2809 2810 28i1 2812 2813 2814 2815 5770|3064 3065 3066 3067 3068 3069 3070 3015

0 i 2 3 4 5 6 7 0 1 2 3 4 5 6 7
6000 [3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335
6010|3080 3081 3082 3083 3084 3085 3086 3087 6410] 3336 3337 3338 3339 3340 3341 3342 3343
6020 {3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349. 3350 3351
603013096 3097 3098 3099 3100 310! 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359
60403104 3105 3106 3107 3108 3109 3110 3111 '6440(3360 3361 3362 3363 3364 3365 3366 3367
60503112 3113 3114 3115 3116 3117 3118 3119 6450| 3368 3369 3370 3371 3372 3373 3374 3375
6060|3120 3121 3122 3123 3124 3125 3126 3127 6460) 3376 3377 3378 3379 3380 3381 3382 3383
6070)3128 3129 3130 3131 3132 3133 3134 3135 6470] 3384 3385 3386 3387 3384 3389 3390 3391
61003136 3137 3138 3139 3140 3141 3142 3143 6500] 3392 3393 3394 3395 3396 3397 3398 3399
61103144 3145 3146 3147 3148 3149 3150 315} 6510f 3400 3401 3402 3403 3404 3405 3406 3407
6120 {3152 3153 3154 3155 3156 3157 3158 3159 6520(3408 3409 3410 3411 3412 3413 3414 %415
6130 {3160 3181 3162 3163 3164 3165 3166 3167 6530] 3416 3417 3418 3419 3420 3421 3422 3423
61403168 3169 3170 3171 3172 3173 3174 3175 6540| 3424 3425 3426 3427 3428 3429 3430 3471
6150 {3176 3177 3178 3179 3180 3181 3182 3183 6550| 3432 3433 3434 3435 3426 3437 3438 3439
616013184 3185 3186 3187 3188 3189 3190 3191 6560| 3440 3441 3442 3443 3444 3445 3446 3447
617013192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455
6200 13200 3201 3202 3203 3204 3205 3206 3207 6600, 3456 3457 3458 3459 3460 3461 3462 3463
62103208 3209 3210 3211 3212 3213 3214 3215 6610| 3464 3465 3466 3467 3468 3469 3470 3471
6220 13216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
6230 13224 3225 3226 3227 3228 3229 3230 323t 6630 3480 3481 3482 3483 3484 3485 3486 3487
6240 (3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3404 3495
{6250 | 3240 3241 3242 3243 3244 3245 3246 3247 6650(3496 3497 3498 3499 3500 3501 3502 3503
6260 {3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
6270 {3256 3257 3258 3259 3260 3261 3262 3263 6670(3512 3513 3514 3515 3516 3517 3518 3519
6300 | 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710|3528 3529 3530 3531 3532 3533 3534 3535
6320 13280 3281 3282 3283 3284 3285 3286 3287 6720] 3536 3537 3538 3539 3540 3541 3542 3543
6330 {3288 3289 3290 3291 3292 3293 3294 3295 6730] 3544 3545 3546 3547 3548 3549 3550 3551
6340 [3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566 3567
636013312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
6370 13320 3321 3322 3323 3324 3325 3326 3327 6770] 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 1

4 3585 3586 3587 3588 3589 3590 3591 7400|3840 3841 3842 3843 3844 3845 3846 3847
;8(1)3 gggz 3593 3594 3595 3596 3597 3598 3599 7410] 3848 3849 3850 3851 3852 3853 3854 3855
7020(3600 3601 3602 3603 3604 3605 3606 3607 7420(3856 3857 3858 3859 3860 3861 3862 3863
7030] 3608 3609 3610 3611 3612 3613 3614 3615 7430| 3864 3865 3866 3867 3868 3869 3870 3871
7040} 3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 3877 3878 3879
7050] 3624 3625 3626 3627 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887
7060| 3632 3633 3634 3635 3636 3637 3638 3639 7460} 3888 3889 3890 3891 3892 3893 3894 3895
7070 3640 3641 3642 3643 3644 3645 3646 3647 7470(3896 3897 3898 3899 3900 3901 3902 3903
7100| 3648 3649 3650 3651 3652 3653 3654 3655 75003904 3905 3906 3907 3908 3909 3910 3911
7110] 3656 3657 3658 3659 3660 3661 3662 3663 75103912 3913 3914 3915 3916 3917 3918 3919
7120] 3664 3665 3666 3667 3668 3669 3670 3671 7520) 3920 3921 3922 3923 3924 3925 3926 3927
7130} 3672 3673 3674 3675 3676 3677 3678 pm 75303928 3929 3930 3931 3932 3933 3934 3935
7140} 3680 31681 3682 3683 3684 3685 3686 3687 754013936 3937 3938 3939 3940 3941 3942 3943
7150] 3688 3689 3690 3691 3602 3693 3694 3695 7550) 3944 3945 3946 3947 3948 3949 3950 3951
7160} 3696 3697 3698 3699 3700 3701 3702 3703 75603952 3953 3954 3955 3956 3957 3958 3959
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570] 3960 3961 3962 3963 3964 3965 3966 3967
7200 3712 3713 3714 3715 3716 3717 3718 3719 7600|3968 3969 3970 3971 3972 3973 3974 3975
7210] 3720 3721 3722 3723 3724 3725 3726 3727 7610[3976 3977 3978 3979 3980 398r 3982 3983
7220) 3728 3729 3730 3731 3732 3733 3734 3735 76203984 3985 3986 3987 3988 3989 3990 3991
7230|3736 3737 3738 3739 3740 3741 3742 3743 763013992 3933 3994 3995 3996 3997 3998 3999
T7240) 3744 3745 3746 3747 3748 3749 3750 31751 7640|4000 4001 4002 4003 4004 4005 4006 4007
7250| 3752 3753 3754 3755 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260| 3760 3761 3762 3763 3764 3765 3766 3767 7660|4016 4017 4018 4019 4020 4021 4022 4023
7270| 3768 3769 3770 3771 23772 3773 3774 3175 767014024 4025 4026 4027 4028 4029 4030 4031
7300|3776 3777 3778 3779 3780 3781 2782 3783 7700|4032 4033 4034 4035 4036 4037 4038 4039
7310{ 3784 3785 3786 3787 3788 3789 3790 3791 7710|4040 4041 4042 4043 4044 4045 4046 4047
7320(3792 3793 3794 3795 3796 3797 3798 3799 172014048 4049 4050 4051 4052 4053 4054 4055
7330|-2800 3801 3802 3803 3804 3805 3806 3807 7730 {4056 4057 4058 4059 4060 4061 4062 4063
7340| 3808 3809 3810 3811 3812 3813 3614 3815 774014064 4065 4066 4067 4068 4069 4070 4071
7350(3816 3817 3818 3819 3820 3821 3822 3823 7750|4072 4073 4074 4075 4076 4077 4078 4079
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 14080 4081 4082 4083 4084 4085 4086 4087
7370 3832 3833 3834 3835 3836 3837 3838 3839 77704088 4089 4090 4091 4092 4093 4094 4095}

C-4

4000 3072
to to

6777 3583
(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288

40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000
to to
7777 4095
(Octal) | (Decimal)

3584

OCTAL

DEC,

OCTAL

OCTAL

DEC,

OCTAL DEC. DEC.

.000 . 000000 . 100 . 125000 .200 , 250000 . 300 ..375000
.001 . 001953 .101 . 126953 .201 . 251953 .30t .376953
.002 . 003906 .102 . 128906 .202 . 263906 . 302 .378906
.003 . 005859 103 . 130859 .203 . 256859 .303 . 380859
.004 .007812 .104 . 132812 .204 . 257812 .304 .382812
.003 . 009765 .105 . 134765 .205 . 259765 .305 .384765
.006 .011718 .106 . 136718 .206 .261718 .306 .386718
.007 .013671 .107 . 138671 .207 . 263671 .307 .388671
.010 . 015625 .110 . 140625 .210 . 265625 .310 .390625
.o11 .017578. .1 . 142578 .21 .267578 .3 .392578
.012 . 019531 112 . 144531 .212 . 269531 .312 .394531
.013 ,021484 .13 . 146484 L2138 .271484 .313 . 396484
.014 .023437 14 . 148437 .214 .273437 .314 .398437
.015 . 025390 115 . 150390 .215 . 275390 .315 . 400390
.016 .027343 116 . 152343 .216 .277343 .316 .402343
.017 . 029296 117 . 154296 .217 . 279296 Kilg . 404296
.020 .031250 .120 . 156250 .220 .281250 .320 . 406250
.021 . 033203 Ja21 . 158203 .221 . 263203 .a21 . 408203
.022 .035156 122 .160156 222 . 285156 .322 .410156
.023 .037109 .123 . 162109 .223 .287109 .323 . 413109
.024 . 039062 124 . 184062 .224 . 289062 .324 . 414062
.025 .041015 125 . 166015 .225 .291015 .325 .416015
.026 .042968 .126 .167968 .226 .292968 .326 .417968
,027 . 044921 .127 .169921 .227 .294921 ,827 .419921
.030 , 046875 .130 171875 .230 , 296875 .330 ,421875
.031 . 048828 31 .173828 .231 . 298828 .31 ;420828
.032 ,050781 132 . 175781 .232 .300781 .332 .426781
.033 . 052734 133 177734 ,233 .302734 .333 . 427734
.034 . 054687 134 . 179687 .234 . 304687 .334 .429687
.035 . 056640 135 . 181640 .235 . 306640 .336 .431640
.036 , 058593 .136 . 183593 .236 . 308593 .336 .433593
.037 . 060546 137 . 185546 ,237 . 310546 .337 . 435546
.040 . 062500 .140 . 187500 .240 .312500 .340 . 437500
,041 . 064453 .141 , 189453 .24 . 314453 .341 .439453
.042 . 066406 . 142 . 191406 .242 316406 .342 . 441406
.043 . 068359 143 . 193359 .243 .318359 .343 .443359
.044 .070312 . 144 . 195312 .244 .320312 .344 . 445312
,045 .072265 . 145 . 197265 .245 . 322265 .345 . 447265
,046 .074218 . 146 .199218 .246 .324218 .346 .449218
,047 .076171 . 147 .201171 .247 . 326171 .347 .451171
.030 .078125 .150 .203125 ,250 .328125 .350 .453125
,051 . 080078 . 151 . 205078 .251 .330078 .351 . 455078
.052 .082031 152 .207031 .252 . 332031 .352 .457031
.053 . 083984 .153 . 208984 .253 . 333984 .353 . 458984
. 054 . 085937 . 154 .210937 .254 . 335937 . 354 . 460937
.085 . 087890 .155 . 212890 .255 . 337890 ,355 . 462890
. 056 ,089843 . 156 .214843 .256 .339843 .356 .464843
.057 . 091796 . 157 .216796 .257 . 341796 .357 .466796
L060° 093750 . 160 . 218750 .260 . 343750 . 360 . 468750
.061 , 095703 . 161 ,220703 .261 . 345703 .361 .470703
.062 . 097656 .162 . 222656 .262 .347656 . 362 .472656
,063 . 099609 .163 . 224609 .263 . 349609 .363 . 474609
.064 . 101562 .164 . 226562 .264 . 351562 . 364 . 476562
. 065 .103515 .165 .228515 . 265 .353515 . 365 .478515
. 066 . 105468 . 166 .230468 . 266 . 355468 .366 . 480468
.067 . 107421 167 .232421 .267 .357421 . 367 .482421
.070 .109375 170 . 234375 .2170 .359375 .370 .484375
.omn . 111328 AT .236328 .21t .361328 .am .486328
.072 . 113281 172 . 238281 .272 . 363281 .372 . 488281
,073 . 115234 173 . 240234 .273 . 365234 .373 ,490234
.074 . 117187 7 .242187 .21 . 367187 .31 .492187
.075 . 119140 175 . 244140 .275 .369140 .376 .494140
.076 . 121093 176 . 246093 . 276 . 371093 .3176 . 496093
.077 . 123046 177 . 248046 .277 .373046 377 . 498046

C-5

OCTAL DEC. OCTAL DEC, OCTAL DEC, OCTAL DEC,

.000000 . 000000 .000100 . 000244 . 000200 .000488 . 000300 .000732
. 000001 . 000003 .000101 . 000247 . 000201 . 000492 .000301 .000736
.000002 . 000007 .000102 .000251 . 000202 . 000495 . 000302 . 000740
. 000003 .000011 .000103 . 000255 . 000203 . 000499 .000303 .000743
+ 000004 . 000015 . 000104 . 000259 . 000204 . 000503 . 000304 . 000747
. 000005 .000019 . 000105 . 000263 . 000205 . 000507 . 000305 . 000751
. 000006 . 000022 . 000106 000267 . 000206 .000511 .000306 . 000755
. 000007 . 000026 ,000107 . 000270 . 000207 .000514 .000307 . 000759
.009010 . 000030 , 000110 .000274 .000210 .000518 .000310 . 000762
.009011 . 000034 .0001it .000278 .000211 . 000522 .000311 .000766
.000012 . 000038 ,000112 . 000282 .000212 . 000526 .000312 .000770
,000013 . 000041 .000113 .000286 ,000213 . 000530 ,000313 . 000774
. 000014 . 000045 .000114 . 000289 . 000214 . 000534 .000314 ,000778
.000015 . 000049 ,000115 .000293 .000215 , 000537 .000315 . 000782
. 000016 . 000053 .000116 . 000297 .000216 . 000541 .000316 . 000785
. 000017 . 000057 .000117 .000301 . 000217 . 000545 .000317 . 000789
, 000020 . 000061 ,000120 . 000305 . 000220 . 000549 . 000320 . 000793
,000021 . 000064 ,000121 .000308 . 000221 . 000553 .000321 . 000797
, 000022 . 000068 ,000122 .000312 . 000222 . 000556 .000322 .000801
, 000023 000072 . 000123 .000318 . 000223 . 000560 .000323 . 000805
. 000024 . 000076 .000124 . 000320 . 000224 . 000564 . 000324 . 000808
,000025 . 000080 .000125 .000324 . 000225 . 000568 . 000325 . 000812
. 000026 .000083 .000126 . 0003238 . 000226 .000572 . 000326 . 000816
. 000027 . 000087 .000127 .000331 . 000227 . 000576 .000327 . 000820
. 000030 . 000091 ,000130 . 000335 . 000230 . 000579 . 000330 . 000823
. 000031 . 000095 .000131 .000339 . 000231 . 000583 .000331 . 000827
. 000032 . 000099 .000132 ,000343 . 000232 . 000587 .000332 . 000831
. 000033 .000102 .000133 .000347 . 000233 . 000591 .000333 . 000835
. 000034 .000106 ,000134 . 000350 . 000234 . 000595 . 000334 , 000839
. 000035 .000110 .000135 . 000354 . 000235 . 000598 . 000335 . 000843
,000036 . 000114 .000136 . 000358 . 000236 . 000602 . 000336 . 000846
.000037 .000118 ,000137 . 000362 . 000237 . 000606 .000337 , 000850
. 000040 . 000122 .000140 . 000366 . 000240 .000610 .000340 . 000854
.000041 . 000125 . 000141 .000370 . 000241 . 000614 .000341 . 000853
. 000042 .000129 . 000142 .000373 . 000242 . 000617 . 000342 . 000862
. 006043 .000133 . 000143 .000377 . 000243 . 000621 . 000343 . 000865
. 000044 . 000137 .000144 .000381 .000244 . 000625 . 000344 . 000869
. 000045 .000141 .000145 .000385 . 000245 . 000629 . 000345 . 000873
. 000046 . 000144 .000146 . 000389 . 000246 . 000633 , 000346 . 000877
. 000047 . 000148 .000147 ,000392 .000247 . 000637 . 000347 ,.000881
. 000050 . 000152 .000150 .000396 . 000250 .000640 . 000350 .000885
. 000051 .000156 .000151 .000400 . 000251 . 000644 .000351 .000888
. 000052 . 000160 .000152 . 000404 . 000252 . 000648 . 000352 . 000892
. 000053 . 000164 .000153 . 000408 . 000253 .000652 .000353 . 000896
. 000054 . 000167 . 000154 . 000411 . 000254 . 000656 . 000354 . 000900
. 000055 . 000171 .000155 . 000415 . 000255 . 000659 . 000355 .000904
. 000056 . 000175 .000156 .000419 . 000256 . 000663 , 000356 . 000907
. 000057 .000179 . 000157 .000423 . 000257 . 000667 . 000357 . 000911
. 000060 .000183 .000160 . 000427 . 000260 , 000671 . 000360 .0003135
. 000061 .000186 .000161 . 000431 . 000261 . 000675 . 000361 .000919
. 000062 .000190 .000162 . 000434 . 000262 . 000679 . 000362 . 000923
. 000063 . 000194 .000163 . 000438 . 000263 . 000682 . 000363 . 000926
. 000064 .000198 . 000164 . 000442 . 000264 . 000686 . 000364 . 000930
. 000065 . 000202 . 000165 . 000446 . 000265 . 000690 .000365 . 000934
. 000066 . 000205 . 000166 . 000450 . 000266 . 000694 .000366 .000933
. 000067 . 000209 .000167 . 000453 . 000267 . 000698 . 000367 . 000942
. 000070 .000213 . 000172 . 000457 . 000270 .000701 . 000370 . 000946
. 000071 .000217 .000171 . 000401 , 000271 . 000705 .000371 . 000949
. 000072 .00022). .000172 . 000465 006272 . 000709 . 000372 .000953
. 000073 . 000225 .000173 . 000469 . 000273 . 000713 .000373 . 000957
. 000074 .000228 .000174 . 000473 . 000274 . 000717 .000374 . 000961
. 000075 . 000232 .000175 . 000476 . 000275 . 000720 . 000375 . 000965
. 000076 . 000236 .000176 .000480 . 000276 . 000724 .000376 . 000963
. 000077 . 000240 .000177 . 000484 . 000277 . 000728 .000377 . 000972

OCTAL

DEC,

=y

OCTAL DEC, OCTAL DEC, OCTAL DEC,
.000400 . 000976 000500 . 001220 . 000600 . 001464 . 000700 .001708
<000401 . 000980 .000501 .001224 .000601 .001468 +000701 . 001712
. 000402 . 000984 . 000502 . 001228 . 000602 .001472 . 000702 .001716
. 000403 . 000988 .000503 . 001232 . 000603 .001476 . 000703 .001720
.000404 . 000991 .000504 . 001235 + 000604 . 001480 »000704 .001724
. 000405 . 000995 . 000505 .001239 . 000605 . 001483 +0007035 .001728
. 000406 000999 . 000506 .001243 . 000606 .001487 + 000706 .001731
. 000407 .001003 . 000507 .001247 . 000607 . 001491 . 000707 .001733
. 000410 .001007 000510 . 001251 .000610 . 001495 .000710 .001739
. 000411 .001010 000511 .001255 . 000611 . 001499 .000711 .001743
+000412 .001014 .000512 .001258 . 000612 . 001502 .000712 .001747
.000413 .001018 .000513 .001262 .000613 . 001506 .000713 , 001750
.000414 001022 .000514 . 001266 . 000614 .001510 .000714 .001754
.000415 , 001026 +000515 .001270 «000613 .001514 .000715 . 001758
.000416 . 001029 .000516 .001274 ., 000616 .001518 .000716 .001762
. 000417 .001033 .000517 ,001277 . 000617 . 001522 . 000717 + 001766
1000420 .001037 . 000520 .001281 . 000620 . 001525 . 000720 .001770
.000421 . 001041 . 000521 . 001285 . 000621 .001529 .000721 .001773
. 000422 . 001045 .000522 .001289 . 000622 . 001533 + 000722 . 001777
. 000423 . 001049 . 000523 .001293 . 000623 .001537 .000723 .001781
» 000424 .001052 . 000524 . 001296 . 000624 . 001541 . 000724 ,001785
+ 000425 .001056 + 000525 .001300 + 000625 . 001544 . 000725 .001789
. 000426 . 001060 . 000526 .001304 + 000626 . 001548 .000726 . 001792
.000427 .001064 . 000527 .001308 , 000627 .001552 .000727 .001796
. 000430 .001068 . 000530 .001312 . 000630 . 001556 » 000730 .001800
.000431 .001071 . 000531 .001316 . 000631 .001560 .000731 .001804
. 000432 . 001075 000532 .001319 . 000632 .001564 .000732 .001803
.000433 .001079 . 000533 .001323 . 000633 .001567 . 000733 .001811
. 000434 .001083 . 000534 . 001327 . 000634 . 001571 »000734 .001815
. 000435 .001087 .000535 . 001331 .000635 .001575 . 000735 .001819
.000436 .001091 .000536 .001335 . 000636 +001579 . 000736 .001823
. 000437 .001094 . 000537 .001338 . 000637 . 001583 + 000737 . 001827
. 000440 .001098 000540 ,001342 . 000640 . 001586 . 000740 ,001831
. 000441 . 001102 . 000541 . 001346 . 000641 . 001590 .000741 .001834
. 000442 4001106 . 000542 . 001350 . 000642 . 001594 .000742 .001838
. 000443 . 001110 .000543 .001354 . 000643 ,0015%8 .000743 .001842
+ 000444 .001113 4000544 .001358 . 000644 .001602 . 000744 . 001846
. 000445 .001117 . 000545 +001361 . 000645 . 001605 . 000745 .001850
. 000446 .001121 »000546 .001365 4000646 . 001609 . 000746 .001853
. 000447 ,001125 000547 . 001369 . 000647 . 001613 .000747 ,001857
. 000450 .001129 .000550 .001373 . 000650 .001617 . 000750 .001861
.000451 .001132 1000551 .001377 . 000651 .001621 .000751 .001865
. 000452 ,001136 + 000552 .001380 . 000652 ., 001625 .000752 .001869
000453 .001140 . 000553 .001384 + 000653 .001628 . 000753 .001873
. 000454 .001144 .000554 .001388 . 000654 ,001632 + 000754 . 001876
. 000455 .001148 . 000555 .001392 . 000655 ,001636 + 000755 .001880
. 000456 001152 . 000556 .001396 . 000656 . 001840 .000756 .001884
. 000457 .001155 .000557 . 001399 , 000657 .001644 .000757 .001888
.000460 .001159 . 000560 ,001403 .000660 .001647 .000760 . 001892
.000461 .001163 . 000561 .001407 . 000661 .001651 . 000761 , 001895
. 000462 . 001167 . 000562 .001411 . 000662 . 001655 .000762 .001899
.000463 .001171 .000563 . 001415 . 000663 . 001659 +000763 .001903
. 000464 .001174 . 000564 .001419 . 000664 .001663 .000764 .001907
.000465 .001178 . 000565 .001422 « 000665 . 001667 .000785 .001911
.000466 .001182 . 000566 . 001426 . 000666 . 001670 . 000766 .001914
. 000467 .001186 . 000567 . 001430 . 000667 . 001674 .000767 .001918
.000470 - ,001190 .000570 .001434 . 000670 . 001678 . 000770 .001922
.000471 .001194 .000571 . 001438 . 000671 .001682 . 000771 . 001926
. 000472 .001397 . 000572 . 001441 . 000672 . 001686 . 000772 .001930
. 000473 001201 .000573 .001445 . 000673 .001689 .000773 .001934
.000474 .001205 . 000574 . 001449 . 000674 .001693 , 000774 .001937
.000475 .001209 . 000575 .001453 . 000675 . 001697 .000775 .001941
.000476 .001213 . 000576 .001457 . 000676 .001701 .000776 . 001945
.000477 .001216 . 000577 . 001461 . 000677 .001705 . 000777 .001949

APPENDIX D

LIST OF ADDRESSABLE REGISTERS

Code Address* Name
00000-77737 Memory Storage locations
irl 17741 Index Register 1
ir2 77742 Index Register 2
ir3 77743 Index Register 3
ird 77744 Index Register 4
ace 77750 Accumulator
qrg 77751 Q-Register
brg 77752 B-Register
pet 17753 Program Counter
pes 77754 Program Counter Store
pio TTT55%* Instruction register of In-Out Processor
receiving the input order
aer 77756 Alarm Error Register (composite
of all alarm switches)
wsr 77760 Word Switch Register
pil 77770 Instruction register of first
In-Out Processor
pi2 777171 Instruction register of second
In-Out Processor
pi3 71172 Instruction register of third
In-Out Processor
pi4 77773 Instruction register of fourth
In-Out Processor
ki Nonexistent register

*In octal.

**When used as the address of an input instruction, it tells the In-Out Processor to store
the contents of its buffer register in its instruction worad register.

***If a nonexistent register is addressed, it will be interpreted as a location which contains

all 0%s.

APPENDIX E

LIST OF PROGRAM INTERRUPT
ACTIVITY SWITCHES AND LOCATIONS

Central Processor Interrupts ----

Transfer Order Trapped -
Overflow or Underflow

Processor Busy

Device Busy

Location 0 (Group 0)

TOT
API (OA + UA)
PRBI (PRBA)

DVBI (DVBA)

Input Output Processor i Interrupt --

Functional Control Characters
End of Tape

End of File

End of File in Order Sequence
No Key in Order Sequence

End Order Interrupt in Order Sequence

Locationi (i=1, 2, 3, 4)

FCcl (Fce)t
ETI (ETA)

EFI (EOF)i

EPR'
NKR'
EOR'

E-1

APPENDIX F
9400 WORD FORMATS

Magnitude Portion

Numeric (Conventional) Data Word

1 34 6|7 ol10 12413 15|16 18|19 21]22 24|25 27|28 30|31 3334 3
Octal Data Word

"7 Sign used at programmer!'s option
617 12013 1819 24|25 30}31 36
Alphanumeric Data Word
S
Characteristic Magnitude Portion
1 9j10 36

Floating-Point Data Word

r=7 Sign not.used

Operation
Code

1_(op) 6f

Index Modifier Address
(i) (m) (a)

910 21122 36
Central Processor Instruction Word

f*7 Sign not used
L

Operation| Word-Block Selected .
Code Count Device Code Addres(sc)Portlon

L ‘op) g~ () 4slig (9 o 36
Standard In-Out Instruction Word

F-2

HE Sign not used

L.
Operation| Selected |(Not Selected | Selected
Code Control | used) I-O Device Address
(op) Switches Processor Code (9)
1 6|7 of10 12|13 15{16 &) 21]22 36
Order Sequence Mode Instruction Word (SS)
E-_-: Sign not used
Operation Word-Block Selected
Code Count Control Address
(op) (<) Switches (o)
1 6|7 15|16 (s) 21

Order Sequence Mode Order Word

spoo doys 4

‘gaajoeIeyo Iqeuiad se pajuasaxdag aq
ued puE PIpNOUI 3IB SUCTIBUIQUIOD JIq [[Y ' SIdj0eIeyd [eroads
pue ‘sysew uoljenidound (6 yFnoayy () srelawrnu diqede ‘sjoquis
Teopewayewr ‘(Z ySnoay} y) saajoeseyo onaqeydre ‘siajoereyd
1033000 J3jtamadL) yyum Burirels aduonbas ur puodsaiaod pue

ITT IIT 03 000 000 WOJ Jd3qUIMU $2p0d drrdwmueydie 11q-9 L FTION

‘958D JIMO] dJ® GL-09 S[oquifs ropowr no-jurad wreqIaA wo xajuiad aur £q L[uo payurag

‘osed Jaddn axe gg-0p sfoquidg :a9jtamadLy ayy xoq zaurad aupy pue J9j1amadi} 305 819308IRYD TOIJUOD TeIOAdGy
—> 3Pl LL I1T 11T

O reroads, 9L oTT 11T) {4 100 101 o ¥2 001 010

: SL 101 ITT * 0 000 10T N £2 110 010

/ VL 00T TIT $ Ly 111 001 N 22 010 0I0

: 9 110 11T - 9% 0IT 001 1 12 100 010

) 2L 010 ITI < S¥ 101 001 b | 0z 000 010

6 1L 100 11 = 44 001 001 r L 111 100

8 oL 000 111 > 42 170 001 1 o1 0TI 100

L L9 IIT 011 + 472 010 001 H 3¢ 10T 100

9 99 0IT OIT - ¥ 100 001) ¥I 00T 100

S 3] 101 011 (o¥ 000 001 K¢ eI 110 100

¥ ¥9 001 0I1 4 Lg IIT 110 e 44 010 100

£ €9 110 OII X 9 0IT II0 a 14 100 100

4 29 010 011 X 13 101 110 o) o1 000 100

1 19 100 011 M ¥ 00T 110 g LQ 11T 000

0 09 000 011 A £e 110 110 v 90 01T 000

FELET) /0LS —— | LS 111 101 n 28 010 110 v aoedgy S0 101 000

‘ 9 011 101 L 1£3 100 110 Y ‘199 “Jed¢ ¥0 00I 000

i SS 10T 101 s it 000 110 0 qels £0 110 000

¢ ¥S 1 oor 101 g L2 111 010 Y. 980 JamoTs 20 010 000

: €8 110 10T [v] 9z 011 010 ~— 9seD Jaddny 10 100 000

" 2s 010 101 d gz 101 010 A 9oeds 123SENs 00 000 000

YALOVHVHD | uonyelsadaawi| o1z £¥¢ YALOVYVHD |uonejeadiawi| 01z £¥S YALOVHEVHD uonysjaxdaay] | 01 £¥S

TV.LDO < (¢ (070 TVLO0 Ec (4 (070 TV1D0 Hd0D

$3a0D JINIWNNVHIIV 10 1Sh

9 XIGN3iddV

APPENDIX H

LIST OF 9400 INSTRUCTIONS
AND ORDERS

A. NUMERICAL INDEX

Octal Oper. Octal Oper.

Code Code Operation Page Code Code Operation Payel
00 HLT Halt 3-24 46 TRN Transfer on Negative Accumulator 3-23
01 RPT Repeat 3-27 47 TRC Compare 3-24
02 LGM Logical Multiply 3-27 50 STR Store 3-22
03 LGA Logical Add 3-26 51 LOD Load 3-22
04 LGN Logical Negation 3-27 52 MOV Move 3-22
05 SEN Sense 3-23 83 LXS Load Indices 3-24
06 SNS Sense and Set 3-23 54 RPA Replace Address 3-25
07 SNR Sense and Reset 3-23 55 MSK Replace Through Mask 3-26
10 CLA Clear and Add 3-15 56 FLA Floating Point Add 3-20
11 CAM Clear and Add Magnitude 3-15 57 FAM Floating Point Add Magnitude 3-20
12 ADD Add 3-16 60 FLS Floating Point Subtract 3-21
13 ADM Add Magnitude 3-16 61 FSM Floating Point Subtract Magnitude 3-21
14 CLS Clear and Subtract 3-15 62 Ss Start Order Sequence 4-9
15 CSM Clear and Subtract Magnitude 3-15 63 PR In-Out Processor Sense and Reset 4-15

Order

16 SUB Subtract 3-16

PS In-Out Processor Error Sense Order 4-15
17 SBM Subtract Magnitude 3-186 3

PT In-Out Processor Unconditional 4-14
20 MLY Multiply 3-16 Transfer Order
21 MLR Multiply and Round 3-16 ST Sequence Terminate Order 1-15
22 DVD Divide 3-17 64 SK Search Key Order 4-13
23 DVL Divide Long 3-17 65 WK Write Key Order 4-12
24 ADB Add Modifier 3-25 66 SKP Skip 4-8
25 SBB Subtract Modifier 3-25 SP Space Order 4-14
26 FLM Floating Point Multiply 3-21 87 BSP Backspace 4-8
27 FLD Floating Point Divide 3-21 BS Backspace Order 4-14
30 SHL Shift Left 3-17 70 RAN Read Alphanumeric 4-7
31 SLL Shift Left Long 3-18 sC Scatter Read Order 4-12
32 SHR Shift Right 3-17 71 RRV Read Reverse 4-8
33 SRL Shift Right Long 3-17 RR Read Reverse Order 4-13
34 CYs Cycle Short 3-26 72 ROK Read Octal Instruction 4-8
35 CcYL Cycle Long 3-26 73 (Not used)
36 (Not used) 4 WAN Write Alphanumeric 4-6
37 NRM Normalize 3-18 GW Gather Write Order 4-11
40 TRU Unconditional Transfer 3-22 75 WWA Rewrite Alphanumerlc 4-17
41 TRL Load pcs and Transfer 3-23 wWw Rewrite Alphanumeric Order 4-11
42 TRS Transfer to pcs 3-23 78 WOK Write Octal 47
43 TRX Transfer on Index 3-24 wo Write Octal Order 4-12
44 TRP Transfer on Positive Accumulator 3-22 71 RWD Rewind) 4-8
45 TRZ Transfer on Zero Accumulator 3-22 RW Rewind Order 4-14

B. ALPHABETIC INDEX

Oper. Octal Oper. Octal
Code Code Operation Page Code Code Operation Page
ADB 24 Add Modifier 3-25 ROK 72 Read Octal 4-8
ADD 12 Add 3-16 RPA 54 Replace Address 3-25
ADM 13 Add Magnitude 3-16 RPT 01 Repeat 3-27
BS 67 Backspace Order 4-14 RR 71 Read Reverse Order 4-13
BSP 67 Backspace 4-8 RRV 71 Read Reverse 4-8
CAM 11 Clear and Add Magnitude 3-15 RW 77 Rewind Order 4-14
CLA 10 Clear and Add 3-15 RWD 77 Rewind 4-8
CLS 14 Clear and Subtract 3-15 SBB 25 Subtract Modifier 3-25
CSM 15 Clear and Subtract Magnitude 3-15 SBM 17 Subtract Magnitude 3-16
CYL 35 Cycle Long 3-26 SEN 05 Sense 3-23
CYS 34 Cycle Short 3-26 SHL 30 Shift Left 3-17
DVD 22 Divide 3-17 SHR 32 Shift Right 3-17
DVL 23 Divide Long 3-17 SK 64 Search Key Order 4-13
FAM 57 Floating Point Add Magnitude 3-20 SKP 66 Skip 4-8
FLA 58 Floating Point Add 3-20 SLL 31 Shift Left Long 3-18
FLD 27 Floating Point Divide 3-21 SNR o7 Sense and Reset 3-23
FLM 28 Floating Point Multiply 3-21 SNS 06 Sense and Set 3-23
FLS 60 Floating Point Subtract 3-21 sp 66 Space Order 4-14
FSM 61 Floating Point Subtract Magnitude 3-21 sC 10 Scatter Read Order 4-12
GW T4 Gather Write Order 4-11 SRL 33 Shift Right Long 3-17
HLT 00 Halt 3-24 Ss 62 Start Order Sequence 4-9
LGA 03 Logical Add 3-26 ST 63 Sequence Terminate Order 4-15
LGM 0z Logical Multiply 3-27 STR 50 Store 3-22
LGN 04 Logical Negation 3-27 SUB 16 Subtract 3-16
LOD 51 Load 3-22 TRC 47 Compare 3-25
LXS 53 Load Indices 3-24 TRL 41 Load pcs and Transfer 3-23
MLR 21 Multiply and Round 3-16 TRN 46 Transfer on Negative Accumulator 3-23
MLY 20 Multiply 3-16 TRP 44 Transfer on Positive Accumulator 3-22
MOV 52 Move 3-22 TRS 42 Transfer to pcs 3-23
MSK 55 Mask 3-28 TRU 40 Unconditional Transfer 3-22
NRM 37 Normalize 3-18 TRX 43 Transfer on Index 3-24
PR 63 In-Out Processor Sense and Reset 4-15 TRZ 45 Transfer on Zero Accumulator 3-22
Order

WAN 74 Write Alphanumeric 4-6
PS 63 In-Out Processor Error Sense Order 4-15

WK 65 Write Key Order 4-12
PT 63 In-Out Processor Unconditional 4-14

Transfer Order wO 76 Write Octal Order 4-12

RAN 70 Read Alphanumeric 4-7 WOK 76 Write Octal 4-7

WWA 75 Re-Write Alphanumeric 4-7

Note: Octal codes 36 and 73 are not used.

APPENDIX 1|
SUMMARY OF OPERATION CODES

A. FIXED POINT ARITHMETIC INSTRUCTIONS
Over- | Index-
Instruction acc qrg brg Time flow able Notes
ADD 12 Clacc) + Cla) acc_ = a_; C{a) -—~> brg 8pus P Yes
Sum s =8
|Clace)|>| C(a)l; Clay --->brg; brg, = 8-
acc_17¥ a
8" 8 {lctaco)l<|Clall; 0 —>brg
ADM 13 Clace) +|C(a)l acc_ = +; C(a) —> brg 8us P Yes
Sum s -
[C(ace)| >[C(a)l; C(a)' —> brg; brgg = ag
accs = = | lctace)l<lcla)l; 0 —>brg
CAM 11 +1Cla)l Bus Yes
CLA 10 + C(a) 8us Yes
CLS 14 - Cla) 8us Yes
CSM 15 ~1C(a)t 8 us Yes
DVD 22 Remainder C(acc)/ C(a) Cla) 44 us P Yes (9 us if overflow)
Quotient
DVL 23 Remainder Clacc, qrg)/C(a) C{a) 44 us P Yes (9 us if overflow)
Quotient - -
MLR 21 C(ace) x C(a) Clacc) x C(a) arg, = 0; C(a) -> brg 43 us Yes
High Order Low order arg) = 1, 0 = brg
Rounded product Product
MLY 20 C(acc) x C(a) C(ace) x C(a) C(a) 43 us Yes
High order Low order -
Product Product
NRM 37 High order zeros shifted 9+3ps Yes {n = no. of shifts)
off; low order zeros If all "0's", n® 36
inserted Cla)=nx2 -3
SBM 17 Clace) - (Ca)l acc_ = - ; C(a) --> brg 8 us P Yes
Difference 8 -
|C(ace)| 2[C(a)l; C(a) —>brg, brg, = 8,
acc,_ =+
8 |Clace)l <|C(a)l; 0 —> brg
SHL 30 C(acc) Shifted left See P Yes Sign bit not shifted
n = a mod 128 Note n<o;8 us
n>9;4 o-'i‘ us
SHR 32 C(acc) Shifted right See Yes Sign bit not shifted
n = a mod Note n<14; 8 us
n>14; 1+ ; us
SLL 31 C(acc, qrg) Shifted left (See acc) See P Yes Sign bits not shifted
n=a mod 128 Note nsg;eus
n>9,4+5 us
SRL 33 C(ace, qrg) Shifted right (See acc) See Yes Sign bits not shifted
n = a mod 128 places Note n< 14; 8 us
n>14;5+ 1us
SUB 16 Clace) - Cla) IClace)|>[C(all; Cla)t —>brg, brgg = ag
Difference ~ ace_ = a
s s {ic(ace)<IC(a)l; 0 —>brg
8 us P Yes
acey f ag; Cla) -->brg
B. FLOATING POINT ARITHMETIC INSTRUCTIONS
oA
or Index~
Instruction acc qrg brg Time UA *¥| able Notes
FAM 57 F(acc) +IF(a) F(acc) +IF(a)l 0 —>brg 12 to P Yes | Overflow or underflow
High order bits Low order bBits 46 us is possible
FLA 56 F(acc) + F(a) F(acc) + F(a) 0 —> brg 12 to P Yes Overflow or underflow
High order bits Low order bits 46 us is possible
FLM 26 F(a) x F(acc) F(a) x Flacc) F(a) 9 or P Yes | Overlow or underflow
High order bits Low order bits 37 us 18 possible
FLS 60 F(acc) - F(a) F(acc) - F(a) 0 —>brg 12 to P Yes Overflow or underflow
High order bits Low order bits 46 us is possible
FSM 61 F(acc) - |F(a)l F(acc) - [F(a)l 0 —>brg 12 to P Yes | Overflow or underflow
High order bits Low order bits 46 us is possible
FLD 27 F(acc) /F(a) F(acc) [/ F(a) F(a) 9 or P Yes Overflow or underflow
Remainder Quotient and 41 us is possible
Characteristic

* Trapping possible

** See Instruction Repertoire for detailed description

P = Possible
PND = Posaible but not detected

-2

C. INTERNAL DATA HANDLING INSTRUCTIONS

Instruction ace

qarg

brg

Time

Over-
flow

Index-
able

Notes

ADB 24 Cle)+m

sum

CYL 35 acc, qrg cycled left

n = (a mod 128) places

CYs 34 acc cycled left

n = (a mod 128) places

HLT o0

LGA 03 Logical Sum

C(a) + C(acc)

LGM 02 Logical Product

C(acc) x C(a)

LGN 04) | 37

LOD 51

LX3 53

MOV 52

MSK 55

RPA 54

RPT 01

SBB 25 Cl) - m

Difference

SEN 05 *

SNR 07 *

SNS 06 *

STR &0
TRC 47

TRL 41 *

TRN 46 =

TRP 44 *

TRS 42 *
TRU 40 *

TRX 43 *

TRZ 45 »

Clacc)

(See acc)

On RPT-MOV
only a + (# of
repeats - 1}
(moditier of
RPT incl)

Clace)

C(ace)

aamtim > brg
IC(a)l >

a_=-

0w <

m;m-> brg, br;.n .+
m ;;O»br(

Cla)

Cla)

Cl)

Cla)

Clacc)

Clacc)

11C@)I1 > m; (m)' —> brg, brgg, = +

11C(@}1 < m; 0 —> brg

Agp ” Ti M > brg

TRA = 1; C(PCT) --> brg

TRA = 1; C(PCT) -->brg

TRA = 1; C(PCT) —> brg

TRA = 1: C(PCT) -->brg

TRA = 1; C{PCT) --> brg

TRA = 1; C(PCT) --> brg

TRA = 1; C(PCT) --> brg
m,, * 0, TRA = 1; C(PC) — brg

Otherwise; brg unchanged

TRA = 1; C(PCT) --> brg
TRA = 0; a > brg

TRA = 1; C(PCT) ~-> brg

13 us

See
Note

See
Note

13 us

11 us

11 us

18 us

8 us
11 us

8 us
8 us

11 us

PND

PND

No

No

No

No

No

No

After operation:
Cliri)= C(a) + m

an
Cla) = Cla) + m

Sign bits cycle
n<14;8us

n>14; 3+ 1us

8ign bit does not cycle
n<14;8us

n>14; 5+ 1us

Stops central processor

Signs are logically
added

Signs are logically
multiplied

Sign complemented

C(a) -> Addressable
Register, not memory
slocation, specifiedby m

Cliri) = a

Clir(i + 1) = m
C{a}->1 - m, any
Addressable Register
or memory location

Clarg); = 1;

Clace); —> Cla)

Clarg); = 0;

C(a), is unchanged

For alli = sn, 1 - 37

Clay Clarg, | o
Clacclyy g

m—> ir4,

a + C{iri) -=> ir3
See instruction for
detailed description

After operation:

C(iri) = C(8) - m
and

Ci{a) = C(a) - m

C{m) = 1; 2 ->PCT
C(m) = 0;

C(PCT) + 1 --> PCT
C(m} = 1;

0 —>C(m), a —> PCT
C(m) = 0;

C(PCT) + 1 -->PCT
C(m) = 0; 1 ~> C(m),

a —>PCT C(m) -1;
C(PCT) + 1 --> PCT
C(acc) -->a

C(ace) < C(a); C(PCT) +
1 -->PCT

C(acc) > C(a); C(PCT) +
2 -->PCT

C(ace) = C(a); C(PCT) +
3 ->PCT

C(PCT) *+ 1 --> pcs
a-->PCT

m ~>iri

ace_ =+ ;
8

(C(PCT) + 1 -> PCT
acc = ;a—> PCT
ace, = -

C(PCT) +1 --> PCT
ace "+ 8 ~> PCT
pcs --> PCT
my-=0, TRA®L

2 ->PCT

Otherwise; a —> PCT
cur + 1) > 1;
a~>PCT

Clir(i +1)) - 1
=>ir{i+1)
Cliriy+m ~> iri
Cri- 1< 1;

I C(PCT) +1 —>PCT

0 —>fr (L+1)
Time - u8

Clace)) 46 = 0; @ —> PCT

* Trapping possible
P = Possible
FND = Possible but not detected

D. 1/O SINGLE INSTRUCTIONS

Amount of

1

Instruction ISN Word Format Input-Output Notes
BSP 67 No Non-transmitting Up to 255 blocks inclusive Backspaces ¢ blocks or files. Tape stops at the
effect if C(g).7 =0 beginning of the block containing the EOF when
backspacing files.
Up to 255 files inclusive
if C((_:),7 =1
RAN 70 1 Sign bit plus six 6-bit Up to 255 words inclusive Reads ¢ words or blocks. Terminates immediately
characters occupying if C(c),, =0 if EOF is detected.
bits 1-36 of the -
memory word
0 Six 6-bit characters. Up to 255 blocks inclusive
Sign Position remains if C(c)7 =1
zero. -
ROK 72 No 13 octal characters Up to 511 words inclusive NOT APPLICABLE TO MAGNETIC TAPE. Sign
effect Sign + 12 data automatically interpreted.
characters
RRV 71 1 Same as RAN Same as RAN Same as RAN except tape moves in reverse direction.
: Words stored in decreasing memory locations in re-
Same as RAN verse order. Results in same storage as RAN.
RWD 77 No Non-transmitting Rewinds tape unit s.
effect
SKP 66 No Non-transmjtting Up to 255 blocks inclusive Skips ¢ blocks or files.
effect if C(c)y = 0
Up to 255 files inclusive
if Cle)y = 1
SS 62 No Non-transmitting Initiates sequence of orders by I/O Processor.
effect SETS ISN, if C(c); = 1, SETS NHC if C(c)g =1
SETS TPE if C(c)g = 1. Specifies I/O Processor
to execute sequence.
WAN 74 1 Seven 6-bit charac- Up to 511 words inclusive Writes BLS, ¢ words, BLE. If WEF is SET,
ters writes EOF instead of BLE.
Sign + six data
characters
Six 6-bit charac-
ters
Sign not interpreted
WOK 76 No 13 octal characters Up to 511 words inclusive NOT APPLICABLE TO MAGNETIC TAPE. Sign
effect Sign + 12 data charac- automatically interpreted.
ters converted to sign
bit and 36-bit memory
word
WWA 75 1 Same as WAN Up to 511 words inclusive Must write only the same number of words plus or

Same as WAN

minus one as were in original block.

-3

E. 1/O ORDER SEQUENCE ORDERS

Amount of
ISN Word Format Input- Output Notes
BS 67 No Non-transmitting Same as BSP Instruction Same ag BSP instruction.
effect
GW 74 1 Seven 6-bit charac. Up to 511 words inclusive Writes BLS mark only if preceding order terminated
ters Sign + 6 data bits with BLE or EOF. Writes BLE or EOF after ¢ words
0 Six 6-bit characters if specified by the control bits in the order.
Sign not interpreted
PR 63 No Non-transmitting Senses I/O Processor error controls. If SET
effect transfers I/O Processor control to a within sequence.
PS 63 No Non-transmitting Senses I/O Processor error controls. If SET
effect transfers I/O Processor control to a within sequence.
PR RESETS error controls.
PT 638 No Non-transmitting Causes an unconditional transfer of I/0 Processor
effect control to location a within the sequence.
RO 71 No 13 octal characters the Up to 511 words inclusive NOT APPLICABLE TO MAGNETIC TAPE,
effect first of which occupies Sign automatically interpreted.
the sign position.
Remaining 12 occupy
binary bits 1-36 of
memory.
RR 71 1 Same as RRV Up to 255 words if C(g)7 =0 Same as RRV instruction.
0 Same as RRV Up to 255 blocks if C(c)q =
RW 77 No Non-transmitting Rewinds magnetic tape specified by SS.
effect (Terminates order sequence)
SC 70 1 Sign bit plus six 6-bit Up to 255 words if C(g).7 and Reads ¢ words or blocks. Options described under
characters occupying C(§)16 =0 order
bits 1-36 of the mem- |y, 45 255 blocks if Cle)y = 1
ory word
and C(s)yg = 0
0 Six 6-bit characters Words to next KEY if C(g).] =0
occupying bits 1-36 of and C(§)16 =0
the memory word
Sign position remains Up to 255 words or to BLE
zero which is first if C(§)7 =0
and C(s) = 1
SK 64 No Non-transmitting Searches magnetic tape for Key corresponding to
effect ag5-36 of the order. NKY interrupt if Key not found
before BLE is detected if C(§)18 = 0, or before EQF
is detected if C(s);g = 1.
SP 66 No Non-transmitting Same as SKP instruction Same as' SKP instruction.
effect
ST No Non-transmitting Causes a disconnect of I/O Processor.
effect
WK 1 Sign character followed One Key word Key word specified by 395_38 of the WK order
E{]:r:ci:‘e:ig }:gr}; f:t?:_d written on magnetic tape. Control transferred to
preted characters and 2 next order - always GW.
six bit characters mak-
ing up a 12 bit key
0 Same as above but sign
not written
wO76 No 13 octal characters Up to 511 words inclusive NOT APPLICABLE TO MAGNETIC TAPE.
effect sign + 12 data charac- Sign automatically interpreted,
ters
ww 1 Same as GW Same as GW Same as GW but must write only the same number
0 Same as GW of words (plus or minus one) as were contained in
m original block.

APPENDIX J

LIST OF PSEUDO-OPERATIONS ACCEPTABLE
TO THE 9400 PROGRAM (94AP)

GENERAL

In the following description, a pre-defined expres-
sion is an arithmetic expression in which all the
symbols used have been previously defined.

ORIGIN SPECIFICATION (ORG)

In both passes the location counter is set to the
value of the predefined expression appearing in the
variable field. In the second pass it causes waiting
output to be punched and a new loading origin set.

BLOCK STARTED BY SYMBOL (BSS)

The instruction BSS N reserves a block of storage
extending from the current value of the location
counter to its value plus N-1. N must be a predefined
expression. If a symbolic location is present on the
card it will be assigned the current value of the loca-
tion counter, corresponding to the first word of the
block reserved. During the second pass it will cause
the waiting binary output to be punched. Finally the
location eounter is stepped by N.

BLOCK ENDED BY SYMBOL (BES)

This operation behaves the same as BSS except that
the symbol associated with it is assigned to the last
cell of the reserved block.

EQUAL (EQU)

The symbol appearing in the location field is as-
signed the value of the predefined expression appear-
ing in the variable field. However, the symbol will be
entered as an absolute quantity.

SYNONYM (SYN)
The same as EQU except that the symbol will be
treated as a relocatable quantity.

HEADING (HED)

The first character in the variable field will be used
as the heading character. Heading characters allow
two or more program segments to contain the same
symbols. The heading card supplies to the assembler
a single character, any alphabetic or numeric charac-
ter is permissible. Each symbol in the program
following the HED pseudo-operation is prefixed by
this character except when a special indication to
cancel the prefixing operation is given or the symbol

contains six characters. A new heading pseudo-opera-
tion will replace the heading character. The assembler
normally has no heading character (i.e., master space).

To restore the heading to this condition all one needs
to do is to supply a HED card with a blank variable
field.

It is sometimes necessary to cross-reference between
the individual segments of the program. To accom-
plish this, such references must be written in the
following way: let H be a heading character and K
be the symbol in the block headed by H to which
reference is to be made. To refer to K in a part of
the program not headed by H but by, say J, write
H$K in the variable field expression rather than K.
The special character $ indicates to the assembler that
K is to be prefixed by H instead of by the prefix J
given on the last heading card.

To refer to a symbol in an unheaded segment of the
program from a headed section simply write $K.

DEFINE (DEF)

This operation is similar to EQU except that the
symbol is assigned the absolute value of the octal
integer appearing in the variable field. Symbols de-
fined by DEF may not be relocated.

WRITE SYMBOL TABLE (WST)

The operation WST M, N will cause the assembler,
at the end of the first pass, to write the symbol table as
the Nth table on tape M. (M is a pre-defined expres-
sion.)

A blank variable field will cause the symbol table to
be punched on-line.

LIST SYMBOL TABLE (LST)

A PST card placed anywhere in the symbolic deck
causes the symbol table to be printed at the end of the
assembly listing.

REPLACE SYMBOL TABLE (RST)

The operation RST M, N will cause the assembler,
during the first pass, to replace the symbol table by
the table stored in the Nth block on tape M.

If the variable field is blank it will cause the symbol
table to read in through the on-line card reader.

J-1

APPEND SYMBOL TABLE (AST)

The operation AST M, N causes the assembler,
during the first pass, to append the symbol table with
the table stored in the Nth block on tape M. If the
variable field is blank it will cause the additional sym-
bol table to be read in through the on-line card
reader.

DECIMAL DATA (DEC)

The decimal data in the variable field is converted
to binary and stored in consecutive memory locations.
Successive words of data on a card are separated by
commas, and the data field is terminated by a blank.
All punching to the right of this blank is treated as
a remark. If a symbolic location is punched on the
card it is assigned to the first word generated by
the card.

Algebraie signs are indicated by a + or — preced-
ing the quantity involved, + signs may be omitted,
however.

Decimal numbers (with either sign) may be in one
of the following three classes:

(1) An interger, which may range from 0 to

68719476735; the integer should not be fol-
lowed by a decimal point.

Example: DEC 0, 4, —99, +68719476735

(2) A fixed point fraction, preceded by a decimal
point, and consisting of up to eleven digits.

Example: DEC .25, +.875, — 4,
+.14285714286

(3) A scaled fized point number, with an attached
‘‘binary scale factor’’ following the letter ‘B’
immediately after the number. The numbers
12.875B-4 and .1102B3 are examples of scaled
fixed point numbers with negative and positive
binary scale factors respectively. A number
with a negative binary scale factor (in this ex-
ample, 12.875B-4) is scaled downward (scaled
by 2-%) so that the binary point in the con-
verted number is considered to be to the right
of bit 4 (in this example). A number with
a positive binary scale factor (in this example,
J1102B3) is scaled upward by a power of two
specified by the number after the B, in this ex-
ample scaled by 23 = 8, resulting in a larger
number (in this case equivalent to 8 X 1102 =
.8816).

Example: DEC 12.875B-4, —.1102B3,
+.66667B-1, —3.1415926536B-2

Note that the binary scale factor must be in the
proper range to scale the number so it will ‘‘fit’’ with-
in a word. Improperly scaled numbers such as
—12.5B-1 or +.333B4 will result in an assigned value
of 0 and a ‘‘V’’ flag on the listing.

J-2

FLOATING DECIMAL DATA (FLT)

The decimal data in the variable field is converted
to 9400 floating-point form. With the FLT operation
a decimal exponent may be specified by the program-
mer. If out of range data (i.e., greater than 1076 and
less than 10-76) is called for, the assembler supplies
a zero and an error indication in the listing.

The decimal exponent used is the number which im-
mediately follows the letter E. If E is not used the
exponent is assumed to be zero. If no decimal point (.)
is used, it is assumed to be at the right-hand end.

Again the data words are separated by commas
and the data field is terminated by a blank. If a
symbol is associated with the card, it is assigned to the
first word generated.

OCTAL DATA (OCT)

The octal integer data in the variable field is con-
verted to binary and assigned to successive memory
locations. The data words are separated by commas,
and the data field is terminated by a blank. If a
symbol is associated with the card, it is assigned to the
first word generated.

DATA (DATA)

This operation is a combination of DEC and FLT.
If a decimal point (.) or E or both oceur in a number
without B, the number is converted to floating point
binary.

Example: 1.4, 1.3E-3,1.

If a B does oceur in the number, it is converted to
fixed point binary according to the rules for DEC.

Example: 1.8B-3, 201B, 8E1B-3.

If neither a decimal point (.), B, or E is en-
countered, the integer is converted to a binary interger
with binary point at the right hand end.

If overflow (or underflow) occurs in the processing
of any DEC, FLT, or DATA quantity, the error is
flagged on the output listing with a ““V’’ and a value
of zero is outputted for the erroneous quantity.
BINARY CODED INFORMATION (BCI)

Whenever a card reading yyy BCI N, is en-
countered, the N Fieldata words following the comma
are assigned to successive memory locations. The
symbol location yyy is assigned to the first word
generated. Note that the condition N = 9 must hold
otherwise the card is ignored and flagged as in error.

BINARY CODE INFORMATION (BCZ)
This operation is the same as BCI except that all
blank characters are replaced with masterspaces.

BINARY OUTPUT MODE (ABS) (FUL) (REL)

The form of binary output is determined by the
programmer. The output which follows an ABS card

is in the standard absolute format. The output which
follows a FUL eard has up to 24 words per card and
no control, loading, or hashsum information. The
output following a REL card is in standard-relocat-
able format. Whenever one of these output operations
is met- the assembler punches the waiting output
before changing to the new mode. If no form is speci-
fied the absolute will be used.

REMARKS (REM)

This operation causes the entire card to be treated
as a remark. No words are generated. An asterisk in
column 7 will provide the same feature.

LIBRARY CALL (LIB)

The library routine identified by the symbol in the
location field is obtained from the library tape and
inserted in the program. The identifying symbol is
not entered in the symbol table, but any symbols ap-
pearing in the library routine are entered and prop-
erly defined.

The first set of information on the library tapes
is an ordered list of the subroutines which are on
the tape. The assembler keeps track of the position
of the library tape and treats the list of subroutines as
a table of contents. As subsequent requests are met
the library tape is backspaced or skipped to obtain
the proper routine. The tape unit that the library
tape is mounted on is specified by the variable field of
the LIB card. If this field is blank the system stand-
ard drive is used. The table of contents of only one
tape is retained in memory. In order to minimize
tape researching time, it is recommended that the
library routines be taken from one library tape at
a time and in the order that they are on the tape.

Library routines may be called in two ways. Calls

on library routines are indicated by the use of a left
parenthesis followed by the ecall word e.g., TRL
(SQRT. In the case where no LIB SQRT is used but
only a TRL (SQRT, the assembler-will stack the
square root routine object coding at the end of used
memory, in essentially the same way that literals are
stacked. However, if a LIB SQRT is written, then
the square root routine will be punched directly in
line. In both cases the method of referencing the
square root routine is the same and only the position
of the object coding is different.

PRINT LIBRARY ROUTINE (PLR)

Normally the routines copied from the library
tape are not included in the printed listing. If a
PLR card is in the symbolie deck, all library routines
will be included in the output listing.

TRANSFER CARD (TCD)

A TCD card causes the assembler to punch the wait-
ing output and also punch a transfer card to the

location called for by the variable field of the TCD
card. A TCD card does not terminate the assembly.

END OF PROGRAM (END)

There are two uses of an END card in the assembly
process. One is to mark the end of a Macro defining
skeleton and the other is to signal the assembler that
the end of the object program has been reached. The
assembler can tell by the preceeding input -which
action is called for by the END card. The end-of-ob-
ject-program-mode causes the waiting binary output
to be punched, a transfer card to the location specified
by the expression in the variable field to be punched,
and the assembly terminated. The end of defining
a skeleton mode causes the assembler to return to its
normal processing.

FINISH (FIN)

A FIN card indicates the end of a group of stacked
assemblies.

EJECT A LISTING PAGE (EJECT)

This pseudo-op affects the listing output only. It
causes the printing of a page to cease and start again
at the top of a new page.

SPACE A LINE (SPACE)

This pseudo-op affects the listing only. The variable
field contains a predefined field specifying the number
of lines to be shipped. A blank variable field will be
considered a unit (1) skip.

LITERAL ORIGIN CARD (LOC)

The variable field of the LLOC pseudo-op specifies the
nominal origin for the literals. The variable field may
be any predefined expression. Provision has been
made for 1000, literals, after which the old table is
punched and a new table is formed.

General instructions for composing literals:

format is = (VALUE, where (VALUE) is a
decimal interger;
or = /(VALURE), where (VALURE) is an
octal interger.
The decimal integer is converted to fixed or floating
point (see DATA-OP).
Example: LOC /100
CLA =127

will generate the instruction word:
10 00000 00100

and location 100g will contain the data word:
000000000177

The literal table is punched when another LOC card
is encountered, or at the end of the assembly.

J-3

UNDEFINED SYMBOL ORIGIN (USO)

During the second pass all subsequent undefined
symbols will be assigned consecutive values starting
at the value of the expression in the variable field of
the USO card.

VARIABLE FIELD DEFINITION (VFD)

This operation causes the variable length fields
specified in the variable field of the card to be strung
together to form 37 bit logical words. The Fields may
consist of octal, decimal, or Fieldata information. The
subfields may span across computer words however,
no subfield may be longer than 37 bits. The subfields
and their descriptions are punched without blanks
across the variable field of the card. The first blank
column signals the end of the data field. The various
subfields are separated by commas and the data and
deseription part of the subfield are separated by a
slash,

The subfield starts with a deseriptor which tells the
length of the subfield in bits. If the descriptor is
prefixed by an ‘“O’’ or an ‘“‘F’’ it means that the data
is in octal or Fieldata form. The absence of a prefix
means that the data is an unsigned decimal integer or
an expression. The descriptor is terminated by a slash
and the data portion of the subfield follows. The data
portion of the subfield is terminated by a comma (or
a blank for the last subfield). If the data portion con-
sists of Fieldata characters the subfield must be an
integral of six bits long and enough characters must
be in the data field to fill the subfield. Octal and deci-
mal information in a data field need not exactly fit
the subfield. If the integer in data field is to be un-
signed decimal (i.e., no special prefix) a symbolic
reference (expression) may be used. Again the sub-
field will be computed mod.2* where X equals the
field length. Headed symbols are also allowed. If a
VFD card does not fill the last word, the generated
bits occupy their allotted positions in the high order
part of the word. VFD 1/1 will generate 1000——0.

MACRO PSEUDO-OPERATIONS

Many programs have within themselves some body
of coding performing a certain function, which is re-
peated in numerous places in the main program. In
this type of coding, the only essential difference be-
tween the coding appearing at each of these places is
the change of field names within the body of code.
That is, each body of coding performs the same logical
task, but the input and output symbolic names are
different. Without the macro concept these routines
are written by the programmer in each place that he
wishes the coding.to appear. He may also try to write
the routine as a closed subroutine, but in many cases,
this technique is cumbersome since the necessary ini-

J-4

tialization must be performed at object time. The
macro approach is a simple answer to this problem.

Use of Macros

Oftentimes in a program one uses the same series

of instructions over and over (e.g., matrix manipu-
lation, calling sequence ete.) and it is a desirable
feature of an assembly program to be able to gen-
erate these fixed sequences with a minimum of cod-
ing. This is done by the use of macros.
Macro Definitions: A macro definition is composed
of a macro statement and a macro skeleton. The
macro statement defines those fields which are
parameters to the macro while the macro skeleton
indicates the position within each specific macro
ase where the parameters are substituted.

Example:
macro
BC MACRO A, B statement
INS A } macro maero
INS B skeleton definition
end
END statement

Macro Pefinitions must be done before any coding
of the specific macros.

The preceding skeleton, extremely simplified, can be
used to demonstrate the salient feature of the macro
definition.

Macro Statement: BC is the title of the new op-code
which is to generate the desired sequence for each
specific macro. The variable field is used to define
the parameters within the skeleton. The macro
statement defines those parameters which are sub-
stitutable in each specific macro op.

Skeleton: This defines the set of words which are
to be generated by the new op code defined in the
macro statement. Symbolic location titles, op codes,
or variable field items may be parameter defined.

End Statement: This signals to the assembler that
definition for this macro has been completed. It
therefore signals a return to normal processing
procedure.

Skeleton Format: A. Character(s) in the symbolic
location field will be treated in any one of three
ways.

1. The symbol name may also occur in the
parameter list in which case it will be as-
signed its associated parameter name and
equivalence and inserted in the symbol table
upon the encountering of the macro.

2. If the symbol name does not also occur in the
parameter list, it is to be assumed that this
line is to be referred to from within the macro.

Name and equivalence are stored in a symbol
list associated with the maecro (this symbol
cannot be addressed from outside the macro).
3. In conjunction with an EQU or SYN ecard,
both symbol name and equivalence can be
parameterized. However the variable field of
this skeleton line must be a reference to one
parameter value and may not contain any
variable field connector (+, —, /, *, $ ete.).

Restrictions

A. After any skeleton line which has a variable
field value to be computed from the parameter list,
and of which the op code has a direct influence on
the location counter (e.g., BSS N (where N is in
parameter list)), no further symbolic — location —
definition of line position is possible.

B. An op-code may be parameter-defined also, in
which case the parameter definition must be single-
valued. Macros may occur within macros, in which
case the main parameter list defines all interior
items (including the parameter lists for any interior
maeros).

C. Variable field characters and/or symbols may
refer to parameter values or defined symbols, con-
nected by any legitimate variable field connector.

((+)v(~)7(*),(/),(7)y(b))

Note 1: In using the programmer-defined macro, the
parameter list may overflow into as many cards as
are necessary to insert the desired number of
parameters. Bach card but the last must terminate
with a ecomma — blank (,b) sequence and each
card but the first must contain the op-code ETC.

Note 2: At present 32, parameters per macro may
be specified in the list, 100;, macro definitions may
be processed.

EXAMPLE OF MACRO CODING

CSQ MACRO B,C,D
A CLA B,1
STR C,1
TRX All
TRU *+D+1 or (C+D)
C BSS D

END

Coding could be

Starts at loc 100 LXS 0,1,100
CSQ COMMON, MTRX1,100
CLA MTRX1

This would be equivalent to:

100 LXS 0,1,100
101 A CLA COMMON,1
102 STR MTRX1,1
103 TRX A1

104 TRU *4+101

105 C BSS 100

251 CLA MTRX1

Note that in the above example the value of the
symbol C within the macro is being used to define
the value of the symbol MTRX1 for the main
program.

That is — a value has not been assigned to the sym-
bolie location MTRX1 from the main program but
this value is determined only from the macro, e.g.,
MTRX1 is assigned the value 105.

J-5

APPENDIX K

LIST OF OPERATION CODES
CURRENTLY PROCESSED BY 94AP

Within This Appendix, The Field Definitions Are As Follows
Field Explanation

1) Effect

GW(S) = Generate Word(s)

2) Field Interpretation

A = Address Field

C = Count Field

I = Index Field

M = Modifier Field

O = Octal Integer

S = Device Field

() = May Be Coded, But Not Required

Effect Title Field Interpretation Purpose Or Octal Equivalent
GW BS 5,C 670000000000

ES A,S,C 630000000000
GW A,8,C 740000000000
PR A1), M 630000000000
PS A,(D,M 630004000000
PT A1), M 634000000000
RW 770000000000
SK 00...00 640000000000
SpP S,C 660000000000
SS A,S,C 620000000000
ST (A), (1), (M) 630000000000
WK 00...00 650000000000
WO A,C 760000000000
wWwW A,8,C 750000000000
PRA A 630001700000
PRO A 630001000000
PRP A 630000100000
PRS A 630000200000
PRT A 630000400000
PSA A 630005700000
PSO A 630005000000
PSP A 630004100000
PSS A 630004200000
PST A 630004400000
PTU A 634000000000
SKB 00..00 640000000000
SKF 00..00 640001000000
SSE A,S 621000000000
SSN A,S 622000000000
SSS A,S 624000000000
SS1 A,S 620010000000
SS2 A,S 620020000000
SS3 A,S 620030000000
SS4 A,S 620040000000
STD 630000000000
STI 630000000000
GWBD AC 740002200000
GWBI AC 740003200000
GWBP A C 740000200000
GWFD A,C 740002100000
GWFI A,C 740003100000

Effect Title Field Interpretation Purpose Or Octal Equivalent
GW GWFP AC 740000100000
GWWD A,C 740002000000
GWWI A,C 740003000000
GWWP A,C 740000000000
PROP A 630001100000
PROS A 630001200000
PROT A 630001400000
PRSP A 630000300000
PRTP A 630000500000
PRTS A 630000600000
PSOP A 630005100000
PSOS A 630005200000
PSOT A 630005400000
PSSP A 630004300000
PSTP A 630004500000
PSTS A 630004600000
SSE1 A,S 621010000000
SSE2 A,S 621020000000
SSE3 A,S 621030000000
SSE4 A,S 621040000000
SSNE A,S 623000000000
SSN1 A,S 622010000000
SSN2 A,S 622020000000
SSN3 A,S 622030000000
SSN4 A,S 622040000000
SSSE A,S 625000000000
SSSN A,S 626000000000
5551 A,S 624010000000
S5SS2 A,S 624020000000
5553 A,S 624030000000
5554 A,S 624040000000
WWBD A,C 750002200000
WWBI A C 750003200000
WWBP A,C 750000200000
WWED A,C 750002100000
WWFI A,C 750003100000
WWEFP AC 750000100000
WWWD A,C 750002000000
WWWI A,C 750003000000
WWWP A,C 750000000000
PROSP A 630001300000
PROTP A 630001500000
PROTS A 630001600000
PRTSP A 630000700000
PSOSP A 630005300000
PSOTP A 630005500000
PSOTS A 630005600000
PSTSP A 630004700000
SSNE1 A,S 623010000000
SSNE?2 A,S 623020000000
SSNE3 A,S 623030000000
SSNE4 A,S 623040000000
SSSE1 A,S 625010000000
SSSE2 A,S 625020000000
SSSE3 A,S 625030000000
SSSE4 A,S 625040000000
SSSNE A,S 627000000000
SSSN1 A,S 626010000000
SSSN2 A,S 626020000000
SSSN3 A,S 626030000000
SSSN4 A,S 626040000000
SSSNE1 A,S 627010000000
SSSNE2 A,S 627020000000
SSSNE3 A,S 627030000000
SSSNE4 A,S 627040000000

K-2

Effect Title Field Interpretation Purpose or Octal Equivalent
GW SCKNPF AC 700004100000
SCKNP A, C 700004000000
SCKNXF A,C 700005100000
SCKNX A,C 700005000000
SCKNDF A,C 700006100000
SCKND AC 700006000000
SCKNIF A,C 700007100000
SCKNI A,C 700007000000
SCKDPF AC 700004300000
SCKDP A,C 700004200000
SCKDXF A,C 700005300000
SCKDX A,C 700005200000
SCKDDF AC 700006300000
SCKDD A,C 700006200000
SCKDIF A,C 700007300000
SCKDI A C 700007200000
SCKKPF A,C 700004500000
SCKKP AC 700004400000
SCKKXF AC 700005500000
SCKKX A C 700005400000
SCKKDF A,C 700006500000
SCKKD AC 700006400000
SCKKIF AC 700007500000
SCKKI AC 700007400000
SCKAPF A,C 700004700000
SCKAP A,C 700004600000
SCKAXF A,C 700005700000
SCKAX A,C 700005600000
SCKADF A,C 700006700000
SCKAD A,C 700006600000
SCKAIF A,C 700007700000
SCKAI A C 700007600000
SCSNPF A,C 704004100000
SCSNP A,C 704004000000
SCSNXF A,C 704005100000
SCSNX A,C 704005000000
SCSNDF A,C 704006100000
SCSND AC 704006000000
SCSNIF A,C 704007100000
SCSNI AC 704007000000
SCSDPF AC 704004300000
SCSDP A,C 704004200000
SCSDXF A,C 704005300000
SCSDX A,C 704005200000
SCSDDF A,C 704006300000
SCSDD A C 704006200000
SCSDIF A,C 704007300000
SCSDI A,C 704007200000
SCSDPF A,C 704004500000
SCSKP A,C 704004400000
SCSKXF A, C 704005500000
SCSKX A,C 704005400000
SCSKDF A,C 704006500000
SCSKD A,C 704006400000
SCSKIF A,C 704007500000
SCSKI AC 704007400000
SCSAPF A,C 704004700000
SCSAP AC 704004600000
SCSAXF A,C 704005700000
SCSAX A,C 704005600000
SCSADF AC 704006700000
SCSAD A,C 704006600000
SCSAIF A,C 704007700000
SCSAIl AC 704007600000
SCWNPF A,C 700000100000
SCWNP A,C 700000000000

K-3

Effect Title Field Interpretation Purpose Or Octal Equivalent

GW SCWNXF A,C 700001100000
SCWNX A,C 700001000000
SCWNDF A,C 700002100000
SCWND A,C 700002000000
SCWNIF A,C 700003100000
SCWNI A,C 700003000000
SCWDPF AC 700000300000
SCWDP A,C 700000200000
SCWDXF AC 700001300000
SCWDX A,C 700001200000
SCWDDF AC 700002300000
SCWDD A,C 700002200000
SCWDIF A,C 700003300000
SCWDI AC 700003200000
SCWKPF AC 700000500000
SCWKP AC 700000400000
SCWKXF A C 700001500000
SCWKX A,C 700001400000
SCWKDF AC 700002500000
SCWKD A,C 700002400000
SCWKIF A,C 700003500000
SCWKI A,C 700003400000
SCWAPF A,C 700000700000
SCWAP A,C 700000600000
SCWAXF A,C 700001700000
SCWAX A,C 700001600000
SCWADF A,C 700002700000
SCWAD A,C 700002600000
SCWAIF A,C 700003700000
SCWAI A,C 700003600000
SCBNPF A,C 704000100000
SCBNP A,C 704000000000
SCBNXF A,C 704001100000
SCBNX AC 704001000000
SCBNDF A,C 704002100000
SCBND A,C 704002000000
SCBNIF AC 704003100000
SCBNI A,C 704003000000
SCBDPF AC 704000300000
SCBDP A,C 704000200000
SCBDXF AC 704001300000
SCBDX AC 704001200000
SCBDDF A,C 704002300000
SCBDD AC 704002200000
SCBDIF A,C 704003300000
SCBDI A,C 704003200000
SCBKPF AC 704000500000
SCBKP A,C 704000400000
SCBKXF A,C 704001500000
SCBKX AC 704001400000
SCBDXF A,C 704001300000
SCBDX A,C 704001200000
SCBDDF A,C 704002300000
SCBDD A,C 704002200000
SCBDIF AC 704003300000
SCBDI A,C 704003200000
SCBKPF AC 704000500000
SCBKP A,C 704000400000
SCBKXF AC 704001500000
SCBKX A,C 704001400000
SCBKDF AC 704002500000
SCBKD A C 704002400000
SCBKIF AC 704003500000
SCBKI A,C 704003400000
SCBAPF A,C 704000700000
| SCBAP A,C) 704000600000

K-4

Effect Title Field Interpretation Purpose Or Octal Equivalent
GW SCBAXF AC 704001700000
SCBAX A C 704001600000
SCBADF A,C 704002700000
SCBAD A C 704002600000
SCBAIF A,C 704003700000
SCBAI A,C 704003600000
HLT (A),(1),(M) 000000000000
ADB A (I),M 240000000000
ADD A (D,M 120000000000
ADM A, (I),M 130000000000
CAM A (D) 110000000000
CLA A (D) 100000000000
CLS A (1) 140000000000
CLZz 100000077740
CSM A (1) 150000000000
CSz 150000077740
CYL A, (D) 350000000000
CYSs A (D) 340000000000
DVD A ()M 220000000000
DVL A (I),M 230000000000
FAM A (I),M 570000000000
FLA A, ()M 560000000000
FLD A 0),M 270000000000
FLM A,(D,M 260000000000
FLS A,(),M 600000000000
FSM A, (), M 610000000000
LDQ A (D) 510775100000
LGA A, (D) 030000000000
LGM A (D) 020000000000
LGN A (T) 040000000000
LOD A (1), M 510774000000
LXS A I M 530000000000
MLR A (D) 210000000000
MLY A (D) 200000000000
MOV A I-M 520000000000
MSK A (1) 550000000000
MVQ I-M 520000077751
MVZ I-M 520000077740
NoP 100000077750
NRM A, (D) 370000000000
RPA A (D) 540000000000
RPT A (I),M 010000000000
SBB A (I),M 250000000000
SBM A (I),M 170000000000
SEN A(D),M 050000000000
SHL A (I),M 300000000000
SHR A (1) 320000000000
SLL A (I),M 310000000000
SNR A (I),M 070000000000
SNS A (I),M 060000000000
SRL A, (T) 330000000000
STR A () 500000000000
SUB A (I),M 160000000000
TRC A, (D) 470000000000
TRI A, (D) 510775300000
TRL A, (1), (M) 410000000000
TRN A (D) 460000000000
TRP A (D) 440000000000
TRS 420000000000
TRU A, (1), (M) 400000000000
TRX AIM 430000000000
TRZ A (D) 450000000000
BSP 5,C 670000000000
BSPB 5,C 670000000000
BSPF 5,C 674000000000
RAN A,S,C, 700000000000

K-5

Effect Title Field Interpretation Purpose Or Octal Equivalent

GW RANW A,S,C, 700000000000
RANB A,S,C, 704000000000
ROK AS,C, 720000000000
RRV A,58,C, 710000000000
RRVW A,S,C, 710000000000
RRVB A,S,C 714000000000
RWD S 770000000000
WAN A,5,C 740000000000
WOK A,S,C 760000000000
WWA AS,C 750000000000
SKP S,C 660000000000
SKPB S,C 660000000000
SKPF 5,C 664000000000

K-6

PSEUDO INSTRUCTIONS

Within This Appendix, The Field Definitions Are As Follows

Field Explanation

i) Effect
CO = Card Output
EST = Enter Symbol In Table
GWS = Generate Words
HST = Head Symbols
LO = Listing Output
LC = Listing Control
LIC = Library Control
MAD= Macro Definition
ORG = Set Origin Control
STI = Symbol Table Input
STO - Symbol Table Output

2) Field Interpretation

A = Alphanumeric Field

D = Decimal Integer

F = Literal Fieldata Character

M = Tape Designator

N = Count

(0] = OQOctal Integer
Effect Title Field Interpretation
CO ABS Absolute Bin Card Format
STI AST M,N Symbol Table Append
GWS BCI N,FF...FFF Enter Fieldata W Space Fill
GWS BCZ N,FFF...FFF Same With Bin Zero Fill
GWS BES N Enter Zero Block
GWS BSS N Same
GWS DATA DD...DD(F)D Enter Decimaldata
GWS DEC DD,...,DD(F) Enter Decimaldata
EST DEF 00...00 Octal Value For Symbol
LC EJECT Advance Listing To Next Page
LO END A End Macro Or Assembly
EST EQU A Equate Nonrelocatable Fields
LO FIN Terminate Stacked Assemblies
GWS FLT DD,...,DD(F)D Floating Point Data
STO FST M,N Write Final Symbol Table
CcO FUL Full Bin Card Format
HST HED F Heading Character
LIC LIB A Enter A Library Routine
ORG LOC A Origin For Literal Table
STO LST List Symbol Table
MAD MACRO A AA,.. A Define Macro Skeleton
GWS OoCT 000,...,000 Enter Octal Numbers
OR.G ORG A Origin For Program
LO PLR List All Library Routines
CO REL Relocatable Bin Card Format
LO REM Write Remark
STI RST M,N Replace Symbol Table
LC SPACE N Advance Listing N Lines
EST SYN A Equate Relocatable Fields
CO TCD A Punch Transfer Card
ORG UsoO A Origin For Undefined Symbols
GWS VFD (F)N/D(OXF)... Variable Field Definition
STO WST M,N Write Symbol Table

K-7

Within This Appendix,

Field Explanation
1) Effect

SIM
1IO0M

SYSTEM MACROS

Symbolic Item Macro

Input And/Or Output Macro

2) Field Interpretation

The Field Definitions Are As Follows

A = Symbolic Item Reference Field

B = Symbolic Item Index Field

C = Symbolic Item Bit Location Field

D = Input Or Output File Location Field

F = Input Or Output File Designator Field

K = A Set Of File Definition Fields
Effect Title Field Interpretation
IOM AHEAD F,D Skip Over Logical Records ~
IOM BACK F,D Reverse Direction And Skip Record
1IO0M CHANGE F Terminate A Reel Of A File
IOM CLOSE F Terminate Processing Of A File
SIM CLPL A,B,C Clear And Add A Symbolic Item
SIM CLPR A,B,C Clear And Add A Symbolic Item
IOM FILDEF K Define In A File
IOM FLEX F,D Output Lo Vol Record to Flex.
IOM OPEN F Start Processing A File
IOM READ F,D Get Next Record
IOM READIN F,D Get Next Record
SIM STOR A,B,C Store A Symbolic Item
SIM STOS A B,C Store A Symbolic [tem
IOM WRITE F,D Output A Record
1I0M WKRTFRM F,D Output A Record

DIVISION FIELD OFFICES

Washington D.C. Region
Bender Building

1120 Connecticut Avenue, N.W.
Washington, D.C.

FEderal 7-6600

Northeast Region

40 Sylvan Road
Waltham, Massachusetts
TWinbrook 4-8444

Fort Monmouth Region
16 Spring Street

Red Bank, New Jersey
741-8300

Philadelphia Region

4700 Parkside Avenue
Philadelphia, Pennsylvania
GReenwood 7-5000

Rome District

225 N. Washington Street
Rome, New York

FF 7-1100

Central Region
333 W. First Street
Dayton 2, Ohio
BAldwin 3-6227

Canada

6233 Cote De Liesse
Montreal 9, Quebec
MElrose 1-4201

Southeast Region :
118124 Gallafin Street SYLVANIA erectronic svstems
Huntsville, Alabama o\ Government Systems Management

for GENERAL TELEPHONE & ELECTRON/C

JEfferson 9-:0891

Rocky Mountain Region
101 North Union Boulevard
Colorado Springs, Colorado
MElrose 5-3132

Southern California District
6505 East Gayhart Street
Los Angeles, California
RAymond 3-5371

Northwest District
3466 East Marginal Way
Seattle 4, Washington
MAin 2-6888

Southwest District

215 North Stanton Street
El Paso 49, Texas
532-2281

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	G-1
	G-2
	H-1
	H-2
	I-1
	I-2
	I-3
	I-4
	J-1
	J-2
	J-3
	J-4
	J-5
	J-6
	K-1
	K-2
	K-3
	K-4
	K-5
	K-6
	K-7
	K-8
	xBack

