
4.1 Pixrect Reference Manual

._----------

Part Number: 800-4835-10
Revision A of 5 January, 1990

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks
of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SunInstali, SunOS, SunView, NFS, NeWS,
and SP ARC are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Intel ® is a registered trademark of Intel COIpOration.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an infonnation retrieval
system, without the prior written pennission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

Contents

Chapter 1 Introduction .. 3

Limitations 3

1.1. Overview .. 3

1.2. Important Concepts .. 4

1.3. Using Pixrects .. 5

Primary Pixrect 6

Secondary Pixrect 6

Memory Pixrect 6

Basic Example .. 7

Compiling .. 7

Pixrect lint Library ... 7

1.4. Pixrect Data Structures ... 8

Chapter 2 Portability Considerations ... 11

2.1. Byte Ordering 11

Byte Swapping and Bit Flipping .. 11

2.2. Flipping Pixrects .. ", ,............. 13

The pr _flip () Routine .. :." ... c.,.;:.~;~ ... ; ,...... 13

Guidelines for Sun386i Systems ,; , ... ~ ~ ;. 14

Chapter 3 Pixrect Operations " ,,"., .. ;." .. ;; ; , .. ,

3.1. The pixrectops Structure ;., .. ; ... ,"', ,

3.2. Calling Pixrect Procedures ... , _

Argument Conventions " .. ; ;;

-lll-

Contents - Continued

Pixrect Errors 21

3.3. The Op Argument .. 21

Specifying a RasterOp Function .. 22

Specifying a Color .. 23

Op Arguments between Pixrects of Different Depths 23

Controlling Clipping in a RasterOp 24

Examples of Complete Op Argument Specification 24

3.4. Creation and Destruction of Pixrects ... 24

Create a Primary Display Pixrect .. 25

Getting Screen Parameters 25

Create Secondary Pixrect ... 26

Release Pixrect Resources 26

3.5. Single-Pixel Operations ... 27

Get Pixel Value .. 27

Set Pixel Value ... 27

3.6. Multi-Pixel Operations ... 27

RasterOp Source to Destination ... 28

RasterOps through a Mask .. 28

Replicating the Source Pixrect .. 29

Multiple Source to the Same Destination ... 30

Draw Vector ... 31

Draw Textured Polygon .. 31

Draw Textured or Solid Lines with Width ... 34

Draw Textured or Solid Polylines with Width .. 36

Draw Multiple Points ... 37

3.7. Colonnap Access ... 37

Get Colormap Entries ... 38

Set Colonnap Entries .. 38

Lookup Tables 39

True Color Look-Up Table ... 39

XBGR Fonnat ... 40

Inverted Video Pixrects ... 41

3.8. Attributes for Bitplane Control .. 41

- iv-

Contents - Continued

Get Plane Mask Attributes ... 42

Put Plane Mask Attributes 42

3.9. Plane Groups .. 42

24-Bit Frame Buffers .. 43

Detennine Supported Plane Groups 45

Get Current Plane Group .. 46

Set Plane Group and Mask 46

3.10. Double Buffering .. 46

Get Double-Buffering Attributes ... 46

Set Double-Buffering Attributes .. 47

3.11. Efficiency Considerations .. 48

Chapter 4 Text Facilities for Pixrects .. 53

4.1. Pixfonts and Pixchars .. 53

4.2. Operations on Pixfonts ... 54

Load a Font ... 54

Load Private Copy of Font .. 55

Default Fonts 55

Close Font ... 55

4.3. Text Functions ... 55

Pixrect Text Display .. 55

Transparent Text ... 56

Auxiliary Pixfont Procedures ... 57

Text Bounding Box ... 57

Unstructured Text ... 58

4.4. Example .. 58

Chapter 5 Memory Pixrects .. 61

5.1. The rnpr_data Structure .. 61

Example .. 63

5.2. Creating Memory Pixrects ... 63

Create Memory Pixrect ... 63

Create Memory Pixrect from an Image 64

-v-

Contents - Continued

Example .. 64

5.3. Static Memory Pixrects .. 65

5.4. Pixel Layout in Memory Pixrects .. 66

5.5. Using Memory Pixrects ... 66

Chapter 6 File I/O Facilities for Pixrects .. 69

6.1. Writing and Reading Raster Files .. 69

Run Length Encoding ... 69

Write Raster File ... 70

Read Raster File 72

6.2. Details of the Raster File Format ... 73

6.3. Writing Parts of a Raster File ... 74

Write Header to Raster File .. 75

Initialize Raster File Header ... 75

Write Image Data to Raster File ... 75

6.4. Reading Parts of a Raster File .. 75

Read Header from Raster File ... 76

Read Colormap from Raster File ... 76

Read Image from Raster File ... 76

Read Standard Raster File ... 76

Appendix A Writing a Pixrect Driver .. 79

A.l. Prerequisites 79

A.2. Overview and Assumptions .. 80

Approach Outline .. 80

A.3. Preparing the System .. 81

A.4. A Skeleton Driver .. 83

Page Type .. 83

Base Address ... 83

Interrupt .. 83

Device Id .. 83

MAKEDEV .. 85

files .. 85

-vi-

Contents - Continued

GENERIC ... 85

sundevlbwfb.c ... 85

A.5. A Skeleton Pixrect Device Module .. 89

pr_open ... 89

Pixrect Staging Area ... 89

.. f .. /sys/sun/fbio.h .. 92

prfpr_makefun.c 93

A.6. Adding Flesh to the Skeleton .. 95

bWfb_ops.c .. 95

bwfb_makelbwfb_destroy ... 96

Back to the driver .. 97

A.7. The Real Driver ... 100

Visual Inspection of the Hardware ... 100

PROM Monitor .. 100

Monitor Command Example .. 101

bwfbreg.h 102

bwfbprobe ... 103

bwfbattach 103

bwfbmmap .. 103

Features and Trap Doors ... 103

A.8. Creating the Real Pixrect ... 104

A.9. Implementation Strategy .. 104

A.I0. Files Generated ... 105

A.ll. Access Utilities ... 105

A.12. Rop ... 106

A.13. Batchrop .. 106

A.14. Vector ... 106

Importance of Proper Clipping ... 106

A.15. Colormap .. 106

Monochrome .. 107

A.16. Attributes .. 107

Monochrome .. 107

A.17. Pixel... 107

-vii -

Contents - Continued

A.18. Stencil... 107

Appendix B Pixrect Functions and Macros ... 111

B .1. Making Pixrects III

B.2. Text ... 112

B.3. Raster Files ... 114

B.4. Memory Pixrects ... 115

B.S. Colormaps and Bitplanes ... 116

B.6. Rasterops ... 118

B.7. Double Buffering .. 120

Appendix C Pixrect Data Structures ... 123

Index ... 127

- viii-

Tables

Table 1-1 Pixrect Header Files 8

Table2-1 Routines that call pr_f1ip() ... 14

Table 3-1 Argument Name Conventions .. 21

Table 3-2 Useful Combinations of RasterOps ... 22

Table 3-3 rop Operations (depth limitations) ... 23

Table 3-4 Enable/Overlay Planes for CG4 and CG8/CG9 43

Table 3-5 CG8 & CG9 Plane Groups ... 44

Table 3-6 Enable/Overlay Planes for the CG8 and CG9 ... 44

Table 3-7 pr_db1_get () Attributes ... 47

Table 3-8 pr _ db 1_ set () Attributes ... 48

Table 3-9 24-Bit True Color Double Buffering .. 48

Table B-1 Pixrects 111

Table B-2 Text ... 112

Table B-3 Raster Files ... 114

Table B-4 Memory Pixrects .. ; ,................ 115

Table B-5 Colormaps and Bitplanes .. ;.;;; ,,; ~ ,~; ~. 116

Table B-6 Rasterops ... , " ;.. 118

Table B-7 Double Buffering .. ,., , ,

Table C-l Pixrect Data Structures

- ix-

Figures

Figure 1-1 RasterOp Function 5

Figure 1-2 Basic Example Program ... 7

Figure 2-1 Byte and Bit Ordering in the 80386, 680XO and SPARe 11

Figure 3-1 Structure of an op Argument .. 21

Figure 3-2 Example Program using pr_polygon_2 () 33

Figure 3-3 Four Polygons Drawn with pr_polygon_2 () 34

Figure 3-4 XBOR Layout .. 41

Figure 4-1 Character and pc_pr Origins .. 54

Figure 4-2 Example Program Using Text ... 58

Figure 5-1 Example Program Using Memory Pixrects ... 63

Figure 5-2 Example Program Using Memory Pixrects ... 65

Figure 6-1 Example Program using pr_dump ()

Figure 6-2 Example Program using pr _load ()

-xi-

72

73

Audience

Documentation Conventions

References

Preface

This document describes the Pixrect Graphics Library, a low-level raster opera
tions library for writing device-independent applications for Sun products.

This document is not intended to be a tutorial on writing application programs
with the Pixrect library. The reader should be familiar with the C programming
language, and have access to some of the references listed below on raster graph
ics.

The intended reader of this document is an applications programmer who is fami
liar with interactive computer graphics and the C programming language. This
manual contains several example programs that can be used as templates for
larger pixrect applications.

Italic font signifies file names, function arguments, variables and internal states
of pixrect. Italic font is also used to emphasize important words and phrases.
SMALL CAPS indicate values in enumerated types. Listing font is used for
function names.

References to manual pages are shown with the name of the man page in listing
font, followed by the manual page section in parenthesis: Is(1).

Two types of dialogue boxes are used in the manual. White boxes show example
output and programs. Gray boxes show interactive sessions with the computer.
To distinguish between computer and user output, computer output is shown in
listing font, while user input is in bold listing font.

SunView 1 Programmer's Guide.
(Sun Publication Number: 800-1783)

Sun View 1 System Programmer's Guide.
(Sun Publication Number: 800-1784)

Writing Device Drivers
(Sun Publication Number: 800-3851)

Conrac Corporation. Raster Graphics Handbook, Second Edition. Van
Nostrand Reinhold, 1985.

J.D. Foley and A. van Dam. Fundamentals of Interactive Computer Graph
ics. Addison-Wesley, 1982.

- xiii-

Preface - Continued

D. Ingalls. Smalltalk Graphics Kernel. Byte, August 1981.

B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

W.M. Newman and R.F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1979.

R. Pike, Leo Guibas, Dan Ingalls. Bitmap Graphics. ACM/SIGGRAPH 1984
Conference Course Notes. IEEE Computer Graphics and Applications,
April 1984.

David F. Rogers. Procedural Elementsfor Computer Graphics. McGraw
Hill, 1985.

- xiv-

1
Introduction

Introduction ... 3

Limitations .. 3

1.1. Overview .. 3

1.2. Important Concepts .. 4

1.3. Using Pixrects .. 5

Primary Pixrect 6

Secondary Pixrect 6

Memory Pixrect .. 6

Basic Example .. 7

Compiling .. 7

Pixrect lint Library ... 7

1.4. Pixrect Data Structures ... 8

Limitations

1.1. Overview

1
Introduction

This document describes the Pixrect Graphics Library, a set of routines that
manipulates rectangular areas of pixels either on screen or in memory. These
routines, called raster operations, or RasterOps, are common to all Sun worksta
tions. They allow application programmers to manipulate the bit-mapped display
on any Sun workstation.

From a software perspective, the Pixrect Graphics Library is a low-level graphics
package, sitting on top of the display device drivers. For most applications, the
higher-level abstractions available in SunView and the Sun graphic standards
libraries are a more appropriate interface (see the preface of this manual for refer
ences).

The Pixrect Library is intended only for accessing and manipulating two
dimensional rectangular regions of a display device in a device-independent
fashion.

Windows
The Pixrect Library does not support overlapping windows. These can be
implemented with memory pixrects by the application, but the Sun View
package already offers a sophisticated, easy-to-use programming interface
for this purpose.

Input Devices
The Pixrect Library does not have input functions. An application can use
the input functions available in SunView, or make system calls directly to
the raw input devices (see mouse(4) and kbd(4».

Functionality
The Pixrect library doesn't support any type of display list, lighting mode],
3-d, transformations, etc.

Each chapter describes a major feature of the Pixrect Library.

o This chapter introduces the Pixrect Library, defines important terms and con
cepts, and describes the resources available to the programmer.

o Chapter 2 explains how to write pixrect programs that can run on all Sun
systems .

• \sun ~ microsystems
3 Revision A of 5 January 1990

4 4.1 Pixrect Reference Manual

1.2. Important Concepts

o • x

I ::::!::::I::::::::::::::I:::::::::::::::::::::::::::::::::::: :
····i····i .. ··;····;····;······························

y ~ : .. ~ ~ ~ I ••••••••••••••••••••••• I.
i ~: i

: I
: I

! i
: :
i i
I :
I I

l i
: : : :
i !
~ !

o Chapter 3 covers the operations for opening and manipulating pixrects.

o Chapter 4 describes the textfaGilities in the Pixrect Library.

o Chapter 5 discusses memory pixrects, rectangular regions of virtual memory
that are manipulated as pixrects.

o Chapter 6 explains the file I/O (Input/Output) functions in the Pixrect
Library. These functions can serve to store and retrieve pixrects from disk
files.

o Appendix A is a guide for writing pixrect device drivers.

o Appendix B lists the/unctions and macros in the Pixrect Library.

o Appendix C lists the types and structures in the Pixrect Library.

This section describes some of the important concepts behind the Pixrect Library.
It is not intended to be complete, but rather to explain some features of the Pix
rect Library that make it unique among graphics packages.

Pixrects
A pixrect is the graphics analogy to an instance of a class used in object
oriented programming languages. It consists of bitmap data and the opera
tions that can be performed on that data. The implementation of the opera
tions and the data itself is hidden from the programmer (the only exception
is memory pixrects, whose bitmap data can be directly manipulated. See
Chapter 5 for details.) The pixrect is manipulated by using one of the func
tions in the Pixrect Library that is valid for that pixrect, which is analogous
to sending it a message in object-oriented programming.

A pixrect object can reside on a variety of devices, including memory, dif
ferent types of graphics displays and printers. Since the available operations
are the same regardless of the device in which the pixrect resides, the pro
grammer can ignore device particularities while writing the application.

Screen Coordinates
The screen coordinate system is two-dimensional. The origin is in the upper
left comer, with x and y increasing to the right and down. The coordinates
describing pixel locations in a pixrect are integers ranging from 0 to the
pixrect's width (for x) or height (for y) minus 1. The maximum value for x
and y is 32767.

Pixels
A pixel is the smallest individual picture element that can be displayed on
the screen. A pixel consists of an address (corresponding to an x and y coor
dinate) that specifies the pixel, and a value that controls the color displayed.
The pixel address can be absolute (its screen coordinate), or relative to some
rectangular sub-region of the screen. A pixel has a depth (the number of bits
it contains) that detennines the range of colors it can display. A single-bit
pixel can be only black or white, and is used in monochrome displays. Pix
els with more bits can display grayscale values or color. The most common
pixel depths are 1, 8, 16, or 24 bits per pixel.

Revision A of 5 January 1990

Figure 1-1

1.3. Using Pixrects

Chapter 1 - Introduction 5

Bitmaps
A bitmap is a rectangular region of screen space. Each pixel on the screen
corresponds to some number of bits in the screen memory. The value of
these bits detennines the color of the corresponding pixel. These groups are
arranged in an array that can be accessed using the x and y coordinates of the
corresponding pixel. A pixrect bitmap can be up to 32767 pixels wide, and
up to 32767 pixels high.

The word "bitmap" can describe the type of display, indicating that it uses
raster instead of vector display technology, for instance. More commonly, it
refers to the images stored in bitmap fonnat. Examples of the second type 0 r
bitmap include the screen image, window images, the cursor, and icons.

RasterOps
RasterOps are the legal operations available for modifying pixrects. A
RasterOp is an operation that takes two bitmaps as arguments: a source bit
map and the current state of the destination bitmap. The RasterOp then per
forms a boolean operation using these arguments, pixel by pixel, and writes
the final result to the destination bitmap. The source bitmap may be a pat
tern, or it may be defined as a region of some constant value.

The pr _ stencil () function is the only RasterOp that breaks this rule.
Along with the source and destination bitmaps, this function takes an addi
tional argument, a texture bitmap, and combines the three in a boolean
operation. (See Chapter 3 for a more detailed explanation of the RasterOp
functions available in the Pixrect Graphics Library).

RasterOp Function

Source
Before

Destination
Before

Destination
After

r---------,
I I

Texture I
I

I I
L __ ;:::_----...J

The procedure for drawing pictures using pixrects requires three basic steps:

1. Opening a pixrect object.

2. Drawing a picture into the pixrect, using the set of valid operations for that
particular pixrect type. Example operations could include:

Revision A of 5 January 1990

6 4.1 Pixrect Reference Manual

Primary Pixrect

Secondary Pixrect

Memory Pixrect

pryut ()
pr _vector ()
pr_rop ()

3. Closing the pixrect.

If the pixrect resides on a display device, the result of each drawing operation
becomes visible immediately. Opening a display pixrect does not erase the pre
vious contents of the display. Closing the pixrect also has no effect on the con
tents of the display.

A secondary pixrect is a proper subset of its parent pixrect. The results of draw
ing operations to a secondary pixrect are displayed if the parent's pixrect is visi
ble, and the output is within the bounds of the secondary pixrect's clipping win
dow. A secondary pixrect can simplify programming by allowing the program
mer to isolate a section of a larger pixrect, thus sending drawing commands rela
tive to that pixrect's coordinate system, rather than to its parent's. Pixrects can
be nested to any depth.

A memory pixrect allocates a section of memory in the workstation. Unlike a
primary or secondary pixrect, a memory pixrect clears its bitmap to zeros when
opened. Operations performed on memory pixrects do not show on the screen.
An image in a memory pixrect can be copied to a display pixrect, which is a sim
ple form of double buffering. A memory pixrect can also serve as a buffer or
scratch pad, storing bitmaps for later use or saving the results of previous opera
tions .

• \sun
• microsystems

Revision A of 5 January 1990

Basic Example

Chapter 1 - Introduction 7

The following example draws a diagonal line near the upper left comer of the
workstation's default display.

Figure 1-2 Basic Example Program

Compiling

Pixrect lint Library

#include <pixrect/pixrect_hs.h>

main ()
{

Pixrect *screen;

screen = pr_open("/dev/fb");
pr_vector(screen, 10, 20, 70, 80, PIX_SET, 1);
pr_close(screen);

The header file will <pixrect/pixrect_hs. h> #include all of the
header files necessary for working with the functions, macros, and data structures
in the Pixrect Library.

The example program can be compiled as follows:

~.~~~.m~t§~ii7 •• ·~~~j·; •• ··.7~.· •• ·~~~~ ...• ·.-l.P#"j¢£ J
This command line compiles the program in line. c. The -lpixrect option
causes the C compiler to link the Pixrect Library to the application program and
to create an executable file named line.

The example program can be executed by the SunOS C-shell:

t !~...;..;.····~ __ a !n __)p=1'--••••• ,,=)""'""~ ••• __ 1_1 ·n ___ " __ < ___ -'-'--""'""-""'""-_____ ----..;.'---___ ~~""'""-~ _________ '----'---_---' ____ ---'J
A diagona1line appears in the upper left-hand comer of the screen.

The Pixrect Library provides a lint(1) library, which allows lint to check
your program beyond the capabilities of the C compiler. Using the -lpixre ct
flag provides 1 in t with pixrect-specific information that prevents bogus error
messages. You could use lint to check the example program with a command
like this:

~ •• ~~h,~~~·.~· •••••• ~iht~$#~.9.·.·-ipiX~¢t J

Note that most of the error messages generated by lint are warnings, and may
not necessarily have any effect on the operation of the program. For a detailed
explanation of lint, see the discussion on lint in the C Programmer's Guide .

• \sun
., microsystems

Revision A of 5 January 1990

8 4.1 Pixrect Reference Manual

1.4. Pixrect Data
Structures

Table 1-1

All of the important pixrect data structures are stored in the header files shown in
the table below. They can be found in the /usr / include /pixrect direc
tory. Use these files to find the definition of a function or macro.

Pixrect Header Files

pixrect_hs.h
pixrect.h
memvar.h
pixfont.h
traprop.h
pr_line.h
pr-planegroups.h
pr util.h

=#= incl udes all pixrect files
most pixrect definitions
memory pixrects
text operations
traprop definitions
defines wide and textured vectors
frame buffers
internal definitions

Revision A of 5 January 1990

2
Portability Considerations

Portability Considerations ... 11

2.1. Byte Ordering .. 11

Byte Swapping and Bit Flipping .. 11

2.2. Flipping Pixrects 13

The pr_flip () Routine ... 13

Guidelines for Sun386i Systems .. 14

2.1. Byte Ordering

Figure 2-1

Byte Swapping and Bit
Flipping

2

Portability Considerations

This chapter addresses pixrect portability among the various Sun architectures.
Since Pixrect is a low-level graphics library, it is not completely device indepen
dent. Currently, the Sun386i is the only Sun architecture for which porting is an
issue. (It is the first Sun system to use the Intel 80386 processor.) The pixrect
software has been designed to minimize porting difficulties; nevertheless, there
are some portability factors to take into consideration.

The sections below describe the portability problems caused by the Sun386i sys
tem, and their solutions.

The 80386, 680XO (where X is either 2 or 3), and SPARe are 32-bit processors.
This means that all data read or written by these processors pass through 32-bit
wide registers. The order in which the data - the bytes and bits - are arranged
in the 80386's registers differs from the 680XO and SPARe families. These differ
ences are illustrated in the figure below:

Byte and Bit Ordering in the 80386, 680XO and SP ARC

80386
3130292827262524 23222120191817 16 151413 12 11 10 09 08 07 060504 03020100

Byte n+3 I Byte n+2 Byte n+l I Byte n

Word n+l Word n

Doubleword n

680XO and SPARe
3130292827262524 2322212019 18 17 16 151413 12111009 08 07 060504 03020100

Byte n I Byte n+l Byte n+2 I Byte n+3

Word n Word n+l

Longword n

The Sun386i is based on the 80386 processor, which handles byte ordering dif
ferently than 680XO and SPARe processors. This affects the Sun386i's interpreta
tion of graphics files - font files, icon files, cursor files, and screendumps -
generated by the other two architectures. Typically, frame buffers are accessed
as if they were word (l6-bit integer) width devices, or as the device appearing to
be an array of words.

sun
m~rnc.\I!::.t~

11 Revision A of 5 January 1990

12 4.1 Pixrect Reference Manual

Because the byte ordering of words differs on the two architectures, transferring a
graphics file from one to the other usually results in a garbled picture.

On the 680XO monochrome frame buffer, the bits are shifted out of the word start
ing at the most significant bit - bit 15. The upper left-most pixel on the screen
is word 0, bit 15 of the frame buffer memory. The next pixel, scanning from left
to right as you view the screen, is bit 14. The pixel to the right of the first 16 pix
els displayed comes from word 1, bit 15. When interpreted as integers, the most
significant and least significant bytes are:

680XO
MSB

word 0 15 14 13 12 11 10 9 8

word] 15 14 13 12 11 10 9 8

word n 151413 121110 9 8

LSB

76543210

76543 2 1 0

76543 2 1 0

For example, the integer (word) value Ox3 7 OD in word 0 appears on the 680XO
and SP ARC monochrome frame buffer as the pixel sequence:
00 •• 0 ••• 0000 •• 0 •.

On the 80386 monochrome frame buffer, the bits are shifted out of the word from
the least significant bit - bit 0 - to the most - bit 15:

word 0

word]

wordn

LSB

01234567

01234567

01234567

80386
MSB

8 9 10 11 12 13 14 15

8 9 10 11 12 13 14 15

8 9 10 11 12 13 14 15

For example, the integer (word) value 0 x 3 70 D in word 0 appears on the screen
with the 80386 frame buffer as the pixel sequence: .O •• ODDD ••• O •• OO.

The bytes are backward and the bits are in the opposite order. Since a graphics
file is usually generated as an array of words, the bytes are backward for a typical
80386 frame buffer when handling files generated by 680XO and SP ARC machines.
Eight-bit color frame buffers represent each pixel as a byte of data, so the bit
order is already correct; conversion requires only byte swapping.

For monochrome frame buffers, each pixel is represented by a single bit. Scan
ning from right to left presents a bit flip and byte swap problem. The right-most
(low-order) bit of a bit field now represents the left-most pixel on the screen.

Because of the large number of existing files that use it, the 680XO/SPARC fonnat
is the standard format for describing graphics images on all Sun systems. This
eliminates the need for two sets of files in a mixed-architecture network. Conse
quently, if you are porting programs to the Sun386i from other Sun systems -
programs that access the frame buffer through Sun View and Pixrect - byte and
bit ordering are handled automatically at run time. The 680XO/SPARC format

Revision A of 5 January 1990

2.2. Flipping Pixrects

The pr_flip () Routine

Chapter 2 - Portability Considerations 13

images are converted to 80386 format.

Sun386i systems convert 680XO/SPARC format images into 80386 fonnat just
before they are used. The procedure that converts them is a new pixrect routine,
pr_flip (), found only in the Sun386i version ofPixrect.

The internal data of a pixrect is referred to by its pr _ da ta field.

typedef struct pixrect {
struct pixrectops *pr_opsi
struct pr_size pr_sizei
int pr_depthi
caddr t pr_datai /*pointer to ropr*/

pixrecti

If it is a memory pixrect, the structure referred to by pr _ da ta is:

struct ropr_data
int
short
struct
short
short

} ;

rod _linebytesi
*rnd_imagei
pr-pos rod_offset;
rod-primarYi
rod_flagsi /*flag bits*/

There are two new flag bits in the rod _f lags word that control the operation of
pr_flip {}. The flags MP_REVERSEVIDEO, MP_DISPLAY, and
MP _ P LANEMASK are now followed by MP _ I 386 and MP _ STAT I C. If true,
MP _ I 3 86 indicates that the pixrect in question is already in Sun386i (80386)
display format; that is, it has already been modified by pr _ f 1 i P (). If
MP _STATIC is true, the pixrect in question is a static pixrect. (In practice, this
flag is sometimes set for other purposes as well.)

The pr _flip () routine operates on individual pixrects. It takes one argument,
a pointer to a pixrect structure, and returns void. When called, it first checks to
see if the pixrect has already been flipped (MP _ I3 8 6 == TRUE). If not, it flips
the image area, 16 bits at a time. First the bit order is reversed, then the bytes arc
swapped. The pr _flip () does not flip a display pixrect or a secondary pixrect
unless the pixrect is static, that is, MP _STATIC == TRUE.

When a pixrect is modified by apr_flip () call, the changes are limited to the
pixrect's image area and the state of the two new rod _ flag s. The size of the
pixrect structures remains unaltered. The new rod _flags are ignored by pro
grams running under 680XO or SP ARC.

Revision A of 5 January 1990

14 4.1 Pixrect Reference Manual

Pixrects are flipped as they are manipulated by any of the pixrect routines listed
below. As an application runs, the rate of pixrect flipping usually declines since
most applications develop a working set of active pixrects. Pixrects that are not
used are not flipped.

The routines listed below contain checkpoints where pixrects used in their argu
ments are examined and flipped (if necessary) by p r _ f 1 i P () :

Table 2-1 Routines that call pr _flip ()

mem_rop ()

Guidelines for Sun386i
Systems

me~create ()
pr_region ()
pr _ vector ()
pr_dump_init ()
pf_open ()
pf_open_private()
pr _stencil ()
pr_batchrop ()
pr _ replrop ()
pr_get ()
pryut ()
pr_load ()
pr_dump ()

icon_display(}
DEFINE ICON FROM IMAGE

NOTE Icons are either static or created with icon_load (). Static icons can be
created with DEFINE_ICON_FROM_IMAGE. Both of these Sun View features
are described in the Sun View 1 Programmer's Guide.

Fonts are converted by the pf _open () or pf_ open_pri vate () routines.
No other conversions are allowed. The libraries work only with the existing
standard font files.

1. Check code that draws manually into a pixrect. It may not work properly on
a Sun386i without modification. The modification required depends on the
particulars of the drawing operation.

2. Manual operations (not involving libpixrect routines) should be per
formed on a pixrect before converting it to 80386 format.

3. mem _create () creates an 80386-format pixrect on Sun386i machines.

4. memyoint does not set the MP _1386 flag. The pixrect is still marked
not flipped .

• ~sun ~ microsystems
Revision A of 5 January 1990

Chapter 2 - Portability Considerations 15

5. To create an icon, use mem yo in t () to make a pixrect connected to an
existing static image or to an image that you have created dynamically.

6. Use DEFINE_ICON_FROM_IMAGE (SunView) to create static icons. All
static icons are initially created in 680XO/SPARC format. They are converted
to 80386 format when they are involved in a raster operation.

Revision A of 5 January 1990

3
Pixrect Operations

Pixrect Operations ... 19

3.1. The pixrectops Structure ... 20

3.2. Calling Pixrect Procedures ... 21

Argument Conventions .. 21

Pixrect Errors 21

3.3. The Op Argument .. 21

Specifying a RasterOp Function .. 22

Specifying a Color .. 23

Op Arguments between Pixrects of Different Depths 23

Controlling Clipping in a RasterOp ... 24

Examples of Complete Op Argument Specification 24

3.4. Creation and Destruction of Pixrects ... 24

Create a Primary Display Pixrect .. 25

Getting Screen Parameters 25

Create Secondary Pixrect ... 26

Release Pixrect Resources ... 26

3.5. Single-Pixel Operations ... 27

Get Pixel Value 27

Set Pixel Value ... 27

3.6. Multi-Pixel O{)erations ... 27

RasterOp Source to Destination ... 28

RasterOps ilirough a Mask .. 28

Replicating the Source Pixrect .. 29

Multiple Source to the Same Destination ... 30

Draw Vector ... 31

Draw Textured Polygon .. 31

Draw Textured or Solid Lines with Width ... 34

Draw Textured or Solid Polylines with Width .. 36

Draw Multiple Points ... 37

3.7. Colorrnap Access ... 37

Get Colonn.ap Entries ... 38

Set Colorrnap Entries .. 38

Lookup Tables .. 39

True Color Look-Up Table ... 39

XBGR Format ... 40

Inverted Video Pixrects 41

3.8. Attributes for Bitplane Control .. 41

Get Plane Mask Attributes ... 42

Put Plane Mask Attributes ... 42

3.9. Plane Groups .. 42

24-Bit Frame Buffers .. 43

Detennine Supported Plane Groups ... 45

Get Current Plane Group .. 46

Set Plane Group and Mask .. 46

3.10. Double Buffering .. 46

Get Double-Buffering Attributes ... 46

Set Double-Buffering Attributes .. 47

3.11. Efficiency Considerations 48

3
Pixrect Operations

Pixrect objects contain procedures to perform the following operations:

o create or destroy a pixrect- pr_open (), pr_region () ,and
pr_destroy ().

o read and write the values of single pixels within a pixrect- pr _get () and
pr_put ().

o use RasterOp functions to simultaneously affect multiple pixels within a pix
rect:

pr_rop
write from a source pixrect to a destination pixrect

pr_stencil
write from a source pixrect to a destination pixrect through a mask pix
rect

pr_replrop
replicate a constant source pixrect pattern throughout a destination pix
rect

pr_batchrop
write a batch of source pixrects to a sequence of locations within a single
destination pixrect

pr_vector, pr_line
draw a straight line in a pixrect

pr_polygon_2
draw a polygon in a pixrect

o draw text (described in Chapter 4, Text Facilities for Pixrects).

o read/write the display's colormap (pr _get colormap () ,
pr_putcolormap(»)

o select particular bit-planes in a color pixrect's bitmap for manipulation
pr_getattributes(),pr_putattributes()

o control hardware double buffering- pr _ dbl_get () and
pr_dbl_set () .

19 Revision A of 5 January 1990

20 4.1 Pixrect Reference Manual

3.1. The pixrectops
Structure

From an object-oriented viewpoint, all pixrects contain both data and procedures
to manipulate its data, which allow them to be device-independent. The pixrect
uses the function appropriate to its environment when asked to perfonn an opera
tion.

From the programmer's point of view, pixrects are manipulated using procedure
calls embedded in the application program. Internally, the pixrect procedures
that behave the same for all pixrects are implemented by a single procedure, to
make them more efficient. The device-dependent calls are macros that access the
appropriate procedure within the pixrect object. This is almost equivalent to
passing the pixrect object a message, which causes the pixrect to invoke the
appropriate method (procedure).

Each pixrect object includes an internal pointer to a pixrectops structure that
holds the addresses of the particular device-dependent procedures appropriate to
that pixrect. Clients may access these procedures in a device-independent
fashion by calling the procedure through the pixrectops structure, rather than
executing the procedure directly. To simplify this indirection, the Pixrect
Library provides a set of macros that resemble simple procedure calls to generic
operations. These macros expand to invocations of the corresponding procedure
in the pixrectops structure.

In this manual, the description of each operation specifies whether it is a true pro
cedure or a macro, since some of the arguments to macros are expanded multiple
times and could cause errors if the arguments contain expressions with side
effects. (In fact, there are two sets of parallel macros, which differ only in how
their arguments use the geometry data structures.)

struct pixrectops {
int (*pro_rop) ();

} ;

int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) ();
int (*pro_destroy) ();
int (*pro_get) ();
int (*proyut) () ;
int (*pro_vector) ();
Pixrect * (*pro_region) ();
int (*proyutcolormap) ();
int (*pro_getcolormap) ();
int (*proyutattributes) ();
int (*pro_getattributes) ();

The pixrectops structure is a collection of pointers to the device-dependent
procedures for a particular device. All other operations are implemented by
device-independent procedures. From an object-oriented point of view, this
structure provides the procedural interface to the pixrect object, translating mes
sages to methods. This structure is designed to allow expansion; additional func
tions may be added in future releases.

~\sun
., microsystems

Revision A of 5 January 1990

3.2. Calling Pixrect
Procedures

Argument Conventions

Table 3-1

Pixrect Errors

3.3. The Op Argument

Figure 3-1

Chapter 3 - Pixrect Operations 21

A pixrect procedure nonnally expects a number of arguments. These arguments
can include: a pointer to the pixrect being manipulated, the dimensions and offset
of a subregion within a pixrect, and an op argument describing the operation to
be perfonned. This section describes these arguments in detail, and the results
returned by the pixrect procedure.

In this manual, the conventions listed in Table 3-1 are used in naming the argu
ments to pixrect operations.

Argument Name Conventions

Argument Meaning

dsuffix destination
ssuffix source
prefixx offset to left edge of pixrect
prefixy offset to top edge of pixrect
prefixw width of pixrect (0 to 32767)
prefixh height of pixrect (0 to 32767)

The x and y values given to functions that operate on a pixrect must be within
the boundaries of that pixrect, and must be in the range 0 to 32767.

Pixrect operations indicate an error condition in one of two ways, depending on
the type of value the operation normally returns. Pixrect operations that return a
pointer to a structure return NULL when they fail. For pixrect operations that
return an integer status code, a return value of P IX_ERR == -1 indicates
failure, while 0 indicates that the procedure completed successfully. The descrip
tion of each pixrect procedure makes note of any exceptions to this convention.

The multi-pixel operations described in the next section all use a uniform
mechanism for specifying the operation that is to produce destination pixel
values. This operation, given in the op argument, includes several components:

o A single constant source value may be specified in the color field, bits 5 - 31
of the op argument.

o A RasterOp function is specified in the operation field, bits 1 - 4 of the op
argument.

o Clipping, which is normally performed by every pixrect operation, may be
turned off by setting the PIX DONTCLIP flag (bit 0) in the op argument.

Structure of an opArgument

I
color

i I
opr

III
31 15 4 0

Revision A of 5 January 1990

22 4.1 Pixrect Reference Manual

Specifying a RasterOp
Function

Four bits of the operation field (apr in figure 3-1) in the op argument are used
to specify one of the 16 distinct logical functions that combine monochrome
source and destination pixels to give a monochrome result. This encoding is gen
eralized to pixels of arbitrary depth by specifying that the function is applied to
corresponding bits of the pixels in parallel. Some functions are much more com
mon than others; the most useful are identified in Table 3-2.

A convenient and intelligible fonn of encoding the function into four bits is sup
ported by the following definitions:

#define PIX_SRC (Oxe « 1)
#define PIX_DST (OxA « 1)
#define PIX_NOT (op) «op) A Ox1E)

PIX SRC and PIX DST are defined constants, while PIX_NOT is a macro.
Together, they allow the desired function to be specified by performing the
corresponding logical operations on the appropriate constants.

NOTE If you want to use the ones complement (-) operator in your program to perform
negation in a raster operation, it must be used in conjunction with the P IX_NOT
macro.

Table 3-2

A particular application of these logical operations allows definition of
PIX_SET and PIX _ CLR operations. The definition of the PIX_SET operation
that follows is always true, and hence sets this result:

[idefine PIX_SET (OxF « 1)

The definition of the PIX _ CLR operation is always false, and hence clears this
result:

(idefine PIX_CLR (0 « 1)

Other common RasterOp functions are defined in the following table:

Useful Combinations of RasterOps

J

J

Op with Value Result
PIX SRC write same as source argument -
PIX DST no-op same as destination argument
PIX SRC I PIX DST paint OR of source and destination -
PIX SRC & PIX DST mask AND of source and destination
PIX_NOT (PIX_SRC) & PIX DST erase AND destination with source negation -
PIX_NOT (PIX_DST) invert area negate the existing values
PIX SRC PIX DST inverting paint XOR of source and destination

Revision A of 5 January 1990

Specifying a Color

Chapter 3 - Pixrect Operations 23

A single color value can be encoded in bits 5-31 of the op argument. The fol
lowing macro supports this encoding:

#define PIX_COLOR (color) «color) « 5)

Another macro extracts the color field from an encoded op:

[~~_d_e_f_i_n_e __ p_I_X ___ O_P_CO_L_O_R __ (O_P_) ______ (_(_O_P_) __ >_> __ 5_) ________________ ~J
NOTE The color is not part of the function component of the op argument and should

never be part of an argument to PIX_NOT.

Op Arguments between
Pixrects of Different Depths

Table 3-3

The specified color is used by pixrect functions in two situations:

1. If the source pixrect argument is NULL, the source is a constant pixel value,
and the RasterOp source operand is treated as an infinite rectangle of pixels
with the specified color.

2. If the source pixrect has a depth of 1 bit and the destination pixrect has a
greater depth, the RasterOp source operand is the specified color for each "1 "
source pixel and zero for each "0" source pixel. A color of zero is treated as
a special case; it is converted to the maximum pixel value for the destination
pixrect.

If the destination pixrect has a depth of 1 bit, any nonzero color value is treated
as 1; for other depths, less significant bits of the color value are used. If the des
tination pixrect is 32-bits deep, the encoded color is sign extended.

The standard rop operations are allowed, to a limited extent, between pixrects of
different depths. The following table sums up the limitations.

rop Operations (depth limitations)

Destination

s
o
u
r

c
e

0
1

8
24

32

o 1 8 24

- Yes Yes
- Yes Yes

- No Yes
-

- No No

32

Yes

Yes

No

Yes

The value n can be 1, 8, or 32 bits, but not 24 bits. Note that 8-to-32 bit and 32-
to-8 bit are not supported. To translate pixel colors between 8 and 32, use the
formula shown below. This format uses the 8-bit pixel value (the variable
color8) with the 8-bit colormap to generate a 24-bit color, which is saved in
the integer variable color2 4). This color24 variable has its true color stored
in XBGR format. The value can then be saved as a 32-bit pixel in the pixrect's
PIXPG_24BIT_COLOR plane group.

Revision A of 5 January 1990

24 4.1 Pixrect Reference Manual

Controlling Clipping in a
RasterOp

NOTE

Examples of Complete Op
Argument Specification

3.4. Creation and
Destruction of Pixrects

int color24;
unsigned char red[256],green[256],blue[256];

color24 = red[color8] + (green[color8] « 8) + (blue[color8] « 16);

For a discussion of plane groups see Section 3.9.

Pixrect operations nonnally clip to the bounds of the operand pixrects. Some
times this can be done more efficiently by the client at a higher level. If the
client can guarantee that only pixels that should be visible are written, it may
instruct the pixrect operation to bypass clipping checks, thus speeding its opera
tion. This is done by setting the following flag in the op argument:

(tctefine PIX_DONTCLIP Oxl

The result of a pixrect operation is undefined and may cause a memory fault if
PIX_DONTCLIP is set and the operation goes out of bounds.

The PIX_DONTCLIP flag is not part of the function component of an op
argument; it should never be part of an argwnent to P IX_NOT.

A very simple op argument specifies that source pixels be written to a destina
tion, clipping to both operands:

]

[~O_P __ = __ P_I_X ___ S_R_C_i __ ~]
But this example would have problems with some color combinations. A better
one would be:

[
Op = PIX_SRC I PIX_COLOR(!);]

""-, -------'

A more complicated example can be used to flip the color of destination pixels
between two values wherever pixels in a I-bit source pixrect are set, with clip
ping disabled for maximum perfonnance:

op = (PIX_DST ~ PIX_SRC)
I PIX_DONTCLIPi

PIX_COLOR(colorl ~ color2) \

Pixrects are created by the procedures pr_open () and mem_create () , by
the procedures accessed with the macro pr _region () , and at compile time by
the macro mpr_static (). Pixrects are destroyed by the procedures accessed
by the macros pr _destroy () and pr _ close (). The macros
mem_create () and mpr_static () are for memory pixrects, and are dis
cussed in Chapter 5. The others are described in this section.

Revision A of 5 January 1990

Chapter 3 - Pixrect Operations 25

Create a Primary Display
Pixrect

Pixrect *pr_open(devicename)
char *devicename;

The properties of a non-memory pixrect depend on an underlying UNIX device.
Thus, when creating the first pixrect for a device, you need to open it with a call
to pr _open (). The default device name for your display is / dey / fb. (fb
stands for frame buffer.) Any other device name may be used providing that it is
a display device, that the kernel is configured for it, that it exists in the / dey
directory, and that it has pixrect support. For example, devices such as the
/ dey / cgsixO device may exist on a Sun workstation, and can be opened with
pixrects.

Note that pr _open () does not create pixrects whose pixels are stored in
memory. This function is served by the procedure mem _ere ate () , discussed
in Chapter 5.

pr _ope n () returns a pointer to a primary pixrect structure that covers the
entire surface of the named device. If it cannot, it returns NULL, and prints a
message on the standard error output.

Getting Screen Parameters To write portable programs, it is important to read the screen characteristics
directly, rather than assuming them. The pixrect returned by pr_ open () con
tains this information. The two most important values are the dimensions of the
screen, and the depth (number of bits) of each pixel. The code sample below
opens a screen pixrect, then extracts the width, height and depth (in bits) of the
screen.

#include <pixrect/pixrect_hs. h> include the proper definitions
#include <stdio.h>

main ()
{

Pixrect *screen, *pr_open() i sereenpointstoscreenpixreet
int height, width, depth; variables to make things clearer

screen

width
height
depth

pr _open (" / dev / fb") i open the pixreet

screen->pr_size.xi
screen->pr_size.Yi
screen->pr_depthi

extract the data in pr _size;
width and height are in pixels
get depth in bits

(void)printf("width = %d, height = %d, bits/pixel %dO,
width, height, depth) i display result

(void)pr_close(screen)i close the pixreet

Revision A of 5 January 1990

26 4.1 Pixrect Reference Manual

Create Secondary Pixrect

Release Pixrect Resources

#define Pixrect *pr_region(pr, x, y, w, h)
Pixrect *pr;
int x, y, w, hi

#define Pixrect *prs_region(subreg)
struct pr_subregion subregi

Given an existing pixrect, it is possible to create another pixrect that refers to
some or all of the pixels in the parent pixrect. This secondary pixrect is created
by a call to the procedures invoked by the macros pr_region () and
prs_region () .

The existing pixrect is addressed by pr; it may be a pixrect created by
pr_open (), mem_create () ormpr_static () (a primary pixrect either
on the screen, or in memory); or it may be another secondary pixrect created by a
previous call to a region operation. The rectangle to be included in the new pix
rect is described by x, y, w, and h in the existing pixrect. The (x, y) coordinates
of the existing pixrect maps to the (0, 0) location in the new pixrect. If any part
of the created pixrect is outside its parent, the outside part will be clipped. The
prs_region () function does the same thing as pr_region () , but all of its
argument values collected into the single structure subreg. Either region pro
cedure will return a pointer to the new pixrect. If they fail, they return NULL.

If an existing secondary pixrect is provided in the call to the region operation, the
result is another secondary pixrect referring to the underlying primary pixrect.
There is no further connection between the two secondary pixrects. Generally,
the distinction between primary and secondary pixrects is not important. How
ever, no secondary pixrect should ever be used after its primary pixrect is des
troyed.

#define pr_close (pr)
Pixrect *pr;

#define pr_destroy (pr)
Pixrect *pr;

#define prs_destroy(pr)
Pixrect *pr;

The macros pr_close () ,pr_destroy () and prs_destroy () invoke
device-dependent procedures to destroy a pixrect, freeing resources that belong
to it. The procedure returns 0 if successful, P IX_ERR if it fails. It may be
applied to either primary or secondary pixrects. If a primary pixrect is destroyed
before secondary pixrects that refer to its pixels, these secondary pixrects are
invalidated; and attempting any operation other than pr _destroy () on them
is an error. The three macros are identical; they are all defined for reasons of his
tory and stylistic consistency.

Revision A of 5 January 1990

3.5. Single-Pixel
Operations

Get Pixel Value

Set Pixel Value

Chapter 3 - Pixrect Operations 27

The operations pr_get (), prs_get () ,pr_put () and prs_put () mani
pulate the value of a single pixel.

#define pr_get(pr, x, y)
P ixrect *pr;
int x, y;

#define prs_get(srcprpos)
struct pr-prpos srcprpos;

The macros pr _get and pr s _get invoke device-dependent procedures to

retrieve the value of a single pixel. The pr argument indicates the pixrect in
which the pixel can be found; x and yare the coordinates of the pixel. For
pr s_get, the same arguments are provided in the single struct srcprpos.
The value of the pixel is returned as a 32-bit integer. If the procedure fails, it
returns P I X ERR.

#define pr-put(pr, x, y, value)
P ixrect *pr;
int x, y, value;

#define prs_put(dstprpos, value)
struct pr-prpos dstprpos;
int value;

The macros pr _put () and prs Jut () invoke device-dependent procedures
to store a value in a single pixel. pr indicates the pixrect in which the pixel is to
be found; x and yare the coordinates of the pixel. For prs Jut () , the same
arguments are provided in the single struct dstprpos. value is truncated on
the left, if necessary, and stored in the indicated pixel. If the procedure fails, it
returns P I X ERR.

3.6. Multi-Pixel Operations The following operations effect multiple pixels at one time:

0 pr_rop (),

0 pr_ stencil () ,

0 pr _ replrop () ,

0 pr_batchrop (),

0 pr_polygon_ 2 () ,and

0 pr_ vector () .

With the exceptions of pr _vector () and pr _polygon_ 2 () , they refer to
rectangular areas of pixels. They all use a common mechanism, the op argument
described in section The Op Argument to specify how pixels are to be set in the
destination.

~~ slIn ~~ microsystems
Revision A of 5 January 1990

28 4.1 Pixrect Reference Manual

RasterOp Source to
Destination

RasterOps through a Mask

*define pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
Pixrect *dpr, *spri
int dx, dy, dw, dh, op, sx, SYi

*define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregioni
int 0Pi

struct pr_prpos srcprposi

The pr _ rop () and pr s _ rop () macros invoke device-dependent procedures
that perform the indicated raster operation from a source to a destination pixrect.
dp r addresses the destination pixrect, whose pixels are affected; (dx, d y) is the
origin (the upper-left pixel) of the affected rectangle; dw and dh are the width
and height of that rectangle. spr specifies the source pixrect, and (sx, sy)
specify the source origin within it. spr may be NULL, to indicate a constant
source specified in the op argument, as described previously; in this case sx and
sy are ignored. The op argument specifies the operation that is perfonned; its
construction is described in Section 3.3.5.

pr_ rop () is the only pixrect function that can have its source and destination
as overlapping areas of the same pixrect. Doing this with any other operation
generates an error.

Forprs_rop (), the dpr, dx, dy, dw and dh arguments are all collected in a
pr _ subregion structure.

Raster operations are clipped to the source dimensions, if those dimensions are
smaller than the destination size given. pr _ rop () procedures return P IX_ERR
if they fail, 0 if they succeed.

Source and destination pixrects generally must be the same depth. A major
exception is monochrome (I-bit deep) pixrects. Monochrome pixrects may be a
source pixrect to a destination pixrect of any depth. If the destination pixrect is
not monochrome, the monochrome source pixels equal to 0 are interpreted as 0,
while the source pixels equal to 1 are written in the color value given by the op
argument of the function being used. If the color value in the op argument is 0,
source pixels equal to 1 are written as the maximum value that can be stored in
the destination pixel.

See the example program in Figure 5-2 for an illustration of pr _ rop () .

*define pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
Pixrect *dpr, *stpr, *spri
int dx, dy, dw, dh, op, stx, sty, sx, sy;

*define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int 0Pi

struct pr-prpos stenprpos, srcprpos;

The pr _ stencil and pr s _ stencil macros invoke device-dependent pro
cedures that perfonn the indicated raster operation from a source to a destination
pixrect only in areas specified by a third (stencil) pixrect. pr _stencil () is

(+§!!,!! Revision A of 5 January 1990

Replicating the Source Pixrect

Chapter 3 - Pixrect Operations 29

identical to pr_rop () except that the source pixrect is written through a stencil
pixrect that functions as a spatial write-enable mask. The stencil pixrect must be
a monochrome memory pixrect. The indicated raster operation is applied only to
destination pixels where the stencil pixrect is non-zero. Other destination pixels
remain unchanged. The rectangle from (s x, s y) in the source pixrect s p r is
aligned with the rectangle from (stx, sty) in the stencil pixrect stpr, and
written to the rectangle at (dx, dy) with width dw and height dh in the destina
tion pixrect dpr. The source pixrect spr may be NULL, in which case the color
specified in op is painted through the stencil. Clipping restricts painting to the
intersection of the destination, stencil, and source rectangles. p r _ s ten c i 1 ()
procedures return P I X_ERR if they fail, 0 if they succeed.

pr_replrop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
Pixrect *dpr, *spri
int dx, dy, dw, dh, op, sx, sy;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr-prpos sprpos;

Often the source for a raster operation consists of a pattern that is used repeat
edly, or replicated to cover an area. If a single value is to be written to all pixels
in the destination, the best way is to specify that value in the color component
of apr _ rop () operation. But when the pattern is larger than a single pixel, a
mechanism is needed for specifying the basic pattern, and how it is to be laid
down repeatedly on the destination.

The pr _ replrop () procedure replicates a source pattern repeatedly to cover a
destination area. dpr indicates the destination pixrect. The area affected is
described by the rectangle defined by dx, dy, dw, dh. spr indicates the source
pixrect, and the origin within it is given by (sx, sy). The corresponding
prs_replrop () macro generates a call to pr_replrop (), expanding its
dsubreg into the five destination arguments, and sprpos into the three source
arguments. op specifies the operation to be performed, as described above in
Section 3.3, The Op Argument.

The effect of pr _ replrop () is the same as if an infinite pixrect were con
structed using copies of the source pixrect laid immediately adjacent to each
other in both dimensions, and then a pr _ rop () was performed from that source
to the destination. For instance, a standard gray pattern may be painted across a
portion of the screen by constructing a pixrect that contains exactly one tile of the
pattern, and by using it as the source pixrect.

The alignment of the pattern on the destination is controlled by the source origin
given by (sx, sy). If these values are 0, then the pattern has its origin aligned
with the position in the destination given by (dx, dy). Another common
method of alignment preserves a global alignment with the destination, for
instance, in order to repair a portion of a gray pattern. In this case, the source
pixel that should be aligned with the destination position is the one that has the
same coordinates as that destination pixel, modulo the size of the source pixrect.
pr _ replrop () performs this modulus operation for its clients, so it suffices in

.~sun
• microsystems

Revision A of 5 January 1990

30 4.1 Pixrect Reference Manual

Multiple Source to the Same
Destina tion

this case to simply copy the destination position (dx, dy) into the source position
(sx, sy).

pr _ replrop () returns P IX_ERR if it fails, or 0 if it succeeds. Internally
pr_replrop () may use pr_rop () procedures. In this case, pr_rop ()
errors are detected and returned by pr _ replrop () .

*define pr_batchrop(dpr, dx, dy, op, items, n)
Pixrect *dpri
int dx, dy, op, ni
struct pr-prpos items[];

*define prs_batchrop(dstpos, op, items, n)
struct pr-prpos dstposi
int op, ni

struct pr-prpos items[];

Applications such as displaying text perform the same operation from a number
of source pixrects to a single destination pixrect in a fashion that is amenable to
global optimization.

The pr_batchrop and prs_batchrop macros invoke device-dependent
procedures that perform raster operations on a sequence of sources to successive
locations in a common destination pixrect. items is an array of pr yrpo s
structures used by a pr_batchrop () procedure as a sequence of source pix
reets. Each item in the array specifies a source pixrect and an advance in x and
y. The whole of each source pixrect is used, unless it needs to be clipped to fit
the destination pixrect. The advance is used to update the destination position,
not as an origin in the source pixrect.

pr_batchrop () procedures take a destination specified by dpr, dx and dy,
or by dstpos in the case ofprs_batchrop () ; an operation specified in op,
as described in Section 3.3 ; and an array of pr yrpos addressed by the argu
ment items, whose length is given in the argument n.

The destination position is initialized to the position given by dx and dy. Then,
for each item, the offsets given in pos are added to the previous destination
position, and the operation specified by op is performed on the source pixrect
and the corresponding rectangle whose origin is at the current destination posi
tion. Note that the destination position is updated for each item in the batch, and
these adjustments are cumulative.

The most common application of pr _bat chrop () procedures is in painting
text; additional facilities to support this application are described in Chapter 4.
Note that the definition ofpr_batchrop () procedures supports variable-pitch
and rotated fonts. and non-Roman writing systems. as well as simple text.

pr _ bat chrop () procedures return P IX_ERR if they fail, 0 if they succeed.
Internally, pr_batchrop () may use pr_rop () procedures. In this case,
pr_rop () errors are detected and returned by pr_batchrop ().

Revision A of 5 January 1990

Draw Vector

Draw Textured Polygon

Chapter 3 - Pixrect Operations 31

idefine pr_vector(pr, xO, yO, xl, yl, op, value)
Pixrect *pr;
int xO, yO, xl, yl, op, value;

idefine prs_vector(pr, pasO, posl, op, value)
P ixrect *pr;
struct pr~os posO, posl;
int op, value;

The pr _vector and prs _vector macros invoke device-dependent pro
cedures that draw a vector one unit wide between two points in the indicated pix
rect. pr_ vector () procedures draw a vector in the pixrect indicated by pr,
with endpoints at (xO, yO) and (xl, yl), or at pasO and posl in the case of
prs_ vector (). Portions of the vector lying outside the pixrect are clipped as
long as PIX _DONTCLIP is 0 in the op argument. The op argument is con
structed as described in Section 3.3 and val ue specifies the reSUlting value of
pixels in the vector. There is some redundancy in this command. The value of
the pixel can be specified twice; it can be set by modifying the proper bits in the
op argument of the function, or it can be descri bed directly with the val u e
argument. In cases where both values are set, the value encoded in the op argu
ment has priority. If the color in op is non-zero, it takes precedence over the
value argument.

Any vector that is not vertical, horizontal or at a 45 degree angle contains jag
gies. This phenomenon, known as aliasing, is due to the digital nature of the bit
map screen. It can be visualized if you imagine a vertical vector with one end
point displaced horizontally by a single pixel. The resulting line has to jog over
a pixel at some point in the traversal to the other endpoint. Balancing the vector
guarantees that the jog occurs in the middle of the vector. pr _vector ()
draws balanced vectors. (The technique used is to balance the Bresenham error
term.) The vectors are balanced according to their endpoints as given and not as
clipped, so that the same pixels are drawn regardless of how the vector is clipped.

See the example program in Figure 1-2 for an illustration ofpr _vector () .

pr_polygon_2(dpr, dx, dy, nbnds, npts, vlist, op, spr, sx, sy)
Pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr_pos *vlist;
int op, sx, sy;

The pr yolygon _2 () function performs a raster operation on a polygonal
area of the destination pixrect. The source can be a pattern or a constant color
value.

The destination polygon is described by nbnds, npts and vlist. nbnds is
the number of individual closed boundaries (vertex lists) in the polygon. A com
plex polygon may have one boundary for its exterior shape and several boun
daries delimiting interior holes. The boundaries may intersect themselves or
each other. Only those destination pixels having an odd winding number are

Revision A of 5 January 1990

32 4.1 Pixrect Reference Manual

painted. That is, if any line connecting a pixel to infinity crosses an odd number
of boundary edges, the pixel is painted.

For each of the nbnds boundaries, npt s specifies the number of points in the
boundary. The vlist array contains the boundary points for all of the boun
daries, in order. The total number of points in vIi s t is equal to the sum of the
nbnds elements in the npts array. pryolygon_2 () automatically joins
the last point and first point to close each boundary. If any boundary has fewer
than 3 points, pr_polygon_2 () returns PIX_ERR.

The destination coordinates dx, and dy are added to each point in vlist, so the
same vlist can be used to draw polygons in different destination locations.

If the source pixrect spr is non-null, it is replicated in the x and y directions to
cover the entire destination area. The point (sx, sy) in this extended source
pixrect is aligned with the point (dx, dy) in the destination pixrect.

Polygons drawn by pr_polygon_2 () are semi-open in the sense that on some
of the edges, pixels are not drawn where a vector drawn with the same coordi
nates would go. Identical polygons (same size and orientation) are thus allowed
to exactly tile the destination pixrect with no gaps or overlaps.

In Figure 3-3 the edges AB and DA are drawn, whereas edges Be and CD are not.

Revision A of 5 January 1990

Figure 3-2 Example Program using pryolygon_2 ()

#include <pixrect/pixrect_hs.h>

#define CENTERX(pr) «pr)->pr_size.x I 2)
fdefine NULLPR «Pixrect *) 0)

static struct pr-pos
1* 45 degrees '* I
vlistO[4] = { { 0,
1* 30 degrees *1
vlist1[4] = { { 0,
1* 0 degrees *1
vlist2[4] = { { 0,
1* -30 degrees *1
vlist3[4]

main ()
{

= {

Pixrect *pr;

{ 0,

O} , 71,

O} , 87,

O} , {100,

O} , { 87,

static int npts[l] = { 4 };

-71},

-50},

O} ,

50} ,

if (! (pr = pr_open (" Idev Ifb")))
exit(l);

{141,

{137,

{100,

{ 37,

O} , 71,

37} , 50,

100} , 0,

137} , {-50,

pr-po1ygon_2(pr, CENTERX(pr), 100, 1, npts, vlistO,
PIX_SET, NULLPR, 0, 0);

pr-po1ygon_2(pr, CENTERX(pr), 300, 1, npts, vlist1,
PIX_SET, NULLPR, 0, 0);

pr-po1ygon_2(pr, CENTERX(pr), 500, 1, npts, vlist2,
PIX_SET, NULLPR, 0, 0);

pr-po1ygon_2(pr, CENTERX(pr), 700, 1, npts, vlist3,
PIX_SET, NULLPR, 0, 0);

pr_close (pr) ;
exit(O);

71}

87}

100}

87}

Chapter 3 - Pixrect Operations 33

} ,

} ,

} ,

} ;

Revision A of 5 January 1990

34 4.1 Pixrect Reference Manual

Figure 3-3 Four Polygons Drawn with pryolygon_2 ()

Draw Textured or Solid Lines
with Width

If the brush pointer is NULL, or if the
width is 0 or 1, a single width vector
is drawn.

B

4:0 ___ ~C __

V.
D

30" ~, -- 00.·------

•

0- edge drawn • - edge not drawn

#define pr_line(pr, xO, yO, xl, yl, brush, tex, op)
Pixrect *pri
int xO, yO, xl, yl;
struct pr_brush *brushi
struct pr_texture *texi
int 0Pi

The pr_line macro draws a textured line based on the Bresenham line drawing
algorithm, using a pen-up, pen-down approach. The programmer can define a
pattern (of arbitrary length), or use a predefined default pattern (dash-dot, dotted,
etc.). All pattern segments and their corresponding offsets can automatically
adjust, according to the angle at which the line is drawn.

The line is drawn in the pixrect indicated by pr, with endpoints at (xO, yO)
and (xl, yl).

Revision A of 5 January 1990

Chapter 3 - Pixrect Operations 35

The brush field is a pointer to a structure of type pr_brush, which holds the
width of the line segments to be rendered. The pr _ bru sh structure is defined
in the header file <pixrect/pr_line. h> as follows:

typedef struct pr_brush {
int width;

Pr_brush;

If the tex pointer is NULL, a solid vector is drawn. The tex field is a pointer to
a structure of type pr_texture. The pr_texture structure is defined in the
header file <pixrect/pr_line. h> as follows (fields that begin with the
prefix res_are reserved for program internals, and are not user-definable):

typedef struct pr_texture
short *pattern;
short offset;
struct pr_texture_options

unsigned startpoint 1,
endpoint : 1,
balanced: 1,
givenpattern 1,
res_fat : 1,
resyoly: 1,
res mvlist : 1,
res_right 1,
res_close : 1;

options;
short resyolyoff;
short res_oldpatln;
short res_fatoff;

Pr_texture;

pattern is a pointer to an array of short integers that contain the length of each
segment in the pattern. The lengths are in units of pixels. If the line is drawn at
an angle, the lengths drawn are automatically adjusted (if the givenpattern
field is set to 0) to correspond to the length of the pattern if a horizontal or verti
cal line was drawn. This array must be null-tenninated. The first segment of the
pattern array is assumed to be pen-down, and following segments alternate.

The addresses of the following predefined pat tern arrays may be stored in the
pa t t er n field of the texture structure as well:

extern short pr_tex_dotted[];
extern short pr_tex_dashed[];
extern short pr_tex_dashdot[];
extern short pr_tex_dashdotdotted[];
extern short pr_tex_longdashed[];

Revision A of 5 January 1990

36 4.1 Pixrect Reference Manual

Draw Textured or Solid
Polylines with Width

The programmer-defined elements of the pat tern array are not altered within
the routine, allowing multiple calls using the same pattern. off set is an
integer offset into the pattern, specified in pixels. Since the first segment of the
pattern array is assumed to be pen-down, you must specify an offset to
start on a pen-up segment. offset is adjusted according to the angle at which
the line is drawn if the original pattern was adjusted (dependent upon the
gi venpat tern bit, described later). Because of integer approximation, the
adjusted offset can vary plus or minus one pixel from the exact adjusted
offset.

In the options bit fields, if startpoint is set, the first point is always drawn,
and if endpoint is set, the last point is drawn. If these are not specified, the
line is drawn with no extra pixels set. The balanced bit field effectively
centers the pattern within the line by computing an offset into the pattern. If the
gi venpat tern bit is set, the pattern is drawn without true length correction, at
any angle; this increases performance. However, the pattern of radiating lines
from a common center forms concentric squares instead of circles. If the
gi venpat tern bit is not set, the segment length of each element of the pattern
is adjusted according to the angle at which the line is drawn. The true (angle
dependent) segment lengths are computed for one period of the pattern, using an
incremental algorithm which approximates the formula:

angleyattern_length = givenyattern_Iength * cos (angle)
where all units are in pixels, and angle is measured from the positive x-axis.
Since the algorithm angle-corrects for one period of the pattern, the longer its
period, the more exact the results are.

The op argument specifies the raster operations used to produce destination pixel
values and color.

pr-po1yline(dpr, dx, dy, npts, ptlist, mvlist, brush, tex, op)
Pixrect *dpr;
int dx, dy, npts;
struct pr-pos *ptlist;
u_char *mvlist;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

pryolyline draws a polyline, or a series of disjoint polylines, using the
features available in pr_line. The polyline is drawn in the destination pixrect
indicated by dpr, with dx and dy being the offset into the destination pixrect
for vertices to be translated in x and y, respectively. npts is the numberofver
tices in the polyline, which is always the number of lines plus 1. The ptlist
field is an array of npt s structures of type pr yo s that hold vertices. The
mv 1 i st field is a pointer to an array of npt s elements, where if any element
after the first is non-zero, a segment is not drawn to that vertex. The first element
of the rnv 1 i s t array controls whether the polyline(s) are automatically closed; if
set, each continuous polyline is closed. If disjoint polylines are not desired (no
rnvlist is specified), the constants POLY_CLOSE and POLY_DONTCLOSE
determine this behavior. POLY CLOSE and POLY DONTCLOSE are defined as
follows: - -

Revision A of S January 1990

Draw Multiple Points

3.7. Colormap Access

Chapter 3 - Pixrect Operations 37

fdefine POLY_CLOSE «u_char *) 1)
fdefine POLY DONTCLOSE «u_char *) 0)

The brush field is a pointer to a structure of type pr_brush, and the tex field
is a pointer to a structure of type pr_texture. If the tex pointer is null, a
solid vector is drawn. If the brush structure is null, single-width vectors are
drawn. op specifies the raster operations used to produce destination pixel
values and color. brush and tex are described in detail under pr_line.

pr-po1ypoint(dpr, dx, dy, npts, ptlist, op)
Pixrect *dpr;
int dx, dy, npts;
struct pr-pos *ptlist;
int op;

The pryolypoint routine draws an array of points on the screen under the
control of the op argument. The array of points is drawn in the destination pix
rect dpr, with an offset specified by the arguments dx and dy. Npt s is the
number of points to be rendered, and pt 1 is t is a pointer to an array of struc
tures of type pr yo s, that hold the vertices for each point. Color is encoded in
the op argument. Portions of the array outside the pixrect are clipped unless the
PIX_DONTCLIP flag is set in the op argument.

A colormap is a table that translates a pixel value into 8-bit intensities in red,
green, and blue. For a pixrect of depth n, the corresponding colormap has 2n

entries. The two most common cases are monochrome (two entries) and color
(256 entries). Memory pixrects do not have colonnaps.

All Sun color frame buffers display a 24-bit color value at each pixel. A 24-bit
color is defined by 8-bits (256 shades) each of red, green, and blue, which pro
duces 16.7 million different possible colors (224

). Frame buffers previous to the
CG8 and CG9 were limited in the number of different 24-bit colors that could be
shown simultaneously. The CG8 and CG9, however, are true color frame
buffers. Each pixel located in the frame buffer's memory can hold an entire 24-
bit color value.

Sun grayscale workstations normally use the red video signal to drive the moni
tor. However, when writing an application to run on a grayscale workstation, we
recommend that you load the red, green, and blue components of each colonnap
entry with the same value to ensure that the application also runs properly on a
color workstation.

Revision A of 5 January 1990

38 4.1 Pixrect Reference Manual

Get Coiormap Entries

Set Colormap Entries

tdefine pr_getcolormap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

tdefine prs_getcolor.map(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

The macros pr_getcolormap and prs_getcolormap invoke device
dependent procedures to read all or part of a colonnap into arrays in memory.

These two macros have identical definitions; both are defined to allow consistent
use of one set of names for all operations.

pr identifies the pixrect whose colonnap is to be read; the count entries start
ing at index (zero origin) are read into the three arrays.

For monochrome pixrects the same value is read into corresponding elements of
the red, green and blue arrays. These array elements will have their bits
either all cleared, indicating black, or all set, indicating whi teo By default,
the Oth (background) element is White, and the 1st (foreground) element is black.
Colonnap procedures return (-1) if the index or count are out of bounds, and 0 if
they succeed.

#define pr-putcolormap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

#define prs-putcolormap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

The macros pryutcolormap and prsyutcolorrnap invoke device
dependent procedures to store from memory into all or part of a colonnap. These
two macros have identical definitions; both are defined to allow consistent use of
one set of names for all operations. The count elements starting at index
(zero origin) in the colonnap for the pixrect identified by pr are loaded from
corresponding elements of the three arrays. For monochrome pixrects, the only
value considered is red [0]. If this value is 0, then the pixrect is set to a dark
background and light foreground. If the value is non-zero, the foreground is
dark; that is, black-on-white. Monochrome pixrects are dark-on-light by default.

NOTE Full colormap functionality is not supported/or monochrome pixreets. Color
map changes to monochrome pixrects apply only to subsequent operations,
whereas a colormap ehange to a color device instantly change all affected pixels
on the display sUrface.

Revision A of 5 January 1990

Lookup Tables

The word lut is an abbreviation for
look-up table.}

True Color Look-Up Table

Chapter 3 - Pixreet Operations 39

Although 24-bit true color frame buffers have something akin to a colonnap, it
serves a different purpose. They are called lookup tables, and have 256 entries
each of red, green, and blue. These entries affect the corresponding red, green
and blue components of the displayed pixels. Lookup tables are most often used
for gamma correction.

Gamma correction is the process of adjusting the color intensity values, to adjust
for non-linearities in the display hardware and the human eye. Gamma corrected
displays produce more realistic colors.

Because pryutcolorrnap and pwyutcolorrnap are frequently used in
existing software, they produce no errors when run on 24-bit frame buffers. The
functions are simply ignored, and the lookup tables remain unchanged. To
change the lookup table values, use the pryutlut and pr_getlut com
mands instead.

The 24-bit frame buffers also use the monochrome overlay and enable planes in a
new way. Colonnap commands will not work on the colonnaps of these planes
either. You should use the pryutlut and pr_getlut commands to adjust
their colonnaps.

See the following subsection, True Color Look-Up Table, for definitions of
pryutcolormap,pr_getcolorrnap,pryutlut, and pr_getlut.

The pr_getlut () and pryutlut () pixrect macros defined in
/usr / include/pixrect /pixrect_hs . h read and modify the 24-bit
look-up tables. They are defined as follows:

#include <pixrect/pixrect_hs.h>

#define pr_putlut(pr, ind, cnt, red, grn, blu)\
(*(pr)->pr_ops->pro-putcolormap) (pr, PR_FORCE_UPDATE lind, cnt, red, grn, blu)

#define pr_getIut(pr, ind, cnt, red, grn, bIu)\
(*(pr)->pr_ops->pro_getcolormap) (pr, PR_FORCE_UPDATE lind, cnt, red, grn, blu)

Using the pryutlut () macro to load the look-up tables is similar to using
the pryutcolormap () function. The red [], green [], and blue []
array arguments correspond to the appropriate look-up tables. Similarly,
pr_getlut () fills these same arrays from the look-up tables.

The PR_FORCE_UPDATE value in the pr_putlut () macro is necessary
because there is no colonnap sharing in Pixrects. The sample program below
shows how these macros are used.

Revision A of 5 January 1990

40 4.1 Pixrect Reference Manual

XBGRFonnat

'include <pixrect/pixrect_hs.h>

pr - pr_open ("/dev/cgnineO");
pr_setJlane_group (pr, PIXPG_24BIT_ COLOR); clumge to 24-bit plane
pr getlut(pr, 0, 256, red, green, blue);
ga~_correct (red, green, blue) ; a user-suppliedfunction ...
prJutlut(pr, 0, 256, red, green, blue);

This code example first opens the frame buffer and then changes the current
plane group to 24-bit color (the default is the overlay plane). The
pryutlut () and pr_getlut () macros are used to read and then reload
the look -up tables.

The Pixrect Library already supports 1, 8, and 32-bit deep pixrects (32-bit as true
color memory pixrects). Since true color pixrects are stored in a fonnat that is
32-bits deep, few changes were necessary to the Pixrect Library to support the
CG8 and the CG9. A new pixel fonnat called XBGR was defined to hold true
color pixrects. The CG8 and the CG9 store 24-bit images in XBGR fonnat:

#include <pixrect/pixrect_hs.h>

union fbunit {
u int packed;

struct
u int A: 8; /* high-order 8 bits unused */
u int B: 8; /* bits of blue component */
u int G: 8; /* bits of green component */
u int R: 8; /* bits of red component */

channel;
} ;

The 32-bit word is divided into four channels of 8 bits each (see the figure
below). The CG8 and CG9 do not currently use the first channel (the high-order 8
bits). Its value is undefined, and it is reserved for future enhancements. The next
channel contains 8 bits of the pixel's blue component (256 possible values, from
o to 255, for the blue component of the pixel's color). The other two channels
hold corresponding infonnation for the green and red components of the pixel's
color. The three components are used to index the red, green, and blue parts of
the look-up table. The RGB (Red, Green, Blue) components from the look-up
table combine to produce a pixel with a particular hue and intensity.

Revision A of 5 January 1990

Chapter 3 - Pixrect Operations 41

Figure 3-4 XBGR Layout

Inverted Video Pixrects

NOTE

3.8. Attributes for Bitpiane
Control

31 2423 16 15 8 7

unused blue component green component

pr_blackonwhite(pr, min, max)
P ixrect *pr;
int min, max;

pr_whiteonblack(pr, min, max)
P ixrect *pr;
int min, max;

pr_reversevideo(pr, min, max)
Pixrect *pr;
int min, max;

o
red component

Video inversion is accomplished by manipulation of the colormap of a pixrect.
The colonnap of a monochrome pixrect has two elements. The procedures
pr_blackonwhite,pr_whiteonblack,andpr_reversevideopro
vide video inversion control. These procedures are ignored for memory pixrects.

In each procedure, pr identifies the pixrect to be affected; min is the lowest
index in the colonnap, specifying the background color, and max is the highest
index, specifying the foreground color. This is often 0 and 1 for monochrome
pixrects. The more general definitions allow colonnap sharing schemes.

"Black-on-white" means that zero (background) pixels are painted at full inten
sity, which is usually white. pr _ blackonwhi te () sets all bits in the entry
for colonnap location min and clears all bits in colonnap location max.

"White-on-black" means that zero (background) pixels are painted at minimum
intensity, which is usually black. pr_whiteonblack () clears all bits in
colormap location min and sets all bits in the entry for colonnap location max.

pr_rever sevideo () exchanges the min and max color intensities.

These procedures are intended/or globalforeground/background control, not
for local highlighting. For monochromeframe buffers, all operations performed
after a pr_reversevideo () call have inverted intensities. For color frame
buffers, the behavior is different. The frame buffer's colormap is modified
immediately, which affects everything in the display.

In a color pixrect, it is often useful to define bitplanes that can be manipulated
independently; operations on one plane leave the other planes of an image unaf
fected. This is nonnally done by assigning a plane to a constant bit position in
each pixel. Thus, the value of the i tIi bit in all the pixels defines the i th bitplane
in the image. It is sometimes beneficial to restrict pixrect operations to affect a
subset of a pixrect's bitplanes. This is done with a bitplane mask. A bitplane
mask value is stored in the pixrect's private data and may be accessed by the
attribute operations.

Revision A of 5 January 1990

42 4.1 Pixrect Reference Manual

Get Plane Mask Attributes

Put Plane Mask Attributes

3.9. Plane Groups

'define pr_getattributes(pr, planes)
Pixrect *pr;
int *planes;

fdefine prs_getattributes(pr, planes)
Pixrect *pr;
int *planes;

The macros pr_getattributes () and prs_getattributes () invoke
device-dependent procedures that retrieve the mask controlling which planes in a
pixrect are affected by other pixrect operations. pr identifies the pixrect; its
current bitplanes mask is stored into the word addressed by planes. If
planes is NULL, no operation is perfonned.

The two macros are identically defined; both are provided to allow consistent use
of the same style of names.

fdefine pr-putattributes(pr, planes)
Pixrect *pr;
int *planes;

fdefine prs-putattributes(pr, planes)
P ixrect *pr;
int *planes;

The macros pryutattributes () and prs_putattributes () invoke
device-dependent procedures that manipulate a mask controlling which planes in
a pixrect are affected by other pixrect operations. The two macros are identically
defined; both are provided to allow consistent use of the same style of names.

pr identifies the pixrect to be affected. The plane s argument is a pointer to a
bitplane write-enable mask. Only those planes corresponding to mask bits with a
value of 1 are affected by subsequent pixrect operations. Ifplanes is NULL, no
operation is perfonned.

Note: If any planes are masked off by a call to pryutattributes (), no
further write access to those planes is possible until a subsequent call to
pryutattributes () unmasks them. However, these planes can still be
read.

A plane group is a subset of a frame buffer pixrect Each plane group is a collec
tion of one or more related bitplanes with stored state (plane mask, colormap,
etc.). Each pixrect has a current plane group that is the target of attribute, color
map, and rendering operations.

A plane group is described by a small constant in the header file
<pixrect/pr-planegroups.h>:

Revision A of 5 January 1990

Chapter 3 - Pixrect Operations 43

tdefine PIXPG_CURRENT 0
tdefine PIXPG MONO 1
tdefine PIXPG_8BIT_COLOR 2
tdefine PIXPG OVERLAY ENABLE 3 - -
tdefine PIXPG OVERLAY 4

tdefine PIXPG 24BIT COLOR 5 - -
tdefine PIXPG VIDEO 6
tdefine PIXPG VIDEO ENABLE 7 - -
tdefine PIXPG TRANSPARENT OVERLAY 8 - -
tdefine PIXPG INVALID 127

Plane group 0 is the currently active plane group for the pixrect.

A plane group is encoded as a 7-bit field in the pixrect attribute word.

24-Bit Frame Buffers The CG4, CG8, and the CG9 all have three plane groups. There is a color plane
group, which for the CG8 and the CG9 is 24-bits per pixel, and a monochrome
overlay plane group with an associated overlay-enable plane group. The overlay
is provided for fast monochrome perfonnance of textual windows.

The CG8 and the CG9 have overlay/overlay-enable implementation enhance
ments over the CG4. A zero in the CG4 overlay-enable causes the 8-bit plane
group value for that pixel, rather than the overlay I-bit value, to be, displayed.
The CGg and CG9 require both the overlay-enable and the overlay planes to be
zero in order to show the 24-bit color plane group value. This implementation
thereby allows three overlay colors rather than the two available with the CG4.
The two implementations are compared in the following table.

Table 3-4 Enable/Overlay Planes/or CG4 and CG8/CG9

Overllly Plane Enable Plane CG4 Scheme CG81CG9 Scheme

0 0 8-bit color 24-bit color
0 1 color 0 color 1
1 0 8-bit color color 2
1 1 color 1 color 3

The 24-bit plane group PIXPG_24BIT_COLOR provides 24-bit RGB values
stored in XBGR fonnat in 32-bit pixels. (See the next subsection for a discussion
of XBGR fonnat.) All of the nonnallogical operations and plane masking are
available.

As shown in the following table, the CG8 and CG9 also have one overlay plane
and one overlay-enable plane- a total of three plane groups for CG8 and CG9
pixrects.

Revision A of 5 January 1990

44 4.1 Pixrect Reference Manual

NOTE The CG4' s enable plane served as a toggle switch that mediated between the
monochrome and 8-bit plane groups. The CG8 and CG9 extend the overlay
enable concept. They treat these planes as a 2-bit deep overlay with its own 2-bit
deep colormap.

Table 3-5 CG8 & CG9 Plane Groups

Pillne Function
PIXPG OVERLAY Window System Plane
PIXPG OVERLAY ENABLE Window System Plane - -
PIXPG 24BIT COLOR 24-bit Color Plane

The overlay and enable planes are individually accessed as I-bit deep frame
buffers. For each pixel, if both the overlay and overlay-enable planes are zero,
the 24-bit frame buffer is visible. If any of the planes are non-zero, the pixel
displays the color indicated in the following table:

Table 3-6 Enable/Overlay Planes for the CG8 and CG9

Overlll] Plane Enable Plane Color Index
0 0 transparent
0 1 1
1 0 2
1 1 3

The pryutcolormap and pr_getcolormap functions behave exactly like
the CG4 overlay colonnap model. Through the use of the pryutlut and
pr _get 1 ut macro definitions, the CG8 or CG9 overlay color model is used.

Consider the following examples of the pryutcolormap and pr_putlut
functions. Logically, pryutcolormap has two entries (monochrome) while
pr.J>utlut has four entries (color). After this call is issued:

(pr-putcoIOrmap(pr, 0, 2, r, g, bl

the colors of the overlay planes are as follows. Note that r, g, and b can be any
value.

Coiormap Index Color

0 transparent
1 r[O] g[O] b[O]
2 unchanged
3 r[l] g[1] b[I]

The values r [0] , g [0] , and b [0] are placed in the colonnap index 1. Index 2
remains unchanged, while index 3 contains the values r [1] , g [1] , and b [1] .

]

Revision A of 5 January 1990

Chapter 3 - Pixrect Operations 45

After the call:

(pr-putlut<pr, 0, 4, r, 9, b) J
the colors of the overlay planes are as follows:

Colormap Index Color

0 transparent
1 r[I] g[1] b[1]
2 r[2] g[2] b[2]
3 r[3] g[3] b[3]

NOTE The CG8 or CG9's default plane group is the overlay plane group, not the 24-bit
plane group.

The following example code shows how to test whether the color board that the
application uses supports 24-bit color. This type of code is important for writing
portable software that can run with either 8 or 24-bit color.

finclude <pixrect/pixrect_hs.h>

char maxgroup[PIXPG_24BIT_COLOR + 1];
pr_available-plane_groups(pr, PIXPG_24BIT_COLOR + 1, maxgroup);
if (maxgroup[PIXPG_24BIT_COLOR] != 0)

printf("Board supports 24-bit color\n");

Determine Supported Plane
Groups

ngroups = pr_available-plane_groups(pr, maxgroups, groups);
Pixrect *pr;
int maxgroups;
char groups [maxgroups]

pr_availableylane_groups allows you to detennine which plane
groups are supported by the machine you are working on.
pr_availableylane_groups fills the character array groups with true
(1) values for the plane groups implemented by the pixrect pro The entry for the
current plane group (groups [0]) array is always set to false (0). The size of
groups is passed to the function as rnaxgroups to avoid overwriting the end
of the array.

pr _available ylane _groups returns the index of the highest-numbered
implemented plane group, plus one.

Revision A of 5 January 1990

46 4.1 Pixrect Reference Manual

Get Current Plane Group

Set Plane Group and Mask

3.10. Double Buffering

Get Double-Buffering
Attributes

group = pr_get-plane_group(pr);
Pixrect *pr;

pr_getylane_group returns the current plane group number for the pixrect
pr. If the current plane group is unknown, the function returns
PIXPG CURRENT.

void pr_set-plane_group(pr, group);
Pixrect *pr;
int group;

void pr_set-planes(pr, group, planes)
Pixrect *pr;
int group;
int planes;

pr_setylane_group sets the current plane group for the pixrect pr to the
value given by group. If this plane group is P IXPG _CURRENT or unimple
mented, pr_set_plane_group does nothing.

The pr_setylanes function is equal to a pr_setylane_group (pr,
group) followed by pr_putattributes (pr, &planes). planes
contains a bitplane write-enable mask. Only those planes corresponding to mask
bits having a value of 1 are affected by subsequent pixrect operations. However,
the other planes can still be read.

Some frame buffers have double buffering support implemented in hardware.
Two pixrect commands, pr_dbl_get (), and pr_dbl_set () allow you to
inquire about and control a double-buffered display device. The pixrect interface
assigns two names to the buffers in the display; PR _ DBL _A for one, and
PR DBL B for the other.

A buffer can be displayed, read, or written. When a buffer is displayed, its
stored image is shown on the screen. If the software requests that the other
buffer be displayed, the hardware does not switch to the new buffer until the next
vertical retrace of the screen. This prevents any flicker from showing on the
screen during the change between buffers. A buffer can be read or written, using
pixrect commands, at any time.

state = pr_dbl_get(pr, attribute)
Pixrect *pr;
int attribute;

This function shows the current attributes of the double buffer. You ean inquire
about the state of the display device by executing pr_dbl_get with a particu
lar attribute value, then examining the function's return value. The legal attri
butes are listed below:

fdefine PR_DBL_AVAIL 1
fdefine PR_DBL_DISPLAY 2
'define PR_DBL_WRITE 3
'define PR_DBL_READ 4

+ §,!!!! Revision A of 5 January 1990

Set Double-Buffering
Attributes

Table 3-7

Chapter 3 - Pixrect Operations 47

The PR_DBL_AVAIL returns PR_DBL_EXISTS if the display device has
hardware double buffering capacity. Otherwise, it returns NULL. The other attri
butes indicate which buffer on the device is being displayed and which can be
written to. The possible state values for these attributes are given below:

tdefine PR DBL A 2 - -
'define PR DBL B 3 - -
'define PR DBL BOTH 4 - -
'define PR DBL NONE 5 - -

Not all return values are possible with each attribute. The values that can be
returned for a given attribute are shown in the table below:

Attribute Possible Values Returned
PR DBL AVAIL PR DBL EXISTS
PR DBL DISPLAY PR_DBL_A, PR DBL B
PR DBL WRITE PR_DBL_A, PR_DBL_B, PR_DBL_BOTH,
PR DBL READ PR DBL A, PR DBL B

void pr_dbl_setCpr, attribute_list)
Pixrect *pr;
int *attribute_list;

PR DBL NONE

The pr_db1_set () function changes the state of the double buffering display.
It controls the buffer being displayed, and selects the buffer(s) affected by pixrect
reads and writes. The possible attributes for pr _ db 1_ set () are given below:

'define PR DBL DISPLAY 2 - -
Idefine PR DBL WRITE 3 - -
'define PR_DBL_READ 4
'define PR DBL DISPLAY DONTBLOCK 5

An attribute list is an integer array containing attributes/value pairs. The last ele
ment of the array should be zero. If the display is already in the state requested,
the function simply returns.

If the PR_DBL_DISPLAY attribute is in the list, then the function may block up
to a single video frame's time (15 ms) waiting for the next vertical retrace. This
action ensures that the next pixrect operation does not alter the buffer while it is
still being displayed. Applications that do not write to the buffer for at least 15
ms after changing the displayed buffer, and that need maximum throughput, can
use PR_DBL_DISPLAY_DONTBLOCK. This attribute changes the display
without blocking the process until the next vertical retrace.

Revision A of 5 January 1990

48 4.1 Pixrect Reference Manual

NOTE Programmers should use PR_DBL_DISPLAY_DONTBLOCK with caution. If
the application starts writing too early, this action modifies the buffer while it is
still being displayed.

The definitions of all the possible attribute values are shown below:

tdefine PR_DBL_A 2
tdefine PR_DBL_B 3
'define PR_DBL_BOTH 4

Not all of the values can be paired with.a11 of the attributes; the allowed pairings
are shown in the table below:

Table 3-8 pr_dbl_set () Attributes

Attribute Possible Values to Set

PR_DBL_WRITE PR_DBL_A, PR_DBL_B, PR DBL BOTH
PR_DBL_READ PR_DBL_A, PR_DBL_B
PR DBL DISPLAY DONTBLOCK PR_DBL_A, PR DBL B - - -
PR DBL_DISPLAY PR DBL_A, PR DBL B

On the CG9 true color frame buffer, the PR_DBL_WRITE attribute also controls
double buffering. These calls and the modes that they enable are summed up in
the table below:

Table 3-9 24-Bit True Color Double Buffering

Pixrect Call Buffering Mode Enabled
pr_dbl_set (*Pixrect, PR_DBL_ WRITE, PR_DBL_A) 12-bit Double Buffering
pr_dbl_set (*Pixrect, PR_DBL_ WRITE, PR_DBL_B) 12-bit Double Buffering
pr_dbl_set (*Pixrect, PR_DBL_ WRITE, PR_DBL_BOTH) 24-bit True Color

3.11. Efficiency
Considerations

Note that setting the CG9 to write to both buffers is the means for returning to
24-bit mode.

For maximum execution speed, remember the following points when you write
pixrect programs:

o pr_get and pryut () are relatively slow. For fast random access of pix
els, it is usually faster to read an area into a memory pixrect and address the
pixels directly.

o pr_rop () is fast for large rectangles.

o pr_ vector () is fast.

o Functions run faster when clipping is turned off. Do this only if you can
guarantee that all accesses are within the pixrect bounds.

+~I!! Revision A of 5 January 1990

Chapter 3 - Pixrect Operations 49

c pr _ rop () is three to five times faster than pr _stencil () .

c pr_batchrop () cuts down the overhead of painting many small pixrects.

c For small standard shapes pr _ r op () should be used instead of
pryolygon_2 ().

c pryolyline () is an efficient way to draw a series of vectors.

c pryolypoint () is faster than a series ofpryuts () or single pixel
pr _ rops (). It is useful for implementing new primitives such as curves.

c The PR_DBL_DISPLAY_DONTBLOCK attribute ofpr_dbl_set () ,if
used appropriately, can speed up animation sequences.

Revision A of 5 January 1990

4
Text Facilities for Pixrects

Text Facilities for Pixrects .. 53

4.1. Pixfonts and Pixchars .. 53

4.2. Operations on Pixfonts ... 54

Load a Font ... 54

Load Private Copy of Font .. 55

Default Fonts ... 55

Close Font ... 55

4.3. Text Functions ... 55

Pixrect Text Display .. 55

Transparent Text ... 56

Auxiliary Pixfont Procedures ... 57

Text Bounding Box ... 57

Unstructured Text ... 58

4.4. Example .. 58

4.1. Pixfonts and Pixchars

4
Text Facilities for Pixrects

The Pixrect Library contains higher-level facilities for displaying text. These
facilities fall into two main categories: a standard format for describing fonts and
character images, including routines for processing them; and a set of routines
that take a string of text and a font, and handle various parts of painting that
string in a pixrect.

struct pixchar

} ;

struct pixrect *pc-pr;
struct pr-pos pc_home;
struct pr-pos pc_adv;

The pixchar structure defines the format of a single character in a font. The
actual image of the character is a pixrect (a separate pixrect for each character)
addressed by pc yr. The entire pixrect gets painted. Characters that do not
have a displayable image have NULL in their pC.J>r entry. pc_home is the ori
gin of pixrect pc yr (its upper-left comer) relative to the character origin. A
character's origin is the left-most end of its baseline, the lowest point on charac
ters without descenders. Figure 4-1 illustrates the pc yr origin and the charac
ter origin.

The left-most point on a character is normally its origin, but kerning or manda
tory letter spacing may move the origin to the right or left of that point. pc adv
is the amount the destination position is changed by this character, that is, the
amounts in pc _ adv added to the current character origin will give the origin for
the next character. While normal text advances only horizontally, rotated fonts
may have a vertical advance. Both are provided for in the font.

typedef struct pixfont {
struct pr_size pf_defaultsize;
struct pixchar pf_char[256];

Pixfont;

The Pixfont structure contains an array of pix chars, indexed by the charac
ter code; it also contains the size (in pixels) of its characters when they are all the
same. If the size of a font's characters varies in one dimension, that value in
pf_defaultsize will not have anything useful in it; however, the other may

53 Revision A of 5 January 1990

54 4.1 Pixrect Reference Manual

still be useful. Thus, for non-rotated variable-pitch fonts,
pf_defaultsize. y will still indicate the unleaded interline spacing for that
font.

Figure 4-1 Character and pc J'r Origins

4.2. Operations on Pixfonts

Load a Font

cha ract er
origin

cha ra ct er
ba sellne

plxrect

The commands listed below allow you to load a font to display. A font must be
loaded before any text operation can be perfonned.

Pixfont *pf_open(name)
char *name;

pf _open () returns a pointer to a shared copy of a font in virtual memory. A
NULL is returned if the font cannot be opened. The path name of the font file
should be specified. For example:

myfont - pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.7")i

name should be in the fonnat described in vjont(5): the file is converted to pix
font fonnat, allocating memory for its associated structures and reading in the
data for it from disk. The utility fontedit(1) is a font editor for designing
pixel fonts in vfont(5) fonnat.

The pf _ope n () routine sets the p f _de fa ul t s i z e values of a new pixfont
by using the following criteria:

Revision A of 5 January 1990

Load Private Copy of Font

Default Fonts

Close Font

4.3. Text Functions

Pixrect Text Display

Chapter 4 - Text Facilities for Pixrects 55

The default width, pf_defaultsize. x, is the width (in pixels) of the
font's lower case "a," if one exists in the font The default interline spacing,
pf_defaul tsize. y, is I-In the height, in pixels, of the font's upper
case "a" (A), measured from the font baseline.

The data from a small selection of commonly used fonts is compiled into the Pix
rectLibrary. The names of these built-in fonts are checked against the last com
ponent of the name. To guarantee that the font is loaded from the disk file
instead, use pf_openyrivate () instead ofpf_open ().

Pixfont *pf_open-private(name)
char *namei

pf_openyrivate () returns a pointer to a private copy of a font in virtual
memory. A NULL is returned if the font cannot be opened.

Pixfont *pf_default()

The procedure p f _ de fa ul t performs the same open function for the system
default font, normally a fixed-pitch, 16-point sans serif font with upper-case
letters 12 pixels high. If the environment parameter DEFAULT_FONT is set, its
value will be taken as the name of the font file to be opened by
pf_default () .

pf_close (pf)
Pixfont *pfi

When a client is finished with a font, it should call p f _ c los e () to free the
memory associated with it pf should be a font handle returned by a previous
call to pf_open (), pf_openyrivate () orpf_default ().

The following functions manage various tasks involved in displaying text.

pf_text(where, op, font, text)
struct pr-prpos wherei
int 0Pi

Pixfont *fonti
char *texti

Characters are written into a pixrect with the pf_text () procedure. where is
the destination for the start of the text (nominal left edge, baseline; see Section
4.1). op is the raster operation to be used in writing the text, as described in Sec
tion 3.3, The Op Argument. font is a pointer to the font in which the text is to
be displayed. text is the actual null-terminated string to be displayed. The
color specified in the op specifies the color of the ink. The background of the
text is painted 0 (background color).

Revision A of 5 January 1990

56 4.1 Pixrect Reference Manual

Transparent Text pf_ttext(where, op, font, text)
struct pr-prpos wherei
int 0Pi

Pixfont *fonti
char *texti

Revision A of 5 January 1990

Auxiliary Pixfont Procedures

Text Bounding Box

Chapter 4 - Text Facilities for Pixrects 57

P f _ t text paints transparent text It does not disturb destination pixels in
blank areas of the character's image. The arguments to this procedure are the
same as for pf_text (). The character's bitmap is used as a stencil, and the
color specified in op is painted through the stencil.

For monochrome pixrects, the same effect can be achieved by using PIX _ SRC
I PIX _ DST as the function in the op; this procedure is for color pixrects.

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr-prpos where[];
int *lengthp;
Pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int len;
Pixfont *font;
char *text;

pf_textbatch () is used internally by pf_text (). It constructs an array of
pr yos structures and records its length, as required by bat chrop (see Sec
tion 3.6). where should be the address of the array to be filled in, and
lengthp should point to a maximum length for that array. text addresses the
null-tenninated string to be put in the batch, and font refers to the P ixfont
that displays it. When the function returns, lengthp refers to a word contain
ing the number of pry os structures actually used for text. The pr_size
returned is the sum of the pc_adv fields in their pixchar structures.

pf_textwidth () returns a pr_size that is computed by taking the product
of len (the number of characters), and pc _ adv, (the width of each character).

pf_textbound(bound, len, font, text)
struct pr_subregion *boundi
int len;
Pixfont *font;
char *texti

pf _ textbound may be used to find the bounding box for a string of characters
in a given font. bound - >po s is the top-left comer of the bounding box,
bound->size. x is the width, and bound->size. y is the height. bound
>pr is not modified. bound->pos is computed relative to the location of the
character origin (base point) of the first character in the text.

Revision A of 5 January 1990

58 4.1 Pixrect Reference Manual

Unstructured Text

4.4. Example

Figure 4-2

pr_text(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pr_ttext(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

These unstructured text functions correspond to the Pixwin functions
pw_text () and pw_ttext (). prs_text () and prs_ttext () macros
are also provided, although they are identical to pf _text () and
pf _ t text () , respectively.

Here is an example program that writes text on the display surface with pixel
fonts.

Example Program Using Text

*include <pixrect/pixrect_hs.h>

main ()
{

P ixrect *pr;
Pixfont *pf;

if (! (pr = pr_open("/dev/fb"» II
! (pf = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.12"»)
exit(l);

pr_text(pr, 400, 400, PIX_SRC, pf, "This is a string.");

pr_close(pr);
pf_close(pf);
exit(O);

Revision A of 5 I anuary 1990

5
Memory Pixrects

Memory Pixrects ... 61

5.1. The rnpr_data Structure .. 61

Example .. 63

5.2. Creating Memory Pixrects ... 63

Create Memory Pixrect ... 63

Create Memory Pixrect from an Image .. 64

Example .. 64

5.3. Static Memory Pixrects .. 65

5.4. Pixel Layout in Memory Pixrects .. 66

5.5. Using Memory Pixrects ... 66

5.1. The mpr data
Structure-

5
Memory Pixrects

Memory pixrects store their pixels in the system memory, instead of displaying
them. They are similar to other pixrects but have several special properties. Like
all other pixrects, their dimensions are visible in the pr_size and pr_depth
elements of their pixrect structure. The device-dependent operations used to
manipulate them are available through their pr _ ops structure pointer. How
ever, the format of the data that describes the particular pixrect is also public:
pr_data holds the address of an mpr_data structure described below. There
fore, a client program may construct and manipulate memory pixrects using
non-pixrect operations. There is also a function mem _ crea te () that dynami
cally allocates a new memory pixrect and a macro mpr _ stat ic () , that can be
used to generate an initialized memory pixrect in the code of a client program.

struct mpr_data {

} ;

int md_linebytes;
short *md_image;
struct pr-pos md_offset;
short md-primary;
short md_flags;

/* md_flags bit definitions */
#define MP_REVERSEVIDEO 1
#define MP_DISPLAY 2
#define MP PLANEMASK 4
#define MP 1386 8
#define MP STATIC 16

The pr _ data member of a memory pixrect points to an mpr _ data structure,
which contains the information needed to access a memory pixrect.

md_linebytes is the number of bytes stored in each row of the primary pix
recto This is the difference in the addresses of two pixels at the same x
coordinate, one row apart. Since a secondary pixrect may not include the full
width of its primary pixrect and the amount of padding at the end of a scan line
may vary, this quantity cannot be computed from the width of the pixrect - see
Section 3.4.

61 Revision A of 5 January 1990

62 4.1 Pixrect Reference Manual

The actual pixels of a memory pixrect are stored in an array to which md _ image
points. (The fonnat of this area is described in a later section). The creator of
the memory pixrect must ensure that md_image contains a 16-bit aligned
address; a 32-bit aligned address is required for 32-bit deep memory pixrects and
is recommended in all cases for best perfonnance.

md offset is the (x, y) position of the first pixel of this pixrect in the array of
pixels addressed by md _image. Both values will be zero for a primary pixrects.

mdyrimary is 1 if the pixrect is primary and if its image was allocated
dynamically (that is, by mem_create (». In this case, md_image points to
an area not referred to by any other primary pixrecl If this flag is set, the
pixrect's image memory is freed when the pixrect is destroyed by
pr_destroy ().

The MP_DISPLAY bit is set in md_flags if the memory pixrect is actually a
memory mapped frame buffer. The MP _REVERSEVIDEO bit is set if reverse
video is currently in effect for the pixrecl (This is only valid if the pixrect is I
bit deep). The MP_PLANEMASK bit is set if the memory pixrect private data is
actually a mprp _ da ta structure, which stores a bit plane mask. These flags are
used to support memory-mapped display devices, such as the bwt wo and
cgthree frame buffers.

The MP _3861 bit is set if the pixrect image data is in 80386 fonnat (leftmost pixel
in the least significant bits). The MP _STATIC bit is non-zero if the pixrect is
static. These two flags are used to detennine if bit flipping is necessary to
display the pixrect on a Sun386i machine. See Chapter 2 for details on 80386
fonnat, and the MP _38 6I and MP _STATIC flags.

NOTE The MP_386I and MP_STATICjiags are ignored on SPARe and 680XO
machines.

Several useful macros are defined in <pixrect/memvar. h>. Three com
monly used macros are described here; see the others in memvar. h.

Use the mpr _ d () macro to access a memory pixrect's bitmap. It generates a
pointer to the private data of a memory pixrect:

fdefine mpr_d(pr) «struct mpr_data *) (pr)->pr_data)

The mpr_linebytes () macro computes the bytes per line of a 16-bit padded
primary memory pixrect given its width in pixels and the bits per pixel:

fdefine mpr_linebytes(width, depth)
(«pr-product(width, depth) +15) »3) &-1)

It is useful for computing the amount of space required for a static pixrect or an
image data array which is to be passed to memyoint (). However,
mpr _linebytes () should not be used to access the image data of an existing
memory pixrecl To examine image data use md _linebytes directly, or the
mpr _ mdlinebytes () macro:

Revision A of 5 January 1990

Example

Figure 5-1

Chapter 5 - Memory Pixrects 63

fdefine mpr_mdlinebytes(mpr) (mpr_d(mpr)->md_linebytes)

An example program that uses a memory pixrect to perform bit manipulations on
the screen follows. It opens the frame buffer and copies the bitmap to a memory
pixrect of the same size. It then goes through each byte of the memory pixrect,
left-shifting each byte (this is not a useful operation, just a simple example).
Finally, it copies the modified memory pixrect to the screen pixrect.

Note how md_linebytes is multiplied by the pixrect height to find the total
size of the memory pixrect image data array.

Example Program Using Memory Pixrects

#include <pixrect/pixrect_hs.h>

main ()
{

Pixrect *scrn, *mem;
int w, h;
char *start, *end, *ptr;

if «scrn = pr_open (" /dev/fb") 0)
exit(l);

w = scrn->pr_size.x;
h = scrn->pr_size.y;
if «mem = mem_create (w, h, scrn->pr_depth» == 0)

exit(l);
(void) pr_rop(mem, 0, 0, w, h, PIX SRC, scrn, 0, 0);
start = (char *) mpr_d(mem)->md_image;
end = start + h * mpr_d(mem)->md_linebytes;
for (ptr = start; ptr < end; ptr++)

*ptr «= 2;
(void) pr_rop(scrn, 0, 0, w, h, PIX_SRC, mem, 0, 0);
(void) pr_close(mem);
(void) pr_close(scrn);
exit(O);

5.2. Creating Memory
Pixrects

The mem _ create () and mem yoint () functions allow a client program to
create memory pixrects.

Create Memory Pixrect Pixrect *mem_create(w, h, depth)
int w, h, depth;

A new primary pixrect is created by a call to the function mem_create (). w,
h, and depth specify the width and height in pixels, and depth in bits per pixel
of the new pixrect. Sufficient memory to hold those pixels is allocated and
cleared to O. New rnp r _ data and pixrect structures are allocated and

Revision A of 5 January 1990

64 4.1 Pixrect Reference Manual

Create Memory Pixrect from
an Image

Example

initialized, while a pointer to the pixrect is returned. If this cannot be done (usu
ally because of insufficient swap space), the return value is O.

On 32-bit machines, such as the Sun-3, Sun-4, and Sun386i, the created pixrect
has each scan line padded out to a 32-bit boundary, unless it is only 16 bits wide;
that is, the md_linebytes structure member contains either 2 or a multiple of
4. On Sun-3 workstations, the SunOS releases prior to 4.0, pixrects created by
mem_create () were always padded to a 16-bit boundary.

On Sun386i machines, the memory pixrects created by mem_create () have
the MP _ 138 6 flag set.

Pixrect *mem-point(width, height, depth, data)
int width, height, depth;
short *data;

The mernyoint () function builds a pixrect structure that points to a dynami
cally created image in memory. Client programs may use this function as an
alternative to mem_create () if the image data is already in memory. width
and height are the width and height of the new pixrect, in pixels. depth is
the depth of the new pixrect, in number of bits per pixel. data points to the
image data to be associated with the pixrect

Note thatmemyoint () expects each line of the memory image to be padded
to a 16-bit boundary. If the image data has greater padding (32-bit padding is
recommended), md_linebytes should be set to the correct value after calling
memyoint (). Also, memyoint () does not set the mdyrimary flag, so
the image data is not automatically freed when the pixrect is destroyed.

On Sun386i machines, the mem yo in t () function does not set the MP _386 I
flag. The image data supplied to mem.J>oint () should be in SPARC/680XO
fonnat (leftmost pixel in the most significant bits).

Here is an example program that uses a memory pixrect to invert the frame
buffer contents from top to bottom. It opens the default frame buffer and creates
a memory pixrect of the same size. It then copies rows of pixels from the frame
buffer to the memory pixrect in reverse order. Finally, it copies the memory pix
rect to the frame buffer.

Revision A of 5 January 1990

Chapter 5 - Memory Pixrects 65

Figure 5-2 Example Program Using Memory Pixrects

finclude <pixrect/pixrect_hs.h>

main ()
{

Pixrect *pr, *tmpi
int yin, yout;

if (! (pr = pr_open("/dev/fb"» I I
! (tmp =
mem_create(pr->pr_size.x, pr->pr_size.y, pr->pr_depth»)
exit(l);

for (yin = 0, yout = pr->pr_size.y - 1; yout >= 0; yin++, yout--)
pr_rop(tmp, 0, yout, pr->pr_size.x, 1, PIX_SRC, pr, 0, yin);

pr_rop(pr, 0, 0, pr->pr_size.x, pr->pr_size.y, PIX_SRC, tmp, 0, 0);

exit(O);

5.3. Static Memory
Pixrects

fdefine mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

A memory pixrect may be created at compile time by using the
mpr _ stat ic () macro. name is a unique token to identify the generated data
objects; w, h, and depth are the width and height in pixels, and depth in bits of
the pixrect; and image is the address of a 16-bit aligned (32-bit aligned if
depth is 32) data object that contains the pixel values in the format described
below, with each line padded to a 16-bit boundary.

The macro generates two structures:

struct mpr_data name_data;
Pixrect name;

The mpr_data structure is initialized to point to image data specified. The pix
rect structure is initialized with mem_ops and name_data.

On a Sun386i machine, the MP _STAT I C flag is set in the md_flags byte of the
pixrect data structure; see Chapter 2 for details.

NOTE Contrary to its name, this macro generates structures o/storage class extern.
The mpr_static_static () macro accepts the same arguments as
mpr_static () , but generates static structure declarations.

Revision A of 5 January 1990

66 4.1 Pixrect Reference Manual

5.4. Pixel Layout in
Memory Pixrects

s.s. Using Memory
Pixrects

In memory, the upper-left comer pixel is stored in the word at the lowest address.
This address must be 16-bit aligned (32-bit aligned for 32-bit deep pixrects). The
first word is followed by words containing the remaining pixels in the top row,
left-to-right. Pixels are stored in successive bits without padding or alignment.

The order of pixels within each word is detennined by the machine architecture.
On SPARe and 680XO machines, the leftmost pixel is stored in the most
significant bits of the word, while on 80386 machines the preferred order is to
store the leftmost pixel in the least significant bits of the word.

Each row of pixels is rounded to at least a 16-bit boundary. For best perfonnance
on 32-bit machines, pixel rows should be rounded to 32-bit boundaries
(mem_create does this automatically). However, 16-bit rounding is required for
static pixrects and mem-PQint.

NOTE On Sun386i machines, a purect' s image data is converted to 80386 format
before being displayed. See Chapter 2 for details.

Memory pixrects with depths of 1,8, 16, and 32 bits are fully supported by the
Pixrect Library.

You can create memory pixrects with other depths (such as 24 bits) and write
them to raster files with pr _dump () , but none of the pixrect drawing functions
can be used on them. The pr _load () function automatically converts 24-bit
raster files to 32-bit memory pixrects when the files are read.

Memory pixrects can be used to read data from and write data to frame buffers.
Several functions exist for interfacing Pixwins with memory pixrects. These
include pw_read (), pw_rop () and pw_write (). Refer to the Sun View 1
Programmer's Guide for more details. For applications using a raw frame buffer
device without SunView, pr_rop () can be used for operations on memory pix
rects. Another use of memory pixrects is the processing of images not intended
for display. User programs can write directly into a pixrect using parameters
found in the mpr_data structure, or they can use rnemyoint () for a previ
ously created image.

Memory pixrects can also be written to raster files using the facilities described
in Chapter 6.

Revision A of 5 January 1990

6

File I/O Facilities for Pixrects

File I/O Facilities for Pixrects ... 69

6.1. Writing and Reading Raster Files .. 69

Run Length Encoding ... 69

Write Raster File ... 70

Read Raster File .. 72

6.2. Details of the Raster File Fonnat ... 73

6.3. Writing Parts of a Raster File ... 74

Write Header to Raster File .. 75

Initialize Raster File Header ... 75

Write Image Data to Raster File ... 75

6.4. Reading Parts of a Raster File .. 75

Read Header from Raster File ... 76

Read Colonnap from Raster File ... 76

Read Image from Raster File ... 76

Read Standard Raster File ... 76

6.1. Writing and Reading
Raster Files

Run Length Encoding

6
File I/O Facilities for Pixrects

Sun Microsystems, Inc. has specified a file fonnat for files containing raster
images. The fonnat is defined in the header file <rasterfile. h>. The Pix
rect Library contains routines to perfonn I/O operations between pixrects and
files in this raster file fonnat. This I/O is done using the routines of the C Library
Standard I/O package, requiring the caller to include the header file
<stdio. h>.

The raster file format allows multiple types of raster images. Unencoded, and
run-length encoded fonnats are supported directly by the Pixrect Library. Sup
port for customer-defined fonnats is implemented by passing raster files with
non-standard types through filter programs. Sun-supplied filters are found in the
directory / u s r /1 ib / r as f i 1 t er s. This directory also includes sample
source code for a filter that corresponds to one of the standard raster file types to
facilitate writing new filters.

The sections that follow describe how to store and retrieve an image in a raster
file.

The run-length encoding used in raster files is of the fonn

<byte><byte> ... <ESC><O> ... <byte><ESC><count><byte> ...

where the count value can range from 0 to 255. This value indicates that fol
lowing byte should appear count + 1 times in the actual image. This means
the count/1:>yte pair can represent 1 to 256 consecutive instances of byte in the
image. One or two byte sequences are left unencoded; only sequences of three or
more of the same byte value are encoded as <ESC><count><byte>. A byte
with the value <ESC> indicates that the next two bytes should be interpreted as a
count/byte pair. The integer value of the escape byte is 128. To represent the
value 128 «ESC», each instance is encoded as <ESC><O>, since the
<count> in this scheme can never be 0, since single bytes are not encoded with
count/byte pairs. The byte position of a count/byte pair can be any eight bit
values; a pair of 128 values, <ESC><ESC> is encoded as <ESC><l><ESC>.

This algorithm fails only if the input stream contains an excessive number of one
and two-character sequences of the <ESC> character. Such an image can be
translated successfully, and will faithfully represent the original bitmap, but the
"compressed" image is larger that the original one!

69 Revision A of 5 January 1990

70 4.1 Pixrect Reference Manual

Write Raster File int pr_dump(input-pr, output, colormap, type, copy_flag)
Pixrect *input-pr;
FILE *output;
colormap_t *colormap;
int type, copy_flag;

The pr_dump () procedure stores the image described by a pixrect onto a file.
It nonnally returns 0, but if any error occurs, it returns PIX_ERR. The caller can
write a rectangular sub-region of a pixrect by first creating an appropriate
inputJ>r via a call to pr_region (). The output file is specified via out
put. The specified output type should either be one of the following standard
types, or should correspond to a customer-provided filter.

tdefine RT OLD 0
tdefine RT_STANDARD 1
tdefine RT BYTE ENCODED 2 - -

The RT_STANDARD type is the common raster file fonnat in the same sense that
memory pixrects are the common pixrect fonnat: every raster file filter is
required to read and write this fonnat. The RT_OLD type is very close to the
RT _STANDARD type; it was the fonner standard generated by old versions of
Sun software. The RT _BYTE_ENCODED type implements a run-length byte
encoding of the pixrect image. This usually results in shorter files, although the
worst case could cause the image to expand up to 50 percent

Specifying any other output type causes pr _dump () to pipe a raster file of
RT_STANDARD type to the filter named convert. type. Where type is the
ASCII string corresponding to the decimal value of the type.

It looks for this filter first in directories in the user's $PATH environment vari
able, and then in the directory /usr/lib/rasfilters. The output of the
filter is then copied to output.

It is strongly recommended that customer-defined fonnats use a type value of
100 or more, to avoid conflicts with additions to the set of standard types. The
RT_EXPERlMENTAL type is reserved for use in the development of experimental
filters, although it is no longer treated specially.

[~._d_e_f_i_n_e __ R_T __ E_X_P_E_R_I_ME __ N_T_A_L_6_5_5_3_5 ___________________________ ~)
pr _dump () and other functions that start filters wait until the filter process
exits before returning, so caution is advisable when you are working with experi
mental filters.

For pixrects displayed on devices with colonnaps, the values of the pixels are not
sufficient to recreate the displayed image. Thus, the image's colormap can also
be specified in the call to pr_dump (). If the colorrnap is specified as NULL,
but input J>r is a non-monochrome display pixrect, pr _ dump () attempts to
write the colonnap obtained from inputJ>r (via pr_getcolormap). The
following structure specifies the colormap associated with inputJ>r:

Revision A of 5 January 1990

typedef struct {
int type;
int length;
unsigned char *map[3];

colormap_t;

Chapter 6 - File I/O Facilities for Pixrects 71

The colonnap type should be one of the Sun-supported types:

'define RMT NONE 0
'define RMT_EQUAL_RGB 1
'define RMT RAW 2

If the colonnap type is RMT_NONE, then the colormap length must be O. This
case usually arises when you are dealing with monochrome displays and I-bit
deep memory pixrects. If the colonnap type is RMT_EQUAL_RGB, then the map
array should specify the red (map [0]), green (map [1]) and blue (map [2])
colonnap values, with each vector in the map array being of the same specified
colonnap length. If the colonnap type is RMT _RAW, the first map array
(map [0]), should hold length bytes of colonnap data, which is not intetpreted
by the Pixrect Library.

Finally, copy _flag specifies whether or not input yr should be copied to a
temporary pixrect before the image is output. The copy _flag value should be
non-zero if inputyr is a pixrect in a frame buffer that is likely to be asyn
chronously modified. The copy flag is also automatically set to a non-zero value
for secondary pixrects, to simplify the code. Note that use of copy _flag still
does not guarantee that the correct image is output unless the pr _ rop () to copy
from the frame buffer is made uninterruptible.

Revision A of 5 January 1990

72 4.1 Pixrect Reference Manual

Figure 6-1

Read Raster File

Example Program using pr _dump ()

*include <stdio.h>
*include <sys/types.h>
*include <pixrect/pixrect.h>
*include <pixrect/pr_io.h>

main ()
(

pixrect *screen, *iconi
FILE *output = stdouti
color.map_t *color.map = Oi
int type = RT_STANDARDi
int copy_flag = 1i

if (! (screen = pr_open("/dev/fb"» II
! (icon = pr_region(screen, 1050, 10, 64, 64»)
exit(l)i

pr_dump(icon, output, color.map, type, copy_flag);
pr_close(screen)i

exit(O)i

Pixrect *pr_load(input, colormap)
FILE *inputi
color.map_t *color.mapi

The pr_load () function can be used to retrieve the image stored in a raster file
into a pixrect. The raster file's header is read from input, a pixrect of the
appropriate size is dynamically allocated, the colonnap is read and placed in the
location addressed by colormap, and finally the image is read into the pixrect
and the pixrect returned. If any problem occurs, pr _load () returns NULL.
Note that 24-bit raster files are loaded as 32-bit pixrect.

As with pr _dump () , if the specified raster file is not of standard type,
pr _load () first runs the file through the appropriate filter to convert it to
RT_ST ANDARD type and then loads the output of the filter.

Additionally, if colormap is NULL, pr_load () simply discards any and all
colonnap infonnation contained in the specified input raster file. If colormap
is non-null, pr _load () loads the colonnap data even if the type and length
specified do not match that of the file (see pr_load_colormap () below).

Revision A of 5 January 1990

Chapter 6 - File I/O Facilities for Pixrects 73

Figure 6-2 Example Program using pr _load ()

6.2. Details of the Raster
File Format

tinclude <stdio.h>
tinclude <sys/types.h>
tinclude <pixrect/pixrect.h>
tinclude <pixrect/pr_io.h>

main ()
{

Pixrect *screen, *iconi
FILE *input = stdini
colormap_t colormapi

colormap.type = RMT_NONEi

if (! (screen = pr_open (n /dev/fbn » I I
! (icon = pr_load(input, &colormap»)
exit(l)i

if (colormap.type -- RMT_EQUAL_RGB)
pr-putcolormap(screen, 0, colormap.length,

colormap.map[O], colormap.map[l],
colormap.map[2])i

pr_rop(screen, 1050, 110, 64, 64, PIX_SRC, icon, 0, 0);
pr_close(screen)i

exit(O);

A handful of additional routines are available in the Pixrect Library for manipu
lating pieces of raster files. In order to understand what they do, it is necessary to
understand the exact layout of the raster file fonnat.

The raster file is in three parts: first, a small header containing eight 32-bit
int's; second, a (possibly empty) set of colonnap values; third, the pixel image,
stored a line at a time, in increasing y order.

The image is essentially laid out in the file the exact way that it would appear in a
static memory pixrect. In particular, each line of the image is rounded out to a
multiple of 16 bits, corresponding to the rounding convention used by static pix
rects.

The header is defined by the following structure:

Revision A of 5 January 1990

74 4.1 Pixrect Reference Manual

struct rasterfile {
int ras_magic;

} ;

int ras_width;
int ras_height;
int ras_depth;
int ras_length;
int ras_type;
int ras_maptype;
int ras_maplength;

The ras_magic field always contains the following constant:

[fdefine RAS_MAGIC Ox59a66a95]
The ras_width, ras_height and ras_depth fields contain the image's
width and height in pixels, and its depth in bits per pixel, respectively. The depth
is usually either I or 8, corresponding to the standard frame buffer depths.

The ras _length field contains the length in bytes of the image data. For an
unencoded image, this number is computable from the ras_width,
ras_height, and ras_depth fields, making ras_length redundant, but
for an encoded image the value is necessary so the image length is available
without having to decode the image itself.

NOTE The length of the header and of the possibly empty colormap values are not
included in the value in the ras_lengthfield. Thefield value is only the
length of the image data.

6.3. Writing Parts of a
Raster File

For historical reasons, files of type RT_OLD usually have a 0 in the
ras _length field, and software expecting to encounter such files should be
prepared to compute the actual image data length if it is needed. The
ras_maptype and ras_maplength fields contain the type and length in
bytes of the colormap values, respectively.

If the ras_maptype is not RMT_NONE and the ras_maplength is not 0,
then the colormap values are the ras_maplength bytes immediately after the
header. These values are either uninterpreted bytes (usually with the
ras_maptype set to RMT_RAW) or the equal length red, green and blue vec
tors, in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter
case, the ras_maplength must be three times the size in bytes of anyone of
the vectors.

The following routines are available for writing the various parts of a raster file.
Many of these routines are used to implement pr _dump (). First, the raster file
header and the colonnap can be written by calling pr_dump_header () .

Revision A of 5 January 1990

Write Header to Raster File

Initialize Raster File Header

Write Image Data to Raster
File

6.4. Reading Parts of a
Raster File

Chapter 6 - File I/O Facilities for Pixrects 75

int pr_dump_header(output, rh, color.map)
FILE *output;
struct rasterfile *rh;
color.map_t *colormap;

pr _dump_header () returns PIX_ERR if there is a problem writing the header
or the colonnap; otherwise it returns O. If the colormap is NULL, no colonnap
values are written.

Pixrect *pr_dump_init(input-pr, rh, color.map,
type, copy_flag)

Pixrect *input-pr;
struct rasterfile *rh;
color.map_t *color.map;
int type, copy_flag;

For clients who do not want to explicitly initialize the raster file struct, this rou
tine can be used to set up the arguments forpr_dump_header (). The argu
ments to pr_dump_init () correspond to the arguments to pr_dump ().
However, pr_dump_init () returns the pixrect to write, rather than actually
writing it, and initializes the structure JX>inted to by rh rather than writing it. If
colonnap is NULL, the ras_maptype and ras_maplength fields of rh are
set to RMT_NONE and 0, respectively.

If any error is detected by pr _dump _ ini t () , the returned pixrect is NULL. If
there is no error, and the copy_flag is zero, then the input pixrect is suitable
for direct dumping (it is a primary memory pixrect). The returned pixrect is sim
ply input yr. However, if copy_flag is non-zero, or the input pixrect can
not be dumped directly, the returned pixrect is dynamically allocated and the
caller is responsible for deallocating it with pr _destroy () when it is no
longer needed.

int pr_dump_image(pr, output, rh)
Pixrect *pr;
FILE *output;
struct rasterfile *rh;

The actual image data can be output via a call to pr _dump_image (). This
routine returns 0 unless there is an error, in which case it is PIX_ERR. It cannot
write the image in a non-standard (filtered) fonnat, since by the time it is called
the raster file header has already been written.

Since these routines sequentially advance the output file's write pointer,
pr _dump_image () must be called after pr _dump_header () .

The following routines are available for reading the various parts of a raster file.
Many of these routines are used to implement pr_load (). Since these rou
tines sequentially advance the input file's read pointer, rather than doing random
seeks in the input file, they should be called in the order presented below.

Revision A of 5 January 1990

76 4.1 Pixrect Reference Manual

Read Header from Raster File

Read Coiormap from Raster
File

Read Image from Raster File

Read Standard Raster File

int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rh;

The raster file header can be read by calling pr _load_header (). This rou
tine reads the header from the specified input, checks it for validity and initializes
the specified rasterfile structure from the header. The return value is 0
unless there is an error, in which case it is PIX_ERR.

int pr_load_color.map(input, rh, color.map)
FILE *input;
struct rasterfile *rh;
color.map_t *color.map;

If the header indicates that there is a non-empty set of colonnap values, the
values can be read by calling pr_Ioad_colormap (). If the specified color
map is NULL, this routine skips over the colonnap values by reading and discard
ing them. If the type and length values in the eolormap structure do not match
the input file, pr _load _ eolormap () allocates space for the colonnap with
malloe, reads in the file's colonnap, and modifies eolormap argument
pointer to point to the freshly loaded colonnap before returning. If this occurs,
the space allocated can be released with a free (eolormap->map [0]).

The return value is 0 unless there is an error, in which case it is PIX_ERR.

Pixrect *pr_load_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
color.map_t *color.map;

An image can be read by calling pr_load_image (). If the input is a standard
raster file type, this routine reads in the image directly. Otherwise, it writes the
header, colonnap, and image into the appropriate filter and then reads the output
of the filter. In this case, both the raster file and the colonnap structures are
modified as side-effects of calling this routine. In either case, a pixrect is dynam
ically allocated to contain the image, the image is read into the pixrect, and the
pixrect is returned as the result of calling the routine. If there is an error, the
return value is NULL.

Pixrect *pr_load_std_image(input, rh, color.map)
FILE *input;
struct rasterfile *rh;
color.map_t color.map;

If it is known that the image is from a standard raster file type, then it can be read
in by calling pr_load_std_image (). This routine is identical to
pr_load_image () ,except that it does not invoke a filter on non-standard ras
ter file types.

Revision A of 5 January 1990

A
Writing a Pixrect Driver

Writing a Pixrect Driver .. 79

A.I. Prerequisites .. 79

A.2. Overview and Assumptions .. 80

Approach Outline .. 80

A.3. Preparing th.e System .. 81

A.4. A Skeleton Driver .. 83

Page Type .. 83

Base Address ... 83

Interrupt .. 83

Device Id .. 83

MAKEDEV .. 85

files .. 85

GENERIC ... 85

sundev /bwfb.c ... 85

A.5. A Skeleton Pixrect Device Module .. 89

pr_open ... 89

Pixrect Staging Area ... 89

.. 1 .. /sys/sun/fbio.h .. 92

pr/pr_makefun.c ... 93

A.6. Adding Flesh to the Skeleton .. 95

bWfb_ops.c .. 95

bwfb_makelbwfb_destroy ... 96

Back to me driver .. 97

A. 7. The Real Driver ... 100

Visual Inspection of the Hardware ... 100

PROM Monitor .. 100

Monitor Command Example .. 101

bwfbreg.h ... 102

bwfbprol>e ... 103

bwfbattach ... 103

bwfbmmap .. 103

Features and Trap I><>ors ... 103

A.8. Creating tile Real Pixrect ... 104

A.9. Implementation Strategy .. 104

A.10. Files Generated ... 105

A.1I. Access Utilities ... 105

A.12. Rop ... 106

A.I3. Batchrop .. 106

A.I4. Vector ... 106

Importance of Proper Clipping ... 106

A.1S. Colonnap .. 106

Monochrome .. 107

A.16. Attributes .. 107

Monochrome .. 107

A.I? Pixel... 107

A.I8. Stencil ... 107

A.I. Prerequisites

A
Writing a Pixrect Driver

Sun has defined a common programming interface to pixel-addressable devices
that enables device-independent access to all Sun frame buffers. This interface is
called the pixrect interface. Existing Sun supported software systems access
a frame buffer through the pixrect interface. Sun encourages customers with
other types of frame buffers (or other types of pixel-addressable devices) to pro
vide a pixrect interface to these devices.

This chapter contains auxiliary material describing how to write a pixrect driver,
and is therefore of interest only to pixrect driver implementors. It is assumed
that you have already read Chapter 3, Pixrect Operations which describes the
programming interface to the basic operations that must be provided in order to
generate a complete pixrect implementation. It is also assumed that you have a
copy of Writing Device Drivers The section in that manual on writing the kernel
device driver portion of the pixrect implementation is important.

Topics covered in this chapter are as follows:

1. Instructions for installing a new pixrect driver into the software architecture
so that it may be used in a device-independent manner.

2. Additional utilities and conventions that may be of use to the pixrect driver
implementor.

The actual source code that is presented here is boiler-plate, i.e., almost every
pixrect driver implementation will be similar. A complete source example for an
existing pixrect driver would probably expedite the development of your own
driver. The complete device-specific source files for the Sun-l color frame
buffer pixrect driver are available as a source code purchase option (available
without a UNIX source license).

These are the tools and pieces that you will need before assembling your pixrect
driver:

D The following documents are recommended reading:

Sun View 1 Programmer's Guide

Sun View 1 System Programmer's Guide

Writing Device Drivers

79 Revision A of 5 January 1990

80 4.1 Pruect Reference Manual

A.2. Overview and
Assumptions

Approach Outline

PROM User's Manual

Writing Device Drivers

SunOS Reference Manual

Debugging Tools

Sun3 Architecture Manual

Sun4 Architecture Manual

c You need to know how to drive the hardware of your pixel-addressable dev
ice. At a minimum, a pixel-addressable device must have the ability to read
and write single pixel values. (It is possible to have a device that doesn't
meet the minimum requirements of a pixel-addressable device. We will not
discuss any of the ways that such a device might emulate the minimum
requirements).

c You must have a UNIX kernel building environment. No extra source is
required.

c You must have the current Pixrect Library file and its accompanying header
files. No extra source is required.

c You are a experienced C programmer.

c You are familiar with the C-shell csh, and the ed editor.

c You are using a Sun-3 family worKstation.

If you are using a Sun-4 worKstation, substitute sun4 for references to sun3 in
this chapter. The only exception is the discussion of the GENERIC configuration
file.

A pixrect device driver has three components:

1. The Unix device driver of the device.

2. The device-specific implementation of the pixrect functions.

3. The kernel pixrect, to be explained later in the document.

If you are not comfortable with the ed editor, read the ed man page. It is a sim
ple and straight-forward line editor, and it is available in single user mode.

This chapter describes a directory hierarchy on which the software development
is conducted. The emphasis of this document is on methodology, rather than
writing a specific driver or implementing pixrects. These purposes are served by
the Writing Device Drivers manual and the other chapters in this manual.

The approach used in this chapter is incremental. Each addition is built on a
solid, tested software base. The approach is outlined below:

1. Prepare the directory structure needed build a new kernel. This kernel this
then built with no new drivers. The purpose of this step is to make sure the
directory structure works.

Revision A of 5 January 1990

A.3. Preparing the System

Appendix A - Writing a Pixrect Driver 81

2. Add one fool-proof device driver to this kernel. The purpose of this step is
making sure you know how to add a new device driver to the kernel.

3. Make a nonnal Pixrect Library, to prepare the pixrect for the new device.

4. Do a dummy implementation of the device pixrect to make sure the system
works.

5. Write the real device driver.

6. Finish off the device pixrect.

7. Make a special version of suntools based on this new pixrect.

You must prepare the system to add the new device driver (since it will go
through a lot of modification). The system on which you are writing the driver
will be rebooted many times.

It is a good idea to put the driver source code on a selVer, and then mount it.
There is less chance of losing files that way.

To set up the working directory, do the following:

·e*a.mp:Le~cqJ:)EW¥,pMENT __ [):pU:CTORY
·~~xnpJ.¢~·mJtdiJ;$ys;pd"y".. . .
. ~*~mP.1.e~<f9.reach<d··· (/usftsys/*>

... ~nt~<$a>< .. '•.•............•...................•...•....... :.) ...• >
<end'">'" < •.•• < ••.. ' .<> ••• >....:. <>/<,> ..

. ''' ",. :-. ,'.: .. ,>:::;:::::::: "," ... ".',", ... "" ... '" • ~xampl~~ ":pn(.~. sund8V$\Ui~ .• >.. .. '.' '.' '>' .•.••..• »., ,
.
• .. ·e·.·'.'·.'.~ .. ·.·:.·a··· .. ·.m·.< ... lh.·.··.·l·.·.· .. · .. ··.e·' .. ·.·.· ·'.·.Q..·.·,· .• ·.'.· t"<"<" '>'.< « •.• ·f····· < ••.. < .. < c" ,' » " ••.....• ". .••. ~. ·.···un· .. · .. ·•. ·.s·· .. ·un< .. ··.·.·<·.·.:A.·.··· >.··v·.·.·.··,·:.·s·.·.·.··.·un·<.·.··.:.·.···.··.·.··3·.··.·.·· .. •.·· •.•• ·,: .. • •. ····.·.1· . ···.t· 'a' r. ···~f ". ~

A r'. ~ .<ar· .. c: .. < ~s.~.sys... ~ <.
~~a.xnp.1~~dd. sun3:....·::: .. >:... .'»"<:.\ •.. ' .• '«>.< .• '.
<~"aIrlPj.~.~ ·:.##n.·· 'ri •• O'~J: ••••• ih .••• L" lusr:)~ys/2Ju.1'l:3j()B~· .•. :.~ ...

You have created a sys directory that makes symbolic links to most of the sub
directories under /usr / sys. The exceptions are the sun, sundev and sun3
directories. These files are copied into your staging area. Note that the
sun3 /OBJ directory is not copied.

The idea is to duplicate the directory structure of a source machine, but not to
copy every file. This saves disk space.
,,::< " <-:-:. :-: -"-:.-::::.:::- /<:-.,:'.-:,' ':-:-:-:.-:':-::.:-.:::--:' .. :. ... :::::::-:::.:-:-... :..-: .

. ~x~rnPJ .. ~:~.·9Ci.·)J##·31c:6#~.· ••••• · .•••.•••.• ··:··.·.·
'~~cifupt~'~¢()n:figGENERIP>«>" '.
¢~~InP1.~'.#d<}gIGENE~C
~ia.InpJe.~·mak"··

When the build completes, you should have a new "vmunix" kernel. Try running
it:

Revision A of 5 January 1990

82 4.1 Pixrect Reference Manual

When the system comes up, you will be running the kernel you just built. Every
thing should run nonnally. If you see problems, review the steps above and try
again.

Revision A of 5 January 1990

A.4. A Skeleton Driver

Page Type

Base Address

Interrupt

Device Id

Appendix A - Writing a Pixrect Driver 83

It is now time to name your pixrect device. A pixrect device has several names:

1. A special file name, as mentioned in the /dev directory. The name has no
length restriction, but is usually only 4 or 5 letters long.

2. A device driver file name. This is usually the same as the special file name.

3. A pixrect device name. This name is usually two letters followed by a digit.

4. The hardware name. This is the name referred to the hardware board.

As the implementor of pixrect and driver, it is up to you to provide these names.
The names do not need to be the same. Exercise gOod judgment and avoid
confusing names. The name of our example device is bwfb. The device driver
source file is called bwfb. c, the device special file is / dev /bwfbO and the
pixrect device subdirectory is named libpixrect/bwfb. Substitute bwfb
with your own device name as you work through this chapter.

The bwfb is a skeleton device driver based on the dumb, monochrome frame
buffer. Although your device almost certainly differs, follow the steps in this
chapter anyway. We are not trying to write the device driver of your device yet.
This chapter only shows how to add a device driver to the kernel.

The files you will modify are:

c sun/conf.c

c / dev /MAKEDEV

c sun3/conf/GENERIC

c sun3/conf/files

The file you will create is:

c sundev/bwfb.c

You need to inquire of your hardware team to find out the page type, base
address, interrupt vector and ID of your device.

The infonnation for our example device, bwfb is shown below.

The page type of this device is obmem. To learn about page types, see the SunJ
Architecture manual.

The base address of our device is OxFFOOOOOO. The size of the device is
1152 * 9 0 0/8. This means the device responds when someone accesses physi
cal addresses within this range.

The device does not interrupt.

There is no other way to identify our device. You simply must assume that any
hardware that responds to the correct range of addresses is your device.

You can now try to add a dummy driver to the kernel and see if everything still
works. You need to modify all the files listed previously except
sundev /bwfb. c. The file sundev /bwfb. c contains all the device driver

Revision A of 5 January 1990

84 4.1 Pixrect Reference Manual

conf.c

functions. We will concentrate on this file later.

The first file to edit is sun/ conf . c. This file has all the device drivers the ker
nel can possibly use. You need to modify it in two places. You will be adding
the bwfb driver functions to it. See the README file in that directory for more
infonnation.

You must first declare the driver functions.

Next, you add your device to the cdevsw table.

This file is really a table of all the device drivers. The functions of each driver
are collected into an array called cdevsw (character device switch table). Each
element of this array represents one device driver and the sequence number is the
major number of the device.

It is important to insert a comment regarding the major number of your device
for others who may read the code later. Replace the MAJ in the comment with
the increment of the previous driver. We will refer to this number simply as
MAJ.

Revision A of 5 January 1990

MAKEDEV

files

GENERIC

sundevlbwtb.c

Appendix A - Writing a Pixrect Driver 85

Knowing the major number, it is time to modify the / dev /MAKEDEV shell
script, which is used to make the device node.

After editing the MAKEDEV script, you can make the device.

The /usr / sys/ sunX/ conf /files file lists all the source files necessary to
make the kernel. Add the new driver source file to it.

)

The last editing step is to add the device into the configuration file GENERIC, or
to any other standard configuration files, as appropriate. Add your device next to
the bwtwoO.

Now you are ready to rebuild the kernel, but you still do not have an actual
driver. You can start with the following template:

Revision A of 5 January 1990

86 4.1 Pixrect Reference Manual

Revision A of 5 January 1990

Appendix A - Writing a Pixrect Driver 87

Now you are ready to generate another kernel.

Revision A of 5 January 1990

88 4.1 Pixrect Reference Manual

Recommended Reading

;::::. j»}» :=::::=::::: ~!::;:~» ... :.::>
:.:::::.>-:: :.>:::::' :.:".;:::':- :::;:::.::

':> lr :<. ~.: :.:.; [< :::: .. ::-.::

................................... ····················,'i
C:/ •• ·:··:· .• :·>.: •... ·::.)< .. :: .. 7' >-:.'.:". · ••••.•.••• · •••• · ••• i··· ••• ·.··.··.i?.· •••• ·•·•··· .. < ..•

:.-::: '':::':::')::-'' ·::iii>::-:.:>:: .> ::::::::::: :.:;::: « :::·::.C:.;:· <i! :>:-:
:4 :".: :.:: .·m{):: ii :<IT ::> t:

•• :>:<:
:: .:« :.::-. :> •. -:.:.:-

::::: ;::.\-:.:,
>::: :-:.:::: .:.:-

~::' :2 I {>:-::.: '}':>: ':>: :::::
<::

':::.: ~::' :::::··::.U::::· '<·:·Ui:::::: .::::: .:\)«:
: <;:::=<:

}}} :::);> ::::::::::
::.: ::::::::: '\. ()/}: :,> ::::::::::::: ;::::: '»': :.:.:.:::.:::.:::

During the build, you should fix any syntax errors in the bwfb . c driver file.
After rebooting, the login message should look like the following:

SunOS Release 4.0 (GENERIC) 12: Cu"ent time and date

'::>":::-'

The important part is the (GENERI C) * 2 which means that this is the second
time you are making the GENERIC kernel. (The first time was the test run.)

At this point, you should read the adb (1) manual and the appropriate man
pages, along with the kadb (1) man pages.

As a test, compile and run the following program.

main ()
{

close (open ("/dev/bwfbO", 2»;

Use kadb to make sure that the device driver bwfbopen () function is called.

Revision A of S Ianuary 1990

A.S. A Skeleton Pixrect
Device Module

Pixrect Staging Area

Appendix A - Writing a Pixrect Driver 89

The goal of this section is to get the following program working:

1 main ()
2 {
3 pixrect *pr;
4
5 if «pr = pr_open (" /dev/bwfbO"» == NULL)
6 return 1;
7 pr_close (pr);
8 return 0;
9

You need to establish a bare skeleton of the development structure to which real
device-dependent code can be added later. After this structure has been erected,
you simply keep modifying and enhancing it until you have a satisfactory driver.
Up to this point, you do not need to make any design decisions.

The function pr _open is called by application programs to create a pixrect in a
device-independent manner. When the function is called, a device name is
passed to it (/ dev /bwfbO, in our case). It opens the device with system call
open, and receives a file descriptor in return. If the descriptor is valid (greater
than or equal to zero), it uses the descriptor to make several io ct 1 system calls.
The purpose of these calls is to:

1. Make sure the device is a valid frame buffer.

2. Identify the device.

3. Find the configurable parameters of the device in the kernel.

The device is identified by a frame buffer type, which is a small integer defined
in the file <sun/fbio. h>. A new number must be created before a new
device-dependent module is implemented. This number is obtained from the ker
nel via the i 0 c t 1 calls.

The device type number is then used as an index for an internal table of device
dependent functions. The function is called to create and initialize the pixrect. If
successful, it is returned to the caller of pr _open. The device-dependent func
tion is usually named devname_rnake where devname is bwfb in our case.

When the device-dependent function is called, it first maps in the frame buffer
and its control registers. Then it allocates the device-dependent data structure
and properly initializes it. Finally, it initializes the pixrectops vector, which
contains the device-dependent functions for standard pixrect operations.

Like the staging area of the device driver, you now need to create a similar struc
ture for the Pixrect Library. In our examples, the directory
DEVELOPMENT_DIRECTORY is exactly the same directory used before. The
relative positions of the subdirectories are all that is important.

The following commands extract the object files from the SunOS release's Pix
rect Library and put them in the directory OBJ. The file _. SYMDEF is created

Revision A of 5 January 1990

90 4.1 Pixrect Reference Manual

by the ranlib command. The file pr_makefun. 0 has be to rebuilt to add
our new device. The directory pixrect is the directory/for all the include files.

You can now create the skeleton file pr_makefun. c and prepare the
Makefile for the library:

Revision A of S January 1990

Appendix A - Writing a Pixrect Driver 91

NOTE Thefile <sun/fbio. h> is included in this file. This will be discussed later.

The Makefile is shown below. The macro BWFBSRC is the hook used to add
our device module.

Revision A of 5 January 1990

92 4.1 Pixrect Reference Manual

The build should create a libpixrect • a file, which is a new version of the
Pixrect Library, but with nothing new added to it. If you link a pixrect applica
tion to it, it should run as if it were linked to the regular library.

~
............... .

::'::e::':::x':""'a":':m:::'i~'l:::e::::%::: c·.·.:.:··.·.:::c·.··.·.: .. :.:::::.:.:" :':: •. ·.~.·.· •. ·.:·0·.·:·.·· .. ·.·.·· •. ·.:.::£· .. ·.:::.0·:··.·.· ... '·.:0: .. • .. ·.:·.·:::··.· .. • •. ::: .•. f::.· .·o:.:·.<.·o".··.··::.: .. ·.::.·.:.::.: .. c:::·.:.·.·:.: :: 1.:.'. 'l:.b·:· .. :::in.::·: :1:'.: x.· .. · .. r .. ::e·.·:.·.:c:.:.:::t···: .. ·.::·:.a···:.· ... ··.· '.;::::>'" .' :': .. , r:·> r
)~;::::j:;;i~:~~~i~:~i:~::;~i:;::i~:~~:~;~~;::::i~:;i~ ~

_1.Jsys/sunltbio.h

1* frame buffer type codes
ide fine FBTYPE SUNIBW
idefine FBTYPE SUNICOLOR
#define FBTYPE SUN2BW
ide fine FBTYPE SUN2COLOR
idefine FBTYPE_SUN2GP
idefine FBTYPE SUNS COLOR
-#define FBTYPE SUN3COLOR
idefine FBTYPE MEMCOLOR
idefine FBTYPE SUN4COLOR

fdefine FBTYPE NOTSUNI
fdefine FBTYPE_NOTSUN2
idefine FBTYPE NOTSUN3

or

Only after the program foo runs without error should you go to the next step.

The file fb i 0 • h should reside in the . . / • . / s y s / s un directory. The first
version of the file can be copied from /usr/ include/ sun/fbio. h. The
last few lines of the file should look like this:

*1
0 1* Multibus mono *1
1 1* Multibus color *1
2 1* memory mono *1
3 /* color w/rasterop chips */
4 /* GPI/GP2 */
5 /* RoadRunner accelerator */
6 /* memory color *1
7 1* memory 24-bit *1
8 1* memory color w/overlay */

9 /* reserved for customer *1
10 /* reserved for customer */
11 /* reserved for customer */

fdefine FBTYPE SUNFAST COLOR 12 /* accelerated Sbit */ - -
fdefine FBTYPE_SUNROP_COLOR 13 /* MEMCOLOR with rop h/w */
idefine FBTYPE_SUNFB_VIDEO 14 /* Simple video mixing */
fdefine FBTYPE SUNGIFB 15 /* medical image */
fdefine FBTYPE SUNGPLAS 16 /* plasma panel */

J

(~ sun Revision A of5 January 1990
micIosystems

tdefine FBTYPE RESERVED3
tdefine FBTYPE RESERVED2
tdefine FBTYPE RESERVED1

tdefine FBTYPE LASTPLUSONE

pr/pr _ makefun.c

Appendix A - Writing a Pixrect Driver 93

17 /* reserved, do not use */
18 /* reserved, do not use */
19 /* reserved, do not use */

20 /* max number of fbs (change as add) */

Define a new constant, say FBTYPE _ BWFB, for bwfb, incrementing the value of
FBTYPE_LASTPLUSONE, ifnecessary. Assume that FBTYPE_RESERVED3 is
used by your device.

[idefine FBTYPE BWFB 17

The next step is to add the function bwfb make (which you have not written
yet) to the file :pr /pr _makefun . c. You need to make sure the seventeenth
entry of the pr_makefun table is bwfb_make.

·e,tarnple%>ttd>.pr.<m.akflfWi.C::« .• · <i EDEND (
./p:r __ znakElf.1ln [FBm~ .. J:..ASTPLUSO~]I-3a
:~fj:i~c~»*-]:),,:r;h_~ki«~d·
·d·>·>·<.>«>····

.........

"1'•.....•..•..• > <.> » •••.•.. >.

<·w·······<·· ~"fl:>..i~1ifil~ .

...• C{ •... '.
EDEND

The function bwfb_make () should reside in the file bwfb. c. For now, it can
be a empty place holder function.

You can now change your Makefile to include bwfb. c.

J

Revision A of 5 January 1990

94 4.1 Pixrect Reference Manual

Recommended Reading

You can now rebuild the library. OUf example program (shown previously)
should run.

At this point, you should study the contents of the following files:
sys/sun/fbio.h,libpixrect/pr/pr_open.c,
libpixrect/pr/pr_make.c,andlibpixrect/bw2/bw2.c.

You should also learn the syntax and semantics of the system calls mmap (2)
and ioctl (2). These two functions are vital to the pixrect driver. Become
familiar with the mechanism of a system call. You need to know what means to
say "it is in the kernel". You can learn about this in section 2 of the man pages.

Revision A of 5 January 1990

A.6. Adding Flesh to the
Skeleton

Appendix A - Writing a Pixrect Driver 95

This section shows how to add the device-dependent modules to the pixrect
driver. It requires both kernel and user programming. The developer should
expect to frequently reboot the system.

The job is much easier if you set up the proper development environment before
hand, and if you are familiar with the tools. At this point, you should have
mastered dbx, adb, and kadb. It is quite difficult to do kernel or library debug
ging. Code should be written with ease-of-debugging in mind; you can maxim
ize the driver's perfonnance later.

This file defines the op vector, which is the collection of device-dependent func
tions for basic pixrect operations. Since our device is a simple one, it can be
derived from the generic memory pixrect software. The first version of the file
is:

finclude <sys/types.h>
finclude <pixrect/pixrect.h>
finclude <pixrect/bwfbvar.h>
finclude <pixrect/memvar.h>

struct pixrectops bwfb_ops =
mem_rop,

} ;

mem_stencil,
mem_batchrop,
0,
bwfb_destroy,
mem_get,
memyut,

mem_region,
memyutcolormap,
mem_getcolormap,
memyutattributes,
mem_getattributes

This file includes <pixrect/bwfb. h>, which should contain:

fifndef bwfbvar DEFINED
fdefine bwfbvar DEFINED

extern struct pixrectops bwfb_ops;

fifndef KERNEL
struct pixrect *bwfb make();
int bwfb_destroy();
fendif

fendif bwfbvar DEFINED

~ sun Revision A of 5 January 1990
,. microsystems

96 4.1 Pixrect Reference Manual

NOTE The include file may be used during kernel building. It is necessary to isolate it
from user declarations with :fI:ifdef's. In a real driver, thisfile usually defines
device-dependent data structures and constants.

The last step is to fill in the bwfb. c file with the contents of the
bwfb_amke () and bwfb_destroy () functions.

The following steps entail overwriting the previous version of bwfb . c; it was
only used as a place holder.

#include <sys/types.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_impl~ake.h>
#include <pixrect/memvar.h>
#include <pixrect/bwfbvar.h>

static struct pr_devdata *bwfbdevdata;

Pixrect *
bwfb_make(fd, size, depth)

int fd;
struct pr_size size;
int depth;

register int w = size.x, h
register Pixrect *pr;
struct pr_devdata *dd;
register int linebytes;

/*

size.y;

* Allocate/initialize pixrect and get virtual address for it.
*1

linebytes = mpr_linebytes(w, depth);
if «pr = pr_makefromfd(fd, size, depth, &bwfbdevdata, &dd,

h * linebytes, sizeof(struct mpr_data), 0» != 0) {

register struct mpr_data *md;

md = (struct mpr_data *) pr->pr_datai
md->md_linebytes = linebytes;
md->md_image = (short *) dd->va;
md->md_offset.x = 0;
md->md_offset.y = 0;
md->md-primary = -1 - dd->fd;
md->md_flags MP_DISPLAY; 1* pr is display dev *1

return prj

bwfb_destroy (pr)

• ~!! Revision A of 5 January 1990

Appendix A - Writing a Pixrect Driver 97

Pixrect *pr;

if (pr != 0)
register struct mpr_data *md;

if «md = mpr_d(pr» != 0) {
if (md->md-primary)

(void) pr_unmakefromfd(-l - md->md-primary,
&bwfbdevdata);

free «char *) md);

free«char *) pr);

return 0;

Now edit the Makef ile, and create symbolic links to the include file.

~ltatnpie%.·.)l.~ •• ·+ •• :.·;.C/fJ;'fbjb~fbv~x •. ~.·. 0·· ••• 'pixreet
eJ(ample~><~d.)J.4:k:~fil.·,,«'~ENPr
·taWi'Bs~c.!~Z.Z>i:i#fbiips.<#l·

·iEND. ·· •••• ······· •••• ·r
e~aml?l~~:~~~:> ...••.... .. •••. •.. • ...••.•••.. .•.•.•..... . .. :.< :•.. > ..•.... >.« .••..

c.c~g "'4.>.<lW>:;:Z$Y.$fI~.>: .. Sl.lri4 ·-¢ .. bwfb.c>

•• ·~~··i.;~ •••• iil~~~~ii~~0~tl#k:·(~~~~··.·§~~~~;~~!*t9ps .0· ..
·ra.nlib·.<lipp~#~#t:p.~
e~C1IT\P:l.~·%»··::·:·:

Back to the driver The last step is to add enough functionality to the driver so that the pr _open
sequence will work. You need to add the support for the FBIOGATTR, com
mand of the ioctl system call, and the mmap system call. The modification of
the bwfbioctl and bwfbmmap device driver functions is shown below:

'define BWFB SIZE (1152 * 900 / 8)

/*ARGSUSED*/
bwfbioctl (dev, cmd, data, flag)

dev_t
int
caddr t
int

switch (cmd) {
case FBIOSATTR:
break;
case FBIOGATTR: {

dev;
cmd;
data;
flag;

register struct fbgattr *gattr

Revision A of 5 January 1990

98 4.1 Pixrect Reference Manual

(struct fbgattr *) data;

gattr->owner = 0;
gattr->real_type = FBTYPE_BWFB;
gattr->fbtype.fb_type = FBTYPE_BWFB;
/* change the followings for the real device */
gattr->fbtype.fb_height = 900;
gattr->fbtype.fb_width = 1152;
gattr->fbtype.fb_depth = 1;
gattr->fbtype.fb_cmsize = 2;
gattr->fbtype.fb_size = BWFB_SIZE;
gattr->sattr.flags = 0;
gattr->sattr.emu_type = -1;
gattr->sattr.dev_specific[O] 0;
gattr->emu_types[O] = -1;
break;

default:
return ENOTTY;

return 0;

/*ARGSUSED*/
bwfbmrnap (dev, off, flag)

dev t dev;
off t off;
int flag;

/* re-write for the real device */
if (off < 0 I I off >= BWFB_SIZE)
return -1;
return PGT OBMEM btop (off + OxffOOOOOO);

After the driver is modified, rebuild the kernel and reboot the system.

Now, enter the program below, a modified version of the test program shown at
the start of the A Skeleton Pixrect Device Module Section, into the top directory.

Revision A of 5 Ianuary 1990

Appendix A - Writing a Pixrect Driver 99

If the program prints "Made it", you have successfully completed the basic
driver.

Revision A of 5 January 1990

100 4.1 Pixrect Reference Manual

A.7. The Real Driver

Visual Inspection of the
Hardware

PROM Monitor

Now that the dummy driver and pixrect are done, proceed to the real driver. At
this time, you should; be very comfortable with rebuilding the kernel, using
kadb to set break points in kernel routines and examine variables, using
printf () statements in the driver code to discover where things are going
wrong.

Before you start writing any software, you should understand the device
thoroughly. Become as familiar as possible with the hardware manual for the
device. You can develop some of the code for the functions described in the pre
vious section of this chapter, before you ever see the hardware. This would
depend upon your particular skill, however, and it may be more fruitful to
proceed with hardware in hand.

When the board arrives, keep in mind that the hardware may not be bug-free or
completely and correctly documented. If there are problems, investigate the pos
sibility of hardware bugs first.

Inspect the hardware closely. Look for loose parts or broken wires (press in
socketed IC's). Find out if the backplane configuration must be changed. Find
out if jumpers or dip switches need to be set. Identify the jumpers used for
address changes, interrupt vectors, or otherwise relevant to software develop
ment. If everything seems fine, halt the system, power it down, and plug in the
board, making sure it is properly seated.

The PROM monitor is a powerful tool for driver development. It is the software
closest to the hardware device. It is also the most reliable and convincing tool
for detennining if the hardware is functioning according to the spec.

Power up the system, then halt it when the self test starts. You should see the
PROM Monitor prompt, ">".

The PROM commands you should be familiar with are:

o Address mapping commands

o Data reading and writing commands

o Self-testing commands.

First, map the physical addresses of the hardware device to the virtual addresses
of your choice. When this mapping is done, you can read from and write to the
device using virtual addresses. If you find something wrong, detennine if defects
exist in the system or the hardware device.

NOTE These commands can vary from architecture to architecture. This document uses
SunJ PROM commands as examples.

Revision A of 5 January 1990

Monitor Command Example

Appendix A - Writing a Pixrect Driver 101

PROM Monitor Command Summary

Command Syntax Notes
m m address display/modify segment map
p m address display/modify page table
s mmode display/modify address space
"t At address display address mapping

0 e address [value] display/modify 1 bytes
I e address [value] display/modify 2 bytes
I I address [value] display/modify 4 bytes
f f start end pattern size block write pattern
v f start end size block display

x x extended test

Imagine there is a VME 32/32 device at the physical address Ox8000000. At this
location, there is a device ID register whose value is supposed to be Ox2. This
example shows how to use the PROM monitor to determine if this is indeed the
case.

First, you must enter the PROM monitor, then put the system into the supervisor
space with the s command. Change the mapping of the virtual address
o xE 0 0 0 0 0 0 to physical address 0 x 8 00 00 00, then read 4 bytes from that
address:

~*c;1mp:I.~%8U..
?assworci:ent~rsup~rUser(r;()(JtJPassword
~~c#np+e*halt·<

>Sysie11l<shuts>l1pw,I... >.. >.. >
·:> .• ·.85:. ...>< > •...•... ijstemf,,¥uperyiior stati(sBjtir.5un4)
. >~P~O()()9QOf' ~o>()~O()d:···•.....• Chll,ngethemappiiJg··: ..
<>"l.EQ>OO()OO) . ·fitld4 .. b.jteJ>.

The p command establishes the mapping of virtual addresses to physical ones.
The physical address, however, should be converted into PTE fonnat. The
conversion can be done as follows:

Revision A of 5 January 1990

102 4.1 Pixrect Reference Manual

bwtbreg.h

PHYSICAL=Ox8000000
TYPE=VME32D32
if TYPE == OBMEM

PTE MASK=OXFOOOOOOO
else if TYPE == OBrO

PTE MASK=OXF4000000
else if TYPE == VMEXXD16

PTE MASK=OXF8000000
else if TYPE == VMEXXD32

PTE_MASK=OXFCOOOOOO

if TYPE == VME24DXX
PHYSICAL += OXFFOOOOOO

else if TYPE == VME16DXX
PHYSICAL += OXFFFFOOOO

PHYSICAL »= 13
PTE = PHYSICAL I PTE_MASK

The virtual address 0 xE 0 00000 now points to the top of the page to which the
device has been mapped. The virtual address of the device is now at this physi
cal location:

[~O_X_E_O_O_O_O_O_O_+ ____ (P_H_Y_S_I_C_A_L ___ &_O_X_1_F_F_F_) ______________________________________ J
where PHYSICAL is now Ox8000000.

This include file resides in the sundev directory and should be installed in
/usr / include/ sundev by the Makefile in the
/usr / src/ sys/ sundev directory. This file has two purposes:

[] To define the hardware device in a software structure.

[] To provide an abstract model of the hardware for the user's program.

You should read through the hardware specification and define a structure for
each logical unit of the device. A constant should be defined for each state,
magic number (like the ID register) and physical address. Finally, a structure
should be defined for the entire device. The naming of the constants and struc
tures should be unique and descriptive. The style should follow local conven
tion. The structures should define both the accessing restrictions and logical
meaning of the registers.

As an example, imagine the device has a register 32 bits wide. Bits 0 to 8 act as
the device's identification number. Bit 31 is the reset bit. The rest are have no
effect when written to, and always read out as 1 'so A good structure would be:

Revision A of 5 January 1990

bwtbprobe

bwtbattach

bwtbmmap

Features and Trap Doors

union dev_reg {

} ;

struct {
int reset:l;
: 23;
int id:8;

id_reset;
int access-packed;

Appendix A - Writing a Pixrect Driver 103

In this way, the register can be read using access yacked, and examined bit by
bit with the structure id reset.

This probe function should detennine if the device really exists in the system. If
it does, the function should return a non-zero value. This function should read
the ID register of the device, if there is any, and as many other device registers as
necessary in order to detennine that it is indeed the expected device.

The bwfbat tach function is called if bwfbprobe returns non-zero. It can be
developed in user space (so that it can be debugged with dbx), then moved to the
kernel. Write a user program that maps the device into the address space and ini
tializes the device. This program will be the skeleton of the bwfbattach ()
function and will be very useful. Implement some diagnostic functionality into
this program. That way, if you suspect the device is not working correctly, you
can run this program and check immediately.

The bwfbmmap function maps the relevant device memory and registers into
user address space. In order to write this function correctly, you must answer
some questions about the device hardware. How do different portions of the dev
ice get accessed? Can they be memory mapped? What are the address offsets
from the base address?

To write an efficient pixrect driver, it is important to take advantage of any
hardware features, and avoid obstacles. Ask yourself: How can various pixrect
operations be done? Is there any hardware assistance for them? Are there any
hardware obstacles if they must be done in software?

Once you understand the address mapping, you can write the bwfbreg . h file.
This file describes the device in software. It is usually a replication of the
address mapping part of the hardware spec. Once this file is written, the
bwfbmmap function can be completed. After writing the mmap (2) function,
you should try to do the following:

Write a user program that maps in the device and accesses all its parts. This pro
gram should be interactive. It should accept commands from the user and
interact with the device as requested. It should be a window-based program.

The rmnap function is an important one. It provides you with access to the dev
ice from user space. With the interactive program you have written, you can dis
cover the best command sequence to initialize the device, and the best way to

Revision A of 5 January 1990

104 4.1 Pixrect Reference Manual

A.S. Creating the Real
Pixrect

A.9. Implementation
Strategy

identify it. You should now finish off the bwfbprobe and bwfbattach func
tions. Put several printf statements in the probe and the attach functions.
At boot time, you can then make sure these functions are called, and you can
ensure the proper behavior.

When the probe, attach, ioctl, and mmap functions are working, you can
start writing the real pixrect software for the device. Most of the software resides
in the libpixrect/bwfb directory. Anything outside this directory is dis
cussed in the previous sections of this chapter.

The recommended procedure is:

1. Design and code bwfbvar. h. The most important part of this file is the
device private data structure, the structure that pr _ da ta points to.

2. Design and code bwfb_make (), bwfb_region (), and
bwfb_ destroy (). The destroy function has been partly implemented in
the last section.

3. Design and code bwfbyutcolormap (), bwfbyutattributes (),
and bwfb_rop (). Edit bwfb_ops. c to add these functions.

4. Write the kernel pixrect by going back to the driver and writing the
FBOIGPIXRECT command of the ioctl (2) function. Put
pixrect/ .. /bwfb/bwfb_colormap.cand
pixrect/ .. /bwfb/bwfb_rop. c into the sun3/conf/files file.
The kernel pixrect uses the three functions listed in the previous step.

5. Build a special version of suntools that uses the Pixrect Library you just
created. Make certain it runs. it work.

6. Finish off the rest of the pixrect functions. Edit bwfb_ ops. c accordingly.

This is one possible step-by-step approach to implementing a pixrect driver:

o Write and debug pixrect creation and destruction. This involves the pixrect
kernel device driver that lets you open(2) and mmap(2) the physical device
from a user process. The private bwfb _make routine must be written. The
bwfb_region and bwfb_destroy pixrect operation must be written.

o Write and debug the basic pixel rectangular region function. The
bwfbyutattributes and bwfbyutcolormap pixrect operations
must be written in addition to the bwfb_rop routine.

o Write and debug batchrop routines. The bwfb_batchrop pixrect opera
tion must be written.

o Write and debug vector drawer. The bwfb_ vector pixrect operation must
be written.

o Write and debug remaining pixrect operations: bwfb_stencil,
bwfb_get,bwfbyut,bwfb_getattributesand
bwfb_getcolormap.

Revision A of 5 January 1990

A.lO. Files Generated

A.II. Access Utilities

Appendix A - Writing a Pixrect Driver 105

c If the device is to run with SunView, build a kernel with minimal basic pixel
rectangle function for use by the cursor tracking mechanism in the Sun View
kernel device driver. Also include the colonnap access routines for use by
the colonnap segmentation mechanism in the SunView kernel device driver.

c Load and test Sun View programs with the new pixrect driver. Experience
has shown that when you are able to run released Sun View programs, your
pixrect driver is in good shape.

Here is the list of source files generated that implement the example pixrect
driver:

c bwfbreg . h - A header file describing the structure of the raster device. It
contains macros used to address the raw device.

C bwfbvar. h - A header file describing the private data of the pixrect. It
contains external references to pixrect operation of this driver.

C / sys/ sundev / cgone. c - The pixrect kernel device driver code.

c bwfb. c - The pixrect creation and destruction routines.

c bwfb_region. c -The region creation routine.

c pr_makefun. c - Replaces an existing module and contains the vector of
pixrect make operations.

c bwfb_batch. c - The batchrop routine.

c bwfb_colormap. c -The colormap access and attribute setting routines.

c bwfb_getput. c -The single pixel access routines.

c bwfb _ rop . c - The basic pixel rectangle manipulation routine.

c bwfb stencil. c - The stencil routine.

c bwfb_ vec. c - The vector rendering routine.

c bwfb _curve. c - The curved shape routine.

c bwfbyolyline. c - The polyline routine.

This section describes utilities used by pixrect drivers. The pixrect header files
memvar. h, pixrect. hand pr_util. h contain useful macros that you
should familiarize yourself with; they are not documented here. Look for the files
in /usr/include/pixrect.

pr_clip(dstp, srcp)
struct pr_subregion *dstp;
struct pr-prpos *srcp;

pr_clip adjusts the position and size of dstp, the destination pixrect subre
gion, to fall within dstp->pr. If * scrp, the source pixrect position, is not
zero then the position of the source is clipped to fall within dstp.

Revision A of 5 January 1990

106 4.1 Pixrect Reference Manual

A.12. Rop

A.13. Balchrop

A.14. Vector

Importance of Proper
Clipping

A.IS. Colormap

Two operations on reverse video control, pr_reversesrc () and
pr_reversedst (), are provided for adjusting the raster operation code to
take into account reverse video monochrome pixrects in either the source or des
tination pixrect.

char pr_reversedst[16];
char pr_reversesrc[16];

These are implemented by table look-up in which the index into the tables is
(op»l) &OxF where op is the operation passed into pixrect public procedures.

This process can be iterated, e.g.,
pr_reversedst[pr_reversesrc[op]].

These are the major cases to be considered with the pwo _ rop () operation:

c Case 1 -- we are the source for the pixel rectangle operation, but not the des
tination. This is a pixel rectangle operation from the frame buffer to another
kind of pixrect If the destination is not a memory pixrect, then one will be
allocated temporarily. The source will be roped to this temporary pixrect,
then back to the destination pixrect on the frame buffer.

o Case 2 -- writing to your frame buffer. This consists of 4 different cases
depending on where the data is coming from: from a constant pixel value,
from memory, from some other pixrect, and from the frame buffer itself.
When the source is some other pixrect, other than memory, ask the other
pixrect to read itself into temporary memory to make the problem easier.

A simple batchrop implementation could iterate on the batch items and call rop
for each. Even in a more sophisticated implementation, while iterating on the
batch items, you might also choose to bail out by calling r~p when the source is
skewed, or if clipping causes you to cut off the negative x axis.

There are some notable special cases that you should consider when drawing vec
tors:

c Handle length 1 or 2 vectors by just drawing endpoints.

c If vector is horizontal, use fast algorithm.

c If vector is vertical, use fast algorithm.

The hard part in vector drawing is clipping, which is done against the rectangle
of the destination quickly and with proper interpolation so that the jaggies in the
vectors are independent of clipping.

Each color raster device has its own way of setting and getting the colonnap.

Revision A of 5 January 1990

Monochrome

A.16. Attributes

Monochrome

A.I7. Pixel

A.IS. Stencil

Appendix A - Writing a Pixrect Driver 107

The convention for monochrome raster devices when prJ'utcolormap () is
called is that if red [0] is zero then the display is light on dark; otherwise it is
dark on light. The convention for monochrome raster devices when
pr_getcolorrnap () is called is that if the display is light on dark then zero is
stored in red [0] , green [0] and blue [0] , and -1 is stored in other posi
tions in the colonnap. Otherwise, if the display is dark on light, then zero and
-1 are reversed.

pr_getattributes () and prJ'utattributes () operations get or set a
bitplane mask in color pixrects, respectively.

Monochrome devices ignore prJ'utattribute () calls that are setting the
bitplane mask. Monochrome devices always return 1 when
pr_getattribute () is asking for the bitplane mask.

pwo _get () and pwo _put () operations get or set a single pixel, respectively.

In its most efficient implementation, stencil code parallels rop code, all the
while considering the two-dimensional stencil. One way to implement stencil is
to use rops. You pay a small efficiency penalty for this. You may not con
sider it worthwhile to write the special purpose code for the bitmap stencils since
they probably will not get used nearly as much as rop. Here is the basic idea
(Temp is a temporary memory pixrect):

Temp Dest
Temp Dest op Source
Temp Temp & Stencil
Dest Dest & -Stencil
Dest Dest I Temp

i.e.,

Dest (Dest & -Stencil) I «Dest op Source) & Stencil)

+ ~!! Revision A of 5 January 1990

B
Pixrect Functions and Macros

Pixrect Functions and Macros .. 111

B.1. Making Pixrects ... 111

B.2. Text ... 112

B.3. Raster Files ... 114

B.4. Memory Pixrects ... 115

B.5. Colormaps and Bitplanes ... 116

B.6. Rasterops ... 118

B.7. Double Buffering .. 120

B
Pixrect Functions and Macros

B.1. Making Pixrects

Table B-1 Pixrects

Name
Create Purect

Create Secondary
Pixrect

Release Pixrect
Resources

Release Pixrect
Resources

Subregion Create
Secondary Purect

Subregion Release
Pixrect Resources

Convert 680XO purect
to 386i pixrect

I Function
Pixrect *pr_open(devicename)
char *devicename;

#define Pixrect *pr_region(pr, x, y, w, h)
Pixrect *pr;
int x, y, w, h;

#define pr_close(pr)
Pixrect *pr;

#define pr_destroy(pr)
Pixrect *pr;

#define Pixrect *prs_region(subreg)
struct pr_subregion subreg;

#define prs_destroy(pr)
Pixrect *pr;

void pr_flip(pr)
Pixrect *pr;

111 Revision A of 5 January 1990

112 4.1 Pixrect Reference Manual

B.2. Text

Table B-2 Text

Name
Compute Bounding Box
of Text String

Compute Location of
Characters in Text
String

Compute Width and
Height of Text String

Load Font

Load Private Copy of
Font

Load System Default
Font

Release Pix/ont
Resources

Unstructured Text

Write Text and
Background

I Function
pf_textbound(bound, len, font, text)
struct pr_subregion *bound;
int len;
Pixfont *font;
char *text;

struct pr_size pf_textbatch(where, lengthp, font, text}
struct pr-pos where[];
int *lengthp;
Pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int len;
Pixfont *font;
char *text;

Pixfont *pf_open(narne)
char *narne;

Pixfont *pf_open_private(narne)
char *narne;

Pixfont *pf_default()

pf_close(pf)
Pixfont *pf;

pr_text(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pr_ttext(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pf_text(where, op, font, text)
struct pr-prpos where;
int op;
Pixfont *font;
char *text;

+~t!! Revision A of 5 January 1990

Name
Write Text

Appendix B - Pixrect Functions and Macros 113

Table B-2 Text- Continued

I Funcnon
pf_ttext(where, op, font, text)
struct pr-prpos where;
int op;
Pixfont *font;
char *text;

Revision A of 5 January 1990

114 4.1 Pixrect Reference Manual

B.3. Raster Files

Table B-3 Raster Files

Name

Initialize Raster File
Header

Read Colormap from
Raster File

Read Headerfrom
Raster File

Read Image from Raster
File

Read Raster File

Read Standard Raster
File

Write Header to Raster
File

Write Image Data to
Raster File

Write Raster File

I Function
Pixrect *pr_durnp_init(input_pr, rh, colormap, type,

copy_flag)
Pixrect *input-pr;
struct rasterfile *rh;
colorrnap_t *colormap;
int type, copy_flag;

int pr_load_colormap(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

int pr_load_header(input, rh}
FILE *input:
struct rasterfile *rh;

Pixrect *pr_load_image(input, rh, colorrnap}
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

Pixrect *pr_load(input, colormap)
FILE *input;
colormap_t *colormap;

Pixrect *pr_load_std_image(input, rh, colormap}
FILE *input;
struct rasterfile *rh;
colormap_t colormap;

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormap;

int pr_dump_image(pr, output, rh)
Pixrect *pr;
FILE *output;
struct raster file *rh;

int pr_dump{input_pr, output, colormap, type, copy_flag)
Pixrect *input_pr;
FILE *output;
colormap_t *colormap;
int type, copy_flag;

Revision A of 5 January 1990

Appendix B - Pixrect Functions and Macros 115

B.4. Memory Pixrects

Table B-4 Memory Pixreets

Name

Create Memory Pixreet
from an Image

Create Memory Pixreet

Create Static Memory
Pureet

Get Memory Pureet
Data Bytes per Line

Get Pointer to Memory
Pixrect Data

Variations for the Sun386i:

I Function
Pixrect *mem-point(width, height, depth, data)
int width, height, depth;
short *data;

Pixrect *mem_create(w, h, depth)
int w, h, depth;

fdefine mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

fdefine mpr_linebytes(width, depth)
(«pr-product(width, depth) +15»>3) &-1)

fdefine mpr_d(pr)
({struct mpr_data *) (pr)->pr_data)

o memyoint () on the Sun386i does not flip the bitmap pointed to by *data. The pixrect structure returned
does not have the MP _STATIC or the MP _1386 flag set

o mem _create () on the Sun386i creates an empty pixrect with the MP _ 1386 flag set.

o mpr_static () on the Sun386i creates a pixrect with both the MP_I386 and MP_STATIC flags set.

Revision A of 5 JmlUary 1990

116 4.1 Pixrect Reference Manual

B.S. Colormaps and Bitplanes

Table B-5 Colormaps and Bitplanes

Name
Exchange Foreground
and Background Colors

Get Colormap Entries

Get Plo.ne Mask

Set Background and
Foreground Colors

Set Colormap Entries

Set Foreground and
Background Colors

Set Plane Mask

Subregion Get
Colormap Entries

Subregion Get Plane
Mask

Subregion Set
Colormap Entries

I Function
pr_reversevideo(pr, min, max)
Pixrect *pr;
int min, max;

fdefine pr_getcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

fdefine pr_getattributes(pr, planes}
Pixrect *pr;
int *planes;

pr_blackonwhite(pr, min, max)
Pixrect *pr;
int min, max;

fdefine pr-putcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

pr_whiteonblack(pr, min, max)
Pixrect *pr;
int min, max;

fdefine pr-putattributes(pr, planes}
Pixrect *pr;
int *planes;

fdefine prs_getcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

#define prs_getattributes(pr, planes)
Pixrect *pr;
int *planes;

fdefine prs-putcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

Revision A of 5 January 1990

Name
Subregion Set Plane
Mask

Appendix B - Pixrect Functions and Macros 117

Table B-5 Colormaps and Bitplanes- Continued

I FunctiOn
#define prs-putattributes(pr, planes)
Pixrect *pr;
int *planes;

+~.!! Revision A of 5 January 1990

118 4.1 Pixrect Reference Manual

B.6. Rasterops

Table B-6 Rasterops

Name
Draw Textured or Solid
Lines with Width

Draw Textured Polygon

Draw Vector

Get Pixel Value

Masked RasterOp

Multiple RasterOp

RasterOp

Replicated Source
RasterOp

Set Pixel Value

I Funcnon
*define pr_line(pr, xO, yO, xl, yl, brush, tex, op)
Pixrect *pr;
int xO, yO, xl, yl;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

pr-polygon_2(dpr, dx, dy, nbnds, npts, vlist, op,
spr, sx, sy)

Pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr-pos *vlist;
int op, sx, sy;

*define pr_vector(pr, xO, yO, xl, yl, op, value)
Pixrect *pr;
int xO, yO, xl, yl, op, value;

*define pr_get(pr, x, y)
Pixrect *pr;
int x, y;

#define pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
Pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

#define pr_batchrop(dpr, dx, dy, op, items, n}
Pixrect *dpr;
int dx, dy, op, n;
struct pr-prpos items[];

#define pr_rop(dpr,
Pixrect *dpr, *spr;
int dx, dy, dw, dh,

pr_replrop(dpr, dx,
Pixrect *dpr, *spr;
int dx, dy, dw, dh,

*define pr_put(pr,
Pixrect *pr;
int x, y, value;

dx,

op,

dy,

op,

x, y,

dy, dw, dh, op, spr, sx,

sx, sy;

dw, dh, op, spr, sx, sy)

sx, sy;

value}

sy)

Revision A of 5 January 1990

Appendix B - Pixrect Functions and Macros 119

Table B-6 Rasterop~ Continued

Name
Subregion Draw Vector

Subregion Get Pixel
Value

Subregion Masked
RasterOp

Subregion Multiple
RasterOp

Subregion RasterOp

Subregion Replicated
Source RasterOp

Subregion Set Pixel
Value

Trapezon RasterOp

I Function

#define prs_vector(pr, posO, posl, op, value)
Pixrect *pr;
struct pr-pos posO, posl;
int op, value;

#define prs_get(srcprpos)
struct pr-prpos srcprpos;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos stenprpos, srcprpos;

#define prs_batchrop(dstpos, op, items, n)
struct pr-prpos dstpos;
int op, n;
struct pr_prpos items[];

#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos srcprpos;

#define prs_replrop{dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr-prpos sprpos;

#define prs_put(dstprpos, value)
struct pr-prpos dstprpos;
int value;

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy)
Pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

Revision A of 5 January 1990

120 4.1 Pixrect Reference Manual

B.7. Double ButTering

Table B-7 Double Buffering

Name
Get Double Buffering
Attributes

Set Double Buffering
Attributes

I Function
pr_dbl_get(pr, attribute)
Pixrect *pr;
int attribute;

pr_dbl_set(pr, attribute_list)
Pixrect *pr;
int *attribute_list;

Revision A of 5 January 1990

c
Pixrect Data Structures

Pixrect Data Structures ... 123

Table C-l

Name I
Brush

Character Descriptor

Font Descriptor

Pixrect

c
Pixrect Data Structures

Pixrect Data Structures

Data Structure
typedef struct pr_hrush {

int width;
} Pr_brush;

struct pixchar

} ;

struct pixrect *pc_pr;
struct pr-pos pc_home;
struct pr_pos pc_adv;

typedef struct pixfont {
struct pr_size pf_defaultsize;
struct pixchar pf_char[2S6];

} Pixfont;

typedef struct pixrect {
struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;
caddr_t pr_data;

} Pixrect;

123 Revision A of 5 January 1990

124 4.1 Pixrect Reference Manual

Table C-1

Name
Pixreet Operations

Position

Position Within a
Pixrect

Size

Subregion

I
Pureet Data Struetures- Continued

Data Structure
struct pixrectops {

int (*pro_rop) C);
int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) () ;
int (*pro_destroy) ();
int (*pro_get) () ;
int (*pro~ut) ();
int (*pro_vector) C);
struct pixrect * (*pro_region) ();

#ifdef PR IOCTL DEFINED
0;

#endif

} ;

int (*pro~utcolormap) ();
int (*pro_getcolormap) ();
int (*pro_putattributes) ();
int (*pro_getattributes) ();

struct pr_pos
int x, y;

} ;

struct pr_prpos

} ;

struct pixrect *pr;
struct pr_pos pos;

struct pr_size
int x, y;

} ;

struct pr_subregion
struct pixrect *pr;
struct pr-pos pos;
struct pr_size size;

} ;

Revision A of 5 January 1990

Table C-1

Name I
Texture

Trapezon

Trapezon Chain

Trapezon Fall

Appendix C - Pixrect Data Structures 125

Pixrect Data Structures- Continued

Datil Structure
typedef struct pr_texture

short *pattern;
short offset;
struct pr_texture_options

unsigned startpoint 1,
endpoint : 1,
balanced : 1,
givenpattern 1,
res_fat : 1,
res_poly: 1,
res mvlist : 1,
res_right 1,
res_close : 1;

options;
short res_polyoff;
short res_oldpatln;
short res_fatoff;

Pr texture;

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_chain

} ;

struct pr_chain *next;
struct pr_size size;
int *bits;

struct pr_fall

} ;

struct pr-pos pos;
struct pr_chain *chain;

Revision A of 5 January 1990

Index

Special Characters
<rasterfile.h>,69
<stdio . h>, 69

2
24-bit colonnap, 38

8
80386, see Sun386i

B
bit-mapped display, 5
bitmap, 4
boolean, 5

C
clip pixrect, 24
colonnap, 24-bit, 38
compiling pixrect programs, 7
compute bounding box of text string, 57, 112
compute location of characters in text string, 57, 112
compute width and height of text string, 57, 112
convert 680XO pixrect to Sun386i pixrect, 111
coordinate system, 4
create memory pixrect, 63, 115
create memory pixrect from an image, 64, 115
create pixrect, 25, 111
create secondary pixrect, 26, 111
create static memory pixrect, 65, 115

D
double buffering

CG9 true color, 48
draw multiple points, 37
draw textured or solid lines with width, 34, 118
draw textured or solid polylines with width, 36
draw textured polygon, 31, 118
draw vector, 31, 118

E
enable planes

CG4,43
CG8,43
CG9,43
comparison of, 43

-127 -

exchange foreground and background colors, 41, 116

F
font

pixrect, 30, 53, 55, 57
fontedit,54

G
get colormap entries, 38, 116
get current plane group, 46
get double buffering attributes, 46, 120
get memory pixrect data bytes per line, 62, 115
get pixel value, 27, 118
get plane mask, 42, 116
get pointer to memory pixrect data, 62, 115

H
header files

pixrect, 7, 8

I
include files

pixrect, 7, 8
initialize raster file header, 75, 114

L
lint

pixrect,7
load'font, 54, 112
load private copy of font, 55, 112
load system default font, 55, 112
look-up table, 39

M
masked RasterOp, 28, 118
mem_create (), 63,115
mem _point () , 64, 115
memory pixrects, 6, 13, 61, 63
mpr_d (), 62,115
mpr_data, 61
mpr_linebytes (), 62, 115
mpr_mdlinebytes(),62
mpr_static(),115
multiple RasterOp, 30, 118

Index - Continued

o
object-oriented programming, 4

p
pf_close (), 55, 112
pf_default (), 55,112
pf _open () , 54, 112
pf_openyrivate (), 55, 112
pf_text (), 55,112
pf_textbatch (), 57,112
pf_textbound (), 57,112
pf_textwidth (), 57,112
pf_ttext (), 56,112
PIX_CLR, 22
PIX_DONTCLIP, 21,24
PIX_DST,22
PIX_ERR, 21
PIX_NOT,22
PIX_SET,22
PIX_SRC,22
pixchar,53,123
pixel,62

address, 4, 61. 66
color, 4
depth, 4, 61. 66

pixel fonnat
XBGR,40

Pixfont, 53, 123
PIX PG_24B IT _COLOR,43
P ixrect, 123
pixrect

available plane groups, 45
bit flipping, 13
bitmap, 4
bitplane, 41
clipping. 24, 105
close a font, 55
compiling. 7
coordinate system, 4
creation of, 25
data structures, 8, 13,20, 35. 53, 61, 73. 123
destruction of, 26
draw lines in, 34
draw textured polygon in, 31
draw vector in, 31
errors, 21
find character positions, 57
font, 30, 53, 55, 57
foreground and background, 38, 41
get colorrnap, 38
get current plane group, 46
get double buffering, 46
get pixel of, 27
get plane mask, 42
header files, 7, 8
internals, 20. 53, 61, 73
lint library, 7
load a font, 54
load a private font, 55
load default font. 55
masked RasterOp, 28

-128-

pixrect, continued
memory pixrects, 6, 13. 61, 63. 64
multiple RasterOp, 30
object, 4
pixel, 4
polylines, 36
polypoints, 37
portability, 13
primary, 6
raster files, 70, 72, 75, 76
RasterOp, 5, 28
replicating, 29
screen parameters, 25
secondary, 6, 26
set colormap, 38
set double buffering, 47
set pixel, 27
set plane group, 46
set plane mask, 42
string width, 57
text bounding box, 57
write text, 55, 56,58
writing device drivers. 79, 106

pixrect lint library, 7
pixrect header files

<pixrect/pixrect.h>,7
<pixrect/prylanegroups.h>,42
<pixrect>,8
<stdio. h>, 69

pixrect macros
MP DISPLAY, 61
MP=I386,61
MP_PLANEMASK, 61
MP REVERSEVIDEO.61
MP-STATIC,61
mpr_d O.62
mpr_linebytes(),62
mpr_mdlinebytes().62
PIX DONTCLIP, 21,24
PIX-DST,22
PIX-ERR, 21
PIX-NOT,22
PIX-SRC,22
PIXPG 8BIT COLOR, 43
PIXPG=CURRENT,43
PIXPG MONO, 43
PIXPG -OVERLAY, 43
PIXPG=OVERLAY_ENABLE.43

pixrectops, 20, 123
plane group

CG9 default, 45
PIXPG_24BIT_COLOR. 43

plane groups
CG4 vs. CG8/CG9, 43
supported, determining which, 45

plane groups,
24-bit frame buffers, 43

pr_available_plane_groups().45
pr_batchrop (), 30,118
pr_blackonwhite (), 41. 116
pr_brush,l23
pr_brush (), 34, 36
pr _chain. 123

pr_clip 0,105
pr close (), 26, 111
pr-dbl get (),46,120
pr = dbl= set 0 , 47, 120
PR DBL WRITE

- controlling double buffering, 48
pr destroy 0 , 26, 111
pr - dump () , 70, 114
pr=dump_header 0, 75,114
pr _dump_image (), 75, 114
pr dump in it 0,75,114
pr=fall:-l23
pr flip () ,13,111
PR:=FORCE_UPDATE

value, 39
pr get (). 27. 118
pr-get plane group(),46
pr=get~ttrib~tes (), 42, 116
pr~tcolormap, 44
pr getcolormap (), 38.116
pr=getlut (). 39, 41
pr_line (), 34. 118
pr load (). 72.114
pr-load colormap O. 76. 114
pr -1 oad-header (). 76. 114
pr=load=image (). 76. 114
pr_load_std_image (). 76,114
pr open 0,25,111
pryolygon_2 0,31,118
p r -polyline(),36
pr_polypoint(),37
pr_pos, 123
pr yrpos, 123
pryut O. 27. 118
pr_putattributes 0,42,116
PT_putcolormap, 44
pryutcolormap O. 38,39.116
pr_putlut (), 39,41
pr region () , 26, 111
pr-replrop () , 29, 118
pr=reversedst(),l06
pr_reversesrc(),106
pr_reversevideo (), 41,116
pr _r~p () , 28, 118
pr_set_plane_group() ,46
pr _set ylanes () • 46
pr size, 123
pr=stencil 0,28,118
pr_subregion,l23
pr _text (), 58, 112
Pr_texture, 123
pr_texture (). 34. 36
pr_trap, 123
pr_traprop (). 118
pr_ttext 0,58.112
pr_vectorO.31.118
pr_whiteonblack 0.41.116
primary pixrect, 6. 26

-129-

prs_batchrop 0, see pr_batchrop
prs_destroy (). see pr_destroy

Index - C ont inued

prs _get () • see pr _get
prs_getattributes(),see pr_getattributes
prs_getcolormap (). see pr_getcolormap
prsJ>ut (). see pr_put
prsJ>utattributes().see pr-putattributes
prsJ>utcolormap().see pr_putcolormap
prs_region 0, see pr_region
prs_replrop (). see pr_replrop
prs_rop (). see pr_rop
prs_stencil (). see pr_stencil
prs_vector (), see pr_ vector

R
raster file, 73

data structure. 73
initialize header. 75, 114
read. 72, 76, 114
read colormap, 76. 114
read header, 76, 114
read image, 76, 114
write, 70, 114
write header, 75, 114
write image, 75. 114

Rasre~,5.28, 118
read colormap from raster file, 76, 114
read header from raster file. 76, 114
read image from raster file, 76, 114
read raster file. 72, 114
read standard rasrer file, 76, 114
release pixfont resources, 55. 112
release pixrect resources, 26, 111
replicated source RasterOp, 29. 118
run-length encoding, 69

S
secondary pixrect, 6, 26
set background and foreground colors, 41, 116
set colormap entries, 38, 116
set double buffering, 47, 120
set foreground and background colors, 41, 116
set pixel value, 27. 118
set plane group and mask, 46
set plane mask. 42, 116
static memory pixrect, 65
subregion

creation of secondary pixrect, 26, 111
destruction of pixrect, 26, 111
draw vector in pixrect, 31, 118
get colormap. 38, 116
get pixel of pixrect. 27, 118
get plane mask, 42, 116
masked RasterOp, 28. 118
multiple RasterOp, 30, 118
RasterOp, 28, 118
replicating, 29, 118
set colormap, 38, 116
set pixel of pixrect, 27, 118
set plane mask, 42, 116

Index - Continued

Sun386i
pixrect, 111
pixrect portability, 13
pr_flip (), 13

T
trapezon RasterOp, 118
true color, 23.40
true color look-up table. 39

U
unstructured text, 58, 112

V
vector display. 5
vertical retrace, 46

W
write header to raster file, 75, 114
write image data to raster file. 75. 114
write raster file. 70, 114
write text. 56, 112
write text and background, 55, 112

X
XBGR fonnat.40
XBGR pixel format, 40

-130-

